
Joseph K. Liu
Hui Cui (Eds.)

LN
CS

 1
22

48

25th Australasian Conference, ACISP 2020
Perth, WA, Australia, November 30 – December 2, 2020
Proceedings

Information Security 
and Privacy



Lecture Notes in Computer Science 12248

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Joseph K. Liu • Hui Cui (Eds.)

Information Security
and Privacy
25th Australasian Conference, ACISP 2020
Perth, WA, Australia, November 30 – December 2, 2020
Proceedings

123



Editors
Joseph K. Liu
Faculty of Information Technology
Monash University
Clayton, VIC, Australia

Hui Cui
Murdoch University
Perth, WA, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-55303-6 ISBN 978-3-030-55304-3 (eBook)
https://doi.org/10.1007/978-3-030-55304-3

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6656-6240
https://doi.org/10.1007/978-3-030-55304-3


Preface

This volume contains the papers presented at the 25th Australasian Conference on
Information Security and Privacy (ACISP 2020), which was held as a virtual online
conference, due to COVID-19. ACISP is an annual international forum for worldwide
researchers and industry experts to present and discuss the latest research, trends,
breakthroughs, and challenges in the domain of information security, privacy, and
cybersecurity.

This year we received 151 submissions of excellent quality from around the world.
Each paper was reviewed by at least three Program Committee members, and on
average 3.7 reviews were received for each paper. Although there are many good
papers submitted, in order to maintain the high quality of ACISP we can only select a
very small portion of them to be included in the proceeding. After extensive discussion
among the Program Committee, we decided to accept 31 full papers and 5 short papers.

We would like to express our thanks to all Program Committee members. Without
their hard effort in reviewing papers in such a short time, the conference would not
have been successful. We would also like to thank our general co-chairs, Kevin Wong
and Jun Zhang, our publication co-chairs, Weizhi Meng and Shi-Feng Sun, and our
web chair, Yu Wang. They all devoted a large amount of time for the preparation of
this conference.

November 2020 Joseph K. Liu
Hui Cui
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Lattice Blind Signatures with Forward
Security

Huy Quoc Le1,4(B), Dung Hoang Duong1(B), Willy Susilo1,
Ha Thanh Nguyen Tran2, Viet Cuong Trinh3, Josef Pieprzyk4,5,

and Thomas Plantard1

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Northfields Avenue, Wollongong, NSW 2522, Australia
qhl576@uowmail.edu.au, {hduong,wsusilo,thomaspl}@uow.edu.au

2 Department of Mathematical and Physical Sciences,
Concordia University of Edmonton,

7128 Ada Blvd NW, Edmonton AB T5B 4E4, Canada
hatran1104@gmail.com

3 Faculty of Information and Communication Technology, Hong Duc University,
565 Quang Trung, Thanh Hoa, Vietnam

trinhvietcuong@hdu.edu.vn
4 CSIRO Data61, Sydney, NSW, Australia

Josef.Pieprzyk@data61.csiro.au
5 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. Blind signatures play an important role in both electronic
cash and electronic voting systems. Blind signatures should be secure
against various attacks (such as signature forgeries). The work puts a
special attention to secret key exposure attacks, which totally break dig-
ital signatures. Signatures that resist secret key exposure attacks are
called forward secure in the sense that disclosure of a current secret key
does not compromise past secret keys. This means that forward-secure
signatures must include a mechanism for secret-key evolution over time
periods. This paper gives a construction of the first blind signature that
is forward secure. The construction is based on the SIS assumption in
the lattice setting. The core techniques applied are the binary tree data
structure for the time periods and the trapdoor delegation for the key-
evolution mechanism.

Keywords: Key exposure · Forward security · Blind signatures ·
Lattice-based cryptography · SIS assumption

1 Introduction

Key exposure is one of most serious dangers for both secret and public key cryp-
tography. When secret keys are disclosed, cryptographic systems using them are
completely broken. Fortunately, there are some solutions that can be used to
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 3–22, 2020.
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mitigate secret-key exposure. They are summarized in [6]. Among many possi-
ble solutions, forward security seems to be the most promising when trying to
minimize a damage caused by secret-key disclosure.

For cryptographic protocols, forward security guarantees that even if the
current session key is compromised by an adversary, she gets no information
about previous session keys. This means that past sessions are still secure. The
notion of forward security has been coined by Günther in [15] and later used in
[12] to evaluate security of authenticated key-exchange protocols. Note that the
authors of [12] and [15] call it forward secrecy. Ross Anderson in [5] extends the
notion for digital signatures.

Blind signatures, introduced by Chaum [10], allow users to obtain message
signatures from a signer without leaking information about message contents.
Blind signatures are indispensable in many applications such as electronic cash
[23, Section 1] and electronic voting protocols [18]. For such security-critical
applications, one would expect blind signatures to be resistant against key disclo-
sure. An obvious solution is to incorporate forward security into blind signatures.
There are many works such as [11,13,17] that follow this line of investigation.
All solutions published so far rely on number-theoretic assumptions and conse-
quently are insecure against quantum adversaries.

Related Works. Bellare and Milner investigate secret-key exposure of digital
signatures in their Crypto99 paper [6]. They formulate a security model and
define forward-secure digital signatures. They also design their forward-secure
signature assuming intractability of integer factorization. Abdalla and Reyzin
[1], and Itkis and Reyzin [16] improve efficiency the Bellare-Miner signature.
The work of Duc et al. [13] is the first, which investigates forward security in
the context of blind signatures. The authors of [13] adopt the definition and
security model from [6] to forward-secure blind signatures. Their blind signature
provides forward-secure unforgeability assuming intractability of the strong RSA
problem and access to random oracle. Their security proof exploits the forking
lemma by Pointcheval and Stern [23]. Later, Chow et al. [11] design forward-
secure blind signature using bilinear pairings. Jia et al. [17] describe a forward-
secure blind signature that is also based on bilinear pairings. Boyd and Gellert
[7] give a comprehensive survey of methods of incorporating forward security
to different cryptographic primitives. They also unify different approaches to
forward security by generalising the notion and its terminology.

Our Contributions and Approach. Thanks to its quantum resistance,
lattice-based cryptography is attracting more and more attention from the
research community. However, there is no lattice-based construction of forward-
secure blind signatures. Our work fills the gap. We construct the first forward-
secure blind signature in the lattice setting. Forward security is proven in the
random oracle model assuming intractability of the average case of short integer
solution (SIS). We also use the rewinding (forking lemma) argument.

Inspired by the works [19,24,25], our signature is designed using the 3-move
Fiat-Shamir transformation. To achieve blindness, the rejection sampling tech-
nique is applied (see Sect. 2). Thus, an extra move is needed to ensure that a
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final signature is valid. In order to achieve forward security, we exploit both a
binary tree structure for lattice-based schemes introduced in [9] and a trapdoor
delegation from [2,9].

To obtain forward-secure signature, we need a mechanism that permits for a
secret-key update between two time intervals. For this purpose, we use a binary
tree of the depth �, whose leaves are labelled from left to right by consecutive
time intervals t = 0 up to t = τ − 1, where τ = 2� is the total number of time
intervals. To generate the public key and the initial secret key, we choose random
matrices A

(0)
j , A

(1)
j for j ∈ [�] together with a matrix/trapdoor pair (A0, TA0).

Now, for any node w(i) = (w1, · · · , wi) ∈ {0, 1}i, we build up a concatenated
matrix of form Fw(i) = [A0‖A

(w1)
1 ‖A

(wi)
i ]. Then, we can compute a trapdoor for

Λ⊥
q (Fw(i)) using TA0 . If the node w(k) is the ancestor of the node w(i), then we

can obtain a trapdoor for Λ⊥
q (Fw(i)) from a trapdoor for Λ⊥

q (Fw(k)). However,
one cannot get a trapdoor for Λ⊥

q (Fw(k)) from a trapdoor of Λ⊥
q (Fw(i)). This is

the main idea behind the key evolution (key update) mechanism.

2 Preliminaries

For a positive integer �, [�] stands for the set {1, · · · , �}. For a vector c and a
matrix S, c[i] and S[i] represent the i-th element of c and the i-th column of S,
respectively.

Lattices. Integer lattices are discrete subgroups of Zm. Formally, a lattice L in
Z

m is defined as L = L(B) := {∑n
i=1 bixi : xi ∈ Z,∀i = 1, · · · , n} ⊆ Z

m, where
B = [b1, · · · ,bn] ∈ Z

m×n is called a basis of L, and bi’s are column vectors. We
call n the rank of L. We say L is a full rank lattice if n = m.

Given a matrix A ∈ Z
n×m and a vector u ∈ Z

n
q , we define two lattices:

Λ⊥
q (A) := {e ∈ Z

m s.t. Ae = 0 mod q} ,

Λu
q (A) := {e ∈ Z

m s.t. Ae = u mod q} .

They all are full rank lattices containing qZm and are called q-ary lattices. Note
that if v ∈ Λu

q (A), then Λu
q (A) = Λ⊥

q (A) + v.
For a set of vectors S = {s1, · · · , sk} in R

m, we denote ‖S‖ := maxi ‖si‖.
Also, S̃ := {s̃1, · · · , s̃k} stands for the Gram-Schmidt orthogonalization of the
vectors s1, · · · , sk in that order. The Gram-Schmidt norm of S is denoted by
‖S̃‖. A basis of a lattice is called short if its Gram-Schmidt norm is short.

We recall the shortest independent vectors problem (SIVP), which is the
worst case of approximation problem on lattices. Note that the i-th minimum of a
n-dimensional lattice L is defined as λi(L) := min{r : dim(span(L∩Bn(0, r))) ≥
i}, where Bn(0, r) = {x ∈ R

n : ‖x‖ ≤ r}.

Definition 1 (SIVP). Given a full-rank basis B of an n-dimensional lattice L.
SIVPγ requires to output a set of n linearly independent lattice vectors S ⊂ L(B)
such that ‖S‖ ≤ γ(n) · λn(L(B)).
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Below we define discrete Gaussian distribution over an integer lattice.

Definition 2 (Gaussian Distribution). Let Λ ⊆ Z
m be a lattice. For a vector

v ∈ R
m and a positive parameter s ∈ R, define ρs,v(x) = exp

(
−π‖x−v‖2

s2

)
and

ρs,v(Λ) =
∑

x∈Λ ρs,v(x). The discrete Gaussian distribution over Λ with center
v and parameter σ is ∀y ∈ Λ,DΛ,s,v(y) = ρs,v(y)

ρs,v(Λ) .

For convenience, ρs and DΛ.s denote ρ0,s and DΛ,s,0, respectively. When
s = 1, we will write ρ instead of ρ1. Also, Dm

s,v and Dm
s stand for DZm,s,v and

DZm,s, respectively.

Lemma 1 ([21, Lemma 4.5]). For any v ∈ Z
m, if s = α · ‖v‖, where α > 0,

we have Pr
[
Dm

s (x)/Dm
s,v(x) ≤ e12/α+1/(2α2) : x ← Dm

s

]
≥ 1 − 2−100.

Remark 1. In Lemma 1, if α = 12, i.e., s = 12‖v‖ then Dm
s (x)/Dm

s,v(x) ≤
e1+1/288 with probability not smaller than 1 − 2−100.

Trapdoors and Trapdoor Delegation. Alwen and Peikert [4] give an algo-
rithm for sampling a uniform matrix A ∈ Z

n×m
q together with a short basis TA

for Λ⊥
q (A). It is an improvement of the algorithm published by Ajtai in [3]. We

call TA an associated trapdoor for A or for Λ⊥
q (A).

Theorem 1 ([4]). Let q ≥ 3 be odd and m := �6n log q�. There is a prob-
abilistic polynomial-time (PPT) algorithm TrapGen(q, n) that outputs a pair
(A ∈ Z

n×m
q , TA ∈ Z

m×m) such that A is statistically close to a uniform matrix in
Z

n×m
q and TA is a basis for Λ⊥

q (A) satisfying ‖T̃A‖ ≤ O(
√

n log q) and ‖TA‖ ≤
O(n log q) with all but negligible probability in n.

Regarding Gaussian distribution, q-ary lattices and trapdoors, some useful
results are presented in the following lemma and theorem.

Lemma 2 ([14, Corollary 5.4]). Let m,n, q be positive integers such that q is
prime and m ≥ 2n log q. Then for all but 2q−n fraction of all matrix A ∈ Z

n×m
q

and for any s ≥ ω(
√

log m), the distribution of u := Ae (mod q) is statisti-
cally close to uniform over Z

n
q , where e ← DZm,s. Furthermore, the conditional

distribution of e ← DZm,s, given Ae = u (mod q), is exactly DΛu
q(A),s.

Theorem 2. Let q > 2 and let A,B be a matrix in Z
n×m
q with m > n. Let

TA, TB be a basis for Λ⊥
q (A) and Λ⊥

q (B), respectively. Then the following state-
ments are true.

1. [22, Lemma 4.4]. For s ≥ ‖T̃A‖ · ω(
√

log n), we have

Pr[x ← DΛu
q (A),s : ‖x‖ > s

√
m] ≤ negl(n).
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2. [14, Theorem 4.1]. There is a PPT algorithm SampleD(B, s,v) that, given
a basis B of an n-dimensional lattice Λ := L(B), a parameters s ≥ ‖B̃‖ ·
ω(

√
log n) and a center v ∈ R

n, outputs a sample from a distribution statis-
tically close to DΛ,s,v.

3. [14, Subsection 5.3.2]. There is a PPT algorithm SampleISIS(A, TA, s,u) that,
on input a matrix A, its associated trapdoor TA, a Gaussian parameter s ≥
‖T̃A‖ · ω(

√
log n) and a given vector u, outputs a vector e from DΛu

q(A),s. It
performs as follows: first it chooses an arbitrary t ∈ Z

m satisfying that At =
u (mod q) (t exists for all but an at most q−n fraction of A). It then samples
w ← DΛ⊥

q (A),s using SampleD(TA, s,−t) and finally outputs e = t + w.

4. [19, Section 2]. There is a PPT algorithm SampleKey(A, TA, s,K) that takes
as input a matrix A ∈ Z

n×m
q , its associated trapdoor TA ∈ Z

m×m
q , a real

number s ≥ ‖T̃A‖ · ω(
√

log n) and matrix K ∈ Z
n×k
q to output a random (col-

umn) matrix S ∈ Z
m×k such that the j-th column S[j] ∈ Dom := {e ∈ Z

m :
‖e‖ ≤ s

√
m} for all j ∈ [k] and that A · S = K (mod q) with overwhelming

probability. The distribution of S is DZm×k,s statistically close to the uni-
form distribution over Domk. It performs by calling k times the algorithm
SampleISIS(A, TA, s,u) in which u = K[j] for j ∈ {1, · · · , k}.

In order to securely delegate a basis for an extended lattice, one can call the
ExtBasis algorithm described below.

Lemma 3 ([2, Theorem 5]). Let A := [A1‖A2‖A3] be a concatenation of three
matrices A1, A2, A3. Suppose that TA2 is a basis of Λ⊥

q (A2). Then, there is a
deterministic polynomial time algorithm ExtBasis(A, TA2) that outputs a basis
TA for Λ⊥

q (A) such that ‖T̃A‖ = ‖T̃A2‖.

Hardness Assumption. Forward-security of our construction is proven assum-
ing hardness of the SIS problem.

Definition 3 (l2 − SISq,n,m,β problem, [21, Definition 3.1]). Given a random
matrix A ←$ Z

n×m
q , find a vector z ∈ Z

m \ {0} such that Az = 0 (mod q) and
‖z‖ ≤ β.

The hardness of l2-SIS is stated by the following theorem.

Theorem 3 ([14, Proposition 5.7]). For any poly-bounded m, β = poly(n) and
for any prime q ≥ β · ω(

√
n log n), the average case problem l2 − SISq,n,m,β is as

hard as approximating the SIVP problem (among others) in the worst case for a
factor γ = β · Õ(

√
n).

Define the SISq,n,m,d distribution by the pair (A,As), where A
$←− Z

n×m
q and

s $←− {−d, · · · , 0, · · · , d} are chosen at random. The distribution is characterised
by the following lemma.

Lemma 4 (Discussed in [21]). For d � qm/n, the SISq,n,m,d distribution is
statistically close to uniform over Z

n×m
q × Z

n
q . Given (A,u) from the SISq,n,m,d

distribution, there are many possible solutions s satisfying As = u.
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Rejection Sampling. This is an aborting technique that is frequently used in
lattice-based cryptography. The technique plays an important role in guarantee-
ing the blindness as well as it is used in simulation of the forward-security proof
for our signature.

Lemma 5 (Rejection Sampling, [21, Theorem 4.6]). Let V = {v ∈ Z
m :

‖v‖ ≤ δ} be a subset of Z
m and s = ω(δ log

√
m) be a real number. Define a

probability distribution h : V → R. Then there exists a universal M = O(1)
satisfying that two algorithms A and B defined as:

1. (A): v ← h, z ← Dm
v,s, output (z,v) with probability min( Dm

s (z,)
MDm

v,s(z)
, 1), and

2. (B): v ← h, z ← Dm
s , output (z,v) with probability 1/M ,

have a negligible statistical distance Δ(A,B) := 2−ω(log m)/M . Moreover, the
probability that A outputs something is at least (1−2−ω(log m))/M . In particular,
if s = αδ for any α > 0, then M = e12/α+1/(2α2), Δ(A,B) = 2−100/M and the
probability that A outputs something is at least (1 − 2−100)/M .

Commitment Functions. A commitment function com maps a pair of two
strings (μ,d) ∈ {0, 1}∗ × {0, 1}n (called committed string) to a commitment
string C := com(μ,d) ∈ {0, 1}n. We need com that is both statistically hiding
and computationally binding. For more details, see [19,24].

3 Framework of Forward-Secure Blind Signatures

In this section, we recap the syntax and the security model for forward-secure
blind signatures (FSBS). We follow [13], which is in turn adapted from [6].

3.1 Syntax of Forward-Secure Blind Signature Schemes

A forward-secure blind signature (or FSBS for short) consists of the four algo-
rithms Setup, KeyUp, Sign, and Verify. They are described as follows:

– (pp, pk, sk0)
$←− Setup(1n). The algorithm is a PPT one that takes as input a

security parameter n and generates common parameters pp, a public key pk
and an initial secret key skε.

– skt+1
$←− KeyUp(skt, t): The key update algorithm is a PPT one, which derives

a secret key skt+1 for the time period t + 1 from a secret key skt for a time
period t. After execution, the algorithm deletes the secret key skt.

– (V, Σ) $←− Sign(pp, pk, skt, t, μ): The signing algorithm involves an interaction
between a user, say U(pp, pk, t, μ) and a signer, say S(pp, pk, skt, t). At a time
period t, the user blinds the message μ using the secret key skt and sends
it to the signer. The signer replies with a signature of the blinded message.
After successful interactions, the user obtains a signature Σ of the original
message μ at the time t. The signer gets its own view V. If the interaction
fails, the user and signer output Σ := ⊥ and V := ⊥, respectively.
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– 1/0 := Verify(pp, pk, t, μ,Σ): The verification algorithm is a deterministic one
that outputs either 1 if Σ is non-⊥ and valid or 0, otherwise. As the input,
it accepts a parameter pp, a public key pk, a time period t, a message μ and
a signature Σ.

The correctness of FSBS is defined as follows. For any (pp, pk, sk0) ← Setup(1n)
and (Σ,V) ← Sign(pp, pk, sk, t, μ), the verification algorithm fails with a negli-
gible probability or

Pr[Verify(pp, pk, t, μ,Σ) = 1] = 1 − negl(n).

3.2 Security of Forward-Secure Blind Signatures

Two properties required for forward-secure blind signatures are blindness and
forward security. Blindness ensures that it is impossible for the signer to learn
any information about messages being signed.

Definition 4 (Blindness). FSBS is blind if for any efficient algorithm S∗, the
advantage of S∗ in the blindness game BlindS∗

FSBS is negligible. That is

AdvBlindFSBS(S∗) := Pr[BlindS∗
FSBS ⇒ 1] − 1/2 ≤ negl(n).

FSBS is called perfectly blind if Pr[BlindS∗
FSBS ⇒ 1] is exactly 1/2.

The blindness game BlindS∗
FSBS consists of three phases defined below.

1. Initialization. The adversary S∗ chooses a security parameter n, then
obtains common parameters pp, a public key pk and an initial secret key
sk0 using Setup(1n).

2. Challenge. S∗ selects and gives the challenger C two messages μ0 and μ1.
The challenger C flips a coin b ∈ {0, 1} and initiates two signing interactions
with S∗ on input μb and μ1−b (not necessarily in two different time periods).
The adversary S∗ acts as the signer in these two interactions and finally
attains two corresponding view/signature pairs (Vb, Σb) and (V1−b, Σ1−b).

3. Output. The adversary S∗ outputs b′ ∈ {0, 1}. It wins if b′ = b.

Following [13], we define forward-security as the forward-secure unforgeability.
In the FSUFU∗

FSBS game, the forger U∗ is a malicious user (adversary).

Definition 5 (Forward-secure Unforgeability). FSBS is forward-secure
unforgeable (FSUF) if for any efficient algorithm U∗, the advantage of U∗ in
the forward-secure unforgeability game FSUFU∗

FSBS is negligible. That is,

AdvFSUFFSBS(U∗) := Pr[FSUFU∗
FSBS ⇒ 1] ≤ negl(n).

In our work, the forward-secure unforgeability game FSUFU∗
FSBS in defined in

the random oracle model. (We use hashing as an instantiation of random oracle.)
We assume that, whenever the adversary wants to make a signing query, it always
makes a random oracle query in advance.
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1. Setup. The forger U∗ gives a security parameter n to the challenger C.
The challenger C generates system parameters pp and outputs the key pair
(pk, sk0) by calling Setup(1n). Then C sends pp and pk to the forger U∗. The
key sk0 is kept secret.

2. Queries. At a time period t, the forger U∗ can make a polynomially many
random oracle queries as well as a polynomially many signing queries in an
adaptive manner. In order to move to the next time period, the forger makes
a key update query to get the secret key skt+1 for the time period t+1. Note
that, once the forger makes a key update query, i.e., it obtains the secret
key skt+1, it cannot issue random oracle and signing queries for past time
intervals. Finally, the forger is allowed to make a single break-in query at
a time period t ≤ T − 1, when it wants to stop the query phase. The time
interval t is called the break-in time. Once the forger makes the break-in query,
it is not able to make further random oracle (or hash) and signing queries.
Details of the challenger actions in response to the forger queries are given
below.

– For key update query KQ(t): if t < T − 1, then the challenger updates
the secret key skt to skt+1 and updates t to t + 1. If t = T − 1 then skT

is given as an empty string.
– For each hash queries HQ(t, μ): the challenger has to reply with a random

value.
– For each signing query SQ(t, μ): the challenger must send a valid signature

back to U∗.
– For the break-in query BQ(t) (note that the query is allowed once only):

the challenger must send the secret key skt to the adversary and move
the game to the output phase.

3. Output. U∗ outputs at least one forgery (μ∗, t∗, Σ∗) at time period t∗. He
wins the game if t∗ < t, SQ(t∗, μ∗) has been never queried, and (μ∗, t∗, Σ∗)
is valid.

4 Our Construction

4.1 Binary Tree Hierarchy for Time Periods

Our design applies a binary-tree data structure. In the context of encryption,
binary trees have been introduced by [8]. For the lattice setting, they have
been adapted by Cash et al. in [9]. The tree structure is useful for construct-
ing forward-secure public key encryption schemes [8], HIBE [9] and recently for
forward-secure group signature [20]. We need time periods t ∈ {0, · · · , 2� − 1} to
be assigned to leaves of a binary tree of the depth �. The tree leaves are arranged
in increasing order from left to right – see Fig. 1. For a time period t, there is
a unique path t = (t1, · · · , t�) from the root ε to the leaf, where for each level
i ∈ [�], ti = 0 if this is the left branch or ti = 1 if this is the right branch. Conse-
quently, the i-th level node w(i) in the binary tree can be described by a unique
binary bit string w(i) = (w1, · · · , wi) that follows the path from the root to the
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node. This means that for the node w(i) = (w1, · · · , wi), we can create a corre-
sponding matrix Wt = [A0‖A

(w1)
1 ‖ · · · ‖A(wi)

i ] (resp., Ft = [A0‖A
(t1)
1 ‖ · · · ‖A(t�)

� ]),
where A0 and its associated trapdoor TA0 are generated by TrapGen and A

(b)
i

are random matrices for all i ∈ [�], b ∈ {0, 1}.
Updating secret keys from time period t to t + 1 is done by the trapdoor

delegation mechanism using ExtBasis. Each node w(i) = (w1, · · · , wi) is associ-
ated with a secret key Tw(i) , which can be computed from the initial secret key
sk0 = TA0 by evaluating

Tw(i) ← ExtBasis(Aw(i) , TA0), where Aw(i) =
[
A0‖A

(w1)
1 ‖A

(w2)
2 ‖ · · · ‖A(wi)

i

]
.

Tw(i) is easily computed if a secret key Tw(k) for an ancestor w(k) of
w(i) is known. Assume that the binary representation of w(i) is w(i) =
(w1, · · · , wk, wk+1, · · · , wi), where k < i. Then

Tw(i) ← ExtBasis(Aw(i) , Tw(k)), where Aw(i) =
[
A0‖A

(w1)
1 ‖ · · · ‖A

(wk)
2 ‖ · · · ‖A

(wi)
i

]
.

Similarly, a secret key for a time period (i.e., a leaf) can be computed if we have
any its ancestor’s secret key.

4.2 Description of the Proposed Signature

Our lattice-based forward-secure blind signature (FSBS) consists of a setup algo-
rithm Setup, a key update algorithm KeyUp, an interactive signing algorithm Sign
and a verification algorithm Verify. They all are described below. Note that, we
also use a commitment function com.

Setup(1n, 1�): For a security parameter n and a binary tree depth �, the algo-
rithm runs through the following steps.

– Choose q = poly(n) prime, m = O(n log q), k, κ, �, τ = 2�, σ, σ1, σ2, σ3

(see Sect. 5.4 for details).
– Let M = {0, 1}∗ be the message space of the scheme.

– Choose randomly a matrix K
$←− Z

n×k
q . Similarly, select matrices

A
(0)
1 , A

(1)
1 , A

(0)
2 , A

(1)
2 , · · · , A

(0)
� , A

(1)
� from Z

n×m
q at random.

– Run TrapGen(q, n) to obtain a pair (A0, TA0), where A0 ∈ Z
n×m
q and

TA0 ∈ Z
m×m are a matrix and its associated trapdoor.

– Let H : {0, 1}∗ → RH be a collision-resistant and one-way hash function,
where RH := {e′ ∈ {−1, 0, 1}k : ‖e′‖ ≤ κ}.

– Let com : {0, 1}∗ × {0, 1}n → {0, 1}n be a computationally binding and
statistically hiding commitment function.

– Output pp ← {n, q,m, �, τ, k, κ, σ, σ1, σ2, σ3,M,H, com}, pk ← {A0, A
(0)
1 ,

A
(1)
1 , · · · , A

(0)
� , A

(1)
� ,K}, and skε ← TA0 as common parameters, public

key and the initial secret key, respectively.
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KeyUp(pp, pk, skt, t): We need a key evolution mechanism (KVM) that “for-
gets” all secret keys of internal nodes that can produce past keys. Additionally,
we expect that KVM stores the smallest number of keys necessary for signa-
ture to work properly. The key evolution mechanism KVM works as follows.

– For any leaf t, define the minimal cover Node(t) to be the smallest sub-
set of nodes that contains an ancestor of all leaves in {t, · · · , T − 1} but
does not contain any ancestor of any leaf in {0, · · · , t − 1}. For exam-
ple, in Fig. 1, Node(0) = {ε}, Node(1) = {001, 01, 1}, Node(2) = {01, 1},
Node(3) = {011, 1} (i.e., two black circles in the tree), Node(4) = {1},
Node(5) = {101, 11}, Node(6) = {11}, Node(7) = {111}.

– The secret key skt at time period t contains secret keys corresponding
to all nodes (including leaves) in Node(t). For example, for the tree from
Fig. 1, we have sk0 = skε = {TA0}, sk1 = {T001, T01, T1}, where T001, T01,
and T1 are associated trapdoors for F001 = [A0‖A

(0)
1 ‖A

(0)
2 ‖A

(1)
3 ], F01 =

[A0‖A
(0)
1 ‖A

(1)
2 ] and F1 = [A0‖A

(1)
1 ], respectively.

– To update skt to skt+1, the signer determines the minimal cover Node(t+
1), then derives keys for all nodes in Node(t + 1) \ Node(t) using the
keys in skt as described in Sect. 4.1. Finally the signer deletes all keys in
Node(t) \ Node(t + 1). For example, sk2 = {T01, T1} (mentioned above),
since Node(2) \ Node(1) = {01, 1} and Node(1) \ Node(2) = {001}.

Sign(pp, pk, skt, t, μ): The signer interacts with the user in order to produce
a signature for a message μ ∈ M at time period t. The interaction consists
of five phases. Phases 1, 3 and 5 are done by the signer. Phases 2 and 4 – by
the user.

– Phase 1: The signer constructs the matrix Ft =
[
A0‖A

(t1)
1 ‖ · · · ‖A(t�)

�

]
∈

Z
n×(�+1)m
q for the time t = (t1, · · · , t�). Next it computes an ephemeral

secret key St using SampleKey described in Theorem 2, where Ft ·St = K.
Note that St can be computed at Phase 3 as well. The signer samples
r ∈ Z

(�+1)m according to the distribution D(�+1)m
σ2 . It finally computes

and sends x = Ftr ∈ Z
n
q to the user.

– Phase 2: Upon receiving x, the user samples blind factors a ← D(�+1)m
σ3

and b ← Dk
σ1

, d′ $←− {0, 1}n. It computes u = x+Fta+Kb and hashes it
with c := com(μ,d′) ∈ {0, 1}n using the hash function H to obtain a real
challenge e′. The rejection sampling technique is called to get the blinded
challenge e, which is sent back to the user.

– Phase 3: The ephemeral secret key St and r are used to compute z =
r + Ste. In order to guarantee that no information of St is leaked, the
rejection sampling is applied, which implies that the distribution of z and
r are the same. Finally, the blinded signature z is delivered to the user.

– Phase 4: The user computes the unblinded signature z′ = z + a. Again,
the rejection sampling is called to make sure that z′ and z are independent
of each other and z′ is bounded in some desired domain. The user returns
(t, μ,Σ = (d′, e′, z′)) as the final signature if ‖z′‖ ≤ σ3

√
(1 + �)m holds.

Otherwise, he outputs “⊥”. The user is required to confirm validity of
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the final signature by sending result to the signer: result := accept means
the final signature is good, while result := (a,b, e′, c)) requires the user
to restart the signing protocol.

– Phase 5: Having obtained result, the signer checks whether or not result �=
accept. If not, it returns the view V = (t, r, e, z). Otherwise it makes some
check-up operations before restarting the signing algorithm. The check-up
allows the signer to detect an adversary who controls the user and tries
to forge a signature.

Note that the rejection sampling in Phase 2 is not able restart the signing
algorithm as it is used locally. In contrast, the rejection sampling in Phase 3
and Phase 4 can make the signing algorithm restart. The reader is referred
to Sect. 5 for more details. Figure 2 illustrates the signing algorithm.
Verify(t, pk, μ,Σ): The algorithm accepts a signature Σ on the message μ for
the time period t = (t1, · · · , t�) and public key pk as its input and performs
the following steps:

(i) parse Σ = (d′, e′, z′);
(ii) form Ft :=

[
A0‖A

(t1)
1 ‖ · · · ‖A(t�)

�

]
∈ Z

n×(1+�)m;
(iii) compute ê := H(Ftz′ − Ke′ mod q, com(μ,d′));
(iv) if ‖z′‖ ≤ σ3

√
(1 + �)m and ê = e′, then output 1, otherwise return 0.

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

level 0

level 1

level 2

level 3

Fig. 1. Binary tree of depth � = 3, i.e., for τ = 8 time periods. The root is denoted by
ε. For convenience, we name nodes by their binary representations

5 Correctness, Security and Parameters for FSBS

5.1 Correctness

Theorem 4 (Correctness). The correctness of FSBS scheme holds after at
most e2 restarts with probability not smaller than 1 − 2−100.
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SIGNER S(pp, pk, skt, t): USER U(pp, pk, t, μ) :

Phase 1: Phase 2:

01. Ft :=
[
A0‖A

(t1)
1 ‖ · · · ‖A

(t�)
�

]
∈ Z

n×(�+1)m
q 05. Ft :=

[
A0‖A

(t1)
1 ‖ · · · ‖A

(t�)
�

]
02. St ∈ Z

(�+1)m×k ← SampleKey(Ft, TFt , σ, K) 06. a $←− D(�+1)m
σ3 , b $←− Dk

σ1

(i.e., Ft · St = K (mod q)) 07. d′ $←− {0, 1}n, c := com(μ,d),

03. r ∈ Z
(�+1)m $←− D(�+1)m

σ2 , x = Ftr ∈ Z
n
q u = Fta+ x+ Kb (mod q)

04. Send x to the user 08. e′ = H(u, c) ∈ Rk
H , e := e′ + b

[Go to Phase 2] 09. Output e with probability

Phase 3: min
{

Dm
σ1

(e)

M1·Dm
σ1,e′ (e)

, 1
}

11. z = r+ Ste 10. Send e back to the signer.
12. Output z with probability [Go to Phase 3]

min
{

D(�+1)m
σ2 (z)

M2·D(�+1)m
σ2,Ste

(z)
, 1

}
Phase 4:

13. Send z to the user 14. z′ = z+ a
[Go to Phase 4] 15. Output z′ with probability

Phase 5: min
{

D(�+1)m
σ3 (z′)

M3·D(�+1)m
σ3,z (z′)

, 1
}

18. if (result �= accept): i.e., if (‖z′‖ < σ3
√

(� + 1)m) :
19. Parse result := (a,b, e′, c) result := accept
20. u := Fta+ x+ Kb (mod q) else: result := (a,b, e′, c)

û := Fta+ Ftz − Ke′ (mod q) 16. Output: (t, μ, Σ = (d′, e′, z′))
21. if (e − b = e′ = H(u, c) or ⊥ when result �= accept

and e′ = H(û, c) 17. Send result back to the signer.
and ‖z+ a ‖ ≥ σ3

√
(� + 1)m): [Go to Phase 5]

restart from Phase 1
22. Output: the view V = (t, r, e, z)

Fig. 2. The signing algorithm Sign(pp, pk, skt, t, μ)

Proof. Given (t, μ,Σ = (d′, e′, z′)) produced by Sign(pp, pk, skt, μ) – see Fig. 2.
It is east to show that H(Ftz′ −Ke′ (mod q), com(μ,d′)) = e′. Note that ‖z′| ≤
σ3

√
(1 + �)m with overwhelming probability by Statement 1 of Theorem 2.

Remark 1 implies that if s = 12‖c‖, then Dm
s (x)

M ·Dm
s,c(x)

≤ e1+1/288

M with probability

at least 1−2−100. The rejection sampling requires that Dm
s (x)/(M ·Dm

s,c(x)) ≤ 1,
meaning that M ≥ e1+1/288. It is easy to see that M ≈ e1+1/288 is the best choice.
Applying this observation to the rejection samplings in Phases 3 and 4, we see
that a valid signature can be successfully produced after at most M2 · M3 ≈ e2

repetitions. ��
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5.2 Blindness

Theorem 5 (Blindness). Let com be a statistically hiding commitment and H
be an one-way and collision-resistant hash function. Then, the proposed forward-
secure blind signature FSBS is blind.

Proof. In the blindness game BlindS∗
FSBS, the adversarial signer S∗ gives the chal-

lenger C two messages μ0 and μ1. The challenger C chooses uniformly at random
a bit b ∈ {0, 1} and interacts with S∗ in order to sign both messages μb and μ1−b.
C acts as two users Ub := U(pp, pk, t, μb) and U1−b := U(pp, pk, t, μ1−b). Finally,
S∗ gets two pairs (Vb, Σb) and (V1−b, Σ1−b) that correspond to the users Ub and
U1−b, respectively. We argue that the knowledge of (Vb, Σb) and (V1−b, Σ1−b)
is independent of the signed messages. In other words, S∗ cannot distinguish,
which user it is communicating with. In other words, it cannot guess b with
non-negligible probability.

Indeed, for Vb = (t, rb, eb, zb) and V1−b = (t, r1−b, e1−b, z1−b), we need to
consider the pair (eb, e1−b) only, since zb and z1−b are produced by S∗ itself. In
Phase 2, the rejection sampling makes sure that the distribution of both eb and
e1−b are the same, which is Dk

σ1
. This means that eb and e1−b are independent of

the signed messages. Consider Σb = (d′
b, e

′
b, z

′
b) and Σ1−b = (d′

1−b, e
′
1−b, z

′
1−b).

As Phase 4 uses the rejection sampling, both z′
b and z′

1−b have the same distri-
bution, which is D(1+�)m

σ3 . It means that S∗ does not learn anything about the
signed messages from the knowledge of (d′

b, d
′
1−b) and (e′

b, e
′
1−b). This is true

because the former pair are randomly chosen and the latter pair are hash values
of the one-way and collision-resistant function H.

Finally, it is easy to see that restarts, which may happen in Phase 5, do not
increase advantage of S∗ in the blindness game. In fact, a restart occurs if the
user has sent result := (a,b, e′, c) to S∗. The values d′, a and b are freshly
sampled by the user. Additionally, as com is a statistically hiding commitment,
knowing c, S∗ cannot tell apart μb from μ1−b. ��

5.3 Forward-Secure Unforgeability

We recall the following lemma, which we use to support our witness indistin-
guishability argument.

Lemma 6 (Adapted from [21, Lemma 5.2]). Given a matrix F ∈ Z
n×(�+1)m
q ,

where (�+1)m > 64+n log q/ log(2d+1) and s $←− {−d, · · · , 0, · · · , d}(�+1)m. Then

there exists another s′ $←− {−d, · · · , 0, · · · , d}(�+1)m such that Fs = Fs′(mod q)
with probability at least 1 − 2−100.

Note that Lemma 4 also gives the same conclusion as Lemma 6 but with the
not so clear condition d � q(�+1)m/n.

Theorem 6 (Forward-secure Unforgeability). Suppose that the commit-
ment function com used in FSBS is computationally binding and that there exists
a forger A, who can break the forward-secure unforgeability of FSBS. Then, one
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can construct a polynomial-time algorithm B that solves an l2-SISq,n,(1+2�)m,β

problem with β = max{(2σ3 + 2σ
√

κ)
√

(1 + �)m, (2σ3 + σ2)
√

(1 + �)m}.
Proof. The reduction is as follows:

Phase 0 (Instance). Assume that B wants to solve an instance of the
SISq,n,(1+2�)m,β problem

F · v = 0 mod q, ‖v‖ ≤ β, F ∈ Z
n×(1+2�)m
q , (1)

in which F is parsed as F =
[
A0‖U

(0)
1 ‖U

(1)
1 ‖ · · · ‖U (0)

� ‖U
(1)
�

]
with A

(k)
0 , U

(b)
i ∈

Z
n×m
q for β = max{(2σ3 + 2σ

√
κ)

√
(1 + �)m, (2σ3 + σ2)

√
(1 + �)m} and b ∈

{0, 1}.
Phase 1 (Guessing the target). B guesses the target time period t∗ that

A wants to attack by choosing randomly t∗ = (t∗1, · · · , t∗� )
$←− {0, · · · , τ − 1}.

The success probability of guessing t∗ is 1/τ .
Phase 2 (Initialize). B sets common parameters pp as in the Setup algo-
rithm. However, B sets the public key pk according to the following steps.

– For i ∈ [�], B sets A
(t∗

i )
i = U

(t∗
i )

i . For each bit b ∈ {0, 1} such that b �= t∗i ,
B invokes TrapGen to generate A

(b)
i together with a short basis T

A
(b)
i

of

Λ⊥
q (A(b)

i ).
– B samples S∗ ← D(1+�)m×k

σ and sets K := Ft∗ · S∗, where Ft∗ =[
A0‖A

(t∗
1)

1 ‖ · · · ‖A(t∗
� )

�

]
∈ Z

n×(1+�)m
q . Let d := σ

√
(1 + �)m. Then σ

should be chosen sufficiently large to satisfy Lemma 2 (i.e., σ ≥
ω(

√
log((1 + �)m))), Lemma 4 (i.e., d � q(1+�)m/n) and Lemma 6 (i.e.,

(1+�)m > 64+n log q/ log(2d+1)). Statement 1 of Theorem 2 guarantees
that ‖S∗‖ ≤ d with overwhelming probability. According Lemma 2, K is
statistically close to uniform.

– Finally, B sends pp, and pk ← {A0, A
(0)
1 , A

(1)
1 , · · · , A

(0)
� , A

(1)
� ,K} to A as

the common parameters and the public key, while keeping T
A

(b)
i

’s and S∗

secret.
B creates and maintains a list LH consisting of random oracle queries (u, c) $←−
Z

n
q × {0, 1}n and their corresponding hash value e′ ∈ RH . In other words,

LH = {(u, c, e′) ∈ Z
n
q × {0, 1}n × RH : e′ = H(u, c)}. In addition, B also

prepares the set of replies for qH hash queries R := {r1, · · · , rqH
}, where each

ri
$←− RH . It then chooses a random tape ρ and runs A on (pp, pk, ρ) in a

black-box manner.
Phase 3 (Queries). B plays the role of signer and interacts with A. B
responds to A queries as follows:

– Key update queries KQ(t), t = (t1, · · · , t�): If t ≤ t∗, B aborts the query.
Otherwise, let k ≤ � be the minimum index such that tk �= t∗k. Then, the
adversary B first uses the trapdoor T

A
(tk)
k

to compute the key Ttk
for the

node tk

Ttk
← ExtBasis(E‖A

(tk)
k , T

A
(tk)
k

), where E =
[
A0‖A

(t1)
1 ‖ · · · ‖A(tk−1)

k−1

]
,
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from which B computes all keys in skt as in the real key update algorithm.
– Hash queries HQ(u, c): Having received a hash query (u, c), B checks if

the list LH contains the query. If B finds out that (u, c) is in LH already,
then B sends the corresponding hash value e′ to the forger A. Otherwise,
B chooses the first unused ri, i ∈ [qH ] from R, takes e′ := ri and stores
the query-hash value pair ((u, c), e′) in LH . Finally, B sends e′ to the
forger A as the answer.

– Signing queries SQ(t, μ): B constructs Ft :=
[
A

(k0)
0 ‖A

(t1)
1 ‖ · · · ‖A(t�)

�

]
and

checks if t �= t∗ or not. If t �= t∗, B computes TFt
← ExtBasis(Ft, TA

(tk)
k

),

and St ← SampleKey(Ft, TFt
, σ,K), where k ≤ � is the minimum index

such that tk �= t∗k. Note that Ft · St = K. Otherwise, if t = t∗, B simply
assigns St∗ ← S∗ since Ft∗ · S∗ = K.

– Break-in queries BQ(t): Once the adversary A makes a query BQ(t), if
t ≤ t∗, then B aborts. Otherwise, i.e., t > t∗, B decides that the break-in
time is t ← t. B answers to A by sending the secret key skt in the same
way as replying to the key update queries since t = t > t∗.

Phase 4 (Forge). Eventually, A outputs a forgery (t′1, μ
∗
1, Σ

∗
1 ). B checks if

t′1 = t∗ or not. If not, then B aborts. Otherwise, B accepts the forgery. For
the forgery (t∗, μ∗

1, Σ
∗
1 ), we have: (i) Σ∗

1 = (d′
1, e

′
1, z

′
1); (ii) e′

1 := H(Ft∗z′
1 −

Ke′
1 mod q, com(μ∗

1,d
′
1)), where Ft∗ :=

[
A0‖A

(t∗
1)

1 ‖ · · · ‖A(t∗
� )

�

]
∈ Z

n×(1+�)m;

and (iii) ‖z′
1‖ ≤ σ3

√
(1 + �)m.

Analysis. We argue that the simulation of B is statistically perfect. In other
words, the forger A is not able to distinguish the simulator B from the real
challenger in the FSEU game. Indeed, the simulation proceeds as the real game
except the following exceptions.

(i) Some matrices A
(b)
i are not really random but is generated by TrapGen.

However, Theorem 1 ensures that the distribution of A
(b)
i generated by

TrapGen is close to uniform.
(ii) The matrix K is not randomly chosen. It is obtained by sampling S∗ from

D(1+�)m×m
σ and then assigning K := F ·S∗. Lemma 2 asserts that selection

of K is close to uniform. Note that the sufficiently large choice of σ does
not affect (iii).

(iii) The matrix St∗ is equal to S∗, which is not computed using SampleKey.
The forger A does not know St so consequently does not know S∗. As z is
generated (in Step 12) using the rejection sampling, we always guarantee
that z ← D(�+1)m

σ2 and z is independent of St and S∗. Thus the view of A
is independent of S∗.

Now, we show how to obtain the solution to the l2-SIS problem given by Eq. (1).
Let i ∈ [qH ] be the target forking index, for which e′

1 = ri. B follows the
rewinding strategy by keeping {r1, · · · , ri−1} and sampling new fresh answers
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{r′
i, · · · , r′

qH
} $←− RH . Now, B uses R′ := {r1, · · · , ri−1, r′

i, · · · , r′
qH

} to answer
to A’s hash queries.

The forking lemma [23, Lemma 4] asserts that A outputs a new signature
(t′2, μ

∗
2, Σ

∗
2 ), where Σ∗

2 = (d′
2, e

′
2, z

′
2) such that e′

2 = r′
i using the same hash query

as in the first run (i.e., the i-th hash query). Recall that γ is the probability of
a restart of FSBS. As before, if t′2 �= t∗, then B aborts. If e′

2 = e′
1, B aborts

and replays A(pp, pk, ρ′) at most qqS

H times using different random tapes ρ′ and
different hash queries. If e′

2 �= e′
1, then B returns

((Ft∗z′
1 − Ke′

1, com(μ∗
1,d

′
1)), (Ft∗z′

2 − Ke′
2, com(μ∗

2,d
′
2)). (2)

Since the pair in Eq. (2) are both coming from the same hash query and com is
computationally binding, we have μ∗

2 = μ∗
1, d

′
1 = d′

2 and

Ft∗z′
1 − Ke′

1 = Ft∗z′
2 − Ke′

2 (mod q),

or equivalently,

Ft∗(z′
1 − z′

2 − S∗(e′
1 − e′

2)) = 0 (mod q).

Set v̂ := z′
1 − z′

2 − S∗(e′
1 − e′

2). By Lemmas 4 and 6, there is at least one
secret key S′ such that Ft∗S∗ = Ft∗S′ (mod q), where S∗ and S′ have all the
same columns except the i-th column. The index i shows the position, where
e′
1[i] �= e′

2[i]. If z′
1 − z′

2 − S∗(e′
1 − e′

2) = 0, then we can choose v̂ := z′
1 −

z′
2 − S′(e′

1 − e′
2) �= 0. Stress that the view of A is independent of both S∗ and

S′. We have shown that v̂ �= 0 and Ft∗ · v̂ = 0 (mod q). It is easy to see that
‖v̂‖ ≤ 2(σ3 + σ

√
κ)

√
(1 + �)m, as ‖S∗‖ ≤ σ

√
(1 + �)m, ‖z′

i‖ ≤ σ3

√
(� + 1)m,

and ‖e′
i‖ ≤ √

κ for i ∈ {1, 2}.
In particular, we show that if A can produce a forgery by restarting the

signing interaction (with B), then B is able to find a solution to the l2-SIS
problem given by Eq. (1). Indeed, to restart the signing interaction, A delivers
result:= (a,b, e′, c) to B. Now B with its view V = (t, r, e, z), will check whether
all

e − b = e′ = H(x + Ft∗a + Kb (mod q), c), (3)
e′ = H(Ft∗a + Ft∗z − Ke′ (mod q), c), (4)

‖z + a‖ > σ3

√
(1 + �)m. (5)

hold or not. If all are satisfied, B restarts the interaction with A. Let assume
that afterwards A successfully produces a valid signature Σ̂ = (d̂′, ê′, ẑ′). Let
b̂ ∈ Dm

σ1
be such that e = ê′ + b̂. Then, the following relations have to hold

e − b̂ = ê′ = H(x + Ft∗a + Kb̂ (mod q), c), (6)

ê′ = H(Ft∗ ẑ′ − Kê′ (mod q), com(μ∗, d̂′)), (7)

‖ẑ′‖ ≤ σ3

√
(1 + �)m. (8)
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Table 1. Choosing parameters for the proposed FSBS scheme

Parameters Value Usage

n – Security parameter

� – Binary tree depth

τ 2� # Time points

β β = max{(2σ3 + 2σ
√

κ)
√

(1 + �)m,
(2σ3 + σ2)

√
(1 + �)m}

For l2-SISq,n,(1+2�)m,β to be
hard, Theorem 3

q q ≥ β · ω(
√

n logn), prime

m max{ 1
1+�

· (64+ n log q
log(2d+1)

), �6n log q�},
d = σ · √

(1 + �)m

Lemma 6, TrapGen

σ ≥ O(
√

n log q) · ω(
√
logn) SampleKey, Theorem 2

M1, M2, M3 M1 = M2 = M3 = e1+1/288 Rejection sampling

σ1 12
√

κ

σ2 12σησ1

√
(1 + �)mk

σ3 12ησ2
√

m

k, κ 2κ · (k
κ

) ≥ 2γ Min-entropy of the hash
function H at least γ

Now, if ê′ �= e′, then B aborts. Otherwise, Eqs. (4) and (7) give Ft∗a +
Ft∗z (mod q) = Ft∗ ẑ′ (mod q). Let v̂ := a + z − ẑ′, then v̂ �= 0. This is true
as otherwise a + z = ẑ′, which implies that ‖z + a‖ ≤ ησ3

√
m (by Eq. (8)).

This contradicts Eq. (5). Again, we have Ft∗ · v̂ = 0 (mod q), v̂ �= 0 and
‖v̂‖ ≤ ‖a‖ + ‖z‖ + ‖ẑ′‖ ≤ (2σ3 + σ2)

√
(1 + �)m.

Note that Ft∗ =
[
A0‖A

(t∗
1)

1 ‖ · · · ‖A(t∗
� )

�

]
=

[
A0‖U

(t∗
1)

1 ‖ · · · ‖U (t∗
� )

�

]
. We can

get F from Ft∗ by inserting into the gap between two sub-matrices in Ft∗ the
remaining matrices {U

(1−t∗
i )

i }i at relevant positions. We insert zeros into the
corresponding position of v̂ to get the desired solution v to the problem given
by Eq. (1). Obviously, F · v = 0 (mod q), and ‖v‖ = ‖v̂‖.

To summarise, we have shown that B can solve the l2-SISq,n,(1+2�)m,β prob-
lem, with

β = max{(2σ3 + 2σ
√

κ)
√

(1 + �)m, (2σ3 + σ2)
√

(1 + �)m}.

��

Remark 2. In the proof for the forward-secure unforgeability, one may think of
the method of programming hash values, instead of using the real signing inter-
action (with a modification in generating the matrix St to compute z = r+Ste)
in order to reply signing queries issued by A. We argue that the programming
method fails to simulate the perfect environment for the adversary A. Assume
that B does not want to compute St in the way we have done in our proof. Then,
after replying to a hash query, say (x+Fta+Kb (mod q), com(μ,d′)), by giving a
hash value, say e′, B simply chooses z ← D(�+1)m

σ2 and then sends z to A. In turn,
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A gives e := e′ +b to B. After that B sets H(Fta+Ftz−Ke′, com(μ,d′)) := e′.
However, since the collision resistance of H, the relation Fta + Ftz − Ke′ =
x + Fta + Kb (mod q) has to hold. Thus, A needs to check whether or not
Ftz = x + Ke (mod q) to distinguish the simulated signing interaction from
the real one. One may think that B can choose z ← D(�+1)m

σ2 such that
Ftz = x + Ke (mod q) before sending z to A. However, without the knowl-
edge of a trapdoor for Ft, the problem of choosing such a z is not easy.

5.4 Choosing Parameters

First, we set n as security parameter, � as the highest depth of the binary
tree representing time points, τ = 2� as the number of time points. For
TrapGen, we need m ≥ �6n log q�. For SampleKey (Theorem 2) to work, we
need σ ≥ O(

√
n log q) · ω(

√
log n). Also, let d := σ

√
(1 + �)m and we set

(�+1)m ≥ 64+n log q/ log(2d+1) via Lemma 6. To make sure the min-entropy
of H is at least γ, we choose k and κ such that 2κ · (

k
κ

) ≥ 2γ . Section 5.1 sug-
gests setting Mi := e1+1/288 for all i ∈ [3]. We then set σ1 = 12‖e′‖ = 12

√
κ,

σ2 = 12‖S∗e‖ = 12σσ1

√
(1 + �)mk and σ3 = 12‖z‖ = 12ησ2

√
(1 + �)m (via

Remark 1). For l2-SISq,n,(1+�)m,β to be hard by Theorem 3, we set m poly-
bounded, β = poly(n) and q ≥ β · ω(

√
n log n), where β = max{(2σ3 +

2σ
√

κ)
√

(1 + �)m, (2σ3 + σ2)
√

(1 + �)m}. The parameter setting is summarized
in Table 1.

6 Conclusions and Future Works

In this paper, we propose, for the first time, a forward-secure blind signature
based on the hardness of the SIS problem in lattices. Using the rejection sampling
technique together with the trapdoor delegation and the binary tree structure
for representing of time periods, the proposed signature is blind and forward
secure. Forward security is proven in the random oracle setting. Lattice-based
forward-secure blind signatures in the standard model should be an interesting
topic for future research.
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Abstract. Up to now, the state-of-the-art implementations of Super-
singular Isogeny Diffie-Hellman (SIDH) work with Montgomery curves
or Edwards curves, due to the facts that such curve models provide high
efficiency for elliptic curve arithmetic operations. In this work, we pro-
pose a new w-coordinate method to optimize the arithmetic operations
on Huff curves. Specifically, for the optimal computations of addition
operation and doubling operation proposed by Orhon and Hisil on a
fixed Huff curve, the costs of these operations can be further improved
by about 40%. For the evaluations of odd-degree isogeny and 2-isogeny
on variable Huff curves proposed by Moody and Shumow, the costs of
evaluating �-isogeny (� is odd) point and �-isogeny curve can be further
improved by about 50%. The computations of evaluating 2-isogeny point
and 2-isogeny curve can be separately replaced by computing 4-isogeny
point and 4-isogeny curve, which need 6M +2S and 4S, respectively, and
avoid square root calculation mentioned in Moody and Shumow’s work.
Interestingly, the desired computational issues on variable Huff curves
have the same computational costs as those on variable Montgomery
curves, as well supported by our implementations.

Keywords: Post-quantum cryptography · Huff curves · Isogenies ·
SIDH

1 Introduction

A recent research area for post-quantum cryptography is from supersingular
elliptic curve isogenies. Jao and De Feo [1] first proposed a Diffie-Hellman type
key exchange protocol named SIDH, and then led to the development of the
key encapsulation mechanisim called Supersingular Isogeny Key Encapsulation
(SIKE) [2], which now has become one of Round 2 candidates in the NIST
standardization project for post-quantum cryptography (PQC).
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Compared with other candidates such as those based on lattices, error cor-
recting codes, and hash functions, isogeny-based cryptography has the potential
of providing significantly smaller key sizes at the same level of security. Neverthe-
less, its state-of-the-art implementation is slower than other candidates in PQC.
Thus, numerous optimized methods for isogeny-based cryptography have been
proposed to increase the viability as a PQC candidate. These mainly include
two aspects:

a. Optimizing basic field arithmetic operations such as modular multiplication
and modular squaring. Bos et al. investigated various arithmetic techniques
which can be used to potentially enhance the performance of SIDH, especially
regarding arithmetic modulo 2xpy ±1 [3]. Seo et al. proposed a faster modular
multiplication for SIDH and SIKE resulting in assitional speed improvements
on ARM processors [4].

b. Choosing a suitable model of elliptic curve for efficient elliptic curve
arithmetic operations. Note that the state-of-the-art implementation works
entirely on Montgomery curves, which provides fast point operations and
isogeny evaluations [5,23]. Recently, Kim et al. demonstrated the combina-
tional usage of Montgomery curves and Edwards curves could result in better
performance [6]. Moreover, Costello utilized the Weil restriction to compute
chains of Richelot (2, 2)-isogenies on Kummer surfaces over Fp instead of
computing chains of 2-isogenies on Montgomery curves over Fp2 [7].

On account of the lower computational efficiency and the leakage of additional
points [8] compared with other post-quantum cryptography, Castryck et al. pro-
posed a CSIDH [9] which followed the layout of the Couveignes-Rostovtsev-
Stolbunov scheme [10]. As they used supersingular elliptic curves over a finite
prime field Fp and the number of Fp-rational points on any supersingular elliptic
curve is p + 1, these imply that such curves are isogenous. According to [11],
when their endomorphism rings are the form Z[π] where π is the Frobenius map,
implementing the CSIDH is more efficient than that on ordinary elliptic curves
[12] over Fp. Up to now, the optimization of CSIDH mainly focused on choosing
a suitable model of elliptic curve. In the light of the birationality between twisted
Edwards curves and Montgomery curves [13], Meyer et al. [14] implemented the
CSIDH by using Montgomery curves for the computation of scalar multiplica-
tions and the evaluation of isogenous points and twisted Edwards curves for
the evaluation of the isogenous curves. Because of the w-coordinates proposed
by Farashi et al. [15] on Twisted Edwards curves, Kim et al. presented an effi-
cient method to evaluate the isogenous curves with w-coordinates on Edwards
curves[16], thus enhancing the efficiency of implementing the CSIDH.

Note that very little information is found in the literature about using
Huff curves for isogeny-based cryptography. Although Orhon and Hisil [17]
put forward the efficient elliptic curve arithmetic, Moody and Shumow [18]
presented isogenous formulae between Huff curves, all these operations were
performed with projective coordinates (X : Y : Z) or embedded coordinates
(XT : Y Z : TZ) [17], which were slower than those on Edwards curves with
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projective coordinates (W : Z) [16] and those on Montgomery curves with pro-
jective coordinates (X : Z) [5].

Our Contributions. This paper aims at exploring efficient arithmetic opera-
tions on Huff curves so as to be suitable for isogeny-based cryptography.

– We put forward the w-coordinates on Huff curves for the first time. Apply-
ing the coordinates, we present optimized addition and doubling formulae on
Huff curves. With the huff curve fixed, our formulae set the new record for
operation counts. Concretely speaking, performing a doubling operation and
an addition operation need 2M + 2S + C1 and 3M + 2S, respectively, com-
pared with the corresponding latest operations in [17] which need 8M and
8M , respectively. Based on the new results, we present the mixed projective
w-coordinate differential addition and doubling formulae to compute scalar
multiplications against side-channel attacks.

– We present formulae for computing �-isogeny(where � is odd), 2-isogeny and
4-isogeny points, as well as the corresponding isogenous curves with the w-
coordinate in the form of Hc. The computations of evaluating an �-isogeny
point and an �-isogeny curve need 4sM+2S and 4sM+2S, respectively, where
� = 2s+1, while using Moody and Shumow’s formulae needs (8s+3)M +3S
and 8sM + 12S, respectively. The evaluations of a 4-isogeny point and a 4-
isogeny curve which use our formulae need 6M +2S and 4S on average, while
compounding Moody and Shumow’s 2-isogeny formulae needs extra square
root calculation.

– We present the efficiency analysis of SIDH on Montgomery curves and Huff
curves and find that the implementation results on Huff curves are almost
the same as those on Montgomery curves.

Organization. This work is organized as follows: The preliminaries are given
in Sect. 2. The optimized differential addition and doubling formulae on Huff
curves are proposed in Sect. 3, while the optimized isogenous formulae on Huff
curves are presented in Sect. 4. In Sect. 5, we provide the computational costs of
the optimized arithmetic operations on Huff curves, and present the comparisons
of implementing the SIDH between Montgomery curves and Huff curves. Then,
we give specific examples and implement the SIDH on Huff curves to confirm
the correctness of the above theoretical analyses in Sect. 6. At last, we draw our
conclusion and future work in Sect. 7.

2 Preliminaries

This section sets the stage by reviewing some background about Huff curves,
including the addition and doubling operations, the isogenous computations and
the basic SIDH protocol.
1 The symbols M , S and C mentioned later represent the time needed to multiply

two elements, square an element and multiply an element by a constant over a finite
field, respectively.
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2.1 Huff Curves and Arithmetic Operations

Huff Curves: Huff curves [19] over K of characteristic �= 2 are defined by the
equation

Eμ,ν : μx(y2 − 1) = νy(x2 − 1)

where μ, ν ∈ K
× and μ2 �= ν2. Eμ,ν/K has the identity element (0, 0) and three

2-torsion points (1 : 0 : 0), (0 : 1 : 0) and (μ : ν : 0) at infinity. The form Eμ,ν

can also be simplified as

Hc : cx(y2 − 1) = y(x2 − 1)

where c = μ/ν, which doesn’t affect the change in coordinates. Generalized Huff
curves proposed by Wu and Feng [20] are defined by the equation

Ha,b/K : x(ay2 − 1) = y(bx2 − 1). (1)

If a = μ2 and b = ν2 are squares over K, Ha,b is K−isomorphic to the Huff model
curve μx

′
(y

′2 − 1) = νy
′
(x

′2 − 1) by the transformation x
′
= νx and y

′
= μy.

Unified Addition and Doubling Operations on Huff Curves: For points
(x1, y1) and (x2, y2) on generalized Huff curves Ha,b, the unified addition of them
(i.e., the addition and doubling share the same formulae) is defined as below

(x3, y3) =
(

(x1 + x2)(1 + ay1y2)
(1 + bx1x2)(1 − ay1y2)

,
(y1 + y2)(1 + bx1x2)

(1 − bx1x2)(1 + ay1y2)

)
. (2)

When points (x1, y1) and (x2, y2) are on Huff curves Hc, the unified addition
of them can be performed as follows:

(x3, y3) =
(

(x1 + x2)(1 + y1y2)
(1 + x1x2)(1 − y1y2)

,
(y1 + y2)(1 + x1x2)
(1 − x1x2)(1 + y1y2)

)
. (3)

Generally speaking, a projective coordinates (X : Y : Z) ∈ P
2 where x = X

Z and
y = Y

Z is used for the corresponding affine point (x, y) to avoid inversions during
elliptic curve arithmetic operations. There are other coordinates system relating
to Huff curves such as embedded coordinates (XT : Y Z : TZ) which represents
the point ((X : Z), (Y : T )) where x = X

Z and y = Y
T [17].

Odd-Degree Isogenies Between Generalized Huff Curves: Let F =
{(0, 0), (αi, βi), (−αi,−βi) : i = 1...s)} be the desired kernel of an isogeny.
Let A = Πs

i=1αi and B = Πs
i=1βi, ψ is an �-isogeny from the curve Ha,b to the

curve Hâ,̂b where â = a�B4 and b̂ = b�A4, which is proposed by Moody et al.
[18] as follows:

ψ(x, y) =
(

xΠs
i=1

x2 − α2
i

α2
i (1 − b2α2

i x
2)

, yΠs
i=1

y2 − β2
i

β2
i (1 − a2β2

i y2)

)
. (4)

The evaluations of �-isogeny point and �-isogeny curve with projective coordi-
nates (X : Y : Z) need (8s + 3)M + 3S and 8sM + 12S, respectively, where
� = 2s + 1.
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Even-Degree Isogenies Between Generalized Huff Curves: Suppose ψ is
a 2-isogeny from the curve Ha,b to the curve Hâ,̂b, where â = −(

√
a +

√
b)2 and

b̂ = −(
√

a − √
b)2. The explicit formula for ψ(x, y) = (x′, y′) in [18] is given as

x′ =
(bx − ay)((bx − ay) +

√
ab(x − y))2

(b − a)2(bx2 − ay2)
,

y′ =
(bx − ay)((bx − ay) − √

ab(x − y))2

(b − a)2(bx2 − ay2)
.

(5)

Note that the kernel of ψ is {(0 : 0), (a : b : 0)}, where (a : b : 0) is a 2-torsion
point at infinity. The evaluations of 2-isogeny point and 2-isogeny curve with
projective coordinates (X : Y : Z) need two square root calculations and a few
M and S.

2.2 SIDH

We give a brief description of the SIDH as follows, while for a more detailed
overview we recommend the lectures of [21].

Let p be a large prime of the form p = f · �eA

A · �eB

B ± 1 for some integer
cofactor f , �A and �B are small prime numbers, eA and eB are positive integers
such that �eA

A ≈ �eB

B . Then we can easily choose a supersingular elliptic curve E0

over Fp2 , with the cardinality #E0 = (f · �eA

A · �eB

B )2. Thus we have the full �e−
torsion subgroups on E0 for � ∈ {�A, �B} and e ∈ {eA, eB}. The generation of
�e− torsion subgroup needs to choose two independent points P,Q of orders �e

as the basis.
Suppose Alice and Bob want to exchange a secret key. The system generates a

basis {PA, QA} for Alice and {PB , QB} for Bob. For key generation, Alice selects
a random number mA ∈ {1, 2, ..., �eA−1

A −1} and computes the isogeny φA : E0 →
EA with kernel 〈GA〉 = 〈PA+�AmAQA〉. Then Alice calculates φA(PB), φA(QB)
and sends to Bob these points together with her computed curve EA. Bob repeats
the same operation as Alice so that Alice receives (EB , φB(PA), φB(QA)).

For the key establishment, Alice calculates the isogeny φA′ : EB → EAB with
kernel 〈φB(GA)〉 = 〈φB(PA) + �AmAφB(QA)〉, and obtains the curve EAB . Bob
repeats the same operation as Alice and calculates the isogeny φB′ : EA → EBA

with kernel 〈φA(GB)〉 = 〈φA(PB) + �BmBφA(QB)〉 and obtains the curve EBA.
Finally Alice and Bob obtain the shared secret as the j-invariant of EAB , i.e.
j(EAB) = j(EBA).

3 Optimized Addition, Doubling and Tripling Operations
on Huff Curves

In this section, we provide new differential addition, doubling and tripling for-
mulae on Huff curves Hc with w-coordinates.

Define the rational function w by w(x, y) = 1
xy corresponding to the point

P = (x, y) on Hc. Suppose P = (x, y), then −P = (−x,−y), thus w(P ) =



28 Y. Huang et al.

w(−P ). The neutral point (0, 0) under the action of w-coordinate is w(0, 0) = ∞.
According to the relationship cx(y2 −1) = y(x2 −1), we can get w = 1

xy = cy−x
cx−y .

Thus
x2 =

c + w

w(cw + 1)
,

y2 =
1 + cw

w(w + c)
.

(6)

Let wP , wQ, w2P , wP−Q and wP+Q be the corresponding w-coordinates of
points P , Q, 2P , P − Q and P + Q, respectively. According to the addition
formula Eq. (3), we have

x2P y2P =
4xP yP

(1 − y2
P )(1 − x2

P )
, (7)

xP+QyP+Q =
(xP + xQ)(yP + yQ)

(1 − yP yQ)(1 − xP xQ)
, (8)

and

xP−QyP−Q =
(xP − xQ)(yP − yQ)

(1 + yP yQ)(1 + xP xQ)
. (9)

By multiplying Eq. (8) and Eq. (9), it is easy to get

xP+QyP+QxP−QyP−Q =
(x2

P − x2
Q)(y2

P − y2
Q)

(1 − y2
P y2

Q)(1 − x2
P x2

Q)
. (10)

According to Eq. (7), Eq. (10) and Eq. (6), the doubling and differential addi-
tion formulae are

w2P =
(w2

P − 1)2

4wP (wP + c)(wP + 1
c )

,

wP+Q =
(wP wQ − 1)2

(wP − wQ)2wP−Q
.

(11)

A tripling formula can be deduced by a doubling and a differential addition
formulae, i.e.,

w3P =
((w2

P − 1)2 − 4(wP + c)(wP + 1
c ))2wP

(4w2
P (wP + c)(wP + 1

c ) − (w2
P − 1)2)2

. (12)

4 Optimized Isogenies Between Huff Curves

In this section, we exploit the w-coordinates to present new odd-degree isogeny
formulae, 2-isogeny formulae as well as 4-isogeny formulae between Huff curves.
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4.1 Optimized Odd-Degree Isogeny Formulae Between Huff Curves

We make use of odd-degree isogenous formulae with affine (x, y)-coordinates in
the form of Ha,b as well as the isomorphism between Ha,b and Hc to deduce the
odd-degree isogenous formulae with w−coordinates in the form of Hc.

Theorem 1. Let P be a point of odd order � = 2s + 1 on Huff curve Hc. Let
〈P 〉 = {(0, 0), (αi, βi), (−αi,−βi) : i = 1...s}. φ is an �-isogeny, with kernel 〈P 〉,
from the curve Hc to the curve Hĉ where ĉ = c · Πs

i=1(
1+c·wi

c+wi
)2. Let w = 1

xy

where (x, y) ∈ Hc and wi = 1
αiβi

for i = 1, ..., s, the evaluation of w under the
map φ is given by

φ(w) = w · Πs
i=1

(
w · wi − 1
w − wi

)2

. (13)

Proof. The desired isogeny φ can be derived as

φ : Hc
φ1−→ Ha,b

φ2−→ Hâ,̂b

φ3−→ Hĉ,

where the explicit formulae of φi and related elliptic curves are presented as
follows.

– The map
φ1(x, y) = (x, y/c), (14)

sends the Hc to the generalized Huff form Ha,b : x(c2 · y2 − 1) = y(x2 − 1)
where a = c2 and b = 1, together with these kernel points (αi, βi) mapped to
(αi, βi/c).

– The map φ2 is the odd-degree isogeny ψ mentioned in Eq. (4) with kernel
{(0, 0), (αi, βi/c), (−αi,−βi/c) : i = 1...s} on Ha,b. Under the map, we have
the image curve Hâ,̂b where â = c2�Πs

i=1(βi/c)4 = c2(Πs
i=1βi)4 and b̂ =

(Πs
i=1αi)4.

– The map φ3(x, y) = (
√

b̂x,
√

ây) sends the Hâ,̂b to Hĉ where

ĉ =

√
â√
b̂

=
c(Πs

i=1βi)2

(Πs
i=1αi)2

. (15)

Let φ(x, y) = φ3 ◦ φ2 ◦ φ1(x, y) = (X,Y ), then

1
XY

=
1
xy

Πs
i=1

(1 − α2
i x

2)(1 − β2
i y2)

(x2 − α2
i )(y2 − β2

i )
.

By combining Eq. (6), the above equation can be simplified as

1
XY

= w · Πs
i=1

(
w · wi − 1
w − wi

)2

, (16)

which gives Eq. (13).
The parameter ĉ of the isogenous curve Hĉ can be computed as

ĉ = cΠs
i=1

(
1 + cwi

c + wi

)2

.

��
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4.2 Optimized 2-Isogeny Formulae Between Huff Curves

In this subsection, we derive three 2-isogeny formulae with w-coordinates in the
form of Hc. We first utilize the corresponding 2-isogeny formulae with kernel
{(0, 0), (a : b : 0)} on Ha,b and the isomorphism between Ha,b and Hc to deduce
the 2-isogeny formulae with kernel {(0, 0), (c : 1 : 0)} in the form of Hc. Sub-
sequently, we use the similar trick as that on Montgomery curves [21] to derive
other 2-isogeny formulae with kernels {(0, 0), (1 : 0 : 0)} and {(0, 0), (0 : 1 : 0)},
respectively, in the form of Hc.

Theorem 2. Suppose φ : Hc → Hĉ is an 2-isogeny with kernel {(0, 0), (c : 1 :
0)}, where ĉ =| c+1

1−c |. Let w = 1
xy where (x, y) ∈ Hc, the evaluation of w under

φ is given by

φ(w) =
(w + c)(cw + 1)

(c2 − 1)w
. (17)

Proof. The desired isogeny φ can be derived as

φ : Hc
φ1−→ Ha,b

φ2−→ Ha′ ,b′
φ3−→ Hĉ,

where the explicit formulae of φi and related elliptic curves are presented as
follows.

– Applying the map φ1 in Eq. (14), we can get the image curve with the gener-
alized Huff form Ha,b : x(c2 · y2 − 1) = y(x2 − 1) where a = c2 and b = 1.

– The map φ2 is the 2-isogeny ψ mentioned in Eq. (5). Under the map, we have
the isogenous curve Ha′ ,b′ where a

′
= −(c + 1)2 and b

′
= −(c − 1)2.

– The map
φ3(x, y) = (

√
b′x,

√
a′y),

sends the curve Ha′ ,b′ to Hĉ where ĉ =
√

a′√
b′ =| c+1

1−c |.

Let φ(x, y) = φ3 ◦ φ2 ◦ φ1(x, y) = (X,Y ), then

1
XY

=
(c2 − 1)3(x2 − y2)2

((x − cy)2((x − cy)2 − (cx − y)2)2
. (18)

A combination of Eq. (18) and Eq. (6) yields an equation

1
XY

=
(w + c)(cw + 1)

(c2 − 1)w
,

which gives Eq. (17). ��
Lemma 1. Suppose φ : Hc → Hĉ is an 2-isogeny with kernel {(0, 0), (1 : 0 : 0)},
where ĉ =

∣∣∣√−c2+
√
1−c2√−c2−√
1−c2

∣∣∣. Let w = 1
xy where (x, y) ∈ Hc, the evaluation of w

under φ is given by

φ(w) =
w(1 + cw)
(c + w)

. (19)
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Proof. The desired isogeny φ can be derived as

φ : Hc
φ1−→ Ha,b

φ2−→ E1
φ3−→ E2

φ4−→ E3
φ5−→ E4

φ6−→ Hâ,̂b

φ7−→ Hĉ,

where the explicit formula of φi and related elliptic curves are presented as
follows.

– The map φ1 : Hc → Ha,b has been given in Eq. (14), where a = c2 and b = 1.
– The map

φ2(x, y) =
(

bx − ay

y − x
,
b − a

y − x

)

sends the Ha,b to the Weierstrass curve E1 : y2 = x3 + (a + b)x2 + abx.
– The map

φ3(x, y) = (x + a, y)

sends the E1 to the Weierstrass curve E2 : y2 = x(x + b − a)(x − a). The
2-isogeny with kernel {O, (0, 0)} on E2 is

φ4(x, y) =
(

x2 − ab + a2

x
, y

x2 + ab − a2

x2

)
,

which sends the curve E2 to

E3 : y2 = x3 + (b − 2a)x2 + 4a(b − a)x + 4a(b − a)(b − 2a).

– The linear transformation

φ5(x, y) = (x + b − 2a, y), (20)

translates the E3 to E4 : y2 = x3 − 2(b − 2a)x2 + b2x.
– E4 can be changed to the Huff curve Hâ,̂b via the map

φ6(x, y) =

(
x − (

√−c2 +
√

1 − c2)2

y
,
x − (

√−c2 − √
1 − c2)2

y

)
,

where â = −(
√−c2 +

√
1 − c2)2 and b̂ = −(

√−c2 − √
1 − c2)2.

– Under the rational map

φ7(x, y) = (
√

b̂x,
√

ây),

we convert the Hâ,̂b back to Hĉ, with

ĉ =

√
â√
b̂

=

∣∣∣∣∣
√−c2 +

√
1 − c2√−c2 − √
1 − c2

∣∣∣∣∣ .
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In sum, the composition of the maps φi(i = 1, ..., 6) leads to the map φ, i.e.,

φ(x, y) = φ7 ◦ φ6 ◦ φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1(x, y).

Let φ(x, y) = (X,Y ), then

1
XY

=
1
x2

.

Replacing the item x2 with Eq. (6), we can get Eq. (19). ��
Lemma 2. Suppose φ : Hc → Hĉ is an 2-isogeny with kernel {(0, 0), (0 : 1 : 0),
where ĉ =

∣∣∣√−1+
√

c2−1√−1−√
c2+1

∣∣∣ . Let w = 1
xy where (x, y) ∈ Hc, the evaluation of w

under φ is given by

φ(w) =
c2w(w + c)

1 + cw
.

The proof is similar to Lemma 1, here we omit the details.

4.3 4-Isogeny Formulae Between Huff Curves

Note that the points of order 2 are all at infinity, it is not easy to choose an
appropriate 2-isogeny formula with w-coordinates for computing 2e-isogeny when
e ≥ 2. Here we show how to obtain explicit 4-isogeny formulae by exploiting the
4-division polynomial.

By applying the isomorphism between the Huff model and the Weierstrass
model of elliptic curves, we can deduce the 4-division polynomial on the Hc with
w-coordinate as

ψ4(w) = c(w − 1)(w + 1)ψ̂4(w),

where ψ̂4(w) = (2cw + w2 + 1)(cw2 + c + 2w).
For the point w4 such that ψ̂4(w4) = 0, we can composite the 2-isogeny

respectively with kernel {(0, 0), (1 : 0 : 0)} and {(0, 0), (0 : 1 : 0)} to get the
general 4-isogeny formula

φ(w) =
w(ww2

4 + w − 2w4)(w2w2
4 − 2ww4 + 1)

(w2 − 2ww4 + w2
4)(2ww4 − w2

4 − 1)

where ĉ = w2
4+

√
w4

4−1

w2
4−

√
w4

4−1
.

For w4 = ±1, obviously it satisfies ψ4(w4) = 0, we composite the 2-isogeny
with kernel {(0, 0), (c : 1 : 0)} to get the first 4-isogeny formula as

φ(w) = − (w + 1)2(cw + 1)(w + c)
(c − 1)2w(w − 1)2

,

where ĉ = c2+4
√

c(c+1)+6c+1
(c−1)2 .
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Note that the evaluation of 4-isogeny curve needs square root computation
(i.e., to obtain the coefficient ĉ), which would remarkably increase the compu-
tational cost of SIDH. Fortunately, we only need to compute ĉ + 1

ĉ instead of ĉ,
which could avoid the square root computation. In the following we will see that
ĉ + 1

ĉ = 2(2W 4
4 −Z4

4 ))

Z4
4

(in projective coordinates, where (W4, Z4) has order 4) for

the general 4-isogeny curve, while ĉ+ 1
ĉ = 2(c+ 1

c+6)

c+ 1
c −2

for the first 4-isogeny curve.

5 Efficiency Analysis

In this section, we first analyze the efficiency of arithmetic operations on a fixed
Huff curve Hc with projective coordinates (W : Z), and compare them with
latest costs in [17]. Then, we present the computational costs for SIDH on Huff
curves and compare them on Montgomery curves. In addition, we propose the
costs of evaluating �−isogeny points and �−isogeny curves between Huff curves
and compare them with the work proposed by Moody and Shumow[18].

5.1 The Costs of Addition and Doubling Operations on a Fixed
Huff Curve Hc

Assume the wP , wQ, w2P , wP−Q and wP+Q are given as fractions
WP /ZP , WQ/ZQ, W2P /Z2P , WP−Q/ZP−Q and WP+Q/ZP+Q, respectively.
From Eq. (11), the explicit projective formulae are given as

W2P

Z2P
=

(WP − ZP )2(WP + ZP )2

4WP ZP ((WP + ZP )2 + ĈWP ZP )
,

WP+Q

ZP+Q
=

(WP WQ − ZP ZQ)2ZP−Q

(WP ZQ − ZP WQ)2WP−Q
,

(21)

where Ĉ = (c + 1
c − 2).

On a fixed curve Hc, the doubling operation takes 2M+2S+C if Ĉ = c+ 1
c −2

is precomputed. The justification of the claimed operation count is given as

t0 = (WP + ZP )2, t1 = (WP − ZP )2, t2 = 4 · t0, W2P = t2 · t1,

t0 = t0 − t1, t1 = Ĉ · t0, t2 = t2 + t1, Z2P = t2 · t0.

If we set ZP−Q = 1, the addition operation takes 3M + 2S. The justification of
the claimed operation count states as

t0 = (WP − ZP )(WQ + ZQ), t1 = (WP + ZP )(WQ − ZQ), t2 = t0 + t1,

t3 = t0 − t1, WP+Q = t22, t1 = t23, ZP+Q = t1 · WP−Q.

To resist against the side-channel attack of scalar multiplications on Huff
curves, we adopt the regular scalar multiplication algorithm proposed by
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Farashashi et al. [15], which perfectly matches the mixed projective w-coordinate
differential addition and doubling formulae as Eq. (21). Such trick is similar to
that on Montgomery curves or Edwards curves [15,22]. If we set ZP−Q = 1, the
mixed projective w-coordinate formulae have the total cost 5M + 4S + 1C as
follows:

t0 = (WP + ZP ), s0 = (WP − ZP ), t1 = (WQ + ZQ), s1 = (WQ − ZQ),

t2 = t0 · s1, s2 = t1 · s0, t3 = t20 − s20, Z2P = t3 · (4t20 − ̂Ct3), W2P = 4t20 · s20,
WP+Q = (t2 + s2)

2, ZP+Q = (t2 − s2)
2 · WP−Q.

Table 1 compares the results of arithmetic operations in different Huff forms.
Note that all computations for [17] are in projective coordinates ((X : Z), (Y :
T )) and the addition of P,Q (with TQ = 1) is unified, while our work adopts the
projective coordinates (W : Z) (with ZP−Q = 1) on Hc.

Table 1. Arithmetic operations on fixed Huff forms

The curve equation Doubling Addition

Y T (Z2 + X2) = cXZ(T 2 + Y 2) [17] 8M 8M

cx(y2 − 1) = y(x2 − 1) (This work) 2M + 2S + C 3M + 2S

5.2 Implementing Considerations for SIDH on Huff Curves

We first provide the computational costs of the optimized doubling, tripling,
evaluating 4-isogeny point and 4-isogeny curve, as well as evaluating �-isogeny
point and �-isogeny curve (particularly evaluating 3-isogeny point and evaluating
3-isogeny curve) with projective (W : Z)-coordinates where � is an odd number.
Subsequently, we compare them with those on Montgomery curves in the setting
of SIDH. Note that we only need to compute the curve coefficient 1

4 (c + 1
c −

2) instead of computing c, since it has the benefit not only in evaluating the
isogenous curve but also in performing the doubling and tripling operations. In
the following we denote A1

A2
= 1

4 (c + 1
c − 2).

Doubling. For P = (WP : ZP ) on Huff curve Hc, the doubling of P gives
[2]P = (W2P : Z2P ), where W2P and Z2P are defined as follows:

W2P = A2(WP − ZP )2(WP + ZP )2,

Z2P = 4WP ZP (A2(WP + ZP )2 + A1 · 4WP ZP ).

The cost of this computation is 4M + 2S.

Tripling. For P = (WP : ZP ) on Huff curve Hc represented in projective
coordinates, the tripling of P gives [3]P = (W3P : W3P ), where W3P and Z3P
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are defined as

W3P = WP (16A1WP Z3
P − A2(WP − 3ZP )(WP + ZP )3)2,

Z3P = ZP (16A1W
3
P ZP + A2(3WP − ZP )(WP + ZP )3)2,

which takes 7M + 5S.

Projective �-isogeny. We use the projective (W : Z)−coordinates to evaluate
the computational costs of the proposed �-isogeny formulae Eq. (13). Let w(Pi) =
(Wi, Zi) for i = 1, 2, ..s such that P has exact order � on Hc, then any point
(W : Z) under the �-isogeny φ can be evaluated as (W

′
: Z

′
) = φ(W : Z).

Specific expressions can be written as

W
′
= WΠs

i=1(WWi − ZZi)2,

Z
′
= ZΠs

i=1(WZi − ZWi)2.

Thus, evaluating �-isogeny needs 4sM + 2S.
Let c = C1

C2
. Any curve coefficient (C1 : C2) under the �-isogeny φ can be

evaluated as (C
′
1 : C

′
2) = φ(C1 : C2). Specific expressions can be written as

C
′
1 = C1Π

s
i=1(C2Zi + C1Wi)2,

C
′
2 = C2Π

s
i=1(C1Zi + C2Wi)2.

The evaluation of �-isogeny curve needs 4sM + 2S.
Particularly, the evaluation of 3-isogeny needs 4M + 2S, the evaluations of

the 3-isogeny curve can also use the way mentioned in [5, Appendix A], where
only the coefficient 1

4 (c + 1
c − 2) = A1

A2
is involved. Let w(P ) = (W3, Z3) be a

point of order 3 on Hc, then specific expressions can be written as

A′
1 = (W3 + Z3)(Z3 − 3W3)3,

A′
2 = 16W3Z

3
3 ,

which needs 2M + 3S.

Projective 4-isogeny. Let w(P ) = (W4, Z4) such that P has exact order 4 on
Hc. For the evaluation of 4-isogeny with projective (W : Z)-coordinates, it can
be rewritten as

W ′ = W (2W4Z4Z − W (W 2
4 + Z2

4 ))(W4W − Z4Z)2,

Z ′ = Z(2W4Z4W − Z(W 2
4 + Z2

4 ))(Z4W − W4Z)2.

The 4-isogeny formula has the same form as that on Montgomery curve, thus
needing 6M + 2S with one common squaring used to evaluate 4-isogeny curve
[5]. Moreover, the coefficients of the image Huff curve can be given as

A′
1 = W 4

4 − Z4
4 ,

A′
2 = Z4

4 ,
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Table 2. The evaluation of isogenous points and isogenous curves on variable Huff
forms

Moody and Shumow [18] This work

eval � isog (8s + 3)M + 3S 4sM + 2S

get � isog 8sM+12S 4sM + 2S

eval 4 isog Square root calculation 6M + 2S

get 4 isog Square root calculation 4S

which needs 4S.

The Comparisons with Moody and Shumow’s Work. Table 2 presents
the costs of evaluating �-isogeny point and �-isogeny curve, as well as evaluating
4-isogeny point and 4-isogeny curve on variable Huff curves. The get � isog and
get 4 isog are functions that compute the coefficients of the isogenous curves,
while the eval � isog and eval 4 isog are functions that evaluate the isogenies
with given input points. As shown in Table 2, the evaluations of �-isogeny point
and �-isogeny curve with projective coordinates (W : Z) have great advantage
over Moody and Shumow’s work with projective coordinates (X : Y : Z) [18].
Besides, the evaluations of 4-isogeny point and 4-isogeny curve with projective
coordinates (W : Z) in our wok can avoid square root calculation.

The Comparisons for SIDH Computation. The computation of SIDH
includes performing doubling operations and tripling operations, evaluating 4-
isogeny points and 4-isogeny curves, as well as evaluating 3-isogeny points and
3-isogeny curves. Table 3 presents the costs of these operations on Montgomery
curves [5] and Huff curves. These operations for SIDH on Huff curves share the
same computational costs as those on Montgomery curves.

Table 3. Operation costs of SIDH on different curves.

Montgomery curve [5] Huff curves

Doubling 4M+2S 4M+2S

Differential addition 4M+2S 4M+2S

get 4 isog 4S 4S

eval 4 isog 6M+2S 6M+2S

Tripling 7M+5S 7M+5S

get 3 isog 2M+3S 2M+3S

eval 3 isog 4M+2S 4M+2S
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6 Implementation Results

To evaluate the performance, the algorithms are implemented in C language2

and on top of the Microsoft SIDH library version 3.0 [24]. All cycle counts were
obtained on one core of an Intel Core i7-782x (Skylake-X) at 3.60 GHZ, running
Ubuntu 18.04 LTS. For compilation, we used GNU GCC version 7.4.0.

We consider finite field Fp2 where p = 22503159−1 and the initial Huff curve is
c0x(y2−1) = y(x2−1) where c0 = 4382828174314358768738669361528362374640
144022886202834690766438118847939413850683691909151755979923699738886
893354958678967660034080196475226251097525 corresponding to the Mont-
gomery curve y2 = x3 +6x2 +x. We first measure the field operations in Table 4
which summarizes the average cycle counts of field operations over Fp2 .

Table 4. Cycle counts of the field operations over Fp2

Field operations Addition Multiplication Squaring Inversion

Cycle counts 42 454 380 106456

Table 5 compares the cycle counts of point addition and doubling operations
on fixed Huff curves. The addition operation and doubling operation on c0x(y2−
1) = y(x2 − 1) with projective (W : Z)-coordinates are 43% and 42% faster,
respectively, than those operations with projective coordinates ((X : Z), (Y : T ))
on Y T (Z2 + X2) = cXZ(T 2 + Y 2).

Table 5. Implementation results of arithmetic operations on the same fixed Huff curves

Huff curves Addition Doubling

Y T (Z2 + X2) = cXZ(T 2 + Y 2)[17] 3632 3632

c0x(y2 − 1) = y(x2 − 1) (This work) 2048 2122

Speed-up 43% 42%

Table 6 compares the cycle counts of evaluating different degree isogenous
points and curves. These operations with projective (W : Z)-coordinates in
our work are at least 50% faster than those operations in Moody and Shumow’s
work [18].

Table 7 compares the cycle counts for implementing the SIDH on Mont-
gomery curves and Huff curves, respectively. For the implementation of SIDH on
Huff curves, the parameter c0 of the initial curve c0x(y2−1) = y(x2−1) needs to

2 See https://github.com/Zhi-Hu-CSU/huzhi/blob/master/Opt-Arith-Operat-isog-
eny-Huff.zip.

https://github.com/Zhi-Hu-CSU/huzhi/blob/master/Opt-Arith-Operat-isog-eny-Huff.zip
https://github.com/Zhi-Hu-CSU/huzhi/blob/master/Opt-Arith-Operat-isog-eny-Huff.zip
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Table 6. Implementation results of evaluating different isogenies

Operation Moody and Shumow [18] This work Speed-up

eval 3 isog 6134 2048 66%

get 3 isog 8192 2576 68%

eval 4 isog 235256 3484 98%

get 4 isog 685846 1520 99%

eval 5 isog 9766 4392 55%

get 5 isog 11824 4392 63%

eval 7 isog 13398 6208 53%

get 7 isog 15456 6208 59%

eval 11 isog 20662 9840 52%

get 11 isog 22720 9840 56%

Table 7. Performance results of SIDH implementation using Huff curves and Mont-
gomery curves.

Montgomery curve [5] Huff curves

Alice’s keygen 6949582 6910882

Bob’s keygen 7672982 7699406

Alice’s shared key 5722556 5647278

Bob’s shared key 6501746 6522455

Total 26846866 26780021

be transformed into the form A1
A2

= (c0−1)2

4c0
, which costs a squaring and 3 addi-

tion over Fp. Nevertheless, this can be precomputed. The computational issues
listed in Table 3 with the computations of doubling, differential addition, tripling,
get 4 isog, eval 4 isog, get 3 isog and eval 3 isog with the curve parameters A1

A2
have the same costs as those on Montgomery curves. Thus the implementation
results on Montgomery curves and Huff curves for SIDH are almost identical.

7 Conclusion

In this work, we exploit the w-coordinates to optimize the elliptic curve group
arithmetic formulas as well as the isogenous formulas on Huff curves. On fixed
Huff curves, the operations of point addition and doubling both at least have a
speedup of 40% compared with the corresponding latest operations proposed by
Orhon and Hisil. On variable Huff curves, the operations for evaluating different
degree isogenous points and curves both at least have a speedup of 50% compared
with the only corresponding work proposed by Moody and Shumow. For the
implementation of SIDH, the results show that the desired computational issues



Optimized Arithmetic Operations for Isogeny-Based Cryptography 39

on Huff curves provide the same efficiency as those on Montgomery curves, which
implies that Huff curves would also serve as an ideal model for isogeny-based
cryptography and thus be worth further study.
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Abstract. A canonical identification (CID) scheme is a 3-move protocol
consisting of a commitment, challenge, and response. It constitutes the
core design of many cryptographic constructions such as zero-knowledge
proof systems and various types of signature schemes. Unlike number-
theoretic constructions, CID in the lattice setting usually forces provers
to abort and repeat the whole authentication process once the distribu-
tion of the computed response does not follow a target distribution inde-
pendent from the secret key. This concept has been realized by means of
rejection sampling, which makes sure that the secrets involved in a pro-
tocol are concealed after a certain number of repetitions. This however
has a negative impact on the efficiency of interactive protocols because it
leads to a number of communication rounds that is multiplicative in the
number of aborting participants (or rejection sampling procedures). In
this work we show how the CID scheme underlying many lattice-based
protocols can be designed with smaller number of aborts or even with-
out aborts. Our new technique exploits (unbalanced) binary hash trees
and thus significantly reduces the communication complexity. We show
how to apply this new method within interactive zero-knowledge proofs.
We also present BLAZE+: a further application of our technique to the
recently proposed lattice-based blind signature scheme BLAZE (FC’20).
We show that BLAZE+ has an improved performance and communica-
tion complexity compared to BLAZE while preserving the size of keys
and signatures.

Keywords: Lattice-based cryptography · Aborts · Hash trees

1 Introduction

A canonical identification (CID) scheme allows a prover P to prove to a verifier
V the possession of a secret key s in the following way: P sends a commitment
to V, who then sends a challenge c back to P. Upon receiving c, P answers with
a response z. This response allows V to verify P’s authenticity while not leaking
any information about the secret key. In number-theoretic constructions like
c© Springer Nature Switzerland AG 2020
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Schnorr’s CID scheme [34], the response z already hides s, since it is computed
by adding a secret masking term y to the term sc, i.e., z = y + sc. The term y is
chosen uniformly at random from a large distribution and is also used to compute
the commitment. This approach has been generalized in [22] to include aborting
provers for the lattice setting. In a lattice-based CID scheme y is required to be
chosen from a narrow distribution (typically, Gaussian or uniform) and the so
called rejection sampling procedure [29] is used to hide the distribution of sc. If
the sum z is not accepted, a new masking term is sampled. This procedure is
repeated until the sum becomes independently distributed from the secret term
sc. Lattice-based CID is a fundamental building block of many cryptographic
constructions including zero-knowledge protocols (e.g., [6,9]) as well as signature
schemes (e.g., [5,12,23]) and even those with advanced functionalities such as
ring signatures (e.g., [7,35]), blind signatures [4,33], and multisignatures [14].

While aborting does not affect the efficiency of constructions with one rejec-
tion sampling process like ordinary signatures, it has a significant negative
impact on the performance and communication complexity of lattice-based inter-
active protocols with multiple rejection sampling procedures. For instance, the
multisignature scheme proposed in [14] entails a repetition rate that grows expo-
nentially in the number of users participating in the signing protocol. Though
it is efficient for a small set of users, one would need to restart the protocol
very often when instantiated with a large set because each user has to carry out
rejection sampling. Another example is the blind signature scheme BLAZE [4]
and its predecessor introduced in [33]. In both constructions not only signers
have to carry out rejection sampling and repeat the signing process MS times
until the secret key is concealed, but for maintaining blindness even users have
to apply rejection sampling MU times and request a protocol restart in case of
failure. This imposes a multiplicative repetition rate MS ·MU and an additional
communication step due to the possibility of failures causing protocol restarts.
In this case, a proof of failure is sent to the signer, i.e., a proof that allows the
signer to verify the occurrence of a failure. Although BLAZE has been shown to
be practical [4], this additional step increases the time and communication com-
plexity required to generate valid signatures and forces the use of statistically
hiding and computationally binding commitments to retain security.

Therefore, masking secrets in lattice-based interactive protocols with multiple
rejection sampling procedures such that aborting occurs as little as possible
while maintaining efficiency and security remained a very important research
question. This would improve the running time and decrease the total amount
of communication required to successfully complete the protocol.

Contributions. In this work we show how to reduce the number of repetitions
in lattice-based protocols by means of a tool that we call trees of commitments.
A tree of commitments is an (unbalanced) binary hash tree of height h ≥ 1,
whose leaves are the hash values of � > 1 commitments computed from masking
terms sampled during an instance of a CID-based protocol. The number � is
chosen such that rejection sampling succeeds for at least one masking term at a



On Lattice-Based Interactive Protocols with Aborts 43

Table 1. Comparing BLAZE+ (this work) with BLAZE [4] at approximately 128 bits
of security. The parameter δabort denotes the aborting probability by the user, and
� denotes the related number of masking terms. Performance is given in cycles and
milliseconds (in parentheses), sizes and communication complexity in kilobytes. The
corresponding parameters can be found in Table 3. Benchmarking the parameters were
carried out on an Intel Core i7-6500U, operating at 2.3 GHz and 8GB of RAM.

Scheme δabort � Complexity BS.KGen BS.Sign BS.Verify sk pk Signature

BLAZE+ 2−128 71 177.8 222, 151
(0.11)

112, 540, 972
(56.49)

348, 724
(0.18)

0.75 3.9 6.7

BLAZE+ 2−40 32 189.1 222, 151
(0.11)

56, 193, 762
(28.21)

348, 724
(0.18)

0.75 3.9 6.7

BLAZE+ 2−10 8 189.2 222, 151
(0.11)

24, 443, 555
(12.27)

348, 724
(0.18)

0.75 3.9 6.6

BLAZE 0.38 1 351.6 204, 671
(0.10)

35, 547, 397
(17.85)

276, 210
(0.14)

0.8 3.9 6.6

given probability bound. This allows to aggregate � commitments in one tree and
send only the root of the tree as a new commitment rather than � commitments.
The new response now further includes the authentication path of the leaf with
index k (0 ≤ k < �), where at step k rejection sampling accepts for the first time
after k − 1 trials. Note that by choosing � large enough we can remove aborts
completely. Interestingly, only trees with small heights are required to reduce
aborts to very small probabilities, e.g., h = 3 for a probability of at most 2−10.

We demonstrate the effectiveness of using our method in interactive zero-
knowledge proofs and blind signature schemes. More concretely, we show how to
reduce the communication complexity of interactive zero-knowledge protocols by
using trees of commitments in a lattice-based zero-knowledge proof of knowledge.
Furthermore, we utilize trees of commitments in the blind signature scheme
BLAZE [4]. We call the new scheme BLAZE+. In the new scheme a user constructs
a tree of commitments using � masking terms such that blindness is ensured at
a given probability bound. More precisely, given a security level of λ bits we
fix an aborting probability δabort and compute � such that signatures are blind
with probability of at least 1 − δabort. For approximately 128 bits of security,
our results (summarized in Table 1) show that while preserving the size of keys
and signatures, the communication complexity is significantly decreased and the
signing speed is improved for δabort = 2−10. Note that choosing δabort = 2−128

implies blindness with overwhelming probability. In this case (i.e., when δabort =
2−λ) we can safely remove the last step of the protocol, hence proof of failures and
the use of commitment schemes. Thus, we obtain a 3-move version of the protocol
similar to the basic structure of CID. We present this version in Sect. 4 and the
4-move scheme in the full version of this paper [3], where aborts at the user
side occur with probability of choice. We leave applying trees of commitments
to multisignatures [14] as a future work.

Finally, we note that the impossibility results of 3-move blind signature
schemes due to [16] do not apply to our 3-move version of BLAZE+. These
results show that finding black-box reductions from successful forgers to some
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non-interactive cryptographic assumption is infeasible in the standard model
(i.e., without random oracles) for statistically blind schemes with 3 (or less)
moves such that one can verify that an honest user was able to obtain a valid
signature from the interaction with the (malicious) signer. In our 3-move proto-
col, there is no way to check that the user has obtained a valid signature, since
he does not reveal the secret information that are involved in generating the
signature and are required to check its validity. Furthermore, BLAZE+ is proven
secure in the random oracle model rather than the standard model.

Techniques. We show how to reduce the number of repetitions or even remove
aborts in CID-based protocols, completely. To this end, we give a brief descrip-
tion of the CID scheme that underlies many lattice-based constructions and
was originally introduced in [22]. Let A be a public matrix selected uni-
formly at random from Z

n×m
q . The prover P would like to prove to a veri-

fier V the possession of a secret matrix S ∈ Z
m×n with small entries such

that B = AS (mod q). We let χ denote some distribution over Z. Typi-
cally, χ is either the discrete Gaussian distribution over Z or the uniform
distribution over a small subset of Z. The challenge space is defined by C =
{c = (c1, . . . , cn) ∈ Z

n : ci ∈ {−1, 0, 1},
∑n

1 |ci| = κ}. We let RejSamp denote an
algorithm that carries out rejection sampling. The commitment is a vector
v = Ay (mod q), where y is a masking vector chosen from χm. For a chal-
lenge c ∈ C the response is given by z = y+Sc. The verifier accepts if and only
if v = Az − Bc (mod q) and ‖z‖p ≤ B, where B is a predefined bound and
p ∈ {2,∞} depending on the distribution χ. Aborting occurs if RejSamp(z) does
not accept. The protocol is always repeated by sampling a fresh y until RejSamp
accepts such that z is statistically independent from Sc.

Consider a lattice-based interactive protocol with N ≥ 1 rejection sampling
procedures, where each of them is repeated x ≥ 1 times on average. The main
motivation of this work is the observation that the total average number of
repetitions M in such a protocol is multiplicative in N , i.e., M = xN . Thus, the
main question is: Can we improve it?

One can use a large enough distribution χ such that RejSamp accepts after
a fixed number of repetitions M , e.g., M ≤ 2. This is already established in
previous works as a trade-off between performance and sizes (see, e.g., [5,12,23]),
but it does not solve the problem for all interactive protocols as explained above.

Our first attempt is the following. Rather than sampling one masking term
y and repeating this process until RejSamp accepts, P generates � > 1 masking
vectors yj at once and computes the commitment (v0, . . . ,v�−1), where vj =
Ayj (mod q) and j = 0, . . . , � − 1. The response is then zk, where k (0 ≤ k < �)
is the first index for which RejSamp accepts. This reduces aborts, but the amount
of exchanged data grows in �. In particular, any type of lattice-based signature
following this approach becomes very large. While this can be decreased by using
some cryptographic hash function F and sending F(vj) instead of vj , this is
still not satisfactory. An approach with some similarities has been taken in [30]
in a different context for zero-knowledge proofs, where all the hash values of
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commitments of potential masking terms are sent. We note that no tree structure
for commitments has been applied in [30] and furthermore the challenge size
increases linearly in the number of masking terms, which is not the case in
our attempt. The protocol is then repeated multiple times to achieve negligible
soundness error. Thus, such an approach is still inefficient.

Our final solution to this issue is to use a tree of commitments: an (unbal-
anced) binary hash tree of height h = �log(�)�, whose leaves are F(vj). The
commitment is simply the root of the tree root, and the response is the pair
(zk, auth), where auth is the authentication path of the leaf with index k. Verifi-
cation is carried out by checking that ‖zk‖p ≤ B and root is equal to the root of
the tree associated to the leaf F(Azk −Bc (mod q)) and its given authentication
path auth. Using a tree of commitments obviously reduces the communication
complexity. It can also improve the performance of interactive protocols with
multiple rejection sampling procedures as we demonstrate in this work. We note
that the number of masking terms can be chosen such that the aborting proba-
bility is bounded by some given bound. In Sect. 3.3 we show how to optimize this
number. We note that our technique may be used in [30] to improve efficiency.

Finally, we briefly explain two further optimizations that can be exploited
when using trees of commitments. The first one is to generate trees with ran-
domized hashing similar to the standard of the hash-based signature scheme
XMSS [18]. This allows to save space and further reduce the communication
complexity, since randomized hashing requires the hash function F to be only
second preimage resistant rather than collision resistant. This means the output
of F is required to be ≥ λ rather than ≥ 2λ bits assuming λ bits of classical
security. The second optimization allows to reuse already generated, but not
consumed, masking terms in subsequent executions of the protocol. This further
improves the performance of the protocol, since complete subtrees of the tree
can be reused. This reduces the number of new masking terms to be sampled in
addition to the number of multiplications and hash computations.

Related Work. In the context of analyzing the hardness of computational lat-
tice problems, previous works such as [10,11,17] point to techniques called “noise
swallowing” or “super-polynomial noise flooding”, which use Gaussian masking
terms entailing a super-polynomial Gaussian parameter in order to swallow a
polynomially large secret term. However, the negative impact on the efficiency
is tremendous as the parameters become also super-polynomial. By generating
many masking terms at once and capturing them in a tree of commitments,
the secret and masking terms remain polynomially bounded while the number
of repetitions is reduced. As mentioned above, the approach of sending hashed
commitments has been used in [30] for zero-knowledge proofs of small secrets,
but without the use of tree structures for commitments and the other efficiency
improvements. However, sending commitments in a tree structure has been
suggested, e.g., in [20] to reduce the communication complexity of proof systems,
but not repetitions of lattice-based protocols. Our work exploits hash trees in
the context of lattice-based interactive protocols with aborting participants.
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Outline. In Sect. 2 we review the relevant background. In Sect. 3 we define
trees of commitments and show how they can be utilized in lattice-based canon-
ical identification schemes and hence, in interactive zero-knowledge protocols.
In Sect. 4 we demonstrate the practical relevance of our new technique by intro-
ducing a new blind signature scheme that we call BLAZE+.

2 Preliminaries

We let N,Z,R denote the set of natural numbers, integers, and real numbers,
respectively. We denote column vectors with bold lower-case letters and matrices
with bold upper-case letters. The identity matrix of dimension n is denoted by
In. For any positive integer q we write Zq to denote the set of integers in the
range [− q

2 , q
2 ) ∩ Z. The Euclidean norm (�2-norm) of a vector v with entries

vi is defined as ‖v‖ = (
∑

i |vi|2)1/2, and its �∞-norm as ‖v‖∞ = maxi |vi|.
We define the ring R = Z[x]/〈xn + 1〉 and its quotient Rq = R/qR, where
n is a power of 2. We assume that R is an integral domain. A ring element
a0 + a1x + . . . + an−1x

n−1 ∈ Rq is denoted by â and it corresponds to a vector
a ∈ Z

n
q via coefficient embedding, hence ‖â‖ = ‖a‖ and ‖â‖∞ = ‖a‖∞. We write

â = (â1, . . . , âk) ∈ Rk
q to denote a vector of ring elements and Â for a matrix

with entries from Rq. The norms of â are defined by ‖â‖ = (
∑k

i=1 ‖âi‖2)1/2 and
‖â‖∞ = maxi ‖âi‖∞. We let Tn

κ denote the set of all (n − 1)-degree polynomials
with coefficients from {−1, 0, 1} and Hamming weight κ. All logarithms in this
work are to base 2, i.e., log(·) = log2(·). We always denote the security parameter
by λ ∈ N. A function f : N −→ R is called negligible if there exists an n0 ∈ N

such that for all n > n0, it holds f(n) < 1
p(n) for any polynomial p. With negl(λ)

we denote a negligible function in λ. A probability is called overwhelming if it
is at least 1 − negl(λ). The statistical distance between two distributions X,Y
over a countable domain D is defined by Δ(X,Y ) = 1

2

∑
n∈D |X(n) − Y (n)|.

The distributions X,Y are called statistically close if Δ(X,Y ) = negl(λ). We
write x ← D to denote that x is sampled according to a distribution D. We let
x ←$ S denote choosing x uniformly random from a finite set S.

2.1 Cryptographic Primitives

A canonical identification (CID) scheme is a 3-move interactive protocol of the
following form: A prover P initiates the protocol by sending a commitment
message y to a verifier V. Upon receiving y, V sends a uniform random challenge
c to P. Afterwards, a response z is sent from P back to V, which then allows
V to make a deterministic decision about P’s authenticity. The tuple (y, c, z)
represents a protocol transcript. A formal definition follows.

Definition 1 (Canonical Identification Scheme). A canonical identifica-
tion scheme with commitment space Y, challenge space C, and response space Z
is defined as a tuple of the following polynomial-time algorithms:
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– KG(1�) is a key generation algorithm that outputs a pair of keys (pk, sk) from
some key space K, where pk is a public key and sk is a secret key.

– P = (P1(sk),P2(sk, y, c, st)) is a prover algorithm consisting of two algorithms:
P1 takes as input a secret key sk and returns a commitment y ∈ Y and a state
st, whereas P2 on input sk, y, a challenge c ∈ C, and st, outputs a response
z ∈ Z ∩ {⊥}, where the symbol ⊥ �∈ Z indicates failure.

– V(pk, y, c, z) is a verification algorithm that takes as input a public key pk and
a transcript (y, c, z), and outputs 1 if it is valid and 0 otherwise.

The standard security notion of CID schemes is impersonation under the
active or passive attack model. In the active attack model, any adversary A
interacting with P must not be able to extract any useful information. Passive
attacks correspond to eavesdropping, i.e., A is in possession of transcripts gen-
erated by interactions between the real prover and verifier. According to [1],
impersonation under passive attacks is stronger than the active attack model.

Definition 2 (Blind Signature Scheme). A blind signature scheme BS is a
tuple of polynomial-time algorithmsBS = (BS.KGen,BS.Sign,BS.Verify) such that:

– BS.KGen(1λ) is a key generation algorithm that outputs a pair of keys (pk,sk),
where pk is a public key and sk is a secret key.

– BS.Sign(sk, pk, μ) is an interactive protocol between a signer S and a user U .
The input of S is a secret key sk, whereas the input of U is a public key pk
and a message μ ∈ M, where M is the message space. The output of S is a
view V (interpreted as a random variable) and the output of U is a signature
σ, i.e., (V, σ) ← 〈S(sk),U(pk, μ)〉. We write σ = ⊥ to denote failure.

– BS.Verify(pk, μ, σ) is a verification algorithm that outputs 1 if the signature σ
is valid and 0 otherwise.

Security of blind signatures is captured by two security notions: blindness and
one-more unforgeability [19,31]. The former prevents a malicious signer to learn
information about user’s messages (see [4] for a formal definition). The latter
ensures that each completed execution of BS.Sign yields at most one signature.

Definition 3 (One-More Unforgeability). Let H be a family of random ora-
cles. A blind signature scheme BS is called (t, qSign, qH, ε)-one-more unforgeable in
the random oracle model if for any adversarial user U∗ running in time at most
t and making at most qSign signing and qH hash queries, the game ForgeBS,U∗(λ)
depicted in Fig. 1 outputs 1 with probability Pr[ForgeBS,U∗(λ) = 1] ≤ ε. The

Fig. 1. The security game of one-more unforgeability of blind signatures.
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scheme is strongly (t, qSign, qH, ε)-one-more unforgeable if the condition μi �= μj

in the game changes to (μi, σi) �= (μj , σj) for all 1 ≤ i < j ≤ l.

2.2 Lattices and Gaussians

Let B = {b1, . . . ,bk} ∈ R
m×k be a set of linearly independent vectors for

k ≤ m. The m-dimensional lattice L of rank k generated by B is given by
L(B) = {Bx | x ∈ Z

k} ⊂ R
m. The discrete Gaussian distribution DL,σ,c over a

lattice L with standard deviation σ > 0 and center c ∈ R
n is defined as follows:

For every x ∈ L the probability of x is DL,σ,c(x) = ρσ,c(x)/ρσ,c(L), where
ρσ,c(x) = exp(−‖x−c‖2

2σ2 ) and ρσ,c(L) =
∑

x∈L ρσ,c(x). The subscript c is taken
to be 0 when omitted. We recall a lemma that gives a tail bound on discrete
Gaussians and a rejection sampling lemma.

Lemma 1 ([23, Lemma 4.4]). For any t, η > 0 we have

1. Prx←DZ,σ
[|x| > t · σ] ≤ 2 exp(−t2/2).

2. Prx←DZm,σ
[‖x‖ > ησ

√
m] ≤ ηm exp(m

2 (1 − η2)).

Lemma 2 ([23, Theorem 4.6, Lemma 4.7]). Let V ⊆ Z
m with elements

having norms bounded by T , σ = ω(T
√

log m), and h : V → R be a probabil-
ity distribution. Then there exists a constant M = O(1) such that ∀v ∈ V :
Pr[DZm,σ(z) ≤ M · DZm,σ,v(z); z ← DZm,σ] ≥ 1 − ε, where ε = 2−ω(log m). Fur-
thermore, the following two algorithms are within statistical distance δ = ε/M .

1. v ← h, z ← DZm,σ,v, output (z, v) with probability DZm,σ(z)
M ·DZm,σ,v(z)

.
2. v ← h, z ← DZm,σ, output (z, v) with probability 1/M .

Moreover, the probability that the first algorithm outputs something is at least
(1−ε)/M . If σ = αT for any positive α, then M = exp(12α + 1

2α2 ) with ε = 2−100.

We let RejSamp(x) denote an algorithm that carries out rejection sampling
on input x. The algorithm outputs 1 if it accepts and 0 otherwise. Next, we
define the lattice problems related to this work.

Definition 4 (Module Short Integer Solution (MSIS) Problem). Let n, q,
k1, k2 be positive integers and β a positive real. Given a uniform random matrix
Â ∈ Rk1×k2

q , the Hermite Normal Form of MSIS asks to find a non-zero vector
x̂ ∈ Rk1+k2 such that [Ik1 Â] · x̂ = 0 (mod q), where ‖x̂‖ ≤ β.

Definition 5 (Module Learning With Errors (MLWE) Problem). Let
n, q, k1, k2 be positive integers and Â be a matrix chosen uniformly at random
from Rk1×k2

q . Given (Â, b̂), the decision MLWE problem asks to distinguish (with
non-negligible advantage) whether b̂ were chosen from the uniform distribution
over Rk1

q or from the following distribution: Given ŝ ← χk2 and ê ← χk1 , output
the vector Âŝ + ê (mod q), where χ is an error distribution (typically, either
DZn,σ or the uniform distribution over a small subset of Rq).
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The MLWE problem [21] generalizes LWE [32] and RLWE [24]. More precisely,
by setting k1 = 1 in the definition above we obtain the ring version RLWE, while
setting k1 > 1 and Rq = Zq yields a definition of the LWE problem. The same
applies for MSIS [21] and its special versions SIS [2] and RSIS [27].

3 How to Reduce Aborts in Lattice-Based Protocols

In this section we show how aborting in lattice-based protocols can be reduced or
even be removed at all. As stated in Sect. 1, when the number of rejection sam-
pling procedures N in an interactive CID-based protocol grows, the total number
of repetitions becomes multiplicative in N , e.g., [4,14,33], and a large amount of
communication is required to successfully complete the protocol. Consider the
CID protocol sketched in Sect. 1. If rejection sampling fails, a new masking term
is sampled, hence a new commitment has to be computed and sent in order to
receive a new challenge c. Suppose that c does not change for certain number
of masking terms and related commitments, which are sent in an aggregated
form while any successfully computed response can be verified and related to
the corresponding commitment. In this case repetition does not have to occur
often or even not at all. We realize this concept by means of tree of commit-
ments: a method by which different commitments belong to one challenge in an
aggregated form and only the valid response and its related commitment will
be revealed. Masking terms that are rejected or not consumed during rejection
sampling remain hidden and will never be revealed.

3.1 Trees of Commitments

In this section we describe trees of commitments. We first define relevant func-
tions and algorithms. For a positive integer ω ≥ 2λ, we let F : {0, 1}∗ → {0, 1}ω

be a collision resistant hash function. We define the algorithms related to binary
hash trees in a way that fits to our purposes.

HashTree: An algorithm that computes an (unbalanced) binary hash tree of height
h ≥ 1. Its input consists of � ≤ 2h commitments v0, . . . , v�−1 whose hash
values are the leaves of the tree, i.e., (root, tree) ← HashTree(v0, . . . , v�−1),
where root is the root of the tree and tree is a sequence of all other nodes.

BuildAuth: An algorithm that on input an index k, a sequence of nodes tree, and
a height h outputs the corresponding authentication path auth including the
index k, i.e., auth ← BuildAuth(k, tree, h).

RootCalc: An algorithm that computes the root of a hash tree given a commit-
ment v and its authentication path auth, i.e., root ← RootCalc(v, auth).

In the following we define trees of commitments. The leaves are the hash values
of commitments vj , i.e., v0[j] = F(vj) for 0 ≤ j < �. The inner nodes of height
i are denoted by vi[j], where 0 < i ≤ h, 0 ≤ j < 2h−i. They are typically
computed as vi[j] = F(vi−1[2j] ‖ vi−1[2j + 1]). The root is the only node of
height h, i.e., vh[0] = root. A formal definition follows.
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Definition 6 (Tree of Commitments). Let vj be commitments of � > 1
secrets yj, where 0 ≤ j < �. A tree of commitments is an (unbalanced) binary
hash tree of height h = �log(�)�, whose leaves are the hash values of vj, i.e., F(vj).
The root constitutes an aggregated commitment root, and auth is the authentica-
tion path of the commitment vk generated using the secret yk, where 0 ≤ k < �.

Fig. 2. A tree of commitments of height h = 3 and � = 8 commitments. Assume that
the first time RejSamp accepts at step k = 3 (0 ≤ k < �), then the gray colored nodes
represent the authentication path required to compute the root starting from v3.

Next we define trees of commitments for lattice-based canonical identification
(CID) schemes. Fig. 2 illustrates such a tree of height h = 3.

Definition 7 (Tree of Commitments for CID). Let CID be a lattice-based
canonical identification scheme. Let vj be commitments of CID generated using
� > 1 masking terms yj (0 ≤ j < �). A tree of commitments for CID is an
(unbalanced) binary hash tree of height h = �log(�)�, whose leaves are the hash
values of vj, i.e., F(vj), and its root constitutes an aggregated commitment root
to � masking terms for up to � repetitions within CID for the same challenge
c. A response is composed of (zk, auth), where zk = yk + sc and yk is the first
masking term for which rejection sampling succeeds (i.e., RejSamp(zk) = 1 for
0 ≤ k < �), and auth is the authentication path of the commitment vk generated
by use of the masking term yk.

3.2 Canonical Identification Using Trees of Commitments

Figure 3 describes a variant of the CID protocol briefly explained in Sect. 1.
The variant shown here is based on MLWE and MSIS and utilizes trees of com-
mitments. Using the Fiat-Shamir transform [15] we obtain a digital signature
scheme. In the full version of this paper [3] we give a formal description of



On Lattice-Based Interactive Protocols with Aborts 51

this signature scheme and prove its correctness and security. By the equivalence
results of [1], we deduce the soundness property of the CID protocol described in
this section as well as its security against impersonation under passive attacks.
More concretely, the main goal of providing the signature scheme and its security
proof in the full version is to show how trees of commitments can also be used
in lattice-based Fiat-Shamir signatures, and to establish the security of the CID
protocol shown in this section based on the results of [1].

Fig. 3. Canonical identification based on MLWE and MSIS using trees of commitments.

We can choose � such that at least one of the masking pairs (ŷ(k)
1 , ŷ(k)

2 ) (see
Fig. 3) hides Ŝĉ with probability of at least 1 − δabort for a given bound δabort,
where Ŝ = (ŝ1, ŝ2). This can be established as follows. Since the entries of the
masking pairs are chosen from DZn,σ, the probability of successfully outputting
(ẑ1, ẑ2) with only one masking pair is ≈ 1/M , where M is the expected number
of repetitions (see Lemma 2). Consequently, one of the � masking pairs conceals
the secret key with probability 1 − (1 − 1/M)�. Hence, by choosing � satisfying
(1 − 1/M)� ≤ δabort, the protocol aborts with probability at most δabort. For
instance, to obtain a probability negligible in λ we have to select � such that
(1 − 1/M)� ≤ 2−λ, which allows to completely eliminate aborts.

Let us consider an illustrative example. Suppose that we set δabort = 2−10

and use masking pairs with entries sampled from DZn,σ, where σ = α‖Ŝĉ‖
and M = exp(12α + 1

2α2 ) (Lemma 2). Then, by setting α = 23 we need only
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� = 8 masking pairs in order to hide Ŝĉ with probability at least 0.999. This
means we need a tree of commitments of height h = 3, which is a very small
tree. Regarding communication complexity, both the commitment and response
consist of only 4 hash values and a pair of Gaussian vectors with σ = 23 · ‖Ŝĉ‖,
i.e., (root, ẑ1, ẑ2, auth = (a0,a1,a2)). The choice of α = 23 increases σ in this
example and hence the size of (ẑ1, ẑ2) by at most 1.1 bits per integer entry in
comparison to α = 11, which is a typical choice (see, e.g., [13]) that induces
a repetition rate of M ≈ 3 and a communication complexity consisting of 3
vectors from Rk1

q and 3 Gaussian vectors with σ = 11 · ‖Ŝĉ‖. Note that in order
to hide Ŝĉ with probability 1 − 2−10 using a single masking pair we need to set
α > 213.6, which increases the size of the response to at least 10.1 bits per integer
entry when compared with α = 11. Hence, a larger modulus q is required and
the communication complexity increases to a vector from Rk1

q and a Gaussian
vector with a very large σ, i.e., σ > 213.6 · ‖Ŝĉ‖.

Furthermore, we can improve the performance of protocols employing trees
of commitments as follows. For subsequent executions of the protocol we can
reuse the masking pairs that were sampled in previous executions but were not
consumed during rejection sampling. For instance, consider the tree in Fig. 2,
where the first time RejSamp accepts at step k = 3. For the next protocol run
we can simply reuse the whole subtree with root a2 = v2[1] such that we only
need to compute a new subtree of height h − 1 and combine both subtrees to
obtain a new tree of height h. This decreases the number of new masking terms to
be sampled and reduces the number of hash computations and multiplications
modulo q. We can also lower the security requirement of the hash function F
following the standard of the hash-based signature scheme XMSS [18] and using
randomized tree hashing. This allows to generate trees of commitments, where
F is required to be only second preimage resistant rather than collision resistant.
This reduces the size of the authentication path to one half of its original size.

3.3 Optimizing the Number of Masking Terms

The previous section shows how to reduce the overall repetition rate of lattice-
based protocols with multiple rejection sampling procedures. In this section we
show how to minimize the height of the tree of commitments when using Gaus-
sian distributed masking terms. This improves the performance of interactive
protocols significantly. A similar approach can be taken for masking terms sam-
pled from other distributions such as the uniform distribution.

Lemma 3. Let ε = 2−ω(log n) and M be the repetition rate of sampling masking
terms from DZn,σ such that rejection sampling succeeds. Let δabort be the desired
aborting probability. Then, the number of masking terms � required to conceal a
secret-related term with norm bounded by T and with probability at most 1−δabort
is minimized by solving the following optimization problem:

min(�) conditioned on (1 − 1 − ε

M
)� ≤ δabort.
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Table 2. Values for the required number of Gaussian masking terms � and the bit
length of the standard deviation σ = αT = α · 500 at given aborting probabilities.

Aborting probability δabort 2−128 2−100 2−80 2−40 2−40 2−10 2−10

Number of masking terms � 64 63 62 31 16 16 8

Height of the binary hash tree h 6 6 6 5 4 4 3

Parameter α 42 30 23 23 62 12 23

Bit length of the standard
deviation σ

15 14 14 14 15 13 14

Proof. Given a fixed δabort we can write � as a function in M using the inequality
given above. In particular, if σ = αT for α > 0, then M = exp(12α + 1

2α2 ),
ε = 2−100, and the probability of aborting using only one masking term is given
by 1− (1−ε)/M (see Lemma 2). Hence, � can also be considered as a function in
α, i.e., �(α) = log(δabort)/ log

(
1 − 1−2−100

exp( 12
α + 1

2α2 )

)
. Note that increasing α directly

reduces �. Therefore, this problem translates to finding a local minimum of the
function �(α) within a given range of α, which can be solved using Lagrange
optimization. ��

The above lemma shows that reducing the number of masking terms � for a
fixed aborting probability δabort increases σ, hence the size of the responses (or
signatures). In Table 2 we exhibit examples for various values of � and σ = αT
given δabort and T = 500.

4 Applications

As mentioned in Sect. 1, there are various advanced lattice-based constructions
that are based on canonical identification (CID) and thus may benefit from using
trees of commitments as described in Sect. 3. Our approach can also be applied to
interactive zero-knowledge proof systems in a straightforward way. For instance,
the scheme depicted in Fig. 3 can be seen as a zero-knowledge proof of knowledge
of RLWE secrets with reduced communication complexity.

As a further practical application, we exploit trees of commitments within
the blind signature scheme BLAZE [4] resulting in major efficiency gains. The
signing protocol of BLAZE consists of 4 moves between a signer S and a user
U . It can be aborted due to 2 rejection sampling procedures; the first one is
carried out by S in order to hide the secret key and the second one by U to
ensure blindness. In case the latter fails, U must send S a proof of failure in
order to restart the signing protocol. This is why the last move is needed in
the protocol as opposed to the standard 3-move structure of the CID scheme
underlying BLAZE. Due to the possibility of failures the user must also use a
statistically hiding and computationally binding commitment scheme in order
to hide the message from the signer.

In the following we redesign BLAZE such that signatures can be generated
in 3 moves. We call the new scheme BLAZE+. In particular, we are able to
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completely remove the rejection sampling procedure carried out by U . This is
accomplished by generating enough masking terms at once such that blindness
is achieved with overwhelming probability. This allows to safely eliminate the
last move in the protocol and hence the need for proof of failures. Consequently,
statistically hiding and computationally binding commitments concealing the
message from S are not required anymore. We also describe a 4-move version of
BLAZE+ in the full version of this paper [3]. In that version aborts at the user
side occur with probability of choice. We note that a similar approach may be
applied at the signer side.

In addition to the functions defined in Sect. 3 we need some additional tools.
Let H : {0, 1}∗ → T

n
κ be a public hash function modeled as a random oracle.

Further, let E be a public function that expands given strings to any desired
length. Sampling from Dn

Z,s using randomness ρ is denoted by Dn
Z,s(ρ). We let

T̂ = {±xi : i ∈ [n]} ⊂ Rq. Let Compress and Decompress be functions for
(de)compressing Gaussian elements (see [4] for description). Next we describe the
new blind signature scheme BLAZE+. The respective algorithms are formalized
in Fig. 4.

Key Generation. As in BLAZE, the algorithm BS.KGen generates an instance
of RSIS (Fig. 4). It’s secret vector ŝ is sampled from Dm+1

Zn,σ . However, BLAZE+

employs an additional condition on ŝ, which can also be used in BLAZE. More
concretely, the �2-norm of ŝ is bounded by γσ

√
(m + 1)n. This condition repre-

sents a trade-off between the speed of generating keys and the size of signatures,
since the standard deviation s∗ of masking terms used by the signer is a multiple
of ‖ŝ‖. Therefore, a smaller γ decreases s∗, but reduces the success probability
of passing the given condition (see Lemma 1). Note that ŝ can also be sampled
from the uniform distribution over a subset of Rm+1, in which the coefficients
of each polynomial from R are in the set {−d, . . . , 0, . . . , d}, where d ∈ Z>0.

Signing. The signing algorithm is similar to that of BLAZE [4]. The difference
is that in BLAZE+ the user U generates � > 1 masking vectors ê(0), . . . , ê(�−1)

chosen from Dm+1
Zn,s . These vectors are then used to compute t̂(k) = â · ê(k) + ŷ

(mod q), which are needed to generate a tree of commitments of height h =
�log(�)� via the algorithm HashTree. We note that generating ê(k) and â · ê(k)
(mod q), for k = 0, . . . , � − 1, can be precomputed by U before starting the
protocol with S. The sum t̂(k) containing ŷ and the construction of the tree
cannot be carried out in advance, since ŷ is computed from the commitment
sent by S (see Fig. 4). We also note that ê(k) can be reused when S restarts the
protocol, since ê(k) are not revealed and ĉ∗ is always fresh. After receiving the
vector ẑ∗, U computes ẑ and the authentication path auth associated to the first
index k < � for which the vector ê(k) ensures blindness. Note that � is chosen
such that this happens with probability at least 1 − 2−λ, i.e., U outputs a valid
signature with overwhelming probability. Also note that for each signature a new
root is generated.

Verification. Verifying a signature is straightforward as described in Fig. 4.
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Fig. 4. A formal description of the new blind signature scheme BLAZE+.

In the following we give the main security statements of this section compris-
ing completeness, blindness, and strong one-more unforgeability of BLAZE+. The
proofs of both correctness and blindness directly follow from [4] and are hence
omitted. In particular, proving blindness requires to show that the exchanged
messages during protocol execution together with the user’s output does not leak
any information about the message being signed. In comparison to BLAZE, the
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authentication path auth, which is a part of the signature in BLAZE+ is the only
additional information exchanged between the signer and the user. Obviously,
auth does not give any information about the signed message.

Theorem 1 (Completeness). Let α∗, α, γ, η > 0, s∗ = α∗γσ
√

(m + 1)κn,
s = ηαs∗√(m + 1)κn, and B = ηs

√
(m + 1)n. Further, let (1− 1−2−100

U )� ≤ 2−λ,
where U = exp(12α + 1

2α2 ). After at most M repetitions, any blind signature
produced by BLAZE+ is validated with probability of at least 1 − 2−λ, where
M = exp( 12

α∗ + 1
2α∗2 ).

Theorem 2 (Blindness). The scheme BLAZE+ is statistically blind. The
statistical distance between two executions of its signing protocol is given by
2−100/M .

Next, we prove the strong one-more unforgeability of BLAZE+. In the proof
we assume that in the unforgeability game (see Definition 3) any forgery output
by the adversary A is considered valid if and only if its associated root was
not queried to the signing oracle by A, i.e., a forgery must contain a new root
that is distinct from the roots queried to the signing oracle. We note that our
3-move protocol achieves completeness with overwhelming probability, i.e., each
completed interaction yields a valid blind signature, where users do not have to
request a protocol restart. Therefore, the one-more unforgeability proof does not
need to consider aborts at the user side as opposed to BLAZE.

Theorem 3 (Unforgeability). The scheme BLAZE+ is strongly one-more
unforgeable in the random oracle model (ROM) if F is a collision resistant hash
function and RSIS is hard. More precisely, suppose that F is collision resistant
and it is hard to find a vector x̂ �= 0 satisfying [1 â′]·x̂ = 0 (mod q) and ‖x̂‖ ≤ β
for β = 2(B + ησ

√
(m + 1)κn), then BLAZE+ is strongly one-more unforgeable

in the ROM.

Proof. We assume that there exists a forger A that wins the one-more unforge-
ability game given in Definition 3 with probability εA. We construct a reduction
algorithm D that finds collisions in the hash function F or computes a vector
x̂ �= 0 as described in the theorem statement with probability εD as given below.

Setup. The input of D is a uniformly random vector â′ ∈ Rm
q and a hash

function F. It also has access to an oracle OF for F. The reduction D samples
a vector ŝ from Dm+1

Zn,σ and randomly selects answers for random oracle queries
{ĥ1, . . . , ĥqH}. Then, it runs the forger A with public key (â, b̂), where â = [1 â′]
and b̂ = â · ŝ (mod q).

Random Oracle Query. The reduction D maintains a list LH, which includes
pairs of random oracle queries and their answers. If H was previously queried
on some input, then D looks up its entry in LH and returns its answer ĉ ∈ T

n
κ.

Otherwise, it returns the first unused ĉ and updates the list.
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Hash Query. Hash queries to F sent by A are forwarded to the oracle OF. The
reduction D also maintains a list LF, which includes pairs of hash queries to F
and their answers as well as the structure of the trees.

Blind Signature Query. Upon receiving signature queries from the forger A
as a user, D interacts as a signer with A according to the signing protocol (see
Fig. 4).

Output. After k ≤ qSign successful executions of the signing protocol, A outputs
k + 1 distinct messages and their valid signatures (μ1, sig1), . . . , (μk+1, sigk+1).
Then, one of the following two cases applies.

Case 1. D finds two signatures of messages μ, μ′ ∈ {μ1, . . . , μk+1} with the same
random oracle answer ĉ. In this case BS.Verify yields H(root, μ) = H(root′, μ′).
If μ �= μ′ or root �= root′, then a second preimage of ĉ has been found by A. If
μ = μ′ and root = root′, then both signatures were generated using the same
hash tree. This does not follow the unforgeability game because the output of A
does not include a valid forgery.

Case 2. If all signatures output by A have distinct random oracle answers, then
D guesses an index i ∈ [k+1] such that ĉi = ĥj for some j ∈ [qH]. Then, it records
the pair (μi, (ẑi, ĉi, authi)) and invokes A again with the same random tape and
the random oracle queries {ĥ1, . . . , ĥj−1, ĥ′

j , . . . , ĥ
′
qH

}, where {ĥ′
j , . . . , ĥ

′
qH

} are
fresh random elements. After the second invocation, the output of A includes a
pair (μ′

i, (ẑ
′
i, ĉ

′
i, auth

′
i)). By the General Forking Lemma [8], A outputs a forgery

containing ĉ′
i with probability εfork (see below), where ĉi �= ĉ′

i and root = root′.
Let ŵ = â · ẑi − b̂ĉi (mod q) and ŵ′ = â · ẑ′

i − b̂ĉ′
i (mod q). Then, one of the

following holds:

1. ẑi �= ẑ′
i and authi = auth′

i. If ŵ = ŵ′, then â(ẑi − ẑ′
i)− b̂(ĉi − ĉ′

i) = 0 (mod q).
Therefore, by setting b̂ = â · ŝ (mod q) we obtain â · x̂ = 0 (mod q), where
x̂ = ẑi − ẑ′

i − ŝ(ĉi − ĉ′
i). Since both signatures are valid, we have ‖ẑi‖ ≤ B

and ‖ẑ′
i‖ ≤ B. Moreover we have ‖ŝ(ĉi − ĉ′

i)‖ ≤ 2ησ
√

(m + 1)κn. Hence,
‖x̂‖ ≤ 2(B + ησ

√
(m + 1)κn). This constitutes a solution to RSIS with norm

bound β. If ŵ �= ŵ′, then a collision in F has been found in the leaves of the
hash tree.

2. ẑi �= ẑ′
i and authi �= auth′

i. If ŵ = ŵ′, then we have a solution to RSIS (as
in 1.). If ŵ �= ŵ′, then we consider two cases: If ŵ, ŵ′ belong to different hash
trees, then a collision has occurred in F similar to [26], i.e., there exists an
index j ∈ {0, . . . , h − 1} such that aj �= a′

j , where aj ∈ authi, a′
j ∈ auth′

i

and RootCalc(ŵ, authi) = root = RootCalc(ŵ′, auth′
i). If ŵ, ŵ′ belong to the

same hash tree, then D keeps the pair (μi, (ẑi, ĉi, authi)) and invokes A at
most � times with the same random tape and the random oracle queries
{ĥ1, . . . , ĥj−1, ĥ

(t)
j , . . . , ĥ

(t)
qH } (where t ∈ {0, . . . , � − 1}) until we obtain two

forgeries such that the associated leaves have the same index in the tree and
the same hash value. If ŵ = ŵ′, then we have a solution to RSIS (as in 1.).
Otherwise, we have a collision in F.
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3. ẑi = ẑ′
i and authi = auth′

i. If ŵ = ŵ′, then â · ŝ(ĉi − ĉ′
i) = b̂(ĉi − ĉ′

i) = 0
(mod q) and ‖ŝ(ĉi − ĉ′

i)‖ ≤ β. Since ĉi �= ĉ′
i and R is an integral domain, then

ŝ(ĉi − ĉ′
i) ∈ Rm+1\{0}. This constitutes a solution to RSIS. Note that if b̂ is

invertible in Rq, then we obtain ĉi − ĉ′
i = 0 (mod q). This contradicts ĉi �= ĉ′

i.
Moreover, if (ĉi − ĉ′

i) is invertible in Rq, then b̂ = 0 (mod q), which is not the
case. If ŵ �= ŵ′, then a collision has occurred in F (in the leaves of the hash
tree).

4. ẑi = ẑ′
i and authi �= auth′

i. If ŵ = ŵ′, then we have a solution to RSIS (as
in 3.). If ŵ �= ŵ′, then one of the cases considered in 2. (for ŵ �= ŵ′) applies.

The reduction D retries at most q
(k+1)
H times with different random tape and

random oracle queries.

Analysis. First, we note that the environment of A is perfectly simulated by D
and signatures are generated with the same probability as in the real execution
of the signing protocol. Next, one of the k+1 pairs output by A is by assumption
not generated during the execution of the signing protocol. The probability of
correctly guessing the index i corresponding to this pair is 1/(k+1), where there
are qk+1

H index pairs (i, j) such that ĉi = ĥj . Therefore, one of the qk+1
H reruns

of A yields the correct index pair (i, j). The probability that ĉi was a random
oracle query made by A is at least 1−1/|Tn

κ|. Thus, the probability that ĉi = ĥj

is εA−1/|Tn
κ|. By the General Forking Lemma with at most � = O(1) rewindings

and distinct ĥ
(t)
j , . . . , ĥ

(t)
qH , we have εfork ≥ (

εA − 1
|Tn

κ |
) · (( εA−1/|Tn

κ |
qSign+qH

)� − τ
)
, where

τ = 1 − ∏�
t=1

|Tn
κ |−t

|Tn
κ | ≤ 1 −

( |Tn
κ |−�
|Tn

κ |
)�

≤ �2

|Tn
κ | . Since ŝ is not uniquely defining b̂

when (m + 1) log(2d) > log(q) (see, e.g., [28]) for a sufficiently large d that is
related to the size of the coefficients of ŝ, A does not know which ŝ is being used
to construct x̂. Hence, x̂ �= 0 with probability at least 1/2 (see, e.g., [25,33]).
This can be easily shown, e.g., when the coefficients of ŝ are uniformly distributed
over {−d, . . . , 0, . . . , d}. The success probability of D is given by εD ≥ εfork

2(k + 1)
,

which is non-negligible if εA is non-negligible. ��

Parameters. Table 3 shows our proposed parameters for BLAZE+, which are
selected for approximately 128 bits of security. The table also reviews the param-
eters of BLAZE proposed in [4] for the same security level. Table 1 gives the
related communication complexity, performance, and sizes of keys and signa-
tures. For the sake of comparison with BLAZE, we choose m = 1 and m = 3 for
a practical scheme instantiation. Note that the choice of e.g., m = 1 implies an
instantiation that is based on RLWE rather than RSIS and hence, it is not cov-
ered by the security proof as indicated in [4]. This is because the secret key has
insufficient entropy or does not satisfy the condition (m + 1) log(2d) > log(q)
(see the proof of Theorem 3). It seems that using RLWE does not reduce the
security of the scheme, but rather using RSIS appears to be more an artifact of
the proof technique.
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Table 3. Parameters for BLAZE+ and BLAZE targeting approximately 128 bits of
security. The performance, sizes, and communication complexity corresponding to these
parameters are given in Table 1.

Scheme Parameters

δabort � h n m q σ γ κ α∗ α s∗ s MS MU M

BLAZE+ 2−128 71 7 1024 1 ≈ 231 0.5 1.01 16 19 33 1736.9 12450734 1.9 1 1.9

BLAZE+ 2−40 32 5 1024 1 ≈ 231 0.5 1.01 16 28 22 2559.6 12232099 1.5 1 1.5

BLAZE+ 2−10 8 3 1024 1 ≈ 231 0.5 1.01 16 28 22 2559.6 12232099 1.5 1 1.5

BLAZE 0.38 1 0 1024 1 ≈ 231 0.5 1.2 16 20 25 2172.2 11796306 1.8 1.6 2.9

BLAZE+ 2−128 71 7 1024 3 ≈ 231 9.6 1.01 16 19 33 47161.3 478102394 1.9 1 1.9

BLAZE+ 2−40 32 5 1024 3 ≈ 231 9.6 1.01 16 28 22 69500.9 469714882 1.5 1 1.5

BLAZE+ 2−10 8 3 1024 3 ≈ 231 9.6 1.01 16 28 22 69500.9 469714882 1.5 1 1.5

BLAZE 0.38 1 0 1024 3 ≈ 231 9.6 1.2 16 20 25 54067.2 380633088 1.8 1.6 2.9

Acknowledgements. We thank the anonymous reviewers of ACISP’20 for their valu-
able comments. This work has been partially supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – SFB 1119 – 236615297.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Ajtai, M.: Generating hard instances of lattice problems. In: ACM Symposium on
Theory of Computing - STOC 1996, pp. 99–108. ACM (1996)

3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based inter-
active protocols: an approach with less or no aborts. Cryptology ePrint Archive,
Report 2020/007 (2020). http://eprint.iacr.org/2020/007. Full version of this paper

4. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practical lattice-
based blind signatures for privacy-preserving applications. In: Financial Cryptog-
raphy and Data Security - FC 2020. Springer, Cham (2020). http://eprint.iacr.
org/2019/1167

5. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

6. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

7. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., Xu, S., Qing, S., Samarati, P., Blanc, G., Lu,
R., Zhang, Z., Meddahi, A. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 303–322.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
http://eprint.iacr.org/2020/007
http://eprint.iacr.org/2019/1167
http://eprint.iacr.org/2019/1167
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-01950-1_18


60 N. Alkeilani Alkadri et al.

8. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM Conference on Computer and Communications Security
- CCS 2006, pp. 390–399. ACM (2006)

9. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

10. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

11. Brakerski, Z., Perlman, R.: Order-LWE and the hardness of Ring-LWE with
entropic secrets. Cryptology ePrint Archive, Report 2018/494 (2018). https://
eprint.iacr.org/2018/494

12. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
Trans. Cryptogr. Hardware Embed. Syst. TCHES 2018(1), 238–268 (2018)

13. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
CRYSTALS-Dilithium: digital signatures from module lattices. Cryptology ePrint
Archive, Report 2017/633 (2017). Version: 20170627:201152. http://eprint.iacr.
org/2017/633

14. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme
with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0 9

15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12
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Abstract. The lattice-based signature scheme Dilithium is one of the
most promising signature candidates for the post-quantum era, for its
simplicity, efficiency, small public key size, and resistance against side
channel attacks. Whether better trade-offs on the already remarkable
performance of Dilithium can be made is left in Dilithium as an inter-
esting open question.

In this work, we provide new insights in interpreting the design of
Dilithium, in terms of key consensus previously proposed in the lit-
erature for key encapsulation mechanisms (KEM) and key exchange
(KEX). Based on the deterministic version of the optimal key consensus
with noise (OKCN) mechanism originally developed for KEM/KEX, we
present signature from key consensus with noise (SKCN), which could
be viewed as generalization and optimization of Dilithium. The con-
struction of SKCN is generic, modular and flexible, which in particular
allows a much broader range of parameters for searching better tradeoffs
among security, computational efficiency, and bandwidth. For example,
on the recommended parameters, compared with Dilithium our SKCN
scheme is more efficient both in computation and in bandwidth, while
preserving the same level of post-quantum security. Also, our three sets
of parameters are chosen to be as unified as possible, so as to simplify
the implementation in practice. Finally, using the same routine of OKCN
for both KEM/KEX and digital signature eases (hardware) implemen-
tation and deployment in practice, and is useful to simplify the system
complexity of lattice-based cryptography in general.

1 Introduction

Over the last decades, lattices have emerged as a very attractive foundation for
cryptography. Ever since the seminal work of Ajtai [1] connecting the average-
case complexity of lattice problems to their complexity in the worst case, there
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has been intriguing and fruitful efforts to base cryptographic schemes on worst-
case lattice assumptions. In addition to their unique theoretical properties,
lattice-based schemes enjoy many potential advantages: their asymptotic effi-
ciency and conceptual simplicity (usually requiring only linear operations on
small integers); their resistance so far to cryptanalysis by quantum algorithms;
and the guarantee that their random instances are “as hard as possible” [6,27].

Given the importance of digital signature schemes in modern cryptography,
it is natural to consider building practical and provably secure digital signature
schemes based on lattice assumptions. Generally speaking, lattice-based signa-
ture schemes are designed by either of the following paradigms: hash-and-sign
paradigm [8,14], and Fiat-Shamir heuristic [11,13,21]. Nevertheless, given the
current research status in lattice-based cryptography, it is commonly suggested
that lattice-based signature could be subtler and harder to achieve. For instance,
there are more than twenty submissions of lattice-based key encapsulation mech-
anisms to NIST post-quantum cryptography (NIST-PQC), but only five lattice-
based signature submissions. Among them, Falcon [25], and pqNTRUSign [28]
follow the hash-and-sign paradigm; Dilithium [12] and qTESLA [5] follow the
Fiat-Shamir heuristic. Now, Dilithium [12], qTESLA [5] and Falcon [25] are in
the second round submissions of NIST-PQC.

In this work, we focus on the study of Dilithium [12,18]. Dilithium is one of
the best lattice-based signature schemes that follow the Fiat-Shamir paradigm,
and is one of the most promising lattice-based signature candidates. Some salient
features of Dilithium include: simplicity (both for the algorithmic design and for
the algebraic structure of the underlying lattice), efficiency, small public key size,
and resistance against side channel attacks [4]. Its design is based on a list of
pioneering works (e.g., [2,21,22] and more), with very careful and comprehensive
optimizations in implementation and parameter selection. Whether better trade-
offs on the already remarkable performance of Dilithium can be made is left in
[9] as an interesting open question.

1.1 Our Contributions

In this work, we present generalization and optimization of Dilithium. This is
enabled by new insights in interpreting the design of Dilithium, in terms of
symmetric key consensus previously proposed in the literature for achieving
key encapsulation mechanisms (KEM) and key exchange (KEX) [3,10,15,19,
24,27]. Based on the deterministic version of the optimal key consensus with
noise (OKCN) mechanism, originally developed in [15,16] for highly practi-
cal KEM/KEX schemes, we present signature from key consensus with noise
(SKCN). The construction of SKCN is generic, modular and flexible, which in
particular allows a much broader range of parameters.

We made efforts to thoroughly search and test a large set of parameters
to achieve better trade-offs among security, efficiency, and bandwidth. On the
recommended parameters, compared with Dilithium our SKCN scheme is more
efficient both in computation and in bandwidth, while preserving the same level
of post-quantum security. Also, our three sets of parameters are chosen to be as
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unified as possible, so as to simplify the implementation in practice. This work
also further justifies and highlights the desirability of OKCN, originally devel-
oped in [15] for highly practical KEM/KEX, as the same routine can be used for
both KEM/KEX and digital signatures, which ease (hardware) implementation
and deployment in practice, and is useful to simplify the system complexity of
lattice-based cryptography in general.

2 Preliminaries

For any real number x ∈ R, let �x� denote the largest integer that is no more
than x, and �x� := �x + 1/2�. For any i, j ∈ Z such that i < j, denote by [i, j]
the set of integers {i, i + 1, · · · , j − 1, j}. For the positive integers r, α > 0, let
r mod α denote the unique integer r′ ∈ [0, α − 1] such that α | (r′ − r), and let
r mod± α denote the unique integer r′′ ∈ [− ⌊

α−1
2

⌋
,
⌊

α
2

⌋
] such that α | (r′′ − r).

For a positive integer q and an element x ∈ Zq, we write ‖x‖∞ for |x mod± q|.
For every a =

∑n−1
i=0 ai · xi ∈ Rq, ai ∈ Zq, define Power2Roundq,d (a) def=

∑
a′

i ·xi,

where a′
i
def=

(
ai − (

ai mod± 2d
))

/2d.
For a finite set S, |S| denotes its cardinality, and x ← S denotes the opera-

tion of picking an element uniformly at random from the set S. We use standard
notations and conventions below for writing probabilistic algorithms, experi-
ments and interactive protocols. For an arbitrary probability distribution D, the
notation x ← D denotes the operation of picking an element according to the
pre-defined distribution D. We say that a positive function f(λ) > 0 is negligible
in λ, if for every c > 0 there exists a positive λc > 0 such that f(λ) < 1/λc for
all λ > λc.

Digital Signature Scheme. A digital signature scheme Π consists of three
probabilistic polynomial-time algorithms (KeyGen,Sign,Verify). KeyGen is the
key generation algorithm that, on input of the security parameter 1λ, outputs
(pk, sk). Sign is the signing algorithm that, on input the secret key sk as well
as the message μ ∈ {0, 1}∗ to be signed, outputs the signature σ. Verify is the
deterministic verification algorithm that, on input the public key pk as well
as the message/signature pair (μ, σ), outputs b ∈ {0, 1}, indicating whether it
accepts the incoming (μ, σ) as a valid pair or not. We say a signature scheme
Π = (KeyGen,Sign,Verify) is correct, if for any sufficiently large λ, any (pk, sk) ←
KeyGen(1λ) and any μ ∈ {0, 1}∗, we have Pr[Verify(pk, μ,Sign(sk, μ)) = 1] = 1.

(S)EU-CMA. The security for a signature scheme Π=(KeyGen,Sign,Verify),
is defined in the following game between a challenger and an adversary A.

• Setup. Given λ, the challenger runs (pk, sk) ← KeyGen(1λ). The public key
pk is given to adversary A, whereas the secret key sk is kept in private.
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• Challenge. The adversary A is given access to the signing oracle. Suppose
A makes qs signature queries. Each signature query consists of the following
steps: (1) A adaptively chooses the message μi ∈ {0, 1}∗, 1 ≤ i ≤ qs, based
upon its entire view, and sends μi to the signer; (2) Given the secret key sk as
well as the message μi to be signed, the challenger generates and sends back
the associated signature, denoted σi, to A.

• Output. Finally, A outputs a pair of (μ, σ), and wins if (1) Verify(pk, μ, σ) = 1
and (2) (μ, σ) 	∈ {(μ1, σ1), · · · , (μqs

, σqs
)}.

We say the signature scheme Π is strongly existentially unforgeable under
adaptive chosen-message attack, if the probability that every p.p.t. attacker
A wins in the foregoing game is negligible. A weaker model, i.e., the EU-
CMA model, could be define by requiring that A wins if and only if (1)
Verify(pk, μ, σ) = 1 and (2) μ 	∈ {μ1, μ2, · · · , μqs

}. Then Π is called (standard)
existentially unforgeable under adaptive chosen-message attack, if no efficient
adversary can win in this weaker game with non-negligible probability.

Module-LWE and Module-SIS. In this work, we always have n = 256 and
q = 1952257. Also, let R and Rq denote the rings Z[x]/〈xn +1〉 and Zq[x]/〈xn +
1〉, respectively. For the element w =

∑n−1
i=0 wix

i ∈ R, its �∞-norm is defined
as ‖w‖∞ := max ‖wi‖∞. Likewise, for the element w = (w1, · · · , wk) ∈ Rk,

its �∞-norm is defined as ‖w‖∞ := max
i

‖wi‖∞. In particular, when the other

parameters are clear from the context, let Sη ⊆ R denote the set of elements
w ∈ R such that ‖w‖∞ ≤ η.

The hard problems underlying the security of our signature scheme are
Module-LWE (MLWE), Module-SIS (MSIS) (as well as a variant of the MSIS
problem, i.e., the SelfTargetMSIS problem). They were well studied in [20] and
could be seen as a natural generalization of the Ring-LWE [19] and Ring-SIS
problems [26], respectively. Fix the parameter � ∈ N. The Module-LWE distri-
bution (induced by s ∈ R�

q) is the distribution of the random pair (ai, bi) over the
support R�

q×Rq, where ai ← R�
q is taken uniformly at random, and bi := aT

i s+ei

with ei ← Sη fresh for every sample. Given arbitrarily many samples drawn from
the Module-LWE distribution induced by s ← S�

η, the (search) Module-LWE
problem asks to recover s. And the associated Module-LWE assumption states
that given A ← Rk×�

q and b := As+e where k = poly(λ) and (s, e) ← S�
η ×Sk

η ,
no efficient algorithm can succeed in recovering s with non-negligible probability,
provided that the parameters are appropriately chosen.

Fix p ∈ [1,∞]. Given A ← Rh×�
q where h = poly(λ), the Module-SIS problem

(in �p-norm) parameterized by β > 0 asks to find a “short” yet nonzero pre-
image x ∈ R�

q in the lattice determined by A, i.e., x 	= 0,A · x = 0 and
‖x‖ ≤ β. And the associated Module-SIS assumption (in �p-norm) states that no
probabilistic polynomial-time algorithm can find a feasible pre-image x with non-
negligible probability, provided that the parameters are appropriately chosen. In
the literature, the module-SIS problem in Euclidean norm, i.e., p = 2, is well-
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studied; nevertheless, in this work, we are mostly interested in the Module-SIS
problem/assumption in �∞-norm, i.e., p = ∞.

Hashing. As is in [12,18], when the other related parameters are clear
from the context, for every positive integer w > 0, let Bw := {x ∈ R |
‖x‖∞ = 1, ‖x‖1 = w}. In this work, we always have w = 60, since the set B60 ⊆
R is of size 260 ·

(
n

60

)
≈ 2256 (recall that n = 256 by default). Let H : {0, 1}∗ →

B60 be a hash function that is modeled as a random oracle in this work. In
practice, to pick a random element in B60, we can use an inside-out version of
Fisher-Yates shuffle.

Extendable Output Function. The notion of extendable output function
follows that of [12,18]. An extendable output function Sam is a function on bit
strings in which the output can be extended to any desired length, and the
notation y ∈ S := Sam(x) represents that the function Sam takes as input x
and then produces a value y that is distributed according to the pre-defined
distribution S (or according to the uniform distribution over the pre-defined set
S). The whole procedure is deterministic in the sense that for a given x will
always output the same y, i.e., the map x �→ y is well-defined. For simplicity
we always assume that the output distribution of Sam is perfect, whereas in
practice it will be implemented by using some cryptographic hash functions
(which are modelled as random oracle in this work) and produce an output that
is statistically close to the perfect distribution.

3 Building Tools of SKCN

In this section, we first propose the notion of deterministic symmetric key con-
sensus (DKC); then we construct and analyze a concrete DKC instance, i.e., the
deterministic symmetric key consensus with noise (DKCN), which is a variant of
the optimal key consensus with noise (OKCN) scheme presented in [15]. Based
on DKCN, we then define several algorithms/tools, and develop some of their
properties. These algorithms will serve as the building tools for our signature
scheme to be introduced in Sect. 4.

Roughly speaking, in a two-party game where two players have values σ1, σ2 ∈
Zq respectively, DKCN ensures both party can extract a shared key from σ1 and
σ2, respectively, provided that σ1 and σ2 are close enough. Note that although
all these algorithms/tools proposed in this section are defined with respect to
the finite field Zq for some positive rational prime q, they could be naturally
generalized to vectors (as well as the ring Rq) in the component-wise manner.

Definition 1. A DKC scheme DKC = (params,Con,Rec) is specified as fol-
lows.
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• params = (q, k, g, d, aux) denotes the system parameters, where q, k, g, d are
positive integers satisfying 2 ≤ k, g ≤ q, 0 ≤ d ≤ � q

2�, and aux denotes some
auxiliary values that are usually determined by (q, k, g, d) and could be set to
be a special symbol ∅ indicating “empty”.

• (k1, v) ← Con(σ1, params): On input (σ1 ∈ Zq, params), the deterministic
polynomial-time conciliation algorithm Con outputs (k1, v), where k1 ∈ Zk is
the shared-key, and v ∈ Zg is a hint signal that will be publicly delivered to
the communicating peer to help the two parties reach consensus.

• k2 ← Rec(σ2, v, params): On input (σ2 ∈ Zq, v, params), the deterministic
polynomial-time reconciliation algorithm Rec outputs k2 ∈ Zk.

A DKC scheme is correct, if k1 = k2 for any σ1, σ2 ∈ Zq with |σ1−σ2|∞ ≤ d.

Next, we develop a concrete instance of DKC, i.e., the rounded symmetric
key consensus with noise (DKCN) depicted in Algorithm 1. Note that by Theo-
rem 2, as a concrete DKC, DKCN itself is correct, provided that parameters are
appropriately set.

Theorem 2. When k ≥ 2, g ≥ 2 and 2kd < q, the DKCN scheme (params,
Con,Rec) depicted in Algorithm 1 is correct.

Proof. Suppose |σ1 − σ2|∞ ≤ d. Then by Lemma 3, there exist θ ∈ Z and
δ ∈ {−d, · · · , d} such that σ2 = σ1 + θq + δ. From Line 3 to 7 in Algorithm 1,
we know that there exists θ′ ∈ Z such that kσ1 = (k1 + kθ′) · q + v. Taking these
into the formula of k2 in Rec (Line 12), we have

k2 ≡ �(kσ2 − v)/q� ≡ �k(σ1 + θq + δ)/q − v/q� ≡ �k1 + kδ/q� (mod k).

It follows from 2kd < q that |kδ/q| ≤ kd/q < 1/2, making k2 = k1. ��
The following lemma, proposed in [15], is essential for the proof of Theorem 2.

Lemma 3 ([15]). For any x, y, t, l ∈ Z where t ≥ 1 and l ≥ 0, if |(x − y) mod
q|∞ ≤ l, there exists θ ∈ Z and δ ∈ {−l, · · · , l} such that x = y + θq + δ. ��

Algorithm 1. DKCN: Deterministic Symmetric KC with Noise
1: params := (q, k, g, d, aux = ∅)
2: procedure Con(σ1, params) � σ1 ∈ Zq

3: v := kσ1 mod± q
4: if kσ1 − v = kq then
5: k1 := 0
6: else
7: k1 := (kσ1 − v)/q
8: end if
9: return (k1, v)

10: end procedure
11: procedure Rec(σ2, v, params) � σ2 ∈ Zq

12: k2 := �(kσ2 − v)/q� mod k
13: return k2

14: end procedure
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Based on DKCN, we then present several algorithms and some of their prop-
erties, whose proofs are presented in Appendix B. These algorithms would be
applied in the design of SKCN. As we shall see in Sect. 4, their properties play
an important role in the correctness and security analysis of SKCN.

Proposition 4. For every r, z ∈ Zq such that ‖z‖∞ < �q/(2k)�, we have

UseHintq,k(MakeHintq,k(z, r), r) = HighBitsq,k(r + z).

Proposition 5. For r′
1 ∈ Zk, r ∈ Zq, h ∈ {0, 1}, if r′

1 = UseHintq,k(h, r), then
‖r − �q · r′

1/k�‖∞ ≤ q/k + 1/2 ≤ �q/k� + 1.

Proposition 6. For r, z ∈ Zq such that ‖z‖∞ < U < �q/(2k)�. If ‖r′
0‖∞ <

q/2 − kU where (r1, r0) ← Con(r), (r′
1, r

′
0) ← Con(r + z), then r1 = r′

1.

1: procedure HighBitsq,k(r)
2: (r1, r0) ← Con(r)
3: return r1
4: end procedure
5: procedure MakeHintq,k(z, r)
6: r1 := HighBitsq,k(r)
7: v1 := HighBitsq,k(r + z)
8: if r1 = v1 then
9: return 0

10: else
11: return 1
12: end if
13: end procedure

1: procedure LowBitsq,k(r)
2: (r1, r0) ← Con(r)
3: return r0
4: end procedure
5: procedure UseHintq,k(h, r)
6: (r1, r0) := Con(r)
7: if h = 0 then
8: return r1
9: else if h = 1 and r0 > 0 then

10: return (r1 + 1) mod k
11: else
12: return (r1 − 1) mod k
13: end if
14: end procedure

4 SKCN: Signature from Key Consensus with Noise

In this section, we propose our signature scheme SKCN, which is defined on a
module lattice, and can be proven to be strongly existentially unforgeable under
adaptive chosen-message attacks in the quantum random oracle model. SKCN
could be seen as a generalization and optimization of Dilithium with the aid of
DKCN, and its correctness analysis and security proof roughly follows from that
of Dilithium as well.

4.1 Description of SKCN

Our key generation, signing, and verification algorithms are fully described in
Algorithms 2, 4 and 3, respectively.
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Algorithm 2. Key Generation Algo-
rithm
Input: 1λ

Output: (pk = (ρ, t1), sk = (ρ, s, e, t))
1: ρ, ρ′ ← {0, 1}256

2: A ∈ Rh×�
q := Sam(ρ)

3: (s, e) ∈ S�
η × Sh

η′ := Sam(ρ′)
4: t := As + e
5: t1 := Power2Roundq,d (t)
6: return (pk = (ρ, t1), sk = (ρ, s, e, t))

Algorithm 3. Verification Algorithm
Input: pk = (ρ, t1), μ ∈ {0, 1}∗ , (z, c,h)
Output: b ∈ {0, 1}
1: A ∈ Rh×�

q := Sam(ρ)
2: w′

1 := UseHintq,k(h,Az − ct1 · 2d)
3: c′ ← H(ρ, t1, �qw′

1/k� , μ)
4: if c = c′ and ‖z‖∞ < �q/k	 − U and

the number of 1’s in h is ≤ ω then
5: return 1
6: else
7: return 0
8: end if

Algorithm 4. The Signing Algorithm
Input: μ ∈ {0, 1}∗, sk = (ρ, s, e, t)
Output: σ = (z, c,h)
1: A ∈ Rh×�

q := Sam(ρ)
2: t1 := Power2Roundq,d (t)
3: t0 := t − t1 · 2d

4: r ← {0, 1}256

5: y ∈ S�
�q/k�−1 := Sam(r)

6: w := Ay
7: w1 := HighBitsq,k(w)
8: c ← H(ρ, t1, �q · w1/k� , μ)
9: z := y + cs

10: (r1, r0) := Con(w − ce)
11: Restart if ‖z‖∞ ≥ �q/k	 − U or

‖r0‖∞ ≥ q/2 − kU ′ or r1 �= w1

12: h := MakeHintq,k(−ct0,w− ce+ ct0)
13: Restart if ‖ct0‖∞ ≥ �q/2k	 or the

number of 1’s in h is greater than ω
14: return (z, c,h)

Algorithm 5. The Simulator
Input: μ ∈ {0, 1}∗, ρ, t1, t0
Output: σ = (z, c,h)
1: A ∈ Rh×�

q := Sam(ρ)
2: (z, c) ← S�q/k�−U × B60

3: (r1, r0) := Con(Az − ct)
4: Restart if ‖r0‖∞ ≥ q/2 − kU
5: if H has already been defined on

(ρ, t1, �q · r1/k� , μ) then
6: Abort
7: else
8: Program H(ρ, t1, �q · r1/k� , μ) = c
9: end if

10: h := MakeHintq,k(−ct0,Az− ct+ ct0)
11: Restart if ‖ct0‖∞ ≥ �q/2k	 or the

number of 1’s in h is greater than ω
12: return (z, c,h)

Practical Implementation. When we implement SKCN with our recom-
mended parameter set II (cf. Table 3), several improvements that are similar
to [12,18] are made, so as to improve its efficiency. Specifically, the sign algo-
rithm in our implementation is deterministic in nature which is similar to that
of Dilithium [18]. This is achieved by adding some new seeds (tr, key) into the
secret key sk; thus, the random nonce y in the sign algorithm could be obtained
via a pseudorandom string, which is obtained by extending the hash value of
(tr, key), the message to be signed, and a counter. Thus, the t1 in sk is no longer
necessary, making sk = (ρ, tr, key, s, e, t0). This minor modification can improve
the efficiency of the sign algorithm significantly, and shorten the size of sk.
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4.2 Correctness Analysis

In SKCN, the key generation algorithm first chooses a random 256-bit seed ρ and
expands it into a matrix A ← Rh×�

q by an extendable output function Sam(·).
The crucial component in the secret key is (s, e) ∈ R�

q ×Rh
q , and each coefficient

of s (resp., e) is drawn uniformly at random from the set [−η, η] (resp., [−η′, η′]).
Finally, we compute t := As + e ∈ Rh

q . The public key is pk = (ρ, t1) where
t1 = Power2Roundq,d (t), and the associated secret key is sk = (ρ, s, e, t).

Given the secret key sk = (ρ, s, e, t) as well as the message μ ∈ {0, 1}∗ to
be signed, the signing algorithm first recovers the public matrix A ∈ Rh×�

q via
the random seed ρ in the secret key. After that, the signing algorithm picks
a “short” y from the set S�

�q/k�−1 ⊆ R�
q uniformly at random, and computes

w1 := HighBitsq,k(w), where w := Ay. Upon input (ρ, t1, �q · w1/k� , μ), the
random oracle H(·) returns a uniform c ← B60. After obtaining c, the signing
algorithm conducts a rejection sampling process to check if every coefficient of
z := y + cs ∈ R�

q is “small” enough, if every coefficient of r0 is “small” enough,
and if r1 = w1, where (r1, r0) ← Con(w − ce); otherwise, the signing algorithm
restarts, until all the requirements are satisfied. We should point out that if
‖ce‖∞ ≤ U ′, then by Proposition 6, the requirement ‖r0‖∞ < q/2 − kU ′ forces
r1 = w1. We hope ‖ce‖∞ > U ′ occurs with negligible probability, such that the
probability that the check r1 = w1 fails is negligible as well. In addition, U is
chosen such that ‖cs‖∞ ≤ U holds with overwhelming probability. Furthermore,
the function MakeHintq,k(·) is invoked on input (−ct0,w− ce+ ct0) to generate
the hint h, i.e., a binary vector in {0, 1}n·h. The signing algorithm concludes by
conducting the remaining two checks, i.e., if ‖ct0‖∞ < �q/2k� and if the number
of nonzero elements in h ∈ {0, 1}n·h does not exceed the pre-defined threshold
ω; otherwise restart is carried out again. Here, the hint h corresponds to the fact
that it is t1, not the whole t = t1 · 2d + t0 that is contained in the public key.
With the hint h, we can still carry out the verification, even without t0.

Given the public key pk = (ρ, t1), the message μ ∈ {0, 1}∗ and the claimed
signature (z, c,h), the verifying algorithm first recovers A ∈ Rh×�

q via the ran-
dom seed ρ. After that, it computes w

′
1 := UseHintq,k(h,Az − ct1 · 2d). If the

given (z, c,h) is indeed a honestly generated signature of the incoming mes-
sage μ, then it is routine to see that every coefficient of z is “small” enough,
and the number of 1’s in h is no greater than ω; more importantly, we have
HighBitsq,k(Ay) = HighBitsq,k(Ay − ce) = w′

1 and therefore c = c′, where
c′ ← H (ρ, t1, �qw′

1/k� , μ) . The verifying algorithm would accept the input tuple
if and only if the foregoing conditions are all satisfied.

Next, we show that our SKCN signature scheme is always correct, provided
that the involving parameters are appropriately set. The correctness relies heav-
ily on Proposition 4. When the public/secret key pair (pk, sk) is fixed, for a
valid message/signature pair (μ, (z, c,h)), it suffices to show that c = c′. Since
‖ct0‖∞ < q/2k and Az − ct1 · 2d = Ay − ce + ct0, it follows directly from
Proposition 4 that

UseHintq,k(h,Az − ct1 · 2d) = HighBitsq,k(Ay − ce).
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Given that the signing algorithm forces HighBitsq,k(Ay − ce)=HighBitsq,k(Ay)
by rejection sampling, it follows from the following equality that c = c′:

UseHintq,k(h,Az − ct1 · 2d) = HighBitsq,k(Ay − ce) = HighBitsq,k(Ay).

4.3 Recommended Parameters, and Comparison

To improve the time/space efficiency, our SKCN signature scheme could be set
asymmetrically, in the sense that as long as the resulting scheme can resist the
key-recovery attack, η may not equal to η′. Moreover, the parameter U and U ′ are
carefully chosen such that Pr [‖cs‖∞ ≥ U ] and Pr [‖ce‖∞ ≥ U ′] are sufficiently
small, say they are both small than 2−128. By default we have η = η′ (and hence
U = U ′).

The efficiency of the signing algorithm is firmly connected to the expected
number of repetitions, which depends on the probabilities that the two rejec-
tion sampling steps occur. When some assumption is made with respect to the
distribution of w = Ay ∈ Rh

q , the probability that the first restart occurs is
(

2(�q/k�−U)−1
2�q/k�−1

)�·n
·
(

2(�q/2�−kU ′)−1
q

)h·n
. In regard to the second restart, exper-

iments are carried to estimate the expected number of repetitions, and parame-
ters are chosen such that in the experiments, the second restarts are carried out
with probability no more than 1%. In sum, the average number of repetitions is
dominated by the probability that the first restart occurs.

To choose the sets of recommended parameters for SKCN, the following
requirements or goals should be taken into account simultaneously: First, the
parameters should be appropriately chosen so as to ensure the correctness of our
signature scheme; Second, the involved parameters should be well chosen such
that it achieves a good security/efficiency tradeoff when achieving 128-bit quan-
tum security; Moreover, the parameters should be chosen such that the expected
number of repetitions in the signing algorithm should be as small as possible,
so as to ensure the efficiency of the signing algorithm; Finally, the parameters
should be chosen such that the sum of the public key size and the signature size
should be as minimal as possible.

Under such considerations, we choose three sets of recommended parameters
for SKCN depicted in Table 3. It should be stressed that when considering the
practical implementation of SKCN, the signing algorithm is made deterministic
so as to improve its efficiency, as is done in Dilithium [18]. Note also that for
the security issue, the (quantum) security of our recommended parameter set is
estimated by following exactly the methodology proposed in [12,18]. Also note
that SKCN-II is our recommended parameter set, since it aims at achieving
128-bit quantum security level.

