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Preface

Purpose

Our objective is to provide a postcalculus introduction to the discipline of
statistics that

• Has mathematical integrity and contains some underlying theory.
• Shows students a broad range of applications involving real data.
• Is up to date in its selection of topics.
• Illustrates the importance of statistical software.
• Is accessible to a wide audience, including mathematics and statistics

majors (yes, there are quite a few of the latter these days, thanks to the
proliferation of “big data”), prospective engineers and scientists, and
those business and social science majors interested in the quantitative
aspects of their disciplines.

A number of currently available mathematical statistics texts are heavily
oriented toward a rigorous mathematical development of probability and
statistics, with much emphasis on theorems, proofs, and derivations. The
focus is more on mathematics than on statistical practice. Even when applied
material is included, the scenarios are often contrived (many examples and
exercises involving dice, coins, cards, widgets, or a comparison of treatment
A to treatment B).

Our exposition is an attempt to provide a reasonable balance between
mathematical rigor and statistical practice. We believe that showing students
the applicability of statistics to real-world problems is extremely effective in
inspiring them to pursue further coursework and even career opportunities in
statistics. Opportunities for exposure to mathematical foundations will follow
in due course. In our view, it is more important for students coming out of
this course to be able to carry out and interpret the results of a two-sample
t test or simple regression analysis, and appreciate how these are based on
underlying theory, than to manipulate joint moment generating functions or
discourse on various modes of convergence.
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Content and Mathematical Level

The book certainly does include core material in probability (Chap. 2),
random variables and their distributions (Chaps. 3–5), and sampling theory
(Chap. 6). But our desire to balance theory with application/data analysis is
reflected in the way the book starts out, with a chapter on descriptive and
exploratory statistical techniques rather than an immediate foray into the
axioms of probability and their consequences. After the distributional
infrastructure is in place, the remaining statistical chapters cover the basics of
inference. In addition to introducing core ideas from estimation and
hypothesis testing (Chaps. 7–10), there is emphasis on checking assumptions
and examining the data prior to formal analysis. Modern topics such as
bootstrapping, permutation tests, residual analysis, and logistic regression are
included. Our treatment of regression, analysis of variance, and categorical
data analysis (Chaps. 11–13) is definitely more oriented to dealing with real
data than with theoretical properties of models. We also show many exam-
ples of output from commonly used statistical software packages, something
noticeably absent in most other books pitched at this audience and level.

The challenge for students at this level should lie with mastery of statis-
tical concepts as well as with mathematical wizardry. Consequently, the
mathematical prerequisites and demands are reasonably modest. Mathemat-
ical sophistication and quantitative reasoning ability are certainly important,
especially as they facilitate dealing with symbolic notation and manipulation.
Students with a solid grounding in univariate calculus and some exposure to
multivariate calculus should feel comfortable with what we are asking
of them. The few sections where matrix algebra appears (transformations in
Chap. 5 and the matrix approach to regression in the last section of Chap. 12)
can easily be deemphasized or skipped entirely. Proofs and derivations are
included where appropriate, but we think it likely that obtaining a conceptual
understanding of the statistical enterprise will be the major challenge for
readers.

Recommended Coverage

There should be more than enough material in our book for a year-long
course. Those wanting to emphasize some of the more theoretical aspects
of the subject (e.g., moment generating functions, conditional expectation,
transformations, order statistics, sufficiency) should plan to spend corre-
spondingly less time on inferential methodology in the latter part of the book.
We have opted not to mark certain sections as optional, preferring instead to
rely on the experience and tastes of individual instructors in deciding what
should be presented. We would also like to think that students could be asked
to read an occasional subsection or even section on their own and then work
exercises to demonstrate understanding, so that not everything would need to
be presented in class. Remember that there is never enough time in a course
of any duration to teach students all that we’d like them to know!
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Revisions for This Edition

• Many of the examples have been updated and/or replaced, especially
those containing real data or references to applications published in
various journals. The same is true of the roughly 1300 exercises in the
book.

• The exposition has been refined and polished throughout to improve
accessibility and eliminate unnecessary material and verbiage. For
example, the categorical data chapter (Chap. 13) has been streamlined by
discarding some of the methodology involving tests when parameters
must be estimated.

• A section on simulation has been added to each of the chapters on
probability, discrete distributions, and continuous distributions.

• The material in the chapter on joint distributions (Chap. 5) has been
reorganized. There is now a separate section on linear combinations and
their properties, and also one on the bivariate normal distribution.

• The material in the chapter on statistics and their sampling distributions
(Chap. 6) has also been reorganized. In particular, there is now a separate
section on the chi-squared, t, and F distributions prior to the one con-
taining derivations of sampling distributions of statistics based on a
normal random sample.

• The chapters on one-sample confidence intervals (Chap. 8) and hypoth-
esis tests (Chap. 9) place more emphasis on t procedures and less on
large-sample z procedures. This is also true of inferences based on two
samples in Chap. 10.

• Chap. 9 now contains a subsection on using the bootstrap to test
hypotheses.

• The material on multiple regression models containing quadratic, inter-
action, and indicator variables has been separated into its own section.
And there is now a separate expanded section on logistic regression.

• The nonparametric and Bayesian material that previously comprised a
single chapter has been separated into two chapters, and material has been
added to each. For example, there is now a section on nonparametric
inferences about population quantiles.
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A Final Thought

It is our hope that students completing a course taught from this book will
feel as passionate about the subject of statistics as we still do after so many
years in the profession. Only teachers can really appreciate how gratifying it
is to hear from a student after he or she has completed a course that the
experience had a positive impact and maybe even affected a career choice.

Los Osos, CA, USA Jay L. Devore
Normal, IL, USA Kenneth N. Berk
San Luis Obispo, CA, USA Matthew A. Carlton
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1Overview and Descriptive Statistics

Introduction
Statistical concepts and methods are not only useful but indeed often indispensable in understanding
the world around us. They provide ways of gaining new insights into the behavior of many phe-
nomena that you will encounter in your chosen field of specialization.

The discipline of statistics teaches us how to make intelligent judgments and informed decisions in
the presence of uncertainty and variation. Without uncertainty or variation, there would be little need
for statistical methods or statisticians. If the yield of a crop was the same in every field, if all
individuals reacted the same way to a drug, if everyone gave the same response to an opinion survey,
and so on, then a single observation would reveal all desired information.

Section 1.1 establishes some key statistics vocabulary and gives a broad overview of how sta-
tistical studies are conducted. The rest of this chapter is dedicated to graphical and numerical methods
for summarizing data.

1.1 The Language of Statistics

We are constantly exposed to collections of facts, or data, both in our professional capacities and in
everyday activities. The discipline of statistics provides methods for organizing and summarizing data
and for drawing conclusions based on information contained in the data.

An investigation will typically focus on a well-defined collection of objects constituting a pop-
ulation of interest. In one study, the population might consist of all multivitamin capsules produced
by a certain manufacturer in a particular week. Another investigation might involve the population of
all individuals who received a B.S. in statistics or mathematics during the most recent academic year.
When desired information is available for all objects in the population, we have what is called a
census. Constraints on time, money, and other scarce resources usually make a census impractical or
infeasible. Instead, a subset of the population—a sample—is selected in some prescribed manner.
Thus we might obtain a sample of pills from a particular production run as a basis for investigating
whether pills are conforming to manufacturing specifications, or we might select a sample of last
year’s graduates to obtain feedback about the quality of the curriculum.

We are usually interested only in certain characteristics of the objects in a population: the amount
of vitamin C in the pill, the sex of a student, the age of a vehicle, and so on. A characteristic may be
categorical, such as sex or college major, or it may be quantitative in nature. In the former case, the
value of the characteristic is a category (e.g., female or economics), whereas in the latter case, the
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to Springer Nature Switzerland AG 2021
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value is a number (e.g., age = 5.1 years or vitamin C content = 65 mg). A variable is any charac-
teristic whose value may change from one object to another in the population. We shall initially
denote variables by lowercase letters from the end of our alphabet. Examples include

x = brand of computer owned by a student
y = number of items purchased by a customer at a grocery store
z = braking distance of an automobile under specified conditions

Data comes from making observations either on a single variable or simultaneously on two or
more variables. A univariate data set consists of observations on a single variable. For example, we
might consider the type of computer, laptop (L) or desktop (D), for ten recent purchases, resulting in
the categorical data set

D L L L D L L D L L

The following sample of lifetimes (hours) of cell phone batteries under continuous use is a quanti-
tative univariate data set:

10:6 10:1 11:2 9:0 10:8 9:5 8:8 11:5

We have bivariate data when observations are made on each of two variables. Our data set might
consist of a (height, weight) pair for each basketball player on a team, with the first observation as
(72, 168), the second as (75, 212), and so on. If a kinesiologist determines the values of x = recu-
peration time from an injury and y = type of injury, the resulting data set is bivariate with one variable
quantitative and the other categorical. Multivariate data arises when observations are made on more
than two variables. For example, a research physician might determine the systolic blood pressure,
diastolic blood pressure, and serum cholesterol level for each patient participating in a study. Each
observation would be a triple of numbers, such as (120, 80, 146). In many multivariate data sets, some
variables are quantitative and others are categorical. Thus the annual automobile issue of Consumer
Reports gives values of such variables as type of vehicle (small, sporty, compact, midsize, large), city
fuel efficiency (mpg), highway fuel efficiency (mpg), drive train type (rear wheel, front wheel, four
wheel), and so on.

Branches of Statistics
An investigator who has collected data may wish simply to summarize and describe important
features of the data. This entails using methods from descriptive statistics. Some of these methods
are graphical in nature; the constructions of histograms, boxplots, and scatterplots are primary
examples. Other descriptive methods involve calculation of numerical summary measures, such as
means, standard deviations, and correlation coefficients. The wide availability of statistical computer
software packages has made these tasks much easier to carry out than they used to be. Computers are
much more efficient than human beings at calculation and the creation of pictures (once they have
received appropriate instructions from the user!). This means that the investigator doesn’t have to
expend much effort on “grunt work” and will have more time to study the data and extract important
messages. Throughout this book, we will present output from various packages such as R, SAS, and
Minitab.

2 1 Overview and Descriptive Statistics



Example 1.1 Charity is a big business in the USA. The website charitynavigator.com gives infor-
mation on roughly 5500 charitable organizations, and there are many smaller charities that fly below
the navigator’s radar. Some charities operate very efficiently, with fundraising and administrative
expenses that are only a small percentage of total expenses, whereas others spend a high percentage of
what they take in on such activities. Here is data on fundraising expenses, as a percentage of total
expenditures, for a random sample of 60 charities:

6.1 12.6 34.7 1.6 18.8 2.2 3.0 2.2 5.6 3.8
2.2 3.1 1.3 1.1 14.1 4.0 21.0 6.1 1.3 20.4
7.5 3.9 10.1 8.1 19.5 5.2 12.0 15.8 10.4 5.2
6.4 10.8 83.1 3.6 6.2 6.3 16.3 12.7 1.3 0.8
8.8 5.1 3.7 26.3 6.0 48.0 8.2 11.7 7.2 3.9
15.3 16.6 8.8 12.0 4.7 14.7 6.4 17.0 2.5 16.2

Without any organization, it is difficult to get a sense of the data’s most prominent features: what a
typical (i.e., representative) value might be, whether values are highly concentrated about a typical
value or quite dispersed, whether there are any gaps in the data, what fraction of the values are less
than 20%, and so on. Figure 1.1 shows a histogram. In Section 1.2 we will discuss construction and
interpretation of this graph. For the moment, we hope you see how it describes the way the per-
centages are distributed over the range of possible values from 0 to 100. Of the 60 charities, 36 use
less than 10% on fundraising, and 18 use between 10% and 20%. Thus 54 out of the 60 charities in
the sample, or 90%, spend less than 20% of money collected on fundraising. How much is too much?
There is a delicate balance: most charities must spend money to raise money, but then money spent on
fundraising is not available to help beneficiaries of the charity. Perhaps each individual giver should
draw his or her own line in the sand.
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Figure 1.1 A histogram for the charity fundraising data of Example 1.1 ■
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Having obtained a sample from a population, an investigator would frequently like to use sample
information to draw some type of conclusion (make an inference of some sort) about the population.
That is, the sample is typically a means to an end rather than an end in itself. Techniques for
generalizing from a sample to a population in a precise and objective way are gathered within the
branch of our discipline called inferential statistics.

Example 1.2 The authors of the article “Fire Safety of Glued-Laminated Timber Beams in Bending”
(J. of Structural Engr. 2017) conducted an experiment to test the fire resistance properties of wood
pieces connected at corners by sawtooth-shaped “fingers” along with various types of commercial
adhesive. The beams were all exposed to the same fire and load conditions. The accompanying data
on fire resistance time (min) for a sample of timber beams bonded with polyurethane adhesive
appeared in the article:

47:0 53:0 52:5 52:0 47:5 56:5 45:0 43:5 48:0 48:0
41:0 34:0 36:5 49:0 47:5 34:0 34:0 36:0 42:0

Suppose we want an estimate of the true average fire resistance time under these conditions. (Con-
ceptualizing a population of all such beams with polyurethane bonding under these experimental
conditions, we are trying to estimate the population mean.) It can be shown that, with a high degree of
confidence, the population mean fire resistance time is between 41.2 and 48.0 min; this is called a
confidence interval or an interval estimate. On the other hand, this data can also be used to predict the
fire resistance time of a single timber beam under these conditions. With a high degree of certainty,
the fire resistance time of a single such beam will exceed 29.4 min; the number 29.4 is called a lower
prediction bound. ■

Probability Versus Statistics
The main focus of this book is on presenting and illustrating methods of inferential statistics that are
useful in research. The most important types of inferential procedures—point estimation, hypothesis
testing, and estimation by confidence intervals—are introduced in Chapters 7–9 and then used in
more complicated settings in Chapters 10–15. The remainder of this chapter presents methods from
descriptive statistics that are most used in the development of inference.

Chapters 2–6 present material from the discipline of probability. This material ultimately forms a
bridge between the descriptive and inferential techniques. Mastery of probability leads to a better
understanding of how inferential procedures are developed and used, how statistical conclusions can
be translated into everyday language and interpreted, and when and where pitfalls can occur in
applying the methods. Probability and statistics both deal with questions involving populations and
samples, but do so in an “inverse manner” to each other.

In probability, properties of the population under study are assumed known (e.g., in a numerical
population, some specified distribution of the population values may be assumed), and questions
regarding a sample taken from the population are posed and answered. In statistics, characteristics of
a sample are available to the experimenter, and this information enables the experimenter to draw
conclusions about the population. The relationship between the two disciplines can be summarized by
saying that probability reasons from the population to the sample (deductive reasoning), whereas
inferential statistics reasons from the sample to the population (inductive reasoning). This is illus-
trated in Figure 1.2.
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Before we can understand what a particular sample can tell us about the population, we should first
understand the uncertainty associated with taking a sample from a given population. This is why we
study probability before statistics.