The strength of SKCN is best described by the foregoing quantitative mea-
sures (cf. Table 3). Roughly speaking, compared with Dilithium, our parameter
sets are as unified as possible, which simplifies the implementation in practice.
Also, our parameters are carefully chosen to so that the tradeoff between security
and efficiency SKCN-II achieves is as good as possible, since SKCN-II aims at
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the 128-bit quantum security level, which may be the most important and popu-
lar in practice. Finally, compared with Dilithium-III, SKCN-II is more efficient :
while preserving the same (quantum) security level as Dilithium does, SKCN has
shorter public/secret key, has shorter signature, and runs fasters. In particular,
we test both the implementations of SKCN-II and that of Dilithium under the
same software/hardware environment depicted in Table 1. And the quantitative
comparison is summarized in Table 2.

Table 1. The concrete harware/software
details for the implementation comparison.

Hardware/Software Details

Operating system Ubuntu 18.04.3 LTS

system

Computer Lenovo ThinkPad

T480S

CPU Intel(R) Core(TM)

i7-8550U

Memory 16G

Implementation of RO SHA-3

Compiler GCC

Hyperthreading option On

Table 2. Comparison between SKCN-
II and Dilithium-III.

SKCN-II Dilithium-III

q 1952257 8380417

n 256 256

(h, �) (5, 4) (5, 4)

(η, η′) (2, 2) (5, 5)

pk size (in byte) 1312 1472

sk size (in byte) 3056 3504

Sig. size (in byte) 2573 2701

Repetitions 5.7 6.6

KeyGen cycles 177707 198167

Sign cycles 859774 1056305

Verification cycles 191645 201511

Table 3. Recommended parameters for SKCN and Dilithium

SKCN-I SKCN-II SKCN-III Dilithium-II Dilithium-III Dilithium-IV

q 1952257 1952257 1952257 8380417 8380417 8380417

n 256 256 256 256 256 256

k 8 8 8 16 16 16

d 13 13 13 14 14 14

(h, �) (4, 3) (5, 4) (6, 5) (4, 3) (5, 4) (6, 5)

(η, η′) (2, 2) (2, 2) (2, 2) (6, 6) (5, 5) (3, 3)

ω 80 96 120 80 96 120

pk size (in byte) 1056 1312 1568 1184 1472 1760

sk size (in byte) 2448 3056 3664 2800 3504 3856

Sig. size (in byte) 1948 2573 3206 2044 2701 3366

Repetitions 3.9 5.7 8.2 5.9 6.6 4.3

Quantum bit-cost
against key
recovery attack

87 128 169 91 128 158

Quantum bit-cost
against forgery
attack

93 125 158 94 125 160

NIST security level 1 2 3 1 2 3
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5 Security Analysis of SKCN

In this section, we analyze the security of the SKCN signature scheme. Roughly
speaking, the security proof consists of two phases: In Phase I, the behavior
of the signing oracle is proven to be statistically indistinguishable from that of
an efficient simulator; In Phase II, we show that when the underlying hardness
assumption holds, no efficient attacker can forge a valid message/signature pair
with non-negligible probability, after interacting with the simulator (simulated
by the foregoing simulator) polynomially many times.

In the following security proof, we will assume the public key of SKCN is
(ρ, t1, t0) instead of (ρ, t1), similar to that of Dilithium [12,18].

5.1 Security Proof in Phase I: The Simulator

The simulation of the signature follows that of [12]. The associated simulator for
SKCN is depicted in Algorithm 5. It should be stressed that we assume the public
key is t instead of t1 as well. It suffices to show that the output of the signing
oracle is indistinguishable from that of the simulator. The following two facts
play an essential role for the indistinguishability proof. First, in the real signing
algorithm, we have Pr[z, c] = Pr [c]·Pr[y = z−cs | c]. Since ‖z‖∞ < �q/k�−U and
‖cs‖∞ ≤ U (with overwhelming probability), we know that ‖z − cs‖∞ < �q/k�,
then Pr[z, c] is exactly the same for every such tuple (z, c). Second, when z does
satisfy ‖LowBitsq,k(w − ce)‖∞ < q/2 − kU ′, then as long as ‖ce‖∞ < U ′, we
have

r1 = HighBitsq,k(w − ce) = HighBitsq,k(w) = w1

by Proposition 6. Thus the simulator does not need to perform the check whether
r1 = w1 or not, and can always assume that it passes.

With the foregoing facts, it is easy to see that the distribution of the pair
(z, c) generated by the simulator is statistically indistinguishable from that of
the pair (z, c) generated by the signing oracle.

After that, the simulator computes r1 and programs H(ρ, t1, �q · r1/k� , μ) =
c. The resulting (z, c) output by the simulator is indistinguishable from that of
the real signing oracle in the security game, provided that collision occurs with
negligible probability.

It remains to show that for each μ, the probability that H (ρ, t1, �q · r1/k� , μ)
was previously programmed is negligible. This follows directly from the following
lemma, whose proof is similar to that of [17] and is presented in Appendix A.

Lemma 7. For every A ← Rh×�
q , we have

Pr

[

∀w∗
1 : Pr

y←S�
�q/k�−1

[
HighBitsq,k(Ay)=w∗

1

]≤
(

q/k+1
2 · �q/k�−1

)n
]

> 1 − (n/q)h�.

It should be stressed that, inequalities
(

q/k+1
2�q/k�−1

)n

� 2−128, (n/q)h� �
2−128 hold for our set of recommended parameters depicted in Table 3.
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5.2 Security Proof in Phase II

By applying forking lemma [7], we can show SKCN is strongly existentially
unforgeable under adaptive chosen-message attacks in the random oracle model,
provided that the parameters are appropriately chosen and the underlying
MLWE and MSIS (in �∞ norm) assumptions hold. However, this proof is not
tight, and cannot be directly applied into the quantum setting. In contrast, in
this section, we shall develop a quantum reduction of SKCN that is tight in
nature by introducing another new underlying hardness assumption for SKCN,
as is done in [12,18].

As is observed in [12,18], no counter-examples of schemes whose security is
actually affected by the non-tightness of the reduction have been proposed. The
main reason for this absence of counter-examples lies in that there is an interme-
diate problem which is tightly equivalent, to the UF-CMA security of the signa-
ture scheme. What is more, this equivalence still holds even under in quantum
settings. Compared with classical hardness problems, this problem is essentially
a convolution of the underlying mathematical problem with a cryptographic
hash function H(·). As is justified in [18], as long as there is no relationship
between the structure of the math problem and the hash function H(·), solving
this intermediate problem is not easier than solving the mathematical problem
alone. In our setting, this intermediate problem is called the SelfTargetMSIS
problem, which is to be defined later.

5.3 The SelfTargetMSIS Problem, and Quantum Security of SKCN

We follow the definition in [18]. Assume H : {0, 1}∗ → B60 is a cryptographic
hash function. For a given adversary A, it is given a random A ← Rh×�

q

and access to the quantum random oracle H(·), and is asked to output a pair(
y = ([r, c]T , μ)

)
such that 0 ≤ ‖y‖∞ ≤ γ, H(μ, [I,A] · y) = c. In other words,

the adversary A is asked to solve the SelfTargetMSIS problem. In this work, let
AdvSelfTargetMSIS

H,h,�,γ (A) denote the probability that A solves the given SelfTargetM-
SIS problem successfully.

Similar to results in [18], given the similarity between SKCN and Dilithium,
it follows from [17] that when H(·) is modeled as quantum random oracle, the
probability an efficient adversary A breaks the SEU-CMA security of SKCN is

AdvSUF−CMA
SKCN (A) ≤ AdvMLWE

h,�,D (B) + AdvSelfTargetMSIS
H,h,�+1,ζ (C) + AdvMSIS

h,�,ζ′(D) + 2−254,

where D denotes the uniform distribution over Sη, and

ζ = max(�q/k	 − U, �q/k� + 1 + 60 · 2d−1), ζ′ = max(2 · (�q/k	 − U), 2 �q/k� + 2).

Similar to Dilithium, SKCN is built upon three underlying hardness assumptions:
intuitively, the MLWE assumption is needed to protect against key-recovery
attack, the SelfTargetMSIS is the assumption upon which new message forgery
is based, and the MSIS assumption is needed for strong unforgeability instead
of standard unforgeability.
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Note that the simulation proof in Sect. 5.1 holds even in quantum setting;
equivalently, if an adversary having quantum access to H(·) and classical access
to a signing oracle can produce a forgery of a new message, then there is
also an adversary who can produce a forgery after interacting with the sim-
ulator defined in Sect. 5.1. When MLWE assumption holds with the distribu-
tion D, it remains for us to analyze the following experiment: for an efficient
adversary A, it is given a random (A, t), and is asked to output a valid mes-
sage/signature pair (μ, (z, c,h)) such that ‖z‖∞ < �q/k� − U, ‖h‖1 ≤ ω, and
H(μ,

⌊
q · UseHintq,k(h,Az − ct1 · 2d)/k

⌉
) = c.

It follows from the properties presented in Sect. 3 that
⌊
q · UseHintq,k(h,Az − ct1 · 2d)/k

⌉
= Az − ct1 · 2d + u = Az − ct + (ct0 + u),

where u′ def= ct0 +u satisfies ‖u′‖∞ ≤ ‖u‖∞ + ‖c · t0‖∞ ≤ 60 · 2d−1 + �q/k� + 1.
In sum, to forge a valid message/signature pair means to find z, c,u′, μ such that

• ‖z‖∞ < �q/k� − U ; and
• ‖c‖∞ = 1; and
• ‖u′‖∞ < 60 · 2d−1 + �q/k� + 1; and
• c = H(μ,Az + ct + u′).

This is the SelfTargetMSIS problem defined previously.
Note that u′ = u+ct0. Here, 60·2d−1 is an upper-bound for ‖ct0‖∞; computer

experiments show that the probability Pr[‖ct0‖∞ ≥ 2d+4] is smaller than 10−6.
This implies that for one random instance, most of the time no more than one
coefficient of ct0 has magnitude greater than 2d+4. Also, note that at most ω
coefficients of u has magnitude greater than �q/2k�. Thus, in almost all cases,
‖z‖∞ < �q/k� − U , and in u′ = u + ct0, at most ω coefficients of u have
magnitudes greater than �q/2k�.

As is analyzed in [18], the only way to solving the SelfTargetMSIS problem
appears to be picking some w ∈ Rh

q , computing H(μ,w) = c, and then finding
the feasible z,u′ such that Az + u′ = w + ct. And forging a valid forgery in
the UF-CMA security of SKCN is finding some z,u′ such that ‖z‖∞ ≤ �q/k� −
U, ‖u′‖∞ ≤ 60 · 2d−1 + �q/k� + 1, and Az + u′ = t′ for some pre-defined t′.

Finally comes the strong unforgeability of SKCN. In quantum setting, the
analysis is similar to that of [12,18]. In addition to the foregoing possible forgery,
an extra one needs considering for the strong unforgeability, i.e., when the adver-
sary sees a valid message/signature pair (μ, (z, c,h)) and then aims to forge
another valid pair (μ, (z′, c,h′)). In this special case, a successful forgery means
the adversary obtains two valid signatures such that

UseHintq,k(h,Az − ct1 · 2d) = w1 = UseHintq,k(h′,Az′ − ct1 · 2d).

It is routine to see z 	= z′. Thus, it follows from Proposition 5 that
∥
∥Az − ct1 · 2d − �q/k · w1�

∥
∥

∞ ,
∥
∥Az′ − ct1 · 2d − �q/k · w1�

∥
∥

∞ ≤ �q/k� + 1.

It follows from the triangular inequality that we have A · Δz + u = 0, where
Δz = z − z′ satisfies ‖Δz‖∞ ≤ 2(�q/k� − U), and ‖u‖∞ ≤ 2 �q/k� + 2. Careful
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analysis shows that in u, there are at most 2ω coefficients with magnitudes
greater than �q/k� + 1, and the magnitudes of the other coefficients is smaller
than �q/k� + 1. The hardness of this reduced problem is thus guaranteed by the
hardness of the Module-SIS problem (in the �∞-norm).

6 The Asymmetric SIS Problem and Its Implications

Recall that in the security proof of SKCN, to forge a signature means to solve a
(variant of) SIS problem. For instance, to forge a valid forgery in the UF-CMA
security of SKCN is to find some z,u′ such that in most cases,

• ‖z‖∞ < �q/k� − U ; and
• In u′ = u + ct0, at most ω coefficients of u have magnitudes greater than

�q/2k�. In particular, when instantiated with recommended parameters in
Table 3, experiments show that coefficients of ct0 are usually smaller than
the theoretical maximum bound 60 · 2d−1, in the sense that the probability
that a random coefficient of ct0 has magnitude greater than 2d+4 is smaller
than the constant p; thus, the expected number of coefficients in ct0 with
magnitude greater than 2d+4 is less than 1.
As a result, most of the time coefficients of u′ can be divided into the following
three categories:

• at most one coefficient of u′ has magnitude between 2d+4 + �q/k�+1 and
60 · 2d−1 + �q/k� + 1;

• at most ω coefficients of u′ have magnitudes between 2d+4 + �q/2k� and
2d+4 + �q/k� + 1;

• the other coefficients of u′ have magnitudes smaller than 2d+4 + �q/2k�.
Similarly, in the SEU-CMA security model, to forge a valid forgery is to find
some z,u such that

• ‖z‖∞ ≤ 2(�q/k� − U); and
• At most 2ω coefficients of u have magnitudes greater than �q/k�+1, and the

magnitudes of the other coefficients are between �q/k� + 1 and 2 �q/k� + 2.

In Dilithium, a simple upper-bound is chosen so as to estimate the concrete
hardness of the given instance. This strategy is rather conservative intuitively.

In fact, these problem could be seen as a variant of the asymmetric SIS
problem (in �∞-norm) proposed in [29], where different upper-bound constraints
are placed on different coordinates of the desired nonzero solution. To be precise,
in ASIS problem (in �∞-norm) parameterized by n, q,m1,m2, β1, β2, given a
random matrix A ← Z

n×(m1+m2)
q , we are asked to find a nonzero vector x =

(x1,x2) ∈ Z
m1+m2 such that

A · x ≡ 0 (mod q), ‖x1‖∞ ≤ β1, ‖x2‖∞ ≤ β2.

Together with the notion of the ASIS as well as its algebraic variants, a concrete
hardness estimation strategy was also proposed in [29], which fully utilizes the
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Table 4. Other parameter choices for SKCN

q 592897 592897 592897

n 256 256 256

k 5 5 5

d 12 12 12

(h, �) (4, 3) (5, 4) (6, 5)

(η, η′) (1, 1) (1, 1) (1, 1)

ω 80 96 120

pk size (in byte) 1056 1312 1568

sk size (in byte) 2096 2608 3120

Sig. size (in byte) 1852 2445 3046

Expected # of repetitions 4.2 6.2 9.1

Quantum bit-cost against key
recovery attack

87 128 169

Quantum bit-cost against
forgery attack

98 133 169

NIST security level 1 2 3

Table 5. Recommended parameter sets of SKCN’

SKCN-I’ SKCN-II’ SKCN-III’

q 523777 523777 523777

n 256 256 256

k 4 4 4

d 12 12 12

(h, �) (4, 3) (5, 4) (6, 5)

(η, η′) (1, 1) (1, 1) (1, 1)

ω 80 96 120

pk size (in byte) 928 1152 1376

sk size (in byte) 2096 2608 3120

Sig. size (in byte) 1852 2445 3046

Expected # of repetitions 3.7 5.2 7.4

Quantum bit-cost against key recovery attack 89 129 171

Quantum bit-cost against forgery attack 98 133 165

NIST security level 1 2 3

inherent asymmetry of the parameters. Clearly, this hardness estimation strategy
could be applied to Dilithium and SKCN, and the result is intuitively more
accurate than that of Dilithium [12,18].

With the notion of ASIS and the proposed hardness estimation in [29] we
can choose other sets of parameters for SKCN, e.g., those in Table 4. It should
be stressed that in Table 4, we have k � (q − 1), and hence these three sets
of parameters cannot be applied to Dilithium, which implies the flexibility of
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SKCN. Similarly, we can choose another three sets of parameters for SKCN as in
Table 4, denoted by SKCN-I’, SKCN-II’ and SKCN-III’, respectively. Compared
with Table 3, a better tradeoff between efficiency and security is obtained in
Table 4, which implies the efficiency of SKCN (Table 5).
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A Proof of Lemma 7

Lemma 7. For every A ← Rh×�
q , we have

Pr

[

∀w∗
1 : Pr

y←S�
�q/k�−1

[
HighBitsq,k(Ay)=w∗

1

]≤
(

q/k+1
2 · �q/k�−1

)n
]

> 1−(n/q)h�.

Proof. Since the polynomial xn + 1 splits into n linear factors modulo q, the
probability that for a uniform a ← Rq, the probability that a is invertible in
Rq = Zq[x]/〈xn + 1〉 is (1 − 1/q)n > 1 − n/q. Thus the probability that at least
one of h� polynomials in A ← Rh×�

q is invertible is greater than 1 − (n/q)h�.
We shall now prove that for all A that contain at least one invertible poly-

nomial, we will have that for all w∗
1,

Pr
y←S�

�q/k�−1

[
HighBitsq,k(Ay) = w

∗
1

] ≤
(

q/k + 1
2 · �q/k� − 1

)n

,

which establishes the correctness of this lemma.
First, let us only consider the row of A which contains the invertible poly-

nomial. Call the elements in this row [a1, · · · , a�] and without loss of generality
assume that a1 is invertible. We want to prove that for all w∗

1 ,

Pr
y←S�

�q/k�−1

[
HighBitsq,k(

∑
aiyi) = w∗

1

]
≤

(
q/k + 1

2 · �q/k� − 1

)n

.

Define T to be the set containing all the elements w such that HighBitsq,k(w) =
w∗

1 . By the definition of Con in Algorithm 1, the size of T is upper-bounded by
(q/k + 1)n. Therefore, we can rewrite the above probability as

Pr
y←S�

�q/k�−1

[
�∑

i=1

aiyi ∈T

]

= Pr
y←S�

�q/k�−1

[

y1∈a−1
1 (T −

�∑

i=2

aiyi)

]

≤
(

q/k+1

2 · �q/k	−1

)n

,

where the last inequality follows due to the fact that the size of the set a−1
1 (T −

∑�
i=2 aiyi) is the same as that of T , and the size of the set S�

�q/k�−1 is exactly
(2 · �q/k� − 1)n. ��
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B Properties of Basic Algorithms/Tools

Below, we present properties of the algorithms/tools proposed at the end of
Sect. 3. And these properties plays an essential role for us to analyze the cor-
rectness and security of our signature schemes developed in Sect. 4.

Proposition 4. For every r, z ∈ Zq such that ‖z‖∞ < �q/(2k)�, we have

UseHintq,k(MakeHintq,k(z, r), r) = HighBitsq,k(r + z).

Proof. The outputs of (r1, r0) ← Con(r), (r′
1, r

′
0) ← Con(r + z) satisfy 0 ≤

r1, r
′
1 < k, and ‖r0‖∞ , ‖r′

0‖∞ ≤ q/2. Since ‖z‖∞ < �q/(2k)�, by Theorem 2, we

have Rec (r, r′
0) = r′

1 = HighBitsq,k(r + z). Let h
def= MakeHintq,k(z, r). Since r′

1 =
Rec (r, r′

0) = �(kr−r′
0)/q� mod k = �r1+(r0−r′

0)/q� mod k ∈ {r1−1, r1, r1+1}.
When r0 > 0, we have Rec (r, r′

0) ∈ {r1, r1 + 1}; when r0 < 0, we have
Rec (r, r′

0) ∈ {r1 − 1, r1}. Recall that by definition, h = 0 if and only if r1 = r′
1.

The correctness of HighBitsq,k(r+z) = r′
1 = Rec (r, r′

0) = UseHintq,k(h, r) is thus
established. ��

Proposition 5. For r′
1 ∈ Zk, r ∈ Zq, h ∈ {0, 1}, if r′

1 = UseHintq,k(h, r), then
‖r − �q · r′

1/k�‖∞ ≤ q/k + 1/2 ≤ �q/k� + 1.

Proof. It is routine to see that for (r1, r0) ← Con(r), we have r1 ∈ Zk, r0 ∈
(−q/2, q/2), and there exists θ ∈ {0, 1} such that k ·r = (r1+kθ) ·q+r0. If h = 0,
then r′

1 = r1, and hence ‖r − �q · r′
1/k�‖∞ ≤ q/(2k) + 1/2. If h = 1 and r0 > 0,

then r′
1 = (r1 + 1) mod k, and hence ‖r − �q · r′

1/k�‖∞ ≤ q/k + 1/2. Finally, if
h = 1 and r0 < 0, then r′

1 = (r1 − 1) mod k, and therefore ‖r − �q · r′
1/k�‖∞ ≤

q/k + 1/2 ≤ �q/k� + 1. ��

Proposition 6. For r, z ∈ Zq such that ‖z‖∞ < U < �q/(2k)�. If ‖r′
0‖∞ <

q/2 − kU where (r1, r0) ← Con(r), (r′
1, r

′
0) ← Con(r + z), then r1 = r′

1.

Proof. Since k·r = q·(r1+kθ)+r0 (‖r0‖∞ < q/2) and k·(r+z) = q·(r′
1+kθ′)+r′

0

(‖r′
0‖∞ < q/2) for some integers θ, θ′, it is easy to verify r1 = �kr/q� mod k =

�k(r + z − z)/q� mod k = �r′
1 + (r′

0 − kz)/q� mod k = r′
1. ��
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Abstract. In cloud-based outsourced storage systems, many users wish
to securely store their files for later retrieval, and additionally to share
them with other users. These retrieving users may not be online at the
point of the file upload, and in fact they may never come online at all.
In this asynchronous environment, key transport appears to be at odds
with any demands for forward secrecy. Recently, Boyd et al. (ISC 2018)
presented a protocol that allows an initiator to use a modified key encap-
sulation primitive, denoted a blinded KEM (BKEM), to transport a file
encryption key to potentially many recipients via the (untrusted) storage
server, in a way that gives some guarantees of forward secrecy. Until now
all known constructions of BKEMs are built using RSA and DDH, and
thus are only secure in the classical setting.

We further the understanding of the use of blinding in post-quantum
cryptography in two aspects. First, we show how to generically build
blinded KEMs from homomorphic encryption schemes with certain prop-
erties. Second, we construct the first post-quantum secure blinded KEMs,
and the security of our constructions are based on hard lattice problems.

Keywords: Lattice-based cryptography · NTRU · Group key
exchange · Forward secrecy · Cloud storage · Post-quantum
cryptography

1 Introduction

Consider the following scenario: a user of a cloud storage service wishes to encypt
and share a file with a number of recipients, who may come online to retrieve the
file at some future time. In modern cloud storage environments, access control
for files is normally done via the storage provider’s interface, and the user is
usually tasked with performing any encryption and managing the resulting keys.
However the users do not trust the server, and in particular may be concerned
that key compromise may occur to any of the involved parties at some point in
the future – they thus desire some forward secrecy guarantees.

Recent work by Boyd et al. [8] (hereafter BDGJ) provided a solution that
utilized the high availability of the storage provider. The initiator essentially
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 82–101, 2020.
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Fig. 1. A simplified overview of an OAGKE protocol [8] between an initiator I, server
S and potentially many recipients R (one is given here for ease of exposition), built
using a BKEM. File encryption key k is used by I to encrypt one or more files. The
numbered arrows indicate the order in which operations occur.

performs key encapsulation, using an (public) encapsulation key belonging to
the server, and sends an encapsulated value (out-of-band) to each recipient.
Then, each recipient blinds this value in such a way that when it asks the server
to decapsulate, the server does not learn anything about the underlying file
encryption key, and the homomorphic properties of the scheme enable success-
ful unblinding by the recipient. This encapsulation-and-blinding procedure was
named by the authors as a blinded KEM (BKEM), and the complete protocol
built from this was called offline assisted group key exchange (OAGKE). Forward
secrecy is achieved if the recipients delete their ephemeral values after recovering
the file encryption key, and if the server deletes its decapsulation key after all
recipients have been online and recovered the file.

A conceptual overview of the construction, which can achieve all these secu-
rity properties, is described in Fig. 1, and we refer to BDGJ [8] for full details.
In the protocol, the server runs the key generation algorithm KG and the decap-
sulation algorithm Decap to help the initiator share file encryption key k. The
blinding algorithm Blind, executed by the responder, should prohibit the server
from learning any information about the file encryption key. After the server
has decapsulated a blinded encapsulation, the responder can use the unblinding
algorithm Unblind to retrieve the file encryption key.

While the approach appears promising, their two BKEM constructions built
from DDH and RSA, are somewhat ad hoc, and further do not resist attacks
in the presence of quantum computers. In this work we focus on one of the
components of the OAGKE protocol, namely the BKEM scheme. Our wish is to
achieve a post-quantum secure OAGKE protocol, where we need the individual
components – a blinded KEM (parameterized by a homomorphic encryption
scheme), a collision resistant hash function, a digital signature scheme, and a
key derivation function – to all be post-quantum secure. Achieving post-quantum
security of all components except for the BKEM has been covered extensively in
prior work, and thus we focus on finding post-quantum constructions of BKEMs.
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Much work has been done on constructing regular key encapsulation mecha-
nisms (KEMs) [15,16,24] that are post-quantum secure [6,12,23,27] (the ongoing
NIST standardization effort1 specifically asks for KEMs), however BKEMs do
not generalize KEMs, since decapsulation operates on blinded ciphertexts.

Providing post-quantum-secure BKEMs invokes a number of technical chal-
lenges. The Blind algorithm must modify the file encryption key by incorporating
some randomness r, in such a way that after decapsulation (by the server) the
recipient can strip off r to recover the file encryption key. In the DDH setting this
is straightforward since the recipient can simply exponentiate the encapsulation,
and apply the inverse on the received value from the server (the RSA setting is
similarly straightforward), and, importantly, the encapsulation (with the under-
lying file encryption key) and multiple blinded samples (each with a value that is
derived from the file encryption key) will all look like random group elements. In
the security game for BKEMs (as provided by BDGJ), the adversary receives: an
encapsulation of a ‘real’ key, a number of blinded versions of this encapsulation
(blinded encapsulations), a number of blinded versions of the ‘real’ key (blinded
keys), and either this ‘real’ key or a random key, and must decide which it has
been given. If the blinded key samples (the k̃s) leak information about the file
encryption key then the adversary’s task in this game becomes much easier. For
example, if the blinding algorithm alters the file encryption key such that the
blinded keys are located close to it then exhaustive search becomes possible. We
overcome this hurdle by using a large blinding value to hide the file encryption
key. Similarly the blinded encapsulation samples (the C̃s) can leak information
about the blinding value used to hide the file encryption key, which can be used
to recover the file encryption key. For example, if the blinded encapsulation is
a linear combination of the original encapsulation, the blinding value, and some
small error then the distance between the blinded encapsulation and the original
encapsulation could reveal the blinding value, or a small interval containing it,
and therefore the file encryption key. By making sure blinded encapsulations look
fresh then all blinded encapsulation samples and the encapsulation looks inde-
pendent of each other. We use these techniques to provide secure BKEMs built
from (a variant of) NTRU [22,30] and ideas from Gentry’s FHE scheme [20].

The second shortfall of the work of BDGJ lies in the non-generic nature of
their constructions. The two provided schemes appear to have similar proper-
ties, yet do not immediately indicate how any further BKEM schemes could
be constructed. We show how to generically build BKEMs from homomorphic
encryption schemes with minimal properties. This allows us to more precisely
cast the desirable properties of schemes used to build BKEMs, generalizing the
way that the responder alters the content of an encapsulation (ciphertext) by
adding an encrypted random value.

1 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
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1.1 Related Work

Boyd et al. [8] formalized OAGKE and BKEMs, and provided BKEM construc-
tions based on Diffie-Hellman and RSA. To our knowledge these are the only
BKEM constructions in the literature.

Gentry introduced the first fully homomorphic encryption (FHE) scheme,
based on lattice problems, and gave a generic framework [20]. Soon after, several
FHE schemes followed this framework [9,14,19,21]: all of these schemes rely on
the learning with errors (LWE) problem. Two FHE schemes based their security
on an overstretched variant of the NTRU problem [7,25], however, subfield lattice
attacks against this variant was subsequently found [1,13], and consequently
these schemes are no longer secure. As a side note, our NTRU based BKEM
construction relies on the hardness of the LWE problem.

To make a BKEM from existing post-quantum secure KEM schemes we
need, for each individual scheme, a method for altering the encapsulations in
a predictable way. Most of the post-quantum secure KEM schemes submitted to
NIST are built from a PKE scheme, where we can use our techniques to make a
BKEM if the PKE scheme supports one homomorphic operation. FrodoKEM is
the only submission that advertises its additive homomorphic properties of its
FrodoPKE scheme [2]. Other submissions based on lattices [26], LWE [3,4,17],
or NTRU [5,11] are potential candidates for a BKEM construction. Note that
the NTRU submission of Chen et al. [11] does not use the Gaussian distribution
to sample their polynomials, and NTRU Prime of Bernstein et al. [5] uses a
large Galois group to construct their polynomial field, instead of a cyclotomic
polynomial. Furthermore, the NTRU construction of Stehlé and Steinfeld [30]
chooses the distribution of the secret keys such that the public key looks uni-
formly random and they provide a security proof which relies on this.

1.2 Our Contribution

Our aim in this work is to further the understanding of the use of blinding in
cryptography attaining post-quantum security. In particular, we focus on blinded
KEMs and their possible instantiations, in order to deliver secure key transport
protocols in cloud storage environments. Specifically, we provide:

– a generic homomorphic-based BKEM construction, and show that it meets
the expected indistinguishability-based security property for BKEMs, under
feasible requirements.

– two instantiations of our homomorphic-based BKEM, built from primitives
with post-quantum security. The proof chain is as follows.

Hard problems
Quantum, Gentry [20]−−−−−−−−−−−−−−−−−→

or Lyubashevsky et al. [28]
IND-CPA HE

This work−−−−−−→ IND-secure
HE-BKEM

As long as the underlying schemes HE (which rely on hard lattice problems) are
post-quantum secure, then our HE-BKEM schemes are post-quantum secure.
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2 Notation and Background

Given n linearly independent vectors {b1, . . . ,bn} ∈ R
m, the m-dimensional

lattice L generated by the vectors is L = {∑n
i=1 xibi | xi ∈ Z}. If n = m then L

is a full-rank n-dimensional lattice, we always use full-rank lattices in this paper.
Suppose B = {b1,b2, · · · ,bn} is a basis of I, let P(B) = {∑n

i=1 xibi | xi ∈
[−1/2, 1/2) ,bi ∈ B} be the half-open parallelepiped associated to the basis B.
Let R = Z[x]/(f(x)) be a polynomial ring, where f(x) is a monic polynomial
of degree n. Any ideal I ⊆ R yields a corresponding integer sublattice called
ideal lattice of the polynomial ring. For convenience, we identify all ideals of R
with its ideal lattice. Let ‖v‖ be the Euclidean norm of a vector v. Define the
norm of a basis B to be the Euclidean norm of its longest column vector, that
is, ‖B‖ = max1≤i≤n(‖bi‖).

For a full-rank n-dimensional lattice L, let L∗ = {x ∈ R
n | 〈x,y〉 ∈ Z,∀y ∈

L} denote its dual lattice. If B is a basis for the full-rank lattice L, then (B−1)T

is a basis of L∗. Let γ×(R) = maxx,y∈R
‖x·y‖

‖x‖·‖y‖ be the multiplicative expansion
factor. For r ∈ R, define r mod B to be the unique vector r′ ∈ P(B) such
that r − r′ ∈ I. We call r mod B to be the distinguished representative of
the coset r + I. Denote R mod B = {r mod B | r ∈ R} to be the set of all
distinguished representatives in R, this set can be chosen to be the same as
the half-open parallelepiped P(B) associated to the basis B. For convenience we
treat R mod B and P(B) as the same set. Let Bc(r) denote the closed Euclidean
ball centered at c with radius r, for c = 0 we write B(r). For any n-dimensional
lattice L and i = 1, . . . , n, let the ith successive minimum λi(L) be the smallest
radius r such that B(r) contains i linearly independent lattice vectors.

The statistical distance between two discrete distributions D1 and D2 over a
set S is Δ(D1,D2) = 1

2

∑
s∈S |Pr[D1 = s] − Pr[D2 = s]|.

2.1 Discrete Gaussian Distributions over Lattices

Let DL,s,c denote the discrete Gaussian distribution over L centered at c with
standard deviation s. The smoothing parameter ηε(L) is the smallest s such that
ρ1/s(L∗ \ {0}) ≤ ε, where ρ1/s(L∗ \ {0}) =

∑
x∈L∗\{0} exp(−πs2 ‖x − c‖2).

If the standard deviation of a discrete Gaussian distribution is larger than the
smoothing parameter, then there are known, useful, results of discrete Gaussian
distributions that we will use in this paper. Lemma 1 shows that the discrete
Gaussian distribution is spherical if its standard deviation is larger than the
smoothing parameter. Lemma 2 states that the statistical distance between the
original discrete Gaussian distribution and its translated discrete Gaussian dis-
tribution is negligible when the distance of the corresponding centers is short.

Lemma 1 (Micciancio and Regev [29]). Let L be any full-rank n-
dimensional lattice. For any c ∈ R

n, real ε ∈ (0, 1), and s ≥ ηε(L), we have
Pr[‖x − c‖ > s · √

n | x ← DL,s,c] ≤ 1+ε
1−ε · 2−n.
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Lemma 2 (Brakerski and Vaikuntanathan [10]). Let L be any full-rank
n-dimensional lattice. For any s ≥ ηε(L), and any c ∈ R

n, we have then the
statistical distance between DL,s,0 and DL,s,c is at most ‖c‖/s.

2.2 Gentry’s Homomorphic Encryption Scheme

Let GHE = (KGGHE,EncGHE,DecGHE,AddGHE) be an (additively) Homomorphic
encryption scheme derived from ideal lattices, with algorithms as defined in
Fig. 2. The scheme is similar to Gentry’s somewhat-homomorphic scheme [20].
The parameters of the GHE scheme are chosen as follows:

– Polynomial ring R = Z[x]/(f(x)),
– Basis BI of the ideal I ⊆ R,
– IdealGen takes (R,BI) as input and outputs public and secret bases Bpk

J and
Bsk

J of some ideal J , where I and J are relatively prime,
– Samp takes (BI ,x ∈ R, s) as input and outputs a sample from the coset x+I

according to a discrete Gaussian distribution with standard deviation s. In
our construction we use the following two distributions.

• Samp1(BI ,x, s) = x + DI,s,−x,
• Samp2(BI ,x, s) = x + DI,s,0.

– Plaintext space P = R mod BI is the set of distinguished representatives of
cosets of I with respect to the basis BI .

We discuss the correctness of GHE in the full version [18]: the result follows
from the correctness analysis in [20].

2.3 The Revised NTRU Encryption Scheme

The NTRU encryption scheme variant by Stehlé and Steinfeld [30], which relies on
the LWE problem, has the similar structure as Gentry’s homomorphic encryption
scheme. We modify the NTRU scheme to use a discrete Gaussian distribution
as the noise distribution instead of an elliptic Gaussian. The parameters of the
scheme, given in Fig. 3, are as follows:

– R = Z[x]/(xn + 1), where n ≥ 8 is a power of 2,
– q is a prime, 5 ≤ q ≤ Poly(n), Rq = R/q,
– p ∈ R×

q , I = (p), the plaintext space P = R/p,
– set the noise distribution to be DZn,s,0.

We discuss the correctness of the revised NTRU encryption scheme in the full
version [18]: the result follows from the correctness analysis in [30].

2.4 Quantum Reductions from Prior Work

The following two theorems describe Gentry’s reduction from worst-case SIVP
(believed to be a hard problem) to the semantic security of the encryption scheme
GHE, via the ideal independent vector improvement problem (IVIP).
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Fig. 2. The algorithms of the GHE homomorphic encryption scheme, which is similar
to Gentry’s somewhat homomorphic encryption scheme [20].

Theorem 1 (Gentry [20, Corollary 14.7.1], reduce IVIP to semantic
security). Suppose that sIVIP < (

√
2sε − 4n2(max{‖BI‖})2)/(n4γ×(R) ‖f‖

max{‖BI‖}), where s is the Gaussian deviation parameter in the encryption
scheme GHE. Also suppose that s/2 exceeds the smoothing parameter of I, that
IdealGen always outputs an ideal J with s ·√n < λ1(J), and that [R : I] is prime.
Finally, suppose that there is an algorithm A that breaks the semantic security of
GHE with advantage ε. Then there is a quantum algorithm that solves sIVIP-IVIP
for an ε/4 (up to negligible factors) weight fraction of bases output by IdealGen.

Theorem 2 (Gentry [20, Theorem 19.2.3 and Corollary 19.2.5], reduce
SIVP to IVIP). Suppose dSIVP = (3 · e)1/n · dIVIP, where e is Euler’s constant.
Suppose that there is an algorithm A that solves sIVIP-IVIP for parameter sIVIP >
16 · γ×(R)2 · n5 · ‖f‖ · g(n) for some g(n) that is ω(

√
log n), whenever the given

ideal has det(J) ∈ [a, b], where [a, b] = [dn
IVIP, 2 · dn

IVIP]. Assume that invertible
prime ideals with norms in [a, b] are not negligibly sparse. Then, there is an
algorithm B that solves worst-case dSIVP-SIVP.

The following theorem and lemma describe the reduction from SIVP or SVP
(both are believed to be hard problems) to the IND-CPA security of the encryp-
tion scheme NTRU, via the ring learning with errors problem (R-LWE).

Fig. 3. The algorithms of the revised NTRU encryption scheme [30].



Cloud-Assisted Asynchronous Key Transport with Post-Quantum Security 89

Theorem 3 (Lyubashevsky et al. [28]). Let α <
√

log n/n and q = 1
mod 2n be a poly(n)-bounded prime such that αq ≥ ω(

√
log n). Then there

is a polynomial-time quantum reduction from O(
√

n/α)-approximate SIVP (or
SVP ) on ideal lattices to R-LWEq,Ds

given only l(≥ 1) samples, where s =
α · (nl/ log(nl))1/4.

We consider a different variant of the R-LWE problem, namely R-LWE×
HNF, which

is the same as R-LWEq,D except for the oracle O that outputs samples from the
distribution A×

s,D or U(R2
q), where A×

s,D outputs (a, as + e) with a ∈ R×
q , s ∈ D.

The analysis in the end of Sect. 2 of Stehlé and Steinfeld [30] shows that when
q = Ω(n), R-LWE×

HNF remains hard.
The security proof of NTRU encryption scheme is similar to the security proof

of Lemma 3.8 of Stehlé and Steinfeld [30]. The proof relies on the uniformity of
public key and p ∈ R×

q . We chose a slightly different error distribution for our
construction in Sect. 5.4, but adaption to our setting is straightforward.

Lemma 3. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n
irreducible factors modulo prime q ≥ 5. Let 0 < ε < 1/3, p ∈ R×

q and s ≥
2n

√
ln(8nq) · q1/2+ε. For any IND-CPA adversary A against NTRU encryption

scheme, there exists an adversary B solving R-LWE×
HNF such that

AdvIND-CPA
NTRU (A) ≤ AdvR-LWE×

HNF
(B) + q−Ω(n).

3 Blinded KEM

A blinded KEM scheme BKEM = (KG,Encap,Blind,Decap, Unblind) is parame-
terized by a key encapsulation mechanism KEM = (KG, Encap,Decap), a blind-
ing algorithm Blind and an unblinding algorithm Unblind. The key generation
algorithm KG outputs an encapsulation key ek ∈ KE and a decapsulation key
dk ∈ KD. The encapsulation algorithm Encap takes as input an encapsulation
key and outputs a (file encryption) key k ∈ KF together with an encapsulation
C ∈ C of that key. The blinding algorithm takes as input an encapsulation key
and an encapsulation and outputs a blinded encapsulation C̃ ∈ C and an unblind-
ing key uk ∈ KU . The decapsulation algorithm Decap takes a decapsulation key
and a (blinded) encapsulation as input and outputs a (blinded) key k̃ ∈ KB .
The unblinding algorithm takes as input an unblinding key and a blinded key
and outputs a key.

Definition 1 (Correctness of a BKEM). We say that a blinded KEM
scheme BKEM has (1 − ε)-correctness if:

Pr[Unblinduk (k̃) = k] ≥ 1 − ε,

for (ek , dk) ← KG, (C, k) ← Encapek , (C̃, uk) ← Blindek (C) and k̃ ←
Decapdk (C̃).
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(A KEM scheme KEM has (1 − ε)-correctness if Pr[Decapdk (C) = k] ≥ 1 − ε,
where (ek , dk) ← KG and (C, k) ← Encapek .)

We parameterize all BKEM schemes by a public key encryption scheme
(PKE), since any PKE scheme can trivially be turned into a KEM. We modify
the above definition to be a PKE-based BKEM, where the KEM algorithms are
described in Fig. 4.

Definition 2 (PKE-based BKEM). We call BKEM a PKE-based BKEM
if the underlying scheme KEM = (KG,Encap,Decap) is parameterized by a PKE
scheme PKE = (KGPKE,Enc,Dec) as described in Fig. 4.

Fig. 4. KEM algorithms parameterized by a PKE scheme PKE = (KGPKE,Enc,Dec).

3.1 Security

We define indistinguishability under chosen-plaintext attack (IND-CPA) for pub-
lic key encryption and indistinguishability (IND) for blinded KEMs, respectively.

Definition 3. Let PKE = (KGPKE,Enc,Dec) be a public key encryption scheme.
The IND-CPA advantage of any adversary A against PKE is

AdvIND-CPA
PKE (A) = 2

∣
∣
∣Pr[ExpIND-CPA

PKE (A) = 1] − 1/2
∣
∣
∣ ,

where the experiment ExpIND-CPA
PKE (A) is given in Fig. 5 (left).

Definition 4. Let BKEM = (KG,Encap,Blind,Decap,Unblind) be a blinded
KEM. The distinguishing advantage of any adversary A against BKEM getting
r blinded encapsulations and their blinded decapsulation tuples is

AdvIND
BKEM(A, r) = 2

∣
∣
∣Pr[ExpIND

BKEM(A, r) = 1] − 1/2
∣
∣
∣ ,

where the experiment ExpIND
BKEM(A, r) is given in Fig. 5 (right).

The value r represents the number of recipients in the OAGKE protocol of BDGJ
– in practice this will often be fairly small, and certainly bounded by the number
of users of the system.
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Fig. 5. IND-CPA experiment ExpIND-CPA
PKE (A) for a PKE scheme PKE (left). Indistin-

guishability experiment ExpIND
BKEM(A, r) for a BKEM scheme BKEM (right).

4 Homomorphic-Based BKEM

We now show how to turn a homomorphic encryption scheme with certain prop-
erties into a BKEM, and analyze the security requirements of such a BKEM. We
eventually prove that the homomorphic-based BKEM is post-quantum secure as
long as the underlying homomorphic encryption scheme is post-quantum secure.

4.1 Generic Homomorphic-Based BKEM

We look for PKE schemes with the following homomorphic property: suppose C
and C ′ are two ciphertexts, then Decsk(C ⊕1 C ′) = Decsk(C)⊕2Decsk(C ′), where
⊕1 and ⊕2 denote two group operations.

We construct blinding and unblinding algorithms using this homomorphic
property. Suppose the underlying PKE scheme has 1−ε-correctness. To blind an
encapsulation C (with corresponding file encryption key k) the Blind algorithm
creates a fresh encapsulation C ′ (with corresponding blinding value k′) using the
Encapek algorithm, the blinded encapsulation C̃ is computed as C̃ ← C ⊕1 C ′.
The unblinding key uk is the inverse element of k′ with respect to ⊕2, that
is, uk ← k′−1. The blinding algorithms outputs C̃ and uk . The decapsulation
algorithm can evaluate the blinded encapsulation because of the homomorphic
property. The blinded key k̃ is the output of this decapsulation algorithm, that
is, k̃ ← Decapdk (C̃). Hence, k̃ = k ⊕2 k′ with probability 1 − 2ε + ε2. To unblind
k̃ the unblinding algorithm outputs k̃ ⊕2 uk , which is k except for probability
2ε − ε2, and so the BKEM scheme has (1 − 2ε + ε2)-correctness. Formally, we
define the BKEM scheme constructed above as follows.

Definition 5 (Homomorphic-based BKEM). Let BKEM be a PKE-based
BKEM, as in Definition 2. Suppose the underlying public key encryption scheme
is a homomorphic encryption scheme HE = (KGHE,Enc,Dec) such that for any

ciphertexts C,C ′ ∈ C and any key pair (sk, pk) $←− KGHE it holds that

Decsk(C ⊕1 C ′) = Decsk(C) ⊕2 Decsk(C ′),
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where (M,⊕2) is the plaintext group and (C,⊕1) is the ciphertext group. Fur-
thermore, let the blinding and unblinding algorithms operate as discussed above.
We call such a scheme BKEM a homomorphic-based BKEM.

We stress that all BKEM schemes we consider in the rest of this paper are
homomorphic-based BKEMs.

The homomorphic encryption scheme HE does not need to be fully homomor-
phic, since we only need one operation in the blinding algorithm: a somewhat
group homomorphic encryption scheme is sufficient.

4.2 Security Requirements

In the indistinguishability game IND for BKEMs the adversary A has r blinded
samples. If the decryptions of blinded encapsulations output the correct blinded
keys, then these r blinded samples are the following two sets: {C̃i = C ⊕1

C ′
i}1,...,r and {k̃i = k ⊕2 k′

i}i=1...r, where the encapsulation is C and the real file
encryption key is k. We want the blinded samples and the encapsulation to be
random looking such that the combination of all these values does not reveal any
information about the underlying file encryption key k that is being transported.

First, we show how to choose the blinding values k′
i to make the blinded

keys k̃i look random. Then, we show how to make the blinded encapsulations
C̃i look random, which is achievable when C̃i looks like a fresh output of the
encapsulation algorithm: this idea is similar to circuit privacy [20]. Finally, we
show how an IND-CPA-secure HE scheme ensures that the encapsulation does
not reveal any information about the file encryption key. With these steps in
place, we provide the main theorem in this paper stating how to achieve an
IND secure BKEM scheme. In particular, if the underlying HE scheme is post-
quantum IND-CPA secure then the corresponding homomorphic-based BKEM
scheme is post-quantum IND secure.

Random-Looking Blinded Keys. We want the blinded key to look like a random
element of the space containing blinded keys. In the IND game the adversary is
given several blinded keys of the form k̃ = k ⊕2 k′, where k is the file encryption
key and k′ is a blinding value, and wishes to gain information about k.

Let k be sampled uniformly at random from the file encryption key set,
denoted KF , and let k′ be sampled uniformly at random from the blinding value
set, denoted KR. We would like that the size of KF is large enough to prevent a
brute force attacker from guessing k, say |KF | = 2λ for some security parameter
λ. If KR is a small set then the value of any blinded key k̃ = k ⊕2 k′ will be
located within a short distance around k, so the adversary can successfully guess
k with high probability. We always assume that KR is at least as large as KF .

If a given blinded key k̃ can be expressed as a result of any file encryption key
k and a blinding value k′, with respect to an operation, then our goal is to ensure
that the adversary cannot get any information of the true file encryption key
hidden in k̃: ideally we wish it to be indistinguishable from a random element.
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Definition 6 (ε-blinded blinded key). Let BKEM be a blinded KEM with
blinded key set KB. Let k be sampled uniformly random from the file encryption
key set KF and let k′ be sampled uniformly random from the blinding value set
KR. We define a ε-blinded blinded key set S := {k̃ ∈ KB | ∀k ∈ KF ,∃1k′ ∈
KR such that k̃ = k ⊕2 k′}: we say that BKEM has ε-blinded blinded keys if

Pr
[
k̃ = k ⊕2 k′ ∈ S | k

$←− KF , k′ $←− KR

]
= 1 − ε.

Suppose the adversary is given any number of ε-blinded blinded keys from S
with the same underlying file encryption key k. By the definition of the ε-blinded
blinded set the file encryption key k can be any value in KF and all values are
equally probable. In other words, guessing k, given ε-blinded blinded keys, is the
same as guessing a random value from KF . To prevent giving the adversary a
better chance at guessing the key k we wish the blinded keys to be located inside
S with high probability, which means we want ε to be small.

Fresh-Looking Blinded Encapsulations. In the IND game for BKEMs the adver-
sary A gets r blinded samples and has knowledge of the set {C̃i = C ⊕1C ′

i}1,...,r,
where C is an encapsulation of a file encryption key k and C ′

i is an encapsulation
of a blinding value. We cannot guarantee that the set of the blinded encapsu-
lations do not reveal any information about the encapsulation C. However, if
each of these blinded encapsulations looks like a fresh output of the encapsula-
tion algorithm then they are independent and random-looking compared to the
encapsulation C. Therefore we want this set to be indistinguishable from the
output set of the encapsulation algorithm.

Definition 7 (ε-blinded blinded encapsulation). Let HE-BKEM be a homo-
morphic based BKEM. Let ek be any encapsulation key and C0 be an encapsu-
lation with the underlying file encryption key k0. We say that HE-BKEM has
ε-blinded blinded encapsulation if the statistical distance between the following
distributions is at most ε:

X = {C0 ⊕1 C ′ | k′ $←− KR, C ′ ← Encek (k′)},

Y = {C | k′ $←− KR, C ← Encek (k0 ⊕2 k′)}.

This property ensures that the output of the blinding algorithm looks like a
fresh encapsulation except for probability ε. Note that the BKEM constructions
of Boyd et al. [8], DH-BKEM [8, Sect. 4.1] and RSA-BKEM [8, Sect. 4.2], both
have 0-blinded blinded encapsulation.

In most fully homomorphic encryption schemes the product of two cipher-
texts is much larger in size compared to the sum of two ciphertexts, hence, it is
easier to achieve ε-blinded blinded encapsulation for one addition compared to
one multiplication. In our constructions we use addition.

Indistinguishability of BKEMs. Furthermore, if we want to achieve indistin-
guishability of blinded KEMs. We require the underlying homomorphic encryp-
tion scheme have some kind of semantic security to protect the message (the file
encryption key) in the ciphertext (the encapsulation).
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Theorem 4 (Main Theorem). For negligible ε3, let BKEM be a homomorphic
based BKEM designed as in Definition 5 from a (1 − ε3)-correct homomorphic
encryption scheme HE. Let the file encryption key k and the blinding value k′ be
sampled uniformly random from the large sets KF and KR, respectively. Suppose
BKEM has ε1-blinded blinded encapsulations and ε2-blinded blinded keys. For any
adversary A against BKEM getting r blinded encapsulations and their blinded
decapsulation samples, there exists an IND-CPA adversary B against HE such
that

AdvIND
BKEM(A, r) ≤ 2(r + 1)(ε1 + ε2 + ε3) + AdvIND-CPA

HE (B)

Proof. The proof of the theorem consists of a sequence of games.

Game 0. The first game is the experiment ExpIND
BKEM(A, r), given in Fig. 5

(right). Let E0 be the event that the adversary’s guess b′ equals b (and let
Ei be the corresponding event for Game i). From Definition 4 we have that

AdvIND
BKEM(A, r) = 2 |Pr[E0] − 1/2| .

Game 1. Same as Game 0 except that blinded key given to the adversary is the
sum of the file encryption key and the blinding value instead of the decryption of
the blinded encapsulation. More precisely, suppose C is the encapsulation with
corresponding file encryption key k. For 1 ≤ j ≤ r, let C ′

j + C is the blinded
encapsulation where C ′

j is a fresh encapsulation with corresponding blinding
value k′

j . When A queries for the blinded key of user j, the game outputs k⊕2k′
j .

By the homomorphic property of PKE, if C and C ′
1, . . . , C

′
r all decrypt to the

correct messages, then the output of blinded keys are the same in both Game
1 and Game 0. Hence the difference between Game 1 and Game 0 is upper
bounded by the decryption error of PKE as follows.

∣
∣
∣Pr[E1] − Pr[E0]

∣
∣
∣ ≤ 1 − (1 − ε3)r+1 ≈ (r + 1)ε3.

Game 2. Same as Game 1 except that blinded encapsulation and blinded key
pairs given to the adversary are now independent and random compared to the
file encryption key. More precisely, for 1 ≤ j ≤ r:

– When A queries the blinded encapsulation of user j, the game first chooses
a random ε-blinded blinded key (Definition 6), k̃j

$←− S, and computes an
encapsulation of this random key, C̃j ← Encek (k̃j), which is given to A.

– When A queries for the blinded key of user j, the game outputs k̃j .

Step 1. We first prove that a real pair of blinded key and blinded encapsulation
in Game 1 is (ε1 + ε2)-statistically close to the modified values in Game 2.

Suppose k0 ∈ KF is the file encryption key and C0 ← Encek (k0) is the encap-

sulation with k0, let X = {(k0⊕2k′, C0⊕1C ′) | k′ $←− KR, C ′ ← Encek (k′)} be the
statistical distribution of the real pair of blinded key and blinded encapsulation
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output in Game 1, and Y = {(k̃, C̃) | k̃
$←− S, C̃ ← Encek (k̃)} be the statistical

distribution of the modified values output in Game 2. We define a middle dis-
tribution Z = {(k0 ⊕2 k′, C) | k′ $←− KR, C ← Encek (k0 ⊕2 k′)}. We compute the
statistical distance between X and Y as follows.

Δ(X,Y ) ≤ Δ(X,Z)+Δ(Z, Y )

= Δ(X,Z)+
1
2
(
∑

k̃∈KB

C̃∈C

∣
∣
∣Pr[Z =(k̃, C̃)]−Pr[Y =(k̃, C̃)]

∣
∣
∣)

≤ ε1+
1
2
(
∑

k̃∈KB

C̃∈C

∣
∣
∣Pr[Z =(k̃, C̃) | k̃ ∈ S]·Pr[k̃ ∈ S]

+Pr[Z =(k̃, C̃) | k̃ /∈ S]·Pr[k̃ /∈ S]−Pr[Y =(k̃, C̃)]
∣
∣
∣)

= ε1+
1
2
(
∑

k̃∈S
C̃∈C

∣
∣
∣Pr[Z =(k̃, C̃) | k̃ ∈ S]·(1−ε2)−Pr[Y =(k̃, C̃)]

∣
∣
∣

+
∑

k̃ �∈S

C̃∈C

∣
∣
∣Pr[Z =(k̃, C̃) | k̃ �∈ S] · ε2

∣
∣
∣) (1)

≤ ε1+
1
2
(
∑

k̃∈S
C̃∈C

∣
∣
∣ε2 ·Pr[Y =(k̃, C̃)]

∣
∣
∣+1 · ε2) (2)

≤ ε1+ε2

Note that in (1) we split the summation into two parts, namely k̃ ∈ S and
k̃ �∈ S. For k̃ ∈ S we have Pr[Z =(k̃, C̃) | k̃ /∈ S]·Pr[k̃ /∈ S] = 0, and for k̃ �∈ S we
have Pr[Z =(k̃, C̃) | k̃ ∈ S]·Pr[k̃ ∈ S] = 0 and Pr[Y =(k̃, C̃)] = 0. Furthermore,
(2) holds because distributions Z and Y over set S are equal. For r samples:

∣
∣
∣Pr[E2 − Pr[E1]

∣
∣
∣ ≤ r(ε1 + ε2).

Step 2. Next, we claim that there exists an adversary B against IND-CPA security
of HE such that

2
∣
∣
∣Pr[E2] − 1

2

∣
∣
∣ = AdvIND-CPA

HE (B).

We construct a reduction B that plays the IND-CPA game by running A, that
simulates the responses of Game 2 to A as follows.

1. B flips a coin b
$←− {0, 1},

2. B queries its IND-CPA challenger to get the public key of its IND-CPA game,
and forwards this public key as the encapsulation key to A,
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3. B simulates the encapsulation by randomly choosing two group key k0, k1,
sends challenge query with input (k0, k1) to its IND-CPA challenger, and for-
wards the response C to A,

4. B simulates the output of Blind and Decap by using the Encap algorithm.
B samples k̃

$←− S, computes C̃ ← Encek (k̃), and outputs C̃ as the blinded
encapsulation and k̃ as the decapsulation of the blinded encapsulation,

5. When A asks for a challenge, B sends kb to A,
6. After A returns b′, B sends 1 ⊕ b ⊕ b′ to the challenger.

If the challenge ciphertext B received in ExpIND-CPA
HE (B) is Cb, then B perfectly

simulates the inputs of A in Game 2 when the output of the key is a real key.
Otherwise (the challenge ciphertext B received in ExpIND-CPA

HE (B) is C1-b), kb is
a random key to A and B perfectly simulate the inputs of A in Game 2 when
the output of the key is a random key.

Remark 1. As a specific case of Theorem 4, the DH-BKEM construction of BDGJ
has 0-blinded blinded encapsulations and 0-blinded blinded keys, and the indis-
tinguishibility of DH-BKEM is upper bounded by DDH advantage (defined in the
real-or-random sense instead of left-or-right). That is

AdvIND
DH-BKEM(A, r) ≤ AdvDDH(B).

This observation matches with the result of Boyd et al. [8, Theorem 1].

5 Instantiating Homomorphic-Based BKEMs

We provide two homomorphic-based BKEM constructions, based on Gentry’s
homomorphic encryption scheme (Sect. 2.2) and the NTRU variant by Stehlé and
Steinfeld (Sect. 2.3). We show that (for some parameters) our BKEM schemes
are post-quantum secure, by Theorem 4, as long as the underlying HE schemes
are post-quantum secure [20,28,30]. We only require the HE scheme to support
one homomorphic operation, and we have chosen addition. Our HE schemes do
not need to support bootstrapping or any multiplicative depth.

5.1 Two Homomorphic-Based BKEM Schemes

Let HE = (KGHE,EncHE,DecHE) be a scheme described in Sect. 2.2 or 2.3 with
(1−ε3)-correctness for negligible ε3. Let L be any full-rank n-dimensional lattice,
for any ε ∈ (0, 1), s ≥ ηε(L), and r ≥ 2ω(log(n)) · s. The abstract construction of
HE-BKEM is in Fig. 6.

5.2 Constructions of Random-Looking Blinded Keys

We want the blinded keys to be in the ε-blinded blinded key set S with high
probability, and we analyze the requirements of the blinding values. We provide
two constructions of the ε-blinded blinded keys set S as follows.
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Fig. 6. HE-BKEM, where B is the basis of the plaintext space P.

Construction I. A file encryption key of HE-BKEM is a random element located
in a subspace of the underlying HE scheme’s message space M. We want to take
a small file encryption key k and add a large blinding value k′ to produce a
slightly larger blinded key k̃, hence, the corresponding key sets should satisfy
KF ⊆ KR ⊆ KB ⊆ M Suppose M is HE scheme’s message space with generators
1, x, . . . , xn−1 and order q, i.e. M = {d0 + d1x + · · · + dn−1x

n−1 | di ∈ Fq}. The
addition in M is polynomial addition.

Suppose KF = {d0 + d1x + · · · + dn−1x
n−1 | di ∈ Z	

√
q/2
} and KR =

{d0 +d1x+ · · ·+dn−1x
n−1 | di ∈ Z	q/2
}. For any ci ∈ {�√q/2�, . . . , �q/2�} and

any ai ∈ Z	
√

q/2
 there exists a unique bi = ci − ai ∈ Z	q/2
. As such, for these

restricted c0+c1x+· · ·+cn−1x
n−1 and for any a0+a1x+· · · an−1x

n−1 ∈ KF there
exists a unique b0+b1x+· · · bn−1x

n−1 ∈ KR such that (a0+a1x+· · · an−1x
n−1)+

(b0 + b1x + · · · bn−1x
n−1) = c0 + c1x + · · · + cn−1x

n−1. Then

S = {d0 + d1x + · · · + dn−1x
n−1 | di ∈ {�

√
q/2�, . . . , �q/2�}}

Note that for any i ∈ {0, . . . , n − 1},

Pr
[
ai+bi ∈{�

√
q/2�, . . . , �q/2�} | ai

$←−Z	
√

q/2
, bi
$←−Z	q/2


]
=1− �√q/2�−1

�q/2� ,

so the probability that a blinded key is located in the ε-blinded blinded set is

Pr
[
k̃ = k + k′ ∈ S | k

$←− KF , k′ $←− KR

]
=

(

1 − �√q/2� − 1
�q/2�

)n

≈1− n

�√q/2� .

In this construction, HE-BKEM has ε-blinded blinded keys with ε =
n/�√q/2�. For suitably large q, the above ε can be made negligible.

Construction II. Let the file encryption key k be an element in a subset of M:
we want to add a random blinding value k′ from the whole message space M
to produce a random-looking blinded key k̃, hence, the corresponding key sets
should satisfy KF ⊆ KR = KB = M. For any blinded key k̃ ∈ M and any
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k ∈ KF there exists a unique random value k′ = k̃ − k mod B ∈ M such that
k̃ = k + k′ mod B, thus the ε-blinded blinded set S is M and thus

Pr
[
k̃ = k + k′ mod B ∈ S | k

$←− KF , k′ $←− M
]

= 1.

In this construction, HE-BKEM has ε-blinded blinded keys with ε = 0.

Remark 2. Both of these constructions can be applied to our HE-BKEM schemes.

5.3 Construction of Fresh-Looking Blinded Encapsulations

We claim that HE-BKEM in Fig. 6 has ε-blinded blinded encapsulations with neg-
ligible ε. The idea is to take the small constant ciphertext and add a ciphertext
with large error(s) and the resulting ciphertext should look like a fresh ciphertext
with large error(s). The details are given in the following lemma.

Lemma 4. Let HE-BKEM be a homomorphic based BKEM with the underly-
ing homomorphic encryption scheme described in Sect. 2.2 or 2.3 Let ek be any
encapsulation key, and recall that EncHE(ek , s, ·) uses the discrete Gaussian dis-
tribution DL,s,0 as the error distribution. Suppose C0 = EncHE(ek , s, k0) is an
encapsulation of k0. For any ε ∈ (0, 1), let s ≥ ηε(L) and r ≥ 2ω(log(n)) · s, then
the statistical distance between the following distributions is negligible

X = {C0 ⊕1 C ′ | k′ $←− KR, C ′ ← EncHE(ek , r, k′)}
Y = {C | k′ $←− KR, C ← EncHE(ek , r, k0 ⊕2 k′)}.

Proof. We prove the result for Gentry’s scheme; similar analysis for NTRU fol-
lows the same approach. Suppose C0 = k0 + e0, where e0 ← DL,s,0. Then

C0 ⊕1 EncHE(ek , r, k′)=k0+e0+k′+DL,r,0=k0+k′+e0+DL,r,0.

By Lemma 1, we have ‖e0‖ > s
√

n with negligible probability. For ‖e0‖ ≤
s
√

n, we have ‖e0‖
r ≤

√
n

2ω(log(n)) , which is negligible for sufficient large n. By

Lemma 2, we have e0+DL,r,0
s≈ DL,r,0. Therefore,

C0 ⊕1 EncHE(ek , r, k′)
s≈ k0+k′+DL,r,0=EncHE(ek , r, k0 ⊕2 k′).

5.4 Indistinguishability of Our HE-BKEM

The HE-BKEM schemes, defined in Sect. 5.1, have random-looking blinded keys,
which follows from the designs discussed in Sect. 5.2. Furthermore, these schemes
have fresh-looking blinded encapsulations, which follows from Lemma 4 discussed
in Sect. 5.3. The following corollaries show GHE-BKEM and NTRU-BKEM are
IND-secure BKEMs with post-quantum security.
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Corollary 1. Let GHE-BKEM be a homomorphic-based BKEM described in
Sect. 5.1. For negligible ε, ε2, choose parameters as in Lemma 4, Theorem 1 and
Theorem 2. Suppose GHE-BKEM has ε2-blinded blinded keys. If there is an algo-
rithm that breaks the indistinguishability of GHE-BKEM, i.e. the distinguishing
advantage of this algorithm against GHE-BKEM getting r blinded encapsulation
and their blinded decapsulation tuples is non-negligible, then there exists a quan-
tum algorithm that solves worst-case SIVP.

Proof. By Lemma 4 there exists a negligible ε1 such that GHE-BKEM has
ε1-blinded blinded encapsulations. Then we can apply Theorem 4, which states
that if there is an algorithm that breaks the indistinguishability of GHE-BKEM
then there exists an algorithm breaks IND-CPA security of GHE, and by Theo-
rem 1 and 2 we have a quantum algorithm that solves worst-case SIVP.

Corollary 2. Let NTRU-BKEM be a homomorphic-based BKEM described in
Sect. 5.1. For negligible ε, ε2, choose parameters as in Lemma 4, Lemma 3, and
Theorem 3. Suppose NTRU-BKEM has ε2-blinded blinded keys. If there is an
algorithm that breaks indistinguishability of NTRU-BKEM then there exists a
quantum algorithm that solves O(

√
n/α)-approximate SIVP (or SVP) on ideal

lattices.

Proof. Similar to the proof of Corollary 1, from Lemma 4 and Theorem 4
we know that if there is an algorithm that breaks the indistinguishability of
NTRU-BKEM then there exists an algorithm that breaks IND-CPA security
of NTRU. By Lemma 3 there exists an adversary solving R-LWE×

HNF and by
Theorem 3 there exists a quantum algorithm that solves SIVP.

Parameter Settings. For our HE-BKEM schemes, the parameters of the underly-
ing homomorphic encryption schemes are chosen from Gentry [20] or Stehlé and
Steinfeld [30], which is required to achieve IND-CPA security. Furthermore, our
BKEM schemes require that r = 2ω(log(n)) · s, where s is the standard deviations
of a “narrow” Gaussian distributions DL,s,0 and r is the standard deviations of
a “wider” Gaussian distributions DL,r,0. We also follows the designs discussed in
Sect. 5.2 to construct random-looking blinded keys. We conclude that for these
parameter settings our proposed BKEM schemes are post-quantum secure.
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Abstract. Rotational-XOR cryptanalysis is a cryptanalytic method
aimed at finding distinguishable statistical properties in ARX-C ciphers,
i.e., ciphers that can be described only by using modular addition, cyclic
rotation, XOR, and the injection of constants. In this paper we extend
RX-cryptanalysis to AND-RX ciphers, a similar design paradigm where
the modular addition is replaced by vectorial bitwise AND; such ciphers
include the block cipher families Simon and Simeck. We analyze the
propagation of RX-differences through AND-RX rounds and develop
closed form formula for their expected probability. Finally, we formulate
an SMT model for searching RX-characteristics in Simon and Simeck.

Evaluating our model we find RX-characteristics of up to 20, 27, and
35 rounds with respective probabilities of 2−26, 2−42, and 2−54 for ver-
sions of Simeck with block sizes of 32, 48, and 64 bits, respectively,
for large classes of weak keys in the related-key model. In most cases,
these are the longest published distinguishers for the respective variants
of Simeck.

Interestingly, when we apply the model to the block cipher Simon,
the best characteristic we are able to find covers 11 rounds of Simon32
with probability 2−24. To explain the gap between Simon and Simeck
in terms of the number of distinguished rounds we study the impact of
the key schedule and the specific rotation amounts of the round function
on the propagation of RX-characteristics in Simon-like ciphers.

Keywords: RX-cryptanalysis · Simeck · Simon · Key schedule

1 Introduction

Rotational-XOR (RX) cryptanalysis is a cryptanalytic technique for ARX ciphers
proposed by Ashur and Liu in [1]. RX-cryptanalysis generalizes rotational crypt-
analysis by investigating the influence of round constants on the probabilistic prop-
agation of rotational pairs passing through the ARX operations.
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The successful application of RX-cryptanalysis to SPECK [10] reveals that
the round constants sometimes interact in a constructive way between the
rounds, i.e., that a broken symmetry caused by a round constant in round
i may be restored—either fully or partially—by another constant injection in
round j > i. As a result, new designs such as [8] now show resistance to RX-
cryptanalysis as part of their security argument.

AND-RX ciphers, defined as a counterpart of ARX ciphers where the modu-
lar addition is replaced by bitwise AND, are of contemporary interest owing to
the design of the block cipher Simon [2] which was followed by other Simon-like
ciphers such as Simeck [22]. Since the AND-RX operations in Simon-like ciphers
are bitwise, the resulting statistical properties of individual bits remain indepen-
dent of the bit-position. We say that such properties are rotation-invariant.

To break rotation-invariant properties, round constants are usually injected
into the state. In the case of Simon and Simeck, the constants are injected to
the key schedule and propagate into the round function via the round subkey.

The impact of the key schedule on cryptanalysis is important in particular
for lightweight block ciphers as many of them use a simple one. For instance, a
study by Kranz et al. [9] showed the influence of a linear key schedule on linear
cryptanalysis in Present. Yet, information on how to design a good key schedule
remains scarce. A folk theorem states that a good key schedule should provide
round keys that are independent, which can be interpreted as arguing that a
nonlinear key schedule is better than a linear one in such context. The similarity
between the round functions of Simon and Simeck allows us to compare the
two approaches respective to the different key schedules.

Our Contribution. In this paper, we extend the idea of RX-cryptanalysis to
AND-RX ciphers with applications to Simon and Simeck. The propagation of
RX-differences through the AND-RX operations is fully analyzed and a closed
algebraic formula is derived for its expected probability. We show that an RX-
difference with translation value α passes through the vectorial AND operation
with the same probability as that of an α XOR-difference. Due to the different
nature of RX-differences and XOR-differences, characteristics of the former type
would depend more on the key schedule and choice of round constants than those
of the latter type. Using an automated search model we find RX-distinguishers
for versions of Simeck and Simon; these results are summarised in Table 1.

The RX-characteristics we found for Simeck variants with block sizes of 32-,
48-, and 64-bit improve previously longest published results by 5, 8, and 10
rounds, respectively, albeit sometimes in a weaker attack model. When compar-
ing for the same number of rounds, our results offer different tradeoffs between
the size of the affected key class and the characteristic’s probability.

For Simon32, we found an RX-characteristics covering only 10–11 rounds.
For the 10-round case, the probability is slightly better than the previously best
one. For 11 rounds, we see that the probability is worse. While the 11-round
distinguisher is inferior to previous work, it highlights the interesting observation
that RX-cryptanalysis works better in the case of Simeck than it does in the
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Table 1. Comparison of RX-characteristics for rotation offset γ = 1 with the
longest published (related-key) differentials for Simeck32, Simeck48, Simeck64, and
Simon32, and with integral distinguishers for Simeck32, Simeck48, Simeck64. The
distinguisher types are denoted by DC for differential characteristics, RKDC for related-
key differential characteristics, ID for integral distinguishers, and RX for RX charac-
teristics. All attacks require chosen plaintexts.

Cipher Number of
attacked rounds

Data
complexity

Size of weak
key class

Type Reference

SIMECK32 13 232 Full DC [12]
15 231 Full ID [19]

224 254 RKDC [20]
218 244 RX Sect. 5.1

19 224 230 RX Sect. 5.1
20 226 230 RX Sect. 5.1

SIMECK48 16 224 280 RKDC [20]
218 268 RX Sect. 5.1

18 247 Full ID [19]
222 266 RX Sect. 5.1

19 248 Full DC [12]
224 262 RX Sect. 5.1

27 242 244 RX Sect. 5.1
SIMECK64 21 263 Full ID [19]

25 264 Full DC [12]
234 280 RX Sect. 5.1

35 254 256 RX Sect. 5.1
SIMON32 10 216 Full RKDC [20]

214 Full RX Sect. 5.2

case of Simon. We conjecture that the difference is due to the key schedule. To
test this conjecture, we define three toy ciphers:

– Sim-1 which uses the round function of Simon and the key schedule of
Simeck,

– Sim-2 which uses the round function of Simeck with the key schedule of
Simon, and

– Sim-3 which uses a Simon-like round function but with yet another set of
rotation amounts and the key schedule of Simon.

We observe that the RX-characteristics found for Sim-1 have a higher proba-
bility compared to those found for Simon. For Sim-2 and Sim-3 we see that the
number of distinguished rounds is comparable to that of Simon. We conclude
that resistance to RX-cryptanalysis in Simon-like ciphers is heavily influenced
by the key schedule.
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Organization. We recall Simon-like ciphers and RX-cryptanalysis in Sect. 2.
In Sect. 3, we generalize RX-cryptanalysis to Simon-like ciphers, and give a
closed form algebraic formula for probabilistic propagation of an RX-difference.
In Sect. 4 we provide an automated search model for finding good RX-
characteristics. This model is evaluated in Sect. 5. In Sect. 6 we test how the
choice of the key schedule affects the resistance of Simon-like ciphers to RX-
cryptanalysis. Sect. 7 concludes this paper.

2 Preliminaries

In this section, we give a brief overview of the structure of Simon-like ciphers
and recall the general idea of Rotational-XOR cryptanalysis. Table 2 presents
the notation we use.

2.1 Simon-Like Ciphers

Simon is a family of block ciphers following the AND-RX design paradigm, i.e.,
members of the family can be described using only the bitwise operations AND
(�), XOR (⊕), and cyclic rotation by γ bits (Sγ). Simon-like ciphers generalize
the structure of Simon’s round function with different parameters than the
original ones.

The Round Function
Simon is a family of lightweight block ciphers designed by the US NSA [2]. A
member of the family is denoted by Simon2n/mn, to specify a block size of

Table 2. The notations used throughout the paper

Notation Description

x = (xn−1, . . . , x1, x0) Binary vector of n bits; xi is the bit in position
i with x0 the least significant one

x � y Vectorial bitwise AND between x and y

xi � yi Bitwise AND between xi and yi

x ⊕ y Vectorial bitwise XOR between x and y

xi ⊕ yi Bitwise XOR between xi and yi

x‖y Concatenation of x and y

x|y Vectorial bitwise OR between x and y

wt(x) Hamming weight of x

x ≪ γ, Sγ(x) Circular left shift of x by γ bits
x ≫ γ, S−γ(x) Circular right shift of x by γ bits
(I ⊕ Sγ)(x) x ⊕ Sγ(x)

x Bitwise negation
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2n for n ∈ {16, 24, 32, 48, 64}, and key size of mn for m = {2, 3, 4}. The round
function of Simon is defined as

f(x) =
(
S8 (x) � S1 (x)

) ⊕ S2(x).

Simon-like ciphers are ciphers that share the same round structure as Simon,
but generalize it to arbitrary rotation amounts (a, b, c) such that the round
function becomes

fa,b,c(x) =
(
Sa (x) � Sb (x)

) ⊕ Sc(x).

Of particular interest in this paper is the Simeck family of lightweight block
ciphers designed by Yang et al. [22], aiming at improving the hardware implemen-
tation cost of Simon. Simeck2n/4n denotes an instance with a 4n-bit key and
a 2n-bit block, where n ∈ {16, 24, 32}. Since the key length of Simeck is always
4n we use lazy writing in the sequel and simply write Simeck2n throughout the
paper. The rotation amounts for all Simeck versions are (a, b, c) = (5, 0, 1).

The Key Schedule
The nonlinear key schedule of Simeck reuses the cipher’s round function to
generate the round keys. Let K = (t2, t1, t0, k0) be the master key for Simeck2n,
where ti, k0 ∈ F

n
2 . The registers of the key schedule are loaded with

K = k3||k2||k1||k0
for K the master key, and the sequence of round keys (k0, . . . , kT−1) is generated
with

ki+1 = ti

where
ti+3 = ki ⊕ f5,0,1(ti) ⊕ c ⊕ (zj)i,

and c ⊕ (zj)i ∈ {0xfffc, 0xfffd} a round constant. A single round of Simeck
is depicted in Fig. 1a.

Fig. 1. Illustration of the Simeck and Simon ciphers
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Simon, conversely, uses a linear key schedule to generate the round keys.
Let K = (km−1, . . . , k1, k0) be a master key for Simon2n, where ki ∈ F

n
2 . The

sequence of round keys ki is generated by

Ki+m =

⎧
⎨

⎩

ki ⊕ (I ⊕ S−1)S−3ki+1 ⊕ c ⊕ (zj)i, if m = 2
ki ⊕ (I ⊕ S−1)S−3ki+2 ⊕ c ⊕ (zj)i, if m = 3

ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1) ⊕ c ⊕ (zj)i, if m = 4

for 0 ≤ i ≤ (T −1), and c⊕ (zj)i is the round constant. A single round of Simon
with m = 4 is depicted in Fig. 1b.

2.2 Previous Work

The security of Simon-like ciphers has been widely explored over the last few
years and a large number of cryptanalytic techniques were applied to it. To
name just a few: linear cryptanalysis [5,13], differential cryptanalysis [3,5,12],
related-key differential cryptanalysis [20], integral cryptanalysis and the division
property [7,17,18,23]. For a comparison of our results with relevant previous
work see Table 1.

Due to the unclear design rationale of Simon, much attention was focused
on understanding the rotation amounts. Kölbl et al. studied in [5] different sets
of rotation amounts for Simon-like ciphers and found parameters, other than the
specified (8, 1, 2), which are optimal with respect to differential and linear crypt-
analysis. Then, Kondo et al. further evaluated these parameter sets in terms of
resistance to integral distinguishers in [7]. As they have shown, the parameter set
(12, 5, 3) is optimal with respect to differential cryptanalysis, linear cryptanaly-
sis, and integral cryptanalysis. Also the Simeck parameter set (5, 0, 1) belongs
to the same optimal class respective to several attack techniques. Simon and
Simeck were also compared by Kölbl et al. in [6] by considering the differential
effect.

2.3 Rotational-XOR Cryptanalysis

As a generalization of rotational cryptanalysis (see [4]), RX-cryptanalysis is
also a related-key chosen plaintext attack targeting ARX ciphers. Introduced
by Ashur and Liu in [1] it uses the fact that rotational pairs, i.e., pairs of the
form (x, Sγ(x)) propagate through the ARX operations with known probability.
Whereas the original technique was thwarted by the injection of round constants
that are not rotational-invariant, RX-cryptanalysis overcomes this problem by
integrating their effect into the analysis of the propagation probability. Rather
than considering just a rotational pair as in the case of rotational cryptanal-
ysis, RX-cryptanalysis considers an RX-pair of the form (x, Sγ(x) ⊕ α) where
α is called the translation. The technique was successfully applied to ARX-
based primitives, including the block cipher Speck [10] and the hash function
SipHash [21].
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3 Rotational-XOR Cryptanalysis of AND-RX
Constructions

AND-RX constructions are similar in concept to ARX constructions where the
non-linear operation (i.e., modular addition) is replaced with a vectorial bit-
wise AND. Since all operations are now bit oriented, such constructions are
always rotation-invariant. More generally, they are structurally invariant under
any affine transformation of the bit-indices as was shown in [5]. Superficially,
it is believed that this invariance cannot be preserved over a large number of
rounds if non-invariant constants are injected into the state since they will break
the symmetry between bits in different positions. Despite their close relation to
ARX constructions, the security of Simon-like ciphers against RX-cryptanalysis
has not received much attention. We now set to rectify this omission in this
section.

3.1 The Expected Probability of an RX-transition

In [1] an RX-pair was defined to be a rotational pair with rotational offset γ
under translations δ1 and δ2, i.e., it is the pair (x ⊕ δ1, (x ≪ γ) ⊕ δ2). We opt
for a slightly different notation with x and x′ = (x ≪ γ)⊕δ, or (x, (x ≪ γ)⊕δ)
as an RX-pair.

Definition 1 ([1] (adapted)). The RX-difference of x and x′ = (x ≪ γ) ⊕ δ
with rotational offset γ, and translation δ is denoted by

Δγ(x, x′) = x′ ⊕ (x ≪ γ).

The propagation of an RX-difference Δγ(x, x′) = x′⊕(x ≪ γ) through linear
operations of the AND-RX structure is deterministic and follows these rules:

– XOR. For two input RX-pairs (x, (x ≪ γ)⊕ δ1) and (y, (y ≪ γ)⊕ δ2), their
XOR is the RX-pair (z, z′) = (x ⊕ y, ((x ⊕ y) ≪ γ) ⊕ δ1 ⊕ δ2);

– Cyclic rotation by η bits. The cyclic rotation of each of the values in
(x, (x ≪ γ) ⊕ δ) by η bits is the RX-pair (z, z′) = (x ≪ η, (x ≪ (γ + η)) ⊕
(δ ≪ η));

– XOR with a constant c. The XOR of a constant c to each of the values in
the RX-pair (x, (x ≪ γ)⊕δ) is the RX-pair (z, z′) = (x⊕c, (x ≪ γ))⊕δ⊕c),
the corresponding RX-difference is denoted by Δγc = c ⊕ (c ≪ γ)

all with probability 1.
Intuitively, the bitwise nature of the AND operation restricts the propagation

of an RX-difference compared to modular addition. When two rotational pairs
enter into the vectorial AND operation, the rotational relation is preserved with
probability 1 due to the localized nature of bit-oriented operations. If the inputs
form an RX-pair with translation δ �= 0, as is the case of Simon and Simeck,
the propagation of the RX-difference through the vectorial AND is probabilistic
and its probability is given by the following theorem.
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Theorem 1. Let (x, (x ≪ γ)⊕α) and (y, (y ≪ γ)⊕β) be two RX-pairs where
γ is the rotation offset and (α, β) the translations, respectively. Then, for an
output translation Δ it holds that:

Pr[((x � y) ≪ γ) ⊕ Δ = ((x ≪ γ) ⊕ α) � ((y ≪ γ) ⊕ β)] = (1)

Pr[(x � y) ⊕ Δ = (x ⊕ α) � (y ⊕ β)] (2)

i.e., the propagation probability of an RX-difference with translations (α, β)
through � is the same as that of a normal XOR-difference through the same
operation when the translations are considered as input XOR-differences.

Proof. To prove the theorem, we rewrite the right hand side of (1) as

((x ≪ γ) ⊕ α) � ((y ≪ γ) ⊕ β) = ((x � y) ≪ γ) ⊕ ((x ≪ γ) � β)⊕
((y ≪ γ) � α) ⊕ (α � β)

Similarly, distributing the right hand side of (2) we get

(x ⊕ α) � (y ⊕ β) = (x � y) ⊕ (x � β)⊕
(y � α) ⊕ (α � β)

Rewriting Theorem 1 as

Pr[((x � y) ≪ γ) ⊕ Δ =((x � y) ≪ γ) ⊕ ((x ≪ γ) � β)⊕
((y ≪ γ) � α) ⊕ (α � β)] =

(3)

Pr[(x � y) ⊕ Δ =(x � y) ⊕ (x � β)⊕
(y � α) ⊕ (α � β)],

(4)

the proof is completed by observing that (x � y) ≪ γ, x ≪ γ, and y ≪ γ
have the same probability distribution as x�y, x, and y, respectively, due to the
rotation-invariance of bit-oriented operations. ��

Kölbl et al. showed in [5] that in the special case of Simon-like ciphers (e.g.,
Simon and Simeck) where y = Sa−b(x), the difference propagation distribution
(and thus, the RX-propagation distribution) is given by the following proposition.

Proposition 1. For Sa(x) � Sb(x) where gcd(n, a − b) = 1, n is even, a > b
and x = (xn−1, . . . , x1, x0) ∈ F

n
2 , the difference propagation distribution table

and RX propagation distribution are given by

P (α → β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−n+1 if α = 0xf · · · f
wt(β) ≡ 0 mod 2;

2−wt((Sa(α)|Sb(α))⊕(Sa(α)�S2a−b(α)�Sb(α))) if α �= 0xf · · · f,
β � (Sa(α) | Sb(α)) = 0,

(β ⊕ Sa−b(β))�
(Sa(α) � S2a−b(α)

�Sb(α)) = 0;

0 otherwise
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Proof. The proof for the difference propagation distribution was given in [5].
The case for RX-propagation follows then from Theorem 1. ��

3.2 Discussion

Based on Theorem 1, it can be seen that the RX-difference passes through the
vectorial AND component of a cipher with the same probability as an XOR-
difference. However, resulting RX-characteristics are in general different from
the corresponding (related-key) differential characteristics, due to the XOR of
constants in the round function which affects the propagation.

It is interesting to see that in ARX ciphers, the probability for the rotational-
transition part of the RX-transition is maximized with 2−1.415 when γ ∈
{1, n− 1} and decreases for other γ. Conversely, the same transition passes with
probability 1 through the vectorial AND in AND-RX ciphers. In other words, a
rotational pair would propagate with probability 1 through all AND-RX oper-
ations, but only with some probability p < 1 through the ARX operations. We
conclude that in general, AND-RX constructions are more susceptible to RX-
cryptanalysis than ARX constructions.

4 Automated Search of RX-Characteristics in Simon-Like
Ciphers

Similar to other statistical attacks, RX-cryptanalysis works in two phases: offline
and online. In the offline phase, the adversary is searching for a distinguishable
property respective to the algorithm’s structure. Having found such a property,
the adversary tries to detect it from data collected in the online phase.

Automated search methods are a common way to assist finding such a prop-
erty (i.e., Phase 1). The idea behind these tools is to model the search problem
as a set of constraints and solve it using one of the available constraint solvers.
For ciphers using Boolean and arithmetic operations, the search problem can be
converted into a Boolean Satisfiability Problem (SAT) or a Satisfiability Mod-
ule Problem (SMT). The respective solver then returns an answer on whether
all constraints can be satisfied simultaneously, and if the answer is positive it
also returns a valid assignment. A number of ARX and AND-RX ciphers were
studied using automatic search tools, in the context of differential cryptanalysis,
linear cryptanalysis, division property, and RX-cryptanalysis [10,11,14–16].

In this section, we give a detailed description of an automatic search model
for RX-characteristics in Simon-like ciphers.

4.1 The Common Round Function

From Theorem 1 we learn that the propagation of RX-differences through the
AND operation follows a probabilistic rule, with a probability distribution as
in Proposition 1. We use Δ1a

r and Δ1b
r to denote the two n-bit vectors repre-

senting RX-differences at the beginning of round r, and Δ1d
r the n-bit vector
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Fig. 2. Notation of the RX-differences in the encryption function.

representing the RX-difference at the output of the vectorial AND at the same
round. A schematic view of this notation is depicted in Fig. 2.

Then, the following two Boolean equations should be satisfied simultaneously
for the propagation of RX-differences through the vectorial AND to be valid

0 = Δ1d
r � (Sa(Δ1ar) | Sb(Δ1ar)); (5)

0 = (Δ1d
r ⊕ Sa−b(Δ1d

r)) � (Sa(Δ1ar) � S2a−b(Δ1a
r) � Sb(Δ1a

r)). (6)

In simple words, (5) ensures that any active bit in Δ1d
r results from at least one

active bit in the corresponding position of Δ1a
r. If a bit Δ1d

r was activated by
exactly one bit from Δ1a

r, (6) ensures that either a second bit in Δ1d
r is active,

or that another active bit in Δ1a
r had deactivated said bit. This encodes the

implicit expansion function, i.e., the dependency between the bit in position i
and that in position i + a − b before they enter the vectorial AND.

If the propagation is valid, the probability in round r is given by 2−wr
d , where

wr
d =wt((Sa(Δ1a

r) | Sb(Δ1a
r)) ⊕ (Sa(Δ1ar)�

S2a−b(Δ1a
r) � Sb(Δ1a

r))),
(7)

is said to be the weight of the non-linear transition in round r.
In addition, the propagation of an RX-difference through the linear opera-

tions is described by the following expressions:

Δ1b
r+1 = Δ1a

r; (8)

Δ1a
r+1 = Δ1d

r ⊕ Δ1b
r ⊕ Sc(Δ1a

r) ⊕ Δ1k
r. (9)

4.2 The Key Schedule of Simeck

The key schedule of Simeck is modeled analogously to the round function. Let
Δ1kar,Δ1kbr, and Δ1kdr be n-bit variables in round r which denote the left
input RX-difference, the right input RX-difference, and the output RX-difference
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of the vectorial AND (see Fig. 3a). As before, the following two Boolean equations
should be satisfied simultaneously for the propagation of RX-differences through
the non-linear part of Simeck’s key schedule to be valid:

0 = Δ1kdr � Sa(Δ1kar) | Sb(Δ1kar); (10)

0 =(Δ1kdr ⊕ Sa−b(Δ1kdr)) � (Sa(Δ1kar)�
S2a−b(Δ1kar) � Sb(Δ1kar)),

(11)

with weight wr
k set as

wr
k =wt((Sa(Δ1kar) | Sb(Δ1kar)) ⊕ (Sa(Δ1kar)�

S2a−b(Δ1kar) � Sb(Δ1kar))).
(12)

The propagation of RX-difference through the linear operations of the key sched-
ule is modeled by the following constraints:

Δ1kbr+1 = Δ1kar; (13)

Δ1kar+3 = Δ1kdr ⊕ Δ1kbr ⊕ Sc(Δ1kar) ⊕ Δ1c
r. (14)

Finally, the key schedule and the round function are linked via the following
expression:

Δ1k
r = Δ1kbr. (15)

Fig. 3. Notations of the RX-differences.

4.3 The Key Schedule of Simon

In the key schedule of Simon 2n/4n, let Δ1kar, Δ1kar+1, and Δ1kar+3 be n-bit
variables denoting the input RX-differences to the key schedule at round r, and
let Δ1kar+4 denote the output RX-difference fed back to the leftmost register in
the key schedule and injected into the round (see Fig. 3b); then, the propagation
of RX-differences is modeled as

Δ1kar+4 =S−3(Δ1kar+3) ⊕ Δ1kar+1 ⊕ S−1(S−3(Δ1kar+3)⊕
Δ1kar+1) ⊕ Δ1kar ⊕ Δ1c

r
(16)
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and the injection of the subkey the state in round r as

Δ1k
r = Δ1kar. (17)

4.4 The Objective Function

To evaluate the model, we define an objective function, i.e., a quantity that the
model is trying to optimize and which can be used to compare the “quality”
of different solutions. The original model in [10], which was the first model to
search for RX-differences in ciphers with a non-linear key schedule, operated
in two steps. First, a good key RX-characteristic was sought. Then, a good
RX-characteristic was sought for the state with respect to the selected key RX-
characteristic.

In this paper we take a different approach. Rather than considering the
two search problems separately, we generate good RX-characteristics “on-the-
fly” without a-priori fixing the key characteristic. We start by searching for an
RX-characteristics minimizing the total weight in both the data and key parts,
namely wd + wk. Then, conditioned on the total weight wd + wk fixed to the
minimum found, we further minimize the weight in the data part wd in order to
improve the data complexity of the attack.

For Simon our strategy would yield the same results as the strategy in [10]
since wr

k = 0 for all r due to the linear key schedule. The objective function for
the R-round Simon model is expressed as

min(w) s.t.
max(R) s.t.

(w = (
R∑

r=1

wr
d)) ∧ (w ≤ 2n)

(18)

For Simeck we first observe that the key difference injected in round r is
actually generated in round r − 4 where its cost is “paid”. As a result, the total
probability of an R-round characteristic in the key schedule part only needs to
take into account the cost of rounds 1 to R − 4. Hence, we set the objective
function as follows:

min(wd) s.t.
min(w) s.t.

max(R) s.t.

(w = (
R∑

r=1

wr
d +

R−4∑

r=1

wr
k)) ∧ (w ≤ 4n) ∧ (wd =

R∑

r=1

wr
d) ∧ (wd ≤ 2n)

(19)
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Table 3. The weights of the best found RX-characteristic in round-reduced Simeck32,
Simeck48 and Simeck64 with γ = 1. For each of the ciphers we report the results
in three rows: number of distinguished rounds, weight of the round function part,
and weight of the key schedule part. For instance, the best found RX-characteristic
covering 20-round Simeck32 has a data probability of 2−26 for a weak key class of size
264−34 = 230.

SIMECK32

Rounds 10 11 12 13 14 15 16 17 18 19 20
Data 6 10 12 12 16 18 18 18 22 24 26
Key 8 12 12 18 18 20 28 32 30 34 34

SIMECK48

Rounds 15 16 17 18 19 20 21 22 23 24 25 26 27
Data 18 18 18 22 24 26 30 30 32 36 36 40 42
Key 20 28 32 30 34 34 36 40 44 46 48 48 52

SIMECK64

Rounds 23 24 25 26 27 28 29 30 31 32 33 34 35
Data 30 32 34 38 38 40 42 44 46 48 50 52 54
Key 44 46 48 50 54 58 60 62 64 66 68 70 72

5 Results

Now that we have a model for finding RX-characteristics in AND-RX construc-
tions, we can use one of the existing solvers to evaluate it. We describe the model
using the SMTLIB language and apply the Boolector solver with several param-
eter settings. Our experiments were carried out on a laptop having an Intel Core
i7-7700HQ CPU running at 2.80GHz and having 8GB of RAM.1

5.1 Simeck

Using the above model, we found RX-characteristics which cover up to 20, 27,
and 35 rounds for variants of Simeck with block size of 32, 48, and 64 bits,
respectively. These results are presented in Table 3. We further proved that there
exists no RX-characteristic with wd + wk ≤ 64 for more than 20 rounds of
Simeck32; therefore, our 20-round RX-characteristic gives a tight bound on the
number of rounds that can be distinguished using RX-cryptanalysis.

Recalling the previous results in Table 1 we see that previously published
distinguishers cover up to 15, 19, and 25 rounds of Simeck32, Simeck48, and
Simeck64, respectively, whereas our RX-characteristics improve the number of
distinguished rounds by 5, 8, and 10 rounds, albeit for a smaller key class than
previous results. Benchmarking for the same number of rounds, detecting our
distinguishers requires fewer data.
1 Our source code is available on Github at https://github.com/JIN-smile/Simon32-

and-Simeck32.

https://github.com/JIN-smile/Simon32-and-Simeck32
https://github.com/JIN-smile/Simon32-and-Simeck32
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Table 4. A 15-round RX-characteristics in Simeck 32/64

Round RX-difference in key RX-difference in data

0 0014 (0000||0010)

1 0008 (0004||0000)

2 0004 (0000||0004)

3 0001 (0000||0000)

4 0002 (0001||0000)

5 0002 (0001||0001)

6 0000 (0000||0001)

7 0003 (0001||0000)

8 0002 (0000||0001)

9 0007 (0003||0000)

10 0001 (0000||0003)

11 0002 (0002||0000)

12 0008 (0004||0002)

13 0002 (0002||0004)

14 0000 (0000||0002)

15 (0002||0000)

Prob. 2−26 2−18

Experimental Verification. To empirically validate our results we implemented
the 15-round RX-characteristic presented in Table 4. We first sample a random
64-bit master key K and obtain its respective matching key K ′ = S1(K) ⊕
(0001||0004||0008||0014). We then check if the resulting sub-keys satisfy the
required RX-difference. If not, a new K is picked and the above process is
repeated until a good pair (K,K ′) is found. This pair of related keys is used
to encrypt 232 plaintext pairs. For each encrypted plaintext pair, we check if the
intermediate RX-differences match those of the RX-characteristic.

We sampled about 233.6 = 226.6+7 keys, out of which 27 satisfied the requested
key RX-difference. For these keys, the average probability that a randomly
selected plaintext satisfies the RX-characteristic was around 2−18.005. These fig-
ures confirm our claims.

5.2 Simon

Interestingly, despite their similar structure, finding good RX-characteristics for
Simon seems to be much harder than for Simeck. For the smallest version
Simon32/64, the solver does not produce solutions (SAT or UNSAT) for more
than 11 rounds given reasonable resources and time. We conjecture that the
reason for this is the key schedule which forces all key RX-transitions to be
deterministic in the key part. In the case of Simeck the non-deterministic key
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RX-transitions offered more freedom for backtracking steps in search for cancel-
lation effects in the data part; similar freedom is not afforded for Simon due to
the linear key schedule.

The complexity of our RX-distinguishers against Simon32/64 with 10 rounds
are presented in Table 1. For 11 rounds of Simon32/64 we find a characteristic
with probability 2−24 which is inferior to previous results. We do not expect
RX-cryptanalysis to be able to improve the distinguishing cost for more than 11
rounds. In Sect. 6 we discuss the distinctive behaviors of RX-characteristics in
Simon and Simeck.

6 Comparing the Resistance to RX-cryptanalysis of
Simon and Simeck

In Sect. 5 we saw that Simeck appears to be more vulnerable to RX-
cryptanalysis than its counterpart Simon. The two main differences between
these ciphers are the key schedule (linear in Simon vs. non-linear in Simeck)
and the rotation amounts ((8, 1, 2) in Simon vs. (5, 0, 1) in Simeck). To under-
stand how each of these decisions affects the resistance of the resulting cipher to
RX-cryptanalysis, we define three additional variants:

– Sim-1 which uses the round function of Simon for and the key schedule of
Simeck,

– Sim-2 which uses the round function of Simeck and the key schedule of
Simon (m = 4), and

– Sim-3 which uses a Simon-like round function with rotation amounts (12, 5, 3)
and the key schedule of Simon (m = 4).2

To determine the effect of the key schedule and rotation amounts on the
resistance of a Simon-like cipher to RX-cryptanalysis we take the same approach
as in Sect. 5, this time searching RX-characteristics for Sim-1, Sim-2, and Sim-
3. We present in Table 5 the RX-distinguishers we found and compare them to
those found for Simon and Simeck.

The results show that, for some optimal parameters of the Simon-like round
function, the rotation amounts have no effect on the probability of the RX-
characteristics. However, the difference between the linear key schedule of Simon
and the non-linear one of Simeck plays a significant role in the resistance to
RX-cryptanalysis. In other words, the key schedule of Simeck makes it more
vulnerable to RX-cryptanalysis.

It would be interesting to consider two more experiments, one where the key
schedule is yet another non-linear function (e.g., the key schedule of Speck) and
one where the rotation amounts are suboptimal. This is left for future work.

2 This set of rotation amounts was determined in [7] to be optimal against certain
attacks.
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Table 5. A comparison of the optimal probability in RX-characteristics found in
Simon-like ciphers: SIM-1, SIM-2, SIM-3, Simeck and Simon.

Rounds Sim-1 Sim-2 Sim-3 Simeck32 Simon32

5 1 1 1 1 1
6 1 1 1 1 1
7 2−2 2−4 2−4 2−2 2−4

8 2−4 2−6 2−4 2−4 2−6

9 2−6 2−10 2−10 2−4 2−10

10 2−8 2−14 2−14 2−6 2−14

11 2−12 2−24 2−24 2−8 2−24

7 Conclusion

In this paper, we generalized the idea of Rotational-XOR cryptanalysis to AND-
RX ciphers by showing that an RX-difference has the same propagation probabil-
ity as a corresponding XOR-difference through the same function. We formulated
a SAT/SMT model for RX-cryptanalysis in AND-RX constructions and applied
it to reduced-round versions of Simon and Simeck. We found distinguishers
covering up to 20, 27, and 35 rounds of Simeck32, Simeck48, Simeck64, respec-
tively. These are the longest distinguishers for this cipher family.

Moreover, we noticed that finding good RX-characteristics in Simon is more
difficult than in Simeck. By applying our SAT/SMT model to toy examples we
were able to conclude that it is the different key schedule which makes Simeck
more vulnerable to RX-cryptanalysis than Simon. We conjectured that the gap
between the two ciphers is due to the (non-)linearity of the key schedule and left
this for future work.

Acknowledgement. This paper was supported by National Natural Science Founda-
tion of China (NSFC) under grants 61672530, 61902414 and 61772545. Tomer Ashur
is an FWO post-doctoral fellow under Grant Number 12ZH420N.

A Reported RX-Characteristics for SIMECK32/48/64

See Tables 6 and 7.
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Table 6. A 20-round RX-characteristic for Simeck32/64 and a 27-round RX-
characteristics for Simeck48/96

Round Simeck32/64 Simeck48/96
Key Data Key Data
RX-difference RX-difference RX-difference RX-difference

0 0004 (0000||0004) 000004 (000001||000006)

1 0000 (0000||0000) 000000 (000000||000001)

2 0001 (0000||0000) 000002 (000001||000000)

3 0002 (0001||0000) 000003 (000001||000001)

4 0002 (0000||0001) 000002 (000001||000001)

5 0005 (0003||0000) 000000 (000000||000001)

6 0001 (0000||0003) 000003 (000001||000000)

7 0002 (0002||0000) 000003 (000000||000001)

8 000a (0004||0002) 000004 (000002||000000)

9 0002 (0000||0004) 000000 (000000||000002)

10 0000 (0006||0000) 000002 (000002||000000)

11 0013 (000a||0006) 00000e (000004||000002)

12 000a (0001||000a) 000002 (000000||000004)

13 0004 (0002||0001) 000000 (000006||000000)

14 0000 (0001||0002) 000013 (00000c||000006)

15 0001 (0000||0001) 00000c (000001||00000c)

16 0000 (0000||0000) 000004 (000002||000001)

17 0002 (0000||0000) 000000 (000001||000002)

18 0006 (0002||0000) 000002 (000001||000001)

19 0007 (0000||0002) 000002 (000001||000001)

20 (0005||0000) 000001 (000000||000001)

21 000000 (000000||000000)

22 000003 (000000||000000)

23 000004 (000003||000000)

24 000004 (000002||000003)

25 000000 (000001||000002)

26 00000d (000000||000001)

27 (00000c||000000)

Prob. 2−34 2−26 2−52 2−42
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Table 7. A 35-round RX-characteristics for Simeck64/128

Round Key Data
RX-difference RX-difference

0 00000006 (00000001||00000004)

1 00000000 (00000000||00000001)

2 00000003 (00000001||00000000)

3 00000002 (00000001||00000001)

4 00000000 (00000000||00000001)

5 00000002 (00000001||00000000)

6 00000003 (00000000||00000001)

7 00000004 (00000002||00000000)

8 00000000 (00000000||00000002)

9 00000002 (00000002||00000000)

10 0000000a (00000004||00000002)

11 00000001 (00000000||00000004)

12 00000001 (00000005||00000000)

13 00000013 (0000000a||00000005)

14 0000000c (00000002||0000000a)

15 00000005 (00000002||00000002)

16 00000001 (00000001||00000002)

17 00000002 (00000001||00000001)

18 00000002 (00000001||00000001)

19 00000002 (00000001||00000001)

20 00000003 (00000001||00000001)

21 00000002 (00000001||00000001)

22 00000003 (00000001||00000001)

23 00000000 (00000000||00000001)

24 00000002 (00000001||00000000)

25 00000003 (00000000||00000001)

26 00000006 (00000002||00000000)

27 00000000 (00000000||00000002)

28 00000002 (00000002||00000000)

29 0000000a (00000004||00000002)

30 00000000 (00000000||00000004)

31 00000000 (00000004||00000000)

32 00000010 (0000000c||00000004)

33 0000000c (00000000||0000000c)

34 00000005 (00000000||00000000)

35 (00000005||00000000)

Prob. 2−72 2−54
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Abstract. The Advanced Encryption Standard (AES) is the most
widely used symmetric encryption algorithm. Its security is mainly based
on the structure of the S-box. In this paper, we present a new way to cre-
ate S-boxes for AES and exhibit an S-box with improved cryptographic
properties such as Bit Independence Criterion (BIC), periodicity, alge-
braic complexity, Strict Avalanche Criterion (SAC) and Distance to SAC.

1 Introduction

The Advanced Encryption Standard (AES) [13] is the main and widely used
symmetric cryptosystem. It was standardized by NIST in 2000 in replacement
of DES [7]. AES is a Substitution Permutation Network (SPN) which is based
on a non-linear substitution layer and a linear diffusion layer. The non-linear
layer is represented by a 16 × 16 S-box which is a permutation of the Galois
finite field F28 . The design of the S-box is a challenging task since the security
of AES is mainly based on its structure. A strong S-box should satisfy several
cryptographic criteria to resist the known cryptanalytic attacks, such as linear
cryptanalysis [12] and differential cryptanalysis [1]. Although AES is resistant to
linear and differential attacks, it presents some weaknesses in regards with a vari-
ety of cryptanalytic criteria. A typical example is that an S-box should have high
algebraic degree when expressed as a polynomial. The AES S-box has algebraic
degree 254 with only 9 monomials which is very simple [11]. Another weak crite-
rion for the AES S-box is that some elements of F28 have short iterative periods
as it is the case with S2(0x73) = 0x73, S27(0xfa) = 0xfa, S59(0x00) = 0x00,
S81(0x01) = 0x01, and S87(0x04) = 0x04 (see [5]). One more weak criterion
for the AES S-box is the distance to SAC (Strict Avalanche Criterion) which is
evaluated to 432 [5] while it should be as small as possible. Yet another example
of the weakness of the AES S-box is its affine transformation period [5,16]. It is
equal to 4 which is very low in comparison with the optimal value 16.

In the literature, various techniques and tools have been proposed to create
strong S-boxes for AES (see [5,9,10,15,17,20,21] for various constructions of
c© Springer Nature Switzerland AG 2020
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S-boxes). In most cases, the proposed S-box is based on a bijective function on
F28 with an explicit formulae. In AES [13], the S-box is a 16 × 16 table of bytes
obtained by a function of the form f(x) = Ax−1 + b where, for x �= 0, x−1 is
the inverse of x in F28 , and 0−1 = 0, and where A is a 8 × 8 a circular matrix
of bits and b = 0x63. In [5], the proposed S-box is obtained by a function of
the form f(x) = A′(A′x + b′)−1 + b′ where A′ is a 8 × 8 circular matrix of bits
obtained by 0x5b and b′ = 0x5d. The proposed S-box in [5] has better values
for some cryptographic criteria. Typically, the distance to SAC is reduced to
372, the iterative period is increased to 256, the affine transformation period is
increased to 16, and the number of terms in the algebraic expression is increased
to 255.

In this paper, we propose a new function over F28 to construct 16 × 16
S-boxes of bytes with good cryptographic properties. The function is defined for
a byte x by

S(x) =

{
Ax+α
Ax+β , if x �= A−1β

0x01 if x = A−1β,

where A is an 8 × 8 invertible matrix of bits and α and β are two fixed different
bytes. The cryptographic properties of the new S-boxes depend on the choice of
A, α and β and there are approximately 5.3 × 1018 of possible values. In this
paper, we consider the parameters

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1
0 1 1 1 0 0 0 1
0 0 0 0 1 1 0 1
0 0 1 0 0 0 1 0
1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 0
1 1 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, α = 0xfe, β = 0x3f.

With the former values, some of the cryptographic criteria are improved. The
distance to SAC is reduced to 328, the iterative period is increased to 256, and
the number of terms in the algebraic expression is increased to 255. We notice
that our construction ovoids any affine structure while in AES and in [5], there
are induced affine transformations of the form f(x) = A′x + b where the 8 × 8
bit-matrix A′ and the byte b are constant.

The rest of the paper is organized as follows. In Sect. 2, we present some
known facts related to AES, in Sect. 3, we present the new S-box and, in Sect. 4,
we study the cryptographic criteria of the proposed S-box. In Sect. 5, we give a
comparison of the new S-box with the AES S-box and other existing S-boxes.
We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we present the main mathematical properties that will be used
in this paper.
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2.1 Description of an S-box

An S-box of a block cipher is a n × n matrix defined by a multivariate Boolean
function S : F2n → F2n such that for x ∈ F2n ,

S(x) = (Sn−1(x), . . . , S0(x)),

where Si, 0 ≤ i ≤ n − 1 is a component Boolean function. An S-box should
be bijective with no fixed point and should guarantee nonlinearity to the cryp-
tosystem and strengthen its cryptographic security. Moreover, it should satisfy
several criteria such as balancedness [14], strict avalanche criterion (SAC) [18],
distance to SAC [18], bit independence criterion (BIC) [8], algebraic complexity
and algebraic degree [2].

2.2 Description of AES

AES is a block cipherwith 128-bits blocks. It operates on blocks, called stateswhich
are 4 × 4 arrays of bytes. Each state is indexed 0, . . . , 15. The rows are in the form
(i, i + 4, i + 8, i + 12) while the columns are in the form (4i, 4i + 1, 4i + 2, 4i + 3)
for 0 ≤ i ≤ 3. AES has Nr ∈ {10, 12, 14} rounds, formed by the transformations
AddRoundKey, SubBytes, ShiftRows, and MixColumns as follows.

1. The first round is preceded by a transformation denoted AddRoundKey.
2. The first Nr − 1 rounds are composed by 4 transformations:

(a) SubBytes Transformation: it is a non linear transformation of the state
and is represented by the S-box;

(b) ShiftRows Transformation: it is a circular shift on the rows of the state;
(c) MixColumns Transformation: it is a linear transformation of the state;
(d) AddRoundKey Transformation: it is a transformation of the state by

xoring a 128 bit key.
3. The final round is composed by the three transformations:

(a) SubBytes Transformation;
(b) ShiftRows Transformation;
(c) AddRoundKey Transformation.

SubBytes is the transformation that is based on the S-box. The security of AES
depends mainly on the structure of the S-box.

2.3 Structure of the AES S-box

AES uses the Galois field F28 , defined by

F28 = F2[t]/(t8 + t4 + t3 + t + 1),

where each byte b = (b7, b6, b5, b4, b3, b2, b1, b0) ∈ F
8
2 is mapped to the element

b7t
7 + b6t

6 + b5t
5 + b4t

4 + b3t
3 + b2t

2 + b1t + b0

of the Galois field F28 . For example, the byte 0x53 = (0, 1, 0, 1, 0, 0, 1, 1) is iden-
tified with the field element t6 + t4 + t + 1.

The AES S-box S is constructed by combining two transformations f and g
for x ∈ F28 by S(x) = g ◦ f(x) where



128 A. Nitaj et al.

1. The first transformation is the nonlinear function f defined by

f(x) =

{
0 if x = 0,

x−1 if x �= 0.

Hence, the function f maps zero to zero, and for a non-zero field element x,
it maps the element to its multiplicative inverse x−1 in F28 .

2. The second transformation g is the affine function defined by g(x) = Ax + b
where A is 8 × 8 bit-matrix and b is a constant. Namely, for a field element
x = (x7, x6, x5, x4, x3, x2, x1, x0), y = Ax + b with⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0
y1
y2
y3
y4
y5
y6
y7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here is an example showing S(0x53) = 0xed:

– 0x53 = (0, 1, 0, 1, 0, 0, 1, 1) is mapped to t6 + t4 + t + 1;
– the inverse of t6 + t4 + t + 1 modulo t8 + t4 + t3 + t + 1 is t7 + t6 + t3 + t so

f(t6 + t4 + t + 1) = t7 + t6 + t3 + t,

which is (1, 1, 0, 0, 1, 0, 1, 0) in binary form;
– apply the affine transformation g⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
0
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

– the S-box output is then (1, 1, 1, 0, 1, 1, 0, 1), that is 0xed.

2.4 Algebraic Complexity of AES S-box

The algebraic complexity of an S-box S is measured by the number of non trivial
monomials in the representation of S by a polynomial such that

S(x) = a255x
255 + a254x

254 + · · · + a1x + a0.
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The AES S-box is constructed using the function S(x) = g ◦ f(x) where f(x) =
x−1 = x254 and g(x) = Ax + B. Hence f is a power function and g is an affine
function. For a combination of such kind of functions, the following result fixes
the algebraic complexity (see [4]).

Theorem 1. Let S = g ◦ f be the function of an S-box on F
n
2 with a power

function f and an affine function g. Then the algebraic complexity of S is at
most n + 1.

The former result partially explains why the algebraic complexity of AES is 9 [4].

3 The Proposed S-box

In this section, we present the new S-box. We first define a 8×8 invertible matrix
A with components in F2 and two constants α, β ∈ F28 . The following result gives
the number of invertible matrices with entries in F2 (see [19], Section 3.3).

Lemma 1. Let Fq be a finite field with q elements. For n ≥ 2, let GL(n,Fq) be
the group of invertible n×n matrices with entries in Fq. The order of GL(n,Fq)
is

|GL(n,Fq)| =
n−1∏
k=0

(
qn − qk

)
.

For n = 8 and q = 2, the group GL(8,F2) of invertible 8× 8 matrices A with
entries in F2, the order is

|GL(8,F2)| = 5 348 063 769 211 699 200 ≈ 5.3 × 1018.

Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1
0 1 1 1 0 0 0 1
0 0 0 0 1 1 0 1
0 0 1 0 0 0 1 0
1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 0
1 1 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

α = 0xfe = (1, 1, 1, 1, 1, 1, 1, 0), β = 0x3f = (0, 0, 1, 1, 1, 1, 1, 1).

The new S-box is generated by the multivariate Boolean function SN defined for
x ∈ F28 by

SN (x) =

{
Ax+α
Ax+β , if Ax + β �= 0
0x01 if Ax + β = 0,

(1)

Here are two examples showing SN (0xdd) = 0xed and SN (0xfa) = 0x01.
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Example 1: SN (0xdd) = 0xed

– 0xdd = (1, 1, 0, 1, 1, 1, 0, 1) = (x7, x6, x5, x4, x3, x2, x1, x0)
– apply the affine transformation Ax + β⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1
0 1 1 1 0 0 0 1
0 0 0 0 1 1 0 1
0 0 1 0 0 0 1 0
1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 0
1 1 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

so Ax + β = (1, 0, 1, 1, 1, 0, 0, 0) = 0xb8
– apply the affine transformation Ax + α⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1
0 1 1 1 0 0 0 1
0 0 0 0 1 1 0 1
0 0 1 0 0 0 1 0
1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 0
1 1 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

so Ax + α = (0, 1, 1, 1, 1, 0, 0, 1) = 0x79
– Calculate the S-box value

SN (0xdd) =
Ax + α

Ax + β

=
0x79
0xb8

=
t6 + t5 + t4 + t3 + 1

t7 + t5 + t4 + t3

= t7 + t6 + t5 + t3 + t2 + 1 (mod t8 + t4 + t3 + t + 1)
= (1, 1, 1, 0, 1, 1, 0, 1)
= 0xed.

Example 2: SN (0xfa) = 0x01

– 0xfa = (1, 1, 1, 1, 1, 0, 1, 0) = (x7, x6, x5, x4, x3, x2, x1, x0)
– apply the affine transformation Ax + β⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1
0 1 1 1 0 0 0 1
0 0 0 0 1 1 0 1
0 0 1 0 0 0 1 0
1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 0
1 1 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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so Ax + β = (0, 0, 0, 0, 0, 0, 0, 0) = 0x00
– Therefore, using the definition of SN in (1), we get

SN (0xfa) = 0x01.

Applying the function SN to F28 , we get the new S-box presented in Table 1.

Table 1. The new S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 36 94 89 cb 77 96 d2 4b 05 f7 ab c5 6d a1 d6 5b

1 61 91 e7 d0 1f a9 43 1d 9b be f4 b8 42 63 87 bb

2 02 58 c3 ac e4 e5 eb b3 83 70 64 20 57 08 60 85

3 2f 90 07 ee 23 33 81 12 14 ea 39 21 62 cd 28 2e

4 2c f6 dd 25 bc 11 a7 e6 fd 53 98 9c 38 1b 5c 54

5 75 95 26 00 09 3b 44 9d 15 5d 1c 9a 5f c9 a4 78

6 5a f3 0b 0c e9 0a 06 3e 71 e1 fa f5 7f 65 19 df

7 8e 32 fb 74 50 d9 72 24 45 0f 69 76 da 41 b1 db

8 79 80 3a 49 e8 bf 73 16 18 8d ce a3 0e c6 ef e3

9 d7 99 6e 35 fc af a2 c1 de c2 1e d1 6c f1 aa 7e

a 8c 52 d4 4a 7c 93 f0 e2 d8 66 04 9e 84 3c 13 ae

b 86 88 a5 68 d3 37 3d 56 6a 5e 7a ad c8 b2 40 67

c 0d b7 46 7d a6 82 6b 3f 34 22 b0 c0 29 4e 59 7b

d c7 31 ba 47 fe c4 d5 e0 92 b9 10 a0 8b ed 55 97

e ca 1a f9 2a cc f2 4c 51 03 30 4d f8 b4 bd cf 48

f ec 2b 9f ff 27 17 b6 8f 8a b5 01 a8 6f 4f dc 2d

The inverse function of SN is S−1
N and is defined for a byte y by

S−1
N (y) =

{
A−1

(
βy+α
y+1

)
, if y �= 0x01

A−1β if y = 0x01.

The new inverse S-box is presented in Table 2.

4 Cryptographic Criteria of the New S-box

4.1 Linear Cryptanalysis of the New S-box

The resistance against linear cryptanalysis of a block cipher with an S-box func-
tion S over F2n is measured by the non-linearity parameter NL(S), defined as
(see [2], Section 3)

NL(S) = 2n−1 − 1
2

max
a∈F

n∗
2 ,b∈F

n
2

∣∣∣∣∣∣
∑

x∈F2n

(−1)a·S(x)⊕b·x

∣∣∣∣∣∣ ,
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Table 2. The new inverse S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 53 fa 20 e8 aa 08 66 32 2d 54 65 62 63 c0 8c 79

1 da 45 37 ae 38 58 87 f5 88 6e e1 4d 5a 17 9a 14

2 2b 3b c9 34 77 43 52 f4 3e cc e3 f1 40 ff 3f 30

3 e9 d1 71 35 c8 93 00 b5 4c 3a 82 55 ad b6 67 c7

4 be 7d 1c 16 56 78 c2 d3 ef 83 a3 07 e6 ea cd fd

5 74 e7 a1 49 4f de b7 2c 21 ce 60 0f 4e 59 b9 5c

6 2e 10 3c 1d 2a 6d a9 bf b3 7a b8 c6 9c 0c 92 fc

7 29 68 76 86 73 50 7b 04 5f 80 ba cf a4 c3 9f 6c

8 81 36 c5 28 ac 2f b0 1e b1 02 f8 dc a0 89 70 f7

9 31 11 d8 a5 01 51 05 df 4a 91 5b 18 4b 57 ab f2

a db 0d 96 8b 5e b2 c4 46 fb 15 9e 0a 23 bb af 95

b ca 7e bd 27 ec f9 f6 c1 1b d9 d2 1f 44 ed 19 85

c cb 97 99 22 d5 0b 8d d0 bc 5d e0 03 e4 3d 8a ee

d 13 9b 06 b4 a2 d6 0e 90 a8 75 7c 7f fe 42 98 6f

e d7 69 a7 8f 24 25 47 12 84 64 39 26 f0 dd 33 8e

f a6 9d e5 61 1a 6b 41 09 eb e2 6a 72 94 48 d4 f3

where u · v is the dot product of u and v, defined by

u · v = (un−1, · · · , u0) · (vn−1, · · · , v0) = un−1vn−1 ⊕ · · · ⊕ u0v0.

The non-linearity parameter NL(S) is upper bounded by 2n−1 − 2
n
2 −1 (see [6]).

For n = 8, the upper bound becomes 27 −23 = 120 while the non-linearity value
NL(S) is 112 for both AES S-box and the new S-box, which is very close to the
maximal value of perfect nonlinear function.

4.2 Differential Cryptanalysis of the New S-box

The resistance against differential cryptanalysis of a block cipher with S-box
function S over F2n is measured by the differential uniformity parameter δ(S),
defined as

δ(S) = max
(a,b)∈F

∗
2n×F2m

D(a, b),

where, for (a, b) ∈ F
2
2n ,

D(a, b) = |{x ∈ F2n | S(x) + S(x + a) = b}| ,

is the differential distribution of the S-box. For the new S-box, we have the
following properties which are similar than the AES S-box:
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– D(0, 0) = 256.
– For all a �= 0, D(a, 0) = 0.
– For all b �= 0, D(0, b) = 0.
– For all a �= 0, |{b ∈ F2n |D(a, b) = 0}| = 129.
– For all b �= 0, |{a ∈ F2n |D(a, b) = 0}| = 129.
– For all a �= 0, |{b ∈ F2n |D(a, b) = 2}| = 126.
– For all b �= 0, |{a ∈ F2n |D(a, b) = 2}| = 126.
– For all a �= 0, |{b ∈ F2n |D(a, b) = 4}| = 1.
– For all b �= 0, |{a ∈ F2n |D(a, b) = 4}| = 1.
– For all δ �∈ {0, 2, 4},

∣∣{(a, b) ∈ F
2
2n |D(a, b) = δ}∣∣ = 0.

The lower bound of the differential uniformity for an S-box defined over F2n is
2 [3]. The maximal differential uniformity for the new S-box is 4, which is similar
than the AES S-box (see [3,4]).

4.3 Bit Independence Criterion (BIC) of the New S-box

The bit independence criterion (BIC) was introduced by Webster and Tavares
in [18]. It states that, if any input bit i is inverted in x, this changes any output
bits j and k without any dependence on each other. This is useful to avoid any
statistical pattern or statistical dependencies between output bits of the output
vectors. Hence, for a strong S-box, the dependence between output bits should
be as small as possible.

Definition 1. Let S : F2n → F2n be a multivariate Boolean function defining
an S-box. Let αi = (δi,n−1, . . . , δi,0) where δi,i = 1 and δi,j = 0 if i �= j. For all
x ∈ F2n , the corresponding vector to S(x) ⊕ S(x ⊕ αi) is

v(i, x) = (ai,n−1(x), . . . , ai,0(x))) .

The list (ai,j(x)) of all x ∈ F2n is denoted ai,j.

The correlation coefficient of (ai,j , ai,k) is defined as

corr(ai,j , ai,k) =
1
2n

(∑
x∈F2n

ai,j(x)ai,k(x)
)

− E(ai,j)E(ai,k)√
E

(
a2

i,j

) − (E(ai,j))
2 ·

√
E

(
a2

i,k

)
− (E(ai,k))2

,

where E(t) is the expected value of the list t.
A bit independence parameter corresponding to the independence of the

output bits j and k under the effect of the change of the input bit i is defined as

BIC(j, k) = max
0≤i≤n−1

corr(ai,j , ai,k).

The table of BIC(i, j), 0 ≤ i, j ≤ 7, for the new S-box is listed in Table 3. For
comparison, the table of BIC(i, j), 0 ≤ i, j ≤ 7, for the AES S-box is listed in
Table 4.
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Table 3. Table of BIC(aj , ak) for the New S-box

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

j = 0 1 0.090 0.097 0.12 0.097 0.067 0.12 0.090

j = 1 0.090 1 0.12 0.093 0.098 0.094 0.12 0.097

j = 2 0.097 0.12 1 0.095 0.12 0.095 0.10 0.12

j = 3 0.12 0.093 0.095 1 0.064 0.12 0.12 0.12

j = 4 0.097 0.098 0.12 0.064 1 0.12 0.064 0.072

j = 5 0.067 0.094 0.095 0.12 0.12 1 0.093 0.093

j = 6 0.12 0.12 0.10 0.12 0.064 0.093 1 0.059

j = 7 0.090 0.097 0.12 0.12 0.072 0.093 0.059 1

Table 4. Table of BIC(aj , ak) for the AES S-box

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

j = 0 1 0.098 0.12 0.12 0.12 0.13 0.066 0.095

j = 1 0.098 1 0.098 0.13 0.067 0.12 0.098 0.12

j = 2 0.12 0.098 1 0.12 0.097 0.067 0.098 0.12

j = 3 0.12 0.13 0.12 1 0.12 0.13 0.066 0.096

j = 4 0.12 0.067 0.097 0.12 1 0.097 0.12 0.066

j = 5 0.13 0.12 0.067 0.13 0.097 1 0.10 0.071

j = 6 0.066 0.098 0.098 0.066 0.12 0.10 1 0.098

j = 7 0.095 0.12 0.12 0.096 0.066 0.071 0.098 1

For the whole S-box, defined by the function S, the bit independence criterion
parameter is defined as

BIC(S) = max
0≤j<k≤n−1

BIC(j, k).

For the new S-box, the BIC value is 0.12. This is better than the BIC of the
AES S-box which is 0.13.

4.4 Periodicity of the New S-box

The periodicity of an S-box is related to the number of minimum compositions
to get the identity function (see [5,16]).

Definition 2. Let S : F2n → F2n be the function defining an S-box. For x ∈ F2n ,
the period of x under S is the smallest positive integer n such that Sn(x) = x.

It is shown in Table 5 that in AES, there are 5 possible periods, namely 2,
27, 59, 81 and 87 containing respectively 2, 27, 59, 81 and 87 different elements
of F28 .

For the new S-box, as shown in Table 6, 256 is the unique period so that the
distribution of elements of F28 is more balanced for the periodicity criterion.
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Table 5. Periodicity of the AES S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 59 81 59 59 87 59 59 59 87 81 87 27 81 81 81 59

1 81 81 81 81 27 87 81 81 87 59 81 87 87 87 81 87

2 59 59 87 27 59 59 27 81 87 59 87 27 87 27 59 87

3 87 59 27 59 87 87 59 87 59 81 81 87 81 81 87 59

4 81 81 87 81 87 27 87 81 59 87 87 81 59 81 87 81

5 87 87 59 87 59 87 27 81 59 87 87 81 87 59 59 81

6 87 27 81 59 81 81 59 87 27 87 59 59 87 81 27 59

7 87 87 81 2 81 59 59 59 81 87 81 59 81 81 81 59

8 81 81 81 81 81 87 87 81 87 87 81 81 81 59 59 2

9 87 81 81 87 87 87 87 87 87 87 87 27 87 59 27 27

a 81 27 81 87 87 59 59 87 59 59 81 81 81 87 87 87

b 87 27 87 81 59 59 87 59 87 27 87 81 81 81 87 87

c 87 81 59 59 87 59 59 59 27 81 81 87 81 81 81 81

d 87 87 59 59 59 59 87 81 27 87 81 27 87 81 87 27

e 81 81 87 81 87 87 59 87 27 81 81 81 81 87 87 27

f 81 27 87 81 87 59 87 27 81 87 27 59 87 59 81 81

4.5 Fixed and Opposite Points

Definition 3. The opposite of x ∈ F28 is the field element x̄ ∈ F28 such that
x + x̄ = 0xff .

The AES S-box has no fixed point, that is S(x) �= x and no opposite fixed points,
that is S(x) �= x̄) for all x ∈ F28 (see [6]). Similarly, the new S-box has no fixed
points and no opposite fixed points.

4.6 Algebraic Complexity of the New S-box

Let S be an S-box over F2n . Then S is completely defined by the set
{(xi, yi) | xi ∈ F2n , yi = S(xi)}. A polynomial expression for S is determined
by Lagrange’s interpolation polynomial

P (x) =
n∑

i=1

yiLi(x), Li(x) =

∏
j �=i(x − xj)∏
j �=i(xi − xj)

.

The polynomial P (x) is of degree of at most 2n−1 and the number of its non-zero
monomials is called the algebraic complexity. For AES, the polynomilal is [4]

P (x) = 05x254 + 09x253 + f9x251 + 25x247 + f4x239 + 01x223 + b5x191

+ 8fx127 + 63,
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Table 6. Periodicity of the new S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

1 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

2 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

3 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

4 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

5 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

6 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

7 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

8 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

9 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

a 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

b 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

c 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

d 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

e 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

f 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

which shows that the algebraic complexity for AES is 9. For the new S-box, the
polynomial is of the form

P (x) =
255∑
i=0

aix
i,

where the list of the coefficients ai is listed in Table 7. From this table, we see
that the algebraic complexity of the new S-box is 255, which is optimal and
makes it more resistant to possible algebraic attacks than the AES S-box.

Similarly, the algebraic expression of the inverse of the new S-box is presented
in Table 8 and has 254 monomials which is almost optimal.

4.7 Strict Avalanche Criterion (SAC) of the New S-box

In [18], Webster and Tavares introduced an important criterion for strong
S-boxes, called strict avalanche criterion (SAC). This criterion states that a
single bit change in the input of a strong S-box should change the output bit
with probability approaching 1

2 .

Definition 4. A vectorial Boolean function S : F2n → F2n satisfies SAC if and
only if for all i, 0 ≤ i ≤ n − 1,∑

x∈F2n

f(x) ⊕ S(x ⊕ αi) =
(
2n−1, . . . , 2n−1

)
,
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Table 7. Algebraic expression of the new S-box

f e d c b a 9 8 7 6 5 4 3 2 1 0

f 00 b6 6c 30 3e 32 e5 06 68 b2 9c 8e 54 b9 0d c8

e 01 c0 6d aa 3a 0c 1a 7e eb 52 48 4e b5 cf 8a 5c

d 56 5b 1d 0b 42 43 4d 06 5c 15 37 49 02 ea e9 d6

c c4 35 b7 f2 ca d0 0c 9a 28 ba 1c 8a d7 ef 31 be

b 2e ac b5 6e b1 6c 18 61 a3 06 8f c4 10 0e 3b c1

a ff 55 f8 60 99 0c b8 3a 88 90 ad c6 61 83 a7 16

9 a4 48 5a 1b a4 1f b8 c4 3c af d5 33 4d 90 7d 60

8 cf 65 7e 5d bb 43 b4 41 95 6c 0c 86 e0 02 b2 93

7 a2 6f c6 e1 1d 71 6a 93 9d 12 c6 9f d4 5e c7 84

6 c3 84 1f 38 6e a9 52 ea 98 97 ec 1f bd 12 c4 32

5 49 ae 1a 63 b4 fe 7b b4 e7 f4 04 2b f8 e4 f2 47

4 fa e3 04 c6 72 f8 fb 2c bf c8 e6 e1 0c 2a 2d 4a

3 e5 c3 73 0c 99 8a 8d a9 25 39 16 c1 1b 3f c0 19

2 5d fd 9b 5d fb 1d f9 c7 a8 c4 03 48 63 63 15 83

1 f6 50 18 50 3c 57 96 0b dc dd 41 a0 fd 05 e7 50

0 13 66 d8 f8 fa ea 93 72 a7 1d 5b 5e 0b 75 45 36

where the binary representation of αi ∈ F2n is a vector of length n with a 1 in
the ith position and 0 elsewhere.

Consequently, an S-box having a value of SAC closer to
(
2n−1, . . . , 2n−1

)
has a

good SAC property. Table 9 gives the SAC values of the new S-box and Table 10
gives the Sac values of the AES S-box.

From Table 9 and Table 10, we see that the mean value for SAC for the new
S-box is 128.625 while it is 129.25 for the AES S-box.

4.8 Distance to SAC of the New S-box

In general, the SAC criterion is not absolutely performed by an S-box. A practical
way to measure the deviation of the SAC the S-box is to compute the distance
to sac.

Definition 5. Let S : F2n → F2n be the function defining an S-box such that

S(xn−1, . . . , x0) = (fn−1(x), . . . , f0(x0)) .

The distance to SAC of S is the value

DSAC(S) =
n−1∑
j=0

n−1∑
i=0

∣∣∣∣∣∣
∑

x∈F2n

fi(x ⊕ αj) ⊕ fi(x) − 2n−1

∣∣∣∣∣∣ .
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Table 8. Algebraic expression of the inverse of the new S-box

f e d c b a 9 8 7 6 5 4 3 2 1 0

f 00 b6 f2 44 37 81 c5 73 49 ff bb 0d 7e c8 8c 3a

e 01 b7 f3 45 36 80 c4 72 48 fe ba 0c 7f c9 8d 3b

d d7 61 25 93 e0 56 12 a4 9e 28 6c da a9 1f 5b ed

c d6 60 24 92 e1 57 13 a5 9f 29 6d db a8 1e 5a ec

b 65 d3 97 21 52 e4 a0 16 2c 9a de 68 1b ad e9 5f

a 64 d2 96 20 53 e5 a1 17 2d 9b df 69 1a ac e8 5e

9 b2 04 40 f6 85 33 77 c1 fb 4d 09 bf cc 7a 3e 88

8 b3 05 41 f7 84 32 76 c0 fa 4c 08 be cd 7b 3f 89

7 20 96 d2 64 17 a1 e5 53 69 df 9b 2d 5e e8 ac 1a

6 21 97 d3 65 16 a0 e4 52 68 de 9a 2c 5f e9 ad 1b

5 f7 41 05 b3 c0 76 32 84 be 08 4c fa 89 3f 7b cd

4 f6 40 04 b2 c1 77 33 85 bf 09 4d fb 88 3e 7a cc

3 45 f3 b7 01 72 c4 80 36 0c ba fe 48 3b 8d c9 7f

2 44 f2 b6 00 73 c5 81 37 0d bb ff 49 3a 8c c8 7e

1 92 24 60 d6 a5 13 57 e1 db 6d 29 9f ec 5a 1e a8

0 93 25 61 d7 a4 12 56 e0 da 6c 28 9e ed 5b 1f 53

Table 9. SAC of the new S-box

αi Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 2 Bit 1

00000001 120 120 132 136 132 132 136 120

00000010 136 140 132 128 124 124 132 140

00000100 128 120 136 128 136 132 116 124

00001000 136 128 132 132 132 120 128 120

00010000 128 140 124 124 116 128 128 116

00100000 136 120 128 132 132 132 128 132

01000000 128 128 144 124 128 116 120 120

10000000 124 132 132 124 128 132 124 128

where the binary representation of αj ∈ F2n is a vector of length n with a 1 in
the jth position and 0 elsewhere.

A strong S-box should have a small DSAC. From Table 10, we find that DSAC
for the AES S-box is 432 (see [5]) while Table 9 shows that DSAC for the new
S-box 328.
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Table 10. SAC of the AES S-box

αi Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 2 Bit 1

00000001 128 116 124 116 144 116 132 132

00000010 136 128 116 124 128 144 124 120

00000100 128 136 128 124 120 128 132 132

00001000 140 128 136 128 116 120 136 136

00010000 136 140 128 128 132 116 128 116

00100000 136 136 140 120 120 132 132 116

01000000 124 136 136 120 132 120 136 136

10000000 132 124 136 124 136 132 144 132

5 Comparison with Existing S-boxes

In Table 11, we listed the performance of the AES S-box, the S-box proposed
by Cui et al. [5] and the new S-box. The table shows that, for all cryptographic
criteria, the performance of the new S-box is equal or better than the former
ones and they are closer to the performances of an optimal S-box. This implies
that the new S-box has better security than the former ones and is suitable for
use in AES.

Table 11. Comparison of the new S-box with two former S-boxes

Criterion AES S-box Cui et al. S-box [5] New S-box Optimal value

Linear cryptanalysis 112 112 112 120

Differential cryptanalysis 4 4 4 4

Periodicity Less than 87 256 256 256

Algebraic complexity 9 255 255 255

Inverse algebraic complexity 255 253 254 255

Mean of SAC 129.25 127.9375 128.25 128

Distance to SAC 432 372 328 0

Maximal BIC 0.13 0.13 0.12 0

6 Conclusion

In this paper, we presented a new S-box for the AES encryption scheme and
analyzed its security by studying the main cryptographic criteria. For all the
criteria, the performances of the new S-box are at least as good as the per-
formances of the existing S-boxes. More specifically, the new S-box has better
distance to SAC, better BIC and better algebraic complexity.



140 A. Nitaj et al.

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

2. Carlet, C.: Vectorial boolean functions for cryptography. In: Crama, Y.,
Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Sci-
ence, and Engineering. Encyclopedia of Mathematics and its Applications, pp.
398–470. Cambridge University Press, Cambridge (2010)

3. Canteaut, A.: Lecture Notes on Cryptographic Boolean Functions, 10 March 2016.
https://www.rocq.inria.fr/secret/Anne.Canteaut/poly.pdf

4. Cui, L., Cao, Y.: A new S-box structure named affine-power-affine. Int. J. Innov.
Comput. Inf. Control 3(3), 751–759 (2007)

5. Cui, J., Huang, L., Zhong, H., Chang, C., Yang, W.: An improved AES S-box and
its performance analysis. Int. J. Innov. Comput. Inf. Control 75(A), 2291–2302
(2011)

6. Daemen J., Rijmen V.: AES Proposal: Rijndael (1999). https://csrc.nist.gov/
csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-
development/rijndael-ammended.pdf

7. Data Encryption Standard, National Bureau of Standards, NBS FIPS PUB 46.
U.S. Department of Commerce (1977)

8. Detombe, J., Tavares, S.: Constructing large cryptographically strong S-boxes. In:
Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 165–181.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 60

9. Dragomir, I.R., Lazar, M.: Generating and testing the components of a block
cipher. In: 8th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), Ploiesti, pp. 1–4 (2016)

10. Juremi, J., Mahmod, R., Sulaiman, S.: A proposal for improving AES S-box
with rotation and key-dependent. In: Proceedings of the International Conference
on Digital Cyber Security, CyberWarfare and Digital Forensic, Kuala Lumpur,
Malaysia, pp. 26–28 (2012)

11. Ma, H., Liu, L.: Algebraic expression for AES S-box and InvS-box. Comput. Eng.
32(18), 149–151 (2006)

12. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

13. National Institute of Standards and Technology: Federal Information Process-
ing Standards Publication 197: Announcing the Advanced Encryption Stan-
dard (AES). http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. Accessed
09 June 2019

14. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760 29

15. Sahoo, O.B., Kole, D.K., Rahaman, H.: An optimized S-box for advanced encryp-
tion standard (AES) design. In: Proceedings of the International Conference on
Advanced Computer Communication, Chennai, India, pp. 3–5 (2012)

16. Wang, Y.B.: Analysis of structure of AES and its S-box. J. PLA Univ. Sci. Technol.
3(3), 13–17 (2002)

17. Wang, H., Zheng, H., Hu, B., Tang, H.: Improved lightweight encryption algorithm
based on optimized S-box. In: 2013 International Conference on Computational and
Information Sciences, Shiyang, pp. 734–737 (2013)

https://doi.org/10.1007/BF00630563
https://www.rocq.inria.fr/secret/Anne.Canteaut/poly.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://doi.org/10.1007/3-540-57220-1_60
https://doi.org/10.1007/3-540-48285-7_33
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://doi.org/10.1007/11502760_29
https://doi.org/10.1007/11502760_29


A New Improved AES S-box with Enhanced Properties 141

18. Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 41

19. Wilson, R.A.: The Finite Simple Groups. Graduate Texts in Mathematics, vol.
251. Springer, London (2009). https://doi.org/10.1007/978-1-84800-988-2

20. Zahid, A.H., Arshad, M.J.: An innovative design of substitution-boxes using cubic
polynomial mapping. Math. Comput. Sci. Symmetry 11(3), 437 (2019)

21. Zahid, A.H., Arshad, M.J., Ahmad, M.: A novel construction of efficient
substitution-boxes using cubic fractional transformation. Entropy 21(3), 245
(2019)

https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/978-1-84800-988-2


Galaxy: A Family of Stream-Cipher-Based
Space-Hard Ciphers

Yuji Koike1(B), Kosei Sakamoto1, Takuya Hayashi2, and Takanori Isobe1,3

1 University of Hyogo, Hyogo, Japan
{aa19s503,takanori.isobe}@ai.u-hyogo.ac.jp, k.sakamoto0728@gmail.com

2 Digital Garage, Inc., Tokyo, Japan
contact@tak884.jp

3 National Institute of Information and Communications Technology, Tokyo, Japan

Abstract. Whitebox cryptography seeks to ensure the security of cryp-
tographic algorithms against adversaries who have unlimited access to
the environments for their implementation. At ACM CCS 2015, Bog-
danov and Isobe proposed a security notion called space hardness and
a secure block cipher named SPACE in the whitebox setting. SPACE is
a table-based cryptographic primitive whose table comprises the pairs
of inputs to a block cipher such as AES and the corresponding outputs.
In line with SPACE, other whitebox cryptographic schemes were pro-
posed and offer sufficient security as SPACE does. However, there is still
room for improvement in the performance of their encryption and table
generation. In this paper, we propose a new family of whitebox cryp-
tographic primitives called Galaxy to enhance the performance of the
encryption and table generation. Galaxy employs a stream cipher to gen-
erate the table instead of a block cipher. The security of Galaxy against
key-extraction attacks in the whitebox setting is reduced to the key-
extraction problem for the stream cipher in the blackbox setting. Addi-
tionally, we utilize type-2 generalized Feistel network with optimal shuffle
layers for the algorithm of Galaxy to improve the encryption performance.
Type-2 generalized Feistel network enables parallel table lookups in the
algorithm of Galaxy. As a result, we successfully increase the speed of
encryption by 1.3–15 times. Besides, when we use chacha for table gener-
ation of Galaxy and AES for other existing block-cipher-based whitebox
schemes, we can create the table of Galaxy 1.5–10 times faster than that
of other existing whitebox schemes.

Keywords: Whitebox cryptography · Space hardness · Code lifting ·
Decomposition · Key extraction · Block cipher · Stream cipher

1 Introduction

Whitebox cryptography, first introduced by Chow et al. in 2002 [6], aims to pro-
tect cryptographic implementation in software under the circumstances where
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adversaries have unlimited access to the environments for their implementation.
This situation is called whitebox setting, where adversaries are assumed to have
control over the execution environment and allowed to observe and modify inter-
nal values of the cryptographic algorithm, in contrast to the standard setting
called the blackbox setting where it is assumed that the adversaries can only
observe the input and output of cryptographic algorithms. Whitebox cryptog-
raphy draws more attention from application vendors, considering the immense
demand for security solutions in electronic devices without hardware support
such as hardware security module and secure enclave.

Whitebox cryptography, precisely the implementation of DES and AES in
the whitebox context, was first introduced by Chow et al. [6,7] in 2002. Their
method is to represent algorithms of DES and AES in the form of continual
lookups in the tables which are created by secret key and components of cryp-
tographic operation (i.e. DES or AES). After these pioneering works, several
derived whitebox implementations were proposed, but all of them up to date
were broken by key extraction and table-decomposition attacks.

At ACM CCS 2015, Bogdanov and Isobe proposed a security notion called
space hardness and a secure block cipher named SPACE in the whitebox set-
ting [2]. SPACE is a table-based block cipher whose table is composed of some
pairs of the input to an underlying block cipher such as AES and the correspond-
ing output. SPACE uses the table as a large secret key. In SPACE, the difficulty
to extract the master key used to generate the table in the whitebox setting is
reduced to the difficulty to recover the secret key of the underlying block cipher
such as AES in the blackbox setting. Space hardness is a security notion which
shows the relationship between the amount of stolen table data and the corre-
sponding security level. SPACE provides (T/4, 128)-space hardness. This means
even if the adversary successfully steals one fourth of the table for SPACE, the
probability that (s)he, with knowledge of the partial table, can correctly encrypt
(decrypt) a plaintext (ciphertext) is 2−128. There also exist other symmetric
cryptographic schemes which are secure in the whitebox setting, such as White-
Block [9], and WEM [5]. WhiteBlock alternates with table lookups and a call to a
block cipher (e.g. AES) as a permutation in each round. The way to generate the
table in WhiteBlock is quite similar to the way in SPACE with the slight differ-
ence of which bits to discard. Thus, just like SPACE, the security of WhiteBlock
against key extraction in the whitebox setting is reduced to the key recovery
problem for the underlying block cipher such as AES. Similar to WhiteBlock,
WEM looks up values in tables and calls a round-reduced block cipher (e.g.
five-round AES) interchangeably. Different from other whitebox-friendly block
ciphers, WEM uses the Fisher-Yates algorithm seeded by outputs of a block
cipher (e.g. AES) to create a table. All the existing dedicated block ciphers for
the whitebox setting offer sufficient security both in the whitebox context and
the standard blackbox context.

However, there is still room for enhancement in the performance of their
encryption and table generation. For those ciphers, generating their tables costs
too much computational resources. For example, SPACE and WhiteBlock require
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many calls to a block cipher such as AES to generate a table, i.e., they require
encryption of a long message for their table generation. WEM takes another
strategy for table generation: it employs the Fisher-Yates algorithm seeded by
outputs of a block cipher such as AES, but this algorithm itself is inefficient. As
a consequence, they are not applicable to the protocols which require frequent
updates of the secret key, such as SSL/TLS, QUIC transport protocol [12], and
Signal protocol [13]. Regarding the encryption performance, SPACE is a target
heavy generalized Feistel network, which prevents it from parallel table lookups
in each round. As a result, SPACE requires at least 128 rounds for the encryption
(decryption) to ensure sufficient security. Although the algorithm of WhiteBlock
and WEM enables parallel table lookups, they call a full-round block cipher or
round-reduced block cipher as a permutation, which has a negative influence on
the encryption performance.

To improve the performance of encryption and table generation, we propose
Galaxy, a new family of whitebox secure block ciphers. In Galaxy, we employ
a stream cipher as an underlying cipher to generate the table. Stream ciphers
generally facilitate faster encryption of a long message than block ciphers do in
software, which enables faster table generation. In addition, utilizing a stream
cipher to generate a table for Galaxy makes it possible to reduce the security
of Galaxy against key extraction in the whitebox setting to the difficulty of key
recovery attacks on the stream cipher in the standard blackbox setting.

However, utilizing a stream cipher as an underlying cipher for Galaxy brings
a single disadvantage: a table made out of output from the stream cipher is
not a bijective mapping, which prevents us from choosing SPN as a structure
of algorithm for Galaxy. Therefore, we employ the Feistel structure for Galaxy
to deal with this problem. Specifically, we use type-2 Generalized Feistel Net-
work (abbreviated as GFN-2) for the algorithm of Galaxy. To optimize the
encryption speed, we exploit optimal permutations for GFN-2 found in previous
works [4,8,15,16]. We introduce three instances of Galaxy: Galaxy-8, Galaxy-16,
and Galaxy-32, and present security evaluations of them both in the blackbox con-
text and the whitebox context. In the blackbox context, we evaluate the security
against the differential attack, linear attack, impossible differential attack, and
integral attack by Mix Integer Linear Programming (abbreviated as MILP) [14].
In the whitebox context, we evaluate the security against key extraction attacks
and the code lifting attack. In addition, we give experimental measurements of
these implementations whose total numbers of rounds are based on the security
evaluation results. It is shown that while keeping the same security level, Galaxy
achieves speed-ups of approximately 1.3–15 times in encryption and 1.8–10 times
in table generation, compared with SPACE, WhiteBlock, and WEM.

Note that taking advantage of a stream cipher as an underlying cipher may
reduce the performance of encryption (decryption) in the blackbox setting i.e.,
with non-table-based implementation. However, in a lot of real world applica-
tions such as Digital Rights Management (abbreviated as DRM) or Host Card
Emulation (abbreviated as HCE), whitebox ciphers are used in the whitebox con-
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text and implemented with the table. Therefore, the implementation of Galaxy
in the blackbox context is out of our focus.

2 Preliminaries

In this section, we introduce a security notion used to evaluate the security of
Galaxy, and give a brief description of other existing space-hard ciphers.

2.1 Space Hardness

At ACM CCS 2015, Bogdanov and Isobe introduced a new security notion called
space hardness to evaluate the difficulty for compression of cryptographic imple-
mentations while keeping the same functionality. The definition of space hardness
is given as follows.

Definition 1 ((M,Z)-space hardness [2]). Block cipher EK is an (M,Z)-
space hard cipher if it is computationally difficult to encrypt (decrypt) randomly
chosen plaintext (ciphertext) with the probability of more than 2−Z in the situa-
tion where the adversary is given code (table) size of less than M .

Space hardness aims at measuring the security against the code lifting attack
where the adversary copies the implementation code and uses it as an effective
large secret key in a stand-alone way. For instance, (T/4, 128)-space hard cipher
EK denotes that even if the adversary obtains one fourth of T , the (s)he can
not correctly encrypt (decrypt) the randomly drawn plaintext (ciphertext) with
the probability of more than 2−128, where T is the code size (table size) of block
cipher EK .

2.2 Space-Hard Block Cipher SPACE

Bogdanov and Isobe proposed SPACE, which is a block cipher with the property
of space hardness [2]. SPACE is an l-line target-heavy generalized Feistel network
(shown in Fig. 1) which encrypts an n-bit plaintext with a secret key K into an
n-bit ciphertext where the size of each line is na (= n/l) bits.

Let the state in r-th round of total rounds R be Xr = {xr
0, x

r
1, ..., x

r
l−1},

xr
i ∈ {0, 1}na . Then, it is updated as:

Xr+1 = (F r
na

(xr
0) ⊕ (xr

1 ‖ xr
2 ‖ ... ‖ xr

l−1)) ‖ xr
0,

where ‖ denotes concatenation, and F r
na

is a following na bit to nb(= n − na)
bit function (shown in Fig. 2):

F r
na

(x) = (msbnb
(EK(C0 ‖ x))) ⊕ r,

where EK is a block cipher which takes an n-bit input and a k-bit secret key K,
msbnb

(x) takes the most significant nb bits of x, and C0 denotes nb-bit zero.
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Fig. 1. Round function of SPACE

Fig. 2. F function of SPACE: F r
na

(x) = (msbnb(EK(C0 ‖ x))) ⊕ r

Let Fna
(x) = (msbnb

(EK(C0 ‖ x))). Then, Fna
is implemented in the white-

box setting as F
′
na

which is a table comprising 2na entries of na-bit inputs x and
the corresponding nb-bit outputs Fna

(x), i.e., each of the 2na entries for F
′
na

is
(x, Fna

(x)) : x ∈ {0, 1}na , Fna
(x) ∈ {0, 1}nb . In the whitebox setting, SPACE

uses the only F
′
na

as the secret key.

Variants of SPACE. SPACE has following four variants of SPACE-(na, R)
with different table size where R is the total number of round.

– SPACE-(8, 300): n = 128, l = 16, na = 8, F r
8 : {0, 1}8 → {0, 1}120

– SPACE-(16, 128): n = 128, l = 8, na = 16, F r
16 : {0, 1}16 → {0, 1}112

– SPACE-(24, 128): n = 128, l = 16, na = 24, F r
24 : {0, 1}24 → {0, 1}104

– SPACE-(32, 128): n = 128, l = 4, na = 32, F r
32 : {0, 1}32 → {0, 1}96

In the whitebox setting in order to generate table F
′
na

of each variant, the under-
lying cipher EK such as AES is called 28 times 216 times 224 times, and 232 times
for SPACE-(8, 300), SPACE-(16, 128), SPACE-(24, 128), and SPACE-(32, 128),
respectively.

Security of SPACE. The security of SPACE against key recovery attacks in
the whitebox setting is reduced to the key-extraction security of the underlying
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block cipher EK in the blackbox setting. Therefore, as long as EK is secure
against key recovery attacks in the blackbox setting, it is computationally diffi-
cult to mount such attacks on SPACE in the whitebox setting. Moreover, each
variant of SPACE provides (T/4, 128)-space hardness where T denotes the size
of table F

′
na

. This means even if the adversary successfully obtains one fourth of
the table of SPACE, the probability that (s)he can correctly encrypt (decrypt)
a plaintext (ciphertext) is 2−128. For a better understanding, let me give the
decryption phase in SPACE as an instance. The decryption in SPACE is based
on continual table lookups, and each table lookup is independent. (the encryp-
tion in SPACE is same as the decryption). If the adversary successfully extracts
the entire table, the probability that (s)he can produce a correct intermediate
value in each round by a table lookup with the stolen table is 1, and (s)he can
always decrypt arbitrary ciphertexts. However, in the case of (T/4, 128)-space
hardness, (s)he has only one fourth of the table. Assuming that the adversary
has to look up a value in the stolen table based on the pseudo random input
each round, the probability that (s)he can produce a correct intermediate value
in each round by querying the value in the stolen table is 1/4(=2−2). Hence,
the probability that (s)he can produce all the correct intermediate values and
successfully decrypt arbitrary ciphertexts of SPACE is (1/4)R(=(2−2)R), where
R denotes total rounds of cryptographic operation for SPACE, and SPACE has
enough rounds R to ensure (T/4, 128)-space hardness.

2.3 Other Existing Space-Hard Ciphers Based on Block Cihper

WhiteBlock. At ASIACRYPT 2016, Fouque et al. proposed another secure
block cipher in whitebox setting WhiteBlock [9]. It is one of Feistel ciphers which
encrypts a 128-bit plaintext with multiple secret keys into a 128-bit ciphertext
where the size of each secret key is 128 bits. The structure of WhiteBlock is made
up of two components: it alternates with table lookups and a call to a block cipher
(such as AES) as a permutation in each round. The way to generate a table in
WhiteBlock is quite similar to the one as in SPACE with a slight difference
of which bits to truncate. However different from SPACE, it generates several
tables with different secret keys and uses them as large secret keys.

WEM. At CT-RSA 2017, Cho et al. proposed an Even-Mansour-based whitebox
block cipher called WEM [5]. It is an Even-Mansour-like cipher which encrypts
a 128-bit plaintext with a secret key into a 128-bit ciphertext where the size of
the secret key is 128 bits. The difference between the Even-Mansour structure
and WEM is that WEM replaces key addition operation in the Even-Mansour
structure with table lookups and employs a round-reduced block cipher (e.g. five-
round AES as in their original paper) as a public permutation. The value of the
secret key for the round-reduced block cipher which is the public permutation
is 128-bit zero. The several tables in WEM are created by the Fisher-Yates
algorithm seeded by the outputs of an underlying block cipher in counter mode
(e.g. AES-CTR).
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SPNbox. At ASIACRYPT 2016, Bogdanov, Isobe, and Tischhauser proposed
another dedicated block cipher called SPNbox for the whitebox setting [3]. It is
an AES-based block cipher which encrypts a 128-bit plaintext with a secret key
into a 128-bit ciphertext where the size of the secret key is 128 bits. The algorithm
of SPNbox is composed of three layers: a nonlinear substitution layer, a linear
diffusion layer, and an affine layer. In the nonlinear substitution layer, several
values are queried in a single table which is generated from the combination of
AES S-box, a diffusion operation based on MixColumns operation of AES, and
the secret key.

SPNbox is not a generic whitebox cipher in the sense that it can not deploy
any well-studied block ciphers (e.g. AES) as an underlying cipher for table gen-
eration. This is because SPNbox employs a dedicated cipher as an underlying
cipher for table generation which has gone through a bare minimum of security
evaluation so far. As a consequence, in contrast to the other existing whitebox
ciphers, the key extraction security of SPNbox in the whitebox context is reduced
to the key extraction problem not for well-studied block ciphers such as AES,
but for the “poorly-studied” block cipher.

Therefore, SPNbox is out of our focus when we compare the performance of
Galaxy with other whitebox ciphers.

2.4 Downside of Existing Block-Cipher-Based Space-Hard Ciphers

Existing block-cipher-based space-hard ciphers offer sufficient security both in
the whitebox setting and blackbox setting. However, they have the following
downsides.

1. Inefficiency of generating a table.
2. Inefficiency of encryption/decryption.

Regarding the first one, assuming AES is the underlying block cipher EK ,
SPACE-32 requires 232 times of AES encryption calls to generate a table. Even
worse, WhiteBlock-32 requires 233 times of AES encryption calls, as it generates
two tables. When it comes to WEM, it uses the Fisher-Yates algorithm seeded by
outputs of the block cipher such as AES, and the Fisher-Yates algorithm itself is
inefficient. Due to this downside, they are not applicable to the protocols which
require frequent key updates, such as SSL/TLS, QUIC transport protocol [12],
and Signal protocol [13].

Regarding the second one, since SPACE is a target heavy generalized Feistel
network, it requires at least 128 rounds for encryption (decryption) to ensure
sufficient security, which is inefficient. The other two whitebox ciphers have much
fewer rounds than SPACE does, but they use a block cipher (full rounds or five
rounds of AES in their original paper) as a permutation, which has a negative
impact on the performance of the cryptographic algorithm. Note that FPL, which
was published very recently at CT-RSA 2020 [11] has the same downsides
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3 Design Goal

In this paper, we propose a new family of space-hard ciphers called Galaxy, which
addresses the issues mentioned in Sect. 2.4.

First of all, in order to cope with the 1st issue, we utilize the stream cipher
rather than the block cipher as the underlying cipher. While WEM uses out-
puts of the block cipher as seeds to generate the random permutation (WEM
indirectly uses outputs of the block cipher for table generation), Galaxy directly
utilizes the output of a stream cipher for table generation. It enables that the
security of Galaxy against key extraction from the table in the whitebox setting
is reduced to the problem of key recovery for stream ciphers in the blackbox
setting. In addition, as opposed to block ciphers, stream ciphers can output a
sequence of key stream with flexible stream size, which enables us to generate
the table for a cryptographic algorithm without truncation of any bits of output.
Besides, especially for software, stream ciphers generally enable faster encryption
of a long message than block ciphers do.

Note that utilizing a stream cipher as the underlying cipher may reduce the
performance of encryption (decryption) in the blackbox setting i.e., with non-
table-based implementation, but in a lot of real world applications such as DRM
or HCE, whitebox ciphers are used in the whitebox context and implemented
with the table. Therefore, the implementation of Galaxy in the blackbox setting
is out of our focus.

Moreover, in order to address the 2nd issue, we employ Type-2 General-
ized Feistel Network for the cryptographic algorithm, instead of target heavy
generalized Feistel network. The rationale behind this change is that a table
based on stream cipher is not a bijective mapping, which limits our choices for
the cryptographic algorithm of Galaxy to Feistel structure. Especially, it is well
known that type-2 generalized Feistel network ensures sufficient security in fewer
rounds [4,8,15]. Besides, to optimize the encryption performance, we exploit the
optimal permutations for 4-, 8-, and 16-line type-2 generalized Feistel network
found in previous works [4,8,15,16].

Fig. 3. Round function of Galaxy
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4 Specification of Galaxy

Galaxy is an l-line type-2 generalized Feistel network (shown in Fig. 3) which
encrypts an n-bit plaintext with secret key K into an n-bit ciphertext where
the size of each line is na (=n/l). Let the state in r-th round be Xr =
{xr

0, x
r
1, ..., x

r
l−1}, xr

i ∈ {0, 1}na . Then, it is updated as:

Xr+1 = Φ(F r
na

(xr
0) ⊕ xr

1 ‖ F r
na

(xr
2) ⊕ xr

3 ‖ ... ‖ F r
na

(xr
n−1) ⊕ xr

n),

where Φnb
(x) denotes nb (=na/8) byte-wise permutation of x, and ‖ denotes

concatenation. F r
na

is a na bit to na bit function that derives from a stream
cipher, and it is defined (and shown in Fig. 4) as:

F r
na

(x) = Fna
(x) ⊕ r,

Fna
(x) = φna

(keygen(K), x), (1)

where keygen(K) denotes a sequence of key stream that derives from an under-
lying stream cipher with k-bit secret key K, and φna

(S, x) takes na-bit starting
from the (x · na)-th bit in S (which is expressed as S[x · na : (x + 1) · na] in
Algorithm 2). In Galaxy, Fna

(x) is implemented as a table.

Fig. 4. Table generation function: F r
na

(x) = Fna(x) ⊕ r

The algorithms of encryption and table generation for Galaxy are given in
Algorithm 1 and Algorithm 2 below.

4.1 Variants of Galaxy

Galaxy has the following variants with different table size, and the algorithm of
each variant is shown in Fig. 5.
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Algorithm 1. Galaxy Algorithm
X0 ⇐ INPUT
i, j ⇐ 0
{x0

0, x
0
1, ..., x

0
l−1} ⇐ SPLIT(X0) //divide input into l elements

while i < R do
while j < l/2 do

xi
2·j+1 ⇐ xi

2·j+1 ⊕ (F
′
na

(xi
2·j) ⊕ i)

j ⇐ j + 1
end while
(xi

0, x
i
1, ..., x

0
l−1) ⇐ Φ(xi

0, x
i
1, ..., x

0
l−1) //permute the elements

{xi+1
0 , xi+1

1 , ..., xi+1
l−1} ⇐ (xi

0, x
i
1, ..., x

0
l−1) //copy to the state of next round

i ⇐ i + 1
end while
XR ⇐ COMBINE({xR

0 , xR
1 , ..., xR

l−1}) //combine the elements
OUTPUT ⇐ XR

Algorithm 2. Table Generation
S ⇐ keygen(K, s) //generate s-bit key stream
i ⇐ 0
while i ≤ 2na − 1 do

F
′
na

(i) ⇐ S[i · na : (i + 1) · na] // = φna(S, i) defined in formula (1)
i ⇐ i + 1

end while

– Galaxy-(8, R) : n = 128, l = 16, na = 8, nb = 1, F r
8 : {0, 1}8 → {0, 1}8,

Φnb
(x) = {5, 0, 1, 4, 7, 12, 3, 8, 13, 6, 9, 2, 15, 10, 11, 14}

– Galaxy-(16, R) : n = 128, l = 8, na = 16, nb = 2, F r
16 : {0, 1}16 → {0, 1}16,

Φnb
(x) = {3, 0, 1, 4, 7, 2, 5, 6}

– Galaxy-(32, R) : n = 128, l = 4, na = 32, nb = 4, F r
32 : {0, 1}32 → {0, 1}32,

Φnb
(x) = {3, 0, 1, 2}

The table size T for each variant is estimated as (2na · na) bits. Thus, the size
of table F

′
na

(x) for Galaxy-8, Galaxy-16, and Galaxy-32 is 256 B, 128 KB, and
16 GB, respectively. Additionally, we employ the optimal permutations Φnb

(x)
for Galaxy-8 [16], Galaxy-16 [15], and Galaxy-32. Regarding the permutation
Φnb

(x) in Galaxy-32, we search for optimal one by MILP [14]. The previous
works [15,16] and our search for the optimal permutation by MILP [14] show
that Galaxy-8, Galaxy-16, and Galaxy-32 ensure the full diffusion in 8, 6, and 4
rounds.

5 Security Evaluation

In this section, we discuss the security of Galaxy both in the whitebox context
and the blackbox context.
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Fig. 5. Round function of Galaxy-8, Galaxy-16, and Galaxy-32

5.1 Security in the Whitebox Setting

Key Recovery Attack. In the whitebox setting, the adversary has access to
internal values in the cryptographic algorithm. Thus, (s)he can obtain some pairs
of inputs and the corresponding outputs in the table. In order to extract the secret
key K from the table Fna

(x) = φna
(keygen(K), x), (s)he has to recover the secret

key K from keygen(K) in the blackbox setting. Therefore, the security of Galaxy
against key recovery attacks in the whitebox setting is reduced to the problem of
key recovery for the stream cipher in the blackbox setting. As a corollary, provided
that the underlying stream cipher used to generate the table is secure against key
recovery attacks in the blackbox setting, it is computationally difficult to extract
the secret key K from the table of Galaxy in the whitebox setting.

Code Lifting Attack. Suppose a part of the table is leaked to the adversary,
i.e., (s)he successfully obtains i ≤ 2na entries of the table. Then, the probability
that each entry of the table is among the leaked entries is i/2na . Thus, the prob-
ability that the adversary can obtain the correct intermediate value by looking
up leaked entries in any round is estimated as (i/2na)l/2, and after R rounds, the
correct output can be computed from randomly given input with the probability
of (i/2na)(l/2)·R.

This estimation quantifies the security against code lifting attack and should
be considered as an upper bound of space hardness. Hence, (M,Z)-space hard-
ness for Galaxy-8, Galaxy-16, and Galaxy-32 are (i, (i/2na)8R), (i, (i/2na)4R),
and (i, (i/2na)2R)-space hardness, respectively. As a corollary, in order to ensure
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(T/4, 128)-space hardness just like SPACE, required numbers of R are 8, 16, 32
for Galaxy-8, Galaxy-16, and Galaxy-32, respectively.

5.2 Security in the Blackbox Setting

Key Recovery Attacks. In the blackbox setting, the adversary has only
access to input and the corresponding output of a cryptographic algorithm,
and (s)he is unable to collect any pairs of inputs and outputs in the table
Fna

(x) = φna
(keygen(K), x). Thus, it is more computationally difficult to mount

key recovery attacks on Galaxy in the blackbox setting than to recover the secret
key from the underlying stream cipher.

Differential Cryptanalysis. We analyze the security of function Fna
(x) for

each variant of Galaxy against differential attacks. In differential cryptanalysis,
the adversary derives multiple differential probabilities DPf for one round tran-
sition from input differences Δxi and output differences Δyj . The maximum
of the differential probability DPf is used as maximum differential probability
DPfmax to evaluate the security of the cryptographic algorithm against dif-
ferential attacks. Multiplication of DPfmax results in differential characteristic
probability DCP , and DCP is exploited to mount differential cryptanalysis.
Suppose the size of the input is n-bit. Then, if DCP of cipher EK is less than
2n, i.e., DCP ≤ 2n, EK will be indistinguishable from a random permutation.
The security against differential attacks is estimated as (DPfmax)m, where m
is the number of functions Fna

(x) that take different inputs, and we define the
function Fna

(x) taking different inputs as differentially active function Fna
(x)

just as the definition of active S-box. In the analysis of Galaxy, we cite the
maximum differential probability DPfmax from [2]. It shows that DPfmax for
Galaxy-8, Galaxy-16, and Galaxy-32 are 2−7, 2−15, and 2−30.4, respectively.

Our analysis for the number of differentially active functions Fna
(x) by Mixed

Integer Linear Programming (MILP) [14] shows that Galaxy-8, Galaxy-16, and
Galaxy-32 require 11, 8, and 6 rounds in order to have 17, 11, and 6 active
functions Fna

(x), respectively.

Linear Cryptanalysis. We analyze the security of function Fna
(x) for each vari-

ant of Galaxy against linear attacks. In linear cryptanalysis, the adversary derives
linear probability LP that a non-linear cryptographic algorithm can approximate
to linear function by a vector called linear mask. The maximum of the linear prob-
ability LP that corresponds to the linear mask is used as maximum linear proba-
bility LPmax to evaluate the security of the cryptographic algorithm against linear
attacks. The security against linear cryptanalysis is estimated as (LPmax)m where
m is the number of functions Fna

(x) that take non-zero value deriving from the
linear mask. If (LPmax)m ≤ 2n holds for cipher EK , EK will be indistinguishable
from a random permutation. In the analysis of Galaxy, we cite the maximum lin-
ear probability LPmax from [2]. It shows that LPmax for Galaxy-8, Galaxy-16, and
Galaxy-32 are 2−4, 2−12, and 2−28, respectively.



154 Y. Koike et al.

Our analysis for the number of linearly active functions Fna
(x) by MILP [14]

shows that Galaxy-8, Galaxy-16, and Galaxy-32 require 15, 8, and 6 rounds in order
to have 32, 11, and 5 active functions Fna

(x), respectively.

Other Attacks. Apart from the differential cryptanalysis and linear cryptanal-
ysis, we also consider impossible differential cryptanalysis and integral cryptanal-
ysis with MILP [14]. Table 1 shows a summary of the required rounds to achieve
full diffusion and ensure sufficient security against each attack.

Table 1. Summary of security evaluation for Galaxy: round numbers required for the
security against attacks

F D L ID I

Galaxy-(8, R) 8 11 15 14 14

Galaxy-(16, R) 6 8 8 10 11

Galaxy-(32, R) 4 6 6 7 7

F: Full diffusion, D: Differential attack,
L: Linear attack, ID: Impossible differ-
ential attack, I: Integral attack

Recommended Rounds. We conservatively recommend the round number R
ensuring the security level of (T/4, 128)-space hardness mentioned in Sect. 5.1 or
the round number with enough margin which provides the security against best
blackbox distinguisher of Sect. 5.2, whichever is higher. As a result, recommended
numbers of rounds R for Galaxy-8, Galaxy-16, and Galaxy-32 are 25, 20, and 32,
respectively. Such parameters provide sufficient security both in the whitebox
setting and the blackbox setting.

We use these parameters in experimental measurements of performance for
each variant.

6 Implementation

In this section, we present experimental measurements of performance for Galaxy,
SPACE [2], WhiteBlock [9], and WEM [5]. We evaluate implementations of
Galaxy, SPACE [2], WhiteBlock [9], and WEM [5] in the whitebox context (i.e.
table-based implementations), and compare Galaxy with the others in the aspects
of the performance for encryption and table generation. The basis of our com-
parison is the input space. Specifically, Galaxy-8 is compared with SPACE-8, and
Galaxy-16 is compared with SPACE-16, WhiteBlock-16, and WEM, and Galaxy-
32 is compared with SPACE-32 and WhiteBlock-32. We conduct all the exper-
iments with the machine that has Intel Core i9-9900K 3.60 GHz and 128 GB
DDR4 RAM. The processor on the machine has 512 KB L1 cache, 2 MB L2
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cache, and 16 MB L3 cache, respectively. Moreover, it supports the AES instruc-
tion set [10] and the SSE instructions up to AVX2.

For the underlying stream cipher used to generate the table of Galaxy, we
use chacha1 [1] which is implemented with AVX2. In addition, we use AES
which is implemented with the AES-NI [10] as the underlying block cipher for
table generation of SPACE [2], WhiteBlock [9], and WEM [5]. Concerning the
permutation in the encryption algorithm of WhiteBlock and WEM, we use full-
round AES for WhiteBlock and five-round AES for WEM (as in their original
paper) which are implemented with AES-NI [10]. We compile the source codes
with GCC 4.8.5 in O3 optimization level.

Note that the comparison of Galaxy with other whitebox block ciphers in the
blackbox context (i.e. comparison of non-table-based implementations) is out
of our focus, as whitebox ciphers are generally implemented and used in the
whitebox context.

Performance of Encryption. We evaluate the encryption performance for
Galaxy, SPACE [2], WhiteBlock [9], and WEM [5], respectively. The evalua-
tion results are summarized in Table 2 and Fig. 6 (numbers in the “Encryption”
column are given in cycle per byte). It shows that encryption performance for
Galaxy-8 is about 10 times as efficient as that for SPACE-8 and encryption
by Galaxy-16 is roughly 15, 6.5, and 11 times faster than that by SPACE-16,
WhiteBlock-16, and WEM, respectively. Galaxy-32 is roughly 3.5 and 1.3 times
faster in encryption than SPACE-32 and WhiteBlock-32, respectively. We are
convinced that two factors contribute to the encryption performance of Galaxy:
simplicity of the permutation and exploitation of pipelining capability.