As an example of the contrasting focus of probability and inferential statistics, consider drivers’
use of seatbelts in automobiles. According to the article “Somehow, Way Too Many Americans Still
Aren’t Wearing Seatbelts” (www.wired.com, Sept. 2016), data collected by observers from the
National Highway Traffic Safety Administration indicates that 88.5% of drivers and front seat pas-
sengers buckle up. But this percentage varies considerably by location. In the 34 states in which a
driver can be pulled over and cited for nonusage, 91.2% wore their seatbelts in 2015. By contrast, in
the 15 states where a citation can be given only if a driver is pulled over for another infraction and the
one state where usage is not mandatory (New Hampshire), usage drops to 78.6%.

In a probability context, we might assume that 85% of all drivers in a particular metropolitan area
regularly use seatbelts (an assumption about the population) and then ask, “How likely is it that a
sample of 100 drivers will include at most 70 who regularly use their seatbelt?” or “How many
drivers in a sample of size 100 can we expect to regularly use their seatbelt?” On the other hand, in
inferential statistics, sample information is available, e.g., a sample of 100 drivers from this area
reveals that 80 regularly use their seatbelts. We might then ask, “Does this provide strong evidence
for concluding that less than 90% of all drivers in this area are regular seatbelt users?” In this latter
scenario, sample information will be employed to answer a question about the structure of the entire
population from which the sample was selected.

Next, consider a study involving a sample of 25 patients to investigate the efficacy of a new
minimally invasive method for rotator cuff surgery. The amount of time that each individual sub-
sequently spends in physical therapy is then determined. The resulting sample of 25 PT times is from
a population that does not actually exist. Instead it is convenient to think of the population as
consisting of all possible times that might be observed under similar experimental conditions. Such a
population is referred to as a conceptual or hypothetical population. There are a number of situations
in which we fit questions into the framework of inferential statistics by conceptualizing a population.

Collecting Data
Statistics deals not only with the organization and analysis of data once it has been collected but also
with the development of techniques for collecting that data. If data is not properly collected, an
investigator might not be able to answer the questions under consideration with a reasonable degree
of confidence. One common problem is that the target population—the one about which conclusions
are to be drawn—may be different from the population actually sampled. In that case, an investigator
must be very cautious about generalizing from the circumstances under which data has been gathered.

For example, advertisers would like various kinds of information about the television-viewing
habits of potential customers. The most systematic information of this sort comes from placing
monitoring devices in a small number of homes across the USA. It has been conjectured that
placement of such devices in and of itself alters viewing behavior, so that characteristics of the sample
may be different from those of the target population. As another example, a sample of five engines

Population

Probability

Inferential

statistics

Sample

Figure 1.2 The relationship between probability and inferential statistics
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with a new design may be experimentally manufactured and tested to investigate efficiency. These
five could be viewed as a sample from the conceptual population of all prototypes that could be
manufactured under similar conditions, but not necessarily as representative of all units manufactured
once regular production gets under way. Methods for using sample information to draw conclusions
about future production units may be problematic. Similarly, a new drug may be tried on patients who
arrive at a clinic (i.e., a voluntary sample), but there may be some question about how typical these
patients are. They may not be representative of patients elsewhere or patients at the same clinic next
year.

When data collection entails selecting individuals or objects from a list, the simplest method for
ensuring a representative selection is to take a simple random sample. This is one for which any
particular subset of the specified size (e.g., a sample of size 100) has the same chance of being
selected. For example, if the list consists of 1,000,000 serial numbers, the numbers 1, 2, …, up to
1,000,000 could be placed on identical slips of paper. After placing these slips in a box and thor-
oughly mixing, slips could be drawn one by one until the requisite sample size has been obtained.
Alternatively (and much to be preferred), a computer’s random number generator could be employed
to generate 100 distinct numbers between 1 and 1,000,000.

Sometimes alternative sampling methods can be used to make the selection process easier, to
obtain extra information, or to increase the degree of precision in conclusions. One such method,
stratified sampling, entails separating the population units into nonoverlapping groups and taking a
sample from each one. For example, a cell phone manufacturer might want information about
customer satisfaction for units produced during the previous year. If three different models were
manufactured and sold, a separate sample could be selected from each of the three corresponding
strata. This would result in information on all three models and ensure that no one model was over-or
underrepresented in the entire sample.

Frequently a “convenience” sample is obtained by selecting individuals or objects without sys-
tematic randomization. As an example, a collection of bricks may be stacked in such a way that it is
extremely difficult for those in the center to be selected. If the bricks on the top and sides of the stack
were somehow different from the others, the resulting sample data would not be representative of the
population. Often an investigator will assume that such a convenience sample approximates a random
sample, in which case a statistician’s repertoire of inferential methods can be used; however, this is a
judgment call.

Researchers may also collect data by carrying out some sort of designed experiment. This may
involve deciding how to allocate several different treatments (such as fertilizers or drugs) to various
experimental units (plots of land or patients). Alternatively, an investigator may systematically vary
the levels or categories of certain factors (e.g., amount of fertilizer or dose of a drug) and observe the
effect on some response (such as corn yield or blood pressure).

Example 1.3 Neonicotinoid insecticides (NNIs) are popular in agricultural use, especially for
growing corn, but scientists are increasingly concerned about their effects on bee populations. An
article in Science (June 30, 2017) described the results of a two-year study in which scientists
randomly assigned some bee colonies to be exposed to “field-realistic” levels and durations of NNIs,
while other colonies did not have NNI exposure. The researchers found that bees in the colonies
exposed to NNIs had a 23% reduced life span, on average, compared to those in nonexposed colonies.
One possible explanation for this result is chance variation—i.e., that NNIs really don’t affect bee
colony health and the observed difference is just “random noise,” in the same way that tossing two
identical coins 10 times each will usually produce different numbers of heads. However, in this case,
inferential methods discussed in this textbook (and in the original article) suggest that chance
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variation by itself cannot adequately explain the magnitude of the observed difference, indicating that
NNIs may very well be responsible for the reduced average life span. ■

Exercises: Section 1.1 (1–13)

1. Give one possible sample of size 4 from each
of the following populations:

a. All daily newspapers published in the
USA

b. All companies listed on the New York
Stock Exchange

c. All students at your college or university
d. All grade point averages of students at

your college or university

2. For each of the following hypothetical pop-
ulations, give a plausible sample of size 4:

a. All distances that might result when you
throw a football

b. Page lengths of books published 5 years
from now

c. All possible earthquake strength mea-
surements (Richter scale) that might be
recorded in California during the next
year

d. All possible yields (in grams) from a
certain chemical reaction carried out in a
laboratory

3. Consider the population consisting of all cell
phones of a certain brand and model, and
focus on whether a cell phone needs service
while under warranty.

a. Pose several probability questions based
on selecting a sample of 100 such cell
phones.

b. What inferential statistics question might
be answered by determining the number
of such cell phones in a sample of size
100 that need warranty service?

4. Give three different examples of concrete
populations and three different examples of
hypothetical populations. For one each of
your concrete and hypothetical populations,
give an example of a probability question and
an example of an inferential statistics
question.

5. The authors of the article “From Dark to
Light: Skin Color and Wages among African
Americans” (J. of Human Resources 2007:
701–738) investigated the association
between darkness of skin and hourly wages.
For a sample of 948 African Americans, skin
color was classified as dark black, medium
black, light black, or white.

a. What variables were recorded for each
member of the sample?

b. Classify each of these variables as quan-
titative or categorical.

6. Consumer Reports compared the actual
polyunsaturated fat percentages for different
brands of “low-fat” margarine. Twenty-six
containers of margarine were purchased; for
each one, the brand was noted and the per-
cent of polyunsaturated fat was determined.

a. What variables were recorded for each
margarine container in the sample?

b. Classify each of these variables as quan-
titative or categorical.

c. Give some examples of inferential statis-
tics questions that Consumer Reports
might try to answer with the data from
these 26 margarine containers.

d. “The average polyunsaturated fat content
for the five Parkay margarine containers
in the sample was 12.8%.” Is the pre-
ceding sentence an example of descriptive
statistics or inferential statistics?

7. The article “Is There a Market for Functional
Wines? Consumer Preferences and Willing-
ness to Pay for Resveratrol-Enriched Red
Wine” (Food Quality and Preference 2008:
360–371) included the following information
for a variety of Spanish wines:

a. Region of origin
b. Price of the wine, in euros
c. Style of wine (young or crianza)
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d. Production method (conventional or
organic)

e. Type of grapes used (regular or
resveratrol-enhanced)

Classify each of these variables as quanti-
tative or categorical.

8. The authors of the article cited in the pre-
vious exercise surveyed 300 wine con-
sumers, each of whom tasted two different
wines. For each individual in the study, the
following information was recorded:

a. Gender
b. Age, in years
c. Monthly income, in euros
d. Educational level (primary, secondary,

or university)
e. Willingness to pay (WTP) for the first

wine tasted, in euros
f. WTP for the second wine tasted, in

euros.
(WTP is a very common measure for con-
sumer products. Researchers ask, “How
much would you be willing to pay for this
item?”) Classify each of the variables (a)–
(f) as quantitative or categorical.

9. Many universities and colleges have insti-
tuted supplemental instruction (SI) programs,
in which a student facilitator meets regularly
with a small group of students enrolled in the
course to promote discussion of course
material and enhance subject mastery. Sup-
pose that students in a large statistics course
(what else?) are randomly divided into a
control group that will not participate in SI
and a treatment group that will participate. At
the end of the term, each student’s total score
in the course is determined.

a. Are the scores from the SI group a
sample from an existing population? If
so, what is it? If not, what is the relevant
conceptual population?

b. What do you think is the advantage of
randomly dividing the students into the
two groups rather than letting each student
choose which group to join?

c. Why didn’t the investigators put all
students in the treatment group?

10. The California State University (CSU) sys-
tem consists of 23 campuses, from San
Diego State in the south to Humboldt State
near the Oregon border. A CSU adminis-
trator wishes to make an inference about the
average distance between the hometowns
of students and their campuses. Describe
and discuss several different sampling
methods that might be employed.

11. A certain city divides naturally into ten
district neighborhoods. A real estate
appraiser would like to develop an equation
to predict appraised value from character-
istics such as age, size, number of bath-
rooms, distance to the nearest school, and
so on. How might she select a sample of
single-family homes that could be used as a
basis for this analysis?

12. The amount of flow through a solenoid
valve in an automobile’s pollution control
system is an important characteristic. An
experiment was carried out to study how
flow rate depended on three factors: arma-
ture length, spring load, and bobbin depth.
Two different levels (low and high) of each
factor were chosen, and a single observa-
tion on flow was made for each combina-
tion of levels.

a. The resulting data set consisted of how
many observations?

b. Does this study involve sampling an
existing population or a conceptual
population?

13. In a famous experiment carried out in 1882,
Michelson and Newcomb obtained 66
observations on the time it took for light to
travel between two locations in Washing-
ton, D.C. A few of the measurements
(coded in a certain manner) were 31, 23,
32, 36, 22, 26, 27, and 31.

a. Why are these measurements not
identical?

b. Does this study involve sampling an
existing population or a conceptual
population?
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1.2 Graphical Methods in Descriptive Statistics

There are two general types of methods within descriptive statistics: graphical and numerical sum-
maries. In this section we will discuss the first of these types—representing a data set using visual
techniques. In Sections 1.3 and 1.4, we will develop some numerical summary measures for data sets.
Many visual techniques may already be familiar to you: frequency tables, histograms, pie charts, bar
graphs, scatterplots, and the like. Here we focus on a selected few of these techniques that are most
useful and relevant to probability and inferential statistics.

Notation
Some general notation will make subsequent discussions easier. The number of observations in a
single sample, that is, the sample size, will often be denoted by n. So n = 4 for the sample of
universities {Stanford, Iowa State, Wyoming, Rochester} and also for the sample of pH measure-
ments {6.3, 6.2, 5.9, 6.5}. If two samples are simultaneously under consideration, either m and n or n1
and n2 can be used to denote the numbers of observations. Thus if {3.75, 2.60, 3.20, 3.79} and {2.75,
1.20, 2.45} are GPAs for two sets of friends, respectively, then m = 4 and n = 3.

Given a data set consisting of n observations on some variable x, the individual observations will
be denoted by x1, x2, x3, …, xn. The subscript bears no relation to the magnitude of a particular
observation. Thus x1 will not in general be the smallest observation in the set, nor will xn typically be
the largest. In many applications, x1 will be the first observation gathered by the experimenter, x2 the
second, and so on. The ith observation in the data set will be denoted by xi.

Stem-and-Leaf Displays
Consider a numerical data set x1, x2, …, xn for which each xi consists of at least two digits. A quick
way to obtain an informative visual representation of the data set is to construct a stem-and-leaf
display, or stem plot.

Steps for constructing a stem-and-leaf display
1. Select one or more leading digits for the stem values. The trailing digits become the leaves.
2. List possible stem values in a vertical column.
3. Record the leaf for every observation beside the corresponding stem value.
4. Order the leaves from smallest to largest on each line.
5. Indicate the units for stems and leaves someplace in the display.

If the data set consists of exam scores, each between 0 and 100, the score of 83 would have a stem
of 8 and a leaf of 3. For a data set of automobile fuel efficiencies (mpg), all between 8.1 and 47.8, we
could use the tens digit as the stem, so 32.6 would then have a leaf of 2.6. Usually, a display based on
between 5 and 20 stems is appropriate.

For a simple example, assume a sample of seven test scores: 93, 84, 86, 78, 95, 81, 72. Then the
first-pass stem plot would be

7|82
8|461
9|35
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With the leaves ordered this becomes

7|28 Stem: tens digit
8|146 Leaf: ones digit
9|35

Occasionally stems will be repeated to spread out the stem-and-leaf display. For instance, if the
preceding test scores included dozens of values in the 70s, we could repeat the stem 7 twice, using 7L
for scores in the low 70s (leaves 0, 1, 2, 3, 4) and 7H for scores in the high 70s (leaves 5, 6, 7, 8, 9).

Example 1.4 Job prospects for students majoring in an engineering discipline continue to be very
robust. How much can a new engineering graduate expect to earn? Here are the starting salaries for a
sample of 38 civil engineers from one author’s home institution (Spring 2016), courtesy of the
university’s Graduate Status Report:

58,000 62,000 56,160 67,000 66,560 58,240 60,000 61,000 70,000 61,000
65,000 60,000 61,000 80,000 62,500 75,000 60,000 68,000 57,600 65,000
55,000 63,000 60,000 70,000 68,640 72,000 83,000 50,128 56,000 63,000
55,000 52,000 70,000 80,000 60,320 65,000 70,000 65,000

Figure 1.3 shows a stem-and-leaf display of these 38 starting salaries. Hundreds places and lower
have been truncated; for instance, the lowest salary in the sample was $50,128, which is represented
by 5|0 in the first row.