Regarding the exploitation of pipelining capability, Galaxy can query values
in the table with pipelining ability, which facilitates faster table lookups. On the
other hand, SPACE does not allow for parallel table lookups, as it is target heavy
generalized Feistel network. Although, WhiteBlock and WEM can look up val-
ues in their tables in a parallel way as Galaxy can, Galaxy has an advantage over
WhiteBlock and WEM: simplicity of permutation. The permutation in Galaxy is
just a byte-wise permutation, and it can be implemented with vpshufb instruc-
tion which costs few cycles. Yet, the permutation in WhiteBlock is full-round
AES, and the one in WEM is five-round AES (as in their original paper). Their
permutations cost much more cycles than the simple byte-wise permutations in
Galaxy do.

Performance of Table Generation. We evaluate the performance for table
generation in Galaxy and compare it with that in equivalent instances of
SPACE [2] and other whitebox ciphers including WhiteBlock [9] and WEM [5].
Note that we ignore the computational cost to store data to the entries of the
table. This is because the performance of storing outputs of the underlying algo-
rithms to the entries of the table is highly dependent on the platform, and the

1 https://github.com/floodyberry/chacha-opt.

https://github.com/floodyberry/chacha-opt
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Table 2. Evaluation of encryption performance and comparison with existing
algorithms

Algorithm Round R Table size T Encryption (cycle/byte)

Galaxy-8 25 256 B 23.45

Galaxy-16 20 128 KB 21.78

Galaxy-32 32 16 GB 725.14

SPACE-8 [2] 300 3.75 KB 235.86

SPACE-16 [2] 128 896 KB 325.14

SPACE-32 [2] 128 48 GB 2489.94

WhiteBlock-16 [9] 18 2 MB 141.65

WhiteBlock-20 [9] 23 24 MB 451.05

WhiteBlock-24 [9] 34 256 MB 849.69

WhiteBlock-28 [9] 34 4 GB 872.31

WhiteBlock-32 [9] 34 64 GB 952.06

WEM [5] 12 13 MB 253.58

Fig. 6. Encryption performance

underlying algorithms such as chacha, AES, and the Fisher-Yates algorithm take
the most computational resources (i.e. storing outputs to the table takes negligi-
ble computational resources). The evaluation results are summarized in Table 3.

It reveals that the table generation for Galaxy-8 is roughly 1.5 times faster
than that for SPACE-8, that for Galaxy-16 is roughly 2.2 times, 2.2 times, and
10 times faster than that for SPACE-16, WhiteBlock-16, and WEM, and that
for Galaxy-32 is 2.3 times and 2.3 times faster than that for SPACE-32 and
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WhiteBlock-32, respectively. We believe that this improvement of efficiency in
table generation comes from a single factor: the nature of stream ciphers.

Generally, the encryption speed of block ciphers is consistent, i.e., whether
the message size for the encryption is small or large, the encryption performance
of block ciphers does not change. On the other hand, the encryption speed of
stream ciphers is inconsistent, i.e., as the message size is larger, the encryption
performance of stream ciphers increases. When it comes to the Fisher-Yates
algorithm, the algorithm itself is far less efficient than stream ciphers and even
block ciphers.

Table 3. Evaluation of table generation and comparison with existing algorithms

Algorithm Table size T Table generation
(cycle)

Table generation
(cycle/byte)

Galaxy-8 256 B 313.11 1.222

Galaxy-16 128 KB 112.95 × 103 0.861

Galaxy-32 16 GB 14.76 × 109 0.859

SPACE-8 [2] 3.75 KB 7.84 × 103 1.914

SPACE-16 [2] 896 KB 2.01 × 106 1.917

SPACE-32 [2] 48 GB 131.57 × 109 1.914

WhiteBlock-16 [9] 2 MB 2.01 × 106 1.917

WhiteBlock-20 [9] 24 MB 32.12 × 106 1.914

WhiteBlock-24 [9] 256 MB 514.14 × 106 1.915

WhiteBlock-28 [9] 4 GB 8.22 × 109 1.915

WhiteBlock-32 [9] 64 GB 131.57 × 109 1.914

WEM [5] 13 MB 117.93 × 106 8.596

7 Conclusion

In this work, we proposed Galaxy, which ameliorates the efficiency of encryption
and table generation. Galaxy is a type-2 generalized Feistel network and employs
a stream cipher as the underlying cipher for its table generation. This leads
to the improvement on the performance of encryption and table generation.
Compared with other existing whitebox ciphers, we successfully increased the
speed of encryption by 1.3–15 times. Besides, when we used chacha for table
generation of Galaxy and AES for other existing block-cipher-based whitebox
schemes, we successfully created the table of Galaxy 1.8–10 times faster than
that of other existing whitebox schemes.
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SECOM science and technology foundation.
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Abstract. In this paper, we propose a GPU-accelerated branch-and-
bound algorithm. The proposed approach substantially increases the
performance of the differential cluster search. We were able to derive
a branch enumeration and evaluation kernel that is 5.95 times faster
than its CPU counterpart. To showcase its practicality, the proposed
algorithm is applied on TRIFLE-BC, a 128-bit block cipher. By incorpo-
rating a meet-in-the-middle approach with the proposed GPU kernel, we
were able to improve the search efficiency (on 20 rounds of TRIFLE-BC)
by approximately 58 times as compared to the CPU-based approach. Dif-
ferentials consisting of up to 50 million individual characteristics can be
constructed for 20 rounds of TRIFLE, leading to slight improvements to
the overall differential probabilities. Even for larger rounds (43 rounds),
the proposed algorithm is still able to construct large clusters of over
500 thousand characteristics. This result depicts the practicality of the
proposed algorithm in constructing large differentials even for a 128-
bit block cipher, which could be used to improve cryptanalytic findings
against other block ciphers in the future.

Keywords: Automated search · Block cipher · Branch-and-bound ·
Cryptanalysis · Differential characteristic · Differential cluster · GPU

1 Introduction

Differential cryptanalysis is one of the most widely-known cryptanalytical meth-
ods, resistance to which has become a basic requirement for modern block ciphers
[1,9]. The success of differential cryptanalysis relies on identifying differential
characteristics that occur with high probability. The search for these character-
istics is a non-trivial task especially for block ciphers with large block sizes and
number of rounds. In addition, differential cryptanalysis also takes into consider-
ation differentials (clusters of single characteristics) for a more accurate estimate
of the overall differential probability1 [10].
1 We use the term differential cluster interchangeably with differentials to ensure that

there is a clear distinction between differentials and individual characteristics.
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Recently automated search for differential characteristics has been used
instead of manual searching. Matsui [12] proposed a branch-and-bound technique
to search for differential characteristics and linear trails. This technique was used
at that time to study DES. Since then, there were numerous improvements that
have been made to the branch-and-bound algorithm. In [3] an ARX version of the
branch-and-bound searching algorithm was proposed and the algorithm was also
subsequently improved in [6] by the introduction of a sorted partial differential
distribution table. In addition, [5] incorporated a meet-in-the-middle approach
to the differential cluster search, and updated the pruning rules to bound the
number of active of s-boxes to further improve upon the search efficiency.

In [14], a mixed-integer linear programming (MILP) approach was proposed
as an alternative to the branch-and-bound algorithm. The MILP model requires
identifying relevant linear inequalities which are then fed into a MILP solver
which produces the minimal number of active s-boxes for a particular block
cipher. The MILP framework had been extended by [23] to be applicable to bit-
oriented block ciphers. [21] demonstrated the capability of MILP to enumerate
differential characteristics to form differential clusters or linear hulls. However,
the aforementioned method is impractical for identifying differential clusters for
block ciphers with large block sizes and rounds. In addition, none of the related-
works attempt to utilize specialized hardware acceleration to perform the search.

General purpose graphical processing unit (GPGPU) technology that uti-
lizes specialized GPU hardware could be used to improve the efficiency of the
branch-and-bound search. This would alleviate some of the computational load
needed to identify differential clusters for large block ciphers. However, the GPU
requires tasks to be divided into smaller tasks so that the subdivided tasks could
be processed across a large number of processing units simultaneously. The GPU
architecture also has its own array of optimization problems such as memory lim-
itations, work divergence, low number of available subdivided tasks, and many
more. Therefore, any GPU-accelerated searching algorithm needs to be opti-
mized with respect to the architecture of the GPU to obtain a reasonable perfor-
mance boost. Although GPU-accelerated branch-and-bound algorithm had been
studied in [11] for knapsack, [13] for flow-shop scheduling, and [4] for multiprod-
uct batch plants optimization sub-problems, there exists no prior work that uses
GPU to accelerate the branch-and-bound search for differential cryptanalysis.

Our Contributions. The proposed work is a novel approach leveraging GPU
hardware acceleration for the specific sub-problem of differential cluster search.
It also incorporates the meet-in-the-middle (MITM) technique [5] to further
improve its efficiency. The proposed algorithm can achieve a substantial speedup,
up to a factor of approximately 5.95. A comparison based on cloud computing
also indicates that the GPU-based algorithm can save costs by up to 85% as com-
pared to its CPU-based counterpart in enumerating high number of branches.

To showcase the practicality and feasibility of the proposed GPU-accelerated
algorithm, we investigate the differential clustering properties of the 128-bit
block cipher, TRIFLE-BC [16] as a proof-of-concept. By applying the proposed
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GPU-accelerated automatic search for differential clusters, the computational
time needed to construct differential clusters for a large number of rounds of
128-bit TRIFLE-BC was significantly shortened. This effectively allowed us to
identify differentials with the highest probability to date, thus making this work
one of the first successful attempts in implementing an automated differential
search for a block cipher with 128-bit block size at a very large number of
rounds (43 rounds). Previous automated search attempts have focused on block
ciphers with block sizes of 64 bits or less [5,21]. For literature that involve 128-bit
block ciphers, the number of rounds searched were noticeably lower (typically
<= 20), and are only capable of identifying singular differential characteristics
[2,7]. Although the framework proposed in [22] was able to identify clusters for
SPECK128 and LEA-128, it is not applicable to most ARX ciphers due to its
reliance on the independent addition assumption. Also, it could be noted that
all prior findings could be potentially improved by applying the proposed GPU
framework. All source codes are available for download at https://github.com/
leon5905/GPU-bnb-differential-cluster.

Outline. The rest of this paper is organized as follows: Sect. 2 introduces the
GPU architecture and CUDA technology, followed by TRIFLE and its cryptan-
alytic results. Section 3 describes the conventional branch-and-bound differential
search and its improved version that serves as the basis for this work. The GPU-
accelerated algorithm is detailed in Sect. 4, the performance of which is com-
pared with its CPU-counterpart. Capabilities and limitations of the proposed
algorithm are also discussed. Section 5 investigates the differential cluster effect
of TRIFLE-BC. Section 6 concludes the paper.

2 Preliminaries

In this section, background information on GPU architecture, CUDA and TRI-
FLE are provided to aid readers’ understanding of the remaining sections of this
paper.

2.1 GPU Architecture and CUDA

A graphics processing unit (GPU) is specialized hardware designed for highly
multithreaded and parallelized data processing workflow. The primary function
of a GPU is to manipulate computer graphics and perform image processing.
However, the massively parallel processing architecture of GPUs has also enabled
them to outperform central processing units (CPUs) in other non-graphical pro-
cessing algorithms that involve a massive amount of data. With the introduction
of the Compute Unified Device Architecture (CUDA) in 2006 by NVIDIA, the
parallel processing power of GPUs becomes readily available for solving many
other computationally complex problems.

CUDA is a general-purpose parallel computing platform and application
programming interface (API) designed by NVIDIA for NVIDIA GPU cards.

https://github.com/leon5905/GPU-bnb-differential-cluster
https://github.com/leon5905/GPU-bnb-differential-cluster
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GPUs are based on the single instruction, multiple threads (SIMT) execution
model whereby multiple distinct threads perform the same operation on multiple
data concurrently. By dedicating more transistors to data processing (arithmetic
logic unit, ALU) and consequently de-emphasizing data caching and flow con-
trol, parallel computation becomes more efficient. The aforementioned structure
is schematically illustrated in Fig. 1. This unique property of GPUs allows them
to efficiently solve data-parallel computational problems that are arithmetic-
heavy but with lower memory access frequency.

Fig. 1. Structural differences between CPU and GPU.

CUDA threads run on a separate physical device (GPU) to accelerate par-
allel tasks given by the co-running host program (CPU) as illustrated by Fig. 2.
The host and device analogy will be used throughout the paper. A kernel is
a CUDA device function that will be executed in parallel by different CUDA
threads on the device. A single kernel consists of a single grid that may hold a
maximum of 231 − 1 number of blocks, whereas each block can contain a maxi-
mum of 210 threads. When a kernel is launched, the blocks that reside within the
kernel are assigned to idle streaming multiprocessors (SM). The multiprocessors
execute parallel threads within the assigned block in groups of 32 called warps.
A warp executes one common instruction at a time. If threads of a warp diverge
due to conditional instruction, each branch path will be executed in different
warp cycles. Therefore, the use of conditional branches should be minimized to
maximize the multiprocessors’ efficiency. Since an SM executes a warp of 32
threads at a time, it is advisable to choose the number of threads per block to
be a multiple of 32 to optimize GPU utilization.

CUDA threads are able to read data from multiple types of memory during
their execution. Each thread has its own local memory. Threads reside within the
same thread block can access a shared memory space called the shared memory.
There are three types of memory visible to all threads namely global memory,
read-only constant memory, and read-only texture memory. Global memory is
the slowest memory and requires read/write to be coalesced in 32, 64, or 128-
byte memory to achieve maximum efficiency. Constant memory is optimized for
broadcasting, whereby the maximum efficiency is reached when all threads of
the same warp request the same memory address. Texture memory is optimized
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Fig. 2. Heterogeneous programming architecture of a typical GPU-accelerated algo-
rithm. (Note that serial host code executes on the CPU while parallel device code
executes on the GPU)

for 2D spatial locality [20], whereby threads of the same warp reading memory
locations that are close to each other will lead to maximum efficiency. Since the
different memory types are better suited for different tasks, the memory access
pattern of a CUDA program should also be optimized accordingly to maximize
efficiency.

The CUDA model maintains separate memory spaces for host and device
memory. To alleviate the complexity of memory management, unified memory
may be used to unify the host and device memory spaces. Unified managed mem-
ory provides a single coherent memory address visible to both CPU and GPU.
If a large amount of memory transfer is needed and the transfer happens often,
it is advised to pin down the memory to avoid the cost of the transfer between
page-able and pinned memory. Pinned memory also enables the asynchronous
(non-blocking) execution of kernel and data transfer.

This section has only covered information that are relevant to the proposed
work. There are a lot more features left unexplored such as concurrent ker-
nel launches, asynchronous execution, and multi-device execution. For a more
detailed guide and reference in optimizing for CUDA, refer to [19].
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2.2 TRIFLE

Notation. The following mathematical notations will be used throughout the
paper:

– {0, 1}∗ denotes the set of all strings.
– {0, 1}n denotes the set of strings of length n.
– |M | denotes the length (number of bits) in string M .
– M1||M2 denotes concatenation of string M1 and string M2.
– ⊕ denotes field addition and ⊗ field multiplication.
– OZP(X) applies an optional 10∗ padding on n bits. If |X| < n, then OZP(X)

= 0n−|X|−1||1||X. If |X| = n, then OZP(X) = X.
– �X� is an integer floor function that produces an integer i closest to X such

that i ≤ X.
– >>> denotes bitwise right rotations.
– Wbit(X) denotes the number of 1 bits in a given binary string X while

Wnibble(X) denotes the number of non-zero 4-bit values in a binary string X.
– AS is used to represent the number of active s-boxes.
– Pc represents the probability of a differential cluster and Pt is the probability

of a single differential trail.
– ΔX is an XOR difference, ΔUi is the ith nibble value inside ΔX, and ΔAUi

is the ith active nibble value (non-zero difference) inside ΔX.

Description. TRIFLE is a round-1 candidate of the lightweight encryption
standardization effort by NIST [17]. It is a 128-bit block cipher-based authen-
ticated encryption scheme. It receives an encryption key K ∈ {0, 1}128, nonce
N ∈ {0, 1}128, associated data A ∈ {0, 1}∗ and message M ∈ {0, 1}∗ as inputs,
and produces an encrypted ciphertext C ∈ {0, 1}|M | and an authentication tag
T ∈ {0, 1}128 as outputs. The corresponding verification and decryption scheme
receives a key, nonce, associated data, ciphertext and a tag as inputs, and pro-
duces the decrypted plaintext if the authentication tag is valid. The underly-
ing block cipher, TRIFLE-BC is a 50-round 128-bit SPN block cipher. Each
round of TRIFLE-BC consists of four consecutive functions namely SubNibbles,
BitPermutation, AddRoundKey, and AddRoundConstant. For a more detailed
TRIFLE specification, refer to [16].

Differential Properties of TRIFLE-BC. By analyzing the differential distri-
bution table of TRIFLE’s s-box, it was found that each ΔU that has a hamming
weight of a single bit (Wbit = 1) can be differentially mapped back to ΔV with
Wbit = 1. These 1-bit to 1-bit differential relationships (1 → 8, 2 → 1, 4 →
2, and 8 → 4) hold with a probability of 2−3. The 1-bit ΔV will be permuted
and propagated to the next round to become yet another ΔU with Wbit = 1
due to the nature of bitwise permutation that shuffles bits without affecting the
total number of active bits in the block cipher.
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Therefore, for any n arbitrary rounds of TRIFLE, there exists a differential
characteristic ΔX(X0,X1, ...,X31) → ΔY (Y0, Y1, ..., Y31) such that Wbit(X

j
i ) =

1 where 0 ≤ i < 32, 0 ≤ j < n and P (ΔX → ΔY ) = 2−3n. Moreover, there
exist 4 differentials ΔU → ΔV (7 → 4, B → 2,D → 1, and E → 8) where
Wbit(ΔU) > 1, Wbit(ΔV ) = 1 and P (ΔU → ΔV ) = 2−2. This set of differ-
entials can be used to improve the first round of the aforementioned single-bit
differential characteristics to increase the probability to 2−3n+1 for any n arbi-
trary rounds. Since there also exists a ΔV for every ΔU with Wbit(ΔU) = 1
such that P (ΔU → ΔV ) = 2−2, these differential relationships can be used at
the final round. Thus, the single-bit differential characteristics with improved
first and final rounds that have a probability of 2−3n+2 exist for any n arbi-
trary rounds of TRIFLE provided that n ≥ 3. In fact, there are exactly 128
(128 different starting bit position) such characteristics for every round. These
observations have also been discussed in [8] and [18].

Based on the aforementioned improved single-bit differential characteristics,
a key recovery strategy had been discussed in [8] that recovers the key for 11
rounds of TRIFLE with a time complexity and data complexity of 2104 and
263 respectively. The authors proposed using a 42-round improved single-bit
differential in their key recovery strategy on TRIFLE-BC. However, the authors
made an error of using the 41-round (2−3(41)+2 = 2−121) differential probability
in their calculation instead of 42 (2−3(42)+2 = 2−124). Therefore, the differential
attack of TRIFLE-BC in [8] should able to recover the secret key of a 43-round
TRIFLE-BC (instead of 44 rounds) with the time and data complexity of 2126.

The differential discussed in this subsection only considers the probability of
a single characteristic. The differential probability can be potentially improved
by incorporating probability gains from the clustering effect (also referred to
as the differential effect) shown in [15], whereby multiple differential character-
istics with the same ΔX → ΔY are considered for the probability of a given
differential.

3 Automatic Search for Differential

Matsui proposed a branch-and-bound algorithm [12] for searching linear paths
and differential characteristics. The algorithm had been used on DES to find the
best characteristic at the time. The algorithm relied on pruning bad branches
that have lower probability than the best one found so far, Bn. The initial value
of Bn also helps break off bad branches in the early parts of the algorithm. Thus,
when Bn approaches the real value of the best probability, Bn where Bn ≤ Bn,
the search speed is improved as well. The algorithm also used the knowledge of
Bn−i computed from round 0 to round i to estimate the probability of the current
branch being searched. It will effectively cut off branches with probabilities that
are estimated to be worse than Bn.

Since then, several improvements have been made to Matsui’s algorithm. A
cluster search algorithm such as [5] improved upon Matsui’s algorithm by search-
ing for differential clusters after identifying a main differential characteristic.
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The differential cluster search includes all differential characteristics that share
the same input ΔX and output ΔY differences but with different intermediary
differences. This led to differentials with improved probability for block ciphers
such as LBlock and TWINE [5]. It is also worth noting that [5] used the number
of active s-boxes as part of the pruning rules to eliminate bad branches. There
were also other researchers [3,6] that use a type of automatic search known as
the threshold search for ARX ciphers.

A combination of the number of active s-boxes and the differential proba-
bility threshold will be used as the pruning rules for the proposed GPU-based
automatic search. The combination of both allows for greater flexibility during
the search, and also effectively filters branches quickly if configured correctly.
This CPU-based recursive algorithm is described in Algorithm 12.

4 GPU-Accelerated Automatic Search for Differential
Characteristics and Their Clusters

To facilitate the differential search for block ciphers with a large block size and
number of rounds, the processing power of GPUs can be leveraged to provide a
substantial performance boost to the conventional branch-and-bound searching
algorithm. The proposed GPU-accelerated algorithm is a variant of a depth-first
search whereby the algorithm will first visit nodes (possible branches) in succes-
sive rounds before backtracking to visit other nodes. The difference is that once
a node is visited, all of its corresponding child branches are enumerated. This
enables the task of enumeration for the relevant child branches, and subsequently
the evaluation of the pruning rules to be parallelized and solved by the GPU.
All this can be performed while keeping the memory footprint to a manageable
range by enumerating one branch at a time rather than all possible branches of
a particular depth at once (breadth-first search). The exception exists for the
final round of the search whereby all of the branches are visited and evaluated
simultaneously. The behaviour of the modified depth-first search algorithm is
illustrated in Fig. 3.

However, if the total number of possible child branches for a particular differ-
ence pattern is too low, then it will cause the GPU kernel to have low efficiency
due to low occupancy (insufficient tasks to be distributed across multiproces-
sors). In the proposed algorithm for TRIFLE, this scenario occurs when the
number of active s-boxes for a particular difference is <4. To alleviate this prob-
lem, differences with a low number of possible branches are instead enumerated
and evaluated by the CPU-variant procedure. The GPU kernel and its CPU-
variant are discussed in Subsect. 4.1. The complete algorithm for the proposed
GPU-accelerated branch-and-bound differential cluster search without enumer-
ation kernels and method details is provided in Algorithm 2. Note that the
correctness of the proposed algorithm has been verified by comparing the results
of Algorithms 1 and 2.

2 All algorithms are described in Appendix A.
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Fig. 3. The searching strategy for the proposed algorithm.

4.1 Enumeration Using GPU Kernel and CPU

The GPU kernel has been optimized for TRIFLE’s structure which has a con-
stant branching number of 7 for ΔV . This means that ∀ΔU that goes through
the TRIFLE’s s-box, there are precisely 7 possible choices of ΔV . Despite this
specific customization used, the kernel can be generalized to any SPN block
cipher while still retaining a similar efficiency by estimating the correct number
of branches and assigning workload among the threads accordingly.

The configuration of the proposed GPU architecture will utilize 1D blocks
for each kernel launch. Since each block within a grid contains its own block
threads, each thread is assigned a unique thread ID based on its position in a
given grid. This thread ID assignment facilitates the process of work distribution
and reduction. For TRIFLE, the number of possible branches of ΔXi is 7ASi .
When ASi = 4, there are 2401 tasks to be distributed. 19 blocks (>9 SMs
in NVIDIA GTX-1060) are declared for a grid and each block contains 128
threads (32|128) totalling up to 2432 threads (excess threads are terminated
during runtime immediately).

Let NB1, NB2, NB3, NB4 be the number of possible branches, and I1, I2, I3,
I4 be the nth numbered branches in the four active ΔU branches respectively.
Thread ID, Ti can also be computed as

ID(I1, I2, I3, I4) = (I1 ×NB0)+(I2 ×
1∏

i=0

NBi)+(I3 ×
2∏

i=0

NBi)+(I4 ×
3∏

i=0

NBi), (1)

where NB0 = 1. The work assignment (the branch taken by each individual
thread) is done by computing ID−1(Ti). For ASi > 4, the work assignment will
still occur for the first four active ΔU branches, but the remaining active ΔU
branches are exhaustively enumerated by each working thread individually. The
last round follows the same logic of Algorithm 1 whereby after a branch (now a
trail) is enumerated, ΔYn == ΔY is checked, then Pi is incremented accordingly.
To avoid race conditions, each thread has its own probability accumulator, Pi.
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The final cluster probability, Pc =
∑Ttotal

i=1 Pi + Ph is computed in the host
procedure where Ph is the host probability accumulator.

Special attention needs to be given to memory management. All of the nec-
essary device memory allocation and host memory pinning are done during pro-
gram initialization. Both the allocated memory and pinned memory are reused
whenever possible since allocation and de-allocation of the memory are expen-
sive and will impact the overall efficiency of the proposed algorithm. DDT and
permutation lookup tables are specifically loaded into the shared memory each
time the kernel is launched because the improved latency of the shared memory
will ease the frequent access of the DDT and permutation table. The complete
algorithm for the kernel is summarized in Algorithm 4.

The GPU kernel can only be used when there is a large number of branches
to maintain high GPU utilization. For AS ≤ 3, a CPU-version of enumeration
method is used instead. The CPU-version follows the general logic of the GPU
kernel without parallelized processing. The complete CPU enumeration method
is shown in Algorithm 3.

4.2 Meet-in-the-Middle Searching Approach

The meet-in-the-middle (MITM) approach described in [5] is used to further
improve the efficiency of the search. Since the number of branches grows expo-
nentially as the number of rounds increases, the search for large number of
rounds could be completed much quicker if the number of rounds to search is
split between α rounds and β rounds instead of searching directly for (α + β)
rounds.

The steps involved in the MITM approach starts off by dividing the search
into forward α rounds and backward β rounds. For the forward search, the pro-
posed algorithm mentioned in Algorithm 2 is used. The difference is that during
the αth (final) round, instead of evaluating ΔYα, the ΔYα and its probability is
accumulated in an array for matching purposes. Since the amount of informa-
tion needed to store all of the possible permutations of 128-bit data far exceeds
the practical memory storage option currently available, an encoding method
is used to index into the array. The encoding is computed by using the format
of [PosΔAVi

,ΔAVi, PosΔAVi+1 ,ΔAVi+1, PosΔAVi+2 ,ΔAVi+2]. The total number
of nibbles to be stored is currently limited to a maximum of 3 (12 bits). Since
each nibble requires 5 bits to represent its nibble position, thus the total num-
ber of bits needed to represent 3 nibbles among 32 possible nibble positions is
27 bits. This amounts to an array size of 134217728 that requires 1.07 GB of
memory when using a 64-bit double-precision floating point format to store the
probability.

Meanwhile, the backward search requires the computation of a reversed DDT
and the corresponding reversed permutation table. During the βth (final) round,
ΔYβ is encoded using the same method described earlier to index into the storage
array to check for matching trails. Matching trails contribute toward the final
cluster probability Pc. The MITM approach detailed in this section is illustrated
in Fig. 4.
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Fig. 4. Meet-in-the-middle approach.

4.3 Performance Comparison of GPU and CPU-Based Automatic
Search for Differential Algorithms

The CPU and GPU algorithms are implemented using C++ and CUDA/C
respectively. The performance results are obtained by running the implemen-
tations on a single Linux desktop computer with Intel 6th generation Skylake
Core i5-6600K CPU clocked at 3.5 GHz, NVIDIA Pascal GeForce GTX-1060
with 3 GB memory, and 16 GB of RAM.

A fixed problem set which satisfies a specific Wnibble(ΔX) criteria has been
computed on both the GPU-accelerated kernel and CPU-enumeration method.
The results obtained (including the time spent on memory transfer) are recorded
in Table 1 and is an average of a hundred instances. These results show the poten-
tial of the performance improvement of the GPU-accelerated functions which can
be up to a factor of 5.95 over the CPU-enumeration method. Also, if the GPU
possesses higher on-chip memory whereby the necessary computing differential
caches are able to fit, it is possible for the proposed algorithm to reach a speedup
of up to 27.07 as shown in Table 2. A similar experiment is performed for a series
of Google VM Cloud-based CPU and GPU. The performance results indicate
that for AS = 8, the cost reduction is estimated to be around 16% to 85% of
the original cost compared to the reference XEON CPU (Table 3). These results
depict the potential of the proposed algorithm in terms of cost-saving for large
numbers of active s-boxes.

A series of practical tests of the proposed algorithm is performed on various
rounds of TRIFLE-BC. The results are recorded in Table 4 and these results are
bounded by PROB BOUND = Pt × 2−21 and are an average of ten instances.
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It can be seen that although the algorithm depict a speed-up of 5.95, as the
number of rounds increases, the performance also increases and stabilizes at
approximately 2.5. This result is obtained because the computation is not GPU-
accelerated when the number of active s-boxes is between 1 and 3. It can also
be noted that the MITM approach greatly increases the performance of the
searching algorithm over the traditional recursive method for up to a factor of
approximately 58 at round 20.

Table 1. Search time (μs) comparison of CPU and GPU kernel enumeration.

Wnibble(ΔX) GPU-Accel CPU-Enum Speedup

4 35.5 173.7 4.89

5 141.2 716.6 5.08

6 861.4 4589.0 5.33

7 5974.9 32 200.4 5.39

8 41 561.5 247 393.0 5.95

Table 2. Search time (μs) comparison of CPU and GPU kernel enumeration (without
output memory synchronization).

Wnibble(ΔX) GPU-Accel CPU-Enum Speedup

4 34.2 173.7 5.08

5 70.3 716.6 10.19

6 286.9 4589.0 16.00

7 1656.7 32 200.4 19.44

8 9140.1 247 393.0 27.07

4.4 Limitations and Capabilities of the Proposed Algorithm

The proposed algorithm presented in this paper is not without its limitations.
Firstly, the kernel is only utilized when AS of ΔX is ≥ 4. It should be theo-
retically possible to bundle several small work units into a large compiled work
unit to be sent to kernel for processing. The added benefit of this is the higher
performance gains for cases of AS BOUND < 8, which could achieve a speedup
equivalent to using AS BOUND = 8. Doing so will definitely incur more over-
head. Thus, the feasibility of such an idea may be studied in future work.

This method also requires a large amount of memory especially as compared
to a recursive version of the algorithm shown in Algorithm 1. The dependency
on the GPU hardware requires some tweaking on the number of blocks and the
number of threads per block so that the GPU utilization could be maximized.
Currently, the proposed algorithm requires some customization to be applicable
to other SPN block ciphers. Its feasibility for other types of block ciphers such
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Table 3. Cloud computing cost (USD) comparison without memory synchronization
for ΔXi → ΔXi+1 for Wnibble(ΔX) = 8.

Device Time (μs) Cost/Month Core equivalent Cost%

Xeon Skylake 2.0 GHz* 506 703.0 27.46 1 100

Tesla T4 8531.6 255.50 60 16

Tesla P100 8080.4 1065.80 63 62

Tesla V100 6528.0 1810.40 78 85

Table 4. Search time (ms) of various rounds of TRIFLE-BC.

Round(s) MITM-GPU-Accel GPU-Accel CPU-Enum

5 1135.9 661.5 787.2

10 2197.3 8644.5 19 564.6

15 8795.6 62 928.7 156 725.0

20 15 675.2 363 274.2 908 978.1

as ARX and Feistel will be investigated in future work. Further work is also
needed to generalize the proposed algorithm for SPN block ciphers with minimal
modifications.

With that said, the proposed algorithm is able to use GPU hardware to
shorten the searching runtime drastically. This enables the automated search to
be conducted for block ciphers with large block sizes (128-bit) for a large number
of rounds (≥30). This has yet to be attempted in previous works. The possibility
of distributing the workload of the proposed algorithm across a grid or grids of
CPU-GPU computing nodes makes it possible to enhance the efficiency of the
search even further. For example, by enumerating all the second or third level
branches in a breadth-first manner, these branches can be divided into individual
work items that can be distributed across CPU-GPU computing nodes. This also
requires the modification of the proposed algorithm to be able to utilize more
CPU cores to better utilize the available computing resources. In addition, the
algorithm can be easily adapted to search for linear hulls.

5 Differential Clustering Effect of TRIFLE-BC

The proposed algorithm has been used to study the differential cluster effect
in TRIFLE-BC. The 128 improved single-bit differences propagation trails
described in Subsect. 2.2 are clustered using the proposed algorithm. The clus-
ter search was conducted for 43-round TRIFLE-BC using AS BOUND = 4
and PROB BOUND = Pt × 2−21. A equivalent search is conducted for 20-
round TRIFLE-BC using AS BOUND = 4 and PROB BOUND = Pt × 2−31.
A slightly higher bound is used here in an attempt to cluster more differential
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trails. The time required to complete the search is two days using the desktop
computer described in Subsect. 4.3.

Table 5. Differential for 20-round TRIFLE-BC

ΔX ΔY Pt Pc # of Trails

0000 0000 0000 0000
00b0 0000 0000 0000

0000 0000 0000 0000
0000 0001 0000 0001

2−58 2−57.97 50901814

0000 0000 0000 0000
0000 d000 0000 0000

0000 0100 0000 0100
0000 0000 0000 0000

2−58 2−57.97 39432495

0000 0000 0000 0000
0000 0000 0700 0000

0000 0000 0000 0000
0000 0002 0000 0002

2−58 2−57.97 51377914

0000 0000 0000 0000
0000 0b00 0000 0000

0000 0000 0000 0000
0000 0400 0000 0400

2−58 2−57.996 30372009

Since the differential probabilities are similar, we select only 4 differen-
tials with 3 being the best probability and 1 differential being the differential
described in [8] to show in Table 5 and Table 6. We found that the effect of clus-
tering these paths do not significantly improve the probability. However, large
differential clusters could be enumerated, consisting of up to 51 and 0.5 million
trails for 20-round and 43-round TRIFLE-BC respectively. The differential used
in [8] for a key recovery attack against TRIFLE can be improved slightly from
2−58 to 2−57.996.

Table 6. Differential for 43-round TRIFLE-BC

ΔX ΔY Pt Pc # of Trails

0000 0000 0000 b000
0000 0000 0000 0000

0000 0000 0010 0000
0010 0000 0000 0000

2−127 2−126.931 544352

0000 0000 0000 0000
b000 0000 0000 0000

0000 0002 0000 0002
0000 0000 0000 0000

2−127 2−126.931 564220

0000 0000 0000 0000
0007 0000 0000 0000

0020 0000 0020 0000
0000 0000 0000 0000

2−127 2−126.931 584356

0000 0000 0000 0000
0000 0b00 0000 0000

0000 0000 0000 0000
0000 0400 0000 0400

2−127 2−126.995 381035

The improved efficiency of the searching algorithm allows for practical iden-
tification of large clusters. Although the large clusters found in TRIFLE did
not contribute to significant improvements in terms of differential probability,
this may not be the case for other block ciphers, especially block ciphers with
smaller block size. When the block size is larger, the differential probability is
distributed into more trails, whereby the number of possible trails is a factor
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of 264 more than lightweight block ciphers. Meanwhile, when the block size is
smaller, the probability of each trail is, by comparison, much larger. Thus, the
proposed searching algorithm can be used to more accurately determine the secu-
rity margin of these ciphers, and also provide a detailed look at their clustering
effects.

6 Conclusion

In this work, a new GPU-accelerated branch-and-bound algorithm for differ-
ential cluster search of block ciphers has been proposed. Rather than just a
direct application of GPUs to the problem, we implicitly partitioned the dif-
ference branches into chunk sizes which corresponds to a individual thread in
the GPU kernel. The implicit partitioning allows the thread to acquire its work
unit in a fixed amount of step without thread divergence and synchronization
mechanisms to maximize the GPU core utilization. The proposed algorithm can
achieve a tremendous speedup especially when enumerating large amount of
branches. The speedup enables the search for large differential clusters for block
ciphers with a large block size over a large number of rounds. Aided by the pro-
posed GPU framework, we provide a detailed look at the clustering effect of the
authenticated cipher TRIFLE, which also served to showcase the practically of
the proposed framework. We were able to construct large clusters consisting of
hundreds of thousands to millions of individual differential characteristics, even
for a large number of rounds of TRIFLE’s underlying 128-bit block cipher. The
GPU-accelerated algorithm can be adapted to suit other SPN block ciphers by
changing the permutation and differential distribution table, and customizing
the kernel thread number based on the GPU hardware capability. However for
other block cipher structures such as Feistel and ARX, more work still has to be
done with respect to the feasibility of the proposed approach. The proposed app-
roach can also be extended to utilize a grid of CPU-GPU computing nodes in a
real-world environment for an even higher efficiency gains. In addition, it can be
easily adapted to search for linear hulls. Last but not least, the GPU framework
described in this paper can be used to provide a more accurate security bound
on differential cryptanalysis for block ciphers.
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Appendix

A CPU and GPU-Accelerated Algorithms for Differential
Cluster Search

Algorithm 1. Differential characteristics (cluster) searching algorithm with con-
straints on probability and number of active s-boxes.

Input: Input difference ΔX and output difference ΔY .
Output: Probability Pc of ΔX → ΔY cluster.
Adjustable Parameters:
1. AS BOUND : Maximum of number of active sboxes for ΔY .
2. PROB BOUND : Maximum probability of ΔX → ΔY .
3. PAS : Estimated probability of a nibble ΔU → ΔV .

procedure cluster search round i (1 ≤ i < n)
for each candidate ΔYi do

pi ← Pr(ΔXi, ΔYi)
ASi+1 ← Wnibble(ΔYi)
if ASi+1 ≤ AS BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB BOUND then
call procedure CLUSTER SEARCH ROUND (i + 1)

end if
end if

end for
end procedure

procedure cluster search round n
for each candidate ΔYn do

if ΔYn == ΔY then
pn ← Pr(ΔXn, ΔYn)
Pc ← Pc + [p1, ..., pn]

end if
end for

end procedure
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Algorithm 2. GPU-accelerated differential (cluster) searching algorithm.
procedure cluster search

call procedure CLUSTER SEARCH ROUND 0
Pc ← (

∑Ttotal
i=1 Pi) + Ph

end procedure

procedure cluster search round i (1 ≤ i < n)
ASi ← Wnibble(ΔXi)
if ASi > 3 then

call procedure ENUMERATION DEVICE i
else

call procedure ENUMERATION HOST i
end if
for each computed ΔY j

i do
if (ΔYcondition)ji == TRUE then

if i + 1 < N then
call procedure CLUSTER SEARCH ROUND (i + 1)

else
if ASi+1 > 3 and ASi > 3 then

call procedure ENUMERATION DEVICE n
else

call procedure ENUMERATION HOST n
end if

end if
end if

end for
end procedure

Algorithm 3. Host (CPU) enumeration and evaluation method.
procedure enumeration host i (1 ≤ i ≤ n)

for each candidate (ΔAV1, ΔAV2, ..., ΔAVAS BOUND) do
if i �= n then

(ΔYcondition)candidate index
i ← FALSE

pi ← Pr(ΔXi, ΔYi)
ASi+1 ← Wnibble(ΔYi)
if ASi+1 ≤ AS BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB BOUND then
(ΔYcondition)candidate index

i ← TRUE
end if

end if
else if ΔYi == ΔY then

Pi ← Pi + pi

end if
end for

end procedure
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Algorithm 4. Device (GPU) enumeration and evaluation method.
Input: Input Difference ΔX.
Output: Enumerated branches, its evaluation result and probabilities Pi.
Adjustable Parameters:
1. AS BOUND : Maximum of number of active s-boxes for ΔY .
2. PROB BOUND : Maximum probability of ΔX → ΔY .
3. PAS : Estimated probability of a nibble ΔU → ΔV .

Assumption:
1. Non-active nibble (s-boxes) will have a difference value of zero. Thus, an attempt

to differentially substitute it will yield 0 → 0 with a probability of 1.
procedure enumeration device i (1 ≤ i ≤ n)

synchronize necessary information with device memory (asynchronously)
call KERNEL i (asynchronously)
synchronize device information with host memory (asynchronously)
cuda stream synchronized (wait for device to complete its computation)

end procedure

procedure kernel i (1 ≤ i ≤ n)
copy permutation table, sorted DDT (Descending Frequency), and branch size

table
to shared memory
Ti ← (blockIdx.x × blockDim.x + threadIdx.x)
//Work assignment
V alue ← Ti, Divide V alue ← 1
for each active nibble values,ΔAUi where 1 ≤ i ≤ 4 do

Ii ← �V alue/Divide V alue� mod NBi

ΔAVi ← sorted DDT[ΔAUi][Ii]
update pi

Divide V alue ← Divide V alue × NBi

end for
//Enumerating all remaining branches if AS BOUND > 4
//Note that the for loop will still be entered even if AU5 = 0
for each candidate (ΔAV5, ΔAV6, ..., ΔAVAS BOUND) do

if i �= n then
global offset ← (

∏AS BOUND
j=1 NBj × Ti + candidate index)

(ΔYcondition)global offset
i ← FALSE

pi ← Pr(ΔXi, ΔYi)
ASi+1 ← Wnibble(ΔYi)
if ASi+1 ≤ AS BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB BOUND then
(ΔYcondition)global offset

i ← TRUE
end if

end if
else if ΔYi == ΔY then

Pi ← Pi + pi

end if
end for

end procedure



178 W.-Z. Yeoh et al.

References

1. Banik, S., et al.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES
2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66787-4 16
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Abstract. An aggregate signature allows one to generate a short aggre-
gate of signatures from different signers on different messages. A sequen-
tial aggregate signature (SeqAS) scheme allows the signers to aggregate
their individual signatures in a sequential manner. All existing SeqAS
schemes that do not use the random oracle assumption either require a
large public key or the security depends upon some non-standard inter-
active/static assumptions. In this paper, we present an efficient SeqAS
scheme with constant-size public key under the SXDH assumption. In
the process, we first obtain an optimized (and more efficient) variant of
Libert et al.’s randomizable signature scheme. While both the schemes
are more efficient than the currently best ones that rely on some static
assumption, they are only slightly costlier than the most efficient ones
based on some interactive assumption.

Keywords: Rerandomizable signature · Sequential aggregate
signature · Dual-form signature technique · Standard assumption

1 Introduction

The notion of rerandomizable signature (RRS) was introduced by Camenisch
and Lysyanskaya [4]. Rerandomizability guarantees that given a signature σ
on some message m under the public key PK, anybody can compute another
valid signature on the same message which is indistinguishable from the original
signature. The above feature makes RRS a very useful tool in building privacy-
preserving protocols.

The notion of aggregate signature was introduced by Boneh et al. [3]. As the
name suggests, aggregation allows one to generate a (compressed) aggregate of
a collection of individual signatures on different messages generated by different
signers. This notion is inspired by several applications such as certificate chains
of public-key infrastructure and secure routing in the context of border gate-
way protocol [3]. Sequential aggregate signature (SeqAS), introduced in [22], is
a special type of aggregate signature. In SeqAS each signer sequentially adds
his/her signature on the aggregated-so-far signature. Lu et al. [21] presented the
c© Springer Nature Switzerland AG 2020
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first SeqAS scheme without random oracle based on the Waters signature [28]
under the CDH assumption. However, their construction requires a large public
key (linear in the security parameter).

In 2011, Schröder [26], showed how to construct a SeqAS scheme with
constant-size public key based on the Camenisch-Lysyanskaya rerandomizable
signature (CL-RRS). However, like the original CL-RRS scheme, security of
Schröder’s construction is based on a non-standard interactive assumption, called
LRSW [23]. [26] relies upon the randomness re-use technique of [21], which
makes use of the randomness of the so-far aggregated signature to construct the
aggregate signature. Lee et al. [14] improved Schröder’s construction further by
introducing public key sharing technique, in which one of the elements from the
public key of the underlying signature scheme (in this case, CL-RRS) is placed
in the public parameter. Due to this new technique, they have achieved efficient
verification and optimized public key size.

In 2013, Lee et al. [16] presented a SeqAS scheme with constant-size public
key. Their SeqAS scheme is built on a signature scheme that supports multi-
user setting and is publicly rerandomizable. In particular, the signature scheme
is obtained by introducing suitable components to the signature derived from
Lewko-Waters IBE [18] through Naor transformation. They have also used Ger-
bush et al.’s [8] dual-form signature technique to prove unforgeability under a
previously introduced static assumption [18] along with some standard assump-
tions. Their follow-up work [15] improved upon the previous SeqAS in terms of
signature size as well as signing/verification at the cost of a slightly larger public
key under the same standard assumption along with two previously introduced
static assumptions [18].

Apart from the reliance on non-standard assumption, another limitation of
the CL-RRS scheme is that the signature size is linear in the number of message
blocks signed. In 2016, Pointcheval and Sanders [24] presented another reran-
domizable signature scheme (called, PS-RRS) where the signature size is inde-
pendent of the message block length. However, unforgeability of PS-RRS scheme
is proved under a new interactive assumption. Following the idea of [14], they
have also presented an efficient SeqAS scheme based on the PS-RRS scheme.

In 2016, Libert et al. [19] presented a randomizable signature scheme
(denoted as LMPY-RS). They suitably combined a previously proposed signa-
ture scheme [20] with a quasi-adaptive NIZK (QA-NIZK) argument [12] to obtain
a constant size randomizable signature for multiple message blocks. Using the
dual-form signature technique [8], they argue unforgeability of their construction
under the SXDH assumption.

1.1 Our Contribution

Our first contribution is to propose an efficient rerandomizable signature scheme
under the SXDH assumption. We then use the proposed RRS to realize a sequen-
tial aggregate signature scheme with constant-size public key under the SXDH
assumption. The performance of the proposed schemes is very close to that
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of previous proposals based on some non-standard interactive assumption. For
detailed comparison, see Table 2 (resp. Table 4) for RRS (resp. SeqAS).

For the randomizable signature, compared to Libert et al. [19], our main nov-
elty lies in the application of the QA-NIZK proof system of Kiltz and Wee [12].
In particular, instead of the real QA-NIZK proof component, we use the simu-
lated one. Hence we first generate the secret exponent of the signature scheme
and then define the trapdoor keys with respect to the linear subspace relation
of the proof system. Then, using the dual-form signature technique [8] we argue
unforgeability based on the SXDH assumption while full rerandomizability [9] is
shown to follow unconditionally. See Sect. 3 for the detail.

Next, our RRS serves as a building block to construct a sequential aggregate
signature (SeqAS) scheme in Sect. 4. Our construction employs both ‘randomness
re-use’ and ‘public key sharing’ techniques [14]. Since the original LMPY-RS is
not directly amenable to signature aggregation, we tweak the signature scheme to
realize the desired functionality. As can be seen from Table 4, existing schemes in
a similar setting have one of the following limitations. To have security based on
a standard assumption, the scheme suffers from large public key size [21]. When
public key size is constant, security relies on some non-standard assumption [17].
In contrast, we obtain an efficient construction with constant size public key (and
signature) where security is argued based on the well-known SXDH assumption.

2 Preliminaries

For a prime p, Z∗
p denotes the set of all non-zero elements from Zp. We denote

a
$← A to be an element chosen uniformly at random from the non-empty set A.

We define the bilinear group generator as follows.

Definition 1. A bilinear group generator P is a probabilistic polynomial time
(PPT) algorithm which takes the security parameter λ as input and outputs Θ =
(p,G,H,GT , e, g, h), where p is prime, G, H and GT are the prime p order groups
and g (resp. h) is an arbitrary generator of G (resp. H) and e : G × H −→ GT

is a bilinear map that satisfies, (i) Bilinearity: For all g, g′ ∈ G and h, h′ ∈ H,
one has e(g ·g′, h ·h′) = e(g, h) ·e(g, h′) ·e(g′, h) ·e(g′, h′), (ii) Non degeneracy:
If a fixed g ∈ G satisfies e(g, h) = 1 for all h ∈ H, then g = 1 and similarly for
elements of H and (iii) Computability: The map e is efficiently computable.

We recall the decisional Diffie-Hellman assumption (DDH) in G (denoted as
DDHG) as follows.

Assumption 1. Given (Θ = (p,G,H,GT , e, g, h), ga, gb) and T = gab+θ, it is

hard to decide whether θ = 0 or not, for a, b
$← Zp.

In the same way, we can define the DDH assumption in H (denoted as DDHH).
When P satisfies the DDH assumption in both G and H, then we say that P
satisfies the symmetric external Diffie-Hellman (SXDH) assumption.

We recall from [10] the double pairing assumption (DBP) in H (denoted as
DBPH) as follows.
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Assumption 2. Given (Θ = (p,G,H,GT , e, g, h), hr, hs), it is hard to compute
(R, S) �= (1, 1) from G

2 such that e(R, hr)e(S, hs) = 1.

In the same way, we can define the DBP assumption in G (denoted as DBPG).
From [1, Lemma 2], it is clear that, DBPG is reducible to DDHG and DBPH is
reducible to DDHH. The formal definition of digital signature, rerandomizable
signature and sequential aggregate signature schemes can be found in the full
version [6].

3 Rerandomizable Signature

In this section, we describe an efficient rerandomizable signature scheme, whose
security is proved under the SXDH assumption. Our construction is inspired
from [19]. In [19], one requires to know the public key components to randomize
the signature, whereas in our scheme one needs to know only the underlying
group order. This feature will later play an important role in the construction
of aggregate signature of Sect. 4.

3.1 Construction

Libert et al. [19] presented a randomizable signature scheme (denoted as
LMPY-RS) based on QA-NIZK proof system. In particular, to prove that a vec-
tor of group elements belongs to some linear subspace, [11,12] showed that the
argument size will be independent of the subspace dimension. [19] exploited this
property to obtain a randomizable signature scheme for multiple block messages
with a constant size signature. In order to prove unforgeability, they have used
Gerbush et al.’s [8] dual-form signature technique.

In LMPY-RS scheme the secret key SK consists of ω from Zp and the pub-
lic key PK consists of

(
g, g0, h, U1 = gu1 , {V1j = gv1j }�

j=1, Ω = gω
0 , CRS

)
with

CRS consisting of
(
z, U2, {V2j}�

j=1, hz, h0 = hδ0
z , h�+1 = h

δ�+1
z , h10 = hδ10

z , h20 =

hδ20
z , {h1j = h

δ1j
z , h2j = h

δ2j
z }�

j=1

)
, where g, z, g0, U1, U2, V1j , V2j are from

G and h, hz, h0, h�+1, h10, h20, h1j , h2j are from H. Note that the trapdoor
information

(
δ0, δ�+1, δ10, δ20, {δ1j , δ2j}�

j=1

)
are generated in such a way that

z = gδ0g
δ�+1
0 , U2 = U δ0

1 gδ10gδ20
0 and V2j = V δ0

1j gδ1j g
δ2j

0 holds. Hence one can write
U2 = gu2 , {V2j = gv2j }�

j=1, where u2 = δ0u1 + δ10 +aδ20, v2j = δ0v1j + δ1j +aδ2j

and g0 = ga. The randomizable signature on the message m = (m1, . . . ,m�)
consists of σ = (σ1, σ2, σ3, π), where

σ1 = gω
(
U1

�∏

j=1

V
mj

1j

)s
, σ2 = gs, σ3 = gs

0, π = zω
(
U2

�∏

j=1

V
mj

2j

)s
.

Note that the signature component π corresponds to the QA-NIZK proof that
the statement (σ1, σ

m1
2 , . . . , σm�

2 , σ2, σ
m1
3 , . . . , σm�

3 , σ3, Ω) belongs to a linear sub-
space generated by the matrix M ∈ Z

(�+2)×(2�+4)
p as defined in Eq. 1. Our RRS
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scheme is obtained from LMPY-RS scheme by removing the first row and the last

+2 columns of the matrix M , which results in the matrix N as defined in Eq. 1.

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g 1 1 . . . 1 1 1 1 . . . 1 1 g0
V11 g 1 . . . 1 1 g0 1 . . . 1 1 1
V12 1 g . . . 1 1 1 g0 . . . 1 1 1
...

...
...

. . .
...

...
...

...
. . .

...
...

V1� 1 1 . . . g 1 1 1 . . . g0 1 1
U1 1 1 . . . 1 g 1 1 . . . 1 g0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, N =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

V11 g 1 . . . 1 1
V12 1 g . . . 1 1
...

...
...

. . .
...

...
V1� 1 1 . . . g 1
U1 1 1 . . . 1 g

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (1)

Notice that the removal of the first row of M corresponds to putting ω =
0 mod p which amounts to removing gω (resp. zω) from σ1 (resp. π) and Ω
from PK. The last 
 + 2 columns of M correspond to the second generator
g0 and {{h2j}�

j=1, h20, h�+1} in PK of LMPY-RS. In the signature generation,
we directly use the simulated proof component instead of the real QA-NIZK
proof component. This allows to set SK containing the trapdoor dependent
information u2, {v2j}�

j=1 along with g, u1, {v1j}�
j=1.

Table 1. RRS scheme in the prime-order setting.

Setup(λ)

Run P(λ) → (p,G,H,GT , e, g, h), where g
$← G, h

$← H,
Return PP = (p,G,H,GT , e, g, h).

KeyGen(PP )

Choose δ0, u1, u2, {v1j , v2j}�
j=1

$← Zp, hz
$← H and set h0 := hδ0

z ,
δ10 := u2 − δ0u1, δj := v2j − δ0v1j , for all j ∈ [1, �].

Set SK := {g, u1, u2, {v1j , v2j}�
j=1}, PK :=

{
hz, h0, h10 := hδ10

z , {hj := h
δj
z }�

j=1

}
.

Return (SK, PK).
Sign(SK,m = (m1, . . . , m�))

Choose r
$← Zp and set A := gr(u1+

∑�
j=1 v1jmj), B := gr, C := gr(u2+

∑�
j=1 v2jmj).

Return (m, σ = (A, B, C)).

Ver(PK,m = (m1, . . . , m�), σ = (A, B, C))
Accept if B �= 1 and

e(A, h0)e(B, h10

�∏

j=1

h
mj

j ) = e(C, hz). (2)

Rand(PK,m = (m1, . . . , m�), σ = (A, B, C))

If Ver(PK,m, σ)=1, then choose s
$← Zp and compute A′ := As, B′ := Bs, C′ := Cs.

Return σ′ = (A′, B′, C′).
Else Return ⊥.

The RRS scheme consists of four PPT algorithms, which are defined in Table 1.
Notice that, we avoid the trivial forgery attack by checking B �= 1. Suppose, we
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do not check the above condition, then anyone can output σ = (1, 1, 1) as a
(trivial) forgery on any message m ∈ Z

�
p. Correctness of the scheme can be

verified using the following derivation,

e(A, h0)e(B, h10

�∏

j=1

h
mj

j ) = e(gr(u1+
∑

j v1jmj), hδ0
z )e(gr, h

δ10+
∑

j δjmj

z )

= e(gr(δ0u1+δ10)+r
∑

j(δ0v1j+δj)mj , hz)

= e(gr(u2+
∑

j v2jmj), hz) = e(C, hz).

The first equality is obtained by substituting the values of the signature and
public key components. Second equality is obtained using the bilinearity of the
pairing map. The third equality is obtained by substituting the value of u2 and
v2j components from Table 1.

Notice that, it is sufficient to consider the elements U1 = gu1 , U2 = gu2 and
{V1j = gv1j , V2j = gv2j }�

j=1, as part of the SK. However, for better efficiency,
we consider the respective exponents of U1, U2, V1j and V2j as part of the SK,
which saves 2
 many exponentiation and multiplication in the group G.

3.2 Randomizability

The main feature of a rerandomizable signature scheme is the so-called random-
izability property. This feature has been utilized effectively in the construction
of several other protocols, such as group signature [2] and anonymous credential
scheme [4].

Theorem 1. The RRS scheme satisfies perfect randomizability.

Proof. We argue that our RRS scheme satisfies perfect randomizability. To estab-
lish that, it is sufficient to prove that the signature returned by Rand and Sign are
identically distributed. First, we consider the signature σ = (A,B,C) returned
by the adversary A using Sign on the message m = (m1, . . . ,m�). In particular,
we write

A = gr(u1+
∑

j v1jmj), B = gr, C = gr(u2+
∑

j v2jmj),

for some randomness r from Zp. Then we consider the signature σ1 =
(A1, B1, C1) returned by Rand on the message and signature pair (m, σ), where
A1 = As = gsr(u1+

∑
j v1jmj), B1 = Bs = grs and C1 = Cs = gsr(u2+

∑
j v2jmj),

for some randomness s from Zp. Now we consider the signature σ0 = (A0, B0, C0)
returned by Sign on the same message m, where

A0 = gz(u1+
∑

j v1jmj), B0 = gz, C0 = gz(u2+
∑

j v2jmj)

for some randomness z from Zp. Notice that, in the signature σ1, the exponent s is
the source of randomness whereas in the signature σ0, the exponent z is the source
of randomness. Thus it is clear that both the signatures σ0 and σ1 are identically
distributed, as rs and z are independent and identically distributed. ��
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3.3 Unforgeability

We use the Gerbush et al.’s [8] dual-form signature technique and prove unforge-
ability under the SXDH assumption. Note that, unlike [19], we argue unforgeabil-
ity without appealing to the security of the underlying QA-NIZK proof system.

Partition of Forgery Space: Let V be the set of all message and signature
pairs such that they verify under the public key PK. We partition the forgery
class V into two disjoint sets VI and VII which are defined as follows.

Type-I: VI = {(m∗, σ∗) ∈ V : S∗
1 = 1 and S∗

2 = 1},
Type-II: VII = {(m∗, σ∗) ∈ V : S∗

1 �= 1 and S∗
2 �= 1},

where S∗
1 := A∗(B∗)−u1−∑�

j=1 v1jm∗
j and S∗

2 := (C∗)−1(B∗)u2+
∑�

j=1 v2jm∗
j . Now

we argue that the Type-II forgery class is same as the complement of Type-I
forgery class with respect to the forgery space V, i.e., VII = V − VI . Notice that
from the verification Eq. 2, we can simplify as follows.

1 = e(A∗, h0)e(B∗, h10

∏�

j=1
h

m∗
j

j )e(C∗, hz)−1

= e(A∗, hδ0
z )e(B∗, h

(u2−δ0u1)+
∑�

j=1(v2j−δ0v1j)m
∗
j

z )e(C∗, hz)−1

= e(A∗(B∗)−u1−∑�
j=1 v1jm∗

j , hδ0
z )e((C∗)−1(B∗)u2+

∑�
j=1 v2jm∗

j , hz)
= e(S∗

1 , h0)e(S∗
2 , hz)

In the above derivation, the second equality is obtained by the values of h10 and
hj and then substituting the values of δ10 and δj . The third equality is obtained
by using the bilinearity of the pairing map and the last equality is obtained by
the definition of S∗

1 and S∗
2 . Suppose S∗

1 = 1, then the above equation can be
simplified as e(S∗

2 , hz) = 1. Then from the non-degeneracy of the pairing, we
have S∗

2 must be 1. In the same way, suppose S∗
2 = 1, then S∗

1 must be 1. Hence
there is no valid forgery such that (i) S∗

1 = 1 and S∗
2 �= 1 hold or (ii) S∗

1 �= 1 and
S∗
2 = 1 hold.

Structure of Forged Signature: Consider the message and signature pair
(m∗, σ∗) satisfying the verification Eq. 2, where m∗ = (m∗

1, . . . ,m
∗
� ) ∈ Z

�
p and

σ∗ = (A∗, B∗, C∗) ∈ G
3. Suppose the forgery is Type-II, then we explain, how

the signature components are written explicitly in terms of the secret exponents.
Since B∗ ∈ G, B∗ �= 1 and g is the generator of G, we can write B∗ = gr, for
some r ∈ Z

∗
p. For the Type-II forgery, the condition S∗

1 �= 1 holds, we can write
S∗
1 = gs1 , for some s1 ∈ Z

∗
p. Then substituting B∗ value in S∗

1 we obtain that

A∗ = gr
(
u1+

∑�
j=1 v1jm∗

j

)
+s1 . The condition S∗

2 �= 1 holds for a Type-II forgery.
Then we can write S∗

2 = g−s, for some s ∈ Z
∗
p. By substituting the value of B∗

in S∗
2 , we obtain that C∗ = gr(u2+

∑�
j=1 v2jm∗

j )+s. Now from the verification Eq. 2,
the additional terms gs1 and gs must satisfy the condition e(gs1 , h0) = e(gs, hz),
so that the Type-II forgery is valid. From the above condition, we can derive
that s1 = s/δ0. Hence a Type-II forgery can be written as,
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A∗ = gr(u1+
∑�

j=1 v1jm∗
j )+s/δ0 , B∗ = gr, C∗ = gr(u2+

∑�
j=1 v2jm∗

j )+s, (3)

for some r, s ∈ Zp.
Suppose the forgery is Type-I, then we see that both conditions, S∗

1 = 1 and
S∗
2 = 1 hold. From the above explanation for the Type-II forgery case and the

above conditions, it is clear that s has to be zero modulo p for a Type-I forgery.
Hence by substituting s = 0 in Eq. 3, we obtain the desired form of Type-I
forgery as defined in Table 1.

Two Signing Algorithms: Let SignA be same as the Sign algorithm defined
in Table 1. Next we define the following SignB algorithm, which is used by the
simulator in the unforgeability proof. The SignB algorithm takes the secret key
SK along with element δ0 from Zp and the message m ∈ Z

�
p and outputs a

message-signature pair.

SignB (SK ∪ {δ0},m = (m1, . . . ,m�)): Choose r, s
$← Zp and compute A :=

gr(u1+
∑�

j=1 v1jmj)+s/δ0 , B := gr C := gr(u2+
∑�

j=1 v2jmj)+s. Return (m, σ :=
(A,B,C)).

From the verification Eq. 2, the additional element gs/δ0 in A paired with hδ0
z

is same as the additional element gs in C paired with hz. Hence, the signature
returned by SignB also verifies under PK.

Proof Intuition: We prove unforgeability of our RRS scheme using a hybrid
argument. Let GameR be the real EUF-CMA security game, i.e., given the public
key, adversary A makes q many signing oracle queries which are answered using
SignA and returns a forgery (from V) on a new message. Next, we define a new
game Game0 which is similar to GameR except that A returns a Type-I forgery.
The only difference between GameR and Game0 is that of A producing a Type-II
forgery. Then we prove that under the DBPH assumption, A cannot return a
Type-II forgery, which ensures that GameR and Game0 are indistinguishable. In
this reduction, simulator B embeds the DBP instance to generate the public key
terms hz and hδ0

z . Then by choosing all the other secret exponents, B can answer
for SignA queries. Finally, from the Type-II forgery returned by A, B computes
the solution for the DBPH instance.

Next, we define another game Gamek which is similar to Game0, except that
the first k signing queries are answered using SignB algorithm. Then we prove
that Gamek−1 and Gamek are indistinguishable under the DDHG assumption.
In this reduction, simulator B embeds one of the terms (say gb) from the DDH
instance to define u1 and u2. In particular, B defines u1 = ũ1 + tb/δ0 and
u2 = ũ2 + tb, for random exponents ũ1, ũ2, δ0, t. Then B uses the other term (say
ga) from the DDH instance for the k-th signature and embeds ga and gab+θ to
answer for the k-th signing query. For a given DDH tuple with θ = 0 we are
simulating Gamek−1, otherwise we are simulating Gamek.

Finally, we argue that the advantage of Gameq is negligible under the DBPH

assumption. In this reduction, simulator B embeds the DBP instance to simulate
the public key components hz and hδ0

z . Then B defines the exponents u1 and
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u2 in such a way that B can answer for SignB oracle queries. In particular, B
defines u1 = ũ1 − t/δ0 and u2 = ũ2 − t, for random exponents t, ũ1, ũ2. Once
the adversary returns a Type-I forgery, then B could extract the solution for the
DBP problem.

Theorem 2. If SXDH assumption holds in P, then the RRS scheme is EUF-
CMA secure.

Proof. First we define the following games.

GameR: This is the original EUF-CMA game. Recall that, after receiving the
PK from the challenger, the adversary A makes q many signing oracle queries
adaptively and then returns a forgery on a new message.

Game0: Same as GameR except that A returns a forgery from VI . Let E be the
event that A returns a forgery from VII in Game0. In Lemma 3, we prove that
the event E happens with negligible probability under DBPH assumption.
Thus we deduce that GameR and Game0 are computationally indistinguish-
able under DBPH assumption. In particular we have,

|AdvGameR
A − AdvGame0

A | ≤ Pr[E] ≤ AdvDBPH

B .

Gamek: Same as Game0 except that the first k signing queries are answered
using SignB , for k ∈ [1, q], whereas the last q − k queries are answered using
SignA. For k ∈ [1, q], in Lemma 4, we prove that Gamek−1 and Gamek are
computationally indistinguishable under DDHG assumption. In particular we
have,

|Adv
Gamek−1

A − AdvGamek
A | ≤ AdvDDHG

B .

Finally in Lemma 5, we prove that Adv
Gameq
A is negligible under DBPH assump-

tion. In particular we have,

Adv
Gameq
A ≤ AdvDBPH

B .

Hence by the hybrid argument and from Eqs. 4, 5 and 6, described below, we
have,

AdvUF
A = AdvGameR

A = |AdvGameR
A − AdvGame0

A + AdvGame0
A − AdvGame1

A + . . . +

Adv
Gamek−1

A − AdvGamek
A + . . . − Adv

Gameq
A + Adv

Gameq
A |

≤ |AdvGameR
A − AdvGame0

A | +
q∑

k=1

|Adv
Gamek−1

A − AdvGamek
A | + |Adv

Gameq
A |

≤ AdvDBPH

B + q AdvDDHG

B + AdvDBPH

B
≤ (q + 2)AdvSXDH

B .

��



192 S. Chatterjee and R. Kabaleeshwaran

Lemma 3. If DBPH assumption holds in P, then Pr[E] is negligible.

Proof. Assume that the event E happens with some non-negligible probability.
Then we construct a simulator B to break the DBPH assumption as follows. B
is given Θ and hr, hs from H and his goal is to compute (R,S) �= (1, 1) from G

2

such that e(R, hr)e(S, hs) = 1. Now B chooses u1, u2, {v1j , v2j}�
j=1 uniformly at

random from Zp. First B implicitly sets δ10 = u2 − δ0u1 and δj = v2j − δ0v1j ,
for j ∈ [1, 
]. Then B defines the public key as,

PK :=
{
hz := hr, h0 := hs, h10 := hu2

r h−u1
s , {hj := hv2j

r h−v1j
s }�

j=1

}
.

Once PK is given to A, he makes q many signing oracle queries to B. Since B
knows all the SK components such as g, u1, u2, {v1j , v2j}�

j=1, he can answer all
the signing queries using SignA algorithm.

Finally, A returns a forgery (m∗, σ∗), where m∗ = (m∗
1, . . . ,m

∗
� ) ∈ Z

�
p and

σ∗ = (A∗, B∗, C∗) ∈ G
3. Then B checks (i) the forgery (m∗, σ∗) is valid and (ii)

the message m∗ is not queried earlier. If any of these checks fail to hold, then
B aborts. Otherwise, B tries to solve the DBPH assumption as follows. First B
computes S = A∗(B∗)−u1−∑�

j=1 v1jm∗
j and R = (C∗)−1(B∗)u2+

∑�
j=1 v2jm∗

j . Since
the forgery is valid, hence it satisfies the verification Eq. 2 which can be re-written
and then simplified as follows.

1 = e(C∗, hz)−1 · e(A∗, h0) · e(B∗, h10

∏

j

h
m∗

j

1j )

= e(C∗, hr)−1e(A∗, hs) · e(B∗, hu2
r h−u1

s

∏

j

(hv2j
r h−v1j

s )m∗
j )

= e((C∗)−1(B∗)u2+
∑

j v2jm∗
j , hr)e(A∗(B∗)−u1−∑

j v1jm∗
j , hs)

= e(R, hr)e(S, hs).

In the above derivation, the second equality follows from the structure of public
key components and the third equality follows from the bilinearity of the pairing
map. The last equality follows from the definition of R and S.

In order to break the DBPH problem, it is sufficient to argue that (R,S) �=
(1, 1). From our contradiction assumption, A returns a Type-II forgery, then it
must satisfy S = A∗ (B∗)−u1−∑

j v1jm∗
j �= 1 and R = (C∗)−1(B∗)u2+

∑
j v2jm∗

j

�= 1. Then B returns (R,S) as a non-trivial solution for the DBPH instance.
Thus we have,

Pr[E] ≤ AdvDBPH

B . (4)

��
Lemma 4. If DDHG assumption holds in P, then Gamek−1 ≈c Gamek, for k ∈
[1, q].

Proof. Suppose there exists a PPT adversary A, who distinguishes Gamek−1

from Gamek with some non-negligible probability under the condition that A
returns a Type-I forgery. Then we construct a simulator B to break the DDHG



From Rerandomizability to Sequential Aggregation 193

assumption as follows. B is given Θ, ga, gb, gab+θ and his goal is to decide whether
θ = 0 mod p or not. Now B chooses δ0, ũ1, ũ2, t uniformly at random from Zp

and implicitly sets u1 = ũ1 + tb/δ0 and u2 = ũ2 + tb. B also chooses hz uniformly
at random from H and defines h0 = hδ0

z . Then B defines δ10 := u2 − δ0u1 =
ũ2 − δ0ũ1 and hence s/he simulates h10 as hũ2−δ0ũ1

z . B also chooses v1j , v2j

uniformly at random from Zp and defines hj as h
v2j−δ0v1j
z . Here PK consists

of {hz, h0, h10, {hj}�
j=1}, which is then sent to A. Notice that B can simulate

the SK components g, {v1j , v2j}�
j=1 along with δ0. However, B can simulate

U1 := gũ1(gb)t/δ0 and U2 = gũ2(gb)t, so that he can answer for the signing
queries. B computes V1j := gv1j , V2j := gv2j , for j ∈ [1, 
].

After receiving PK, A makes signing queries on some message mi = (mi1,
. . . ,mi�). For the first k − 1 (resp. last q − k) queries, B uses SignB (resp.
SignA) algorithm to answer for signing queries, as he knows the components
g, U1, U2, {V1j , V2j}�

j=1 as well as δ0. In particular, SignB queries are answered
by computing σi = (Ai, Bi, Ci), where

Ai = (U1

∏

j

V
mij

1j )rgs/δ0 , Bi = gr, Ci = (U2

∏

j

V
mij

2j )rgs

and r, s are chosen uniformly at random from Zp. However, SignA queries are
answered by letting s = 0 in the above signature obtained using SignB algorithm.
For the k-th query, B embeds the DDH instance to construct the signature
σk = (Ak, Bk, Ck), where Bk := ga and

Ak := (ga)ũ1(gab+θ)t/δ0(ga)
∑

j v1jmkj = ga
(
(ũ1+tb/δ0)+

∑
j v1jmkj

)
gtθ/δ0

= ga(u1+
∑

j v1jmkj)+tθ/δ0 ,

Ck := (ga)ũ2(gab+θ)t(ga)
∑

j v2jmkj = ga
(
(ũ2+tb)+

∑
j v2jmkj

)
gtθ,

= ga(u2+
∑

j v2jmkj)+tθ.

In the above derivation, we re-arrange the terms appropriately and use the defi-
nition of u1 and u2. Note that the exponent a from the DDH instance is used to
simulate the signature randomness whereas s = tθ mod p. Suppose θ = 0 mod
p, then s = 0 mod p, i.e., the signature σk is distributed as an output of SignA.
If θ �= 0 mod p, then s �= 0 mod p, i.e., the signature σk is distributed as an
output of SignB with non-zero exponent s = tθ mod p.

Finally, A returns a forgery (m∗, σ∗). As before, B checks (i) the forgery is
valid and (ii) the message m∗ = (m∗

1, . . . ,m
∗
� ) is not queried earlier. Note that σk

is generated using the DDH instance. Since B knows δ0, U1, U2 and all the other
secret key components, B can generate the k-th signature of any type properly.
However, B cannot on her/his own decide the type of the signatures generated
using the problem instance, as s/he cannot compute S∗

1 and S∗
2 which uses the

exponents u1 and u2. In other words, B needs to rely on the advantage of A.
From Lemma 3, under DBP assumption, A only returns a Type-I forgery.

Also from our initial contradiction assumption, A distinguishes between
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Gamek−1 and Gamek with some non-negligible probability. So B leverages A
to break the DDH assumption. Thus we have,

∣
∣Adv

Gamek−1

A − AdvGamek
A

∣
∣ ≤ AdvDDHG

B . (5)

��
Lemma 5. If DBPH assumption holds in P, then AdvGameq is negligible.

Proof. Suppose there exists a PPT adversary A, who wins in Gameq and pro-
duces a Type-I forgery with some non-negligible probability. Then we con-
struct a simulator B to break the DBPH assumption as follows. B is given Θ
and hr, hs from H and his goal is to compute (R,S) �= (1, 1) from G

2 such
that e(R, hr)e(S, hs) = 1. Now B sets hz := hr, hδ0

z := hs and implicitly
sets u1 := ũ1 − t/δ0 and u2 := ũ2 − t, for randomly chosen ũ1, ũ2, t from
Zp. Thus B can simulate U ′

1 := gũ1 = gu1+t/δ0 and U ′
2 := gũ2 = gu2+t.

Next B chooses {v1j , v2j}�
j=1 uniformly at random from Zp and implicitly sets

δ10 := u2 − δ0u1 = ũ2 − δ0ũ1 and δj := v2j − δ0v1j , for j ∈ [1, 
]. Then B com-
putes h10 = hδ10

z = hũ2
r h−ũ1

s and hj = h
δj
z = h

v2j
r h

−v1j
s , for j ∈ [1, 
]. Now B

defines the PK as
(
hz, h0, h10, {hj}�

j=1

)
. Notice that B knows the secret expo-

nents {v1j , v2j}�
j=1. Hence B computes V1j = gv1j , V2j = gv1j , for j ∈ [1, 
].

After receiving PK, A makes signing oracle queries on the message
mi = (mi1, . . . ,mi�). Then B answers the SignB queries by computing σi =
(Ai, Bi, Ci), where Bi := gr and

Ai :=
(
U ′
1

∏

j

V
mij

1j

)r =
(
gu1+t/δ0

∏

j

(gv1j )mij
)r = gr(u1+

∑
j v1jmij)+rt/δ0 ,

Ci :=
(
U ′
2

∏

j

V
mij

2j

)r =
(
gu2+t

∏

j

(gv2j )mij
)r = gr(u2+

∑
j v2jmij)+rt,

for r randomly chosen from Zp. From the above derivation, it is clear that
signature σi is properly distributed as an output of SignB with s = rt mod-
ulo p. Finally A returns a forgery (m∗, σ∗), where m∗ = (m∗

1, . . . ,m
∗
� ) and

σ∗ = (A∗, B∗, C∗). As before, B checks (i) the forgery is valid and (ii) m∗ is not
queried earlier. If any of these checks fail to hold then B aborts. Otherwise, B
breaks the DBP assumption as follows.

From the contradiction assumption, A returns a Type-I forgery with some
non-negligible probability. Then, B can write the Type-I forgery components as,
A∗ = gr(u1+

∑�
j=1 v1jm∗

j ), B∗ = gr and C∗ = gr(u2+
∑�

j=1 v2jm∗
j ), for some r ∈ Zp.

Now B computes

S = A∗(B∗)−ũ1−∑�
j=1 v1jm∗

j = gr(ũ1−t/δ0)−rũ1 = g−rt/δ0 ,

R = (C∗)−1(B∗)ũ2+
∑�

j=1 v2jm∗
j = g−r(ũ2−t)+rũ2 = grt.

In the above derivation, we have used the definition of u1 = ũ1 − t/δ0 and u2 =
ũ2 − t. Then one can verify that e(R, hr)e(S, hs) = e(grt, hz)e(g−rt/δ0 , hδ0

z ) = 1,
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here we have used the values of hr and hs. From the verification Eq. 2, B∗ �= 1
holds and hence R �= 1 holds. In other words, (R,S) is a non-trivial solution of
DBPH problem instance. Thus we have,

Adv
Gameq
A ≤ AdvDBPH

B . (6)

��

3.4 Comparison

In Table 2, we compare our rerandomizable signature scheme with some existing
schemes in the prime-order pairing setting. We use the following metrics: public
key size (denoted as |PK|), signature size (denoted as |σ|), signing cost, verifi-
cation cost and the computational assumption required to prove unforgeability.

Table 2. Comparing rerandomizable signatures for multiple block messages.

|PK| |σ| Signing cost Verification cost Assum.

PS-RRS (� + 2)|H| 2|G| 2EG 2P + �(EH + MH) PS

LMPY-RS (2� + 5)|G| + (2� + 6)|H| 4|G| 6EG + (2� + 2)MG 5P + 3MGT
+ 2�MH SXDH

RRS Sect. 3.1 (� + 3)|H| 3|G| 3EG 3P + MGT
+ �(EH + MH) SXDH

For any group X ∈ {G,H,GT }, EX , MX respectively denote the cost of exponentiation, mul-
tiplication in X and |X| is the bit size of X whereas P denotes pairing computation cost. PS
denote the interactive assumption used in [24].

We denote PS-RRS to be the rerandomizable signature scheme described in
[24]. As we can see, PS-RRS is an efficient scheme in terms of the size of the
public key and signature as well as the running time of signing and verification
algorithms. However, unforgeability of the PS-RRS scheme is proved under an
interactive assumption [24, Assumption 1].

Libert et al.’s [19] randomizable signature scheme (LMPY-RS) is currently the
most efficient one under the SXDH assumption. Here the size of the public key
and running time of the signing algorithm are at least three times that of the
PS-RRS scheme whereas, the signature size is double and the verification time
is two and a half times that of the PS-RRS scheme.

The performance of the RRS scheme proposed in this paper is roughly two
times better than that of LMPY-RS scheme, in terms of public key size and running
time of the signing and verification algorithms, whereas our scheme has three
signature components instead of four in LMPY-RS. Compared to the PS-RRS
scheme, our scheme requires just one additional group element H in the public
key and only one additional exponentiation in G for signing and one additional
pairing plus a single multiplication in GT for signature verification. However,
in contrast to the interactive assumption used in [24], security of our scheme
requires only the SXDH assumption.
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4 Sequential Aggregate Signature

In this section, we present a sequential aggregate signature (SeqAS) scheme
with constant-size public key and signature and prove its unforgeability under
the SXDH assumption. Like [14], our construction uses both ‘randomness re-use’
and ‘public key sharing’ techniques.

4.1 Construction

The starting point of the SeqAS is our RRS scheme. We observe that the LMPY-
RS scheme does not allow signature aggregation. For that, it seems necessary
to make one element of the trapdoor key of the underlying knowledge system,
namely δ0, publicly available. However, in that case, the security reduction no
longer works. We resolve this issue, by first letting the setup authority choose
u1, u2, δ0 from Zp and define δ10 = u2 − δ0u1. Then the j-th signer chooses
v1j , v2j from Zp and implicitly defines δj = v2j − δ0v1j . Note that the above
changes are possible as, unlike [19], our scheme uses simulated QA-NIZK proof
component.

To construct the SeqAS scheme, we thus extend the RRS structure to the
multi-user setting. Recall that our RRS signature is of the form gr(u1+

∑
j v1jmj), gr

and gr(u2+
∑

j v2jmj). As mentioned above we treat v1j and v2j as the j-th signer’s
secret key. However, to apply the ‘public key sharing’ technique [14], g, gu1 and
gu2 need to be made public for aggregation and hz, h0, h10 are also needed for
verification. This implies that the public parameter AS.PP of the SeqAS scheme
consists of {g, U1 = gu1 , U2 = gu2 , hz, h0 = hδ0

z , h10 = hu2
z h−u1

0 }. Then, the j-
th signer implicitly sets δj = v2j − δ0v1j , where the corresponding secret key
SKj contains {v1j , v2j} and the verification key PKj contains {hj = h

δj
z =

h
v2j
z h

−v1j

0 }.
Now we explain, how to aggregate the signature using ‘randomness re-

use’ technique. Consider a message m1 which is signed by the first user using
SK1 = {v11, v21} by computing σ1 = (A1, B1, C1), where A1 = (U1g

v11m1)t1 ,
B1 = gt1 , C1 = (U2g

v21m1)t1 , for some t1 randomly chosen from Zp. Then, given
(m1, σ1), the second user uses SK2 = {v12, v22} to compute the aggregate sig-
nature σ2 = (A2, B2, C2) on the message m2, where A2 = (A1B

v12m2
1 )t2 , B2 =

Bt2
1 , C2 = (C1B

v22m2
1 )t2 , for t2 randomly chosen from Zp. In the same way, we

can extend the above procedure for polynomial many aggregation. We present
our SeqAS construction in Table 3.

Correctness. Note that the verification Eq. 7 of the SeqAS scheme is same as
the verification Eq. 2 of our RRS scheme. Hence, it is sufficient to ensure the
resulting aggregate signature can be written explicitly as in the RRS scheme.
This will guarantee the correctness of the SeqAS scheme. Now we establish the
structure of the signature returned by AS.Sign using mathematical induction.
If s = 0, then AS.Sign sets σ = (A,B,C) = (gu1 , g, gu2) and computes the
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Table 3. SeqAS scheme in the prime-order setting.

AS.Setup(λ)

Run P(λ) → (p,G,H,GT , e, g, h), where g
$← G, h

$← H.

Choose u1, u2, δ0
$← Zp, hz

$← H, define δ10 := u2 − δ0u1 and
compute U1 = gu1 , U2 = gu2 , h0 = hδ0

z , h10 = hδ10
z .

Return AS.PP := {p,G,H,GT , e, g, h, U1, U2, hz, h0, h10}.
AS.KeyGen(AS.PP )

Choose v1j , v2j
$← Zp and compute hj := h

v2j
z h

−v1j

0 .
Return (SKj := {v1j , v2j}, PKj := {hj}).

AS.Sign(SK,m = (m1, . . . , ms), σ, (PK1, . . . , PKs), m)
Check the following,
If s = 0, then set σ = (U1, g, U2),
If s > 0 and AS.Ver((PK1, . . . , PKs), (m1, . . . , ms), σ) = 0, then it halts,
If m = 0 or any of mi = 0, then it halts,
If for some j ∈ [1, s] such that PKj = PK, then it halts,

Suppose the algorithm did not halt, then
parse SK as {v1τ , v2τ}, PK as {hτ}, σ as (A, B, C).

Select t
$← Zp and compute A′ = (ABv1τ m)t, B′ = Bt and C′ = (CBv2τ m)t.

Return ((m1, . . . , ms, m), σ′ = (A′, B′, C′)).

AS.Ver(AS.PP, (PK1, . . . , PKs), (m1, . . . , ms), σ = (A, B, C))
Parse PKj = {hj}, for all j ∈ [1, s] and continue only if the followings hold: mi = 0

or PKi = PKj , for any i �= j, i, j ∈ [1, s]. Accept if

B �= 1 and e(A, h0)e(B, h10

s∏

j=1

h
mj

j ) = e(C, hz). (7)

signature σ1 = (A1, B1, C1) on the message m1, where A1 = (ABv11m1)t =
gt(u1+v11m1), B1 = Bt = gt and C1 = (CBv12m1)t = gt(u2+v12m1). Let’s assume
that after k many aggregation, the aggregate signature σk = (Ak, Bk, Ck) on the
messages (m1, . . . ,mk) under the public keys (PK1, . . ., PKk) can be written
as Ak = gr(u1+

∑k
j=1 v1jmj), Bk = gr, Ck = gr(u2+

∑k
j=1 v2jmj), for some r ∈

Zp. Now we prove that the aggregate signature σk+1 = (Ak+1, Bk+1, Ck+1) of
the messages (m1, . . . ,mk,mk+1) under (PK1, . . . , PKk, PKk+1) can be written
explicitly as in Table 3. Observe that from the definition of AS.Sign, we can
write Ak+1 = (AkB

v1k+1mk+1
k )t = grt(u1+

∑k+1
j=1 v1jmj), Bk+1 = Bt

k = grt and

Ck+1 = (CkB
v2k+1mk+1
k )t = grt(u2+

∑k+1
j=1 v2jmj), for t

$← Zp. Thus the resulting
signature σk+1 is distributed as similar to the RRS scheme of Sect. 3.1. Hence
correctness of the SeqAS scheme follows from that of RRS scheme.

4.2 Security

We argue the unforgeability of SeqAS scheme in the certified public key setting
[21], see our full version [6] for the formal security definition. Informally, given
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the public key and access to join and signing oracle queries, the adversary cannot
produce a valid forgery.

We give a reduction from the security of our RRS scheme. In the certified
public key model, the adversary gives both public and secret keys to the sim-
ulator. Hence simulator knows all the secret keys except the secret key of the
underlying RRS scheme (for single message). The simulator responds to an aggre-
gate signature query by first obtaining a signature of the underlying RRS from
its challenger and then constructing the aggregate signature. From the aggre-
gate signature structure, which can be viewed as a linear function of the secret
exponents, the aggregation is oblivious to the order in which the messages are
signed. Once the adversary returns a non-trivial forgery, the simulator extracts
the forgery for the underlying RRS scheme by using the secret keys of all the
other signers.

Theorem 6. If RRS scheme is EUF-CMA secure, then SeqAS scheme is EUF-
CMA secure in the certified public key setting.

Proof. Suppose there exists a PPT adversary A who breaks the EUF-CMA
security of SeqAS scheme in the certified public key setting, with some non-
negligible probability. Then we construct a simulator B that breaks the EUF-
CMA security of the RRS scheme as follows.

Setup: First, B initializes the key list KeyList as empty. Next B obtains the
public parameter PP as (p,G,H,GT , e, g̃, h) along with the public-key PK as
{hz, h0, h10, hτ}, from his challenger C. Then B sets PK∗ = hτ . Now B requests
a signature query on zero message to C. Then C returns σ0 = (A0, B0, C0) =
(g̃ru1 , g̃r, g̃ru2), for some r ∈ Zp. Now B assigns g := B0, U1 := A0, U2 :=
C0 and computes the public parameter for our SeqAS scheme as, AS.PP :=
{g, h, U1, U2, hz, h0, h10}. Then B forwards AS.PP and PK∗ to A.

Join Query: A makes the join queries by sending the key pair SKj = {v1j , v2j}
and PKj = {hj} to B. B checks whether (SKj , PKj) are generated correctly by
checking

hj
?= hv2j

z h
−v1j

0 . (8)

For correctly generated key pair (SKj , PKj), B adds it in the KeyList.

Signing Query: A makes a sequential aggregate signature query on the mes-
sage mi to B by sending an aggregate signature σi on the messages (mi1, . . . misi

)
under the public keys (PKi1, . . . , PKisi

). B aborts, if any of the following con-
dition holds, (i) if si > 0 and the aggregate signature σi is invalid, (ii) if
there exists j ∈ [1, si] such that PKij does not belong to KeyList, (iii) if
there exists some j ∈ [1, si] such that PKij = PK∗. Otherwise, B requests
a signature query on mi to his challenger C, which returns σ = (A,B,C).
Note that, all the public keys PKij involved in the signing queries are cer-
tified before. Hence, B knows the associated key pairs (SKij , PKij), for all
j ∈ [1, si]. Then, B parses SKij as {v1ij , v2ij}. Next, B chooses t uniformly
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at random from Zp and computes the aggregate signature σ′
i = (A′

i, B
′
i, C

′
i),

where A′
i =

(
AB

∑si
j=1 v1ijmij

)t
, B′

i = Bt, C ′
i =

(
CB

∑si
j=1 v2ijmij

)t. It is easy to
see that the signature generated above is properly distributed. From the linear
structure of the signature exponents, the order of aggregation does not matter.
Hence, σ′

i is a valid aggregate signature on (mi1, . . . ,misi
,mi) under the public

keys (PKi1, . . . , PKisi
, PK∗).

Output: After q many number of aggregate signature queries, A returns a
forgery σ∗ = (A∗, B∗, C∗) on the messages (m∗

1, . . . ,m
∗
s) under the public keys

(PK1, . . . , PKs). Now B ensures the validity of the forgery, if the following con-
ditions are satisfied,

i. AS.Ver((PK1, . . . , PKs), σ∗, (m∗
1, . . . ,m

∗
s))= 1,

ii. For all PKj �= PK∗, PKj ∈ KeyList,
iii. There exists one j∗ ∈ [1, s], PK∗ = PKj∗ and m∗

j∗ �= mi, for all i ∈ [1, q].

Condition (i) ensures that the forgery σ∗ satisfies the verification Eq. 7. Whereas,
the condition (ii) ensures that B knows all the secret key SKj components such
that Eq. 8 holds, for the associated keys PKj �= PK∗. Recall that the public keys
are generated independently by each of signer. Also the condition (iii) ensures
that the aggregate signature forgery includes the challenge public key PK∗ as
part of the aggregation. Now B computes the rerandomizable signature forgery
σ∗

m = (A∗
m, B∗

m, C∗
m), where A∗

m = A∗(B∗)− ∑
j �=j∗ v1jm∗

j , B∗
m = B∗ and C∗

m =

C∗(B∗)− ∑
j �=j∗ v2jm∗

j . Next we prove that the above constructed rerandomizable
signature σ∗

m satisfies the verification Eq. 2 as follows,

e(C∗
m, hz) = e(C∗(B∗)− ∑

j �=j∗ v2jm∗
j , hz) = e(C∗, hz)e((B∗)− ∑

j �=j∗ v2jm∗
j , hz)

=
(
e(A∗, h0)e(B∗, h10h

m∗
j∗

τ

∏

j �=j∗
h

m∗
j

j )
)
e((B∗)− ∑

j �=j∗ v2jm∗
j , hz)

= e(A∗(B∗)− ∑
j �=j∗ v1jm∗

j , h0)e(B∗, h10h
m∗

j∗
τ )

= e(A∗
m, h0)e(B∗

m, h10h
m∗

j∗
τ ).

The first equality is obtained by using the value of C∗
m and the second equality

is obtained by using the bilinearity of the pairing. Third equality is obtained
from the verification Eq. 7. The fourth equality is obtained by canceling the v2j

terms. The final equality is obtained using the values of A∗
m and B∗

m.
The condition (iii) of aggregate signature forgery ensures the non-trivial

forgery with respect to the queried messages. Hence, the resulted forgery σ∗
m

on the message m∗
j∗ under PK∗ is clearly a valid forgery for the RRS scheme. ��

4.3 Comparison

We compare our SeqAS scheme with the existing schemes in Table 4. We consider
all the sequential aggregate signature schemes in asymmetric pairing setting [7]
whose unforgeability is proved in the certified public key setting in the standard
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model. Here we use the following metrics: public key size (denoted as |PK|),
aggregate signature size (denoted as |AS|), signing and verification cost and
the computational assumption required to prove unforgeability of the aggregate
signature scheme.

Table 4. Comparing sequential aggregate signature schemes using certified public key
setting in the standard model.

Scheme |PK| |AS| Signing cost Verification cost Assumption

LOSSW-3a λ|G| + λ|H| 2|G| 2P + �MGT
+ (� − 1)λMH 2P + �MGT

CDH

+1|GT | +6EG + (2�λ + 6)MG + �λMH

SAS1 2|G| + 8|H| 8|G| 8P (4� + 14)EH 8P + 1EGT
SXDH, DBDH

+1|GT | +10EG + 1EGT
+(4� + 14)EH LW2

SAS2 6|G| + 6|H| 6|G| 6P + (3� + 6)EH 6P + 1EGT
LW1, DBDH

+1|GT | +(3� + 18)EG + 1EGT
+(3� + 6)EH LW2

LLY-SeqAS 1|H| 3|G| 5P + MGT
+ �EH 5P + MGT

+ �EH LRSW

+2�MH + 5EG + 2MG +2�MH

PS-SeqAS 1|H| 2|G| 2P + �(EH + MH) 2P + �(EH + MH) PS

+ 3EG + 1MG

SeqAS 1|H| 3|G| 3P + MGT
+ �(EH + MH) 3P + MGT

SXDH

+5EG + 2MG + �(EH + MH)

For any group X ∈ {G,H,GT }, we denote EX , MX and |X| be the exponentiation, mul-
tiplication in X and bit size of X and P denotes asymmetric pairing computation time. λ
denotes the security parameter and � denotes the number of signature aggregated so far. PS
and LRSW denote the interactive assumptions in [24] and [23].

Chatterjee et al. [5] presented aggregate signature variants of [21] denoted
as LOSSW-3a, whose security is proved under the CDH assumption. However,
the size of the public key is some multiple of the security parameter λ, where
λ takes 256 for the 128 bit-level security. This results in a sequential aggregate
signature with a large public key size.

In 2012, Lee et al. [13, Section 3.5] extended the idea from [26] and presented
a sequential aggregate signature scheme based on the Camenisch-Lysyanskaya
(CL) signature in the asymmetric pairing setting. The resulted scheme is denoted
as LLY-SeqAS and it has a constant size public key. The security of the LLY-
SeqAS scheme is based on the security of the CL-signature scheme, which is
proved under an interactive assumption. In 2015, Lee et al. [17] presented two
SeqAS schemes, namely SAS1 and SAS2 schemes. The security of SAS1 is proved
under SXDH, DBDH and LW2 assumptions and SAS2 is proved under DBDH,
LW1 and LW2 assumptions described in [18]. Note that, both LW1 and LW2
assumptions are non-standard static assumptions whose hardness is established
in the generic group model, which provides only the lower bound [27]. They
have used the dual system encryption technique to prove the security of their
schemes. However, their public key size (resp. aggregate signature size) increases
by a factor of 9 (resp. 2) with respect to the LLY-SeqAS construction.

In 2016, [24] presented a sequential aggregate signature (denoted as PS-
SeqAS) scheme based on their rerandomizable signature construction. One can
see that PS-SeqAS is the most efficient scheme among all the SeqAS schemes
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presented in Table 4. However, the security of the PS-SeqAS scheme is proved
under an interactive assumption. The performance of our SeqAS scheme is very
close to PS-SeqAS even though we argue security under the SXDH assumption.
In particular, public key size remains the same in both schemes, whereas sig-
nature size increases by one group element in our scheme as compared to the
PS-SeqAS scheme. Also, we require one additional pairing and one target group
multiplication to verify the signature.

5 Concluding Remark

We proposed the first construction of a sequential aggregate signature scheme
with constant-size public key in the standard model based on the SXDH assump-
tion in the prime order bilinear pairing setting. This is achieved by suitably
modifying a randomizable signature scheme from [19]. The performance of both
the rerandomizable signature scheme and sequential aggregate signature scheme
comes quite close to prior proposals where security is based on some interactive
assumption.
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Abstract. This paper presents an efficient and secure implementation
of SM2, the Chinese elliptic curve cryptography standard that has been
adopted by the International Organization of Standardization (ISO) as
ISO/IEC 14888-3:2018. Our SM2 implementation uses Intel’s Advanced
Vector Extensions version 2.0 (AVX2), a family of three-operand SIMD
instructions operating on vectors of 8, 16, 32, or 64-bit data elements in
256-bit registers, and is resistant against timing attacks. To exploit the
parallel processing capabilities of AVX2, we studied the execution flows
of Co-Z Jacobian point arithmetic operations and introduce a parallel
2-way Co-Z addition, Co-Z conjugate addition, and Co-Z ladder algo-
rithm, which allow for fast Co-Z scalar multiplication. Furthermore, we
developed an efficient 2-way prime-field arithmetic library using AVX2
to support our Co-Z Jacobian point operations. Both the field and the
point operations utilize branch-free (i.e. constant-time) implementation
techniques, which increase their ability to resist Simple Power Analysis
(SPA) and timing attacks. Our software for scalar multiplication on the
SM2 curve is, to our knowledge, the first constant-time implementation
of the Co-Z based ladder that leverages the parallelism of AVX2.

1 Introduction

Roughly 35 years ago, Koblitz and Miller proposed to use the group of points
on an elliptic curve defined over a finite field for the implementation of discrete
logarithm cryptosystems [17,19]. Today, Elliptic Curve Cryptography (ECC) is
enjoying wide acceptance in the embedded/mobile domain due to the benefits
of smaller key size, faster computation time, and reduced memory requirements
compared to classic public-key cryptosystems [30]. Furthermore, ECC becomes
increasingly popular in application domains where high data transmission rates
c© Springer Nature Switzerland AG 2020
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(i.e. high throughput) are important, e.g. networking, web services, and cloud
computing. The 64-bit Intel architecture plays a major role in the latter two
domains, which makes a good case to optimize ECC software with respect to
the computing capabilities of modern Intel processors, especially their parallel
processing capabilities. In 2011, Intel presented a new set of SIMD instructions
called Advanced Vector Extensions 2 (AVX2) that was first integrated into the
Haswell microarchitecture. AVX2 instructions support integer operations with
256-bit vectors, which allows one to do calculations on e.g. four 64-bit integers
in parallel, and have a “non-destructive” three-operand format, i.e. two source
registers and one destination register. Even though AVX2 was mainly designed
to accelerate graphics and video processing, it can also be leveraged to speed up
cryptographic workloads like ECC computations.

The security of elliptic curve cryptosystems relies on the (presumed) hard-
ness of the Elliptic Curve Discrete Logarithm Problem (ECDLP), which asks to
find the scalar k given two points P and Q = kP on an elliptic curve [12]. An
operation of the form kP , called scalar multiplication, is an integral part of all
ECC schemes and, in general, their most computation-intensive component. In
addition, the scalar multiplication can be vulnerable to side-channel attacks, in
particular timing analysis or Simple Power Analysis (SPA), when implemented
carelessly [4,28]. Therefore, an efficient and secure (in the sense of side-channel
resistant) implementation of the scalar multiplication is crucial for any elliptic
curve cryptosystem. The Montgomery ladder algorithm, originally proposed in
[20], has a very regular execution profile, which lends itself to implementations
with constant execution time, provided the underlying field arithmetic satisfies
certain requirements. This algorithm is not only suitable for Montgomery curves
like Curve25519 [1], but has also been generalized to Weierstrass elliptic curves
[4,16]. The present paper focusses on a parallel constant-time implementation
of the Montgomery ladder for Weierstrass curves (like SM2) using AVX2. An
AVX2 implementation of Curve25519 can be found in e.g. [7].

SM2 was introduced by the State Cryptography Administration of China in
2010 [26] and is supposed to replace RSA and other public-key cryptographic
algorithms for electronic authentication systems, key management systems, and
application systems. In addition, SM2 was standardized by ISO/IEC in 2018 as
ISO/IEC 14888-3:2018 [15]. Hence, in the next couple of years, SM2 will have
excellent application prospects in both Chinese and international commercial
electronic products. For all these reasons, it makes sense to investigate how the
prime-field arithmetic, elliptic curve operations, and protocols using SM2 can
be implemented efficiently, e.g. by utilizing the parallel computing capabilities
of AVX2. It should be noted that many of the optimizations we present in this
paper can also be applied to NIST P-256 or other Weierstrass curves by simply
providing a parallel 2-way implementation of the field arithmetic.

1.1 Overview of Related Work and Motivation for Our Work

Currently, there exist only a few papers about implementing SM2 starting from
the basic prime-field arithmetic up to the protocol level. Most implementations



206 J. Huang et al.

of SM2 are based on the field arithmetic and elliptic curve operations provided
by the open-source software OpenSSL [21]; typical examples are GmSSL1 and
TASSL2. However, implementation details of the prime-field arithmetic and the
point (i.e. group) operations of SM2 are, to our knowledge, not documented in
any form, which makes it difficult to reason about their efficiency.

To improve the execution time of public-key cryptographic algorithms like
RSA and ECC on Intel processors, the SIMD-level parallelism of AVX2 can be
exploited. Vector implementations of Montgomery modular multiplication and
efficient modular exponentiation for RSA were introduced in [10,29]. Gueron
and Krasnov presented in [11] a highly-optimized AVX2 software for fixed-base
scalar multiplication on NIST’s P-256 curve that executes four point additions
in parallel. Taking advantage of AVX2 instructions, Faz-Hernández and López
[7] developed an optimized Montgomery ladder for Curve25519, which performs
two field-operations (e.g. two field-multiplications) simultaneously. In order to
further reduce the latency, each field-multiplication (resp. squaring) multiplies
two pairs of 25 or 26-bit limbs in parallel, whereby two limbs belonging to one
operand are stored in a 128-bit lane of an AVX2 register. In a recent follow-up
work, Faz-Hernández et al. [8] presented fast 2-way and 4-way implementations
of the field-arithmetic and point operations using both the Montgomery model
and the Edwards model of Curve25519. There are various other studies exploring
the optimization of ECC for different vector instruction sets, such as Intel SSE2,
Intel AVX-512, and ARM NEON, see e.g. [2,24].

Parallel implementations of the Montgomery ladder for GPUs and FPGAs
have also been reported, some of which use Meloni’s Co-Z Jacobian arithmetic
from [18]. Bos [3] introduced a low-latency 7-way GPU implementation of an
(X,Z)-only Co-Z ladder for the NIST curve P-224. Peng et al. [22] presented
an optimized multi-core FPGA implementation of the X-only Co-Z ladder from
[13] for a set of Weierstrass curves, whereby they combined a number of Mont-
gomery modular multipliers to work in parallel. They concluded that a 3-core
implementation achieves the best throughput-resource ratio.

1.2 Our Contributions

The contribution of this paper is twofold and can be summarized as follows:

1. We present novel parallel 2-way Co-Z Jacobian point arithmetic algorithms
that utilize the parallel processing capabilities of Intel’s AVX2 instruction
set. Our parallel Co-Z addition, Co-Z conjugate addition, and combination
thereof (i.e. the Co-Z ladder step) outperform their sequential counterparts
by factors of about 1.26, 1.60, and 1.33, respectively. By pre-computing two
values, we managed to resolve data dependencies in the parallel execution
of the Co-Z ladder algorithm and minimize its execution time. Thanks to
these parallel Co-Z point operations, our Co-Z based Montgomery ladder is
1.31 times faster than a sequential Co-Z Montgomery ladder.

1 See http://gmssl.org (accessed on 2020–05–24).
2 See http://github.com/jntass/TASSL (accessed on 2020–05–24).

http://gmssl.org
http://github.com/jntass/TASSL
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2. To speed up the field arithmetic, we developed a fast 2-way implementation
of modular reduction and carry propagation for the SM2 prime using the
AVX2 instruction set. Both are integrated into our modular multiplication
and modular squaring functions, which employ a radix-226 representation
of the operands. We aimed for resistance against timing/SPA attacks and
avoided conditional statements like branch instructions to ensure the field
arithmetic (and also point arithmetic) has operand-independent execution
time. To achieve this, we utilized constant-time techniques such as operand
masking, Fermat-based inversion, and a highly regular ladder algorithm.

The rest of this paper is structured as follows. In Sect. 2, we firstly provide
a brief introduction to AVX2, the representation of operands, and the notation
used throughout this paper. Section 3 presents the new parallel Co-Z Jacobian
arithmetic and the Co-Z based Montgomery ladder algorithm. Thereafter, in
Sect. 4, we introduce our implementation of the 2-way field-arithmetic for SM2
using AVX2 instructions. The results of our implementation are summarized in
Sect. 5 and compared with the results from some previous papers. Finally, we
give concluding remarks in Sect. 6.

2 Preliminaries

Overview of AVX2. Starting with the Haswell microarchitecture (released in
2013), modern 64-bit Intel processors support AVX2, which is, in essence, an
extension of AVX to include 256-bit integer operations (classical AVX provides
256-bit floating-point instructions, but only 128-bit integer instructions). There
are various AVX2 integer instructions that can be used to speed up prime-field
arithmetic; the most important is VPMULUDQ (in the following abbreviated as
MUL), which executes four (32 × 32)-bit multiplications in parallel and places
the four 64-bit products in a 256-bit AVX2 register. Similarly, AVX2 contains
instructions for parallel addition and subtraction of four packed 64-bit integers
(abbreviated as ADD and SUB) [14]. Other members of the AVX2 instruction
set with relevance for ECC include instructions to combine data elements from
two AVX2 registers into a single one (BLEND), to shuffle data elements within
a register (SHUF), to permute elements (PERM), to left/right shift elements
by the same or different distances (SHL, SHR, SHLV, SHRV), to concatenate
128-bit lanes from two registers (ALIGN), and to carry out bit-wise operations
(e.g. AND, XOR). We refer to [14] for a detailed description these instructions
and to [9] for information about their latency and throughput.

Representation of Field Elements. It is common practice to represent the
elements of a prime field Fp as integers in the range of [0, p − 1], which means
they have a length of up to m = �log2(p)� bits. An m-bit integer can be stored
in an array of words (“limbs”) whose bitlength equals the register size n of the
target platform, e.g. n = 64. Arithmetic algorithms for addition, multiplication
(and other operations) in Fp process these words using the instructions of the
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processor, e.g. (n × n)-bit multiply, n-bit add, n-bit add-with-carry, etc. While
such a canonical radix-2n representation of integers has the advantage that the
total number of words k = �m/n� is minimal for the target platform, it entails
a lot of carry propagation and, as a consequence, sub-optimal performance on
modern 64-bit processors [1,7]. Fortunately, it is possible to avoid most of the
carry propagations by using a reduced-radix representation (also referred to as
redundant representation [8]), which means the number of bits per limb n′ is
slightly less than the bitlength n of the processor’s registers, e.g. n′ = 51 when
implementing Curve25519 for a 64-bit processor. In this way, several limbs can
be added up in a 64-bit register without causing overflow and the result of the
field-addition (and other arithmetic operations) does not necessarily need to be
fully reduced, i.e. can be larger than p. Only at the very end of a cryptographic
operation (e.g. scalar multiplication), a full reduction to the least non-negative
residue and conversion to canonical form has to be carried out.

Formally, when using a reduced radix of 2n′
(i.e. n′ < n bits per limb), an

m-bit integer A is represented via a sequence of limbs (ak′−1, ak′−2, . . . , a0) so
that A =

∑k′−1
i=0 ai2in′

, whereby a limb ai does not necessarily need to be less
than 2n′

but can (temporarily) become as big as 2n − 1. Although a reduced-
radix representation may increase the number of limbs k′ = �m/n′� versus the
full-radix setting (i.e. k′ > k), there is typically still a net-gain in performance
when taking advantage of “lazy carrying” and “lazy reduction” [8]. We will use
uppercase letters to denote field elements and indexed lowercase letters for the
individual limbs they consist of. As is usual practice, we analyze and compare
the efficiency of point operations (i.e. addition and doubling) by counting the
number of multiplications (M), squarings (S), additions/subtractions (A), and
inversions (I) in the underlying finite field.

SM2 Elliptic Curve. The specific elliptic curve used for the implementation
described in the following sections is SM2 [27], which is defined by a simplified
Weierstrass equation E : y2 = x3 + ax + b over a prime field Fp. This field is
given by the pseudo-Mersenne prime p = 2256 − 2224 − 296 + 264 − 1 and allows
for a special modular reduction method [25]. The curve parameter a is fixed to
−3 to reduce the cost of the point arithmetic when using Jacobian projective
coordinates [12]. A Jacobian projective point (X : Y : Z), Z �= 0 corresponds to
the affine point (x, y) = (X/Z2, Y/Z3). The projective form of the Weierstrass
equation is

E : Y 2 = X3 − 3XZ4 + bZ6. (1)

Like other standardized Weierstrass curves, the cardinality #E(Fp) of the SM2
curve is prime, i.e. it has a co-factor of h = 1. The full specification of the SM2
curve can be found in [27].

Co-Z Jacobian Arithmetic. First proposed by Meloni [18], Co-Z Jacobian
arithmetic is based on the observation that the addition of two distinct points
in projective coordinates can be accelerated when they are represented with the
same Z-coordinate. As specified by Eq. (2), the sum R = P + Q of the points
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P = (XP , YP , Z) and Q = (XQ, YQ, Z) can computed at an overall cost of five
multiplications (5M), two squarings (2S) and seven additions/subtractions (7A)
in Fp, which is significantly less than the cost of a conventional point addition
using Jacobian projective coordinates (12M+4S+7A, see [6, Sect. 2.3]) and lies
even below the 8M+3S+7A for a “mixed” Jacobian-affine addition [6,12]. This
Co-Z point-addition technique was applied by Rivain [23] to develop a fast and
regular Montgomery ladder algorithm that is suitable for scalar multiplication
on Weierstrass curves and does not require the order to be divisible by 4.

A = (XQ − XP )2, B = XP A, C = XQA, D = (YQ − YP )2, E = YP (C − B)
XR = D − (B + C), YR = (YQ − YP )(B − XR) − E, ZR = Z(XQ − XP ) (2)

Note that the Co-Z addition formula also yields a new representation of the
point P = (XP , YP , Z) because B = XP (XQ − XP )2, E = YP (XQ − XP )3, and
ZR = Z(XQ − XP ) [23]. Consequently, (XP , YP , Z) ∼ (B,E,ZR), which means
this new representation of the point P and the sum R = P + Q have the same
Z-coordinate. According to Eq. (3) the difference R′ = P − Q = (X ′

R, Y ′
R, ZR)

can be computed with very little extra cost and has the same Z-coordinate as
R = P + Q. In total, 6M+3S+11A are needed to obtain P + Q and P − Q.

A,B,C,D, and E as in Eq. (2), F = (YP + YQ)2

X ′
R = F − (B + C), Y ′

R = (YP + YQ)(X ′
R − B) − E (3)

Venelli and Dassance [28] presented a further optimization of Co-Z arithmetic
by eliminating the computation of the Z-coordinate from the formulae for the
Co-Z addition and Co-Z conjugate addition. Concretely, they proposed a novel
Co-Z Montgomery ladder algorithm based on addition formulae that compute
only the X and Y -coordinate of the intermediate points (we refer to this kind
of operation as “(X,Y )-only addition”). The Z-coordinate can be recovered at
the end of the ladder at little extra cost. Omitting the Z-coordinates reduces
the computational cost of the Co-Z addition and the Co-Z conjugate addition
by 1M to 4M+2S+7A and 5M+3S+11A, respectively. The implementation we
present in this paper is based on (X,Y )-only Co-Z operations.

3 Parallel Co-Z Jacobian Arithmetic for SM2

In this section we first demonstrate that most of the field-arithmetic operations
of Co-Z addition and Co-Z conjugate addition can be executed in parallel and
then we present a ladder that exploits the processing capabilities of AVX2.

3.1 Parallel Co-Z Jacobian Point Addition

In order to utilize the parallelism of AVX2, we carefully analyzed the execution
flow of the (X,Y )-only Co-Z Jacobian arithmetic and found that many of the
field operations have no sequential dependency and can, therefore, be executed
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Algorithm 1. SIMD XYCZ ADD: Parallel (X,Y )-only Co-Z addition

Input: P = (XP , YP ), Q = (XQ, YQ).
Output: (R,P ′) = (P + Q,P ) where P ′ ∼ P has the same Z-coordinate as P + Q.

1: T1 = XP − XQ T2 = YQ − YP {sub}
2: A = T 2

1 D = T 2
2 {sqr}

3: B = XPA C = XQA {mul}
4: T1 = B + C {add}
5: XR = D − T1 T3 = C − B {sub}
6: T1 = B − XR {sub}
7: T1 = T1T2 E = YPT3 {mul}
8: YR = T1 − E {sub}
9: return ((XR, YR), (B,E))

Algorithm 2. SIMD XYCZ ADDC: Parallel (X,Y )-only Co-Z conjugate addition

Input: P = (XP , YP ), Q = (XQ, YQ), A′ = (XQ−XP )2, T ′ = (XQ−XP )A′ = C′−B′

Output: (R,R′) = (P + Q,P − Q)

1: C = XQA′ E = YPT ′ {mul}
2: B = C − T ′ T1 = YQ − YP {sub}
3: T2 = B + C T3 = YP + YQ {add}
4: D = T 2

1 F = T 2
3 {sqr}

5: XR = D − T2 X ′
R = F − T2 {sub}

6: T2 = B − XR T4 = X ′
R − B {sub}

7: T2 = T1T2 T3 = T3T4 {mul}
8: YR = T2 − E Y ′

R = T3 − E {sub}
9: return ((XR, YR), (X ′

R, Y
′

R))

in parallel. This applies, for example, to the temporary values B and C of the
formulae for the Co-Z addition given in Eq. (2), which means it is possible to
obtain them simultaneously with a 2-way parallel field-multiplication. Also the
computation of A and D can be “paired” and performed simultaneously if the
used field-arithmetic library supports 2-way parallel squaring. Algorithm 1 and
Algorithm 2 are optimized implementations of the (X,Y )-only Co-Z addition
and Co-Z conjugate addition, respectively, whereby the prime-field operations
are scheduled to facilitate a 2-way parallel execution. Each line performs two
times the same operation in parallel using two sets of operands (the operation
being carried out is commented on the right). Unfortunately, some operations
of Algorithm 1 could not be paired (line 4, 6, and 8), but those operations are
relatively cheap additions and subtractions. On the other hand, all operations
of Algorithm 2 are performed pair-wise, but this became only possible because
of the pre-computation of A′ and T ′ (we will discuss further details of this pre-
computation below). Without pre-computation of A′ and T ′, the latency of the
(X,Y )-only Co-Z conjugate addition would be significantly worse.

The 2-way parallel execution of the Co-Z point addition almost halves
the latency compared to the straightforward (i.e. sequential) scheduling of the
field operations. More concretely, the latency of the (X,Y )-only Co-Z addition
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Algorithm 3. SIMD XYCZ ADDC ADD: Parallel Co-Z ladder step

Input: P = (XP , YP ) = Ra, Q = (XQ, YQ) = R1−a, A = (XQ − XP )2, T ′ = (XQ −
XP )A′ = C′ − B′ where a ∈ {0, 1} and Ra, R1−a are two Co-Z Jacobian points
that are intermediate results of the Montgomery ladder algorithm.

Output: (Ra, R1−a) = (2Ra, Ra + R1−a) and update of A′ = (XRa − XR1−a)2 and
T ′ = (XR1−a − XRa)A′.

1: C′ = XQA′ E′ = YPT ′ {mul}
2: B′ = C′ − T ′ T1 = YQ − YP {sub}
3: T2 = B′ + C′ T3 = YP + YQ {add}
4: D′ = T 2

1 F ′ = T 2
3 {sqr}

5: XR = D′ − T2 X ′
R = F ′ − T2 {sub}

6: T2 = B′ − XR T4 = X ′
R − B′ {sub}

7: T2 = T1T2 T4 = T3T4 {mul}
8: YR = T2 − E′ Y ′

R = T4 − E′ {sub}
9: T1 = X ′

R − XR T2 = Y ′
R − YR {sub}

10: A = T 2
1 D = T 2

2 {sqr}
11: XP = B = XRA C = X ′

RA {mul}
12: T3 = T2 + B T4 = B + C {add}
13: XQ = D − T4 T1 = C − B {sub}
14: T4 = XQ − XP T3 = T3 − XQ {sub}
15: A′ = T 2

4 T3 = T 2
3 {sqr}

16: T ′ = T4A
′ XP = E = YRT1 {mul}

17: T1 = D + A′ T2 = E + E {add}
18: T3 = T3 − T1 {sub}
19: YQ = 1

2
(T3 − T2) {sub}

20: return ((XQ, YQ), (XP , YP ))

decreases from 4M+2S+7A to 2M̈+1S̈+5Ä, i.e. the delay due to multiplications
and squarings is reduced by 50% (assuming that 2-way parallel field-operations
have the same delay as single field-operations). We abbreviate a 2-way parallel
multiplication, squaring, and addition (resp. subtraction) in Fp by M̈, S̈, and
Ä, respectively, to distinguish them from the corresponding simple 1-way field
operations. The 2-way parallel scheduling of the field-arithmetic decreases the
latency of the (X,Y )-only Co-Z conjugate addition from 5M+3S+11A for the
sequential variant given by Eq. (3) to 3M̈+1S̈+6Ä (this latency includes the
pre-computation of A′ and T ′, which will be discussed below).

As shown in [28] is is possible to convert the basic Montgomery ladder into
a Co-Z based ladder algorithm by simply replacing the operations in the main
loop by a (X,Y )-only Co-Z conjugate addition followed by a (X,Y )-only Co-
Z addition as shown in Eq. (4). Algorithm 3 combines these two operations
into a single “ladder step,” which we optimized for an arithmetic library that is
capable to execute the field operations in a 2-way parallel fashion. We designed
Algorithm 3 by firstly analyzing the sequential versions of the Co-Z addition
and CoZ conjugate addition. Their combined latency is 9M+5S+18A, but an
optimization described in [23, Sect. A.2] (which replaces a field-multiplication
by one squaring and four additions) makes it possible to reduce the latency to
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Algorithm 4. Co-Z based Montgomery ladder algorithm

Input: A point P �= O, a scalar k ∈ Fp satisfying kn−1 = 1.
Output: The result of the scalar multiplication R = k · P .
1: (R1, R0) = XYCZ IDBL(P )
2: a = kn−2

3: A′ = (XR1−a − XRa)2, T ′ = (XR1−a − XRa)A′

4: for i from n − 2 by 1 down to 1 do
5: a = (ki + ki+1) mod 2
6: (Ra, R1−a, A

′, T ′) = SIMD XYCZ ADDC ADD(Ra, R1−a, A
′, T ′)

7: end for
8: a = (k0 + k1) mod 2
9: (R1−a, Ra) = SIMD XYCZ ADDC(Ra, R1−a, A

′, T ′)
10:

λ
Z

= FinalInvZ(R1−a, Ra, P, a)
11: (R0, R1) = SIMD XYCZ ADD(R0, R1)
12: return (( λ

Z
)2XR0 , (

λ
Z

)3YR0)

8M+6M+22A. This indicates that, in theory, a parallel implementation of the
ladder step using 2-way parallel field operations could have a latency as low as
4M̈+3S̈+11Ä. However, the latency of a parallel Co-Z addition (Algorithm 1)
together with the parallel Co-Z conjugate addition (Algorithm 2) amounts to
5M̈+2S̈+11Ä and does not reach this (theoretical) lower bound. We then tried
to reschedule the field operations of the sequential 8M+6M+22A ladder step in
order to optimize it for 2-way parallel execution, but some data dependencies
did not allow us to reach the best possible latency of 4M̈+3S̈+11Ä.

In order to obtain the minimal latency, we propose to pre-compute the two
terms A′ = (XQ − XP )2 and T ′ = (XQ − XP )A′ before entering the main loop
of the ladder algorithm and update A′ and T ′ in each iteration (as part of the
ladder step, see Algorithm 3). In this way, we managed to perfectly resolve the
data dependencies and achieve a latency of 4M̈+3S̈+13Ä, which is close to the
minimum (all field operations except two subtractions at the very end could be
properly paired, which makes Algorithm 3 very well suited for a 2-way parallel
execution of field operations). Compared to the combination of Co-Z addition
and Co-Z conjugate addition, the proposed ladder step trades 1M̈ for 1S̈ and
2Ä, which reduces the latency in our case (see Sect. 5).

3.2 Parallel Co-Z Based Montgomery Ladder

The Montgomery ladder can not only be used for Montgomery curves, but also
for general Weierstrass curves [4,16], which includes the SM2 curve. Venelli and
Dassance [28] proposed (X,Y )-only Co-Z arithmetic and further optimized the
Co-Z based Montgomery ladder algorithm by avoiding the computation of the
Z-coordinate during the main loop of the scalar multiplication.

Algorithm 4 shows our (X,Y )-only Co-Z Montgomery ladder based on the
parallel ladder step described before. It starts by computing the initial points
(R1, R0) = (2P, P ) for the ladder using a doubling operation with Co-Z update
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(called XYCZ IDBL, see [23, Sect. C] for details). Thereafter, the two values
A′ and T ′ are pre-computed, which is necessary to minimize the latency of the
parallel Co-Z ladder step as discussed before. During the execution of the main
loop, our parallel Co-Z ladder algorithm with minimum latency maintains the
following relationship between the ladder points:

(R1−a, Ra) = (Ra + R1−a, Ra − R1−a)
Ra = R1−a + Ra (4)

where a = (ki + ki+1) mod 2. As Algorithm 4 shows, our parallel Co-Z based
Montgomery ladder executes a parallel Co-Z ladder step in each iteration, and
has therefore a regular execution profile and constant execution time. The two
constants A′, T ′ get updated with each call of the ladder-step function. At the
end of the ladder, a conversion from Co-Z Jacobian coordinates to affine coor-
dinates needs to be carried out. We perform this conversion with the function
FinalInvZ, which computes Z = XP YRa

(XR0 − XR1), λ = yP XRa
and outputs

λ
Z at a cost of 1I+3M+1A, i.e. this conversion requires an inversion in Fp.

Due to the parallel (X,Y )-only Co-Z Jacobian arithmetic, our Co-Z based
ladder outperforms the sequential Co-Z ladder by a factor of roughly 1.31. To
the best of our knowledge, the parallel Co-Z Montgomery ladder we presented
in this section is the first attempt of minimizing the latency of a variable-base
scalar multiplication by combining (X,Y )-only Co-Z Jacobian point arithmetic
with a 2-way parallel implementation of the prime-field arithmetic.

4 2-Way Parallel Prime-Field Arithmetic for SM2

The Co-Z based Montgomery ladder presented in the previous section requires
a 2-way parallel implementation of the arithmetic operations in the underlying
prime field Fp. As explained in Sect. 2, the prime field used by SM2 is defined
by the 256-bit generalized-Mersenne prime p = 2256 − 2224 − 296 + 264 − 1. The
special form of p allows one to speed up the modular reduction [25].

We explained in Sect. 2 that, in order to reduce carry propagation, it makes
sense to use a reduced-radix representation on modern 64-bit processors. This
is also the case when implementing multi-precision integer arithmetic for SIMD
engines like AVX2 since they do not offer an add-with-carry instruction. The
implementation we introduce in this section adopts a radix-226 representation
for the field elements, i.e. a 256-bit integer consists of k′ = �256/26� = 10 limbs
and each limb is n′ = 26 bits long (but can temporarily become longer). When
putting four limbs into an AVX2 register, it is possible to perform four limb-
multiplications in parallel, each producing a 52-bit result. However, each of the
10 limbs can become as long as 29 bits without causing an overflow during the
multiplication of field elements since the sum of 10 limb-products still fits into
64 bits: 10 × 229 × 229 < 262. In addition, since 10 is a multiple of two, we can
split a field element evenly into five limb-pairs for 2-way parallel execution.

The AVX2 implementation of the Fp-arithmetic we describe below performs
an arithmetic operation in a 2-way parallel fashion, which two times the same
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operation is executed, but with different operands. Each of the two operations
uses pairs of limbs instead of a single limb as “smallest unit” of processing. We
put a limb-pair of operand A into the higher 128-bit lane of a 256-bit AVX2
register and a limb-pair of operand B into the lower 128-bit lane, i.e. there are
four limbs altogether in an AVX2 register. Consequently, we need five registers
to store all limbs of A and B. Similar to [7], we use a set of interleaved tuples
〈A,B〉i for i ∈ [0, 5) to denote such five AVX2 registers, whereby the i-th tuple
〈A,B〉i contains the four limbs [a2i+1, a2i, b2i+1, b2i].

4.1 Addition and Subtraction

Due to the redundant representation, the 2-way addition/subtraction over two
sets of interleaved tuples 〈A,B〉i ± 〈C,D〉i = 〈A ± C,B ± D〉i can be performed
by executing five AVX2 add (ADD)/subtract (SUB) instructions that operate
on 64-bit data elements in parallel. To avoid overflow during the addition, we
assert that the length of each limb of the operands must not exceed 63 bits. On
the other hand, to avoid underflow during subtraction, we add an appropriate
multiple of the SM2 prime p to 〈A,B〉i and then perform the subtraction. We
do not reduce the result modulo p unless the next operation would overflow.

4.2 Modular Multiplication and Squaring

Multiplication/Squaring. Our implementation of the 2-way parallel multi-
plication using AVX2 instructions was inspired by the work of Faz-Hernández
and López for Curve25519 [7] (with some modifications for the SM2 prime). As
shown in Algorithm 5, the outer loop (starting at line 4) traverses through the
set of interleaved tuples 〈A,B〉i. Since there are two limbs of each A and B in
an interleaved tuple, we have two inner loops and use the SHUF instruction to
separate the two limbs of A and B. Each of the inner loops traverses through
the set 〈C,D〉j , multiplies the tuple 〈C,D〉 (or 〈C ′,D′〉) by the shuffled tuple
〈A,B〉, and adds the obtained partial-product to Zi+j (or Zi+j+1). Due to the
radix-226 representation, we can assure that this multiply-accumulate process
does not overflow the 64-bit data element in which the sum is kept. When the
multiplication is finished, we call the function FastRed (Algorithm 6) to get the
final result 〈E,F 〉i = 〈A · C mod p,B · D mod p〉i. Squaring is quite similar to
the multiplication, except that a number of MUL instructions can be replaced
by left-shift (i.e. SHL) instructions, see e.g. [7, Algorithm 4].

Fast Reduction. There exist some well-known modular reduction techniques
for arbitrary primes, such as the algorithms of Barrett or Montgomery [12]. The
2-way modular reduction we implemented takes advantage of the generalized-
Mersenne form of the SM2 prime, which allows for a special reduction method
with linear complexity [25]. However, we had to re-design the fast reduction to
make it compatible with our radix-226 representation, see Algorithm 6. We use
the congruence relations specified by Eq. (5) to “fold” the upper half of the
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Algorithm 5. 2-way parallel multiplication using AVX2 instructions

Input: Two sets of interleaved tuples 〈A,B〉i, 〈C,D〉i with A,B,C,D ∈ Fp.
Output: Modular product 〈E,F 〉i = 〈AC mod p,BD mod p〉i.
1: Zi = 0 for i ∈ [0, 10)
2: for i from 0 by 1 up to 4 do
3: 〈C′, D′〉i = ALIGN(〈C,D〉i+1 mod 5, 〈C,D〉i) {[c2i+2, c2i+1, d2i+2, d2i+1]}
4: end for
5: for i from 0 by 1 up to 4 do
6: U = SHUF(〈A,B〉i, 〈A,B〉i, 0x44) {[a2i, a2i, b2i, b2i]}
7: for j from 0 by 1 up to 4 do
8: Zi+j = ADD(Zi+j ,MUL(U ,〈C,D〉j)) {[a2ic2j+1, a2ic2j , b2id2j+1, b2id2j ]}
9: end for

10: V = SHUF(〈A,B〉i,〈A,B〉i,0xEE) {[a2i+1, a2i+1, b2i+1, b2i+1]}
11: for j from 0 by 1 up to 3 do
12: Zi+j+1 = ADD(Zi+j+1,MUL(V ,〈C′, D′〉j))

{[a2i+1c2j+2, a2i+1c2j+1, b2i+1d2j+2, b2i+1d2j+1]}
13: end for
14: W = MUL(V ,〈C,D〉4) {[a2i+1c0, a2i+1c9, b2i+1d0, b2i+1d9]}
15: Zi = ADD(Zi,BLEND(W ,[0,0,0,0],0x33)) {[a2i+1c0, 0, b2i+1d0, 0]}
16: Zi+5 = ADD(Zi+5,BLEND(W ,[0,0,0,0],0xCC)) {[0, a2i+1c9, 0, b2i+1d9]}
17: end for
18: 〈E,F 〉i = FastRed(Z) {Algorithm 6}
19: return 〈E,F 〉i

20-limb product Z, i.e. the 10 limbs z10 to z19, which have a weight of between
2260 and 2494), into the lower half of Z. Our fast modular reduction technique
replaces the large powers of two on the left side of Eq. (5), which all exceed 2260,
by sums of smaller powers of two (i.e. less than 2260) based on the special form
of p = 2256 − 2224 − 296 + 264 − 1. Consequently, the modular reduction boils
down to basic shifts, additions, and subtractions of limbs. However, note that
Eq. (5) assumes the limbs of the product Z to be 26 bits long.

z102260 ≡ z10(2228 + 2100 − 268 + 24) mod p

z112286 ≡ z11(2254 + 2126 − 294 + 230) mod p

z122312 ≡ z12(2248 + 2152 − 288 + 256 + 224) mod p

z132338 ≡ z13(2242 + 2178 + 250 + 218) mod p

z142364 ≡ z14(2236 + 2204 + 2108 + 244 + 212) mod p

z152390 ≡ z15(2231 + 2134 + 2102 + 238 + 26) mod p (5)
z162416 ≡ z16(2257 + 2160 + 2128 + 264 + 232) mod p

z172442 ≡ z17(2251 + 2186 + 2154 + 2123 − 290 + 258 + 227) mod p

z182468 ≡ z18(2245 + 2212 + 2180 + 2149 + 2116 − 284 + 253 + 221) mod p

z192494 ≡ z19(3 · 2238 + 2206 + 2175 + 2142 + 2110 + 247 + 215) mod p

The modular reduction function specified in Algorithm 6 first converts the
limbs in the upper half of the AVX2 registers into a radix-228 form, i.e. 28 bits
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Algorithm 6. 2-way parallel modular reduction using AVX2 instructions

Input: A set of interleaved tuples Z consisting of 20 limbs.
Output: Modular-reduced set of interleaved tuples 〈E,F 〉i consisting of 10 limbs.
1: for i from 4 by 1 up to 8 do
2: Li = AND(Zi,[2

n′ − 1, 2n′ − 1, 2n′ − 1, 2n′ − 1])
3: Mi = SHR(Zi,[n

′, n′, n′, n′])
4: Mi = AND(Mi,[2

n′ − 1, 2n′ − 1, 2n′ − 1, 2n′ − 1])
5: Hi = SHR(Zi,[2n

′, 2n′, 2n′, 2n′])
6: end for
7: L9 = AND(Z9,[2

n′ − 1, 2n′ − 1, 2n′ − 1, 2n′ − 1])
8: M9 = SHR(Z9,[n

′, n′, n′, n′])
9: for i from 5 by 1 up to 9 do

10: M ′
i = ALIGN(Mi,Mi−1)

11: Zi = ADD(ADD(Li,M
′
i),Hi−1)

12: end for
13: Z9 = ALIGN(Z9,M9)
14: 〈E,F 〉i = SimpleRed(Z)
15: return 〈E,F 〉i

per limb. Since the reduction is carried out immediately after a multiplication
or squaring, the maximum limb-length can be 60 bits. In order to reduce the
length of the upper limbs to 28 bits, we first split them into three parts of
up to n′ = 26 bits: a lower part containing the 26 least significant bits, a middle
part consisting of the next 26 bits, and a higher part with the rest. Each of the
parts has a certain weight, and parts of the same weight (which can be up to
three) are added together, yielding limbs of a length of at most 28 bits. This
conversion is performed by the two loops of Algorithm 6 (i.e. line 1–12). At the
end of these loops, we have an intermediate result Z of which the lower limbs
are less than 60 bits long, while the upper limbs can have a length of up to 28
bits (with exception of the limbs in Z9, which can be up to 30 bits long). The
actual modular reduction based on the congruence relations of Eq. (5) is then
carried out in line 14 by the SimpleRed operation (explained in Sect. A). Note
that SimpleRed produces a result consisting of 10 limbs, whereby each limb is
less than 24 · 228 · 224 + 260 < 261 and easily fits in a 64-bit data element (this
remains correct when the maximum limb-length is 30 instead of 28 bits).

4.3 Carry Propagation (Conversion to 28-Bit Limbs)

The result of the SimpleRed operation consists of 10 limbs (which are stored in
five AVX2 registers), whereby each limb is smaller than 261, i.e. no more than
60 bits long. However, a result given in such a form needs to be converted into
a representation with limbs of a length of n′ = 26 bits (or a little longer). This
conversion requires a method to “carry” the excess bits of a limb over to the
next-higher limb, and to reduce the excess bits of the highest limb modulo the
prime p). To achieve this, each 60-bit limb has to be split into three parts as
follows: ai = hi||mi||li where |li| = |mi| = n′ and |hi| = 60 − 2n′ (similar as
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Algorithm 7. 2-way parallel carry propagation using AVX2 instructions

Input: A set of interleaved tuples 〈A,B〉i.
Output: A set of interleaved tuples 〈A,B〉i with |ai|, |bi| ≤ n′ + 1 for i ∈ [0, 10).
1: H4 = SHRV(〈A,B〉4,[n′, 2n′, n′, 2n′])
2: 〈A,B〉4 = AND(〈A,B〉4,[2n′ − 1, 22n′ − 1, 2n′ − 1, 22n′ − 1])
3: Q = ADD(H4,SHUF(H4, H4,0x4E))
4: Q′ = SUB([0,0,0,0],Q)
5: 〈A,B〉0 = ADD(〈A,B〉0,SHLV(BLEND(Q,[0,0,0,0],0xCC),[0,4,0,4]))
6: 〈A,B〉1 = ADD(〈A,B〉1,SHLV(BLEND(Q,Q′,0x33),[22,16,22,16]))
7: 〈A,B〉4 = ADD(〈A,B〉4,SHLV(BLEND(Q,[0,0,0,0],0xCC),[0,20,0,20]))
8: for i from 0 by 1 up to 4 do
9: Li = AND(〈A,B〉i,[2

n′ − 1, 2n′ − 1, 2n′ − 1, 2n′ − 1])
10: Mi = SHR(〈A,B〉i,[n

′, n′, n′, n′])
11: Mi = AND(Mi,[2

n′ − 1, 2n′ − 1, 2n′ − 1, 2n′ − 1])
12: Hi = SHR(〈A,B〉i,[2n

′, 2n′, 2n′, 2n′])
13: end for
14: for i from 0 by 1 up to 4 do
15: M ′

i = ALIGN(Mi,Mi−1 mod 5)
16: 〈A,B〉i = ADD(ADD(Li,M

′
i),Hi−1 mod 5)

17: end for
18: return 〈A,B〉

in the previous subsection). Algorithm 7 specifies the conversion. In line 1–7 we
estimate the excess bits of the highest limb, which means we estimate a value
q of weight 2260 by computing q = (hk′−1||mk′−1 + hk′−2). Then, we reduce the
value q via the congruence q · 2260 ≡ q · (2228 + 2100 − 268 + 24) mod p, i.e. we
add q to (or subtract it from) limbs with the corresponding terms. The code in
line 8–17 reduces the bit-length of the remaining limbs based on the equations
a′
0 = l0, a′

1 = l1 + m0, and a′
i = li + mi−1 + hi−2 for i ∈ [2, 10). This algorithm

ensures |a′
i| <= 28 for i ∈ [0, k′ − 1], which means the limbs are within a safe

range so that they can serve as operand in any of our field operations.

4.4 Modular Inversion

Modular inversion is the most costly among the prime-field operations needed
in ECC. Using Jacobian projective coordinates, we only need one inversion to
convert the result from projective to affine coordinates. The Binary Extended
Euclidean Algorithm (BEEA) is a well-known algorithm for inversion, but has
an irregular execution flow and operand-dependent execution time, which can
enable timing and SPA attacks [5]. Therefore, we chose Fermat’s little theorem
and perform the inversion through an exponentiation: a−1 ≡ ap−2 mod p. When
utilizing an addition chain as in e.g. [30], the modular inversion can be carried
out at an overall cost of 15M+255S.
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5 Performance Evaluation

We benchmarked the described implementation on a 64-bit Intel Cascade Lake
processor clocked at 2.5 GHz. The execution times we present in this section
were obtained by measuring the cycles for 106 iterations of the field-operations
and 104 iterations of the point operations, on a single core and single thread.

Table 1. Comparison of the execution time of the 1-way and 2-way implementation
of the prime-field operations (in clock cycles)

Implementation Add/sub Mul Sqr Inv Carry prop.

1-way (1 op) 5 75 65 18,459 23

2-way (2 ops) 8 99 81 – 30

Speed-up ratio 1.25 1.52 1.60 – 1.53

Table 1 provides the timings of a standard (i.e. 1-way) and a 2-way parallel
implementation of the prime-field operations. The results show that, when one
and the same operation has to be performed on two sets of field-elements, the
2-way parallel implementation is much faster than two subsequent executions
of the basic 1-way version; the speed-up factors range from 1.25 to 1.60. Since
our 2-way field arithmetic is based on techniques from [7], the execution times
of the operations are similar. However, the reduction modulo the SM2 prime is
more complicated (and thus slower) than the reduction for Curve25519.

Table 2. Execution time (in clock cycles) of Co-Z addition, Co-Z conjugate addition,
Co-Z ladder step, and Co-Z based Montgomery ladder algorithm.

Implementation Co-Z ADD Co-Z ADDC Co-Z L-Step Co-Z Ladder

Sequential 555 786 1,334 359,868

2-way parallel 439 489 1,001 274,908

Speed-up ratio 1.26 1.60 1.33 1.31

Table 2 shows the execution times of the sequential and the 2-way parallel
version of the Co-Z addition, Co-Z conjugate addition, Co-Z ladder step, and
Co-Z based full Montgomery ladder algorithm. Similarly as above, the parallel
versions clearly outperform their sequential counterparts. The 2-way parallel
CoZ Montgomery ladder has an execution time of 275k clock cycles, which is
1.31 times faster than the sequential ladder. To the best of our knowledge, this
paper is the first to present a Co-Z based Montgomery ladder utilizing AVX2
instructions and to demonstrate the ability of a 2-way parallel implementation
of the field arithmetic to speed up Co-Z based Jacobian point operations.

Table 3 compares our parallel Co-Z Montgomery ladder with similar AVX2
implementations of variable-base scalar multiplication on Curve25519 and the
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Table 3. Comparison of the computational cost and execution time (in clock cycles
on a Cascade Lake or Haswell processor) of our Co-Z based Montgomery ladder and
other AVX2 implementations of variable-base scalar multiplication.

Implementation Cost per bit Additional cost Execution time

SM2 (this work) 4M̈+3S̈+13Ä 1I+8M+7S+12A 274,908 (CL)

Curve25519 [7] 3M̈+2S̈+1C̈+4Ä 1I+1M 156,500 (H)

Curve25519 [8] 3M̈+2S̈+1C̈+4Ä 1I+1M 121,000 (H)

NIST P-256 [11] n/a n/a 312,000 (H)

NIST curve P-256. Since Curve25519 is Montgomery curve [20], it supports an
efficient “X-coordinate-only” algorithm for variable-base scalar multiplication
that costs only 5M+4S+1C+8A per scalar-bit (“C” stands for a multiplication
of a field-element by a curve constant, which is normally much faster than an
ordinary field-multiplication). Furthermore, as already mentioned, a reduction
modulo the 255-bit pseudo-Mersenne prime used by Curve25519 can be carried
out more efficiently than a reduction modulo the SM2 prime. Faz-Hernández
and López reported in [7] an execution time of roughly 156,500 Haswell cycles
for their AVX2 implementation of Curve25519, which is significantly better than
our 274,908 clock cycles for SM2 on a more recent Cascade Lake CPU. There
are three main reasons for this difference in execution time. First, as shown in
Table 3, the parallel version of the Co-Z based ladder-step for the SM2 curve
is 1M̈+1S̈+9Ä more costly than the parallel ladder-step for Montgomery curves
(i.e. [7, Algorithm 1]). The second reason is the higher additional cost outside
the ladder loop for such tasks like the initial point doubling, the computation
of the values A′ and T ′, and the recovery of the Z-coordinate at the end of the
ladder. Finally, the reduction modulo the SM2 prime is more complicated, and
therefore slower, than the reduction modulo p = 2255 − 19.

Table 4. Comparison of the execution time of ECDH key exchange and ECDSA sig-
nature generation/verification using the SM2 curve on a 2.5 GHz Cascade Lake pro-
cessor and the NIST curve P-256 on a 3.4 GHz Haswell processor.

Implementation Processor ECDH key ex. ECDSA sign ECDSA verify

SM2 (this work) Cascade Lake 148 µs 24 µs 98 µs

NIST P-256 [11] Haswell 93 µs 41 µs 122 µs

Gueron and Krasnov presented in [11] optimized implementations of fixed-
base and variable-base scalar multiplication, both specifically optimized for the
NIST curve P-256. Their paper includes benchmarking results generated on an
Intel Haswell processor clocked at 3.4 GHz; some of these results can be found
in Table 3 and Table 4 (taken from the operations/second in [11, Fig. 7]). The
fixed-base scalar multiplication uses a windowing method with a window size
of 7 and performs four point additions in parallel in the AVX2 engine. On the
other hand, the variable-base scalar multiplication has smaller windows of size
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5 and executes the point operations sequentially (the prime-field arithmetic is
written in x86 64 assembly and does not exploit the parallelism of AVX2). The
execution time in the variable-base case is 312,000 Haswell cycles (about 92 µs
when the clock frequency is 3.4 GHz). Gueron and Krasnov also benchmarked
ECDH key exchange (computation of the shared key only), ECDSA signature
generation (mainly fixed-base scalar multiplication) and the verification of an
ECDSA signature; the corresponding timings are listed in Table 4.

Also given in Table 4 are the execution times of our AVX2 implementation
of SM2-based ECDH key exchange, and the generation and verification of an
ECDSA signature, which we measured on a 2.5 GHz Cascade Lake CPU. We
implemented the fixed-base scalar multiplication (for signature generation) in
the same way as [11], i.e. by means of a windowing method with a window size
of 7. The execution time of our fixed-base scalar multiplication is about 64,000
Cascade Lake cycles. Note that the SM2 key exchange protocol authenticates
the involved parties and, therefore, the computation of the shared key requires
two scalar multiplications. This explains why SM2 key exchange is slower than
a basic static ECDH key exchange. Unfortunately, a comparison of the results
of our implementation with that of [11] is difficult since the micro-architectural
properties and features of Haswell and Cascade Lake differ significantly.

6 Conclusions

We introduced a 2-way parallel implementation of SM2 prime-field arithmetic
and Co-Z Jacobian point operations that leverage the processing capabilities
of AVX2. Due to a careful rescheduling of the field arithmetic along with the
pre-computation of two values outside the main loop, we managed to minimize
the execution time of the parallel Co-Z ladder algorithm. More concretely, the
2-way parallel field arithmetic and Co-Z Jacobian point operations reduce the
execution time of the ladder algorithm for variable-base scalar multiplication
by a factor of 1.31 compared to sequential execution. Furthermore, our parallel
ladder has a highly regular execution profile, which helps to achieve resistance
against timing and SPA attacks. The main take-away message of this paper is
that SIMD-level parallelism helps to narrow the performance gap between the
classical Montgomery ladder on Montgomery curves and the Co-Z ladder on
Weierstrass curves. When executed sequentially, the difference between these
two scalar multiplication methods is 3M+2S (i.e. 5M+4S vs. 8M+6S), but this
difference shrinks to 1M̈+1S̈ (3M̈+2S̈ vs. 4M̈+3S̈) in the case of 2-way parallel
execution. Finally, we remark that all optimization techniques proposed in this
paper can also be applied to the NIST curves.
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A SimpleRed Operation

Based on the congruence relations in Eq. (5), we add or subtract each of the
upper limbs zi with i ∈ [10, 20) to the corresponding lower limbs in Z to obtain
the residue 〈E,F 〉i from the intermediate result Z. For example, all the terms
with weight 20 ∼ 226 and 226 ∼ 252 will be added to or subtracted from Z0 to
obtain 〈E,F 〉0. Similarly to Z0, the terms with other weights will be added to
or subtracted from the corresponding terms of the intermediate result Z. The
details are fully specified in Algorithm 8, which executes only simple additions
(resp. subtractions), shifts, and permutation instructions.

Algorithm 8. 2-way parallel SimpleRed operation using AVX2 instructions

Input: An intermediate result Z consisting of 20 limbs.
Output: A modular residue 〈E,F 〉i consisting of ten 28-bit limbs.
1: 〈E,F 〉0 = ADD(Z0,SHL(Z5,4))
2: 〈E,F 〉0 = ADD(〈E,F 〉0,SHL(Z6,24))
3: 〈E,F 〉0 = ADD(〈E,F 〉0,SHL(SHUF(Z6,Z7,0x5),18))
4: 〈E,F 〉0 = ADD(〈E,F 〉0,SHL(Z7,12))
5: 〈E,F 〉0 = ADD(〈E,F 〉0,SHL(SHUF(Z7,Z8,0x5),6))
6: 〈E,F 〉0 = ADD(〈E,F 〉0,SHL(Z9,21))
7: 〈E,F 〉0 = ADD(〈E,F 〉0,SHLV(BLEND(PERM64(Z9,0xB1),Z8,0xCC),[1,15,1,15]))
8: Z′

8 = SUB([0,0,0,0],Z8), Z′
9 = SUB([0,0,0,0],Z9)

9: 〈E,F 〉1 = SUB(Z1,SHL(Z5,16))
10: 〈E,F 〉1 = ADD(〈E,F 〉1,SHLV(BLEND(Z6,PERM64(Z5,0xB1),0xCC),[22,4,22,4]))
11: 〈E,F 〉1 = SUB(〈E,F 〉1,SHLV(SHUF([0,0,0,0],Z6,0x5),[10,0,10,0]))
12: 〈E,F 〉1 = ADD(〈E,F 〉1,SHL(BLEND(Z8,Z

′
8,0xCC),12))

13: 〈E,F 〉1 = ADD(〈E,F 〉1,SHL(SHUF(Z8,Z
′
9,0x5),6))

14: 〈E,F 〉1 = ADD(〈E,F 〉1,SHLV(BLEND(Z9,Z7,0xCC),[24,1,24,1]))
15: 〈E,F 〉2 = ADD(Z2,SHL(SHUF(Z5,Z6,0x5),22))
16: 〈E,F 〉2 = ADD(〈E,F 〉2,SHL(Z7,4))
17: 〈E,F 〉2 = ADD(〈E,F 〉2,SHL(Z8,24))
18: 〈E,F 〉2 = ADD(〈E,F 〉2,SHL(SHUF(Z8,Z9,0x5),19))
19: 〈E,F 〉2 = ADD(〈E,F 〉2,SHL(Z9,12))
20: 〈E,F 〉2 = ADD(〈E,F 〉2,SHL(SHUF(Z9,[0,0,0,0],0x5),6))
21: 〈E,F 〉3 = ADD(Z3,SHL(SHUF(Z6,Z7,0x5),22))
22: 〈E,F 〉3 = ADD(〈E,F 〉3,SHL(Z8,4))
23: 〈E,F 〉3 = ADD(〈E,F 〉3,SHL(Z9,24))
24: 〈E,F 〉3 = ADD(〈E,F 〉3,SHL(SHUF(Z9,[0,0,0,0],0x5),19))
25: 〈E,F 〉4 = ADD(Z4,SHL(Z5,20))
26: 〈E,F 〉4 = ADD(〈E,F 〉4,SHLV(SHUF(Z7,Z7,0x5),[2,23,2,23]))
27: 〈E,F 〉4 = ADD(〈E,F 〉4,SHL(Z9,4))
28: T = ADD(SHLV(Z6,[8,14,8,14]),SHLV(Z8,[17,23,17,23]))
29: T = ADD(T ,SHLV(Z9,[5,11,5,11]))
30: 〈E,F 〉4 = ADD(〈E,F 〉4,ADD(SHUF([0,0,0,0],T ,0x5),BLEND([0,0,0,0],T ,0xCC))
31: return 〈E,F 〉0...4
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Abstract. The Camenisch-Lysyanskaya signature scheme in CRYPTO
2004 is a useful building block to construct privacy-preserving schemes
such as anonymous credentials, group signatures or ring signatures.
However, the security of this signature scheme relies on the interactive
assumption called the LRSW assumption. Even if the interactive assump-
tions are proven in the generic group model or bilinear group model, the
concerns about these assumptions arise in a cryptographic community.
This fact caused a barrier to the use of cryptographic schemes whose
security relies on these assumptions.

Recently, Pointcheval and Sanders proposed the modified Camenisch-
Lysyanskaya signature scheme in CT-RSA 2018. This scheme satisfies
the EUF-CMA security under the new q-type assumption called the
Modified-q-Strong Diffie-Hellman-2 (q-MSDH-2) assumption. However,
the size of a q-type assumptions grows dynamically and this fact leads
to inefficiency of schemes.

In this work, we revisit the Camenisch-Lysyanskaya signature-based
synchronized aggregate signature scheme in FC 2013. This scheme is one
of the most efficient synchronized aggregate signature schemes with bilin-
ear groups. However, the security of this synchronized aggregate scheme
was proven under the one-time LRSW assumption in the random oracle
model. We give the new security proof for this synchronized aggregate
scheme under the 1-MSDH-2 (static) assumption in the random oracle
model with little loss of efficiency.
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1 Introduction

1.1 Background

Aggregate Signature Schemes. Aggregate signature schemes originally introduced
by Boneh, Gentry, Lynn, and Shacham [8] allow anyone to convert n individual
signatures (σ1, . . . , σn) produced by different n signers on different messages into
the aggregate signature Σ whose size is much smaller than a concatenation of
the individual signatures. This feature leads significant reductions of bandwidth
and storage space in BGP (Border Gateway Protocol) routing [5,8,20], bundling
software updates [1], sensor network data [1], authentication [23], and blockchain
protocol [18,25,27]. After the introduction of aggregate signature schemes, var-
ious aggregate signature schemes have been proposed: sequential aggregate sig-
nature schemes [21], identity-based aggregate signature schemes [12], synchro-
nized aggregate signature schemes [1,12], and fault-tolerant aggregate signature
schemes [14].

Synchronized Aggregate Signature Schemes. Synchronized aggregate signature
schemes are a special type of aggregate signature schemes. The concept of the
synchronized setting aggregate signature scheme was introduced by Gentry and
Ramzan [12]. Ahn, Green, and Hohenberger [1] revisited the Gentry-Ramzan
model and formalized the synchronized aggregate signature scheme. In this
scheme, all of the signers have a synchronized time period t and each signer
can sign a message at most once for each period t. A set of signatures that are
all generated for the same period t can be aggregated into a short signature.

It is useful to adopt synchronized aggregate signature schemes to systems
which have a natural reporting period, such as log or sensor data. As mentioned
in [18], synchronized aggregate signature schemes are also useful for blockchain
protocols. For instance, we consider a blockchain protocol that records several
signed transactions in each new block creation. The creation of an additional
block is a natural synchronization event. These signed transactions could use a
synchronized aggregate signature scheme with a block number as a time period
number. This reduces the signature overhead from one per transaction to just
one synchronized signature per block iteration.

Several provable secure synchronized aggregate signature schemes with bilin-
ear groups have been proposed (see Fig. 1). Ahn, Green, and Hohenberger
[12] constructed two synchronized aggregate signature schemes based on the
Hohenberger-Waters [17] short signature scheme. One is constructed in the ran-
dom oracle model and the other is constructed in the standard model. The
security of both schemes relies on the computational Diffie-Hellman (CDH)
assumption. Lee, Lee, and Yung [19] proposed a synchronized aggregate signature
scheme based on the Camenisch-Lysyanskaya signature (CL) scheme [10]. This is
the most efficient synchronized aggregate signature scheme with bilinear groups
in that the number of pairing operations in the verification of an aggregate signa-
ture and the number of group elements in an aggregate signature is smaller than
those of [12,17]. The security of this scheme relies on the one-time Lysyanskaya-
Rivest-Sahai-Wolf (OT-LRSW) assumption [22] in the random oracle model.
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As the provable secure synchronized aggregate signature schemes without bilin-
ear groups, Hohenberger and Waters [18] proposed the synchronized aggregate
signature scheme based on the RSA assumption.

Scheme Assumption Security pp vk Agg Agg Ver
size size size (in Pairings)

GR [12] CDH + ROM EUF-CMA∗ O(1) ID 3 3
AGH [1] §4 CDH EUF-CMA in CK O(k) 1 3 k + 3
AGH [1] §A CDH + ROM EUF-CMA in CK O(1) 1 3 4
LLY [19] OT-LRSW + ROM EUF-CMA in CK O(1) 1 2 3

(interactive assumption)
LLY [19] 1-MSDH-2 + ROM EUF-CMA in CK O(1) 1 2 3
(New proof) (static assumption)
In our work, we prove that the scheme LLY [19] satisfies the EUF-CMA security in
the certified-key model under the 1-MSDH-2 assumption in the random oracle model.

Fig. 1. Summary of synchronized aggregate signature schemes with bilinear groups.
In the column of “Assumption”, “ROM” means the random oracle model. In the col-
umn of “Security”, “CK” means the certified-key model. “pp size”, “vk size”, “Agg
size”, “Agg Ver” mean the number of group elements in a public parameter pp, a
verification key vk, an aggregate signature, and the number of pairing operations
in aggregate signatures verification respectively. The scheme GR [12] is an identity-
based scheme that has a verification key size of “ID”. In the scheme AGH [1], k
is a special security parameter. As mentioned in [1], k could be five in practice.
∗ Note that Gentry and Ramzan [12] only provided heuristic security arguments.

Camenisch-Lysyanskaya Signature Scheme. Camenisch and Lysyanskaya [10]
proposed the CL scheme which has a useful feature called randomizability. This
property allows anyone to randomize a valid signature σ to σ′ where σ and
σ′ are valid signatures on the same message. The CL scheme is widely used to
construct various schemes: anonymous credentials [10], anonymous attestation
[3], divisible E-cash [11], batch verification [9], group signatures [4], ring signa-
tures [2], and aggregate signatures [26]. The security of the CL scheme relies on
the Lysyanskaya-Rivest-Sahai-Wolf (LRSW) assumption which is an interactive
assumption. An interactive assumption allows us to design an efficient scheme,
however, these are not preferable.

Modified Camenisch-Lysyanskaya Signature Scheme. Pointcheval and Sanders
[24] proposed the Modified q-Strong Diffie-Hellman-2 (q-MSDH-2) assumption
which is defined on a type 1 bilinear group. This assumption is a q-type assump-
tion [6] where the number of input elements depends on the number of adversarial
queries. They proved that the q-MSDH-2 assumption holds in the generic bilinear
group model [7] and the CL scheme satisfies the weak-existentially unforgeable
under chosen message attacks (weak-EUF-CMA) security under the q-MSDH-2
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assumption. Moreover, they proposed the modified Camenisch-Lysyanskaya sig-
nature (MCL) scheme which has randomizability. Then, they showed that the
MCL scheme satisfies the existentially unforgeable under chosen message attacks
(EUF-CMA) security under the q-MSDH-2 assumption. Their modification from
the CL scheme to the MCL scheme incurs a slight increase in the complexity.1

1.2 Our Results

To our knowledge, the most efficient synchronized aggregate signature scheme
with bilinear groups is Lee et al.’s [19] scheme. However, the security of this
scheme relies on the interactive assumption (the OT-LRSW assumption). Even if
interactive assumptions hold in the generic group model or bilinear group model,
the concerns about these assumptions arise in a cryptographic community. This
fact causes a barrier to the use of this scheme. Also, it is not desired that the
security of the scheme depends on q-type assumptions. Because the size of these
assumptions grows dynamically and this fact leads to inefficiency of the scheme.
Hence, it is desirable to prove the security of this scheme under the non-q-
type (static) assumptions or construct another efficient synchronized aggregate
signature scheme whose security does not rely on interactive assumptions or
q-type assumptions.

Security Proof Under the Static Assumption. In this paper, we give a new
security proof for Lee et al.’s synchronized aggregate scheme under the static
assumption in the random oracle model. More specifically, we convert from
the MCL scheme to Lee et al.’s [19] synchronized aggregate signature scheme.
Then, we reduce the security of Lee et al.’s scheme to the one-time EUF-CMA
(OT-EUF-CMA) security of the MCL scheme in the random oracle model. We
refer the reader to Sect. 4 for details about these techniques. Since the EUF-CMA
security of the MCL scheme is implied by the 1-MSDH-2 assumption, the secu-
rity of Lee et al.’s scheme can be proven under the 1-MSDH-2 assumption. We
can regard the 1-MSDH-2 assumption as the static assumption. Therefore, we
can see that the security of Lee et al.’s scheme relies on the static assumption.
Notably, while the EUF-CMA security of the MCL scheme is proved under the
q-type assumption, the security of Lee et al.’s synchronized aggregate signature
scheme can be proven under the static assumption in the random oracle model.

Trade-offs with Little Loss of Efficiency. In general, there is a trade-off that
efficiency is reduced when we design a scheme based on weaker computational
assumptions. Surprisingly, we can change the assumptions underlying the secu-
rity of Lee et al.’s [19] scheme from the interactive assumption (OT-LRSW) to
the static assumption (1-MSDH-2) with little loss in the efficiency of the scheme.
Specifically, the size of verification key vk, the size of aggregate signature Σ, and
the number of pairing operations in an aggregate signature verification do not
increase at all.
1 Their modification from the CL scheme to the MCL scheme increases the number of

group elements in a signature and an aggregate signature from 2 to 3.
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1.3 Related Works

Boneh et al.’s [8] proposed the first full aggregate signature scheme which allows
any user to aggregate signatures of different signers. Furthermore, this scheme
allows us to aggregate individual signatures as well as already aggregated sig-
natures in any order. They constructed a full aggregate signature scheme in the
random oracle model. Hohenberger, Sahai, and Waters [16] firstly constructed a
full aggregate signature scheme in the standard model by using multilinear maps.
Hohenberger, Koppula, and Waters [15] constructed a full aggregate signature
scheme in the standard model by using the indistinguishability obfuscation.

Several variants of aggregate signature schemes have been proposed. One
major variant is a sequential aggregate signature scheme which was firstly pro-
posed by Lysyanskaya, Micali, Reyzin, and Shacham [21]. In this scheme, an
aggregate signature is constructed sequentially, with each signer modifying the
aggregate signature in turn. They constructed a sequential aggregate signature
scheme in the random oracle model by using families of trapdoor permutations.
Lu, Rafail Ostrovsky, Sahai, Shacham, and Waters [20] firstly constructed the
sequential aggregate signature scheme in the standard model based on the Waters
signature scheme. Another major variant of aggregate signature schemes is a syn-
chronized aggregate signature scheme explained in Sect. 1.1. Furthermore, Lee et
al. [19] proposed a combined aggregate signature scheme. In this scheme, a signer
can use two modes of aggregation (sequential aggregation or synchronized aggre-
gation) dynamically. They constructed a combined aggregate signature scheme
in the random oracle model based on the CL scheme.

1.4 Road Map

In Sect. 2, we recall bilinear groups, the 1-MSDH-2 assumption, and a digital
signature scheme. In Sect. 3, we review the definition of a synchronized aggregate
signature scheme and its security notion. In Sect. 4, we review the MCL scheme.
Next, we explain the relationship between the MCL scheme and Lee et al.’s
aggregate signature scheme. In particular, we explain how to convert from the
MCL to Lee et al.’s aggregate signature scheme. Then, we describe Lee et al.’s
aggregate signature scheme construction and newly give a security proof under
the 1-MSDH-2 assumption in the random oracle model.

2 Preliminaries

Let 1λ be the security parameter. A function f(λ) is negligible in λ if f(λ)
tends to 0 faster than 1

λc for every constant c > 0. PPT stands for probabilistic
polynomial time. For an integer n, [n] denotes the set {1, . . . , n}. For a finite

set S, s
$←− S denotes choosing an element s from S uniformly at random. For a

group G, we define G
∗ := G\{1G}. For an algorithm A, y ← A(x) denotes that

the algorithm A outputs y on input x.
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2.1 Bilinear Groups

In this work, we use type 1 pairings and introduce a bilinear group generator.
Let G be a bilinear group generator that takes as an input a security parameter
1λ and outputs the descriptions of multiplicative groups G = (p,G,GT , e) where
G and GT are groups of prime order p and e is an efficient computable, non-
degenerating bilinear map e : G × G → GT .

1. Bilinear: for all u ∈ G, v ∈ G and a, b ∈ Zp, then e(ua, vb) = e(u, v)ab.
2. Non-degenerate: for any g ∈ G

∗ and g̃ ∈ G
∗, e(g, g̃) �= 1GT

.

2.2 Computational Assumption

Pointcheval and Sanders [24] introduced the new q-type assumption which is
called the Modified q-Strong Diffie-Hellman-2 (q-MSDH-2) assumption. This is
a variant of the q-Strong Diffie-Hellman (q-SDH) assumption and defined on a
type 1 bilinear group. The q-MSDH-2 assumption holds in the generic bilinear
group model [7]. In this work, we fix the value to q = 1 and only use 1-MSDH-2
assumption in a static way. We can regard 1-MSDH-2 as a static assumption.

Assumption 1 (Modified 1-Strong Diffie-Hellman-2 Assumption [24]).
Let G be a type-1 pairing-group generator. The Modified 1-Strong Diffie-Hellman-
2 (1-MSDH-2) assumption over G is that for all λ ∈ N, for all G =
(p,G,GT , e) ← G(1λ), given (G, g, gx, gx2

, gb, gbx, gbx2
, ga, gabx) where g ← G

∗

and a, b, x
$←− Z

∗
p as an input, no PPT adversary can, without non-negligible

probability, output a tuple (w,P, h
1

x+w , h
a

x·P (x) ) with h ∈ G, P a polynomial in
Zp[X] of degree at most 1, and w ∈ Z

∗
p such that X +w and P (X) are relatively

prime.2

2.3 Digital Signature Schemes

We review the definition of a digital signature scheme and its security notion.

Definition 1 (Digital Signature Scheme). A digital signature scheme DS
consists of following four algorithms (Setup,KeyGen,Sign,Verify).

– Setup(1λ) : Given a security parameter λ, return the public parameter pp. We
assume that pp defines the message space Mpp.

– KeyGen(pp) : Given a public parameter pp, return a verification key vk and a
signing key sk.

– Sign(pp, sk,m) : Given a public parameter pp, a signing key sk, and a message
m ∈ Mpp, return a signature σ.

– Verify(pp, vk,m, σ) : Given a public parameter pp, a verification key vk, a
message m ∈ Mpp, and a signature σ, return either 1 (Accept) or 0 (Reject).

2 In the q-MSDH-2 assumption, an input is changed to (G, g, gx, . . . , gxq+1
, gb, gbx,

. . . , gbx
q+1

, ga, gabx) and the condition of the order of P (x) is changed to at most q.
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Correctness: Correctness is satisfied if for all λ ∈ N, pp ← Setup(1λ) for all m ∈
Mpp, (vk, sk) ← KeyGen(pp), and σ ← Sign(pp, sk,m), Verify(pp, vk,m, σ) = 1
holds.

The EUF-CMA security [13] is the standard security notion for digital sig-
nature schemes.

Definition 2 (EUF-CMA Security [13]). The EUF-CMA security of a digi-
tal signature scheme DS is defined by the following unforgeability game between
a challenger C and a PPT adversary A.

– C runs pp ← Setup(1λ), (vk, sk) ← KeyGen(pp), sets Q ← {}, and gives
(pp, vk) to A.

– A is given access (throughout the entire game) to a sign oracle OSign(·). Given
an input m, OSign sets Q ← Q ∪ {m} and returns σ ← Sign(pp, sk,m).

– A outputs a forgery (m∗, σ∗).

A digital signature scheme DS satisfies the EUF-CMA security if for all PPT
adversaries A, the following advantage

AdvEUF-CMA
DS,A := Pr[Verify(pp, vk,m∗, σ∗) = 1 ∧ m∗ /∈ Q]

is negligible in λ.

If the number of signing oracle OSign query is restricted to the one-time in
the unforgeability security game, we call DS satisfies the one-time EUF-CMA
(OT-EUF-CMA) security.

3 Synchronized Aggregate Signature Schemes

In this section, we review the definition of a synchronized aggregate signature
scheme and its security notion.

3.1 Synchronized Aggregate Signature Schemes

Synchronized aggregate signature schemes [1,12] are a special type of aggregate
signature schemes. In this scheme, all of the signers have a synchronized time
period t and each signer can sign a message at most once for each period t. A
set of signatures that are all generated for the same period t can be aggregated
into a short signature. The size of an aggregate signature is the same size as an
individual signature. Now, we review the definition of synchronized aggregate
signature schemes.

Definition 3 (Synchronized Aggregate Signature Schemes [1,12]). A
synchronized aggregate signature scheme SAS for a bounded number of peri-
ods is a tuple of algorithms (SAS.Setup,SAS.KeyGen,SAS.Sign,SAS.Verify,
SAS.Aggregate,SAS.AggVerify).
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– SAS.Setup(1λ, 1T ) : Given a security parameter λ and the time period bound
T , return the public parameter pp. We assume that pp defines the message
space Mpp.

– SAS.KeyGen(pp) : Given a public parameter pp, return a verification key vk
and a signing key sk.

– SAS.Sign(pp, sk, t,m) : Given a public parameter pp, a signing key sk, a time
period t ≤ T , and a message m ∈ Mpp, return the signature σ.

– SAS.Verify(pp, vk,m, σ) : Given a public parameter pp, a verification key vk, a
message m ∈ Mpp, and a signature σ, return either 1 (Accept) or 0 (Reject).

– SAS.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)) : Given a public
parameter pp, a list of verification keys (vk1, . . . , vkr), a list of messages
(m1, . . . ,mr), and a list of signatures (σ1, . . . , σr), return either the aggre-
gate signature Σ or ⊥.

– SAS.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr), Σ) : Given a public parameter
pp, a list of verification keys (vk1, . . . , vkr), a list of messages (m1, . . . ,mr),
and an aggregate signature, return either 1 (Accept) or 0 (Reject).

Correctness: Correctness is satisfied if for all λ ∈ N, T ∈ N, pp ←
SAS.Setup(1λ, 1T ), for any finite sequence of key pairs (vk1, sk1), . . . (vkr, skr) ←
SAS.KeyGen(pp) where vki are all distinct, for any time period t ≤ T , for any
sequence of messages (m1, . . . mr) ∈ Mpp, σi ← SAS.Sign(pp, ski, t,mi) for
i ∈ [r], Σ ← SAS.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)), we
have

SAS.Verify(pp, vki,mi, σi) = 1 for all i ∈ [r]
∧ SAS.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr), Σ) = 1.

In a signature aggregation, it is desirable to confirm that each signature is
valid. This is because if there is at least one invalid signature, the generated
aggregate signature will be invalid.3 In this work, before aggregating signatures,
SAS.Aggregate checks the validity of each signature.

3.2 Security of Synchronized Aggregate Signature Schemes

We introduce the security notion of synchronized aggregate signature schemes.
The EUF-CMA security of synchronized aggregate signature schemes proposed
by Gentry and Ramzan [12] captures that it is hard for adversaries to forge
an aggregate signature without signing key sk∗. However, they only provided
heuristic security arguments in their synchronized aggregate signature scheme.

Ahn, Green, and Hohrnberger [1] introduced the certified-key model for the
EUF-CMA security of synchronized aggregate signature schemes. In this model,
signers must certify their verification key vk by proving knowledge of their signing
3 Fault-tolerant aggregate signature schemes [14] allow us to determine the subset of

all messages belonging to an aggregate signature that were signed correctly. However,
this scheme has a drawback that the aggregate signature size depends on the number
of signatures to be aggregated into it.
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key sk. In other words, no verification key vk is allowed except those correctly
generated by the SAS.KeyGen algorithm. In certified-key model, to ensure the
correct generation of a verification key vki �= vk∗, EUF-CMA adversaries must
submit (vki, ski) to the certification oracle OCert. As in [1,19], we consider the
EUF-CMA security in the certified-key model.

Definition 4 (EUF-CMA Security in the Certified-Key Model [1,19]).
The EUF-CMA security of a sequential aggregate signature scheme SAS in the
certified-key model is defined by the following unforgeability game between a chal-
lenger C and a PPT adversary A.

– C runs pp∗ ← SAS.Setup(1λ, 1T ), (vk∗, sk∗) ← SAS.KeyGen(pp∗), sets Q ←
{}, L ← {}, tctr ← 1, and gives (pp, vk∗) to A.

– A is given access (throughout the entire game) to a certification oracle
OCert(·, ·). Given an input (vk, sk), OCert performs the following procedure.

• If the key pair (vk, sk) is valid, L ← L ∪ {vk} and return “accept”.
• Otherwise return “reject”.
(A must submit key pair (vk, sk) to OCert and get “accept” before using vk.)

– A is given access (throughout the entire game) to a sign oracle OSign(·, ·).
Given an input (“inst”, m), OSign performs the following procedure.
(“inst” ∈ {“skip”, “sign”} represent the instruction for OSign where
“skip” implies that A skips the concurrent period tctr and “sign” implies
that A require the signature on message m. )
• If tctr /∈ [T ], return ⊥.
• If “inst” = “skip”, tctr ← tctr + 1.
• If “inst” = “sign”, Q ← Q ∪ {m}, σ ← SAS.Sign(pp∗, sk∗, t,m), tctr ←
tctr + 1, return σ.

– A outputs a forgery ((vk∗
1, . . . , vk

∗
r∗), (m∗

1, . . . ,m
∗
r∗), Σ∗).

A sequential aggregate signature scheme SAS satisfies the EUF-CMA security in
the certified-key model if for all PPT adversaries A, the following advantage

AdvEUF-CMA
SAS,A := Pr

⎡
⎢⎣
SAS.AggVerify(pp∗, (vk∗

1, . . . , vk
∗
r∗), (m∗

1, . . . ,m
∗
r∗), Σ∗) = 1

∧ For all j ∈ [r∗] such that vk∗
j �= vk∗, vk∗

j ∈ L

∧ For some j∗ ∈ [r∗] such that vk∗
j∗ = vk∗,m∗

j∗ /∈ Q

⎤
⎥⎦

is negligible in λ.

4 Lee et al.’s Aggregate Signature Scheme

In this section, first, we review the MCL scheme proposed by Pointcheval and
Sanders [24]. Next, we explain an intuition that there is a relationship between
the MCL scheme and Lee et al.’s aggregate signature scheme. Concretely, we
explain that there is a conversion from the MCL scheme to Lee et al.’s aggregate
signature scheme. Then, we describe Lee et al.’s aggregate signature scheme
construction. Finally, we give a new security proof for Lee et al.’s scheme under
the 1-MSDH-2 assumption in the random oracle model.
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4.1 Modified Camenisch-Lysyanskaya Signature Scheme

Pointcheval and Sanders [24] proposed the modified Camenisch-Lysyanskaya
signature scheme which supports a multi-message (vector message) signing.
In this work, we only need a single-message signing scheme. Here, we review
the single-message modified Camenisch-Lysyanskaya signature scheme MCL =
(MCL.Setup,MCL.KeyGen,MCL.Sign,MCL.Verify) as follows.

– MCL.Setup(1λ) :
G = (p,G,GT , e) ← G(1λ).
Return pp ← G.

– MCL.KeyGen(pp) :

g
$←− G

∗, x
$←− Z

∗
p, y

$←− Z
∗
p, z

$←− Z
∗
p, X ← gx, Y ← gy, Z ← gz.

Return (vk, sk) ← ((g,X, Y, Z), (x, y, z)).
– MCL.Sign(pp, sk,m) :

Parse sk as (x, y, z)

w
$←− Zp, A

$←− G
∗, B ← Ay, C ← Az, D ← Cy, E ← AxBmxDwx.

Return σ ← (w,A,B,C,D,E).
– MCL.Verify(pp, vk,m, σ) :

Parse vk as (g,X, Y, Z), σ as (w,A,B,C,D,E).
If (e(A, Y ) �= e(B, g)) ∨ (e(A,Z) �= e(C, g)) ∨ (e(C, Y ) �= e(D, g)), return 0.
If e(ABmDw, X̃) = e(E, g), return 1.
Otherwise return 0.

Pointcheval and Sanders [24] proved that if the q-MSDH-2 assumption holds,
then the MCL scheme satisfies the EUF-CMA security where q is a bound
on the number of adaptive signing queries. In this work, we only need the
OT-EUF-CMA security for the MCL scheme.

Theorem 1 ([24]). If the 1-MSDH-2 assumption holds, then the MCL scheme
satisfies the OT-EUF-CMA security.

4.2 Conversion to Lee et al.’s Aggregate Signature Scheme

We explain that the MCL scheme can be converted into Lee et al.’s aggregate
signature scheme. Our idea of conversion is a similar technique in [19] which
converts the Camenisch-Lysyanskaya signature CL scheme to the synchronized
aggregate signature scheme.

Now, we explain an intuition of our conversion. We start from the MCL scheme
in Sect. 4.1. A signature of the MCL scheme on a message m is formed as

σ = (w,A,B = Ay, C = Az,D = Cy, E = AxBmxDwx).

where w
$←− Zp and A

$←− G
∗
1. If we can force signers to use same w, A, B = Ay,

C = Az, and D = Cy, we can obtain an aggregate signature

Σ =

(
w,A,B,C,D,E′ =

r∏
i=1

Ei = A
∑r

i=1 xiB
∑r

i=1 mixiD
∑r

i=1 wxi

)
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on a message list (m1, . . . ,mr) from valid signatures (σ1, . . . σr) where σi =
(w,A,B,C,D,Ei) is a signature on a message mi generated by each signer. If we
regard E′ as E′ = (ADw)

∑r
i=1 xiB

∑r
i=1 mixi , verification of the aggregate signa-

ture Σ on the message list (m1, . . . ,mr) can be done by checking the following
equation.

e(E′, g) = e

(
ADw,

r∏
i=1

vki

)
· e

(
B,

r∏
i=1

vkmi
i

)

Then, required elements to verify the aggregate signature Σ are F = ADw,
B, and E′. Similar to Lee et al.’s conversion, the three verification equations
e(A, Y ) = e(B, g), e(A,Z) = e(C, g), e(C, Y ) = e(D, g) in MCL.Verify is dis-
carded in this conversion. This does not affect the security proof in Sect. 4.4. We
use hash functions to force signers to use the same F and B for each period t.
We choose hash functions H1 and H2 and set F ← H1(t) and B ← H2(t). Then,
we can derive Lee et al.’s aggregate signature scheme. In this derived aggregate
signature scheme, a signature on a message m and period t is formed as

σ = (E = H1(t)xH2(t)mx, t).

An aggregate signature Σ′ on a message list (m1, . . . ,mr) and period t is
formed as

Σ =

(
E′ =

r∏
i=1

Ei = H1(t)
∑r

i=1 xiH2(t)
∑r

i=1 mixi , t

)

where σi = (Ei = H1(t)xiH2(t)mixi , t) is a signature on a message mi generated
by each signer. In our conversion, we need to hash a message with a time period
for the security proof. This conversion is used for the reduction algorithm B in
Sect. 4.4.

4.3 Lee et al.’s Synchronized Aggregate Signature Scheme

We describe Lee et al.’s synchronized aggregate signature scheme obtained by
adapting the conversion in Sect. 4.2 to the MCL scheme. Let T be a bounded num-
ber of periods which is a polynomial in λ. The Lee et al.’s synchronized aggre-
gate signature scheme SASLLY = (SASLLY.Setup,SASLLY.KeyGen,SASLLY.Sign,
SASLLY.Verify,SASLLY.Aggregate,SASLLY.AggVerify) [19] is given as follows.4

– SASLLY.Setup(1λ, 1T ) :
1. G = (p,G,GT , e) ← G(1λ), g

$←− G
∗.

2. Choose hash functions:
H1 : [T ] → G, H2 : [T ] → G

∗, H3 : [T ] × {0, 1}∗ → Zp.
3. Return pp ← (G, g,H1,H2,H3).

– SASLLY.KeyGen(pp) :
4 The SASLLY scheme described here is slightly different from the original ones [19] in

that the range of H2 is changed from G to G
∗.
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1. x
$←− Z

∗
p, X ← gx.

2. Return (vk, sk) ← (X,x).
– SASLLY.Sign(pp, sk, t,m) :

1. m′ ← H3(t,m), E ← H1(t)skH2(t)m′sk.
2. Return (E, t).

– SASLLY.Verify(pp, vk,m, σ) :
1. m′ ← H3(t,m), parse σ as (E, t),.
2. If e(E, g) = e(H1(t)H2(t)m′

, vk), return 1.
3. Otherwise return 0.

– SASLLY.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)) :
1. For i = 1 to r, parse σi as (Ei, ti).
2. If there exists i ∈ {2, . . . , r} such that ti �= t1, return ⊥.
3. If there exists (i, j) ∈ [r] × [r] such that i �= j ∧ vki = vkj , return ⊥.
4. If there exists i ∈ [r] suth that SASLLY.Verify(pp, vki,mi, σi) �= 0,

return ⊥.
5. E′ ← ∏r

i=1 Ei.
6. Return Σ ← (E′, w).

– SASLLY.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr), Σ) :
1. There exists (i, j) ∈ [r] × [r] such that i �= j ∧ vki = vkj , return 0.
2. For i = 1 to r, m′

i ← H3(t,mi).
3. Parse Σ as (E′, w).
4. If e(E′, g) = e (H1(t),

∏r
i=1 vki) · e

(
H2(t),

∏r
i=1 vk

m′
i

i

)
, return 1.

5. Otherwise, return 0.

Now, we confirm the correctness. Let (vki, ski) ← SASLLY.KeyGen(pp) and
σi ← SASLLY.Sign(pp, ski, t,mi) for i ∈ [r] where vki are all distinct. Then, for all
i ∈ [r], Ei ← H1(t)skiH2(t)m′

iski holds where m′
i ← H3(t,mi) and σi = (Ei, t).

This fact implies that SASLLY.Verify(pp, vki,mi, σi) = 1. Furthermore, let Σ ←
SASLLY.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)). Then,

E′ =
r∏

i=1

Ei = H1(t)
∑n

i=1 skiH2(t)
∑n

i=1 m′
iski

holds where Σ = (E′, t) and m′
i ← H3(t,mi) for all i ∈ [r]. This fact implies

that SASLLY.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr), Σ) = 1.

4.4 New Security Proof Under the Static Assumption

We reassess the EUF-CMA security of the SASLLY scheme. In particular, we
newly prove the EUF-CMA security of the SASLLY scheme under the 1-MSDH-2
assumption.

Theorem 2. If the MCL scheme satisfies the OT-EUF-CMA security, then, in
the random oracle model, the SASLLY scheme satisfies the EUF-CMA security in
the certified-key model.
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Proof. We give an overview of our security proof. Similar to the work in [19],
we reduce the EUF-CMA security of the SASLLY scheme to the OT-EUF-CMA
security of the MCL scheme. We construct a reduction algorithm according to
the following strategy. First, the reduction algorithm chooses a message mMCL

at random, make signing query on mMCL, and obtains its signature σMCL =
(wMCL, AMCL, BMCL, CMCL,DMCL, EMCL) of the MCL scheme. Then, the reduction
algorithm guesses the time period t′ of a forged aggregate signature and an
index k′ ∈ [qH3 ] at random where qH3 be the maximum number of H3 hash
queries. Then reduction algorithm programs hash values as H1(t′) = AMCLD

wMCL

MCL ,
H2(t′) = BMCL, and H3(t′,mk′) = mMCL. For a signing query on period t �= t′, the
reduction algorithm generate the signature by programmability of hash functions
H1, H2, and H3. For a signing query on period t �= t′, if the query index j of H3 is
equal to the index k′, the reduction algorithm can compute a valid signature by
using σMCL (This can be done by using the conversion technique in Sect. 4.2.).
Otherwise, the algorithm should abort the simulation. Finally, the reduction
algorithm extracts valid forgery of the MCL scheme from a forged aggregate
signature on time period t′ of the SASLLY scheme.

Now, we give the security proof. Let A be an EUF-CMA adversary of the
SASLLY scheme, C be the OT-EUF-CMA game challenger of the MCL scheme,
and qH3 be the maximum number of H3 hash queries. We construct the algorithm
B against the OT-EUF-CMA game of the MCL scheme. The construction of B
is given as follow.

– Initial setup: Given an input pp = GMCL and vk = (gMCL,XMCL, YMCL, ZMCL)
from C, B performs the following procedure.

• G ← GMCL, g ← gMCL, pp∗ ← (G, g), vk∗ ← XMCL. t′ $←− [T ], k′ $←− [qH3 ],
tctr ← 1, L ← {}, T1 ← {}, T2 ← {}, T3 ← {}, Q ← {}.

• mMCL
$←− Zp, query C for the signature on the message mMCL and get its

signature σMCL = (wMCL, AMCL, BMCL, CMCL,DMCL, EMCL),
•Give (pp∗, vk∗) to A as an input.

– OCert(vk, sk) : If vk = gsk, update a list L ← L ∪ {vk} and return “accept”
to A. Otherwise return “reject” to A.

– OH1(ti) : Given an input ti, B responds as follows.
• If there is an entry (ti, ·, Fi) (‘·’ represents an arbitrary value or ⊥) for
some Fi ∈ G1 in T1, return Fi.
• If ti �= t′, r(1,i)

$←− Zp, Fi ← gr(1,i) , T1 ← T1 ∪ {(ti, r(1,i), Fi)}, return Fi.
• If ti = t′, T1 ← T1 ∪ {(ti,⊥, AMCLD

wMCL

MCL }, return AMCLD
wMCL

MCL .
– OH2(ti) : Given an input ti, B responds as follows.

• If there is an entry (ti, ·, Bi) (‘·’ represents an arbitrary value or ⊥) for
some Bi ∈ G

∗
1 in T3, return Bi.

• If ti �= t′, r(2,i)
$←− Z

∗
p, Bi ← gr(2,i) , T2 ← T2 ∪ {(ti, r(2,i), Bi)}, return Di.

• If ti = t′, T2 ← T2 ∪ {(ti,⊥, BMCL)}, return BMCL.
– OH3(ti,mj) : Given an input (ti,mj), B responds as follows.
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• If there is an entry (ti,mj ,m
′
(i,j)) for some m′

(i,j) ∈ Zp in T3, return m′
(i,j).

• If ti �= t′ ∨ j �= k′, m′
(i,j)

$←− Zp, T3 ← T3 ∪ {(ti,mj ,m
′
(i,j))}, return m′

(i,j).
• If ti = t′ ∧ j = k′, T3 ← T3 ∪ {(ti,mj ,mMCL)}, return mMCL.

– OSign(“inst”, mj) : Given an input (“inst”, mj), B performs the following
procedure.
• If tctr /∈ [T ], return ⊥.
• If “inst” = “skip”, tctr ← tctr + 1.
• If “inst” = “sign”,

∗ If tctr �= t′, E ← X
r(1,ctr)

MCL X
r(2,ctr)m

′
(ctr,j)

MCL where r(1,i), r(2,i), and m′
(i,j)

are retreived from (tctr, r(1,ctr), Fctr) ∈ T1, (tctr, r(2,ctr), Bctr) ∈ T2, and
(tctr,mj ,m

′
(ctr,j)) ∈ T3 respectively. Q ← Q ∪ {mj}, return σctr,j ←

(E, tctr), then update tctr ← tctr + 1.
∗ If tctr = t′ ∧ j = k′, Q ← Q ∪ {mj}, return σctr,j ← (EMCL, ti), then
update tctr ← tctr + 1
∗ If tctr = t′ ∧ j �= k′, abort the simulation.

– Output procedure: B receives a forgery ((vk∗
1, . . . , vk

∗
r∗), (m∗

1, . . . ,
m∗

r∗), Σ∗) outputted by A. Then B proceeds as follows.
1. If SASLLY.AggVerify(pp∗, (vk∗

1, . . . , vk
∗
r∗), (m∗

1, . . . ,m
∗
r∗), Σ∗) �= 1, then

abort.
2. If there exists j ∈ [r∗] such that vk∗

j �= vk∗ ∧ vk∗
j /∈ L, then abort.

3. If there is no j∗ ∈ [r∗] such that vk∗
j∗ = vk∗ ∧ m∗

j∗ /∈ Q, then abort.
4. Set j∗ ∈ [r∗] such that vk∗

j∗ = vk∗ ∧ m∗
j∗ /∈ Q.

5. Parse Σ∗ as (E∗′, t∗).
6. If t∗ �= t′, then abort.
7. m∗

j∗ ′ ← H3(t∗,m∗
j∗)

8. If m∗
j∗ ′ = mMCL, then abort.

9. For i ∈ [r∗]\{j∗}, retrieve xi ← sk∗
i of vk∗

i from L.
10. F ′ ← H1(t∗), B′ ← H2(t∗), m′

i ← H3(t∗,m∗
i ) for i ∈ [r∗]\{j∗},

E′ ← E∗′ ·
(
F ′

∑
i∈[r∗]\{j∗} xiB′

∑
i∈[r∗]\{j∗} xim

′
i

)−1

.
11. Return (m∗

MCL, σ
∗
MCL) ← (m∗

j∗ , (wMCL, AMCL, B
′, CMCL,DMCL, E

′)).

We confirm that if B does not abort, B can simulate the EUF-CMA game of
the SASLLY scheme.

– Initial setup: First, we discuss the distribution of pp∗. In the original
EUF-CMA game of the SASLLY scheme, pp∗ = (G, g) is constructed by

G = (p,G,GT , e) ← G(1λ) and g
$←− G

∗. In the simulation of B, pp∗ is a tuple
(GMCL, gMCL). This tuple is constructed by C as GMCL = (p,G,GT , e) ← G(1λ)

and gMCL
$←− G

∗. Therefore, B simulates pp∗ perfectly. Next, we discuss the
distribution of vk∗. In the original EUF-CMA game of the SASLLY scheme, vk
is computed by x

$←− Z
∗
p and vk∗ ← gx. In the simulation of B, vk∗ is set by

XMCL. Since XMCL is computed by C as xMCL
$←− Zp and XMCL ← gxMCL , dis-

tributions of vk between the original game and simulation of B are identical.
Hence, the distributions of (pp∗, vk∗) are identical.
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– Output of OCert: This is clearly that B can simulate the original EUF-CMA
game of the SASLLY scheme perfectly.

– Output of OH1 : In the original game, hash values of H1 is chosen from G

uniformly at random. In the simulation of B, if ti �= t′, the hash value H(ti)

is set by gr(1,i) where r(1,i)
$←− Zp. Obviously, in this case, B can simulate

OH1 perfectly. If ti = t′, the hash value H(ti) is set by F = AMCLD
wMCL

MCL =
A1+yMCLzMCLwMCL

MCL where YMCL = gyMCL

MCL , ZMCL = gzMCL

MCL, and wMCL is chosen by C
as wMCL ← Zp. For fixed yMCL ∈ Z

∗
p and zMCL ∈ Z

∗
p, the distribution α where

α
$←− Zp and wMCL

$←− Zp, α ← 1 + yMCLzMCLwMCL are identical. This fact
implies that B also simulate OH1 perfectly in the case of ti = t′. Therefore,
B simulates OH1 perfectly.

– Output of OH2 : As the same argument of OH1 , if ti �= t′, B can simulate
hash values H(ti) perfectly. In the case of ti = t′, the hash value H(ti) is set
by BMCL = AyMCL = gxMCLyMCL . For fixed xMCL ∈ Z

∗
p, the distributions of B

where yMCL
$←− Z

∗
p, B ← gxMCLyMCL and B

$←− G
∗ are identical. Therefore, B

simulates OH2 perfectly.
– Output of OH3 : If ti �= t′ ∨ j �= k′, clearly B can simulate OH3 perfectly.

If ti = t′ ∧ j = k′, the hash value H3(ti,mj) is set by mMCL. Since mMCL is

chosen by B as mMCL
$←− Zp, B simulates OH3 perfectly.

– Output of OSign: For the sake of argument, we denote XMCL = gxMCL

MCL (xMCL ∈
Z

∗
p). If ti �= t′, B sets E ← X

r(1,i)

MCL X
r(2,i)m

′
(i,j)

MCL and output the signature σ =
(E, ti). Now we confirm that σ is a valid signature on the message mj . The
following equation

E = X
r(1,i)

MCL X
r(2,i)m

′
(i,j)

MCL = (gxMCL

MCL )r(1,i)(gxMCL

MCL )r(2,i)m
′
(i,j)

= H1(ti)xMCLH2(ti)xMCLm
′
(i,j)

holds where m′
(i,j) = H3(ti,mj). This fact implies that

e(E, g) = e(H1(ti)H2(ti)m′
(i,j) , vk∗)

holds. Therefore, σ is valid signature on the message mj .
If ti �= t′ ∧ j = k′, B sets E ← EMCL, return σi,j ← (E, ti) to A. We also
confirm that σ is a valid signature on the message mj . In the case, H1(ti) =
AMCLD

wMCL

MCL , H2(ti) = BMCL, and H3(ti,mj) = m′
(i,j) = mMCL hold. Since

EMCL is the valid signature of the MCL scheme on message mMCL,

e(EMCL, g) = e(AMCLB
mMCL

MCL DwMCL

MCL ,XMCL)
= e((AMCLD

wMCL

MCL )BmMCL

MCL ,XMCL)

holds. This implies that e(E, g) = e(H1(ti)H2(ti)m′
(i,j) , vk∗) where m′

(i,j) =
H3(ti,mj).

By the above discussion, we can see that B does not abort, B can simulate the
EUF-CMA game of the SASLLY scheme.



240 M. Tezuka and K. Tanaka

Second, we confirm that when A successfully output a valid forgery (vk∗
1, . . . ,

vk∗
r∗), (m∗

1, . . . ,m
∗
r∗), Σ∗) of the SASLLY scheme, B can forge a signature of the

MCL scheme. Let (vk∗
1, . . . , vk

∗
r∗), (m∗

1, . . . ,m
∗
r∗), Σ∗) be a valid forgery output by

A. Then there exists j∗ ∈ [r∗] such that vk∗
j∗ = vk∗. By the verification equation

of SASLLY.Verify,

e(E∗′, g) = e

(
H1(t∗),

r∗∏
i=1

vk∗
i

)
· e

(
H2(t∗),

r∗∏
i=1

(vk∗
i )

m∗
i

)

holds where Σ∗ = (E∗′, t∗) and H3(t∗,m∗
i ) = m∗

i
′ for i ∈ [r∗]. If B does not

abort in Step 6 of Output procedure, t∗ = t′ holds. This means that H1(t∗) =
AMCLD

wMCL

MCL and H2(t∗) = BMCL hold. These facts imply that

E∗′ = H1(t∗)
∑r∗

i=1 sk∗
i H2(t∗)

∑r∗
i=1 m∗

i
′sk∗

i

= (AMCLD
wMCL

MCL )
∑r∗

i=1 x∗
i B

∑r∗
i=1 m∗

i
′x∗

i

MCL

holds where sk∗
i = x∗

i is a secret key corresponding to vk∗
i .

By setting F ′ ← AMCLD
wMCL

MCL and B′ ← BMCL,

E′ = E∗′ ·
(
F ′∑i∈[r∗]\{j∗} xiB′∑i∈[r∗]\{j∗} xim

′
i

)−1

= (AMCLD
wMCL

MCL )x∗
j∗ B

m∗
j∗ ′x∗

j∗
MCL

Moreover, e(AMCL, YMCL) = e(BMCL, gMCL), e(AMCL, ZMCL) = e(CMCL, gMCL),
and e(CMCL, YMCL) = e(DMCL, gMCL) holds. If B does not abort in Step 8 of
Output procedure, m∗

j∗ is a not queried message for the signing of the
OT-EUF-CMA game of the MCL scheme. Therefore, if B does not abort and
outputs (m∗

MCL, σ
∗
MCL) ← (m∗

j∗ , (wMCL, AMCL, B
′, CMCL,DMCL, E

′)), B can forge a
signature of the MCL scheme.

Finally, we analyze the probability that B succeeds in forging a signature of
the MCL scheme. First, we consider the probability that B does not abort at the
simulation of signatures. B aborts the simulation of OSign if tctr = t′ ∧ j �= k′.
The probability that B succeeds in simulating OSign is at least 1/qH3 . Next,
we consider the probability that B aborts in Step 6 of Output procedure.
Since B chooses the target period t′ ← [T ], the probability t∗ �= t′ is 1/[T ].
Finally, the probability that B aborts in Step 8 of Output procedure is 1/p.
Let AdvEUF-CMA

SASLLY,A be the advantage of the EUF-CMA game for the SASLLY scheme
of A. The advantage of the OT-EUF-CMA game for the MCL scheme of B is

AdvOT-EUF-CMA
MCL,B ≥ AdvEUF-CMA

SASLLY,A

T × qH3

(
1 − 1

p

)
.

Therefore, we can conclude the proof of Theorem 2. �
By combining Theorem 1 and Theorem 2, we have the following corollary.
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Corollary 1. If the 1-MSDH-2 assumption holds, then, in the random oracle
model, the SASLLY scheme satisfies the EUF-CMA security in the certified-key
model.
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Abstract. The Internet of Things (IoT) is growing rapidly, which allows
many smart devices to connect and cooperate with each other. While for
the sake of distributed architecture, an IoT environment is known to be
vulnerable to insider attacks. In this work, we focus on this challenge and
consider an advanced insider threat, called multiple-mix attack, which
typically combines three sub-attacks: tamper attack, drop attack and
replay attack. For protection, we develop a Distributed Consensus based
Trust Model (DCONST), which can build the nodes’ reputation by shar-
ing particular information, called cognition. In particular, DCONST can
detect malicious nodes by using the K-Means clustering, without disturb-
ing the normal operations of a network. In the evaluation, as compared
with some similar models, DCONST can overall provide a better detec-
tion rate by increasing around 10% to 40%.

Keywords: IoT network · Malicious node · Trust management ·
Consensus · K-means method

1 Introduction

The Internet of Things (IoT) is becoming an increasingly popular infrastructure
to support many modern applications or services, like smart homes, smart health-
care, public security, industrial monitoring and environmental protection [14].
These IoT devices could be used to collect information from surroundings or
control units to help gather information and make suitable strategies. Also, these
devices can use various IoT protocols [20], with the aim of transferring their data
including ZigBee, WiFi, Bluetooth, etc.

The IoT topology is flexible (e.g., multihop network), but it also suffers from
many insider threats, where an attacker can launch an intrusion inside a network.
For example, attackers can compromise some devices in an IoT network and then
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use these devices to infer sensitive information and tamper data. Therefore, it
is very essential to design an effective security mechanism to identify malicious
nodes in IoT networks.

Motivation. Most existing studies often focus on a single attack scenario in an
IoT, but an advanced attacker may choose to perform several attacks simultane-
ously. Hence a stronger and more advanced attacker should be considered - who
can control some internal nodes in IoT networks and perform a multiple-mix-
attack. For example, Liu et al. [8] discussed a scenario of multiple-mix-attack by
combining data tampering, packet dropping and duplication. They proposed a
perceptron-based trust to help detect malicious nodes, but their method has to
inject many packets to analyze the nodes’ reputation, resulting in a disturbance
of network operations. In addition, their detection accuracy depends heavily on
network diversity and attack probability, i.e., the low network diversity and the
high attack probability may cause low detection accuracy.

Contributions. Motivated by the literature, our work develops a Distributed
Consensus based Trust Model (DCONST), which can achieve the self-detection
via consensus among IoT nodes. It can work without disturbing the normal
network operations and build the nodes’ trust by sharing a kind of particular
information called cognition among nodes. To mitigate the impact caused by the
low network diversity and the high attack probability, DCONST makes a strategy
that malicious nodes should receive more punishment while benign nodes should
obtain more award. The contributions can be summarized as below.

– In this work, we formalize system models and propose DCONST by using
consensus of nodes to improve the detection performance. In particular, our
DCONST can generate punishment evidence to reduce the trust values of
potential malicious nodes, and provide award evidence to improve the repu-
tation of benign nodes. A base station can collect all cognitions of nodes to
complete a final trust evaluation.

– We use the K-Means method to cluster nodes into benign group and mali-
cious group. For the performance analysis, we compare our approach with
two similar approaches: Perceptron Detection with Enhancement (PDE) [8]
and Hard Detection (HD) [9]. The experimental results demonstrate that
DCONST could achieve better detection performance.

Organization. The remaining parts are organized as follows. Section 2 intro-
duces related work on trust-based detection in IoT networks. Section 3 formal-
izes the network model and message model. Section 4 describes DCONST in
detail. Section 5 discusses our experimental environment and analyzes evalua-
tion results. Finally, Sect. 6 concludes our work with future directions.

2 Related Work

The Internet of Things (IoT) is beneficial for its wide adoption and sustainable
development, which can be divided into four layers including perception layer,



DCONST 249

network layer, middle-ware layer and application layer. Due to the distributed
architecture, insider attacks are one big challenge in IoT networks.

Trust-Based Detection. Building a proper trust mechanism is a promising
solution to discover insider attacks [13]. For instance, Cho et al. [2] proposed
a provenance-based trust model, called PROVEST, for delay tolerant networks
to handle the trust evaluation of nodes by using both direct and indirect trust
information. Dinesh et al. [1] developed a detection scheme, named BAN-Trust
for identifying malicious nodes in body area networks according to the nature
acquired through the nodes by their own as well as partner nodes. BAN-Trust
could conceive the common behavior among nodes and gather the information
to measure the trust. Liu et al. [8] proposed a perceptron-based detection using
machine learning in the multiple-mix-attack environment. The trust is evaluated
according to the reputation of paths, but the detection accuracy depends heavily
on the network diversity. Some other related studies can refer but not limited to
[3,7,15,21].

Consensus-Based Trust. In this work, our goal is to detect malicious nodes
based on the knowledge of all network nodes, which is a typical group decision
making (GDM) problem. Consensus-based trust models are widely used in solv-
ing this problem with two typical steps: 1) trust estimation that evaluates the
trust from a single group member, and trust aggregation that predicts the trust
based on the aggregated knowledge from trust estimation. For example, Rathore
et al. [17] presented a consensus-aware sociopsychological model for detecting
fraudulent nodes in WSNs. They used three factors for trust computation, such
as ability, benevolence, and integrity. Sharma et al. [18] proposed a consensus
framework for mitigating zero-day attacks in IoT networks. Their approach uses
the context behavior of IoT devices as a detection mechanism, working with an
alert message protocol and a critical data sharing protocol. Mazdin et al. [12]
analyzed the application of a binary trust-consensus protocol in multi-agent sys-
tems with switching communication topology. The trust in their work represents
a belief of one agent that another one is capable of executing a specific task.
Some other related studies can refer to [4,5,22].

Advanced Attack. In this work, similar to former work [8], we consider a
multiple-mix attack in which an insider can perform three typical attacks: tamper
attack, drop attack and replay attack. More specifically, tamper attack is one of
the most harmful internal threats, where malicious nodes along a multihop path
can modify the received packets (randomly or with specific goals) before they
reach the destination [6]. Under a drop attack, malicious nodes can drop received
packets (randomly or with specific goals) to prevent these packets from reaching
the destination [19]. The third attack is replay attack, where malicious nodes can
send the received packets repeatedly to cause overhanded data flow, aiming to
consume the link bandwidth and mislead network functions [11].

Most existing research studies focus mainly on a single/separate attack, but
in fact an advanced attacker can handle multiple types of attacks at the same
time. In such case, it is more difficult to identify malicious nodes precisely. Thus,
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in this work, we consider an advanced attacker who can launch a multiple-mix-
attack by combining these three attacks with a probability.

3 System Model

In this work, we adopt the same attack model in [8], called multiple-mix-attack,
which consists of tamper attack, drop attack and replay attack. This section
formalizes our network model and message model.

3.1 Network Model

Node Model. In this work, we consider that malicious nodes can make a tamper
attack, a drop attack and a replay attack at the same time or choose combining
some of them intentionally. We assume that a node can be represented by using
the following equation:

Node = <id, T, pu, pr, cogl, pTA, pDA, pRA> (1)

where, id represents the unique identifier of the node; T represents the trust of
the node; pu and pr represent a public-private key pair of the node to be used
for encryption and decryption when network nodes transfer data and cognitions;
cogl is the list of cognitions that includes all cognitions of the nodes about others.
pTA is the probability of node N making a tamper attack, pDA is the probability
of node N making a drop attack, and pRA is the probability of node N making
a reply attack. For a benign node, the probability of node’s pTA, pDA and pRA

should be all zero, whereas a malicious node’s pTA, pDA and pRA should be a
positive number.

Path Model. The path of a packet can be represented as:

Path = <node1, node2, node3...noden> (2)

where, if packet A arrives at destination with a Path = <node1, node2, node3
... noden>, then it means packet A is delivered through node1, node2, node3, ...
noden in a sequence.

3.2 Message Model

We assume that the IoT network contains a trusted authority (TA) that can
distribute keys to provide IoT nodes with a shield to defeat both external attacks
and insider attacks. The key management method can refer to [2]. Distributed
keys can be divided into two types:

1. A symmetric key K for encryption to defend external attackers;
2. Asymmetric key pairs <pu, pr> used for encryption and signing to defeat

insider attackers, referred in Eq. (1).
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Message can be formalized as

M = [(D)puR
, SiD, Cogx1,y1 , Six1,y1 , ..., Cogxm,ym

, Sixm,ym
]K (3)

where, D represents the original data that need to be transferred, puR rep-
resents using the public key of the receiver to encrypt the data, and SiD is the
signature. Cogxi,yi

represents the cognition of node xi about node yi. Sixi,yi
rep-

resents the signature of Cogxi,yi
that is generated by node xi. Cognition will be

introduced in Sect. 4.3, which is the assessment about the node trust. K means
the symmetric key and K is used to encrypt the whole message.

To defend against insider attacks, the sender of the communication uses the
public key of the receiver to encrypt the data-part of transferred packets. The
cognition-part of packets do not need to be encrypted, because relay nodes in
the transferred path may need to access the cognition. Besides, it is important to
protect data and cognitions from being tampered and there should be a notifi-
cation if tampered behavior is detected. Hence the data owner and the cognition
should provide their signatures.

4 DCONST

This section introduces our proposed DCONST, including core workflow, trust
model, cognition, cognition aggregation, cognition sharing, punishment and
award, trust evaluation, and the K-means based detection.

4.1 Core Workflow

Figure 1 shows the core workflow of DCONST, mainly consisting of trust eval-
uation and detection of malicious nodes. For trust evaluation, nodes have to
measure the reputation of others within the network by sharing particular infor-
mation, called cognition (refer to Sect. 4.3). To identify malicious nodes, the base
station in the IoT network has to collect all cognitions from nodes and create the
Cognition-Matrix, where Cogxy represents the cognition of node x about node y.
The base station should perform a central trust evaluation and obtain the trust-
worthiness of each node. For detection of malicious nodes, nodes’ trust should
be forwarded to the K-means clustering module. The output includes Tamper-
malicious set - malicious nodes that launch tamper attacks; Drop-malicious set
- malicious nodes that launch drop attacks; and Replay-malicious set - malicious
nodes that launch replay attacks; and Benign set - benign nodes.

4.2 Trust Model

To evaluate the reputation of nodes by considering three attack types, we
design the trust model with three dimensions accordingly - honesty, volume
and straight. Honesty is the dimension that demonstrates whether a node tam-
pers the received data or not. An evidence about tamper behavior can reduce
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Fig. 1. Core workflow

the honesty of the node. Volume illustrates whether a node drops the received
data or not. An evidence about drop behavior can reduce the volume of the
node. Straight validates whether a node replays the received data or not. An
evidence about replay behavior can reduce the straight of the node. Hence the
trust of a node can be formalized as follow:

Node.T = <H,V, S> (4)

where, H represents the honesty; V represents the volume; S represents the
straight. All of them range from 0 to 100; the negative side is 0 and the positive
side is 100. The higher value reached by the H, V, S of a node, the better trust
it possesses. Note that H, V, S are all integers rather than decimals, which can
be space-saving in the data communication.

4.3 Cognition

Cognition is the assessment about the reputation of nodes in the view of the
cognition owner (a type of node). In DCONST, nodes obtain the trust of others
by exchanging their cognitions. We formalize the cognition as

Cog = <Sub,Obj,H, V, S, isNei> (5)

where, Sub represents the subject of the cognition and Obj represents the
object of the cognition. Cog means the cognition of Sub about Obj. The param-
eters of H, V , S are the same in Eq. (4). isNei represents whether Sub is the
neighbor of Obj. For example, if node X and node Y are neighbors, and we set
the honesty, the volume and the straight of node Y as 100, 100 and 50 respec-
tively, then there is a cognition <X,Y, 100, 100, 50, 1> of node X.
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4.4 Cognition Aggregation

When a node receives a new cognition from other nodes, it updates its own cog-
nition via cognition aggregation. Essentially, cognition aggregation is the process
about mixing own cognition (old cognition) with the new cognition in a specific
ratio. This ratio depends on the credibility of the new cognition, which can be
evaluated from two aspects: Reliability and Fluctuation.

Reliability. If the new-cognition provider is reliable in the old-cognition of the
receiver, it makes sense to believe the new-cognition more. This is because the
precision of cognition of a node could be affected by its malicious behavior.
For example, assume there is a packet passing a path that contains a malicious
node N . If this packet is attacked by node N , then there will be a punishment
evidence created, which we will discuss in Sect. 4.6. As this punishment evidence
is negative, the cognition of node N would lack persuasion. To evaluate the
reliability of a node n, we can have the following:

r(n) =
c.H + c.V + c.S

Hmax + Vmax + Smax
(6)

where, c is the cognition about the node n; parameters of H, V and S are
the same in Eq. (5); Hmax, Vmax and Smax are the maximum of H, V and S.
In our system, Hmax, Vmax and Smax are set as 100.

Fluctuation. If the new-cognition differs from the old-cognition greatly, the
new-cognition provider may be suspicious as the persuasion of the new-cognition
is poor. The apparent difference may be caused by a wrong cognition or some
negative evidence, and therefore we can reduce its weight in the aggregation.

To evaluate the fluctuation of a new-cognition compared to the old-cognition,
we can have the following:

f(ncog) =
|ncog.H + ncog.V + ncog.S − ocog.H − ocog.V − ocog.S|

Hmax + Vmax + Smax
(7)

where, ncog is the new-cognition; ocog is the old-cognition of the receiver;
Hmax, Vmax and Smax are the maximum of H, V and S.

Thus, the credibility of the new-cognition can be evaluated as

cred(ncog) =

⎧
⎪⎨

⎪⎩

ρd ∗ (1 − f(ncog)) ∗ r(ncog.Sub) if ncog.Obj is a
neighbor of ncog.Sub

ρi ∗ (1 − f(ncog)) ∗ r(ncog.Sub) otherwise

(8)

where, ncog is the new-cognition; ncog.Sub is the provider of the cognition that
can be referred in Eq. (5); whether ncog.Obj is a neighbor of ncog.Sub can be
concluded according to ncog.isNei in Eq. (5). ρd and ρi are the maximum of
the credibility with ρd > ρi. The setting of ρd and ρi is mainly based on the
common sense that a cognition from a node’s neighbor about the node can be
more objective and accurate.
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Based on the credibility of the new-cognition, we update the old-cognition of
the receiver by aggregating the new-cognition as follows:

[ucog.H, ucog.V, ucog.S] =

[log2(1 +
ncog.H ∗ cred(ncog) + ocog.H ∗ (1 − cred(ncog))

Hmax
) ∗ Hmax,

log2(1 +
ncog.V ∗ cred(ncog) + ocog.V ∗ (1 − cred(ncog))

Vmax
) ∗ Vmax,

log2(1 +
ncog.S ∗ cred(ncog) + ocog.S ∗ (1 − cred(ncog))

Smax
) ∗ Smax]

(9)

where, ucog is the cognition of the receiver updated after the cognition aggre-
gation. The motivation of using the log function is due to that it needs more
positive cognitions if any H, V or S improves. On the contrary, H, V or S of a
node could decrease fast when there are negative cognitions.

4.5 Cognition Sharing

The cognition sharing of DCONST can be defined with two operations - Cog-
nition Extraction and Cognition Spread. Cognition Extraction is the process to
determine which cognition should be sent with the packet when the packet passes
a node. Considering the bandwidth of a network, it is not an efficient way to
send all cognitions, so that a wise strategy should balance both performance
and cost. Cognition Spread aims to check whether a cognition can be aggregated
by other nodes, as the aggregation process will bring some cost when the node
calculates the credibility of a new cognition.

– Cognition Extraction. When a packet is transferred by a node, the node
can create a new packet by adding three cognitions to the end of the packet.
As the new packet is sent by the node, the cognition of the node is spread.
For implementation, there are three prior queues, negative queue (NQ), reduc-
tion queue (RQ) and improvement queue (IQ) in the memory of each node.
NQ sorts cognitions by their sum of honesty, volume and straight (the head
of queue is the cognition having the smallest sum of honesty, volume and
straight); RQ sorts cognitions by their reduction (the head of queue is the
cognition that reduces the most and is updated recently); and IQ sorts cogni-
tions by their improvement (the head of queue is the cognition that improves
the most and is updated recently). A cognition exists in three queues, and if
it is removed from a queue then it will be also removed by other two queues.
DCONST selects the heads of these queues to spread including the most neg-
ative cognition, the cognition with the latest and the largest reduction, and
the cognition with the latest and the largest improvement that has not been
sent. That is, DCONST attempts to spread negative cognitions and cognitions
whose fluctuation is evident promptly.

– Cognition Spread. Cognition transferred with packets can be aggregated
by both relay nodes and destination node. The relay nodes can update their
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cognitions when they receive packets. They also need to add their extracted
cognitions to the transferred packet and forward them to the next node.
During idle time, nodes can send their extracted cognitions to their neighbors
aiming to accelerate the process of updating cognitions.

The whole process of Cognition Sharing is shown in Fig. 2. Green blocks with
Cogi1, Cogi2 and Cogi3 represent the cognition selected from node ni. Green full-
line-arrow means the cognition can be aggregated by the pointed node. Green
dotted-line-arrow shows that nodes can send the extracted cognitions to their
neighbors during idle time.

s n1 n2 n3 nt d
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Data
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Fig. 2. DCONST cognition sharing

4.6 Punishment and Award

To identify malicious nodes in IoT networks, it is important to create the trust
gap between benign nodes and malicious nodes, through punishing malicious
nodes and awarding benign nodes. Essentially, award is the reverse process of
punishment, which aims to recover the correct cognition about those nodes that
are misunderstood by some wrong punishment evidence. The trigger of pun-
ishment is different from the trigger of award - one malicious transmission can
trigger one punishment while accumulating enough successful transmission may
only bring one award. This is because few successful transmission cannot prove
that there are no malicious nodes existing in the path. To analyze different attack
types, we design corresponding punishment and award as below.

Punishment of Tamper Attack. The evidence of punishment about tamper
attack is called Indirect Tamper Punishment Evidence (ITPE). Note that relay
nodes only check whether the cognition in the packet is tampered because they
do not have the key to decrypt the data part in the packet. Only the last node
(with the key) can check both the cognitions and the data. ITPE could be
generated in the following two cases:

Case A (Destination Punishment). Assume there is a packet transferred via
a path p = <s, n1, n2, n3, ..., nt, d> and node d checks whether the original data
or cognition is tampered with their signature. If a tamper attack is detected,
an ITPE will be created by node d. Then node d can use ITPE to update its
cognitions about n1, n2, n3, ..., nt. If the data part of a packet is tampered, n1,
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n2, n3, ..., nt will be pointed by ITPE. While if Cognx,ny
(refer to Eq. (3)) is

tampered, ni(i > x) will be pointed by ITPE. This is because only latter nodes
can tamper the cognitions in the packet from previous nodes.

Case B (Middle Punishment). Assume there is a packet transferred via a
path p = <s, n1, n2, n3, ..., nt, d> and node nk checks whether the cognition is
tampered with their signature. If a tamper attack is detected, an ITPE can be
created by node nk. While if Cognx,ny

(refer to Eq. (3)) is tampered, ni(i > x)
will be pointed by ITPE. In this case, node nk can use ITPE to update the
cognition about nx+1, nx+2, ..., nk−1. To evaluate the punishment of tamper
attack, when an ITPE is created, the cognition about all nodes pointed by ITPE
will be updated by the producer of ITPE (the punishment provider) as below:

ucog.H = log2(1 +
ocog.H − θhi

Hmax
) ∗ Hmax (10)

where, ucog is the updated cognition of the punishment provider (i.e., relay
nodes and the destination node), ocog is the old cognition, and θhi is a parameter
that determines the reduction of the honesty with ITPE.

Award About No Tamper. Award about No Tamper is the reverse process
of Punishment of Tamper Attack. Cnthi is a counter in each node to record the
positive behavior of relay nodes. When the value of a node in this counter meets
the threshold σhi, an indirect honesty award evidence (IHAE) can be created
to increase the node’s honesty. We use Cnthi.n.val to represent the value of
node n in Cnthi. If a packet is successfully transmitted, all nodes related to the
packet will be awarded. Taking the above Case A as an example, if the tamper
attack does not exist, the value of each relay node in Cnthi can be increased
by 1, i.e., Cnthi.n1.val = Cnthi.n1.val + 1, Cnthi.n2.val = Cnthi.n2.val + 1, ...,
Cnthi.nt.val = Cnthi.nt.val + 1. Finally, if we have Cnthi.n.val = σhi, then an
IHAE about node n will be created. If an IHAE or an ITPE about node n is
created, Cnthi.n.val will be set as zero.

To evaluate the award of no tamper attack, when an IHAE is created, the
cognition about all nodes pointed by IHAE will be updated by the producer of
IHAE (the award provider) as below:

ucog.H = log2(1 +
ocog.H + θhi

Hmax
) ∗ Hmax (11)

where, ucog is the updated cognition of the award provider and ocog is the
old cognition. θhi is a parameter that determines the improvement of the honesty
with IHAE and its value is equal to that in Eq. (10).

Punishment of Drop Attack. The evidence of punishment about drop attack
is called Indirect Drop Punishment Evidence (IDPE). Suppose there is a packet
transferred via a path p = <n0, n1, n2, n3, ..., nt, d> and if node d receives the
packet, it has to send an acknowledgement (ack) to node n0 with the path
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rp = <d, nt, ..., n3, n2, n1, n0>. If we assume the ack cannot be faked and the
node does not receive the ack after transferred the packet, then a drop attack
can be detected and an IDPE can be created. Node ni can use IDPE to update
the cognition of ni+1. For example, if node n3 is a malicious node that drops the
packet and node n0, n1, n2 cannot get the ack from node d, then node n0 can
create an IDPE about node n1; node n1 can create an IDPE about node n2; and
node n2 can create an IDPE about node n3. Thus, IDPE can be regarded as a
chain to connect all potential drop-malicious nodes.

To evaluate the punishment of drop attack, when an IDPE is created, the
cognition about the node pointed by IDPE will be updated by the producer of
IDPE (the punishment provider) as below:

ucog.V = log2(1 +
ocog.V − θvi

Vmax
) ∗ Vmax (12)

where, ucog is the updated cognition of the punishment provider, ocog is
the old cognition, and θvi is a parameter that determines the reduction of the
volume with IDPE.

Award About No Drop. Award about No Drop is the reverse process of
Punishment of Drop Attack. Cntvi is the counter to record the positive behav-
ior with the acknowledgement from the destination node. When the value of a
node in this counter meets the threshold σvi, an indirect volume award evidence
(IVAE) can be created to increase the volume of the node. Similar to the award
about no tamper, if a packet successfully arrives at its destination, the value in
Cntvi of all nodes related to the packet can be increased by 1.

When an IVAE is created, the cognition about the node pointed by the IVAE
will be updated by the producer of IVAE (the award provider) as below:

ucog.V = log2(1 +
ocog.V + θvi

Vmax
) ∗ Vmax (13)

where, ucog is the updated cognition of the award provider and ocog is the old
cognition. θvi is a parameter that determines the improvement of the volume
with IVAE and its value is equal to that in Eq. (12).

Punishment of Replay Attack. The evidence of punishment about replay
attack is called Indirect Replay Punishment Evidence (IRPE). Assume there is a
packet transferred via a path p = <n0, n1, n2, n3, ..., nt, d> and if node d receives
the packet, it has to send an acknowledgement (ack) to node s with the path
rp = <d, nt, ..., n3, n2, n1, n0>. If any nodes in the path receive redundant acks,
a replay attack can be detected. For example, when node n0 sends the packet
to node d, it should receive one ack about this packet from node d instead of
two acks or more. Once a replayed attack happens, node d will receive two or
more identical packets and return identical acks. In this case, node s, n1, n2, ...nt

can realize there is a replay attack, and create an IRPE. Then node ni can use
IRPE to update the cognition of node ni+1 except for node d. For example, if
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node n3 is a malicious node that replays the packet once, then node d can get
two identical packets and return two identical acks to node s. Thus node s can
create an IRPE about node n1; node n1 can create an IRPE about node n2; and
node n2 can create an IRPE about node n3. Basically, IRPE can be regarded as
a chain to connect all potential replay-malicious nodes.

To evaluate the punishment of replay attack, when an IRPE is created, the
cognition about the node pointed by the IRPE will be updated by the producer
of IRPE (the punishment provider) as below:

ucog.S = log2(1 +
ocog.S − θsi

Vmax
) ∗ Vmax (14)

where, ucog is the updated cognition of the punishment provider and ocog is
the old cognition. θsi is a parameter that determines the reduction of the straight
with IRPE.

Award About No Replay. Award about No Replay is the reverse process of
Punishment of Replay Attack. Cntsi is a counter to record the positive behavior
with the acknowledgement from the destination node. When the value of a node
in this counter meets the threshold σsi, an indirect straight award evidence
(ISAE) can be created to increase the straight of the node. If a packet successfully
arrives at its destination and no redundant acks are found, the value in Cntsi of
all nodes related to the packet can be increased by 1.

When an ISAE is created, the cognition about the node pointed by the ISAE
will be updated by the producer of ISAE (the award provider) as below:

ucog.S = log2(1 +
ocog.S + τsi

Smax
) ∗ Smax (15)

where, ucog is the updated cognition of the award provider and ocog is the
old cognition. τsi is a parameter that determines the improvement of the straight
with ISAE and its value is smaller than θsi in Eq. (14). Here is the explanation
about τsi < θsi: when a node receives the supposed ack, it increases the Cntsi
without considering whether it will receive a duplicated ack in the future. So if
the node receives the duplicated ack later (a replay attack is detected), it will
create an IRPE to reduce the straight of its next node, and τsi < θsi can guar-
antee the reduction of the straight could be larger than the increase. Otherwise,
the reduction and the increase of the straight will counteract each other, i.e.,
making the punishment about the replay attack invalid.

4.7 Trust Evaluation

Trust evaluation has to be executed in the base station of an IoT network, when
there is a need to analyze the security situation. The base station can collect all
cognitions of every node and perform a centralized process. The final trust of a
node should be evaluated based on the consensus (cognition) of all members.
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In the base station, after all cognitions are collected, a Cognition Matrix can
be created and defined as below:

CogMat =

⎛

⎜
⎜
⎝

Cog1,1 Cog1,2 Cog1,3 ... Cog1,n
... ... ... ... ...

Cogn−1,1 Cogn−1,2 Cogn−1,3 ... Cogn−1,n

Cogn,1 Cogn,2 Cogn,3 ... Cogn,n

⎞

⎟
⎟
⎠ (16)

where, Cogx,y represents the cognition of node x about node y. Note that we set
Cogx,x as <x, x, 0, 0, 0>, indicating that the recognition of a node about itself
will be ignored.

Then we denote Reix as the reputation of node x according to node i. Reix
can be regarded as the weight on the cognition of node i in all nodes’ cognitions
(except node x), when evaluating the trust of node x. The reputation of a node
is based on the similarity with the cognition from their neighbors. It is believed
that the cognition from a node’s neighbors can help evaluate the reputation more
persuasively. This is because most evidence of punishment and award comes from
neighbors directly. The higher the similarity is, the better the reputation can be.
We define Reix as below:

Reix =
wix

∑n
k=1 wkx

(17)

where, wkx means the weight of the cognition when node k evaluates node
x. wkx can be defined as below:

wkx =

{
0 if k = x
1

n−1 + (1 − Distance(Cogk,x,Aver(x))
Hmax+Vmax+Smax

) ∗ 1
n−1 otherwise

(18)

Distance(Cogk,x, Aver(x)) = |Cogk,x.H − Aver(x).H| + |Cogk,x.V

−Aver(x).V | + |Cogk,x.S − Aver(x).S| (19)

where, Distance(Cogk,x, Aver(x)) is the function to evaluate the similarity
between Cogk,x and the cognition from neighbors of node x. Aver(x) is the aver-
age of the cognition from neighbors of node x. Cogj,x.H represents the honesty
of Cogj,x, Cogj,x.V represents the volume of Cogj,x, and Cogj,x.S represents the
straight of Cogj,x. In particular, Aver(x) can be defined as:

[Aver(x).H,Aver(x).V, Aver(x).S] =
[
∑

Cognei(x),x.H,
∑

Cognei(x),x.V,
∑

Cognei(x),x.S]
the count of the neighbors of node x

(20)

where, nei(x) represents the neighbor of node x. Finally, we can evaluate the
trust of node i.

[Nodei.T.H,Nodei.T.V,Nodei.T.S] =

[
n∑

j=1

[Cogj,i.H ∗ Reji] ,
n∑

j=1

[Cogj,i.V ∗ Reji] ,
n∑

j=1

[Cogj,i.S ∗ Reji]]
(21)
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4.8 Detection Based on K-Means Method

When obtaining the trust of all nodes, an intuitive way is to identify malicious
nodes by selecting a trust threshold: if the trust value of a node is higher than
the threshold, then this node is benign; otherwise, the node is malicious. Here
comes a question that how to choose a proper threshold in our scenario - when
there is a mix-attack, it is very hard to analyze the threshold, since all types of
attacks may influence the threshold selection. In this work, we advocate using
the clustering method to classify groups and then identify malicious nodes. The
adoption of K-means method in this work aims to facilitate the comparison with
similar studies like [9,10].

Fig. 3. K-means based malicious node detection

K-means method has been widely adopted in practice, which is a typical
clustering method with unsupervised learning and the main argument is the
count of clusters [16]. To identify malicious nodes, we use K-means method to
cluster nodes in terms of honesty, volume and straight individually. That is,
K-means method will be executed three times to detect malicious
nodes with three attack types and the input of K-means will be
changed each time. The three different inputs of K-means method are the
tuple of honesty, the tuple of volume and the tuple of straight. In each clus-
ter, we set the count of clusters to be three, then we can classify all nodes into
three clusters - benign group, uncertain group and malicious group. Only the
nodes in the malicious group can be determined as malicious, and this
strategy aims to reduce the false positive rate. If the center of benign group and
the center of malicious group are very close (i.e., a distance less than 10 in our
evaluation), all nodes can be determined as benign. For example, when we input
the tuple of honesty to detect tamper-malicious nodes, all nodes can be classified
to benign group, uncertain group and malicious group. Those nodes in malicious
group can be identified as tamper-malicious nodes. It is vital to highlight
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that, a node can be classified into different malicious groups at the
same time (e.g., tamper-malicious group and drop-malicious group) if
it launches multiple attacks.

The K-means based detection is described in Fig. 3. That is, malicious nodes
include all nodes in the tamper-malicious group, the drop-malicious group, and
the replay-malicious group. In this work, our main focus is to identify malicious
nodes (without distinguishing the attack types), while the detection performance
of different attack types will be addressed in our future work.

5 Evaluation

In the evaluation, we compare our DCONST with two similar approaches called
Hard Detection (HD) [9] and Perceptron Detection with enhancement (PDE) [8].
In more detail, HD is a mathematical method to detect malicious nodes that
can perform a tamper attack. As the focus of HD is not fully the same in this
work, we tune HD to make it workable in a multiple-mix attack environment. In
particular, we added a module to help detect duplicated packets corresponding to
replay attack, and enabled HD to search replay-attack malicious nodes. PDE is
a detection scheme that uses both perceptron and K-means method to compute
IoT nodes’ trust values and detect malicious nodes accordingly. It also adopts
an enhanced perceptron learning process to reduce the false alarm rate.
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Fig. 4. A distribution of IoT nodes

Table 1. Environmental settings

Item Description

CPU Intel Core i7-4700MQ, 2.4 GHz,
4Core (8 Threads)

Memory Kingston DDR3L 8 GB * 2

OS Ubuntu 18.04 LTS

Python 3.6.8

Scikit-learn 0.20

We use the accuracy as the main metric to evaluate the performance. When
a malicious node is identified as malicious (even the attack type is labeled
wrongly), it will be a True Positive (TP). When a benign node is identified as
benign, it will be a True Negative (TN). Thus, if the total number of predictions
is S, we can define accuracy = (TP + TN)/S.

5.1 Experimental Setup

In our environment, all IoT nodes are deployed in a 100 × 100 m2 rectangle
area discretely, and each node’s communication range is 10 m–15 m. Our IoT
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network is generated randomly but it has a feature - for each node, there is at
least one path from the node to the base station, enabling IoT devices to be
connected. Figure 4 shows an example of the distribution, where the green node
is the base station, blue nodes are normal and red nodes are malicious - Na is
tamper-malicious, Nb is drop-malicious, Ne is replay-malicious.

To avoid result bias, we ran our simulation for each experiment
in 10 rounds with 10 different networks. We then selected the average
value to represent the final experimental result. In particular, we used Python
to realize all algorithms, and used the scikit-learn, which is a famous machine
learning tool library, to help cluster nodes according to their trust values via the
K-means method. Our detection was deployed at the base station. Table 1 shows
the detailed experimental settings. Besides, we set ρd in Eq. (8) as 0.4; ρi in Eq.
(8) as 0.1; σhi in Sect. 4.6 as 3; σvi in Sect. 4.6 as 3; σsi in Sect. 4.6 as 3; θhi in
Eq. (10) as 40; θvi in Eq. (12) as 40 and θsi in Eq. (14) as 40; and τsi in Eq.
(15) as 10, accordingly.

Fig. 5. The impact of the number of
nodes on detection accuracy

Fig. 6. The impact of the probability of
attack on detection accuracy

5.2 Impact of the Number of Nodes

This variable means the scale of the topology, which can affect the detection per-
formance of malicious nodes. To explore the performance, we consider a typical
IoT network and a multiple-mix-attack, with the number of nodes as 7, 12, 17,
22 and 27, respectively. In this experiment, we set the number of passing packets
as 20000; the probability of attack is 0.5; the percentage of malicious nodes as
0.3; and the diversity of network is all-type (use all paths).

Figure 5 shows that when the IoT network is small-scale, all schemes can
reach a high accuracy rate in which PDE performed the best. With the increase
of nodes, the accuracy of HD and PDE has an obvious decrease. By contrast,
DCONST can maintain stable and outperform HD and PDE when the net-
work scale becomes large. This is because when the network scale is too small,
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numerous passing packets may cause too many redundant cognitions and make
the cognitions of all nodes similar to each other, resulting in a worse case for
DCONST.

A small network scale indicates few paths available in the network, in which
malicious nodes can be easily identified by HD and PDE. On the other hand,
Fig. 5 shows that when the number of nodes reaches 17 or more, the network
topology may become more complicated and it is more difficult for HD and PDE
to identify all malicious nodes. In such scenario, our DCONST can outperform
the other two schemes. As PDE can reduce the false alarm rate by applying
perceptron, it can perform much better than HD.

5.3 Impact of Attack Probability

In practice, insider attackers (malicious nodes) can choose a strategy to launch
attacks with a certain probability, which would influence the detection perfor-
mance. To explore this variable, we set the probability of multiple-mix-attack to
be 0.1,0.3,0.5,0.7 and 0.9, respectively. In this experiment, we set the number of
nodes as 27; the number of passing packets as 2000; the percentage of malicious
nodes as 0.3; and the diversity of network is all-type (use all path).

Figure 6 shows that our DCONST could outperform HD in all cases, and the
accuracy of HD had a significant decrease when the probability of attack reaches
0.9. When the attack probability is very low (like 0.1), PDE could outperform
DCONST, while with the increase of attack probability, DCONST could work
better than PDE. The main reasons are analyzed as below.

– It is more beneficial for DCONST to detect malicious nodes with the high
attack probability than with the low attack probability. This is because high
attack probability can trigger numerous punishment evidence and few award
evidence to malicious nodes. However, when the attack probability is low, the
most accurate cognitions are often owned by neighbors of the malicious node.
Cognitions owned by other nodes of the network are not accurate and the
cognition aggregation from those non-neighbor nodes may cause a negative
impact on detection accuracy. With the increase of attack probability, there
is a better chance to obtain accurate cognitions.

– On the other hand, it is difficult for HD and PDE to handle high attack
probability like 0.9. This is because the detection accuracy of HD and PDE
depends on the reputation of paths. If there is a node with a high attack
probability along a path, then the path reputation might become very low,
making it hard to analyze the trust of all nodes within this path.

5.4 Impact of the Percentage of Malicious Nodes

The percentage here means the number of malicious nodes in the IoT network,
which may have an impact on the detection accuracy. In the experiment, we set
the percentage of malicious nodes under multiple-mix-attack to be 0.1, 0.2, 0.3,
0.4 and 0.5, respectively. In this experiment, we set the number of nodes as 27;
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the number of injected packets as 2000; the probability of attack as 0.5; and
the diversity of network is all-type (use all paths). Figure 7 shows the detection
performance, and below are the main observations.

– It is found that DCONST could outperform HD and PDE in all cases. When
the percentage of malicious nodes is small, there is a very obvious gap between
DCONST and HD, i.e., DCONST could perform the best while HD only
achieved the lowest accuracy. This is because when the percentage is small,
only limited nodes can be pointed by punishment evidence while most nodes
should be pointed by award evidence, making it more accurate for DCONST
to identify malicious nodes from the whole network. By contrast, for HD and
PDE, a small percentage may result in a high false positive since there are
fewer malicious nodes in a path. Again, PDE can achieve better performance
than HD by reducing the false rates via perceptron.

– When the percentage of malicious nodes increases, the performance of both
PDE and DCONST could decrease gradually. This is because with more mali-
cious nodes, the fewer award evidence can be obtained pointing to benign
nodes, which may cause more errors. While DCONST could still outperform
the other two schemes under such scenario.

Fig. 7. The impact of the percentage of
malicious nodes on detection accuracy

Fig. 8. The impact of the diversity of
network on detection accuracy

5.5 Impact of Network Diversity

The diversity presents the type of paths through which packets can be delivered.
To explore the detection performance under the multiple-mix-attack, we set the
rate of valid paths to be 0.2, 0.4, 0.6, 0.8 and 1, respectively. In this experiment,
we consider the number of nodes as 27; the number of injected packets as 2000;
the probability of attack as 0.5, and the percentage of malicious nodes as 0.3.

Figure 8 shows that when the network diversity is very low like 0.2, the detec-
tion accuracy of HD and PDE could not work well. This is because the detection
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of malicious nodes depends on analyzing the same nodes in different paths. As
an example, assume that a path includes node A and node B. If there is an
attack detected, either node A or node B could be malicious. We can only know
node B is benign based on the other paths that include node B as well. If node
B is determined, then it is easy to determine node A. This is why the detection
accuracy could be increased with more valid paths.

As a comparison, the network diversity does not have a significant impact
on the accuracy of DCONST. This is because DCONST relies on the strategy
that enabling malicious nodes to receive more punishment and providing benign
nodes with more award. In such case, even when the network diversity is low,
DCONST can work well as long as there is an extra communication channel
among benign nodes. For example, suppose there is a path p = <n1, n2, n3, n4>
where n2 is a malicious node. If n3 and n4 have another data communication
channel, then they can award each other and improve their trust during the
detection. This self-healing feature is a special merit of DCONST.

Discussion. Based on the above results, our proposed DCONST could outper-
form the similar schemes of HD and PDE in most cases. In particular, the low
network diversity and the high attack probability would cause a big impact on
HD and PDE, while DCONST could still maintain the detection accuracy. Hence
we consider that the performance of DCONST is overall better than HD and
PDE, and in practice, PDE and DCONST can complement each other.

6 Conclusion and Future Work

Due to the distributed nature of IoT networks, there is a significant need to
design proper security mechanisms to defeat insider attacks. Most existing stud-
ies mainly consider a single attack, but we notice that an advanced intruder may
perform several attacks simultaneously to make a more harmful impact. In this
work, we target on this issue and focus on a multiple-mix attack including three
typical sub-attacks: tamper attack, drop attack and replay attack. We develop
DCONST that uses both the consensus of nodes and the K-means method to
help measure nodes’ trust and detect malicious nodes. Our experimental results
demonstrate that DCONST can provide a better detection rate by around 10%
to 40% as compared with two similar methods of Hard Detection (HD) and
Perceptron Detection with Enhancement (PDE).

As our work is an early study in applying consensus, there are some open
challenges that can be considered in our future work. First, DCONST is a method
based on consensus of distributed nodes and the detection could be affected by
each node. Thus, it is hard to provide a sufficient strategy to control the whole
detection process. Then, the parameters of DCONST could be further optimized
to deal with different network settings (i.e., improving accuracy and stability).
Also, our future work can further investigate the impact of attack types and the
number of passing packets on the detection performance.
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Abstract. Neural networks play an increasingly important role in the
field of machine learning and are included in many applications in society.
Unfortunately, neural networks suffer from adversarial examples gener-
ated to attack them. However, most of the generation approaches either
assume that the attacker has full knowledge of the neural network model
or are limited by the type of attacked model. In this paper, we propose
a new approach that generates a black-box attack to neural networks
based on the swarm evolutionary algorithm. Benefiting from the improve-
ments in the technology and theoretical characteristics of evolutionary
algorithms, our approach has the advantages of effectiveness, black-box
attack, generality, and randomness. Our experimental results show that
both the MNIST images and the CIFAR-10 images can be perturbed to
successful generate a black-box attack with 100% probability on average.
In addition, the proposed attack, which is successful on distilled neural
networks with almost 100% probability, is resistant to defensive distilla-
tion. The experimental results also indicate that the robustness of the
artificial intelligence algorithm is related to the complexity of the model
and the data set. In addition, we find that the adversarial examples to
some extent reproduce the characteristics of the sample data learned by
the neural network model.

Keywords: Adversarial examples · Neural networks · Deep learning ·
Swarm evolutionary algorithm

1 Introduction

In recent years, neural network models have been widely applied in various fields,
especially in the field of image recognition, such as image classification [11,31]

X. Liu—This research was supported by Director of Computer Application Research
Institute Foundation (SJ2020A08, SJ2019A05).

c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 268–284, 2020.
https://doi.org/10.1007/978-3-030-55304-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55304-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-55304-3_14


A Black-Box Attack on Neural Networks 269

and face recognition [4]. However, users of such model are more concerned about
the performance of the model and largely ignore the vulnerability and robust-
ness of the model. In fact, most existing models are easily misled by adversarial
examples deliberately designed by attackers and enable the attackers to achieve
the purpose of bypassing the detection [20,30]. For example, in an image clas-
sification system, by adding the disturbance information to the original image,
attackers can achieve the goal of changing image classification results with high
probability [21]. The generated adversarial examples can even be classified with
an arbitrary label according to the purpose of an attacker, making this type of
attack a tremendous threat to the image classification system [6]. More seriously,
printing the generated images of adversarial examples and then photographing
them with a camera, the captured images are still misclassified, confirming the
presence of adversarial examples in the real world [15]. These vulnerability prob-
lems make people raise the question on whether neural networks can be applied
to security-critical areas.

Several papers have studied related security issues [16,17,19]. Unfortunately,
in most previous generation approaches of adversarial examples, when ε is fixed,
the similarity of the sample is fixed: in the algorithm’s calculation, it won’ change
dynamically. This may cause the image to be disturbed so much that it can be
visually distinguishable [22]. Moreover, the existing approaches mainly use gra-
dient information to transform the original samples into the required adversarial
examples. If the parameters of the model are unknown, the attackers cannot
generate effective adversarial examples [7,12]. Others also proposed some black-
box attack approaches [24,25]. However, Papernot [25] takes the transferabil-
ity assumption. If transferability of the model to be attacked is reduced, the
effectiveness of the attack will be reduced. LSA [24] cannot simply modify the
required distance metrics, such as L0, L2, Lmax. In most cases, it is only guar-
anteed that the disturbance is successful at Lmax, but not guaranteed that the
disturbance can be kept minimum under other distance functions.

In this paper, we propose a new approach that generates a black-box attack
to deep neural networks. Our approach is named BANA, denoting A (B)lack-
box (A)ttack on (N)eural Networks Based on Swarm Evolutionary (A)lgorithm.
Compared with the previous approaches [2,8,26,30], our approach has the fol-
lowing main advantages:

Effectiveness. The adversarial examples generated by our approach can mis-
classify the neural networks with 100% probability both on non-targeted attacks
and targeted attacks. The L2 distance between adversarial examples and origi-
nal images is less than 10 on average, indicating that images can be disturbed
with so small changes that are not to be undetectable. If we continue to increase
the number of iterations of our proposed algorithm, we expect to achieve even
better results.

Black-Box Attack. adversarial examples can be generated without the knowl-
edge of the internal parameters of the target network, such as gradients and
structures. Existing attacks such as Carlini and Wagner’s attacks [2] usually
require such information.
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Generality. Our proposed attack is a general attack to neural networks. For
the attack, we can generate effective adversarial examples of DNNs, CNNs, etc.
We have even tested our proposed attack in a wider range of machine learning
algorithms and it still misleads the model with 100% probability.

Randomness. Benefiting from the characteristics of evolutionary algorithms,
the adversarial examples generated each time are different for the same input
image, so they are able to resist defensive mechanisms such as defensive distil-
lation.

In particular, our proposed attack is based on the swarm evolutionary algo-
rithm [1]. The swarm evolutionary algorithm is a population-based optimization
algorithm for solving complex multi-modal optimization problems. It can trans-
form the optimization problems into the individual fitness function and has a
mechanism to gradually improve individual fitness. Evolutionary algorithms do
not require the use of gradient information for optimization and do not require
that the objective function be differentiable or deterministic. Different from
another approach also based on an evolutionary algorithm [29], our approach
focuses on the optimization of results rather than the number of disturbed pix-
els. Therefore, we have completely different optimization function and iterative
processes from the one pixel attack. Without knowing the parameters of the
model, our proposed approach uses the original sample as the input to apply to
generate an adversarial example of the specific label. The used information is
only the probability of the various labels produced by the model.

Our attack also addresses technical challenges when applying the swarm evo-
lutionary algorithm to generate the adversarial examples. The improvements
made in our approach include the optimization of calculation results and con-
vergence speed (see more details in Sect. 3).

The rest of the paper is organized as follows. Section 2 introduces the related
work of adversarial examples. Section 3 presents SEAA (Swarm Evolutionary
Algorithm For Black-box Attacks to Deep Neural Networks. Section 4 presents
and discusses our experimental results. Section 5 concludes.

2 Related Work

The adversarial examples of deep neural networks have drawn the attention of
many researchers in recent years. [30] used a constrained L-BFGS algorithm to
generate adversarial examples. L-BFGS requires that the gradient of the model
can be solved, limiting the diversity of the model and the objective function,
and making this approach computationally expensive to generate adversarial
examples. [8] proposed the fast gradient sign method (FGSM). However, this
approach is designed without considering the similarity of the adversarial exam-
ples: the similarity of the generated adversarial samples may be low. The con-
sequence is that the generated adversarial samples may be detected by defen-
sive approaches or directly visually distinguished. An adversarial example attack
named the Jacobian-based Saliency Map Attack (JSMA) was proposed by [26].
JSMA also requires the gradient of the model to be solved, and the approach is
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limited to the L0 distance, and cannot be generated using other distance algo-
rithms [2]. These approaches all assume that the attackers have full access to the
parameters of the model. [23] proposed a non-targeted attack approach named
Deepfool. This approach assumes that the neural network is linear and makes
a contribution to the generation of adversarial examples, while actually neural
networks may be not linear. Besides, this approach also does not apply to non-
neural network model. Some previous research focused on generating adversarial
examples to the malware detection models [3,18,32]. These adversarial exam-
ples also successfully disrupted the model’s discriminant results, showing that
the common models of machine learning are vulnerable to attacks.

Some recent research aimed to defend against the attack of adversarial exam-
ples and proposed approaches such as defensive distillatione [5,10,27]. However,
experiment results show that these approaches do not perform well in particular
situations due to not being able to defend against adversarial examples of high
quality [9].

3 Methodology

3.1 Problem Description

The generation of adversarial examples can be considered as a constrained opti-
mization problem. We use Lp distance (which is Lp norm) to describe the similar-
ity between the original images and the adversarial images. Let f be the m-class
classifier that receives n-dimensional inputs and gives m-dimensional outputs.
Different from L-BFGS [30], FGS [8], JSMA [26], Deepfool [23] and Carlini and
Wagner’s attack [2], our approach is a black-box attack without using the gra-
dient information. This optimization problem is formalized as follows:

F = D(x, x′) + M × loss(x′) (1)

where for a non-targeted attack (whose purpose is to mislead the classifier
to classify the adversarial examples as any of the error categories), loss(x′) is
defined as

loss(x′) = max([f(x′)]r − max([f(x′)]i�=r) , 0) (2)

and for a targeted attack (whose purpose is to mislead the classifier to classify
the adversarial examples as a specified category), loss(x′) is defined as

loss(x′) = max(max([f(x′)]i�=t) − [f(x′)]t , 0) (3)

and x = (x1, ..., xn) is the original image, x′ = (x′
1, ..., x

′
n) is the adversarial

example to be produced and D(x, x′) is the Lp distance. M is a positive number
much larger than D(x, x′), r is the real label, and t is the target label. The
output of [f(x)]r is the probability that the sample x is recognized as the label r
and the output of [f(x)]i�=r is the probability set that the sample x is separately
recognized as other labels. Since loss(x′) ≥ 0, we discuss the case of loss(x′) > 0
and loss(x′) = 0 for the targeted attacks, respectively. The non-targeted attacks
are the same.
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(1) When loss(x′) > 0, the [f(x′)]t is not the maximum in Eq. 3, indicating
that the adversarial example x′ is not classified as the targeted label at
this time. Since M is much larger than D(x, x′), the objective function in
Eq. 1 is approximately equal to the latter half. In this case, it is equivalent
to optimizing x′ to minimize Q, i.e., increasing the probability that the
classifier identifies the sample x′ as being a class t.

minimize loss(x′) (4)

(2) When loss(x) = 0, the adversarial example has been classified as the target
label at this time. In this case, it is equivalent to optimizing x′ to minimize
the value of D(x, x′), i.e., to improve the similarity between the adversarial
example and the original sample as much as possible.

minimize D(x, x′) (5)

Through the preceding objective function, the population is actually divided
into two sections, as shown in Fig. 1. The whole optimization process can be
divided into three steps.

Fig. 1. Individuals distribution diagram

Step 1. At this time the adversarial example cannot successfully mislead the
classifier. Individuals at the top of section A gradually approach the bottom
through crossover and mutation operators.
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Step 2. The individuals move from Section A to Section B, indicating that
loss(x′) = 0, i.e., the adversarial examples generated at this time can successfully
mislead the classifier.

Step 3. Individuals at the top of Section B gradually approach the bottom,
indicating the improvement of the similarity between the adversarial image and
the original image.

Eventually, the bottom individual of Section B becomes the optimal indi-
vidual in the population, and the information that it carries is the adversarial
example being sought out.

3.2 Our BANA Approach

As the generation of adversarial examples has been considered as an optimiza-
tion problem formalized as Eq. 1, we solve this optimization problem by the
swarm evolution algorithm. In this algorithm, fitness value is the result of F ,
population is a collection of x′ and many individuals make up the population.
By constantly simulating the process of biological evolution, the adaptive indi-
viduals which have small fitness value in the population are selected to form the
subpopulation, and then the subpopulation is repeated for similar evolutionary
processes until the optimal solution to the problem is found or the algorithm
reaches the maximum number of iterations. After the iterations, the optimal
individual obtained is the adversarial example x′. As a widely applied swarm
evolutionary algorithm, such genetic algorithm is flexible in coding, solving fit-
ness, selection, crossover, and mutation. Therefore, in the algorithm design and
simulation experiments, we use the following improved genetic algorithm as an
example to demonstrate the effectiveness of our BANA approach. The advan-
tages of this approach are not limited to the genetic algorithm. We leave as the
future work the investigation of the effects of different types of swarm evolution-
ary algorithms on our approach.

Algorithm Workflow. The whole algorithm workflow is shown in Fig. 2. Clas-
sifiers can be logistic regression, deep neural networks, and other classification
models. We do not need to know the model parameters and just set the input
and output interfaces. Each individual is transformed into an adversarial exam-
ple and then sent to the classifier to get the classification result. After that, the
individual fitness value is obtained through solving the objective function. The
individuals in the population are optimized by the genetic algorithm to solve the
feasible solution of the objective function (i.e., the adversarial example of the
image).

The workflow of our BANA approach is as follows:
Step 1. Population Initialization. One gene corresponds to one pixel, and for

the grayscale images of (28, 28), there are a total of 784 genes, and there are
32 × 32 × 3 = 3072 genes for the color image of (32, 32).

Step 2. Calculate the Fitness Value. Calculate the value of the fitness function
according to the approach described in Sect. 3.1 and take this value as the fitness
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Fig. 2. Algorithm workflow of our BANA approach

of the individual. Since this problem is a minimization problem, the smaller the
value, the better the individual’s fitness. After that, the best individual with the
minimum fitness value in the current population is saved as the optimal solution.

Step 3. Select Operation. According to the fitness of individuals in the pop-
ulation, through the tournament algorithm, individuals with higher fitness are
selected from the current population.

Step 4. Cross Operation. Common crossover operators include single-point
crossover, multi-point crossover, and uniform crossover. Our algorithm uses uni-
form crossover. That is, for two random individuals, each gene crosses each
independently according to the probability p. Due to the large number of genes
that each individual carries, uniform crossover allows for a greater probability of
generating new combinations of genes and is expected to combine more beneficial
genes to improve the searching ability of genetic algorithms.

Step 5. Mutation Operation. In order to speed up the search ability of genetic
algorithms, combining with the characteristics of the problem to be solved,
the operator adopts a self-defined Gaussian mutation algorithm. In the process
of mutation, Gaussian noise gauss(m, s) is randomly added to the individual
(shown in Eq. 6 below), where m is the mean of Gaussian noise and s is the
standard deviation of Gaussian noise:

xmutation = xorigin ± gauss(m, s) (6)

The reason for adopting this mutation operation is that the resulting adversarial
example inevitably has a high degree of similarity with the input sample, and a
feasible solution to the problem to be solved must also be in the vicinity. This
technique can effectively reduce the number of iterations required to solve the
problem.

Step 6. Terminate the Judgment. The algorithm terminates if the exit con-
dition is satisfied, and otherwise returns to Step 2.
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Improvements. There are two major technical improvements made in our
approach.

Improvements of Result. In order to improve the optimization effect of
BANA, we adopt a new initialization technique. Considering the problem to
be solved requires the highest possible degree of similarity, this technique does
not use random numbers while using the numerical values related to the original
pixel values. Let x be the original image, and x′ be the initialized adversarial
image. Then x′ = x + ε, where ε is a very small value.

Improvements of Speed. In order to speed up the convergence of BANA,
on one hand, we constrain the variation step of each iteration in the mutation
stage. On the other hand, we try to keep the point that has the pixel value of 0,
because it is more likely that such a point is at the background of the picture.
These improvements help the algorithm converge faster to the optimal solution.

4 Experiments

The datasets used in this paper include MNIST [14], CIFAR-10 [13] and Ima-
geNet [28]. 80% of the data are used as a training set and the remaining 20%
as a test set. In order to assess the effectiveness of the adversarial examples, we
attack a number of different classifier models. The used classifiers include logistic
regression (LR), fully connected deep neural network (DNN), and convolutional
neural network (CNN). We evaluate our BANA approach by generating adver-
sarial examples from the MNIST and CIFAR10 test sets.

The parameters used by BANA are shown in Table 1. The experimental
results show that different parameters affect the convergence rate of BANA.
However, with the increase of the iterations, the results would eventually be
close. The parameters listed in Table 1 are our empirical values.

Table 1. The parameters of BANA

Database MNIST CIFAR-10 ImageNet

Population 100 200 300

Genes number 28× 28× 1=784 32× 32× 3=3072 200× 200× 3 = 120000

Cross probability 0.5 0.5 0.5

Mutation probability 0/05 0/05 0/05

Iterations 200 200 100

Gaussian mean 0 0 0

Gaussian variance 30 20 40

4.1 Adversarial Example Generation on MNIST

In the first experiment, the used dataset is MNIST. The used classification mod-
els are LR, DNN, and CNN. We train each of these models separately and then
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(a) The trend of success rate. (b) The trend of best fitness value.

Fig. 3. The results of targeted attacks and non-targeted attacks for each undistilled
model on MNIST.

(a) The trend of success rate. (b) The trend of best fitness value.

Fig. 4. The results of targeted attacks and non-targeted attacks for each undistilled
model on CIFAR-10.

test the accuracy of each model on the test set. Logistic Regression (LR), DNN,
and CNN achieve the accuracy of 92.46%, 98.49%, and 99.40% respectively. In
the generation of adversarial examples, we set the number of iterations of the
genetic algorithm is 200, and the sample with the smallest objective function
value generated in each iteration is selected as the optimal sample. For a tar-
geted attack, we select first 100 samples initially correctly classified from the test
set to attack. Each of the samples generates adversarial examples from 9 different
target labels, resulting in 100 * 9 = 900 corresponding target adversarial exam-
ples. For non-targeted attacks, we select the first 900 samples initially correctly
classified from the test set to attack. Each sample generates a corresponding
adversarial example, resulting in 900 non-target adversarial examples.

The results are shown in Table 2 and Fig. 3. For each model, our attacks find
adversarial examples with less than 10 in the L2 distance, and succeed with



A Black-Box Attack on Neural Networks 277

Table 2. Comparison of our attacks with previous work for a number of MNIST
models.

MNIST Models

LR DNN CNN CNN**

UD(Undistilled) D(Distilled*) UD D* UD D* UD D*

Non-targeted attack Mean 0.82 – 2.48 2.91 3.90 3.99 1.76 2.20

SD 0.62 – 1.67 2.34 2.46 2.70 – –

Prob 100% – 100% 99.89% 100% 100% 100% 100%

Targeted attack Mean 3.65 – 5.04 7.93 7.60 8.33 – –

SD 3.80 – 2.88 5.95 4.12 5.34 – –

Prob 100% – 100% 99.78% 100% 100% – –

(* The details of distilled model are shown in Sect. 4.3. There is no distilled LR model.

*** This model is attacked by the approach proposed by Carlini and Wagner [2].)

(a) The trend of success rate. (b) The trend of best fitness value.

Fig. 5. The results of targeted attacks and non-targeted attacks for each distilled model
on MNIST and CIFAR-10. Compare to Fig. 3 and Fig. 4 for undistilled models.

100% probability. Compared with the results generated by Carlini and Wag-
ner’s attack [2], our perturbations are slightly larger than their results. How-
ever, both of our attacks succeed with 100% probability and our BANA is a
black-box attack. Besides, there is no visual difference between the adversar-
ial examples. Figure 3(a) and Fig. 3(b) show that as the model becomes more
complex, the number of iterations required to produce an effective adversarial
example increases. The distribution of the 900 best fitness values after 200 iter-
ations is shown in Fig. 6(a). The figure indicates that the more complex the
model, the larger the mean and standard deviation. The reason is that sim-
ple classification models do not have good decision boundaries. For the same
classification model, non-targeted attacks require fewer iterations than targeted
attacks, resulting in about 2× lower distortion and stability. Such result indi-
cates that for the attacker the targeted adversarial example is generated at a
higher cost. However, with the increasing of iterations, all the best fitness values
tend to be 0. The difficulty caused by the targeted attack can be overcome by
increasing the number of iterations. Overall, BANA is able to generate effective
adversarial examples for LR, DNN, and CNN on MNIST.
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By comparing the trend of success rate and best fitness values for targeted
attack and non-targeted attack, respectively, it can be seen that the robustness of
the classification model against adversarial examples is related to the complexity
of the model, and the more complex the model, the better the robustness of the
corresponding classification model.

4.2 Adversarial Example Generation on CIFAR-10 and ImageNet

In the second experiment, the used dataset is CIFAR-10. Our purpose is to find
whether BANA is able to generate effective adversarial examples on CIFAR-
10. Considering the conclusion in Sect. 4.1, we choose CNN as the classification
model to be attacked. Our CNN achieves an accuracy of 77.82% on CIFAR-
10. After generating the adversarial examples with BANA, we get the results
shown in Fig. 3. Our attacks find adversarial examples with less than 2 in the L2

distance and succeed with 100% probability. We can find the same conclusion as
Sect. 4.1 from Fig. 4 and Table 3.

Fig. 6. The distribution of best fitness in Fig. 3, Fig. 4 and Fig. 5.
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Figure 7 shows a case study of our BANA on ImageNet. As shown in Fig. 7,
there is no visual difference between the original images and the perturbed
images. Figure 7 shows that our attack is able to generate adversarial examples
with small visually invisible perturbations even on complex datasat.

More importantly, by comparing the experimental results for CNN on MNIST
and CIFAR, it can be seen that the average best fitness value and the standard
deviation on CIFAR are smaller than them on MNIST, indicating that the adver-
sarial examples generated on CIFAR dataset are more likely to be misleading
and more similar to the original data. We find that the robustness of the classifi-
cation model against adversarial examples is not only related to the complexity
of the model but also to the trained data set; however, not the more complex
the data set, the better the robustness of the generated classification model.

4.3 Defensive Distillation

We train the distilled DNN and CNN, using softmax at temperature T = 10.
The experimental results are shown in Tables 2 and 3. The observation is that
the average fitness value and standard deviation of undistilled models are smaller
than those of distilled model both on targeted attacks and non-targeted attacks.
However, the attack success rate of the adversarial examples produced by BABA
on the distilled model is still 100% or close to 100%. Our attack is able to break
defensive distillation. The reason may be related to the randomness of the swarm
evolutionary algorithm. Even with the same model and data, BANA produces
a different adversarial example each time, making it effective against defensive
distillation.

Table 3. Comparison of our attacks with previous work for a number of CIFAR models.

Models CIFAR-10

Non-targeted attack Targeted attack

Mean SD Prob Mean SD Prob

CNN Undistilled model 0.82 0.93 100% 2.33 1.89 100%

Distilled model* 1.26 1.29 100% 4.18 3.57 99.89%

CNN** Undistilled model 0.33 – 100% – – –

Distilled model* 0.60 – 100% – – –

(* The details of distilled model are shown in Sect. 4.3.
*** This model is attacked by the approach proposed by Carlini and Wagner [2].)
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Fig. 7. A case study of our BANA on ImageNet. The top row shows the original images
and the bottom row shows the perturbed images attacked by our approach.

5 Conclusions

In this paper, we have presented a new approach that generates a black-box
attack to neural networks based on the swarm evolutionary algorithm. Our
experimental results show that our approach generates high-quality adversar-
ial examples for LR, DNN, and CNN, and our approach is resistant to defensive
distillation. Finally, our results indicate that the robustness of the artificial intel-
ligence algorithm is related to the complexity of the model and the complexity
of the data set. Our future work includes designing an effective defense approach
against our proposed attack.

Appendix

Here we give some case studies of our experiment results to let you have a
more intuitive visual experience, which are shown from Fig. 8, 9, 10, and 11. For
reproducibility, all of these adversarial examples are generated by our method
with the parameters shown in Table 1.
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(a) non-targeted (b) targeted

Fig. 8. A case study of targeted attacks and non-targeted attacks for LR model on
MNIST.

(a) non-targeted (b) targeted

Fig. 9. A case study of targeted attacks and non-targeted attacks for DNN model on
MNIST.
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(a) non-targeted (b) targeted

Fig. 10. A case study of targeted attacks and non-targeted attacks for CNN model on
MNIST.

(a) non-targeted (b) targeted

Fig. 11. A case study of targeted attacks and non-targeted attacks for CNN model on
CIFAR-10.
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Abstract. As a combination of cloud computing and edge computing, cloud-
fog-end computing models are gradually replacing traditional centralized cloud
computing models due to their high controllability and low latency. However, this
model has certain shortcomings in terms of resource awareness of edge devices.
Two problems are the most prominent. One is that it is difficult to measure the
resources of the edge device fairly, and the other is that it is challenging to monitor
the resource status in real-time. This circumstance significantly limits the future
application of this model. In this paper, we propose a blockchain-based resource
supervision scheme for edge devices under the framework of the cloud-fog-end
computing model. The scheme uses the data openness and verifiability of the
public chain to measure and record the resource status of the edge devices through
the smart contract. Besides, it uses the high controllability and designability of the
consortium chain to supervise the resource status of the edge devices in the fog
computing network in real-time. In addition, based on the structure of the scheme,
we demonstrate the feasibility and security from multiple perspectives and carry
out simulation experiments in the model of TensorFlow-federated. Experimental
results show that the scheme can effectively monitor the resources of edge devices
in real-time, and this scheme can be used to implement federatedmachine learning
in fog computing networks.

Keywords: Blockchain · Edge computing · Resource supervision

1 Introduction

With the rapid development of the Internet of Things (IoT) technology and the popu-
larization of 4G/5G wireless network technology, the era of the Internet of Everything
has arrived. With the emergence of business models such as Internet of Vehicles, smart
homes, and smart cities, the amount of data generated by various types of equipment
has shown a blowout growth. Faced with such a massive amount of data, the difficulties
faced by cloud computing in terms of data latency and network bandwidth have become
increasingly severe [1]. Cloud servers are increasingly challenging to meet the needs of
certain delay-sensitive services in the Internet of Things, such as real-time, mobility, and
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location awareness [2]. As an emerging technology, edge computing [3] has the charac-
teristics of high real-time performance and light network dependence. It can effectively
alleviate the difficulties faced by cloud computing through the computing resources of
edge devices [4, 5] deployed at the edge of the network. As a combination of cloud com-
puting and edge computing, cloud-fog-end computing models are gradually replacing
traditional centralized cloud computing models due to their high controllability and low
latency. Therefore, more and more scholars have begun to focus on how to make full
use of the computing resources owned by edge devices under this model, to efficiently
support various services and application businesses based on the Internet of Everything.

However, with the further development of edge computing technology in the field
of the IoT, researchers have found that the shortcomings of edge computing technology
in resource perception limits its future application prospects. Different from traditional
cloud computing resource supervision, the resource supervisor in edge computing cannot
directly obtain the software and hardware information of the resource provider to com-
plete the resource estimation and prediction. They often need additional communications
to realize the acquisition of resource data. In the open IoT, different edge devices often
come from different operators, with different device models and computing resources,
and lack of trust between each other. It is difficult for the traditional resource supervision
scheme to break the trust barrier between the cloud server and the edge device group
and realize the effective perception of computing resources. Therefore, there is an urgent
need for a publicly verifiable technology to publicly measure and store the computing
resources of edge devices and supervise the resources of edge devices in real-time.

Blockchain [6], as a decentralized distributed ledger technology, has been widely
used in various industries (such as Software-Defined Networking [7], Product traceabil-
ity, Intrusion Detection [8]) in recent years. The public blockchain can effectively solve
the trust problem among multiple nodes in the open network through the consistency
protocol. In 2014, Ethereum [9] appeared, enabling people to purposefully operate the
data on the blockchain through a program called smart contract, and selectively display
some processed data publicly. In addition, the consortium chain, as a form of blockchain,
is capable of deciding the degree of openness to the public according to the application
scenarios. To sum up, both the blockchain technology and the IoT technology are based
on the technology of distributed resource management. The combination of the two
seems to be a natural fit.

In this paper, we propose a blockchain-based resource supervision scheme for edge
devices in the cloud-fog-end computing model. Any edge device that tries to provide
its computing resources needs to accept public verification of its computing capabilities
on Ethereum and face real-time monitoring of computing resources in the consortium
chain. Some previous studies have shown that it is feasible and inexpensive to use
smart contracts [10] to process data from edge devices. Therefore, in this solution, we
design and develop a smart contract on Ethereum using the Solidity language to verify
the computing capabilities of edge computing devices. The miners on the public chain
run smart contracts to publicly verify and document the computing power provided by
edge devices. In the fog computing network, edge devices receive computing tasks from
the cloud server. As a tool for measuring the completion of these tasks, a token, called
ResourceCoin (RCoin), indirectly reflects the resource status of edge devices in the prior
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period. Any user of edge resources, including cloud servers, can sense the resource status
of edge devices in real-time through the RCoin value. Finally, based on the structure of
the scheme, we carry out simulation experiments in the model of TensorFlow-federated.
Experimental results show that the scheme can effectively monitor the resources of edge
devices in the application scenario of federated machine learning. It makes full use of
the data openness and public verifiability of the public chain and the high controllability
of the consortium chain.

2 Related Work

In this section, we analyze the existing resource monitoring strategy and IoT-Blockchain
architecture.

2.1 Resource Monitoring

Pan [11] proposed a resource management strategy based on blockchain. In this strategy,
once an IoT device requires additional resources, it can initiate a request to edge servers
through smart contracts deployed on the blockchain. The smart contract then verifies
that the resource status of the edge server meets the requirements. Once verified, the
smart contract containing the resource allocation algorithm will provide the required
resources to the IoT device.

Based on the combination of the IoT and the blockchain, Uddin et al. [12] proposed
a framework with a miner selection consensus protocol for smart home devices. In this
framework, the Smart Gateway will select a node with the best resource status to become
a miner through the Miner Selection Algorithm, which take into account three metrics
of the nodes: Network Latency (NL), Energy Consumption (EC), and Availability of
all miners (AV). This protocol focuses on the design of resource verification algorithms
without considering the public verifiability and real-time nature of the resources.

Park [13] proposed a resource monitoring scheme based on theMarkov chain model,
which analyzes and predicts the resource status of mobile devices. The cloud system
can model the past resource conditions of the mobile device and effectively predict the
future status of the resource, making it possible to resist the instability caused by the
volatility of the mobile device. Although it achieves near real-time resource monitoring
by the Markov chain model, the resource status still cannot be publicly verified by a
third party because data is transmitted point-to-point between the cloud system and the
mobile device and is finally stored in the cloud.

Hikvision’sAICloud architecture enables themonitoring of resources by embedding
resourcemonitoringmodules into edge devices. The edge device sends its resource status
to the cloud periodically. The scheme sets the time interval of adjacent messages on a
smaller level, which can be evaluated as close to real-time. Nowadays, this resource
supervision method has been well applied in various architectures such as the Internet of
Vehicles (IoV) and Smart City. However, the debate on the authenticity of data between
consumers and service providers still exist.

Jalali [14] proposes a new platform: DEFT, which automatically senses the idle
resources of cloud servers or surrounding edge devices, and then assigns tasks to the
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right place through a machine learning-based task allocation algorithm. In this scenario,
the edge device node periodically broadcasts its available resources to surrounding nodes
and the cloud. Moreover, once the node’s resource changes exceed the specified range,
the node must repeatedly broadcast its device status to surrounding nodes (including
task initiators and handlers) to ensure that its changes can be detected and recorded by
the system. This platform enables public validation of resource monitoring and achieves
near real-time by setting short-interval of messages.

In this paper, we propose a blockchain-based resource supervision scheme. Relying
on the blockchain’s public ledger, it can realize the real-time monitoring of resources
while realizing the public verification of resources.

2.2 IoT-Blockchain Framework

Uddin et al. [12] proposed a smart home supervision system that deploys blockchain on
Smart Gateways. In this system, the gateway collects data from IoT devices. It transmits
the data block to the miner, who is elected by the Smart Gateways with performing an
efficient selective Miner consensus protocol. This architecture separates data producers
from data processors, fully considering the data processing capabilities of IoT devices.
However, due to the high energy consumption PoW protocol used in the solution, a new
blockchain network must be applied for data verification, thus creating unnecessary data
communication overhead.

Ali [15] first optimized the blockchain to make it suitable for smart homes. The
optimization scheme is based on a three-tier structure, including cloud storage, overlay,
and smart home. In this structure, the IoT device transmits data to the miner in the form
of multiple transactions according to the purpose, and the miner stores the data in the
storage in the form of a blockchain. Although this solution effectively solves the problem
that IoT devices are not compatible with PoW, the processing and storage of data by a
single node bring about the possibility of DoS attacks.

Stanciu [16] advanced a Blockchain-based distributed control system for Edge Com-
puting. The consortium chain Fabric was utilized to achieve cloud edge collaboration in
the system, which inspires us to use the consortium chain on the IoT.

Huh [17] proposed using Ethereum as a computing platform for managing IoT
devices, enabling data storage for smartphones and meters through smart contracts.
The most significant contribution of this paper is the realization of the scheme, which
makes the feasibility of deploying Ethereum in IoT equipment verified.

Pan [11] proposed and implemented an IoT-edge framework based on Ethereum:
Edgechain, which aims to solve the resource management problem of IoT devices in
edge computing. In the scenario, the internal credit-based token is used to measure the
difficulty of IoT devices to obtain edge server resources. IoT devices with a higher token
get more resources in the edge server more quickly. Also, depending on the capabilities
of IoT devices, the scenario separates devices into two categories: legacy and nonlegacy.
A legacy device can participate in the Edgechain network by executing a proxy on
a nonlegacy device, which solves the problem that resource-constrained devices are
incapable of deploying a blockchain.

Xiong [18] first introduced a new concept of edge computing for mobile blockchain.
Based on the analysis of the obstacles that occurred during the combination of mobile
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devices and blockchain technology, they proposed that edge computing technology can
be used as an effective solution to solve the application of mobile blockchain. They also
propose a game-based economic maximization scheme for resource allocation of edge
equipment and prove its theoretical feasibility through experimental data.

Based on the investigation of previous work, we thoroughly considered the possi-
bility of combining edge computing with blockchain and proposed an IoT-Blockchain
framework combining public chain and consortium chain.

3 Framework of Scheme

A blockchain-based resource monitoring framework for edge computing is shown in
Fig. 1. This framework includes cloud servers, the Ethereum platform, several fog com-
puting networks that deploy the consortium chain, and four kinds of blockchain nodes:
Consortium administrator Node, Fog Node, Ethereum Node, New-Device Node. Each
fog is a collection of edge devices for edge computing. Edge devices with considerable
computing power (such as PC, UAV, smart gateways, edge servers, ITS cameras) as new
nodeswill accept the public resource verification by the Ethereumnodes on the Ethereum
platform and be authorized by the cloud server to join the appropriate fog. In the fog,
the edge devices, as the fog nodes, participate in maintaining the blockchain network
while undertaking the calculation tasks, and accept the supervision of the Consortium
administrator Nodes. The performance analysis of the proposed scheme is shown in
Sect. 6, including structural feasibility analysis and security analysis.

Fig. 1. A blockchain-based resource monitoring framework for edge computing.
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3.1 Cloud Server

In this framework, the cloud server mainly plays the following two roles:

Deployer of Resource Verification Tasks. The resource verification tasks refer to the
mathematical problem used to investigate the authenticity of device resources when
the edge device first joins the network. In this scenario, this mathematical problem is
deployed in the public Ethereum network in the form of a smart contract. As the deployer
of the resource verification tasks, the cloud servers deploy Ethereum full nodes on the
local server to complete the deployment of smart contracts. After receiving the resource
registration information of the edge device, the cloud server must reasonably design the
mathematical problem in the smart contract, to thoroughly investigate the resource status
of the edge device.

The Administrator of the Fog Computing Network. The cloud server participates in
the supervision of each fog resource as the administrator of fog computing network. First,
when an edge device passes the resource verification on the Ethereum, the cloud server
needs to generate an access license and send it to the edge device for completing the
authentication. Secondly, the cloud server needs to issue computing tasks to the edge
devices based on the resource status and computing capabilities of the edge devices.
These tasks are deployed in the consortium chain in the form of smart contracts. Finally,
the cloud needs to monitor the data recorded on the blockchain in real-time to achieve
real-timemonitoring of device resources. Once the resource status of the device changes,
the cloud needs to take corresponding measures to ensure the smooth completion of the
tasks.

3.2 Ethereum Platform

Asaprogrammable blockchain, Ethereumhas aTuring-complete programming language
Solidity that can be used to create “contracts” that allow users to perform relatively
complex custom operations in the EVM. Due to this advantage, we utilize Ethereum
and its miners to form a resource authenticity verification platform for edge devices
in this framework. When an edge device attempts to join the fog computing network,
Ethereum is responsible for verifying the authenticity of the device’s resources through
smart contracts deployed on its blockchain. In addition to programmability, another
reason we chose Ethereum is the public verifiability of its data. In this framework, the
authenticity of the edge device’s resources is determined by the edge device’s ability to
solve themathematical problems in the smart contract within a specified time. Therefore,
any miner on the P2P network can check the calculation results of the mathematical
problems submitted by the edge device on the EVM during the process of generating the
block. This public verification process allows resource information to be stored on the
public network, thereby avoiding the possibility of malicious tampering of data stored
on a single centralized server.
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3.3 Fog Computing Network

The fog computing network (FCN), as a collection of edge devices with an amount of
computing power, is responsible for pre-processing data at the edge of the network. In this
framework, we apply the decentralized distributed ledger technology of the consortium
chain to the FCN, aiming to achieve publicly verifiable data and real-time supervision
of resource status. Figure 2 shows the specific structure of the FCN we designed. In this
structure, there are three types of entities: IoT devices, edge devices, and cloud servers.
Among them, IoT devices are producers of data. The cloud server is the administra-
tor of the FCN, being responsible for delivering the computing task to edge devices.
Edge devices act as data processors, pulling data from IoT devices, and processing the
data according to task requirements. By refining and combining the functions of these
entities, we can classify three blockchain nodes in the network: data processing node,
endorsement node, and cloud node.

Fig. 2. The specially designed structure of the FCN.

Data Processing Node. Data processing node (DPN) is an edge device with an amount
of computing power, e.g., light PC which accounts for the most substantial proportion
of all nodes in an FCN. Each DPN pulls data from some IoT devices that affiliated to it
and processed the data according to the task requirements delivered by the cloud node.
These tasks are deployed on the blockchain through smart contracts, and those processed
data are stored in the transaction pool of the blockchain. In the current (cloud-fog-end
computing model) application scenario, we believe that the consensus protocol should
be non-competitive. A low-power consensus protocol (such as PBFT) runs between the
DPNs to elect endorsement nodes to package the processed data into blocks and record
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them on the blockchain. In future work, we will explore more practical hybrid consensus
protocols based on specific application scenarios and specific needs.

Endorsement Node. Under the specific electionmechanism, someDPNs are elected as
endorsement nodes (ENs) with an amount of tokens locked. These nodes are responsible
for verifying the correctness of the data in the transaction pool and serializing the correct
data into blocks according to specific rules, and finally extending the newly generated
blocks after the existing blockchain with an amount of tokens paid as incentives. The
election mechanism stipulates the life cycle of the ENs so that the ENs are rotated after
the X blocks (defined as system parameter) generated.

Cloud Node. As mentioned above, the cloud server is the administrator of the fog
consortium chain so that it plays a role as a cloud node (CN) in the FCN. CN does not
participate in the block generation process. Its primary function consists of three parts:
deployment contract, supervision resources, and assignment tasks. First, it deploys the
tasks that the DPN needs to compute in the form of smart contracts on the blockchain.
Then, CN analyzes the task completion in the past X blocks, thereby implementing
the supervision of the computing resources of each DPN. Finally, according to the
resource status obtained by the analysis, CN allocates existing tasks to each edge device
to complete resource scheduling.

3.4 Smart Contract

A smart contract is an executable piece of code that runs automatically on the blockchain
to execute a pre-definedprotocol between the parties to the transaction. In this framework,
smart contracts can be divided into Ethereum smart contracts and FCN smart contracts.

Ethereum Smart Contract. In 2-B, we have explained that Ethereum plays a role as a
resource verification platform for edge devices in this scenario, and the specific imple-
mentation is done through a resource-verification contract. This contract can be divided
into two parts: margin management part and resource challenge part.

Figure 3 shows the model of the resource challenge part in the resource-verification
contract. In this model, the smart contract can be divided into three parts: the contract
body, the verification function, and the time control function. The contracting body is
the core component of the entire contract and will be specifically designed according to
the resource conditions provided by the edge device. In the contract body, the challenge
algorithm is an ordered combination ofmathematical problems that require the consump-
tion of device resources for operations. To fully verify the resources of the device, these
mathematical problems should include the following three types: memory-dependent
problems, storage-dependent problems, and time-dependent problems. Also, to prevent
the edge device from calculating the answer to the question in advance based on the
previous information recorded in the block, the combination of mathematical problems
should fully consider the randomness of the mathematical problem and the randomness
of the operation sequence. In the current scheme, the challenge algorithm adopts a hash
collision method, and its logical expression is:
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Fig. 3. The model of the resource challenge part in the resource-verification contract.

fchallenge(N ) = A

where fchallenge is the challenge algorithmmentioned above,N is a random number given
by task deployer, and A is the target value to be displayed to the edge device.

Some parameters of N (such as length, type) and A are given in the contract body.
Based on this information, the edge device needs to calculate the N and pass it to the
smart contract within the specified time ΔT. The miners of Ethereum will verify the
correctness and time validity of the calculation results through the verification function
and time control function in the smart contract.

Definition 1. The correctness of the results:

SN ′ = SN , fchallenge
(
N ′) = A

where N ′ is the answer calculated by edge device, S is the parameter set of random
number N and N ′.

Definition 2. The time validity of results:

�T > Tfinish − Tdeploy



294 T. Wang et al.

FCN Smart Contract. There are two types of smart contracts in the FCN: mission
contracts and election contracts, both ofwhich are deployed byCN. Themission contract
is responsible for describing the tasks that need to be executed by the edge device. For
example, in Smart Home System, the mission contract will not only indicate which
IoT devices are monitored by the Smart Gateway but also specify the data analysis
algorithms used by the Smart Gateway. The Smart Gateway analyzes the data according
to the algorithm and uploads the data and analysis to the FCN for verification and storage.

The election contract is responsible for electing a certain number of ENs from the
DPN group. The election contract includes a dynamic selection algorithm designed
by the network administrator. According to the change of the number of devices and
resource requirements in the network, the life cycle and number of ENs have adjusted
accordingly.

3.5 Token

In this framework, we created a token called ResourceCoin (called RCoin). When the
edge device completes the resource verification task on Ethereum, the cloud server sets
the initial token value RCoinInit for the edge device to match its computing power. After
completing the cloud-delivered tasks in the FCN, the edge device will receive RCoin
as an incentive. The amount of Rcoin included in the task will be proportional to the
computing resources required to complete the task. The token mechanism in different
FCNs is the same, but there will be differences in RCoinInit and the degree of incentives.

We need tomake additional explanations about the real-time in the article.We believe
that under the cloud-fog-edge computingmodel, as long as the interval of the information
queue containing the device resource status is short enough, it can ensure that the device
can not change its resource status within the interval To fake their own computing power.
Therefore, in our scheme, we can increase the tps so that the time interval for producing
blocks containing resource status is small, thereby achieving near real-time. Time cost
and calculation cost will be carried out in future research.

In addition, FCN will run a blockchain data monitor to monitor the RCoin value of
each node. Thismonitoringmechanismconsists of twoparts. First, themonitorwill count
the RCoin value of each edge device in the last X blocks to reflect the task completion of
the device over a period of time. Secondly, the monitor will monitor the total amount of
Rcoin in the X blocks of the edge device in a cumulative manner to reflect the resource
stability of the device (see Chapter 5 for a detailed explanation). Based on the above
design ideas, we believe that RCoin can directly reflect the task completion status of
the edge device during the past X block generation, and indirectly reflect the resource
status of the edge device during the same period, thereby monitoring the resource status
of each edge device.

4 Workflow of Scheme

In this section, we introduce the specific workflow of the resource monitoring program.
The program is divided into two phases, the first phase is the resource-verification phase,
and the second phase is the resource real-time monitoring phase.
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4.1 Parameter Notations

We have defined some parameter notations for this section below.

Table 1. The parameter notations.

Symbol Definition

Pn An edge device trying to join the FCN

Px An edge device performed as a DPN in a FCN

Request-Tx A transaction for submitting margin and device’s information

Info The specific information of edge device

Task-Set Set of resource verification contracts containing the mathematical problems

Answer-Set The calculation result set of Task-Set

License Access license file obtained by Pn after resource verification

Record The record of information during resource verification

Period The cycle in which an EN generates X blocks

RCoinP RCoin value of Pn obtained in Period

H() Sha256 hash algorithm

Data Data collected by edge devices from IoT devices

Mission-Set Set of mission contracts deployed by FCN administrator

4.2 Resource Verification Phase

When an edge device attempts to join an FCN to contribute its computing power and
get a corresponding return, it first needs to accept the authenticity test of the computing
resources proposed by the cloud. The cloud server sends a challenge to the new device
in the form of a smart contract based on the device resource information provided by the
new device. If the node can calculate the result of the challenge within the specified time
and the miner verifies the result, the cloud server will recognize the device’s resources
and then add it to the appropriate fog. The specific workflow of resource verification is
shown in Fig. 4.

1. Pn initiates a transaction Request-Tx to the margin contract. The margin contract
will process the Request-Tx, transfer the margin to the contract wallet for temporary
storage, and publicize Info. The Info includes four parameters, where C is the CPU
model of Pn, S is the storage of Pn, M is the RAM of Pn, A is Pn’s MAC address
for unique identification.

2. The cloud server designsmathematical problemswithin a reasonable range according
to Info of Pn and deploys Task-Set = {T1, T2…Ti} on the Ethereum. The deployment
time of the contract is an essential parameter of the time control function mentioned
in Sect. 3-D.
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Fig. 4. The specific workflow of resource verification.

3. The cloud servers send the addresses of tasks in Task-Set = {T1, T2…Ti} to Pn
in the form of transaction, thereby ensuring that the challenge distribution process
is retained on the public network to prevent man-in-the-middle attacks against the
challenged content.

4. Pn calculates the mathematical problem in Task-Set = {T1, T2…Ti} locally within
the specified time ΔT, and sends Answer-Set = {A1, A2…Ai} to Task-Set = {T1,
T2…Ti} in the form of transaction for late verification.

5. All miners working on the Ethereum can verify the correctness of the results and
the validity of the time. The results of the verification are recorded by the miners on
the Ethereum public chain. Once the result is recorded, it means that the new device
has passed the challenge initiated by the cloud, and the resources it provided are
authentic.

6. According to the Info of Pn, the cloud servers send Pn the License of the FCN, which
is suitable for the resource of Pn. The License includes four parameters, where Time
is the time difference between contract deployment time and contract finish time,
FogID is the ID of FCN that Pn is being added to, TokenInit is the initial Token value
of Pn (mentioned in Sect. 3-E)

7. Pn provides the administrator of the FCN with its access authentication file License
and participates in the FCN. At the same time, Pn integrates the above transaction
information to Record and publishes it on the FCN as publicity. The Record includes
four parameters,where R-Tx is the Request-Tx mentioned in step 1, and TS is the
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Task-Set mentioned in step 2, AS is the Answer-Set mentioned in step 4, BlockID is
the height of the block where the result is located.

Although in the current solution, the license issuer in step 6 and the administrator in
step 7 are the same entity: the cloud server, we still think that the process of forwarding
license described in steps 6 and 7 is meaningful. The specific reasons are as follows:

First, the license issuer and the administrator of the FCN are in two architectures
and play different roles. Therefore, by adding one step to the scheme description, the
two are separated to make the scheme clearer and easier to understand.

Second, such a logical setting is beneficial to optimize the solution. In the future, we
can divide the two roles into different clouds and further divide the roles, responsibilities,
and tasks to improve the robustness of the system.

4.3 Resource Real-Time Monitoring Phase

As an FCN administrator, the cloud server realizes real-time monitoring of resources
through RCoinMonitoring Software running locally. This monitoring activity is always
ongoing as long as the FCN is working.

Since RCoinP has a positive correlation with the number of tasks that Pn completes
in Period, RCoinP can reflect the stability of node resources within Period. When a DPN
joins theFCNandusually runs, theRCoinof the nodewill increase linearlywithinPeriod.
After Period, the RCoin monitoring software will remove the RCoin from the earliest
block and count the RCoin in the latest block. Based on the above operation, the RCoin
of the normally operating node should exhibit a relatively stable state of fluctuation.
Once a node maintains such a statistical model, the cloud server will consider that the
DPN has proper resource utilization in the prior period, and the device resource status
is stable. Besides, since the EN does not undertake data processing tasks for a certain
period, the RCoin of the EN should be locked and updated after being re-established as
a DPN and motivated.

The specific workflow of real-time resource monitoring is shown in Fig. 5.

Fig. 5. The specific workflow of real-time resource monitoring.
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1. The FCN elects a certain number of ENs from theDPNs through an election contract.
2. As an administrator, the CN deploys the Mission set = {M1, M2…Mi} on the fog

consortium blockchain.
3. CN obtains the RCoin of Px through the RCoinMonitoring Software. According to

the stability of RCoin and the initial resource information Info of the Px, CN sends
Px the address of Mi, which is suitable for its resource status.

4. Px pulls Data from the IoT device according to the demand of Mi and calculates it
locally. Then, Px sends the result of Mi and the H(Data) to the mission contract Mi
in the form of transaction Tx.

5. Px uploads Data to the cloud server for storage.
6. The EN pulls the Data from the cloud server and calculates H’(Data). If

H ′(Data) == H (Data)

the EN will acknowledge that Data has not tampered. Then, the EN checks the result
according to the requirements of the mission contract Mi.

7. If the result is verified, the EN will package the Tx mentioned in step 4 with other
validated transactions into a block and extends it into the blockchain.

4.4 Endorsement Phase

During the endorsement phase, the election contracts and endorsement nodes will follow
an endorsement agreement called a “vote box” to ensure the orderliness and reliability
of the endorsement process. The specific workflow of “vote box” is shown in the Fig. 6:

Fig. 6. The specific workflow of the “vote box”.

1. The election contract sends the public key Pk to the endorsement nodes.



A Blockchain-Based Resource Supervision Scheme for Edge Devices 299

2. ENs checks the calculation result G of a specific task (see the workflow of 4-B for
details).

3. ENs adds the timestamp as the salt to the verification result R and encrypts it with
Pk to obtain a vote S and send it to the election contract.

S = (R,T ,Address)Pk

4. After the election contract receives all R within the specified time Tlimit (overdue
invalid), it decrypts S with the private key Sk and publicizes the R.

SSk = (
(R,T ,Address)Pk

)
Sk

= (R,T )

We measure the effectiveness of G by introducing a vote pass rate:

Definition 3. The vote pass rate:

U = M /N

Where M is the number of votes supporting G, and N is the number of endorsement
nodes. If the vote pass rate reaches Ulimit , G is considered correct.

Assert(U ≥ Ulimit)

5. According to the timestamp T of voting S, rewards are issued to the nodes in
descending order, thereby inspiring endorsing nodes to improve the checking
efficiency.

Based on the above process, we can effectively prevent nodes from acting lazily or
maliciously. Since multiple miners submit verification results at a time, even if a mali-
cious EN intentionally submits its own incorrect data, several other ENs will find this
problem and reject the wrong data. The number of ENs is a very important parameter in
this protocol. Too much EN will cause the protocol to be inefficient and the verification
cost will be too high. Too little EN will make the protocol less secure. Therefore, we
believe that the number of ENs will be planned according to specific application scenar-
ios. In FCNs with more reliable nodes, the number of ENs can be reduced to improve
efficiency and reduce costs, and vice versa.

5 Experimental Results

In the application scenario of federated machine learning, we use the TensorFlow fed-
erated model as an example to simulate the real-time supervision of resources in the
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proposed scheme. We deploy three computers as edge devices in the FCN and per-
formed distributed machine learning on the MNIST dataset several times (hundreds of
rounds at a time). Details of the devices are shown in Table 2.

In this scenario, two critical indicators of machine learning: Loss and Accuracy,
together with other parameters such as the number of calculation rounds, execution
time, and learning rate, determine the RCoin value, which measures the resource status
of each device. The specific formula is:

RCoini = A ∗ Ri

L ∗ t ∗ S

where A is the accuracy of the result, Ri is the number of rounds of the i-th machine
learning,L is the loss of the result, t represents the operation time, andS is the learning rate
of the device. In this formula, the independent variables are S and Ri and the remaining
parameters are the output of machine learning.

Figure 7 shows the RCoin value of device A when it performs distributed machine
learning 11 times. Figure 8 shows the average frequency of device A’s CPU during
operation where the learning rate is set to 0.02 and the execution rounds is 100. During
the first 7 executions, we did not make any restrictions on the resources of the device, and
the device was running in the best-performing state. Starting from the eighth execution
process, we have limited the resources of the device to halve its computing power.
As can be seen from the figure, RCoin was at a high level and stable during the first
seven executions. From the eighth time, it has experienced a significant decline and
subsequently maintained a low and stable operation. This trend is very close to the
average frequency of the actual CPU operation.

Fig. 7. Trend of RCoin value of device A.

This result shows that RCoin can adequately reflect the actual resources of the device.
Once the device is subject to resource requirements from outside the task, which affects
the task’s execution resources, RCoin can reflect the resource status of the device through
the trend. If we set the time interval of a single task small enough or subdivide the task
so that the execution time of a single task is short, it can reflect the resource status of the
device in near real-time.
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Fig. 8. Trend of CPU frequency of device A.

In this simulation, we set the cumulative round number X to 5 (see in Sect. 5), that
is, the RCoin obtained from the past 5 tasks reflects the resource stability of the device
in the past period:

RCoinPi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i∑

i−4
RCoinj, 5 ≤ i

i∑

0
RCoinj, 0 ≤ i ≤ 4

where RCoinj is the Rcoin value obtained by the j-th task.
As described in Sect. 3, the device will be added to different FCNs to contribute

computing power according to its computing resources. Figure 9 compares the RCoinP
of the three devices in the experiment. When performing machine learning tasks with
the same parameters, the RCoinP of device A is significantly higher than the other two
devices. As can be seen from the information in Table 1, the computing resources of
device A are indeed better than those of device B and device C.

Fig. 9. RcoinP of three devices in the experiment.



302 T. Wang et al.

Table 2. Devices information in simulation experiments.

Device Device information Resource

A i7-7700HQ CPU@2.8 GHz 16 GB High

B i7-4710HQ CPU@2.5 GHz 4 GB Mid

C i5-3360 M CPU@2.6 GHz 6 GB Low

This result shows that RCoinP can effectively distinguish the resource status of
different devices, so that the FCNmanager can dynamically adjust the network to which
the device belongs to make full and appropriate use of its computing resources. Besides,
although Table 1 shows that the computing resources of the two devices are different,
the RCoinP of devices B and C are very close.

This result shows that the computational tasks of distributed machine learning Ten-
sorFlow federated run on devices with weak computing capabilities and have small
differences. Based on this conclusion, FCN managers can perform task-based cluster-
ing of devices with different computing capabilities based on the similarity of RCoinP,
thereby improving the matching between computing tasks and edge devices.

For more details of the experiment code and the smart contracts mentioned in Sect. 3,
see [19].

6 Performance Analysis

6.1 Feasibility Analysis

As described in Sect. 4, a complete resource management solution for edge devices
should ensure public resource verification and real-time monitoring of resources within
the FCN and realize the coordinated operation of the two. In response to the above
requirements, we have adopted a system structure combining the public chain and con-
sortium chain. In the public chain, we fully utilize the resources of the entire network of
miners to verify the computing capabilities of the equipment and effectively use smart
contracts to verify the verification results and equipment information, which solves the
difficulty of publicly verifying and storing resources. Also, we take advantage of the
partially decentralized and highly controllable characteristics of the consortium chain
to deploy the cloud as the supervisor of the consortium chain to perform the tasks of
dispatching and monitoring the status of resources in real-time. Finally, to achieve the
coordinated operation of the public chain and the consortium chain, the nodes in the sys-
tem need to have the ability to run two types of blockchain clients at the same time. The
cloud performs as a bridge to share information across the chain to assist the information
in the two types of chains to complete interaction. Based on this multi-chain collabo-
rative structure design, this solution can make full use of the respective characteristics
and advantages of the public chain and the consortium chain to meet the needs of open
resource verification and real-time supervision of resources.

Besides, based on meeting the needs of the solution, we have fully consid-
ered the adaptability and convenience of the combination of various consortium
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chains and Ethereum, and compared the four mature consortium chains from five
aspects: Programming language, underlying architecture, TPS, number of peers, storage
consumption.

According to the comparison in the Table 3, the Fisco Bcos consortium chain will
be the best choice for this solution. First, the same underlying architecture and medium-
level storage consumption as Ethereum can effectively reduce unnecessary resource
consumption. Secondly, the same smart contract programming language is conducive
to achieving the linkage and collaboration between the consortium chain and the public
chain. Finally, the infinite number of nodes and the high TPS brings excellent scalability
to the system. Based on the above reasons, we finally chose the Fisco consortium chain
to implement our solution.

Table 3. The comparison of current mainstream consortium chains.

Consortium
chain

Programming
language

Underlying
architecture

Transaction
per second
(TPS)

Number of
peers

Storage
consumption

Fabric Goland Fabric 300–500 Limited Much high

Quorum Solidity Ethereum 400–800 Unlimited High

Corda Java Corda – Unlimited Low

Fisco Bcos Solidity Ethereum 1000 Unlimited Low

6.2 Security Analysis

Impersonation Attack. In the framework of this solution, different nodes have different
identities and work content. As the deployer of the resource verification task and the
manager of the FCN, the cloud server has some special powers in the resourcemonitoring
system. This inequality leads to the possibility of malicious nodes impersonating cloud
servers to do evil. To preventmalicious nodes from impersonating cloud nodes to perform
malicious actions such as deploying unreasonable tasks, changing internal parameters
of smart contracts, and tampering with endorsed node lists, we have added an identity
verification module to smart contracts. Based on the uniqueness of the node’s address in
the blockchain, the transaction initiator is authenticated to prevent impersonation attacks
by malicious nodes.

Sybil Attack. The cloud server will formulate a particular resource verification task for
the edge device when it tries to join the network. This process needs to bring workload
to the cloud server. If an adversary initiates a large number of join requests for this link,
it will cause the workload of the cloud server to become excessive or even paralyzed.
Therefore, to prevent this malicious behavior, we have added a margin module to the
smart contract, requiring each edge device to add a certain margin as a credential in the
application for joining the network. Since smart contracts can be used as wallets, we use
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margin management part to temporarily store margins paid by edge devices and return
the margin to the edge device after the resource verification.

Plagiarism Attack. The edge device elected as the endorsement node will verify the
calculation results in the FCN. This verification process consumes the resources of the
endorsing node, so there is a possibility of malicious behavior: to saving its computing
power, the endorsing node copies the previous verification results of other endorsing
nodes. To prevent this, we designed a ballot box protocol in the smart contract. The
agreement stipulates that the verification result will be transmitted in the form of cipher-
text before contract receiving the entire verification result, the smart contract will save
the received verification result in the form of a black box to prevent malicious endorse-
ment nodes from forging their results. Besides, the agreement also stipulates that the
rewards brought by the endorsement process will decrease according to the order of
completion of the verification work, thereby urging endorsement nodes to complete the
task more actively.

7 Conclusion and Future Works

This paper proposes a blockchain-based resource supervision scheme for edge devices
under the framework of the cloud-fog-end computing model. It makes full use of the
data openness and public verifiability of the public chain and the high controllability of
the consortium chain to achieve real-time supervision of the edge devices. In addition,
a simulation experiment was implemented in the model of TensorFlow-federated. The
experimental results show that this scheme can effectively monitor the resource status
of edge devices in real-time so that managers can more efficiently schedule device
resources in the fog computing network. This positive result laid the foundation for the
combination of fog computing and federal computing in the future.

For future work, we will investigate the possibility of using smart contracts to imple-
ment resource scheduling on the chain under this framework. We will also optimize the
scheme to handle more complex applications of federated machine learning.
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Abstract. Tensor decomposition is a popular tool for multi-dimensional
data analysis. In particular, High-Order Singular Value Decomposition
(HOSVD) is one of the most useful decomposition methods and has
been adopted in many applications. Unfortunately, the computational
cost of HOSVD is very high on large-scale tensor, and the desirable
solution nowadays is to outsource the data to the clouds which perform
the computation on behalf of the users. However, how to protect the
data privacy against the possibly untrusted clouds is still a wide concern
for users. In this paper, we design a new scheme called SHOSVD in
the two-cloud model for secure outsourcing of tensor decomposition. At
the core of our technique is the adoption of additive secret sharing. Our
SHOSVD could guarantee the outsourced data privacy for users assuming
no collusion between the two clouds. Moreover, it supports off-line users
which means that no interaction between users and clouds is required
during the computation process. We prove that our scheme is secure in
the semi-honest model, and conduct the theoretical analyses regarding its
computational and communicational overhead. The experiment results
demonstrate that our scheme is of desirable accuracy.

Keywords: Tensor decomposition · Privacy preservation · High-Order
Singular Value Decomposition · Additive secret sharing

1 Introduction

Nowadays, due to the development of the information technology, the size of
data is growing rapidly towards petabyte level [13]. Conducting analysis on
such large-scale data consumes lots of computation resources [6,13,30], which
is particularly unacceptable for users who are usually with limited computation
resources. Fortunately, outsourcing extensive computations to the clouds turns
to be a desirable solution for users as clouds could offer considerable computa-
tion and storage resources. Nevertheless, it is a common concern for users that
their data privacy could be possibly revealed to the clouds which perform the
computation tasks on behalf of them [6,22]. To the end, users would prefer to
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encrypt their data before outsourcing them to the clouds for computation, and
this has been widely adopted in the literature [6,13,14,22].

In this work, we investigate the study of secure outsourcing of High-Order
Singular Value Decomposition (HOSVD) which is well-known as a powerful tool
for conducting tensor analysis [2,31]. A tensor could be viewed as the expansion
of vector or matrix in multi-dimensional space [30], and it has been widely used
to model a variety of heterogeneous and multi-aspect data such as social tagging
systems [9,31] and color images [2]. By performing HOSVD, one can conveniently
derive possible associations underlying the noisy and redundant data. To realize
the secure outsourcing of HOSVD to the clouds, several methods in the literature
have been proposed for privacy-preserving tensor decomposition. Particularly,
Kuang et al. [13,14] proposed schemes based on homomorphic encryption which,
however, requires users to remain on-line during the computation process by the
clouds. To further release the burden of users, based on Paillier encryption [26],
Feng et al. [6] proposed a privacy-preserving tensor decomposition scheme to
support off-line users. Unfortunately, as we will shown in Sect. 5.5, their scheme
has some subtle problems of correctness.

Our Contributions. In this work, we propose a Secure High-Order Singular
Value Decomposition (SHOSVD) scheme in the two-cloud model based on additive
secret sharing [29]. The contributions of our work are three-fold.

• Based on additive secret sharing, we first propose a protocol for secure integer
division with public divisor (SDP) and secure integer square root (SSR). Com-
pared with the existing protocol [21], the newly designed is more efficient.
Moreover, we propose a method for additive secret sharing of signed integers,
and extend the basic protocols to deal with signed integers.

• We then design a secure scheme for outsourcing HOSVD based on addi-
tive secret sharing. Our scheme supports off-line users and thus significantly
reduces the computation and communication costs for users. We also analyze
the security of our scheme and conduct experimental evaluation to demon-
strate its accuracy.

• We also investigate the correctness of Feng et al.’s scheme [6] and show that
their designed secure integer division protocol could not be used for building
secure Lanzcos method and secure QR decomposition protocol. Concretely,
the protocol would return incorrect division results after several iterations.

Related Work. The privacy-preserving tensor decomposition on clouds has
received wide attention recent years. Roughly, the tensor decomposition meth-
ods can be divided into two categories [12], i.e., CP decomposition and HOSVD.
Luo et al. [22] proposed a scheme for privacy-preserving CP decomposition by
multiplying a sparse pseudorandom matrix before outsourcing the original tensor
to the clouds. Their method turns out to be efficient regarding the computation
cost but is not applicable for HOSVD. Feng et al. proposed a privacy-preserving
SVD scheme [5], and late improved it [4]. These works are inspiring while the
orthogonal tensor SVD in their schemes is different from HOSVD. Kuang et al.
[13] first proposed a complete secure scheme for HOSVD in single cloud model,
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and they also proposed a similar scheme in [14], both of which require users to
cooperate with the clouds during the tensor decomposition process. To support
off-line users, Feng et al. [6] proposed a privacy-preserving tensor decomposition
scheme based on Paillier homomorphic encryption. Unfortunately, some correct-
ness problems exist in their scheme, which will be discussed in Subsect. 5.5.

Organizations. The reminder of this paper is organized as follows. We review
some preliminary concepts in Sect. 2. We formulate the considered problem in
Sect. 3. Section 4 presents several building blocks that are cornerstones of our
SHOSVD scheme. We propose our SHOSVD scheme in Sect. 5. Section 6 analyzes the
security of the proposed protocols and scheme. Section 7 provides performance
analyses, which include thorough theoretical analyses and the experiment results.
Section 8 concludes this paper.

2 Preliminaries

Notations. In this paper, we use the notations presented in Table 1 to describe
our scheme, which tackles both unsigned operations and signed operations. We
use a mark “m” to distinguish them (e.g., Add denotes Secure Unsigned Addition,
while mAdd denotes Secure Signed Addition). Note that the operations involved
in matrices and vectors are all signed operations.

Table 1. Notation table

Notations Definition

〈x〉 Additive secret sharing of unsigned integer x

[x] Additive secret sharing of signed integer x

vx, sx The absolute value and sign of signed integer x

[x]v, [x]s Additive secret sharing of vx and sx

〈x〉A, [x]A Party A’s additive secret sharing of x

Zn,R Ring of integers modulo n, field of rational numbers

Rec/mRec Recover the shares

Add/mAdd Secure addition

Mul/mMul Secure multiplication

SD/mSD Secure integer division

SDP/mSDP Secure integer division with public divisor

SC Secur comparison

SSR Secure integer square root

mSMM/mSMV/mSMS Secure matrix-matrix/matrix-vector/matrix-scalar multiplication

mSVV/mSVS Secure vector-vector/vector-scalar multiplication

mSSV Secure subtraction of vectors

mSMSD/mSVSD Secure matrix-scalar/vector-scalar division

mST Secure transposition

2.1 Additive Secret Sharing

Additive secret sharing was proposed by Shamir [29]. This scheme requires a
large prime n. In this work, we use 〈x〉 to denote the sharing of the unsigned
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Algorithm 1. Lanczos Method
Input: Symmetric matrix M ∈ R

n×n.
Output: Tridiagonal matrix L and orthogonal matrix W .
1: Randomly choose a vector w1 ∈ R

n, so that ‖w1‖ = 1.
2: u1 = Mw1, j = 1.
3: αj = wT

j uj .
4: γj = uj − αjwj .

5: βj =
∥
∥γj

∥
∥.

6: if βj = 0 then
7: break.
8: else
9: wj+1 = γj /βj .

10: uj+1 = Mwj+1 − βjwj .
11: j = j + 1.
12: goto 3.
13: end if

integer x, i.e., x = 〈x〉A + 〈x〉B mod n, where 〈x〉A, 〈x〉B ∈ Zn are only known
by A and B respectively. To recover x, A and B send 〈x〉A and 〈x〉B to each
other, and calculate the sum of the shares locally. We use Rec to denote this
procedure, i.e, x ← Rec(〈x〉A, 〈x〉B) = 〈x〉A + 〈x〉B mod n.

2.2 Tensor Decomposition

We use T ∈ R
J1×J2×···×JN to denote an N−th order tensor, and tj1j2···jN to

denote the element of T . We also use M ∈ R
J1×J2 to represent a matrix and

mj1j2 to denote the element of M . High-Order Singular Value Decomposition
(HOSVD) is a kind of tensor decomposition method, which can decompose a
tensor to a core tensor and several truncated orthogonal bases [12]. The decom-
position of a tensor T is defined as

T ∼= S ×1 U1 ×2 U2 ×3 U3 · · · ×N UN , (1)

where S and Ui (i = 1, 2, · · · , N) denote the core tensor and the truncated
orthogonal matrices respectively. The core tensor S is usually regarded as the
compression of T .

2.3 Lanczos Method

Lanczos method is an efficient algorithm to transform an symmetric matrix M
into a symmetric tridiagonal matrix L, which is usually used in HOSVD [6,13].
Suppose the input is a symmetric matrix M = [m1,m2, · · · ,mk], then the
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output consists of a symmetric tridiagonal matrix

L =

⎡
⎢⎢⎢⎢⎣

α1 β1

β1 α2
. . .

. . . . . . βk−1

βk−1 αk

⎤
⎥⎥⎥⎥⎦

, (2)

and an orthogonal matrix denoted as W = [w1,w2, · · · ,wk]. The details of
Lanczos can be found in Algorithm1. With Lanzcos method, one can transform
the eigen decomposition problem for M into the eigendecomposition problem for
a tridiagonal matrix L. With L, we can easily get the QR algorithm [7] to solve
the eigendecomposition problem of a tridiagonal matrix.

Fig. 1. System model

3 System Model and Design Goals

3.1 System Model

As illustrated in Fig. 1, our SHOSVD scheme is built in a two-cloud model con-
sisting of several service users and two clouds. i.e. cloud CA and cloud CB .

1. Service User. The service users split the tensor data into two shares, and
then outsource them to the cloud CA and CB respectively. Moreover, a mod-
ulus n should be sent to all the parties involved, which is used for the data
splitting and reconstruction.
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2. Cloud CA&CB. The two non-colluding clouds maintain a dataset outsourced
from service users. These two clouds cooperate with each other to decompose
the tensors and return the service users the decomposition results in a privacy-
preserving manner.

We stress that such a non-colluding two-cloud model is reasonable in the real-
world. For example, the cloud CA and CB may belong to different companies,
i.e., Google and Amazon. Note that in the literature, many privacy-preserving
schemes also adopt this model to realize desirable properties [6,10,11,18,20,24].

3.2 Threat Model

All the parties in our scheme are semi-honest, which means that they will execute
the protocol correctly but are curious about data and query privacy during the
protocol execution. Besides, we also consider an active adversary A, who aims
to recover the outsourced data. Note that A has the ability of eavesdropping the
communication channel between the two clouds. Moreover, it can also comprise
one of the cloud in our scheme. Note that such an adversary A cannot comprise
both CA and CB and all the service users otherwise it is infeasible to achieve
desirable security.

3.3 Design Goals

The design goals of our scheme consist of follows.

1. Confidentiality. Both the outsourced data and intermediate data calculated
during the decomposition process should be protected.

2. Correctness. The relative error between the decomposition results calcu-
lated by the clouds and the decomposition results obtained by the traditional
non-privacy-preserving scheme should be negligible, which is the main target
of our SHOSVD.

3. Off-line Service User. The service users with limited computational and
communicational abilities should be off-line during the decomposition execu-
tion process.

4 Building Blocks

In this section, we introduce several protocols that are cornerstones to our
SHOSVD scheme. All these protocols will be given in the form of algorithms run
between cloud CA and CB . The unsigned integers are all in the integer ring Zn,
where n is a l−bit prime. For simplicity, we omit the “mod n” hereafter.
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4.1 The Existing Protocols

We first describe some existing protocols used for building our scheme.

• Secure Addition (Add): CA and CB with input 〈x〉 and 〈y〉 securely com-
pute the sum 〈z〉, where z = x + y. CA and CB only know 〈z〉A and 〈z〉B
respectively. The details of Add are available in [19]. We use 〈z〉 ← 〈x〉 + 〈y〉
to denote this protocol.

• Secure Multiplication (Mul): CA and CB with input 〈x〉 and 〈y〉 securely
compute the product 〈z〉, where z = x · y. CA and CB only know 〈z〉A and
〈z〉B respectively. Note that a precomputed arithmetic multiplication Beaver
triple (〈a〉, 〈b〉, 〈c〉) is needed in this operation, where a · b = c. There are
usually two ways to obtain such a triple. The first is use Oblivious Transfer
protocol [28], while the other is to use a trusted third party [27]. The details
of Mul are available in [19]. We use 〈z〉 ← 〈x〉 · 〈y〉 to denote this protocol.

• Secure Integer Division (SD): CA and CB with input dividend 〈x〉 and
divisor 〈y〉 securely compute the integer quotient 〈z〉, where z = �x/y�. CA

and CB only know 〈z〉A and 〈z〉B respectively. The details of SD are available
in [21]. We use 〈z〉 ← SD(〈x〉, 〈y〉) to denote this protocol.

• Secure Comparison (SC): CA and CB with input 〈x〉 and 〈y〉 securely to
compute the comparison result 〈t〉. CA and CB only know 〈t〉A and 〈t〉B
respectively. If x � y, t = 1; otherwise, t = 0. The details of SC are available
in [3,10]. We use 〈z〉 ← SC(〈x〉, 〈y〉) to denote this protocol.

Note that if one of the input is a public constant number c, we only need CA

sets 〈c〉A ← c and CB sets 〈c〉B ← 0, and the above protocols can be also run.

4.2 Our Proposed Protocols

We then describe our proposed protocols which serve as building blocks of our
whole SHOSVD scheme.

Secure Integer Division with Public Divisor (SDP). The first protocol
is Secure Integer Division with Public Divisor (SDP). In this protocol, cloud
CA and CB have shared an integer 〈x〉 and a public divisor d. At the end of
the algorithm, CA and CB get the additive share 〈�x/d�〉. First, cloud CA and
CB calculate 〈z〉 = 〈x〉 + r, where r is a random number in Zn. Then CB

runs Rec on 〈z〉 to recover z. Note that if x + r < n, x + r = z; otherwise,
x+ r = z +n. Since x < n, if z > r, a carry over has not occurred, i.e, z = x+ r;
otherwise, a carry over has occurred, i.e, x + r = z + n. For simplicity, in the
following, we use z′ to denote x + r, where z′ = z or z′ = z + n. Note that, if
(x mod d)+(r mod d) < d, �z′/d� = �x/d�+�r/d�; otherwise, �z′/d� = �x/d�+
�r/d� + 1. Moreover, the condition (x mod d) + (r mod d) < d is equivalent to
(z′ mod d) = (x mod d) + (r mod d) � (r mod d). Following such an idea,
we let CA and CB first make three comparisons on r and z, (r mod d) and
(z mod d), and also (r mod d) and (z + n mod d). The final division result
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Algorithm 2. Standard Integer Division with Public Divisor (SDP)
Input: A dividend 〈x〉 that is shared by CA and CB . A divisor d that is public known

by CA and CB . Note that integer x, d ∈ Zn and n is a l−bit prime.
Output: 〈q〉 shared by CA and CB , where q = �x/d�.
1: CA: Pick a random number r ∈ Zn, set 〈z〉A ← 〈x〉A + r, and send 〈z〉A to CB .
2: CB : Set 〈z〉B ← 〈x〉B , and recover z ← Rec(〈z〉A, 〈z〉B).
3: CA&CB : 〈t〉 ← SC(r, z), 〈t1〉 ← SC((r mod d), (z mod d)), and 〈t2〉 ← SC((r

mod d), ((z + n) mod d)).
4: CA: 〈a〉A ← −�r/d� + 〈t1〉A − 1, 〈b〉A ← −�r/d� + 〈t2〉A − 1.
5: CB : 〈a〉B ← �z/d� + 〈t1〉B , 〈b〉B ← �(z + n)/d� + 〈t2〉B .
6: CA&CB : 〈α〉 ← 〈t〉 · 〈a〉, 〈β〉 ← 〈1 − t〉 · 〈b〉.
7: CA: 〈q〉A ← 〈α〉A + 〈β〉A.
8: CB : 〈q〉B ← 〈α〉B + 〈β〉B .

is 〈q〉 ← 〈t(�z/d� − �r/d� − t1)〉 + 〈(1 − t)(�(z + N)/d� − �r/d� − t2)〉. We show
the details of our SDP in Algorithm 2.

Discussion. Apart from the SDP algorithm, there is also a Secure Division (SD)
algorithm proposed in [21]. In SD, the two integers 〈x〉 and 〈y〉 are all additively
shared by cloud CA and CB . After running SD, the two clouds get a shared
division result, i.e., 〈�x/y�〉. We use TSC to denote the runtime of SC. We note
that the computational overhead of Liu et al.’s SD [21] is more than O

(
n2

)
TSC,

while the overhead of our SDP is just O(1) TSC.

Secure Integer Square Root (SRR). We also design a Secure Integer Square
Root (SSR) algorithm. Suppose that 〈x〉 is shared by cloud CA and CB . After
running this SSR algorithm, CA and CB obtain the additive share of 〈�√x�〉. Note
that there exists a secure square root protocol proposed by Lidel [16]. Their
protocol needs to normalize the radicand to the interval [1/2, 1], but additive
secret sharing works in a integer ring [15,17], which implies that their protocol
is not for our scheme. Our SSR is designed based on the Standard Integer Square
Root Method [6] as algorithm 3, where operator 
 denotes the left shift while
operator � denotes the right shift.

Algorithm 3. Standard Integer Square Root
Input: An integer x whose bit-length is less than l-bit.
Output: Integer r = �√x�.
1: r = 0, α = 2l/2−1.
2: for each i = 0 to l/2 − 1 do
3: β = (((r 
 1) + α) 
 (l/2 − 1 − i)).
4: if x � β then
5: r = r + α, x = x − β,
6: end if
7: α = α � 1.
8: end for
9: return r.
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In our SSR, cloud CA and CB first share 〈r〉, where r = 0. As the method
is bit-by-bit, the following loops will run l/2 times. First, CA and CB compute
〈β〉 ← 〈(2 · r + 2l/2−1−i) · 2l/2−1−i〉. Then, CA and CB run SC on 〈x〉 and 〈β〉.
Let 〈c〉 = SC(〈β〉, 〈x〉). CA and CB compute 〈r〉 ← 〈2l/2−1−i · c + r〉. Finally,
they calculate 〈x〉 ← 〈x − c · β〉. After running these loops, CA and CB output
〈r〉 as the result.

Algorithm 4. Secure Integer Square Root (SSR)

Input: A radicand 〈x〉 shared by CA and CB . Note that 0 � x < 2l.
Output: The root 〈r〉, where r = �√x�.
1: CA: Pick a random 〈r〉A ∈ Zn, compute 〈r〉B ← n − 〈r〉A, and send 〈r〉B to CB , so

that 〈r〉 = 〈0〉.
2: for each i = 0 to l/2 − 1 do
3: CA: 〈β〉A ← (2 · 〈r〉A + 2l/2−1−i) · 2l/2−1−i.
4: CB : 〈β〉B ← (2 · 〈r〉B) · 2l/2−1−i.
5: CA&CB : 〈c〉 ← SC(〈β〉, 〈x〉).
6: CA: 〈r〉A ← 2l/2−1−i · 〈c〉A + 〈r〉A.
7: CB : 〈r〉B ← 2l/2−1−i · 〈c〉B + 〈r〉B .
8: CA&CB : 〈u〉 ← 〈c〉 · 〈β〉.
9: CA: 〈x〉A ← 〈x〉A − 〈u〉A.

10: CB : 〈x〉B ← 〈x〉B − 〈u〉B .
11: end for
12: return 〈r〉.

4.3 Extensions for Signed Integers

Note that the aforementioned protocols are all dealing with unsigned integers.
However, in the actual situation, both the data users outsource to the cloud and
the values generated during calculation may be negative. This motivates us to
extend our protocols to support additive secret sharing of signed integers.

Assume that x is a signed integer in an open interval (−n, n), where n is a
large prime. Then we use a tuple (vx, sx) to denote x, where vx is the absolute
value of x and sx is the sign of x. If x < 0, sx = 1; otherwise, sx = 0. Note that
vx, sx ∈ Zn are unsigned integer, so that vx and sx can be additively shared by A
and B as (〈vx〉A, 〈sx〉A) and (〈vx〉B , 〈sx〉B). Then we use [x] to denote the sharing
of signed integer x, where [x]A = (〈vx〉A, 〈sx〉A) and [x]B = (〈vx〉A, 〈sx〉A). To
recover x, A and B run Rec on 〈vx〉 and 〈sx〉, and then they reconstruct the
value by obtaining x ← (−1)sx · vx. We use x ← mRec([x]A, [x]B) to denote this
procedure. For simplicity, we use [x]v and [x]s to denote the sharing of absolute
value and the sign of x respectively.

With this method for additive secret sharing of signed integers, we can extend
the aforementioned protocols to deal with signed integers as follows.
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1. Secure Addition (mAdd): If sx = sy, then set vz = vx + vy and sz = sx.
Otherwise, vx and vy are compared. If vx � vy, set vz = vy − vx and sz = sy;
if vx > vy, set vz = vx − vy and sz = sx. See Algorithm 5 for more details.

Algorithm 5. Secure Addition (mAdd)

Input: [x] and [y] shared by CA and CB .
Output: [z], where z = x + y.
1: 〈p〉 ← [x]s − [y]s.
2: 〈q〉 ← 〈p〉 · 〈p〉.
3: 〈t〉 ← SC([x]v, [y]v).
4: 〈α〉 ← (1 − 〈q〉) · ([x]v + [y]v).
5: 〈a〉 ← (1 − 〈t〉) · ([x]v − [y]v), 〈b〉 ← 〈t〉 · ([y]v − [x]v).
6: 〈β〉 ← 〈q〉 · (〈a〉 + 〈b〉).
7: [z]v ← 〈α〉 + 〈β〉.
8: 〈γ〉 ← (1 − 〈q〉) · [x]s.
9: 〈a〉 ← (1 − 〈t〉) · [x]s, 〈b〉 ← 〈t〉 · [y]s.

10: 〈ζ〉 ← 〈q〉 · (〈a〉 + 〈b〉).
11: [z]s ← 〈γ〉 + 〈ζ〉.
12: return [z] ← ([z]v, [z]s ).

2. Secure Multiplication (mMul): If sx = sy, sz = 0; otherwise, sz = 1. Note
one could easily get the absolute value vz of z by vz = vx · vy. More details
are depicted in Algorithm 6.

Algorithm 6. Secure Multiplication (mMul)

Input: [x] and [y] shared by CA and CB .
Output: [z], where z = x · y.
1: 〈p〉 ← [x]s − [y]s, [z]s ← 〈p〉 · 〈p〉.
2: [z]v ← [x]v · [y]v.
3: return [z] ← ([z]v, [z]s ).

3. Secure Integer Division (mSD): If sx = sy, sz = 0; otherwise, sz = 1. And
it’s easy to get the absolute value vz of z by vz = �vx/vy�. More details are
depicted in Algorithm 7.

Algorithm 7. Secure Integer Division (mSD)

Input: [x] and [y] shared by CA and CB .
Output: [z], where z = �x/y�.
1: 〈p〉 ← [x]s − [y]s, [z]s ← 〈p〉 · 〈p〉.
2: [z]v ← SD([x]v, [y]v).
3: return [z] ← ([z]v, [z]s ).
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4. Secure Integer Division with Public Divisor (mSDP): If d is a positive
integer, z and x have same sign; otherwise, z and x have opposite signs. The
CA and CB get the absolute value vz of z by vz = �vx/vd�. More details are
depicted in Algorithm 8.

Algorithm 8. Secure Integer Division with Public Divisor (mSDP)

Input: [x] shared by CA and CB , and a public signed divisor d.
Output: [z], where z = �x/d�.
1: if sd == 0 then
2: [z]s ← [x]s.
3: else
4: [z]s ← 1 − [x]s.
5: end if
6: [z]v ← SDP([x]v, sd).
7: return [z] ← ([z]v, [z]s ).

4.4 The Case of Matrices and Vectors

Since the sharing of a matrix or a vector could be viewed as the sharing of
each element individually, our protocols could be also easily extended to realize
Secure Matrix-Scalar Division (mSMSD), Secure Vector-Scalar Division (mSVSD)
and Secure Transposition (mST).

1. Secure Matrix-Scalar Division (mSMSD): CA and CB with input [A] and
a public scalar b securely compute [C], where A,C are matrices and for each
element ai,j , ci,j in A,C there are ci,j = �ai,j/b�. CA and CB only know
[C]A and [C]B respectively. For each [ci,j ], CA and CB compute [ci,j ] ←
mSDP([ai,j ], b). We use [c] ← mSMSD([a], [b]) to denote this protocol.

2. Secure Vector-Scalar Division (mSVSD): CA and CB with input [a] and
a public scalar b securely compute [c], where a, c are vectors and for each
element ai, ci in a, c there are ci = �ai/b�. CA and CB only know [c]A and
[c]B respectively. For each [ci], CA and CB compute [ci] ← mSDP([ai], b). We
use [c] ← mSVSD([a], b) to denote this protocol.

3. Secure Transposition (mST): CA and CB with input [A] securely compute
[B], where A,B are matrices and B = AT . CA and CB only know [B]A

and [B]B respectively. CA just need to set [B]A ← ([A]A)T , while CB sets
[B]B ← ([A]B)T . We use [B] ← [A]T to denote this protocol.

The other matrices/vectors protocols, e.g., mSMM, can be extended from the
vectorization protocols proposed by Mohassel et al. [23], which is based on addi-
tive secret sharing of unsigned integers, by substituting Add and Mul in these
protocols with mAdd and mMul respectively.
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5 Secure High-Order Singular Value Decomposition

We are now ready to describe our designed SHOSVD scheme in full. Using the
full scheme, the clouds could finally decompose the shared tensor to several
additively shared truncated bases and core tensor.

5.1 The Basic Idea

The basic idea of our SHOSVD is as follows. First, the tensor data are split
into additive shares before outsourcing to the two clouds. Receiving shares
of the tensor [T ], the two clouds unfold them into additively shared matrices
[T(1)], [T(2)], · · · , [T(H)], where H is the order of T and T(i) is the mode−i matri-
cization of T . Since the tensor elements and the matrix elements are one-to-one
mapping relationship [12], the two clouds just need to unfold their own shared
tensor to get the corresponding shared matrices. Then, for each 1 � i � H,
cloud CA and CB calculate [Mi] ← mSMM([T(i)] · [T(i)]T ). For each [Mi], CA and
CB securely compute its corresponding truncated matrix [Ui]. Finaly, they can
use [U1], [U2], · · · , [UH ] to calculate the core tensor [S]. Note that the users do
not need to interact with the clouds during the tensor decomposition process,
except outsourcing tensor data at the beginning and receiving the decomposition
results at the end.

5.2 Data Outsourcing

The outsourced data may be float numbers in practice. One straightforward
method is to round the float numbers to the nearest integers before outsourc-
ing them. To improve the accuracy, the data owners are suggested to scale the
variables with a positive integer ρ. Specifically, let ρxi denote a scaled integer.
The data owner chooses random pi, qi ∈ Zn, sets [ρxi]A ← (pi, qi ), and sets
[ρxi]B ← ((|ρxi| − pi) mod n, (sxi

− qi) mod n), where sxi
denotes the sign of

xi - if xi is a negative number, sxi
= 1, otherwise sxi

= 0. After that, [ρxi]A and
[ρxi]B are sent to cloud CA and CB respectively through secure communication
channels. After all data are outsourced, CA and CB hold the joint tensor [ρT ].

5.3 Secure Lanczos Method

For a specific matricization [ρT ] of shared tensor [ρT ], cloud CA and CB securely
calculate [ρ2M ] ← mSMM([ρT ], [ρT ]T ). Note that ρ2M is a symmetric matrix. We
design a Secure Lanczos (mSL) method based on Algorithm 1. By mSL, the clouds
can get an additively shared tridiagonal matrix [ρ2σB] and an additively shared
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orthogonal matrix [σW ], where σ is also a public positive integer used to improve
the accuracy. To facilitate the narrative, we suppose that the order of ρ2M is k,
and assume that

ρ2σB =

⎡
⎢⎢⎢⎢⎣

ρ2σα1 ρ2σβ1

ρ2σβ1 ρ2σα2
. . .

. . . . . . ρ2σβk−1

ρ2σβk−1 ρ2σαk

⎤
⎥⎥⎥⎥⎦

, (3)

and
σW = [σw1, σw2, · · · , σwk]. (4)

The details of our mSL are shown in Algorithm 9.

Algorithm 9. Secure Lanczos (mSL)

Input: A symmetric matrix [ρ2M ] shared by CA and CB .
Output: [ρ2σB] and [σW ] shared by CA and CB .
1: CA: Pick a random w1 ∈ R

k, where ‖w1‖ = 1, and send [σw1]
B to CB . Set j = 1.

2: [ρ2σ2u1] ← mSVS(mSMV([ρ2M ], [σwi]), [σ]), where [σ]A = (σ, 0) and [σ]B = (0, 0).
3: [ρ2σαj ] ← mSDP(mSVV([σwi]

T , [ρ2σ2ui]), σ
2).

4: [ρ2σ2γj ] ← mSSV([ρ2σ2uj ], mSVS([σwj ]), [ρ
2σαj ]).

5: for each i = 1 to j − 1 do
6: [ρ2σa] ← mSDP(mSVV([ρ2σ2γj ]

T , [σwi]), σ
2).

7: [ρ2σ2awi] ← mSVS([σwi], [ρ
2σa]).

8: [ρ2σ2γj ] ← mSSV([ρ2σ2γj ], [ρ
2σ2awi]).

9: end for
10: [ρ2σ2βj ]v ← SSR(

∑k
i=1[ρ

2σ2γji]v · [ρ2σ2γji]v), γji denotes the i−th element of γj .

11: if SC(〈ρ2σ2βi〉, ρ2σ2) == 0 then
12: break.
13: else
14: [ρ2σβj ]v ← SDP([ρ2σ2βj ]v, σ).
15: [ρ2σβj ] ←

(
[ρ2σβj ]v, 0

)
.

16: [σwj+1] ← mSVSD([ρ2σ2γj ], [ρ
2σβj ]).

17: [ρ2σ2uj+1] ← mSSV(mSVS(mSMV([ρ2M ], [σwj+1]), [σ]), mSVS([σwj ], [ρ
2σβj ])).

18: j = j + 1.
19: goto 3.
20: end if
21: return [ρ2σB], [σW ].

Remark. Since there exist rounding errors in Algorithm9, the column vectors in
σW obtained will lose orthogonality quicky [25]. To avoid getting wrong answer,
we use Gram-Schmidt method to make sure that these vectors are mutually
orthogonal, which are from line 5 to line 9. From line 10 to line 14, in order to
improve efficiency, we don’t consider the signs of the variables since they must
be positive. In line 15, we restart to consider the sharing of the sign.
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5.4 Secure Core Tensor Construction

With an additively shared tridiagonal matrix [ρ2σB] and an additively shared
orthogonal matrix [σW ], CA and CB can employ the QR method [7] to compute
the shared truncated orthogonal bases [σU ]. In particular, CA and CB first
compute [σQ], whose column vectors are the eigenvectors of [ρ2σB], and then
obtain [σU ] ← mSMSD(mSMM([σQ], [σW ]), σ). Using the building blocks in Sect. 4,
we can obtain Secure QR method (mSQR) in a similar way as mSL.

For all the matricization [ρT(i)] of shared tensor [ρT ], CA and CB can get
all the truncated orthogonal bases, i.e., [σU1], [σU2], · · · , [σUH ]. Note that the
secure i−mode product [T ] ×i [U ] can be calculated as mSMM([U ], [T(i)]) [12], so
that clouds can employ Eq. 1 to obtain the core tensor as Algorithm 10.

Algorithm 10. Secure Core Tensor Construction (mSCT)

Input: A tensor [ρT ] and truncated orthogonal bases [σU1], [σU2], · · · , [σUH ] shared
by CA and CB .

Output: An additively shared core tensor [ρσHS].
1: Set [S0] ← [ρT ].
2: for each i = 1 to H do
3: [Si] ← [Si−1] ×i [σUi]

T .
4: end for
5: return 〈ρσHS〉, where 〈ρσHS〉 ← 〈SH〉.

5.5 On the Correctness of Feng et al.’ Scheme [6]

Most recently, Feng et al. [6] have proposed a similar Privacy-Preserving Ten-
sor Decomposition (PPTD) scheme in the two-cloud model based on Paillier
homomorphic encryption [26]. They designed a secure division protocol in this
scheme, which is based on the standard integer division method, and the exact
bit length of dividend (divid) and divisor (diviv) is known by cloud CA. However,
CA only has the ciphertext of divid and diviv, which could cause some problems.
Below we give more details. In the line 11 of the secure Lanczos method (SLM)
in their scheme, this protocol calculates the division of [[ρ2σ2βj ]], [[σ]]. Note that
CA knows the bit length of σ which is a public scalar integer. However, βj is an
intermediate data calculated from previous computations on the ciphertext in
SLM. Since CA cannot infer the bit length of the original outsourced data, it’s
unable to know the bit length of βj either. The only way to solve such a problem
is assuming that the [[ρ2σ2βj ]] has a maximum bit length. Therefore, the first
several bits of computation result may be 0 under such an assumption. However,
it may lead to an incorrect computation result. Note that the division result
[[ρ2σβj ]] of the line 11 is used as a divisor to obtain [[σωj+1]] in the line 12, with
a dividend [[ρ2σ2γj ]]. Here, we give an example to illustrate this point. In the line
11, we suppose that the bit length of σ is 3, the maximum bit length of Paillier
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plaintext domain is 16, and the real bit length of ρ2σ2βj is 10. Therefore, the
real bit length of ρ2σβj is 7, while the bit length of the calculated result is 13.
In the line 12, we assume the bit length of ρ2σ2γj is 16, so that the bit length
of the calculated result in σωj+1 is 3, while the correct bit length of the data in
σωj+1 is 9. Therefore, we can conclude that the SLM in [6] is incorrect. As we
know, SLM is an important building block for tensor decomposition in Feng et
al.’s scheme. Thus, such a scheme cannot get the correct tensor decomposition
result. Since our SDP/mSDP is not designed in such bit-by-bit way, our protocols
will not suffer such a issue. We also note that the aforementioned secure division
algorithm is also used in the secure QR decomposition in Feng et al.’s scheme
and a similar problem may also exist in their secure QR decomposition.

6 Security Analysis

In this section, we analyze the security of each building block which contributes
to the security of our full SHOSVD scheme. We first give the security definition of
protocol in the semi-honest model [8].

Definition 1. A protocol is secure in the semi-honest model if and only if there
exists a probabilistic polynomial-time simulator Sim that can generate a view,
which is computationally indistinguishable from its real view, for the adversary
A in the real world.

The security of our proposed protocols essentially relay on the following two
lemmas of which the analysis are available in [10].

Lemma 1. If r is an integer uniformly chosen from Zn and independent from
any variable x ∈ Zn, r + x is also uniformly random and independent from x.

Lemma 2. A protocol is perfectly simulatable if all its sub-protocols are perfectly
simulatable.

We now analyse the security of our proposed protocols.

Theorem 1. The proposed SDP and SSR are secure in the semi-honest model.

Proof. On one hand, the execution image of cloud CB for the SDP can be denoted
as ΠCB

(SDP) = {〈z〉B , z, 〈t〉B , 〈t1〉B , 〈t2〉B , 〈a〉B , 〈b〉B , 〈α〉B , 〈β〉B , 〈q〉B}. We also
represent the simulated image of cloud CB for the SDP as ΠS

CB
(SDP), which is

ΠS
CB

(SDP) = {z1, z2, t
′, t′1, t

′
2, a

′, b′, α′, β′, q′}, where all the elements in ΠS
CB

(SDP)
are randomly chosen from Zn. 〈x〉B is a part of x’s share which is random
in Zn, and 〈x〉B is equal to 〈x〉B , so that 〈z〉B is indistinguishable from z1.
z, 〈t〉B , 〈t1〉B , 〈t2〉B , 〈α〉B , 〈β〉B are computation result of Rec, SC, Mul, which
means they are computationally indistinguishable from z2, t

′, t′1, t
′
2, a

′, b′, α′, β′,
for the security of Rec, SC and Mul1. 〈a〉B , 〈b〉B are the addition results of an
1 The proof of the security of Rec, SC and Mul can be found in [29], [10] and [1]

respectively.
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integer with a random number which are random according to Lemma1. There-
fore, we can draw a conclusion that the execution image of cloud CB for SDP is
computationally indistinguishable from the simulated image.

Similarly, we can also prove that ΠCA
(SDP) is computationally indistinguish-

able from ΠS
CA

(SDP). Combining the above, we can conclude that the proposed
SDP is secure in the semi-honest model. Note that the security analysis of SSR is
similar and thus we omit it here due to the page limitation. �

Theorem 2. Our proposed protocol for additive secret sharing of signed integers
is secure in the semi-honest model.

Proof. Let x denote the signed integer to be shared. The shares of x is just the
shares of the absolute value vx and its sign sx, where vx and sx are unsigned
integers. By the result in [29], the protocol for additively secret sharing for the
unsigned integer is secure in the semi-honest model, so that we can conclude
that our protocol for the case of signed integer is also secure by Lemma 2. �

Theorem 3. The extended protocols for signed integers are secure in the semi-
honest model.

Proof. The extended protocols we propose include mAdd, mMul, mSC, mSDP. Due
to the page limitation, here we only prove the security of the comparatively
complicated one, i.e., mAdd. Proofs of others can be conducted similarly.

The execution image of mAdd for CB can be denoted by ΠCB
(mAdd) =

{〈p〉B , 〈q〉B , 〈t〉B, 〈a〉B, 〈b〉B , 〈α〉B , 〈β〉B , 〈γ〉B , 〈ζ〉B , [z]Bv , [z]Bs }. Moreover, we
can denote the simulated image of mAdd as ΠS

CB
(mAdd) = {p′, q′, t′, a′, b′, α′, β′,

γ′, ζ ′, v′
z, s′

z}, which are randomly chosen from Zn. Since 〈p〉B and 〈q〉B are
computation results of Add and Mul that have been proved in [29] and [1], 〈p〉A

and 〈q〉B are random. 〈t〉B is the comparison result obtained by SC, which is
random due to the proof in [10]. The computations of 〈a〉B , 〈b〉B , 〈α〉B , 〈β〉B ,

〈γ〉B, 〈ζ〉B , [z]Bv , [z]Bs are combined by Add and Mul. By Lemma 2, they are all
random. Thus, we can conclude ΠCB

(mAdd) is computationally indistinguishable
from ΠS

CB
(mAdd).

Similarly, we can also prove that ΠCA
(mAdd) is computationally indistinguish-

able from ΠS
CA

(mAdd). Therefore, the proposed mAdd is secure in the semi-honest
model. �

Theorem 4. The proposed protocols for matrices and vectors are secure in the
semi-honest model.

Proof. The protocols involved in matrices and vectors we propose include mSMM,
mSMV, mSMS, mSVV, mSVS, mSSV, mSMSD, mSVSD, mST. Note mSMM, mSMV, mSMS, mSVV,
mSVS, mSSV are based on the vectorization protocols whose security has been
proved in [23], and we just use mAdd and mMul to substitute Add and Mul respec-
tively in them. According to Lemma 2, mSMM, mSMV, mSMS, mSVV, mSVS, mSSV are
secure in the semi-honest model. The mSMSD and mSVSD are just the combina-
tion of several mSDPs which have been proved to secure. According to Lemma 2,
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we can conclude that they are secure. mST is just the simple substitution for
coordinates of elements in respective sharing matrices for CA and CB . There is
not any numerical calculations. What’s more, CA and CB don’t communicate to
each other. It’s easy to see that mST is also secure. �

Based on the above results, one could have the following theorem.

Theorem 5. Our SHOSVD scheme is secure in the semi-honest model.

Proof. From the description shown in Algorithm 9, we can see that our mSL is
the combination of mSMV, mSVS, mSVV, mSDP, Mul, SSR, Rec, SDP, mSVSD and mSSV
which are secure. According to Lemma 2, we can draw a conclusion that our mSL
is secure in the semi-honest model. The security of mSQR and mSCT can be proved
in a similar way. Therefor, our SHOSVD is secure. �

7 Performance Analysis

In this section, we evaluate the performance of our SHOSVD scheme. Experi-
ments are conducted on two computers (PC) with 2.30 GHz Intel(R) Core(TM)
i5-8300H CPU, 8 GB RAM and 8 Cores. Note that we mainly focus on the on-line
computational and communicational overheads in our scheme.

7.1 Theoretical Analysis

Computational Overhead. For a tensor T ∈ R
I1×I2×···×IH . Let m be the size

of T , so that m = I1I2 · · · IH . According to our SHOSVD, before uploading the
tensor, the user needs to separate all the elements into two parts by additive
secret sharing scheme. Hence, the computational complexity of user is O(m).

Let Tmat, Tsym, TmSL, TmSQR and TmSCT be the runtime of tensor matricization,
matrix symmetrization, secure Lanczos method, secure QR method and secure
core tensor construction protocol respectively, so that the computational over-
head Tclouds of clouds can be expressed as

Tclouds = Tmat + Tsym + TmSL + TmSQR + TmSCT. (5)

Tensor matricization needs to unfold the whole tensor H times, so that Tmat =
O(HI1I2 · · · IH ). Since matrix symmetrization requires O(I2i I1I2 · · · Ii−1Ii+1 · · ·
IH) computational complexity for each i = 1, 2, · · · H, Tsym = ΣH

i=1O(I2i I1I2 · · ·
Ii−1Ii+1 · · · IH). For each i = 1, 2, · · · H, the computational complexity of
secure Lanczos method and secure QR method are O

(
I3i

)
and O

(
tI3i

)
respec-

tively, where t is the maximum iteration number in QR method. Therefore,
TmSL = ΣH

i=1O
(
I3i

)
and TmSQR = ΣH

i=1O
(
tI3i

)
. For each truncated orthogonal

bases, there is a mode product in the secure core tensor construction protocol,
so that TmSCT = ΣH

i=1O
(
I2i I1I2 · · · Ii−1Ii+1 · · · IH

)
. In conclusion, the computa-

tional cost of clouds is ΣH
i=1

(
O(Iim) + O

(
tI3i

))
, where m is the size of T .
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Communicational Overhead. Let m be the size of the tensor T ∈
R

I1×I2×···×IH . Users only need to communicate with the clouds twice, i.e., out-
sourcing tensor data and receiving the decomposition results, so that the com-
municational overhead between users and clouds is O(m). There are O(1) round
communications in Rec. According to [10], there are O (l) rounds communica-
tions in SC, so that there exist O (l) rounds communications in SDP and mSDP.
Moreover, there are O

(
l2

)
rounds communications in SSR, where l denotes the

bit length of the element of the tensor. mSMSD and mSVSD contain mSDP, therefore
their communicational rounds depends on the times of mSDP used. Since there
are O(Ii ) Rec, O

(
I2i

)
SDP/mSDP and O(Ii ) SSR in mSL for each i = 1, 2, · · · H,

the communicational cost of mSL is ΣH
i=1O

(
Ii + lI2i + l2Ii

)
. Similarly, the com-

municational cost of mSQR is ΣH
i=1O

(
t(lI2i + l2Ii)

)
. There is no communica-

tion in mSCT. So that the total communicational overhead between clouds is
ΣH

i=1O
(
Ii + t(lI2i + l2Ii)

)
.

7.2 Simulated Dataset Experiment

To evaluate the overall performance of our SHOSVD, we randomly generate several
tensors from Z

I1×I2×···×IH , where 3 � H � 5, and for each 1 � i � H, the size
of Ii is random as shown in Table 2.

Table 2. Simulated dataset

Dataset T1 T2 T3 T4

H 3 3 4 5

I1 100–1000 100–1000 100–1000 100–1000

I2 100–1000 100–1000 100–1000 10–100

I3 10–100 100–1000 10–100 10–100

I4 – – 10–100 10–100

I5 – – – 5

Note that there are two scaling factors ρ and σ in our scheme to improve
the accuracy as mentioned in Sect. 5. To evaluate their effects on the results, we
set different scaling factors in different simulated tensors to compare our SHOSVD
with the traditional HOSVD scheme, and qualify the relative errors as

RelativeError = ‖S − S ′‖ / ‖S ′‖ , (6)

where S is the core tensor generated by our SHOSVD, S ′ is the core tensor gen-
erated by the traditional method without any encryption, and ‖S‖ denotes the
norm of tensor S. Because ρ only impacts on the outsourced tensor, we set ρ = 1
for simplicity, and set σ to 103, 104, 105, 106, 107 and 108. For each certain scale
factor, we set the size N of the elements of the tensor to 101, 102, 103 and 104

to simulate different sized tensors.
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(a) Relative error in T1 (b) Relative error in T2

(c) Relative error in T3 (d) Relative error in T4

Fig. 2. Relative error of SHOSVD for varying σ using simulated dataset

From Fig. 2, it’s clearly to see that the scaling factors are of vital importance
in reducing the relative errors, and the relative errors converge to zero rapidly
with the growth of σ. When the value of σ is more than 106, the rounding
errors can be neglected. In addition, the optimum σ has little relation with the
tensor’s order or the elements’ size. With proper scaling factors, our scheme has
promising accuracy.

8 Conclusion

In this paper, we designed a secure integer division protocol with public divi-
sor and a secure integer square root protocol in a two-cloud model based on
additive secret sharing. And based on them, we proposed a Secure High-Order
Singular Value (SHOSVD) scheme that supports off-line users. We also analyzed
the correctness problem in the privacy-preserving tensor decomposition scheme
proposed by Feng et al. [6]. Security analyses of our scheme are made and the
experimental results show the accuracy of our scheme.
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Abstract. The purpose of forward-secure threshold public key encryp-
tion schemes is to mitigate the damage of secret key exposure. We con-
struct the first CCA forward-secure threshold public key encryption
scheme based on bilinear pairings with groups of prime order that is
secure against adaptive and malicious adversaries in the standard model.
Our scheme is very efficient since it has a non-interactive key update
and decryption procedure. Additionally, our scheme does not require a
trusted dealer and has optimal resilience as well as small ciphertexts of
constant size. It is the first scheme which achieves all of these and that
can also be implemented on standardized elliptic curves.