Typical starting salaries were in the $60,000–$65,000 range, with most graduates starting between
$55,000 and $70,000. A lucky (and/or exceptionally talented!) handful of students earned $80,000 or
more upon graduation. ■

Most graphical displays of quantitative data, including the stem-and-leaf display, convey infor-
mation about the following aspects of the data:

• Identification of a typical or representative value
• Extent of spread about the typical value
• Presence of any gaps in the data
• Extent of symmetry in the distribution of values
• Number and location of peaks
• Presence of any outlying values (i.e. unusally small or large)

5L 02
5H 5566788 Stem: $10,000
6L 000001112233 Leaf: $1000
6H 55556788
7L 00002
7H 5
8L 003

Figure 1.3 Stem-and-leaf display for starting salaries of civil engineering graduates
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Example 1.5 Figure 1.4 presents stem-and-leaf displays for a random sample of lengths of golf
courses (yards) that have been designated by Golf Magazine as among the most challenging in the USA.
Among the sample of 40 courses, the shortest is 6433 yards long, and the longest is 7280 yards. The
lengths appear to be distributed in a roughly uniform fashion over the range of values in the sample.
Notice that a stem choice here of either a single digit (6 or 7) or three digits (643, …, 728) would yield
an uninformative display, the first because of too few stems and the latter because of too many.

Dotplots
A dotplot is an attractive summary of numerical data when the data set is reasonably small or there are
relatively few distinct data values. Each observation is represented by a dot above the corresponding
location on a horizontal measurement scale. When a value occurs more than once, there is a dot for
each occurrence, and these dots are stacked vertically. As with a stem-and-leaf display, a dotplot
gives information about location, spread, extremes, and gaps.

Example 1.6 For decades, The Economist has used its “Big Mac index,” defined for any country as
the average cost of a McDonald’s Big Mac, as a humorous way to compare product costs across
nations and also examine the valuation of the US dollar worldwide. Here are values of the Big Mac
index, converted to US dollars, for 56 countries reported by The Economist on January 1, 2019 (listed
in alphabetical order by country name):

2.00 4.35 2.33 3.18 4.55 4.07 5.08 3.89 3.05 3.73
3.77 3.24 3.81 4.60 2.23 4.64 3.23 3.49 2.55 3.03
2.55 2.34 4.58 3.60 2.75 3.46 4.31 2.20 2.54 2.32
4.19 3.18 5.86 2.73 3.31 3.14 2.67 2.80 3.30 2.29
1.65 3.20 4.28 2.24 4.02 3.18 5.84 6.62 2.24 3.72
2.00 1.94 3.81 5.58 4.31 2.80

Figure 1.5 shows a dotplot of these values. We can see that the average cost of a Big Mac in the
USA, $5.58, is higher than in all but three countries (Sweden, Norway, and Switzerland). A typical
Big Mac index value is around $3.20, but those values vary substantially across the globe. The
distribution extends farther to the right of that typical value than to the left, due to a handful of
comparatively large Big Mac prices in the USA and a few other countries.

64| 33 35 64 70 Stem: Thousands and hundreds digits

65| 06 26 27 83 Leaf: Tens and ones digits

66| 05 14 94
67| 00 13 45 70 70 90 98 
68| 50 70 73 90 
69| 00 04 27 36
70| 05 11 22 40 50 51
71| 05 13 31 65 68 69
72| 09 80 

Stem-and-leaf of yardage N = 40
Leaf Unit = 10
64 3367
65 0228
66 019
67 0147799
68 5779
69 0023
70 012455
71 013666
72 08

a b

Figure 1.4 Stem-and-leaf displays of golf course yardages: (a) two-digit leaves;
(b) display from Minitab with truncated one-digit leaves ■
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How can the Big Mac index be used to assess the strength of the US dollar? As an example, a Big
Mac cost £3.19 in Britain, which converts to $4.07 using the exchange rate at the time the data was
collected. Since that same amount of British currency ought to buy $5.58 worth of American goods
according to the Big Mac index, it appears that the British pound was substantially undervalued at the
time. ■

Histograms
While stem-and-leaf displays and dotplots are useful for smaller data sets, histograms are well-suited
to larger samples or the results of a census.

Consider first data resulting from observations on a “counting variable” x, such as the number of
traffic citations a person received during the last year, or the number of people arriving for service
during a particular period. The frequency of any particular x value is simply the number of times that
value occurs in the data set. The relative frequency of a value is the fraction or proportion of times
the value occurs:

relative frequency of a value ¼ number of times the value occurs
number of observations in the data set

Suppose, for example, that our data set consists of 200 observations on x = the number of major
defects in a new car of a certain type. If 70 of these x values are 1, then the frequency of the value 1 is
(obviously) 70, while the relative frequency of the value 1 is 70/200 = .35. Multiplying a relative
frequency by 100 gives a percentage; in the defect example, 35% of the cars in the sample had just
one major defect. The relative frequencies, or percentages, are usually of more interest than the
frequencies themselves. In theory, the relative frequencies should sum to 1, but in practice the sum
may differ slightly from 1 because of rounding. A frequency distribution is a tabulation of the
frequencies and/or relative frequencies.

Example 1.7 How unusual is a no-hitter or a one-hitter in a major league baseball game, and how
frequently does a team get more than 10, 15, or 20 hits? Table 1.1 is a frequency distribution for the
number of hits per team per game for all games in the 2016 regular season, courtesy of the website
www.retrosheet.org.

6.56.05.55.04.54.03.53.02.52.0
Big Mac index (US$)

U.S. ($5.58)

Figure 1.5 A dotplot of the data from Example 1.6

12 1 Overview and Descriptive Statistics

http://www.retrosheet.org


The corresponding histogram in Figure 1.6 rises rather smoothly to a single peak and then
declines. The histogram extends a bit more to the right (toward large values) than it does on the left—
a slight “positive skew.”

Either from the tabulated information or from the histogram, we can determine the following:

proportion of

instances of at

most two hits

¼
relative

frequency

for x ¼ 0

þ
relative

frequency

for x ¼ 1

þ
relative

frequency

for x ¼ 2

¼ :0002þ :0039þ :0115 ¼ :0156

Table 1.1 Frequency distribution for hits per team in 2016 MLB games

Hits/Team/
Game

Number of
games

Relative
frequency

Hits/Team/
Game

Number of
games

Relative
frequency

0 1 .0002 12 297 .0612
1 19 .0039 13 202 .0416
2 56 .0115 14 176 .0362
3 151 .0311 15 102 .0210
4 279 .0575 16 71 .0146
5 380 .0783 17 56 .0115
6 471 .0970 18 32 .0066
7 554 .1141 19 22 .0045
8 564 .1161 20 3 .0006
9 556 .1145 21 4 .0008
10 469 .0966 22 5 .0010
11 386 .0795 4,856 .9999
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Figure 1.6 Relative frequency histogram of x = number of hits per team per game for the 2016 MLB season
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Similarly,

proportion of instances of between 5 and 10 hits inclusiveð Þ ¼ :0783þ :0970þ � � � þ :0966 ¼ :6166

That is, roughly 62% of the time that season, a team had between 5 and 10 hits (inclusive) in a game.
Incidentally, the only no-hitter of the season (notice the frequency of 1 for x = 0) came on April 21,

2016, with Jake Arrieta pitching the complete game for the Chicago Cubs against the Cincinnati Reds.■

Constructing a histogram for measurement data (e.g., weights of individuals, reaction times to a
particular stimulus) requires subdividing the measurement axis into a suitable number of class
intervals or classes, such that each observation is contained in exactly one class. Suppose, for
example, that we have 50 observations on x = fuel efficiency of an automobile (mpg), the smallest of
which is 27.8 and the largest of which is 31.4. Then we could use the class boundaries 27.5, 28.0,
28.5, …, and 31.5 as shown here:

27.5 28.0 29.0 30.0 31.028.5 29.5 30.5 31.5

When all class widths are equal, a histogram is constructed as follows: first, mark the class
boundaries on a horizontal axis like the one above. Then, above each interval, draw a rectangle whose
height is the corresponding relative frequency (or frequency).

One potential difficulty is that occasionally an observation falls on a class boundary and therefore
does not lie in exactly one interval, for example, 29.0. We will use the convention that any obser-
vation falling on a class boundary will be included in the class to the right of the observation. Thus
29.0 would go in the 29.0–29.5 class rather than the 28.5–29.0 class. This is how Minitab constructs a
histogram; in contrast, the default histogram in R does it the other way, with 29.0 going into the 28.5–
29.0 class.

Example 1.8 Power companies need information about customer usage to obtain accurate forecasts
of demands. Investigators from Wisconsin Power and Light determined energy consumption (BTUs)
during a particular period for a sample of 90 gas-heated homes. For each home, an adjusted con-
sumption value was calculated to account for weather and house size. This resulted in the accom-
panying data (part of the stored data set furnace.mtw available in Minitab), which we have ordered
from smallest to largest.

2.97 4.00 5.20 5.56 5.94 5.98 6.35 6.62 6.72 6.78
6.80 6.85 6.94 7.15 7.16 7.23 7.29 7.62 7.62 7.69
7.73 7.87 7.93 8.00 8.26 8.29 8.37 8.47 8.54 8.58
8.61 8.67 8.69 8.81 9.07 9.27 9.37 9.43 9.52 9.58
9.60 9.76 9.82 9.83 9.83 9.84 9.96 10.04 10.21 10.28
10.28 10.30 10.35 10.36 10.40 10.49 10.50 10.64 10.95 11.09
11.12 11.21 11.29 11.43 11.62 11.70 11.70 12.16 12.19 12.28
12.31 12.62 12.69 12.71 12.91 12.92 13.11 13.38 13.42 13.43
13.47 13.60 13.96 14.24 14.35 15.12 15.24 16.06 16.90 18.26
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We let Minitab select the class intervals. The most striking feature of the histogram in Figure 1.7 is
its resemblance to a bell-shaped (and therefore symmetric) curve, with the point of symmetry roughly
at 10.

Class 1–<3 3–<5 5–<7 7–<9 9–<11 11–<13 13–<15 15–<17 17–<19
Frequency 1 1 11 21 25 17 9 4 1
Relative frequency .011 .011 .122 .233 .278 .189 .100 .044 .011

From the histogram,

proportion of
observations � :01þ :01þ :12þ :23 ¼ :37 exact value ¼ 34

90 ¼ :378
� �

less than 9

The relative frequency for the 9–11 class is about .27, so we estimate that roughly half of this, or .135,
is between 9 and 10. Thus

proportion of observations
less than 10 � :37þ :135 ¼ :505 ðslightly more than 50%Þ

The exact value of this proportion is 47/90 = .522. ■

There are no hard-and-fast rules concerning either the number of classes or the choice of classes
themselves. Between 5 and 20 classes will be satisfactory for most data sets. Generally, the larger the
number of observations in a data set, the more classes should be used. A reasonable rule is

number of classes �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of observations

p

Equal-width classes may not be a sensible choice if a data set “stretches out” to one side or the other.
Figure 1.8 shows a dotplot of such a data set. If a large number of short, equal width classes are used,
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Figure 1.7 Minitab histogram of the energy consumption data from Example 1.8
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many classes will have zero frequency. Using a small number of wide equal width classes results in
almost all observations falling in just one or two of the classes. A sound choice is to use a few wider
intervals near extreme observations and narrower intervals in the region of high concentration. In such
situations a density histogram must be used.

DEFINITION For any class to be used in a histogram, the density of the data in that class
is defined by

density ¼ relative frequency of the class
class width

A histogram can then be constructed in which the height of the rectangle over each class is its density.
The vertical scale on such a histogram is called a density scale.

When class widths are unequal, not using a density scale will give a picture with distorted areas.
For equal class widths, the divisor is the same in each density calculation, and the extra arithmetic
simply results in a rescaling of the vertical axis (i.e., the histogram using relative frequency and the
one using density will have exactly the same appearance).

A density histogram does have one interesting property. Multiplying both sides of the formula for
density by the class width gives

relative frequency ¼ ðclass widthÞðdensityÞ ¼ ðrectangle widthÞðrectangle heightÞ
¼ rectangle area

That is, the area of each rectangle is the relative frequency of the corresponding class. Furthermore,
because the sum of relative frequencies must be 1.0 (except for roundoff), the total area of all
rectangles in a density histogram is 1. It is always possible to draw a histogram so that the area equals
the relative frequency (this is true also for a histogram of counting data)—just use the density scale.
This property will play an important role in creating models for certain distributions in Chapter 4.

Example 1.9 The Environmental Protection Agency (EPA) publishes information each year on the
estimate gas mileage as well as expected annual fuel cost for hundreds of new vehicles. For 2018, the
EPA evaluated 369 different cars and trucks. The fuel cost estimates ranged from $700 (Toyota Camry
Hybrid LE) to $3800 (Bugatti Chiron). We have divided the expected annual fuel costs of these
vehicles, in hundreds of dollars, into five intervals: 7–<10, 10–<15, 15–<20, 20–<25, and 25–38.

a

b

c

Figure 1.8 Selecting class intervals for “stretched out” dots: (a) many short equal width intervals;
(b) a few wide equal width intervals; (c) unequal width intervals
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Class 7–<10 10–<15 15–<17.5 17.5–<20 20–<25 25–38
Frequency 3 86 103 83 74 20
Relative frequency .0081 .2331 .2791 .2249 .2005 .0542
Density .0027 .0466 .1117 .0900 .0401 .0042

The resulting histogram appears in Figure 1.9. The right or upper tail stretches out much farther
than does the left or lower tail—a substantial departure from symmetry. Thankfully, high-
efficiency/low-cost vehicles predominate, and gas guzzlers are relatively rare.

Histogram Shapes
Histograms come in a variety of shapes. A unimodal histogram is one that rises to a single peak and
then declines. A bimodal histogram has two different peaks. Bimodality can occur when the data set
consists of observations on two quite different kinds of individuals or objects. For example, the
histogram of a data set consisting of driving times between San Luis Obispo and Monterey in
California would show two peaks, one for those cars that took the inland route (roughly 2.5 h) and
another for those cars traveling up the coast (3.5–4 h). A histogram with more than two peaks is said
to be multimodal.