1 Preliminaries

In a standard public key encryption scheme (PKE), once an adversary gets access
to the secret key the adversary is able to decrypt all ciphertexts. There are differ-
ent approaches to mitigate the damage due to secret key exposure. Two of these
approaches are so-called forward-secure public key encryption schemes and thresh-
old public key encryption schemes. Forward-secure schemes allow to evolve the
secret key in regular time periods, while the public key remains fixed. Thus, every
adversary with an outdated secret key cannot decrypt ciphers for time periods
in the past. In a (n, k)-threshold PKE the secret key is split into n shares and at
least k + 1 shares are required to decrypt a ciphertext, whereas any subset of k
shares is insufficient. Due to the fact that forward security and thresholds improve
security guarantees against secret key exposure in a different manner, their com-
bination can even reinforce these guarantees. For digital signature schemes their
combination was first proposed by Abdalla et al. [1] and Tzeng and Tzeng [18]
and later revisited [8,16,20]. For PKE, the combination of forward-secure and
threshold mechanisms to a forward-secure threshold PKE (fst-PKE) was proposed
by Libert and Yung [15]: an adversary that wants to decrypt a ciphertext which
was encrypted with a fst-PKE for time period t, needs not only to gain k + 1
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of the stored secret key shares but it also needs to gain these key shares before
time period t expires. It follows that for an adversary with restricted capacities,
the combination of forward-security and threshold mechanism provides additional
security. To the best of our knowledge the only existing fst-PKE scheme that is
CCA forward-secure against adaptive adversaries is due to Libert and Yung.1 It
is highly efficient in terms of communication rounds: the key update procedure
as well as the decryption procedure are both non-interactive. For the key update
this means that there is no communication at all between the key storage hosts.
Besides efficiency, this is also desirable because some of these hosts might be offline
or temporarily unavailable. In the case of an interactive key update their unavail-
ability could halt the update procedure entirely or exclude these hosts from further
decryption procedures because of outdated key shares. For decryption, the non-
interactive procedure means that if a decryption is requested each host can either
deny the decryption or provide a valid decryption share without interacting with
the other hosts.

Furthermore, the scheme by Libert and Yung is robust against malicious adver-
saries, which means that invalid decryption shares can be detected and do not
manipulate the decrypted message. Their scheme requires bilinear pairings with
groups of composite order. To guarantee security, these groups must be very large
which results in very expensive computation andmuch larger keys aswell as ciphers
when compared to bilinear pairings with groups of prime order. Furthermore the
scheme requires a trusted dealer that delivers the initial secret key shares to all
participating parties. The only fst-PKE based on pairings with groups of prime
order is due to Zhang et al. [21]. It is proven CCA forward secure against adaptive
adversaries in theRandomOracleModel and requires a trusteddealer. It requiresT
elements in the public key, where T is the maximum number of time periods. More-
over, the public key needs to be stored for updating the secret key, which leads to
secret keys of size T as well. Although the prime order groups enable fast compu-
tation the big key sizes restrict the usage for many applications.

Our Contribution. We present a highly efficient forward-secure threshold public
key encryption scheme based on bilinear pairings, which can be implemented
on standardized pairing-friendly curves with groups of prime order. This scheme
provides a non-interactive key update and decryption procedure and requires no
trusted dealer. In addition, this scheme provides ciphertexts of constant size:
one bit string of length log T , where T is the maximum number of supported
time periods, and three group elements from prime order groups. The public
key is of size log T and the secret keys have size at most log2 T . The scheme
has optimal resilience, i.e., it can tolerate (n − 1)/2 maliciously compromised
parties and is proved CCA forward secure against adaptive adversaries in the
standard model. Furthermore, it is possible to add pro-active security to our
scheme. This enables security against mobile adversaries, i.e. against adversaries
which can switch between the parties they corrupt. We discuss this concept and
our techniques in Sect. 4.
1 Adaptive adversaries can corrupt parties at any time. Static adversaries need to corrupt

the parties before the protocol execution begins. For a proper overview see [1].
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2 Forward-Secure Threshold Public Key Encryption
(fst-PKE)

Definition 1. We adapt the definition of fst-PKE and its security from Lib-
ert and Yung [15]. A Forward-secure threshold public key encryption
scheme. (fst-PKE) (T, n, k)-Πfst is defined via the following components:
FST.KeyGen(n, k, T ) → (pk, (pki)i∈[n], (sk0,i)i∈[n]). On input the maximum
number of time periods T , the maximum number of parties n, and a threshold k,
it outputs a common public key pk, user public keys (pki)i∈[n], and initial secret
key shares, (sk0,i)i∈[n].
FST.KeyUpdate(skt,i) → skt+1,i. On input a secret key share for a time period
t < T − 1, it outputs a secret key share for the next time period t+1 and deletes
the input from its storage. Else it outputs ⊥.
FST.Enc(t, pk,M) → C. On input a time period t, a common public key pk,
and a message M , it outputs a ciphertext C.
FST.Dec(t, C) → M . If run by at least k+1 honest and uncompromised parties
on input a time period t and a ciphertext C, it outputs a message M .

The key generation procedure can be either a protocol between all parties or
executed by a trusted dealer. The key update procedure is assumed to be non-
interactive. The decryption procedure is a protocol and contains of various steps:
ciphertext-verify, share-decrypt, share-verify, and combine. For simplicity we
defined the input only as a time period and a ciphertext and omit the key
material held by all participating parties.

Definition 2. Correctness. Let (pk, (pk0,i)i∈[n], (sk0,i)i∈[n]) ←FST.KeyGen
and (skt,i) ← FST.KeyUpdate(skj−1,i) for j = 1, . . . , t and i ∈ [n]. We call
Πfst correct if for all messages M , all time periods t ∈ {0, . . . , T − 1}, and all
subsets U ⊆ {skt,1, . . . skt,n} of size at least k + 1 held by uncorrupted parties it
holds that

Pr[FST.Dec(t,FST.Enc(t, pk,M)) = M ] = 1.

Note that the secret keys are an implicit input to FST.Dec.

We adapt the robustness notion of threshold signature schemes by Gennaro
et al.[10] to forward-secure threshold public key encryption schemes.

Definition 3. Robustness. A forward-secure threshold PKE Πfst is
(n, k1, k2)-robust if in a group of n parties, even in the presence of an adver-
sary who halts up to k1 and corrupts maliciously k2 parties, FST.Keygen and
FST.Dec complete successfully.

Note that malicious adversaries can either deviate from the protocol in any
way and especially halt some parties. Hence, they are stronger than halting
adversaries, see [1].
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CCA Forward Security. Chosen ciphertext attack (CCA) forward security
against adaptive (static)1 adversaries is defined by the following game between
a challenger and an adversary A. Let B and G be the sets of indices, which
denote the corrupted and uncorrupted parties, respectively. Initially B is empty
and G = {1, . . . , n}. The challenger (on behalf of the uncorrupted parties) and
the adversary (on behalf of the corrupted parties) run FST.KeyGen(n, k, T ).
The adversary receives the common public key pk, all user public keys (pki)i∈[n]

and the initial user secret key shares (ski,0)i∈B. The adversary has access to the
following oracles:

Break-In(t’,j). On input time period t′ and index j ∈ G, the challenger checks
if |B| < k. If this holds, the challenger removes j out of G and adds it to B. If
skt,j is already defined, i.e. after FST.KeyGen had finished, it is delivered to
A. If |B| = k, the challenger outputs skt,j for all j ∈ G.2

Challenge(t∗,M0,M1). The adversary submits a time period t∗ and two mes-
sages M0,M1. The challenger picks a bit b uniformly at random and responds
with a challenge ciphertext C∗ =FST.Enc(t∗, pk,mb).
Dec(t,C). On input time period t and ciphertext C, the challenger (on behalf of
the uncorrupted parties) and the adversary A (on behalf of the corrupted parties)
run the decryption protocol FST.Dec(t, C). The output of this execution is
delivered to A. If Challenge(t∗,M0,M1) has already been queried and C∗ is
the response to this query then query Dec(t∗, C∗) is disallowed.
Guess(b’). The adversary outputs its guess b′ ∈ {0, 1}. The challenger outputs
1 if b = b′, else 0. The game stops.

The adversary is allowed to make k + 1 queries Break-In(t′, j) one query
Challenge(t∗,m0,m1), and multiple queries Dec(t, C), in any order, subject
to 0 ≤ t∗ < t′k+1 < T , where t′k+1 is the time period of the k + 1-th query
to Break-In. After Break-In(t′k+1, j), Dec(t, C) cannot be queried anymore.
Guess(b′) can only be queried after Challenge(t∗,M0,M1). For all queries the
time periods must be in [0, . . . , T − 1].

Definition 4. Let A be an adaptive (static) adversary playing the CCA forward-
security game for a fst-PKE (T, n, k)-Πfst. It (tA, εA)-breaks the CCA forward
security of (T, n, k)-Πfst, if it runs in time tA and

|Pr[Guess(b′) = 1] − 1/2| ≥ εA.

The only difference between the CPA and CCA security game is that the
adversary has no access to the decryption oracle in the former game.

1 In the static security model the adversary has to submit its choice of k parties it
wants to corrupt before receiving the public key. In the adaptive model it can corrupt
the parties at any time. For a proper overview see [1].

2 Note that this case can only occur for time periods t > 0, i.e. after FST.KeyGen
had finished. Otherwise the adversary would have no possibility to win the security
game.
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Definition 5. Let G1, G2, and GT be cyclic groups of prime order q with
generators g1, g2, gT . We call e : G1 × G2 → GT a bilinear pairing if: i.
e(ga

1 , gb
2) = e(g1, g2)ab for all a, b ∈ Zq, ii. e(g1, g2) 	= 1T , and iii. e can be

efficiently computed. If there is no efficiently computable isomorphism from G2

to G1 we call it a Type-3 pairing. For more information we refer to [5,7].

The following definition of hierarchical identity-based encryption schemes
(HIBE)is reproduced from [6].

Definition 6. A hierarchical identity-based encryption scheme (HIBE) ΠHIBE

is defined via the following algorithms: HIBE.Setup(�) → (pk, sk0), HIBE.Key
Derive(id, skid′) → skid′ , where id is a prefix of id′,HIBE.Enc(id, pk,M) → C.
HIBE.Dec(id, skid, C) → M .

TheCPA (CCA) security can be defined analogously to forward-security, see [6].

Definition 7. A digital signature scheme Σ is defined via the follow-
ing algorithms: Sig.Keygen→ (vk, signk), Sig.Sign(signk,M) → σ,
Sig.Verify(vk,M , σ) → b, where b ∈ {0, 1}.

Strong Existential Unforgeability Under a One Chosen Message
Attack (sEUF-1CMA). In the sEUF-1CMA security game the adversary is
allowed to query one signature and has to forge a signature for any message. The
only restriction is that it cannot output the same pair of message and signature
as for the query. If the message is the same then the signature must differ.

3 Our CCA Forward-Secure Threshold PKE

The key generation phase our fst-PKE uses the distributed key generation pro-
tocol DKG by Gennaro et al. [10]. This protocol is instantiated with the group
G2 from the bilinear pairing we use in our fst-PKE. It outputs a common public
key pk = gx

2 ∈ G2 as well as user public keys pki = gxi
2 ∈ G2 for all parties

Pi, i ∈ [n]. The user public keys are required to check the decryption shares for
validity and hence provide robustness against malicious adversaries in our fst-
PKE. Moreover, this protocol provides to each party Pi a secret share hxi ∈ G1

of hx ∈ G1.3 We apply the secret shares to our fst-PKE by updating them to the
first time period. We want to emphasize that for forward security it is crucial
to erase the plain values xi, h

xi for all i ∈ [n] from every storage. Our fst-PKE
scheme (T, n, k)-Πfst is defined as follows.

Common Parameters. The common parameters consist of a the description
of a cryptographic Type-3 pairing group with groups of order q, the description

3 Note that in [10] the secret value is set as x instead of hx. This modification happens
only internally and has no impact on the adversary’s view or security.
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of a cryptographic hash function H : {0, 1}∗ → Zq, a value � s.t. T = 2� is
the number of time periods, random group elements h, h0, . . . , h�+1 ← G1, and
random generators g2, h̃ ← G2.

FST.KeyGen. The n parties run the DKG(n, k) protocol from Fig. 1. Subse-
quently, each party Pi holds the common public key pk = gx

2 ∈ G2, all user public
keys (gxj

2 )j∈[n] as well as its own secret share hxi ∈ G1. Each party computes its
initial secret key share sk0,i as

(
gri
2 , hxihri

0 , hri
1 , . . . , hri

�+1

) ∈ G2 × G
�+2
1 ,

where ri ← Zq is picked uniformly at random. The value hxi is erased from the
storage. The common public key pk is published.4

FST.KeyUpdate(skt,i). We assume the T time periods 0, . . . , 2� − 1 as being
organized as leaves of a binary tree of depth � and sorted in increasing order from
left to right. This means, 00 . . . 0 is the first and 11 . . . 1 is the last time period.
The path from the root of the tree to a leaf node t equals the bit representation
t1 . . . t�, where we take the left branch for tz = 0 and the right one for tz = 1.
Prefixes of time periods correspond to internal nodes ω = ω1, . . . , ωs, where
s < �. Let r′

i ← Zq be picked uniformly at random. Then, we associate to each
party Pi, i ∈ [n] and each node ω a secret key:

(ci, di, ei,s+1, . . . , ei,�+1) =

(

g
r′
i

2 , hxi(h0

s∏

v=1

hωv
v )r′

i , h
r′
i

s+1, . . . , h
r′
i

�+1

)

. (3)

Given such a secret key, we derive a secret key for a descendant node ω′ =
ω1 . . . ωs′ , where s′ > s as

(c′
i, d

′
i, e

′
i,s′+1, . . . , e

′
i,�+1)

=

⎛

⎝ci · g
r′′
i

2 , di ·
s′
∏

v=s+1

ewv
i,v (h0

s′
∏

v=1

hwv
v )r′′

i , ei,s′+1 · h
r′′
i

s′+1, . . . , ei,�+1 · h
r′′
i

�+1

⎞

⎠ ,

where r′′
i ← Zq is picked uniformly at random.

We define Ct as the smallest subset of nodes that contains an ancestor or
leaf for each time period t, . . . , T − 1, but no nodes of ancestors or leafs for time
periods 0, . . . , t − 1. For time period t, we define the secret key ski,t of party Pi

as the set of secret keys associated to all nodes in Ct. To update the secret key

4 Note that the secret share xi is computed commonly by all parties and the random-
ness ri is computed locally by party Pi and is not a share of another random value.
This approach is more efficient than computing random values commonly, especially
to different bases.
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Protocol DKG(n, k):
Generation of shared secret x:

1. (a) Each Party Pi, i ∈ [n] picks two random polynomials ai(z) and bi(z) over Zq

of degree k:

ai(z) = ai0 + ai1z + · · · + aikzk and

bi(z) = bi0 + bi1z + · · · + bikzk.

(b) Each party Pi computes and broadcasts Cis = gais
2 h̃bis ∈ G2 for s =

0, . . . , k.
(c) Each party Pi computes sij = ai(j) and s′

ij = bi(j) mod q for j =
1, . . . , n. It sends sij , s

′
ij secretly to Pj .

(d) For i = 1, . . . , n each party Pj checks if

g
sij
2 h̃s′

ij =
k∏

s=0

(Cis)j
s

. (1)

If there is an index i ∈ [n] such that the check fails, Pj broadcasts a complaint
against Pi.

(e) If a dealer Pi receives a complaint from Pj then it broadcasts the values sij

and s′
ij satisfying Equation 1.

(f) Each party disqualifies any player that either received more than k complaints
or answered to a complaint with values that does not satisfy Equation 1.

2. Each party Pi defines the set QUAL, which indicates all non-disqualified parties.
3. The shared secret is defined as hx = h

∑
i∈QUAL ai0 ∈ G1. Each party Pi sets its

share of this secret as hxi = h
∑

j∈QUAL sij ∈ G1.
Extracting y := gx

2 ∈ G2:
4. (a) Each party Pi, i ∈ QUAL computes and broadcasts Ais = gais

2 ∈ G2 for all
s = 0, . . . , k.

(b) For each i ∈ QUAL, each party Pj checks if

g
sij
2 =

k∏

s=0

(Ais)j
s

. (2)

If there is an index i ∈ QUAL such that the check fails, Pj complaints about
Pi by broadcasting sij and s′

ij that satisfy Eq. 1 but not Eq. 2.
(c) For all parties Pi who received at least one valid complaint in the extraction

phase, the other parties run a reconstruction of ai(z) and Ais for s = 0, . . . , k
in the clear, using the values sij .

(d) Each party Pi computes the common public key as y =
∏

i∈QUAL Ai0 ∈ G2

and the user public keys pkj as g
xj

2 =
∏

i∈QUAL
∏t

k=0(Aik)j
k

for all j ∈ [n].

Fig. 1. The DKG protocol due to Gennaro et al.
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to time period t+1, determine Ct+1 and compute the secret keys for all nodes in
Ct+1\Ct. Afterwards, delete ski,t and all used re-randomization exponents r′′

i .5

FST.Encrypt(pk, t,M). Let M ∈ G3 be the message and t1 . . . t� the bit rep-
resentation of time period t. First, run Sig.KeyGen→ (vk, signk) and com-
pute H(vk) =: V K. Then, pick a uniformly random r ← Zq and compute
(C1, C2, C3) as

(

e(h, pk)r · M, gr
2, (h0

�∏

v=1

htv
v · hV K

�+1)
r

)

∈ G3 × G2 × G1

and Sig.Sign(signk, (C1, C2, C3), ) → σ. Output the ciphertext

C = (C1, C2, C3), vk, σ).

FST.Decrypt (t, (C1, C2, C3), vk, σ). Let W be the set of indices of all partici-
pating parties. W.l.o.g. we assume that W contains at least k+1 distinct indices.
The participating parties run the decryption protocol from Fig. 2.6

Remark 1. Note that the subset V ⊆ W from the decryption protocol (Fig.
2) might be of size greater than k + 1, while k + 1 partial decryption shares
are sufficient to decrypt the ciphertext. For this reason aggregating only k + 1
decryption shares avoids computational overhead.

Remark 2. The secret keys in our fst-PKE have a binary tree structure in the
sense of [6], except for the lowest level. In Theorem 4 from [6], it is shown
that encryption schemes, which have a binary tree structure on all levels, imply
forward security. Although it is possible to remove the lowest level and the strong
one-time signature scheme in our construction, doing so would result in a scheme
which is only forward secure against CPA instead of CCA.

Proof of Correctness. We have to prove that (c′, d′) is a valid decryption key
for ciphertext C = (C1, C2, C3, vk, σ) under t, V K and the common public key

5 Example: Let T = 23. Then t0 = 000, t1 = 100, t2 = 010,... . Given a substring xy,
we can compute xy0 and xy1. Hence, for time period t2 the set Ct2 consists of the
node keys for 01 and 1. From 01 it can compute the secret key for t2 = 010 and
t3 = 011. From 1 it can compute the secret key for all time periods greater t3: 100,
101, 110, 111. The keys for time periods t0 = 000 and t1 = 001 cannot be computed
from this set. If we update to time period t3, we need to compute 011 and erase the
node key for 01. Thus Ct3 consists of the key for 011 and the node key 1. Then, also
the key for 010 cannot be computed anymore.

6 Note that decryption happens with respect to a time period. Since time periods are
encoded in full bit length (even if they start with zero) they are low in the binary
tree. Hence, they only have left ei,�+1 as going down one level in depth erases one
value ei,x, x ∈ [�].
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pk = gx
2 . To that end we show first that set V, which indicates the correct decryp-

tion shares, can be determined. That is, we show that we can check whether the
decryption shares (c′

i, d
′
i), i ∈ W are correct. Let (c′

i, d
′
i) be an honestly generated

decryption in Step 2 of the protocol. Then d′
i is equal to

die
V K
i,�+1(h0

�∏

v=1

htv
v hV K

�+1)
vi = hxi(h0

�∏

v=1

htv
v )rieV K

i,�+1(h0

�∏

v=1

htv
v hV K

�+1)
vi

= hxi(h0

�∏

v=1

htv
v hV K

�+1)
ri+vi , (5)

Dec(t, (C1, C2, C3), vk, σ, P1, ..., Pn):

1. Ciphertext-Verify. At decryption request of ((C1, C2, C3), vk, σ) at time t =
t1 . . . t�, each party Pi, i ∈ W checks whether Sig.Verify(vk, (C1, C2, C3), σ) =
1 and whether the ciphertext is valid for time period t and for the hashed verification
key V K = H(vk). That is, it checks whether the following equation holds.

e((h0

s∏

v=1

htv
v · hV K

�+1), C2) = e(C3, g2).

If one or both checks fail it aborts.
2. Share-Decrypt. Else each party picks a uniformly random vi ← Zq and uses its

secret key ski,t = (ci, di, ei,�+1) to compute a decryption share (c′
i, d

′
i), where

d′
i := di · eV K

i,�+1(h0

�∏

v=1

htv
v · hV K

�+1)
vi and c′

i := ci · gvi
2 .

Afterwards, each party Pi, ∈ W sends (c′
i, d

′
i) secretly to all other parties.

3. Share-Verify. All parties in W use the public keys pkj , j ∈ W to check if the
contributed decryption shares are valid. That is, if

e(d′
j , g2) = e(h, pkj) · e(h0

�∏

v=1

htv
v · hV K

�+1, c
′
j).

4. Combine. Let V ⊆ W indicate a set of parties sending valid decryption shares. If V
contains at least k + 1 distinct indices then the decryption key (c′, d′) is computed
as

c′ =
∏

i∈V
c′Li

i and d′ =
∏

i∈V
d′Li

i ,

where Li =
∏

j∈V,j �=i(−i)/(j − i) are the Lagrange coefficients.
5. Finally, the plaintext is computed as

C1 · e(C3, c
′)/e(d′, C2) = M. (4)

Fig. 2. The decryption protocol of our fst PKE.
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where we used the fact that ei,�+1 = hri

i,�+1. Furthermore, c′
i = gri+vi

2 . If a
decryption share (c′

i, d
′
i) satisfies (5) and c′

i = gri+vi
2 then the validity check in

Step 3 is correct, because

e(d′
i, g2) = e(hxi(h0

�∏

v=1

htv
v hV K

�+1)
ri+vi , g2)

= e(hxi , g2)e((h0

�∏

v=1

htv
v hV K

�+1)
ri+vi , g2) = e(h, pki)e(h0

�∏

v=1

htv
v hV K

�+1, c
′
i).

For this reason, we can indeed check whether a decryption share (c′
i, d

′
i) for

message C under t, V K and user public key gxi
2 is correct and thus include i into

set V. It remains to show that all decryption shares (c′
i, d

′
i), i ∈ V interpolate to

a valid decryption key under the common public key gx
2 . For this purpose, we

set R :=
∑

i∈V Li(ri + vi). Then, d′ is equal to

∏

i∈V
d′Li

i = h
∑

i∈V Lixi(h0

�∏

v=1

htv
v hV K

�+1)
∑

i∈V Li(ri+vi) = hx(h0

�∏

v=1

htv
v hV K

�+1)
R,

where
∑

i∈V Lixi = x. Furthermore, c′ =
∏

i∈V c′Li
i = g

∑
i∈V Li(ri+vi)

2 = gR
2 .

Overall, we have for a valid ciphertext

C1e(C3, c
′)/e(d′, C2)

= Me(h, gx
2 )re((h0

�∏

v=1

htv
v · hV K

�+1)
r, gR

2 )/e(hx(h0

�∏

v=1

htv
v · hV K

�+1)
R, gr

2) = M.

Proof of Security. As preparation for the security proof we describe in Fig. 3
how the reduction simulates the DKG protocol. The simulation in Fig. 3 is also
due to Gennaro et al. Additionally, Fig. 4 describes how the reduction simulates.

FST.Decrypt. According to Definition 4, the adversary is allowed to control
up to k parties during the key generation and decryption procedure. First, we
assume a static adversary as in the proof in [10]. In the proof of Theorem 3,
it is shown how to achieve security against adaptive adversaries. In Sect. 4,
it is explained why this approach gives a more efficient scheme than the use of
composite order groups as in [15]. W.l.o.g. we assume the corrupted parties to be
P1, . . . , Pk. Let B := {1, . . . , k} indicate the set of corrupted parties, controlled
by the adversary A, and let G := {k + 1, . . . , n} indicate the set of uncorrupted
parties, run by the simulator.

Note that during the simulation of the decryption procedure the simulator
already executed DKGSim (Fig. 3). Therefore, it is in possession of the secret
shares x1, . . . , xk and the polynomials ai(z), bi(z) for all i ∈ [n].
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Protocol DKGSim(y = gx
2 , n, k):

1. The simulator performs Steps 1a−1f and 2 on behalf of the uncorrupted parties
exactly as in the DKG(n, k) protocol. Additionally, it reconstructs the polynomials
ai(z), bi(z) for i ∈ B. Then:
– The set QUAL is well-defined and G ⊆ QUAL and all polynomials are random

for all i ∈ G.
– The adversary sees ai(z), bi(z) for i ∈ B, the shares (sij , s

′
ij) =

(ai(j), bi(j)) for i ∈ QUAL, j ∈ B and Cis for i ∈ QUAL, s = 0, . . . , k.
– The simulator knows all polynomials ai(z), bi(z) for i ∈ QUAL as well as all

shares sij , s
′
ij , all coefficients ais, bis and the public values Cis.

2. The simulator performs as folllows:
– Computes Ais = gais

2 ∈ G2 for i ∈ QUAL \ {n}, s = 0, . . . , k.
– Sets A∗

n0 = y · ∏
i∈QUAL\{n}(A

−1
i0 ).

– Sets s∗
nj = snj = an(j) for j = 1, . . . , k.

– Computes A∗
ns = (A∗

n0)λs0 · ∏k
i=1(g

s∗
ni

2 )λsi ∈ G2 for s = 1, . . . , k, where
the λiss are the Lagrange interpolation coefficients.

(a) The simulator broadcasts Ais for i ∈ G \ {n} and A∗
ns for s = 0, . . . , k.

(b) It performs for all uncorrupted parties the verification of (2) on the values
Aij for i ∈ B. In case of a fail it broadcasts a complaint (sij , s

′
ij). Since the

adversary controls at most k parties and the simulator behaves honestly, only
secret shares of corrupted parties can be reconstructed.

(c) Afterwards it performs the Steps 4c and 4d of the DKG(n, k) protocol.

Fig. 3. The simulation of the DKG protocol due to Gennaro et al.

In the DKG protocol (Fig. 1) the secret shares for all parties Pj , j ∈ [n]
are defined as xj :=

∑
i∈QUAL sij mod q. In DKGSim however, the shares

are defines as xj :=
∑

i∈QUAL\{n} sij + s∗
nj mod q, where the values s∗

nj

for j = k + 1, . . . , n, i.e. for j ∈ G, are not explicitly known. Moreover, in
DKGSim the public key of user Pj , j ∈ [n] is g

xj

2 =
∏

i∈QUAL\{n} g
sij

2 g
s∗
nj

2 =
∏

i∈QUAL\{n}
∏k

s=0(Ais)js ∏k
s=0(A

∗
ns)

js

, where the values A∗
ns include the com-

mon public key y = gx
2 . Hence, in order to compute the secret share hxj for j ∈ G

either the corresponding value hx or s∗
nj is required. Although these values are

not known to the simulator it is still able to simulate the role of the uncompro-
mised parties during the decryption of a valid ciphertext (t, C1, C2, C3, vk, σ).
In order to do so it requires a valid secret key (c, d) for time t together with
the hashed verification key V K = H(vk), i.e. for the string t, V K. If the sim-
ulator is an adversary breaking the CPA security of the HIBE scheme from [2]
this key can be requested in its own security experiment. Let t = t1 . . . t� and
(c, d) =

(
gr
2, h

x(h0

∏�
v=1 htv

v · hV K
�+1)

r
)
. Define consistently with DKGSim:

– His := hais for all i ∈ QUAL \ {n}, s = 0, . . . , k
– H∗

n0 :=
∏

i∈QUAL\{n}(H
−1
i0 )hx
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– s∗
nj := snj = an(j) for j = 1, . . . , k

– H∗
ns := (H∗

n0)
λs0

∏k
i=1(h

s∗
ni)λsi for s = 1, . . . , k

– Ĥn0 :=
∏

i∈QUAL\{n}(H
−1
i0 d).

Thus, pkj = hxj , j ∈ G are defined as
∏

i∈QUAL\{n}
∏k

s=0(His)js ∏k
s=0

(H∗
ns)

js

. To obtain a valid decryption share for Pj , j ∈ G compute an inter-
mediate d′′

j as

∏

i∈QUAL\{n}

k∏

s=0

(His)js(
Ĥn0

) k∏

s=1

(
(Ĥn0)λs0

k∏

i=1

(hs∗
ni)λsi

)js

=
∏

i∈QUAL\{n}

k∏

s=0

(His)js

( ∏

i∈QUAL\{n}
(H−1

i0 )hx(h0

�∏

v=1

htv
v hV K

�+1)
r

)

k∏

s=1

(
( ∏

i∈QUAL\{n}
(H−1

i0 )hx(h0

�∏

v=1

htv
v hV K

�+1)
r
)λs0

k∏

i=1

(hs∗
ni)λsi

)js

=
∏

i∈QUAL\{n}

k∏

s=0

(His)js

( ∏

i∈QUAL\{n}
(H−1

i0 )hx

)
(h0

�∏

v=1

htv
v hV K

�+1)
r

k∏

s=1

(
( ∏

i∈QUAL\{n}
(H−1

i0 )hx
)λs0

k∏

i=1

(hs∗
ni)λsi

)js k∏

s=1

(
(h0

�∏

v=1

htv
v hV K

�+1)
rλs0

)js

=
∏

i∈QUAL\{n}

k∏

s=0

(His)js( k∏

s=0

(
H∗

ns

)js)
(h0

�∏

v=1

htv
v hV K

�+1)
r

∑k
s=1 λs0js+r

= hxj (h0

�∏

v=1

htv
v hV K

�+1)
r

∑k
s=1 λs0js+r.

To re-randomize, pick a uniformly random wj ← Zp and compute d′
j and

c′
j as

d′′
j (h0

�∏

v=1

htv
v hV K

�+1)
wj and c

∑k
s=1 λs0js+1g

wj

2 . (6)

Lemma 1. The protocols DKG and DKGSim as well as Dec and DecSim
are indistinguishable.

Proof. For DKG and DKGSim the proof can be found in Theorem 2 of [10]. In
the same fashion it can be easily verified that the adversary has the same view
Dec and DecSim. 
�
Theorem 1. The scheme (T, n, k)-Πfst from Sect. 3 is (n, k1, k2)-robust if k1+
k2 ≤ k and n ≥ 2k + 1. In particular, the scheme is (n, 0, k)-robust, i.e. robust
against malicious adversaries.
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DecSim(t, (C1, C2, C3), vk, σ), (c, d))

1. The decryption is requested. Let t = t1 . . . t�. The simulator performs the validity
checks from Step 1 of protocol Dec. If one of these checks fail it aborts.

2. Else, the simulator uses the polynomials ai(z), bi(z) for all i ∈ [n] and the de-
cryption key (c, d) for t, V K to compute valid decryption shares on behalf of all
uncorrupted parties: for j = k + 1, . . . , n it computes d′′

j as

∏

i∈QUAL\{n}

k∏

s=0

(His)j
s · Ĥn0

) ·
k∏

s=1

(Ĥn0)λs0 ·
k∏

i=1

(hs∗
ni)λsi

)js

.

Then, it picks wj ← Zq uniformly at random and computes d′
j as

d′′
j · (h0

�∏

v=1

htv
v · hV K

�+1)
wj .

Afterwards, it computes c′
j as:

c
∑k

s=1 λs0·js+1 · g
wj

2 .

Then, the simulator sends (c′
j , d

′
j) for all j = k + 1, . . . , n to the corrupted

parties P1, . . . , Pk. The simulator might receive decryption shares on behalf of the
corrupted parties.

3. The simulator does nothing.
4. The adversary can use any set V of at least k + 1 partial decryption shares to

construct the final decryption key:

(c′, d′) = (
∏

i∈V
cLi

i ,
∏

i∈V
dLi

i ),

where Li =
∏

j∈V,j �=i(−i)/(j − i) are Lagrange coefficients. The simulator does
nothing.

5. The adversary can use the decryption key (c, d) to decrypt the ciphertext. The
simulator does nothing.

Fig. 4. The simulation of the decryption protocol.

Proof. We argue for the strongest case, i.e. (n, 0, k). To show that Πfst is
(n, 0, k)-robust we analyze all protocols where the adversary on behalf of the
uncompromised parties may interact with the honest ones, i.e. FST.KeyGen
and FST.Decrypt. More precisely, we show that the adversary is incapable
to prevent the honest parties from executing these protocols successfully. The
FST.KeyGen protocol is instantiated with the DKG protocol from [10], which
was shown to be robust against malicious adversaries. The reason for this is
that a party which deviates from the protocol specification is either disquali-
fied or its secret share is reconstructed by the honest parties. In the case of the
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FST.Decrypt protocol the adversary has two options to attempt cheating. One
option is to try manipulating the ciphertext. This however, is prevented in Step
1 of the decryption protocol by checking the ciphertext for validity. The second
option is to try manipulating or denying decryption shares. This is prevented in
Step 3 by using the user public keys gxi , i ∈ [n] to check if the decryption shares
are valid. Hence only valid decryption shares are aggregated and the message
is decrypted correctly. Moreover, the adversary is allowed to control or halt at
most k parties. Thus, a valid decryption share can still be computed as long as
n ≥ 2k + 1. 
�
Theorem 2. Let n ≥ 2k + 1 and let A be a static adversary that (tA, εA)-
breaks the CCA forward security of (T, n, k)-Πfst from Sect. 3. Given A, we can
build an adversary A′ that (tA′ , εA′)-breaks the CPA security of HIBE ΠHIBE

from [2], an adversary A′′ that (tA′′ , εA′′)-breaks the sEUF-1CMA security of a
signature scheme Σ, and an adversary A′′′ that (tA′′ , εA′′′)-breaks the collision
resistance of hash function H, such that

tA′′′ ≈ tA′′ ≈ tA′ ≈ tA and εA′′′ + εA′′ + εA′ � εA.


�
Proof. Conceptually, we follow the proofs from Sections. 4 and 6 in [4], which
were also reproduced in Section 4.1 in [3]. In [4], a CPA-secure HIBE with � + 1
levels and identities of length n + 1 bits is turned into a CCA-secure HIBE with
� levels and identities of length n bits. The reason for the shorter identities in
the CCA-secure scheme is that this framework uses one bit of the identity as a
padding. This padding guarantees that decryption queries do not correspond to
prefixes of the challenge identity. In our scheme however, the first � levels are
single bits and the deepest level has elements in Zq, which makes it impossible
to spend one bit of each identity for the padding. However, in our scheme the
adversary is only allowed to make decryption queries with respect to time periods
(plus a value in Zq). Since time periods are always encoded with full length they
cannot correspond to prefixes of each other. Thus a padding is not necessary.

We start with describing an adversary A′ playing the CPA security game
for HIBE ΠHIBE and simulating the CCA forward security game for a static
adversary A.

At the beginning, A sends its choice of the k parties it wants to corrupt to
A′. Let B denote the set of the indices of these parties and G := {1, . . . , n} \ B.
Adversary A′ runs Sig.KeyGen to obtain (vk∗, signk∗). Then it computes
H(vk∗) := V K∗. Moreover, it receives a master public key mpk := gx

2 ∈ G2 from
its own security experiment. In order to simulate the FST.KeyGen procedure
adversary A′(on behalf of the uncompromised parties) runs the DKGSim pro-
tocol on input (gx

2 , n, k). Both adversaries receive all information to compute the
secret key shares of all compromised parties and the user public keys pki for all
i ∈ [n] as well as the common public key pk = gx

2 . Afterwards, A has access to
the following procedures, which are simulated by A′ as follows.
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Break-In(t’,j). On input a time period t′ = t1 . . . t� adversary A′ queries Key-
Query on all nodes from the set Ct′ , which was defined in the KeyUpdate
procedure in 3. According to the definition of Ct′ these are all the nodes which
allow the computation of the secret keys for all time periods t � t′ but for no
time period t < t′. As a response it obtains tuples of the form

(c, d, es+1, . . . , e�+1) =

(

gr
2, h

x(h0

s∏

v=1

hwv
v )r, hr

s+1, . . . , h
r
�+1

)

,

which correspond to internal nodes ω = ω1 . . . ωs, where s ≤ �. In order to
compute the secret keys skt′,j for all j ∈ G it proceeds as follows. It defines
equivalently to DecSim:

– His := hais for all i ∈ QUAL \ {n}, s = 0, . . . , k
– H∗

n0 :=
∏

i∈QUAL\{n}(H
−1
i0 ) · hx

– s∗
nj := snj = an(j) for j = 1, . . . , k

– H∗
ns := (H∗

n0)
λs0 · ∏k

i=1(h
s∗
ni)λsi for s = 1, . . . , k

– H̄n0 :=
∏

i∈QUAL\{n}(H
−1
i0 · d) for each tuple (c, d, . . . ) separately.

It computes for all tuples a corresponding value dj as:

∏

i∈QUAL\{n}

k∏

s=0

(His)js · (
H̄n0

) ·
k∏

s=1

(
(H̄n0)λs0 ·

k∏

i=1

(hs∗
ni)λsi

)js

and for all values x̃ from {c, ei+1, . . . , e�+1} it computes x̃j as x̃
∑k

s=1 λs0·js+1.
In order to guarantee a perfect simulation A′ re-randomizes the secret keys of

all parties in the same fashion as the decryption shares in (6). Finally, it outputs
skt′,j for all j ∈ G as the stack of tuples of the form (cj , dj , ej,i+1, . . . , ej,�+1).

Analogously to the decryption in DecSim it holds that

dj = hxj · (h0

s∏

v=1

hwv
v )r′·∑k

s=1 λk0·js+r′
.

Overall, these stacks form valid secret keys skt′,j for all j ∈ G and their
simulation is perfect. If Challenge(t∗,M0,M1) was already queried then all
break-in queries with t′ � t∗ are invalid.
Challenge(t∗,M0,M1). Adversary A submits two messages M0,M1 and chal-
lenge time period t∗. Adversary A′ forwards (t∗.V K∗,M0,M1) to Challenge in
its own security game and receives a ciphertext (C1, C2, C3) which equals

(

e(h, pk)r · Mb, gr
2, (h0

�∏

v=1

htv
v · hV K∗

�+1 )r

)

∈ G3 × G2 × G1,

where b is a uniformly random bit. Afterwards, it computes a signature σ∗ ←
Sig.Sign(signk∗, (C1, C2, C3)) and outputs the challenge ciphertext C∗ = (C1,
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C2, C3, vk∗, σ∗). If Break-In on input t′ � t∗ was previously queried then the
challenge query is invalid.
Dec(t, C1, C2, C3, vk, σ). Whenever A asks for a decryption then A′ proceeds as
follows. First, it checks if vk = vk∗ and Sig.Verify(vk, (C1, C2, C3), σ) = 1 or if
vk 	= vk∗ and H(vk) = V K∗. If one of these conditions is true then A′ aborts and
outputs a uniformly random bit to Guess in its own security game. Else it queries
KeyQuery(t, V K) to obtain the decryption key skt,V K = (c, d). Then, it simu-
lates the decryption procedure by running DecSim(t, (C1, C2, C3), vk, σ, (c, d)).
Since t, V K is unequal to and no prefix of t∗.V K∗ the query to KeyQuery is
valid. Dec cannot be queried on input (t∗, C∗).
Guess(b’). Adversary A outputs its guess b′ ∈ {0, 1}, which A′ forwards to
Guess in its own experiment.

We denote Forge the event that A′ aborts during a decryption query because
of the first condition and Coll that it aborts because of the second condition.
Together with Lemma 1 it can be seen that adversary A′ provides a perfect
simulation to A as long as any of these two events do not happen. Thus,

|εA − εA′ | � Pr[Forge ∪ Coll] = Pr[Forge] + Pr[Coll]. (7)

In order to determine Pr[Forge] note that if Forge occurs then A has sub-
mitted a valid ciphertext (C1, C2, C3, vk∗, σ∗), which means that σ∗ is a valid
signature for message (C1, C2, C3) under verification key vk∗. We show how to
build an adversary A′′ that breaks the sEUF-1CMA security of Σ using A.

Adversary A′′ plays the sEUF-1CMA security game with respect to Σ. At
the beginning, it receives a verification key vk∗ from its challenger. After A
has submitted its choice of corrupted parties adversary A′′ picks a uniformly
random x ← Zq and executes DKGSim(gx

2 , n, k) on behalf of the uncorrupted
parties. Since A′′ is in possession of x it is able to simulate all secret keys
queried to Break-In. If A makes a valid query Dec(t, C1, C2, C3, vk∗, σ∗) then
A′′ outputs (C1, C2, C3, σ

∗) as a forgery to its own security experiment. If A
makes a query Challenge(t∗,M0,M1) then A′′ picks a bit b uniformly at random
and computes FST.Encrypt(pk, t∗,Mb) → (C1, C2, C3). Afterwards, it queries
the signing oracle in its own security experiment on input (C1, C2, C3). It receives
a signature σ and returns (t∗, C1, C2, C3, vk∗, σ) to A. If A happens to query
Dec(C1, C2, C3, vk∗, σ∗) then, A′′ submits ((C1, C2, C3), σ∗) as its forgery. Note
that if the challenge oracle was already queried we still have ((C1, C2, C3), σ) 	=
((C1, C2, C3), σ∗). It follows that

Pr[Forge] = εA′′ . (8)

It remains to determine Pr[Coll] for H by building an adversary A′′′ that
breaks the collision resistance of H. It is easy to see that adversary A′′′ can sim-
ulate the CCA forward security game for A perfectly by running FST.KeyGen
and Sig.KeyGen. Whenever a collision occurs it forwards the corresponding
inputs to H to its own challenger. It follows that

Pr[Coll] = εA′′′ . (9)
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Putting (8) and (9) in (7) gives us εA � εA′ + εA′′ + εA′′′ .
It is easy to see that all algorithms run in approximately the same time. This

completes the proof. 
�
Theorem 3. Let n ≥ 2k + 1 and let A be an adaptive adversary that (tA, εA)-
breaks the CCA forward security of (T, n, k)-Πfst from Sect. 3. Given A we can
build an adversary A′ that (tA′ , εA′)-breaks the CPA security of HIBE ΠHIBE

from [2], an adversary A′′ that (tA′′ , εA′′)-breaks the sEUF-1CMA security of a
signature scheme Σ, and an adversary A′′′ that (tA′′ , εA′′′)-breaks the collision
resistance of hash function H, such that

tA′′′ ≈ tA′′ ≈ tA′ ≈ tA and εA′′′ + εA′′ +
(

n

k

)
· εA′ � εA.

Proof. Adversary A′ proceeds as in the proof of Theorem 2. The only difference
is that it guesses in advance of step 1 of DKGSim which parties the adversary
is going to corrupt. Whenever the adversary corrupts a party Pj , j ∈ B then it
takes over the role of this party and receives all values computed and stored on
behalf of this party by A′. If at the end A outputs a bit but has not corrupted
at least k parties then A′ adds some artificial corruptions to the set B uniformly
at random such that it has exactly k corrupted parties. Adversary A′ aborts the
simulation and outputs uniformly random bit if a guess was wrong (either of A
or A′). The simulation is successful with probability 1/

(
n
k

)
.

Adversary A′′ also proceeds as in the proof of Theorem 2. Since it is in
possession of the common secret x it can compute the secret values hxi for
all i ∈ [n] directly. Hence, it has no additional loss in its success probability.
Guessing the corrupted parties has also no effect on breaking collision resistance
and thus its probability remains unchanged as well.

4 Discussions

Tolerating Mobile Adversaries. A mobile adversary is able to switch between
the parties it corrupts. It holds in general that it is not possible to tolerate such
adversaries while having a non-interactive key update procedure. The reason is
that a mobile adversary could gain all secret key shares successively without ever
exceeding the threshold in any time period. Then, by updating all the shares to
the latest time period it would be able to reconstruct the secret key. However,
in our fst-PKE prevention against mobile adversaries is possible by adding a
proactive security mechanism [11,12,17]. Proactive security allows to refresh the
secret key shares in a way such that all shares which were not refreshed cannot be
used to reconstruct the secret key anymore (except for the case that the amount
of not refreshed shares is bigger than the threshold). Although the proactive
security mechanism is interactive, the secret share holders can decide how often
or when they are willing to execute it. For instance, this could happen with a
different level of granularity than the non-interactive key update mechanism or
only when necessary. In order to proactivize the key material in our scheme it
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does not even require an additional protocol. Indeed, it suffices that the users
execute the DKG protocol where each party Pi sets the constant term of poly-
nomial ai to 0. Then, the final share held by all parties is multiplied to all terms
d′

i in their secret key shares.

From Static to Adaptive Adversaries. To protect against adaptive adversaries
we used complexity leveraging. This approach results in an additional security
loss of

(
n
k

)
, where n is the number of parties and k the threshold. Although,

this loss seems to be quite big, in practice n is relatively small. For instance for
a threshold scheme with 10, 20 or 30 parties the maximum loss is 28, 218 and
228, respectively. Libert and Yung [15] also achieve security against adaptive
adversaries but circumvent complexity leveraging by using bilinear pairings of
composite order. This approach is known as the dual system approach and prior
to their work it was only used to achieve full security for (Hierarchical-)IBE
and attribute-based encryption schemes [13,14,19]. Although the dual system
approach is a very powerful tool to obtain full security or security against adap-
tive adversaries it lacks efficiency when implemented. The reason for this is that
groups of composite order require a much bigger modulus to guarantee the same
level of security than elliptic curves on groups of prime order.7 It can be seen
that the security loss in our scheme can be compensated by a slightly bigger
modulus. This modulus remains much smaller compared to one of composite
order and thus results in a much more efficient scheme.

Finally, it should be mentioned that there exist several techniques to transfer
the dual system approach to prime order groups [9,14,19]. However, they result
in larger ciphertexts and seem also to be less efficient in terms of communication
rounds for decryption. Moreover, it is not clear whether they can be instan-
tiated without a trusted dealer. We leave it as an open problem to use these
techniques to achieve the same efficiency and advantages as our fst-PKE, i.e. a
non-interactive key update and decryption procedure, no trusted dealer, and the
possibility to implement the scheme on standardized elliptic curves.
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Abstract. TarGuess-I is a leading targeted password guessing model
using users’ personally identifiable information (PII) proposed at ACM
CCS 2016 by Wang et al. Owing to its superior guessing performance,
TarGuess-I has attracted widespread attention in password security. Yet,
TarGuess-I fails to capture popular passwords and special strings in pass-
words correctly. Thus we propose TarGuess-I+: an improved password
guessing model, which is capable of identifying popular passwords by
generating top-300 most popular passwords from similar websites and
grasping special strings by extracting continuous characters from user-
generated PII. We conduct a series of experiments on 6 real-world leaked
datasets and the results show that our improved model outperforms
TarGuess-I by 9.07% on average with 1000 guesses, which proves the
effectiveness of our improvements.

Keywords: TarGuess · Targeted password guessing · Probabilistic
Context-Free Grammar (PCFG) · Personally Identifiable Information
(PII)

1 Introduction

Password-based authentication is still an essential method in cybersecurity [1].
To understand password security, people have gone through several stages, from
the initial heuristic methods with no theoretical basis, to the scientific probabilis-
tic algorithms [2]. Since the emergence of Markov-based [3,4] and PCFG-based
[5,6] probabilistic password guessing models, trawling password guessing has
been intensively studied [7–10]. Recently, several large-scale personal information
database leakage events have caused widespread concern in the field of password
security [11–14]. With the development of related researches, it has been found
that a large part of net-users tend to create passwords with their PII and the
targeted password guessing models based on users’ PII have emerged [15–17].

Das et al. [15] have studied the threat posed by password reuse and proposed
a cross-site password guessing algorithm for the first time. However, due to the
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lack of popular password recognition, this algorithm is not optimal. Li et al.
[16] studied what extent a user’s PII can affect password security, and they
proposed a targeted password guessing model, personal-PCFG, which adopts a
length-based PII matching and substitution. But it could not accurately capture
users’ PII usage, which greatly hinders the efficiency of password guessing.
As a milestone work on password guessing, Wang et al. [17] put forward a
targeted password guessing framework, TarGuess, which contains the password
reuse behavior analysis and type-based PII semantic recognition, significantly
improving the efficiency of the password guessing. Wang et al.’s [17] remarkable
achievements have motivated successive new studies on password security [18–21]
and even led the revision of the NIST SP800-63-3 [22,23].

TarGuess framework is proposed after an in-depth analysis of users’ vulner-
able behaviors such as password construction using PII and password reuse,
including four password guessing models for four attacking Scenarios #1 ∼ #4.
TarGuess-I caters for Scenario #1 where the attacker is equipped with the victim
user’s PII information such as name, birthday, phone number, which can be
easily obtained from the Internet [24]. And the rest three models required user
information such as PII attributes that play an implicit role in passwords (e.g.,
gender and profession) and/or sister passwords that were leaked from the user’s
other accounts. This work mainly focuses on Scenario #1. As more users’ PII is
being leaked these days, Scenario #1 becomes more practical.

Wang et al. [17] showed that their TarGuess-I model is more efficient than
previous models using users’ PII to crack users’ passwords, which can gain
success rates over 20% with just 100 guesses. However, we find that there is
still room for improvement in the analysis of users’ vulnerable behaviors after
using this model to analyze the real data. Therefore, based on TarGuess-I, we
put forward two improvements and proposed an improved model, TarGuess-I+,
to make it more consistent with users’ vulnerable behavior characteristics and
improve the performance of guessing.

Our Contributions. In this work, we make the following key contributions:

(1) An Improved Password Guessing Model. After analyses of users’
vulnerable behaviors based on a total of 147,877,128 public leaked data
and TarGuess-I, we find that the effectiveness of some semantic tags has
not been testified and employed in the experiments of Wang et al. [17]. To
fill the gap, we make use of the adaptiveness of TarGuess-I PII tags and
define two new tags: the Popular Password tag P1 and the Special String
tag Xn. This gives rise to a variant of TarGuess-I, we call it TarGuess-I+.

(2) An Extensive Evaluation. To demonstrate the feasibility of the improve-
ments, we perform a series of experiments on the real-world leaked datasets.
The experimental results show that the success rate of the improved
model TarGuess-I+ outperforms the original model TarGuess-I by 9.07% on
average with 1000 guesses, which proves the feasibility of the improvements.

(3) A Novel Method. We introduce a novel method to the password guessing:
parsing the password segments into special strings, such as anniversary days
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and someone’s name, that appeared in user-generated PII, such as e-mail
addresses and user names.

2 Preliminaries

This section explicates what kinds of users’ vulnerable behaviors are considered
in this work and gives a brief introduction to the models.

2.1 Explication of Users’ Vulnerable Behaviors

Users’ vulnerable behaviors are the key influence factor of password crackability
[25]. A series of related studies have been conducted since the pioneering work
of Morris and Thompson in 1979 [26]. Part of the studies are based on data
analyses, such as [3,12,14,27–30], the others are based on user surveys, such
as [15,31–34]. In summary, the discovered users’ vulnerable behaviors can be
classified into the following three categories:

1. Popular Passwords. A large number of studies (such as [3,14,29]) have
shown that users often choose simple words as passwords or make simple
transformed strings to meet the requirements of the website password setting
strategy, such as “123456a” meeting the “alphanumeric” strategy. These
strings, which are frequently used by users, are called popular passwords.
Furthermore, Wang et al. [35] have found that the Zipf distribution is the
main cause of the aggregation of popular passwords.

2. Password Reuse. After a series of interviews to investigate how users
cope with keeping track of many accounts and passwords, Stobert et al.
[31] point out that users have more than 20 accounts on average and it is
fairly impossible for them to create a unique password for each account, so
reusing passwords is a rational approach. At the same time, password-reuse
is a vulnerable behavior, the key is how to reuse.

3. Password Containing Personal Information. Wang et al. [36] note
that Chinese users tend to construct passwords with their pinyin name and
relevant digits, such as phone number and birthdate, which is quite different
from English users. They revealed a new insight into what extent users’
native languages influence their passwords and what extent users’ personal
information plays a role in their passwords.

Considering the scenario on which TarGuess-I is based, we only analyze
the users’ vulnerable behaviors of using popular passwords and making use of
personal information.

2.2 The PCFG-Based Password Guessing Model [5]

TarGuess-I model is built on Weir et al.’s PCFG-based model, which has shown
great success in dealing with trawling guessing scenarios [17]. The Context-free
grammar in [17] is defined as G = (V, Σ,S,R), where:
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Training List:
abc1234
qwerty

qwe123!@#
Suny1111

...
Training

Guess generation

Guesses List:
abc1234
abc1111
qwe123!@#
abc123!@#
Suny1111
Suny1234

Example
P(abc1111)
=P(S L3D4)*P(L3 *P(D4 )
=0.4*0.6*0.4
=0.144

grammar G

Fig. 1. An illustration of PCFG-based model

– V is a finite set of variables;
– Σ is a finite set disjoint from V and contains all the terminals of G;
– S is the start symbol and S ∈ V;
– R is a finite set of productions of the form: α → β, where α & β ∈ V ∪ Σ.

The core assumption of the model is the segments of letters, numbers, and
symbols in a password were independent of each other, so in the V except for
the S start symbol, only to join Ln letters, Dn digits and Sn symbols tag sets,
where n represents the segment length, such as L3 represents 3-letter segments,
D4 represents 4-digit segments.

There are two phases in the model, the training phase and the guess
generation phase, as shown in Fig. 1. In the training phase, the password is
parsed into the LDS segments based on the length and the type to generate the
corresponding password base structure (the start symbol S). Then, it counts the
segments frequency table in each tag set, and it outputs the context-free grammar
G. In the guess generation phase, passwords are derived by the grammar G and
the segments frequency table. The final output set is arranged based on the
probability multiplied by all the frequency of segments in the password.

2.3 The Targeted Password Guessing Model TarGuess-I [17]

TarGuess-I adds 6 PII tags (Nn name, Un username, Bn birthday, Tn phone
number, In id card, En mailbox) to the three basic tags of LDS in the PCFG-
based model. For each PII tag, its index number n is different from the LDS
tag, which represents the type of generation rule for this PII. For example, N
stands for name usage, while N1 stands for the full name, and N2 stands for
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Zhang1982 [Zhang San,19820607]
John0627 [John Smith,06071982]
Li1982 [Wei Li,19820102]
love@1314 [Ava White,04171982]
Suny1111 [David Lee,01021982]
...

Training

S N 3 B 5 0.2
S N 4 B 4 0.15
S L 4 S 1 D 4 0.1
S L 4 D 4 0.1

… … …

L 4 love 0.6
L 4 Suny 0.4
S 1 @ 1
D 4 1314 0.6
D 4 1111 0.4

… … …

Example
P(love@1111)
=P(S 4S1D4)*P(L4 *
P(S1 @)*P(D4 1111)
=0.1*0.6*1*0.4
=0.024

N 3 B 5 0.2
N 4 B 4 0.15
love@1314 0.06
love@1111 0.024
… …

Guess generation

To attack[Bob Smith,05231976],
Try guesses:
Smith1976,
Bob0523,
love@1314,
love@1111,

PII substitution

grammar GI

Fig. 2. An illustration of TarGuess-I [17]

the abbreviation of the full name (such as “Zhang San” abbreviated as “zs”). B
stands for birthday usage, while B1 stands for the use of birthday in the format
of month/year (e.g., 19820607), B2 stands for the use of birthday in the format
of month/day/year. For a specific description, see Fig. 4.

Figure 2 shows an illustration of the model. For each user, the element set
of each PII tag is first generated through the user’s PII to match with the
password, and the rest of the segments are parsed into LDS segments. Then the
frequency of the elements of each set will be calculated as with PCFG. Finally,
the context-free grammar GI containing the PII tags will be output.

3 Analysis of Real Password Data and TarGuess-I Model

This section analyzes the real-world leaked password data and TarGuess-I to
provide the basis for the improvement of the model. We dissect 146,570,537
leaked user passwords from 6 websites (see Table 1) to find out the disadvantages
of TarGuess-I.

Table 1. Basic information about our personal-info datasets

Dataset Web service When leaked Total With PII

Duduniu E-commerce 2011 16,258,891

Tianya Social forum 2011 29,020,808

CSDN Programmer 2011 6,428,277

renren Social forum 2011 2,185,997

12306 Train ticketing 2014 129,303 �
youku Video entertainment 2016 92,547,261
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Table 2. Ranking and proportion of top-10 popular passwords

Rank Duduniu Tianya CSDN Renren 12306 Youku

1 123456 123456 123456789 123456 123456 123456

2 111111 111111 12345678 123456789 a123456 123456789

3 123456789 000000 11111111 111111 123456a xuanchuan

4 a123456 123456789 dearbook 12345 woaini1314 111111

5 123123 123123 00000000 5201314 5201314 123123

6 5201314 121212 123123123 123123 111111 000000

7 12345 123321 1234567890 12345678 qq123456 5201314

8 aaaaaa 111222TIANYA 88888888 1314520 1qaz2wsx 1234

9 12345678 12345678 111111111 123321 1q2w3e4r a123456

10 123456a 5201314 147258369 7758521 123qwe 123321

% 5.27% 1.17% 3.34% 4.91% 1.10% 3.89%

3.1 Analysis of Popular Passwords

According to the frequency of occurrence, the top-10 popular passwords in 6
password databases with the proportion of them were calculated, and the results
are shown in Table 2. Table 2 shows that 1.10% to 5.27% of users’ passwords could
be guessed successfully by just using top-10 popular passwords. Chinese users
prefer simple combinations of numbers, such as “123456”, “111111”, “000000”,
and the strings with the meaning of love, such as “5201314” and “woaini1314”.

There are also some unique passwords in the top-10 list, such as
“111222TIANYA” in Tianya, “dearbook” and “147258369” in CSDN, “7758521”
in Renren and “xuanchuan” in Youku. These passwords may come from the
name or the culture of the website, or they maybe come from a large number of
“ghost accounts” held by a particular user of the website. Besides, “1qaz2wsx”
and “1q2w3e4r” in the top-10 of 12306 is the password constructed with the
QWERTY keyboard pattern.

By analyzing the list of popular passwords, we find that there is one
missing item in the password recognition of the TarGuess-I model: the popular
passwords.

Popular Password. The statistical results of the distribution of base structures
analyzed by the PCFG-based model for top-10000 popular passwords are shown
in Table 3.

Table 3 illustrates that the majority of popular passwords are pure numbers.
Besides, composite passwords (that is, the structure includes multiple types of
character) also account for a considerable part, especially 63.15% in the 12306
data set. Since the grammar GII of TarGuess-I does not contain tags related to
the popular passwords, while TarGuess-I is based on data-driven probabilistic
statistical PCFG algorithm, which generates passwords based on the existing
base structures in the data and the set of elements in various tags. Therefore, in
the training phase, the model parses the password into LDS segments, an illusion
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Table 3. Form distribution of the top-10000 popular passwords

Form Duduniu Tianya CSDN Renren 12306 Youku

Letter 11.47% 10.93% 15.56% 10.67% 4.56% 12.46%

Digit 39.18% 63.37% 65.66% 66.27% 32.29% 63.77%

Symbol 0.02% 0.03% 0.04% 0.02% 0.00% 0.08%

Composite 49.34% 25.67% 18.74% 23.05% 63.15% 23.69%

is shown in Fig. 1. Due to the guess generation phase of the PCFG algorithm, it
might generate many invalid outputs at last.

For example, “adbc1234” is the 28th most popular password in 12306, which
is divided into L4D4 syntax using PCFG algorithm. In the element set of
L4, “love” ranks the first, while “1234” ranks the first in D4. Therefore, in
the guessing stage, the first output password with the base structure L4D4 is
“love1234”. This password occupies a relatively small proportion in the actual
password distribution but ranks much higher in the model guessing list due to
the high probability, thus reducing the overall password guessing success rate.

3.2 Analysis of Passwords Containing Personal Information

We adopt the improved TarGuess-I+P model, which contains the popular
password tag P1, to analyze the passwords. The results of the top-10 password
base structures and the proportion of the password containing PII have been
shown in Table 4. Due to the lack of datasets containing users’ PII, we choose
the unique PII (such as e-mail, phone, ID number) in 12306 to match passwords
in other datasets. The sizes of the password sets are shown in Table 5.

The results indicate that nearly 50% of users generally construct passwords
using PII or choose popular passwords. And we find that the top-10 password
base structures contain several base structures with base tags that are not
relevant to users’ PII. Based on the above analysis of the users’ behavior in
constructing the password, we can speculate that the top-10 base structures of
passwords should be related to the strings which are accessible for the user to
memorize.

The strings which are accessible to memorize include users’ PII conversions
and popular passwords. They also include user-generated strings (hereinafter
referred to as the special strings) that have special meaning for the user but are
of no equal importance to other users. For A user, for example, “080405” is A’s
particular date, but for another user B, “080405” is just a very ordinary day, then
the probability of A’s password containing this string is different from that of
B’s. Meanwhile, we can not find the string “080405” in A’s and B’s demographic
information (such as name, ID number, telephone number, etc.). The special
string cannot be extracted from the user’s demographic information but may
appear in strings which are generated by the user, such as e-mail address and



A New Targeted Password Guessing Model 357

Table 4. Ranking of top-10 base structure, proportion of the passwords containing PII
and proportion of popular passwords

Rank Duduniu Tianya CSDN Renren 12306 Youku

1 E1 D6 P1 D7 P1 P1

2 D7 D7 D8 D6 D6 D6

3 P1 P1 E1 P1 D7 D7

4 D6 D8 B1 D8 N2D6 D8

5 D8 E1 D9 E1 U1 N2D6

6 N2D6 D10 N2D6 U3 D8 U1

7 A1D7 B1 U1 D9 E1 U3

8 N2D7 B8 D11 B1 N2D7 E1

9 U1 D9 N2D7 B8 U3 B1

10 A2D6 N2D6 D10 D11 A2D6 N1D3

% of PII 41.54% 35.43% 39.64% 36.85% 42.78% 40.65%

% of P1 3.99% 5.91% 8.91% 6.27% 4.14% 5.58%

user name, or it may appear in passwords on other servers of the user. Therefore,
we found another lack of recognition in TarGuess-I: the special string.

The Special String. The analyses of the user data in TarGuess-I also include
the user-generated strings, such as e-mail address En and user name Un.
However, the analyses of these 2 user-generated strings are not accurate enough.
Only three parse type (Entire E1&U1, the first letter segments E2&U2 and the
first digit segments E3&U3) are proposed.

The probability distribution of special strings for each user is different. If we
use the original TarGuess-I model for password recognition, because of the lack
of recognition of the special string, most of these segments will be parsed into
typical LDS segments, merging the users’ behavior characteristics, thus they
hinder the effectiveness of the model. Therefore, we consider adding the special
string tags Xn to the set V of TarGuess-I.

Considering that only two user-generated PII are needed in TarGuess-I, the
e-mail address and the user name, we employ the sliding window algorithm to
analyze the coverage of consecutive substrings of the e-mail address and user
name in the password to verify the validity of the special string improvement.
The result is shown in Fig. 3. Note that, to differ from TarGuess-I, we only
consider substrings with len ≥ 2, and we ignore the full strings of e-mail address
prefix and user name.

Figure 3 shows that a significant number of user passwords do overlap user-
created strings. It gives us a new hint that when an attacker obtains information
about a user that is not public or very useful, they may turn that information
into a special string to participate in password guessing.
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Fig. 3. The probability of the occurrence of the special string Xn in the password

3.3 Brief Summary

We find two improvements of TarGuess-I model in this section:

– Add the popular password tag P1 to the set V of probability context GII
and apply the popular password list generated from a data set similar to the
target website or server type.

– Add the special string tag Xn to the set V of probability context GII , and
add the special string associated with the user for password guessing.

4 The Improved Model TarGuess-I+

We now propose TarGuess-I+, which is capable of identifying the popular
passwords and the special strings. The context-free grammar GII = (V, Σ,S,R)
in the model is described as below:

1. S ∈ V is the start symbol;
2. V = {S;Ln,Dn, Sn;Nn, Bn, Un, En, In, Tn;P1,Xn} is a finite set of variables,

where:
(a) Letters (Ln), Digits (Dn), Symbols (Sn) are the basic tag of the PCFG

algorithm, we rename them in case to differ from other improvement tags;
(b) Name (Nn), Birthday (Bn), User name (Un), E-mail address (En),

ID number (In), and Phone number (Tn) are the PII tags created in
TarGuess-I model, see Fig. 4 for an example of generation;

(c) Popular password (P1) and Special string (Xn) are proposed in this paper,
the implementation detail have been shown in Subsect. 4.1.
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3. Σ = {95 printable ASCII codes, Null} is a finite set disjoint from V and
contains all the terminals of GII ;

4. R is a finite set of rules of the form A → α, with A ∈ V and α ∈ V ∪ Σ.

First name

Last name

Zhang  

San

N1

zhangsan  
N2

zs  
N3

zhang  
N4

san  
N5

szhang  
N6

zhangs  
N7

Zhang  

ID(len=18)

I3

123456  
I2

123  
I1

4444  

B1

19990228  
B2

02281999  
B3

28021999  
B4

0228  
B5

1999  
B6

199902  
B7

021999  
B8

990228  
B9

022899  
B10

280299  

year
1999  

month
02  

day
28  

User name

zss333

U1

zss333  
U2

zss 
U3

333 

Email address

lovezs33@example.com

E1

lovezs33123 456 19990228 4444
E2

lovezs
E2

33  
Telephone(len=11)

123-4567-8901

T1

12345678901
T2

123
T3

8901  

Fig. 4. An illustration of PII tags generation

4.1 Model Implementation

Popular Password P1. Add the popular password tag P1 to V set of the
grammar GI , and the element set in P1 tag is a top-N popular password list
based on the data statistics of relevant websites. The index 1 in P1 has no
meaning just to conform to the overall format. The parse of P1 tag is shown in
Fig. 5.

In the training phase, the top-N list is matched with the password data by a
regular expression. If the match occurs, the occurrence of the corresponding
password in P1 set is increased by 1. In the guess generation phase, the
probability of containing P1 password structures is multiplied by the frequency
of the corresponding password in the element set of P1 as the final probability
of output password.

Figure 6 shows the similarity between the top-k list of the popular passwords
compiled by six websites and the top-k list of the popular passwords of each
website (k represents the first k pieces of password ranking). It can be seen from
the figure that when k value is around 300, the similarity tends to a stable peak,
and then the similarity continues to decrease. Therefore, the size of the popular
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(Training Password set)
123456 (Procceed mask)

[(123456,None)]
(Procceed mask)

[(123456,P1)]

Fig. 5. An illustration of P1 tag parse

Fig. 6. The similarity of the popular passwords

User name

zss333

X4,0

zss3  
X4,1

ss33 
X5,0

zss33
Email address

lovezs33@example.com

X4,0

love

X4,2

s333 
X5,1

ss333

X4,1

ovez
X4,2

vezs
X4,3

ezs3
X4,4

zs33
X5,0

lovez
X5,1

ovezs
X5,2

vezs3
X5,3

ezs33
X6,1

ovezs3
X6,2

vezs33
X7,0

lovezs3
X7,1

ovezs33

Fig. 7. An illustration of Xn tags parse
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password list should be limited to about N = 300 to improve the success rate of
cross-site guessing.

Special String Xn. The element sets of the special string Xn tag are generated
from the e-mail address prefix and user name. Since there are various and
different ways for each user to generate special strings, it is difficult to categorize
the generation methods of special strings uniformly and may cause sparse data.
Therefore, n is only classified according to the length of the string. To avoid
generating too many conventional strings with excessive extraction granularity,
which results in invalid recognition, we only consider strings with len ≥ 4. An
illustration of special string Xn parse is shown in Fig. 7. The second number in
Xn,m tags represents the generation type in the element sets, which means the
starting position of the substrings.

5 Experiments

TarGuess-I is mainly used in online guessing scenarios, where the guess number
allowed is the most scarce resource, while computational power and bandwidth
are not essential [17]. Therefore, we mainly evaluate the availability of the model
by guess-number graphs.

5.1 Experiment Setup

Our experiments need various types of users’ PII. Because of the limited
experimental resources and the lack of original datasets associated with PII,
we only employed 105 pieces of 12306 data containing users’ PII to match the
rest of datasets using e-mail addresses, and the obtained data size is shown in
Table 5.

Table 5. The size of experiment datasets

Duduniu Tianya CSDN Renren 12306 Youku Total

Training set – – – – 25,372 11,554 36,926

Testing set 7,539 6,792 2,998 1,062 74,516 27,278 120,185

Total 7,539 6,792 2,998 1,062 99,888 38,832 157,091

Note that, to make our experiments as scientific as possible, we follow 4 rules:

1. Training sets and testing sets are strictly separated;
2. The comparison experiments of the two models are based on the same training

sets and testing sets;
3. The base structures of password sets for the experiments are evenly dis-

tributed;
4. The training sets and testing sets shall be as large as possible.
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To follow the rules 3 and 4, we first filtrate the password data by analyzing
the base structure of the passwords using TarGuess-I. We store the passwords
which have their base structure with more than 10 occurrences. And we choose
the 12306 set and Youku set as training sets and testing sets at a ratio of 7:3,
the other data sets have been entirely used for testing.

5.2 Experiment 1: Validation of the Improvements

We adopted two improvement methods to generate two models: TarGuess-
I+P with popular password tag P1, and TarGuess-I+X with special string tag
Xn, then we chose 12306 training data and Youku training data to generate
the context-free grammars GI and GII . At last, we implemented comparison
experiments with the corresponding testing data. The results are shown in Fig. 8
and Table 6.

(a) Improved with P1 (b) Improved with Xn (c) base structure

(d) Improved with P1 (e) Improved with Xn (f) base structure

Fig. 8. Figs. 8(a), (b) and (c) are the results of experiments based on 12306 data set;
Figs. (d), (e) and (f) are the results of experiments based on Youku data set.

Popular Password. Figure 8(a) shows that the success rate of TarGuess-I+P
is slightly lower than that of TarGuess-I within 100 guesses, but grows higher
than the latter from 100 to 104 guesses. This maybe due to the largest part
of passwords with pure-digits base structures in 12306 set. These types of
passwords will be generated more at first by TarGuess-I’s grammar GI , but
a few by TarGuess-I+P ’s grammar GII . Figure 8(d) and Table 6 show that
TarGuess-I+P significantly outperforms TarGuess-I by 0.28%–6.35% in the
Youku-based experiment, which proves the effectiveness of the improvement
of popular passwords.

Special String. Figures. 8(b) and 8(e) show that TarGuess-I+X is close to
TarGuess-I with a slightly lower success rate within 1000 guesses, but gradually
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Table 6. The statistics of Fig. 8

Setup Model 10 102 103 104

12306-train TarGuess-I 12.655 22.808 29.354 35.085

↓ TarGuess-I+P 12.651 22.954 29.898 35.187

12306-test TarGuess-I+X 12.643 23.028 32.003 35.668

Youku-train TarGuess-I 14.877 24.223 30.394 33.795

↓ TarGuess-I+P 15.102 25.392 31.891 34.366

Youku-test TarGuess-I+X 14.634 24.613 31.008 34.305

Table 7. The top-5 rank of password base structure with the special string Xn tags

12306 Youku

Structure Proportion Rank Structure Proportion Rank

X8 0.2449% 89 X6 0.2749% 75

X9 0.2335% 92 X8 0.2456% 86

X6 0.1803% 115 X7 0.2383% 91

X10 0.1718% 122 X9 0.2236% 96

X4D6 0.1601% 127 X5D3 0.1833% 108

outperforms TarGuess-I with the increasing number of guesses. The main reason
is that the passwords containing the special strings account for a relatively small
proportion of the entire password data, seeing Table 7. And some higher-ranked
base structures will be reduced, seeing Figs. 8(c) and 8(f), because some of the
passwords, which were originally parsed into these base structures, will be parsed
into which contains Xn.

5.3 Experiment 2: Evaluation of TarGuess-I+

We add 2 new tags to the variable set V of TarGuess-I to generate a new
improved model TarGuess-I+, and choose the large datasets 12306 and Youku
for training to generate the context-free grammar GII . Then, we perform a series
of comparison experiments using the 6 password datasets mentioned at subsect.
5.1. Figure 9 gives 6 graphs for the experiment results, and Table 8 displays the
detailed statistics of the 6 graphs.

From the results, we can see that there is an obvious difference in Fig. 9(c) of
the CSDN-based experiment. The success rate of TarGuess-I+ based on 12306
data is significantly higher than that of TarGuess-I, but the same comparison
based on Youku data is not so clear like the former. We conjecture that this
difference maybe because the grammar GII generated by TarGuess-I+ based on
12306 data is more suitable for CSDN data. Table 9 shows that the 12306-
based grammar GII generated by TarGuess-I+ has the largest proportion of
base structures with PII tags, and the pure-digits base structures rank lower
than others, which may satisfy the distribution of CSDN data.
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Table 8. The statistics of Fig. 9

Training set Testing set Model 10 102 103 104

12306-train 12306-test TarGuess-I 12.655 22.808 29.354 35.085

TarGuess-I+ 12.643 23.028 30.182 35.668

Youku-test TarGuess-I 15.119 25.002 31.614 37.161

TarGuess-I+ 15.145 25.444 32.505 37.810

Duduniu TarGuess-I 10.639 17.957 23.892 29.671

TarGuess-I+ 10.203 19.109 28.383 34.008

Tianya TarGuess-I 12.832 19.173 23.814 30.134

TarGuess-I+ 12.812 19.678 26.666 32.743

CSDN TarGuess-I 12.341 19.902 26.308 33.222

TarGuess-I+ 15.808 23.291 29.598 34.417

Renren TarGuess-I 15.873 22.607 27.754 36.027

TarGuess-I+ 15.873 23.665 34.151 41.751

Youku-train 12306-test TarGuess-I 12.032 21.558 27.013 30.067

TarGuess-I+ 12.438 22.366 29.015 31.691

Youku-test TarGuess-I 14.877 24.223 30.394 33.795

TarGuess-I+ 15.076 25.469 32.488 35.05

Duduniu TarGuess-I 10.223 17.028 21.985 26.254

TarGuess-I+ 10.484 18.287 24.105 27.996

Tianya TarGuess-I 12.509 18.829 22.571 28.041

TarGuess-I+ 12.731 19.355 23.996 29.133

CSDN TarGuess-I 11.890 21.136 25.994 29.422

TarGuess-I+ 12.204 20.979 26.543 29.481

Renren TarGuess-I 15.200 22.222 26.070 31.890

TarGuess-I+ 15.584 22.799 27.706 32.949

It is interesting to find that the success rates of TarGuess-I+ grow dramati-
cally during a short period of the growing guess number. One is based on Youku-
train data in Duduniu-based experiment, and two are based on 12306-train
data in Renren-based and Tianya-based experiments. We attribute this to the
contribution of popular password tag P1, which outputs the popular passwords
concentrated in a certain period of the guess number.

Table 10 calculates the percentage of improvements of TarGuess-I+ in the
password guessing success rate compared to TarGuess-I with 1000 guesses based
on 6 test datasets. The results show that TarGuess-I+ outperforms TarGuess-
I by 2.11%-23.05% and 9.07% on average. Though the effectiveness of each
improvement fluctuates wildly because of the suitableness of grammar GII for
each data set, it does prove that our improvements are effective. The results
of this paper also show the necessity of multi-factor authentication in critical
information systems (e.g., military systems, medical systems) [37,38].
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(a) 12306 (b) Youku (c) CSDN

(d) Duduniu (e) Renren (f) Tianya

Fig. 9. Experiment results for comparison with TarGuess-I+ and TarGuess-I based on
6 datasets.

Table 9. The top-10 rank of base structures and proportion of that with additional
tags (PII tags and popular password tag)

Rank 12306-train Youku-train

TarGuess-I TarGuess-I+ TarGuess-I TarGuess-I+

1 D6 4.70235 P1 5.46191 D6 8.50502 P1 8.15309

2 U1 3.5697 U1 3.57776 D7 5.8582 D6 6.2028

3 D7 3.08793 D6 3.32009 D8 2.83745 D7 5.40362

4 E1 2.90005 E1 2.90005 N2D6 2.4342 D8 2.68715

5 U3 2.42767 D7 2.75646 U1 2.39387 U1 2.36088

6 N2D6 2.42767 U3 2.3807 U3 2.31689 U3 2.23623

7 N2B1 1.88013 N2B1 1.89087 E1 2.04194 E1 2.03461

8 N1D3 1.78217 N1D3 1.78217 L2D6 1.63135 N2D6 1.8843

9 D8 1.75801 N2D6 1.71373 B1 1.5617 B1 1.55803

10 N2D7 1.68823 D8 1.66944 N1 1.47249 N1 1.45905

% of additional tag 63.51863 70.12532 49.49045 60.6011

Table 10. The improvements of TarGuess-I+ compared with TarGuess-I within 1000
guesses

Training set Testing set

Duduniu Tianya CSDN Renren 12306 Youku Average

12306 18.80% 11.98% 12.51% 23.05% 2.82% 2.82% 11.69%

Youku 9.64% 6.31% 2.11% 6.28% 7.41% 6.89% 6.44%
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6 Conclusion

Based on the well-known password guessing model TarGuess-I, an improved
password guessing model TarGuess-I+ was proposed. After an in-depth analysis
and a series of experiments of TarGuess-I based on 6 public leaked password
datasets, we have found 2 improvements in TarGuess-I, which are popular
passwords and the special strings. Experimental results show that our improved
model outperforms the original model by 9.07% on average with 1000 guesses,
suggesting the feasibility of our improvements. However, due to the lack of
experimental data, the improvements will be further verified in the coming
future. Our improvement of special strings sheds new light on password guessing.

Acknowledgments. We give our special thanks to Chenxi Xu, Hui Guo, Weinan Cao,
and Youcheng Zhen for their insightful suggestions and comments. Min Zhang is the
corresponding author.
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Abstract. Recently, Quach, Wee and Wichs (FOCS 2018) proposed a
new powerful cryptographic primitive called laconic function evaluation
(LFE). Using an LFE scheme, Alice can compress a large circuit f into a
small digest. Bob can encrypt some data x under this digest in a way that
enables Alice to recover f(x) without learning anything else about Bob’s
data. The laconic property requires that the size of the digest, the run-
time of the encryption algorithm and the size of the ciphertext should be
much smaller than the circuit-size of f . This new tool is motivated by an
interesting application of “Bob-optimized” two-round secure two-party
computation (2PC). In such a 2PC, Alice will get the final result thus
the workload of Bob will be minimized.

In this paper, we consider a “client-optimized” two-round secure mul-
tiparty computation, in which multiple clients provide inputs and enable
a server to obtain final outputs while protecting privacy of each individ-
ual input. More importantly, we would also minimize the cost of each
client. For this purpose, we propose multi-input laconic function evalua-
tion (MI-LFE), and give a systematic study of it.

It turns out that MI-LFE for general circuit is not easy. Specifically,
we first show that the directly generalized version, i.e., the public-key
MI-LFE implies virtual black-box obfuscation. Hence the public-key MI-
LFE (for general circuits) is infeasible. This forces us to turn to secret
key version of MI-LFE, in which encryption now needs to take a secret
key. Next we show that secret-key MI-LFE also implies heavy crypto-
graphic primitives including witness encryption for NP language and
the indistinguishability obfuscation. On the positive side, we show that
the secret-key MI-LFE can be constructed assuming indistinguishability
obfuscation and learning with errors assumption. Our theoretical results
suggest that we may have to explore relaxed versions of MI-LFE for
meaningful new applications of “client-optimized” MPC and others.
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1 Introduction

In a recent paper [31], Quach, Wee and Wichs described an interesting secure
two-round two-party computation (2PC) protocol which is “Bob-optimized”. In
such a protocol, Alice and Bob who have inputs xA and xB respectively want
to jointly compute f(xA, xB), and Alice initiates the first round message, and
learns the output f(xA, xB) in the second round. More interestingly, Alice does
all the work while Bob’s computation and communication during the protocol
execution are both smaller than the size of the circuit f or even Alices input xA,
(concretely, the computational cost of Bob is only (|xB | + |f(xA, xB)|) · poly(d),
where d is the depth of the circuit f). Such kind of “Bob-optimized” secure 2PC
was considered more natural as it is Alice who obtains the output should do
the work [31]. This is in contrast to prior solutions based on fully homomorphic
encryption [12,13,21,23] which optimized the work of Alice.

To construct such kind of two-round “Bob-optimized” secure 2PC, a new
cryptographic primitive laconic function evaluation (LFE) was formulated in
[31]. In an LFE scheme, Alice can compress a potentially large circuit f into
a small digest. Bob then can encrypt some data x under this digest s.t. Alice
can recover f(x) without learning anything else about the original data x. The
size of the digest, the run-time of the encryption algorithm and the size of the
ciphertext should all be much smaller than the size of circuit f , In this way, Bob’s
workload in the 2PC is minimized. In [31], they provided the first construction
of LFE for general circuits under the learning with errors (LWE) assumption.

“Client-Optimized” 2-Round MPC. The “Bob-optimized” two-round 2PC
is useful in many applications such as privacy preserving data analytics, espe-
cially when the client device (Bob in the above setting) is resource restrained
(e.g., mobile devices), while the circuit representing the analytic function is
substantially complex (e.g., some complicated data mining or machine learn-
ing algorithms). However, in many relevant scenarios, the data of “Bob” may
not be generated all at once, or even come from multiple clients. Consider the
following scenarios:

Privacy Preserving Data Analytic System. Many data analytic applications run-
ning in a server solicit input data via multiple data collectors. For instance, many
surveillance cameras are now deployed on the roads to monitor traffic conditions
by local governments, and the videos are collected and submitted to a central
server to analyze the road condition.

It is not hard to see that those individual inputs may be sensitive, e.g., the
videos could contain confidential geographic information regarding the cars trav-
eling on the roads, thus they should not be directly submitted to the server in
the plain. However, there are multiple clients (the cameras) to provide inputs,
we need now to deploy a multiparty computation protocol. On the other hand,
similar as before, those clients (cameras) are not powerful computing devices,
thus the computation and communication cost on the cameras (as data collec-
tors) have to be minimized. And it is not realistic to ask all the cameras to
coordinate other than directly communicating with a server.
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Privacy Preserving Call Records Surveillance. It is known that several major
telephone companies were cooperating with the intelligent service to monitor the
phone records of U.S. citizens, and store them in a large database known [1,2].
Though it is a constant debate that sometimes surveillance may be needed for
law enforcement to do investigations, it is obviously unacceptable that personal
call records are uploaded and stored in the clear. It would be necessary to design
a privacy preserving call records surveillance system.

In such a setting, each client continuously uploads obfuscated call records,
and the mobile phones are mostly not so powerful devices that would demand
the optimization on the client side workload for a privacy preserving protocol.
Moreover, since investigation may apply complex data mining algorithms on
multiple pieces of call records from each targeted individual, similar as above,
we would need to design a 2-round client-optimized multiparty (depending how
many pieces of records needed) computation.1

“Client-Optimized” 2-Round MPC. To capture above two exemplary application
scenarios, we need a 2-round “client-optimized” secure multi-party computation
protocol in which there might be multiple inputs from multiple clients. 2 In
particular, we wish to have a 2-round protocol, that the server initializes the
protocol with a first round message, then each client (the same client in different
time period sending a different input would be viewed as a different client) sends
out a message and then the server obtains the final output f(x1, . . . , xn), where
f is the analytic function and x1, . . . , xn are all the inputs. More importantly,
the “client-optimized” property here refers to (1) the computation and commu-
nication of each client is as efficient as that of Bob in the “Bob-optimized” 2PC;
and (2) there is no communication among each clients.

Insufficiencies of Existing Tools. There are several possible paths to pro-
ceed, unfortunately none of them reaches a satisfying solution. Let us analyze
one by one. (1) The second property above disallowing communication among
clients already excludes straightforward solutions such as the general multiparty
computation protocol [4,6,30,32], let alone it is not clear how to ensure the low
client costs. (2) Laconic functional evaluation [31] was also shown to be applica-
ble to MPC with small online computation. However, in our setting, the similar
idea letting the server first compress the function to obtain a digest, then all
clients and the server run an MPC protocol for the encryption function of the
laconic function evaluation scheme (with the server input of the digest) is not
satisfying. Although there exist 2-round MPC protocol [20], the communica-
tions among clients could be potentially large, let alone in some of the scenarios,
1 One may suggest to let the client wait and upload a bunch of call records all at once,

however, each individual has no incentive to do so and this is not how call records
stored nowadays.

2 In this paper, we only consider semi-honest security for our MPC application, which
is analogous to the Bob-optimized 2PC in the LFE paper. In this setting, we assume
the server will only choose a proper function permitted by clients. Furthermore, a
semi-honest security protocol can be easily upgraded to adaptively secure by stan-
dard techniques such as adding NIZK.
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the clients may not be able to talk to each other. (3) Another related notion
is functional encryption [10,18,26], especially multi-input functional encryption
(MIFE) [9,24]. Straightforward application of MIFE requires an extra trusted
party to generate the decryption key for the server (which is already a huge
overload that is proportional to the size of f), while we cannot let the server
to do this, otherwise no security of the inputs can be present. (4) Last but not
least, similar as in [31], multi-key fully homomorphic encryption [15,30] cannot
enable the server to learn the output in two rounds.

Formalizing Multi-input Laconic Function Evaluation. Motivated by
the client-optimized 2-round MPC application and the deficiencies of existing
tools, we generalize the notion of LFE to multi-input laconic function evalua-
tion (MI-LFE). In a MI-LFE scheme, the server has a large circuit f defined
over n inputs, which can be deterministically compressed into a short digest
digestf = Compress(f). Then each client i can encrypt his input data xi under
this digest, resulting in a ciphertext cti ← Enc(digestf , xi), respectively. After
receiving n ciphertexts, the server is then able to decrypt using her knowledge
of f to recover the output f(x1, . . . , xn) = Dec(f, ct1, . . . , ctn). Security ensures
that the server does not learn anything else about the n inputs x1, . . . , xn beyond
the output f(x1, . . . , xn), as formalized via the simulation paradigm. Similar to
LFE, the laconic property of MI-LFE requires that each client’s computation
and communication complexity is small, and in particular, the size of the digest
digestf , the run-time of the encryption algorithm Enc(digestf , xi) and the size of
the ciphertext cti should be much smaller than the circuit-size of f .

With the new primitive at hand, the client-optimized 2-round MPC protocol
can be easy: the server compresses the function and broadcasts the digest to
all clients. Each client then uses the encryption algorithm to obfuscate his input
and sends it to the server. The server then pools all ciphertext and evaluate. The
laconic property guarantees that the workload of each client is small compared
to the complex function f , and no communication is needed among clients.

The Difficulty of Constructing MI-LFE. We then systematically study the
concept of MI-LFE. It turns out that such a notion is quite difficult to obtain.
In particular, the most nature model for MI-LFE is in the public-key setting
which generalizes LFE in [31] in a straightforward fashion. The only difference
is that the function here is evaluated on multiple inputs, so the different inputs
xi for i = 1, . . . , n are encrypted into different ciphertexts cti for i = 1, . . . , n,
and the decryption procedure involves multiple ciphertexts. In Sect. 4, we show
that public key MI-LFE actually implies virtual black-box obfuscation. Since
VBB obfuscation is known to be impossible for general circuits [5], this yields
us impossibility results for (general) MI-LFE in the public setting.

To circumvent such an impossibility but still enabling the client-optimized
MPC, we turn to MI-LFE in the private-key setting. It follows the syntax of
the version of the public-key setting, but an additional key generation procedure
is involved and the encryption procedure will always take the private key as
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input.3 Restricting encryption procedure allows us to bypass the implication to
VBB that essentially compresses a universal circuit and uses MI-LFE encryption
algorithm to encrypt the function and input as different ciphertext to evaluate.

Then we find that even in the private key setting, constructing MI-LFE from
standard assumptions is not an easy task. We show that the private-key MI-
LFE with reasonable security definition implies the witness encryption (WE)
for NP language [3,7,11,17,22] and the indistinguishability obfuscation (iO) for
general circuits [14,16,28,29], respectively. Since these two advanced primitives
have no constructions from the standard assumptions so far, leveraging some
heavy tools in the construction of MI-LFE seems inevitable. As a byproduct,
we notice that MI-LFE also implies MIFE, thus MI-LFE could be applicable in
multiple advanced scenarios, if it ever exists. But the reverse implication is not
straightforward, since MIFE do not have the compression property.

Constructing Private-Key MI-LFE. Next we show that the private-key MI-
LFE can indeed be constructed from indistinguishability obfuscation and learn-
ing with errors (LWE) assumption. Our construction of MI-LFE is inspired by
the techniques developed in the context of multi-input functional encryption [25]
and laconic function evaluation [31]. Intuitively, the message xi for i-th coor-
dinate of circuit C in MI-LFE is encrypted using public key encryption and
equipped with a proof showing that this encryption is done correctly. The other
part of the i-th ciphertext is an indistinguishability obfuscation of a circuit that
first checks the legitimacy of the input ciphertexts and then transforms pub-
lic key encryptions of messages {xi} into an LFE ciphertext of the message
x1, . . . , xn. A decryptor in MI-LFE that has all ciphertexts of messages {xi} for
a pre-compressed circuit C first obtains LFE encryption of messages for each
coordinate of circuit C after evaluating the obfuscated program, and then the
actual result C({xi}) by evaluating the decryption algorithm in LFE.

The laconic property of our scheme follows from the laconic property of
LFE encryption algorithm. Only the LFE encryption procedure in the indis-
tinguishable obfuscation is corresponding to the circuit C, and other parts in
our encryption procedure is independent with the circuit C, we know that LFE
encryption only scales with the circuit depth, much smaller than the circuit size.
Even after been obfuscated, should still much smaller than the circuit size.4

The security definition of MI-LFE requires to simulate the challenge cipher-
texts. Recall that there are two parts in a ciphertext: (1) two independent seman-
tically secure public key encryption of the actual message and a proof showing
the correctness and legitimacy of the encryption; (2) an obfuscation of a circuit

3 We remark here that a secret key MI-LFE is enough for many of our applications
of client-optimized 2-round MPC: if for one client generating inputs overtime, the
client’s device may have a pre-installed secret key by the device manufacturer; while
for data analytics via multiple data collectors such as cameras, a secret key maybe
installed by the government who deploy them.

4 we consider an unbounded-size circuit class C, meaning that there exists a large
size circuit C ∈ C. We refer to Lemma 3 for the details of laconic property of our
construction.
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that contains proofs verification and encryption transformation. Specifically, the
simulation of first part relies on semantic security of the public-key encryption
and special property of the proof system, i.e. witness indistinguishability. The
circuit to be obfuscated can be changed according to changes happened in the
first part of challenge ciphertext. We also would like to remark that in our con-
struction, we simply rely on a common random string, rather than a common
reference string used previously in MIFE.

1.1 Additional Related Works

Multi-input Functional Encryption. MI-LFE also appears to be related to multi-
input functional encryption (MIFE) [9,24]. In MIFE, multiple ciphertexts are
also encrypted independently by different parties, while the one holding the
decryption key skf can only recover f(x1, . . . , xn) without learning anything else
about x1, . . . , xn. Despite of the similarities, a MIFE scheme involves a master
authority whose duty is to derive a decryption key skf respect to a function f
from the master key msk. More importantly, the complexity of the decryption
key generation procedure may be proportion to the size of the function f . Note
that in some application scenario like the one mention above, there are no parties
that can be both trustworthy and capable to afford such workload.

Fully Homomorphic Encryption. FHE [12,13,21,23] can be viewed as the dual
version of the LFE. In FHE, one party, say Alice, can encrypt different values
xi, resulting in a ciphertext cti ← Enc(pk, xi), respectively. Then another party,
say Bob, can homomorphically evaluate a function f on these ciphertexts. When
Alice sees the evaluation, she can decrypt and recover the message f(x1, . . . , xn).
In contrast with MI-LFE and LFE, here it is the encryptor to get the final result.

General MPC. Since our application is a special case of secure multi party com-
putation, theoretically it can be realized in two round by the general MPC
technique [4,6,32]. However, here we additionally require that the computa-
tion complexity for each surveillance to be cheap, and they only need to com-
municate with the data center but not with each other. Considering all these
additional requirements, this application is hard to be directly achievable via
general MPC. There exist 2-round MPC protocol [20,30], the communications
cost among clients could be potentially large, i.e. an multiplicative overhead of
the depth of circuit and size of input.

2 Preliminaries

In this section, we give background on two classical cryptographic primitives used
in paper: non-interactive witness-indistinguishable proofs and perfectly binding
commitments.
Non-interactive Proof Systems. Here, we recall the syntax and property of
non-interactive witness-indistinguishable proofs.
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Syntax. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R,
we call x the statement and w the witness. Let L be the language consisting
of statements in R. A non-interactive proof system [8,27] for a language L,
consists of a CRS generation algorithm CRSGen, a proving algorithm Prove and
a verification algorithm Verify, defined as follows:

– CRSGen(1λ): On input the security parameter λ, it outputs a common refer-
ence string crs.

– Prove(crs, x, w): On input the common reference string crs, and a statement x
along with a witness w. If (x,w) ∈ R, it produces a proof string π, otherwise
it outputs fail.

– Verify(crs, x, π): On input the common reference string crs, and a statement x
along with a proof string π, it outputs 1 if the proof is valid, and 0 otherwise.

Definition 1 (Non-interactive Proof System). A non-interactive proof
system for a language L with a PPT relation R is a tuple of algorithms
(CRSGen,Prove,Verify) such that the following properties hold:

– Perfect Completeness. A proof system is complete if an honest prover with
a valid witness can convince an honest verifier. More formally, for all x ∈ [L]
and every w such that (x,w) ∈ R, it holds that

Pr[Verify(crs, x,Prove(crs, x, w)) = 1] = 1

where crs ← CRSGen(1λ) and the probability is taken over the coins of
CRSGen, Prove and Verify.

– Statistical Soundness. A proof system is sound if it is infeasible to convince
an honest verifier when the statement is false. More formally, for all adversary
(even unbounded) A, it holds that

Pr[Verify(crs, x.π) = 1 ∧ x /∈ L|crs ← CRSGen(1λ), (x, π) ← A(crs)] = negl(λ)

Definition 2 (NIWI). A non-interactive proof system (CRSGen,Prove,Verify)
for a language L with a PPT relation R is witness indistinguishable if for any
triplet (x,w0, w1) such that (x,w0) ∈ R and (x,w1) ∈ R, the distributions
{crs,Prove(crs, x, wo)} and {crs,Prove(crs, x, w1)} are computationally indistin-
guishable, where crs ← CRSGen(1λ).

Non-interactive and Perfectly Binding Commitment Schemes. We let
Com(·; ·) denote the commitment function of a non-interactive commitment
scheme. Com is a PPT algorithm that takes as input a string x and random-
ness r, and outputs c ← Com(x; r). A perfectly binding commitment scheme
must satisfy the following properties:

– Perfectly Binding. This property states that the two different strings
cannot have the same commitment. More formally, ∀x1 �= x2, Com(x1) �=
Com(x2).

– Computationally Hiding. For all strings x0 and x1 (of the same length),
and all PPT adversaries A, we have that:

|Pr[A(Com(x0)) = 1] − Pr[A(Com(x1)) = 1]| ≤ negl(λ)
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3 Multi-input LFE: Syntax and Security Definition

In this section, we define the notion of multi-input laconic function evaluation
(MI-LFE) for a class of n-ary circuits C. We assume that every circuit C ∈ C is
associated with some circuit parameters C.params. By default we consider C to
be the class of all circuits with C.params = (1n, 1k, 1d), which take as input n
bit-strings (x1, . . . , xn), where xi ∈ {0, 1}k, and d denotes the circuit depth.

Definition 3 (MI-LFE). A private-key multi-input laconic function evalua-
tion for circuits class C consists of five algorithms (crsGen,KeyGen,Compress,
Enc,Dec) with details as follows:

– crsGen(1λ, C.params) takes as input the security parameter 1λ and circuit
parameters C.params, and outputs a uniformly random common random
string crs of appropriate length.

– KeyGen(1λ, crs) takes as input the security parameter 1λ and the common
random string crs, and outputs a private key SK.

– Compress(crs, C) is a deterministic algorithm that takes as input the common
random string crs and a circuit C ∈ C, and outputs a digest digestC .

– Enc(crs, digestC ,SK, i, xi) takes as input the common random string crs, a
digest digestC , a private key SK, an index i, and a message xi, and outputs
a ciphertext cti.

– Dec(crs, C, ct1, . . . , ctn) takes as input the common random string crs, a circuit
C ∈ C, and n ciphertexts ct1, . . . , ctn, and outputs a message y.

Correctness. For correctness, we require that for all λ and C ∈ C with C.params,
it holds that

Pr

⎡
⎢⎢⎢⎢⎣

y = C(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣

crs ← crsGen(1λ, C.params),
SK ← KeyGen(1λ, crs),
digestC ← Compress(crs, C),
cti ← Enc(crs, digestC ,SK, i, xi),
y ← Dec(crs, C, ct1, . . . , ctn),

⎤
⎥⎥⎥⎥⎦

= 1

Definition 4 (SIM-Based Security). For security, we say a private-key
MI-LFE is (n, q)-SIM-secure, where n denotes the number of input strings for
a circuit C, and q is number of challenge message tuples, if there exists a PPT
simulator SIM such that for all stateful PPT adversary A, it holds:

∣∣∣Pr[ExptRealMI-LFE(1
λ) = 1] − Pr[ExptIdealMI-LFE(1

λ) = 1]
∣∣∣ ≤ negl(λ)

where the experiments ExptRealMI-LFE(1
λ) and ExptIdealMI-LFE(1

λ) are defined in Fig. 1.

In Fig. 1, oracle O(C, ·) denotes the trusted party. It accepts queries of the
form (j1, . . . , jn), where j1, . . . , jn ∈ {1, . . . , q}. On input such a query, O(C, ·)
outputs the C(xj1

1 , . . . , xjn
n ); otherwise outputs ⊥. We refer to the above as adap-

tive security.



Multi-input Laconic Function Evaluation 377

(a) ExptRealMI-LFE(1
λ)

1. C.params ← A(1λ)
2. crs ← crsGen(1λ, C.params)
3. SK ← KeyGen(1λ, crs)
4. ((xj

1, . . . , x
j
n)

q
j=1, C) ← A(crs) : C ∈ C

5. digestC ← Compress(crs, C)
6. ctji ← Enc(crs, digestC , SK, i, xj

i ),
∀i ∈ [n], j ∈ [q]

7. output A {ctji}i∈[n],j∈[q]

)
.

(b) ExptIdealMI-LFE(1
λ)

1. C.params ← A(1λ)
2. crs ← crsGen(1λ, C.params)
3. ((xj

1, . . . , x
j
n)

q
j=1, C) ← A(crs) : C ∈ C

4. digestC ← Compress(crs, C)
5. ctji ← SIMO(C,·)(crs, C, digestC , i),

∀i ∈ [n], j ∈ [q]
6. output A {ctji}i∈[n],j∈[q]

)
.

Fig. 1. SIM-based Security Experiments for MI-LFE

Definition 5 (IND-Based Security). We say a private-key MI-LFE is
(n, q)-IND-secure, where n denotes the number of inputs for a circuit C, and
q is the number of n-ary challenge message tuples, if for any PPT adversary A,

AdvIND
A,MI-LFE(1

λ) =
∣∣∣∣Pr[ExptIND

A,MI-LFE(1
λ) = 1] − 1

2

∣∣∣∣

is negl(λ), where the experiments ExptIND
A,MI-LFE(1

λ) is defined in Fig. 2.

ExptIND
A,MI-LFE(1

λ)

1. C.params ← A(1λ)
2. crs ← crsGen(1λ, C.params), SK ← KeyGen(1λ, crs)
3. (X0,X1, C) ← A(crs): where C ∈ C, Xb = ((xj,b

1 , . . . , xj,b
n )j∈[q]),

such that C(xj1,0
1 , . . . , xjn,0

n ) = C(xj1,1
1 , . . . , xjn,1

n ), ∀i ∈ [n], ji ∈ [q]
4. digestC ← Compress(crs, C),

5. b
$← {0, 1}, ctji ← Enc(crs, digestC , SK, i, xj,b

i ), ∀i ∈ [n], j ∈ [q]
6. b′ ← A {ctji}i∈[n],j∈[q]

)
.

7. Output 1 if b = b′ and 0 otherwise.

Fig. 2. IND-based Security Experiment For MI-LFE

Remark 1 (Selective Security). A weaker notion, called selective security, in both
SIM-based and IND-based security, can be defines as: adversary A has to choose
challenge plaintext at the very beginning of the experiments (as described in
Fig. 1 and Fig. 2) before seeing crs.

Lemma 1. If a MI-LFE scheme Π is SIM secure, then Π is also IND secure.
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Proof (Proof Sketch). We note that if a MI-LFE scheme Π satisfies SIM-based
security, then we show that it also satisfies IND-based security. Now, for challenge
message queries (X0,X1), where Xb = {(xj,b

1 , . . . , xj,b
n )}j∈[q], the challenger in

the IND-based security experiment chooses a random bit b, then invokes the
simulator in SIM-based security game to compute

ctji ← SIMO(C,·)(crs, C, digestC , i), ∀i ∈ [n], j ∈ [q]

where O(C, ·) accepts the queries of the form (j1, . . . , jn) and outputs
C(xj1,b

1 , . . . , xjn,b
n ). Hence, by the SIM-based security, for all i ∈ [n], j ∈ [q], each

respond ctji ← SIMO(C,·)(crs, C, digestC , i) is computationally indistinguishable
from real execution ctji ← Enc(crs, digestC ,SK, i, xj,b

i ). And the bit b is chosen
from random, this completes the IND-based security experiment for MI-LFE.
Since (X0,X1) satisfies C(xj1,0

1 , . . . , xjn,0
n ) = C(xj1,1

1 , . . . , xjn,1
n ),∀i ∈ [n], ji ∈

[q], we have that {ctji}, output by the challenger, is independent with the bit b.

Laconic property. Same as LFE, we insist that the size of (crs, digestC ,SK, cti)
and the running time of Enc are at most sublinear of the size of circuit C.

4 Hardness of MI-LFE

In this section, we show the difficulty of MI-LFE schemes. In particular, we show
public-key MI-LFE for general circuits is impossible by constructing a virtual
black-box obfuscator from it. Moreover, even the private-key MI-LFE implies
witness encryption and indistinguishability obfuscation.

Public-Key MI-LFE. We first discuss the syntax and security definition of
public key MI-LFE. Then, we show that a MI-LFE scheme for all circuits implies
virtual black-box obfuscation for all circuits, which is proved impossible by Barak
et al. [5]. The main difference between MI-LFE in public-key setting and that in
private-key setting (c.f. Sect. 3) is that algorithm KeyGen(1λ, crs) does not exist
in public-key setting, meaning that encryption algorithm can be performed by
anyone who knows common reference string and the digest of circuit.

Security Definition. In this part, we discuss the intuition of simulation-based
public key MI-LFE security. To illustrate the difference between public-key and
private-key setting, it suffices to consider the case of 2-ary functions and one
challenge message tuple (x1, x2). In this example, the simulation-based security
in the private-key setting guarantees that for one function f , an adversary cannot
learn anything more than f(x1, x2) where (x1, x2) is the challenge message pair.
However, its counterpart in the public-key setting cannot guarantee this prop-
erty. The reason is that an adversary who knows the public key can create its
own chiphertexts, thus can learn additional information {f(x1, ·)} and {f(·, x2)}
given ciphertexts for (x1, x2). This additional information must be taken into
account for the simulator (adversary in ideal world) in the ideal world. We refer
to the full version for the formal SIM-based security game.
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VBB Obfuscation from Public-Key MI-LFE. Here we show that a virtual black-
box obfuscator [5], can be derived from a two party public-key MI-LFE. The
basic idea is to let the compressed function of the MI-LFE be a universal circuit
U . The input of the first party is the function f which we wish to obfuscate,
and the input of the second party is the input value x of the function f . So the
obfuscator should output the first party’s ciphertext Enc(crs, digestU , 1, f).

Specifically, for a universal circuit U , the obfuscator VBB works as follow:

1. Obfuscation: Run the crsGen and Compress algorithm to generate crs and
digestU , compute ct1 ← Enc(crs, digestU , 1, f), and output the obfuscated cir-
cuit VBB(f) = (crs, digestU , U, ct1).

2. Evaluation: To evaluate the obfuscated circuit VBB(f) on an input
x, one just needs to compute ct2 ← Enc(crs, digestU , 2, x) and run
Dec(crs, U, ct1, ct2).

According to the correctness of MI-LFE, the decryption result should be
U(f, x) = f(x). The virtual black-box property of this obfuscator follows from
the simulation security of the MI-LFE, hence we have the following theorem.

Theorem 1. A (2, 1)-SIM-secure MI-LFE in public-encryption setting for gen-
eral 2-ary functions implies virtual black-box obfuscation for all circuits.

Given an VBB adversary A, we use A to construct an MI-LFE adversary B,
the full proof is given in full version.

Witness Encryption from Private-Key MI-LFE. Since public key MI-LFE
for general circuits does not exist, we have to turn our attention to private key
MI-LFE. We firstly introduce MI-ABLFE (a variant of private-key MI-LFE).
Then, we construct witness encryption for NP language, for general circuits.
Since MI-LFE trivially implies an MI-ABLFE, thus we conclude the implication
of private key MI-LFE to witness encryption, introduced by Garg et al. [19].

MI-ABLFE. We start from LFE for a restricted class of functionalities, which call
attribute-based LFE (AB-LFE) in analogy to attribute-based encryption [31].
We formalize the definition and security requirement of MI-ABLFE as follow:

Definition 6 (MI-ABLFE). Let C : ({0, 1}k)n → {0, 1} be a circuit. We
define the Conditional Disclosure Functionality (CDF) of C as the function

CDF[C] ((x1, u), . . . , (xn, u)) =
{

(x1, . . . , xn, u) if C(x1, . . . , xn) = 1
(x1, . . . , xn,⊥) if C(x1, . . . , xn) = 0

where xi ∈ {0, 1}k, and u ∈ {0, 1}.
A MI-ABLFE scheme for a circuit family C is a MI-LFE scheme that

supports circuits CDF [C] defined as above, for all C ∈ C. We define
CDF [C].params = C.params = (1n, 1k, 1d), where d is the depth of C.

Remark 2 (Security of MI-ABLFE). The IND-based security notion of MI-
ABLFE can be defined similarly as MI-LFE, except for the difference that
the payload u remains private if for any message queries (xi, u), it holds that
C(x1, . . . , xn) = 0.
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Witness Encryption from MI-ABLFE. Intuitively, the witness encryption [19]
can use the MI-ABLFE in the following way: the general circuit C is used as the
NP verifier such that the decryptor of MI-ABLFE can recover the message u if he
has the witness w for the statement x satisfying C(x,w) = 1. More specificially,
given an NP language L, the construction of Π = (Enc,Dec) for L is as follows:

– Enc(1λ, x, u): On input a statement x ∈ {0, 1}n (whose witness has length
bounded by m), and a message u ∈ {0, 1}, the executes the following:
1. Set C : {0, 1}n × {0, 1}m → {0, 1} to be the NP verifier for language

L that takes as the input x ∈ {0, 1}n, w ∈ {0, 1}m, and outputs 1 iff
(x,w) ∈ L. Compute MI-ABLFE.crsGen(1λ, C.params) to generate CRS
string crs.

2. Then it runs MI-ABLFE.Compress(crs, C) to generate digestC , and
MI-ABLFE.KeyGen(crs) to get SK.

3. For i ∈ [n], compute MI-ABLFE.Enc(crs, digestC ,SK, i, xi, u), where xi is
the i-th bit of x.

4. For b ∈ {0, 1}, j ∈ [m], compute MI-ABLFE.Enc(crs, digestC ,SK, j, b, u),∀
b ∈ {0, 1}, j ∈ [m].

Output ct =
(
crs, C, x, {cti}i∈[n], {ctj,b}j∈[m],b∈{0,1}

)
.

– Dec(ct, w): On input a witness w ∈ {0, 1}m for the statement x ∈ {0, 1}n,
and a ciphertext ct for x, the decryption algorithm computes and outputs

MI-ABLFE.Dec
(
crs, C, {cti}i∈[n], {ctj,wj

}j∈[m]

)

where wj is the j-th bit of witness w.

The correctness of the witness encryption follows from the correctness of the
MI-ABLFE.

Theorem 2. Assuming the (n + m, 2)-IND-based selective security of MI-
ABLFE scheme MI-ABLFE for general circuits, then the witness encryption
scheme Π described above is secure.

Given an witness encryption adversary A, we describe an MI-LFE adversary
B invoke A as a subroutine to attack the security of MI-LFE. The proof is
completed in full version.

Indistinguishable Obfuscation from Private-Key MI-LFE. We can derive
an indistinguishability obfuscator for all circuits [16], with k-bit inputs from a
(k + 1)-party MI-LFE in private-key setting. This, in particular, means that the
use of indistinguishable obfuscation is inevitable for the private-key MI-LFE.

Now, we describe how to construct an indistinguishable obfuscator for
a circuit class C, where for every C ∈ C, C : {0, 1}k → {0, 1}k′

and
|C| = �. Assuming there is a (k + 1, 2)-IND-secure MI-LFE scheme MI-LFE =
(crsGen,KeyGen,Compress,Enc,Dec), where k + 1 denotes the number of party
and 2 denotes the number of challenge message tuples. The intuition here is to
let the actual function to be evaluated in MI-LFE to be a universal circuit U ,
defined as following:

U(x1, . . . , xk, C) = C(x1, . . . , xk), ∀i ∈ [k], xi ∈ {0, 1}, C ∈ {0, 1}�
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For each party i ∈ [k], the input is random bit b ∈ {0, 1}. And the input of
the final party is the description of circuit C, the circuit to be obfuscated. The
indistinguishable obfuscation of circuit C is MI-LFE encryption of all possible
inputs bit plus description of circuit C.

Specifically, the construction of iO is as follows:

– Obfuscation: On input circuit C, Run the crsGen(U.params) to generate crs,
KeyGen(crs) to generate SK and Compress(crs, U) to generate digestU . Then
for i ∈ [k], b ∈ {0, 1}, compute: ctbi ← Enc(crs, digestU ,SK, i, b) and next
compute

ctk+1 ← Enc(crs, digestU ,SK, k + 1, C)

Finally, output the obfuscated circuit as iO(C) =
({ctbi}i∈[k],b∈{0,1}, ctk+1,

crs, U).
– Evaluation: On input x ∈ {0, 1}k, evaluate the obfuscated circuit iO(C) as

computing Dec(crs, U, ctx1
1 , . . . , ctxk

k , ctk+1).

The correctness of our iO construction directly follows that of MI-LFE
scheme. By the correctness of MI-LFE, the decryption result should be
U(x1, . . . , xk, C) = C(x1, . . . , xk).

Theorem 3. Assuming MI-LFE is (k+1, 2)-IND-secure (c.f. Definition 5), then
the above construction is a secure indistinguishability obfuscator for all circuits.

Given an iO adversary A, we use it to construct an MI-LFE adversary B,
the full proof is completed in full version.

MIFE from MI-LFE. We have shown that private-key MI-LFE implies iO. Since
Goldwasser et al. have proved that MIFE can be constructed from the indistin-
guishable obfuscation and one-way function, the detour inspires us that MI-LFE
can imply MIFE. However, one can imagine a more directly reduction from n+1
inputs private-key MI-LFE to n inputs private-key MIFE. Here we present the
intuition. One can fix the circuit of MI-LFE as a universal circuit U . Given the
description of a function f , we should have U(f, x1, . . . , xn) = f(x1, . . . , xn).
The master secret key and the encryption key of MIFE are both the secret key
of the MI-LFE scheme. The decryption key for function f of the MIFE is a MI-
LFE ciphertext c0 of the description of the function f respect to digestU . The
encryption of MIFE of message x1, . . . , xn are the MI-LFE ciphertexts c1, . . . , cn

of the same messages respect to digestU . The decryption of the MIFE is just
the MI-LFE evaluation on the ciphetexts c0 and c1, . . . , cn. Such an implication
alone is trivial, but as a byproduct, MI-LFE could be used for all the applications
of MIFE, which might provide a new route for the special cases.

5 Constructing Private-Key MI-LFE

The components we use in the construction include: (1) an indistinguishable
obfuscator iO [16](of polynomial p of its input size), (2) a NIWI proof sys-
tem (NIWI.crsGen,NIWI.Prove,NIWI.Verify), (3) a perfectly binding commit-
ment scheme Com, (4) a semantically secure public-key encryption scheme
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PKE = (PKE.Setup,PKE.Enc,PKE.Dec) and (5) a secure laconic function evalu-
ation LFE = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) [31].

We denote the length of ciphertext in PKE by �ct. In particular, for a circuit
C : ({0, 1}k)n → {0, 1}� of circuit size |C| = ω(p(n, k, λ)) and depth d, the
description of our MI-LFE construction is as follows:

– crsGen(1λ, C.params = (1n, 1k, 1d)): The CRS generation algorithm first
computes a common random string crs1 ← NIWI.crsGen(1λ) for the
NIWI proof system. Next, it computes a common random string crs2 ←
LFE.crsGen(1λ, (1n×k, 1d)). The algorithm outputs crs = (crs1, crs2).

– KeyGen(1λ, crs): The key generation algorithm first computes two key pairs
(pk1, sk1) ← PKE.Setup(1λ) and (pk2, sk2) ← PKE.Setup. Then it computes
the following commitments:

zj
1,i ← Com(02�ct),∀i ∈ [n], j ∈ [q], z2 ← Com(0; r0)

It outputs SK = (pk1, pk2, sk1, {zj
1,i}, z2, r0), where r0 is the randomness used

to compute the commitment z2.
– Compress(crs, C): The deterministic algorithm compression runs and outputs
digestC ← LFE.Compress(crs2, C).

– Enc(crs, digestC ,SK, i, xi): On input crs, digest digestC , secret key SK, index
i and input xi, the encryption algorithm.
1. Choose two random strings ri,1, ri,2, and compute ci,1 = PKE.Enc(pk1,

xi; ri,1) and ci,2 = PKE.Enc(pk2, xi; ri,2).
2. Generate proof π ← NIWI.Prove(crs1, y, w) for statement y =

(ci,1, ci,2, pk1, pk2, {zj
1,i}i∈[n],j∈[q], z2):

• Either ci,1 and ci,2 are encryptions of the same message and z2 is a
commitment to 0;

• Or there exists j ∈ {1, . . . , q}, such that zj
1,i is a commitment to

ci,1 ‖ ci,2.
A witness ωreal = (m, ri,1, ri,2, r0) for the first part of the statement,
referred as the real witness, includes the message m, and the randomness
ri,1 and ri,2 used to compute the ciphertexts ci,1 and ci,2, respectively, and
the randomness r0 used to compute z2. A witness ωtd = (j, rj

1,i) for the
second part of the statement, referred as the trapdoor witness, includes
an index j and the randomness rj

1,i used to compute zj
1,i.

3. Compute iO(GdigestC ), defined in Fig. 3.
Output ciphertext CTi = (ci,1, ci,2, πi, iO(GdigsetC )).

– Dec(crs, C,CT1, . . . ,CTn): The decryption algorithm first runs

ct ← iO(GdigsetC )((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn))

Then it computes and outputs y = LFE.Dec(crs2, C, ct′).

Lemma 2 (Correctness). Assuming the correctness of the underlying seman-
tically secure PKE, laconic function evaluation LFE and indistinguishability
obfuscation iO, the completeness property of NIWI, then the construction above
is correct.
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GdigestC [SK, digestC ]((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn))

Input: PKE ciphertexts and proof pairs (ci,1, ci,2, πi), for i ∈ [n].
Hardcoded: secret key SK and digest digestC .

(a) For i = 1 to n, let yi = (ci,1, ci,2, pk1, pk2, {zj
1,i}, z2) be the statement associate

with the proof string πi. If NIWI.Verify(crs1, yi, πi) = 0, then stop and output ⊥;
Otherwise continue to i + 1.

(b) Compute xi = PKE.Dec(sk1, ci,1).
(c) Outputs ct ← LFE.Enc(crs2, digestC , (x1, . . . , xn)).

Fig. 3. Description of circuit GdigestC

Proof. Now, by the perfect completeness of NIWI, the honest encryption algo-
rithm can use the real witness ωreal = (m, ri,1, ri,2, r0) to generate the proof
string πi, such that NIWI.Verify(crs1, yi, πi) = 1, for every i ∈ [n]. Then, by the
property of iO and the correctness of the underlying PKE and LFE, we have:

y = LFE.Dec(crs2, C, ct′)
= LFE.Dec(crs2, C, iO(GdigsetC )((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn)))

= LFE.Dec(crs2, C, LFE.Enc(crs2, digestC , x1 ‖ . . . ‖ xn)) = C(x1, . . . , xn)

Lemma 3. (Laconic Property). According to the efficiency of underlying
PKE, NIWI, iO (assume iO is of polynomial p to its input size), and LWE-based
LFE [31], our construction above is laconic for unbounded-size circuit class C.

Proof. Now, for a circuit C ∈ C : ({0, 1}k)n → {0, 1}� of circuit size |C| =
ω(p(n, k, λ)) and depth d, and security parameter λ, according to the parameters
of LWE-based LFE, we analysis the parameters in our construction as follows:

– The crs consists of crs1 forNIWI, and crs2 of size (n×k)·poly(λ, d) for LWE-based
LFE. Hence, the size of crs is much smaller than the circuit size of C.

– The digest is of size poly(λ) for LWE-based LFE. The SK consists of
(pk1, pk2, sk1) forPKE encryption scheme, commitments {zj

1,i} and z2, and ran-
domness r0. Then, both the size of the digest and SK is independent with |C|.

– The encryption algorithm consists of generating two PKE encryptions, a NIWI
proof string and an indistinguishable obfuscation for a circuit. The generation
of two PKE encryptions and the corresponding proof string is independent
with the circuit size of C. And, the main size of the circuit been obfuscated
is the size of LWE-based LFE.Enc, about Õ(n × k + �) · poly(λ, d). Then, the
obfuscation of the circuit should be around p(λ, n, k, �, d). Therefore, both the
run-time of the encryption algorithm and the size of the ciphertext are much
smaller than the circuit size |C| = ω(p(n, k, λ)) of circuit C.

As the discussion above, we conclude that our construction is laconic.

Theorem 4. (Security Proof). Let q = q(λ) be such that qn = poly(λ),
Then assume indistinguishability obfuscator for all polynomial-size computable
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circuits, one-way functions and selectively (adaptively) secure laconic function
evaluation, the above construction is (n, q)-SIM selectively (adaptively) secure.

Proof. (Proof Sketch). To prove the above theorem, we first construct an ideal
world simulator S.

Simulator S Recall the security definition in Fig. 1, the simulator is
given the common reference string crs, circuit C, digest digestC , and values
{C(xj1

1 , . . . , xjn
n )} for j1, . . . , jn ∈ [q]. The simulator S works as follows:

Simulate PKE Encryptions of Challenge Message:
– For all i ∈ [n] and j ∈ [q], S computes cj

i,1 ← PKE.Enc(pk1, 0) and
cj
i,2 ← PKE.Enc(pk2, 0).

– S computes z2 ← Com(1).
Simulate NIWI proof for PKE Encryptions of Challenge Message:

– For every i ∈ [n], j ∈ [q], S computes zj
1,i ← Com(cj

i,1 ‖ cj
i,2). Let rj

1,i

denote the randomness used to compute zj
1,i.

– Let yj
i = (cj

i,1, c
j
i,2, pk1, pk2, {zj

1,i}, z2). S computes the proof string πj
i ←

NIWI.Prove(crs1, y
j
i , ω

j
i ), where the witness ωj

i corresponds to the trap-
door witness (j, rj

1,i). That is, ωj
i establishes that zj

1,i is a commitment to
cj
i,1 ‖ cj

i,2.
Simulate Indistinguishable Obfuscation: S computes indistinguishable

obfuscation of the circuit SIM.GdigestC , where SIM.GdigestC is defined in Fig. 4

Then we describe a sequence of hybrid experiments H0, . . . ,H7, where H0

corresponds to the real world experiment and H7 corresponds to the ideal world
experiment. For every i, we will prove that the output of Hi is computationally
indistinguishable from the output of Hi+1.

Hyb H0: This is the real world experiment.
Hyb H1: This experiment is the same as H0 except that in every challenge

ciphertext CTj
i = (cj

i,1, c
j
i,2, π

j
i , iO(GdigestC ), the indistinguishable obfusca-

tion of GdigestC is replaced by the indistinguishable obfuscation of G′, G′ is
defined in Fig. 5.
The indistinguishability between hybrids H0 and H1 follows from the prop-
erty of indistinguishable obfuscator and security of laconic function evalua-
tion. We refer to the full version for more details.

Hyb H2: This experiment is the same as H1 except that we start generating
zj
1,i as a commitment to cj

i,1 ‖ cj
i,2 rather than 02�ct , for all i ∈ [n], j ∈ [q].

The indistinguishability between hybrids H1 and H2 follows directly from
the computational hiding property of the commitment scheme, since that
there is nothing else corresponding to the commitments {zj

1,i} in these two
experiments.

Hyb H3: This experiment is the same as H2 except that in every challenge
ciphertext CTj

i = (cj
i,1, c

j
i,2, π

j
i , iO(G′), the corresponding proof string πj

i is
computed using a trapdoor witness (j, rj

1,i), where rj
1,i be the randomness

to generate zj
1,i ← Com(cj

i,1 ‖ cj
i,2), for all i ∈ [n], j ∈ [q].
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SIM.GdigestC [{(cj
i,1, c

j
i,2)}, {zj

1,i}, z2, {C(xj1
1 , . . . , xjn

n )}]((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn

))
Input: PKE ciphertext and proof pairs (ci,1, ci,2, πi), for i ∈ [n].
Hardcoded: statements of challenge ciphertext (cj

i,1, c
j
i,2, pk1, pk2, {zj

1,i}, z2) for i ∈
[n], j ∈ [q], and values {C(xj1

1 , . . . , xjn
n )} for j1, . . . , jn ∈ [q].

1. For every i = 1, . . . , n, let yi = (ci,1, ci,2, pk1, pk2, {zj
1,i}, z2) be the statement

corresponding to the proof string πi. If NIWI.Verify(crs1, yi, πi) = 0, then stop
and output ⊥; Otherwise continue to i + 1.

2. If ∃(j1, . . . , jn), s.t for every i ∈ [n]: ci,1 = cji
i,1, and ci,2 = cji

i,2, then stop and
output LFE.SIM(crs, digestC , C, C(xj1

1 , . . . , xjn
n )); Otherwise output ⊥.

Fig. 4. Description of the Circuit SIM.GdigestC

The indistinguishability between hybrids H2 and H3 follows directly from
the witness indistinguishable property of NIWI proof system.

Hyb H4: This experiment is the same as H3 except that we start generating z2
as a commitment to 1 instead of 0.
The indistinguishability between hybrids H3 and H4 follows directly from
the computational hiding property of the commitment scheme.

Hyb H5: This experiment is the same as H4 except that in the ciphertexts of
PKE encryption for challenge message pairs, the second ciphertext cj

i,2 is an
encryption of zeros, i.e., cj

i,2 ← PKE.Enc(pk2, 0).
The indistinguishability between hybrids H4 and H5 follows immediately
from the semantic security of PKE encryption scheme.

Hyb H6: This experiment is the same as H5 except that in each challenge
ciphertext CTj

i = (cj
i,1, c

j
i,2, π

j
i , iO(G′), the indistinguishable obfuscation of

G′ is replaced by the indistinguishable obfuscation of SIM.GdigestC .
The indistinguishability between hybrids H5 and H6 follows from the prop-
erty of indistinguishable obfuscator, the perfectly binding property of the
commitment scheme, and the statistical soundness property of NIWI proof
system. We refer to the full version for formal proof.

Hyb H7: This experiment is the same as H6 except that in the ciphertexts of
PKE encryption for challenge message pairs, the first ciphertext cj

i,1 is an
encryption of zeros, i.e., cj

i,1 ← PKE.Enc(pk1, 0). Note that this is the ideal
world experiment.
The indistinguishability between hybrids H6 and H7 follows immediately
from the semantic security of PKE encryption scheme.

This completes the security proof of our construction.
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G′[SK, digestC , {(cj
i,1, c

j
i,2)}, {C(xj1

1 , . . . , xjn
n )}]((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn))

Input: PKE ciphertext and proof pairs (ci,1, ci,2, πi), for i ∈ [n].
Hardcoded: secret key SK, digest digestC , PKE encryptions for challenge message
{(cj

i,1, c
j
i,2)} and values {C(xj1

1 , . . . , xjn
n )}.

1. For every i = 1, . . . , n, let yi = (ci,1, ci,2, pk1, pk2, {zj
1,i}, z2) be the statement

corresponding to the proof string πi. If NIWI.Verify(crs1, yi, πi) = 0, then stop
and output ⊥; Otherwise continue to i + 1.

2. If ∃(j1, . . . , jn), s.t for every i ∈ [n]: ci,1 = cji
i,1, and ci,2 = cji

i,2, then stop and
output LFE.SIM(crs, digestC , C, C(xj1

1 , . . . , xjn
n )); Otherwise continue to the next

step.
3. Compute xi = PKE.Dec(sk1, ci,1).
4. Outputs ct′ ← LFE.Enc(crs2, digestC , (x1, . . . , xn)).

Fig. 5. Description of the circuit G′

6 Conclusion

The client-optimized MPC is the main motivation for this work, which yields
the first study regarding multi-input laconic function evaluation. We propose
definitions of variant multi-input laconic function evaluation and then explore
construction and impossibility result of variants of it. Specifically, We show that
public-key MI-LFE implies VBB obfuscation for all circuits, a primitive that is
impossible to achieve. Then we build private-key MI-LFE from iO. The use of
iO is inevitable here as private-key MI-LFE can be used to construct witness
encryption or iO, which do not have constructions based on standard assump-
tions yet. Therefore, an interesting open problem is to explore MI-LFE for some
special function families, such as inner product, or weaken the security require-
ment of MI-LFE to make it plausible to have a construction based on standard
assumptions.
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Abstract. Discrete Gaussian sampling over the integers, which is to
sample from a discrete Gaussian distribution DZ,σ,μ over the integers Z

with parameter σ > 0 and center μ ∈ R, is one of fundamental operations
in lattice-based cryptography. The sampling algorithm should support a
varying center μ and even a varying parameter σ, when it is used as
one of the subroutines in an algorithm for sampling trapdoor lattices,
or sampling from Gaussian distributions over a general n-dimensional
lattice Λ. In this paper, combining the techniques in Karney’s algorithm
for exactly sampling the standard normal distribution, we present an
exact sampling algorithm for DZ,σ,μ with an integer-valued parameter
σ. This algorithm requires no pre-computation storage, uses no floating-
point arithmetic, supports centers of arbitrary precision, and does not
have any statistical discrepancy. Applying the convolution-like property
of discrete Gaussian distributions, we also present an approximated sam-
pling algorithm for DZ,σ,μ with a real-valued parameter σ. It also sup-
ports centers of arbitrary precision, and we show that the distribution it
produces has a smaller max-log distance to the ideal distribution, as com-
pared to Micciancio-Walter sampling algorithm, which was introduced by
Micciancio et al. in Crypto 2017 for discrete Gaussian distributions with
varying σ and μ over the integers.

Keywords: Lattice-based cryptography · Discrete Gaussian
distribution · Rejection sampling · Exact sampling · Max-log distance

1 Introduction

Lattice-based cryptography has been accepted as a promising candidate for pub-
lic key cryptography in the age of quantum computing. Discrete Gaussian sam-
pling, which is to sample from a discrete Gaussian distribution DΛ,σ,c with
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parameter σ > 0 and center c ∈ R
n over an n-dimensional lattice Λ, plays a

fundamental role in lattice-based cryptography. Discrete Gaussian sampling is
not only one of the fundamental operations in many lattice-based cryptosys-
tems but is also at the core of security proofs of these cryptosystems [10,18,21].
It has been considered by the cryptography research community as one of the
fundamental building blocks of lattice-based cryptography [19,20,22,24].

An important sub-problem of discrete Gaussian sampling, which is denoted
by SampleZ, is to sample from a discrete Gaussian distribution DZ,σ,μ over the
integers Z with parameter σ > 0 and center μ ∈ R. Since SampleZ is much
more efficient and simpler than sampling from discrete Gaussian sampling over
a general lattice, the operations involving discrete Gaussian sampling in some
lattice-based cryptosystems such as [6,23,27] are nothing but SampleZ. A good
sampling algorithm for a discrete Gaussian distribution (not necessarily over
the integers Z) should not only be efficient, but also have a negligible statistical
discrepancy with the target distribution. Therefore, how to design and implement
good sampling algorithms for discrete Gaussian distributions over the integers
has received a lot of attentions in recent years.

The commonly used methods (techniques) for SampleZ are the inversion sam-
pling (using a cumulative distribution table, CDT) [24], the Knuth-Yao method
(using a discrete distribution generating (DDG) tree) [7,28], the rejection sam-
pling [6,10,16], and the convolution technique [22,25] (based on the convolution-
like properties of discrete Gaussian distributions developed by Peikert in [24]).

The first SampleZ algorithm, which was given by Gentry et al. in [10],
uses rejection sampling. Although this algorithm supports varying parameters
(including μ and σ), it is not very efficient, since it requires about 10 trials
on average before outputting an integer in order to get a negligible statistical
distance to the target discrete Gaussian distribution.1

Most of improved SampleZ algorithms are designed only for the case where
center μ is fixed in advance, such as [6,11,14,15,28,29]. It is necessary to con-
sider generic SampleZ algorithms that support varying parameters. Sampling
from discrete Gaussian distributions over the integers is also usually one of the
subroutines in discrete Gaussian sampling algorithms for distributions over a
general n-dimensional lattice Λ. Examples include the SampleD algorithm [10]
for distributions over an n-dimensional lattice of a basis B ∈ R

n, Peikert’s algo-
rithm for distributions over a q-ary integer lattice Λ ⊆ Z

n [24], and Gaussian
sampling algorithms for trapdoor lattices [9,20]. A SampleZ algorithm should
support a varying center μ, and even a varying parameter σ, if it is used in these
cases.

1.1 Related Work

In 2016, Karney proposed an algorithm for sampling exactly (without statisti-
cal discrepancy) from a discrete Gaussian distribution over the integers Z [16].

1 The number of trials could be decreased by using more cryptographically efficient
measures, like Rényi divergence [2,26].
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This algorithm uses no floating-point arithmetic and does not need any precom-
putation storage. It allows the parameters (including σ and μ) to be arbitrary
rational numbers of finite precision. This may be the second generic SampleZ
algorithm since the one given by Gentry et al. in [10].

In 2017, Micciancio and Walter developed a new SampleZ algorithm [22]. We
call this algorithm Micciancio-Walter sampling algorithm. It extends and gener-
alizes the techniques that were used in the sampler proposed by Pöeppelmann
et al. [25]. Micciancio-Walter algorithm is also generic, i.e., it can be used to
sample from discrete Gaussian distributions with arbitrary and varying parame-
ters of specified (finite) precision. Moreover, Aguilar-Melchor et al. also designed
a non-centered CDT algorithm with reduced size of precomputation tables [1].

More recently, it was suggested that the Bernoulli sampling, introduced by
Ducas et al. in [6] for centered discrete Gaussian distributions over the integers,
could be improved by using the polynomial approximation technique. Specifi-
cally, the rejection operation in the Bernoulli sampling can be performed very
efficiently by using an approximated polynomial [3,32]. The polynomial (its
coefficients) can be determined in advance, and it also allows us to sample
from Gaussian distributions with a varying center μ ∈ [0, 1). Combining the
convolution-like property of discrete Gaussian distributions [22,24,25], a non-
centered Bernoulli sampling could be further extended to a generic sampling
algorithm for any discrete Gaussian distribution over the integers. Howe et al.
further presented a modular framework [12] for generating discrete Gaussians
with arbitrary and varying parameters, which incorporates rejection sampling,
the polynomial approximation technique, and the sampling technique used in
Falcon signature [27].

Another alternative method of discrete Gaussian sampling over the inte-
gers is to sample from the (continuous) standard normal distribution, and then
obtain the samples of discrete Gaussian distributions by rejection sampling [31].
This method is very efficient and supports discrete Gaussian distributions with
arbitrary and varying parameters, although it relies on floating-point arithmetic
(even involving logarithmic function and trigonometric function due to sampling
from the standard normal distribution). In fact, a more simple and efficient
method is to replace discrete Gaussians with rounded Gaussians [13], which are
the nearest integers of sample values from the continuous normal distribution,
but the security analysis of rounded Gaussians is only confined to the cryptosys-
tems like Bliss signature.

Except Karney’s sampling algorithm, the existing algorithms for sampling
from DZ,σ,μ with varying parameters, either rely on floating-point arithmetic,
such as the algorithms in [10,32], or require a large amount of precomputation
storage, such as Micciancio-Walter sampling algorithm [22] and the one given by
Aguilar-Melchor et al. [1]. The sampler presented by Barthe et al. in [3] supports
a varying μ ∈ R but not a varying parameters σ. It needs to perform another
polynomial approximation procedure for the new σ.

Furthermore, except Karney’s sampling algorithm, those algorithms men-
tioned above are all the approximated algorithms, which only produce samples
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approximately from the target distribution. They usually involve complicated
and careful security analysis based on statistical measures (e.g. Rényi diver-
gence [2,26], max-log distance [22], relative error [30]), since attaining a negli-
gible statistical measure to the ideal Gaussian distribution may be crucial for
lattice-based cryptography, especially for signatures [17] and lattice trapdoors
[10], to provide zero-knowledgeness. Therefore, it is interesting to consider exact
sampling algorithms in lattice-based cryptography. The security analysis based
on statistical measures for exact algorithms can be simplified or even be omitted.

1.2 Our Contribution

On one hand, we note that Karney’s sampling algorithm [16] is exact sampling
algorithm, but it allows only the case where σ and μ are rational numbers of
specified (finite) precision. In this paper, for an integer-valued parameter σ,
we present an exact sampling algorithm for DZ,σ,μ. This algorithm requires no
pre-computation storage, uses no floating-point arithmetic and supports a vary-
ing μ of arbitrary precision. On the other hand, although Micciancio-Walter
sampling algorithm [22] supports varying parameters (including μ and σ) with
specified (finite) precision, its base sampler requires a large amount of precompu-
tation storage. Based on our proposed exact algorithm, applying the convolution-
like property of discrete Gaussian distributions we give an approximated sam-
pling algorithm for DZ,σ,μ with a real-valued parameter σ. It requires no pre-
computation storage, and supports a varying μ of arbitrary precision. We show
that the distribution it produces has a smaller max-log distance to the ideal dis-
tribution DZ,σ,μ, as compared to the distribution produced by Micciancio-Walter
sampling algorithm.

1.3 Techniques

Let σ be a positive integer, μ ∈ [0, 1) be a real number of arbitrary precision,
and x be a non-negative integer. We give an algorithm for exactly generating a
Bernoulli random value which is true with probability

exp
(

−t
2x + t

2x + 2

)
,

where t is in the form of (y − sμ)/σ, s ∈ {−1, 1}, and y is an integer taken
uniformly from [(1 + s)/2, σ + (1 + s)/2). In our exact sampling algorithm for
discrete Gaussian distributions, which is based on the rejection sampling, we
show that the rejection operation can be performed by repeatedly using this
algorithm of generating the Bernoulli random value.

In fact, this algorithm is adapted from Karney’s algorithm for exactly gen-
erating the Bernoulli random value (see Algorithm B in [16]). Karney also used
it as the rejection operation in his algorithm for standard normal distribution
as well as discrete Gaussian distributions over the integers. However, t is only
regarded as a random deviate from [0, 1) in Karney’s algorithm. The value of t
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corresponds exactly to the fraction part of the prospective output and can be
obtained directly as a random number in case of standard normal distribution,
while the determination of the value of t in the case of discrete Gaussian dis-
tributions needs the computation with respect to the parameters σ and μ. In
order to maintain the exactness, μ is only allowed to be a rational number for
sampling from discrete Gaussian distributions, which limits the functionality of
Karney’s algorithm.

2 Preliminaries

2.1 Notation

We denote the set of real numbers by R, the set of integers by Z, and the set
of non-negative integers by Z

+. We extend any real function f(·) to a countable
set A by defining f(A) =

∑
x∈A f(x) if it exists. The Gaussian function on R

with parameter σ > 0 and μ ∈ R evaluated at x ∈ R can be defined by ρσ,μ(x) =

exp
(
− (x−μ)2

2σ2

)
. For real σ > 0 and μ ∈ R, the discrete Gaussian distribution

over Z is defined by DZ,σ,μ(x) = ρσ,μ(x)/ρσ,μ(Z) for x ∈ Z. Similarly, a discrete
Gaussian distribution over Z

+ is defined by DZ+,σ(x) = ρσ,μ(x)/ρσ,μ(Z+). By
convention, the subscript μ is omitted when it is taken to be 0.

2.2 Rejection Sampling

Rejection sampling is a basic method (technique) used to generate observations
from a distribution [5]. It generates sampling values from a target distribution X
with arbitrary probability density function f(x) by using a proposal distribution
Y with probability density function g(x). The basic idea is that one generates
a sample value from X by instead sampling from Y and accepting the sample
from Y with probability

f(x)/Mg(x),

repeating the draws from Y until a value is accepted, where M is a constant
such that f(x) ≤ Mg(x) for all values of x in the support of X. If f(x) ≤ Mg(x)
for all x then the rejection sampling procedure produces exactly, with enough
replicates, the distribution of X. In fact, f(x) is allowed to be only a relative
probability density function. Rejection sampling can be used to sample from a
distribution X whose normalizing constant is unknown as long as the support
of Y includes the support of x.

2.3 Karney’s Algorithm

Karney’s exact sampling algorithm for discrete Gaussian distributions, which is
described as Algorithm 1, uses rejection sampling, and it is a discretization of his
algorithm for sampling exactly from the normal distribution. Here, parameter σ
and μ are in the set of rational numbers Q.
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Algorithm 1. [16] Sampling DZ,σ,μ for σ, μ ∈ Q and σ > 0
Input: rational number σ and μ
Output: an integer z according to DZ,σ,μ

1: select k ∈ Z
+ with probability exp(−k/2) · (1 − exp(−1/2)).

2: accept k with probability exp
(− 1

2k(k − 1)
)
, otherwise, goto step 1.

3: set s ← ±1 with equal probabilities.
4: set i0 ← �kσ + sμ� and set x0 ← (i0 − (kσ + sμ))/σ.
5: sample j ∈ Z uniformly in {0, 1, 2, · · · , �σ� − 1}.
6: set x ← x0 + j/σ and goto step 1 if x ≥ 1.
7: goto step 1 if k = 0 and x = 0 and s < 0.
8: accept x with probability exp

(− 1
2x(2k + x)

)
, otherwise goto step 1.

9: return s(i0 + j)

From the perspective of rejection sampling, in Algorithm 1, we can see that
step 1 and step 2 together form a rejection sampling procedure, which generates
k ∈ Z

+ according to
DZ+,1(k) = ρ1(k)/ρ1(Z+),

which is a discrete Gaussian distribution over the set of non-negative integers
Z
+. Then, the proposal distribution for the whole algorithm can be written as

g(z) = g(s(�kσ + sμ� + j)) = ρ1(k)/(2�σ�ρ1(Z+))

with z = s(�kσ + sμ� + j). The algorithm accepts z as the returned value with
probability e− 1

2x(2k+x), where x = (�kσ + sμ� − (kσ + sμ) + j)/σ < 1. It is not
hard to see that

ρ1(k) · exp(−1
2
x(2k + x)) = exp(− (�kσ + sμ� + j − sμ)2

2σ2
) = ρσ,μ(z),

which guarantees the correctness of Algorithm 1.
In Algorithm 1, in order to exactly sample k ∈ Z

+ with (relative) probability
density ρ1(k) = exp(−k2/2), Karney also gave an algorithm for exactly generat-
ing a Bernoulli random value which is true with probability 1/

√
e. Specifically,

one needs (k +1) Bernoulli random values from B1/
√

e to select an integer k ≥ 0
with probability exp(−k/2) · (1 − exp(−1/2)) (step 1), then continues to gener-
ate k(k − 1) Bernoulli random values from B1/

√
e to accept k with probability

exp
(− 1

2k(k − 1)
)

(step 2). Karney’s algorithm for exactly generating a Bernoulli
random value which is true with probability 1/

√
e is adapted from Von Neum-

mann’s algorithm for exactly sampling from the exponential distribution e−x for
real x > 0 (see Algorithm V and Algorihtm H in [16]).

In Algorithm 1, step 8 is implemented by using a specifically designed algo-
rithm so that it produces no any statistical discrepancy, and we will discuss this
algorithm in Sect. 3.
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3 Sampling from Arbitrary-Centered Discrete Gaussians

Algorithm 2 is our proposed algorithm for sampling from arbitrary-centered
discrete Gaussian distributions. We give the proof of its correctness.

Algorithm 2. Sampling from DZ,σ,μ with an integer-valued σ and a real-valued
μ of arbitrary precision
Input: positive integer σ and μ ∈ [0, 1)
Output: an integer z according to DZ,σ,μ

1: select x ∈ Z
+ with probability exp(−x/2) · (1 − exp(−1/2)).

2: accept x with probability exp
(− 1

2x(x − 1)
)
, otherwise, goto step 1.

3: set s ← ±1 with equal probabilities.
4: sample y ∈ Z uniformly in {0, 1, 2, · · · , σ − 1} and set y ← y + 1 if s = 1.
5: return z = s(σ · x + y) with probability exp

(−((y − sμ)2 + 2σx(y − sμ))/(2σ2)
)
,

otherwise goto step 1.

Theorem 1. The integer z ∈ Z output by Algorithm 2 is exactly from the dis-
crete Gaussian distribution DZ,σ,μ with an integer-valued σ and a real-valued μ
of arbitrary precision, if the probability

exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)

can be calculated exactly.

Proof. From the perspective of rejection sampling, following Karney’s approach
(step 1 and 2 in Algorithm 1), we generate an integer x exactly from DZ+,1(x) =
ρ1(x)/ρ1(Z+), and use DZ+,1 as the proposal distribution. For a given positive
integer σ, any z ∈ Z can be uniquely written as

z = s

(
σx + y +

1 + s

2

)
,

where s ∈ {−1, 1}, and x, y are integers such that x ≥ 0 and y ∈ [0, σ). This
guarantees that the support of the distribution produced by Algorithm 2 is the
set of all the integers. For simplicity, we set y ← y+1 if s = 1. Then, z = s(σx+y)
and the target distribution density function f(z) for z ∈ Z can be written as

f(z) = f(s(σx + y)) =
ρσ,μ(s(σx + y))

ρσ,μ(Z)
.

In Algorithm 2, for a given integer x exactly from DZ+,1, we sample s ← ±1
with equal probabilities, take z = s(σx + y), and then accept the value of z as
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the returned value with probability exp
(−((y − sμ)2 + 2σx(y − sμ))/(2σ2)

)
. It

is not hard to see that

ρ1(x) · exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)
= exp

(
− (σx + y − sμ)2

2σ2

)

= exp
(

− (s(σx + y) − μ)2

2σ2

)

= ρσ,μ(s(σx + y)),

which is proportional to the desired (relative) probability density. This implies
that the probability of Algorithm 2 going back to step 1 is equal to a constant,

1 − (1 − exp(−1/2))
+∞∑

z=−∞
ρσ,μ(z) = 1 − (1 − exp(−1/2)) ρσ,μ(Z).

We denote by Q∞ this constant and let q(z) = (1 − exp(−1/2)) · ρσ,μ(z). Then,
the probability that Algorithm 2 outputs an integer z ∈ Z can be given by

q(z) + q(z)Q∞ + . . . + q(z)Qi
∞ + . . . = q(z) ·

∞∑
i=0

Qi
∞ =

ρσ,μ(z)
ρσ,μ(Z)

,

which shows the correctness of Algorithm 2. Since all the operations, including
computing the value of probability

exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)
,

can be performed without any statistical discrepancy, and thus Algorithm 2
produces exactly the discrete Gaussian distribution DZ,σ,μ. 
�

The most important problem of Algorithm 2 is to compute exaclty the value
of the exponential function for a real-valued μ of arbitrary precision, and get a
Bernoulli random value which is true with probability of this value. Addressing
this problem is based on the following observation.

exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)

= exp
(

−1
2

(
y − sμ

σ

)(
2x +

y − sμ

σ

))

=
(

exp
(

−1
2

(
y − sμ

σ

)(
2x + (y − sμ)/σ

x + 1

)))x+1

=
(

exp
(

−
(

y − sμ

σ

) (
2x + (y − sμ)/σ

2x + 2

)))x+1

=
(

exp
(

−ỹ

(
2x + ỹ

2x + 2

)))x+1

,
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where ỹ = (y − sμ)/σ and 0 ≤ ỹ < 1. Therefore, we can repeatedly sample from
the Bernoulli distribution Bp a total of x+1 times to obtain a Bernoulli random
value which is true with our desired probability, where

p = exp
(

−ỹ

(
2x + ỹ

2x + 2

))
.

Sampling the Bernoulli distribution Bp can be accomplished by using
Algorithm 3, which was proposed by Karney in [16]. The function C(m) with
m = 2x + 2 in Algorithm 3 is a random selector that outputs −1, 0 and 1 with
probability 1/m, 1/m and 1 − 2/m respectively.

Algorithm 3. [16] Generating a Bernoulli random value which is true with
probability exp(−t(2x + t)/(2x + 2)) with integer x ≥ 0 and real t ∈ [0, 1)
Output: a Boolean value according to exp(−t 2x+t

2x+2 )
1: set u ← t, n ← 0.
2: sample a uniform deviate v with v ∈ [0, 1); goto step 6 unless v < u.
3: set f ← C(2x + 2); if f < 0 goto step 6.
4: sample a uniform deviate w ∈ [0, 1) if f = 0, and goto step 6 unless w < t.
5: set u ← v, n ← n + 1; goto step 2.
6: return true if n is even, otherwise return false.

The main idea is to sample two sets of uniform deviates v1, v2, . . . and
w1, w2, . . . from [0, 1), and to determine the maximum value n ≥ 0 such that

t > v1 > v2 > . . . > vn and wi < (2x + t)/(2x + 2) for i = 1, 2, . . . , n.

If n is even, it returns true, and the probability is exactly equal to

1 − t

(
2x + t

2x + 2

)
+

t2

2!

(
2x + t

2x + 2

)2

− t3

3!

(
2x + t

2x + 2

)3

+ . . . = exp
(

−t
2x + t

2x + 2

)
.

This follows from the Taylor expansion of the exponential function. Then, apply-
ing this procedure at most k +1 times, one can obtain a Bernoulli random value
which is true with probability exp

(− 1
2 t(2x + t)

)
for given x and t. Taking

t = ỹ =
y − sμ

σ

and applying Algorithm 3, we can sample from the Bernoulli distribution Bp

with p = exp (−ỹ ((2x + ỹ)/(2x + 2))).
The remaining issue is that we need to compare ỹ with a randomly generated

deviate in [0, 1), but do not use floating-point arithmetic. This can guarantee
the exactness. We observe that any real u ∈ [0, 1) of arbitrary precision can be
represented by

u =
j − sr

σ
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0                                    

Fig. 1. Comparing u = (j − r)/σ with (y − μ)/σ

with given σ and s, where j is an integer from [(1 + s)/2, σ + (1 + s)/2) and
r ∈ [0, 1) is a real number of arbitrary precision. Then, we can do the comparison
as follows.

To obtain a randomly generated deviate in the form of u = (j − sr)/σ ∈
[0, 1), we sample j uniformly in {0, 1, 2, · · · , σ − 1}, sample a uniform deviate
r ∈ [0, 1) and set j = j + 1 if s = 1. To compare a randomly generated deviate
u = (j − sr)/σ with a given (y − sμ)/σ, we compare j with y firstly and return
the result if they are not equal. Otherwise, we compare r with μ to complete
the whole procedure. Figure 1 shows the above idea in the case of s = 1. We
summarize the whole procedure of comparison in Algorithm 4.

Algorithm 4. Compare (y−sμ)/σ with a randomly generated deviate u ∈ [0, 1)
Input: integers σ > 0, s ∈ {−1, 1}, y ∈ [(1 + s)/2, σ + (1 + s)/2), and real μ ∈ [0, 1)
Output: true if u < (y − sμ)/σ or false if otherwise
1: sample j uniformly in {0, 1, 2, · · · , σ − 1} and set j ← j + 1 if s = 1
2: return true if j < y, or false if j > y
3: sample a uniform deviate r ∈ [0, 1)
4: return the value of Boolean expression ‘r < μ’ if s = −1
5: return the value of Boolean expression ‘r > μ’ if s = 1

Note that comparing r with μ can be realized without floating-point arith-
metic through bitwise operations. This implies that Algorithm 4 allows μ to be
a real number of arbitrary precision and there is no case where r = μ. Specifi-
cally, following the implementation of Karney’s algorithm for random numbers
of arbitrary precision, the comparison of two deviates is realized digit-by-digit,
and each digit of a deviate is generated online according to the actual needs.
To determine the relation between r and μ, we take the first digit of r and μ,
respectively, denoted by r1 and μ1. If r1 or μ1 does not exist, then we generate
it uniformly online. If r1 and μ1 are equal, then we take the second digit of r
and μ, namely r2 and μ2, and continue to compare them. In fact, one digit could
consist of only one bit or a small number of bits, such as 4 bits, 8 bits or 16 bits.
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We call the number of bits in each digit the digit size, which can be specified in
the source code in advance.

Finally, if each random deviate in [0, 1) used in Algorithm 3 is handled in
the form of u = (j − sr)/σ, then Algorithm 3 allows μ to be a real number of
arbitrary precision, and we can implement it without floating-point arithmetic.

4 Applying the Convolution-Like Property

In this section, we try to extend Algorithm 2 to the case of discrete Gaus-
sian distributions with arbitrary parameters (including σ and μ) by using the
convolution-like property of discrete Gaussian distributions.

Informally, for a Gaussian distribution with a relatively large standard devi-
ation σ, we compute two samples x1 and x2 with smaller variances σ2

1 and σ2
2 .

We hope that their combination x1 + c · x2 with a constant c is Gaussian with
variance σ2

1 + c ·σ2
2 . Although this is not generally the case for discrete Gaussian

distributions, Peikert showed that the distribution of x1 + c · x2 is statistically
close to discrete Gaussian distribution with variance σ2

1 + c · σ2
2 under certain

conditions with respect to the smoothing parameter of lattices [24]. This obser-
vation was called by Peikert the convolution-like property of discrete Gaussian
distributions.

Definition 1 (a special case of [21], Definition 3.1). Let ε > 0 be a positive
real. The smoothing parameter of lattice Z, denoted by ηε(Z), is defined to be the
smallest real s such that ρ1/s(Z \ {0}) ≤ ε.

Lemma 1 (Adapted from Lemma 3.3 [21]). For any real ε > 0, the smooth-
ing parameter of lattice Z satisfies2 ηε(Z) ≤ √

ln(2(1 + 1/ε))/2/π.

Here, we apply the conclusion described by Micciancio and Walter in [22]
about the convolution-like property, since it deals with non-centered discrete
Gaussian over the integers Z and uses a more cryptographically efficient measure
of closeness between probability distributions, named the max-log distance.

Definition 2 [22]. The max-log distance between two distributions P and Q over
the same support S is ΔML(P,Q) = maxx∈S | ln P(x) − lnQ(x)|.
Lemma 2 (Corollary 4.2 in [22]). Let σ1, σ2 > 0, σ2 = σ2

1 + σ2
2 and σ−2

3 =
σ−2
1 + σ−2

2 . Let Λ = h · Z be a copy of the integer lattice Z scaled by a constant
h. For any μ1 and μ2 ∈ R, we denote by D̃μ1+Z,σ the distribution of

x1 ← x2 + D̃μ1−x2+Z,σ1 with x2 ← D̃μ2+Λ,σ2 .

If σ1 ≥ ηε(Z), σ3 ≥ ηε(Λ) = h · ηε(Z), ΔML(Dμ2+Λ,σ2 , D̃μ2+Λ,σ2) ≤ ε2 and
ΔML(Dμ+Z,σ1 , D̃μ+Z,σ1) ≤ ε1 for any μ ∈ R, then

ΔML(Dμ1+Z,σ, D̃μ1+Z,σ) ≤ 4ε + ε1 + ε2,

where ε1 and ε2 are positive real numbers.
2 It allows to decrease the smoothing condition by a factor of

√
2π since the Gaussian

function is defined to be exp(− (x−μ)2

2σ2 ) but not exp(−π (x−μ)2

σ2 ).
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Definition 3 (Randomized rounding operator �·�λ [22]). For μ ∈ [0, 1)
and a positive integer λ, the randomized rounding operator �μ�λ is defined by

�μ�λ = �2λμ/2λ + Bα/2λ

with a Bernoulli random variable Bα of parameter α = 2λμ − �2λμ. In partic-
ular, if μ > 1 then

μ′ ← �μ + �{μ}�λ,

where �μ and {μ} is the integer part and the fractional part of μ respectively.

Lemma 3 (Adapted from Lemma 5.3 in [22]). Let λ > log2 4π be a positive
integer and b = 2λ. If σ ≥ ηε(Z), then

ΔML(DZ,σ,μ, D̃Z,σ,�μ�λ
) ≤ (π/b)2 + 2ε,

where �·�λ is the randomized rounding operator as defined above.

Combining our proposed exact algorithm (Algorithm 2), and applying the
convolution-like property, namely Lemma 2, we give Algorithm 5.

Algorithm 5. Sampling DZ,σ,μ with σ > ηε(Z) and μ ∈ [0, 1)
Input: σ > 1 and μ ∈ [0, 1)
Output: an integer z
1: sample x ∈ Z from DZ,2ηε(Z)

2: set h =
√

σ2 − �σ	2/(2ηε(Z))
3: set μ′ ← �μ + hx�λ

4: sample z from DZ,�σ�,μ′ and return z

Theorem 2 gives the correctness of Algorithm 5 and estimates the (theoreti-
cal) max-log distance between the distribution D̃Z,σ,μ produced by Algorithm 5
and the ideal distribution DZ,σ,μ. The equation that

μ + D−μ+Z,σ = DZ,σ,μ

for any σ > 0 and μ ∈ R will be repeatedly used in the proof.

Theorem 2. Let λ > log2 4π be a positive integer and b = 2λ. Denote by D̃Z,σ,μ

the probability distribution of integers that are output by Algorithm 5. If �σ >
ηε(Z) and ηε(Z) is taken to be a rational number, then we have

ΔML(DZ,σ,μ, D̃Z,σ,μ) ≤ (π/b)2 + 6ε,

by using Algorithm 1 in step 1, and using Algorithm 2 in step 4.
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Proof. Let σ1 = �σ and σ2 = 2hηε(Z). Then, we have σ2 = σ2
1 + σ2

2 and

σ3 =
(
σ−2
1 + (2hηε(Z))−2

)−1/2
=

σ1

σ
·
√

σ2 − σ2
1 ≥

√
σ2 − σ2

1 · ηε(Z)
2ηε(Z)

= ηε(hZ).

This is due to the fact that σ1/σ = �σ/σ ≥ 1/2 for σ > 1. With the notation of
Lemma 2, taking μ1 = −μ, μ2 = 0, Λ = hZ, x2 = hx and x1 ← x2+D̃μ1−x2+Z,σ1 ,
we have x2 = hx ← D̃μ2+Λ,σ2 = D̃hZ,h(2ηε(Z)) = h · D̃Z,2ηε(Z) and

μ + x1 ← μ + (x2 + D̃μ1−x2+Z,σ1) = μ + hx + D̃−μ−hx+Z,�σ	 = D̃Z,�σ	,μ+hx.

Since ηε(Z) is a rational number, in Algorithm 5, D̃Z,2ηε(Z) can be exactly sampled
(without any statistical discrepancy) via Algorithm 1, which implies that

ΔML(DZ,2ηε(Z), D̃Z,2ηε(Z)) = 0.

In contrast, D̃Z,�σ	,μ+hx can be only realized by sampling from DZ,�σ	,�μ+hx�λ

with max-log distance ΔML ≤ (π/b)2 + 2ε. Applying Lemma 2, we obtain that

μ + x1 ← μ + (x2 + D̃μ1−x2+Z,σ1) = μ + (hx + D̃−μ−hx+Z,�σ	)
≈ μ + D−μ+Z,σ = DZ,σ,μ,

where ‘≈’ means that ΔML(hx + D−μ−hx+Z,�σ	,D−μ+Z,σ) is not more than

4ε + ΔML(D−μ−hx+Z,�σ	, D̃−μ−hx+Z,�σ	) + ΔML(DhZ,h(2ηε(Z)), D̃hZ,h(2ηε(Z)))

= 4ε + ΔML(DZ,2ηε(Z), D̃Z,2ηε(Z))

+ΔML(μ + hx + D−μ−hx+Z,�σ	, μ + hx + D̃−μ−hx+Z,�σ	)

≤ 4ε + ΔML(DZ,2ηε(Z), D̃Z,2ηε(Z)) + ΔML(DZ,�σ	,μ+hx, D̃Z,�σ	,μ+hx)

≤ 4ε + ((π/b)2 + 2ε).
= 6ε + (π/b)2.

This completes the proof. 
�
The distribution produced by Algorithm 5 has a smaller max-log distance

to the ideal distribution, as compared to one produced by Micciancio-Walter
sampling algorithm, since both step 1 and step 4 can be implemented exactly,
and do not lead to any statistical discrepancy. In contrast, the two corresponding
steps in Micciancio-Walter algorithm are approximated ones (see Sect. 5 in [22]).
The statistical discrepancy they produce must be counted in the total statistical
discrepancy.

For instance, we take ε = 2−112 and ηε(Z) = 2, as
√

ln(2(1 + 1/ε))/2/π ≤ 2
when ε = 2−112. We take λ = 30 and b = 230, which results in (π/b)2 ≤ 2−56.
Then, we have ΔML(DZ,σ,μ, D̃Z,σ,μ) ≤ 2−56 + 6 · 2−112. The practical max-log
distance should also include the statistical discrepancy due to the floating-point
operations in step 2. One can just follow the argument at the end of Sect. 5.3
in [22].
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Moreover, the first step in Micciancio-Walter algorithm requires sampling
from a centered discrete Gaussian distribution DZ,σmax with a possible varying
parameter σmax, which should be determined before sampling according to the
desired distribution. In Algorithm 5, however, step 1 is just to sample from a
centered discrete Gaussian distribution with a fixed parameter 2ηε(Z) = 4. This
means that Algorithm 5 has a simpler form than Micciancio-Walter algorithm.

5 Experimental Results

Karney’s sampling algorithm for discrete Gaussian distributions over the integers
Z can be realized by using C++ library ‘RandomLib’3, in which the source code
of his algorithm is encapsulated as a .hpp file named “DiscreteNormal.hpp”.
“RandomLib” also supports the generation and some basic operations of random
numbers of arbitrary precision.

On a laptop computer (Intel i7-6820 hq, 8 GB RAM), using the g++ compiler
and enabling -O3 optimization option, we tested our Algorithm 2. The source
code was based on the adaptation of ‘DiscreteNormal.hpp’ as well as the runtime
environment provided by ‘RandomLib’. For discrete Gaussian distribution DZ,σ,μ

with σ from 4 to 220 and μ uniformly from [0, 1) of precision 128 bits, combining
Algorithms 3 and 4, one could get about 5.0 × 106 samples per second by using
Algorithm 2. It has almost the same performance as Karney’s algorithm.

We also tested the performance of the Micciancio-Walter algorithm with the
same parameters. Using this algorithm, one could get about 1.3 × 106 integers
per second. We implemented its base sampler with the CDT-based method,
which required an amount of extra memory, and took λ = 8 and b = 16. This
guarantees the max-log distance to the ideal distribution is not more than 2−52.

We note that Micciancio-Walter algorithm has a constant execution time for
given parameters if its base sampler is a constant-time algorithm. However, our
Algorithm 2 as well as Algorithm 5 is not a constant-time one, and it seems
to be inherently costly to turn into a constant-time one due to the fact that
Algorithm 2 is always probabilistically rejecting samples. Therefore, an open
question is how to make Algorithm 2 constant-time and be protected against
side-channel attacks [4,8].

6 Conclusion

For an integer-valued parameter σ, there exists an exact sampling algorithm for
DZ,σ,μ. It requires no precomputation storage, uses no floating-point arithmetic,
supports a varying μ of arbitrary precision, and does not have any statistical
discrepancy. Applying the convolution-like property of discrete Gaussian dis-
tributions, it can be further extended to an approximated sampling algorithm
for DZ,σ,μ with a real-valued parameter σ. The extended algorithm also sup-
ports centers of arbitrary precision and it produces a distribution with a smaller
max-log distance to the ideal distribution, as compared to Micciancio-Walter
sampling algorithm.
3 ‘RandomLib’ is available at http://randomlib.sourceforge.net/.

http://randomlib.sourceforge.net/
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rather than the statistical distance. J. Cryptol. 31(2), 610–640 (2018)
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Abstract. The e-th power residue symbol
(

α
p

)
e

is a useful mathemat-

ical tool in cryptography, where α is an integer, p is a prime ideal in
the prime factorization of pZ[ζe] with a large prime p satisfying e|p − 1,
and ζe is an e-th primitive root of unity. One famous case of the e-th
power symbol is the first semantic secure public key cryptosystem due to
Goldwasser and Micali (at STOC 1982). In this paper, we revisit the e-th
power residue symbol and its applications. In particular, we prove that
computing the e-th power residue symbol is equivalent to solving the dis-
crete logarithm problem. By this result, we give a natural extension of the
Goldwasser-Micali cryptosystem, where e is an integer only containing
small prime factors. Compared to another extension of the Goldwasser-
Micali cryptosystem due to Joye and Libert (at EUROCRYPT 2013), our
proposal is more efficient in terms of bandwidth utilization and decryp-
tion cost. With a new hardness assumption naturally extended from the
one used in the Goldwasser-Micali cryptosystem, our proposal is prov-
able IND-CPA secure. Furthermore, we show that our results on the e-th
power residue symbol can also be used to construct lossy trapdoor func-
tions and circular and leakage resilient public key encryptions with more
efficiency and better bandwidth utilization.
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1 Introduction

We have witnessed the critical role of the power residue symbol in the his-
tory of public key encryption. Based on the quadratic residuosity assumption,
Goldwasser and Micali [18] proposed the first public key encryption (named GM)
scheme with semantic security and additive homomorphism. This scheme is revo-
lutionary but inefficient in terms of bandwidth, which hinders its use in practice.
Following the light of the GM scheme, many attempts [2–5,11–13,15,24,26,27]
have been made to address this issue.

Recall the encryption in the GM scheme. A message m ∈ {0, 1} in the GM
scheme is encrypted by c = ymr2 mod N , where N = p · q, p and q are large
primes,

(
y
N

)
=

(
y
p

)
×

(
y
q

)
= −1×−1 = 1 and r is an element picked at random

from ZN . It is easy to see that the value of logr(r2 mod N) determines the mes-
sage space. Hence, one intuitive approach to improve the bandwidth utilization
in the GM scheme is to enlarge logr(re mod N). At STOC 1994, Benaloh and
Tuinstra [2,15] set e as a special prime instead of 2. In particular, e is a prime,
e|p − 1, e2 � p − 1, and e � q − 1. The corresponding decryption requires to locate
m in [0, e) by a brute-force method. Hence, e is limited to 40 bits. At ACM
CCS 1998, Naccache and Stern [24] improved Benaloh and Tuinstra’s method
by setting e as a smooth and square-free integer e =

∏
pi such that pi|ϕ(N)

but p2i � ϕ(N) for each prime pi. The message m in this scheme is recovered
from m ≡ mi (mod pi) using the Chinese Remainder Theorem where each mi is
computed by a brute-force method. Nevertheless, the constraint p2i � ϕ(N) limits
the possibility for enlarging the message space dramatically. At EUROCRYPT
2013, based on the 2k-th power residue symbol, Joye and Libert [3] enlarged e
to 2k to obtain a nice and natural extension (named JL) of the GM scheme with
better bandwidth utilization than previous schemes. Later on, Cao et al. [13]
demonstrated that the JL scheme could be further improved by setting e as a
product of small primes. As shown in [13], the resulting scheme (named CDWS) is
more efficient than the JL scheme in terms of bandwidth utilization and decryp-
tion cost. Nonetheless, the corresponding security proof is complicated and hard
to follow.

By virtue of the fruitful use in cryptography, algorithms for computing the e-th
power residue symbol have also attracted many researchers [6,8,9,14,20,21,31].
Several efficient algorithms for the cases of e ∈ {2, 3, 4, 5, 7, 8, 11, 13} have been
proposed. However, as we know, these algorithms cannot be used for improving
the GM-type schemes in [3,13] owing to the small value of e. The general case of
computing the e-th power residue symbol was tackled by Squirrel [31] and Boer [6],
but the resulting algorithms are probabilistic and inefficient. Hence, their results
may not be applied in improving the GM scheme either. Although Freeman et al. [17]
conducted that a “compatibility” identity can be used to compute the e-th power
residue symbol, this identity could be useless in the case of a prime power e. As a
result, we cannot use Freeman et al.’s algorithm to improve the GM scheme.
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In order to solve the above problems, in this paper, we revisit the problem
of computing the e-th power residue symbol, and obtain an efficient algorithm
that can be applied in the GM-type scheme and other cryptographic primitives.
Our contributions in this paper can be summarized as follows.

– New algorithm for computing e-th power residue symbol: We prove
that computing the e-th power residue symbol is equivalent to solving the
discrete logarithm problem, if the parameters in the e-th power residue symbol(

α
p

)

e
satisfy the following properties.

• α is an integer.
• p is a prime number satisfying e|p − 1.
• p is a prime ideal in the prime factorization of pZ[ζe], and ζe is an e-th

primitive root of unity.
As we know, there exist several efficient algorithms for solving the discrete
logarithm problem when the corresponding order is a product of small primes.
Hence, we obtain an efficient algorithm for computing e-th power residue
symbol when the above conditions are satisfied.

– New extension of the GM scheme: We demonstrate that we can obtain a
natural extension of the GM scheme based on the e-th power residue symbol.
Compared to the JL scheme, our extension enjoys better bandwidth utiliza-
tion and higher decryption speed. While compared to the CDWS scheme, our
extension has a simpler security proof.

– New lossy trapdoor function: As in [3,13], our GM extension can also
be used to construct an efficient lossy trapdoor function, which inherits the
advantages of our GM extension.

– New circular and leakage resilient encryption: We also give an instan-
tiation of the subgroup indistinguishability (SG) assumption by using the e-th
power residue symbol. At CRYPTO 2010, Brakerski and Goldwasser [7] gave
a generic construction of circular and leakage resilient public key encryption
based on the SG assumption. Hence, we obtain a new circular and leakage
resilient encryption scheme. Compared to the scheme in [7], our scheme is
more efficient in terms of bandwidth utilization, due to the use of the e-th
power residue symbol instead of the Jacobi symbol.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
definitions and preliminaries about the e-th power residue symbol. In what fol-
lows, we show how to compute the e-th power residue symbol defined in Sect. 2
efficiently. Some properties and a hardness assumption related to the e-th power
residue symbol are also analyzed and discussed in this section. After that, we
give our extension of the GM scheme and its security and performance analysis
in Sect. 4. In Sect. 5, we give two applications of our results on the e-th power
residue symbol following the methods described in [3,7].
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2 Notations and Basic Definitions

2.1 Notations

For simplicity, we would like to introduce the notations used in this paper in
Table 1.

Table 1. Notations used in this paper.

Notation Description

K A number field

OK The ring of integers in a number field K

Letters in mathfrak Ideals in OK

a = b (mod D) The relation a − b ∈ D, where elements a, b ∈ OK

#X The cardinality of a set X

Xn The Cartesian product
∏n

i=1 X

〈X〉 The group generated by a set X

x
R← X x is sampled from the uniform distribution over a set X

⊗ The direct product of two algebraic structures

ϕ The Euler’s totient function

gcd(x, y) The greatest common divisor of x and y

lcm(x, y) The least common multiple of x and y

log The binary logarithm

ζe An e-th primitive root of unity, i.e., ζe =exp(2πi/e)

Zn The ring {0, 1, . . . , n − 1} of integers mod n

Z
∗
n The multiplicative group {x ∈ Zn | gcd(x, n) = 1} mod n

p, q Large prime numbers

N N = p · q

ep, eq ep|p − 1 and eq|q − 1

2.2 Power Residue Symbols

We say a prime ideal A in OK is prime to an integer e ≥ 1 if A � eOK . It
is easy to deduce that the corresponding necessary and sufficient condition is
gcd(Norm(A), e) = 1, where Norm(A) = # (OK/A). Then, we have

αNorm(A)−1 = 1 (mod A) (for α ∈ OK , α /∈ A).