A histogram is symmetric if the left half is a mirror image of the right half. A unimodal histogram
is positively skewed if the right or upper tail is stretched out compared with the left or lower tail and
negatively skewed if the stretching is to the left. Figure 1.10 shows “smoothed” histograms, obtained
by superimposing a smooth curve on the rectangles, that illustrate various possibilities.

Figure 1.9 R density histogram for the fuel cost data of Example 1.9 ■

a b c d

Figure 1.10 Smoothed histograms: (a) symmetric unimodal; (b) bimodal; (c) positively skewed;
and (d) negatively skewed
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Categorical Data
Both a frequency distribution and a pie chart or bar graph can be constructed when a data set is
categorical in nature; generally speaking, statisticians prefer bar graphs over pie charts in most
circumstances. Sometimes there will be a natural ordering of categories (freshman, sophomore,
junior, senior, graduate student); for such ordinal data the categories should be presented in their
natural order. In other cases the order will be arbitrary (e.g., Catholic, Jewish, Protestant, and so on);
while we have the choice of displaying nominal data in any order, it’s common to sort the categories
in decreasing order of their (relative) frequencies. Either way, the rectangles for the bar graph should
have equal width.

Example 1.10 Each member of a sample of 120 individuals owning motorcycles was asked for the
name of the manufacturer of his or her bike. The frequency distribution for the resulting data is given
in Table 1.2 and the bar chart is shown in Figure 1.11.

Table 1.2 Frequency distribution for motorcycle data

Manufacturer Frequency Relative frequency

1. Honda 41 .34
2. Yamaha 27 .23
3. Kawasaki 20 .17
4. Harley-Davidson 18 .15
5. BMW 3 .03
6. Other 11 .09

120 1.01

OtherBMWHarley-DavidsonKawasakiYamahaHonda
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Figure 1.11 Bar chart for motorcycle data ■
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Multivariate Data
The techniques presented so far have been exclusively for situations in which each observation in a
data set is either a single number or a single category. Often, however, our data is multivariate in
nature. That is, if we obtain a sample of individuals or objects and on each one we make two or more
measurements, then each “observation” would consist of several measurements on one individual or
object. The sample is bivariate if each observation consists of two measurements or responses, so that
the data set can be represented as (x1, y1), …, (xn, yn). For example, x might refer to engine size and
y to horsepower, or x might refer to brand of cell phone owned and y to academic major. We consider
the analysis of multivariate data in several later chapters.

Exercises: Section 1.2 (14–39)

14. Consider the fire resistance time data given
in Example 1.2.

a. Construct a stem-and-leaf display of the
data. What appears to be a representa-
tive value? Do the observations appear
to be highly concentrated about the
representative value or rather spread
out?

b. Does the display appear to be reason-
ably symmetric about a representative
value, or would you describe its shape
in some other way?

c. Do there appear to be any outlying fire
resistance times?

d. What proportion of times in this sample
exceed 45 min?

15. Construct a stem-and-leaf display for the
given batch of exam scores, repeating each
stem twice (so, 6L through 9H). What
feature of the data is highlighted by this
display?

74 89 80 93 64 67 72 70 66 85
89 81 81 71 74 82 85 63 72 81
81 95 84 81 80 70 69 66 60 83
85 98 84 68 90 82 69 72 87 88

16. A sample of 77 individuals working at a
particular office was selected and the noise
level (dBA) experienced by each one was
determined, yielding the following data
(“Acceptable Noise Levels for Construction
Site Offices,” Build. Serv. Engr. Res.
Technol. 2009: 87–94).

55.3 55.3 55.3 55.9 55.9 55.9 55.9 56.1 56.1 56.1 56.1
56.1 56.1 56.8 56.8 57.0 57.0 57.0 57.8 57.8 57.8 57.9
57.9 57.9 58.8 58.8 58.8 59.8 59.8 59.8 62.2 62.2 63.8
63.8 63.8 63.9 63.9 63.9 64.7 64.7 64.7 65.1 65.1 65.1
65.3 65.3 65.3 65.3 67.4 67.4 67.4 67.4 68.7 68.7 68.7
68.7 69.0 70.4 70.4 71.2 71.2 71.2 73.0 73.0 73.1 73.1
74.6 74.6 74.6 74.6 79.3 79.3 79.3 79.3 83.0 83.0 83.0

Construct a stem-and-leaf display using
repeated stems, and comment on any inter-
esting features of the display.

17. The following data on crack depth (µm) was
read from a graph in the article “Effects of
Electropolishing on Corrosion and Stress
Corrosion Cracking of Alloy 182 in High
TemperatureWater” (Corrosion Sci. 2017: 1–
10)

1.5 2.9 3.1 3.3 3.4 3.6 3.7 3.8 3.9 4.1
4.3 4.5 4.6 4.7 4.8 5.2 5.3 5.5 5.6 5.9
6.1 6.9 7.2 7.5 8.0 8.0 8.1 8.2 8.5 9.2
9.5 9.9 10.0 10.5 10.5 10.7 10.9 10.9 11.2 11.3

11.3 11.8 12.0 12.7 14.4 15.7 17.3 18.4 19.9 20.0
21.7 21.8 22.4 26.4 33.7 33.8 34.0 37.8 42.2 46.0
48.6 50.2 51.4 52.4 66.5 76.1 81.1

a. Construct a stem-and-leaf display of the
data.

b. What is a typical, or representative, crack
depth?

c. Does the display appear to be highly
concentrated or spread out?

d. Does the distribution of values appear to
be reasonably symmetric? If not, how
would you describe the departure from
symmetry?

e. Would you describe any observations as
being far from the rest of the data (outliers)?
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18. The 15th Annual Demographia Interna-
tional Housing Affordability Survey: 2019
reports the “median multiple,” the ratio of
median home price to median household
income, for 188 metropolitan areas in the
United States. (A higher median multiple
means that it’s harder for residents of that
area to purchase a home.) The resulting
data appears below.

2.6 3.0 4.1 3.1 3.0 3.8 3.9 4.8 3.5 2.8
2.9 4.1 4.3 3.6 3.4 3.1 3.5 5.1 5.3 6.7
4.5 4.9 3.0 2.8 2.6 4.3 2.5 4.5 3.8 3.4
3.6 2.8 2.9 2.8 4.5 4.5 3.2 3.2 3.1 3.7
3.9 2.3 2.7 4.3 5.5 2.8 3.0 2.8 4.3 3.5
2.4 5.6 2.8 3.2 3.0 2.7 5.2 2.9 4.4 2.6
4.9 4.4 3.1 4.7 2.8 3.2 4.1 3.1 3.1 2.5
3.3 2.8 8.6 3.7 2.9 3.0 2.9 3.1 3.9 2.8
3.3 4.0 2.9 3.2 3.4 3.4 3.8 3.2 2.4 3.4
4.9 3.0 3.0 2.8 9.2 3.1 2.8 3.2 3.7 3.4
3.0 4.0 3.4 6.0 5.7 3.8 3.4 3.0 5.0 2.8
4.2 5.3 3.9 3.4 3.1 4.0 5.5 3.4 3.7 2.7
3.9 2.7 4.5 7.1 3.6 2.3 3.4 4.3 2.6 4.4
3.9 5.2 4.3 4.3 3.8 2.7 5.8 3.7 5.6 3.2
2.6 2.2 5.6 5.0 7.5 3.9 4.4 3.9 7.8 8.8
9.4 8.1 7.5 9.6 7.5 4.6 3.2 2.5 5.6 4.1
3.1 2.6 3.2 4.3 3.8 3.0 2.8 5.9 2.3 3.7
4.1 2.5 3.2 4.0 3.1 2.2 5.4 3.5 4.6 3.3
4.0 2.8 5.0 3.3 3.8 4.3 2.8 2.2

a. Construct a stem-and-leaf display of the
data.

b. What is a typical, or representative,
median multiple?

c. Describe the shape of the distribution.
d. Values above 5.0 earn the city a

“Severely Unaffordable” rating. What
proportion of cities in the study have
severely unaffordable housing?

19. Do running times of American movies
differ somehow from times of French
movies? The authors investigated this
question by randomly selecting 25 recent
movies of each type, resulting in the fol-
lowing running times:

American: 94 90 95 93 128 95 125
91 104 116 162 102 90 110
92 113 116 90 97 103 95

120 109 91 138
French: 123 116 90 158 122 119 125

90 96 94 137 102 105 106
95 125 122 103 96 111 81

113 128 93 92

Construct a comparative stem-and-leaf
display by listing stems in the middle of
your paper and then placing the American
leaves out to the left and the French leaves
out to the right. Then comment on inter-
esting features of the display.

20. The report “Congestion Reduction Strate-
gies” (Texas Transportation Institute, 2005)
investigated how much additional time (in
hours, per year per traveler) drivers spend
in traffic during peak hours for a sample of
urban areas. Data on “large” (e.g., Denver)
and “very large” (e.g., Houston) urban
areas appear below.

Large: 55 55 53 52 51 50 46
46 43 40 39 38 35 33
33 30 30 29 26 23 18
17 14 13 12 10

Very Large: 93 72 69 67 63 60 58
57 51 51 49 49 38

Construct a comparative stem-and-leaf
display (see Exercise 19) of this data.
Compare and contrast the extra time spent
in traffic for drivers in large urban areas
and very large urban areas.

21. Temperature transducers of a certain type
are shipped in batches of fifty. A sample of
60 batches was selected, and the number of
transducers in each batch not conforming to
design specifications was determined,
resulting in the following data:

2 1 2 4 0 1 3 2 0 5 3 3 1 3 2 4 7 0 2 3
0 4 2 1 3 1 1 3 4 1 2 3 2 2 8 4 5 1 3 1
5 0 2 3 2 1 0 6 4 2 1 6 0 3 3 3 6 1 2 3

a. Determine frequencies and relative fre-
quencies for the observed values of
x = number of nonconforming trans-
ducers in a batch.

b. What proportion of batches in the sam-
ple have at most five nonconforming
transducers? What proportion have
fewer than five? What proportion have
at least five nonconforming units?
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c. Draw a histogram of the data using
relative frequency on the vertical scale,
and comment on its features.

22. Lotka’s law is used in library science to
describe the productivity of authors in a given
field. The article “Lotka’s Law and Produc-
tivity Patterns of Authors in Biomedical Sci-
ence in Nigeria onHIV/AIDS: a Bibliometric
Approach” (The Electronic Library 2016:
789–807) provides the following frequency
distribution for the number of articles written
by various authors on HIV/AIDS over a five-
year period in Nigeria:

Number of papers 1 2 3 4 5 6
Frequency 650 90 73 40 35 30
Number of papers 7 8 9 10 11
Frequency 23 17 15 10 5

a. Construct a histogram corresponding to
this frequency distribution. What is the
most interesting feature of the shape of
the distribution?

b. What proportion of these authors pub-
lished at least five papers? More than
five papers?

c. Suppose the ten 10s and five 11s had
been lumped into a single category
displayed as “10+.” Would you be able
to draw a histogram? Explain.

d. Suppose that instead of the values 10
and 11 being listed separately, they had
been combined into a 10–11 category
with frequency 15. Would you be able
to draw a histogram? Explain.

23. The article “Ecological Determinants of
Herd Size in the Thorncraft’s Giraffe of
Zambia” (Afric. J. Ecol. 2010: 962–971)
gave the following data (read from a graph)
on herd size for a sample of 1570 herds
over a 34-year period.

Herd size 1 2 3 4 5 6 7 8
Frequency 589 190 176 157 115 89 57 55
Herd size 9 10 11 12 13 14 15 17
Frequency 33 31 22 10 4 10 11 5
Herd size 18 19 20 22 23 24 26 32
Frequency 2 4 2 2 2 2 1 1

a. What proportion of the sampled herds
had just one giraffe?

b. What proportion of the sampled herds
had six or more giraffes (characterized in
the article as “large herds”)?

c. What proportion of the sampled herds
had between five and ten giraffes,
inclusive?

d. Draw a histogram using relative fre-
quency on the vertical axis. How would
you describe the shape of this his-
togram?

24. The article “Determination of Most Repre-
sentative Subdivision” (J. Energy Engr.
1993: 43–55) gave data on various char-
acteristics of subdivisions that could be
used in deciding whether to provide elec-
trical power using overhead lines or
underground lines. Here are the values of
the variable x = total length of streets
within a subdivision:

1280 5320 4390 2100 1240 3060 4770
1050 360 3330 3380 340 1000 960
1320 530 3350 540 3870 1250 2400
960 1120 2120 450 2250 2320 2400

3150 5700 5220 500 1850 2460 5850
2700 2730 1670 100 5770 3150 1890
510 240 396 1419 2109

a. Construct a stem-and-leaf display using
the thousands digit as the stem and the
hundreds digit as the leaf, and comment
on various features of the display.

b. Construct a histogram using class
boundaries 0, 1000, 2000, 3000, 4000,
5000, and 6000. What proportion of
subdivisions have total length less than
2000? Between 2000 and 4000? How
would you describe the shape of the
histogram?

25. The article cited in the previous exercise
also gave the following values of the vari-
ables y = number of culs-de-sac and
z = number of intersections:
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y 1 0 1 0 0 2 0 1 1 1 2 1 0 0 1 1 0 1 1
z 1 8 6 1 1 5 3 0 0 4 4 0 0 1 2 1 4 0 4
y 1 1 0 0 0 1 1 2 0 1 2 2 1 1 0 2 1 1 0
z 0 3 0 1 1 0 1 3 2 4 6 6 0 1 1 8 3 3 5
y 1 5 0 3 0 1 1 0 0
z 0 5 2 3 1 0 0 0 3

a. Construct a histogram for the y data.
What proportion of these subdivisions
had no culs-de-sac? At least one cul-de-
sac?

b. Construct a histogram for the z data.
What proportion of these subdivisions
had at most five intersections? Fewer
than five intersections?

26. How does the speed of a runner vary over
the course of a marathon (a distance of
42.195 km)? Consider determining both the
time to run the first 5 km and the time to
run between the 35 km and 40 km points,
and then subtracting the former time from
the latter time. A positive value of this
difference corresponds to a runner slowing
down toward the end of the race. The
accompanying histogram is based on times
of runners who participated in several dif-
ferent Japanese marathons (“Factors
Affecting Runners’ Marathon Perfor-
mance,” Chance, Fall 1993: 24–30).
What are some interesting features of this
histogram? What is a typical difference
value? Roughly what proportion of the
runners ran the late distance more quickly
than the early distance? (Time differences
are in seconds.)

27. America used to be number 1 in the world
for percentage of adults with four-year
degrees, but it has recently dropped to
19th. Here is data on the percentage of
adults age 25 or older in each state who had
a four-year degree as of 2015 (listed in
alphabetical order, with the District of
Columbia included):

23:5 28:0 27:5 21:1 29:5 38:1 37:6 30:0 54:6
27:3 28:8 30:8 25:9 32:3 24:1 26:7 31:0 22:3
22:5 29:0 37:9 40:5 26:9 33:7 20:7 27:1 31:4
29:3 23:0 34:9 36:8 26:3 34:2 28:4 27:7 26:1
24:1 30:8 28:6 31:9 25:8 27:0 24:9 27:6 31:1
36:0 36:3 32:9 19:2 27:8 25:7

a. Construct a dotplot, and comment on
any interesting features. [Note: The
values 54.6, 40.5, and 19.2 belong to
DC, MA, and WV, respectively.]

b. The national percentage of adults age 25
or older with a four-year degree was
29.8% in 2015. Would you obtain that
same value by averaging the 51 num-
bers provided? Why or why not?

28. Tire pressure monitoring systems are
increasingly common for vehicles, but such
systems rarely include checking the spare
tire. The article “A Statistical Study of Tire
Pressures on Road-Going Vehicles” (SAE
Intl. J. Passeng. Cars—Mech. Systems
2016) provided the following data on the
amount (psi) by which spare tires in a
sample of 95 cars were under-inflated, rel-
ative to manufacturer’s specifications:

29 25 60 57 7 35 20 23 5 52
58 20 60 40 52 9 7 57 57 55
–6 46 –6 19 32 –11 17 50 1 57
15 5 4 60 50 41 34 6 54 31
4 0 29 19 12 50 52 6 –3 41
8 50 32 12 38 32 46 51 26 20
16 20 30 8 0 42 16 41 35 45
–5 39 25 42 29 3 60 20 1 0
35 30 13 37 13 16 15 25 24 25
11 –12 10 10 5

a. What does a value of 0 represent here?
What does a negative value represent?

b. Construct a relative frequency histogram
based on the class boundaries –20,

50

100

150

200

−100 100 2000

Time
difference300 400 500 600 700 800

Frequency
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–10, 0, 10,…, 50, and 60, and comment
on features of the distribution.

c. Construct a histogram based on the
following class boundaries: −20, 0, 10,
20, 30, 40, and 60.

d. What proportion of spare tires in the
sample were within ± 10 psi of their
manufacturer-recommended pressure?

29. A transformation of data values by means
of some mathematical function, such as

ffiffiffi
x

p
or 1/x, can often yield a set of numbers that
has “nicer” statistical properties than the
original data. In particular, it may be pos-
sible to find a function for which the his-
togram of transformed values is more
symmetric (or, even better, more like a bell-
shaped curve) than the original data. As an
example, the article “The Negative Bino-
mial Distribution as a Model for External
Corrosion Defect Counts in Buried Pipeli-
nes” (Corrosion Sci. 2015: 114–131)
reported the number of defects in 50 oil and
gas pipeline segments in southern Mexico.

46 518 274 37 46 85 365 40 378 18
29 43 153 23 206 34 25 37 125 84
33 170 63 49 88 54 144 45 27 14

349 148 321 183 148 61 65 127 116 35
57 46 81 156 59 26 88 33 104 44

a. Use class intervals 0–<50, 50–<100, …
to construct a histogram of the original
data.

b. Transform the data by applying log10() to
all 50 values. Use class intervals 1.0–
<1.2, 1.2–<1.4,…, 2.6–<2.8 to construct
a histogram for the transformed data.
What is the effect of the transformation?

30. Unlike most packaged food products,
alcohol beverage container labels are not
required to show calorie or nutrient content.
The article “What Am I Drinking? The
Effects of Serving Facts Information on
Alcohol Beverage Containers” (J. of

Consumer Affairs 2008: 81–99) reported on
a pilot study in which each individual in a
sample was asked to estimate the calorie
content of a 12 oz can of light beer known
to contain 103 cal. The following infor-
mation appeared in the article:

Class Percentage

0–<50 7
50–<75 9
75–<100 23

100–<125 31
125–<150 12
150–<200 3
200–<300 12
300–<500 3

a. Construct a histogram of the data and
comment on any interesting features.

b. What proportion of the estimates were
at least 100? Less than 200?

31. The report “Majoring in Money 2019”
(Sallie Mae) provides the following relative
frequency distribution for the credit card
balance of a nationally representative sam-
ple of n = 464 college students:

$0 7%
$1–$100 15%
$101–$500 35%
$501–$1000 14%
$1001–$2500 18%
$2501–$5000 6%
>$5000 5%

a. Approximately how many students in
the survey reported a $0 credit card
balance?

b. What proportion of students surveyed
carry a balance greater than $1000?

c. Based on the information provided, is it
possible to construct a histogram of the
data? Why or why not?

32. The College Board reports the following
Total SAT score distribution for 2018, the
first year of the “new” SAT format:
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Score range Frequency

1400–1600 145,023
1200–1390 434,200
1000–1190 741,452
800–990 619,145
600–790 192,267
400–590 4452

a. Create a histogram of this data. Com-
ment on its features.

b. What is a typical, or representative,
Total SAT score?

c. What proportion of students in 2018
scored between 800 and 1190?

33. The article “Study on the Life Distribution
of Microdrills” (J. Engr. Manuf. 2002:
301–305) reported the following observa-
tions, listed in increasing order, on drill
lifetime (number of holes that a drill
machines before it breaks) when holes were
drilled in a certain brass alloy.

11 14 20 23 31 36 39 44 47 50
59 61 65 67 68 71 74 76 78 79
81 84 85 89 91 93 96 99 101 104

105 105 112 118 123 136 139 141 148 158
161 168 184 206 248 263 289 322 388 513

a. Construct a frequency distribution and
histogram of the data using class
boundaries 0, 50, 100, …, and then
comment on interesting characteristics.

b. Construct a frequency distribution and
histogram of the natural logarithms of
the lifetime observations, and comment
on interesting characteristics.

c. What proportion of the lifetime observa-
tions in this sample are less than 100?
What proportion of the observations are
at least 200?

34. Consider the following data on type of
health complaint (J = joint swelling,
F = fatigue, B = back pain, M = muscle
weakness, C = coughing, N = nose
running/irritation, O = other) made by tree
planters. Obtain frequencies and relative
frequencies for various categories, and
construct a bar chart. (The data is consistent

with percentages given in the article
“Physiological Effects of Work Stress and
Pesticide Exposure in Tree Planting by
British Columbia Silviculture Workers,”
Ergonomics 1993: 951–961.)

O O N J C F B B F O J O O M
O F F O O N O N J F J B O C
J O J J F N O B M O J M O B
O F J O O B N C O O O M B F
J O F N

35. The report “Motorcycle Helmet Use in
2005—Overall Results” (NHTSA August
2005) included observations made on the
helmet use of 1700 motorcyclists across the
country. The data is summarized in the
accompanying table. (A “noncompliant
helmet” failed to meet U.S. Department of
Transportation safety guidelines.)

Category Frequency

No helmet 731
Noncompliant helmet 153
Compliant helmet 816
Total 1700

a. What is the variable in this example?What
are the possible values of that variable?

b. Construct the relative frequency distri-
bution of this variable.

c. What proportion of observed motorcy-
clists wore some kind of helmet?

d. Construct an appropriate graph for this
data.

36. The author of the article “Food and Eating
on Television: Impacts and Influences”
(Nutr. and Food Sci. 2000: 24–29) exam-
ined hundreds of hours of BBC television
footage and categorized food images for
both TV programs and commercials. The
data presented here is consistent with
information in the article; one of the
research goals was to compare food images
in ads and programs.
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Number of food images

Food category TV Programs Commercials

Milk and dairy products 149 99
Breads, cereals, and potatoes 372 346
Meat, fish, and alternatives 248 198
Fruits and vegetables 694 32
Fatty and sugary foods 322 511
Total n = 1785 n = 1186

a. Why is it inappropriate to compare
frequencies (counts) between program
images and commercial images?

b. Obtain the relative frequency distribu-
tion for the variable food category
among images in TV programs. Create
a graph of the distribution.

c. Repeat part (b) for food images in
commercials.

d. Contrast the two distributions: what are
the biggest differences between the
types of food images in TV programs
and those in commercials?

37. A Pareto diagram is a variation of a bar
chart for categorical data resulting from a
quality control study. Each category repre-
sents a different type of product noncon-
formity or production problem. The
categories are ordered so that the one with
the largest frequency appears on the far left,
then the category with the second-largest
frequency, and so on. Suppose the follow-
ing information on nonconformities in cir-
cuit packs is obtained: failed component,
126; incorrect component, 210; insufficient
solder, 67; excess solder, 54; missing com-
ponent, 131. Construct a Pareto diagram.

38. The cumulative frequency and cumula-
tive relative frequency for a particular
class interval are the sum of frequencies and
relative frequencies, respectively, for that
interval and all intervals lying below it. If,
for example, there are four intervals with
frequencies 9, 16, 13, and 12, then the
cumulative frequencies are 9, 25, 38, and
50, and the cumulative relative frequencies
are .18, .50, .76, and 1.00. Compute the
cumulative frequencies and cumulative rel-
ative frequencies for the data of Exercise 28,
using the class intervals in part (c).

39. Fire load (MJ/m2) is the heat energy that
could be released per square meter of floor
area by combustion of contents and the
structure itself. The article “Fire Loads in
Office Buildings” (J. Struct. Engr. 1997:
365–368) gave the following cumulative
percentages (read from a graph) for fire
loads in a sample of 388 rooms:

Value 0 150 300 450 600
Cumulative % 0 19.3 37.6 62.7 77.5
Value 750 900 1050 1200 1350
Cumulative % 87.2 93.8 95.7 98.6 99.1
Value 1500 1650 1800 1950
Cumulative % 99.5 99.6 99.8 100.0

a. Construct a relative frequency histogram
and comment on interesting features.

b. What proportion of fire loads are less
than 600? At least 1200?

c. What proportion of the loads are
between 600 and 1200?

1.3 Measures of Center

Visual summaries of data are excellent tools for obtaining preliminary impressions and insights. More
formal data analysis often requires the calculation and interpretation of numerical summary measures
—numbers that might serve to characterize the data set and convey some of its most important
features.

Our primary concern will be with quantitative data. Suppose that our data set is of the form x1, x2,
…, xn, where each xi is a number. What features of such a set of numbers are of most interest and
deserve emphasis? One important characteristic of a set of numbers is its “center”: a single value that
we might consider typical or representative of the entire data set. This section presents methods for

1.2 Graphical Methods in Descriptive Statistics 25



describing the center of a data set; in Section 1.4 we will turn to methods for measuring variability in
a set of numbers.

The Mean
For a given set of numbers x1, x2, …, xn, the most familiar and useful measure of the center is the
mean, or arithmetic average, of the set. Because we will almost always think of the xi’s as constituting
a sample, we will often refer to the arithmetic average as the sample mean and denote it by �x.

DEFINITION The sample mean �x of observations x1, x2, …, xn is given by

�x ¼ x1 þ x2 þ � � � þ xn
n

¼
Pn

i¼1 xi
n

The numerator of �x can be written more informally as
P

xi where the
summation is over all sample observations.

For reporting �x, we recommend using decimal accuracy of one digit more than the accuracy of the
xi’s. Thus if observations are stopping distances with x1 = 125, x2 = 131, and so on, we might have
�x = 127.3 ft.

Example 1.11 Students in a class were assigned to make wingspan measurements at home. The
wingspan is the horizontal measurement from fingertip to fingertip with outstretched arms. Here are
the measurements (inches) given by 21 of the students.

x1 = 60 x2 = 64 x3 = 72 x4 = 63 x5 = 66 x6 = 62 x7 = 75
x8 = 66 x9 = 59 x10 = 75 x11 = 69 x12 = 62 x13 = 63 x14 = 61
x15 = 65 x16 = 67 x17 = 65 x18 = 69 x19 = 95 x20 = 60 x21 = 70

Figure 1.12 shows a stem-and-leaf display of the data; a wingspan in the 60s appears to be
“typical.”

With
P

xi ¼ 1408, the sample mean is

�x ¼ 1408
21

¼ 67:0 in,

a value consistent with information conveyed by the stem-and-leaf display. ■

A physical interpretation of �x demonstrates how it measures the center of a sample. Think of a
dotplot in which each dot (i.e., each observation) “weighs” 1 lb. The only point at which a fulcrum

5H|9
6L|00122334
6H|5566799
7L|02
7H|55
8L|
8H|
9L|
9H|5

Figure 1.12 A stem-and-leaf display of the wingspan data
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can be placed to balance the system of weights is the point corresponding to the value of �x (see
Figure 1.13). The system balances because, as shown in the next section,

Pðxi � �xÞ ¼ 0, so the net
total tendency to turn about �x is 0.

Just as �x represents the average value of the observations in a sample, the average of all values in a
population can, in principle, be calculated. This average is called the population mean and will be
denoted by the Greek letter l. When there are N values in the population (a finite population), then
l = (sum of the N population values)/N. In Chapters 3 and 4, we will give a more general definition
for l that applies to both finite and (conceptually) infinite populations. In the chapters on statistical
inference, we will present methods based on the sample mean for drawing conclusions about a
population mean. For example, we might use the sample mean �x ¼ 67:0 computed in Example 1.11
as a point estimate (a single number that is our “best” guess) of l = the true average wingspan for all
students in introductory statistics classes.

The mean suffers from one deficiency that makes it an inappropriate measure of center in some
circumstances: its value can be greatly affected by the presence of even a single outlier (i.e., an
unusually large or small observation). In Example 1.11, the value x19 = 95 is obviously an outlier.
Without this observation, �x ¼ 1313=20 ¼ 65:7 in; the outlier increases the mean by 1.3 in. The value
95 is clearly an error—this student was only 70 inches tall, and there is no way such a student could
have a wingspan of almost 8 ft. As Leonardo da Vinci noticed, wingspan is usually quite close to
height. (Note, though, that outliers are often not the result of recording errors!)

We will next consider an alternative to the mean, namely the median, that is insensitive to outliers.
However, the mean is still by far the most widely used measure of center, largely because there are
many populations for which outliers are very scarce. When sampling from such a population (a
“normal” or bell-shaped distribution being the most important example), outliers are highly unlikely
to enter the sample. The sample mean will then tend to be stable and quite representative of the
sample.

The Median
The word median is synonymous with “middle,” and the sample median is indeed the middle value
when the observations are ordered from smallest to largest. When the observations are denoted by x1,
…, xn, we will use the symbol ~x to represent the sample median.