Furthermore, if we have an additional condition that ζe ∈ K, then we have
that the order of group 〈ζe/A〉 generated in (OK/A)× is e, and hence e|Norm(A)−
1. Now, we can define the e-th power residue symbol

(
α
A

)
e

as follows: if α ∈ A,
then

(
α
A

)
e

= 0; otherwise,
(

α
A

)
e

is the unique e-th root of unity such that
(α

A

)

e
= α

Norm(A)−1
e (mod A).
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The definition can be naturally extended to the case that A is not a prime ideal,
such that A =

∏
i Bi and gcd(Norm(Bi), e) = 1. In particular, we define

(α

A

)

e
=

∏

i

(
α

Bi

)

e

.

In the rest of this paper, we simply consider the case of K = Q(ζe), since we
have OK = Z[ζe] in this case. We suggest interested readers to refer to [19,23,25]
for more details about the power residue symbol.

2.3 Security Definition

A public key encryption is composed of three algorithms: the key generation
algorithm KeyGen, the encryption algorithm Enc, and the decryption algorithm
Dec. The IND-CPA security for a public key encryption is defined as follows:

Definition 1 (IND-CPA Security). The public key encryption scheme PKE
= (KeyGen, Enc, Dec) is said to be IND-CPA secure if for any probabilistic poly-
nomial time (PPT) distinguisher, given the public key pk generated by KeyGen,
and any pair of messages m0, m1 of equal length, the non-negative advantage
function ε(κ) in the security parameter κ for distinguishing c0 = Enc (pk,m0)
and c1 = Enc (pk,m1) is negligible, i.e., we have limκ→∞ P (κ) · ε(κ) = 0 for
every polynomial P .

3 Computation and Properties of the Power Residue
Symbol

In this section, we show how to compute the power residue symbol in some
circumstance and investigate some relative properties that we will employ in
this paper later.

3.1 Computing Power Residue Symbols

In this subsection, we show that computing the power residue symbol is equiv-
alent to solving the discrete logarithm problem if some specific conditions are
satisfied.

Before giving the proof, we would like to introduce the concept of non-
degenerate primitive (ep, eq)-th root of unity modulo N . Let μp and μq be prim-
itive roots modulo p and q respectively. We say an integer μ is a non-degenerate
primitive (ep, eq)-th root of unity modulo N if both the following two congru-
ences hold.

μ = μ
p−1
ep

α

p (mod p) for some α ∈ Z
∗
ep

, and

μ = μ
q−1
eq

β

q (mod q) for some β ∈ Z
∗
eq

.
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According to the result in [25, Proposition I.8.3], we have

pZ[ζep
] =

∏

i∈Z∗
ep

pi, Norm(pi) = p (i ∈ Z
∗
ep

), and

qZ[ζeq
] =

∏

j∈Z∗
eq

qj , Norm(qj) = q (j ∈ Z
∗
eq

),

where pi = pZ[ζep
]+ (ζep

−μi)Z[ζep
] and qj = qZ[ζeq

]+ (ζeq
−μj)Z[ζeq

]. We will
write p = p1 and q = q1 for brevity.

With the notation μ and some integer α, we can establish Theorem 1 which
shows that computing

(
α
p

)

ep

is equivalent to solving the discrete logarithm in

the cyclic subgroup 〈μ〉 ⊂ Z
∗
p of order ep. We can obtain a similar result for the

case of
(

α
q

)

eq

by analogy with Theorem 1.

Theorem 1.
(

α
p

)

ep

= ζx
ep

⇐⇒ μx = α
p−1
ep (mod p).

Proof. We give the proof in two parts as follows.

=⇒ From the definition of the power residue symbol and Norm(p) = p, we have

that
(

α
p

)

ep

= α
Norm(p)−1

ep = α
p−1
ep (mod p). Together with

(
α
p

)

ep

= ζx
ep

, we

obtain that ζx
ep

= α
p−1
ep (mod p). Furthermore, from the definition of p, we

have μ = ζep
(mod p). Then, μx = ζx

ep
= α

p−1
ep (mod p) is deduced. At last,

due to μx = α
p−1
ep (mod p) and (μx, α

p−1
ep ) ∈ Z

2, we can finally get μx = α
p−1
ep

(mod p).

⇐= From μx = α
p−1
ep ( mod p), we have that μx = α

p−1
ep (mod p). Furthermore,

we have that
(

α
p

)

ep

= α
p−1
ep (mod p) and ζep

= μ (mod p) as in the previous

case. Hence, we have that
(

α
p

)

ep

= α
p−1
ep = μx = ζx

ep
(mod p) and

(
α
p

)

ep

=

ζx
ep

.

This completes the proof. 
�
It is well-known that the discrete logarithm problem is intractable in general

but quite easy in some special cases. For instance, when the order of the under-
lying finite cyclic group is smooth, i.e., it only contains small prime factors, the
discrete logarithm problem can be easily solved by virtue of the Pohlig-Hellman
algorithm [29]. In our case, if ep is chosen with appropriate prime factors, the
ep-th power residue symbol can be efficiently computed by virtue of the Pohlig-
Hellman algorithm. For the completeness, we describe the Pohlig-Hellman algo-
rithm for prime powers in Algorithm 1.
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Algorithm 1. Pohlig-Hellman algorithm for prime powers
Input: (g, y, p, sk), where p and s are primes, sk|p − 1, and the order of g in Z

∗
p is sk.

Output: x = (xk−1, . . . , x0)s, where gx = y (mod p), x =
∑k−1

i=0 xis
i, and xi ∈ [0, s−1]

for i ∈ [0, k − 1].

1: y0 ← y

2: Find x0 ∈ Zs such that
(
gsk−1

)x0
= ysk−1

0 (mod p).

3: for 1 ≤ i ≤ k − 1 do

4: yi ←− yi−1

(
g−si−1

)xi−1
mod p

5: Find xi ∈ Zs such that
(
gsk−1

)xi

= ysk−i−1

i (mod p).

6: end for
7: return x = (xk−1, . . . , x0)s

Remark 1 (Hints for Optimization). From line 2 and line 5 in Algorithm 1, we

can see that values of
(
gsk−1

)i

mod p for each i ∈ [0, s−1] are used repeatedly.
Hence, we can save the computational cost by pre-computing and storing these
values. Similar method can be also applied to g−si

mod p for each i ∈ [0, k − 1]
to save more computational cost.

Furthermore, according to line 4 in Algorithm 1, we have that

ysk−i−1

i =
(
yi−1

(
g−si−1

)xi−1
)sk−i−1

= ysk−i−1

i−1

(
g−sk−2

)xi−1

(mod p).

We can save the cost of computing ysk−i−1

i if we have known the value of ysk−i−1

i−1 ,
which can be recorded during the computing process of ysk−(i−1)−1

i−1 . However, this
optimization cannot be applied for every yi (i ∈ [0, k − 1]). It is because that
once the computation of ysk−i−1

i is based on the value of ysk−(i−1)−1

i−1 , there is no
ysk−i−2

i for computing ysk−i−2

i+1 . As a result, this optimization can only be applied
on the odd indices.

3.2 A New Assumption from Power Residue Symbols

In this subsection, we would like to give a new assumption named (ep, eq)-th
power residue (denoted as (ep, eq)-PR) assumption which will be used in our pro-
posed public key encryption in Sect. 4 and lossy trapdoor functions in Sect. 5.1.

We set that ERe
N = {x|∃y ∈ Z

∗
N , ye = x (mod N)} and

NR
(ep,eq)
N =

{

x

∣
∣
∣
∣
∣

x ∈ Z
∗
N ,

(x

a

)

t
= 1,

(
x

p

)

ep

and
(

x

q

)

eq

are primitive

}

,

where N , ep, eq, p, and q are the same as those in Sect. 3.1, a = pq, and t =
gcd(p − 1, q − 1). We define the (ep, eq)-PR assumption as follows.
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Definition 2 ((ep, eq)-th Power Residue Assumption). Given a security
parameter κ and N, (ep, eq), μ, x, it is intractable to decide whether x is in
ER

lcm(ep,eq)
N or NR

(ep,eq)
N if x is chosen at random from ER

lcm(ep,eq)
N and

NR
(ep,eq)
N . Formally, the advantage Adv

(ep,eq)-PR
A (κ) defined as

∣
∣
∣Prob

[
A (N, lcm(ep, eq), μ, x) = 1

∣
∣
∣ x

R← ER
lcm(ep,eq)
N

]
−

Prob
[
A (N, lcm(ep, eq), μ, x) = 1

∣
∣
∣ x

R← NR
(ep,eq)
N

]∣∣
∣

is negligible for any PPT adversary A; the probabilities are taken over the exper-
iment of generating (N, (ep, eq), μ) with respect to the security parameter κ and
choosing at random x from ER

lcm(ep,eq)
N and NR

(ep,eq)
N .

Remark 2. It is easy to see that if we set t = 2, ep = 2 and eq = 1, the (ep, eq)-PR
assumption becomes the standard quadratic residuosity (QR) assumption with
gcd(p − 1, q − 1) = 2. Furthermore, if we set t = 2, ep = 2k and eq = 1, the
(ep, eq)-PR assumption becomes the Gap-2k-Res assumption with q = 3 (mod 4)
which has been used in [1] and [3]. From [3, Theorem 2], we note that the Gap-
2k-Res assumption with q = 3 (mod 4) solely relies on a QR-based assumption,
namely, the k-QR assumption.

3.3 Some Properties of Power Residue Symbols

In this subsection, we present some properties of the power residue symbol that
will be used in the design of circular and leakage resilient public key encryption
(especially for the instantiation of subgroup indistinguishability assumption) in
Sect. 5.2. Note that only in this subsection and Sect. 5.1, we require that eq =
ep = e.

If eq = ep = e, according to the result in [17], we have

ai = piqi, Norm(ai) = N, and NZ[ζe] =
∏

i∈Z∗
e

ai,

where pZ[ζe] =
∏

i∈Z∗
e
pi, Norm(pi) = p, qZ[ζe] =

∏
i∈Z∗

e
qi, Norm(qi) = q, and

ai = NZ[ζe] + (ζe − μi)Z[ζe] for each i ∈ Z
∗
e. Let a = a1.

Let ERe
Δ = {x ∈ Z

∗
N | ∃y, ye = x (mod Δ)}, Je

N =
{
x ∈ Z

∗
N

∣
∣ (

x
a

)
e

= 1
}
,

and U =
{
ζi
e

∣
∣ i ∈ [0, e − 1]

}
, where Δ ∈ {p, q,N}. We have the following

theorems.

Theorem 2. Z
∗
p/ER

e
p

∼= U ∼= Z
∗
q/ER

e
q.

Proof. We would like to prove Z
∗
p/ER

e
p

∼= U at first. Consider the homomorphism

θ : Z
∗
p �→ U defined by x �→

(
x
p

)

e
. Since the number of the distinct roots of the

polynomial f(x) = x(p−1)/e − 1 over the field Z[ζe]/p is at most (p − 1)/e and
the cardinality of ERe

p is exactly (p − 1)/e, we know that an element z ∈ Z
∗
p
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satisfying
(

z
p

)

e
= 1 must lie in ERe

p. Hence, we have that the kernel of θ is ERe
p,

i.e., the homomorphism τ : Z
∗
p/ER

e
p �→ U induced by θ is a monomorphism.

Furthermore, we know the cardinality of Z
∗
p/ER

e
p equals to e, which is also the

value of the cardinality of U . As a result, Z
∗
p/ER

e
p

∼= U .
Similarly, we can get Z

∗
q/ER

e
q

∼= U . Hence, we accomplish the proof. 
�
Theorem 3. If the condition gcd((p − 1)/e, e) = gcd((q − 1)/e, e) = 1 holds,
then there exists an integer ν satisfying the following properties.

– ν is a non-degenerate primitive (e, e)-th root of unity modulo N .
–

(
ν
ai

)

e
= 1 for every i ∈ Z

∗
e.

– Je
N = 〈ν〉 ⊗ ERe

N .

Proof. The proof is given one by one.

– The condition gcd((p−1)/e, e) = gcd((q−1)/e, e) = 1 implies that there exist
integers sp ∈ Z

∗
e, tp, sq ∈ Z

∗
e, tq such that sp

p−1
e + tpe = sq

q−1
e + tqe = 1. Let

μp = μ (mod p) and μq = μ (mod q). We can get a non-degenerate primitive
(e, e)-th root of unity modulo N by the following congruences.

ν = μsp
p (mod p)

ν = μ−sq
q (mod q)

– When ν is generated as above, we have
(

ν

p

)

e

=
(

μ
sp
p

p

)

e

=
(

ζ
sp
e

p

)

e

= ζ
p−1
e sp

e ,

(
ν

q

)

e

=

(
μ

−sq
q

q

)

e

=

(
ζ

−sq
e

q

)

e

= ζ
− q−1

e sq
e .

Consequently,
(ν

a

)

e
=

(
ν

p

)

e

(
ν

q

)

e

= 1.

Since ν ∈ Z, the result
(

ν
ai

)

e
= 1 for each i ∈ Z

∗
e follows immediately from

Galois theory.
– To prove the last property we only need to prove that every element of Je

N

can be written as a product of two elements in 〈ν〉 and ERe
N respectively

since 〈ν〉 ∩ ERe
N = {1}. For any x ∈ Je

N , since there exists j ∈ Ze such that(
νj

p

)

e
=

(
x
p

)

e
and

(
νj

q

)

e
=

(
x
q

)

e
, we have x = νjye (mod p) and x = νjze

(mod q) for some x ∈ Z
∗
p and y ∈ Z

∗
q from Theorem 2. Take w = y (mod p)

and w = z (mod q); then we have x = νjwe (mod N), as desired.

As a result, we obtain this theorem. 
�
Remark 3. From Theorem 3, when e = 2, we derive the well-known result: JN

∼=
{−1,+1} ⊗QRN , where N is a Blum integer, JN =

{
x ∈ Z

∗
N

∣
∣ (

x
N

)
2

= 1
}
, and

QRN =
{
x

∣
∣ ∃y ∈ Z

∗
N , x = y2 (mod N)

}
.
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4 A New Homomorphic Public Key Cryptosystem

In this section, we present a natural extension of the GM scheme [18] by virtue of
the power residue symbol.

4.1 Description

KeyGen (1κ): Given a security parameter κ, KeyGen outputs the public and pri-
vate key pair as follows:

pk = {N, lcm(ep, eq), y} , sk = {p, q, ep, eq, μ} ,

where N = pq, ep|p−1, eq|q−1, p and q are large primes, ep and eq are smooth
integers, y is chosen randomly from NR

(ep,eq)
N , and μ is a non-degenerate

primitive (ep, eq)-th root of unity modulo N . Note that μ is generated by
definition.

Enc (pk,m): To encrypt a message m ∈ Zlcm(ep,eq), Enc picks a random r ∈ ZN

and returns the ciphertext

c = ymrlcm(ep,eq) mod N.

Dec (sk, c): Given the ciphertext c and the private key sk = {p, q, ep, eq, μ}, Dec

first computes zp and zq satisfying
(

c
p

)

ep

= ζ
zp
ep and

(
c
q

)

eq

= ζ
zq
eq by means

of Theorem 1. Then, Dec recovers the message m ∈ Zlcm(ep,eq) from

m = zpk
−1
p (mod ep) and m = zqk

−1
q (mod eq) (1)

via the Chinese Remainder Theorem with non-pairwise coprime moduli,
where kp, kq satisfying

(
y
p

)

ep

= ζ
kp
ep and

(
y
q

)

eq

= ζ
kq
eq respectively, can be

pre-computed.

Correctness. The correctness and the additive homomorphism property of the
above public key encryption can be easily obtained by the following arguments:

ζzp
ep

=
(

c

p

)

ep

=
(

ymrlcm(ep,eq)

p

)

ep

=
(

y

p

)m

ep

= ζmkp
ep

, and

ζzq
eq

=
(

c

q

)

eq

=
(

ymrlcm(ep,eq)

q

)

eq

=
(

y

q

)m

eq

= ζmkq
eq

Thus, we derive the formula (1). Since every message m ∈ Zlcm(ep,eq) corresponds
to the unique pair (α, β) ∈ Zep

× Zeq
such that m = α (mod ep) and m = β

(mod eq), the decryption algorithm recovers the unique m ∈ Zlcm(ep,eq) from
the formula (1). Furthermore, the scheme is homomorphic for the addition mod-
ulo � = lcm(ep, eq): if c0 = ym0r�

0 (mod N) and c1 = ym1r�
1 (mod N) are the

ciphertexts of two messages m0 and m1 respectively, then c0 ·c1 = ym0+m1(r0r1)�

(mod N) is a valid ciphertext of (m0 + m1) mod �.
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4.2 Security Analysis

The security of the above public key encryption scheme can be obtained by the
similar security analysis as for the GM scheme.

Theorem 4. Our proposed public key encryption is IND-CPA secure under the
(ep, eq)-PR assumption.

Proof. Consider changing the distribution of the public key. Under the (ep, eq)-
PR assumption, we may choose y uniformly in ER

lcm(ep,eq)
N instead of choosing it

from NR
(ep,eq)
N , while this is done without noticing the adversary. In this case,

the ciphertext carries no information about the message and hence our proposed
public key encrypiton is IND-CPA secure. 
�

4.3 Parameter Selection

As described in the algorithm KeyGen, p and q are large primes, p = 1 (mod ep),
q = 1 (mod eq), and both ep and eq only contain small prime factors. In prac-
tice, it would be preferable to choose p, q, ep, eq such that 0 ≤ log ep < log p

2 ,
0 ≤ log eq < log q

2 , where p and q are efficiently generated in a similar way as in
[3, Sect. 5.1]. The major difference is that the size of log ep + log eq is bounded
by log N

2 . The reason is provided by the following proposition related to Copper-
smith’s method for finding small roots of bivariate modular equations.

Proposition 1 [32, Lemma 8]. Let p and q be equally sized primes and N = pq.
Let d be a divisor of ϕ(N) = (p − 1)(q − 1). If there exists a positive constant c
such that d > N

1
2+c holds, then there exists a PPT algorithm that given N and

d, it factorizes N .

Note that taking log N
4 < log ep+log eq < log N

2 does not contradict the setting
of Φ-Hiding Assumption [10] as the prime factors of ϕ(N) known to the public
are very small. However, log ep+log eq shall not be close to log N

2 because we don’t
know whether there exists an attack of mixing together Coppersmith’s attack and
exhaustive searches. In particular, if we take ep = 2k, eq = 1 and k > log N

4 , the
low-order log N

4 bits of p is revealed to an adversary, and hence it can factorize N
by implementing Coppersmith’s attack [16]. Therefore, if we choose ep and eq not
to be a power of 2 and to be coprime, we may handle messages at least twice as
long as the JL scheme does. The key generation algorithm also requires a random
integer y ∈ Z

∗
N sampled from NR

(ep,eq)
N . We can use Theorem 2 and the following

fact for uniformly sampling integers in NR
(ep,eq)
N . Note that a random integer

in Z
∗
N has a probability of exactly ϕ(ep)ϕ(eq)

epeq
of being in the set containing all

x ∈ Z
∗
N whose symbols

(
x
p

)

ep

and
(

x
q

)

eq

are primitive. Let t = gcd(p−1, q−1).

We first choose at random an element x ∈ Z
∗
N such that

(
x
p

)

t
= ζα

t and
(

x
q

)

t
=

ζβ
t are primitive after several trials. Then, we can obtain a suitable element



Efficient Cryptosystems from the e-th Power Residue Symbol 419

y ∈ {
γ ∈ Z

∗
N

∣
∣ (

γ
a

)
t
= 1

}
from the relations y = x−(α−1 mod t)βzt (mod p) and

y = x (mod q), where z
R← Z

∗
p. If y ∈ NR

(ep,eq)
N , we have done; otherwise, we

repeat the above steps until y is in NR
(ep,eq)
N .

4.4 Performance and Comparisons

The prominent operation in the JL scheme and our proposal is the modular
multiplications over Z

∗
p, if the time for searching an item in a look-up table is

negligible. For decrypting a 128-bit message, the JL scheme, according to the
remark following [3, Algorithm 1], roughly needs

log p − 128 +
128(128 − 1)

4
+

128
2

= log p + 4000

modular multiplications on average. On the contrary, our proposal (specially
Algorithm 1 with optimization) only needs about

log p − 128 +
12∑

k=0
k is even

log(929k) + 128 ≈ log p + 414

modular multiplications on average, when we set ep = 92913 > 2128 and eq = 1.
If N is taken as 2048 bits, the decryption of our proposal is approximately 3.5
times faster than that of the JL scheme. We note that both JL scheme and our
proposal can be used to encrypt a 128- or 256-bit symmetric key in a KEM/DEM
construction [30].

On the other hand, our proposal has the similar computational cost with the
CDWS scheme in algorithms Enc and Dec. The main difference between these two
schemes is the choice of y. In particular, in the setting of CDWS scheme, y is from{

y ∈ Z
∗
N

∣
∣
∣ ∃(x, x′), y

p−1
ep = x (mod p), y

q−1
eq = x′ (mod q)

}
, which is contained

by NR
(ep,eq)
N . This means that we can obtain y more efficiently than the CDWS

scheme does. Furthermore, our security proof is much easier to follow due to the
choice of y.

5 More Cryptographic Designs Based on the Power
Residue Symbols

5.1 Lossy Trapdoor Functions

Lossy trapdoor functions (LTDFs) [28] were introduced by Peikert and Waters and
since then numerous applications emerge in cryptography. Informally speaking,
the LTDFs consist of two families of functions. The functions in one family are
injective trapdoor functions, while functions in the other family are lossy, that is,
the image size is smaller than the domain size. It also requires that the functions
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sampled from the first and the second family are computationally indistinguish-
able. Using the constructions in [28], one can obtain IND-CCA secure public key
encryptions. So far, the LTDFs are mainly constructed from assumptions such as
DDH [28], LWE [28], QR [17], DCR [17], and Φ-Hiding. [22].

Joye and Libert constructed LTDFs with short outputs and keys based on
the k-QR, k-SJS and DDH assumptions in [3]. Of course, it is an easy matter to
generalize their constructions, using our techniques based on the power residue
symbols. Hence, we only propose a new generic construction of the LTDFs and
the corresponding conclusions. We follow the definition of the LTDFs in [3] and
omit the security analysis since it proceeds in exactly the same way in [3].

InjGen(1κ): Given a security parameter κ, let �N , k and n (n is a multiple of k)
be parameters determined by κ. InjGen defines m = n/k and performs the
following steps.
1. Select smooth integers ep and eq such that k < log(lcm(ep, eq)) < �N/2.

Generate an �N -bit RSA modulus N = pq such that p − 1 = epp
′ and

q−1 = eqq
′ for large primes p, q, p′, q′. Pick at random μ a non-degenerate

primitive (ep, eq)-th root of unity modulo N and y
R← NR

(ep,eq)
N .

2. For each i ∈ {1, . . . ,m}, pick hi in ER
lcm(ep,eq)
N at random.

3. Choose r1, . . . , rm
R← Zp′q′ and compute a m×m matrix (Zi,j)i,j∈{1,...,m}

with

Zi,j =

{
y · hri

j mod N, if i = j;
hri

j mod N, otherwise.

Output the evaluation key and the secret key as follows:

ek = {N,Z} , sk = {p, q, ep, eq, μ, y}.

LossyGen(1κ): The process of LossyGen is identical to the process of InjGen,
except that

– Set Zi,j = hri
j mod N for each 1 ≤ i, j ≤ m.

– LossyGen does not output the secret key sk.
Evaluation(ek, x): Given ek =

{
N,Z = (Zi,j)i,j∈{1,...,m}

}
and a message x ∈

{0, 1}n, Evaluation parses x as a k-adic string x = (x1, . . . , xm) with xi ∈
Z2k for each i. Then, Evaluation computes and returns y = (y1, . . . , ym) ∈
(Z∗

N )m with yj =
∏m

i=1 Zxi
i,j (mod N).

Inversion(sk,y): Given sk = {p, q, ep, eq, μ, y} and y = (y1, . . . , ym) ∈ (Z∗
N )m,

Inversion applies the decryption algorithm Dec(sk, yj) of the cryptosystem
in Sect. 4 for each yj to recover xj for j = 1 to m. Inversion recovers and
outputs the input x ∈ {0, 1}n from the resulting vector x = (x1, . . . , xm) ∈
Z

m
2k .

Proposition 2. Let � = n − log(p′q′). The above construction is a (n, �)-LTDF
if the (ep, eq)-th power residue assumption holds and the DDH assumption holds
in the subgroup ER

lcm(ep,eq)
N .
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Clearly, our new proposed LTDFs outperform those in [3] in terms of the
decryption cost and the bandwidth exploitation. Specifically, our LTDFs have
� = n − log(p′q′) > (n − �N ) + log ep + log eq bits of lossiness. Therefore, the
lossiness may also be improved since there are no known attacks against the
factorization of N when �N/4 < log ep+log eq < �N/2 and 0 ≤ log ep < log p

2 , 0 ≤
log eq < log q

2 .

5.2 Circular and Leakage Resilient Public Key Encryption

Brakerski and Goldwasser introduced the notion of subgroup indistinguishability
(SG) assumption in [7, Sect. 3.1]. They instantiated the SG assumption based
on the QR and the DCR assumptions and proposed a generic construction of
schemes which achieve key-dependent security and auxiliary-input security based
on the SG assumption. However, the scheme based on the QR assumption can
only encrypt a 1-bit message at a time. In this subsection, we will show how to
instantiate the SG assumption under another new hardness assumption named
e-th power residue assumption. In this way, the scheme becomes much more
efficient in bandwidth exploitation.

Definition 3 (Subgroup Indistinguishability Assumption [7]). Given a
security parameter κ, and three commutative multiplicative groups (indexed by κ)
GU , GM and GL such that GU is a direct product of GM (of order M) and GL (of
order L) where GM is cyclic and gcd(M,L) = 1. We require that the generator h
for GM is efficiently computable from the description of GU . We further require
that there exists a PPT algorithm that outputs IGU

= (OPGU
, SGM

, SGL
, h, T ) an

instance of GU , where OPGU
is an efficient algorithm performs group operations

in GU , SGM
, SGL

are efficient algorithms sample a random element from GM , GL

respectively and T is a known upper bound such that T ≥ M ·L. For any adversary
A we denote the subgroup distinguishing advantage of A by

SGAdv[A] =
∣
∣
∣Prob

[
A(1κ, x)

∣
∣
∣ x

R← GU

]
− Prob

[
A(1κ, x)

∣
∣
∣ x

R← GL

]∣∣
∣

The subgroup indistinguishability assumption is that for any PPT adversary A
it holds that for a properly sampled instance IGU

, we have that SGAdv[A] is
negligible.

Now, we instantiate the SG assumption from the e-th power residue symbol.
Let e be a smooth integer. We sample a random RSA modulus N = pq such that
e = gcd(p− 1, q − 1) and gcd((p− 1)/e, e) = gcd((q − 1)/e, e) = 1. Let ERe

N and
Je

N be described as in Sect. 3.3. Then, there exists a ν ∈ Je
N \ ERe

N such that
Je

N = 〈ν〉 ⊗ ERe
N from Theorem 3. The groups Je

N , 〈ν〉 and ERe
N are of orders

ϕ(N)/e, e and ϕ(N)/e2 respectively. We denote ϕ(N)/e by N ′. The condition
gcd((p − 1)/e, e) = gcd((q − 1)/e, e) = 1 implicates that gcd(e, ϕ(N)/e2) = 1.
We define as follows the e-th power residue (e-PR) assumption which is similar
to the (ep, eq)-PR assumption defined previously.
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Definition 4 (e-th Power Residue Assumption). Given a security param-
eter κ. A PPT algorithm RSAgen (κ) generates a smooth integer e and a random
RSA modulus N = pq such that e = gcd(p − 1, q − 1) and gcd((p − 1)/e, e) =
gcd((q−1)/e, e) = 1, and chooses at random μ a non-degenerate primitive (e, e)-
th root of unity modulo N . The e-th Power Residue (e-PR) assumption with
respect to RSAgen (κ) asserts that the advantage Adve-PR

A,RSAgen (κ) defined as
∣
∣
∣Prob

[
A (N,x, e) = 1

∣
∣
∣ x

R← ERe
N

]
− Prob

[
A (N,x, e) = 1

∣
∣
∣ x

R← Je
N

]∣∣
∣

is negligible for any PPT adversary A; the probabilities are taken over the exper-
iment of running (N, e, μ) ← RSAgen (κ) and choosing at random x ∈ ERe

N and
x ∈ Je

N .

Since there exist efficient sampling algorithms that sample a random element
from ERe

N and Je
N according to Theorems 2 and 3, the e-PR assumption leads

immediately to the instantiation of the SG assumption by setting GU = Je
N ,

GM = 〈ν〉, GL = ERe
N , h = ν, and T = N ≥ eN ′. The corresponding encryption

scheme is presented as follows:

KeyGen (1κ): Given a security parameter κ, KeyGen selects a smooth integer e
and samples a random RSA modulus N = pq such that e = gcd(p − 1, q − 1)
and gcd((p − 1)/e, e) = gcd((q − 1)/e, e) = 1. KeyGen selects an integer ν as
in Theorem 3, and an � ∈ N which is polynomial in κ. KeyGen also samples
s

R← (Ze)
� and sets the secret key sk = s. KeyGen then samples g

R← (ERe
N )�

and sets

g0 =

⎛

⎝
∏

1≤i≤�

gi
si

⎞

⎠

−1

mod N.

The public key is set to be pk = {N, g0, g}.
Enc (pk,m): On inputting a public key pk = {N, g0, g} and a message m ∈ 〈ν〉,

Enc samples r
R← {

1, 2, . . . , N2
}

and computes c = gr mod N and c0 = m·gr
0

(mod N). Enc returns the ciphertext (c0, c).
Dec (sk, c): On inputting the secret key sk = s and a ciphertext {c0, c}, Dec

computes and returns m = c0 · ∏
1≤i≤� csi

i mod N .

6 Conclusion

In this paper, we have made natural extension on the GM cryptosystem by using
the e-th power residue symbol, where e is merely required to be smooth in prac-
tice. Our proposals are proved to be secure under new well-defined assumptions.
Furthermore, they inherit all advantages from the JL cryptosystem and LTDFs,
also enhance the decryption speed as well as the efficiency of the bandwidth
utilization.

When applied to the Brakerski-Goldwasser framework for building circular
and leakage resilient public key encryptions, our scheme takes advantages of
the e-th power residue symbol rather than the Jacobi symbol, thereby is more
efficient in bandwidth utilization.
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Abstract. Binary error LWE is the particular case of the learning with
errors (LWE) problem in which errors are chosen in {0, 1}. It has various
cryptographic applications, and in particular, has been used to construct
efficient encryption schemes for use in constrained devices. Arora and Ge
showed that the problem can be solved in polynomial time given a num-
ber of samples quadratic in the dimension n. On the other hand, the
problem is known to be as hard as standard LWE given only slightly
more than n samples.

In this paper, we first examine more generally how the hardness of
the problem varies with the number of available samples. Under stan-
dard heuristics on the Arora–Ge polynomial system, we show that, for
any ε > 0, binary error LWE can be solved in polynomial time nO(1/ε)

given ε · n2 samples. Similarly, it can be solved in subexponential time

2Õ(n1−α) given n1+α samples, for 0 < α < 1.
As a second contribution, we also generalize the binary error LWE

to problem the case of a non-uniform error probability, and analyze the
hardness of the non-uniform binary error LWE with respect to the error
rate and the number of available samples. We show that, for any error
rate 0 < p < 1, non-uniform binary error LWE is also as hard as worst-
case lattice problems provided that the number of samples is suitably
restricted. This is a generalization of Micciancio and Peikert’s hardness
proof for uniform binary error LWE. Furthermore, we also discuss attacks
on the problem when the number of available samples is linear but sig-
nificantly larger than n, and show that for sufficiently low error rates,
subexponential or even polynomial time attacks are possible.

Keywords: Binary Error LWE · Algebraic attacks · Macaulay
matrix · Sample complexity · Complexity tradeoffs · Lossy function
family

1 Introduction

Most of the public-key cryptography deployed today, such as the RSA cryptosys-
tem [15] and Diffie–Hellman key exchange [6], relies on the conjectured hardness
of integer factoring or the discrete logarithm problem, both of which are known
to be broken by sufficiently large quantum computers [16]. As the advent of such
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quantum computers becomes increasingly plausible, it is important to prepare
the transition towards postquantum cryptography, based on problems that are
believed to be hard even against quantum adversaries.

One such problem particularly worthy of attention is the learning with errors
problem (LWE), introduced by Regev in 2005 [14]. LWE and its variants are at
the core of lattice-based cryptography, which offers attractive constructions for a
wide range of cryptographic primitives in the postquantum setting from encryp-
tion and signatures all the way to fully homomorphic encryption, combining
good efficiency with strong security guarantees. From a security perspective, the
nice feature of LWE is that, while it is in essence an average-case problem (and
hence easy to generate instances for), it is nevertheless as hard as worst-case
lattice problems, for suitable parameter choices.

In terms of efficiency, standard LWE itself has relatively large keys, but a
number of variants have been proposed with excellent performance in an asymp-
totic sense or for concrete security levels. These include structured versions of
LWE, like Ring-LWE [10], and instantiations in more aggressive ranges of param-
eters than those for which Regev’s worst-case to average-case reduction holds.

An important example is binary error LWE, where the error term is sampled
from {0, 1} (instead of a wider discrete Gaussian distribution). Binary error LWE
is a particularly simple problem with various interesting cryptographic applica-
tions, such as Buchmann et al.’s efficient lattice-based encryption scheme for IoT
and lightweight devices [5] (based on the ring version of binary error LWE, with the
additional constraint that the secret is binary as well). However, the problem is not
hard given arbitrarily many samples: in fact, an algebraic attack due to Arora and
Ge [3] solves uniform Binary-Error LWE in polynomial time given around n2/2
samples. The same approach can also be combined by Gröbner basis techniques to
reduce the number of required samples [2].On the other hand,Micciancio andPeik-
ert [13] showed that the uniform binary error LWE problem reduces to standard
LWE (and thus is believed to be exponentially hard) when the number of samples
is restricted to n + O(n/ log n). Thus, the hardness of binary error LWE crucially
depends on the number of samples released to the adversary.

1.1 Our Results

In this paper, we show that a simple extension of the Arora-Ge attack (based
on similar ideas as the Gröbner basis approach, but simpler and at least as
fast) provides a smooth time-sample trade-off for binary error LWE: the attack
can tackle any number of samples, with increasing complexity as the number
of samples decreases. In particular, for binary error LWE with ε · n2 samples
(ε > 0 constant), we obtain an attack in polynomial time nO(1/ε), assuming stan-
dard heuristics on the polynomial system arising from the Arora-Ge approach
(namely, that it is semi-regular, a technical condition that is in particular known
to be satisfied with overwhelming probability by random polynomial systems).
Similarly, for n1+α samples (0 < α < 1), we obtain an attack in subexponential
time 2Õ(n1−α) (again assuming semi-regularity). The precise complexity for any
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concrete number of samples is also easy to compute, which makes it possible to
precisely set parameters for cryptographic schemes based on binary error LWE.

In public-key encryption schemes, however, the number of samples given out
to the adversary (as part of the public key) is typically of the form c · n for
some constant c > 1. Therefore, it is neither captured by the Micciancio–Peikert
security proof, nor within reach of our subexponential algebraic attack. In order
to understand what additional results can be obtained with algebraic means in
that range of parameters, we also generalize the binary error LWE to the non-
uniform case, in which the error is chosen from {0, 1} and the error is 1 with
some probability p not necessarily equal to 1/2.

We analyze this problem from two perspectives. On the one hand, we show
that for any error rate p ≤ 1/2, non-uniform binary error LWE is as hard as
worst-case lattice problems given n+O(pn/ log n) samples. This is a direct gen-
eralization of the hardness proof given by Micciancio and Peikert to the non-
uniform case. On the other hand, we show that when the error rate is p = 1/nα

(α > 0), there is a subexponential attack using only O(n) samples (which is even
polynomial time if α ≥ 1).

In order to show a clear view of our result, the hardness result for binary error
LWE is depicted in Fig. 1. When the number of available samples is quadratic
in dimension n, Arora-Ge algorithm gives a polynomial time attack. When the
number of available samples is n1+α(0 < α < 1), we show a subexponential
algebraic attack. Besides, on the one hand, the blue line corresponds to the
Micciancio-Peikert hardness proof, where we generalize to the whole trapezoid.
On the other hand, the red line corresponds to our attack against non-uniform
binary error LWE.

1.2 Techniques

Macaulay Matrices. The basic Arora–Ge attack can be described as follows.
Each binary error LWE sample provides a quadratic equation in the coefficients
s1, . . . , sn of the secret key:

f(s1, . . . , sn) = 0, (1)

Fig. 1. Hardness Result for Binary Error LWE
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obtained by observing that the corresponding error value is equal to either 0
or 1, and hence one of the two linear equations corresponding to these error
values holds, so their product vanishes. Arora and Ge form a polynomial system
with these equations and linearize it, replacing each of the monomials of degree
≤2 appearing in the system by a new variable, and solving that linear system.
This is of course only possible if the number of equations is sufficiently large:
one needs at least as many equations as there are monomials of degree ≤ 2 in
s1, . . . , sn, namely

(
n+2
2

) ≈ n2/2.
To go beyond that bound, one can try and increase the degree of the system.

Instead of deducing a single Eq. (1) from the binary LWE sample, one can derive(
n+d

d

)
equations by multiplying by all possible monomials of degree up to d, for

some degree bound d to be chosen later:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(s1, . . . , sn) = 0
s1f(s1, . . . , sn) = 0

...
s1s2f(s1, . . . , sn) = 0

...

sd
nf(s1, . . . , sn) = 0

When linearizing, we get more variables since the degree of the system is larger
and there are thus more monomials, but we also get many more equations, and on
balance, the minimal number of samples to start with in order for the resulting
system to be solvable decreases (although a naive bound obtained by comparing
the number of equations and the number of variables is insufficient, since the
equations are no longer necessarily linearly independent with high probability).

The matrix of that linear system is called the Macaulay matrix of degree d.
The basic idea of the extended attack is basically to start with the Arora–
Ge polynomial system, and find the minimal d such that the Macaulay matrix
becomes full-rank. This is difficult to estimate in full generality, but assuming
that the Arora–Ge system is semi-regular, this can be done using techniques
from complex analysis.

From Uniform to Non-uniform. For the hardness proof for non-uniform
binary error LWE, we follow the outline of Micciancio and Peikert’s proof, but
have to adapt the various parts of the proof that rely on the input distribution
being uniform. For instance, their proof of uninvertibility uses the following
lemma:

Lemma 1. Let L be a family of functions on the common domain X, and
let χ = U(X) be the uniform input distribution over X. Then (L,X ) is ε-
uninvertible statistically, for ε = Ef←L[|f(X)|]/|X|.
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In the proof for this lemma, the uniform property of the input distribution
serves as a key factor to bound the success probability of the adversary. Suppose
that f is a function and the domain, range of f is denoted as X, Y respectively.
If y ∈ Y has several preimages, since the input distribution is uniform, the
adversary can not do better than randomly guessing one preimage, even with
unbounded computation power. However, this is not the case for a non-uniform
input distribution. Suppose that the domain of f is {0, 1, 2, 3} with probability
{1/2, 1/6, 1/6, 1/6} respectively and f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 1.
If the adversary is given y = 0, instead of randomly guessing, the adversary
can get some advantage by guessing the preimage with the highest conditional
probability, so the adversary can always output 0. If guessing randomly, the
adversary only has 1/3 probability of correctness, but if always guessing 0, the
success probability becomes (1/2)/(1/2 + 1/6 + 1/6) = 3/5. Therefore, we need
to prove new lemmas for non-uniform error distributions.

Our Algorithm to Attack Non-uniform Binary Error LWE. Our algo-
rithm comes from a simple idea: Suppose that we have n samples from non-
uniform binary error LWE with error rate p = 1/n, the probability that n
samples are all error free is (1 − 1/n)n. Since

lim
n→∞(1 − 1/n)n = 1/e

the probability is asymptotically a constant. Intuitively, we can have the follow-
ing simple algorithm:

– Step 1: Get n samples from the LWE oracle.
– Step 2: By assuming that the n samples are error free, solve the linear system.
– Step 3: If this fails, go back to step 1.

Since the success probability is a constant asymptotically, this algorithm is sup-
posed to end in polynomial time. However, this algorithm has some slight issues.
The first issue is that the n samples may not guarantee that LWE is well defined.
The second issue is that this algorithm runs in expected polynomial time and
uses O(n) samples on average, but these are not absolute bounds. To obtain a
satisfactory algorithm, we need to modify the approach somewhat, and rely on
careful tail bounds to analyze the resulting attacks.

2 Preliminaries

2.1 Learning with Errors

Definition 1 (LWE). The (search) LWE problem, defined with respect to a
dimension n, a modulus q and an error distribution χ over Zq, asks to recover
a secret vector s ∈ Z

n
q given polynomially many samples of the form

(
a, 〈a, s〉 + e mod q

) ∈ Z
n
q × Zq (2)

where a is uniformly random in Z
n
q , and e is sampled according to χ. One can

optionally specify the number of available samples as an additional parameter.
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2.2 Arora-Ge Algorithm

Arora and Ge proposed an algebraic approach to the LWE problem, which essen-
tially amounts to expressing LWE as a system of polynomial equations, and then
solving that system by unique linearization techniques. More precisely, solving
an instance (A,b) of the binary error LWE problem amounts to finding a vector
s ∈ Z

n
q (which is uniquely determined) such that for i = 1, . . . ,m, we have:

bi − 〈ai, s〉 ∈ {0, 1},

where the vectors ai are the rows of A, and the scalars bi the coefficients of b.
The idea of Arora and Ge is to rewrite that condition as:

(
bi − 〈ai, s〉

) · (
bi − 〈ai, s〉 − 1

)
= 0,

which is a quadratic equation in the coefficients s1, . . . , sn of s.
In general, solving a multivariate quadratic system is hard. However, it

becomes easy when many equations are available. Arora and Ge propose to
solve this system using a simple linearization technique: replace all the monomi-
als appearing in the system by a new variable.

There are
(
n+2
2

)
= (n+2)(n+1)/2 monomials of degree at most 2. Therefore,

if the number of samples m is at least (n+2)(n+1)/2, linearizing the quadratic
system should yield a full rank linear system with high probability, and the secret
s can be recovered by solving this linear system. This takes time O

((
n+2
2

)ω
)

=

O(n2ω), and therefore shows that Binary-Error LWE can be solved in polynomial
time given m ≈ n2/2 samples.

2.3 Function Family

A function family is a probability distribution F over a set of functions F ⊂
(X → Y ) with common domain X and range Y . Let X be a probability dis-
tribution over the domain X of a function family F . We recall the following
standard security notions:

One Wayness: (F ,X ) is (t, ε)-one-way if for all probabilistic algorithms A
running in time at most t,

Pr
[
f ← F , x ← X : A(f, f(x)) ∈ f−1(f(x))

] ≤ ε

Uninvertibility: (F ,X ) is (t, ε)-uninvertible if for all probabilistic algorithms
A running in time at most t,

Pr[f ← F , x ← X : A(f, f(x)) = x] ≤ ε

Second Preimage Resistance: (F ,X ) is (t, ε)-second preimage resistant if
for all probabilistic algorithms A running in time at most t,

Pr [f ← F , x ← X , x′ ← A(f, x) : f(x) = f (x′) ∧ x �= x′] ≤ ε
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Pseudorandomness: (F ,X ) is (t, ε)-pseudorandom if the distributions {f ←
F , x ← X : (f, f(x))} and {f ← F , y ← U(Y ) : (f, y)} are (t, ε)-
indistinguishable, where U(Y ) denotes the uniform distribution over Y.

2.4 Lossy Function Families

Lossy function family is a concept introduced by Micciancio and Peikert, which
is a general framework to prove the one-wayness of some functions.

Definition 2 (Lossy Function Families [13]). Let (L, F) be two probability
distributions(with possibly different supports) over the same set of (efficiently
computable) functions F ⊂ X → Y , and let X be an efficiently sampleable
distribution over the domain X. We say that (L, F , X ) is a lossy function
family if the following properties are satisfied:

– the distributions L and F are indistinguishable.
– (L, X ) is uninvertible.
– (F , X ) is second preimage resistant.

The following two lemmas are some properties of lossy function family.

Lemma 2 ([13]). Let F be a family of functions computable in time t′. If
(F ,X ) is both (t, ε)-uninvertible and (t + t′, ε′)-second preimage resistant, then
it is also (t, ε + ε′)-one-way.

Lemma 3 ([13]). Let F and F ′ be any two indistinguishable, efficiently com-
putable function families, and let X be an efficiently sampleable input distri-
bution. Then if (F , X ) is uninvertible(respectively, second-preimage resistant),
then (F ′, X ) is also uninvertible(resp., second preimage resistant). In particu-
lar, if (L, F , X ) is a lossy function family, then (L, X ) and (F , X ) are both
one-way.

2.5 SIS and LWE Function Family

The Short Integer Solution function family SIS(m,n, q,X) is the set of all func-
tions fA indexed by A ∈ Z

n×m
q with domain X ⊆ Z

m and range Y = Z
n
q

defined as fA(x) = Ax mod q. The Learning With Errors function family
LWE(m,n, q,X) is the set of all functions gA indexed by A ∈ Z

n×m
q with domain

Z
n
q ×X and range Y = Z

m
q , defined as gA(s,x) = AT s+x mod q. The following

theorems are needed in our proof.

Theorem 1 ([11,12]). For any n,m ≥ n + ω(logn), q, and distribution X over
Z

m, the LWE(m, n, q) function family is one-way (resp. pseudorandom, or unin-
vertible) with respect to input distribution U(Zn

q ) × X if and only if the SIS(m,
m - n, q) function family is one-way (resp. pseudorandom, or uninvertible) with
respect to the input distribution X .
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Theorem 2 ([13]). For any positive m,n, δ, q such that ω(log n) ≤ m − n ≤
nO(1) and 2

√
n < δ < q < nO(1), if q has no divisors in the range ((δ/ωn)1+n/k,

δ · ωn), then the SIS(m,m − n, q) function family is pseudorandom with respect
to input distribution Dm

Z,δ, under the assumption that no (quantum) algorithm
can efficiently sample(up to negligible statistical errors) D∧,

√
2nq/δ. In particular,

assuming the worst-case (quantum) hardness of SIVPnωnq/δ on n-dimensional
lattices, the SIS(m,m − n, q) function family is pseudorandom with respect to
input distribution Dm

Z,δ.

3 Sample-Time Trade-Off for Binary Error LWE

In this section, we use the Macaulay matrix approach to get a sample-time
trade-off for the binary error LWE.

3.1 Hilbert’s Nullstellensatz for Arora–Ge

Slightly informally, Hilbert’s Nullstellensatz essentially states that the ideal gen-
erated by a family of polynomials f1, . . . , fm ∈ Zq[x1, . . . , xn] coincides with the
ideal of polynomials that vanish on the set V (f1, . . . , fm) of solutions of the
polynomial system:

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0

Now consider the application of Hilbert’s Nullstellensatz to the polynomial sys-
tem arising from Arora and Ge’s approach to Binary-Error LWE. That system
is of the form: ⎧

⎪⎪⎨

⎪⎪⎩

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0

where f1, . . . , fm ∈ Zq[x1, . . . , xn] are known quadratic polynomials. By the
uniqueness of LWE solution, the set V (f1, . . . , fm) of solutions of that system is
reduced to a single point:

V (f1, . . . , fm) =
{
(s1, . . . , sn)

}
=

{
s
}
,

namely, the unique solution of the Binary-Error LWE problem. It follows that
the ideal I = (f1, . . . , fm) ⊂ Zq[x1, . . . , xn] generated by the polynomials fi

coincides with the ideal of polynomial functions vanishing on
{
s
}
, which is just

(x1 − s1, . . . , xn − sn).
As a consequence, for j = 1, · · · , n, there exists polynomials g1j , · · · , gmj ∈

Zq[x1 · · · xn] such that:

g1j · f1 + · · · + gmj · fm = xj − sj .



Revisiting the Hardness of Binary Error LWE 433

3.2 The Macaulay Matrix

Now consider the Arora-Ge approach of linearizing the polynomial system,
except that we do not apply it to the quadratic system directly, but instead to
an equivalent, expanded polynomial system. This expanded system is obtained
by multiplying each equation fi = 0 by all possible monomials of degree up to
d, for some fixed d ≥ 0. The d-th Macaulay linear system is then the linear
system obtained by taking this expanded polynomial system and linearizing it,
i.e., replacing each monomial appearing in the system by a new variable. Since
the maximum degree is d + 2, the resulting linear system consists of m

(
n+d

d

)

equations in
(
n+d+2

d+2

)
unknowns. The matrix of the system is called Macaulay

matrix.
Consider then the polynomials gij introduced above and let d be the maxi-

mum of their total degrees. Clearly, the polynomial g1j · f1 + · · · + gmj · fm is
a linear combination of the polynomials appearing in the expanded system. But
by definition, this polynomial is equal to xj − sj . Therefore, any solution of the
d-th Macaulay linear system must assign the variable associated to xj to sj , the
j-th coefficient of the actual solution s.

3.3 Semi-regularity

We can completely determine the cost of the approach above provided that we
can determine the minimal value D sufficient to recover s, starting from a given
number m of samples. This value D is called the degree of regularity of the
system.

In general, the degree of regularity is difficult to compute, but has a tractable
expression for a certain subclass of polynomial systems called semi-regular poly-
nomial systems. It is believed that random polynomial systems are semi-regular
with overwhelming probability,1 and therefore assuming semi-regularity is a stan-
dard heuristic assumption.

We omit the formal definition of a semi-regular system here. For our purpose,
it suffices to explain how the degree of regularity of a semi-regular system can
be computed. Consider a polynomial system of m equations in n unknowns with
m > n, defined by polynomials f1, · · · , fm of total degree d1, · · · , dm respectively,
and introduce

H(z) =
∏m

i=1(1 − zdi)
(1 − z)n+1

Note that this function H is a polynomial 1 + H1z + H2z
2 + · · · with integer

coefficients since 1 − z divides 1 − zdi for all i, and m ≥ n + 1. If the polynomial
system is semi-regular, then its degree of regularity D is the smallest j such that
the coefficient Hj of degree j of H satisfies Hj ≤ 0.
1 More precisely, it is known that among of systems of m equations of prescribed

degrees in n unknowns, non-semi-regular systems form a Zariski closed subset. It is
believed that this subset has relatively large codimension, so that only a negligible
fractions of possible systems fail to be semi-regular. This is related to a conjecture
of Fröberg [9]. See e.g. [1, Sect. 1] for an extended discussion.
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3.4 Application to Binary Error LWE

The Arora-Ge polynomial system arising from binary error LWE is a polynomial
system as above with d1 = · · · = dm = 2. Therefore, we can sum up the results
of this section as the following theorem.

Theorem 3. Under the standard heuristic assumption that the Arora-Ge poly-
nomial system is semi-regular, one can solve Binary Error LWE in time
O(

(
n+D

D

)w
), where D is the smallest j such that the coefficient of degree j of

the following polynomial

H(z) =
(1 − z2)m

(1 − z)n+1

is non-positive.

One can apply this result for concrete instances of the binary error LWE prob-
lems. For instance, the first two parameter sets proposed for the scheme of Buch-
mann et al. [5] correspond to the case when n = 256 and m = 2n = 512. One
can easily check that the first non-positive coefficient of (1 − z2)512/(1 − z)257 is
the coefficient of degree 30. Therefore, this algebraic attack reduces to solving a
polynomial system in

(
256+30

30

) ≈ 2135 unknowns.
The attack can in fact be improved due to the fact that the secret in that

scheme is also binary, which provides n more quadratic equations of the form
si(si − 1) = 0, for a total of 768. The first non-positive coefficient of (1 −
z2)768/(1−z)257 is the coefficient of degree 20, reducing the number of unknowns
to

(
256+20

20

) ≈ 2100. The resulting attack is better than the naive attack by
guessing the error vector, but is worse than what can be achieved by lattice
reduction techniques against the same parameters.

To estimate the complexity of the attack in more general cases, we simply
need to find asymptotic estimates for the degree of the first non-positive coeffi-
cient of the polynomial H.

Remark 1. One can ask how this approach compares to simply applying Gröbner
basis computation algorithm to the Arora–Ge polynomial system. The answer
is that the two approaches are essentially equivalent (and in fact, some Gröbner
basis algorithms such as Matrix-F4 for a suitable monomial ordering can be
expressed in terms of Macaulay matrix [8]), but knowing the degree D in advance
avoids the difficulties related to the iterative nature of Gröbner basis algorithms,
and hence saves some polynomial factors in terms of asymptotic complexity.
It also makes it clear that the problem reduces to solving a relatively sparse
linear system (since the rows of the Macaulay matrix have only O(n2) nonzero
coefficients among O(nD)), which can yield to various algorithmic optimizations.

Nevertheless, our results can be regarded as closely related to the Gröbner-
based analysis presented in [1]. The main difference is that we are interested in a
wider range of asymptotic regimes in order to obtain a full, smooth time-sample
trade-off.
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3.5 Sample-Time Trade-Off

As discussed above, estimating the asymptotic complexity of our algebraic attack
reduces to computing the degree of regularity D of the Arora-Ge polynomial
system, which is equivalent to finding the degree of the smallest non-positive
coefficient of Hz = (1−z2)m

(1−z)n+1 .
We consider two distinct asymptotic regimes: m ∼ ε · n2 for ε > 0 and

m ∼ n1+α for some α ∈ (0, 1). The analysis in the first case can be done
combinatorially in a way that is essentially fully explicit, and shows that the
attack is polynomial time for any ε > 0. The second case is more similar to
previous cases considered in the literature, and can be dealt with using techniques
from complex analysis as demonstrated by Bardet et al. [4]; the attack in that
case is subexponential.

Attack with Quadratically Many Samples. Consider first the case m ∼ ε·n2

for some ε > 0. We claim that the attack is then polynomial: this means in
particular that the degree of regularity is constant. In other words, there exists
a fixed d depending on ε such that for all large enough n, the d-th coefficient hd

of the Hilbert polynomial:

Hm,n(z) =
(1 − z2)m

(1 − z)n+1
= (1 − z)m−n−1(1 + z)m =

∑

d≥0

hdz
d (3)

is non positive. To find this d, we can write down hd explicitly, and try to estimate
its sign for n → +∞. After some combinatorial computations (left to the full
version of this paper), we find that the sign of hd is related to the sequence
(Pd)d≥0 of polynomials with rational coefficients uniquely defined as follows:

P0 = P1 = 1 P ′
k = −Pk−2 (for all k ≥ 2) Pk(0) =

1
k!

.

The relationship between those polynomials and the problem at hand is as
follows.

Lemma 4. Suppose m ∼ ε · n2 for some ε > 0, and fix d ≥ 0. Then we have,
for n → +∞:

hd = Pd(ε) · nd + O(nd−1).

In particular, the sign of hd for sufficiently large n is the same as the sign of
Pd(ε) as long as Pd(ε) �= 0.

Furthermore, the polynomials Pk can be expressed in terms of the well-known
Hermite polynomials, and hence their roots are well-understood.

Lemma 5. Let Hk(x) = (−1)kex2 dk

dxk e−xk

be the k-th Hermite polynomial.
Then we have:

Pk(x2) =
xk

k!
Hk

( 1
2x

)
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for all k ≥ 0. In particular, for k ≥ 2, the roots of Pk are all real, positive,
and simple. Denote by xk > 0 the smallest root of Pk. The sequence (xk)k≥2

decreases towards 0, and we have xk ∼k→+∞ 1/(8k).

Combining the lemmas above, we obtain:

Theorem 4. Suppose m ∼ ε · n2 (ε a positive constant), and let (xk)k≥1 be
the decreasing sequence defined in Lemma 5, with the convention that x1 =
+∞. Then the degree of regularity dreg of a semi-regular system of m quadratic
equations in n variables satisfies that dreg ≤ d as soon as ε > xd. In particular,
dreg is always bounded, and if ε /∈ {x2, x3, . . . }, it is exactly equal to the unique
d such that xd < ε < xd−1. Furthermore, as ε approaches 0, it behaves as dreg ∼
1/(8ε). The time complexity O

((
n+dreg

dreg

)ω
)

of the attack on binary error LWE is
always polynomial in this setting.

Attack with Subquadratically Many Samples. We now turn to the case
when m ∼ n1+α for some α ∈ (0, 1). As mentioned earlier, the attack in this
case is subexponential.

Theorem 5. For m = n1+α + o(n) (α a constant in (0, 1)) quadratic equations
in n variables, the degree of regularity dreg of a semi-regular system behaves

asymptotically as dreg ∼ 1
8n1−α. The time complexity O

((
n+dreg

dreg

)ω
)

of the attack
on binary error LWE is then subexponential.

The proof essentially follows [1, Appendix A.1].

Proof. Denote again by hd the d-th coefficient of the Hilbert series.

Hm,n(z) =

(
1 − z2

)m

(1 − z)n+1
=

∞∑

d=0

hdz
d (4)

Since our goal is to determine the first index d such that hd is non-positive, we
try to estimate the behavior of hd asymptotically as d increases. To do so, we
write hd as an integral using Cauchy’s integral formula:

hd =
1

2iπ

∮
Hm,n(z)

dz

zd+1

where the integration path encloses the origin and no other singularity of
Hm,n(z). Since we are looking for the smallest value d such that hd crosses
from positive to negative, this amounts to solving for real d > 0 such that the
integral vanishes. To do so, we estimate the integral using Laplace’s method.
Write:

hd =
1

2iπ

∮
enf(z)dz

for some function f . By identification, we have:

enf(z) =
(1 − z)m−n−1(1 + z)m

zd+1
,
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which gives:

nf(z) = (m − n − 1) log(1 − z) + m log(1 + z) − (d + 1) log z.

Laplace’s method shows that the behavior is determined by the point z0 where
f vanishes (or the points in the case of multiple roots). Since we have:

nf ′(z) =
n − m + 1

1 − z
+

m

1 + z
− d + 1

z
,

z0 is a root of the quadratic equation:

(n − 2m + d + 2)z2 + (n + 1)z − (d + 1) = 0.

If the discriminant Δ of this equation is not zero, it means that there are two
distinct saddle points. The contribution of these two saddle points to the integral
are conjugate values whose sum does not vanish. Hence the two saddle points
must be identical, which means that Δ = 0. Now:

Δ = 4(d + 1)2 + 4(n − 2m + 1)(d + 1) + (n + 1)2 = 0.

Solving this equation, we get

d + 1 = m − n + 1
2

−
√

m(m − n).

Substituting m = n1+α, it follows that:

d + 1 = n1+α − n + 1
2

− n1+α

√

1 − 1
nα

= n1+α − n + 1
2

− n1+α
[
1 − 1

2nα
− 1

8n2α
+ o(n−2α)

]

= n1+α − n + 1
2

− n1+α +
n

2
+

1
8
n1−α + o(n1−α)

=
(1

8
+ o(1)

)
n1−α

as required. One easily checks that the same estimate still holds for m = n1+α +
o(n), i.e., m =

(
1 + t

)
n1+α for some t = o(n−α).

4 Hardness of LWE with Non-uniform Binary Error

In this section we analyze the hardness of non-uniform binary error LWE.

4.1 Hardness of Non-uniform Binary Error LWE with Limited
Samples

First, we show that non-uniform binary error LWE is as hard as worst-case
lattice problems when the number of available samples is restricted. We follow
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the outline of Micciancio-Peikert proof [13] (for some other similar work, see [7]),
by constructing a lossy function family with respect to the non-uniform input
distribution χ. As previously stated, we overcome the difficulty of transforming
from uniform to non-uniform, hence adapting the various parts of proof that
relies on the distribution being uniform. In order to prove (L,F ,X ) is a lossy
function family, we will prove:

– L is uninvertible with respect to X .
– F is second preimage resistant with respect to X .
– (L,F) are indistinguishable.

where F = SIS(m,m−n, q) and L = SIS(l,m−n, q) ◦ I(m, l,Y), where ◦ means
the composition of two functions and I(m, l,Y) is defined in Definition 3.

Statistical Uninvertibility

Lemma 6. Let m be a positive integer, L be a family of functions on the common
domain X = {0, 1}m, we define a non-uniform distribution χ over {0, 1}m such
that each coefficient xi(i = 1, · · · ,m) is 1 with probability p(0 < p < 1), and
set p′ = max(p, 1 − p). Then L is ε-uninvertible statistically w.r.t χ for ε =
Ef←L(p′)m · |f(X)|, where |f(X)| means the number of elements in the range
and E means taking the expectation over the choice of f .

Proof. Fix any f ← L and choose a input x from the distribution χ. Denote
y = f(x). The best attack that the adversary can achieve is to choose the
element with the highest conditional probability.

Pr[adversary can invert] =
∑

x

Pr[x] · Pr[adversary can invert given f(x)]

=
∑

x

Pr[x] · Pr[x is the preimage with highest conditional probability in f−1(f(x))]

=
∑

y∈f(X)

maxx∈f−1(y) Pr(x)
∑

x∈f−1(y) Pr(x)
·

∑

x∈f−1(y)

Pr(x) =
∑

y∈f(X)

max
x∈f−1(y)

Pr(x)

All the possible probability for sampling x from χ is pk · (1 − p)m−k (k =
0, 1, 2 · · · m), we know that the maximum probability is (max(p, 1 − p))m. Then
let p′ = max(p, 1 − p), the result follows.

In order to establish a connection with standard LWE, the following definition
is needed.

Definition 3 ([13]). For any probability distribution Y over Z
l and integer m ≥

l, let I(m, l,Y) be the probability distribution over linear functions [I | Y ] :
Z

m → Z
l where I is l× l identity matrix, and Y ∈ Z

l×(m−l) is obtained choosing
each column of Y independently at random from Y.

The following lemma shows that, for the Gaussian distribution, the function
family I(m, l,Y) is statistically uninvertible.
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Lemma 7. Let m be a positive integer, χ be a not necessarily uniform distribu-
tion over {0, 1}m such that each coefficient xi (i = 1, · · · ,m) is 1 with probability
p (0 < p < 1), Y = Dl

Z,δ be the discrete Gaussian distribution with parameter
δ > 0, p′ = max(p, 1 − p). Then I(m, l,Y) is ε-uninvertible with respect to the
non-uniform distribution χ, for ε = O(δm/

√
l)l · (p′)m + 2−Ω(m).

Proof. In order to use Lemma 6, we only need to bound the size of the range
f(X). Recall that f = [I | Y ] where Y ← D

l×(m−l)
Z,δ . Since the entries of

Y ∈ R
l×(m−l) are independent mena-zero subgaussians with parameter δ, by a

standard bound from the theory of random matrices, the largest singular value
s1(Y ) = max0 
=x∈Rm ||Y x||/||x|| of Y is at most δ ·O(

√
l+

√
m − l) = δ ·O(

√
m),

except with probability 2−Ω(m). We now bound the l2 norm of all vectors in the
image f(X). Let u = (u1,u2) ∈ X, with u1 ∈ Z

l and u2 ∈ Z
m−l. Then

||f(u)|| ≤ ||u1 + Y u2|| ≤ ||u1|| + ||Y u2|| ≤ (
√

l + s1(Y )
√

m − l)

≤ (
√

l + δ · O(
√

m)
√

m − l) = O(δm)

The number of integer points in the l-dimensional zero-centered ball of radius
R = O(δm) can be bounded by a simple volume argument, as |f(X)| ≤
(R +

√
l/2)nVl = O(δm/

√
l)l, where Vl = πl/2/(l/2)! is the volume of the

l-dimensional unit ball. From Lemma 6, and considering the event that s1(Y )
is not bounded as above, we get that I(m, l,Y) is ε-uninvertible for ε =
O(δm/

√
l)l · (p′)m + 2−Ω(m).

Second Preimage Resistance

Lemma 8. Let χ be a not necessarily uniform distribution over {0, 1}m such
that each coefficient xi (i = 1, · · · ,m) is 1 with probability p (0 < p < 1).
For any positive integers m, k, any prime q, the function family SIS(m, k, q) is
(statistically) ε-second preimage resistant with respect to the non-uniform distri-
bution χ for ε = 2m/qk.

Proof. Let x ← χ and A ← SIS(m, k, q) be chosen at random. We want
to evaluate the probability that there exists an x′ ∈ {0, 1}m\{x} such that
Ax = Ax′(mod q), or equivalently, A(x − x′) = 0(mod q). Fix two distinct
vectors x,x′ ∈ {0, 1}m and let z = x − x′. Then considering taking the random
choice of A, since all coordinates of z are in the range zi ∈ {−1, 0, 1} and at
least one of them is nonzero, the vectors Az(mod q) is distributed uniformly at
random in (Zq)k, the probability of Az = 0 (mod q) is 1/qk. Therefore, by using
union bound(over x′ ∈ X\{x}) for any x, the probability that there is a second
preimage x′ is at most (2m − 1)/qk < 2m/qk .

Indistinguishability of L and F
Lemma 9. Let F = SIS(m,m − n, q) and L = SIS(l,m − n, q) ◦ I(m, l,Y),
where I(m, l,Y) is defined in Definition 3. If SIS(l,m − n, q) is pseudorandom
with respect to the distribution Y, then L and F are indistinguishable.
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Proof. Choose a random input x ∈ Z
m. According to the definition of F and L

L : x → A[I|Y ]x mod q

F : x → [A′
1, A

′
2]x mod q

With the property of block matrix multiplication, A can be divided into two
blocks: A1 is a l × l matrix, A2 is a (m − n − l) × l matrix, so we have

L : x → [A1, A2Y ]x mod q

F : x → [A′
1, A

′
2]x mod q

Since A1 and A′
1 are uniformly random chosen, A1x and A′

1x are indistinguish-
able. Recall that SIS(l,m−n, q) is pseudorandom with respect to the distribution
Y, thus A2Y is indistinguishable from A′

2. Then we can conclude that L and F
are indistinguishable.

One-Wayness

Theorem 6. Let m,n, k (0 < k ≤ n ≤ m) be some positive integer, q be a
prime modulus and let χ be a not necessarily uniform distribution over {0, 1}m

such that each coefficient xi (i = 1, · · · ,m) is 1 with probability p (0 < p < 1),
p′ = max(p, 1 − p), and Y be the discrete Gaussian distribution Y = Dl

Z,δ over
Z

l, where l = m − n + k. If SIS(l,m − n, q) is pseudorandom with respect to the
discrete Gaussian distribution Y = Dl

Z,δ, then SIS(m,m−n, q) is (2ε+2−Ω(m))-
one-way with respect to the input distribution χ if

(C ′δm/
√

l)l/ε ≤ 1/(p′)m and 2m ≤ ε · (q)m−n

where C ′ is universal constant in big O notation in Lemma 7.

Proof. We will prove that (L,F ,X ) is a lossy function family, where F =
SIS(m,m − n, q) and L = SIS(l,m − n, q) ◦ I(m, l,Y). It follows from Lemma 8
that F is second-preimage resistant with respect to χ. The indistinguishability
of L and F follows from Lemma 9. By Lemma 7, we have the uninvertibility of
I(m, l,Y), since L = SIS(l,m−n, q)◦I(m, l,Y), the uninvertibility of L follows.
With the three properties of lossy function family, we conclude that (L,F ,X )
is a lossy function family. Then from the property of lossy function family with
Lemma 3, this theorem is proved.

Instantiation for the LWE Parameter. After getting the hardness result
for SIS function, the one-wayness of LWE function can be established.

Theorem 7 (LWE Parameter). Let 0 < k ≤ n ≤ m, 0 < p < 1, p′ =
max(p, 1 − p), l = m − n + k, 1/p′ ≥ (Cm)l/m for a large enough universal
constant C, and q be a prime such that max(3

√
k, 8m/(m−n)) ≤ q ≤ kO(1). Let

χ be a non-uniform distribution over {0, 1}m such that each coefficient xi(i =
1, · · · ,m) is 1 with probability p, the LWE(m,n, q) function family is one-way
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with respect to the distribution UZn
q

× χ. In particular, these conditions can be
satisfied by setting k = n/(c2 log1/p′ n), m = n(1+1/(c1 log1/p′ n)), where c1 > 1
is any constant, and c2 such that 1/c1 + 1/c2 < 1.

Proof. In order to prove the one-wayness of LWE(m,n, q)(SIS and LWE are
equivalent according to Theorem 1) using Theorem 6, we need to satisfy the two
requirements:

(C ′δm/
√

l)l/ε ≤ 1/(p′)m and 2m ≤ ε · (q)m−n

Set δ = 3
√

k, and with l ≥ k, the first requirement can be simplified to (3C′m)l

(1/p′)m <

ε. Since we have 1/p′ ≥ (Cm)l/m, so (1/p′)m ≥ (Cm)l. Let C = 4C ′, we get that
(3C′m)l

(1/p)m ≤ (3/4)−l ≤ (3/4)−k is exponentially small in k, so the first inequality
is satisfied. Since q > 8m/(m−n), the second inequality is also satisfied.

Besides, we also need to prove the pseudorandomness of SIS(l,m−n, q) with
respect to discrete Gaussian distribution Y = Dl

Z,δ, which can be based on
the hardness of SIVP on k-dimensional lattice using Theorem 2. After properly
renaming the variables, and using δ = 3

√
k, the requirement becomes ω(log k) ≤

m−n ≤ kO(1), 3
√

k < q < kO(1). The corresponding assumption is the worst-case
hardness of SIVPγ on k-dimensional lattices, for γ = Õ(

√
kq).

For the particular instantiation, let m = n(1 + 1/(c1 log 1
p′ n))(c1 > 1),

k = n/(c2 log 1
p′ n)( c2 is a positive constant such that 1/c1 + 1/c2 < 1). The

requirement 1/p′ ≥ (Cm)l/m is equivalent to m ≥ l log1/p′ Cm. Since we can do
a asymptotic analysis:

l = m − n + k = (1/c1 + 1/c2)n/ log1/p′ n

and

log1/p′ Cm = log1/p′ Cn(1 + 1/log1/p′n) ≈ log1/p′ n + log1/p′ C

So we have

l log1/p′ Cm ≈ (1/c1 + 1/c2)n(1 + log1/p′ C/ log1/p′ n)

When (1/c1 + 1/c2) < 1, m ≥ l log1/p′ Cm asymptotically(we only need to
consider the dominant term). This concludes the proof.

4.2 Attacks Against Non-uniform Binary Error LWE

Now we consider the case where the number of available samples is not so
strongly restricted and the error rate is a function of n such that p = 1/nα(α >
0). We show an attack against LWE with non-uniform binary error given O(n)
samples. The idea behind our attack is quite simple:
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– Step 1: Get n samples from the LWE oracle.
– Step 2: By assuming the n samples are all error free, solve the linear equation

system.
– Step 3: If failed, go back to step1.

For instance, when the error rate p = 1/n, the probability that all samples are
error free is:

lim
n→∞(1 − 1/n)n = 1/e

This means that our algorithm is expected to stop after polynomial times of
trials. However, the number of total samples used is not bounded. Therefore, we
slightly modified the algorithm as follows:

– Step 1: Get 3n samples from the LWE oracle.
– Step 2: Choose 2n samples randomly from the 3n samples got in step1.
– Step 3: By assuming the 2n samples are all error free, solve the linear equation

system.
– Step 4: If failed, go back to step2.

We analyze the following two cases respectively:

– p = 1/nα for any constant α ≥ 1.
– p = 1/nα for any constant 0 < α < 1.

and have the following results:

Theorem 8. By applying the above algorithm, for any positive constant α ≥ 1,
non-uniform binary error LWE with error rate p = 1/nα can be attacked in
polynomial time with O(n) samples, and for any positive constant 0 < α < 1,
non-uniform binary error LWE with error rate p = 1/nα can be attacked in
subexponential time with O(n) samples.

Proof. Suppose that there are m errors within the 3n samples. The probability
that 2n samples are all error free is

Pr (success) =

(
3n−m
2n

)

(
3n
2n

) =
(3n − m)!

(n − m)!(2n)!
· (2n)!(n!)

(3n)!
=

(3n − m)!
(n − m)!

· (n!)
(3n)!

=
n · · · (n − m + 1)

3n · · · (3n − m + 1)
≥

(
n − m

3n

)m

≥
(

1
3

− o(1)
)m

provided that m = o(n). With tail bound for binomial distribution,

Pr(m ≥ k) ≤ exp(−nD(
k

n
||p)) if p <

k

n
< 1

where D(a||p) is the relative entropy between an a-coin and a p-coin(0 < a < 1
and 0 < p < 1).

D(a||p) = a log
a

p
+ (1 − a) log

1 − a

1 − p

We consider the cases α ≥ 1 and 0 < α < 1 separately.
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Case 1: α ≥ 1 For this case, we set k = log n.

D(
k

n
||p) = D(

log n

n
|| 1

nα
) =

log n

n
· log(nα−1 log n) + (1 − log n

n
) log

1 − log n
n

1 − 1
nα

= (α − 1)
(log n)2

n
+

log n

n
log log n + O

(
log n

n

)
.

Since (α−1) (log n)2

n is the dominant term (or 1
n log n · log log n if α = 1), we have

that

Pr(m ≥ log n) ≤ exp(−nD(
k

n
||p))

is negligible. Thus, with overwhelming probability on the choice of the initial 3n
samples, there are m ≤ log n erroneous samples. Thus, the probability that the
2n samples chosen in Step 2 are all error-free is bounded as:

Pr(success) ≥ (1/3 − o(1))log n = 1/poly(n)

and hence the secret key is recovered with overwhelming probability after poly-
nomially many iterations of Steps 2–3 as required.

Note that it can never happen in that case that the algorithm returns an
incorrect secret key: indeed, the linear system solved in Step 3 consists of 3n
equations in n unknowns, 3n − m > 2n of which are error-free. Thus, it must
either be rank-deficient (in which case it is not solvable) or contain at least n
linearly independent equations with the correct solution, and thus if it is solvable,
the correct secret key is the only possible solution.

Case 2: 0 < α < 1 For this case, we set k = n1−α log n

D(
k

n
||p) = D(

n1−α log n

n
|| 1

nα
) = D(

log n

nα
|| 1

nα
)

=
log n

nα
log log n + (1 − log n

nα
) log

1 − log n
nα

1 − 1
nα

=
log n

nα
log log n + O

(
log n

nα

)
.

The dominant term is log n
nα log log n, so

Pr(m ≥ n1−α log n) ≤ exp(−nD(
k

n
||p))

≤ exp(−n1−α log n log log n)

This probability is again negligible. Thus, as before, with overwhelming proba-
bility on the choice of the initial 3n samples, there are m ≤ n1−α log n erroneous
samples. As a result, the success probability at Steps 2–3 satisfies:

Pr(success) ≥ (1/3 − o(1))n1−α log n = 1/subexp(n)

This means that after repeating Steps 2–3 subexponentially times, we can recover
the secret key with overwhelming probability.
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9. Fröberg, R.: An inequality for Hilbert series of graded algebras. Math. Scand. 56,
117–144 (1985)

10. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

11. Micciancio, D.: Duality in lattice cryptography. In: Public Key Cryptography.
p. 2 (2010)

12. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 26

13. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

14. Regev, O.: The learning with errors problem. Invited Surv. CCC 7 (2010)
15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
16. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-38348-9_2
https://doi.org/10.1007/978-3-642-38348-9_2
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-40041-4_2


Machine Learning Security



PALOR: Poisoning Attacks Against
Logistic Regression

Jialin Wen1, Benjamin Zi Hao Zhao2, Minhui Xue3, and Haifeng Qian1(B)

1 East China Normal University, Shanghai, China
hfqian@cs.ecnu.edu.cn

2 The University of New South Wales and Data61 CSIRO, Eveleigh, Australia
3 The University of Adelaide, Adelaide, Australia

Abstract. With Google, Amazon, Microsoft, and other entities estab-
lishing “Machine Learning as a Service” (MLaaS), ensuring the security
of the resulting machine learning models has become an increasingly
important topic. The security community has demonstrated that MLaaS
contains many potential security risks, with new risks constantly being
discovered. In this paper, we focus on one of these security risks – data
poisoning attacks. Specifically, we analyze how attackers interfere with
the results of logistic regression by poisoning the training datasets. To
this end, we analyze and propose an alternative formulation for the opti-
mization of poisoning training points capable of poisoning the logistic
regression classifier, a model that has previously not been susceptible to
poisoning attacks. We evaluate the performance of our proposed attack
algorithm on the three real-world datasets of wine cultivars, adult census
information, and breast cancer diagnostics. The success of our proposed
formulation is evident in decreasing testing accuracy of logistic regression
models exposed to an increasing number of poisoned training samples.

Keywords: Data poisoning · Logistic regression · Machine learning

1 Introduction

With the widespread adoption of Machine Learning (ML) algorithms, it has been
elevated out of the exclusive use of high-tech companies. Many services, such as
“Machine Learning as a Service” (MLaaS) [21], can assist companies without
domain expertise in ML to solve business problems with ML. However, in the
MLaaS setting, there exists the potential for data poisoning attacks, in which
malicious MLaaS providers can manipulate the integrity of the training data
supplied by the company and compromise the training process.

In such a poisoning attack, the attacker’s objective may be to indiscriminately
alter prediction results, create a denial of service, or cause specific targeted
mis-predictions during test time. The attacker seeks to create these negative
effects while preserving correct predictions on the remaining test samples to
evade detection. An inconspicuous attack that may produce dire consequences,
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 447–460, 2020.
https://doi.org/10.1007/978-3-030-55304-3_23
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Fig. 1. The poisoning attack on logistic regression

and thus the necessity to study poisoning attacks on ML. A conceptual example
of poisoning attacks is illustrated in Fig. 1.

Many poisoning attacks have been proposed and demonstrated against dif-
ferent ML architectures. Biggio et al. [4] propose a black-box poisoning attack
on Support Vector Machines (SVM), and Muñoz-Gonzàlez et al. [17] propose
a black-box poisoning attack on Deep Neural Networks (DNNs). Both works
seek to indiscriminately alter prediction results, or cause specific mis-predictions
at test time. Additional works [2,4,12,17] have shown that poisoning attacks
are very effective in interfering with the accuracy of classification tasks. Alfeld
et al. [1] demonstrated the effectiveness of data poisoning against Autoregres-
sive Models. For regression learning, Ma et al. [16] were the first to propose a
white-box poisoning attack against linear regression, aimed at manipulating the
trained model by adversarially modifying the training set. Additionally, Jagielski
et al. [12] propose a black-box poisoning attack against linear regression, which
aims to increase the loss function on the original training set.

Logistic regression is not only a generalized linear regression model, but also a
binary prediction model. To date, there has been no study on the effectiveness of
a poisoning attack against the logistic regression model. As such, it is of upmost
importance to study the severity of the attack against this popular model.

Our contributions of this work are as follows:

– We are the first to consider the problem of poisoning logistic regression in
an adversarial training setting. Without a study on the effectiveness of a
poisoning attack against this widely used model, one cannot evaluate the risk
they are exposed to when being serviced by a malicious MLaaS.

– We extensively evaluate our attack on three types of logistic regression models
(Logistic, Ridge, and LASSO). As it is understood that the different logistic
regression models are used for their own disadvantages and advantages, but
are still vulnerable to the poisoning attack via the same learning framework.
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– We perform our evaluation on multiple datasets from different real-world
domains, including datasets about wine cultivars, adult census information,
and breast cancer diagnostics.

2 Preliminaries

2.1 Logistic Regression

Logistic regression is a statistical model that in its basic form uses a logistic func-
tion to model a binary dependent variable. Although many additional extensions
exist; for example in the context of multi-class classification, logistic regression
at its core is a binary classifier that creates a single boundary, separating the
input feature space into two classes. Mathematically, a logistic regression model
maps the dependence of an input variable with two possible output classes, for
example, a positive and negative class. These outputs represent our indicator
variable.

When solving the dichotomy between the two classes, we introduce a binary
variable y = {0, 1}, where 1 represents the positive class and 0 represents the
negative class. The logistic regression model finds a function hθ(x) = g(θT x) to
map the actual value between 0 and 1 based on the actual predicted value from
the linear function θT x. If hθ(x) ≥ 0.5, then label y = 1; if hθ(x) < 0.5, then
label y = 0.

In logistic regression, the logit function is selected as hθ(x). The logit function
is part of the greater family of Sigmoid functions. The mathematical expression
of the prediction function in logistic regression is shown in Eq. (1):

hθ(x) = g(θT x) =
1

1 + e−θT x
. (1)

The loss function of logistic regression is shown in Equation (2):

Cost(hθ(x), y) =
{ − log(hθ(x)), if y = 1

− log(1 − hθ(x)), if y = 0 (2)

We assume the logistic regression has been trained on a dataset Dtr =
{xi, yi}n

i=1, xi ∈ R
d. Then we add the regularization term to the logistic regres-

sion loss function to have Eq. (3).

L(Dtr, θ) = − 1
m

m∑
i=1

[yi log hθ(xi) + (1 − yi) log(1 − hθ(xi))] + λΩ(ω), (3)

where Ω(w) is a regularization term penalizing large weight values, and λ is the
regularization parameter used to prevent overfitting.

The primary distinction between popular types of logistic regression meth-
ods is in the choice of the regularization term. In this paper, we study logistic
regression with the following three regularization terms:
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– Ordinary logistic regression, in which Ω(w) = 0 (i.e., no regularization).
– Ridge, which uses l2−norm regularization Ω(w) = 1

2 ‖w‖22.
– LASSO, which uses l1−norm regularization Ω(w) = ‖w‖1.

2.2 Threat Model

Adversary’s Goal. The goal of the adversary is to corrupt the learning model
generated from the training phase, such that predictions on unseen data will
greatly differ to the expected behaviour in the testing phase. If the attacker’s
objective is to indiscriminately alter prediction results, and/or create a denial
of service, the attack is considered a poisoning availability attack. Alternatively,
if the objective is to cause specific mis-predictions at test time, while preserv-
ing correct predictions on the remaining test samples, the attack is known as a
poisoning integrity attack. These categorizations of the poisoning attack is sim-
ilar to those used for backdoor poisoning attacks emerging in the classification
setting [5,11]. In this work we focus on the poisoning availability attack.

Adversary’s Knowledge. Poisoning attacks can be executed in two distinct
attack scenarios, either as a white-box attack or a black-box attack. For white-box
attacks, the attacker is assumed to have knowledge of the training data Dtr, the
feature values x, the learning algorithm L, and the trained parameters θ. These
attacks have been studied in previous works, although primarily on classification
algorithms [2,4]. In the black-box attack setting, the attacker has no knowledge
of the training set Dtr but can collect a substitute dataset D

′
tr. The feature set

x and learning algorithm L are known; however, the trained parameters θ are
not. An attacker, however, can estimate θ

′
by optimizing L on the substitute

dataset D
′
tr. This setting is useful for evaluating the transferability of poisoning

attacks across different training sets, as discussed in [2,4]. However in this work,
we focus on the white-box attack setting.

Adversary’s Capability. In poisoning attacks, the attacker will inject poison-
ing datapoints into the training set before the machine learning model is trained.
The attacker’s capability is normally limited by an upper bound on the number
of poisoning points p that can be injected into the training data. The poison-
ing of feature values and response variables are arbitrarily set by the attacker
within a specified range (Typically the range is bounded by the training data, for
example [0, 1], when features are normalized.) [2,4]. The total number of points
in the poisoning training set is therefore N = n + p, with n being the number
of pristine training samples, and p the number of poisoning points. We then
define the ratio α = p/n, as the poisoning rate, the actual fraction of the train-
ing set controlled by the attacker, i.e., n

N = n
n+p = 1

1+p/n = 1
1+α . Prior works

rarely consider poisoning rates larger than 20%, as the attacker is assumed to
be able to control only a small fraction of the training data. This restriction is
motivated by practical scenarios, such as data crowdsourcing or network traf-
fic analysis, in which attackers can only practically influence a small fraction
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of the contributed data and network packets, respectively. Moreover, learning a
sufficiently-accurate regression function in the presence of higher poisoning rates
would be an ill-posed task, if not infeasible at all [2,4]. In this paper, we perform
evaluations up to a maximum poisoning rate of α = 0.2.

2.3 Attack Performance Metrics

The objective of our attack is to induce incorrect predictions on unseen data.
Therefore, to measure the rate of success for the attack, and thus effectiveness
of the poisoning attack on the machine learning model; we compare the testing
accuracy of the poisoned model with the testing accuracy of the non-poisoned
model trained on the same dataset.

3 Poisoning Attacks on Logistic Regression

3.1 Attack Strategy

We assume that the attacker is not aiming to cause specific errors, but only
generic misclassifications. Consequently, this poisoning attack (as with any other
poisoning attack) requires solving a bilevel optimization, where the inner prob-
lem is the learning problem and the outer problem is to find the most suitable
poisoning points through optimization.

Logistic regression is a statistical model that in its foundation uses a logit
function to model a binary variable dependent on inputs. In order to interfere
with the classification accuracy, we add poisoning points to optimize the attack.
Half of the poisoning points are to be labeled as y = 0, whilst the other half
of the poisoning points are labeled as y = 1. The choice of poisoning points
follows Eq. (4). While we optimize our poisoning points with an even number
in both classes, however, we note that it is feasible additional optimizations can
be engaged for the unbalanced placement of poisoning points into a class label
that is more difficult to influence.

arg max
Dp

L(Dtr ∪ Dp, θ
(p))

s.t. θ(p) ∈ arg min
θ

L(Dtr ∪ Dp, θ),
(4)

where Dtr is a training dataset and Dp is a poisoning dataset. Through enforcing
the bilevel optimization, we find the poisoning point that maximizes the logistic
regression loss function. Only one poisoning point is found for each iteration,
with the specific algorithm shown in Algorithm 1.

3.2 Gradient Computation

The aforementioned algorithm is essentially a standard gradient-ascent algorithm
with line search. The challenging component is to understand how to compute
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Algorithm 1: Poisoning attacks against logistic regression.
Input: D = Dtr (white-box) or D = D

′
tr (black-box), L, the initial poisoning attack

samples D
(0)
p = (xc, yc)

p
c=1, a small positive constant ε.

1: i ← 0 (iteration counter);

2: θ(i) ← argminθ L(D ∪ D
(i)
p );

3: repeat

4: l(i) ← L(θ(i));

5: θ(i+1) ← θ(i);
6: for c = 1, . . . , p do

7: x
(i+1)
c ←linesearch (x

(i)
c , ∇xcL(θ(i+1)));

8: θ(i+1) ← argminθ L(Dtr ∪ D
(i+1)
p );

9: l(i+1) ← L(θ(i+1));

10: end for
11: i ← i + 1;

12: until
∣
∣l(i) − l(i+1)

∣
∣ < ε

Output: The final poisoning attack sample Dp ← D
(i)
p .

the required gradient �xc
L(θ(p)), as this has to capture the implicit dependency

of the parameters θ of the inner problem on the poisoning point xc. We can
compute �xc

L(θ(p)) by using the chain rule:

�xc
L = �xc

θ(xc)T · �θL, (5)

where we have made explicitly that θ depends on xc. While the second term
is simply the derivative of the outer objective with respect to the regression
parameters, the first one captures the dependency of the solution θ of the learning
problem on xc.

We now focus on the computation of the term �xc
θ(xc). For bi-level opti-

mization problems, in which the inner problem is not convex (e.g., when the
learning algorithm is a neural network), this requires efficient numerical approx-
imations; however, when the inner learning problem is convex, the gradient of
interest can be computed in a closed form expression. The underlying trick is to
replace the inner learning problem with its Karush-Kuhn-Tucker (KKT) equi-
librium conditions, i.e., �θL(Dtr ∪ Dp, θ) = 0, and require such conditions to
remain valid while updating xc. To this end, we simply obtain that the derivative
with respect to xc remains at equilibrium, i.e., �xc

�θL(Dtr ∪ Dp, θ) = 0. Now,
it is clear that the function L depends explicitly on xc in its first argument, and
implicitly through the regression parameters θ. Thus, when differentiating again
with the chain rule, one yields the following linear system:

�xc
�θL + �xc

θT · �2
θL = 0. (6)

For the specific form of L given in Eq. (6), it is easy to calculate the derivative:

(�xc
θ)A = B + αIn, (7)
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where,

Aij =
∑c

k xkixkj( yke−θT xk

(1+e−θT xk )2
− 1−yk

e−2θT xk (1+e−θT xk )2
(e−θT xk + 2e−2θT xk)),

Bij = θjxci(
(1−yc)

e−2θT xc (1+e−θT xc )2
(e−θT xc + 2e−2θT xc) − e−θT xc yc

(1+e−θT xc )2
),

In is the Identity matrix, and
α = 1−yc

e−θT xc (1+e−θT xc )
− yc

1+e−θT xc
.

As logistic regression is a binary classification algorithm, the response vari-
able yc of xc can only take two values of 0 and 1, so we can simply set yc = 1 in
the case of poisoning attack.

4 Experiment

We implemented our attack algorithm in Python 3.7, leveraging the numpy
and sklearn libraries. We ran our experiments on an i5-4200M equipped laptop
running at 2.50 GHz with 12 GB of RAM. We parallelize our optimization-based
attack implementations to take advantage of multi-core capabilities. We use a
standard cross-validation method to split the datasets into 1/3 for training,
1/3 for validation, and 1/3 for testing, and report results as averages over 5
independent runs. We use one key metric to evaluate the effectiveness of our
poisoning attack: testing accuracy.

The remainder of this section is laid out as follows. We describe the datasets
used in our experiments in Sect. 4.1. Followed by Sect. 4.2, where we show results
from our poisoning optimization algorithm on the datasets we have obtained, and
across three different types of regression models.

4.1 Datasets

Wine Cultivars Dataset [6]. The wine cultivars dataset contains a total of
178 records from wines of a chemical analysis of wines grown in the same region
in Italy, originating from 3 different cultivars. The 13 chemical properties are
the quantities of 13 constituents found in each of the three wine cultivars. The
cultivars can be inferred from chemical analysis. Hence, there are 3 class labels
in the Wine dataset; however, We only perform a binary classification algorithm
on this dataset, to determine whether the wine belongs to cultivar “1” or not.

Adult Census Dataset [7]. The adult census dataset was extracted from the
database of the 1994 U.S. census and is used to predict a residents’ income.
The binary variable class label of this dataset is whether an individual’s annual
income exceeds $50k or not. The input attributes contain personal information
such as age, job, education, occupation, and race. The adult dataset contains
48,842 records.

Breast Cancer Wisconsin Dataset [8]. This is a dataset about the diagnosis
of breast cancer, whereby the output of the diagnosis has 2 class labels: malignant
or benign. The dataset contains 32 input attributes, computed from a digitized
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image of a fine needle aspirate (FNA) of a breast mass. This dataset has a total
of 569 entries. We use this data for a binary classification task to predict the
diagnosis of breast cancer.

4.2 Poisoning Attacks

We now perform experiments on our three selected datasets to evaluate our
newly proposed attack on logistic regression models. To enable the evaluation
of this attack, we provide comparisons between the accuracy of a model trained
in the presence of our poisoning training samples and the model trained on
an unpoisoned dataset. We use testing accuracy as the metric for assessing the
effectiveness of an attack. We note that if the testing accuracy is observed to
decrease with an increasing amount of poisoned data, the attack is effective.
We vary the poisoning rate between 4% and 20% at intervals of 4% with the
goal of inferring the trend in attack success. Figures 2, 3, and 4 show the testing
accuracy of each attack on the original logistic regression, Ridge and LASSO,
respectively.

We plot results for the unpoisoned dataset called “Unpoison”, and our opti-
mization attack as termed “PALOR”. The x-axis describes the poisoning rate,
that is, the proportion of pollution data in the original data, and the y-axis is the
testing accuracy measured from the resulting logistic regression modes trained
on either the poisoned or unpoisoned dataset. It is evident from the figures that
generating poisoning samples in our optimization attack (PALOR) can effec-
tively cause mis-predictions on logistic regression modes irrespective of the type
of regularization used.

We detail the specific testing accuracies of our optimization attack (PALOR)
in Table 1. It can be seen from the table, when the poisoning rate is α = 0.2, our
attack (PALOR) on average across all datasets and types of logistic regression
produces an 8.19% reduction in the testing accuracy. A formidable decrease in
the testing accuracy and demonstration in the effectiveness of the poisoning
attack.

As such, our results confirm that the optimization framework we design
demonstrates increased effectiveness when poisoning both different logistic
regression models and across datasets.

5 Related Work

Machine learning algorithms can be easily attacked by slight perturbations, such
as data poisoning attacks and Trojan backdoor attacks. In data poisoning attacks,
the attacker can either breach the integrity of the system without preventing the
regular users to use the system, or make the system unavailable for all users by
manipulating the training data. Backdoor attacks are one type of attack aimed
at fooling the model with premeditated inputs. An attacker can train the model
with poisoned data to obtain a model that performs well on a service test set but
behaves erroneously with crafted triggers. In Trojan backdoor attacks, neural
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(a) Wine Dataset (b) Adult Dataset

(c) Breast Cancer Wisconsin Dataset

Fig. 2. Testing accuracy of poisoning attacks on logistic regression on the three datasets

Table 1. Comparison of testing accuracy between unpoisoned data and our PALOR
poisoning algorithms.

Dataset Regression Testing accuracy

Unpoison PALOR (α = 0.2)

Wine cultivars Logistic 0.95 0.85

Ridge 0.96 0.855

LASSO 0.958 0.86

Adult census Logistic 0.83 0.77

Ridge 0.835 0.76

LASSO 0.84 0.765

Breast cancer diagnostic Logistic 0.956 0.87

Ridge 0.96 0.9

LASSO 0.958 0.88

Trojans, surfaced with a trigger pattern, can be embedded in the neural net-
works when the networks are trained with a compromised dataset. This process
typically involves the encoding of malicious functionality and normal behavior
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(a) Wine Dataset (b) Adult Dataset

(c) Breast Cancer Wisconsin Dataset

Fig. 3. Testing accuracy of poisoning attacks on ridge regression on the three datasets

within the weights of the deep network. We therefore survey both attacks as
follows.

Data Poisoning Attacks. Data poisoning attacks are generally referred to
attacks that manipulate the training data of a machine-learning or data-mining
system such that the learnt model makes predictions as an attacker desires. For
instance, existing studies have demonstrated that effective data poisoning attacks
can be launched against different applications, such as anomaly detection [19]
and spam filters [18]. Data poisoning attacks also have a good attack impact on
many different types of machine learning algorithms, such as SVMs [4,23], regres-
sion [2,12], graph-based approaches [22,25], neural networks [11], and federated
learning [9]. Many of the applications above are targeted at classification tasks;
however, there is also work focusing on attacking specific types of recommender
systems [10,13,24]. For example, Fang et al. [10] proposed efficient poisoning
attacks on graph-based recommender systems, where they inject fake users with
carefully crafted rating scores into the recommender system to promote a spe-
cific target item. They modeled the attack as an optimization problem to decide
the rating scores for the fake users. Li et al. [13] proposed poisoning attacks
against matrix-factorization-based recommender systems. Instead of attacking
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(a) Wine Dataset (b) Adult Dataset

(c) Breast Cancer Wisconsin DataSet

Fig. 4. Testing accuracy of poisoning attacks on LASSO regression on the three
datasets

the top-N recommendation lists, their goal was to manipulate the predictions
for all missing entries of the rating matrix.

Trojan Backdoor Attacks. Although most Trojan insertion techniques use a
predetermined pattern, it is desirable to make these patterns indistinguishable
when mixed with legitimate data in order to evade human inspection. Barni
et al. [3] propose a Trojan insertion methodology where the label of the poi-
soned data remains untampered. The advantage of this approach is that upon
inspection, the poisoned samples would not be detected merely on the basis of
an accompanying poisoned label, as a clear mismatch between the sample and
the label would be evident. To perform the attack, a target class t is chosen
and a fraction of training data samples belonging to a target class is poisoned by
adding a backdoor trigger. After the neural network is trained on the training set
which is contaminated with poisoned samples of a target class, test samples not
belonging to the target class but corrupted with the trigger end up being clas-
sified as the target class, without any impact on the original samples belonging
to the target class. Thus, the network learns that the presence of the trigger in
a sample is an indicator of the sample belonging to the target class. Liao et al.
[15] designed static and adaptive Trojan insertion techniques. In their work,
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the indistinguishability of Trojan trigger examples is attained by a magnitude
constraint on the perturbations to craft such examples. Li et al. [14] general-
ized this approach and demonstrated the trade-off between the effectiveness and
stealth of Trojans. They also developed an optimization algorithm involving
L2 and L0 regularization to distribute the trigger throughout the victim image,
making it more difficult for Trojan defenses to identify the attack. Saha et al. [20]
proposed to hide the Trojan triggers by not using the poisoned data in training
at all. Instead, they took a fine-tune approach in the training process, whereby
the backdoor trigger samples are given the correct label and only used at test
time. These samples are visually indistinguishable from legitimate data but bear
certain features that will trigger the Trojan.

6 Conclusion

In conclusion, we have demonstrated a proof-of-concept work that extends the
existing data poisoning attack framework to also function on logistic regression
classification models. We have shown through experimentation on different real-
world datasets and various types of logistic regression models that this poisoning
attack is still effective in causing mis-predictions of previously unseen data.

Acknowledgment. This work was, in part, supported by the National Natural Sci-
ence Foundation of China under Grant No. 61961146004.
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Abstract. Image spam emails are often used to evade text-based spam
filters that detect spam emails with their frequently used keywords. In
this paper, we propose a new image spam email detection tool called
DeepCapture using a convolutional neural network (CNN) model. There
have been many efforts to detect image spam emails, but there is a
significant performance degrade against entirely new and unseen image
spam emails due to overfitting during the training phase. To address this
challenging issue, we mainly focus on developing a more robust model
to address the overfitting problem. Our key idea is to build a CNN-
XGBoost framework consisting of eight layers only with a large number
of training samples using data augmentation techniques tailored towards
the image spam detection task. To show the feasibility of DeepCapture,
we evaluate its performance with publicly available datasets consisting
of 6,000 spam and 2,313 non-spam image samples. The experimental
results show that DeepCapture is capable of achieving an F1-score of
88%, which has a 6% improvement over the best existing spam detection
model CNN-SVM [19] with an F1-score of 82%. Moreover, DeepCapture
outperformed existing image spam detection solutions against new and
unseen image datasets.

Keywords: Image spam · Convolutional neural networks · XGBoost ·
Spam filter · Data augmentation

1 Introduction

Image-based spam emails (also referred to as “image spam emails”) are designed
to evade traditional text-based spam detection methods by replacing sentences
or words contained in a spam email with images for expressing the same mean-
ing [11]. As image spam emails become popular [16], several spam detection
methods [9,12,15] have been proposed to detect image spam emails with sta-
tistical properties of image spam emails (e.g., the ratio of text contents in an
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email sample). However, these countermeasures have disadvantages due to a
high processing cost for text recognition in images [2]. Recently, a convolutional
neural network (CNN) model-based detection [19] was presented to address this
processing cost issue and improve the detection accuracy. The recent advance
of deep learning technologies in the image domain would bring a new angle or
approach to security applications. CNN has the potential to process raw data
inputs (e.g., the input image itself) by extracting important (low-level) features
in an automated manner [14]. However, we found that the detection accuracy
of the existing CNN based image spam detection model [19] could be degraded
significantly against new and unseen image spam emails.

To overcome the limitation of existing image spam detectors against new
and unseen datasets, we propose a new image spam email detection tool called
DeepCapture. DeepCapture consists of two phases: (1) data augmentation to
introduce new training samples and (2) classification using a CNN-XGBoost
model. In this paper, we focus on developing new data augmentation techniques
tailored for image spam training dataset and designing an effective CNN archi-
tecture capable of detecting images used for spam emails with the optimized
configuration for number of layers, number of filters, filter size, activation func-
tion, a number of epochs and batch size.

To examine the feasibility of DeepCapture, we evaluate the performance of
DeepCapture compared with existing image spam email detectors such as RSVM
based detector [1] and CNN-SVM based detector [19]. In our experiments, we
use a dataset consisting of 6,000 spam and 2,313 non-spam (hereinafter referred
to as ham) image samples collected from real-world user emails. We also use
our data augmentation techniques to balance the distribution of ham and spam
samples and avoid performance degradation against new and unseen datasets.
We evaluate the performance of the DeepCapture in two ways. First, we evaluate
the performance of DeepCapture with/without data augmentation. Second, we
also evaluate the performance of DeepCapture via cross data training scenarios
with/without data augmentation. Our experimental results demonstrate that
DeepCapture produced the best classification results in F1-score (88%) com-
pared with existing solutions. Moreover, for two cross data training scenarios
against unseen datasets, DeepCapture also produced the best F1-score results
compared with other classifiers. The use of data augmentation techniques would
be necessary for processing new and unseen datasets. In the cross data training
scenarios, F1-scores of all classifiers are less than 40% without applying our data
augmentation techniques.

This paper is constructed as follows: Sect. 2 describes the background
of image spam email, convolutional neural network and data augmentation.
Section 3 describes the model architecture of DeepCapture. Section 4 describes
experiment setups and evaluation results of DeepCapture. Section 5 describes
the related work for image spam detection and we conclude in Sect. 6.
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2 Background

This section first presents the definition of the image spam email and then briefly
provides the concept of a convolutional neural network. Finally, we present the
description of data augmentation that is a widely used technique [14] for improv-
ing the robustness of deep learning models. It increases the size of labeled train-
ing samples by leveraging task-specific data transformations that preserve class
labels.

2.1 Image Spam Email

Since image spam emails appeared in 2004, several studies were conducted to
formally define image spam emails and construct models to detect image spam
emails in academia. Klangpraphan et al. [13] observed that image spam emails
contain an image-based link to a website, which looks like a text. Soranam-
ageswari et al. [21] introduced the definition of image spam email as spam email
having at least one image containing spam content.

Fig. 1. Examples of image spam emails.

Figure 1 shows two examples of image spam emails. In Fig. 1(a), if a user
clicks the “Verify Email” button, it tries to visit an attacker’s website or down-
load malware. In Fig. 1(b), the spam image shows unwanted advertisement infor-
mation to email recipients. Basically, the goal of image spam emails is to hide
the attacker’s message into an image for circumventing text-based spam filters.
Based on this observation, in this paper, we define the image spam email as
spam email with images displaying unwanted text information.

2.2 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a kind of deep learning methods.
Recently, in many classification tasks, CNN outperformed traditional machine
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learning methods. Therefore, it is widely believed that CNN has the potential
to be used for security applications.

CNN can automatically extract features of target objects from lower to higher
levels by using convolutional and pooling layers. Convolutional layers play a role
in extracting the features of the input. A convolutional layer consists of a set of
filters and activation functions. A filter is a function to emphasize key features
that are used to recognize target objects. The raw input data is converted into
feature maps with filters, which becomes more clear after processing the activa-
tion functions. A pooling layer (or sub-sampling) reduces the number of features,
which prevents overfitting caused by a high number of features and improve the
learning rate. Finally, feature map layers are used as the input layer for the fully
connected classifier. These are popularly applied to computer vision tasks such
as object recognition [3].

2.3 Data Augmentation

In a classification problem, it is widely known that the performance of classi-
fiers deteriorates when an imbalanced training dataset is used. If the number of
instances in the major class is significantly greater than that in the minor class,
the classification performance on the major class will be higher, and vice versa.

Data augmentation is a popularly used method to solve the imbalance prob-
lem [20], which increases the number of instances in minority classes to bal-
ance between majority classes and minority classes. In the image domain, new
samples are typically generated by applying the geometric transformations or
adding noise to training samples. Figure 2 shows typically used image manipu-
lation techniques such as flipping, rotation, and color transformation for image
applications.

(a) Original image (b) Flipping (c) Rotation (d) Color
transformation

Fig. 2. Examples of the image manipulation techniques.
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In the image spam detection problem, however, the effects of such general
data augmentation techniques would be limited because the typical ham and
spam images are different from the samples generated from such augmentation
techniques. Therefore, in this paper, we focus on developing data augmentation
for image ham and spam emails.

3 Overview of DeepCapture

We designed DeepCapture using data augmentation and CNN to make it robust
against new and unseen datasets. Figure 3 shows an overview of DeepCapture
architecture.

Fig. 3. Overview of DeepCapture.

DeepCapture consists of two phases: (1) data augmentation to introduce new
training samples and (2) classification using a CNN model.

3.1 Data Augmentation in DeepCapture

To address the class imbalance problem in image spam datasets and generalize
the detection model, we introduce a new data augmentation method to create
new ham and spam samples for training. The goal of data augmentation is to
make augmented samples that are similar to real data.

For both ham and spam images, we commonly remove unnecessary images
such as duplicate images, solid color background images, small and unknown
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images that cannot be recognized by human users. After removing unnecessary
images, we apply different data augmentation methods to ham and spam images,
respectively.

For ham images, we randomly choose an image among ham images and use
an API to search images that are similar to the given image. For example, the
Google Image Search API can be used to crawl the images similar to the ones
we uploaded. For each uploaded image, N (e.g., N = 100) similar images can
be obtained as ham-like images for training (see Fig. 4). Those images would be
regarded as additional ham images because those are also actually used images
on other websites.

Fig. 4. Data augmentation process for ham images.

For spam images, we randomly choose two images among spam images and
split each image in half from left to right (“left and right parts”). Next, we then
combine the left part of an image with the right part of the other image. To com-
bine parts from different images, we resize a part of an image so that its size is the
same as the size of the part of another image (see Fig. 5). Our key observation is
that a spam image typically consists of the image and text parts. Therefore, it is
essential to create augmented samples having both image and text parts. Our data
augmentation techniques are designed to produce such image samples.

3.2 CNN-XGBoost Classification in DeepCapture

As shown in Fig. 3, the architecture of DeepCapture is composed of eight layers.
Given an input image, the input image is resized to 32 × 32 pixels. The first
six layers are convolutional layers, and the remaining two layers are used for the
XGBoost classifier to determine whether a given image is spam or not.

All convolutional layers use 3 × 3 kernel size and the Leaky ReLU func-
tion [17], which is used as the activation function. The Leaky ReLU function has
the advantage to solve the gradient saturation problem and improve convergence
speed. Unlike ReLU, in which the negative value is totally dropped, Leaky ReLU
assigns a relatively small positive gradient for negative inputs. We also apply the
2 × 2 max pooling to the 3rd and 6th layers, which selects the maximum value



DeepCapture 467

Fig. 5. Data augmentation process for spam images.

from the prior feature map. The use of max pooling reduces the dimension of fea-
ture parameters and can help extract key features from the feature map. We also
use regularization techniques to prevent the overfitting problem. We specifically
use both L2 regularization [18] and the dropout method [22] as regularization
techniques for DeepCapture.

After extracting features from the input image through the convolutional
layers, we use the XGBoost [6] classifier, which is a decision-tree-based ensemble
machine learning algorithm that uses a gradient boosting framework. XGBoost
builds a series of gradient boosted decision trees in a parallel manner and makes
the final decision using a majority vote over those decision trees. In many sit-
uations, a CNN model typically uses the fully connected layers. However, for
the image spam detection problem, we found that we can improve the detec-
tion accuracy if we replace the fully connected layers with a classifier such as
XGBoost. We use the random search [4] method for optimizing hyperparameters
used in the XGBoost classifier.

4 Evaluation

This section presents the performance evaluation results of DeepCapture (pre-
sented in Sect. 3) compared with state-of-the-art classification methods: SVM [1],
RSVM [1] and CNN-SVM [19].

4.1 Dataset

To evaluate the performance of image spam email detection models, we use
publicly available mixed datasets with two spam (“Personal spam” and “Spa-
mArchive spam”) and two ham (“Personal ham” and “Normal image ham”)
image datasets. Figure 6 shows examples of those datasets.

In the “Personal spam” dataset, spam images were collected from 10 email
accounts for one month, and ham images were collected from two email accounts
for two years. The “SpamArchive spam” dataset [7] was constructed with many
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(a) Personal spam (b) SpamArchive
spam

(c) Personal ham (d) Normal image
ham

Fig. 6. Examples of image datasets.

anonymous users. “Normal image ham” dataset [10] was collected from a photo-
sharing website called “Flickr” (https://www.flickr.com/) and 20 scanned doc-
uments. From those datasets, we removed unnecessary image samples such as
duplicated images, solid color background images, small and unknown images.
In particular, since the “SpamArchive spam” dataset contains a lot of dupli-
cated images such as the advertisement for a watch or corporate logo, we need
to remove such duplicated images. After eliminating image samples that cannot
be categorized as either normal ham or spam images, we were left with a dataset
of 8,313 samples for experiments. The details of the dataset are presented in
Table 1. In the final dataset, the number of spam images is 6,000, while the
number of ham images is 2,313. The ratio of ham to spam is around 1:3.

Table 1. Description of the datasets.

Category Corpus Total count

Spam Personal spam 786

SpamArchive spam 5,214

Total 6,000

Ham Personal ham 1,503

Normal image ham 810

Total 2,313

4.2 Experiment Setup

Our experiments were conducted using the Google Colab environment (https://
colab.research.google.com/). It supports a GPU Nvidia Tesla K80 with 13 GB of
memory and an Intel(R) Xeon(R) CPU at 2.30 GHz. We use Keras framework
with the scikit-learn library in Python 3 to implement DeepCapture.

For classification, we randomly divided 8,313 samples into a training set
(60%) and a testing set (40%) with similar class distributions.

https://www.flickr.com/
https://colab.research.google.com/
https://colab.research.google.com/
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To address the data imbalance issue and make the classifier more robust
against new and unseen image datasets, we use the data augmentation (DA)
techniques presented in Sect. 3.1 to create additional image samples. Finally, we
obtained 5,214 ham-like and 4,497 spam-like image samples with the images in
the training set through our data augmentation techniques. Those image samples
are used for training only.

4.3 Classification Results

To evaluate the performance of classifiers, we use the four following metrics:

– Accuracy (Acc.): the proportion of correctly classified images;
– Precision (Pre.): the proportion of images classified as spam that actually

are spam;
– Recall (Rec.): the proportion of spam images that were accurately classified;
– F1-score (F1.): the harmonic mean of precision and recall.

Because the dataset used in our experiments is imbalanced, accuracy is not
the best measure to evaluate the performance of classifiers. F1-score would be
a more effective measure since it considers both precision and recall measures.
Table 2 shows the performance of classifiers with/without data augmentation
techniques used for DeepCapture. DeepCapture produced the best results in
all metrics except precision (accuracy: 85%, precision: 91%, recall: 85%, F1-
score: 88%). The existing solutions (SVM [1] with DA, RSVM [1] with DA, and
CNN-SVM [19]) achieved high precision, but their recall was poor. Interestingly,
traditional machine learning-based solutions (SVM [1] and RSVM [1]) failed to
achieve a very low F1-score, less than 20%, without the training samples gener-
ated by the proposed data augmentation method. In contrast with those existing
techniques, deep learning-based solutions (DeepCapture and CNN-SVM [19]),
achieved an F1-score of 85% and 82%, respectively, without data augmentation.

Table 2. Performance of classifiers (DA represents “Data Augmentation”).

Model Acc. Pre. Rec. F1.

DeepCapture 85% 91% 85% 88%

DeepCapture without DA 81% 90% 81% 85%

SVM [1] 51% 50% 09% 15%

SVM [1] with DA 71% 96% 36% 52%

RSVM [1] 53% 52% 11% 18%

RSVM [1] with DA 73% 98% 42% 59%

CNN-SVM [19] 76% 99% 71% 82%

CNN-SVM [19] with DA 84% 90% 83% 86%
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We compare DeepCapture against existing solutions (SVM [1], RSVM [1] and
CNN-SVM [19]) with respect to the training and testing times. Training time
refers to the time taken to train a model with training samples. Testing time
refers to the time taken to perform classification with all testing samples. Table 3
shows the training and testing times of all classifiers. DeepCapture took 300.27
s for training and 5.79 s for testing. CNN-based solutions such as DeepCapture
and CNN-SVM outperformed SVM and RSVM with respect to the training time.
However, DeepCapture produced the worst result with respect to the training
time. We surmise that the testing time of XGBoost is relatively slower than
other classifiers such as SVM and RSVM because XGBoost is an ensemble of
multiple regression trees. For a single image, however, the average testing time
of DeepCapture was only 0.0017 s. Hence, we believe that the testing time of
DeepCapture would be practically acceptable.

Table 3. Training and testing times (sec.) of classifiers.

Model Training time Testing time

DeepCapture 300.27 5.79

SVM (Annadatha et al. [1]) 2000.00 0.01

RSVM (Annadatha et al. [1]) 2000.00 0.01

CNN-SVM (Shang et al. [19]) 320.24 0.03

To test the robustness of classifiers against new and unseen image spam
emails, we evaluate the performance of DeepCapture with cross data training.
For cross data training, we trained classifiers on ham and spam images collected
from one specific source, and evaluated the performance of classifiers against a
different unseen dataset.

For training, we used 6,024 samples collected from “SpamArchive spam” and
“Normal image ham” datasets, while for testing, we used 2,289 samples collected
from “Personal spam” and “Personal ham” datasets. To make classifiers more
robust against the unseen dataset, we additionally created 5,190 ham-like and
786 spam-like image samples with the images in the training set through our
data augmentation techniques. Those image samples are used for training only.
Table 4 shows the evaluation results for the first cross data training scenario.
DeepCapture achieved an F1-score of 72% and outperformed the other classifiers.
Surprisingly, F1-scores of all classifiers, including DeepCapture itself, are less
than 35% without the training samples created by data augmentation, indicating
that our data augmentation techniques are necessary to process unseen and
unexpected image samples.

As another cross data training scenario, we used 2,289 samples collected from
“Personal spam” and “Personal ham” datasets for training while we used 6,024
samples collected from “SpamArchive spam” and “Normal image ham” datasets
for testing. Again, to make classifiers more robust against the unseen dataset,
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Table 4. Performance of classifiers with a cross data training scenario (training dataset:
“SpamArchive spam” and “Normal image ham” datasets; and testing dataset: “Per-
sonal spam” and “Personal ham” datasets).

Model Acc. Pre. Rec. F1.

DeepCapture 71% 81% 71% 72%

DeepCapture without DA 36% 37% 34% 35%

SVM [1] 89% 14% 10% 12%

SVM [1] with DA 65% 45% 22% 29%

RSVM [1] 90% 12% 11% 13%

RSVM [1] with DA 69% 58% 27% 30%

CNN-SVM [19] 35% 35% 34% 35%

CNN-SVM [19] with DA 68% 73% 45% 55%

we additionally created 4,497 ham-like and 5,214 spam-like image samples with
the images in the training set through our data augmentation techniques. Those
image samples are used for training only. Table 5 shows the evaluation results for
the second cross data training scenario. DeepCapture and RSVM [1] with DA
achieved an F1-score of 76% and outperformed the other classifiers. F1-scores
of all classifiers, including DeepCapture, are less than 40% without the training
samples created by data augmentation.

We note that in the second cross data training scenario, RSVM [1] with DA
also produced the best classification results comparable with DeepCapture. We
surmise that underlying dataset differences may explain this. In the “Personal
spam” dataset, the ratio of spam to ham image samples is approximately 1.9:1
while in the “SpamArchive spam” dataset, the ratio of spam to ham image sam-
ples is approximately 6.4:1. These results demonstrate that the performance of
RSVM [1] with DA can significantly be affected by the class distribution of sam-
ples. In contrast, DeepCapture overall works well regardless of the imbalanced
class distribution of samples.

5 Related Work

To avoid spam analysis and detection, spammers introduced the image spam
technique to replace text spam messages with images. This strategy would be
an effective technique to circumvent the text analysis of emails, which are com-
monly used in spam filters [5]. To detect image spam emails, several classification
methods have been proposed [1,8,9,12,15,19]. However, the solutions offered
so far exhibit several critical weaknesses. Existing detection techniques can
be categorized into two approaches: (1) keyword-based analysis and (2) image
classification.
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Table 5. Performance of classifiers with a cross data training scenario (training dataset:
“Personal spam” and “Personal ham” datasets; and testing dataset: “SpamArchive
spam” and “Normal image ham” datasets).

Model Acc. Pre. Rec. F1.

DeepCapture 73% 82% 72% 76%

DeepCapture without DA 31% 47% 32% 38%

SVM [1] 74% 61% 14% 22%

SVM [1] with DA 60% 84% 52% 64%

RSVM [1] 82% 71% 22% 34%

RSVM [1] with DA 62% 94% 67% 76%

CNN-SVM [19] 24% 42% 23% 30%

CNN-SVM [19] with DA 64% 69% 47% 56%

5.1 Keyword-Based Analysis

Keyword-based analysis is to extract texts from a given image and analyze them
using a text-based spam filter. Several techniques [9,12,15] using keyword anal-
ysis were introduced. Also, this approach was deployed in real-world spam filters
such as SpamAssassin (https://spamassassin.apache.org/). Unsurprisingly, the
performance of this approach depends on the performance of optical charac-
ter recognition (OCR). Sophisticated spammers can intentionally embed abnor-
mal text characters into an image, which cannot be recognized by typical OCR
programs but can still be interpreted by human victims. The performance of
keyword-based spam detection methods could be degraded significantly against
such image spam emails. Moreover, a high processing cost of OCR is always
required for analyzing images. Therefore, in this paper, we propose an image
spam detection method in the direction of establishing an image classifier to
distinguish spam images from ham images.

5.2 Image Classification

To address the high processing cost issue of keyword-based analysis, some
researchers have tried to develop image spam detection methods using low-level
features that are directly extracted from images. Annadatha et al. [1] demon-
strated that image spam emails could be detected with high accuracy using either
Principal Component Analysis (PCA) or Support Vector Machines (SVM). To
build a classifier, they manually selected 21 features (e.g., image color, object
edges) that can be extracted from spam and ham images. Shang et al. [19]
proposed an alternative image classification method using a CNN model and
an SVM classifier together, which is composed of 13 layers. The CNN model
proceeds classification in the last fully connected layer. However, they use the
output from the last fully connected layer as the input for the SVM classifier.
In this paper, we develop a more compact CNN-XGBoost model consisting of

https://spamassassin.apache.org/
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8 layers. Our evaluation results show that DeepCapture outperforms Shang et
al.’s architecture in terms of detection accuracy. Fatichah et al. [8] also discussed
the possibility of CNN models to detect image spam. Unlike other previous stud-
ies, they focused on building CNN models to detect the image spam on Insta-
gram (https://www.instagram.com/), a social photo-sharing service. They evalu-
ated the performance of four pre-trained CNN models (3-layer, 5-layer, AlexNet,
and VGG16) with 8,000 images collected from Instagram. They found that the
VGG16 architecture achieves the best accuracy (about 0.84) compared with the
other models. Since VGG16 is a pre-trained network and its performance is not
advantageous, we do not directly compare DeepCapture with VGG16.

We note that the performances of previous methods have been evaluated on
different data sets with different configurations. Therefore, we cannot directly
compare their reported performances. In this paper, we needed to reimplement
their models and used the publicly available datasets to compare the performance
of DeepCature with those of the best existing models (SVM [1], RSVM [1] and
CNN-SVM [19]).

6 Conclusion

In this paper, we proposed a new image spam email detection tool called
DeepCapture. To overcome the performance degrade of existing models against
entirely new and unseen datasets, we developed a classifier using CNN-XGBoost
and data augmentation techniques tailored towards the image spam detection
task. To show the feasibility of DeepCapture, we evaluate its performance with
three publicly available datasets consisting of spam and non-spam image sam-
ples. The experimental results demonstrated that DeepCapture is capable of
achieving 88% F1-score, which has 6% improvement over the best existing spam
detection model, CNN-SVM [19], with an F1-score of 82%. Furthermore, Deep-
Capture outperforms other classifiers in cross data training scenarios to evaluate
the performance of classifiers with the new and unseen dataset.

For future work, we plan to develop more sophisticated data augmentation
methods to add a more real-like synthetic dataset effectively. In addition, we will
increase the size of the dataset and examine any changes in detection accuracy.
It would also be interesting to add the functionality of DeepCapture to an open-
source project such as SpamAssassin.
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Abstract. Firmware security is always a focus of IoT security in recent
years. The security of office automation device’s firmware also attracts
widespread attention. Previous work on attacking office automation
devices mainly focused on code flaws in firmware. However, we noticed
that to find these vulnerabilities and apply them in office automa-
tion devices requires rich experience and long-term research of specific
devices, which is a big cost. In this work, we designed an easy but efficient
attack, Rolling Attack, which rolls back firmware to perform attacks on
the office automation device, even if the firmware is up-to-date. By rolling
back firmware, attackers can use Rolling Attack to exploit vulnerabilities
that have been fixed by the latest firmware on office automation devices
covering personal computers, network printers, network projectors and
servers. We also proposed a system called Rolling Attack Pentest System
to test the device by Rolling Attack. By crawling the firmware on the
Internet, we have collected 99,120 models of devices’ firmware packages in
the past 2 years. We also collected firmware’s vulnerabilities. We verified
Rolling Attack on popular office automation devices covering 45 vendors,
including Lenovo, HP, Samsung, Canon, Brother, Sony, Dell and so on.
We performed Rolling Attack on 104 different office automation devices
covering 4 types (personal computer, network printer, network projec-
tor, server) with the collected historical versions of firmware. 50.00% of
the total models of devices we tested can be rolled back. 88.46% of the
devices that have been rolled back are vulnerable to public vulnerabili-
ties. We concluded that 44.23% of the devices we tested were affected by
the Rolling Attack. Finally, we give some suggestions on how to mitigate
Rolling Attack.
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1 Introduction

Office automation devices [27] refer to devices such as personal computers, net-
work printers, network projectors, servers, etc, which are used to create, collect,
store, manipulate, relay office information needed for completing basic tasks.
Firmware is an important part of office automation devices. In the previous
research, researchers mainly focused on exploiting firmware vulnerabilities to
attack office automation devices.

Previous Research on Security of Office Automation Devices. Cui et al.
[6] injected malicious firmware into the HP printer in 2013. Zaddach et al. [34]
discovered code flaws in the embedded systems’ firmwares through dynamic anal-
ysis in 2014. In 2017, FoxGlove Security [22] exploited a certain HP printer by
modifying solution packages. Müller et al. [17] focused on flows in network printer
protocols, thus discovered a series of vulnerabilities. In 2018, Check Point [20]
used a public vulnerability to exploit a certain HP printer, and then they dis-
covered multiple remote code execution vulnerabilities.

Existing Gaps. During our research we found that these methods have some
limitations.

– Vulnerability discovery on firmware of office automation devices requires
researchers with excellent reverse engineering skills and vulnerability anal-
ysis capabilities to spend a lot of time developing attack tools.

– The firmware of some devices is difficult to extract and analyze because many
firmware packages are encrypted.

– Attacks are poorly scalable and difficult to form a universal and effective tool
for that different vendors have different firmware specifications.

Considering the above limitations, we proposed a general method called Rolling
Attack to attack office automation devices. Rolling Attack mainly leverages the
weak check of firmware to attack devices. By downgrading the firmware version
to an older version, Rolling Attack uses some public vulnerabilities to exploit
the device. This method does not require special professional skills, nor does it
take too much time, so it could be easily used. This is a universal method for
office automation firmware attacks.
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For research, we selected 4 types of office automation devices, including per-
sonal computer, network printer, network projector and server. Here are the
reasons why we chose these four types of office automation devices:

– Personal computer. Personal computer is often used to create office infor-
mation in office environment. Attackers could obtain important information
directly from personal computers.

– Network printer. Network printer is a commonly used device in the office
environment, which is used for printing, scanning, and copying documents.
On May 3, 2020, 3,542,240 network printers were connected to the Inter-
net according to the statistics of zoomeye’s [35]. Many research groups have
revealed many printer vulnerabilities [17]. Attackers could obtain important
information on the network printer by leveraging these vulnerabilities.

– Network projector. In recent years, the network projector has played an
important role in office presentations. Attackers may steal meeting informa-
tion by a vulnerable network projector.

– Server. Server is commonly used for information sharing and business services
in office. Attackers may take full control of the vulnerable server by exploiting
server vulnerabilities.

As shown in the Table 1, we tested 104 different models of devices. Covering
4 types.

Table 1. Office automation devices we tested.

Device type Number of vendors Number of devices

Personal computer 5 15

Network printer 18 50

Network projector 15 25

Server 7 14

Our main contributions are as follows:

– We proposed Rolling Attack and tested it on a total of 104 models of devices.
Rolling Attack can leverage the flaw of firmware version checking mechanism
to attack office automation devices, even if the firmware has been updated.

– We implemented a Rolling Attack Pentest System. This system could auto-
matically perform Rolling Attack test on the target device.
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– We systematically evaluated the impact of Rolling Attack on four types of
devices by using the Rolling Attack Pentest System. 50.00% of the total
models we tested could be rolled back. 88.46% of models that had been rolled
back were vulnerable to public vulnerabilities after firmware rollback. 44.23%
of the models we tested were affected by Rolling Attack, which could lead to
elevation of privilege, denial of service, disclosure of information, remote code
execution, etc.

2 Foundations

We need to prepare the historical firmware before Rolling Attack. So we imple-
mented a system to download firmware automatically based on scrapy [21] and
selenium [18]. We spent 2 years to download all available versions of firmware of
99,120 models of devices. The details of obtaining firmware are as follows.

Personal Computer. The personal computer’s firmware is usually called BIOS
(Basic Input/Output System [32]) or UEFI (Unified Extensible Firmware Inter-
face [8]). BIOS/UEFI is a small piece of software used to set up the hardware and
boot the operating system at boot time. BIOS/UEFI firmware can be obtained
directly from vendors’ official websites.

Network Printer. Firmware of the network printer is usually provided by
vendors’ official websites. Müller et al. [16] collected websites for users to down-
load firmware. We also collected websites like firmware center [9] to download
firmware. However, some vendors’ official websites did not provide firmware.
For example, Brother’s official websites only provided an update program. After
analysis, we could use oh-brother [13] to obtain old version firmware.

Network Projector. Acquisition of the network projector’s firmware is similar
to that of the network printer. Firmware of the network projector could be down-
loaded directly from the vendors’ official websites. Besides, firmware center [9]
also provided firmware of network projectors.

Server. BMC (Baseboard Management Controller [30]) firmware is usually
used in the server. Common functions of BMC firmware are powering off the
server, restarting the fan, monitoring fan speed and so on. The acquisition of
BMC firmware is similar to the personal computer’s firmware acquisition. BMC
firmware could be obtained from the vendor’s official website. Périgaud [19] also
listed some websites for downloading BMC firmware.

3 Rolling Attack

This section details Rolling Attack. Rolling Attack is divided into two steps.
First, we roll back the firmware. Second, we exploit public vulnerabilities on the
device. We explain the details of this attack in this section.
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3.1 Personal Computer

Compared to spending a lot of time finding vulnerabilities like SMM (System
Management Mode [10]) callback attacks [7,15] in BIOS/UEFI, our Rolling
Attack is easier.

Rolling Back Vectors. Rolling back vector indicates the path or means by
which the attacker downgrades the target device. There are three vectors to roll
back firmware in personal computers.

– Network rolling back vector through automatic update service. Attackers need
to replace the firmware of the target device during the automatic update
process.

– Local rolling back vector through manual update service. Attackers could
download the firmware to the target device’s operating system and run update
program to downgrade BIOS/UEFI firmware.

– Physical rolling back vector through USB. Attackers could downgrade the
BIOS/UEFI firmware using a USB flash drive.

Roll Back Firmware. The version checking mechanism of BIOS/UEFI
firmware version is divided into three categories:

– Without version checking mechanism. Many personal computers do not have
version checking mechanism during the BIOS/UEFI firmware update process.
Taking the ThinkPad L440 as an example, we could roll back to specific
version of BIOS/UEFI firmware by running the specific version of firmware
update program.

– Weak version checking mechanism. The version checking mechanism is not
in the BIOS/UEFI firmware, but in the firmware update program. We could
easily bypass it. Take Lenovo L470 as an example, the update program will
detect the current firmware version. If the firmware version to be updated
is lower than the current firmware version, the update will be stopped. We
bypassed this check by patching the logic of the firmware update program.

– Strong version checking mechanism. The version checking mechanism is in
the BIOS/UEFI firmware. Take the MSI B450 motherboard as an example.
Downgrading it directly would fail. However, after some analysis, we found
that there is a problem with the version check in the BIOS/UEFI firmware,
which is similar to the bypass method mentioned in [4]. Finally, it could be
bypassed by modifying the firmware.

Partial results of rolling back BIOS/UEFI firmware are shown in Table 2. The
detailed results are shown in Table 7 in AppendixA. All vendors of personal com-
puters we tested could be downgraded. It could be found that the BIOS/UEFI
could be downgraded successfully on all personal computers we tested. The pos-
sible reason is that the firmware update of the personal computer may bring
instability. For stability, the vendor may allows the personal computer to be
downgraded.
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Table 2. Partial results of rolling back firmware test on personal computers.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

Lenovo ThinkPad E431 1.16 1.12 1.33
√ √

ASUS 453UJ 308 305 308
√ √

HP TowerWorkstation Z240 01.78 01.63 01.78
√ √

MSI B450 7C02v18 7C02v10 7C02v1D
√ √

aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.

Exploit Public Vulnerabilities. We tested 64 public vulnerabilities of
BIOS/UEFI. For example, according to Lenovo’s vulnerability report, ThinkPad
L470 contains multiple vulnerabilities [12]. These vulnerabilities could allow an
attacker to achieve elevation of privilege [3] on the ThinkPad L470. We could
successfully exploit the computer. The attack result is shown in the Fig. 1.

Fig. 1. Lenovo L470 was exploited after the firmware was rolled back successfully.

Vulnerabilities test results are shown in Table 10 in AppendixA. Since most
publicly disclosed authentication bypass attacks are not targeted at the models
we tested, the number of successful attacks is 1. Elevation of privilege attacks and
disclosure of information attacks are more effective, because most vulnerabilities
we tested in the BIOS/UEFI were belong to these types.
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3.2 Network Printer

Rolling Back Vectors. There are 4 vectors to roll back firmware in network
printers.

– Network rolling back vector through automatic update service. Attackers
could replace the firmware of target device during the automatic update
process.

– Network rolling back vector through BOOTP [31]/TFTP update service.
Attackers could update firmware by uploading firmware to BOOTP/TFTP
update service.

– Network rolling back vector through port 9100. Vendors’ firmware update
programs usually update printer through port 9100. Attackers could roll back
firmware by sending firmware to port 9100 directly.

– Network rolling back vector through FTP service. Attackers may forge an ftp
server to provide older firmware to the network printer.

– Physical rolling back vector through the USB. Attackers could downgrade the
firmware through a USB flash drive.

Fig. 2. Version check in a network printer firmware update program.

Roll Back Firmware. Most network printers’ firmware can be updated
through a firmware update program on client computer. The firmware update
program would first detect whether there is a printer of the corresponding model
in the local area network, and then check that whether the firmware version is
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Table 3. Partial results of rolling back firmware test on network printers.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

HP OfficeJet Pro 8210 1937C 1709A 1937C
√ √

Canon LBP 252dw 1.16 1.16 5.01 ×
√

Konica Minolta PagePro 1550DN 3.17 – – × ×
Brother DCP 7180DN 3.17 3.13 –

√
×

Epson L551 C463A GM01I7 GM00I6 –
√

×
Panasonic KX MB2128CN – – – × ×
OKI B840 1.2 – – × ×
Lenovo M7605D 1827C – – × ×
Ricoh PJ X5300 1.42 1.41 –

√
×

Sharp SF S201N 1.03 – – × ×
TOSHIBA e-STUDIO2309A 1.3 – – × ×
ICSP YPS 4022NH 2.32 – – × ×
AURORA AD330PDN 2.11 – – × ×
Pantum CP 2500DN F.22 F.10 –

√
×

Rev.A Rev.A

Fuji Xerox DocuPrint M158 ab 2.1 – – × ×
Kyocera FS C5150DN 1.1 – – × ×
aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.

significantly higher than the target printer’s firmware version. Figure 2 shows
version checking mechanism of a update program. However, we could bypass
this check by patching the firmware update program.

Partial results of rolling back firmware test are shown in Table 3. 10 of the
18 vendors of network printers can be rolled back. Other printers could not be
rolled back, because we couldn’t obtain their older firmware. The detailed results
are shown in Table 6 in AppendixA.

Exploit Public Vulnerabilities. We collected 115 vulnerabilities to attack
network printers.

Vulnerabilities test results are shown in Table 11 in AppendixA. Elevation
of privilege attacks, disclosure of information attacks, denial of service attacks
and remote code execution attacks have a higher success rate in attack, because
most of the vulnerabilities we collected belong to these four types.

3.3 Network Projector

Rolling Back Vectors. Attackers could leverage the following attack vectors
to roll back the firmware of the network projector.

– Network rolling vector through web management interface. Attackers could
roll back the firmware on the web management interface.

– Network rolling vector through upgrading port. Attackers could roll back the
firmware by leveraging the upgrading port.

– Physical rolling vector through the USB. Attackers could roll back the
firmware through a USB flash drive.
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Roll Back Firmware. In our test, network projectors did not implement ver-
sion checking mechanism. Attackers could roll back the device by uploading the
older firmware to the upgrading port.

Partial results of rolling back firmware test are shown in Table 4. The detailed
results are shown in Table 8 in AppendixA. Many vendors’ network projectors
could not be downgraded because we couldn’t collect their firmware. Only a few
vendors provide older versions of firmware.

Table 4. Partial results of rolling back firmware test on network projectors.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

Sony VPL EW575 1.0 – – × ×

LG PH550G 03.00.08 02.10.01 03.00.08
√ √

ViewSonic DLP PJD6550LW 2.1 – – × ×

InFocus IN3134a 1.4 – – × ×

Casio XJ FC330XN 1.2 – – × ×

Epson CB X27 1.03 – – × ×

Canon LV 8320 2.1 – – × ×

HITACHI HCP D767X 1.0 – – × ×

Optoma DLP X316ST 1.1 – – × ×

ASUS P3B 21.1 – – × ×

NEC NP M403X 22.301 – – × ×

Sharp XG MX465A 1.61.2 – – × ×

Acer H6517ST 4.2 – – × ×

Ricoh PJ HD5900 1.005.1 – – × ×
aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.

Exploit Public Vulnerabilities. We collected four CVEs in total to test target
devices.

Vulnerabilities test results are shown in Table 12 in AppendixA. Network
projectors we tested were not affected by vulnerabilities because these projectors’
vulnerabilities had not been disclosed for the time being. Rolling attack had no
effect on devices that had no public vulnerabilities.

3.4 Server

Rolling Back Vectors. Attackers could leverage the following attack vectors
to roll back the firmware of the server.

– Network rolling back vector through web management interface. The server
usually offers a web management interface for administrators to manage the
server. We found some servers offered option to roll back older firmware in
web management interface. An attacker could downgrade the device after
logging in through the web management interface.
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– Physical rolling back vector through the serial console port. Serial console
port [25] is used to update firmware in most servers. Attackers could down-
grade BMC firmware through the serial console port.

Roll Back Firmware. Many servers implemented weak rollback prevention.

Table 5. Partial results of rolling back firmware test on servers.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

HPE ML150 Gen9 E5-2609v4 2.56 2.00 2.76
√ √

Dell PowerEdge R420 2.60.60.60 1.57.57 2.63.60.62
√ √

Lenovo ThinkServer RD450 v4.93.0 v2.19.0 v4.93.0
√ √

Inspur NF5280M4 4.22.0 4.19.0 4.25.9
√ √

Cisco UCS C240 M4 Rack Server 4.1 2.0 4.1
√ √

Huawei RH2288H V3 C527 C202 C712
√ √

aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.

Partial results of rolling back firmware test on servers are shown in Table 5.
The detailed results are shown in Table 9 in AppendixA. Many vendors’ servers
could be rolled back from the factory version or the latest version to the oldest
version. Because the older firmware of servers we tested were not removed, and
they implemented poor version checking mechanism.

Exploit Public Vulnerabilities. We tested 41 vulnerabilities like CVE-2018-
1207 [23] after rolling back the firmware.

Vulnerabilities test results are shown in Table 13 in AppendixA. Elevation
of privilege attacks and denial of service attacks were most successful in server
attacks, because most of the vulnerabilities we collected belong to these two
types of vulnerabilities. Besides, remote code execution attacks, disclosure of
information attacks and authentication bypass attacks have also been success-
fully on several servers. So Rolling Attack could play an important role in the
actual attack on servers.

4 Rolling Attack Pentest System

This section describes the framework of Rolling Attack Pentest System and how
it works. Framework of Rolling Attack Pentest System is shown as Fig. 3.

The work flow of the system is detailed as follows.

1) Information Collector collects information of the target device and identifies
the target’s firmware version.

2) Firmware Downloader downloads older versions of firmware from the
Firmware Museum according to information collected from Information Col-
lector.
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Fig. 3. Framework of Rolling Attack Pentest System.

3) Rolling Back Vector Selector selects all possible vectors to roll back firmware.
4) Rolling Back Tester rolls back firmware through vectors selected from Rolling

Back Vector Selector.
5) Vulnerability Tester selects vulnerabilities from the Vulnerability Database

based on the results of the Rolling Back Vector Selector. Then Vulnerability
Tester test these vulnerabilities.

The user only needs to input the target device’s ip or local serial port, and then
the system automatically executes the work flow.

The detailed information of each component in the system is as follows:

Information Collector. Information Collector collects various information of
the target device. A common method to obtain device information is to use tools
like nmap [14] to scan the target device. However, the information obtained by
network scanning may not contain firmware version information. In order to
solve this problem, we have implemented a tool to obtain firmware version infor-
mation of different types of devices. For network printers and network projector
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devices, the tool would access its web service. For personal computer devices
and servers, the tool would gain firmware version information from interfaces
like BMC management interface.

Firmware Museum. Firmware Museum stores firmware packages. We devel-
oped several tools based on scrapy [21] and selenium [18] to collect firmware
from multiple vendors. The recorded information includes but is not limited to
firmware version, download date, model, series, update date, size, local path of
firmware packages and other information. In the past two years, the Firmware
Museum has stored more than 200,000 different versions of firmware packages
for 99,120 models of device models.

Firmware Downloader. Firmware Downloader pulls firmware packages from
Firmware Museum. The format of the downloaded firmware package is complex.
Methods to extract firmware packages are different. So we implemented a tool
based on several tools including binwalk [11], unzip, unpacker, which is used to
extract real firmware.

Rolling Back Vector Selector. Rolling Back Vector Selector choose the rolling
back vector based on the target device’s type, vendor, series and model, which
has been discussed in Sect. 3.1, Sect. 3.2, Sect. 3.3 and Sect. 3.4.

Rolling Back Tester. Rolling Back Tester sends rolling back payload (payload
that can roll back firmware) to devices through rolling back vector.

Vulnerability Tester. Vulnerability Tester exploits different vulnerabilities
from Vulnerability Database.

Vulnerability Database. Vulnerability Database saves all vulnerabilities we
collected.

5 Evaluation

After rolling back test, the number of devices that can eventually be downgraded
is shown in Fig. 4.

Fig. 4. Number of devices whose firmware can be rolled back.
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50.00% of the total 104 devices could be rolled back.
Almost all personal computers and servers we tested could be rolled back.

One reason is that vendors usually provide historical firmware downloads of
personal computers and servers. Another reason is that vendors allow users to
downgrade for stability.

Nearly half of the network printers we tested could be rolled back, because
older firmware for some network printers we tested could not be obtained. So
rolling back on network printers we tested was not as effective as personal com-
puters and servers.

Many network projectors we tested could not be rolled back. The reason is
that vendors rarely update firmware for network projectors we tested, many of
them only had one firmware version.

Based on the rolling back results, we conducted vulnerability tests.
Figure 5 shows that devices were vulnerable to few vulnerabilities before

rolling back the firmware.
As shown in Fig. 6, devices suffered more vulnerabilities than before after the

firmware is rolled back.
After rolling back the firmware, more devices were affected by vulnerabilities.

Among them, the number of vulnerabilities in personal computers and network

Fig. 5. Vulnerabilities before rolling back.

Fig. 6. Vulnerabilities after rolling back.
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printers had increased relatively more, because they frequently update firmware
to fix vulnerabilities.

Personal computers and servers we tested were most vulnerable to escalation
of privilege attacks. Therefore, rolling back firmware may greatly increase the
possibility of attackers gaining access to privileges of these personal computers
and servers for which they were not entitled. Network printers we tested were
most vulnerable to denial of service attacks. Therefore, rolling back firmware
may greatly increase the possibility of attackers blocking access to some net-
work printers we tested. No device was affected by the information tampering
attack, because we did not find the firmware affected by this attack. In addition,
personal computers suffered the most from information leakage attacks after the
rolling back firmware. Network projectors we tested were not vulnerable to vul-
nerabilities we collected, because no vulnerabilities had been publicly disclosed
in the projectors we tested. For devices that were not affected by vulnerabilities
before rolling back, rolling back may not affect the number of vulnerabilities
on the device. Network projectors were not affected by remote code execution
during Rolling Attack because we couldn’t find this type of network projectors’
public vulnerabilities.

The number of three types of vulnerabilities including escalation of privi-
lege, denial of service and disclosure of information increased after downgrading
because most of the firmware we rolled back were affected by these types of
public vulnerabilities.

We also compared the ability to exploit vulnerabilities between before and
after Rolling Attack, the result is shown in Fig. 7. It is obvious that after these
devices were downgraded, they were affected by more vulnerabilities than before.
Rolling Attack could make it easy to carry out attacks that cannot be executed
previously, such as obtaining leaked information or executing code on the target
device. 88.46% of models of device that had been rolled back were vulnerable
to public vulnerabilities.

Fig. 7. Percentage of vulnerabilities that can be applied to devices before and after
Rolling Attack.
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In summary, 44.23% of the devices we tested were affected by the Rolling
Attack. More detailed results are shown in Table 10, Table 11, Table 12 and
Table 13 in AppendixA.

6 Related Work

We did some research on studies with similar ideas, which mentioned methods
by downgrading the software or firmware. Their ideas were similar to Rolling
Attack.

Software. Downgrade attack was used in TLS (Transport Layer Security [33])
attack [24,26]. Recently, this method has been applied to attack in conventional
softwares. We found that some APTs (Advanced Persistent Threat [29]) lever-
aged some methods similar to our Rolling Attack to bypass AVs (Antivirus
Software [28]). They installed vulnerable and old signed Windows drivers [1] to
bypass some protections against Windows 10 system.

Firmware. Chen et al. [5] downgraded the trustlet (TA) and TrustZone (a
system-wide security method suitable for a large number of applications [2]) OS.
After that, they exploited device with previous privilege escalation vulnerability.
This method is useful for devices with TrustZone enabled.

7 Discussion

In this section we discussed limitations of Rolling Attack and measures to miti-
gate Rolling Attack.

Here are limitations of Rolling Attack.

– Rolling Attack is less effective on devices with fewer vulnerabilities, such as
network projectors, because Rolling Attack rely on historical vulnerabilities.

– Rolling Attack cannot be performed on devices that we can’t get historical
firmware.

– Device user may be aware of the process of Rolling Attack. In the Rolling
Attack process, it is generally necessary to restart the device or related ser-
vices, which may be noticed by the user.

– Performing Rolling Attack on some devices requires physical access.

Here are ways to mitigate Rolling Attack.

– Forbid downgrading firmware and make sure that the version checking mech-
anism is implemented correctly in firmware.

– Force the device to update to the latest version automatically.
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8 Conclusion

In this paper, we proposed Rolling Attack to attack office automation devices.
Using Rolling Attack, attacker could easily leverage public vulnerabilities to
attack various office automation devices after rolling back the firmware. Rolling
Attack could carry out attacks including authentication bypass, elevation of
privilege, denial of service, disclosure of information or remote code execution
on office automation devices. For four types of devices we tested, Rolling Attack
could be carried out without physical access. We also provided a system called
Rolling Attack Pentest System to automate the process of Rolling Attack. Using
the system, we tested Rolling Attack on 104 different models of devices in four
types. As can be seen from the results, it worked well on four types of devices.
Devices that whose firmware can be rolled back account for 50.00% of the total
devices. 88.46% of devices that have been rolled back are vulnerable to public
vulnerabilities. In summary, 44.23% of the devices we tested were affected by
the Rolling Attack.

Appendix A Detailed Test Results of Rolling Attack

Table 6. Detailed results of rolling back firmware test on network printers.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

HP OfficeJet Pro 8210 1937C 1709A 1937C
√ √

HP OfficeJet Pro 8710 1828A 1716A 1937A
√ √

HP PageWide Pro 477dw 1937D 1603A 1937D
√ √

HP LaserJet MFP M277dw 20181003 20171003 20191203
√ √

HP LaserJet MFP M226dw 20180718 20161101 20190716
√ √

HP LaserJet Pro M1536dnf 20140630 – – × ×

HP LaserJet MFP M436n V3.82.01.20 – – × ×

Samsung CLP 680ND V4.00.02.32 V3.00.17 V4.00.02
√ √

Samsung Laser Multifunction SCX-4650 3.17 3.13 3.23
√ √

Samsung Xpress SL-M2676 V3.07.01.37 – – × ×

Samsung SCX 4821HN – – – × ×

Samsung ML 3710ND – – – × ×

Canon Pixma TS9020 – – – × ×

Canon TS3180 1.100 – – × ×

Canon LBP 252dw 1.16 1.16 5.01 ×
√

Canon MF621Cn – – – × ×

Canon 2520i – – – × ×

Canon MF620C V03.05 1.15 V03.05
√ √

Konica Minolta PagePro 1550DN 3.17 – – × ×

Konica Minolta PagePro 1390MF F.31 F.10 F.31
√ √

Brother DCP 7180DN 3.17 3.13 –
√

×

Brother HL 3150CDN 302 311 –
√

×

Brother MFC 9140CDN 1.10 – – × ×

Brother MFC J6910DW 1.15 – – × ×

Epson WF 3011 F.10 – – × ×

Epson L551 C463A GM01I7 GM00I6 –
√

×

Panasonic KX MB2128CN – – – × ×

Panasonic PT UX315C 1.15 – – × ×

Panasonic DP-MB536CN – – – × ×
(continued)
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Table 6. (continued)

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

OKI B840 1.2 – – × ×

OKI C711 1.2 – – × ×

Lenovo M7605D 1827C – – × ×

Lenovo M7615DHA 1827D 1652D 1827D
√ √

Lenovo M7675DXF 1827D 1652D 1827D
√ √

Lenovo iB4180 1.2 – – × ×

Ricoh SP 212SFNw Ver.1.05 – – × ×

Ricoh PJ X5300 1.42 1.41 –
√

×

Sharp SF S201N 1.03 – – × ×

TOSHIBA e-STUDIO2309A 1.3 – – × ×

ICSP YPS 4022NH 2.32 – – × ×

AURORA AD330PDN 2.11 – – × ×

Lexmark MX511de LW74.SB4.P268 LW74.SB4.P230 –
√

×

Pantum P2206NW 20180302 – – × ×

Pantum CP 2500DN F.22 Rev.A F.10 Rev.A –
√

×

Fuji Xerox DocuPrint CM228 fw 1.03 – – × ×

Fuji Xerox DocuPrint M158 ab 2.1 – – × ×

Fuji Xerox DocuCentre S2110 2018011405 2017005206 2018011405
√ √

Fuji Xerox Phaser 3435DN 3.01 – – × ×

Fuji Xerox VersaLink C7020 57.50.61 – – × ×

Kyocera FS C5150DN 1.1 – – × ×
aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.

Table 7. Detailed results of rolling back firmware test on personal computers.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

Lenovo ThinkPad E431 1.16 1.12 1.33
√ √

Lenovo ThinkPad L470 1.68 1.50 1.70
√ √

Lenovo ThinkPad T420 1.51 1.15 1.52
√ √

Lenovo ThinkPad L440 1.81 1.07 1.93
√ √

Lenovo ThinkPad T400 3.22 3.15 3.23
√ √

Lenovo ThinkPad X280 1.36 1.08 1.38
√ √

Lenovo V310 14IKB 2WCN35WW 2WCN35WW 2WCN45WW
√ √

ASUS 453UJ 308 305 308
√ √

HP Zhan 86 Pro G2 F.40 Rev.A F.10 Rev.A F.40 Rev.A
√ √

HP TowerWorkstation Z240 01.78 01.63 01.78
√ √

MSI B450 7C02v18 7C02v10 7C02v1D
√ √

GIGABYTE G1.Sniper B7 F20 F1 F22f
√ √

GIGABYTE GA-Gaming B8 F7 F4 F8d
√ √

GIGABYTE B365 HD3 F3 F1 F4c
√ √

GIGABYTE B365M POWER F3 F1 F5A
√ √

aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.
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Table 8. Detailed results of rolling back firmware test on network projectors.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

Sony VPL EW575 1.0 – – × ×

Sony VPL SX226 V2.42 V2.31 v2.42
√ √

Sony VPL SW235 2.33 – – × ×

Sony VPL DX147 2.41 2.03 2.41
√ √

Sony VPL CX239 1.0 – – × ×

Sony VPL EX226 1.0 – – × ×

LG PF1500G 04.00.18 03.01.28 04.00.18
√ √

LG PH550G 03.00.08 02.10.01 03.00.08
√ √

ViewSonic DLP PJD6550LW 2.1 – – × ×

InFocus IN3134a 1.4 – – × ×

Casio XJ FC330XN 1.2 – – × ×

Epson CB X27 1.03 – – × ×

Epson EB C745WN 1.22 – – × ×

Canon LV X320 23.11 – – × ×

Canon LV 8320 2.1 – – × ×

HITACHI HCP D767X 1.0 – – × ×

HITACHI HCP FW50 1.01 – – × ×

HITACHI HCP A837 1.1 – – × ×

Optoma DLP X316ST 1.1 – – × ×

ASUS P3B 21.1 – – × ×

NEC NP M403X 22.301 – – × ×

Sharp XG MX465A 1.61.2 – – × ×

Acer H6517ST 4.2 – – × ×

Ricoh PJ HD5900 1.005.1 – – × ×

Panasonic PT P3B 22.012.033 – – × ×
aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.
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Table 9. Detailed results of rolling back firmware test on servers.

Vendor Model Factory version Oldest version Latest version C2Va L2Vb

HPE ML150 Gen9 E5-2609v4 2.56 2.00 2.76
√ √

Dell PowerEdge R420 2.60.60.60 1.57.57 2.63.60.62
√ √

Dell PowerEdge R430 2.60.60.60 2.10.10.10 2.70.70.70
√ √

Dell PowerEdge T630 2.52.52.52 2.01.00.01 2.70.70.70
√ √

Dell PowerEdge R730 2.60.60.60 2.01.00.01 2.70.70.70
√ √

Dell PowerEdge R630 2.52.52.52 2.01.00.01 2.70.70.70
√ √

Lenovo ThinkServer RD450 v4.93.0 v2.19.0 v4.93.0
√ √

Lenovo TowerServer TD350 v4.93.0 v3.19.0 v4.93.0
√ √

Lenovo System x3650 M5 2.61 2.51 2.61
√ √

Sugon I620 G20 18.100.00.00 17.100.00.00 18.100.00.00
√ √

Sugon A620r-G 18.100.00.00 17.100.00.00 18.100.00.00
√ √

Inspur NF5280M4 4.22.0 4.19.0 4.25.9
√ √

Cisco UCS C240 M4 Rack Server 4.1 2.0 4.1
√ √

Huawei RH2288H V3 C527 C202 C712
√ √

aRoll back from the factory version to the oldest version.
bRoll back from the latest version to the oldest version.

Table 10. Vulnerability test results of personal computers after rolling back the
firmware.

CVE-ID Authentication

bypass

Elevation of

privilege

Denial of

service

Disclosure of

information

Remote code

execution

Attack

result

CVE-2002-2059 ◦ ×

CVE-2005-0963 ◦ ×

CVE-2005-4175 ◦ ◦ ×

CVE-2005-4176 ◦ ◦ ×

CVE-2008-0211 ◦ ×

CVE-2008-0706 ◦ ◦ ×

CVE-2008-3894 ◦ ◦ ×

CVE-2008-3900 ◦ ×

CVE-2008-3902 ◦ ×

CVE-2008-7096 ◦ ×

CVE-2010-0560 ◦ ×

CVE-2012-5218 ◦ ×

CVE-2013-3582 ◦ ×

CVE-2015-2890 ◦ ×

CVE-2015-3692 ◦ ×

CVE-2016-2243 ◦ ×

CVE-2016-8224 ◦ ◦ ×

CVE-2016-8222 ◦ ×

CVE-2017-2751 ◦ ×

CVE-2017-3197 ◦ ×

CVE-2017-3198 ◦ ×

CVE-2017-3753 ◦ ×
(continued)
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Table 10. (continued)

CVE-ID Authentication

bypass

Elevation of

privilege

Denial of

service

Disclosure of

information

Remote code

execution

Attack

result

CVE-2017-3754 ◦ ×

CVE-2017-5700 ◦ ×

CVE-2017-5686 ◦ ×

CVE-2017-5704 ◦ ×

CVE-2017-5715 • √

CVE-2017-5721 ◦ ×

CVE-2017-5722 ◦ ×

CVE-2017-5701 ◦ ×

CVE-2017-8083 ◦ ×

CVE-2017-9457 ◦ ×

CVE-2017-5689 • • √

CVE-2018-3652 • √

CVE-2018-12201 • √

CVE-2018-3627 • • √

CVE-2018-12169 • • √

CVE-2018-12126 • √

CVE-2018-12127 • √

CVE-2018-12130 • √

CVE-2019-11091 • √

CVE-2018-9062 • • √

CVE-2018-9069 • √

CVE-2019-6156 • √

CVE-2019-6171 ◦ ×

CVE-2019-6188 • √

CVE-2019-0117 • √

CVE-2019-0123 • √

CVE-2019-0124 • √

CVE-2019-0151 • √

CVE-2019-0152 • √

CVE-2019-0184 • √

CVE-2019-0154 • √

CVE-2019-0185 • √

CVE-2019-6170 • • • √

CVE-2019-14607 ◦ ×

CVE-2019-6172 • • • √

CVE-2019-11135 • √

CVE-2019-11136 • • • √

CVE-2019-11139 • √

CVE-2019-11137 • • • √

CVE-2019-16284 • √

CVE-2019-11108 • √

CVE-2019-11097 ◦ ×
•: The attack succeeded. ◦: The attack failed.
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Table 11. Vulnerability test results of printers after rolling back the firmware.

CVE-ID Authentication

bypass

Elevation of

privilege

Denial of

service

Disclosure of

information

Remote code

execution

XSS Information

tampering

Attack

result

CVE-1999-1061 ◦ ×

CVE-1999-1062 ◦ ×

CVE-1999-1563 ◦ ×

CVE-2000-1062 ◦ ×

CVE-2000-1063 ◦ ×

CVE-2000-1064 ◦ ×

CVE-2000-1065 ◦ ×

CVE-2001-0044 ◦ ×

CVE-2001-0484 ◦ ×

CVE-2001-1134 ◦ ◦ ×

CVE-2002-1048 ◦ ×

CVE-2002-1055 ◦ ×

CVE-2002-2373 ◦ ×

CVE-2003-0257 ◦ ×

CVE-2003-0697 ◦ ◦ ×

CVE-2004-2166 ◦ ×

CVE-2004-2439 ◦ ×

CVE-2005-2988 ◦ ×

CVE-2006-0577 ◦ ×

CVE-2006-0788 ◦ ×

CVE-2006-6742 ◦ ×

CVE-2007-4236 ◦ ×

CVE-2007-5764 ◦ ×

CVE-2008-0374 ◦ ×

CVE-2008-2743 ◦ ×

CVE-2008-5385 ◦ ×

CVE-2009-1333 ◦ ×

CVE-2009-2684 ◦ ×

CVE-2010-0101 ◦ ×

CVE-2011-1531 ◦ ×

CVE-2011-1532 ◦ ×

CVE-2011-1533 ◦ ×

CVE-2012-4964 ◦ ×

CVE-2011-4161 ◦ ×

CVE-2012-2017 ◦ ×

CVE-2013-2507 ◦ ×

CVE-2013-2670 ◦ ×

CVE-2013-2671 ◦ ×

CVE-2013-4615 ◦ ×

CVE-2013-4845 ◦ ×

CVE-2013-6032 ◦ ×

CVE-2013-6033 ◦ ×

(continued)
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Table 11. (continued)

CVE-ID Authentication

bypass

Elevation of

privilege

Denial of

service

Disclosure of

information

Remote code

execution

XSSInformation

tampering

Attack

result

CVE-2013-6193 ◦ ×

CVE-2014-0160 • √

CVE-2015-1056 ◦ ×

CVE-2015-5729 ◦ ×

CVE-2016-1896 ◦ ×

CVE-2016-1503 • √

CVE-2016-2244 ◦ ×

CVE-2016-3145 ◦ ×

CVE-2017-2741 • • √

CVE-2017-2747 ◦ ◦ ×

CVE-2018-0688 ◦ ×

CVE-2018-14899 ◦ ×

CVE-2018-14900 ◦ ×

CVE-2018-14903 ◦ ×

CVE-2018-15748 ◦ ×

CVE-2018-17001 ◦ ×

CVE-2018-17309 ◦ ×

CVE-2018-17310 ◦ ×

CVE-2018-17311 ◦ ×

CVE-2018-17312 ◦ ×

CVE-2018-17313 ◦ ×

CVE-2018-17314 ◦ ×

CVE-2018-17315 ◦ ×

CVE-2018-17316 ◦ ×

CVE-2018-19248 ◦ ×

CVE-2018-5924 • • √

CVE-2018-5925 • • √

CVE-2019-6324 ◦ ◦ ×

CVE-2019-6335 ◦ ×

CVE-2019-10057 • • √

CVE-2019-10058 • √

CVE-2019-10059 • √

CVE-2019-10627 • √

CVE-2019-10960 ◦ ◦ ×

CVE-2019-13165 • √

CVE-2019-13166 ◦ ×

CVE-2019-13167 ◦ ×

CVE-2019-13168 ◦ ×

CVE-2019-13169 ◦ ×

CVE-2019-13170 ◦ ×

CVE-2019-13171 ◦ ×
(continued)
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Table 11. (continued)

CVE-ID Authentication

bypass

Elevation of

privilege

Denial of

service

Disclosure of

information

Remote code

execution

XSSInformation

tampering

Attack

result

CVE-2019-13172 ◦ ×

CVE-2019-13192 ◦ ◦ ×

CVE-2019-13193 ◦ ◦ ×

CVE-2019-13194 ◦ ◦ ×

CVE-2019-13195 ◦ ◦ ◦ ×

CVE-2019-13196 ◦ ×

CVE-2019-13197 ◦ ×

CVE-2019-13198 ◦ ×

CVE-2019-13199 ◦ ×

CVE-2019-13200 • √

CVE-2019-13201 • • √

CVE-2019-13202 • √

CVE-2019-13203 • √

CVE-2019-13204 • √

CVE-2019-13205 • √

CVE-2019-13206 • • √

CVE-2019-14300 ◦ ◦ ×

CVE-2019-14305 • √

CVE-2019-14307 ◦ ◦ ×

CVE-2019-14308 ◦ ×

CVE-2019-16240 • • √

CVE-2019-17184 • √

CVE-2019-6323 ◦ ×

CVE-2019-6326 ◦ ×

CVE-2019-6327 ◦ ×

CVE-2019-6337 • √

CVE-2019-9930 • • √

CVE-2019-9931 • √

CVE-2019-9932 • √

CVE-2019-9933 • • √

CVE-2019-9934 • √

CVE-2019-9935 • √

•: The attack succeeded. ◦: The attack failed.

Table 12. Vulnerability test results of network projectors after rolling back the
firmware.

CVE-ID Authentication bypass Disclosure of information Elevation of privilege Attack result

CVE-2014-8383 ◦ ×

CVE-2014-8384 ◦ ×

CVE-2017-12860 ◦ ×

CVE-2017-12861 ◦ ×
•: The attack succeeded. ◦: The attack failed.
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Table 13. Vulnerability test results of servers after rolling back the firmware.

CVE-ID Authentication

bypass

Elevation of

privilege

Denial of

service

Disclosure of

information

Remote code

execution

XSS Attack

result

CVE-2007-0661 ◦ ×

CVE-2009-0345 ◦ ◦ ×

CVE-2010-5107 • √

CVE-2012-4096 ◦ ◦ ×

CVE-2012-4112 ◦ ×

CVE-2013-3607 ◦ ×

CVE-2013-4782 ◦ ×

CVE-2013-4784 ◦ ×

CVE-2012-4078 ◦ ×

CVE-2012-4074 ◦ ×

CVE-2013-4786 • √

CVE-2014-3566 • √

CVE-2014-2532 • √

CVE-2015-0739 ◦ ×

CVE-2015-4265 • √

CVE-2016-1542 ◦ ◦ ×

CVE-2016-2349 ◦ ◦ ×

CVE-2016-6899 • √

CVE-2016-6900 • √

CVE-2017-17323 • √

CVE-2018-12171 ◦ ×

CVE-2018-1207 • • • √

CVE-2018-1208 • √

CVE-2018-1209 • √

CVE-2018-1210 • √

CVE-2018-1211 • √

CVE-2018-1243 • • √

CVE-2018-1244 • √

CVE-2018-3682 • √

CVE-2018-7941 • √

CVE-2018-7942 • √

CVE-2018-7949 • √

CVE-2018-7950 • √

CVE-2018-7951 • √

CVE-2018-9086 ◦ ×

CVE-2019-16649 ◦ ◦ ×

CVE-2019-16650 ◦ ◦ ×

CVE-2019-5497 ◦ ×

CVE-2019-6159 ◦ ×

CVE-2019-6161 ◦ ×

CVE-2019-6260 ◦ ×
•: The attack succeeded. ◦: The attack failed.
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Abstract. NewHope is a lattice cryptoscheme based on the Ring Learn-
ing With Errors (Ring-LWE) problem, and it has received much attention
among the candidates of the NIST post-quantum cryptography stan-
dardization project. Recently, key mismatch attacks on NewHope have
been proposed, where the adversary tries to recover the server’s secret
key by observing the mismatch of the shared key from chosen queries.
At CT-RSA 2019, Bauer et al. first proposed a key mismatch attack on
NewHope, and then at ESORICS 2019, Qin et al. proposed an improved
version with success probability of 96.9% using about 880,000 queries. In
this paper, we further improve their key mismatch attacks on NewHope.
First, we reduce the number of queries by adapting the terminating con-
dition to the response from the server using an early abort technique.
Next, the success rate of recovering the secret key polynomial is raised
by setting a deterministic condition for judging its coefficients. We also
improve the method of generating queries. Furthermore, the search range
of the secret key in Qin et al.’s attack is extended without increasing the
number of queries. As a result, about 73% of queries can be reduced
compared with Qin et al.’s method under the success rate of 97%. More-
over, we analyze the trade-off between the number of queries and the
success rate. In particular, we show that a lower success rate of 20.9% is
available by further reduced queries of 135,000, simultaneously.

Keywords: PQC · Ring-LWE · Key mismatch attack · NewHope

1 Introduction

The current public-key cryptosystems based on the hardness of the factorization
problem or the discrete logarithm problem can be broken by quantum computers
in polynomial time [17]. For this reason, it is urgent to develop post-quantum
cryptography (PQC) which is secure against the threat of quantum computers.
PQC is being standardized by the National Institute of Standards and Technol-
ogy (NIST) [1]. There, lattice-based cryptography is one of the most promising
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 505–524, 2020.
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categories, and NewHope is one of the lattice-based key exchange candidates
selected in the second round of the NIST PQC standardization project. The
security of NewHope [2] is based on the difficulty of the underlying Ring-LWE
problem [12]. Comparing to the typical LWE problem [15], the Ring-LWE based
cryptoschemes enjoy smaller key sizes that benefit from its ring structure. On
the other hand, some potential demerits from the ring structure may be mali-
ciously used by attackers, thus more careful cryptanalysis of these cryptoschemes
is required.

Nowadays it is common to reuse keys in Internet communications, so as to
improve the performance of the protocols. For example, TLS 1.3 [16] adopts the
pre-shared key (PSK) mode where the server is allowed to reuse the same secret
key and public key in intermittent communication with the clients, in order to
reduce the procedure of handshakes. Meanwhile, such protocols may have a risk
of leakage of the server’s secret key when the adversary has enough chances to
send queries to the honest server and get correct responses from it. There is a
kind of key mismatch attack on the Ring-LWE based key exchange protocols.
As its name implies, the key mismatch attack generally works as follows: an
adversary sends chosen ciphertexts to the server, and recovers the server’s secret
key by observing a match or mismatch of a common key. In particular, there are
mainly two key mismatch attacks on NewHope [4,13] which take advantage of
the property that the secret key of NewHope is a polynomial constructed with
integer coefficients sampled from −8 to 8 in a key-reuse scenario.

The first key mismatch attack on NewHope was proposed by Bauer et al. [4]
at CT-RSA 2019, which can recover the secret coefficients belonging to the
interval [−6, 4]. However, the success rate of recovering coefficients in [−6, 4]
was not so high. Bauer et al. also reported that the coefficients belonging to
{−8,−7, 5, 6, 7, 8} can be recovered by the brute-force attack, nevertheless, the
computational complexity is as large as 611 � 239 due to the fact that about
11.16 coefficients of 1024 ones are belonging to {−8,−7, 5, 6, 7, 8} on average in
one secret key.

Furthermore, Qin et al. [13] improved Bauer et al.’s attack at ESORICS 2019
so that the coefficients in [−6, 4] can be successfully recovered with a high rate of
99.22%, and the others in {−8,−7, 5, 6, 7, 8} can be recovered with fewer queries
than the brute-force attack. As a result, the rate of recovering the secret key
correctly achieves 96.88%. However, the attack proposed by Qin et al. requires
a large number of 880,000 queries for recovering a secret key, which makes the
attack not efficient. Besides, some specific patterns of secret keys can not be
recovered successfully in this attack.

1.1 Our Contributions

In this paper, we further improve Qin et al.’s attack to reduce the number of
queries, and evaluate its relationship with the success rate of recovering secret
keys. First, we introduce an early abort technique to reduce the number of
queries. Namely, we set an appropriate query stop condition according to the
response (i.e. match or mismatch with the common key) from the server. Then,
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to raise the success rate of the attack, we propose a deterministic condition
when judging the secret polynomial’s coefficients; and we improve the method
of generating queries sent by the adversary. Moreover, we observe that without
increasing the number of queries, the attack of Qin et al. on the secret key
coefficients in [−6, 4] can be extended to a wider range of [−6, 7]. Since only 0.28
coefficients on average belonging to the remaining set of {−8,−7, 8} in one secret
key, we decide to perform a brute-force attack. As a result, to achieve almost
the same success rate of 97%, the number of queries is reduced to about 230,000
which is 73% less than the cost claimed in Qin et al.’s method. Furthermore, the
recovery success rate can be improved to 100.0% experimentally in our method.
Simultaneously, by evaluating the relationship between the success rate and the
number of queries, we can further reduce the number of queries to 135,000 with
20.9% success rate.

1.2 Related Works

A number of key recovery attacks have been developed to Ring-LWE based cryp-
tography, under the assumption of a key reusing scenario. Generally, they are
divided into two types: the signal leakage attacks with exploiting the flaws of the
signal function [5,8,11], and the key mismatch attacks taking advantage of con-
structing the final shared key. In this work, we focus on the latter key mismatch
attacks, as we already introduced two previous works of [4,13] above. Besides,
in ACISP 2018, Ding et al. [7] proposed a general key mismatch attack model
for Ring-LWE based key exchange scheme without using the signal leakage.
Recently, there are also some key mismatch attacks on several specific lattice-
based cryptographic schemes. For instance, in 2020, Greuet et al. [10] proposed
the mismatch attack on LAC which is a Ring-LWE based cryptoscheme but with
small key size. In 2019, Qin et al. [14] applied their attack on the Module-LWE
based Kyber as well. And Ding et al. [6] analyzed the NTRU cryptoscheme by
adapting the key mismatch attack to it. Especially, the mismatch attack using
the quantum algorithm was proposed by Băetu et al. [3] in Eurocrypt 2019.