DEFINITION The sample median is obtained by first ordering the n observations from
smallest to largest (with any repeated values included so that every sample
observation appears in the ordered list). Then, if n is odd,

~x ¼ nþ 1
2

� �
th ordered value

whereas if n is even,
~x ¼ average of the n

2

� �
th and n

2 þ 1
� �

th ordered values

60 65 70 75 80 85 90 95

Mean = 67.0

Figure 1.13 The mean as the balance point for a system of weights
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Example 1.12 People not familiar with classical music might tend to believe that a composer’s
instructions for playing a particular piece are so specific that the duration would not depend at all on
the performer(s). However, there is typically plenty of room for interpretation, and orchestral con-
ductors and musicians take full advantage of this. We went to the website ArkivMusic.com and
selected a sample of 12 recordings of Beethoven’s Symphony No. 9 (the “Choral,” a stunningly
beautiful work), yielding the following durations (min) listed in increasing order:

62.3 62.8 63.6 65.2 65.7 66.4 67.4 68.4 68.8 70.8 75.7 79.0

Since n = 12 is even, the sample median is the average of the n/2 = 6th and (n/2 + 1) = 7th values
from the ordered list:

~x ¼ 66:4þ 67:4
2

¼ 66:90min

Note that half of the durations in the sample are less than 66.90 min, and half are greater than that.
If the largest observation 79.0 had not been included in the sample, the resulting sample median for

the n = 11 remaining observations would have been the single middle value 66.4 (the [n + 1]/2 = 6th
ordered value, i.e., the 6th value in from either end of the ordered list).

The sample mean is �x ¼ P
xi=n ¼ 816:1=12 ¼ 68:01 min, a bit more than a full minute larger

than the median. The mean is pulled out a bit relative to the median because the sample “stretches
out” somewhat more on the upper end than on the lower end. ■

The data in Example 1.12 illustrates an important property of ~x in contrast to �x. The sample median
is very insensitive to a number of extremely small or extremely large data values. If, for example, we
increased the two largest xi’s from 75.7 and 79.0 to 95.7 and 99.0, respectively, ~x would be unaf-
fected. Thus, in the treatment of outlying data values, �x and ~x are at opposite ends of a spectrum: �x is
sensitive to even one such value, whereas ~x is insensitive to a large number of outlying values.
Although �x and ~x both provide a measure for the center of a data set, they will not in general be equal
because they focus on different aspects of the sample.

Analogous to ~x as the middle value in the sample is a middle value in the population, the
population median, denoted by ~l. As with �x and l, we can think of using the sample median ~x to
make an inference about ~l. In Example 1.12, we might use ~x ¼ 66:90 min as an estimate of the
median duration in the entire population from which the sample was selected. Or, if the median salary
for a sample of statisticians was ~x = $96,416, we might use this as a basis for concluding that the
median salary ~l for all statisticians exceeds $90,000.

The population mean l and median ~l will not generally be identical. If the population distribution
is positively or negatively skewed, as shown in Figure 1.14 (p. 29), then l 6¼ ~l. When this is the case,
in making inferences we must first decide which of the two population characteristics is of greater
interest and then proceed accordingly. As an example, according to the report “How America Saves
2019” issued by the Vanguard Funds investment company, the mean retirement fund balance among
workers 65 and older is $192,877, whereas the median balance is just $58,035. Clearly a small
minority of such people has extremely large retirement fund balances, inflating the mean relative to
the median; the latter is arguably a better representation of a “typical” retirement fund balance.
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Trimmed Means
The sample mean and sample median are influenced by outlying values to very different degrees—the
mean greatly and the median not at all. Since extreme behavior of either type might be undesirable,
we briefly consider alternative measures that are neither as sensitive as �x nor as insensitive as ~x. To
motivate these alternatives, note that �x and ~x are at opposite extremes of the same “family” of
measures: while ~x is computed by throwing away as many values on each end as one can without
eliminating everything (leaving just one or two middle values), to compute �x one throws away
nothing before averaging. Said differently, the mean involves “trimming” 0% from each end of the
sample, whereas for the median the maximum possible amount is trimmed from each end. A trimmed
mean is a compromise between �x and ~x. A 10% trimmed mean, for example, would be computed by
eliminating the smallest 10% and the largest 10% of the sample and then averaging what remains.

Example 1.13 Consider the following 20 observations, ordered from smallest to largest, each one
representing the lifetime (in hours) of a type of incandescent lamp:

612 623 666 744 883 898 964 970 983 1003
1016 1022 1029 1058 1085 1088 1122 1135 1197 1201

The mean and median of all 20 observations are �x ¼ 965:0 h and ~x ¼ 1009:5 h, respectively. The
10% trimmed mean is obtained by deleting the smallest two observations (612 and 623) and the
largest two (1197 and 1201) and then averaging the remaining 16 to obtain �xtrð10Þ ¼ 979:1 h. The
effect of trimming here is to produce a “central value” that is somewhat above the mean (�x is pulled
down by a few small lifetimes) and yet considerably below the median. Similarly, the 20% trimmed
mean averages the middle 12 values to obtain �xtrð20Þ ¼ 999:9, even closer to the median. See
Figure 1.15.

Generally speaking, using a trimmed mean with a moderate trimming proportion (between 5% and
25%) will yield a measure that is neither as sensitive to outliers as the mean nor as insensitive as the
median. For this reason, trimmed means have merited increasing attention from statisticians for both
descriptive and inferential purposes. More will be said about trimmed means when point estimation is
discussed in Chapter 7. As a final point, if the trimming proportion is denoted by a and na is not an
integer, then it is not obvious how the 100a% trimmed mean should be computed. For example, if

Negative skew Symmetric Positive skew

a b c

Figure 1.14 Three different shapes for a population distribution

600 800 1000 1200
x x

x tr(10)

~

Figure 1.15 Dotplot of lifetimes (in hours) of incandescent lamps ■
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a = .10 (10%) and n = 22, then na = (22)(.10) = 2.2, and we cannot trim 2.2 observations from each
end of the ordered sample. In this case, the 10% trimmed mean would be obtained by first trimming
two observations from each end and calculating �xtr, then trimming three and calculating �xtr , and
finally interpolating between the two values to obtain �xtrð10Þ.

Exercises: Section 1.3 (40–51)

40. The website realtor.com listed the follow-
ing sale prices (in $1000s) for a sample of
10 homes sold in 2019 in Los Osos, CA
(home town of two of the authors):

525 830 600 180 129 525 350 490 640 475

a. Calculate and interpret the sample mean
and median.

b. Suppose the second observation was
930 instead of 830. How would that
affect the mean and median?

c. The two low outliers in the sample were
mobile homes. If we excluded those two
observations, how would that affect the
mean and median?

d. Calculate a 20% trimmed mean by first
trimming the two smallest and two lar-
gest observations.

e. Calculate a 15% trimmed mean.

41. Super Bowl LIII was the lowest scoring
(and, to many, the least exciting) Super
Bowl of all time. During the game, Los
Angeles Rams running back Todd Gurley
had just 10 rushing plays, resulting in the
following gains in yards:

5 2 1 2 3 �1 16 2 5 0

a. Determine the value of the mean.
b. Determine the value of the median. Why

is it so different from the mean?
c. Calculate a trimmed mean by deleting

the smallest and largest observations.
What is the corresponding trimming
percentage? How does the value of this
trimmed mean compare to the mean and
median?

42. The minimum injection pressure (psi) for
injection molding specimens of high amy-
lose corn was determined for eight different

specimens (higher pressure corresponds to
greater processing difficulty), resulting in
the following observations (from “Ther-
moplastic Starch Blends with a
Polyethylene-Co-Vinyl Alcohol: Process-
ability and Physical Properties,” Polymer
Engr. and Sci. 1994: 17–23):

15.0 13.0 18.0 14.5 12.0 11.0 8.9 8.0

a. Determine the values of the sample
mean, sample median, and 12.5% trim-
med mean, and compare these values.

b. By how much could the smallest sample
observation, currently 8.0, be increased
without affecting the value of the sample
median?

c. Supposewewant the values of the sample
mean and median when the observations
are expressed in kilograms per square
inch (ksi) rather than psi. Is it necessary to
re-express each observation in ksi, or can
the values calculated in part (a) be used
directly? [Hint: 1 kg = 2.2 lb.]

43. Here is the average weekday circulation
(paper plus digital subscriptions) for the top
20 newspapers in the country (247wallst.-
com, January 24, 2017):

2,237,601 512,118 507,395 424,721 410,587
384,962 356,768 299,538 291,991 285,129
276,445 246,963 245,042 243,376 242,567
232,546 232,372 227,245 215,476 196,286

a. Which value, the mean or the median,
do you anticipate will be higher? Why?

b. Calculate the mean and median for this
data.

44. An article in the Amer. J. Enol. and Viti.
(2006: 486–490) includes the following
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alcohol content measurements (%) for a
sample of n = 35 port wines.

16.35 17.73 19.62 19.07 19.48 19.45 19.33
18.85 22.75 19.20 19.90 20.00 19.37 21.22
16.20 23.78 20.05 18.68 19.97 19.20 19.50
17.75 23.25 17.85 18.82 17.48 18.00 15.30
19.58 19.08 19.17 19.03 17.15 19.60 22.25

a. Graph the data. Based on the graph,
what is a representative value for the
alcohol content in port wines?

b. Calculate the mean and the median. Are
these values consistent with your
answer in (a)? Why or why not?

45. Compute the sample median, 25% trimmed
mean, 10% trimmed mean, and sample
mean for the microdrill data given in
Exercise 33, and compare these measures.

46. A sample of 26 offshore oil workers took
part in a simulated escape exercise, result-
ing in the accompanying data on time
(sec) to complete the escape (“Oxygen
Consumption and Ventilation During
Escape from an Offshore Platform,” Ergo-
nomics 1997: 281–292):

389 356 359 363 375 424 325 394 402
373 373 370 364 366 364 325 339 393
392 369 374 359 356 403 334 397

a. Construct a stem-and-leaf display of the
data. How does it suggest that the sam-
ple mean and median will compare?

b. Calculate the values of the sample mean
and median.

c. By how much could the largest time,
currently 424, be increased without
affecting the value of the sample med-
ian? By how much could this value be
decreased without affecting the value of
the sample median?

d. What are the values of �x and ~x when the
observations are re-expressed in min-
utes?

47. Blood pressure values are often reported to
the nearest 5 mmHg (100, 105, 110, etc.).

Suppose the actual blood pressure values
for nine randomly selected individuals are

118.6 127.4 138.4 130.0 113.7 122.0 108.3 131.5 133.2

a. What is the median of the reported
blood pressure values?

b. Suppose the blood pressure of the sec-
ond individual is 127.6 rather than
127.4 (a small change in a single value).
How does this affect the median of the
reported values? What does this say
about the sensitivity of the median to
rounding or grouping in the data?

48. Let x1; . . .; xn be a sample, and let a and
b be constants with a 6¼ 0. Define a new
sample y1; . . .; yn by y1 ¼ ax1 þ b, …,
yn ¼ axn þ b.

a. How does the sample mean of the yi’s
relate to the mean of the xi’s? Verify
your conjectures.

b. How does the sample median of the yi’s
relate to the median of the xi’s? Sub-
stantiate your assertion.

49. An experiment to study the lifetime (in
hours) for a certain type of component
involved putting ten components into
operation and observing them for 100 h.
Eight of the components failed during
that period, and those lifetimes were
recorded. Denote the lifetimes of the two
components still functioning after 100 h
by 100+. The resulting sample observa-
tions were

48 79 100+ 35 92 86 57 100+ 17 29

Which of the measures of center discussed
in this section can be calculated, and what
are the values of those measures? [Note:
The data from this study is said to be
“right-censored.”]

50. A sample of n = 10 automobiles was
selected, and each was subjected to a 5-mph
crash test. Denoting a car with no visible
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damage by S (for success) and a car
with such damage by F, results were as
follows:

S S F S S S F F S S

a. What is the sample proportion of
successes?

b. Replace each S with a 1 and each F with
a 0. Then calculate �x for this numerically
coded sample. How does �x compare to
the sample proportion of successes?

c. Suppose it is decided to include 15 more
cars in the experiment. How many of
these would have to be S’s to give a
sample proportion of .80 for the entire
sample of 25 cars?

51. Refer back to Example 1.10, in which 120
motorcycle owners were asked to specify
their bikes’ manufacturer.

a. Is the variable manufacturer quantita-
tive or categorical?

b. Based on the sample data, what would
you consider a “typical” or “represen-
tative” value for the variable, and why?

c. Suppose the responses were recoded
according to the numbering indicated in
Table 1.2 (1 = Honda, 2 = Yamaha,
etc.), resulting in a data set consisting of
41 1’s, 27 2’s, and so on. Would it be
reasonable to use the mean of these 120
numbers as a representative value?
What about the median? Explain.

1.4 Measures of Variability

Reporting a measure of center gives only partial information about a data set or distribution. Different
samples or populations may have identical measures of center yet differ from one another in other
important ways. Figure 1.16 shows dotplots of three samples with the same mean and median, yet the
extent of spread about the center is different for all three samples. The first sample has the largest
amount of variability, the second has less variability than the first, and the third has the smallest
amount.

Measures of Variability for Sample Data
The simplest measure of variability in a sample is the range, which is the difference between the
largest and smallest sample values. Notice that the value of the range for sample 1 in Figure 1.16 is
much larger than it is for sample 3, reflecting more variability in the first sample than in the third.
A defect of the range, though, is that it depends on only the two most extreme observations and
disregards the positions of the remaining n � 2 values. Samples 1 and 2 in Figure 1.16 have identical
ranges, yet when we take into account the observations between the two extremes, there is much less
variability or dispersion in the second sample than in the first.

30 40 50

* * * * * * * * *

60 70

1:

2:

3:

Figure 1.16 Samples with identical measures of center but different amounts of variability
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Our primary measures of variability will involve the n deviations from the mean: x1 � �x; x2 � �x;
. . .; xn � �x obtained by subtracting �x from each sample observation. A deviation will be positive if the
observation is larger than the mean (to the right of the mean on the measurement axis) and negative if
the observation is smaller than the mean. If all the deviations are small in magnitude, then all xi’s are
close to the mean and there is little variability. On the other hand, if some of the deviations are large
in magnitude, then some xi’s lie far from �x, suggesting a greater amount of variability.

A simple way to combine the deviations into a single quantity is to average them (sum them and
divide by n). Unfortunately, this does not yield a useful measure, because the positive and negative
deviations counteract one another:

sum of deviations ¼
Xn
i¼1

ðxi � �xÞ ¼ 0

Thus the average deviation is always zero. To see why, use standard rules of summation and the fact
that

P
�x ¼ �xþ�xþ � � � þ�x ¼ n�x:

X
ðxi � �xÞ ¼

X
xi �

X
�x ¼

X
xi � n�x ¼

X
xi � n

1
n

X
xi

� �
¼ 0

Another possibility is to base a measure on the absolute values of the deviations, in particular the
mean absolute deviation

P
xi � �xj j=n. But because the absolute value operation leads to some

calculus-related difficulties, statisticians instead work with the squared deviations

ðx1 � �xÞ2; ðx2 � �xÞ2; . . .; ðxn � �xÞ2. Rather than use the average squared deviation
P

xi � �xð Þ2=n, for
several reasons the sum of squared deviations is divided by n − 1 rather than n.

DEFINITION Let Sxx ¼
P ðxi � �xÞ2, the sum of the squared deviations from the mean.

Then the sample standard deviation, denoted by s, is given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffi
Sxx

n� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � �xð Þ2
n� 1

s

The quantity s2 is called the sample variance.

The unit for s is the same as the unit for each of the xi’s. If, for example, the observations are fuel
efficiencies in miles per gallon, then we might have s = 2.0 mpg. A rough interpretation of the sample
standard deviation is that it represents the size of a typical deviation from the sample mean within the
given sample. Thus if s = 2.0 mpg, then some xi’s in the sample are closer than 2.0 to �x, whereas
others are farther away; 2.0 is a representative (or “standard”) deviation from the mean fuel efficiency.
If s = 3.0 for a second sample of cars of another type, a typical deviation in this sample is roughly 1.5
times what it is in the first sample, an indication of more variability in the second sample.

Example 1.14 The website www.fueleconomy.gov contains a wealth of information about fuel
characteristics of various vehicles. In addition to EPA mileage ratings, there are many vehicles for
which users have reported their own values of fuel efficiency (mpg). Consider Table 1.3 with n = 10
efficiencies for the 2015 Toyota Camry (for this model, the EPA reports an overall rating of 25 mpg in
city driving and 34 mpg in highway driving).
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The numerator of s2 is Sxx = 228.86, from which

s ¼
ffiffiffiffiffiffiffiffiffiffiffi
Sxx

n� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
228:86
10� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
25:43

p
¼ 5:04 mpg

The size of a typical difference between a driver’s fuel efficiency and the mean of 28.9 in this sample
is roughly 5.04 mpg. ■

To explain why n – 1 rather than n is used to compute s, note first that whereas s measures
variability in a sample, there is a measure of population variability called the population standard
deviation. We will use r (lowercase Greek letter sigma) to denote the population standard deviation
and r2 to denote the population variance. When the population is finite and consists of N values,

r2 ¼
XN
i¼1

ðxi � lÞ2=N

which is the average of all squared deviations from the population mean (for the population, the
divisor is N and not N − 1). More general definitions of r2 for (conceptually) infinite populations
appear in Chapters 3 and 4.

Just as �x will be used to make inferences about the population mean l, we should define the
sample standard deviation s so that it can be used to make inferences about r. Note that r involves
squared deviations about the population mean l. If we actually knew the value of l, then we could
define the sample standard deviation as the average squared deviation of the sample xi’s about l.
However, the value of l is almost never known, so the sum of squared deviations about �x must be
used in the definition of s. But the xi’s tend to be closer to their own average �x than to the population
average l. Using the divisor n � 1 rather than n compensates for this tendency. A more formal
explanation for this choice appears in Chapter 7.

It is customary to refer to s as being based on n � 1 degrees of freedom (df). This terminology
results from the fact that although s is based on the n quantities x1 � �x; x2 � �x; . . .; xn � �x, these sum
to 0, so specifying the values of any n − 1 of the quantities determines the remaining value. For
example, if n = 4 and x1 � �x ¼ 8; x2 � �x ¼ �6; and x4 � �x ¼ �4, then automatically x3 � �x ¼ 2, so
only three of the four values of xi � �x are “freely determined” (3 df).

Table 1.3 Data for Example 1.14

xi xi � �x ðxi � �xÞ2

1 31.0 2.1 4.41
2 27.8 –1.1 1.21
3 38.3 9.4 88.36
4 27.0 –1.9 3.61
5 23.4 –5.5 30.25
6 30.0 1.1 1.21
7 30.1 1.2 1.44
8 21.5 –7.4 54.76
9 25.4 –3.5 12.25
10 34.5 5.6 31.36

P
xi ¼ 289:0

�x ¼ 28:9

Pðxi � �xÞ ¼ 0:0
Pðxi � �xÞ2 ¼ 228:86
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A Computing Formula for s
Typically, software or a calculator is used to compute summary quantities such as �x and s. Otherwise,
computing and squaring the deviations can be tedious, especially if enough decimal accuracy is being
used in �x to guard against the effects of rounding. An alternative formula for the numerator of s2

circumvents the need for all the subtraction necessary to obtain the deviations.

PROPOSITION An alternative expression for the numerator of s2 is

Sxx ¼
X

ðxi � �xÞ2 ¼
X

x2i � nð�xÞ2 ¼
X

x2i �
P

xið Þ2
n

Proof Because �x ¼ P
xi=n; n�x2 ¼ n

P
xið Þ2=n2 ¼ P

xið Þ2=n. Then,
X

ðxi � �xÞ2 ¼
X

ðx2i � 2�x � xi þ�x2Þ ¼
X

x2i � 2�x
X

xi þ
X

�x2

¼
X

x2i � 2�x � n�xþ n � �x2 ¼
X

x2i�nð�xÞ2 ¼
X

x2i �
P

xið Þ2
n

�

Example 1.15 Traumatic knee dislocation often requires surgery to repair ruptured ligaments. One
measure of recovery is range of motion, measured as the angle formed when, starting with the leg
straight, the knee is bent as far as possible. The given data on postsurgical range of motion appeared
in the article “Reconstruction of the Anterior and Posterior Cruciate Ligaments After Knee Dislo-
cation” (Amer. J. Sports Med. 1999: 189–197):

154 142 137 133 122 126 135 135 108 120 127 134 122

The sum of these 13 sample observations is
P

xi ¼ 1695, and the sum of their squares is

X
x2i ¼ 1542 þ 1422 þ � � � þ 1222 ¼ 222;581

Thus the numerator of the sample variance is

Sxx ¼
X

x2i �
X

xi
� �2

=n ¼ 222;581� ð1695Þ2=13 ¼ 1579:0769

from which s2 = 1579.0769/12 = 131.59 and s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
131:59

p
= 11.47 degrees. ■

If our data is rescaled—for instance, changing Celsius temperature measurements to Fahrenheit—
the standard deviation of the rescaled data can easily be determined from the standard deviation of the
original values.
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PROPOSITION Let x1, x2,…, xn be a sample and c be a constant.

1. If y1 = x1 + c, y2 = x2 + c,…, yn = xn + c, then sy = sx; and
2. If y1 = cx1,…, yn = cxn, then s2y ¼ c2s2x and sy = cj jsx

where sx is the sample standard deviation of the xi’s and sy is the
sample standard deviation of the yi’s.

Result 1 is intuitive, because adding or subtracting c shifts the location of the data set but leaves
distances between data values unchanged. According to Result 2, multiplication of each xi by c results
in s being multiplied by a factor of |c|. Verification of these results utilizes the properties �y ¼ �xþ c
and �y ¼ c�x (see Exercise 72).

Quartiles and the Interquartile Range
In Section 1.3, we discussed the sensitivity of the sample mean �x to outliers. Since the standard
deviation is based on measurements from the mean, s is also heavily influenced by outliers. (In fact,
the effect of outliers on s can be especially severe, since each deviation is squared during compu-
tation.) It is therefore desirable to create a measure of variability that is “resistant” to the presence of a
few outliers, analogous to the median.

DEFINITION Order the n observations from smallest to largest, and separate the lower half from
the upper half; the median is included in both halves if n is odd. The lower quartile
(or first quartile), q1, is the median of the lower half of the data, and the upper
quartile (or third quartile), q3, is the median of the upper half.1

A measure of spread that is resistant to outliers is the interquartile range (iqr),
given by

iqr ¼ q3�q1

The term quartile comes from the fact that the lower quartile divides the smallest quarter of obser-
vations from the remainder of the data set, while the upper quartile separates the top quarter of values
from the rest. The interquartile range is unaffected by observations in the smallest 25% or the largest
25% of the data—hence, it is robust against (resistant to) outliers. Roughly speaking, we can interpret
the iqr as the range of the “middle 50%” of the observations.1

Example 1.16 Consider the ordered fuel efficiency data from Example 1.14:

21:5 23:4 25:4 27:0 27:8 j 30:0 30:1 31:0 34:5 38:3

The vertical line separates the two halves of the data; themedian efficiency is~x = (27.8 + 30.0)/2 = 28.9
mpg, coincidentally exactly the same as the mean. The quartiles are the middle values of the two halves;
from the displayed data, we see that

q1 ¼ 25:4 q3 ¼ 31:0 ) iqr ¼ 31:0�25:4 ¼ 5:6mpg

The software package R reports the upper and lower quartiles to be 25.8 and 30.775, respectively,
while JMP and Minitab both give 24.9 and 31.875.

1Different software packages calculate the quartiles (and, thus, the iqr) somewhat differently, for example using different
interpolation methods between x values. For smaller data sets, the difference can be noticeable; this is typically less of
an issue for larger data sets.
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Imagine that the lowest value had been 10.5 instead of 21.5 (indicating something very wrong with
that particular Camry!). Then the sample standard deviation would explode from 5.04 mpg (see
Example 1.14) to 7.46 mpg, a nearly 50% increase. Meanwhile, the quartiles and the iqr would not
change at all; those quantities would be unaffected by this low outlier. ■

The quartiles and interquartile range lead to a popular statistical convention for defining outliers
(i.e., unusual observations) first proposed by renowned statistician John Tukey.

DEFINITION Any observation farther than 1.5iqr from the closest quartile is an outlier.
An outlier is extreme if it is more than 3iqr from the nearest quartile,
and it is mild otherwise.

That is, outliers are defined to be all x values in the sample that satisfy either

x\q1 � 1:5iqr or x[ q3 þ 1:5iqr

Boxplots
In Section 1.2, several graphical displays (stem-and-leaf, dotplot, histogram) were introduced as tools
for visualizing quantitative data. We now introduce one more graph, the boxplot, which relies on the
quartiles, iqr, and aforementioned outlier rule. A boxplot shows several of a data set’s most prominent
features, including center, spread, the extent and nature of any departure from symmetry, and outliers.

Constructing a Boxplot
1. Draw a measurement scale (horizontal or vertical).
2. Draw a rectangle adjacent to this axis beginning at q1 and ending at q3 (so rectangle length = iqr).
3. Place a line segment at the location of the median. (The position of the median symbol relative to

the two edges conveys information about the skewness of the middle 50% of the data.)
4. Determine which data values, if any, are outliers. Mark each outlier individually. (We may use

different symbols for mild and extreme outliers; most statistical software packages do not make a
distinction.)

5. Finally, draw “whiskers” out from either end of the rectangle to the smallest and largest
observations that are not outliers.

Example 1.17 The Clean Water Act and subsequent amendments require that all waters in the USA
meet specific pollution reduction goals to ensure that water is “fishable and swimmable.” The article
“Spurious Correlation in the USEPA Rating Curve Method for Estimating Pollutant Loads”
(J. Environ. Engr. 2008: 610–618) investigated various techniques for estimating pollutant loads in
watersheds; the authors discuss “the imperative need to use sound statistical methods” for this
purpose. Among the data considered is the following sample of total nitrogen loads (TN, in kg of
nitrogen/day) from a particular Chesapeake Bay location, displayed here in increasing order.

9.69 13.16 17.09 18.12 23.70 24.07 24.29 26.43
30.75 31.54 35.07 36.99 40.32 42.51 45.64 48.22
49.98 50.06 55.02 57.00 58.41 61.31 64.25 65.24
66.14 67.68 81.40 90.80 92.17 92.42 100.82 101.94
103.61 106.28 106.80 108.69 114.61 120.86 124.54 143.27
143.75 149.64 167.79 182.50 192.55 193.53 271.57 292.61
312.45 352.09 371.47 444.68 460.86 563.92 690.11 826.54
1529.35
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Relevant summary quantities are

~x ¼ 92:17 q1 ¼ 45:64 q3 ¼ 167:79
iqr ¼ 122:15 1:5iqr ¼ 183:225 3iqr ¼ 366:45

Again, software packages may report slightly different values. Subtracting 1.5iqr from the lower
quartile gives a negative number, and none of the observations are negative, so there are no outliers
on the lower end of the data. However,

q3 þ 1:5iqr ¼ 351:015 and q3 þ 3iqr ¼ 534:24

Thus the four largest observations—563.92, 690.11, 826.54, and 1529.35—are extreme outliers, and
352.09, 371.47, 444.68, and 460.86 are mild outliers.

The whiskers in the boxplot in Figure 1.17 extend out to the smallest observation 9.69 on the low
end and 312.45, the largest observation that is not an outlier, on the upper end. There is some positive
skewness in the middle half of the data (the right edge of the box is somewhat further from the median
line than is the left edge) and a great deal of positive skewness overall.

Placing individual boxplots side by side can reveal similarities and differences between two or
more data sets consisting of observations on the same variable.

Example 1.18 Chronic kidney disease (CKD) affects vital systems throughout the body, including
the production of fibrinogen, a protein that helps in the formation of blood clots. (Both too much and
too little fibrinogen are dangerous.) The article “Comparison of Platelet Function and Viscoelastic
Test Results between Healthy Dogs and Dogs with Naturally Occurring [CKD]” (Amer. J. Veterinary
Res. 2017: 589-600) compared the fibrinogen levels (mg/dl of blood) in 11 dogs with CKD to 10 dogs
with normal kidney function. Figure 1.18 presents a stem-and-leaf display of the data (some values
were estimated from a graph in the article).

0 200 400 600 800 1000 1200 1400 1600

Daily nitrogen load

Figure 1.17 A boxplot of the nitrogen load data showing mild and extreme outliers ■
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Numerical summary quantities are as follows:

�x ~x s iqr

Healthy 190.7 179.5 57.0 36.0
CKD 353.1 315.0 179.7 107.5

The values of the mean and median suggest that fibrinogen levels are much higher in dogs with
CKD than in healthy dogs. Moreover, the variability in fibrinogen levels is much greater in the
unhealthy dogs: the interquartile range for dogs with CKD (107.5 mg/dl) is nearly triple the value for
healthy dogs. Figure 1.19 shows side-by-side boxplots from the JMP software package. There is
obviously a systematic tendency for fibrinogen levels to be higher in the CKD group than the healthy
group, and there is much more variability in the former group than in the latter one. Aside from the
single outlier in each group, there is a reasonable amount of symmetry in both distributions.