1.3 Roadmap

We recall the NewHope cryptoscheme and its relevant functions in Sect. 2. Then
we introduce the previous works of mismatch attacks on NewHope in Sect. 3,
including the methods proposed by Bauer et al. [4] and its improvement by Qin
et al. [13], respectively. In Sect. 4, we propose our mismatch attack which is
evidently improving Qin et al.’s attack. We give our experimental results, and
show the trade-off between the number of queries and the success rate in Sect. 5.
Finally, we conclude our work in Sect. 6.

2 Preliminaries

In this section, we introduce the algebraic definitions and notations used in
NewHope. Next, we show the outline of NewHope’s protocol, including several
important functions being used in it.
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pre-shared key a
boBecilA

sA, eA
$← ψn

8

PA ← asA + eA
PA−−→ sB , eB , e′

B
$← ψn

8
PB ← asB + eB
νB

$← {0, 1}256
ν′
B ← SHA3-256 (νB)
k ← Encode (ν′

B)
c ← PAsB + e′

B + k

c′ ← Decompress(c)
(PB ,c)←−−−− c ← Compress(c)

k′ = c′ − PBsA SkB
← SHA3-256 (ν′

B)
ν′
A ← Decode (k′)

SkA
← SHA3-256 (ν′

A)

Fig. 1. NewHope key exchange protocol

Set Zq the integer remainder ring modulo q, and Zq[x] represents a polyno-
mial ring whose coefficients are sampled from Zq. We also denote the residue ring
of Zq[x] modulo (xn + 1) by Rq = Zq[x]/ (xn + 1). Bold letters such as P, s refer
to elements in Rq. We also use vector notation for polynomials in this paper,

e.g. the vector notation for a
(
=

∑n−1
i=0 aix

i
)

∈ Rq is (a0, a1, · · · , an−2, an−1).

a[i] represents the coefficient of xi in the polynomial, and the corresponding i-th
element of the vector as well. For a real number x, �x� represents the largest
integer no larger than x and �x� = �x + 1

2�. For the sake of convenience, we set
s = �q/8� where q is the integer modulus in NewHope.

We denote by ψ8 a binomial distribution with a standard deviation of 8,
and its element is sampled by calculating

∑8
i=1 (bi − b′

i). Here, bi and b′
i are

sampled from {0, 1} uniformly at random. Let ψn
8 be the polynomial set whose

each coefficient is sampled from ψ8. In the figures and algorithms, the notation
$← D means randomly sampling an element from distribution (or set) D.

Ring-LWE Problem: Let χ be a distribution on Rq. For randomly sampled

polynomials s, e $← χ,a $← Rq, the set of (a,b = as + e ∈ Rq) is called as ring
LWE sample. The ring learning with errors (Ring-LWE) problem is to find the
secret polynomial s (and the error e simultaneously) from a given Ring-LWE
sample of (a,b).

2.1 NewHope Key Exchange Protocol

An outline of the NewHope key exchange protocol is shown in Fig. 1. Here we
omit the procedures that are not directly related to the key mismatch attack,
such as NTT (Number Theoretic Transform) being used to speed up polynomial
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multiplication. NewHope aims to securely exchange a shared key between Alice
and Bob and it executes the below three steps. Note that the public polynomial
a is shared in advance, which is sampled from Rq uniformly at random. The
security of NewHope is based on the hardness of the Ring-LWE problem, where
χ is the distribution of ψn

8 .

1. Alice randomly samples a secret key sA and an error eA from ψn
8 . Then,

she calculates the public key PA = asA + eA using the previously shared
a(∈ Rq), and sends PA to Bob. From the public key PA and the previously
shared polynomial a, it is difficult to obtain information about the secret key
sA thanks to the hardness of Ring-LWE problem.

2. Bob selects sB , eB and e′
B from ψn

8 and computes the public key PB =
asB + eB . Then, Bob chooses a 256-bit long bit string νB that is the basis of
the shared key SkB

, and hashes it by calculating ν′
B = SHA3-256 (νB). Subse-

quently, he computes k = Encode (ν′
B) , c = PAsB +e′

B +k, c = Compress(c)
and sends (PB , c) to Alice. The shared key SkB

is obtained by calculating
SkB

= SHA3-256 (ν′
B).

3. When Alice receives (PB , c), she calculates k′ = c′ −PBsA = eAsB −eBsA +
e′

B + k. Alice can get ν′
A equal to ν′

B with high probability by computing
Decode (k′) because the coefficients of eAsB − eBsA + e′

B are small. Then,
she also gains a shared key SkA

= SHA3-256 (ν′
A).

In NewHope, q = 12289 and n = 512 or 1024 are employed. NewHope512
and NewHope1024 refer to the case of n = 512 and n = 1024, respectively. In
the five security levels defined by NIST, NewHope512 is at the lowest level (level
1), and NewHope1024 is at the highest level (level 5) [1]. In this paper, we deal
with the higher secure NewHope1024.

2.2 The Functions Used in NewHope

We simply review four functions being used in NewHope (Fig. 1): Compress(c),
Decompress(c), Encode(ν′

B), and Decode(k′).
The Compress function (Algorithm1) and the Decompress function (Algo-

rithm2) perform coefficient-wise modulus switching between modulus q and 8.
By compressing c ∈ Rq, the total size of coefficients becomes smaller; thereby
the transmission cost is lower.

The function Encode (Algorithm 3) takes a 256-bit string ν′
B as an input and

maps each bit to four coefficients in k ∈ Rq: k[i], k[i + 256], k[i + 512], and
k[i + 768] (for i = 0 · · · 255). In contrast, The function Decode (Algorithm 4)
restores each bit of ν′

A ∈ {0, 1}256 from four coefficients in k′ ∈ Rq. Namely,
ν′

A[i] = 1 if the summation of the four coefficients is smaller than q, and ν′
A[i] = 0

otherwise.

3 Key Mismatch Attack on NewHope

In this section, we first explain a general model of a key mismatch attack on
NewHope.Thenwe recall the attacks proposedbyBauer et al. [4] andQin et al. [13],
respectively.
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Algorithm 1: Compress(c)
Input: c ∈ Rq

Output: c ∈ R8

1 for i ← 0 to 255 do
2 c[i] ← �(c[i] · 8)/q� (mod8)

3 Return c

Algorithm 2: Decompress(c)
Input: c ∈ R8

Output: c′ ∈ Rq

1 for i ← 0 to 255 do
2 c′[i] ← �(c[i] · q)/8�
3 Return c′

Algorithm 3: Encode(ν′
B)

Input: ν′
B ∈ {0, 1}256

Output: k ∈ Rq

1 k ← 0
2 for i ← 0 to 255 do
3 for j ← 0 to 3 do
4 k[i + 256j] ← 4s · ν′

B [i]

5 Return k

Algorithm 4: Decode(k′)
Input: k′ ∈ Rq

Output: ν′
A ∈ {0, 1}256

1 ν′
A ← 0

2 for i ← 0 to 255 do

3 m ← ∑3
j=0 |k′[i + 256j] − 4s|

4 if m < q then
5 ν′

A[i] ← 1

else
6 ν′

A[i] ← 0

7 Return ν′
A

3.1 The General Model

In the model of the key mismatch attack, we assume that Alice is an honest
server and Bob plays the role of an adversary in Fig. 1. An adversary sends a
query including (PB , c, SkB

) to the server. Then, the server calculates the shared
key SkA

and returns whether SkA
and SkB

match or mismatch. Here, the server is
set to reuse the same secret key and honestly respond to any number of queries.

For the sake of convenience, we build an oracle O (Algorithm 5) to simulate
the behavior of the server in this paper. The oracle outputs 1 if SkA

= SkB

and outputs 0 otherwise. Changing the formats of queries sent to the oracle, the
adversary can get information about sA by observing the responses.

3.2 Bauer et al.’s Method

Bauer et al. proposed a method for recovering the coefficients in [−6, 4] of the
secret key sA. To recover the coefficient sA[i], the adversary forges the following
query and send it to the oracle.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν′
B = (1, 0, · · · , 0)

PB =
s

2
x−i′

(i′ ≡ i (mod 256))

c =
3∑

j=0

(lj + 4) x256j (lj ∈ [−4, 3])
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Algorithm 5: Oracle(PB , c,SkB )
Input: PB , c, SkB

Output: 1 or 0
1 c′ ← Decompress(c)
2 k′ ← c′ − PBsA

3 ν′
A ← Decode (k′)

4 SkA ← SHA3-256 (ν′
A)

5 if SkA = SkB then
6 Return 1

else
7 Return 0

In this case, k′ is calculated as follows:

k′ = c′ − PBsA

=
3∑

j=0

(
Decompress(c)[256j] − s

2
sA[i′ + 256j]

)
x256j

+
∑

k 	≡ i
(mod 256)

(
0 − s

2
sA[k]

)
xk.

(1)

In ν′
A (= Decode(k′)), all elements except ν′

A[0] are calculated from the sec-
ond term of Eq. (1) and they become 0 with high probability. Therefore, the
key mismatch corresponds to the mismatch between ν′

B[0](= 1) and ν′
A[0],

which depends on selected lj (j = 0, 1, 2, 3). The adversary fixes lj other than
l� i

256 � to a random value and observes the change of the oracle’s output by
increasing l� i

256 � from −4 to 3. If the adversary gets a string of outputs like
1, · · · , 1, 0, · · · , 0, 1, · · · , 1, he can calculate an estimated value τ of sA[i] from
the two possible values τ1 < τ2. The oracle’s output goes from 1 to 0 at point
l� i

256 � = τ1 and then from 0 to 1 at point l� i
256 � = τ2. Here such a form of outputs

is called a favorable case. Please refer to [4] for the details of the attack.

3.3 Qin et al.’s Method

Qin et al. pointed out the low success rate of the attack proposed by Bauer
et al. They proposed the following improvements to Bauer et al.’s attack on
recovering the coefficients in [−6, 4]. In their method, they used the same way
to generate the queries as Bauer et al.’s. However, they observed that a form
of outputs like 0, · · · , 0, 1, · · · , 1, 0, · · · , 0 is also a favorable case. Besides, they
indicated that Bauer et al.’s attack algorithm is not deterministic. For example,
in the case of sA[i] = 2, the adversary may get a value of the incorrect 1 along
with the correct 2. Since the attack algorithm is probabilistic, the more times
the attacks are applied, the higher success probability can be achieved. However,
the number of queries increases accordingly. To take a balance between the cost
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and the success rate, Qin et al. decided to collect 50 τs for each coefficient and
recover the coefficient from the breakdown of them.

Additionally, they proposed a new attack for coefficients in {−8,−7, 5, 6, 7, 8}.
However, this attack is conditional and its success rate is smaller than 11.2%. We
analyze the details of their attack and show its drawbacks in AppendixA.

4 Our Improved Method

We propose an improved method to increase the success rate of key recovery and
reduce the number of queries. In this section, we first describe the improvements
in three parts, and finally introduce the overall attack flow.

4.1 Improvement on the Construction of Queries

We focus on the point that there are some secret key patterns that cannot
be recovered in Qin et al.’s and Bauer et al.’s attacks. In their attacks, when
recovering the coefficients in [−6, 4], an adversary sets ν′

B = (1, 0, · · · , 0). In this
case, depending on the pattern of sA, some elements except for ν′

A[0] become
unexpected value of 1 where ν′

A = Decode (k′). Due to this, the oracle keeps
returning 0 because ν′

A 	= ν′
B regardless of the value of ν′

A[0]. Therefore, a key
mismatch attack will never be established.

To solve this problem, we propose a new query construction. In our method,
when an adversary wants to recover the coefficient sA[i], he directly sets the
query like

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

PB =
s

2

c =
3∑

j=0

(lj + 4) xi′+256j (lj ∈ [−4, 3], i′ ≡ i (mod 256)).

The oracle receives it and calculates

k′ = c′ − PBsA

=
3∑

j=0

(
Decompress(c)[256j] − s

2
sA[i′ + 256j]

)
x256j

+
∑

k 	≡ 0
(mod 256)

(
0 − s

2
sA

)
[k]xk.

(2)

Then, the oracle gets ν′
A = (Decode(k′)), where ν′

A[i′] is calculated from the first
term of Formula (2) and other elements are from the second term. Here, if ν′

B

meets two conditions such as

{
ν′

B = Decode(0 − s

2
sA), (3)

ν′
B [i′] = 1, (4)
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Algorithm 6: Find−ν′
B()

Output: ν′
B ∈ {0, 1}256

1 PB ← s
2
, c ← 0

2 ν′
B ← (0, · · · , 0)

3 SkB ← SHA3-256 (ν′
B)

4 if O (PB , c, SkB ) = 1 then
5 Return ν′

B

6 for i ← 0 to 255 do
7 ν′

B ← (0, · · · , 0)
8 ν′

B [i] ← 1
9 SkB ← SHA3-256 (ν′

B)
10 if O (PB , c, SkB ) = 1 then
11 Return ν′

B

12 for i ← 0 to 255 do
13 for j ← i + 1 to 255 do
14 ν′

B ← (0, · · · , 0)
15 ν′

B [i] ← 1, ν′
B [j] ← 1

16 SkB ← SHA3-256 (ν′
B)

17 if O (PB , c, SkB ) = 1 then
18 Return ν′

B

19 Terminate the entire program

the value returned by the oracle (matching or mismatching between the two
shared keys) can be reduced to the value of ν′

A[i′].
In Algorithm 6, we show how to set ν′

B to satisfy the above two conditions.
Here we decide to find ν′

B that meets Eq. (3) by the exhaustive search. First, PB

and c are set as PB = s
2 , c = 0. Then, ν′

B is set to be an 256-bit string in the
following orders: ( I ) all elements are 0, (II) except for one 1, all elements are 0,
and (III) except for two 1s, all elements are 0. Simultaneously, the adversary sends
a query (PB , c, SkB

) to the oracle. When the oracle returns 1, this algorithm
stops and returns ν′

B . In contrast, if the oracle does not return 1 even after
examining all of the above patterns ( I )(II)(III), the algorithm can judge that
the secret key sA cannot be recovered successfully, and the whole program is
terminated. The reason why we only deals with three patterns ( I )(II)(III) is as
follows.

1. The case that ν′
B includes three or more 1s appears with probability of only

0.003% (see Table 1).
2. For the case of ν′

B with three or more 1s, the exhaustive search needs
much more queries than Qin et al.’s method. For instance, it takes 256C3 =
2, 763, 520 queries when searching ν′

B with three 1s.

By performing Algorithm 6, ν′
B that satisfies the Eq. (3) is set. Then, when

querying the oracle, an adversary has to additionally set ν′
B[i′] = 1 to meet

Eq. (4).
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Table 1. Distribution of secret key sA

The number of 1 included in Decode(0 − s
2
sA) Secret key sA

0 94.547%

1 5.302%

2 0.148%

3 or more 0.003%

4.2 Extending the Search Range of Secret Key

After setting a proper query, an adversary changes l� i
256 � from −4 to 3 analogous

to Qin et al.’s method. Then, he calculates an estimated value τ of the coefficient
sA[i] by observing the oracle’s outputs. Qin et al. claimed that this attack was
valid on coefficients of sA[i] in [−6, 4]. However, we point out that the attack
can be applied to a wider range such as [−6, 7], without any additional queries.

It is clear that the oracle’s output is relative to ν′
A[i′] whose value depends

on the size of m comparing with the size of q (Algorithm 4). Remark that m is
calculated by

m =
3∑

j=0

|k′[i′ + 256j] − 4s|

≈
3∑

j=0

∣∣∣(lj + 4) s − s

2
sA[i′ + 256j] − 4s

∣∣∣

=
3∑

j=0

∣∣∣∣lj − 1
2
sA[i′ + 256j]

∣∣∣∣ s.

Moreover, all lj (j ∈ {0, 1, 2, 3}\{� i
256�}) are fixed at random values. From these

facts, we can conclude that the string of oracle’s outputs depends on the change
of

u = |k′[i] − 4s| . (5)

Meanwhile, there are two kinds of favorable cases such as 0, · · · , 0, 1, · · · , 1,
0, · · · , 0 and 1, · · · , 1, 0, · · · , 0, 1, · · · , 1. Next, we study the condition of u for
meeting favorable cases from the oracle.

We explain the case of 1, · · · , 1, 0, · · · , 0, 1, · · · , 1 here, and the analysis
for the case of 0, · · · , 0, 1, · · · , 1, 0, · · · , 0 is similar due to symmetry. For
example, an adversary wants to recover s′

A[i] = −7. He randomly fixes lj
(j ∈ {0, 1, 2, 3}\{� i

256�}) first. Then, we assume that he gets v = 6s which
is fixed by the computation of

v = m − u

=
∑

i′+256j �=i

|k′[i′ + 256j] − 4s| .
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Table 2. The behavior of m and the oracle’s output (s′
A[i] = −7)

l� i
256 � −4 −3 −2 −1 0 1 2 3

u(= m − v) 0.5s 0.5s 1.5s 2.5s 3.5s + 1 3.5s 2.5s 1.5s

The oracle’s output 1 1 1 0 0 0 0 1

In this case, when l� i
256 � varies, the behavior of m used in Decode function and

the oracle’s output is shown in Table 2.
We can conclude that if u monotonically increases and then monotonically

decreases, the oracle’s outputs become 1, · · · , 1, 0, · · · , 0, 1, · · · , 1. On the con-
trary, due to the symmetry, if u monotonically decreases and then monotonically
increases, the oracle’s outputs become 0, · · · , 0, 1, · · · , 1, 0, · · · , 0.

Furthermore, we show how u changes according to l� i
256 � for each value of

sA[i] ∈ [−8, 8] in Table 3. As we can see, for each sA[i], u always monotoni-
cally increases and then decreases or monotonically decreases and then increases.
Therefore, the estimated value τ of each sA[i] ∈ [−8, 8] can be obtained theoret-
ically.

Next, we consider how to determine sA[i] from τs. We invite Qin et al.’s algo-
rithm (Algorithm 7) to calculate τ from the string of oracle’s outputs b. Note that
the output τ is expanded from −7 to 8, where τ belongs to [−6, 4] in Qin et al.’s
paper. We show the relationship between possible τs and sA[i] in Table 4.

Table 3. The behavior of u (Formula 5) corresponding to parameter l� i
256 � and sA[i]

sA[i]

u l� i
256 � −4 −3 −2 −1 0 1 2 3

−8 0 s 2s 3s 4s 3s 2s s

−7 0.5s 0.5s 1.5s 2.5s 3.5s + 1 3.5s 2.5s 1.5s

−6 s 0 s 2s 3s + 1 4s 3s 2s

−5 1.5s 0.5s 0.5s 1.5s 2.5s + 1 3.5s + 1 3.5s 2.5s

−4 2s s 0 s 2s + 1 3s + 1 4s 3s

−3 2.5s 1.5s 0.5s 0.5s 1.5s + 1 2.5s + 1 3.5s + 1 3.5s

−2 3s 2s s 0 s + 1 2s + 1 3s + 1 4s

−1 3.5s 2.5s 1.5s 0.5s 0.5s + 1 1.5s + 1 2.5s + 1 3.5s + 1

0 4s 3s 2s s 1 s + 1 2s + 1 3s + 1

1 3.5s + 1 3.5s 2.5s 1.5s 0.5s − 1 0.5s + 1 1.5s + 1 2.5s + 1

2 3s + 1 4s 3s 2s s − 1 1 s + 1 2s + 1

3 2.5s + 1 3.5s + 1 3.5s 2.5s 1.5s − 1 0.5s − 1 0.5s + 1 1.5s + 1

4 2s + 1 3s + 1 4s 3s 2s − 1 s − 1 1 s + 1

5 1.5s + 1 2.5s + 1 3.5s + 1 3.5s 2.5s − 1 1.5s − 1 0.5s − 1 0.5s + 1

6 s + 1 2s + 1 3s + 1 4s 3s − 1 2s − 1 s − 1 1

7 0.5s + 1 1.5s + 1 2.5s + 1 3.5s + 1 3.5s − 1 2.5s − 1 1.5s − 1 0.5s − 1

8 1 s + 1 2s + 1 3s + 1 4s − 1 3s − 1 2s − 1 s − 1
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Table 4. sA[i] and possible τs, outputs of Algorithm 7

sA[i] −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

τ 8 8 −7 −7 −6 −6 −5 −5 −4 −4 −3 −3 −2 −2 −1 −1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

Algorithm 7: Find−τ(b)
Input: b ∈ {0, 1}8

Output: τ ∈ [−7, 8] or NULL
1 τ, τ1, τ2 ← NULL
2 for i ← 0 to 6 do
3 if b[i] �= b[i + 1] then
4 if τ1 = NULL then
5 τ1 ← i − 4

6 else if τ2 = NULL then
7 τ2 ← i − 3

8 if τ1 �= NULL and τ2 �= NULL then
9 τ = τ1 + τ2

10 if τ > 0 and b[0] = 1 then
11 τ = τ − 8

12 else if τ ≤ 0 and b[0] = 1 then
13 τ = τ + 8

14 Return τ

In particular, three values of sA[i] ∈ {−8,−7, 8} correspond to τ = 8. Namely,
when τ = 8 appears, an adversary has to determine sA[i] from {−8,−7, 8}. Thus,
we conduct this attack only against sA[i] ∈ [−6, 7] in our improved method.

4.3 Early Abort Technique for Terminating Queries

In Qin et al.’s method, 50 τs are collected for each coefficient and sA[i] is deter-
mined from the breakdown of them. For example, if 35 τs out of 50 are 3 and
15 τs are 2, then sA[i] = 3. However, this probabilistic process is inefficient. In
our algorithm, we set a deterministic condition for judging sA[i]. As shown in
Table 4, two types of τ correspond to unique value of sA[i] in [−6, 7]. Therefore,
we can terminate collecting τ when two different types appear. We apply this
condition at Step 20 in Algorithm8.

4.4 Our Proposed Algorithm

We first propose Algorithm 8 to recover the coefficient of sA in [−6, 7]. To launch
this attack, an adversary sets PB = s

2 , ν′
B = Find−ν′

B(), ν
′
B [i′] = 1, and c =∑3

k=0 (lk + 4) xi′+256k according to the coefficient sA[i′ +256j] that he wants to
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Algorithm 8: Partial−recovery(p)
Input: p ∈ N

Output: s′
A ∈ Rq

1 PB ← s
2

2 ν′
B ← Find−ν′

B()
3 for i′ ← 0 to 255 do
4 ν′

B [i′] ← 1
5 SkB ← SHA3-256 (ν′

B)
6 for j ← 0 to 3 do
7 count ← 0
8 t, temp ← NULL
9 while count < p do

10 (l0, l1, l2, l3)
$← [−4, 3]4

11 b ← []
12 for lj ← −4 to 3 do

13 c ← ∑3
k=0 (lk + 4) xi′+256k

14 b.append (O (PB , c, SkB ))

15 t ← Find−τ(b)
16 if t �= NULL then
17 count = count + 1
18 if temp = NULL then
19 temp ← t

20 else if temp �= t then
21 break

22 if temp �= 8 and t �= 8 then
23 if temp = t then
24 s′

A[i′ + 256j] ← temp

else
25 s′

A[i′ + 256j] ← max(temp, t)

else
26 s′

A[i′ + 256j] ← NULL

27 Return s′
A

recover. Then, the queries including (PB , c, SkB
) are sent to the oracle. When

li′ varies from −4 to 3, the outputs from the oracle are appended to the array b
(Step 14). Then the adversary gets τs from Find−τ(b). He keeps sending queries
until he gets two different values of τ or he gets same τs for p times. We execute
our experiments with different p and analyze the performance of the algorithm.
If τ = 8, this algorithm returns NULL without determining the value of the
target coefficient (Step 26). Besides, if two different τs are obtained, the larger
one is adopted (Step 25), otherwise s′

A[i′ + 256j] = τ .
Finally, we propose Algorithm9 to recover the entire secret key sA. Tak-

ing account of the fact that averagely only 0.28 coefficients in {−8,−7, 8} are
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Algorithm 9: Full−recovery(p)
Input: p ∈ N

Output: s′
A ∈ Rq

1 s′
A ← Partial-recovery(p)

2 sB , eB , e′
B

$← ψn
8

3 PB ← asB + eB

4 νB
$← {0, 1}256

5 k ← Encode (ν′
B)

6 ν′
B ← SHA3-256 (νB)

7 SkB ← SHA3-256 (ν′
B)

8 index ← []
9 for i ← 0 to 1024 do

10 if s′
A[i] = NULL then

11 index.append(i)

12 for list ∈ {−8, −7, 8}index.length() do
13 for j ← 0 to index.length () − 1 do
14 s′

A[index[j]] = list[j]

15 PA ← as′
A

16 c ← PAsB + e′
B + k

17 c ← Compress(c)
18 if O (PB , c, SkB ) = 1 then
19 break

20 Return s′
A

included in one secret key, so we decide to perform an exhaustive search on them.
First, by running Partial-recovery(p), an adversary gets s′

A whose coefficients
in [−6, 7] can be recovered. Next, he sets the public key PB , the secret key sB ,
and the error polynomial eB , e′

B in the same way as Bob does in Fig. 1. νB is
set random bit string, because it has no significant meaning in this exhaustive
attack. Simultaneously, SkB

is calculated by hashing νB . Finally, he exhaustively
substitutes values in {−8,−7, 8} for s′

A[i] where is NULL (Step 14). Originally,
PA sent from Alice is used when Bob calculates c. However, the goal of this
attack is to check whether s′

A = sA, thus PA = as′
A is used (Step 15). The

queries generated by the above procedure are sent to the oracle repeatedly and
when the oracle outputs 1, this program stops and returns s′

A.

5 Our Experiments

At first, we implement NewHope1024-CPA-KEM [1] with parameters (n, q) =
(1024, 12289). Then, we generate 1000 secret keys sA randomly. Our goal is to
recover sA by using our proposed Algorithm9, where we try different parame-
ters p in the set of {5, 10, 12, 15, 20, 30, 50}. All the algorithms and oracles are
implemented by Python3. Polynomial calculation is implemented using poly1d
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Table 5. The success rate and the number of queries when increasing the value of p

The value of p 5 10 12 15 20 30 50

The success rate (%) 0 20.9 52.3 80.7 97.4 100.0 100.0

The number of queris 78,648 135,602 155,610 185,789 233,803 327,659 512,435

of numerical calculation library NumPy. We run the programs on Intel Xeon Sky-
lake Gold 6130 with CPUs at 2.1 GHz.

The experimental results are shown in Table 5, where we illustrate the trade-
off between the number of required queries and the success rate. In addition, we
also represent the data in Fig. 2. It is notable that the attack can achieve 100.0%
success rate when p ≥ 30. Meanwhile, it indicates that decreasing p reduces not
only the number of queries but also decreases the success rate. Specifically, if
we sacrifice the success rate to 20.9%, we can reduce the number of queries to
135,602.

Fig. 2. The relationship between the number of queries and the success rate (each dot
from left to right corresponds to the value of p = 5, 10, . . . , 50)

Moreover, a comparison with Qin et al.’s experimental results is summarized
in Table 6. In the case of p = 20, the success rate is almost the same as that of
Qin et al.’s, but the number of queries is reduced by about 73%.



520 S. Okada et al.

Table 6. Comparison of experimental results of key mismatch attacks

Qin et al. [13] Our attack (p = 20)

The success rate (%) 96.9 97.4

The number of queries 879,725 233,803

6 Conclusion

In this paper, we improved Qin et al.’s key mismatch attack on NewHope, and
evaluated the trade-off between the number of queries and the success rate of
recovering the secret keys. As a result, the number of required queries can be
reduced by about 73% with almost the same success rate as that in Qin et al.’s
attack. Moreover, our attack can achieve 100.0% success rate.

The current key mismatch attacks, including ours, Qin et al.’s, and Bauer
et al.’s, are feasible under the assumption that the server honestly responses
to freely chosen queries and continues to reuse the secret key. For this reason,
they are not applicative to the CCA-secure NewHope using Fujisaki-Okamoto
transformation [9]. However, considering the aspect of efficiency in practical
use, there may be some cases where only CPA-secure NewHope is used without
updating the server’s secret key for a time. Then it is necessary to take some
countermeasures to prevent the leakage of secret information, such as updating
keys periodically or setting a detection system to malicious queries.

Acknowledgments. We thank Dr. Atsushi Takayasu for his helpful comments on this
work. This work was supported by JSPS KAKENHI Grant Number 19F19378, JST
CREST Grant Number JPMJCR14D6, Japan.

Appendix A An Observation of Qin et al.’s Attack.

A.1 Qin et al.’s Method [13]

Qin et al. analyzed the distribution of the quadruplet (sA[i], sA[i + 256], sA[i +
512], and sA[i + 768]). They show that with 98.50% probability, there are 3
coefficients in {−6,−5, . . . , 2, 3, 4} and 1 coefficient is in {−8,−7, 5, 6, 7, 8} in
each quadruplet (Table 4, [13]). In the following, we call this quadruplet Ξ for
convenience sake.

Assume that an adversary wants to recover sA[i] (∈ {−8,−7, 5, 6, 7, 8}) after
he recovered other 3 coefficients, sA[i+256], sA[i+512], and sA[i+768] by their
attack for the coefficients in [−6, 4]. He sets each polynomials with parameter
h1 as follows:

⎧
⎪⎨
⎪⎩

sB , e′
B = 0

eB = h1x
512 (h1 ∈ Zq)

ν′
B = (0, · · · , 0, 1, 0, · · · , 0)(only i-th element is 1).
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After receiving the query, the server has

k′ =
3∑

j=0

(4s + 1)xi+256j − h1x
512sA

=
3∑

j=0

(4s + 1)xi+256j − (−h1sA[512] − · · · − h1sA[1023]x511

+h1sA[0]x512 + · · · + h1sA[511]x1023
)
.

Finally, the parameter m used in Decode function to calculate ν′
A[i] is like

m =

3∑

j=0

∣
∣k′[i + 256j] − 4s

∣
∣

≈ |1 + sA[i + 512]h1| + |1 + sA[i + 768]h1| + |1 − sA[i]h1| + |1 − sA[i + 256]h1|
≈ (|sA[i]| + |sA[i + 256]| + |sA[i + 512]| + |sA[i + 768]|) h1.

It sets ν′
A[i] = 1 if this m ≥ q, and ν′

A[i] = 0 otherwise. If ν′
A[�] = 0(∀� 	= i),

the oracle’s output corresponds to the relationship between m and q. In other
words, if h1 is so small that m < q, the oracle keeps returning 1, but only after
h1 becomes large enough such that m ≥ q, it returns 0. The adversary varies the
value of h1 from 1 to 12289. At the point that the oracle’s output changes from
1 to 0, the following equation holds.

q ≈ (|sA[i]| + |sA[i + 256]| + |sA[i + 512]| + |sA[i + 768]|) h1

At this time, the adversary have

|sA[i]| + |sA[i + 256]| + |sA[i + 512]| + |sA[i + 768]| ≈ q

h1
.

He knows 3 coefficients except for sA[i] in the quadruplet. Therefore, he can
calculate |sA[i]| from Eq. A.1. Furthermore he can determine sA[i] from the
absolute value and the information on the sign of sA[i] which is obtained by the
attack on the coefficients in [−6, 4].

A.2 The Condition for Qin et al.’s Method

In this subsection, we consider the conditions for the success of Qin et al.’s attack.
Hereinafter, we define mi as m used in Decode function to calculate ν′

A[i]. As
shown above,

mi =
3∑

j=0

|k′[i + 256j] − 4s|

≈ (|sA[i]| + |sA[i + 256]| + |sA[i + 512]| + |sA[i + 768]|) h1.
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Meanwhile, for all � 	= i, we have

m� =
3∑

j=0

|k′[� + 256j] − 4s|

≈ 16s − (|sA[�]| + |sA[� + 256]| + |sA[� + 512]| + |sA[� + 768]|) h1

when h1 is small. In this method, an adversary can calculate sA[i] only when
ν′

A[i] changes from 1 to 0 and all other elements of ν′
A keep 0s. Namely, until mi

becomes no smaller than q, m� (∀� 	= i) must be smaller than q. Therefore, in
Qin et al.’s attack, the following inequality is required for all �.

3∑
j=0

|sA[i + 256j]| >
3∑

j=0

|sA[� + 256j]|. (6)

A.3 The Success Rate of Qin et al.’s Method

We show the distribution of the maximum value of
∑3

j=0 |sA[�′ + 256j]| (0 ≤
�′ ≤ 255) in Table 7. We can see that max

�′
(
∑3

j=0 |sA[�′ + 256j]|) is larger than

12 with (almost) 100% for every sA. In Table 8, we also show the distribution of
Ξ about its summation (=

∑3
j=0 |sA[i + 256j]|).

Table 7. The distribution of max
�′ (

∑3
j=0 |sA[�′ + 256j]|)

max
�′ (

∑3
j=0 |sA[�′ + 256j]|) sA

12 5%

13 25%

14 34%

15 22%

16 10%

17 3%

18 1%

We can estimate the success rate of Qin et al.’s attack by using Inequality (6)
and Table 8. For instance, if max

�
(
∑3

j=0 |sA[� + 256j]|) = 12, sA[i] can be calcu-

lated only if
∑3

j=0 |sA[i + 256j]| is 13 or larger. In this case, the success rate
of recovering sA[i] is 11.2%(= 6.0% + 3.1% + 1.3% + 0.8%). We show the rela-
tionship between the success rate and the values of max

�
(
∑3

j=0 |sA[� + 256j]|)
in Table 9. We can conclude that the success rate of Qin et al.’s method for
recovering coefficients in {−8,−7, 5, 6, 7, 8} is not so high.
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Table 8. The distribution of Ξ about
∑3

j=0 |sA[i + 256j]|
∑3

j=0 |sA[i + 256j]| Ξ

5 0.6%

6 3.4%

7 8.8%

8 14.8%

9 18.3%

10 18.1%

11 14.7%

12 10.1%

13 6.0%

14 3.1%

15 1.3%

16 or larger 0.8%

Table 9. The relationship between max
�

(
∑3

j=0 |sA[� + 256j]|) and the success rate

max
�

(
∑3

j=0 |sA[� + 256j]|) The success rate

12 11.2%

13 6.2%

14 2.1%

15 0.8%
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Abstract. The Statistical Ineffective Fault Analysis, SIFA, is a recent
addition to the family of fault based cryptanalysis techniques. SIFA based
attack is shown to be formidable and is able to bypass virtually all the
conventional fault attack countermeasures. Reported countermeasures
to SIFA incur overheads of the order of at least thrice the unprotected
cipher. We propose a novel countermeasure that reduces the overhead
(compared to all existing countermeasures) as we rely on a simple dupli-
cation based technique. In essence, our countermeasure eliminates the
observation that enables the attacker to perform SIFA. The core idea
we use here is to choose the encoding for the state bits randomly. In
this way, each bit of the state is free from statistical bias, which renders
SIFA unusable. Our approach protects against stuck-at faults and also
does not rely on any side channel countermeasure. We show the effec-
tiveness of the countermeasure through an open source gate-level fault
attack simulation tool. Our approach is probably the simplest and the
most cost effective.

Keywords: Fault attack · Countermeasure · SIFA

1 Introduction

Fault Attacks1 (FAs) have been proven to be a powerful new attack vector tar-
geting devices performing cryptographic operations (both as software and hard-
ware). The rapid growth of low-end devices together with reducing cost and
barriers to mounting advanced fault attacks is being recognized as a serious con-
cern. This type of attack requires the attacker to force the device to perform
outside its designated condition of operation, thus producing incorrect (faulty)

A. Baksi—This work is partially supported by TUM CREATE.
1 We use the terms ‘attack’ and ‘analysis’ interchangeably.
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output from the cipher operation. The attacker can do this by using a multi-
tude of techniques such as shooting optical pulses, overheating, using hardware
Trojans etc. This faulty output, or even just the information whether the device
actually produced a faulty output, can be used by an attacker, to deduce infor-
mation on the secret state of the underlying cipher and ultimately the secret key.
Fault attacks are shown to be powerful enough to compromise the security of a
cipher which is considered secure with respect to theoretical cipher evaluation
criteria. It is also shown in the literature that a fault attack can be carried out
with cheap equipment, thus making this type of attack a serious concern.

The earliest and probably the most common fault attack model in the sym-
metric key setting is the Differential Fault Attack (DFA) [8]. In a DFA, the
device is allowed to run normally (without a fault) once. Next, the attacker
injects a fault that effectively toggles a bit (or few bits) in the cipher execution.
The difference between the faulty and the non-faulty output lets the attacker
learn information on the secret key.

In contrast to DFA, the Safe Error Attack (SEA) [20,30,31] makes use of the
cases where the fault injection does not change the output from the non-faulty
case. One particular case of SEA, known as Ineffective Fault Attack (IFA) [11],
is of particular interest. In an IFA, the attacker injects a potential disturbance,
but the cases where the disturbance does not effectively change the execution
of the cipher. In another direction of fault analysis, statistical information of a
variable is observed (SFA). The distribution which becomes biased as a result of
fault injection can be used [23].

The recently proposed Statistical Ineffective Fault Attack (SIFA) [15] com-
bines IFA and SFA. Like IFA, SIFA makes use of the cases where a fault injection
does not result in a change in the output. Also, similar to SFA, the statistical
distribution of bias of a variable caused by the effect of fault is used to recover
the variable.

Another class of attacks, known as the Side Channel Attacks (SCAs) [22],
is also capable of finding information on the secret key from a device running
a cipher. Generally, fault attack countermeasures are not capable of inherently
protecting against SCAs, hence a separate protection is commonly needed.

On top of being a direct way to mitigate the security of the ciphers as in
[25] and [18], SIFA is also able to bypass duplication based countermeasures.
Those duplication based countermeasures have been proposed to counter DFA.
Such countermeasures work by implementing two instances of the same cipher
execution, which we call the actual and the redundant computations, following
[4]. Assuming a fault can alter at most one of the executions; it is explicitly
detected by the detective countermeasures, whereas infective countermeasures
implicitly detect the difference [4]. If a fault injection does not alter the course
of non-faulty execution of the cipher, this case is considered as if no fault is
injected by the duplication based countermeasures. Since SIFA utilizes the cases
where the fault injection does not alter the normal execution of the cipher, those
countermeasures cannot (at least in the current form) protect against SIFA.
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Very recently, four countermeasures dedicated to protect against SIFA have
been proposed in the literature. In one work, Breier et al. [10] use a triplication of
the circuit to correct up to 1-bit error. Since at most one bit is assumed to subject
to SIFA, the majority of the three will correct the error and hence the attacker
will receive the correct (non-faulty) output. In [12], Daemen et al. suggest to use
an error detection mechanism based on Toffoli gates which follow the reversible
computing paradigm. Any successful fault would result in a garbage output
and hence will be detected. Saha et al. in [26] present a combination of masking
(which is used as a countermeasure to SCAs) [22, Section 9]) and encoding. In the
impeccable circuits II [28], an error correction facility is introduced (extending
the idea of impeccable circuits [1]) to protect against SIFA.

Given this backdrop, our approach neither does any error correction nor any
other expensive technique. Instead, we basically use duplication (and compari-
son) in a way that removes the bias utilized by SIFA. Hence, our countermeasure
is by far the simplest and least expensive. While it may be required to implement
the cipher almost completely from scratch in other countermeasures (which can
be non-trivial), our countermeasure can be easily implemented to protect any
symmetric key cipher.

It has been argued [15] that the duplication based countermeasures do not
protect against SIFA. Indeed this argument is valid with respect to the coun-
termeasures proposed till date, such as [21]. This argument extends to DFA
countermeasures proposed even after SIFA was published, e.g., [6] or [4]. On the
other hand, the SIFA countermeasures [10,12,26,28] rely on some form of trip-
lication (including error correcting codes) of the cipher execution possibly with
masking. The cost for any such countermeasure is more than thrice the cost of
the unprotected cipher. Hence the community seems to accept the norm that it
is not possible to have a SIFA countermeasure with cost less than thrice the cost
of the basic (unprotected) implementation of the cipher. Our detailed analysis
reveals that while triplication can protect against SIFA, a sophisticated version
of duplication can also do the same. The idea of our protection stems from the
existing duplication based DFA countermeasures [4].

Contribution

We extend the idea of duplication to accommodate randomized encoding to
destroy statistical bias (which is exploited by SIFA). This is done by choosing
an encoding based on a 1-bit random parameter λ. If λ = 0, both the actual
and redundant computations are done as is, and this is referred to as actual
logic. When λ = 1, we encode ∀x bits of the state as (x ⊕ 1) for both the actual
and the redundant computations, we refer to this as inverted logic. In other
words, we invert the bits (0 is encoded as 1, and 1 is encoded as 0) when λ = 1.

This removes the statistical bias (since λ
$← {0, 1} and is kept hidden from the

attacker), thereby forestalling SIFA. This idea can be used atop the duplication
based countermeasures, namely detective and infective ones [4], depending on
the security warranted. The proper output from the cipher is given only if there
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is no difference between the computations of the actual logic and the inverted
logic (i.e., the fault is ineffective/no fault is injected). In such a situation, reverse
encoding is performed on the actual execution (if λ = 1), or (if λ = 0) the output
is returned as is. Otherwise (i.e., the fault is effective), necessary steps are taken,
such as a random output is produced (detective) or the output is suppressed
(infective).

Hence, unlike the existing SIFA countermeasures, our solution does not rely
on (any form of) error correction. Instead, it simply blocks the attacker to get
information on the statistical bias. The attacker is able to see the cases of inef-
fective faults in our proposed solution, however, this does not help the attacker
to gain any extra information as we explore later on.

The proposed simple and low-cost idea can be applied to any symmetric key
cipher with minimal changes to the implementation. We do not claim any inher-
ent SCA protection, though, SCA countermeasures can be applied easily. Our
approach also has advantages when put in perspective to existing countermea-
sures. For example, our approach does not increase side channel leakage, which
is the case for [10].

We present further details in Sect. 4 with Fig. 2 shows a visual representation.
The security evaluation of it is done by an open-source tool used by the authors
of [28], with the PRESENT-80 cipher (similar to [26]) in Sect. 4.3. We subsequently
present benchmarking results in Sect. 4.4.

2 Fault Attack Preliminaries

2.1 Differential Fault Attack (DFA)

As mentioned already, DFA is likely the most commonly used FA technique in
the symmetric key community. It has been successfully applied against most, if
not all, symmetric key ciphers. First it lets the cipher run as it is (without any
fault). It then injects faults at some later round of the cipher. Then it uses the
difference of the faulty and non-faulty outputs that works as a variant of the
Differential Attack [7].

2.2 General Countermeasures Against Fault Attacks

In general, the countermeasures against the fault attacks can be classified into
three broad categories [4], as we discuss here.

1. To use a specialized device. This device is separate from the cipher design
and dedicated for protection against such attack. Examples include a sensor
that detects a potential fault [19].

2. To use redundancy. Commonly, this class of countermeasures duplicates (can
be fully or partially) the circuit. After this, a recovery procedure (which
dictates what to do in case a fault is sensed) takes place. Based on the recovery
procedure, two types of countermeasures exist [4]. First, in the detection based
countermeasures, the XOR of the non-faulty and faulty is explicitly computed.
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If this results in zero, the output from one of the computations (the so-called
actual computation [4]) is directly made available, otherwise the output is
suppressed/a garbage or random output is given. In the second category, the
infective countermeasures do not explicitly compute the difference. Instead,
such countermeasures implicitly sense the presence of a fault. By using a
sophisticated mechanism (infection [4]), either the non-faulty output (in case
no fault is sensed) or a random output is given (otherwise).

3. To use the communication protocol in such a way that the conditions required
for a successful fault to happen with low probability [3,16]. For example, in
order to utilize DFA, the inputs to the cipher have to be unchanged; the
probability of which can be reduced by using a suitable protocol.

3 Statistical Ineffective Fault Attack (SIFA)

As mentioned earlier, SIFA [15] is a new type of fault attack which combines the
concept of ineffective and statistical faults. In SIFA, the attacker exploits the
bias (which is caused by the fault injection) of one/more state bits. Unlike DFA,
SIFA does not need the non-faulty output, but at the same time requires more
fault injections compared to DFA.

Here we present an example of SIFA for better clarity, more information on
SIFA can be found in [15]. Suppose a device is more prone to bit reset (1 → 0)
than bit set (0 → 1) due to a fault injection. This can be achieved by, for
example, by fixing a particular intensity of the optical fault injection set-up. This
results in the bias of bit flip. In other words, the probability that the output will
be changed depends on whether the target bit is actually 0 (high probability)
or 1 (low probability). This bias where fault does not change the output (i.e.,
ineffective) can be observed by the attacker statistically. When such a state bit
is known, the procedure can be repeated to get information on the other state
bits and finally the secret key can be recovered. In one extreme, the probability
of bit reset (respectively, 1) can be 1, in which case the fault model is known as
stuck-at 0 (respectively, stuck-at 1).

3.1 Duplication Based Countermeasures and Need for Specialization

From the types of fault protection given in Sect. 2.2, the duplication based coun-
termeasures are the closest to cipher design and hence are of particular interest.

As noted earlier, such countermeasures can be classified into detective and
infective [4]. The schematic for the two types is shown in Fig. 1. Figure 1(a) shows
the detection based or detective countermeasure. Here the XOR difference of
the actual computation (C from E1

K) and the redundant computation (C ′ from
E2

K), denoted by Δ, is explicitly computed (here P is the input and K is the
secret key, both are common to both of the computations). If Δ = 0, then no
fault is detected and C is given as output. Otherwise a garbage output (could
be random or a predetermined constant) is given or the output is suppressed.
Figure 1(b) shows the infection mechanism used in infection based or infective
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countermeasure. Here the XOR difference Δ of C ⊕ C ′ is computed. However,
instead of taking the if–then decision, Δ is implicitly used to compute τR(Δ) such
that τR(0) = 0 but τR(d) = R′ �= 0 for d �= 0 where R is randomly generated and
hence R′ is also random (it is possible that R′ = R). Thereafter C ⊕ τR(Δ) is
given as output. Hence, when fault is sensed, Δ is non-zero and the attacker gets
a random output. Otherwise (in case of no fault), the actual output C is returned.
The XOR difference can be computed at the end of the cipher execution (such
as [21]), or after each round (the basic idea is introduced in [17]); depending on
which, a further classification of infective countermeasures as discussed in [4].

C

C ′

Δ

Yes

No

E1
K

P
⊕

Δ = 0?
C (Output)

E2
K

Garbage/Suppressed
Output

(a) Detective

C

C ′

Δ τR(Δ) C ⊕ τR(Δ)

E1
K

P
⊕

τ
⊕

E2
K R

(b) Infective

Fig. 1. Schematic for detective and infective countermeasures

Both the detective and the infective countermeasures are suitable to protect
against DFA, except for one specific type of DFA. This type is named double fault
[4] and is shown practical in [27]. In this case, both the actual and the redun-
dant computations are injected with the identical faults. As a result, the XOR
difference is 0 and the countermeasure in place senses it as a case of no fault.
Impeccable circuits [1] attempts to solve the problem by employing different
encodings for the two computations and finally with an error detection mecha-
nism. This idea is later extended to a block cipher named CRAFT [6]. Employing
such technique can increase the cost (depending on the error detecting code
used). For example, protecting against single bit faults at the output has 2.45×
overhead for CRAFT [6].

However, it may be noted that none of these duplication based countermea-
sures is able to protect against SIFA. SIFA only makes use of the cases where the
fault injection does not alter the regular flow of the cipher. All the countermea-
sures, including impeccable circuits/CRAFT, treat such a case as no fault. This
underlies the need for specialized countermeasures for SIFA, which is described
next.

3.2 Existing SIFA Countermeasures

To the best of our knowledge, four specialized countermeasures aiming at pro-
tecting against SIFA have been proposed in the literature. We describe those
here for better clarity.
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Repetition Code. Breier et al. propose an error correction based on binary
repetition code [10] and taking majority. Assuming the fault injection can alter
at most one bit, the error correction will fix it back to its original content. Hence,
the attacker will not get any information whether the fault has occurred or not.
This actually blocks the attacker’s ability to mount SIFA.

Masking and Repetition Code. Saha et al. [26] propose a two phase coun-
termeasure. The first type (called, transform) is based on masking that aims at
protecting faults induced into the state of the cipher. Further, under a stronger
attack model where the attacker can inject fault with high precision within the
computation of individual sub-operations like SBox, [26] proposes an encoding
which allows error correction. The countermeasure was tested with a LASER
based fault injection experiments and shown to be sound in a practical setting.
Depending on the attacker’s capability, the overhead limits to just that of a mask-
ing or error correction with masking. As an additional benefit, the implemented
masking protects the design against side channel attacks as well.

Error Detection Through Toffoli Gate and Masking. Daemen et al. [12]
propose an error detection mechanism based on Toffoli gates. This countermea-
sure acts as a combined SCA and a SIFA that targets at most one bit. The
non-linear components are designed using Toffoli gates in such a way that a sin-
gle bit flip would result in a garbage output. On top, the entire circuit is masked.
It may be mentioned that the concept relies on non-standard gates.

Error Correction. Shahmirzadi et al. [28] extend the idea of [1] to incorporate
error correction, and verifies with the open-source tool VerFI presented in [2]2.
The error correction is done through an error correcting code as the authors note
shortcoming of repetition with majority voting.

From the discussions, a few basic characteristics of the existing SIFA coun-
termeasures can be noted. Except [12], the rest (namely, [10,26,28]) depend on
some form of error correction, thus making the cost of such countermeasure at
least triple of the unprotected cipher. Error correction also suffers from the cov-
erage of the underlying error correcting code being used. The concepts of [12]
and [26] require masking, which is a costly operation. The scheme in [12] uses
detection, but relies on non-standard Toffoli gates. As elaborated in Sect. 4, our
proposed approach relies on simple duplication. Hence, no customized gate such
as Toffoli or costly operation such as masking would be required. This makes
our proposal the least expensive in the category.

4 Our Proposed Solution

Here we describe our proposed approach in more detail. As mentioned, the basic
idea of our approach is to use duplication in such a way that the attacker does
not get any useful information.
2 Available at https://github.com/emsec/VerFI.

https://github.com/emsec/VerFI
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As we noted in Sect. 3.1, the basic duplication based countermeasures fail to
protect against SIFA. Using an error detecting mechanism is said not to have
protection against the same [6]. Therefore, we use a novel idea that changes the
encoding of the bits to its inversion with probability 1

2 , so that the statistical bias
is removed. A basic pictorial and algorithmic descriptions are given in Fig. 2 and
Algorithm 1. Figure 2 shows a form of quadruplication, though both the branches
for λ = 0 and λ = 1 are not taken at the same time.

Here we choose a random bit λ (λ $← {0, 1}). It is regenerated at each invo-
cation and is kept secret from the attacker.

As a part of duplication, we run two instances of the cipher, namely the
actual (denoted by E1

K) and the redundant (denoted by E2
K) where E denotes

the cipher and K is the secret key, and the corresponding outputs are denoted
by C and C ′. However, depending on λ we either choose the logic as is (if λ = 0),
or the inverted logic where 0 is encoded as 1 and 1 is encoded as 0 (if λ = 1).
So, the input to E, denoted by P is passed as is if λ = 0; but as its inversion
P otherwise. The actual and the redundant computations for the inverted logic
are denoted respectively by E1

K and E2
K , and the corresponding outputs by C

and C ′.
After this, a recovery mechanism is applied. Here we adopt detection for

the purpose of illustration. Instead of detection, infection could be used if the
attacker is powerful enough to flip the 1-bit judgement condition, together with
another DFA-type fault at the cipher instance (more details in this regard can
be found in [4]). We choose detection as DFA protection is not the focus of this
work. In some sense, we also refute the claim made in [15].

As a part of the detection mechanism, the XOR difference (Δ for the actual
logic and Δ in case of the inverted logic) is computed at the end of the cipher
execution. For the actual logic, the output C is given if Δ = 0, otherwise a
garbage output is given or the output is suppressed. Similarly, for the inverted
logic, if Δ = 0 the actual output C is computed by inverting logic of C and
given, otherwise a garbage output is given/no output is given.

Hence, the encoding of the actual and the redundant computations are same
and is determined by the random bit λ. We assume the attacker can target at
most one of the computations. Under our countermeasure, the encoding of that
computation changes uniformly. More precisely, the probabilities of bit set and
bit reset for one particular bit are both equal. As λ is kept secret, the encoding
used is not known to the attacker. Suppose, the probability for bit set and that
of bit reset for an (unprotected) cipher are p0 and p1, respectively. Because of
the random encoding, both the probabilities are not (p0 + p1)/2. This destroys
the statistical property utilized by SIFA, thus rendering it useless.
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Fig. 2. Schematic for our SIFA protection (with detection mechanism)

Algorithm 1. SIFA Countermeasure (Ours)
Input: P ; K
Output: C if no fault (SIFA); suppress output, otherwise

1: λ
$← {0, 1} � λ is unknown to the attacker

2: if λ = 0 then � Actual logic
3: Δ = E1

K(P ) ⊕ E2
K(P )

4: if Δ = 0 then
5: return C = E1

K(P )

6: else � Inverted logic
7: Compute P from P
8: Δ = E1

K(P ) ⊕ E2
K(P )

9: if Δ = 0 then
10: C = E1

K(P )
11: Compute C from C
12: return C

Security of λ. It may be noted that λ plays a vital role in the overall security of
the countermeasure. In this context, we note the following points:

– The attacker can recover λ by SCA, if left unprotected. We believe, protecting
λ against SCA will incur minimal overhead as it is only one bit.

– The attacker can inject a bit flip (as in the case for DFA) to λ. However, this
will only flip the value of λ but will not affect the security of the countermea-
sure.

– The attacker can also inject a biased fault. This may lead to biased distribu-
tion of λ, and can compromise the security. However, we would like to note
that this would result in a second order SIFA. We do not consider this model
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Table 1. XOR and AND operations in inverted logic

(a) y = XOR(x0, x1) (b) y = AND(x0, x1)

x0 x1 x0 x1 y y x0 x1 x0 x1 y y

0 0 1 1 0 1 0 0 1 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1

1 0 0 1 1 0 1 0 0 1 0 1

1 1 0 0 0 1 1 1 0 0 1 0

within the scope as it is not yet proposed in the literature, to the best of our
knowledge.

Stuck-at Fault Protection. For simplicity, consider stuck-at 0 fault only. Regard-
less of the attacker’s ability, half of the time a particular bit will be encoded 0
and rest half of the time as 1. If the attacker is able to inject a stuck-at 0 fault,
then half of the times it will result in changed output (the cases where that bit
is encoded as 1) and hence be detected (by detective mechanism). Therefore,
such cases are not useful to SIFA (as SIFA only makes use of ineffective faults).
Rest half of the time, the attacker will know that the fault injection resulted
in a stuck-at fault. However, since it is assumed the attacker does not know
whether it is stuck-at 0 or stuck-at 1, such information will not be useful. We
thus conclude our proposal can resist against stuck-at based SIFA.

Effect on the Key Schedule. The key schedule algorithm will not change in the
inverted logic. Hence, no extra cost/protection would be necessary. The round
key addition operations are done by XOR.

4.1 Adopting Inverted Logic to Symmetric Key Ciphers

In order to see how the inverted logic works, first we show the inverted XOR
(XOR) and inverted AND (AND) operations in Table 1. With this, it is now
possible to convert an SBox to its inversion.

Now we discuss how to implement any symmetric key cipher in the inverted
logic. If the circuit is already described in terms of XOR and AND gates (typical
for stream ciphers), implementing it in inverted logic should be straightforward.
For a typical block cipher, the circuit is described in terms of a linear layer and
non-linear layer (such the SBoxes).

Adopting to Linear Layer. Overall, the linear layer can be classified into
three categories – bit permutation as in PRESENT [9], binary non-singular matrix
as in MIDORI [5], and non-singular matrix over higher order finite field such
as AES. However, at a closer look, all the three categories can be described
as binary non-singular matrices. In particular, bit permutation corresponds to
binary permutation matrices.
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Since bit permutation does not have any impact on the inverted logic imple-
mentation, we only consider the case with binary matrices. Suppose, we want
implement the matrix M = (mi,j) for i, j = 1 · · · n. Considering the system of
affine equations, y� = Mx� where y = (y1, . . . yn) and x = (x1, . . . , xn), we
can equivalently write, yk = mk,1x1 ⊕mk,2x2 ⊕· · ·⊕mk,nxn for each k = 1 · · · n.
Since in the inverted logic each variable xi will be inverted as well as the entire
result will inverted, we deduce,

yk = mk,1x1 ⊕ mk,2x2 ⊕ · · · ⊕ mk,nxn

= mk,1x1 ⊕ mk,2x2 ⊕ · · · ⊕ mk,nxn ⊕ 1
= mk,1(x1 ⊕ 1) ⊕ mk,2(x2 ⊕ 1) ⊕ · · · ⊕ mk,n(xn ⊕ 1) ⊕ 1
= mk,1x1 ⊕ mk,2x2 ⊕ · · · ⊕ mk,nxn

︸ ︷︷ ︸
⊕mk,1 ⊕ mk,2 ⊕ · · · ⊕ mk,n

︸ ︷︷ ︸
⊕1

= yk ⊕ (parity of kth row of M) ⊕ 1

Hence, converting a binary matrix to its inversion is straightforward. For exam-
ple, the AES MixColumn is a 32×32 binary matrix. The parity for each of its rows
is 1. Therefore, for AES MixColumn, the same source code/hardware description
will work for both the original logic and the inverted logic.

Adopting to Non-linear Layer. To begin with, consider the Boolean function,
y = x1 ⊕ x1x2. The inverted function, y is given by y = x1 ⊕ x1x2 = (1 ⊕ x1) ⊕
(1 ⊕ x1)(1 ⊕ x2) ⊕ 1 = x2 ⊕ x1x2 ⊕ 1.

With this example, now consider the PRESENT SBox, C56B90AD3EF84712 [9],
which is represented by the following coordinate functions (in ANF):

y0 = x0 ⊕ x2 ⊕ x1x2 ⊕ x3,

y1 = x1 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3,

y2 = 1 ⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3,

y3 = 1 ⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3.

Now the inverted SBox is given by the coordinate functions (in ANF) by (these
are obtained by inverting each variable):

y0 = 1 ⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x3,

y1 = x0 ⊕ x2 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3,

y2 = 1 ⊕ x1 ⊕ x0x2 ⊕ x3 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3,

y3 = 1 ⊕ x2 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3.

This leads us to the SBox DE8B701C25F649A3. The Algorithm 2 shows the
implementation of PRESENT-80 cipher in the inverted logic (which we call
PRESENT-80).
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Adopting to PRESENT-80. Now both the linear and the non-linear layers are
adopted to the inverted logic, we explain how the overall design would be adopted
for PRESENT-80. The key schedule, the round key additions (including the final
round key addition at the end) and the bit permutation layer would remain
unchanged. The state is inverted before and after the encryption function. Also
the SBox is changed in PRESENT-80 as DE8B701C25F649A3. Figure 3 gives visual
representation for PRESENT-80 in both the actual and the inverted logic.

It may be noted that the SBox in the inverted logic is not same as its inverse,
in general. For example, the inverse of the PRESENT SBox is 5EF8C12DB463 079A.
If an SBox with this property exists, it could be beneficial to reduced cost for a
combined encryption and decryption circuits if our countermeasure is adopted.
We leave this problem open for future research.

Plaintext Key

⊕

SBoxLayer
(C56B90AD3EF84712)

PermutationLayer Key Schedule

⊕ AddRoundKey
(for each round)

Ciphertext

31 rounds

(a) Actual logic (PRESENT-80)

Plaintext Key

⊕

SBoxLayer
(DE8B701C25F649A3)

PermutationLayer Key Schedule

⊕ AddRoundKey
(for each round)

Ciphertext

Invert

31 rounds

Invert

(b) Inverted logic (PRESENT-80)

Fig. 3. Overview of PRESENT-80 in actual and inverted logic

Algorithm 2. Convert PRESENT-80 to inverted logic (PRESENT-80)
Input: P ; K
Output: C
1: Run Key Schedule � No change (from PRESENT-80)
2: Compute P � Invert the bits of P
3: St = P � State is initialized
4: for i ← 1; i ≤ 31; i ← i + 1 do
5: St ← AddRoundKeyi(St) � Add the corresponding round key; No change
6: St ← SBoxLayer(St) � Use SBox DE8B701C25F649A3

7: St ← PermutationLayer(St) � No change

8: St ← AddRoundKey32(St) � Add the last round key; No change
9: C ← St � Ciphertext is the inverted state

4.2 Benchmarks

Evaluation of the proposed countermeasure is presented in terms of PRESENT-80 [9]
cipher (similar to [26]). Table 2 reports the area overheads of the countermeasure
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targeting the 45 nm NangateOpenCellLibrary PDK v13 v2010123 in terms of
NAND2 equivalents. Similar to [4], we do not consider the cost for generating
randomness.

Table 2. Area overhead of the proposed countermeasure

PRESENT-80 cipher implementation Gate equivalent (45 nm Technology)

Combinational Non-combinational Total

Unprotected 1620.00 844.32 2464.32 (1.00×)

Proposed countermeasure 3570.99 2264.66 5835.65 (2.37×)

As for the software benchmark, we note that the inverted implementation
can be done with only a little change to the actual cipher implementation. Thus
the code size will only be marginally increased. The time taken would also be
basically the same as the number of rounds for the cipher is invariant over actual
or inverted implementation.

4.3 Evaluation

The evaluation of the proposed countermeasure is done through fault attack
simulation on the gate-level netlist of the protected PRESENT-80 cipher, using
VerFI [2] (the same tool used in [28])4. It may be noted that the FA simulation
through VerFI considers much finer level granularity, not just the state bits,
thereby conforming to the SIFA-2 model used in [26].

We show in Fig. 4 an evaluation of our countermeasure through the simulation
tool VerFI when biased faults are applied at random locations at the 30th round.
The data shown in both Fig. 4(a) (unprotected) and Fig. 4(b) (protected by our
countermeasure) are collected over a simulation of 120000 runs for PRESENT-80,
for the cases where the fault is ineffective (therefore a usual duplication based
countermeasure would treat those cases as no fault). When the countermeasure
is applied, significant biases (that are caused by the fault) are removed, as seen
in Fig. 4(b). Thus, we conclude our countermeasure is capable of removing the
statistical bias.

4.4 Comparison with Existing Countermeasures

The hardware cost of protecting the 3 × 3 SBox χ of XOODOO [13]
by the SIFA countermeasures proposed in [10,12,26,28] using two 65 nm
technologies, namely UMC (uk65lscllmvbbh 120c25 t) and Faraday (fse0k d
generic core ss1p08v125c) are given in Table 3. The authors in [28] use [7, 4, 3]2

3 An open-source research cell library, available at https://www.silvaco.com/products/
nangate/FreePDK45 Open Cell Library/.

4 The source code we use can be found at https://github.com/vinayby/VerFI.

https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/
https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/
https://github.com/vinayby/VerFI
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Fig. 4. Evaluation of our countermeasure through VerFI simulation
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and [11, 4, 5]2 codes. Since χ is of three bits, we use a [6, 3, 3]2 code with the
generator matrix: ⎡

⎣
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

⎤

⎦ .

All in all, we conclude that our solution has the least overhead compared to
the rest of the countermeasures. Further, the evaluation is done through gate-
level simulation and hence is comparable to SIFA-2 of [26] (which is a stronger
SIFA model).

Table 3. Comparison of cost of protecting χ (of XOODOO) by SIFA countermeasures

Design Gate equivalent Method

UMC Faraday

χ (unprotected) 14.58 (1.0×) 14.06 (1.0×) –

Breier et al. [10] 45.14 (3.1×) 42.97 (3.1×) Error correction

Daemen et al. [12] No standard cell library exists Reversible computing

Saha et al. [26] >45.14 (>3.1×) >42.97 (>3.1×) Masking, Error correction

Shahmirzadi et al. [28] 71.53 (4.9×) 68.75 (4.9×) Error correction

Ours 27.77 (1.9×) 25.78 (1.8×) Remove bias by duplication

Here we note few other points. The proposal of [12] inherently requires mask-
ing (thus also protects against SCA), similar is the case for [26]. From a different
angle, only [12] relies on error detection, while the rest rely on some form of error
correction (hence the cost is at least tripled). Also, [12] needs Toffoli gates which
is not available in the standard gate libraries, to the best of our knowledge. For
this reason, we do not provide any benchmark for the protection proposed in
[12]. The cost for applying [26] protection is at least that of [10]. In comparison,
our proposal simply depends on duplication with randomized bit encoding. It
does not require masking or specialized gate, nor it is restricted by the error
coverage of the underlying code. In essence, the inverted logic based cipher can
be thought of as a cipher (which could also share components with the actual
logic based cipher). Also, our countermeasure works at the cipher design level
(thus it has an edge when adopting to any symmetric key cipher), whereas other
countermeasures work at the implementation level.

4.5 Connection with Side Channel Countermeasures

Our proposal does not have any inherent side channel protection. We men-
tion that side channel countermeasures can be easily adopted as essentially the
inverted logic based implementation works like a cipher. Hence, no special tech-
nique would be necessary.

As already mentioned, the randomly generated bit λ is needed to be protected
from a side channel attacker, aside from the usual protection for the actual and
redundant computations. We believe, this would add minimal cost since λ is only
of 1-bit.
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It is to be mentioned that our proposal does not inherently increase side
channel leakage (which happens for [10]). In fact, the basic concept used here is
similar to that of the Masked Dual-Rail Pre-charge Logic which was proposed as
a countermeasure to the side channel attacks in 2005 [24]. However, this method
was shown not secure in [14,29].

Since the countermeasure uses two different SBoxes (actual and inverted
logic), each SBox can depict minor differences in their side channel leakage
(for example, operating in two memory locations may result in distinct time
signatures). If such a model is considered within scope, we propose to com-
bine the two SBoxes (say, n × n) to one combined (n × 2n) SBox. For exam-
ple, the combined SBox in case of PRESENT-80 would be the 4 × 8 SBox:
CD, 5E, 68, BB, 97, 00, A1, DC, 32, E5, FF, 86, 44, 79, 1A, 23. Once this SBox has been
fetched from memory, either the most significant n bits or the least significant
n bits are obtained by masking the unnecessary part.

One idea to perform SCA is to check if there is any inversion of state at either
the beginning or the end (since this operation is done only for the inverted logic).
To prevent that, we propose to compute dummy inversion of the state both at
the beginning and at the end regardless of the value of λ, but then choose the
inverted state only when λ = 1.

5 Conclusion

In this work, we present a duplication based SIFA countermeasure. The basic
idea is to use randomized encoding for the state bits. This removes the statistical
bias caused by ineffective faults. Consequently, the attacker cannot mount SIFA.
Our countermeasure by far is the least expensive. More precisely, ours is the
only one in the category to have the overhead cost of less than thrice that of an
unprotected cipher. The verification is done through a gate-level SIFA simulation
tool. Our countermeasure, being designed at the cipher design level, is almost
readily adoptable to any symmetric key cipher.

In the future scope, one may consider a combined SIFA and SCA counter-
measure atop our design. Also, our design does not protect against double fault
(Sect. 3.1) since both the actual and redundant computations are using the same
encoding. Hence, one may think of extending our work to protect against double
fault. Another interesting problem could be to search for an SBox whose inverse
(in actual logic) is same as itself in inverted logic.
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Abstract. Most shipping companies provide a package tracking system
where customers can easily track their package delivery status when the
package is being shipped. However, we present a security problem called
enumeration attacks against package tracking systems in which attack-
ers can collect customers’ personal data illegally through the systems.
We specifically examine the security of the package tracking websites
of the top five popular shipping companies (Korea Post, CJ Logistics,
Lotte Logistics, Logen, and Hanjin Shipping) in South Korea and found
that enumeration attacks can be easily implemented with package track-
ing numbers or phone numbers. To show potential risks of enumeration
attacks on the package tracking system, we automatically collected pack-
age tracking records from those websites through our attack tool. We
gathered 1,398,112, 2,614,839, 797,676, 1,590,933, and 163,452 package
delivery records from the websites of Korea Post, CJ Logistics, Lotte
Logistics, Logen and Hanjin Shipping, respectively, during 6 months.
Using those records, we uncover 4,420,214 names, 2,527,205 phone num-
bers, and 4,467,329 addresses. To prevent such enumeration attacks, we
also suggest four practical defense approaches.

Keywords: Package tracking systems · Enumeration attack · Privacy

1 Introduction

Most shipping companies provide a web service to allow people to track their
packages and monitor the status of their package information online. A package
tracking number (PTN) or phone number is popularly used to check and track the
real-time package delivery status. That is, if a user enters a valid PTN or his/her
phone number, the package tracking website displays the corresponding package
status information along with some types of personal information, such as the full
or partial name of the sender or the receiver, time-stamps, transit locations, the
expected delivery time, etc. Such package tracking systems are widely used in the
shipping industry because they are highly usable and convenient for customers
to monitor and track their packages without directly logging in to the shipping
company’s website. As an example, Fig. 1 shows the package tracking website
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 543–559, 2020.
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provided by UPS (https://www.ups.com). If a user enters a valid PTN into the
input text field called ‘Track’, the website displays not only the details of the
package delivery status but also additional personal information (e.g., name,
phone number and address) of the sender or the recipient.

Fig. 1. UPS website for the package tracking service.

However, in most services, we found that explicit user authentication is not
required in package tracking websites. We surmise that a package tracking system
is generally designed for even non-members of the system to use their services
with ease because the sender and/or the recipient can be a non-member of the
system who cannot login to the website. At first glance, this package tracking ser-
vice seems to be a useful feature, because the package tracking status information
is only provided to the recipient and/or the sender who know the corresponding
PTN or user’s phone number. As long as these PTNs or phone numbers are kept
confidential among legitimate parties, displaying information can be adequate.
However, if those PTNs and phone numbers are guessable, then any 3rd party
can also see the displayed information. We are wondering whether this feature
can potentially be abused to harvest customers’ personal data such as customers’
names, phone numbers, and addresses at large scale; those stolen data would be
abused or sold for conducting ads or additional cyber criminal activities such as
sending spam/phishing messages [13] or creating Sybil accounts [11]. Recently,
Woo et al. [15] showed the possibility of enumeration attacks with the top three
package service providers (FedEx [4], DHL [3], and UPS [5]) in which the enu-
meration attack is a type of dictionary attack in which an attacker tries each
of a list of possible candidate values (in a valid format) to determine the cor-
rect secret values (e.g., email addresses, phone numbers, and PTNs) through an
online verification tool. However, their work was focused on those three service
providers only and did not explain how the existence of these attack vectors
is systemically detected and tested. Our work is motivated by extending their
research to additional services for generalization and developing a systematic
method to analyze the attack vectors related to web enumeration attacks on
different websites.

To achieve these goals, we first analyze the main causes of enumeration
attacks and then develop a framework to identify attack holes that can be
exploited to perform enumeration attacks. As case studies of our framework, we
chose the top five most popular shipping companies (Korea Post, CJ Logistics,
Lotte Logistics, Logen, and Hanjin Shipping) in South Korea and then analyzed
attack vectors of their package tracking websites.

https://www.ups.com
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To show the feasibility of enumeration attacks identified by our systematic
method, we implemented a tool to automatically collect users’ personal data
in package tracking services by enumerating a specific range of PTNs or phone
numbers. Although we focused on analyzing package tracking systems in South
Korea, our attack techniques were not designed to solely work on specific compa-
nies or countries. Our framework is generic enough and can be extended to any
package tracking systems in the world, which provide web-based status checking
information, as shown in Fig. 1. Our contributions are summarized as follows:

– We present a framework to systematically analyze enumeration attacks against
package tracking systems. Our research is the first to examine how web enumer-
ation attacks can be tested, exploited, and detected systematically.

– We implemented the automatic enumeration attack generation tool against
package tracking systems. Using this tool, we collected more than 4 million
package delivery records and identified more than 4 million unique names, 2
million unique phones, and 4 million unique addresses. We clearly show that
existing package tracking systems are at a real serious risk of revealing their
customers’ data.

– We propose four practical defense approaches for package tracking systems
such as limiting the number of PTN verification failed attempts, using CAPT-
CHAs, generating unpredictable PTNs, and minimizing information leakage
from those systems to reduce the chance of enumeration attacks. Our pro-
posed defense approaches would be integrated into the existing systems with-
out incurring significant costs.

2 Design of Enumeration Attacks

In this section, we explain how enumeration attacks can be launched automati-
cally to harvest users’ personal data from a target website. In the target website,
enumeration attacks can be implemented by sending a sequence of request mes-
sages for a specific service in the target website and monitoring the corresponding
responses in an automated manner. To generate valid request messages, attack-
ers should follow the data formats and protocols used in the service. Figure 2
shows the overview of the automatic enumeration attack testing framework con-
sisting of four steps. In the following sections, we present the process of each
step in detail.

2.1 UI Analysis

Given a web page as an input, the goal of this step is to analyze the web page
components and discover all web forms (e.g., <input type="text">) that can be
potentially exploited to perform enumeration attacks. The identified web forms
are passed to the step of “data-flow analysis.” We note that hidden fields can
be often used to implement enumeration attacks. Therefore, we also need to
consider hidden fields as candidate web forms for enumeration attacks.
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Input: Web page

UI analysis Data-flow
analysis

Input fields

(e.g., PTN)

Request 
generation

Response
monitoring

Server

Fig. 2. Overview of the proposed framework for automated enumeration attack testing.

2.2 Data-Flow Analysis

With the web forms delivered from “UI analysis,” we narrow down the list of
further possible candidate input fields (i.e., web forms) whose values can be
enumerated. In practice, it is hard to identify such input fields without any
information about input field formats. Therefore, we first collect or generate
some initial request message samples and then analyze the format of each input
field with those request messages. We can use a heuristic technique to determine
whether the values for each input field can be enumerated or countable by check-
ing whether input field values consist of (decimal or hexadecimal) digits only; if
an input field value contains characters other than digits, we remove the field
from the list of candidate input fields for enumeration attacks because it would
be difficult to define a rule to enumerate such input field values in an automated
manner.

2.3 Request Generation

Once candidate input fields are determined, the framework computes input field
values according to some pre-defined rules to enumerate input field values. Then,
a web testing tool generates service request messages containing an input field
value and sends it to the target web server.

2.4 Response Monitoring

The final step is to monitor and verify the response from the web server. We can
determine whether a service request message (containing enumerated input field
values) is correct or not, according to the query response result. The request is
successful if the query response is successfully returned; otherwise, it is failed.
Next, if successful, the proposed framework extracts the user data from the query
result. After finalizing this step, we go back to the step of “request generation.”
All steps can be repeatedly carried out to harvest a sufficiently large number of
user data.

3 Analysis of Services in Package Tracking Systems

To show the feasibility of our framework for performing enumeration attacks in
an automated manner, we analyze the services of package tracking systems.
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We first aim to investigate the attack surface of package tracking systems,
where enumeration attacks can be performed. To achieve this objective, we ana-
lyzed the top five most popular Korean package tracking websites (Korea Post,
CJ Logistics, Lotte Logistics, Logen and Hanjin Shipping), which can offer sev-
eral services related package delivery. Table 1 presents the input parameters,
which are needed to access each service of package tracking websites.

Table 1. Input parameters needed for each service of package tracking websites.

Company Checking the
status

Changing the
drop-off location

Requesting the
receipt

Returning
the package

Korea Post PTN PTN Authentication
code

PTN,
Recipient’s
name

CJ Logistics PTN – – PTN,
Recipient’s
phone
number

Lotte Logistics PTN – – PTN
Logen PTN – PTN PTN,

Recipient’s
phone
number

Hanjin Shipping PTN – – –

From Table 1, we can observe that most services can be accessed with PTN
and recipient’s name or phone number. We aim to exploit those services by
enumerating PTNs or phone numbers because they can be enumerated based on
our initial PTN structure analysis. Unlike other systems, the receipt requesting
service at Korea Post requires an internally generated authentication code (e.g.,
Hw17WzULnQ9BgnPZmd), which we will explain more in the next section.

In each package tracking website, the following four services are commonly
offered: 1) checking the package delivery status, 2) changing the drop-off location,
3) requesting the package delivery receipt, and 4) returning the package to the
sender. Figure 3 presents some examples of each service. However, we note that
the above four services can be abused to harvest users’ information if we fail to
protect PTNs or phone numbers from guessing. The detailed description of each
service and the types of displayed personal information are provided as follows:

1) Checking the Package Delivery Status. As shown in Figure. 3a, a user
can check the expected delivery time and tracking details. We can obtain the
following information through the package delivery status checking service: 1)
the package delivery status, time, and item; 2) the sender’s masked name and
address; 3) the recipient’s masked name and address; and 4) the courier’s name
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and phone number. For example, the sender’s and recipient’s names (e.g., ***soo
Kim) can be masked to hide their full names, while the courier’s full name is
revealed. Table 2 summarizes the detailed package, sender, recipient and courier
information provided by each company. Not surprisingly, the degree of informa-
tion provided through this service slightly varies across different companies.

(a) Checking the status (b) Changing the drop-off location

(c) Requesting the receipt (d) Returning the package

Fig. 3. Four common services in package tracking websites.

Table 2. Information types obtained from the package delivery status checking service.

Company Package Sender Recipient Courier

Korea Post Status, Time Masked name Masked name Name, Phone number

CJ Logistics Status, Time , ItemMasked name Masked name Name, Phone number

Lotte Logistics Status, Time City City Name, Phone number

Logen Status, Time Masked name, CityMasked name, CityName, Phone number

Hanjin Shipping Status, Time, Item Masked name Masked name, CityName, Phone number
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2) Changing the Drop-Off Location. In all services, the package is directly
delivered to the recipient’s home address by default. However, recipients can
often change their final drop-off location. As shown in Fig. 3b, the recipient can
choose a drop-off location to security office, unmanned delivery box, front door,
or other places.

Although three package service providers (Korea Post, CJ Logistics, and
Logen) offer an option to change the drop-off location, CJ Logistics, and Logen
do not provide any information through this service. From only Korea Post, we
can obtain the following additional information through the drop-off location
changing service: 1) the package item (e.g., electronics, books, etc.); and 2) the
recipient’s name and address.

3) Requesting the Package Delivery Receipt. Senders and recipients can
further request the receipt of payment for a proof of the package delivery. Two
package service providers (Korea Post and Logen) offer an option to display the
receipt of the payment for the package delivery, as shown in Fig. 3c. In particular,
we can obtain the following auxiliary information through the receipt requesting
service: 1) the package item, 2) the sender’s name, phone number and address,
and 3) the recipient’s name, phone number, and address. Table 3 summarizes
the auxiliary information types provided by each company.

Table 3. Information types obtained from the receipt requesting service.

Company Package Sender Recipient

Korea Post – Name Name, Address

CJ Logistics – – –

Lotte Logistics – – –

Logen Item Name, Phone number, Address Name, Phone number, Address

Hanjin Shipping – – –

4) Returning the Package to the Sender. Recipients often want to return
the received items to the senders. Therefore all package service providers except
Hanjin Shipping offer an option to allow users to return the received item through
their website. As shown in Fig. 3d, this service typically displays the sender’s
and recipient’s details such as their names and addresses. We can obtain the
following user and package information through the package returning service:
(1) the package item, (2) the sender’s name, phone number, and address, and (3)
the recipient’s name, phone number, and address. In Logen, the recipient’s name
and phone number are masked, while the sender’s name and phone number are
fully visible in plain text. Table 4 summarizes the auxiliary information types
provided by each company.
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Table 4. Information types obtained from the package returning service.

Company Package Sender Recipient

Korea Post Item Name, Phone number, Address Name, Phone number,
Address

CJ Logistics Item Name, Phone number, Address Name, Phone number,
Address

Lotte Logistics Item Name, Phone number, Address -

Logen Item Name, Phone number, Address Masked name, Masked
phone number, Masked
address

Hanjin Shipping – – –

4 Experimental Results

To show the feasibility of the proposed enumeration attacks presented in Sect. 2,
we implemented a tool to perform enumeration attacks in Python 3.7. We also
used an open source automated web testing tool, Selenium (https://selenium.
dev), to modify query cookies and HTTP headers. For testing, we executed this
tool on the Ubuntu 16.04 64-bit running on an Intel(R) Core(TM) i5-6500 CPU
(with 16GB RAM), equipped with a 100MB LAN connection.

If the package tracking record is successfully displayed on a web page while
performing enumeration attacks, we can extract specific customer’s data from
the web page. Interestingly, in some services (e.g., the receipt requesting service
at Logen, the drop-off location changing service at Korea Post, and the package
returning service at CJ logistics), customers’ data is not directly visible in the
web page because values are presented in hidden fields in the HTML source file.
Therefore, we use Chrome Devtools (https://developers.google.com/web/tools/
chrome-devtools) to extract hidden field values from the source file.

4.1 Enumeration Attacks with PTNs

We first manually collected several initial PTNs used in the four package tracking
systems (Korea Post, Lotte Logistics, Logen and Hanjin Shipping) to analyze the
underlying structure of valid PTNs for each system. On the other hand, for CJ
Logistics, we did not use PTNs because we found that enumeration attacks can
be more effectively implemented with phone numbers on package return service
– PTNs can additionally be obtained with phone numbers.

We used Naver (https://www.naver.com/), which is the most popular search
engine in South Korea, to collect valid PTNs. For the initial PTNs collection,
we searched web pages containing specific keywords such as “package tracking
number” and then extracted strings in the format of package tracking number
from the search results. As a result, we obtained the following number of initial
PTNs: 1,518 for Korea Post; 770 for Lotte Logistics; 1,693 for Logen; and 1,366
for Hanjin Shipping. With those initial seed PTNs, we can analyze the valid
PTN formats used for each tracking system, and they are summarized in Table 5,
where all service providers’ PTNs consist of digits only.

https://selenium.dev
https://selenium.dev
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://www.naver.com/
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Table 5. PTN formats and maximum possible PTN spaces.

Company PTN format Example Max. space

Korea Post 13-digits 1102914267781 1013

CJ Logistics 10- or 12-digits 101835579911 1012

Lotte Logistics 12-digits 101821471776 1012

Logen 11-digits 12796430323 1011

Hanjin Shipping 12-digits 304139498250 1012

Even though it is not feasible to correctly guess a specific PTN having the
range of 10–13 digits, enumeration attacks can be practically performed because
the goal of enumeration attacks is just to identify any valid PTNs rather than
to find a specific PTN. Furthermore, we found that PTNs are not randomly
generated. Therefore, we can efficiently find new valid PTNs from existing PTNs.
That is, given an initial PTN, we generate a candidate PTN by increasing a
certain number and try to search for tracking information with the candidate
PTN on the tracking service website. If the package tracking information is
successfully returned from the website, the information is crawled and stored in
a database; otherwise, we sequentially repeated the searching and crawling step
with the next candidate PTN. In Sect. 5, from the collected data, we will show
the difference between two consecutive PTNs is very small in practice.

4.2 Enumeration Attacks with Phone Numbers

For CJ Logistics, we specifically implemented a new enumeration attack, which
uses phone numbers by analyzing its Android application. Specifically, we
focused on designing enumeration attacks exploiting the package returning

POST / expre s s . xml/ d e l i v e r y . do?cmd=SAF˙LIST˙RCV˙C HTTP/1 .1
Host : mobile . c j l o g i s t i c s . com
. . .

–
”ḂPARAM” : –

”AUTH˙TEL1” : ”010” , PĠMONTH:0 ,
”AUTH˙TEL2” : ”1234” ,
”AUTH˙TEL3” : ”5678” , PĠNUM:1˝

˝

Fig. 4. Input parameters used to access the customer’s service usage history informa-
tion at CJ Logistics, where a user’s phone number (e.g., 010-1234-5678) is divided into
AUTH_TEL1, AUTH_TEL2, and AUTH_TEL3.
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service, because CJ Logistics’ package delivery status checking service only dis-
plays customers’ masked name instead of their full name (see Table 2).

We found that the CJ Logistics’ Android application provides a login option
for users’ phone numbers. For example, when the login process has been suc-
cessfully completed with a phone number, the user’s service usage history can
be accessed for 90 days. Figure 4 shows the example request message to obtain
the customer’s service usage history information. Therefore, if we modify the
B_PARAM field with another valid phone number in Fig. 4, we can easily obtain
the corresponding customer’s entire 90 of days service usage history information.

In the service usage history information, each transaction record is composed
of PTN, masked recipient’s name, city, and item information. Therefore, if we
have a customer’s phone number, we can obtain all those information. In fact,
the South Korea’s phone number format has 11-digits (e.g., 010-1234-5678) as
shown in Fig. 4. At first glance, the theoretically possible space of 11-digits seems
sufficiently large to resist against guessing because an attacker would try 1011

number of guesses at the worst case. However, phone numbers are not random
in practice; the first three digits (i.e., “010”) of phone numbers are always the
same. Furthermore, in the second part, there are some specific 4-digits that
appear more frequently. For example, the 4-digits between 0000 and 1999 are
reserved for the Korean government. Therefore the actual phone number space
is much smaller than our expectation, making enumeration attacks feasible.

4.3 Summary of Enumeration Attack Results

In Table 6, three possible attack results are presented for each service. Specifi-
cally, “Attacked” means when the service can be executed with artificially gener-
ated input parameters (e.g., PTN, phone number, and/or name) in a short time
(e.g., within a minute), and “Not Attacked” represents when we failed to find a
method for enumeration attacks. “Not Applicable” indicates when the service is
not provided or there is no personal information provided by the service.

Table 6. Summary of our attack analysis results for the top 5 package delivery
providers in South Korea.

Company Checking
the status

Changing the
drop-off location

Requesting
the receipt

Returning
the package

Korea Post ✓ ✓ ✗ ✓

CJ Logistics ✓ — — ✓

Lotte Logistics ✓ — — ✓

Logen ✓ — ✓ ✓

Hanjin Shipping ✓ — — —
✓ Attacked ✗ Not Attacked — Not Applicable

As explained in Sect. 4.1 and 4.2, we can successfully perform enumeration
attacks on all the services, requiring PTN alone as input parameter (see Table 1).
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At first glance, it does not seem straightforward to implement enumeration
attacks on the other four services (the receipt requesting service at Korea Post,
the package returning service at Korea Post, the package returning service at CJ
Logistics, and the package returning service at Logen), because those services
require some other parameters in addition to PTN.

However, for the package returning service at Korea Post, CJ Logistics, and
Logen, we can still perform enumeration attacks efficiently. For the package
returning service at Korea Post, two input parameters (PTN and the recipient’s
name) are needed (see Table 1). In this case, we first obtain the recipient’s name
with a PTN through the drop-off location changing service and perform enumer-
ation attacks on the package returning service with a PTN and the recipient’s
name. Figure 5 illustrates this process in detail.

Fig. 5. Process of enumeration attacks on Korea Post: 1) we first perform an enu-
meration attack with PTNs on the drop-off location changing service; 2) we extract a
recipient’s name from the search result if a valid PTN is entered; 3) we then execute
the package returning service with the obtained PTN and name; and 4) we extract the
target personal information from the search result of the package returning service.

Similarly, for the package returning service at Logen, we first obtain the
recipient’s phone number with a PTN through the receipt requesting service (see
Table 3) and perform enumeration attacks on the package returning service with
the PTN and the recipient’s phone number. For the package returning service
at CJ Logistics, we can use phone numbers instead of PTNs for enumeration
attacks. As explained in Sect. 4.2, we can obtain PTNs with phone numbers
by modifying the parameters to access the user’s service usage history at its
Android application. In summary, we only failed to perform enumeration attacks
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on the receipt requesting service at Korea Post because this service requires an
internally generated authentication code to access (see Table 1).

5 Analysis of Collected Data

During 6 months (from May 2019 to November 2019), we collected package
delivery records as follows: 1,398,112 for Korea Post; 2,614,839 for CJ Logistics;
797,676 for Lotte Logistics; 1,590,933 for Logen; and 163,452 for Hanjin Ship-
ping. We collected at least 700,000 package delivery records from all providers
except Hanjin Shipping. Hanjin Shipping blocked the IP addresses used for our
experiments. We surmise that Hanjin shipping only used a proper security solu-
tion to block the IP addresses used for generating a large volume of suspicious
queries within a short time interval.

From the collected package delivery records, we count each type of customers’
personal data categorized by sender’s and recipient’s name, phone number, and
address, after removing duplicated customer data. The results are presented in
Table 7.

Table 7. Numbers of customers’ personal data categorized by name, phone number
and address.

Company Sender Recipient
Name Phone number Address Name Phone number Address

Korea Post 19,712 1,207 18,012 1,220,350 822,159 1,212,029

CJ Logistics 128,426 52,329 56,062 1,811,325 724,824 1,734,623

Lotte Logistics 7,268 1,844 5,004 – – –

Logen 204,405 92,755 140,847 1,388,539 980,222 1,366,470

Hanjin Shipping – – – – – 154,207

Total 359,811 148,135 219,925 4,420,214 2,527,205 4,467,329

Personal Information. As shown in Table 7, the number of senders’ data is less
than the number of recipients’ data because a vast majority of senders are profes-
sional sellers or companies, while most recipients are normal customers. There-
fore, we note that recipients’ personal information appears more attractive to
attackers than senders’ information. For recipients’ data, we collected 4,420,214
names, 2,527,205 phone numbers, 4,467,329 addresses, respectively, in total. Per-
haps, such people’s personal information could be abused to conduct additional
cyber criminal activities such as sophisticated spam/phishing attacks [8,13] and
Sybil accounts creation [11], and invade user privacy. For example, we found that
some military officers used their military rank as a part of their name (e.g., Cap-
tain John Doe). In this situation, their private home address or the location of
a military base can be exposed to the public including potential attackers. Fur-
thermore, a celebrity’s phone number and/or home address can be potentially
revealed by linking his/her publicly known other information (e.g., real name,
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location of home address). Previous studies demonstrated that the inclusion of
more detailed contextual information would increase the success probability of
phishing attacks [9].

Fig. 6. Example of targeted SMiShing attacks.

Figure 6 shows a targeted SMiShing attack, which is a type of phishing com-
munication that is sent to a victim’s mobile phone through an SMS message.
In this example, the personal information (name, PTN, and address) about a
victim (John Doe) is added to deceive the victim into believing that this SMS
is sent from the original shipping company (CJ Logistics) in order to entice the
victim to click the link to the attacker’s website.

Predictability of PTN. Furthermore, we examine patterns in a sequence of
PTNs to predict PTNs. We specifically measure the difference between two con-
secutive PTNs (ΔPTN(i) = PTN(i + 1) − PTN(i)) where PTN(i) is the ith
PTN in the sequence of PTNs. We calculate the cumulative distribution func-
tions (CDF) of ΔPTN(i) (from 1 to 20) with all the collected PTNs from Korea
Post, CJ Logistics, Lotte Logistics, Logen, and Hanjin Shipping tracking sys-
tems, respectively.

Figure 7 shows the calculated CDFs for Korea Post, CJ Logistics, Lotte Logis-
tics, Logen, and Hanjin Shipping, respectively, where the X-axis represents the
difference between two successive PTNs1, and the Y-axis represents the cumula-
tive percentage of the number of PTNs with less than or equal to ΔPTN . We can
see that in most cases, the gaps between two successive PTNs are smaller than
20, indicating that PTNs can be efficiently enumerated in a sequential manner.

6 Possible Defense Mechanisms

In this section, we suggest three possible defense mechanisms to mitigate the
security threats.
1 We denote ΔPTN(i) for all i in the collected PTNs as ΔPTN .
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Fig. 7. Cumulative distribution function (CDF) of ΔPTN for Korea Post, CJ Logistics,
Lotte Logistics, Logen, and Hanjin Shipping.

Limiting the Number of PTN (or Phone Number) Verification Failed
Attempts: Limiting the number of PTN (or phone number) verification failed
attempts can be the first line of defense to prevent enumeration attacks because
a large number of PTN (or phone number) verification failed attempts are nec-
essarily induced while performing enumeration attacks. In practice, this app-
roach can be implemented by simply counting the number of verification failed
attempts from a specific client. Hence, we can apply this policy in package track-
ing systems with a low deployment cost. The idea of limiting the number of
attempts from a specific client (e.g., with an IP address) or imposing a mini-
mum time interval between failed attempts is not new [6]. However, none of the
package tracking systems that we tested to limit the number of failed attempts,
and seem to be considering enumeration attacks2. If we deploy the policy of
“maximum failed attempts allowed,” attackers would try to change their strat-
egy into more complicated enumeration attack scenarios (e.g., [11]) with multiple
hosts and diverse query patterns, leading to the increase in attackers’ efforts.

Using CAPTCHA Challenges: Another promising approach is to use
CAPTCHA [16] challenges to hinder automated attempts which are necessary
to perform enumeration attacks. However, the use of CAPTCHA challenges can
incur the usability cost of taking the time to solve CAPTCHA challenges for

2 We believe that Hanjin Shipping would use a DDoS mitigation solution at the net-
work level rather than the policy of “maximum failed attempts allowed” at the web
application level because we cannot access the website itself when we queried mul-
tiple times within a short time interval.
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normal users. Therefore, it seems better to combine this approach with our first
recommendation – we can ask users to solve a CAPTCHA problem only when
the number of PTN (or phone number) verification failed attempts is greater
than the maximum number of failed attempts allowed (e.g., five) or suspicious
query patterns are detected.

Generating Unpredictable PTNs: The problem with PTNs is that they are
highly predictable and can easily be enumerated3 (see Fig. 7). Therefore, we need
to change the existing structure of PTNs by reserving at least some reasonable
number of digits (e.g., 6 digits) in PTNs to represent a random number, which
makes PTNs harder to enumerate within a reasonable time. A cryptographically
secure pseudo-random number generator (CSPRNG) such as Fortuna [12] can
be used to generate random digits in an unpredictable manner.

Minimizing Information Leakage: Current package tracking systems pro-
vide unnecessary personal information about sender and recipient in their online
website, which can be viewed and harvested by a third party. To address this
problem, we suggest that package tracking systems should not provide any per-
sonal information (e.g., name, phone number, address, etc.) about the sender (or
recipient) with a PTN alone. That is if a user enters a PTN or his/her phone
number, package tracking websites can show the only information about package
status such as current package location and estimated delivery date, but no user-
related personal data. For some situations where senders’ or recipients’ personal
data is needed (e.g., some recipients may want to contact their senders), however,
sender’s (or recipient’s) personal data can be additionally provided only when
the recipient (or sender) successfully logs-in into the package tracking website.

7 Ethical Considerations

The main motivation of our experiments is to show the risk of potential enu-
meration attacks on package delivery service and discuss effective defense mech-
anisms to mitigate such attacks. Therefore, we only checked service providers’
responses for our enumeration attack attempts; however, actual user data were
not stored. Furthermore, we queried the websites’ tracking services at a very slow
rate to minimize adverse impacts on the websites’ normal operations. Finally,
we reported the discovered design flaws and our recommendations to shipping
companies running those services.

8 Related Work

In recent years, the possibility of enumeration attacks has been intensively stud-
ied in social network and instant messenger services.
3 We surmise that PTNs may contain some meaningful information (e.g., location and

time) about package delivery records because they have a well-formatted structure.
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Balduzzi et al. [7] discussed the possibility of enumeration attacks to auto-
matically harvest active email addresses by using Facebook’s friend-finder fea-
ture. About 10.4 million e-mail addresses were tested and more than 1.2 million
user profiles were found to be associated with these addresses. To fix this prob-
lem, Facebook employed several defense mechanisms such as detecting suspicious
query patterns and using CAPTCHA challenges. More recently, however, Kim
et al. [11] showed that an advanced enumeration attack scenario with a few
Sybil accounts can evade those defense mechanisms in the real-world situations.
Similar problems related to enumeration attacks were also reported in instant
messenger services. Schrittwieser et al. [14] presented an enumeration attack
to collect 21,095 live phone numbers from WhatsApp within less than 2.5 h.
Kim et al. [10] also collected 50,567 users’ phone numbers, names, and pro-
file pictures from KakaoTalk (https://www.kakaocorp.com/service/KakaoTalk?
lang=en) through enumeration attacks. Gupta et al. [8] demonstrated that the
collected phone numbers could potentially be abused to perform sophisticated
targeted phishing attacks or a larger phishing campaign. Recently, Woo et al. [15]
demonstrated the possibility of enumeration attacks with the top three package
service providers (FedEx [4], DHL [3], and UPS [5]). However, their work was
focused on those three service providers only and did not explain how enumer-
ation attacks can be systematically detected and tested. We extend their study
to additional services for generalization, and further develop a framework to sys-
temically analyze the attack vectors related to enumeration attacks on websites.

Many customers are already concerned about shipping companies that have
maintained customers’ personal data insecurely. For example, personal informa-
tion of thousands of FedEx customers was exposed [1] because of the insecure
cloud storage server. Also, USPS exposed 60 Million user information due to the
flaws in its APIs [2].

9 Conclusion

In this work, we examined the possibility of enumeration attacks on existing
package tracking systems. We developed effective enumeration attack scenar-
ios for the websites of top shipping companies (Korea Post, CJ Logistics, Lotte
Logistics, Logen and Hanjin Shipping) in South Korea. Our experimental results
demonstrate that those companies do not fully consider a reasonable level of
security practices to protect their customer data. We collected a large number
of package delivery records from those companies’ websites and finally extracted
4,420,214 names, 2,527,205 phone numbers, and 4,467,329 addresses in total
through our enumeration attack implementations in an automated manner. To
address this security concern, we suggest four practical defense approaches such
as limiting the number of PTN verification fail attempts, using CAPTCHA chal-
lenges and generating unpredictable PTNs to prevent enumeration attacks.

Although our analysis and observation are package tracking system-specific,
they could offer valuable lessons for other websites that provide services with
tracking numbers alone. As part of future work, we plan to implement a generic
tool for testing the possibility of enumeration attacks on websites.

https://www.kakaocorp.com/service/KakaoTalk?lang=en
https://www.kakaocorp.com/service/KakaoTalk?lang=en
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Abstract. Extensions are used by many Chrome browser users to enhance
browser functions and users’ online experience. These extensions run with special
permissions, they can read and modify the element of DOM (Document Object
Model) in users’ web pages. But, excessive permissions and operation behaviors
have brought users heavy risks such as the privacy leakage caused by extensions.
Dynamic taint analysis techniques are often exploited to discover the privacy leak-
age, it monitors code execution by modifying the JavaScript interpreter or rewrit-
ing the JavaScript source code. However, interpreter-level taint technique needs to
overcome the complexity of the interpreter, and there are also many difficulties in
designing taint propagation rules for bytecode. And source-level taint technique
is undertainted like Jalangi2, which will trigger some exceptions in practice.

To this end, we design JalangiEX based on Jalangi2. JalangiEXfixes problems
in Jalangi2 and strips its redundant codes. Besides, JalangiEX also monitors two
types of initialization actions and provides taint propagation support for message
passing between different pages, which further solves the undertaint problem of
Jalangi2. Moreover we implement JTaint, a dynamic taint analysis system that
uses JalangiEX to rewrite the extension and monitors the process of taint propa-
gation to discover potential privacy leaks in Chrome extensions. Finally, we use
JTaint to analyze 20,000 extensions from ChromeWeb Store and observe the data
flow of extensions on a special honey page. Fifty-seven malicious extensions are
recognized to leak sensitive-privacy information and are still active in the Chrome
Web Store.

Keywords: Chrome extension · Privacy-leakage · Taint propagation

1 Introduction

Among Chrome, Firefox, IE, and other browsers, Chrome occupies 60% of the world’s
users due to its simple, efficient, and secure features. Like other browsers, Chrome also
supports extra extensions to enhance browser features and users’ experience. People
can use extensions to manage tags, collect web page information, and modify network
requests.

Chrome extension can freely observe users’ behaviors on the page without applying
for additional permissions, because these privileges are granted to installed extensions
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by default. Therefore, user identity, browsing behavior, financial transactions, and other
information generated byusersmaybe captured by extensions,whichwill cause informa-
tion leakage. TheApplied Threat Research Team [1] disclosed four malicious extensions
in 2018, affecting a total of more than 5 million users. These extensions will proxy vic-
tim’s network traffic, implement conduct click fraud and search engine optimization. In
2019, Jadali [2] disclosed the privacy leaks of eight malicious extensions such as Hover
Zoom in a report that affected a total of more than 4 million people.

There have been many researches on browser extension security, including static
analysis [3–7] and dynamic analysis [8–18]. Since static analysis methods tend to be
weak in dealingwith code obfuscation and runtime information collection, dynamic anal-
ysis is increasingly favored by researchers. Extension dynamic analysis mainly focuses
on network traffic analysis [8, 9], API call analysis [10–13], and data flow analysis
[14–18]. Traffic analysis is a relatively direct way to recognize sensitive-privacy words
among browser network traffic, but it is easy to miss privacy leakage due to obfuscation
and encryption [8, 12]. API call analysis needs to collect the critical APIs in extension
operations, then perform model training and classify them, but its malicious behavior
recognition is content-insensitive. Data flow analysis requiresmore fine-grained tracking
of the code execution to analyze the flow of private data.

Dynamic taint analysis is a type of data flow analysis, it is often effective in finding
privacy leaks. Information-flow policies can be defined between Chromium entities such
as DOM elements and scripts to implement coarse-grained, light-weight taint tracking
[15]. A fine-grained, heavy-weight tracking needs to be based on operation instruc-
tions, which can be achieved from the perspective of modifying the JavaScript engine
(interpreter-level) and rewriting the extension code (code-level).

The interpreter-level solution adds taint propagation code during the execution of the
bytecode of the JavaScript interpreter. Mystique [16] modifies the V8 engine of Chrome
to perform dynamic taint analysis. It is difficult to support various interpreters, specially
interpreter update or patch.

The code-level solution is to rewrite the extension code, that is, to add instrumenting
instructions directly to the source code. This solution does not modify the JavaScript
interpreter, so it can run in all environments that support the standard JavaScript syntax.
ExtensionGuard [17] uses Jalangi2 [19] to rewrite extension codes and inject taint prop-
agation rules. However, Jalangi2 will report an error when processing JavaScript code
above the ECMAScript5 standard, since it stops update as early as 2017. Furthermore,
ExtensionGuard will miss some sensitive-privacy information in practice due to special
data type.

In this paper, we fixed the problems existing in Jalangi2, and broke the limitation
of ExtensionGuard to solve the undertaint problem. In summary, our contributions are
described as follows.

1. We propose a novel taint analysis technique to handle undertaint in Jalangi2. Using
this technique, we provide necessary and additional both taint data type, and taint
propagation among message passing.

2. We present JTaint, a dynamic taint analysis framework that builds on our technique
to discover abuse privacy-sensitive information. This framework strips unnecessary
code in Jalangi2 according to taint analysis and constructs a separate library to
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support chrome extension instrumentation. The source code of JTaint is available at
https://github.com/whucs303/JTaint.

3. More than 20,000 chrome extensions are investigatedwithin our analysis framework,
57 of which leaked user privacy. In these extensions, obfuscations of taint data are
identified and taint propagation models are recognized.

2 Background

Becauseof its simple interface, fast speed, and extension support,Chromehas become the
most popular browser in the world. This section gives the introduction of chrome exten-
sion, and the communication mechanism between different pages. Sensitive-privacy
information leakage will be discussed.

2.1 Chrome Extension

Chrome extension is a compressed file with a suffix named crx, consisting of JavaScript,
CSS, HTML, and a manifest file that indicates the permission and running setting of
JavaScript files. Chrome extension runs on the browser and calls the Chrome API to
implement special functions through JavaScript, such as modifying tabs, intercepting
network requests, blocking ads, managing bookmarks and history.

Unlike ordinary JavaScript programs, scripts in the extension run in different envi-
ronments according to the match patterns declared in the manifest file and have different
permissions. There are three types scripts [20]: Background Script, Content Script, and
Injected Script.

Background Script. It runs on a separate page and can use all the APIs provided by
the Chrome browser for the extension, and manages global states.

Content Script. It is responsible for interacting with the web page viewed by the user,
and can read and modify the details of the web page that the user visits.

Injected Script. It is inserted into to the user web page by the content scripts, and
can access the JavaScript environment in the page, but cannot use the API provided by
Chrome for the extension.

2.2 Message Passing

The extension’s three scripts run in separate environments, in Fig. 1. Popup pages, option
pages, and background pages belong to the extension’s background. They can use the
API provided by Chrome to obtain the window object of other pages directly, so no
communication is required. There are other message transmissions among the three
scripts below.

Injected Script and Content Script share the DOM object of the page, so they can
use the communication function provided by the window object to pass messages.
The sender uses the window.postMessage to send messages, and the receiver uses the

https://github.com/whucs303/JTaint
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Fig. 1. Relationships of 3 types of scripts

window.addEventListener to set a message listener for receiving. Content Script and
Background Script can use the message mechanism provided by Chrome to exchange
information, which supports two types: one-time request and long-lived connection.
The one-time request uses the runtime.sendMessage or tabs.sendMessage to send a one-
time JSON-serializable message. The receiver initializes a runtime.onMessage event
listener to handle the message. The long-lived connection uses the runtime.connect or
tabs.connect to create a long connection channel. Each channel returns a runtime.Port
object after creation and the communicating peers use the port object to send or receive
data. The Fig. 1 illustrates the relationships among the three scripts.

2.3 Privacy Leakage Threat

Chrome extension uses least privilege, privilege separation, and strong isolation [21]
to mitigate the security threats posed by extension. But related researches show that
there are still many malicious extensions in the ChromeWeb Store. Hulk [10] sorted out
some of the typical malicious behaviors, including Ad Manipulation, Affiliate Fraud,
Information Theft, OSN Abuse, and so on. Threats caused by extensions will be further
extended to other components of Chrome, Dolière’s research shows that malicious Web
Applications can communicate with extensions to empower themselves [22].

In this paper, we focus on the privacy threats that Chrome extensions pose to users.
Chrome provides multiple permissions for extensions, but some of them are quite dan-
gerous. For example, the clipboardRead permission can access the data copied and
pasted by the user; the privacy permission can manage privacy-related settings of the
user. Chrome extension has such high permissions that it can get almost all the informa-
tion generated by the user. However, Chrome only pops up a prompt after the extension
is installed or updated to inform the permissions requested by extension, and lacks the
mechanism for runtime permission application. Besides, users often lack attention to the
security threats of extensions, and can easily ignore the high-risk permissions requested
by extension.

Our crawler shows that the Chrome Web Store currently has more than 100,000
extensions. Faced with such a large number of extensions, the review mechanism of
the store for extensions seems too loose. Adblock Plus is a well-known ad-blocking
extension, but after its release, malicious extensions such as Adblock and uBlock have
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also been successfully listed in Chrome Web Store [23]. These two extensions engage
in cookie stuffing to defraud affiliate marketing programs. In general, due to the loose
reviewmechanism, the high permissions of the extension, and the low-security awareness
of some users, Chrome extension has brought considerable privacy threats to users.

3 System Design

In this section, we will first describe the structure of JTaint, and then introduce two
improvements of JalangiEX compared to Jalangi2.

3.1 JTaint OverView

JTaint runs instrumented extensions in Chrome and monitors the taint propagation
through dynamic taint tracking. The structure of JTaint is shown in Fig. 2.

Analysis 
Result

JalangiEX Taint Analysis 
Code

Chrome 
Extensions

Honey Page

Chrome Extensions 
after 

instrumentation

Privacy 
Dictionary

Chrome Browser

Fig. 2. JTaint design

JTaint first calls JalangiEX to instrument the extension and adds the taint analysis
code to it. JTaint then installs the rewritten extension into Chrome and simulates it on
the honey page. Finally, JTaint outputs the results of taint propagation. In order to trigger
more malicious behaviors, we use the following two schemes:

• We simulate extensions on the honey page specially constructed by the privacy dic-
tionary. We use the NLP technique to expand 43 privacy word seeds into 411 privacy
words, and use them as the id of DOM elements to generate the honey page to trigger
more privacy-leaking behaviors in the extension.

• We use ChromeDriver to automatically simulate form filling, form submission, and
page switching on the honey page to trigger certain event listeners registered by
extensions.

In this paper, we only consider privacy-leaking extensions that are not sensitive to
URLs, because JTaint only simulates extensions on the honey page. For example, for
the extension that steals the sensitive form of pages, JTaint can detect it correctly, but
JTaint may not be able to discover the privacy theft of special extension that only runs
on predefined sites like Twitter.



568 M. Xie et al.

3.2 Optimization for Jalangi2

We will discuss problems when applying Jalangi2 to the extension analysis. And then,
we will present improvements in these issues, which are integrated into JalangiEX.

Jalangi2 Overview
As the dynamic analysis framework of JavaScript language, Jalangi2 implements instru-
mentation by rewriting code, to achieve dynamic monitoring of JavaScript code runtime.
Jalangi2 first parses the JavaScript code into Abstract Syntax Tree (AST), and then con-
verts 25 types of nodes defined by AST into 30 types of intermediate codes defined by
Jalangi2, in the Post-Order Traversal of the nodes. During program execution, interme-
diate codes will transfer control to the Analysis Function before and after completing
the original semantics. Users can customize analysis code in these 29 types of Analysis
Functions, to implement dynamic monitoring of JavaScript code runtime. We show this
process in Fig. 3.
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Node Type
25 types in total

Intermediate Code
30 types in total

Analysis Function
29 types in total

J$.Fe
J$.Fr
J$.F
J$.P
J$.G
J$.R
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Literal

Binary
Expression

Function
Expression

Logical
Expression

Fig. 3. Jalangi2’s process

Striping Redundant Codes of Jalangi2
Jalangi2 is unmaintained at least two years old. In using Jalangi2, we found the following
problems:

Problem 1. Jalangi2 reports errors when instrumenting some JavaScript codes. There
are twomain reasons for these errors. On the one hand, Jalangi2 uses the Acorn library to
convert between JavaScript source code andAST.Updating theAcorn library can prevent
Jalangi2 from reporting errors when processing syntax defined in the new JavaScript
syntax standard.On the other hand, Jalangi2maybreak the correct structure ofASTwhen
rewriting them, which will cause the modified AST cannot be converted into JavaScript
source code. For example, Jalangi2 will report errors when rewriting codes that contain
Class syntax. This is because Jalangi2 incorrectly converted the FunctionExpression
Node to the CallExpression Node when processing Class syntax, which prevents the
AST from being translated into source code.

Problem 2. Code rewritten by Jalangi2 reports errors that do not exist in the original
code in execution. This is mainly due to the slight semantic difference between the
rewritten code and the original code. For example, Jalangi2 will add a layer of exception
catching code outside the instrumented code,whichmay cause the scope of the variable to
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change. Besides, Jalangi2 uses arguments.callee to get the currently executing function,
but this syntax is forbidden in strict mode.

Code rewritten by Jalangi2 is complicated. We tested on 363 JavaScript files and
found the volume of the rewitten script increased by an average of 17 times compared
to the original script. Complex instrumentation results are the reason why Jalangi2 is
prone to the two types of problems. Therefore, JalangiEX strips redundant code that is
not needed for dynamic taint analysis in Jalangi2.

According to the taint propagation rulewe defined, JalangiEX needs towrite analysis
codes in 5 types of Analysis Functions to detect the source and sink points and control
taint propagation. According to reverse traceback based on the Jalangi2working process,
there are 7 types of Intermediate Codes that call these 5 types of Analysis Functions in
execution. Therefore, among the 30 types of Intermediate Codes defined by Jalangi2,
the remaining 23 types can be deleted, which will not affect the accuracy of dynamic
taint analysis. Similarly, of the 25 Node types rewritten by Jalangi2, only 12 of them
need to be rewritten for code monitoring.

Extracting the Library Dependencies from Jalangi2
The execution of instrumented JavaScript code requires the library dependencies pro-
vided by Jalangi2, the code length of the library is about 10,000 lines, including the
definition of intermediate codes and analysis functions. Starting from the 7 Intermediate
Codes and 5 Analysis Functions required for dynamic taint Analysis, we strip the library
dependencies to about 1000 lines and add it to the header of the instrumented script.
When the script is running, it will first check whether the current environment contains
library dependencies and add them if they are missing. Therefore, this solution does not
repeatedly introduce library dependencies in the same environment to avoid unnecessary
execution overhead. The process is shown in Fig. 4.

JalangiEXOriginal 
Code

Instrumented 
Code

Library 
dependencies

If(J$ === undefined)
//Dependencies
…

//Instrumented Code
...

Instrumented JavaScript

Fig. 4. Build process of instrumental JavaScript.

3.3 Fixing the Undertaint of Jalangi2

Jalangi2 suffers from the undertaint problem when applied to dynamic taint analysis,
which is mainly due to the lack of monitoring of certain codes. We will describe two
types of undertaints in this section, and JalangiEX’s solution.

Monitoring Object and Array
Jalangi2 lacks monitoring of initialization of two basic types, Array and Object, and they
play an important role in taint propagation. As shown in Fig. 5(a), because of the lack
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of monitoring of the Object initialization process, the variable taintURL cannot spread
its taint into the entire object, resulting in the taint propagation being interrupted and the
privacy leakage cannot be found.

1. $.ajax({
2. url: taintedURL,
3. dataType : 'json'
4. });

1. var list = ['a']; // Original Code
2.
3. var list = (function(){ // Source Code
4. var temp = [];
5. J$.F('17', [].push, temp, 0)('a'); // origin: temp.push('a')
6. return temp;})();

(a) Object Statement  (b) Array Statement

Fig. 5. The statement about array and object respective.

In order to solve this problem, we added the rewrite processing of two types of
Node: ArrayExpression and ObjectExpression in JalangiEX. They correspond to the
initialization statements of the two basic types of Object and Array, respectively.

Taking ArrayExpression as an example, the statements corresponding to the Array-
Expression node before and after rewriting are shown in Fig. 5(b). We decompose the
initialization process of array into two parts: initializing an empty array and adding ele-
ments to the array. The initialization process of an empty array does not contain any
elements, so no monitoring is required. The subsequent process of adding elements to
the array is monitored by the intermediate code J$.F. Thus, the taint status of elements
will be spread to the array.

Monitoring Message Passing
According to the introduction of Message Passing [24] by the Chrome Extension Devel-
opment Guide, extension’s three types of scripts can use eight communication functions
listed in Table 1 to pass messages within the extension.

Table 1. Communication functions of extension.

Type Communication function

Send chrome.runtime.sendMessage

chrome.tabs.sendMessage

chrome.runtime.connect

chrome.tabs.connect

Receive chrome.runtime.onMessage.addListener

chrome.runtime.onConnect.addListener

Send window.sendMessage

Receive window.addEventListener(‘message’)
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The sending function serializes the data to be sent, and the receiver deserializes it.
JTaint records taint status in variable’s attributes, so it will not be sent with the variable
serialized,whichwill cause undertaint inmessage passing process. To solve this problem,
we use Jalangi2 to hook these eight communication functions, and design the encode and
decode functions to wrap messages before and after they are sent. These two functions
can record taint status during serialization and parse taint status to the results during
deserialization. Messages are packed twice during passing. Take the following code as
an example:

chrome.runtime.sendMessage (data, function (response) {});

JTaint hooks the function sendMessage before it is called, and encodes the variable
data. Also, JTaint decodes the variable response returned by the peer side.

At the end of this section, we compared Jalangi2 and JalangiEX in Table 2 to clearly
show the improvements made by JalangiEX.

Table 2. A comparison between Jalangi2 and JalangiEX.

Jalangi2 JalangiEX

Number of Node Type 25 12

Number of Intermediate Code 30 7

Number of Analysis Function 29 5

Instrumenting Extension × √

Monitoring Object and Array × √

Monitoring Message Passing × √

4 Define Privacy-Leaking Behavior

In this section, we will define the privacy leakage from three aspects: Source point, Sink
point, and taint propagation rules. Source point represents the code segment that obtains
privacy-sensitive information; Sink point represents the code segment that exfiltrates
privacy-sensitive information; Taint propagation rules define the direction of taint spread
between variables.

4.1 Define Source

To detect extensions that abuse their privileges while obtaining users’ privacy, JTaint
currently considers the following five categories as sink points in its analysis: URL,
host, sensitive DOM elements, cookies, and sensitive event listeners. In this section, we
will describe each of these sink points and show how to identify them in dynamic taint
analysis.
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Source Point Description
URL. Jadali [2] divided the privacy data that URLs may leak into six categories in a
research report, such as Shared links, PII (personally identifiable information) embed-
ded in URL, and so on. Shared link is the unique, publicly accessible link that users
often share with family, friends, and colleagues. Attackers can use these unique links to
locate internal resources that are not public on the web. Besides, URL may also contain
some sensitive parameters, such as password, authorization strings, token, and PII, these
sensitive parameters will be leaked with URLs.

Host. Although host does not contain sensitive parameters except URLs, attackers can
roughly infer user’s daily habits through host records. In the internal network, attackers
can also obtain the IP address of the internal server through host records.

Sensitive DOM Element. Extension may be interested in some sensitive DOM ele-
ments on pages. For example, they will look for an input field with the type “password”
and steal internal values, or they will gather and exfiltrate sensitive information in form
when user clicks to submit the form. We design a honey page to trigger these operations
on sensitive DOM elements as much as possible.

Cookie. Cookie is a data that website stores on user’s browser in order to identify them
and track the session. The leakage of cookie means that attackers can use the user’s
identity to perform malicious operations on the corresponding website.

Sensitive Event Listeners. JavaScript provides many listeners for monitoring various
events related to DOMelements, such as the onclick event triggered after DOMelements
are clicked. Attackers can register event listeners for DOM elements to trigger stealing
code after users complete element operations. Event listener will point to the DOM
element it is bound to after being triggered, so this kind of behavior should be classified
as Sensitive DOM element. JTaint pays special attention to two types of keystroke
events, keyup and keydown. User can obtain the keycode from the return value after
the keystroke event is triggered, instead of from certain DOM elements bound with the
event. Therefore, the return value of these two types of events should be marked as
tainted.

Feature Code of Source Point
We identify the Source point by examining the feature code associated with the behav-
ior of obtaining sensitive information. Table 6 (Appendix A) lists the correspondence
between Source points and feature codes.

There are two types of feature codes corresponding to the behavior of source acqui-
sition: function and object property. Because function objects are unique globally, we
embedflags in feature functions to identify them,which can effectively resist the obfusca-
tion of function names. For object attributes, because the memory addresses of different
instances are not unique, the addresses of object attributes are also not unique. We can
only identify by matching the base class and function name.
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4.2 Define Sink

To monitor the exfiltration of privacy-sensitive information, JTaint considers two broad
categories of sink points: network transmission and local storage. Either way, we think
it is unsafe, because privacy-sensitive information should only be processed locally,
and cannot be stored externally, which will lead to the risk of privacy leakage. Table 7
(Appendix A) summarizes the sink points considered by JTaint.

In the way of network transmission, we mainly focus on jQuery, XMLHttpRequest,
fetch, and src attribute of DOM element. Extension can use these four methods to access
servers in the network through the HTTP protocol. Because different methods have
different control capabilities for the HTTP request, the privacy data to be sent may
be stored in different locations of the HTTP request such as GET parameters, POST
parameters, path, headers, and so on.

In theway of local storage, wemainly focused on two types of feature codes. The first
type is two APIs provided by chrome.storage [25], which are used to store and retrieve
user data. Data stored using the chrome.storage.sync function will also be synchronized
through the synchronization function of Chrome. The second type is localStorage, which
is a type of web storage. The setItem function provided by it can also store data locally
in user’s browser. It should be noted that both types of local storage store data locally
in plaintext for a long time. Therefore, it is dangerous to use these two types of local
storage to store privacy-sensitive information, which is why we list them as sink points.

4.3 Define Taint Propagation Rules

JTaint adds taint propagation codes to five types ofAnalysis Functions defined by Jalang-
iEX. We show these rules in Table 8 (Appendix A). In taint propagation, we use two
levels: taint and partial taint to mark variables. When the subset is tainted, the parent
set will be marked as partially taint instead of taint, which can effectively improve the
accuracy of taint propagation. For example, the variable Parent contains two member
variables: sub1 and sub2, one is tainted and the other is not, then the variable Parent will
be marked as partially taint instead of taint. In this way, the variables Parent.sub2 will
not be incorrectly marked as taint when reading it.

5 Evaluation

In order to evaluate the effectiveness of JTaint, we randomly crawled 20,000 extensions
from the Chrome Web Store. Except for a few extensions that could not be installed due
to the wrong format of the manifest file, through JTaint’s batch analysis, we found 57
extensions with privacy disclosure behaviors, including an extension with more than 6
million users and multiple extensions with more than 10,000 users. Our extension was
crawled in October 2019. However, in a check on February 15, 2020, we found that
there are still 51 extensions that can be downloaded normally in the Chrome Web Store.
Based on the large user number of these malicious extensions, it can be speculated that
the privacy of many users has been leaked during this period. In this section, we will
show the necessity and effectiveness of the work done by JTaint, and then conduct a
detailed classification and comparison of these extensions from multiple perspectives.
Finally, we detail a typical extension.
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5.1 Capabilities of JTaint

In Sect. 3, we introduced three improvements made by JTaint to complete the dynamic
taint analysis task of extensions. In this section, we will start from the analysis results of
JTaint to confirm the necessity and effectiveness of the three improvements mentioned
above.

Simplify the Jalangi2 Instruction Set. Weused two JavaScript code dynamic analysis
frameworks, Jalangi2 and JalangiEX, to perform instrumentation tests on 390 JavaScript
scripts in 57 extensions discovered by JTaint. The result shows that there are 27 scripts
reported errors and could not be instrumented during the Jalangi2 rewriting process,
some rewritten code also report errors that do not exist in the source code at runtime.
However, JalangiEX correctly completed the instrumentation work of all 390 JavaScript
scripts, and the code rewritten by JalangiEX did not report the error that does not exist in
the source code. The result shows that comparedwith Jalangi2, JalangiEXcan instrument
code with a higher success rate, and the rewritten code behaves closer to the source code
during execution.

Add New Monitoring Instructions. We analyzed the taint propagation process of 57
extensions discovered by JTaint, and found that 30 of them used the initialization
of Object or Array. If we did not add these two types of monitoring instructions
in JalangiEX, 30 extensions would be undetectable due to the interruption of taint
propagation.

Add Taint Support for Spreading Across Pages. Of the 57 privacy-leaking exten-
sions, nine extensions use communication functions to send the information collected
in Content Script to Background Script. JalangiEX provides support for this kind of
cross-page taint propagation.

5.2 Source-Based Statistics

We classified the privacy data leaked by 57 extensions according to the five types of
Source points defined in Sect. 4.1. The results are shown in Table 3.

Table 3. Extensions’ number for privacy types

Source #Extension

URL 47

Host 20

Sensitive DOM element 4

Sensitive event listener 1

Cookie 0
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URL & Host. URL and host are the two types of information most commonly stolen.
Except for two extensions that filter out URLs containing keywords such as google,
facebook, etc., all other extensions were near real-time, unrestricted collect URL or host,
which will leak user’s personal account information, Internet habits, and even threaten
intranet security according to the description in Sect. 4.1. Besides, blacklist filtering is
not safe, which does not indicate what kind of URL extensions want to obtain, so those
two extensions may still be stealing URLs or hosts.

Sensitive DOM Elements. We found 4 extensions that steal sensitive DOM elements.
After users install them, these four extensions will collect the title of each page. Title is a
general expression of the entire page content, and it may also involve the user’s personal
privacy information. For example, the page title of “Password has been reset to xxx”
will leak the user’s password, and the page title of “Firewall needs to be re-enabled, all
ports are currently open” provides the attacker with opportunity for a cyber attack.

We designed the honey page to discover the theft of sensitive DOM elements. But
unfortunately, of the 20,000 extensions we analyzed, JTaint did not find any extensions
that stole sensitive DOM elements preset on the honey page. We guess this code only
runs on specific URL and DOM structure, but JTaint only simulates the extension on the
honey page. Although no complete propagation chain was found from Source to Sink,
rich DOM operations still exist on the honey page. We extract the parameter in the DOM
selector, then sort the tenmost frequently selected privacywords according to the privacy
dictionary, as shown in Table 9 (Appendix A). It can be seen that extensions have done
many operations on DOM elements containing keywords such as login, background,
etc. Among them, there may also be other undetected malicious behaviors.

Sensitive Event Listeners. JTaint discovered an extension that leaks the keycode of
keystroke event. It will add a logger script to each page visited by the user. The logger
will hook the built-in functions such as alter and open functions in the page to record
the parameter when these functions are called, and then register event listeners such as
keyup, focus, mousedown to the page. Keystroke of the user will bemonitored as a keyup
event and the keycode will be sent to Background Script fromContent Script through the
message passing. Finally, Background Script will send the keycode to the local server
of Oxygen IDE with port 7778. There are two hidden threats in this process. On the
one hand, the port is fixed and the data is not encrypted. It is easy to be maliciously
monitored by other programs running locally. On the other hand, we cannot know what
Oxygen will do with this information. For the above reasons, we believe that users are
at risk of privacy leakage when using this extension.

5.3 Sink-Based Statistics

We classify the 57 privacy-leaking extensions based on the two types of Sink points in
Sect. 4.2, as shown in Table 4. The XMLHttpRequest in the table corresponds to the send
and open functions in Table 7. The jQuery in the table corresponds to the five functions
of jQuery in Table 7.

Overall, of the 57 privacy-leaking extensions, 40 extensions send privacy over
network, and the remaining 17 extensions save privacy locally in plaintext format.
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Table 4. Extensions’ number of different Sink points.

Sink #Extension

XMLHttpRequest 26

jQuery 10

HTMLElement.src 2

fetch 2

chrome.storage 14

LocalStorage 3

In the way of network transmission, the XMLHttpRequest object and the fetch func-
tion are native in JavaScript, which can send network requests in the background asyn-
chronously. If the page contains the jQuery library, the extension can use the Network
Request API provided by jQuery. We add five APIs of jQuery as sink points, and finally
found 10 extensions that use these functions to leak privacy. We also found two exten-
sions dynamically create iframe tags on each page, and add the URL of the page as the
request parameter to the src attribute of iframe, which will leak the URL when iframe
is loaded.

We extract 40 server addresses from these privacy-leaking extensions, including
3 local server addresses and 37 public network server addresses. In the local server
address, the privacy is sent to the three ports 7778, 8888, 56797 in plaintext format,
respectively. Of the 37 public server addresses, we confirm that at least 26 of them are
owned by the extension developer by comparing the server address with the developer
name and extension name. Although some servers that receive privacy are not owned by
the extension developer, they only focus on using third-party services to richen functions
of their extension. However, privacy-sensitive information is sent to an external server,
where there exists the possibility of privacy leakage.

In the way of local storage, 14 extensions use the API provided by Chrome to store
privacy, and the other 3 extensions use the API provided by the window object to store
data. Neither of these APIs should be used to store sensitive data because they save data
locally in plaintext format for a long time, which would lead to the risk of leakage.

5.4 Taint Propagation Analysis

In this section, we will show the behavioral characteristics of the taint propagation
process from the perspective of the direction of taint propagation and the encoding of
the taint data.

Direction of Taint Propagation. In order to monitor all pages visited by users, exten-
sions can take two ways. One way is to write the privacy collection code in Content
Script, and set the script to match all URLs in manifest file. In extensions using this way,
we observed that sink points are located in Content Script or Background Script, and
the latter requires message passing in taint propagation. The second way is to write the
privacy collection code in Background Script, and monitor the user’s behavior through
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event listeners provided by APIs such as chrome.tabs and chrome.webRequest, then
trigger malicious code execution in callback functions. We observed that all extensions
choose to deliver the taint data to the sink point directly in Background Script. Accord-
ing to the page where the source point and sink point are located and whether there is
cross-page propagation of the taint data, we divide the direction of taint propagation into
three categories, as shown in Table 5.

Table 5. Extensions’ number of three types of taint propagation directions.

Taint propagation direction #Extension

Background→background 37

Content→content 11

Content→background 9

Encoding of Taint Data. We observed that most extensions encode taint data before
delivering it to sink points. URL encoding is the most common way. However, taint data
encoded by URL encoding can still be easily identified by humans because characters
such as letters and numbers do not change after URL encoding. Besides, we observed
that two extensions use Base64 encoding and three extensions use Caesar cipher. These
two encoding methods can completely hide the original plaintext features. Even if the
user observes this data, it is difficult to recognize that this is sensitive information.
Caesar cipher is an ancient offset encoding method. All characters are shifted forward
or backward on the ASCII table by a fixed value to generate ciphertext. Of the three
extensions we found using Caesar cipher, two extensions shift each character backward
by 23, and the other extension shifts each character forward by 10.

5.5 False Positives Analysis

All of the 57 extensions reported by JTaint were all analyzed manually by us and con-
firmed that there was indeed a privacy leak. Besides, JTaint also reported 16 extensions,
which were confirmed as false positives after our manual analysis. We sorted them into
two categories. The first type of false positive is due to the overtaint in taint propagation,
normal variables are also tainted and reported by JTaint in the sink point. In the second
type, although the taint propagation is correct, the leaked data contains only the first
three characters of the privacy, or the sensitive-information is used as the host of the
requested URL. In general, these extensions did not leak enough sensitive-information
or did not send sensitive-information to the attacker’s server, so they were excluded
during our manual analysis.

5.6 Code Reuse in Chrome Extensions

We noticed that there are two sets (two per group) extensions whose source points, sink
points, and taint propagation paths are the same. In a further code comparison, we found
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that the two sets of extensions are completely the same except for the script name and
destination server where the private data is sent, which indicates that code reuse does
exist in malicious extensions.

The source code of Chrome extensions is visible to everyone, which can cause two
problems. On the one hand, attackers can easily copy a well-known extension and add
the privacy collection code, then publish it to the ChromeWeb Store. A developer posted
the plagiarism of his work on Github [26]. On the other hand, visible extensions’ source
code also means that malicious codes are easier to be reused. As the sample introduced
in this section, we speculate that the developer directly reused other malicious extension
code after modifying the server to himself. In short, although code reuse is not the focus
of this paper, our results show that code reuse exists in Chrome extensions, and this may
be further mined by matching similar code execution paths.

5.7 Case Study

We found an extension on the ChromeWeb Store that had 35,001 uses when we detected
it. The extension’s name is “Unlock Premium Content” and it’s ID is bjmcpnogioojilao-
halakcjniiaekgcp. According to the introduction of the extension, users who install the
extension can access advanced content and features in popular Apps and websites such
as Instagram and Twitter for free.

The extension’s privacy stealing code runs in Background Script. It first accesses the
third-party service to obtain the user’s city and country, and then uses chrome.tabs.query
function to read all pages opened by the user in 15 s cycle periodically and stores the
URL in a list. In order to send the collected information, the extension periodically
triggers the sending code in 300 s cycle. The sending code will perform Caesar cipher
on all information collected during this period and the user’s location, and then send
them to the domain named www.oinkandstuff.com. Since the domain is consistent with
the extension developer’s, we can confirm that the information was sent to the server
controlled by the developer.

We decode the transmitted data and display them in Fig. 6. It can be clearly seen from
the decoded data that the extension stole the user’s URL, host, and geographic location
information. After we submitted feedback, this extension has now been removed from
the Chrome Web Store.

{
     "d1":"4b9a35ab-4177-f772-ad1f-e1916c15dc3d", // Random String
     "d2":"bjmcpnogioojilaohalakcjniiaekgcp",                                  // ID of the extension
     "d3":"Qingdao",                                                                           // City
     "d4":"China",                                                                               // Country
     "d5":"CN", // Country name abbreviation
     "d6":"https://console.cloud.google.com/?hl=zh-cn&pli=1",       // URL visited by the user
     "d7":"console.cloud.google.com",                                               // Host of the URL
     "d8":"2020-02-25T11:58:54.907Z", // Time
     "d9":"",
     "d10":""
}

Fig. 6. Data sent by the sample extension.

http://www.oinkandstuff.com
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6 Related Work

In previous work, static analysis was mainly used to find the abuse of permissions of
extensions [3, 4]. Dynamic analysis drives extensions to run in a monitored environment
and observes the behavior of extensions. Traffic analysis [8, 9], API call analysis [10–13],
data flow analysis [14–18] are three main methods used in dynamic analysis.

Traffic analysis is the most intuitive one of the three methods. BrowseringFog [8]
built a network traffic analysis system for the four types of privacy information to detect
whether there are keywords corresponding to privacy in the traffic. Ex-ray [9] detects
history leakage by comparing the difference of traffic under different browsing history
conditions. Although the traffic analysis is easy to implement and does not need to
analyze the internal process of code execution, it is powerless once the communication
uses more complex or user-defined encryption methods.

Dynamic analysis system based onAPI call analysis, such as Hulk [10] andWebEval
[11], monitors API call logs and network traffic to detect malicious extensions. Hulk
detects malicious extensions based on API call features. WebEval uses machine learing
model to classify extensions by using developer reputation and other related features.
Although analyzing API calls can identify malicious behaviors such as modifying net-
work requests and preventing uninstallation, it is difficult to find extension’s privacy
leaks. For example, Hulk classifies extensions as “Steals password from form” if exten-
sions look for a form field with the name “password”, but it could not determine whether
the password field was leaked without data flow analysis.

In order to accurately identify the privacy leakage in the extension, it is necessary
to use data flow analysis to track the taint data in extension execution. Sabre [14] and
Mystique [16] implement the interpreter-level monitoring of the code by modifying the
SpiderMonkey interpreter of the Firefox browser and the V8 interpreter of the Chrome
browser, respectively. Compared to the solution of rewriting extension code, modifying
the JavaScript interpreter requires more work. It cannot be used across platforms and
requires new support to be added as the JavaScript interpreter is updated. For example,
the applicability of Mystique is limited to the Chrome platform, and has to use static
analysis to assist in the taint propagation because the V8 engine is too complicated.
Our solution is independent of the JavaScript engine, and our taint propagation rules are
pretty intuitive.

The closest system to our own is ExtensionGuard [17], which uses Jalangi2 to rewrite
the extension code and implement the taint propagation of extensions. Unlike Exten-
sionGuard, we analyze the shortcomings of Jalangi2 for extension analysis, and design
JalangiEX to rewrite the extension. We showed the advantages and effectiveness of
JalangiEX in the analysis of the test results in Sect. 5. Besides, compared to Exten-
sionGuard, we performed a batch analysis of extensions in the Chrome Web Store, and
finally found multiple actual privacy-leaking extensions.
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7 Conclusion

In this paper we presented JTaint, a dynamic taint analysis system to identify privacy
leakage of Chrome extensions. JTaint rewrites code by using JalangiEX to monitor the
taint propagation process. Compared with Jalangi2, JalangiEX solves the undertaint
problem in taint propagation, and strips the redundant codes to reduce the intrusion
into host web page. After performing a batch analysis of 20,000 extensions randomly
crawled in the ChromeWeb Store, we identified 57 privacy-leaking extensions, many of
which remain live in the Chrome Web Store, and found code reuse in some extensions,
and encoding behavior of sensitive-privacy information. Our finds are helpful to dissect
malicious extensions from the store. In the future, we will investigate more extensions
from Chrome Web Store and other third-parties chrome extension stores under various
sites in Alex rank, and discover more effective features and behaviors for recognizing
malicious extensions.

Acknowledgments. Wesincerely thankACISP anonymous reviewers for their valuable feedback.
This work was supported in part by the National Natural Science Foundation of China(61972297,
U1636107).

Appendix A

Table 6. Feature code for different source.

Source Feature code

URL document.url
document.referrer
location.href
location.pathname
location.search

Host location.host
location.hostname
location.origin

Sensitive DOM element getElementBy[Id|Name|ClassName|TagName]
querySelector
querySelectorAll
$

Cookie document.cookie

Sensitive event listener addEventListener
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Table 7. Feature codes for different sink.

Local storage Network

chrome.storage.local.set
chrome.storage.sync.set
localStorage.setItem

$.ajax
$.get
$.post
$.getJSON
$.load
XMLHttpRequest.send
XMLHttpRequest.open
fetch
HTMLElement.src

Table 8. Taint propagation rules.

Function Trigger Base mode Taint propagation rule

invokeFun a function call result = base.func(args) if isTaint(args) or
isTaint(base):
addTaint(result)

getField an object property is
accessed

val = base.offset if isTaint(base) and
!isPartTaint(base):
addTaint(val)

putField an object property is
written

base.offset = val if isTaint(val):
addPartTaint(base)

Binary binary operation result = (left) op (right) if isTaint(left) or
isTaint(right):
addTaint(result)

Unary unary operation result = op (left) if isTaint(left):
addTaint(result)

Table 9. Top 10 privacy words in dom choice

Top 10 privacy words in dom choice #Extension

Login 1385

Background 1132

Result 1038

Username 2909

Content 767

Id 591

(continued)
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Table 9. (continued)

Top 10 privacy words in dom choice #Extension

Name 566

Data 531

Input 524

City 477

References

1. Malicious Chrome Extensions Enable Criminals to Impact Half a Million Users and Global
Businesses. https://atr-blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-
criminals-to-impact-half-a-million-users-and-global-businesses. Accessed 20 Feb 2020

2. DataSpii: The catastrophic data leak via browser extensions. https://securitywithsam.com/
2019/07/dataspii-leak-via-browser-extensions/

3. Aravind, V., Sethumadhavan, M.: A framework for analysing the security of chrome
extensions. Adv. Comput. Netw. Inf. 2, 267–272 (2014)

4. Akshay Dev, P.K., Jevitha, K.P.: STRIDE based analysis of the chrome browser extensions
API. In: Satapathy, S.C., Bhateja, V., Udgata, S.K., Pattnaik, P.K. (eds.) Proceedings of the
5th International Conference on Frontiers in Intelligent Computing: Theory andApplications.
AISC, vol. 516, pp. 169–178. Springer, Singapore (2017). https://doi.org/10.1007/978-981-
10-3156-4_17

5. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser extensions.
In: 2011 IEEE Symposium on Security and Privacy, pp. 115–130. IEEE (2011)

6. Calzavara, S., Bugliesi, M., Crafa, S., Steffinlongo, E.: Fine-grained detection of privilege
escalation attacks on browser extensions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032,
pp. 510–534. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46669-8_21

7. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnecessarily identifiable: quan-
tifying the fingerprintability of browser extensions due to bloat. In: The World Wide Web
Conference, pp. 3244–3250 (2019)

8. Starov, O., Nikiforakis, N.: Extended tracking powers: measuring the privacy diffusion
enabled by browser extensions. In: Proceedings of the 26th International Conference on
World Wide Web, pp. 1481–1490. ACM (2017)

9. Weissbacher, M., Mariconti, E., Suarez-Tangil, G., Stringhini, G., Robertson, W., Kirda, E.:
Ex-ray: detection of history-leaking browser extensions. In: Proceedings of the 33rd Annual
Computer Security Applications Conference, pp. 590–602. ACM, New York (2017)

10. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk: eliciting
malicious behavior in browser extensions. In: 23rd USENIX Security Symposium (USENIX
Security 2014), pp. 641–654. USENIX Association, USA (2014)

11. Jagpal, N., et al.: Trends and lessons from three years fighting malicious extensions. In: 24th
USENIXSecurity Symposium (USENIXSecurity 2015), pp. 579–593.USENIXAssociation,
USA (2015)

12. Zhao, Y., et al.: Large-scale detection of privacy leaks for BAT browsers extensions in China.
In: 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE),
pp. 57–64. IEEE (2019)

13. Aggarwal, A., Viswanath, B., Zhang, L., Kumar, S., Shah, A., Kumaraguru, P.: I spy with
my little eye: analysis and detection of spying browser extensions. In: 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 47–61. IEEE (2018)

https://atr-blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-criminals-to-impact-half-a-million-users-and-global-businesses
https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions/
https://doi.org/10.1007/978-981-10-3156-4_17
https://doi.org/10.1007/978-3-662-46669-8_21


JTaint: Finding Privacy-Leakage in Chrome Extensions 583

14. Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based browser exten-
sions. In: 2009 Annual Computer Security Applications Conference, pp. 382–391. IEEE
(2009)

15. Bauer, L., Cai, S., Jia, L., Passaro, T., Stroucken, M., Tian, Y.: Run-time monitoring and
formal analysis of information flows in chromium. In: NDSS, February 2015

16. Chen, Q., Kapravelos, A.: Mystique: uncovering information leakage from browser exten-
sions. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1687–1700. ACM (2018)

17. Chang, W., Chen, S.: ExtensionGuard: towards runtime browser extension information leak-
age detection. In: 2016 IEEE Conference on Communications and Network Security (CNS),
pp. 154–162. IEEE (2016)

18. Chang, W., Chen, S.: Defeat information leakage from browser extensions via data obfusca-
tion. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 33–48. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02726-5_3

19. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: a selective record-replay and dynamic
analysis framework for JavaScript. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 488–498 (2013)

20. Extension Overview. https://developer.chrome.com/extensions/overview. Accessed 20 Feb
2020

21. Liu, L., Zhang,X.,Yan,G.,Chen, S.:Chromeextensions: threat analysis and countermeasures.
In: NDSS (2012)

22. Somé, D.F.: EmPoWeb: empowering web applications with browser extensions. In: 2019
IEEE Symposium on Security and Privacy (SP), pp. 227–245. IEEE, May 2019

23. Fake Ad Blockers. https://adguard.com/en/blog/fake-ad-blockers-part-2.html
24. Message Passing. https://developer.chrome.com/extensions/messaging. Accessed 20 Feb

2020
25. Chrome.storage. https://developer.chrome.com/apps/storage. Accessed 20 Feb 2020
26. Plagiarism Notice. https://github.com/dmtspoint/OpenGG/blob/master/Hall-of-shame.md.

Accessed 20 Feb 2020

https://doi.org/10.1007/978-3-319-02726-5_3
https://developer.chrome.com/extensions/overview
https://adguard.com/en/blog/fake-ad-blockers-part-2.html
https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/apps/storage
https://github.com/dmtspoint/OpenGG/blob/master/Hall-of-shame.md


Unlinkable Updatable Databases and
Oblivious Transfer with Access Control

Aditya Damodaran and Alfredo Rial(B)

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
{aditya.damodaran,alfredo.rial}@uni.lu

Abstract. An oblivious transfer with access control protocol (OTAC)
allows us to protect privacy of accesses to a database while enforcing
access control policies. Existing OTAC have several shortcomings. First,
their design is not modular. Typically, to create an OTAC, an adaptive
oblivious transfer protocol (OT) is extended ad-hoc. Consequently, the
security of the OT is reanalyzed when proving security of the OTAC,
and it is not possible to instantiate the OTAC with any secure OT. Sec-
ond, existing OTAC do not allow for policy updates. Finally, in practical
applications, many messages share the same policy. However, existing
OTAC cannot take advantage of that to improve storage efficiency.

We propose an UC-secure OTAC that addresses the aforementioned
shortcomings. Our OTAC uses as building blocks the ideal functionalities
for OT, for zero-knowledge (ZK) and for an unlinkable updatable database
(UUD), which we define and construct. UUD is a protocol between an
updater U and multiple readers Rk. U sets up a database and updates
it. Rk can read the database by computing UC ZK proofs of an entry in
the database, without disclosing what entry is read. In our OTAC, UUD
is used to store and read the policies.

We construct an UUD based on subvector commitments (SVC). We
extend the definition of SVC with update algorithms for commitments
and openings, and we provide an UC ZK proof of a subvector. Our effi-
ciency analysis shows that our UUD is practical.

Keywords: Vector commitments · Bilinear maps · Universal
composability

1 Introduction

Oblivious transfer with access control protocols [8,15] (OTAC) run between a
sender U and receivers Rk. U receives as input a tuple (mi,ACPi)∀i∈[1,N ] of mes-
sages and their associated access control policies. In a transfer phase, a receiver
Rk chooses an index i ∈ [1,N ] and obtains the message mi if Rk satisfies the
policy ACPi. U does not learn i, whereas Rk does not learn any information
about other messages.
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In the following, we only consider OTAC in which the receivers learn all the
policies (ACPi)∀i∈[1,N ], that are stateless, i.e. fulfilment of a policy by Rk does
not depend on the history of messages received by Rk, and that are adaptive,
i.e. there are several transfers and Rk can choose i after receiving messages in
previous transfers. In Sect. 7, we discuss stateful and adaptive OTAC and OTAC
with hidden policies. Additionally, we focus on OTAC that provide anonymity
and unlinkability, i.e., OTAC where U cannot link a transfer to a receiver identity
Rk and where transfers to Rk are unlinkable with respect to each other.

Existing adaptive and stateless OTAC follow a common pattern in their
design. In the initialization phase, U computes N ciphertexts ci that encrypt
mi. Some OTAC [1,8,21] use a signature that binds ACPi to ci, while others
[25,28–30] use fuzzy identity-based encryption (IBE) or ciphertext-policy
attribute-based encryption (CP-ABE) to encrypt mi under ACPi. The receivers
obtain (ci,ACPi)∀i∈[1,N ]. To prove fulfilment of policies, Rk proves to an author-
ity that she possesses some attributes and obtains a credential or secret key for
her attributes. In the transfer phase, Rk interacts with U in such a way that Rk

can decrypt ci for her choice i only if her certified attributes satisfy ACPi. Those
OTAC have several design shortcomings.

Modularity. Although some OTAC are extensions of adaptive oblivious trans-
fer protocols (OT), they do not use OT as building block. Instead, the OT
is modified ad-hoc to create the OTAC, blurring which elements were part
of the OT and which ones were added to provide access control. The lack of
modularity has two disadvantages. First, when the security of the OTAC is
analyzed, the security of the underlying OT needs to be reanalyzed. Second,
the OTAC cannot be instantiated with any secure adaptive OT, and conse-
quently, whenever more efficient OT schemes are proposed, the OTAC cannot
use them and would need to be redesigned.

Policy Updates. All the existing OTAC do not allow for policy updates, i.e., if
a policy ACPi needs to be updated, the initialization phase needs to be rerun.
In practical applications of OTAC (e.g. medical or financial databases), it
would be desirable to update policies dynamically throughout the protocol
execution without needing to re-encrypt messages. To enable policy updates,
we would need to separate the encryptions ci of mi from the method used
to encode policies ACPi. As explained above, OTAC use signatures schemes
or CP-ABE to bind policies to ciphertexts. It would be possible to separate,
e.g., a signature on the policy ACPi from the encryption ci of mi, while still
allowing Rk to prove the association between ci and ACPi in the transfer
phase. However, a revocation mechanism to revoke the outdated signatures
would also need to be implemented, which would decrease efficiency.

Storage cost. All the existing OTAC associate each encryption ci with a policy
ACPi. However, in practical applications, multiple database records are asso-
ciated with a single policy. Therefore, if we separate the ciphertexts ci from
the method used to encode policies ACPi, it would be possible to improve
efficiency by associating a policy to multiple ciphertexts.



586 A. Damodaran and A. Rial

1.1 Our Contribution

We define and construct an unlinkable updatable database (UUD), a novel build-
ing block that may be of independent interest, and we use UUD to construct
modularly OTAC that enable dynamic policy updates without the need of a
revocation mechanism, and that can associate a policy to multiple messages.

Functionality FUUD. We use the universal composability (UC) framework [13]
and define an ideal functionality FUUD in Sect. 3. We define UUD as a task
between multiple readers Rk and an updater U . U sets a database DB and
updates it at any time throughout the protocol execution. DB consists of N
entries of the form [i, vi,1, . . . , vi,L], where i identifies the database entry and
(vi,1, . . . , vi,L) are the values stored in that entry. Any Rk and U know the content
of DB. A reader Rk can read DB by computing a zero-knowledge (ZK) proof
of knowledge of an entry [i, vi,1, . . . , vi,L]. FUUD hides from U which entry was
read but ensures that it is not possible to prove that an entry is stored in DB
if that is not the case. FUUD allows Rk to remain anonymous and unlinkable
when reading DB.

OTAC. In Sect. 6, we propose a functionality FOTAC. FOTAC follows previous
OTAC functionalities [8] but introduces two main modifications. First, it splits
the initialization interface into two interfaces: otac.init, in which the sender U
receives (mi)∀i∈[1,N ], and otac.policy, in which U receives (ACPi)∀i∈[1,N ]. This
enables U to make policy updates via otac.policy throughout the protocol execu-
tion. Second, previous functionalities include an issuance phase where an issuer
certifies Rk attributes. Instead, FOTAC leaves more open and flexible how access
control is proven. U sets and updates a relation RACP that specifies what Rk

must prove to obtain access to messages. Each policy ACPi is an instance ins
for RACP and, in the transfer phase, Rk must provide a witness wit such that
(wit , ins) ∈ RACP. wit could contain, e.g., signatures from an issuer on Rk

attributes, but in general any data required by RACP.
We also describe a modular construction ΠOTAC. In the UC framework, mod-

ularity is achieved by describing hybrid protocols. In a hybrid protocol, the
building blocks are described by their ideal functionalities, and parties in the
real world invoke those ideal functionalities. ΠOTAC uses as building block FOT,
and thus ΠOTAC can be instantiated by any secure adaptive OT. To imple-
ment access control, ΠOTAC uses FUUD and FRACP′

ZK . U stores (ACPi)∀i∈[1,N ] in
DB in FUUD. Each entry [i, vi,1, . . . , vi,L] stores the index i and the representa-
tion ACPi = (vi,1, . . . , vi,L) of a policy. In a transfer phase, Rk uses FUUD to
read ACPi for her choice i and then FRACP′

ZK to prove fulfilment of ACPi. One
challenge when defining a hybrid protocol is to ensure that two functionalities
receive the same input. For example, in the transfer interface of ΠOTAC, we need
to ensure that the choice i sent to FOT (to obtain mi) and to FUUD (to read
ACPi) are equal. To this end, we use the method in [11], in which functionalities
receive committed inputs produced by a functionality FNIC for non-interactive
commitments.
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Our modular design has the following advantages. First, it simplifies the
security analysis because security proofs in the hybrid model are simpler and
because, by splitting the protocol into smaller building blocks, security analysis
of constructions for those building blocks are also simpler. Second, it allows
multiple instantiations by replacing each of the functionalities by any protocols
that realize them. Third, it allows the study of the UUD task in isolation, which
eases the comparison of different constructions for it.

Construction ΠUUD. In Sect. 4, we propose a construction ΠUUD for FUUD.
ΠUUD is based on subvector commitments (SVC) [20], which we extend with
a UC ZK proof of knowledge of a subvector. A SVC scheme allows us to com-
pute a commitment com to a vector x = (x[1], . . . ,x[N ]). com can be opened to
a subvector xI = (x[i1], . . . ,x[in]), where I = {i1, . . . , in} ⊆ [1,N ]. The size of
the opening wI is independent of N and of |I|. SVC were recently proposed as an
improvement of vector commitments [14,23], where the size of wI is independent
of N but dependent on |I|. We extend the definition of SVC to include algorithms
to update commitments and openings when part of the vector is updated.

ΠUUD works as follows. U uses a bulletin board BB to publish the database
DB and any Rk obtains DB from BB. A BB ensures that all readers obtain the
same version of DB, which we need to guarantee unlinkability. Both U and any
Rk map a DB with N entries of the form [i, vi,1, . . . , vi,L] to a vector x of length
N × L such that x[(i − 1)L + j] = vi,j for all i ∈ [1,N ] and j ∈ [1,L], and they
compute a commitment com to x. To update a database entry, U updates BB,
and U and any Rk update com. Therefore, updates do not need any revocation
mechanism. To prove in ZK that an entry [i, vi,1, . . . , vi,L] is in DB, Rk computes
an opening wI for I = {(i − 1)L + 1, . . . , (i − 1)L + L} and uses it to compute
a ZK proof of knowledge of the subvector (x[(i − 1)L + 1], . . . ,x[(i − 1)L + L]).
This proof guarantees that I is the correct set for index i.

We describe an efficient instantiation of ΠUUD in Sect. 5 that uses a SVC
scheme based on the Cube Diffie-Hellman assumption [20]. In terms of efficiency,
the storage cost grows quadratically with the vector length N × L. However,
after initializing com and the openings wI to the initial DB, the communication
and computation costs of the update and read operations are independent of N .
Therefore, our instantiation allows for an OTAC where the database of policies
can be updated and read efficiently. We have implemented our instantiation. Our
efficiency measurements in Sect. 5 show that it is practical.

We describe a variant of our instantiation where each database entry is
[imin, imax, vi,1, . . . , vi,L], where [imin, imax] ∈ [1,N ] is a range of indices. This
allows for an OTAC with reduced storage cost. If the messages (mimin

, . . . ,mimax
)

are associated with a single policy ACP, only one database entry is needed to
store ACP. In contrast, previous OTAC that use signatures or CP-ABE need to
embed a policy in every ciphertext.

ΠUUD can be regarded as an efficient way of implementing a ZK proof for
a disjunction of statements. Namely, proving that an entry [i, vi,1, . . . , vi,L] is in
DB is equivalent to computing an OR proof where the prover proves that he
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knows at least one of the entries. The proof in ΠUUD is of size independent of
N . We compare our construction with related work in Sect. 7.

2 Modular Design and FNIC

We summarize the UC framework in the full version [18]. An ideal functionality
can be invoked by using one or more interfaces. In the notation in [11], the
name of a message in an interface consists of three fields separated by dots,
e.g., uud.read.ini in FUUD in Sect. 3. The first field indicates the name of FUUD

and is the same for all interfaces. This field is useful for distinguishing between
invocations of different functionalities in a hybrid protocol. The second field
indicates the kind of action performed by FUUD and is the same in all messages
that FUUD exchanges within the same interface. The third field distinguishes
between the messages that belong to the same interface. A message uud.read.ini
is the incoming message received by FUUD, i.e., the message through which the
interface is invoked. uud.read.end is the outgoing message sent by FUUD, i.e., the
message that ends the execution of the interface. uud.read.sim is used by FUUD to
send a message to the simulator S, and uud.read.rep is used to receive a message
from S.

In our OTAC, to ensure, when needed, that FUUD and other functionalities
receive the same input, we use the method in [11]. In [11], a functionality FNIC

for non-interactive commitments is proposed. FNIC consists of four interfaces:

1. Any party Pi uses the com.setup interface to set up the functionality.
2. Any party Pi uses the com.commit interface to send a message m and obtain

a commitment com and an opening open. A commitment com consists of
(com ′, parcom,COM.Verify), where com ′ is the commitment, parcom are the
public parameters, and COM.Verify is the verification algorithm.

3. Any party Pi uses the com.validate interface to send a commitment com to
check that com contains the correct parcom and COM.Verify.

4. Any party Pi uses the com.verify interface to send (com,m, open) to verify
that com is a commitment to m with opening open.

FNIC can be realized by a perfectly hiding commitment scheme, such as Pedersen
commitments [11]. To ensure that a party Pi sends the same input m to several
ideal functionalities, Pi first uses com.commit to get a commitment com to m
with opening open. Then Pi sends (com,m, open) as input to each of the func-
tionalities, and each functionality runs COM.Verify to verify the commitment.
Finally, other parties in the protocol receive the commitment com from each
of the functionalities and use the com.validate interface to validate com. Then,
if com received from all the functionalities is the same, the binding property
provided by FNIC ensures that all the functionalities received the same input m.
Our functionality FUUD receives committed inputs as described in [11].
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3 Functionality FUUD

FUUD interacts with readers Rk and an updater U . FUUD maintains a database
DB. DB consists of N entries of the form [i, vi,1, . . . , vi,L]. FUUD has three inter-
faces uud.update, uud.getdb and uud.read:

1. U sends the uud.update.ini message on input (i, vi,1, . . . , vi,L)∀i∈[1,N ]. For all
i ∈ [1,N ], FUUD updates DB to contain value vi,j at position j ∈ [1,L] of
entry i. If vi,j = ⊥, no update at position j of entry i takes place.

2. Rk sends the uud.getdb.ini message to FUUD. FUUD sends DB to Rk.
3. Rk sends the uud.read.ini message on input a pseudonym P and a

tuple (i, comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L]), where [i, vi,1, . . . , vi,L] is a
database entry and (comi , openi) and (comi,j , openi,j)∀j∈[1,L] are commit-
ments and openings to i and to the values (vi,1, . . . , vi,L). FUUD verifies the
commitments and checks that there is an entry [i, vi,1, . . . , vi,L] in DB. FUUD

sends (comi , 〈comi,j〉∀j∈[1,L]) to U .

FUUD stores counters crk for Rk and a counter cu for U . These counters
are used to check that Rk has the last version of DB. When U sends an update,
cu is incremented. When Rk receives DB, FUUD sets crk ← cu. When Rk

reads DB, FUUD checks that crk = cu, which ensures that Rk and U have the
same DB.

When invoked by U or Rk, FUUD first checks the correctness of the input
and aborts if it does not belong to the correct domain. FUUD also aborts if an
interface is invoked at an incorrect moment in the protocol. For example, Rk

cannot invoke uud.read if uud.update was never invoked.
The session identifier sid has the structure (U , sid ′). Including U in sid

ensures that any U can initiate an instance of FUUD. FUUD implicitly checks
that sid in a message equals the one received in the first invocation. Before
FUUD queries the simulator S, FUUD saves its state, which is recovered when
receiving a response from S. To match a query to a response, FUUD creates a
query identifier qid .

Description of FUUD. FUUD is parameterised by a universe of pseudonyms Up,
a universe of values Uv and by a database size N .

1. On input (uud.update.ini, sid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]) from U :
– Abort if sid /∈ (U , sid ′).
– For all i ∈ [1,N ] and j ∈ [1,L], abort if vi,j /∈ Uv.
– If (sid ,DB, cu) is not stored:

• For all i ∈ [1,N ] and j ∈ [1,L], abort if vi,j = ⊥.
• Set DB ← (i, vi,1, . . . , vi,L)∀i∈[1,N ] and cu ← 0 and store (sid ,DB, cu).

– Else:
• For all i ∈ [1,N ] and j ∈ [1,L], if vi,j �= ⊥, update DB by storing vi,j

at position j of entry i.
• Increment cu and update DB and cu in (sid ,DB, cu).
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– Create a fresh qid and store qid .
– Send (uud.update.sim, sid , qid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]) to S.

S. On input (uud.update.rep, sid , qid) from S:
– Abort if qid is not stored.
– Delete qid .
– Send (uud.update.end, sid) to U .

2. On input (uud.getdb.ini, sid) from Rk:
– Create a fresh qid and store (qid ,Rk).
– Send (uud.getdb.sim, sid , qid) to S.

S. On input (uud.getdb.rep, sid , qid) from S:
– Abort if (qid ′,Rk) such that qid ′ = qid is not stored.
– If (sid ,DB, cu) is not stored, set DB ← ⊥.
– Else, set crk ← cu, store (Rk,DB, crk) and delete any previous tuple

(Rk,DB′, cr ′
k).

– Delete (qid ,Rk).
– Send (uud.getdb.end, sid ,DB) to Rk.

3. On input (uud.read.ini, sid ,P , (i, comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L]))
from Rk:

– Abort if P /∈ Up, or if [i, vi,1, . . . , vi,L] /∈ DB, or if (Rk,DB, crk) is not
stored.

– Parse the commitment comi as (com ′
i , parcom,COM.Verify).

– Abort if 1 �= COM.Verify(parcom, com ′
i , i, openi).

– For all j ∈ [1,L]:
• Parse the commitment comi,j as (com ′

i,j , parcom,COM.Verify).
• Abort if 1 �= COM.Verify(parcom, com ′

i,j , vi,j , openi,j).
– Create a fresh qid and store (qid ,P , (comi , 〈comi,j〉∀j∈[1,L]), crk).
– Send (uud.read.sim, sid , qid , (comi , 〈comi,j〉∀j∈[1,L])) to S.

S. On input (uud.read.rep, sid , qid) from S:
– Abort if (qid ′,P , (comi , 〈comi,j〉∀j∈[1,L]), cr ′

k) such that qid ′ = qid is not
stored or if cr ′

k �= cu, where cu is in (sid ,DB, cu).
– Delete the record (qid ,P , (comi , 〈comi,j〉∀j∈[1,L]), cr ′

k).
– Send (uud.read.end, sid ,P , (comi , 〈comi,j〉∀j∈[1,L])) to U .

FUUD guarantees anonymity and unlinkability. Namely, FUUD reveals to U
a pseudonym P rather than the identifier Rk. Rk can choose different random
pseudonyms so that read operations are unlinkable. FUUD also ensures zero-
knowledge, i.e. a read operation does not reveal the database entry read to U .
Additionally, FUUD guarantees unforgeability, i.e. Rk cannot read an entry if
that entry was not stored in DB by U .

It is straightforward to modify the uud.read interface to allow Rk to read
several database entries simultaneously. This variant allows us to reduce com-
munication rounds when Rk needs to read more than one entry simultaneously.
FUUD can also be modified to interact with two parties such that both of them
can read and update the database, or such that a party reads and updates and
the other party receives read and update operations. ΠUUD can be easily adapted
to realize the variants of FUUD discussed here.
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4 Construction ΠUUD

4.1 Building Blocks

Subvector Commitments. A subvector commitment (SVC) scheme allows us to
succinctly compute a commitment com to a vector x = (x[1], . . . ,x[�]) ∈ M�.
A commitment com to x can be opened to a subvector xI = (x[i1], . . . ,x[in]),
where I = {i1, . . . , in} ⊆ [1, �] is the set of indices that determine the positions
of the committed vector x that are opened. The size of an opening wI for xI is
independent of both the size of I and of the length � of the committed vector.
We extend the definition of SVC in [20] with algorithms to update commitments
and openings.

SVC.Setup(1k, �). On input the security parameter 1k and an upper bound � on
the size of the vector, generate the parameters par , which include a description
of the message space M.

SVC.Commit(par ,x). On input a vector x ∈ M�, output a commitment com
to x.

SVC.Open(par , I,x). On input a vector x and a set I = {i1, . . . , in} ⊆ [1, �],
compute an opening wI for the subvector xI = (x[i1], . . . ,x[in]).

SVC.Verify(par , com,xI , I,wI). Output 1 if wI is a valid opening for the set of
positions I = {i1, . . . , in} ⊆ [1, �] such that xI = (x[i1], . . . ,x[in]), where x is
the vector committed in com. Otherwise output 0.

SVC.ComUpd(par , com,x, i, x). On input a commitment com to a vector x, out-
put a commitment com ′ to a vector x′ such that x′[i] = x and, for all
j ∈ [1, �] \ {i}, x′[j] = x[j].

SVC.OpenUpd(par ,wI ,x, I, i, x). On input an opening wI for a set I valid for a
commitment to a vector x, output an opening w ′

I valid for a commitment to
a vector x′ such that x′[i] = x and, for all j ∈ [1, �] \ {i}, x′[j] = x[j].

A SVC scheme must be correct and binding [20]. In the full version [18], we
recall those properties and define correctness for the update algorithms. In the
full version [18], we also depict FCRS.Setup

CRS , FR
ZK and FBB, which we describe

briefly below.

Ideal Functionality FCRS.Setup
CRS . ΠUUD uses the functionality FCRS.Setup

CRS for com-
mon reference string generation in [13]. FCRS.Setup

CRS interacts with any parties P
that obtain the common reference string, and consists of one interface crs.get. A
party P uses the crs.get interface to request and receive the common reference
string crs from FCRS.Setup

CRS . In the first invocation, FCRS.Setup
CRS generates crs by

running algorithm CRS.Setup. The simulator S also receives crs.

FR
ZK. Let R be a polynomial time computable binary relation. For tuples

(wit , ins) ∈ R we call wit the witness and ins the instance. ΠUUD uses a function-
ality FR

ZK for zero-knowledge. FR
ZK runs with multiple provers Pk and a verifier V.

FR
ZK follows the functionality for zero-knowledge in [13], except that a prover Pk

is identified by a pseudonym P towards V. FR
ZK consists of one interface zk.prove.
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Pk uses zk.prove to send a witness wit , an instance ins and a pseudonym P to
FR

ZK. FR
ZK checks whether (wit , ins) ∈ R, and, in that case, sends ins and P

to V.

Ideal Functionality FBB. ΠUUD uses the functionality FBB for a public bulletin
board BB [27]. A BB is used to ensure that all the readers receive the same
version of the database, which is needed to provide unlinkability. FBB interacts
with a writer W and readers Rk. W uses the bb.write interface to send a message
m to FBB. FBB increments a counter ct of the number of messages stored in BB
and appends [ct ,m] to BB. Rk uses the bb.getbb interface on input an index i .
If i ∈ [1, ct ], FBB takes the message m stored in [i ,m] in BB and sends m to Rk.

4.2 Description of ΠUUD

In ΠUUD, a SVC com is used to commit to the database DB with N entries of
the form [i, vi,1, . . . , vi,L]. To this end, com commits to a vector x of length N ×L
such that x[(i − 1)L + j] = vi,j for all i ∈ [1,N ] and j ∈ [1,L].

In the uud.update interface, U uses FBB to publish the DB and to update it. In
the uud.getdb interface, any Rk retrieves DB and its subsequent updates through
FBB. When DB is published for the first time, U and Rk run SVC.Commit to com-
mit to DB. When DB is updated, U and Rk update com by using SVC.ComUpd.
If Rk already stores openings wi, Rk runs SVC.OpenUpd to update them.

In the uud.read interface, Rk uses FR
ZK to prove that (comi , 〈comi,j〉∀j∈[1,L])

commit to an entry i and values vi,1, . . . , vi,L such that x[(i − 1)L + j] = vi,j

for all j ∈ [1,L], where x is the vector committed in com. R requires proving
knowledge of an opening wI for the set I = {(i − 1)L + 1, . . . , (i − 1)L + L} of
positions where the values for the database entry i are stored. Rk runs SVC.Open
to compute wI if it is not stored. R also requires a proof to associate i with I,
which we denote by I = f(i), where f is a function that on input i outputs the
indices I = {(i − 1)L + 1, . . . , (i − 1)L + L}. In Sect. 5, we show a concrete UC
ZK proof for R for the SVC scheme in [20].

Description of ΠUUD. N denotes the database size and L the size of any entry.
The function f(i) = ((i − 1)L + 1, . . . , (i − 1)L + L) maps i ∈ [1,N ] to a set of
indices where the database entry i is stored. The universe of values Uv is given
by the message space of the SVC scheme.

1. On input (uud.update.ini, sid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]), U does the following:
– If (sid , par , com,x, cu) is not stored:

• U uses crs.get to obtain the parameters par from FSVC.Setup
CRS . To com-

pute par , FSVC.Setup
CRS runs SVC.Setup(1k,N × L).

• U initializes a counter cu ← 0 and a vector x such that x[(i−1)L+j] =
vi,j for all i ∈ [1,N ] and j ∈ [1,L]. U runs com ← SVC.Commit(par ,x)
and stores (sid , par , com,x, cu).
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– Else:
• U sets cu ′ ← cu + 1, x′ ← x and com ′ ← com. For all i ∈

[1,N ] and j ∈ [1,L] such that vi,j �= ⊥, U computes com ′ ←
SVC.ComUpd(par , com ′,x′, (i−1)L+j, vi,j) and sets x′[(i−1)L+j] ←
vi,j .

• U replaces the stored tuple (sid , par , com,x, cu) by
(sid , par , com ′,x′, cu ′).

– U uses the bb.write interface to append (i, vi,1, . . . , vi,L)∀i∈[1,N ] to the
bulletin board.

– U outputs (uud.update.end, sid).
2. On input (uud.getdb.ini, sid), Rk does the following:

– If (sid , par , com,x, crk) is not stored, Rk obtains par from FSVC.Setup
CRS and

initializes a counter crk ← 0.
– Rk increments crk and uses the bb.getbb interface to read the message

(i, vi,1, . . . , vi,L)∀i∈[1,N ] stored at position crk in the bulletin board. Rk

continues incrementing the counter and reading the bulletin board until
the returned message is ⊥.

– Rk sets a tuple (i, vi,1, . . . , vi,L)∀i∈[1,N ], such that vi,j (for i ∈ [1,N ] and
j ∈ [1,L]) is the most recent update for position j of the database entry
i received from the bulletin board. If (sid , par , com,x, crk) is not stored,
(i, vi,1, . . . , vi,L)∀i∈[1,N ] contains the current database to be used to set x,
else it contains the update that needs to be performed on x.

– For i = 1 to N , if (sid , i,wI) is stored, Rk sets x′ ← x and w ′
I ← wI

and, for all i ∈ [1,N ] and j ∈ [1,L] such that vi,j �= ⊥, w ′
I ←

SVC.OpenUpd(par ,w ′
I ,x

′, I, (i − 1)L + j, vi,j) and x′[(i − 1)L + j] = vi,j .
Rk replaces (sid , i,wI) by (sid , i,w ′

I).
– Rk performs the same operations as U to set or update com and x, and

stores a tuple (sid , par , com,x, crk).
– R outputs (uud.getdb.end, sid ,x).

3. On input (uud.read.ini, sid ,P , (i, comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L])):
– Rk parses comi as (com ′

i , parcom,COM.Verify).
– Rk aborts if 1 �= COM.Verify(parcom, com ′

i , i, openi).
– For all j ∈ [1,L]:

• Rk parses the commitment comi,j as (com ′
i,j , parcom,COM.Verify).

• Rk aborts if 1 �= COM.Verify(parcom, com ′
i,j , vi,j , openi,j).

– Rk takes the stored tuple (sid , par , com,x, crk) and aborts if, for any
j ∈ [1,L], x[(i − 1)L + j] �= vi,j .

– If (sid , i,wI) is not stored, Rk computes I ← f(i), executes the algorithm
wI ← SVC.Open(par , I,x) and stores (sid , i,wI).

– Rk sets the witness wit ← (wI , I, i, openi , 〈vi,j , openi,j〉∀j∈[1,L]) and the
instance ins ← (par , com, parcom, com ′

i , 〈com ′
i,j〉∀j∈[1,L], crk). Rk uses

zk.prove to send wit , ins and P to FR
ZK. The relation R is

R = {(wit , ins) :
1 = COM.Verify(parcom, com ′

i , i, openi) ∧
〈1 = COM.Verify(parcom, com ′

i,j , vi,j , openi,j)〉∀j∈[1,L] ∧
1 = SVC.Verify(par , com, 〈vi,j〉∀j∈[1,L], I,wI) ∧ I = f(i)}
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– U receives P and ins = (par ′, com ′, parcom, com ′
i , 〈com ′

i,j〉∀j∈[1,L], crk)
from FR

ZK.
– U takes the stored tuple (sid , par , com,x, cu) and aborts if crk �= cu, or

if par ′ �= par , or if com ′ �= com.
– U sets comi ← (com ′

i , parcom,COM.Verify) and 〈comi,j ←
(com ′

i,j , parcom,COM.Verify)〉∀j∈[1,L]. (COM.Verify is in the description of
R.)

– U outputs (uud.read.end, sid ,P , (comi , 〈comi,j〉∀j∈[1,L])).

Theorem 1. ΠUUD securely realizes FUUD in the (FSVC.Setup
CRS , FBB, FR

ZK)-hybrid
model if the SVC scheme is binding.

When Rk is corrupt, the binding property of the SVC scheme guarantees
that the adversary is not able to open the VC com to a value vi,j if that value
was not previously committed by U at position (i−1)L+ j. We analyze in detail
the security of ΠUUD in the full version [18].

5 Instantiation and Efficiency Analysis

Bilinear Maps. Let G, G̃ and Gt be groups of prime order p. A map e : G ×
G̃ → Gt must satisfy bilinearity, i.e., e(gx, g̃y) = e(g , g̃)xy; non-degeneracy, i.e.,
for all generators g ∈ G and g̃ ∈ G̃, e(g , g̃) generates Gt; and efficiency, i.e.,
there exists an efficient algorithm G(1k ) that outputs the pairing group setup
grp ← (p,G, G̃,Gt, e, g , g̃) and an efficient algorithm to compute e(a, b) for any
a ∈ G, b ∈ G̃.

Cube Diffie-Hellman (CubeDH) Assumption. Let (p,G, G̃,Gt, e, g , g̃) ← G(1k)
and x ← Zp. Given (p,G, G̃,Gt, e, g , g̃ , gx, g̃x), for any p.p.t. adversary A,
Pr[e(g , g̃)x3 ← A(p,G, G̃,Gt, e, g , g̃ , gx, g̃x)] ≤ ε(k).

SVC Scheme. We use a SVC scheme secure under the CubeDH assumption [20],
which we extend with update algorithms for commitments and openings.

SVC.Setup(1k, �). Generate (p,G, G̃,Gt, e, g , g̃) ← G(1k). For all i ∈ [1, �],
pick zi ← Zp and compute gi ← gzi and g̃i ← g̃zi . For all i ∈ [1, �]
and i′ ∈ [1, �] such that i �= i′, compute hi,i′ ← gzizi′ . Output par ←
(p,G, G̃,Gt, e, g , g̃ , {gi, g̃i}∀i∈[1,�], {hi,i′}∀i,i′∈[1,�],i �=i′).

SVC.Commit(par ,x). Output com =
∏�

i=1 gx[i]
i .

SVC.Open(par , I,x). Output wI =
∏

i∈I

∏
i′ /∈I hx[i′]

i,i′ .
SVC.Verify(par , com,xI , I,wI). Parse I as {i1, . . . , in} ⊆ [1, �] and xI as

(x[i1], . . . ,x[in]). Output 1 if

e

(
com

∏
i∈I gx[i]

i

,
∏

i∈I

g̃i

)

= e(wI , g̃)

SVC.ComUpd(par , com,x, i, x). Output com ′ = com · gx−x[i]
i .

SVC.OpenUpd(par ,wI ,x, I, i, x). If i ∈ I, output wI , else w ′
I = wI ·∏j∈I hx−x[i]

j,i .
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Commitments. We use Pedersen commitments [24], which we recall in the full
version [18].

Signatures. We use the structure-preserving signature (SPS) scheme in [2]. In
SPSs, the public key, the messages, and the signatures are group elements in G

and G̃, and verification must consist purely in the checking of pairing product
equations. We employ SPSs to sign group elements, while still supporting efficient
ZK proofs of signature possession. In this SPS scheme, a elements in G and b
elements in G̃ are signed.

KeyGen(grp, a, b). Let grp ← (p,G, G̃,Gt, e, g , g̃) be the bilinear map parame-
ters. Pick at random u1, . . . , ub, v, w1, . . . wa, z ← Z

∗
p and compute Ui = gui ,

i ∈ [1..b], V = g̃v, Wi = g̃wi , i ∈ [1..a] and Z = g̃z. Return the ver-
ification key pk ← (grp, U1, . . . , Ub, V,W1, . . . ,Wa, Z) and the signing key
sk ← (pk , u1, . . . , ub, v, w1, . . . , wa, z).

Sign(sk , 〈m1, . . . ,ma+b〉). Pick r ← Z
∗
p, set R ← gr, S ← gz−rv

∏a
i=1 m−wi

i , and
T ← (g̃

∏b
i=1 m−ui

a+i )
1/r, and output the signature s ← (R,S, T ).

VfSig(pk , s, 〈m1, . . . ,ma+b〉). Output 1 if e(R, V )e(S, g̃)
∏a

i=1 e(mi,Wi) =
e(g, Z) and e(R, T )

∏b
i=1 e(Ui,ma+i) = e(g, g̃).

UC ZK Proof. To instantiate FR
ZK, we use the scheme in [12]. In [12], a UC ZK

protocol proving knowledge of exponents (w1, . . . , wn) that satisfy the formula
φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (1)

The formula φ(w1, . . . , wn) consists of conjunctions and disjunctions of “atoms”.
An atom expresses group relations, such as

∏k
j=1 g

Fj

j = 1, where the gj ’s are
elements of prime order groups and the Fj ’s are polynomials in the variables
(w1, . . . , wn).

A proof system for (1) can be transformed into a proof system for more
expressive statements about secret exponents sexps and secret bases sbases:

Ksexps, sbases : φ(sexps, bases ∪ sbases) (2)

The transformation adds an additional base h to the public bases. For each
gj ∈ sbases, the transformation picks a random exponent ρj and computes a
blinded base g′

j = gjhρj . The transformation adds g′
j to the public bases bases,

ρj to the secret exponents sexps, and rewrites g
Fj

j into g′
j
Fjh−Fjρj .

The proof system supports pairing product equations
∏k

j=1 e(gj , g̃j)Fj =
1 in groups of prime order with a bilinear map e, by treating the tar-
get group Gt as the group of the proof system. The embedding for
secret bases is unchanged, except for the case in which both bases in
a pairing are secret. In this case, e(gj , g̃j)Fj must be transformed into
e(g′

j , g̃
′
j)

Fje(g′
j , h̃)−Fj ρ̃je(h, g̃′

j)
−Fjρje(h, h̃)Fjρj ρ̃j .
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UC ZK Proof for Relation R. To instantiate FR
ZK with the protocol in [12],

we need to instantiate R with our chosen SVC and commitment schemes. Then
we need to express R following the notation for UC ZK proofs described above.

In R, we need to prove that I = f(i) = {(i − 1)L + 1, . . . , (i −
1)L + L}, i.e., we need to prove that the set I of positions opened con-
tains the positions where the database entry i is stored. To prove this
statement, the public parameters of the SVC scheme are extended with
SPSs that bind g i with (g(i−1)L+1, g̃(i−1)L+1, . . . , g(i−1)L+L, g̃(i−1)L+L), i.e., i
is bound with the bases of the positions in I. Given the parameters par ←
(p,G, G̃,Gt, e, g , g̃ , {gi, g̃i}∀i∈[1,�], {hi,i′}∀i,i′∈[1,�],i �=i′), we create the key pair
(sk , pk) ← KeyGen(〈p,G, G̃,Gt, e, g , g̃〉,L+1,L+1) and, for i ∈ [1, �], we compute
si ← Sign(sk , 〈g(i−1)L+1, . . . , g(i−1)L+L, g i, g̃(i−1)L+1, . . . , g̃(i−1)L+L, g̃sid 〉), where
sid is the session identifier. We remark that these signatures do not need to be
updated when the database is updated.

Let (U1, . . . , UL+1, V,W1, . . . ,WL+1, Z) be the public key of the signa-
ture scheme. Let (R,S, T ) be a signature on (g(i−1)L+1, . . . , g(i−1)L+L, g i,

g̃(i−1)L+1, . . . , g̃(i−1)L+L, g̃sid ). Let (g , h) be the parameters of the Pedersen com-
mitment scheme. R involves proofs about secret bases and we use the transfor-
mation described above for those proofs. The base h is also used to randomize
secret bases in G, and another base h̃ ← G̃ is added to randomize bases in G̃.
Following the notation in [12], we describe the proof as follows.

Ki, openi , 〈vi,j , openi,j , g(i−1)L+j , g̃(i−1)L+j〉∀j∈[1,L],wI , R, S, T :

com ′
i = g ihopeni ∧ 〈com ′

i,j = gvi,jhopeni,j 〉∀j∈[1,L] ∧ (3)

e(R, V )e(S, g̃)(
∏

j∈[1,L]

e(g(i−1)L+j ,Wj))e(g ,WL+1)ie(g, Z)−1 = 1 ∧ (4)

e(R, T )(
∏

j∈[1,L]

e(Uj , g̃(i−1)L+j))e(UL+1, g̃sid )e(g , g̃)−1 = 1 ∧ (5)

e

⎛

⎝ com
∏

j∈[1,L] g
vi,j
(i−1)L+j

,
∏

j∈[1,L]

g̃(i−1)L+j

⎞

⎠ = e(wI , g̃) (6)

Equation 3 proves knowledge of the openings of the Pedersen commit-
ments com ′

i and 〈com ′
i,j〉∀j∈[1,L]. Equation 4 and Eq. 5 prove knowledge of

a signature (R,S, T ) on a message (g(i−1)L+1, . . . , g(i−1)L+L, g i, g̃(i−1)L+1, . . . ,

g̃(i−1)L+L, g̃sid). Equation 6 proves that the values 〈vi,j〉∀j∈[1,L] in 〈com ′
i,j〉∀j∈[1,L]

are equal to the values committed in the positions I = f(i) = {(i − 1)L +
1, . . . , (i − 1)L + L} of the vector commitment com. We remark that, in com-
parison to the relation R in Sect. 4.2, in the witness we replace I by the secret
bases 〈g(i−1)L+j , g̃(i−1)L+j〉∀j∈[1,L], from which I can be derived. Like in R, the
positions j ∈ [1,L] inside the database entry i of the values vi,j committed in
com ′

i,j are revealed to the verifier.
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When a range of indices [imin, imax] stores always (i.e., even after
database updates) the same tuple [vi,1, . . . , vi,L], we can improve storage effi-
ciency as follows. We compute signatures on tuples (g(i′−1)L+1, . . . , g(i′−1)L+L,

g imin , g imax , g̃(i′−1)L+1, . . . , g̃(i′−1)L+L, g̃sid) that bind all the indices in
[imin, imax] with the bases for the positions where the tuple is stored. (i′ is
used to denote the position in the SVC where the tuple is stored.) Then, in the
UC ZK proof for R, we add a range proof to prove that i ∈ [imin, imax], where i
is committed in com ′

i , to prove that we are opening the correct subvector for i.

Efficiency Analysis. We analyze the storage, communication, and computa-
tion costs of our instantiation of ΠUUD.

Storage Cost. Any Rk and U store the common reference string, whose size
grows quadratically with N . Throughout the protocol execution, Rk and U
also store the last update of com and the committed vector. Rk stores the
openings wI . In conclusion, the storage cost is quadratic in N × L.

Communication Cost. In the uud.update interface, U sends the tuples
(i, vi,1, . . . , vi,L)∀i∈[1,N ], which are retrieved by Rk in the uud.getdb interface.
The communication cost is linear in the number of entries updated, except
for the first update in which all entries must be initialized. In the uud.read
interface, Rk sends an instance and a ZK proof to U . The size of the witness
and of the instance grows linearly with L but is independent of N . In conclu-
sion, after the first update phase, the communication cost does not depend
on N .

Computation Cost. In the uud.update and uud.getdb interfaces, U and Rk

update com with cost linear in the number t of updates, except for the first
update where all the positions are initialized. Rk also updates the stored
openings wI with cost linear in t × L. In the uud.read interface, if wI is not
stored, Rk computes it with cost that grows linearly with N ×L. However, if
wI is stored, the computation cost of the proof grows linearly with L but is
independent of N .

It is possible to defer opening updates to the uud.read interface, so as to only
update openings that are actually needed to compute ZK proofs. Thanks
to that, the computation cost in the uud.getdb interface is independent of
N . In the uud.read interface, if wI is stored but needs to be updated, the
computation cost grows linearly with t × L but it is independent of N . The
only overhead introduced by deferring opening updates is the need to store
the tuples (i, vi,1, . . . , vi,L)∀i∈[1,N ].

In summary, after initialization of com and the openings wI , the communication
and computation costs are independent of N , so in terms of communication and
computation our instantiation of ΠUUD is practical for large databases.
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Table 1. ΠUUD execution times in seconds

Interface N = 50

L = 10

N = 100

L = 5

N = 100

L = 15

N = 150

L = 10

N = 200

L = 5

N = 200

L = 15

Setup 61.35 61.37 553.71 554.52 249.61 2205.72

Update 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001

Getdb 0.0004 0.0004 0.0006 0.0004 0.0003 0.0004

Computation of com 0.0371 0.0350 0.1093 0.1035 0.0707 0.2145

One value update of com 1.59e−05 1.59e−05 1.71e−05 1.99e−05 1.69e−05 1.59e−05

Computation of wI 0.3491 0.1753 1.5659 1.0485 0.3513 3.1330

One value update of wI 0.0002 0.0001 0.0003 0.0002 0.0001 0.0003

Read proof (1024 bit key) 3.6737 2.1903 4.9621 3.6811 2.1164 5.0268

Read proof (2048 bit key) 16.6220 10.6786 25.2909 16.8730 9.8916 23.4896

Implementation and Efficiency Measurements. We have implemented our
instantiation of ΠUUD in the Python programming language, using the Charm
cryptographic framework [4], on a computer equipped with an Intel Core i5-
7300U CPU clocked at 2.60 GHz, and 8 gigabytes of RAM. The BN256 curve
was used for the pairing group setup.

To compute UC ZK proofs for Rk, we use the compiler in [12]. The public
parameters of the proof system contain a public key of the Paillier encryption
scheme, the parameters for a multi-integer commitment scheme, and the specifi-
cation of a DSA group. (We refer to [12] for a description of how those primitives
are used in the compiler.) The cost of a proof depends on the number of elements
in the witness and on the number of equations composed by Boolean ANDs. The
computation cost for the prover of a Σ-protocol for Rk involves one evaluation
of each of the equations and one multiplication per value in the witness. The
compiler in [12] extends a Σ-protocol and requires, additionally, a computation
of a multi-integer commitment that commits to the values in the witness, an eval-
uation of a Paillier encryption for each of the values in the witness, a Σ-protocol
to prove that the commitment and the encryptions are correctly generated, and
3 exponentiations in the DSA group. The computation cost for the verifier, as
well as the communication cost, also depends on the number of values in the
witness, and on the number of equations. Therefore, as the number of values
in the witness and the number of equations is independent of N in our proof
for relation R, the computation and communication costs of our proof do not
depend on N .

Table 1 lists the execution times of the uud.update and uud.getdb interfaces,
the computation costs for read proofs, and the costs for computing and updating
wI and com, in our implementation, in seconds. The execution times of the
interfaces of the protocol have been evaluated against the size N of the database,
and the size of each entry L of the database. In the setup phase, the public
parameters of all the building blocks are computed, and the database is set
up by computing com. In the second and third rows of Table 1, we depict the
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execution times for the uud.update and uud.getdb interfaces for the updater U ,
and a reader Rk respectively, after the update of a single value in an entry of
the database. In the fourth row of Table 1, we show the cost of computing com,
and as can be seen from these values, the computation times for com depend on
the total number of values N ×L in the database. However, the cost of updating
com is very small, and linear in the number t of updates, and this in turn results
in small computation costs for the uud.update interface, independent of N . (As
required by our applications in Sect. 6, the committed vector that we use consists
of small numbers rather than random values in Zp.) The cost of computation
of wI also depends on the total number of values N × L in the database, while
the cost of updating wI is linear in t × L, and thus the execution times for the
uud.getdb interface (which involves the updates of stored witnesses, in addition
to the update of com as in the case of the uud.update interface) are also small.

In the last two rows of Table 1, we show the computation costs for a read
proof. These values have been evaluated against varying key lengths for the
Paillier encryption scheme used in the proof system in our instantiation of ΠUUD.
The execution times for the read interface depend greatly upon the security
parameters of the Paillier encryption scheme, and increase linearly with the
entry size of the database L. However, the execution times are independent of
the database size N .

6 Modular Design with FUUD and Application to OTAC

First, we show how to describe a protocol modularly by using FUUD as building
block. As an example, consider the following relation R′:

R′ = {(wit , ins) :
[i, vi,1, . . . , vi,L] ∈ DB ∧ 1 = predi(i) ∧ 〈1 = predj(vi,j)〉∀j∈[1,L]}

where the witness is wit = (i, 〈vi,j〉∀j∈[1,L]) and the instance is ins = DB. predi

and predj represent predicates that i and 〈vi,j〉∀j∈[1,L] must fulfill, e.g., predicates
that require i and 〈vi,j〉∀j∈[1,L] to belong to a range or set of values.

We would like to construct a ZK protocol for R′ between a prover P and
a verifier V that uses different functionalities FRi

ZK and 〈FRj

ZK〉∀j∈[1,L] to prove
each of the statements in R′. We show how this protocol is constructed by using
FUUD and FNIC as building blocks.

1. On input DB, V uses the uud.update interface to send DB to FUUD.
2. P uses the uud.getdb interface to retrieve DB.
3. On input (i, vi,1, . . . , vi,L) and P , P checks that [i, vi,1, . . . , vi,L] ∈ DB.
4. P runs the com.setup interface of FNIC. P uses the com.commit interface of

FNIC on input i to obtain a commitment comi with opening openi . Similarly,
from j = 1 to L, P obtains from FNIC commitments comi,j to vi,j with
opening openi,j .

5. P uses the uud.read interface to send the tuple (P , i, comi , openi , 〈vi,j , comi,j ,
openi,j〉∀j∈[1,L]) to FUUD, which sends (P , comi , 〈comi,j〉∀j∈[1,L]) to V.
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6. V runs the com.setup interface of FNIC. V uses the com.validate interface of
FNIC to validate the commitments comi and 〈comi,j〉∀j∈[1,L]. Then V stores
P , comi and 〈comi,j〉∀j∈[1,L] and sends a message to P to acknowledge the
receipt of the commitments.

7. P parses the commitment comi as (com ′
i , parcom,COM.Verify). P sets the

witness wit ← (i, openi) and the instance ins ← (parcom, com ′
i). P uses the

zk.prove interface to send wit , ins and P to FRi

ZK, where Ri is

Ri ={(wit , ins) :
1 = COM.Verify(parcom, com ′

i , i, openi) ∧ 1 = predi(i)}

8. V receives ins from FRi

ZK. V checks that pseudonym and the commitment in ins
are equal to the stored pseudonym and commitment comi . If the commitments
are equal, the binding property guaranteed by FNIC ensures that FUUD and
FRi

ZK received as input the same position i.
9. The last two steps are replicated to prove, for j = 1 to L, that vi,j fulfills

1 = predj(vi,j) by using FRj

ZK.

Application to OTAC. In the full version [18], we depict our functionality FOTAC

and our construction ΠOTAC. FOTAC consists of the following interfaces:

1. The sender U uses the otac.init interface to send the messages 〈mn〉Nn=1.
2. The receiver Rk uses the otac.retrieve interface to retrieve N .
3. U uses the otac.policy interface to send (or update) the policies 〈ACPn〉Nn=1

and the relation RACP to FOTAC.
4. Rk uses the otac.getpol interface to obtain 〈ACPn〉Nn=1 and RACP.
5. Rk uses the otac.transfer to send a choice i and a witness wit to FOTAC. If

(wit ,ACPi) ∈ RACP, FOTAC sends mi to Rk.

FOTAC follows previous OTAC functionalities [8] but introduces two main mod-
ifications. First, it splits the initialization interface into two interfaces: otac.init
and otac.policy, to enable U to make policy updates. Second, previous function-
alities include an issuance phase where an issuer certifies Rk attributes, whereas
FOTAC does not have it. Instead, in the transfer phase of FOTAC, Rk must
provide a witness wit such that (wit ,ACPi) ∈ RACP. wit could contain, e.g.,
signatures from an issuer on Rk attributes, but in general any data required
by RACP.

ΠOTAC uses FOT, FNIC, FUUD, FRACP′
ZK , FBB and a functionality FNYM for

a secure pseudonymous channel. FOT and FNYM are depicted in the full ver-
sion [18]. FOT is used to implement the otac.init and otac.retrieve interfaces, as
well as to allow Rk to obtain messages obliviously in the otac.transfer interface.
FOT receives a committed input to the choice i. It is generally straightforward
to adapt existing UC OTs to realize our FOT with committed inputs.

To implement access control, ΠOTAC uses FUUD, FBB and FRACP′
ZK . In the

otac.policy interface, U uses FUUD to store the policies, and U uses FBB to store
the relation RACP. In the otac.getpol interface, Rk retrieves the policies and the
relation from FUUD and FBB.
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In the otac.transfer interface, Rk reads the policy ACPi = 〈vi,j〉∀j∈[1,L] for
her choice i by using FUUD. To do so, Rk obtains commitments comi and
〈comi,j〉∀j∈[1,L] to i and to the values 〈vi,j〉∀j∈[1,L] that represent the policy from
FNIC. 〈com i,j〉∀j∈[1,L] are sent as input to FRACP′

ZK so that Rk proves fulfilment
of the policy. comi is sent as input to FOT to obtain the message mi .

RACP′ is a modification of RACP. In RACP′ , the instance ACPi = 〈vi,j〉∀j∈[1,L]

of RACP is replaced by 〈com i,j〉∀j∈[1,L], while the witness is extended to contain
wit ′ ← (wit , 〈vi,j , open i,j〉∀j∈[1,L]). I.e., the instance in RACP′ contains commit-
ments to the policy rather than the policy itself, which allows Rk to hide what
policy is being used from U .

ΠOTAC supports any policies that can be represented by tuples of values.
In [21], policies are represented by branching programs. If the ZK proof for a
policy committed in 〈comi,j〉∀j∈[1,L] requires Rk to hide the indices j that are
used from the policy, the proof for FRACP′

ZK can follow an approach similar to
ΠUUD to compute an OR proof. I.e., the values committed in 〈comi,j〉∀j∈[1,L]

can be committed in a vector commitment, and then a position of the vector
commitment can be opened, without disclosing what position is opened.

ΠOTAC uses FOT as building block. Thanks to that, it can be instantiated
with multiple OT schemes and their security does not need to be reanalyzed.
Moreover, U can update the access control policies at any time without restart-
ing or modifying the OT used as building block, and without using a revocation
mechanism to disallow old policies. Additionally, when many messages are asso-
ciated with the same policy, we can use our optimization in Sect. 5 so that the
policies in the database do not need to be replicated.

7 Related Work

Vector Commitments (VC). SVC schemes are an extension of VC schemes
[14,23]. While an opening in SVC allows us to open a subset of positions, in
VC it allows us to open one position. Our construction could be based on a VC
scheme. In that case, the efficiency of the UC ZK proof for the uud.read interface
would decrease because we would need to prove knowledge of L openings. How-
ever, storage cost would improve because the public parameter size of some VC
schemes grows linearly with the vector length. We note that [6,20] propose SVC
with short parameters based on hidden order groups, but those constructions
are better suited for bit vectors.

Polynomial commitments (PC) allow a committer to commit to a polynomial
and open the commitment to an evaluation of the polynomial. PC can be used
as vector commitments by committing to a polynomial that interpolates the
vector to be committed. The PC construction in [19] has the disadvantage that
efficient updates cannot be computed without knowledge of the trapdoor. A
further generalization of vector commitments and polynomial commitments are
functional commitments [20,22].
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OTAC. Our OTAC is adaptive, i.e., Rk can choose an index i after receiving
other messages previously. In [5], an oblivious language-based envelope protocol
(OLBE) is proposed based on smooth projective hash functions. OLBE can be
viewed as a non-adaptive OTAC.

Our OTAC is stateless, i.e. fulfilment of a policy by Rk does not depend in
the history of messages accessed by Rk. In [15], a stateful OTAC is proposed
where policies are defined by a directed graph that determines the possible states
of Rk, the transitions between states and the messages that can be accessed at
each stage. Price oblivious transfer protocols (POT) [3,9,26] require the user to
pay a price for each message. Typically, they involve a prepaid method, where
Rk makes a deposit and later subtracts the prices paid from it without revealing
the current funds or the prices paid. Those stateful OTAC where not designed
modularly. Recently, a modular POT protocol was proposed [16] based on an
updatable database without unlinkability [17]. Our OTAC differs from it in that
it provides unlinkability to Rk and in that it considers more complex policies
expressed by tuples of values, while in POT the policy is simply the message
price. Additionally, our OTAC can improve storage efficiency when the same
policy is applied to several messages.

Our OTAC reveals the policies to Rk. In [7,10], OTAC with hidden poli-
cies are proposed. Our approach based on SVC cannot be followed to design
modularly OTAC with hidden policies that allow for policy updates.

8 Conclusion and Future Work

We propose an OTAC protocol that can be instantiated with any secure OT
scheme, that allows for policy updates and that can reduce storage cost when a
policy is associated to a group of messages. As building block, we define and con-
struct an unlinkable updatable database. Our construction based on subvector
commitments allows efficient policy updates. As future work, we plan to extend
our OTAC protocol to consider stateful policies.
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Abstract. Elliptic curve cryptography (ECC) can ensure an equivalent
security with much smaller key sizes. Elliptic curve scalar multiplica-
tion (ECSM) is a fundamental computation used in ECC. This paper
focuses on ECSM resisting simple power attack and safe error attack of
side-channel attack specifically. Elliptic curve complete addition (CA)
formulae can achieve secure ECSM algorithms but are inefficient from
memory and computational cost perspectives. Another secure ECSM,
which uses (extended) affine, is more efficient for both memory and com-
putational costs. However, it scans input scalars from right to left. In
this paper, our developed scalar multiplication algorithms also use their
extended affine, but scan from left to right (LR). We also prove the secu-
rity of our LR ECSM algorithms and analyze them both theoretically and
experimentally. Our new LR ECSM algorithms can reduce the amount
of memory by 37.5% and reduce the computational time by more than
40% compared to Joye’s regular 2-ary LR algorithm with CA formulae.

Keywords: Elliptic curve scalar multiplication · Side-channel attack

1 Introduction

Elliptic curve cryptography (ECC) can ensure an equivalent security with much
smaller key sizes. Hence, ECC has been implemented in secure Internet-of-Things
(IoT) devices [1] and various blockchain applications. Elliptic curve scalar mul-
tiplication (ECSM) is a fundamental computation used in ECC. It is therefore
important to construct a secure and efficient ECSM. Studies on secure and effi-
cient ECSM algorithms can be divided into two categories. The first direction
is to find secure and efficient scalar multiplication algorithms [9–11,13,14]. The
second direction is to find secure and efficient coordinates with addition for-
mulae [3,6,7,15,17]. This paper concentrates on resisting simple power attack
(SPA) and safe error attack (SEA). SPA makes use of “if statements” and SEA
makes use of “dummy statements” to reveal significant bits of input scalars.
Thus, secure ECSM algorithms should exclude conditional and dummy state-
ments. Elliptic curve CA formulae [7,15,17] can achieve secure ECSM algorithms
but are inefficient in terms of memory and computational costs. Another secure
ECSM, which uses (extended) affine, is more efficient for both memory and
computational costs [8]. However, it scans input scalars from right to left (RL).
c© Springer Nature Switzerland AG 2020
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In this paper, we propose secure and compact left-to-right (LR) ECSM algo-
rithms based on affine coordinates. We improve Joye’s LR 2-ary algorithm to
exclude exceptional computations of affine formulae and extended affine formu-
lae [8]. We propose secure scalar multiplication algorithms, Algorithm 7 and
Algorithm 8 through 2-bit scanning using the affine double and quadruple algo-
rithm (DQ-algorithm) [12]. Subsequently, along with applying the idea of a
Montgomery trick [4,12], we revise three affine combination-addition formulae,
which reduce the number of inversion computations to one during all compu-
tations. We combine Algorithm 7 and Algorithm 8 with affine combination-
addition algorithms and modify Algorithm 8 to Algorithm 9 with our affine
combination-addition algorithm (Algorithm 6).

For memory, (Algorithm 7) and (Algorithm 7 with Algorithm 2) use the least
amount of memory for ten field elements, reducing that of Joye’s LR with CA for-
mulae by 37.5% and that of Joye’s RL with CA formulae by 47.37%. For compu-
tational cost, we evaluate all ECSMs by estimating the number of modulo multi-
plication (M), modulo square (S), and inversion (I). Modulo multiplication with
parameters a and b (ma and mb) and modulo addition (A) are omitted. In many
cases, such as the National Institute of Standard and Technology (NIST) ellip-
tic curves, we can only omit ma and A. Then, our ECSMs of (Algorithm 7 with
(extended) affine), (Algorithm 7 with (extended) affine and Algorithm 2), and
(Algorithm 9 with (extended) affine and Algorithm 6) can be the most efficient
during a larger interval of I

M ≤ 26.8−54/�
1+17/� (24.93 when bit length � = 256) com-

pared to Joye’s LR with CA formulae. Experiments also show that our new LR
ECSM algorithms can reduce the computational time by more than 40% compared
to Joye’s LR with CA formulae.

The remainder of this paper is organized as follows. Related studies are pro-
vided in Sect. 2. Our proposed algorithms are described in Sect. 3. In Sect. 4,
we analyze our Algorithms 7–9 with (extended) affine and affine combination-
addition algorithms (Algorithms 2, 3, 4, 5 and 6) from the theoretical and exper-
imental perspectives. Finally, we conclude our work in Sect. 5.

2 Related Work

ECSM algorithms consist of two parts: scalar multiplication algorithms and ellip-
tic curve addition formulae. Thus, related studies on secure and efficient ECSM
algorithms can be divided into two categories: scalar multiplication algorithms
[9–11,13,14] and elliptic curve coordinates with addition formulae [3,7,15,17].
We briefly introduce related studies in this section.

affine addition formula (P �= ±Q)

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2

y3 =
(

y2 − y1

x2 − x1

)
(x1 − x3) − y1

(1)

affine doubling formula (2P �= O)

x3 =
(

3x2
1 + a

2y1

)2

− 2x1

y3 =
(

3x2
1 + a

2y1

)
(x1 − x3) − y1

(2)
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2.1 Addition Formulae and Exceptional Computations

Let E(Fp) be a Weierstrass elliptic curve over Fp, E(Fp) : y2 = x3+ax+b, (a, b ∈
Fp). Then affine coordinates compute addition and doubling as Eqs. 1 and 2. A
point at infinity cannot be represented clearly by the affine coordinates. Thus,
O + P , P + Q = O and 2P = O, which cannot be computed correctly by the
affine addition formulae, are so-called exceptional computations of affine addition
formulae. In addition, P + P becomes an exceptional computation of the affine
addition formula. In summary, O + P , P + Q = O and P + P are exceptional
computations of the affine addition formula and 2P = O is the exceptional
computation of the affine doubling formula. Similarly, O + P and P + P are
exceptional computations of Jacobian and projective addition formula. To reduce
exceptional computations from affine coordinates, extended affine coordinates
assign (0, 0) as the point at infinity for elliptic curves without point (0, 0), such
as prime order elliptic curves [8]. Using the extended affine addition formulae,
P + Q = O and 2P = O can be computed as (0, 0), which is exactly the point
at infinity. Both O + P and P + P are still exceptional computations of the
extended affine addition formula. We use (extended) affine to indicate the mixed
use of the original affine addition and the extended affine addition.

The complete addition (CA) formulae of an elliptic curve [15] can be used to
compute the addition of any elliptic curve point pair, and thus, can be employed
to secure scalar multiplication algorithms without introducing conditional state-
ments to process exceptional computations. However, CA formulae are inefficient
in terms of memory and computational costs. In addition, note that they only
work for prime order elliptic curves.

Table 1 summarizes the computational cost of the elliptic curve addition for-
mulae, where M , S, I, and A are the computational costs for one field multi-
plication, square, inversion, and addition, respectively. Further, ma and mb are
the computational costs for one field multiplication with parameters a and b,
respectively. Assuming that S = 0.8M , and ignoring the computational costs
of ma, mb, and A, the computational cost of one elliptic curve addition (ADD)
and one elliptic curve doubling (DBL) using the CA formulae is 24M in total.
Subsequently, the computational cost of the ADD and DBL using affine addition
formulae is more efficient than those using the CA formulae, Jacobian addition
formulae, or projective addition formulae when I < 8.8M , I < 8M or I < 9.1M ,
respectively. If we employ these addition formulae on NIST elliptic curves, where
a = −3 and the computational cost mb cannot be ignored, the computational
cost of ADD and DBL using the CA formulae is 26.4M in total. The compu-
tational cost of ADD and DBL using affine addition formulae is more efficient
when I < 10M .

2.2 Scalar Multiplication Algorithms

SCA has several attack methods to reveal significant bits of input scalars: a
simple power analysis (SPA), which makes use of conditional statements applied
during an algorithm depending on the data being processed; a differential power
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Table 1. Computational cost of elliptic curve addition formulae

Addition formulae Conditions ADD (P + Q) DBL (2P ) Memory

CA formulae [15] 2 � #E(Fp) 12M + 3ma + 2mb + 23A 12M + 3ma + 2mb + 23A 15

Affine – 2M + S + I 2M + 2S + I 5

Extended affine [8] (0, 0) /∈ E(Fp) 6M + S + I 4M + 4S + I 7

Projective – 12M + 2S 7M + 5S 7

Jacobian – 11M + 5S M + 8S 8

analysis (DPA), which uses the correlation between the power consumption and
specific key-dependent bits; a timing attack, which uses the relation between the
implementation time and the bits of the scalars; and a safe error attack (SEA),
which uses dummy statements [2,5]. Therefore, to resist these attacks, we need to
eliminate conditional statements in the ECSM for the SPA, the relation between
the implementation time and the input scalars for the timing attack, and dummy
statements for the SEA. In addition, the power consumption should be changed
at each new execution for the DPA. Note that countermeasure to timing attack
is taken by padding ‘0’s in front of the input scalars to make certain that almost
the same execution time can be easy employed in our algorithms [16]. In this
paper, we focus on the SPA and SEA.

Regarding secure ECSM resisting SPA and SEA, three properties, namely,
the generality of k, secure generality, and executable coordinates are defined
in [8]. In their paper, the authors evaluated secure ECSM focusing on RL scalar
multiplication algorithms. We can evaluate Joye’s regular 2-ary LR algorithm
(Algorithm 1) in the same way as shown in Theorem 1.

Algorithm 1. Joye’s regular 2-ary LR algorithm [10]

Input: P ∈ E(Fp), k =
∑�−1

i=0 ki2
i

Output: kP
Uses: A, R[1], R[2]
Initialization
1: R[1] ← P , R[2] ← 2P
2: A ← (k�−1 − 1)P
Main Loop
3: for i = � − 2 to 0 do
4: A ← 2A + R[1 + ki]
5: end for
Final Correction
6: A ← A + R[1]
7: return A

Theorem 1. Joye’s regular 2-ary LR algorithm satisfies the generality of k and
the secure generality. Coordinates with CA formulae are its executable coordi-
nates. Affine and Jacobian coordinates are not executable coordinates of this
algorithm.
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New (two-bit) 2-ary RL scalar multiplication algorithms by improving Joye’s
regular 2-ary RL algorithm to make (extended) affine be executable coordinates
for it are proposed in [8]. In fact, Joye’s regular 2-ary LR algorithm uses two fewer
memories than Joye’s regular 2-ary RL algorithm. We would like to employ the
same idea to improve Joye’s regular LR algorithm to use the (extended) affine
as executable coordinates.

2.3 Inversion-Reduction Combination-Addition Formulae

We can compute any two or more inversions of the field elements using only a
single inversion by applying the Montgomery trick. The computational cost of
nI becomes 3(n − 1)M + I, which is more efficient when I > 3M . Using this
method, Eisentrager et al. proposed an affine doubling and addition algorithm
(DA-algorithm), computing 2P +Q as P +Q+P with P (x1, y1), Q(x2, y2) using
the following formulae [4]:

x3 = λ2
1 − x1 − x2, y3 = λ1(x1 − x3) − y1, λ1 =

(
y2 − y1

x2 − x1

)
(3)

x4 = (λ2 − λ1)(λ2 + λ1) + x2, y4 = λ2(x1 − x4) − y1, λ2 = −λ1 − 2y1

x3 − x1
(4)

DA-algorithm computes an inversion of (x2 −x1)3(x3 −x1) = (x2 −x1)(y2 −
y1)2 − (2x1 + x2)(x2 − x1)3 first and then computes inversions of (x2 − x1)
and (x3 − x1). The result (x4, y4) can be computed without computing (x3, y3)
completely. The computational cost is 9M + 2S + I.

Le and Nguyen proposed an affine double and quadruple algorithm (DQ-
algorithm) [12]. Their algorithm can compute both 2P and 4P simultaneously
with only one inversion computation. The computational cost is 8M + 8S + I.
Its memory use is improved to 11 field elements, as described in [8].

3 Secure and Efficient LR-ECSM Algorithms

Algorithm 1 satisfies the generality of k and the secure generality, and uses
two fewer memories than Joye’s regular 2-ary RL algorithm. The affine addi-
tion formulae save memory and are efficient depending on the ratio of inver-
sion and multiplication costs but are not the executive coordinates of Algorithm
1. In the case of Joye’s regular 2-ary RL algorithm, accelerated version with
(extended) affine is proposed in [8]. However, the authors failed to apply them to
Algorithm 1. With the advantages of Algorithm 1 and affine coordinates, in this
section, we describe the improvement of Algorithm 1 to adapt (extended) affine.

First, we revise affine combination-addition formulae using the Montgomery
trick, which are used in our new LR ECSM to enhance the efficiency. We then
propose our new LR scalar multiplication algorithms with (extended) affine and
prove their security.
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3.1 Affine Combination-Addition Formulae

In this section, using the Montgomery trick, we revise several affine combination-
addition formulae, which are used in our LR ECSM Algorithms 7, 8 and 9. Table 2
shows our affine combination-addition formulae together with the previous formu-
lae. When using the Montgomery trick to reduce the inversion cost, inverses needed
to be computed depend on each other. Thus, it is not straightforward to apply the
Montgomery trick. First, we improve DQ-algorithm [8,12] to optimize the use of
memory as ten field elements in Algorithm 3, which saves one memory from [8].

Algorithm 2. DA-algorithm
Memory: 4+3=7 field elements.
Computational cost: 9M + 2S + I.
Input: P = (x1, y1), Q = (x2, y2)
Output: 2P + Q
1: y2 = y2 − y1, t0 = y2

2 , t1 = 2x1 + x2

2: x2 = x2 − x1, t2 = x2
2, t1 = t1t2

3: t0 = t0 − t1, t1 = t0x2, t1 = t−1
1

4: t0 = t0t1y2, t1 = −2t1x2t2y1−t0, t2 =
t1 + t0

5: t0 = t1 − t0, t0 = t0t2 + x2 + x1, x2 =
x2 + x1

6: x1 = (x1 − t0)t1 − y1, y2 = y2 + y1,
y1 = x1, x1 = t0

7: return (x1, y1)

Algorithm 3. DQ-algorithm
Memory: 6+4=10 field elements.
Computational cost: 8M + 8S + I.
Input: P (x1, y1)
Output: 2P , 4P
1: t0 = x2

1, t1 = 2y2
1 , t2 = t21

2: t1 = 3((t1 + x1)
2 − t0 − t2), t0 =

3t0 + a, t3 = t20
3: t1 = (t1−t3)t0, t2 = 2t2, t1 = t1−t2
4: t3 = 2t1y1, t3 = t−1

3 , t0 = t0t1t3
5: x2 = t20−2x1, y2 = (x1−x2)t0−y1,

t3 = t2t3
6: t0 = (3x2

2 + a)t3, x3 = t20 − 2x2,
y3 = (x2 − x3)t0 − y2

7: return (x2, y2), (x3, y3)

Algorithm 4. Double-add
Memory: 4+4=8 field elements.
Computational cost: 9M + 5S + I.
Input: P = (x1, y1), Q = (x2, y2)
Output: 2P + Q
1: t0 = (2y1)

2, x2 = x2 +2x1, t1 = −t0x2

2: x2 = x2 − 2x1, t2 = 3x2
1 + a, t3 = t22

3: t1 = t1 + t3, t3 = 2t1y1, t3 = (t3)
−1

4: t2 = t2t3t1, t3 = 2t3y1t0, t1 = t22 − 2x1

5: t0 = (x1 − t1)t2 − y1, t0 = (t0 − y2)t3
6: x1 = t20 −x2 − t1, y1 = (x2 −x1)t0 −y2

7: return (x1, y1)

Algorithm 5. Two-Continuous Adds
Memory: 6+4=10 field elements.
Computational cost: 9M + 4S + I.
Input: P = (x1, y1), Q = (x2, y2), R =

(x3, y3)
Output: P + Q + R
1: y2 = y2 − y1, t0 = y2

2 , t1 = x2 − x1

2: t2 = t21, t3 = x1+x2+x3, t3 = t0−t3t2
3: t0 = t1t3, t0 = (t0)

−1, y2 = y2t0t3
4: t3 = y2

2 − x1 − x2, x2 = (x1 − t3)y2 −
y1 −y3, t0 = t0t1t2x2, x2 = t20 −x3 − t3

5: y2 = (x3 − x2)t0 − y3

6: return (x2, y2)

DA, the computation of 2P + Q, is a basic computation formulae in the main
loop of Algorithm 1. DA-algorithm is not described in detail, and it is thus unclear
how much memory is required [4]. We specify the DA-algorithm to optimize the use
of memory as seven field elements in Algorithm 2. DA-algorithm in [4] has excep-
tional inputs of P +Q = O and P = Q, where P and Q have the same x-coordinate.
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If an exceptional input P + Q = O or P = Q is computed using Algorithm 2, −P
is its output. That’s DA(P , Q)→ −P , where P +Q = O or P = Q. If we make use
of Algorithm 2 twice with exceptional input P + Q = O (for example P = (x, y)
and Q = −P = (x,−y)), then Algorithm 2 outputs P ← DA(P , Q) = −P first,
whereas 2P + Q = P . Next, input the updated P and the original Q into the algo-
rithm again, then Algorithm 2 outputs P ← DA(−P , Q) = P . Thus, Algorithm 2
outputs DA(DA(P , Q), Q), where P + Q = O, correctly. This is why we can not
directly use Algorithm 2 in our Algorithm 7. In Algorithms 2 and 3, inversions are
computed in the same way as in the extended affine formulae [8], which means an
inversion of zero is computed as zero.

Algorithm 6. Quadruple-Add
Memory: 4+6=10 field elements.
Computational cost: 18M + 14S + I.
Input: P (x1, y1), Q(x2, y2)
Output: 4P + Q
1: t0 = x2

1, t1 = 2y2
1 , t2 = t21, t3 = (t1+x1)

2−t0−t2, t0 = 3t0+a, t4 = t20, t4 = t4−2t3
2: t3 = t3 − t4, t3 = t0t3, t3 = t3 − 2t2, t1 = 2t1x2 + 2t4, t5 = t23, t1 = 4t1t5, t5 = 4t2a
3: t4 = 3t24, t4 = t4 + t5, t4 = t24, t4 = t4 − t1, t5 = 2t3t4y1, t5 = (t5)

−1, t1 = 2t2t4t5
4: t5 = t3t5, t0 = t0t4t5, t2 = t22, t5 = 32t2t5y1, t2 = t20 − 2x1, x1 = (x1 − t2)t0 − y1

5: y1 = 3t22 + a, t1 = t1y1, y1 = t21 − 2t2, t2 = (t2 − y1)t1 − x1, x1 = 4x2
1, t5 = t5x1

6: t2 = t2 − y2, t2 = t2t5, x1 = t22 − x2 − y1, y1 = (x2 − x1)t2 − y2

7: return (x1, y1)

Table 2. Comparison of affine combination-addition algorithms

Affine combination-addition algorithms Ordinary Computational cost Memory

DA-algorithm Algorithm 2 (2P + Q) [4] 4M + 3S + 2I 9M + 2S + I 7

DQ-algorithm Algorithm 3 (2P, 4P ) [12] 4M + 4S + 2I 8M + 8S + I 10

Double-Add Algorithm 4 (2P + Q) 4M + 3S + 2I 9M + 5S + I 8

Two-Continuous Adds Algorithm 5 (P + Q + R) 4M + 2S + 2I 9M + 4S + I 10

Quadruple-Add Algorithm 6 (4P + Q) 6M + 5S + 3I 18M + 14S + I 10

Our double-add algorithm (Algorithm 4) computes 2P followed by 2P +
Q instead of first computing P + Q, and then (P + Q) + P in Algorithm 2.
Algorithm 4 can correctly compute 2P + Q if 2P �= O, 2P �= Q, 2P + Q �= O
and Q �= O. Note that Algorithm 4 can compute 2P + Q correctly even when
P + Q = O or P = Q, which cannot be computed correctly by Algorithm 2.
Algorithm 4 can be used in Algorithm 7 without exceptional inputs. The memory
usage is eight field elements and the computational cost is 9M + 5S + I. Next,
Algorithm 5 combines two continuous affine additions into a single unit, which
can compute P + Q + R correctly if P + Q �= O, P + Q + R �= O, P �= Q,
P + Q �= R and P,Q,R �= O, used in Algorithm 8. The memory usage is ten
field elements and the computational cost is 9M + 4S + I. Finally, our affine
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quadruple and addition algorithm (Algorithm 6) combines the computations in
the main loop of our extended new two-bit 2-ary LR algorithm (Algorithm 9),
4P + Q. In general, to obtain 4P + Q, we need to compute P ← 2P , P ← 2P ,
and P ← P + Q, which cost 3I. Algorithm 6 can compute 4P + Q correctly if
4P + Q �= O, 4P �= Q and P, 2P, 4P,Q �= O. The memory usage is ten field
elements and the computational cost is 18M + 14S + I.

3.2 Secure and Efficient LR Scalar Multiplication

We improve Algorithm 1 to a new 2-ary LR algorithm (Algorithm 7) and a new
two-bit 2-ary LR algorithm (Algorithm 8). We then combine Algorithms 7 and 8
with affine combination-addition algorithms to reduce the inversion
computations.

Algorithm 8 uses two-bit scanning, which is different from Algorithm 7.
Algorithm 8 adjusts the length of the input scalars k including the sign bit
to be even by padding ‘0’s after the sign bit of input scalars1. Therefore, two-bit
scanning can operate well for both even and odd lengths of input scalars k.

Algorithm 7. New 2-ary LR
Input: P ∈ E(Fp), k ∈ [− N

2 , N
2 ], k =

(−1)k�
∑�−1

i=0 ki2
i, sign bit kl ∈ {0, 1}

Output: kP
Uses: A, and R[0], R[1]
Initialization
1: A ← 2P
2: R[0] ← −2P
3: R[1] ← −P

Main loop
4: for i = � − 1 to 1 do
5: A ← 2A + R[ki]
6: end for

Final correction
7: A ← 2A + R[0]
8: A ← A + R[k0]

9: A ← (−1)k� × A
10: return A

Algorithm 8. New two-bit 2-ary LR
Input: P ∈ E(Fp), k ∈ [− N

2 , N
2 ], k =

(−1)k�
∑�−1

i=0 ki2
i, sign bit k� ∈ {0, 1}

Output: kP
Uses: A and R[0], R[1], R[2], R[3]
Initialization
1: R[1] ← −P , {R[0], R[2]} ← DQ(R[1])
2: R[3] ← R[0], A ← −R[0]

Main loop
3: for i = � − 1 to 1 do
4: A ← DQ(A)[1] = 4A
5: A ← A + R[ki + 2] + R[ki−1], i = i − 2
6: end for

Final correction
7: A ← 2A + R[0]
8: A ← A + R[k0]

9: A ← (−1)k� × A
10: return A

Both Algorithms 7 and 8 assume that k ∈ Z/NZ is in k ∈ [−N
2 , N

2 ],
which ensures that our algorithms exclude exceptional computations as shown in
Theorem 2. Then, k is represented by k = (−1)k�

∑�−1
i=0 ki2i (ki ∈ {0, 1}), where

k� ∈ {0, 1} is the sign bit and 0 ≤ |k| ≤ N
2 . Algorithms 7 and 8 consist of

three parts: initialization, a main loop, and a final correction. Compared with
Algorithm 1, we change the initialization of R[.] and A to avoid the exceptional
initialization of A ← O when k�−1 = 1 and the exceptional computations of
2O + P , 2O + 2P , and −2P + 2P in the main loop. Our initializations of R[.]
and A cause 4P , or 3P , to be added to the final result when k0 = 0, or k0 = 1,
respectively. We correct this in Steps 7 and 8 of the final correction of Algorithm
7 and Algorithm 8, and thus, avoid the exceptional computation, A ← A+R[1],
in the original final correction of Algorithm 1. Remark that the extended affine is
used only once in Step 8 of Algorithm 7 and Algorithm 8. Actually, the extended
1 The sign bit is ‘0’ at the beginning of k when k is positive, or ‘1’ at the beginning

of k when k is negative.



Secure and Compact Elliptic Curve LR Scalar Multiplication 613

affine is only necessary for k = 0. If k = 0 is excluded from the input, then only
the original affine can work well.

As for further reduction of inversion computations, Algorithms 2 or 4 can
be applied in Steps 5 and 7 of Algorithm 7, respectively. Although Algorithm 2
cannot be directly employed in Algorithm 7 when k�−1 = 0, twice use of of
Algorithm 2 to exceptional inputs A + R[ki] = O outputs a correct result A ←
2P . Thus, in Algorithm 7, using Algorithm 2, we can make sure it can compute
correctly by adjusting the number of ‘0’s from k�−1 until the first bit ‘1’ on the
left to be even, by padding ‘0’s after the sign bit of k. Algorithm 3 is applied in
Step 4 of Algorithm 8. Algorithm 5 is applied in Step 5 of Algorithm 8.

Our Algorithms 7 and 8 satisfy the generality of k as well as the secure gener-
ality, and the affine coordinates are executable coordinates for them. Algorithms 7
and 8 have no conditional or dummy statements. (Extended) affine and affine
combination-addition algorithms can be employed without introducing condi-
tional statements, which will be given in the final paper. Thus, Algorithms 7
and 8 with (extended) affine and affine combination-addition are secure ECSM
algorithms.

Algorithm 9. Extended New two-bit 2-ary LR algorithm
Input: P ∈ E(Fp)

k ∈ [−N
2

, N
2

], k = (−1)k�
∑�−1

i=0 ki2
i, sign bit k� ∈ {0, 1}

Output: kP
Uses: A and R[0], R[1], R[2], R[3]
Initialization
1: {R[2], A} ← DQ(P ), R[1] ← −(R[2] + P ), R[0] ← −(R[2] + A)
2: R[3] = P ← −(P + A), R[2] ← −R[2]
Main loop
3: for i = � − 1 to 1 do
4: A ← QA(A, R[2ki + ki−1]) (Algorithm 6), i = i − 2
5: end for
Final correction
6: R[1] ← R[1] − R[2], R[0] ← R[3] − R[1]
7: A ← 2A + R[0], A ← A + R[k0], A ← (−1)k� × A
8: return A

Theorem 2. Let E(Fp) be an elliptic curve without two-torsion points. Let
P ∈ E(Fp), P �= O be an elliptic curve point, whose order is N > 4. Then,
Algorithms 7 and 8 using (extended) affine and affine combination-addition for-
mulae can compute kP correctly without exceptional computations for any input
k ∈ [−N

2 , N
2 ].

Algorithm 7 combined with Algorithm 2 (or Algorithm 4) can reduce the
inversions from two-times to one-time in the main loop. By contrast, Algorithm 8
computes two inversions in the main loop. To reduce inversions to one-time in
the main loop of Algorithm 8, we propose an extended new two-bit 2-ary LR
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algorithm (Algorithm 9), where our Quadruple-Add algorithm (Algorithm 6) is
used in the main loop of Algorithm 9.

In Algorithm 9, we initialize R[0] = −6P , R[1] = −5P , R[2] = −4P , R[3] =
−3P , A = 2P , which can be computed without exceptional computations if
N > 6. Because of initialization, the condition of N > 4 is changed to N > 6.
We compute R[0] and R[1] back to −2P and −P in Step 6 of Algorithm 9 to what
they were in Algorithm 8 to make sure the remaining part of the final correction
of Algorithm 9 can be computed correctly. Algorithm 9 has the generality of k
and the secure generality and avoids all exceptional computations of the affine
formulae when k ∈ [−N

2 , N
2 ], similar to Algorithm 8. The proof of Theorems 2

can be easy extended to Algorithm 9.

4 Efficiency and Memory Analysis

4.1 Theoretical Analysis

Table 3. Computational cost and memory cost analysis

Computational cost Memory

Joye’s RL + CA [10,15] (� + 1)(24M + 6ma + 4mb + 46A) 19

2-ary RL + (extended) affine [8] (6.4� + 16)M + (2� + 4)I 12

two-bit 2-ary RL + (extended) affine [8] (10� + 23.2)M + ( 3�+9
2 )I 15

Algorithm 1 + CA [10,15] �(24M + 6ma + 4mb + 46A) 16

Algorithm 7 + (extended) affine (6.4� + 10.4)M + (2� + 2)I 10

Algorithm 7 + (extended) affine + Algorithm 2 (10.6� + 10.4)M + (� + 2)I 10

Algorithm 7 + (extended) affine + Algorithm 4 (13� + 10.4)M + (� + 2)I 11

Algorithm 8 + (extended) affine (10� + 17.6)M + ( 3�+5
2 )I 13

Algorithm 8 + (extended) affine + Algorithm 5 (13.3� + 18.5)M + (� + 2)I 13

Algorithm 9 + (extended) affine + Algorithm 6 (14.6� + 27)M + ( �+17
2 )I 17

Table 4. The most efficient algorithm with the conditions of r = I
M

(ma = mb = A =
0, � is bit length of k)

Algorithm Condition Memory

Algorithm 7 + (extended) affine r < 4.2 10

Algorithm 7 + (extended) affine + Algorithm 2 4.2 ≤ r ≤ 8+33.2/�
1−13/�

10

Algorithm 9 + (extended) affine + Algorithm 6
8+33.2/�
1−13/�

≤ r ≤ 18.8−54/�
1+17/�

17

Algorithm 1 + CA [10,15] r >
18.8−54/�
1+17/�

16

We analyzed the computational and memory costs of Algorithms 7–9 with
(extended) affine and affine combination-addition algorithms in comparison with
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Table 5. NIST elliptic curves(y2 = x3 − 3x + c)

P-224 c = 18958286285566608000408668544493926415504680968679321075787234672564

P-256 c = 41058363725152142129326129780047268409114441015993725554835256314039467401291

P-384 c = 27580193559959705877849011840389048093056905856361568521428707301988689241309

860865136260764883745107765439761230575

the Algorithm 1 with CA formulae, Joye’s regular 2-ary RL algorithm with CA
formulae, and two RL algorithms [8], the results of which are shown in Table 3.

The memory cost considers the number of Fp elements, including the memory
used in the scalar multiplication algorithms. For the computational cost, we
evaluated all algorithms by estimating the number of modulo multiplications
(M), modulo squaring (S), multiplications with parameters a and b (ma and
mb), additions (A), and inversions (I). We assume that S = 0.8M , and that �
is the length of the input scalar k. Let us describe the ratio of inversion cost to
the multiplication cost by r, i.e., I = rM .

The total computational cost of Algorithm 1 with CA formulae is 24�M , and
that of Joye’s RL with CA formulae is (� + 1)24M , if we ignore the computational
costs of ma, mb, and A. Therefore, Algorithm 1 with CA formulae is more efficient
than Joye’s regular 2-ary RL algorithm with CA formulae and uses less memory.
Both thememory and computational costs ofAlgorithm7 withAlgorithm2 are less
than those of Algorithm 7 with Algorithm 4. However, as stated earlier, Algorithm
2 can be applied to Algorithm 7 only when the number of ‘0’s between the sign
bit and the first bit ‘1’ on the left is even. Packaging all computations of the main
loop as a single computation unit reduces the inversion computations, and we can
see that Algorithm 9 with (extended) affine and Algorithm 6 has a computational
cost of (14.6� + 27)M + ( �+17

2 )I, which is the best when 8+33.2/�
1−13/� ≤ r ≤ 18.8−54/�

1+17/� .
Therefore, if the ratio r is approximately 11, then Algorithm 9 with (extended)
affine and Algorithm 6 is the most efficient approach. Its memory usage is costly
but less than that of Joye’s RL with CA formulae. Table 4 shows the most efficient
ECSM algorithm with the ratio r = I

M . Note that the conditions do not change
according to the size of the scalar �. In numerous cases, such as the NIST elliptic
curves in Table 5, we can only assume that ma = A = 0. The interval of r where
our algorithms are more efficient is larger.

Regarding the memory cost, Algorithm 7 uses the least amount of memory
of ten field elements, which reduces that of Algorithm 1 with CA formulae by
37.5%.

4.2 Experimental Analysis

We implemented all algorithms listed in Table 3 on NIST P-224, P-256, and
P-384. Table 5 shows their comparison. We randomly generated 2 × 105 test
scalars during the interval of [−N

2 , N
2 ], where N is the order of point P used to

measure the average scalar multiplication time of the algorithms. The experi-
mental platform uses C programming language with GUN MP 6.1.2, which is a
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multiple precision arithmetic library, and Intel (R) Core (TM) i7-8650U CPU @
1.90 GHz 2.11 GHz personal computer with 16.0 GB RAM 64-bit; the operating
system is Windows 10. We turn off Intel turbo boost, which is Intel’s technique
that automatically raises certain of its processors’ operating frequency, and thus
performance, when demanding tasks are running to make sure our computer
works at 2.11 GHz.

Table 6. Average computation time for one scalar multiplication (milliseconds)

P-224 P-256 P-384 Memory

Joye’s RL + CA [10,15] 4.02373 4.593395 7.68237 19

2-ary RL + (extended) affine [8] 2.87742 3.552715 7.733155 12

Two-bit 2-ary RL [8] + (extended) affine 2.56329 3.049545 6.113945 15

Algorithm 1 + CA [10,15] 3.945075 4.591625 7.7481 16

Algorithm 7 + (extended) affine 2.8306 3.804565 7.6338 10

Algorithm 7 + (extended) affine + Algorithm 2 2.15022 2.554765 4.695785 10

Algorithm 7 + (extended) affine + Algorithm 4 2.408305 2.962435 6.042845 11

Algorithm 8 + (extended) affine 2.53023 3.259545 6.23321 13

Algorithm 8 + (extended) affine + Algorithm 5 2.40751 2.698705 5.55319 13

Algorithm 9 + (extended) affine + Algorithm 6 1.904045 2.684335 4.92462 17

Table 7. Time of fundamental computations of GUN MP (milliseconds)

M S I I
M

224 bits 0.00138518 0.00129926 0.00486555 4.08232

256 bits 0.00130389 0.00129878 0.00548586 4.56714

384 bits 0.0014351 0.00141946 0.00766026 6.22689

Table 6 shows the average scalar multiplication time. Table 6 shows that
Algorithm 7 with Algorithm 2 is the most efficient for NIST P-256 and P-384,
which reduces the computation time of Joye’s RL with CA by 46.56% for P-224,
44.38% for P-256, and 38.88% for P-384, and the computation time of Algo-
rithm 1 with CA by 45.5% for P-224, 44.36% for P-256, and 39.39% for P-384,
and the computation time of two-bit 2-ary RL [8] by 16.11% for P-224, 16.22%
for P-256, and 23.2% for P-384. Algorithm 7 with Algorithm 2 uses the least
amount of memory of ten field elements. Algorithm 9 with (extended) affine and
Algorithm 6 is the most efficient for NIST P-224.

As we previously discussed, the efficiency of our algorithms depends on the
ratio r = I

M . Algorithm 7 with (extended) affine and Algorithm 2 is the most
efficient when applied to P-256 and P-384 during our experiments. The ratio
r = I

M in the GUN MP library is 4.56714 and 6.22689, respectively, as shown in
Table 7. These implementation results reflect the theoretic analysis in Table 4.
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Algorithm 9 with (extended) affine and Algorithm 6 is the most efficient when
applied to P-224, where the ratio I

M is 4.08232. By contrast, Algorithm 7 with
(extended) affine is the most efficient, as indicated in Table 4. For the implemen-
tation time, both function calls and the number of loops in an algorithm cost
time according to the compiler. Algorithm 9 has much fewer function calls and
loops than the other algorithms, which may save time.

5 Conclusion

We improved the affine combination-addition formulae of double-add (DA),
double-quadruple (DQ), two-adds (TA), and quadruple-add (QA) in terms of
the memory or computational cost. We also proposed three new secure LR scalar
multiplication Algorithms 7, 8 and 9, and we proved that our new LR ECSM
algorithms satisfy the generality of k and the secure generality; in addition, they
can exclude exceptional computations of O + P , P + Q = O, and P + P , which
means the affine coordinates are executable coordinates for them.

We analyzed our LR scalar multiplication algorithms with (extended) affine
and affine combination-addition formulae from the theoretical perspective. In
many cases, such as with NIST elliptic curves, we can only omit the compu-
tational cost of ma and A. In this case, our algorithms of Algorithm 7 with
(extended) affine, Algorithm 7 with (extended) affine and Algorithm 2, and
Algorithm 9 with (extended) affine and Algorithm 6 are the most efficient when
I
M ≤ 26.8−54/�

1+17/� (24.93 at � = 256) compared to Algorithm 1 with CA formulae.
We also analyzed the algorithms from an experimental perspective.

Algorithm 7 with (extended) affine and Algorithm 2 achieves a high efficiency.
Algorithm 7 with (extended) affine and Algorithm 2 uses the least memory of
ten field elements, which reduces the memory requirements of Algorithm 1 with
CA formulae by 37.5%.
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Abstract. User Identity Linkage (UIL) across social networks refers to the recog-
nition of the accounts belonging to the same individual among multiple social net-
work platforms. Most existing network structure-based methods focus on extract-
ing local structural proximity from the local context of nodes, but the inherent
community structure of the social network is largely ignored. In this paper, with
an awareness of labeled anchor nodes as supervised information, we propose a
novel community structure-based algorithm forUIL, calledCUIL. Firstly, inspired
by the network embedding, CUIL considers both proximity structure and com-
munity structure of the social network simultaneously to capture the structural
information conveyed by the original network as much as possible when learning
the feature vectors of nodes in social networks. Given a set of labeled anchor
nodes, CUIL then applies the back-propagation neural network to learn a stable
cross-network mapping function for identities linkage. Experiments conducted on
the real-world dataset show that CUIL outperforms the state-of-the-art network
structure-basedmethods in terms of linking precision even with only a few labeled
anchor nodes. CUIL is also shown to be efficient with low vector dimensionality
and a small number of training iterations.

Keywords: User Identity Linkage · Community structure · Network
embedding · Social network analysis

1 Introduction

Different social networks provide different types of services, people usually join mul-
tiple social networks simultaneously according to their needs of work or life [1]. Each
user often has multiple separate accounts in different social networks. However, these
accounts belonging to the same user are mostly isolated without any connection or
correspondence to each other.

The typical aim of User Identity Linkage (UIL) is to detect that users from different
social platforms are actually one and the same individual [2]. It is a crucial prerequisite
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for many interesting inter-network applications, such as friend recommendation across
platforms, user behavior prediction, information dissemination across networks, etc.

Early research uses the public attributes and statistical features of users to solve the
UIL problem [3, 4], such as username, user’s hobbies, language patterns, etc. However,
there is a lot of false information in the user’s public attributes and user’s statistics in
different social networks are unbalanced. The correctness and richness of user’s public
attributes cannot be guaranteed.

Compared with user’s attributes, the relationships between users are reliable and
rich, and can also be directly used to solve the UIL problem. Therefore, the methods
based on network structure are receiving more and more attention. Most of the existing
methods [5–8] extract the local structural proximity from the context of nodes and focus
on the microscopic structure of network. However, some typical properties of social
network are ignored, such as community structure, etc.

Community structure is one of the most prominent features of social networks. A
user primarily interacts with a part of the social network. Users in the same community
are closely connected, but the connections among users from different communities are
relatively sparse [9]. If a pair of friends connects closely to each other on Twitter and
they exist in the same community because of common hobbies, then they should be
closely connected and in the same community on Foursquare or Facebook.

In this paper, we introduce the community structure into user identity linkage
across social networks and propose a novel model via community preserving network
embedding, called CUIL. The contributions of this paper are as follows:

• CUIL applies network embedding and community structure to UIL problem simulta-
neously to retain the proximity structure and community structure to the vector repre-
sentations of nodes; and learns a nonlinear mapping function between two networks
through the BP neural network to achieve a unified model for UIL.

• We perform several experiments on a real-world dataset. The results show that CUIL
can significantly improve the accuracy of user identity linkage compared to the state-
of-the-art methods, e.g., up to 45% for top-1 and more than 60% for top-5 in terms of
linking precision.

2 Preliminaries

2.1 Terminology Definition

We consider a set of social networks asG1,G2, . . . ,Gn, each of which is represented as
an undirected and unweighted graph. Let G = (V ,E) represent the network, where V
is the set of nodes, each representing a user, and E is the set of edges, each representing
the relationship between two users.

In this paper, we take two social networks as an example, which are treated as source
network, Gs = (V s,Es), and target network, Gt = (

V t,Et
)
respectively. For ease of

description, we have the following definitions.

Definition 1 (Anchor Link). Link (vsi , v
t
k) is an anchor link between Gs and Gt iff.(

vsi ∈ V s
) ∧ (

vtk ∈ V t
)∧ (vsi and vtk are accounts owned by the same user in Gs and Gt

respectively).
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Definition 2 (Anchor Users). Users who are involved in two social networks simulta-
neously are defined as the anchor users (nodes) while the other users are non-anchor
users (nodes).

2.2 Problem Definition

Based on the definitions of the above terms, we formally define the problem of user
identity linkage across social networks. The UIL problem is to determine whether a pair
of accounts, (vsi , v

t
k), v

s
i ∈ V s, vtk ∈ V t , corresponds to the same real natural person,

which can be formally defined as:

�V
(
vsi , v

t
k

) =
{
1 vsi = vtk ,

0 otherwise.
(1)

where �V
(
vsi , v

t
k

) = 1 means vsi and vtk belong to the same individual.

3 CUIL: The Proposed Model

As shown in Fig. 1, CUIL consists of three main components: Cross Network Extension,
Network Embedding, and BP Neural Network-based Mapping Learning, which will be
introduced in detail later.

Fig. 1. The framework of CUIL. In the process of mapping learning, the training process is as
➀–➃, and the testing process is as ➄➅.
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3.1 Cross Network Extension

For a real-world social network dataset, some edges that exist in practice may be unob-
served, as they have not been explicitly built or failed to be crawled. These missing
edges can lead to unreliable representations when embedding networks into latent vec-
tor spaces. In order to solve this problem, we apply Cross Network Extension to extend
the source network and target network respectively according to the observed anchor
links.

Usually, if two anchor nodes in the source network are connected, then their counter-
parts in the target network should also be connected [10]. Based on such an observation,
we can perform Cross Network Extension by the following strategy. Given two social
networks Gs,Gt , and a set of anchor links T , the extended network G̃s = (

Ṽ s, Ẽs
)
can

be described as:

Ṽ s = V s (2)

Ẽs = Es ∪
{(

vsi , v
s
j

)
: (vsi , v

t
k) ∈ T , (vsj , v

t
l ) ∈ T , (vtk , v

t
l ) ∈ Et

}
(3)

Similarly, the target network Gt is extended into G̃t .

3.2 Network Embedding

The first-order and second-order proximity describe social networks from the micro-
scopic level, while the community structure constrains the network representation from
amesoscopic perspective.M-NMF [11] integrates the community structure into network
embedding, which preserves both the first-order/second-order proximity structure and
community structure of social networks. Here we use M-NMFmodel to learn the vector
representation of nodes.

Modeling Community Structure. Modularity is a commonly used metric to measure
the strength of network community structure [12]. If a network G is divided into two
communities, the modularity is defined as:

Q = 1

4m

∑

ij

(
Aij − kikj

2m

)
hihj (4)

where hi = 1 if node vi belongs to the first community, otherwise, hi = −1 and ki is the

degree of node vi. And m = 1
2

∑
i ki is the number of relations in network G,

kikj
2m is the

expected number of edges between nodes vi and vj if edges are placed at random.

By defining the modularity matrix B = [
Bij

] ∈ R
n∗n, where Bij = Aij − kikj

2m ,
then the modularity can be written as 1

4mh
TBh, where h = [

hij
] ∈ R

n indicates the
community to which each node belongs. When the network is divided into K(K > 2)
communities, the community membership indicator matrixH ∈ R

n∗K with one column
for each community is introduced. In each row of H, only one element is 1 and all the
others are 0, so we have the constraint tr

(
HTH

) = n. Finally, we have:

Q = tr
(
HTBH

)
, s.t. tr

(
HTH

)
= n (5)

where tr(X) is the trace of matrix X.
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Modeling Proximity Structure. Modeling proximity structure mainly uses the first-
order and second-order proximity. The first-order proximity indicates the similarity
between two nodes connected directly and it is a direct expression of network struc-
ture. But in social networks, two nodes that have no direct connection do not mean there
is no similarity. Therefore, in order to make full use of the proximity structure of social
networks, the abundant second-order proximity is used to compensate for the sparse
problem of first-order proximity.

The first-order proximity S(1) is characterized by the adjacency matrix, then it can
be defined as:

S(1) = [S(1)
ij ] ∈ R

n∗n, s.t. S(1)
ij = Aij = 0 or 1 (6)

LetNi =
(
S(1)
i1 , . . . , S(1)

in

)
, the i - th row of S(1), be the first-order proximity between

node vi and other nodes. The second-order proximity S(2) of a pair of nodes is the
similarity between their neighborhood structures, which can be described as:

S(2) = [S(2)
ij ] ∈ R

n∗n, s.t. S(2)
ij = Ni ∗ Nj

‖Ni‖
∥∥Nj

∥∥ ∈ [0, 1] (7)

Let similarity matrix S = S(1) + ηS(2) to combine the first-order and second-order
proximity together, where η > 0 is the weight of the second-order proximity. UsingU ∈
R
n∗d to represent the node vector space, d is the dimensionality of representation, and

introducing a nonnegative basis matrixM ∈ R
n∗d , the objective function is described as:

min
∥∥∥S − MUT

∥∥∥
2

F
s.t. M ≥ 0, U ≥ 0 (8)

The United Network Embedding Model. In order to integrate the proximity structure
and community structure in a unified framework, the community representation matrix
C ∈ R

K∗d is introduced, where the r - th row Cr corresponding to the community r. If
node vi belongs to community r, formulated asUiCr, then the representation of vi should
be highly similar to that community r. As the community indicator matrix H offers a
guide for all the nodes, UCT is expected to be as closely consistent as possible with H.
Then the overall objective function is described as:

Min
M,U,H,C

‖S − MUT‖2F + α‖H − UCT‖2F − βtr
(
HTBH

)
,

s.t. M ≥ 0,U ≥ 0,H ≥ 0,C ≥ 0, tr
(
HTBH

)
= n, α > 0, β > 0 (9)

3.3 BP Neural Network-Based Mapping Learning

After obtaining the latent vector space of each social network, CUIL applies the BP
neural network (BPNN) to learn the mapping function � from Gs to Gt . Given any
pair of anchor nodes (vsi , v

t
k) and their vector representations (usi ,u

t
k), we firstly use the
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mapping function�(usi )map node vector usi to another vector space, and then minimize
the distance between �(usi ) and utk . In this paper, the Cosine Distance is selected and
the loss function can be formally described as:

�
(
usi ,u

t
k

) = 1 − cos
(
�(usi

)
,utk) (10)

The set of known anchor links is T, and the sub-vector spaces composed of anchor
nodes are Us

T ∈ R
|T |×d and Ut

T ∈ R
|T |×d respectively. Then the objective function of

the mapping learning can be formally described as:

�
(
Us
T ,Ut

T

) = arg min
W,b

(
1 − cos

(
�

(
Us
T

)
,Ut

T

);W,b
)

(11)

where W and b are the weight parameters and bias parameters obtained by the back-
propagation algorithm respectively.Weminimize the loss function by stochastic gradient
descent algorithm using the known anchor links as supervised information.

Construct the top - k for non-anchor nodes. For a non-anchor node vsx in the source
network, firstly we input its vector representation usx into the BPNNmodel trained above
and get the mapping vector �(usx), like ➄ in Fig. 1. Then we find k nodes that are most
similar to the mapping vector �(usx) from the target network to form the top - k of node
vsx, like ➅ in Fig. 1.

4 Experiments

4.1 Datasets, Baselines and Parameter Setup, and Evaluation Metrics

Datasets. The real-world dataset is provided by [7], which contains two social networks,
Twitter and Foursquare. Table 1 summarizes the statistics of this dataset.

Table 1. Statistics of twitter-foursquare dataset.

Networks #Users #Relations #Anchor
users

Twitter 5120 164919
1609

Foursquare 5313 76792

Baselines and Parameter Setup. The model we proposed in this paper is based on
network structure, so we compare CUIL with several structure-based methods for UIL.

• PALE: Predicting Anchor Links via Embedding [6] employs network embedding
to capture the major and specific structural regularities and further learns a stable
cross-network mapping for predicting anchor links.

• IONE: Input Output Network Embedding [7] tries to model followers/followees as
different context vectors. With hard/soft constraints of anchor users, IONE learns a
unified vector space by preserving second-order structural proximity.
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• DeepLink: A Deep Learning Approach for User Identity Linkage [8] samples net-
works by random walks and learns to encode network nodes into vector representa-
tions to capture the local and global network structures. Finally, a deep neural network
model is trained through the dual learning to realize user identity linkage.

• PUIL: Proximity Structure-based User Identity Linkage (PUIL) is based only on the
proximity structure while without considering community structure.

Parameter Setup. The baselines are implemented according to the original papers. For
CUIL (PUIL), we employ a four-layer neural network (2 hidden layers) to capture the
non-linear mapping function between the source and target networks: 500 d (first hidden
layer), 800 d (second hidden layer) and 300 d (input and output layer). The learning rate
for training is 0.001, and the batch size is set to 16.

Evaluation Metrics. Inspired by the Success at rank k proposed in [13], we use
Precision@k(P@k) as the evaluation metric of user identity linkage.

(12)

where n is the number of testing anchor nodes and measures whether
the counterpart of vsi exists in top - k(k ≤ n).

4.2 Experiments

We firstly evaluate the influence of the parameters on the performance of algorithms,
such as the training iteration i, the percentage r of anchor nodes used for training, and
the vector dimensionality d . We set the basic experimental environment as: r is 0.8, i is
1 million, and d is 800. We change one parameter at a time while keeping the other two
parameters constant.

As can be seen from Fig. 2(a), there is no overfitting problem for CUIL com-
pared to IONE. By comparison, CUIL can not only get better results, but also reach
the convergence faster.

The percentage r of anchor nodes used for training is an important parameter. As
shown in Fig. 2(b), with the increase of training ratio r from 0.1 to 0.9, the performance
of CUIL is always superior to other baselines. CUIL performs excellently even though
the training ratio r is only 0.1 or 0.2.

The impact of the vector dimensionality d on the results is shown in Fig. 2(c).
IONE, DeepLink, and CUIL all perform well on low-dimensional vector spaces. When
the dimensionality is below 100, DeepLink performs best. But when the dimensionality
reaches up to 200, the performance of CUIL is significantly better than other methods.

Finally, we conduct experiments for each method with the most appropriate param-
eters: the training ratio r is 0.8 and the vector dimensionality d is 300. The training
iteration i is 3 hundred thousand for CUIL (PUIL) and PALE, 1 million for DeepLink,
and 6 million for IONE. And we randomly select 6 different k values between 0 and 30
to compare the performance of different algorithms, as illustrated in Table 2. In order to
compare and analyze the results intuitively, we show the results in a line chart, as shown
in Fig. 2(d).
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(a) Precision@30 on different iteration         (b) Precision@30 on different ratio

(c) Precision@30 on different dimensionality    (d) Precision on different k

Fig. 2. Result analysis on twitter-foursquare dataset.

Table 2. Comparisons of user identity linkage on twitter-foursquare dataset.

P@k Precision

P@1 P@5 P@9 P@13 P@21 P@30

PALE 0.0906 0.2848 0.3625 0.3981 0.4628 0.5178

PUIL 0.0874 0.2136 0.3139 0.3592 0.4272 0.4984

IONE 0.2201 0.4142 0.4692 0.5113 0.5631 0.6052

DeepLink 0.3526 0.6019 0.6667 0.6926 0.7120 0.7249

CUIL 0.4660 0.6634 0.7023 0.7540 0.8091 0.8317

4.3 Discussions

With the experiments on the twitter-foursquare dataset, we have the following
discussions:
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• Through horizontal comparisons, CUIL proposed in this paper outperforms PALE,
IONE, and DeepLink, even the P@1 can reach more than 45%. And through longi-
tudinal comparisons, CUIL performs better than PUIL which only uses the proximity
structure.

• The percentage of anchor nodes used for training greatly affects the performance of
all algorithms, while CUIL achieves much better than other baselines even with only
a few labeled anchor nodes. It is well known that the number of known anchor nodes
is very limited and difficult to obtain. Therefore, our method is more advantageous in
the practical applications.

• When the dimensionality reaches up to 200, the performance of CUIL has a significant
improvement. With the rapid development of computing power and the continuous
optimization of machine learning algorithms, the vector dimensionality is no longer a
hard problem that restricts the performance of algorithm. In order to get better results,
it is acceptable that the vector dimensionality reaches 200 or more for CUIL.

5 Conclusion

In this paper, we studied the problem of user identity linkage across social networks
and proposed a novel community structure-based method, called CUIL. Many previous
studies extracted the proximity structure of social networks from the local content of
nodes while ignoring the important community structure. Therefore, we introduced the
community structure and network embedding to UIL problem simultaneously. CUIL
applied the embedding method, which preserves the microscopic proximity structure
and the mesoscopic community structure, to map the original social network space into
the vector space. Then based on the labeled anchor nodes, CUIL employed BP neural
network to learn a stable mapping across different social networks. We conducted exten-
sive experiments on the real-world dataset and the results showed that CUIL achieved
superior performance over the state-of-the-art baseline methods that are based on the
network structure.

Acknowledgements. This work was supported by the National Natural Science Foundation of
China (U1636219, 61602508, 61772549, U1736214, 61572052, U1804263, 61872448) and Plan
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Abstract. Attribute-based encryption (ABE) enables fine-grained
access control of encrypted data. This technique has been carefully scru-
tinised by the research community for over a decade, and it has wide
theoretical interests as well as practical potentials. Thus, any efficiency
improvement of it is highly desirable but non-trivial. In this paper, we
demonstrate that the computational costs in ABE can be slightly reduced
using Blakley secret sharing. The main reason that contributes to this
improvement is a unique feature enjoyed by Blakley secret sharing, i.e. it
is more efficient to handle (n, n)-threshold secret sharing compared with
Shamir secret sharing. Due to the space limitation, we only describe how
to improve key-policy attribute-based encryption (KP-ABE), but our
method is very general and it can be used to improve some of its vari-
ants similarly, e.g. cipher-policy attribute-based encryption (CP-ABE).
This work may also inspire further investigations on Blakley secret shar-
ing, both applying this unique feature to other cryptographic primitives
and exploring more undiscovered features.

1 Introduction

Encryption guarantees that certain information is never disclosed to unautho-
rised entities. Among the existing encryption schemes, attribute-based encryp-
tion (ABE) [4,9] is a prominent example1. A user can decrypt a ciphertext if the

1 In this paper, we focus our attentions on key-policy attribute-based encryption (KP-
ABE) with a tree-access structure [9], in which the ciphertexts are labelled with sets
of attributes and the private keys are associated with tree-access structures, but our
proposed method can be applied with some of its variants similarly, e.g. ciphertext-
policy attribute-based encryption (CP-ABE) [4].

c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 631–641, 2020.
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attributes associated with the ciphertext satisfy the private key’s access struc-
ture. In other words, a ciphertext can be decrypted using a given key if and only
if the ciphertext contains an assignment of attributes to the nodes of the tree
such that the tree-access structure can be satisfied. Because any linear access
structure can be represented as a tree consisting of threshold gates [3], ABE is
very useful to achieve fine-grained access control of encrypted data.

Nowadays, ABE has not only attracted theoretical interests in the academia
but also found various applications in practice [11,12]. Thus, efficiency improve-
ments for this technique are desirable if they can be found. In this paper, we
demonstrate that the computational costs in ABE can be slightly reduced if
Shamir secret sharing [14] was replaced by Blakley secret sharing [5], thanks to
a unique feature enjoyed by the latter that is not widely known by the research
community yet.

1.1 Related Works

In general, the design of ABE can be considered as the combination of IBE and
secret sharing.

The concept of IBE was first conceived by Shamir in the mid-1980s [15].
However, the practical scheme was not found until 2001 [6]. Different from the
traditional public key encryption schemes that are relying on the public key
infrastructure (PKI), the public key in IBE can be expressed as an arbitrary
string associated with the identity. Hence, the entity’s public key is naturally
bound with its identity. The benefit is that to encrypt a message for a certain
receiver, there is no need to obtain this receiver’s public key certificate.

Secret sharing enhances both confidentiality and availability of sensitive infor-
mation by distributing the secret across a number of locations so that either
to learn the secret or destroy it, the adversary has to compromise multiple of
these locations instead of a single one. The existing (t, n)-threshold secret shar-
ing schemes can be classified into three main categories: based on polynomial
interpolation [14], based on hyperplane geometry [5], and based on the Chinese
Remainder Theorem [1,13]. The first two categories are called Shamir secret
sharing and Blakley secret sharing, respectively. Although they appear to be dif-
ferent in the mathematical structures, these two techniques are closely related.
Kothari [10] has shown that both of them are linear secret sharing schemes and
the former is a special case of the latter. In previous works, researchers have
paid very unequal attentions to them. Shamir secret sharing has been widely
used to design various cryptographic primitives, but Blakley’s one has attracted
almost no attention. For example, the existing ABE schemes with tree-access
structure [4,9] are all designed using Shamir secret sharing.

In this paper, we describe an attractive feature of Blakley secret sharing and
demonstrate its applications in constructing more efficient ABE schemes.
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1.2 Our Contributions

The contributions of this paper can be summarised as follows:

– We describe a unique feature of Blakley secret sharing that is not widely
known by the research community yet, i.e. it is as efficient as Shamir secret
sharing in (t, n)-threshold secret sharing where t < n, but it is more efficient
than Shamir secret sharing to handle (n, n)-threshold secret sharing.

– We demonstrate how the above feature of Blakley secret sharing can be used
to improve the ABE scheme in [9]. In our proposed scheme, Shamir secret
sharing is replaced by Blakley secret sharing. If the tree-access structure
within a user’s private key satisfies some condition, i.e. it contains at least
one node with (n, n)-threshold gate, this user can decrypt all ciphertexts that
she has the ability to decrypt in a more efficient way.

1.3 Organisation of the Paper

The following of this paper is organised as follows. In Sect. 2, we compare Blakley
secret sharing with Shamir secret sharing and describe a unique feature enjoyed
by the former. In Sect. 3, we introduce the models and definitions for ABE. Our
improvement of ABE is presented in Sect. 4. Finally, we discuss and conclude in
Sect. 5.

2 Blakley Secret Sharing

In Blakley secret sharing [5], the secret is encoded as some coordinate of a
random point P in the t-dimensional space. Each of the n parties is given an
independent t-dimensional hyperplane in the space passing through P. When t
parties work together, they can solve a system of equations to retrieve the secret,
but less than t parties are unable to learn any information of the secret. Blakley
secret sharing works as follows:

– Initialisation phase. To share a secret s = a1, the dealer D selects t − 1
random values {a2, a3, . . . , at}. Then, D generates an n × t matrix M and
broadcasts it. It is required that all the rows in M are independent, e.g. this
ensures that any t rows of M will form a t × t invertible matrix MS .

– Share generation phase. D computes the shares si = bi,1a1 + bi,2a2 + · · ·+
bi,tat for i = 1, 2, . . . , n, where bi,j is the (i, j)-th entry of M, and sends these
shares to the corresponding parties through some private channels.

– Secret reconstruction phase. If any subset containing at least t parties
reveal their shares, the secret s can be reconstructed. Without loss of gen-
erality, suppose the vector of shares s̄ = [si1 , si2 , . . . , sit ] is revealed. Then,
the vector ā = [a1, a2, . . . , at] can be computed as āT = MS

−1 · s̄T , where āT

denotes the transpose of ā and MS
−1 denotes the inverse of MS . Note that to

recover the secret s = a1, only the first row of MS
−1 needs to be computed2.

2 When j parties participate in the secret reconstruction phase where j > t, the
sub-matrix MS of M is not a square matrix. In this case, we can use the equation
āT = (MS

T ·MS)−1 ·MS
T · s̄T to compute āT . Similarly, to recover the secret s = a1,

only the first row of (MS
T ·MS)−1 ·MS

T needs to be computed.
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Shamir secret sharing can be considered as a special case of Blakley secret
sharing by initialising M using the Vandermonde matrix, and it enjoys some
attractive features: 1) only n different values are required to represent the entire
matrix M; 2) it automatically guarantees that all the rows in M are independent;
3) with the knowledge of t shares, one can interpolate any other share without
recovering the secret. These features are very useful, making Shamir secret shar-
ing popular in the literature. But since Blakley secret sharing is a more general
case, we may also use some other special matrix to initialise M. As long as all
the rows in M are independent, such an initialisation may provide some other
unique features not enjoyed by Shamir secret sharing.

One such special matrix we have found is the Hadamard matrix, which sat-
isfies the following property: every two rows in a Hadamard matrix are perpen-
dicular to each other. Let H be a Hadamard matrix of order n. The transpose
of H is closely related to its inverse as: H × HT = n · In, where HT denotes the
transpose of H and In denotes the n × n identity matrix. Recall that to recover
the secret in Blakley secret sharing, the most computationally expensive task is
to invert the matrix MS . Therefore, when M is initialised using the Hadamard
matrix, such a computation is almost for free, i.e. we can simply perform the
required computations using the transpose of H and then divide the final result
by the value n. However, since the Hadamard matrix is always a square matrix,
this efficiency improvement only works for (n, n)-threshold secret sharing3. In
other words, when dealing with (n, n)-threshold secret sharing, the computa-
tional complexity of the secret reconstruction phase in Shamir secret sharing is
O(n2), but it can be reduced to O(n) in Blakley secret sharing.

In this paper, we use Blakley secret sharing as follows: when handling (t, n)-
threshold secret sharing where t < n, M is initialised using the Vandermonde
matrix, and when handling (n, n)-threshold secret sharing, M is initialised using
the Hadamard matrix. Therefore, we can be benefited from both the attractive
features of Shamir secret sharing and the unique feature of Blakley secret sharing
introduced above. In the following sections, we demonstrate how this idea helps
to reduce the computational costs in ABE.

3 Models and Definitions

3.1 Notations

In the rest of this paper, we assume that all participants are probabilistic poly-
nomial time (PPT) algorithms with respect to the security parameter λ. We use
standard notations for probabilistic algorithms and experiments. For example,
if A is a probabilistic algorithm, then A(x1, x2, . . .) is denoted as the result of
running A on inputs x1, x2, etc. We denote y ← A(x1, x2, . . .) as the experiment

3 A restriction of the Hadamard matrix is that its order has to be the power of 2, and
this may cause some inconvenience in practice. To address this issue, we can either
add some dummy entities to make the total number of entities as the power of 2, or
we can use the Weighing matrix instead that has similar properties.
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of assigning y as A(x1, x2, . . .). If S is a finite set, then we denote x
R← S as the

operation of picking an element uniformly from S. A function ε(·) : N → R
+ is

called negligible if for all c > 0, there exists a k0 such that ε(k) < 1/kc for all
k > k0.

3.2 Some Definitions

Bilinear Map. Let G1 and G2 be two multiplicative cyclic groups with order
p for some large prime p. Let g be a generator of G1 and ê be a bilinear map
ê : G1 ×G1 → G2 defined between these two groups. An admissible bilinear map
ê should satisfy the following properties:

– Bilinear: ê : G1 × G1 → G2 is said to be bilinear if ê(ua, vb) = ê(u, v)ab for
all u, v ∈ G1 and a, b ∈ Zp.

– Non-degenerate: the bilinear map ê does not send all pairs in G1 ×G1 to the
identity in G2, i.e. ê(g, g) �= 1.

– Computable: there exists an efficient algorithm to compute ê(P,Q) for all
P,Q ∈ G1.

Access Structure [2]. Let {P1, P2, . . . , Pn} denotes a set of parties. A collection
A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊂ C, then C ∈ A. A
access structure (resp. monotone access structure) is a collection (resp. monotone
collection) A of non-empty subset of {P1, P2, . . . , Pn}, i.e. A ⊆ 2{P1,P2,...,Pn}\{∅}.
The sets in A are called the authorised sets, and the sets not in A are called the
unauthorised sets. In this paper, we focus our attentions on monotone access
structures.

3.3 Security Model for KP-ABE

The KP-ABE scheme consists of four randomised algorithms: Setup, KeyGen,
Enc, Dec.

– The Setup algorithm takes as input the security parameter λ, and it outputs
the public parameters PK and a master key MK.

– The key generation algorithm KeyGen takes as input an identity associated
with the access structure A, the master key MK and the public parameters
PK. It outputs the decryption key D.

– The encryption algorithm Enc takes as input a message M , a set of attributes
γ and the public parameters PK. It outputs the ciphertext E.

– The decryption algorithm Dec takes as input the ciphertext E that was
encrypted under the set of attributes γ, the decryption key D associated
with the access structure A and the public parameters PK. It outputs the
message M if γ ∈ A, or ⊥ otherwise.

The following security game played between the adversary and the challenger
is used to model the semantic security of KP-ABE in the selective-ID model4:
4 Note that our proposed scheme is only proved to be CPA-secure in the selective-ID

model. One can adapt the FO transformation [8] or the CHK transformation [7] to
modify it into a scheme with CCA-security.
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– Init: The adversary declares the set of attributes γ that she wishes to be
challenged upon.

– Setup: The challenger takes the security parameter λ and runs the Setup
algorithm. The adversary is given the public parameter PK, but not the
master key MK.

– Phase 1: The adversary can issue many queries for private keys associated
with access structures Aj . If γ �∈ Aj , the challenger runs the KeyGen algorithm
and forwards its output to the adversary. Otherwise, the challenger does not
respond to the query.

– Challenge: The adversary submits two messages M0,M1 with equal length.
The challenger flips a coin b

R← {0, 1} and uses the Enc algorithm to encrypt
the message Mb with the set of attributes γ. This ciphertext is sent to the
adversary.

– Phase 2: The adversary continues querying for private keys as in Phase 1.
– Guess: The adversary outputs a guess b′ of b.

The advantage of the adversary A in this game is defined as:

AdvA = |Pr[b = b′] − 1/2|
Definition 1 (Semantic security for KP-ABE). A KP-ABE scheme is said
to be semantically secure against chosen plaintext attacks in the selective-ID
model if no PPT adversary A has a non-negligible advantage against the chal-
lenger in the above security game.

3.4 Security Assumptions

Definition 2 (Decisional Bilinear Diffie-Hellman (BDH) assumption).
Given two multiplicative cyclic groups G1,G2 with order p, a generator g of G1,
and an admissible bilinear map ê : G1 × G1 → G2. Select a

R← Zp, b
R← Zp,

c
R← Zp and z

R← Zp. The decisional BDH assumption implies that there exists a
negligible function ε(·) such that for all PPT adversaries ABDH , we have:

|Pr[ABDH(ga, gb, gc, ê(g, g)abc) = 1] − Pr[ABDH(ga, gb, gc, ê(g, g)z) = 1]| < ε(λ)

4 Our Proposed KP-ABE Scheme

4.1 Our Motivations

In KP-ABE schemes with a tree-access structure, the ciphertexts are labelled
with a set of attributes, and the private keys are associated with the tree-access
structure. Each interior node of the tree is a threshold gate and the leave nodes
are associated with attributes. These threshold gates can be classified into two
types: (t, n)-threshold ones where t < n, and (n, n)-threshold ones. Therefore,
Blakley secret sharing with the Vandermonde matrix can be used for the first
type of gates and Blakley secret sharing with the Hadamard matrix can be
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used for the other gates. This allows us to enjoy both the attractive features of
Shamir secret sharing scheme and the unique feature of Blakley secret sharing
scheme. For example, if the access tree associated with a certain user’s private key
contains at least one (n, n)-threshold gate, this user could decrypt the ciphertexts
quicker. The more (n, n)-threshold gates contained in a user’s private key, the
more computational advantages can be enjoyed by this user in the decryption
process. Note that in real-world applications, it is quite possible that a subset
of the users’ private keys would satisfy this condition.

4.2 Our Proposed Scheme

Denote T as a tree representing an access structure, and every interior node of T
is associated with a threshold gate. For a node x, numx is denoted as the number
of its children and kx is denoted as its threshold value satisfying 0 < kx ≤ numx.

The function parent(x) is defined as the parent node of x in T , and the
function att(x) denotes the attribute associated with the leaf node x in T . The
children of the node x are numbered, and the function index(x) records this
number associated with the node x. Implicitly, it is assumed that r is the root
node of T . Denote Tx as a sub-tree of T rooted at the node x. If a set of attributes
γ satisfies the access tree Tx, it is denoted as Tx(γ) = 1. Otherwise, it is denoted
as Tx(γ) = 0. The value Tx(γ) is evaluated recursively from the bottom of the
tree to the top. The leaf node x is first evaluated, and Tx(γ) returns 1 if only if
att(x) ∈ γ. If x is an interior node, evaluate Tx′(γ) for all the children x′ of x.
Tx(γ) will return 1 if and only if at least kx children return 1.

Let G1 and G2 be multiplicative cyclic groups of prime order p, where |p| is
some polynomial of the security parameter λ. Let g be a generator of G1 and
ê : G1 × G1 → G2 be an admissible bilinear map. Moreover, we denote the
Vandermonde matrix as M with bi,j as its (i, j)-th entry, and MS as a square
sub-matrix of M. The first row of MS

−1 is denoted as a vector L, where Li is
the i-th value of L. Similarly, we denote the Hadamard matrix as H with hi,j as
its (i, j)-th entry. The first row of H−1 is denoted as a vector L′, where L′

i is
the i-th value of L′. Our proposed KP-ABE scheme works as follows:

– Setup. Define the universe U of all possible attributes. Choose t1, . . . , t|U |
R←

Zp and y
R← Zp. The public parameters PK are T1 = gt1 , . . . , T|U | = gt|U| , Y =

ê(g, g)y, and the master key MK is t1, . . . , t|U |, y.
– KeyGen. This algorithm will output a private key with access structure T

that allows the user to decrypt any message encrypted with a set of attributes
γ if and only if T (γ) = 1. It works recursively from the top of the tree to
the bottom. For every interior node x in the tree T , if kx < numx, choose a
random point Px = [a1, a2, . . . , akx

] in the kx-dimensional space with the first
coordinate a1 = parent(x)(index(x)) and all other coordinates are randomly
chosen in Zp. Denote si = bi,1a1 + bi,2a2 + · · · + ai,kx

akx
. Each child node

of x is assigned one of these si values. If kx = numx, choose a random
point P′

x = [a′
1, a

′
2, . . . , a

′
numx

] in the numx-dimensional space with the first
coordinate a′

1 = parent(x)(index(x)) and all other coordinates are randomly
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chosen in Zp. Denote s′
i = hi,1a

′
1 + hi,2a

′
2 + · · · + hi,numx

a′
numx

. Each child
node of x is assigned one of these s′

i values. For every leaf node x, compute

Dx = g
parent(x)(index(x))

ti where i = att(x). The private key D consists of these
Dx components and it is sent to the user.

– Enc. To encrypt a message M ∈ G2 with a set of attributes γ, choose a
random value s ∈ Zp and the ciphertext is:

E = (γ,E′ = MY s, {Ei = Ti
s}i∈γ)

– Dec. This algorithm is performed recursively from the bottom of the tree to
its top. Define an algorithm DecryptNode that takes as input the ciphertext
E, the private key D and a node x in T , it outputs a group element of G2 or
⊥. If the node x is a leaf node and i = att(x) ∈ γ, we have

DecryptNode(E,D, x) = ê(Dx, Ei) = ê(g
parent(x)(index(x))

ti , gsti)
= ê(g, g)s·parent(x)(index(x))

If i �∈ γ, DecryptNode simply outputs ⊥. For the interior nodes, the algorithm
DecryptNode(E,D, x) proceeds as follows. For all nodes z that are children of
x, it calls DecryptNode(E,D, z) and stores the output as Fz. Let Sx be the
set of child nodes z such that Fz �= ⊥. Then, there are several different cases:

• If numx = kx = |Sx|, x is a node with (numx, numx)-threshold gate and
Sx satisfies the node x. In this case, the algorithm DecryptNode(E,D, x)
computes:

Fx =
numx∏

z=1

Fz
L′

z

=
numx∏

z=1

(ê(g, g)s·parent(z)(index(z)))L′
z

=
numx∏

z=1

ê(g, g)s·s′
z·L′

z

= ê(g, g)s·parent(x)(index(x))

Note that this computation contributes to some efficiency improvement,
because the value L′

z can be computed quicker than its counterpart Lz that
has been used in the existing ABE schemes with tree-access structure.

• If numx = kx > |Sx|, x is a node with (numx, numx)-threshold gate but Sx

does not satisfy the node x. In this case, the algorithm DecryptNode(E,D, x)
simply outputs ⊥.

• If kx < numx and kx ≤ |Sx|, x is a node with (kx, numx)-threshold gate
and Sx satisfies the node x. In this case, the DecryptNode(E,D, x) algorithm
computes:
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Fx =
∏

z∈Sx

Fz
Lz

=
∏

z∈Sx

(ê(g, g)s·parent(z)(index(z)))Lz

=
∏

z∈Sx

ê(g, g)s·sz·Lz

= ê(g, g)s·parent(x)(index(x))

• If kx < numx and kx > |Sx|, x is a node with (kx, numx)-threshold gate
but Sx does not satisfy the node x. In this case, the DecryptNode(E,D, x)
algorithm simply outputs ⊥.

To decrypt a ciphertext E, the Dec algorithm calls the DecryptNode algorithm on
the root r of the tree T . Hence, we have DecryptNode(E,D, r) = ê(g, g)ys = Y s

if and only if the attributes associated with the ciphertext satisfy the tree T .
Moreover, the message M can be recovered by dividing E′ by Y s.

4.3 Security Analysis

Theorem 1. If the decisional BDH assumption holds, our proposed KP-ABE
scheme satisfies the semantic security in the selective-ID model.

Proof (Sketch.) Due to the space limitation, we only provide a sketch of the
proof. The complete proof is very similar as in [9] which is done via a security
reduction: if there exists a PPT adversary A who can break our proposed KP-
ABE scheme in the selective-ID model with non-negligible probability, another
PPT adversary B can be constructed using A as a sub-routine that breaks the
decisional BDH assumption with non-negligible probability. B plays another
security game with the challenger, trying to distinguish between the values
ê(g, g)abc and ê(g, g)z. B simulates the KP-ABE environment for A, answer-
ing the private key queries in Phase 1 and 2, and then use A’s guess to generate
its answer to the challenger. All the steps of the security game are exactly the
same as in [9], except that B may answer A’s private key queries slightly different
in Phase 1 and 2. In our proposed scheme, the (n, n)-threshold gate is instanti-
ated using the Hadamard matrix instead of the Vandermonde matrix. Suppose
A makes a request for the secret key associated with an access structure T ′

such that T ′(γ) = 0. And without loss of generality, suppose T ′ contains a node
x with the (numx, numx)-threshold gate. Depending on the value of T ′

x(γ), the
simulation needs to consider two different cases. If T ′

x(γ) = 1, B randomly selects
λx ∈ Zp and sets the first coordinate of the random point P′ as a′

1 = λx. Then,
B fixed the point P′ by setting the random points for every child node x′ of
x such that parent(x′)(index(x′)) = s′

index(x′). If T ′
x(γ) = 0, B first chooses a

random value λx ∈ Zp and computes gλx ∈ G1. B then sets the first coordinate
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of the random point P′ as a′
1 = λx. Within x’s child nodes, suppose dx of them

are satisfied, then B can fix them similarly. For the unsatisfied children nodes, B
uses random values to define them. The requirement is that the collection of x’s
children nodes is consistent with the element gλx ∈ G1. In this way, B can simu-
late all private key components for the access structure T ′, and the distribution
of these components are identical to that of the original scheme.

4.4 Efficiency Analysis

Compared with the KP-ABE scheme in [9], if the access tree contains at least
one node with (n, n)-threshold gate, our proposed scheme could enjoy some com-
putational advantages in the Dec algorithm. This is because the (n, n)-threshold
gate can be processed quicker using Blakley secret sharing with the Hadamard
matrix. The computational costs in the Enc algorithm and the storage require-
ments are exactly the same as in [9]. For example, in both schemes, the cost in
Enc is linear with the number of attributes for encryption in γ, the number of
elements that compose a user’s private key is linear with the number of nodes
in the access tree, and the number of elements in the ciphertext is linear with
the number of attributes for encryption in γ.

5 Conclusion

In this paper, we described a unique feature enjoyed in Blakley secret sharing,
i.e. it is more efficient to handle (n, n)-threshold secret sharing. We have used
this feature to improve a KP-ABE scheme, reducing its computational costs in
the decryption process. Note that our method is very general and it can be used
to improve some of its variants in a similar way, e.g. CP-ABE.

This paper also made it clear that both the attractive features in Shamir
secret sharing and the unique feature in Blakley secret sharing are brought by
the specific matrix employed. Therefore, it would be useful if we could find
more special matrices with appealing properties. This not only increases the
capabilities of Blakley secret sharing, but also has the potentials to contribute
to various cryptographic primitives (e.g. threshold cryptosystems, secure multi-
party computations, etc.) since secret sharing is a fundamental building block
in cryptography.
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Abstract. We discuss side-channel attacks on CRT-RSA encryption or
signature scheme (the RSA scheme with the Chinese remainder theo-
rem) implemented via the sliding window method. The sliding window
method calculates exponentiations through repeated squaring and multi-
plication. These square-and-multiply sequences can be obtained by side-
channel attacks, and there is the risk of recovering CRT-RSA secret keys
from these sequences. Especially, in CHES 2017, it is proved that we can
recover secret keys from the correct square-and-multiply sequences in
polynomial time when the window size w is less than 4. However, there
are errors in the obtained sequences. Oonishi and Kunihiro proposed a
method for recovering secret keys from noisy sequences when w = 1.
Although this work only addresses the case with w = 1, it should be
possible to recover secret keys for larger values of w. In this paper, we
propose a new method for recovering secret keys from noisy sequences
in the sliding window method. Moreover, we clarify the amount of errors
for which our method works.

Keywords: Side-channel attacks · Sliding window method ·
CRT-RSA scheme · Secret key recovery · Error correction

1 Introduction

1.1 Background

In this study, we evaluate the risk of side-channel attacks [8] on CRT-RSA [11]
(RSA [15] with the Chinese remainder theorem) encryption or signature scheme,
which is widely used in public-key cryptosystems. Side-channel attacks extract
unrevealed information by observing such as running time [8], power consump-
tion [10], electromagnetic signals [4], or cache access [1,7,14,17].

In the CRT-RSA scheme, there are various kinds of side-channel attacks,
especially on exponentiations in decryption [1,4,7,17]. The most common attacks
are the extraction of square-and-multiply sequences. First attacks are applied
c© Springer Nature Switzerland AG 2020
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to a binary method [10]. These attacks distinguish squaring from multiplication
and calculate the exponent immediately, because the exponent and the sequences
have a one-to-one correspondence.

However, we cannot determine the exponent immediately from the square-
and-multiply sequences in the fixed or sliding window methods, because there
are many candidates for each multiplication. Walter addressed this problem by
proposing the Big Mac attack [16]. This attack obtains what we multiply in each
multiplication, and we can therefore recover the exponent immediately. There
are many studies following this strategy [4,7,14,17], and they have discussed
how to obtain the multipliers correctly and efficiently.

Unlike the Big Mac Attack, [1] proposed a method for recovering CRT-RSA
secret keys dp and dq without the multipliers, based on the Heninger–Shacham
method [5]. Moreover, it has been proved that this method calculates secret keys
in polynomial time when the window size w satisfies w ≤ 4. This method needs
less side-channel information and is more reasonable than Big Mac Attack.

However, in practice, [1] fails at recovering secret keys because there are errors
in the retrieved square-and-multiply sequences. Experiments in [1] showed that
errors occur at an average rate of 0.011 in square-and-multiply sequences. [1]
recover these errors via majority voting on 20 square-and-multiply sequences,
but there is no guarantee that obtaining 20 square-and-multiply sequences is
possible. Therefore, we must consider the security of the CRT-RSA encryption
scheme based on one square-and-multiply sequence with errors.

To solve this problem, [13] considered recovering secret keys from square-
and-multiply sequences with errors for w = 1. Moreover, it has been proved that
this method can recover secret keys in polynomial time when there are errors
whose rate is less than 0.058 in the obtained square-and-multiply sequences.

However, there is a gap between [1] and [13]. Naturally, it may be possible to
recover secret keys in polynomial time from square-and-multiply sequences with
errors when w ≤ 4. Thus, we tackle the following two questions:

1. How do we recover secret keys from square-and-multiply sequences with
errors?

2. How many errors are tolerable when we recover secret keys?

1.2 Our Contribution

In this paper, by answering these two questions, we discuss recovering CRT-RSA
secret keys from square-and-multiply sequences with errors in sliding window
method. First, we propose a method for recovering secret keys from square-and-
multiply sequences with errors. This is the answer to the first question. Our
method is an extension of [13], and thus covers more general cases than it does.

Second, we analyze our method theoretically. This is the answer to the second
question. We assume that a squaring flips into a multiplication with probability
δ, and a multiplication flips into a squaring with probability δ. We show that
our method can recover secret keys when the error rate δ is less than the values
in Table 1. There are no ranges of error rate δ for which our method can recover
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secret keys when w ≥ 5. Table 1 shows that our method can recover keys from
sequences with a higher error rate, namely 0.108 for w = 1, compared with the
maximum error rate of 0.058 reported in [13].

Finally, we perform numerical experiments using the proposed method. We
first perform numerical experiments with various error rate δ values in square-
and-multiply sequences. Through these experiments, our method recovers secret
keys when δ takes the values given in Table 1. Moreover, our method succeed in
w ≤ 4 at the real error δ = 0.011 as shown in [1]. Therefore, our method recovers
secret keys from actual side-channel information in the sliding window method.

Table 1. Tolerable error rate of our method

w 1 2 3 4

Tolerable error rate 0.108 0.067 0.034 0.008

2 Preliminary

In this section, we introduce the CRT-RSA scheme [11] and the left-to-right
sliding window method. Moreover, we introduce previous methods for calculating
CRT-RSA secret keys from square-and-multiply sequences.

2.1 CRT-RSA Scheme

The CRT-RSA encryption or signature scheme is a faster scheme than the stan-
dard RSA scheme [15] because it uses the Chinese remainder theorem (CRT).
The CRT-RSA scheme has public keys (N, e) and secret keys (p, q, d, dp, dq, qp).
We choose two n/2-bit distinct prime numbers p and q, and we choose a small
public key e that is prime to (p − 1)(q − 1). Then, we calculate the remain
values as N = pq, d satisfying ed ≡ 1 mod (p − 1)(q − 1), dp := d mod p − 1,
dq := d mod q − 1, and qp := q−1 mod p.

Now, we explain the CRT-RSA encryption and signature schemes. In the
standard RSA scheme, we calculate two exponentiations, xe mod N using public
key e and xd mod N using secret keys d. The former exponentiation is used in
encryption or verifying the signatures, and the latter exponentiation is used in
decryption or generating signatures. In CRT-RSA scheme, instead of calculating
xd mod N , we calculate two modular exponentiations, xdp mod p and xdq mod q,
and apply CRT to these two values. This calculation is about four times faster
in the CRT-RSA scheme than in the standard RSA scheme.
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2.2 Left-to-Right Sliding Window Method

In sliding window method, we precompute the value of ci for odd i values satisfy-
ing 1 ≤ i ≤ 2w−1 before we calculate an exponentiation. After that, we calculate
exponentiations by reading bits from the MSB side to the LSB side. If we read
0, we conduct a squaring (S) once. If we read 1, we read more (w − 1)-bits and
conduct squaring (S) w times and multiplication (M) once in each w-bits. More
detail, we find the longest bit-string with the LSB is 1. Next, we set t as the
length of bit-string is t and a as the decimalize this bit-string. Then, we square
(S) t times, multiply (M) by a once, and square (S) w − t times.

In the sliding window method, an exponentiation can be calculated with
less multiplication for a larger w, whereas the number of squaring operations
does not change. Therefore, when a larger w is used, exponentiations can be
calculated faster. However, to multiply the bits simultaneously, we must store
multiple candidate values of ci in memory, which grows exponentially large with
w. Thus, when using the sliding window method, parameter w is set considering
this trade-off between implementation time and memory. The value of w used
in current applications is 4 or 5.

2.3 Extracting Side-Channel Information from the CRT-RSA
Scheme

As mentioned in the previous subsection, we calculate exponentiations through
repeated squaring (S) and multiplication (M) in the sliding window method.
[1] proposed a method for recovering secret keys when they obtain the correct
square-and-multiply sequences. However, their experiments show that, in prac-
tice, there are errors in the obtained square-and-multiply sequences.

In this study, we assume similarly as in [13] that a squaring flips into a
multiplication with probability δ, and a multiplication flips into a squaring with
probability δ. In this way, we evaluate the number of errors that are tolerable
when recovering CRT-RSA secret keys.

2.4 Previous Methods for Recovering CRT-RSA Secret Keys from
Square-and-Multiply Sequences

At first, we explain Heninger–Shacham method [5], which is a method for
constructing a candidate tree of CRT-RSA secret keys. It uses parameters
(kp, kq) ∈ Z

2 satisfying edp = 1 + kp(p − 1) and edq = 1 + kq(q − 1). There
are at most e− 1 candidate values of (kp, kq), and these are calculated by [7,17].
Moreover, we define τ(x) as maxm∈Z2m|x, and x[i − 1] as the i-th bit from LSB
side of x.

At each depth of the secret key candidate tree, we have partial information
of p, q, dp, and dq, defined as p′, q′, d′

p, and d′
q. At the i-th depth, p′ and q′ have

(i + 1)-bits, d′
p has (i + 1 + τ (kp))-bits, and d′

q has (i + 1 + τ (kq))-bits. At the
root, we set p′ and q′ as 1, and we calculate d′

p and d′
q using ed′

p ≡ 1 mod 2τ(kp)+1,
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and ed′
q ≡ 1 mod 2τ(kq)+1. After that, we calculate the bits of p, q, dp, and dq

using the following equations:

p[i] + q[i] ≡ (N − p′q′) [i],

dp[i + τ (kp)] + p[i] ≡ (
kp (p′ − 1) + 1 − ed′

p

)
[i + τ (kp)],

dq[i + τ (kq)] + q[i] ≡ (
kq (q′ − 1) + 1 − ed′

q

)
[i + τ (kq)].

We recover bits to (n/2 − 1)-th depth. Then, there is always one correct leaf out
of 2n/2 candidates, which grows exponentially with n. Thus, to search for the
correct secret keys efficiently, [1,13] use square-and-multiply sequences.

In [1], we recover secret keys from the correct square-and-multiply sequences.
At first, we search the start position of bits generating square-and-multiply
sequences correctly. When we recover these bits, we convert the calculated bits
into a square-and-multiply sequence, and we discard a leaf if there are mis-
matches with the given sequence. In theory, we recover secret keys in polyno-
mial time in n when the window size w satisfies w ≤ 4. This analysis is based on
transition matrix on a square-and-multiply sequence proposed in [2]. It should
be noted that their method is improved by [12], but this is also based on the
correctness of square-and-multiply sequences.

In [13], we recover secret keys from the square-and-multiply sequences with
errors in w = 1. First, we calculate t bits of dp and dq. Second, we convert these
bits into square-and-multiply sequences each in dp and dq. Then, the square-
and-multiply sequences obtained from 2t new bits and the given sequences are
compared, and the disagreement rate is calculated. After that, the leaves whose
disagreement rate is larger than Y are discarded. In theory, we recover secret
keys in polynomial time in n when the error rate δ satisfies δ ≤ 0.058.

3 Our Proposed Method

3.1 Our Key Recovery Method

Our method adopts a branch-and-bound strategy based on the Heninger–
Shacham method [5]. First, we calculate each bit in p, q, dp, and dq. Second, we
calculate the distance between the given sequences and the calculated sequences.
Finally, we prune the leaves whose rank is higher than L, similar to [9]. The dif-
ference between our method and [9] is that our method calculates distance based
on square-and-multiply sequences.

From now on, we define distance D. First, we define Dp,t as the disagreement
rate between the given sequences and the calculated sequences generated from
the t LSBs of dp. Similarly, we define Dq,t using dq instead of dp. Then,

D := max
(

min
0≤j≤w−1

Dp,i+τ(kp)+1−j , min
0≤j≤w−1

Dq,i+τ(kq)+1−j

)
.

We now show an example with w = 3 in Table 2. Consider the situation that
the square-and-multiply sequence of dp is given as SMSSMMS and the square-
and-multiply sequence of dq is given as SSMSMSM. Moreover, we calculate 5
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LSBs of dp as 10110 and 5 LSBs of dq as 01101. After we convert bits to a
square-and-multiply sequence, we calculate the disagreement rate by comparing
from the final operations for both sequences. Then, the value of D is 0.25.

Table 2. Example of calculating distance D when w = 3

j 0 1 2

dp Bits 10110 0110 110

Calculated sequence SSSMSMS SSSMS SSMS

Given sequence SMSSMMS SSMMS SMMS

Disagreement rate 3/7 = 0.429 1/5 = 0.2 1/4 = 0.25

min
t

Dp,t 0.2

dq Bits 01101 1101 101

Calculated sequence SSSMSSM SSMSSM SSSM

Given sequence SSMSMSM SMSMSM SMSM

Disagreement rate 3/7 = 0.429 3/6 = 0.5 1/4 = 0.25

min
t

Dq,t 0.25

D 0.25

3.2 Analysis of the Proposed Method

We will now analyze our method. The main result is given as Theorem 1.

Theorem 1. We set Yw as Table 1 for each w ≤ 4. Moreover, we assume that
the error rate δ satisfies δ < Yw. If we store L leaves at each level of the candidate
tree of the CRT-RSA secret keys, our method will correctly recover n-bit CRT-
RSA secret keys in max

(
O

(
n2L

)
, O (nL log L)

)
time with probability

1 −
(

w222w−2αε−4

1 − 2−2αε

n

L
+

2 exp
(
2(w − 1)ε2

)

1 − exp (−2ε2)
L−2ε2 log e

)

for some positive real numbers ε and αε.

In Theorem 1, the failure probability converges to 0 when L → ∞. The value
of L for which our method runs in polynomial time in n is given in Corollary 1.

Corollary 1. Let L = n1+γ (γ > 0) in our proposed method. Then, as n → ∞,
the success probability of our method converges to 1, and the time complexity
is given as O

(
n3+γ log n

)
, which is polynomial time in n.

Now, we focus on the evaluation of success probability. The analysis of time
complexity is given as the full version. To evaluate success probability, we adopt
new assumptions similar to [3]. The major difference is that we consider errors
to analyze our proposed method.
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1. The given square-and-multiply sequences are generated from random bits.
2. The calculated bits of dp and dq from incorrect leaves are independent.
3. When (i + τ (kp) + 1) LSBs of d′

p are the same and the next bit is different
with dp, Pr

[
Dp,t+τ(kp)+1 ≤ Y

] ≤ 2−(t−i)H with some constant H ∈ [0, 1].
This is satisfied similarly in dq.

Our analysis is divided into two parts, obtaining the condition of δ and Y sat-
isfying H > 1/2, and evaluating the failure probability in a similar as [9]. When
H > 1/2, the number of leaves satisfying D ≤ Y is constant, then the success
probability is 1 − O(n/L). Now, we deal the first part by proving Lemma 1. We
give the sketch proof, and the detailed proof is given in the full version.

Lemma 1. Let the value of Yw be as in Table 1 and the value of δ be δ < Yw

for w ≤ 4. We define xt as the randomly chosen t bits and define Cxt
as the

square-and-multiply sequence generated from xt. Moreover, we define O as the
given square-and-multiply sequence, which is generated from random bits and
has an added error rate of δ. We define dCxt ,O as the disagreement rate between
Cxt

and the corresponding operations in O. Then, some positive real values ε
and αε exist such that Pr

[
dCxt ,O ≤ δ + ε

]
= 2−t(1/2+αε).

Proof. First, we evaluate the probability PY of the calculated sequence having a
disagreement rate less than Y when compared with O. We define random variable
lxt

as the length of Cxt
. Then, we define Olxt

as the corresponding operations
in O. We also define random variable ext

as the number of errors found between
Olxt

and Cxt
. Moreover, we define random variable Zxt

as Zxt
= lxt

Y − ext
.

Then, PY is less than inf
s>0

E [exp (sZxt
)].

Now, we can write E [exp (sZxt
)] as vM t

s

[
11 . . . 1

]T , where v is some
constant-valued vector, and T means the transpose. We define Js as the Jor-
dan form of Ms. Then, a regular matrix Q exists such that Ms = QJsQ

−1.
Therefore,

E [exp (sZxt
)] = vM t

s

[
11 . . . 1

]T = (vQ) J t
s

(
Q−1

[
11 . . . 1

]T
)

.

Now, we define λMs
as the largest absolute value of the eigenvalues of Ms. Then,

we have inf
s>0

E [exp (sZxt
)] ∼

(
inf
s>0

λMs

)t

, and this means PY ≤
(

inf
s>0

λMs

)t

.

Next, we calculate the value of λMs
numerically using Matlab, because we

cannot calculate the value of λMs
analytically. First, we generate matrix Ms

by setting the values of δ, Y , and s. From this matrix Ms, we calculate Hs =
− log λMs

. The value of Hs is given as in Table 3. For larger δ, we cannot find
any s satisfying Hs > 1/2.

We now prove Lemma 1. If δ < Yw and Y = δ, there is an s such that
Hs > 1/2, as shown in Table 3. Moreover, because E [exp (sZxt

)] is a continuous
function of Y , there are some positive real-valued ε and αε such that Pδ+ε ≤
2−t(1/2+αε). This proves Lemma 1 . 	
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Table 3. Values of Hs

w 1 2 3 4

δ = Y 0.108 0.067 0.034 0.008

s 1.7 1.9 2.1 3.1

Hs 0.5001 0.5008 0.5002 0.5026

We now give brief evaluation of the failure probability of the proposed method
using Lemma 1. First, we evaluate Pt, which is the probability that a leaf
containing correct information is discarded at the t-th depth of the candidate
tree of the CRT-RSA secret keys. The number of leaves generated is 2t at the
t-th depth. Then, we define X1 as a leaf containing correct information, and we
define the other leaves as Xi (2 ≤ i ≤ 2t). Moreover, we define Ci as the dis-
tance of Xi from the given square-and-multiply sequences. Now, similar as [9],

Pt ≤ 1
L

2t
∑

i=2

Pr [Ci ≤ δ + ε] + Pr [C1 ≥ δ + ε] . By using Lemma 1, the first term

is upper bounded by
w222w−2αε−3

L (1 − 2−2αε)
with some positive real value αε > 0. More-

over, by using Hoeffding’s theorem [6], the second term is upper bounded by
2 exp

(−2(t − w + 1)ε2
)
. Pruning is conducted on (�log L� + 1) ≤ t ≤ n/2. Thus,

P =
n/2∑

t=�log L�+1

Pt ≤ w222w−2αε−4

1 − 2−2αε

n

L
+

2 exp
(
2(w − 1)ε2

)

1 − exp (−2ε2)
L−2ε2 log e.

In conclusion, we prove the failure probability in Theorem 1.

4 Numerical Experiments

In this section, we show the results of numerical experiments conducted on the
proposed method. We conducted these numerical experiments using NTL library
11.3.2 on C++. Moreover, we assumed that we know the values of kp and kq,
and the actual time may be 215 times as long as these experimental results.

We ran the proposed method on 1024-bit and 2048-bit CRT-RSA, correspond-
ing to n = 1024 and 2048, respectively. For each n, we set parameters (w, δ, L).
For n = 1024, we set L = 210 based on Corollary 1. Similarly, for n = 2048, we set
L = 211. Moreover, we set (w, δ). For each (n,w, δ, L), we generated 100 secret keys
and measured the success rate and average implementation times for each success-
ful trial. The results are given in Tables 4, 5, 6 and 7.

From these results, it can be seen that we can almost always recover CRT-
RSA secret keys when δ is less than that shown in Table 1. Moreover, we can
even recover a few secret keys when δ is slightly more than that shown in Table 1.
Therefore, our theoretical analysis matches these experimental results. However,
when w = 4, our method recovered 29% of the secret keys for n = 1024 and 9%
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Table 4. Experimental results for w = 1

δ 0 0.02 0.04 0.06 0.08 0.09 0.1 0.11 0.12 0.13

n = L = 1024 Success rate (%) 100 99 88 59 31 19 7 3 1 0

Time (s) 8.76 9.73 8.11 8.63 9.24 10.7 9.13 15.4 10.8 –

n = L = 2048 Success rate (%) 100 100 77 35 10 6 0

Time (s) 49.7 49.8 53.2 54.2 54.0 66.8 –

Table 5. Experimental results for w = 2

δ 0 0.02 0.04 0.06 0.07 0.08 0.09

n = L = 1024 Success rate (%) 100 89 45 16 6 1 0

Time (s) 10.9 11.2 10.1 9.85 18.5 8.06 –

n = L = 2048 Success rate (%) 100 73 26 2 1 0

Time (s) 58.8 61.6 55.3 62.8 46.3 –

Table 6. Experimental results for w = 3

δ 0 0.01 0.02 0.03 0.035 0.04 0.045 0.05

n = L = 1024 Success rate (%) 100 84 42 23 15 7 7 0

Time (s) 9.23 9.10 10.0 9.54 19.1 13.0 17.8 –

n = L = 2048 Success rate (%) 100 61 25 3 1 1 0

Time (s) 62.6 59.4 60.5 57.8 55.9 54.6 –

Table 7. Experimental results for w = 4

δ 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

n = L = 1024 Success rate (%) 100 58 29 7 5 1 2 0

Time (s) 11.5 11.3 11.8 9.92 15.6 8.11 8.10 –

n = L = 2048 Success rate (%) 100 41 9 1 1 0

Time (s) 71.2 66.0 54.2 55.4 58.5 –

for n = 2048 when δ = 0.01, although the theoretical bound is δ = 0.008. This
is because we just evaluated the lower bound of the success probability.

Next, we consider the actual errors δ = 0.011 reported in [1]. From Tables 4,
5 and 6, our method can recover many secret keys when w ≤ 3. When w = 4 and
δ = 0.011, we conducted an additional experiment, and our method recovered
18% of the secret keys for n = L = 1024 and 5% for n = L = 2048. Thus, our
method recovered secret keys for w ≤ 4.
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5 Conclusion

In this paper, we discuss how to recover CRT-RSA secret keys from square-and-
multiply sequences with errors in the sliding window method. First, we proposed
a method for recovering secret keys from square-and-multiply sequences with
errors. Second, we analyzed our method theoretically, and calculated the upper
bounds of the error rates δ in the square-and-multiply sequences, as in Table 1.
Finally, we performed numerical experiments using the proposed method.
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Abstract. Tangle provides an enlightening paradigm for DAG-based
structures. We build a simple but flexible simulation network for Tangle
by identifying its features. Based on that, we construct three types of
attack strategies via defining basic actions and behaviours. We further
evaluate these attacks in multi-dimensions with 12 sets of experiments,
followed by comprehensive discussions. The results show the trend under
different strategies and configurations. Our work provides an educational
example for both attack and defense towards Tangle-based blockchains.

Keywords: Tangle · DAG · Blockchain · Attack · IOTA

1 Introduction

Directed Acyclic Graph (DAG) is designed to improve the scalability and per-
formance of traditional blockchains. Tangle structure, proposed by IOTA [8], is
one of the leading DAG-based projects. Tangle has properties of high through-
put : transactions can be attached to the network from different directions and
verified by previous transactions in parallel without serious congestion; high per-
formance: newly arrived transactions are confirmed by the previous two transac-
tions via a tiny Proof of Work (PoW) mechanism, where the computer consump-
tion can be ignored when compared to traditional PoW; low cost : no transaction
fees are charged to fit for situations such as IoT and edge computing.

However, Tangle structure confronts potential threats on the fork of sub-
graphs due to the multi-directional expansive network [9]. Specifically, Tangle
achieves delayed confirmation and partial consistency in multiple directions,
instead of an instant confirmation such as BFT-style consensus [3]. The gap
between delayed confirmation and instant confirmation leaves a blank of uncer-
tainty and reversibility for attackers [5]. Existing chains are also threatened
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by miners who own insurmountable computing power to send massive trans-
actions. Newly issued transactions are unpredictably attached to different sub-
graphs without global reconciliation. As a result, no leading subgraph is formed
to maintain stability. The forks will frequently happen and the system confronts
the risk of parasite chain attack and double-spending attack [1]. In this paper,
we aim to provide analyses on such risks by establishing three types of attacks
through a simluation network. Detailed contributions are summarized as follows.

– Simulation of Tangle: We rebuild a simulation network with identified
features of Tangle to provide an experimental environment in Sect. 2.

– Construction of attack strategy: We define three actions as the basic
benchmarks to construct our attack strategies in Sect. 3 and Sect. 4.

– Evaluations/Discussions of attacks: We provide evaluations and discus-
sions on constructed attack strategies by multiple metrics in Sect. 5.

Related Work. Rather than focusing on the consensus at block level, DAG
prioritizes consensus at transaction level. Tangle, inheriting advantages from
transaction-based structures, is suitable for micro-services. The properties and
applications of Tangle are explicitly described in [6,8,9]. Further improvements
of Tangle [1,2,4] are also proposed to strengthen the potential weakness.

2 Structure of Tangle Simulation

In this section, we identify key features of IOTA for the Tangle simulation.

Feature of Data Structure. Transactions are the smallest component serving
for basic operations and metadata storage in IOTA, but a complete cycle of event
like token transferring relies on a data structure called bundle. Bundle is a top-
level construction used to link related transactions in one group. The bundle
itself cannot be broadcast, instead, a collection of individual transactions are
broadcast. Since bundle is a virtual entity where all steps are executed through
transactions, we employ a transaction model (UTXO) to simplify the bundle.

Feature of Topology. Tangle bases on DAG where the vertex represents trans-
action and the edge represents verification relationship. It integrates the pro-
cesses of generating transaction and making consensus into one step. Once newly
generated transactions, a.k.a tips, are attached to Tangle, the consensus is simul-
taneously launched. Tips are loosely organized by the rule – each tip verifies two
parent transactions. Our simulation follows this rule without modifications.

Feature of Tip Selection. Tip selection represents selection strategies of newly
generated transactions. Three mechanisms are provided in [8]. No matter which
mechanisms is adopted, the selection processes can be regarded as a variant of
random algorithm. We captures three influential factors including cumulative
weight, level difference, and operation time as our simulated parameters.
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3 Construction of Attack Strategies

In this section, we provide three main attack strategies: Parasite Attack (PS),
Double Spending Attack (DS) and Hybrid Attack (HB). Each strategy represents
a family of concrete attacks that inherit the same foundations.

Layer0: Unit Action. The smallest unit actions at the bottom layer (layer0 ) is
to describe the behaviours a node may select. Specifically, we list three actions:
Action A - it represents whether a tip is: valid [A1] or invalid [A2]. Action B
- it represents whether a tip is attach to parent tips: by the random selection
mechanism [B1] or by selecting transactions issued by the same nodes/entities
[B2]. Here we call B2 as selfish selection. Action C - it represents whether a
tip is selected from the valid pool [C1] or invalid pool [C2]. Each unit action
is determined by two possible choices and we denote this process as a binary
selection for simplicity. The combination of unit actions make up an atomic
behaviour in layer1. The selfish selection means a tip and a parent transaction is
issued by the node with a same identity (honest/malicious). Note that, all actions
and behaviours are mainly focused on the malicious nodes since the honest nodes
can only conduct honest behaviours. Here, we summarise the possible selections.

Action A Action B Action C

Valid Tx [A1] Random Selection [B1] Valid Pool [C1]
Invalid Tx [A2] Selfish Selection [B2] Invalid Pool [C2]

Layer1: Atomic Behaviour. Layer1 is a collective set of behaviours made
up by different combinations of unit actions. The behavior is used to present
how to generate a transaction at the initial stage. The behaviour is atomic for
the construction of attack strategies and is closely related to the category of
attack types. Every single behaviour covers unit actions A, B, and C, and we
employ the binary selection 1 and 0 to distinguish their combinations, where 1
to represents the element in {A1, B1, C1}, and 0 is {A2, B2, C2}.

There are 8 possible atomic behaviours, which is used to describe how a
malicious node executes transactions. Take 101 - (A1, B2, C1) as an example, it
means the behaviour that: A malicious node generates a valid transaction, being
selfishly attached to parent tips from a valid pool. These behaviors are feasible in
the simulation without logic error, denoted as Y . On the contrary, the behaviors
100 is infeasible, since there is no invalid transaction in the network if malicious
nodes only send valid transactions. And the behaviors 000 is infeasible, neither,
since for a malicious node, selfishly attaching process from an invalid pool is
equal to the random selection from an invalid pool, so that 000 is equal to 010.
Therefore, only 6 of them are feasible with the index from a to f , respectively.

Layer2: Combined Attack Strategy. Based on the behaviors in layer1, we
construct attack strategies in layer2. We categorize three types including Par-
asite Attack (PS), Double Spending Attacks (DS) and Hybrid Attacks (HB).
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Binary selection Action combination Feasibility Index

111 (A1, B1, C1) Y a
110 (A1, B1, C2) Y b
101 (A1, B2, C1) Y c
100 (A1, B2, C2) N –
011 (A2, B1, C1) Y d
010 (A2, B1, C2) Y e
001 (A2, B2, C1) Y f
000 (A2, B2, C2) N –

The parasite attack means an attacker secretly creates a sub-Tangle with a high
weight for the profit. It may reverse the main Tangle when newly generated
transactions are loosely distributed. Double spending attack splits Tangle into
two branches so that s/he can spend a coin multiple times.

We define PS and DS are pure attacks without mutual overlaps, and HB
represents attacks covering overlapped behaviors such as f . We also define the
decision principle Φ on how to categorize attack types by a four-stage process:
Stage1 - Confusion behavior; Stage2 - Send the invalid Tx; Stage3 - Verify the
invalid Tx; Stage4 - Overlapped behaviour. In Stage1, the confusion behavior
means a malicious node pretends to act as an honest node, such as a: A mali-
cious node sends a valid transaction, being randomly attached to parent tips
from a valid pool. We cannot distinguish whether the transaction is issued by
an honest or malicious node. Stage2 represents a malicious node sends invalid
transactions, and related behaviors in layer2 are (d, e, f). Stage3 refers to the
parent tip selection, and related behaviors are (b, e). Stage4 provides overlapped
behaviors including (c, f). Putting them together, a general decision principle Φ

is Φ : (a,−) | (d, e, f,−) | (b, e,−) | (c, f,−) .
Alternatively, based on Φ, we provide concrete decision principles for PS, DS,

and HB, which are denoted as Φ[PS], Φ[DS] and Φ[HB], respectively. The key
principle of PS is to selfishly select the parent transactions, while the key of DS
is to send/verify invalid transactions. But there are several overlapped behaviors
and some logic errors. Therefore, we provide specified decision principles sepa-
rately listed as {Φ | Φ[PS], Φ[DS], Φ[HB] }. Then, we back to the reason why
the behavior f is an overlapped behavior. f means: A malicious node sends an
invalid transaction, being selfishly attached to the parent tips from the valid pool.
f selfishly selects its parent tips, satisfying Φ[PS]. Meanwhile, f sends an invalid
transaction to the network, satisfying Φ[DS]. Thus, f is an overlapped behavior
applied in hybrid attacks (Φ[HB]). We summarise attack strategies as follows.



Security Analysis on Tangle-Based Blockchain Through Simulation 657

Attack

types

Decision

principle

Feasible

behavior

Attack

strategies

(a, -) | (d, e, f, -) | (b, e, -) | (c,f,-)

PS (a, -) | - | - | (c) c, f c, ac (2)

DS (a,-) | (d, e) | (b,e) | - b, d, e, f
e,ae,bd,de,abd,
ade,bde,abde (7)

HB (a, -) | (d, e, f) | (b, e) | (c, f) f
ce, bf, ef, cef, bcf,
bef, bce, def, cde,
bdf, bcd, aef, acef,
abf, abcf, ace,
abef, abce, adef,
acde, abdf, abcd
(22)

4 Implementation

Parameters and Notations. There are two types of parameters. The first are
binary parameters such as (A1, A2) used for the construction of attacks. The
second are parameters such as operating time, number of total transactions,
etc, which are used for adjusting configurations. Related continuous variables
are: total transactions T , honest transaction H, invalid Transaction F , inter-
val between two tips D, height of block h, simulation operating time T , level
difference L and cumulative weight W. Specifically, Level Difference L: level
represents transactions that are identified with the same height. Level Differ-
ence is the distance of the heights between current tips and the selected parent
transactions. Cumulative Weight W: it is the sum of unit weights from attached
transactions. The unit weight w[i] randomly varies from 1 to 4 to avoid the fraud,
and wc is current weight. p is the tip selection probability. Operation Time T :
it represents the executed time of a transaction since it was generated. A trans-
action will be discarded when times out. Besides, derived parameters include:
strategy space S, total transactions ratio(F) = F/T and ratio between different
behaviors in one strategy ratio(B) = x : y : z, where xyz is depended on initial
settings.

Key Principles. The growth of a DAG relies on increasingly attached transac-
tions. Previous transactions get weighted through cumulative weight (W). Two
aspects are considered: the configurations of unit weights and the methods to
select parent tips. The unit weight of a single transaction randomly varies from
1 to 4 to provide a better simulation for the real scenario. The parent selection
takes key metrics into consideration, containing cumulative weight, operation
time, level difference. Then, we provide two principles limit the size of network:
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Tip selection decides how tips choose parent transactions, and Invalid transac-
tion decision shows how a transaction is discarded.

Definition 1 (Mechanism For Tip Selection).

p = 3 × |15 − Wi| +
100
5L − 1.5

T
60 (p ≥ 0)

where, w[1] = wc (L = 1)
w[i] = 0.8w[i − 1] (L = 2 − 6)

= 0.9w[i − 1] (L = 7 − 16)
= 0.01w[1] (L = 17 − 29)

Wi = Wi−1 + w[i], i ∈ L

We observe that the selection probability p is mainly influenced by three
factors: L, W and T . L varies inversely with p, which means a tip tends to be
impossibly selected as the level difference increases. W is an iterative algorithm
within three intervals according to L. The equation at different intervals has a
different decay rate. The tips need to be smoothly decayed with a small level
difference (meaning near to the latest transaction) while be sharply decayed at a
high difference. T is used to prevent tips from being suspended for a long time.

Definition 2 (Decision For Invalid Transaction). A tip is discarded, Tx=
⊥, when triggering the condition: {Tx = ⊥ | L > 30 ||W < 30 ∩ T > 1000 s}.

We obtain that a tip will be decided as invalid when exceeding thresholds
either on the specified level difference (30) or on the operation time (1000 s).
Our simulations and evaluations only consider valid transactions.

Implementation Logic. Our implementation is based on a Tangle simula-
tion and constructed attack strategies. The main logic of our implementation
includes: receiving transactions from peer nodes, generating/sending new trans-
actions, and launching the attack strategies. Due to the page limitation, the logic
with source codes could be found in: https://github.com/BozhiWang/Tangle-
based-Blockchain-attack-simulation.

Implementation Goals. We provide four goals to evaluate attack strategies
under different configurations. Goal I aims to test the influence of different
attacks strategies (mainly hybrid attacks), namely (S). Goal II is going to test
the influence of different ratios of combined behaviours, namely Ratio(B). Goal
III is to test the influence of total nodes. Goal IV is focused on the selfish strat-
egy combine by ac. Detailed settings are presented at Table 1 in Appendix A.

5 Evaluation and Discussion

Based on Goals, the simulations provide different types of results. In this section,
we firstly give the specified inputs and outputs, and then show the trends of dif-
ferent testing sets. Detailed data and other outputs are presented in Appendix B.

https://github.com/BozhiWang/Tangle-based-Blockchain-attack-simulation
https://github.com/BozhiWang/Tangle-based-Blockchain-attack-simulation
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Analysis on Result I. In Simulation I, we provide totally eight attack strate-
gies {S | bd, be, ac, abe, ade, abd, e, abcd, abdf}, the corresponding Ratio(B) of each
strategy, and three Ratio(F) = {F | 10%} as the input parameters. The outputs
contain confirmed invalid transactions, confirm time, abandoned invalid transac-
tions and abandoned valid transactions. From Result I in Fig. 1(a), we can find
the trend caused by different factors. (1) For the same strategies, no matter how
they are made up, such as ade e and abcd, the confirmed invalid transactions are
increasing along with the number of malicious nodes in a positive correlation.
The confirm time varies in a range of 200–800 s. The abandoned transactions
significantly increase with the number of malicious nodes. (2) For the different
hybrid strategies, Ratio(F) has different influences on them. Several strategies
are sensitive to the changes like abe, be. (3) The abandoned invalid transactions
and valid transactions increase at the same time along with changes on Ratio(F)
where malicious nodes have a significant influence.

Analysis on Result II. In Simulation II, we set strategies {S | abe, ade, abd},
Ratio(F) = {F | 10%, 20%, 30%}, and Ratio(B) = {B | 811, 622, 433, 631, 613} as
the input parameters. The outputs are ratios between invalid transactions and
total transactions. From Result II in Fig. 1(b), we find that (1) For the Ratio(F)
in the same strategies such as ade, invalid transactions significantly increases
along with nodes. The trend is determinate for such situations. (2) For different
strategies, Ratio(F) has different influences on them. ade varies monotonously
with the ratio, while the other two have a peak value at a certain ratio. (3) The
attack is sensitive to some behaviors such as b. Invalid transactions in strategies
containing b (abe, abd) are significantly that without b.

Analysis on Result III. In Simulation III, we set three attack strategies
{S | abe, adeabd} with initial Ratio(B) = {B | 622}. There are three Ratio(F) =
{F | 10%, 20%, 30%} and four sets of total nodes {Tx | 20, 50, 100, 200} as the
input parameters. The outputs are the ratio between confirmed invalid transac-
tions and total transactions. From Result III in Fig. 1(c), we find (1) For the
same strategy, such as ade, the trend of ratio is relatively stable under different
Ratio(F). (2) The ratio maintains stable when the Ratio(B) increases. This also
means the ratio of invalid with total transactions varies slightly with the mali-
cious nodes. The number of malicious nodes has little influence on the ratio. (3)
For different combinations, strategies like ade are sensitive to variations than
others like abe, abd. The results show a significant difference in these strategies.

Analysis on Result IV. In Simulation IV, the first test initializes
100 nodes with Ratio(F) = {F | 10%} and Ratio(B) = {B | 91, 82, 73, 64, 55, 46}.
The second sets Ratio(F) = {F | 10%, 20%, 30%}, Ratio(B) = {B | 82} and
{T | 20, 50, 100, 200}. The third test initializes 100 total nodes, Ratio(F) =
{F | 10%, 20%, 30%} and Ratio({B | 91, 82, 73, 64, 55, 46}) as input parameters.
The outputs are the ratio between valid transactions and total transactions.
From Result IV in Fig. 1(d), we find (1) valid transactions maintain relatively
stable under different Ratio(B). (2) The ratio is stable whenever Ratio(F)
increases or total nodes increase. This means the ratio of valid with total
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transactions vary slightly with malicious nodes and the number of malicious
nodes has slight impact. (3) The changes of Ratio(B) and Ratio(F) have slight
influences on results. The results show that selfish results are only related to self-
ish behaviors and independent of their combination/strategy. Tangle maintains
stable under selfish behaviors.

Discussions on Our Simulations. We answer the questions listed below.

Myth 1. Are Tangle-Based Blockchains Important in DAG Systems? DAG sys-
tems aim to improve the scalability via parallel processing. Tangle is a pioneer
to inspire numerous open-sourced projects. DAG projects based on blocks such
as Conflux [7] partially change the original concept of scalability, since trans-
actions need to be eventually sequenced in a uniform order. At present, Tan-
gle maximally inherits the concept of DAG, where security analyses on it are
educational.

Myth 2. Does the Simulation Benefit for a Real Scenario? The simulation cap-
tures key features of real Tangle-based projects. Although a simulation cannot
completely reflect real situations in large network due to the design limitation, it
still provides an intuitive way to quantitatively analyze the properties and secu-
rity under different strategies or configurations. The results demonstrate several
vulnerabilities in different scenarios, which would be a benefit for future design.

Myth 3. What the Main Factors of the Attack Effects? The attacks (DS, PS, HB)
are sensitive to Ratio(B), and the methods on how to make up a strategy have
significant impact on attacks. To prevent such effects, factors need to be carefully
considered including binary actions, ratio of behaviors, ratio of malicious nodes,
and strategies. However, the effect of a selfish behavior is limited in a specified
range. The effect appears when a strategy contains one or more selfish behaviors.

Myth 4. What do We Learned from the Simulation? This provide us several
enlightening points. (1) Tangle can maintain stability in case of selfish behav-
iors no matter how it made up or how many selfish nodes exist. (2) Increasing
malicious nodes will significantly increase the absolute number of transactions
instead of probability since successful attacks (the ratio of {Confirmed Invalid
Tx}/{Total Invalid Tx}) maintains stable under different Ratio(F). (3) Tangle
structure is sensitive to binary actions in Layer0. Actions are deterministic for
a final success.

Limitations and Future Work. The complicated testing goals and experi-
mental results may confuse readers. However, this paper mainly explains how to
analyze a fresh new blockchain structure by building up a simulation model and
progressively establishing on-top attack strategies. The comprehensive experi-
ments are tested in multi-dimensions, where various aspects could be further
studied. Detailed analyses on the single attack are not provided due to the lim-
itation of pages, such as whether 51% is enough for parasite attacks. Therefore,
we will continue diving into more specific attacks in the future.

Conclusion. Tangle is a promising structure in current DAGs. However, the
performance gain brings potential security risks. In this paper, we construct three
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types of attacks with evaluations. To achieve that, we abstract main components
of Tangle to rebuild a simple network for the simulation. Then, we informally
define three smallest actions to build up attack strategies layer by layer. Finally,
we provide analyses and discussions on different attacks in multiple dimensions.
Our study provide a complete cycle of analysis through the simulation.
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Abstract. We define the security notion of strong collision resistance for
chameleon hash functions in the multi-user setting (S-MU-CR security).
We also present three specific constructions CHFdl, CHFrsa and CHFfac of
chameleon hash functions, and prove their tight S-MU-CR security based
on the discrete logarithm, RSA and factoring assumptions, respectively.
In applications, we show that tightly S-MU-CR secure chameleon hash
functions can lift a signature scheme from (weak) unforgeability to strong
unforgeability with a tight security reduction in the multi-user setting.

Keywords: Chameleon hash functions · Tight security · Multi-user
setting · Signatures

1 Introduction

Chameleon hash function (CHF) has been studied for decades since it was first
introduced by Krawczyk and Rabin [11]. Informally, CHF is a special hash func-
tion indexed by a hash key, which is associated with a trapdoor. On the one
hand, it has the property of collision resistance, i.e., it is hard to find a colli-
sion given the hash key only. On the other hand, one can easily find collisions
with the help of the trapdoor. Over the years, various constructions of CHF
were proposed [4,7,13], and they found wide applications in signatures (SIG)
[6,11–13].

Tight Security. Generally, the collision resistance of CHF is proved by security
reduction. That is, once an adversary finds a collision for CHF with probability
ε, then another algorithm can be built to make use of the collision, and solve
some well-known hard problem with success probability ε/L. The parameter L is
called the security loss factor. If L is a constant, the security reduction is tight.
And if L is a polynomial of security parameter λ, the security reduction is loose.
With a loose security reduction, the deployments of CHF (and other primitives)
have to be equipped with a larger security parameter to compensate the loss
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 664–673, 2020.
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factor L. This yields larger elements and slower computations. For instance, if
L ≈ 230, there will be a great efficiency loss.

Most constructions of CHF consider single user setting only. In the era of
IoT, cryptographic primitives are deployed in systems of multi-users. Hence, it
is important for us to consider tight security of CHF in the multi-user setting.
With hybrid argument, collision resistance of CHF in single user setting implies
collision resistance in the multi-user setting, but with a security loss factor L = μ,
where μ is the number of users. In consideration of wide applications of CHF, it
is desirable for us to exploit tight collision resistance for CHF.

Related Works. In [11], Krawczyk and Rabin gave two constructions of
chameleon hash functions. One is a generic construction from “claw-free” trap-
door permutations [8], and is implemented based on the factoring assumption.
The other is based on the discrete logarithm (DL) assumption. Later, numerous
constructions of CHFs are proposed in [1,2,7,13], to name a few.

In [4], Bellare and Ristov proved that CHFs and Sigma protocols are equiv-
alent. Due to this equivalence, many new chameleon hash functions CHFfs,
CHFms, CHFoka, CHFhs are obtained from well-studied Sigma protocols. Mean-
while, some variants of CHFs came up in needs of different applications, like
identity-based CHF [1], key-exposure free CHF [2], etc.

CHFs have found numerous applications in different types of signatures.
The first application of CHF is chameleon signatures [11], which provide non-
transferability. In [13], Shamir and Tauman gave a generic construction from
(traditional) signature to online/offline signature with the help of CHF. Conse-
quently many proxy signatures are constructed based on CHF [6,12]. Meanwhile,
CHF can also be used to strengthen a (weakly) unforgeable signature to a strong
unforgeable one [5,14].

Most of these constructions consider single user setting only. Though they
also work in the multi-user setting, but the price is a great security loss factor
μ. As far as we know, there is no research considering tight security of CHF in
the multi-user setting, and that is exactly the focus of this paper.

Tight Strong Multi-user Collision Resistance of CHF. We define the
security notion of strong multi-user collision resistance (S-MU-CR) for CHFs. In
the multi-user setting, each user has its own hash key/trapdoor pair, and each
hash key determines a specific chameleon hash function. Informally, S-MU-CR
security means that after seeing all the hash keys, the adversary cannot find a
collision under a specific hash key of its choice.

Over the years, there are lots of proposals of CHFs, which are tightly secure in
single user setting. For example, the chameleon hash function CHFclaw from the
claw-free permutations [11], CHFst from the factoring assumption by Shamir and
Tauman [13], CHFrsa-n from the RSA[n, n] assumption [2], CHFvsh from the very
smooth hash [7], CHFms from the Micali-Shamir protocol [4], etc. We believe that
it is hard for these CHFs to achieve tight S-MU-CR security. Let us take CHFst

as an example. Each user has trapdoor (pi, qi) and hash key Ni = piqi. In the
security reduction, the factoring problem instance N is embedded into a specific
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Nj := N . However, the adversary chooses Nj as its target with probability 1/μ.
As a result, the security loss factor is at least μ.

Nevertheless, we identify some CHFs, like CHFdl [11], CHFrsa [1] and CHFfac

[4], and prove their tight S-MU-CR security based on the DL, RSA and factoring
assumptions, respectively. Intuitively, the DL problem and RSA problem are
random self-reducible. For example, given one DL instance (g, gx), we can create
multiple instances (g, gx+bi), so that the DL problem can be embedded into hash
keys of all users. As for CHFfac, we embed the factoring problem instance into
the public parameter, which is shared by all users. In this way, no matter which
target hash key is chosen by the adversary, the collision can be used to solve the
hard problem. That is why tight S-MU-CR security can be achieved.

Applications of Tightly S-MU-CR Secure CHF to Signatures. By using
our tightly secure CHFs, we can extend the GBSW transform [14] to the multi-
user setting, which lifts a SIG from (weak) unforgeability (MU-EUF-CMA) to
strong unforgeability (S-MU-EUF-CMA) with a tight security reduction. Fur-
thermore, we can cope with corruptions through the “double-key” mechanism
[3], and get a tightly S-MU-EUF-CMACorr secure SIG, see Fig. 1.

CHFdl CHFrsa CHFfac︸ ︷︷ ︸
tightly S-MU-CR CHF }

GBSW−−−−−−→ tightly S-MU-EUF-CMA SIG
↓ double-key

tightly S-MU-EUF-CMACorr SIG

+
tightly MU-EUF-CMA SIG

Fig. 1. Applications of tightly S-MU-CR secure CHF to signatures.

Our Contribution

1. We define the security notion of strong multi-user collision resistance (S-MU-
CR) for chameleon hash functions (CHF). Then we present three construc-
tions (CHFdl, CHFrsa and CHFfac) of CHF and prove their tight S-MU-CR
security based on the discrete logarithm, RSA and factoring assumptions,
respectively.

2. We extend the generic GBSW transform to the multi-user setting, resulting
in tightly S-MU-EUF-CMA secure signature schemes.

2 Preliminaries

Let λ ∈ N denote the security parameter. For μ ∈ N, define [μ] := {1, 2, ..., μ}.

Denote by x := y the operation of assigning y to x. Denote by x
$←− X the

operation of sampling x uniformly at random from a set X . For an algorithm A,
denote by y ← A(x), the operation of running A with input x and assigning the
output to y. “PPT” is short for probabilistic polynomial-time.
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Definition 1 (Chameleon Hash Family). A chameleon hash family (CHF)
consists of four algorithms, namely CHF = (Setup,KGen,Eval,TdColl).

– Setup(1λ) takes as input the security parameter 1λ, and outputs public param-
eter pp, which determines the key space HK × T D, input domains M × R,
and range Y. Here pp is an implicit input of Eval and TdColl.

– KGen(pp) takes as input pp, and outputs a hash key hk ∈ HK along with a
trapdoor td ∈ T D. Here hk determines a specific chameleon hash function
Hhk(·, ·) in the chameleon hash family H = {Hhk(·, ·)}hk∈HK.

– Eval(hk,m, r) takes as input hk, m ∈ M and r ∈ R, and outputs the hash
value h = Hhk(m, r).

– TdColl(td,m1, r1,m2) takes as input td, (m1, r1), and another message m2,
and outputs r2 such that Hhk(m1, r1) = Hhk(m2, r2).

CHF is strongly secure if it has the following two properties.

Strong Collision Resistance (S-CR). For any PPT adversary A, the advan-
tage Advs-crCHF,A(λ) is negligible, where Advs-crCHF,A(λ) :=

Pr
[
pp ← Setup(1λ); (hk, td) ← KGen(pp);

(m1, r1,m2, r2) ← A(pp, hk) :
Hhk(m1, r1) = Hhk(m2, r2)

∧ (m1, r1) �= (m2, r2)

]
.

Random Trapdoor Collision (RTC). For ∀ hk, td,m1,m2, if r1 is distributed
uniformly over R, then r2 := TdColl(td,m1, r1,m2) enjoys a uniform distri-
bution over R.

Now we extend the S-CR security of CHF to the multi-user setting.

Definition 2. A chameleon hash family CHF is strongly secure in the multi-user
setting if it has RTC property and strong multi-user collision resistance.

StrongMulti-User Collision Resistance (S-MU-CR). For any PPT adver-
sary A, the advantage Advs-mu-cr

CHF,μ,A(λ) is negligible, where Advs-mu-cr
CHF,μ,A(λ) :=

Pr

[
pp ← Setup(1λ); (hki, tdi) ← KGen(pp) for i ∈ [µ];

(i∗,m1, r1,m2, r2) ← A(pp, {hki}i∈[μ])
:
Hhki∗ (m1, r1) = Hhki∗ (m2, r2)

∧ (m1, r1) �= (m2, r2)

]
.

3 Tightly Secure Chameleon Hash Functions in the
Multi-user Setting

3.1 Chameleon Hash Family Based on the DL Assumption

Let GGen be a group generation algorithm that outputs a cyclic group G of
prime order q with generator g. In formula, G := (G, q, g) ← GGen(1λ).

Definition 3 (The DL Assumption). The discrete logarithm (DL) assump-
tion states that for any PPT adversary A, Advdl

G,A(λ) is negligible, where

Advdl
G,A(λ) := Pr[(G, q, g) ← GGen(1λ);x $←− Zq : A(G, q, g, gx) = x].
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Setup(1λ):
(G, q, g) ← GGen(1λ)
Return pp := (G, q, g, M := Zq, R := Zq, Y := G)

KGen(pp):

x
$←− Zq; X := gx

Return (hk := X, td := x)

Eval(hk, m, r):
Return h := hkm · gr

TdColl(td, m1, r1, m2):
r2 := td · (m1 − m2) + r1 mod q
Return r2

Fig. 2. Construction of CHFdl.

The construction of CHFdl
1 [11] is shown in Fig. 2.

Theorem 1. CHFdl has tight strong security in the multi-user setting based on
the DL assumption. More precisely, for any PPT adversary A with advantage
Advs-mu-cr

CHFdl,μ,A(λ), there exists a PPT algorithm B such that Advs-mu-cr
CHFdl,μ,A(λ) ≤

Advdl
G,B(λ).

Proof. It is easy to prove the RTC property. For any td = x, r1 ∈ Zq, m1,m2 ∈
Zq, we have r2 := x · (m1 − m2) + r1. Hence, if r1 is independently chosen from
Zq uniformly at random, then r2 is uniform over Zq as well.

Next we construct a PPT algorithm B and prove Advs-mu-cr
CHFdl,μ,A(λ) ≤

Advdl
G,B(λ). B gets a group description G = (G, q, g) along with a challenge

(g,X = gx) from its DL challenger. B directly sets pp := (G, q, g,M,R,Y)

with M := Zq,R := Zq,Y := G. For i ∈ [μ], B samples bi
$←− Zq, and sets

hki := X · gbi . In this way, B implicitly sets tdi := xi := x + bi. Then B sends
pp and {hki}i∈[μ] to A. Finally A outputs (i∗,m1, r1,m2, r2). If m1 �= m2, B
outputs (r2 − r1)/(m1 − m2) − bi∗ as its answer to the DL problem.

If A successfully finds a collision, then gxi∗ m1+r1 = gxi∗ m2+r2 and (m1, r1) �=
(m2, r2). We must have m1 �= m2 (otherwise r1 = r2) and xi∗ = (r2 − r1)/(m1 −
m2). As a result, x := xi∗ − bi∗ is the correct answer to the DL problem. 	


3.2 Chameleon Hash Family Based on the RSA Assumption

Let RSAGen be an algorithm that outputs an RSA tuple (N, p, q, e, d), where p, q
are safe primes of bit-length λ/2, N = pq and ed ≡ 1 mod ϕ(N). In formula,
(N, p, q, e, d) ← RSAGen(1λ). Here we limit that e is a prime and e > 2L(λ),
where L(·) is the challenge length function associated with RSAGen.

Definition 4 (The RSA Assumption). The RSA assumption states that for
any PPT adversary A, AdvrsaN,e,A(λ) is negligible, where

AdvrsaN,e,A(λ) := Pr[(N, p, q, e, d) ← RSAGen(1λ);x $←− Z
∗
N : A(N, e, xe) = x].

The construction of CHFrsa [1,4] is shown in Fig. 3.
1 Here we compute the hash value with h = Xm · gr instead of h = gm ·Xr as in [11].
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Setup(1λ):
(N, p, q, e, d) ← RSAGen(1λ); � := L(λ)
Return pp := (N, e, M := {0, 1}�, R := Z

∗
N , Y := Z

∗
N )

KGen(pp):

x
$←− Z

∗
N ; X := xe mod N

Return (hk := X, td := x)

Eval(hk, m, r):
h := hkm · re mod N
Return h

TdColl(td, m1, r1, m2):
r2 := tdm1−m2 · r1 mod N
Return r2

Fig. 3. Construction of CHFrsa.

Theorem 2. CHFrsa has tight strong security in the multi-user setting based on
the RSA assumption. More precisely, for any PPT adversary A with advantage
Advs-mu-cr

CHFrsa,μ,A(λ), there exists a PPT algorithm B such that Advs-mu-cr
CHFrsa,μ,A(λ) ≤

AdvrsaN,e,B(λ).

Proof. Recall that Z
∗
N is a multiplicative group. For any fixed td = x and

m1,m2 ∈ {0, 1}�, if r1 is uniform over Z∗
N , then r2 := xm1−m2 ·r1 is also uniform.

This gives the RTC property of CHFrsa.
Next we construct a PPT algorithm B and prove Advs-mu-cr

CHFrsa,μ,A(λ) ≤
AdvrsaN,e,B(λ). B gets (N, e) and X = xe from its challenger, where x

$←− Z
∗
N .

The public parameter is set as pp := (N, e,M,R,Y) with M := {0, 1}�,R :=

Z
∗
N ,Y := Z

∗
N . For i ∈ [μ], B samples bi

$←− Z
∗
N and sets hki := Xi = X · be

i . In
this way, B implicitly sets tdi := xi := x · bi. Then B sends pp and {hki}i∈[μ] to
A. Finally A outputs (i∗,m1, r1,m2, r2), and B outputs (r2/r1)β · Xα

i∗ · b−1
i∗ as

its answer to the RSA problem, where αe + β(m1 − m2) = 1.
Suppose A successfully finds a collision. That is, HXi∗ (m1, r1) =

HXi∗ (m2, r2), so (xm1
i∗ · r1)e = (xm2

i∗ · r2)e. Note that fe : x �→ xe is a bijec-
tion over Z

∗
N . Hence xm1

i∗ · r1 = xm2
i∗ · r2, equivalently xm1−m2

i∗ = r2/r1. We must
have m1 �= m2, otherwise r1 = r2 and A fails. Let α, β be two integers s.t.
αe + β(m1 − m2) = 1 (α and β can always be found since e is a prime and
e > 2L(λ)), then xi∗ = (r2/r1)β · Xα

i∗ . And x := xi∗/bi∗ is the correct answer to
the RSA problem. 	


3.3 Chameleon Hash Family Based on the Factoring Assumption

Let FacGen be an algorithm that outputs (N, p, q), where p, q are safe primes of
bit-length λ/2 and N = pq. In formula, (N, p, q) ← FacGen(1λ).

Definition 5 (The Factoring Assumption). The factoring assumption
states that for any PPT adversary A, AdvfacN,A(λ) is negligible, where

AdvfacN,A(λ) := Pr[(N, p, q) ← FacGen(1λ) : A(N) = p ∨ A(N) = q].

Define Z
+
N := Z

∗
N ∩ {1, ..., N/2}. For m ∈ {0, 1}�, denote by mk the k-th bit

of m. The construction of CHFfac [4] is shown in Fig. 4.
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Setup(1λ):
(N, p, q) ← FacGen(1λ); � := poly(λ)
Return pp := (N, M := {0, 1}�, R := Z

+
N , Y := QRN )

KGen(pp):
For k ∈ [�]:

sk
$←− Z

∗
N ; uk := s2k mod N

Return (hk := (u1, ..., u�), td := (s1, ..., s�))

Eval(hk, m, r):
Parse hk = (u1, ..., u�)
Return h :=

∏�
k=1 u

mk
k · r2 mod N

TdColl(td, m1, r1, m2):
Parse td = (s1, ..., s�)
r2 :=

∏�
k=1 s

m1,k−m2,k
k · r1

Return r2 := min{r2, N − r2}

Fig. 4. Construction of CHFfac.

Theorem 3. CHFfac has tight strong security in the multi-user setting based
on the factoring assumption. More precisely, for any PPT adversary A
with advantage Advs-mu-cr

CHFfac,μ,A(λ), there exists a PPT algorithm B such that
Advs-mu-cr

CHFfac,μ,A(λ) ≤ 2AdvfacN,B(λ).

Proof. For the proof of RTC property, consider fixed values of td = (s1, ..., s�),
m1,m2 ∈ {0, 1}�. We have r2 := min{τ ·r1, N−τ ·r1}, where τ =

∏�
k=1 s

m1,k−m2,k
k

is some fixed value in Z
∗
N . For r1, r

′
1 ∈ Z

+
N with r1 �= r′

1, neither τ · r1 ≡ τ · r′
1

nor τ(r1 + r′
1) ≡ 0 mod N , i.e., no two distinct inputs correspond to the same

output. Hence the function fτ (r1) := min{τ ·r1, N −τ ·r1} is an injection (hence
bijection) over Z

+
N , and r2 := fτ (r1) is uniformly random as long as r1 is.

Next we construct a PPT algorithm B and prove Advs-mu-cr
CHFfac,μ,A(λ) ≤

2AdvfacN,B(λ). B gets N from its own challenger. The public parameter is set as
pp := (N,M,R,Y) with M := {0, 1}�,R := Z

+
N ,Y := QRN . For i ∈ [μ], k ∈ [�],

B samples si,k
$←− Z

∗
N and sets ui,k := s2i,k. In this way, hki = (ui,1, ..., ui,�) and

tdi = (si,1, ..., si,�). Then B sends pp and {hki}i∈[μ] to A.
If A finds a collision with output (i∗,m1, r1,m2, r2), then

�∏
k=1

(ui∗,k)m1,k · r21 =
�∏

k=1

(ui∗,k)m2,k · r22. (1)

Case 1. m1 = m2 but r1 �= r2.
In this case, Eq. (1) implies r21 ≡ r22 mod N , i.e., (r1 + r2)(r1 − r2) ≡ 0
mod N . Note that r1, r2 ∈ Z

+
N and r1 �= r2. Thus, B can always find a factor

of N by outputting gcd(r1 + r2, N).
Case 2. m1 �= m2. Then there must exist z ∈ [�] such that m1,z �= m2,z. We

can rewrite Eq. (1) as

(ui∗,z)m1,z−m2,z =
∏
k �=z

(ui∗,k)m2,k−m1,k · (r2/r1)2. (2)

⇐⇒
(
(si∗,z)m1,z−m2,z

)2 =

⎛
⎝∏

k �=z

(si∗,k)m2,k−m1,k · (r2/r1)

⎞
⎠

2

. (3)
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We denote the right part of Eq.(3) by Δ2. Note that m1,z − m2,z = ±1.
– If m1,z − m2,z = 1, then Eq. (3) is simplified to (si∗,z)2 = Δ2, and B

outputs gcd(si∗,z + Δ,N).
– If m1,z − m2,z = −1, then Eq. (3) is simplified to (s−1

i∗,z)
2 = Δ2, and B

outputs gcd(s−1
i∗,z + Δ,N).

Recall that si∗,z is chosen randomly in Z
∗
N , and the only information A gets

is ui∗,z = (si∗,z)2. Thus, si∗,z /∈ {Δ,N − Δ} with probability 1/2, or s−1
i∗,z /∈

{Δ,N −Δ} with probability 1/2. In either case, B successfully factors N with
probability 1/2. 	


Remark 1. CHFdl, CHFrsa and CHFfac are originally proposed in [1,4,11], but
their collision resistance security are proved in the single user setting.

Remark 2. For a chameleon hash family H, we can extend the message space
from M to bit strings of any polynomial length by applying a traditional collision
resistant hash function to the message first [11].

4 Generic Transform for Signatures from MU-EUF-CMA
Security to S-MU-EUF-CMA Security

Due to space limitation, we assume familiarity with the syntax and standard
security notions for signature (SIG) schemes, and leave them in the full version.

In [14], Steinfeld, Pieprzyk and Wang proposed a generic transform (the
GBSW transform), which can invert an EUF-CMA secure SIG to a S-EUF-
CMA secure SIG. The GBSW transform is (security) tightness preserving, but
limited only in single user setting. By using our strongly secure CHFs, we are
able to extend the GBSW transform to the multi-user setting, which strengthens
SIG from weak unforgeability (MU-EUF-CMA) to strong unforgeability (S-MU-
EUF-CMA) and enjoys a tight security reduction.

The GBSW Transform [14]. Let S = (S.Setup,S.KGen,S.Sign,S.Ver) be a SIG
with EUF-CMA security, and F, H be two CHFs with strong security (i.e., S-CR
security and RTC property). Define SGBSW as follows.

1. SGBSW.Setup(1λ). Invoke ppS ← S.Setup(1λ), ppF ← F.Setup(1λ), ppH ←
H.Setup(1λ), and return ppSGBSW

:= (ppS, ppF, ppH).
2. SGBSW.KGen(ppSGBSW

). Invoke (vk, sk) ← S.KGen(ppS), (hkF, tdF) ←
F.KGen(ppF), (hkH, tdH) ← H.KGen(ppH), compute vkSGBSW

:= (vk, hkF, hkH),
skSGBSW

:= (sk, tdH, hkF, hkH), and return (vkSGBSW
, skSGBSW

).
3. SGBSW.Sign(skSGBSW

,m).
(a) Choose random r′, s;
(b) Choose random m′, σ′, and compute h := HhkH

(m′||σ′, r′);
(c) Compute m̄ := FhkF

(h, s) and σ ← S.Sign(sk, m̄);
(d) Invoke r ← H.TdColl(tdH,m′||σ′, r′,m||σ), return σSGBSW

:= (σ, r, s).
4. SGBSW.Ver(vkSGBSW

,m, σSGBSW
).

(a) Compute h := HhkH
(m||σ, r), m̄ := FhkF

(h, s);
(b) Return S.Ver(vk, m̄, σ).
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The Extended GBSW Transform. The transform is similar to the GBSW
transform, except that the building block S is replaced with a SIG with MU-
EUF-CMA security2, and F,H are replaced with CHFs with S-MU-CR security
and RTC property.

Theorem 4. If F and H are strongly secure in the multi-user setting, S is MU-
EUF-CMA secure, then the extended GBSW transform results in a S-MU-EUF-
CMA secure signature scheme SGBSW. More precisely, for any PPT adversary
A with advantage Advs-mu-euf-cma

SGBSW,μ,A (λ), there exist PPT adversaries BS,BF and BH,
such that Advs-mu-euf-cma

SGBSW,μ,A (λ) ≤ Advmu-euf-cma
S,μ,BS

(λ) + Advs-mu-cr
F,μ,BF

(λ) + Advs-mu-cr
H,μ,BH

(λ).

Note that the underlying building blocks are tightly secure. On the one hand,
the reduction algorithm can answer signing queries with the help of trapdoors
of H&F and signing keys of S. On the other hand, once the adversary generates
a valid forgery message-signature pair under i∗, then either it forges a signature
for a new message under i∗, or it finds a collision of H or F w.r.t. hkH or hkF.
That is why our extended GBSW transform can achieve tight security in the
multi-user setting. We refer the reader to the full version for the details.

Extension to SIG Against Adaptive Corruptions. The adversary may
corrupt some users and get their signing keys in some applications, and the
security is formalized by the notion MU-EUF-CMACorr security [3]. Similarly,
we also have S-MU-EUF-CMACorr security for SIG. Note that we have S-MU-
EUF-CMA secure SIGs, then we can use the “double-key” mechanism [3,9] to
cope with corruptions and get a S-MU-EUF-CMACorr secure SIG (as shown in
Fig. 1). See the full version for details.
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