The authors of the article conclude that chronic kidney disease in dogs can lead to “hypercoag-
ulability” (i.e., overclotting), which presents very serious health risks. ■

Healthy dogs Dogs with CKD

8776 89
50 79

123

tem: Hundreds digit
eaf: Tens digit

9 0
6 1

2 5
1 3

4 1
5 0
6 S
7 L
8 2

Figure 1.18 Stem-and-leaf display for Example 1.18

Figure 1.19 Comparative boxplots of the data in Example 1.18, from JMP
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Exercises: Section 1.4 (52–72)

52. Here is the data on fibrinogen levels
(mg/dl) for 10 healthy dogs and 11 dogs
with chronic kidney disease discussed in
Example 1.18:

Healthy: 99 160 165 170 178 181 190 201
250 313

CKD: 183 190 250 275 290 315 320 330
410 500 821

a. For the data on the 10 healthy dogs,
calculate the range, variance, standard
deviation, quartiles, and interquartile
range.

b. Repeat part (a) for the 11 dogs with
CKD.

53. The article “Oxygen Consumption During
Fire Suppression: Error of Heart Rate
Estimation” (Ergonomics 1991: 1469–
1474) reported the following data on oxy-
gen consumption (mL/kg/min) for a sample
of ten firefighters performing a fire-
suppression simulation:

29.5 49.3 30.6 28.2 28.0 26.3 33.9 29.4 23.5 31.6

Compute the following:

a. The sample range
b. The sample variance s2 from the defi-

nition (by first computing deviations,
then squaring them, etc.)

c. The sample standard deviation
d. s2 using the shortcut method

54. The value of Young’s modulus (GPa) was
determined for cast plates consisting of
certain intermetallic substrates, resulting in
the following sample observations (“Strength
and Modulus of a Molybdenum-Coated
Ti-25Al-10Nb-3U-1Mo Intermetallic,”
J. Mater. Engr. Perform. 1997: 46–50):

116.4 115.9 114.6 115.2 115.8

a. Calculate �x and the deviations from the
mean.

b. Use the deviations calculated in part
(a) to obtain the sample variance and the
sample standard deviation.

c. Calculate s2 by using the computational
formula for the numerator Sxx.

d. Subtract 100 from each observation to
obtain a sample of transformed values.
Now calculate the sample variance of
these transformed values, and compare it
to s2 for the original data. State the
general principle.

55. The accompanying observations on stabi-
lized viscosity (cP) for specimens of a cer-
tain grade of asphalt with 18% rubber added
are from the article “Viscosity Characteris-
tics of Rubber-Modified Asphalts”
(J. Mater. Civil Engr. 1996: 153–156):

2781 2900 3013 2856 2888

a. What are the values of the sample mean
and sample median?

b. Calculate the sample variance using the
computational Formula. [Hint: First
subtract a convenient number from each
observation.]

56. Calculate and interpret the values of the
sample median, sample mean, and sample
standard deviation for the following obser-
vations on fracture strength (MPa, read
from a graph in “Heat-Resistant Active
Brazing of Silicon Nitride: Mechanical
Evaluation of Braze Joints,” Welding J.,
Aug. 1997):

87 93 96 98 105 114 128 131 142 168

57. Exercise 46 in Section 1.3 presented a
sample of 26 escape times for oil workers
in a simulated exercise. Calculate and
interpret the sample standard deviation.
[Hint:

P
xi ¼ 9638 and

P
x2i ¼

3;587;566.]

58. Acrylamide is a potential carcinogen that
forms in certain foods, such as potato chips
and French fries. The FDA analyzed
McDonald’s French fries purchased at
seven different locations; the following are
the resulting acrylamide levels (in micro-
grams per kg of food):
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497 193 328 155 326 245 270

Calculate
P

xi and
P

x2i and then s2 and s.

59. In 1997 a woman sued a computer key-
board manufacturer, charging that her
repetitive stress injuries were caused by the
keyboard (Genessy v. Digital Equipment
Corp.). The jury awarded about $3.5 mil-
lion for pain and suffering, but the court
then set aside that award as being unrea-
sonable compensation. In making this
determination, the court identified a “nor-
mative” group of 27 similar cases and
specified a reasonable award as one within
two standard deviations of the mean of the
awards in the 27 cases. The 27 awards (in
$1000s) were

37 60 75 115 135 140 149 150 238

290 340 410 600 750 750 750 1050 1100

1139 1150 1200 1200 1250 1576 1700 1825 2000

from which
P

xi ¼ 20;179,
P

x2i ¼
24;657;511. What is the maximum possible
amount that could be awarded under the
two standard deviation rule?

60. The US Women’s Swimming Team won
the 1500 m relay at the 2016 Olympic
Games. Here are the completion times, in
seconds, for all eight teams that competed
in the finals:

233:13 235:00 235:01 235:18

235:49 235:66 236:96 239:50

a. Calculate the sample variance and
standard deviation.

b. If the observations were re-expressed in
minutes, what would be the resulting
values of the sample variance and sam-
ple standard deviation? Answer without
actually performing the reexpression.

61. The first four deviations from the mean in a
sample of n = 5 reaction times were .3, .9,
1.0, and 1.3. What is the fifth deviation from
the mean? Give a sample for which these are
the five deviations from the mean.

62. Reconsider the data on recent home sales
(in $1000s) provided in Exercise 40:

525 830 600 180 129
525 350 490 640 475

a. Determine the upper and lower quar-
tiles, and then the iqr.

b. If the two largest sample values, 830
and 640, had instead been 930 and 740,
how would this affect the iqr? Explain.

c. By how much could the observation 129
be increased without affecting the iqr?
Explain.

d. If an 11th observation, x11 = 845, is
added to the sample, what now is the iqr?

63. Reconsider the court awards data presented
in Exercise 59.

a. What are the values of the quartiles, and
what is the value of the iqr?

b. How large or small does an observation
have to be to qualify as an outlier? As
an extreme outlier?

c. Construct a boxplot, and comment on its
features.

64. Here is a stem-and-leaf display of the
escape time data introduced in Exercise 46.

32 55
33 49
34
35 6699
36 34469
37 03345
38 9
39 2347
40 23
41
42 4

a. Determine the value of the interquartile
range.

b. Are there any outliers in the sample?
Any extreme outliers?

c. Construct a boxplot and comment on its
features.

d. By how much could the largest obser-
vation, currently 424, be decreased
without affecting the value of the iqr?
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65. Many people who believe they may be
suffering from the flu visit emergency
rooms, where they are subjected to long
waits and may expose others or themselves
be exposed to various diseases. The article
“Drive-Through Medicine: A Novel Pro-
posal for the Rapid Evaluation of Patients
During an Influenza Pandemic” (Annals
Emerg. Med. 2010: 268–273) described an
experiment to see whether patients could be
evaluated while remaining in their vehicles.
The following total processing times
(min) for 38 individuals were read from a
graph that appeared in the cited article:

9 16 16 17 19 20 20 20
23 23 23 23 24 24 24 24
25 25 26 26 27 27 28 28
29 29 29 30 32 33 33 34
37 43 44 46 48 53

a. Calculate several different measures of
center and compare them.

b. Are there any outliers in this sample?
Any extreme outliers?

c. Construct a boxplot and comment on
any interesting features.

66. Here is summary information on the alco-
hol percentage for a sample of 25 beers:

q1 ¼ 4:35 ~x ¼ 5 q3 ¼ 5:95

The bottom three are 3.20 (Heineken Pre-
mium Light), 3.50 (Amstel light), 4.03
(Shiner Light) and the top three are 7.50
(Terrapin All-American Imperial Pilsner),
9.10 (Great Divide Hercules Double IPA),
11.60 (Rogue Imperial Stout).

a. Are there any outliers in the sample?
Any extreme outliers?

b. Construct a boxplot, and comment on
any interesting features.

67. A company utilizes two different machines
to manufacture parts of a certain type.
During a single shift, a sample of n = 20
parts produced by each machine is

obtained, and the value of a particular
critical dimension for each part is deter-
mined. The comparative boxplot below is
constructed from the resulting data. Com-
pare and contrast the two samples.

85

1

2

95 105 115
Dimension

Machine

68. Blood cocaine concentration (mg/L) was
determined both for a sample of individuals
who had died from cocaine-induced excited
delirium (ED) and for a sample of those
who had died from a cocaine overdose
without excited delirium; survival time for
people in both groups was at most 6 h. The
accompanying data was read from a com-
parative boxplot in the article “Fatal Exci-
ted Delirium Following Cocaine Use”
(J. Forensic Sci. 1997: 25–31).

ED 0 0 0 0 .1 .1
.1 .1 .2 .2 .3 .3
.3 .4 .5 .7 .8 1.0

1.5 2.7 2.8 3.5 4.0 8.9
9.2 11.7 21.0

Non-ED 0 0 0 0 0 .1
.1 .1 .1 .2 .2 .2
.3 .3 .3 .4 .5 .5
.6 .8 .9 1.0 1.2 1.4

1.5 1.7 2.0 3.2 3.5 4.1
4.3 4.8 5.0 5.6 5.9 6.0
6.4 7.9 8.3 8.7 9.1 9.6
9.9 11.0 11.5 12.2 12.7 14.0

16.6 17.8

a. Determine the medians, quartiles, and
iqrs for the two samples.

b. Are there any outliers in either sample?
Any extreme outliers?

c. Construct a comparative boxplot, and use
it as a basis for comparing and contrast-
ing the ED and non-ED samples.
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69. At the beginning of the 2007 baseball season
eachAmerican League team had nine starting
position players (this includes the designated
hitter but not the pitcher). Here are the salaries
for the NewYork Yankees and the Cleveland
Indians in thousands of dollars:

Yankees: 12000 600 491 22709 21600
13000 13000 15000 23429

Indians: 3200 3750 396 383 1000
3750 917 3000 4050

Construct a comparative boxplot and
comment on interesting features. Compare
the salaries of the two teams. (The Indians
won more games than the Yankees in the
regular season and defeated the Yankees in
the playoffs.)

70. The article “E-cigarettes as a Source of
Toxic and Potentially Carcinogenic Metals”
(Environ. Res. 2017: 221–225) reports the
concentration (µg/L) of cadmium, chro-
mium, lead, manganese, and nickel in 10
cartidges for each of five e-cigarette brands.
Here are the lead levels in the 50 cartridges
(some values were estimated from a graph
in the article):

Brand
A 500 623 794 1228 1555

1705 2190 3162 3894 4870
B 3.53 3.67 3.98 10.2 16.4

20.6 34.0 49.1 126 218
C 7.94 14.3 23.8 44.2 59.3

79.3 156 204 219 233
D 3.17 3.45 4.21 4.56 4.95

5.01 5.23 5.34 5.68 5.89
E 4.50 4.89 4.99 5.02 5.06

5.24 6.43 7.09 8.52 9.82

Because the values are on very different
scales, it makes sense to take the loga-
rithms of these values first. Apply a log10()
transformation to these values, construct a
comparative boxplot, and comment on
what you find.

71. The comparative boxplot below of gasoline
vapor coefficients for vehicles in Detroit
appeared in the article “Receptor Modeling
Approach to [Volatile Organic Compound]

Emission Inventory Validation” (J. Envi-
ron. Engr. 1995: 483–490). Discuss any
interesting features.

72. Let x1; . . .; xn be a sample, and let a and b be
constants. Define a new sample y1; . . .; yn
by y1 ¼ ax1 þ b, …, yn ¼ axn þ b.

a. How do the sample variance and stan-
dard deviation of the yi’s relate to the
variance and standard deviation of the
xi’s? Verify your conjectures.

b. Howdoes the iqr of the yi’s relate to the iqr
of the xi’s? Substantiate your assertion.

Supplementary Exercises: (73–96)

73. The article “Correlation Analysis of Stenotic
Aortic Valve Flow Patterns Using Phase
Contrast MRI” (Annals of Biomed. Engr.
2005: 878–887) included the following data
on aortic root diameter (cm) for a sample of
patients having various degrees of aortic
stenosis (i.e., narrowing of the aortic valve):

Males: 3:7 3:4 3:7 4:0 3:9 3:8 3:4 3:6 3:1
4:0 3:4 3:8 3:5

Females: 3:8 2:6 3:2 3:0 4:3 3:5 3:1 3:1
3:2 3:0
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a. Create a comparative stem-and-leaf plot.
b. Calculate an appropriate measure of

center for each set of observations.
c. Compare and contrast the diameter

observations for the two sexes.

74. Consider the following information from a
sample of four Wolferman’s cranberry citrus
English muffins, which are said on the
package label to weigh 116 g: �x = 104.4 g,
s = 4.1497 g, smallest weighs 98.7 g, lar-
gest weighs 108.0 g. Determine the values
of the two middle sample observations (and
don’t do it by successive guessing!).

75. Three different C2F6 flow rates (SCCM)
were considered in an experiment to
investigate the effect of flow rate on the
uniformity (%) of the etch on a silicon
wafer used in the manufacture of integrated
circuits, resulting in the following data:

Flow rate
125 2.6 2.7 3.0 3.2 3.8 4.6
160 3.6 4.2 4.2 4.6 4.9 5.0
200 2.9 3.4 3.5 4.1 4.6 5.1

Compare and contrast the uniformity
observations resulting from these three
different flow rates.

76. The amount of radiation received at a
greenhouse plays an important role in
determining the rate of photosynthesis. The
accompanying observations on incoming
solar radiation were read from a graph in
the article “Radiation Components over
Bare and Planted Soils in a Greenhouse”
(Solar Energy 1990: 1011–1016).

6.3 6.4 7.7 8.4 8.5 8.8 8.9
9.0 9.1 10.0 10.1 10.2 10.6 10.6

10.7 10.7 10.8 10.9 11.1 11.2 11.2
11.4 11.9 11.9 12.2 13.1

Use some of the methods discussed in this
chapter to describe and summarize this data.

77. The article “Motor Vehicle Emissions
Variability” (J. Air Waste Manag. Assoc.
1996: 667–675) reported the following

hydrocarbon and carbon dioxide measure-
ments using the Federal Testing Procedure
for emissions-testing, applied four times
each to the same car:

HC (g/mile): 13.8 18.3 32.2 32.5
CO (g/mile): 118 149 232 236

a. Compute the sample standard deviations
for the HC and CO observations. Why
should it not be surprising that the CO
measurements have a larger standard
deviation?

b. The sample coefficient of variation s=�x
(or 100 � s=�x) assesses the extent of
variability relative to the mean. Values
of this coefficient for several different
data sets can be compared to determine
which data sets exhibit more or less
variation. Carry out such a comparison
for the given data.

78. The cost-to-charge ratio for a hospital is
the ratio of the actual cost of care to what
the hospital charges for that care. In 2008,
the Kentucky Department of Health and
Family Services reported the following
cost-to-charge ratios, expressed as percents,
for 116 Kentucky hospitals:

52.9 49.7 58.1 41.4 66.5 44.1 53.0 49.1
59.8 47.1 44.3 52.3 60.5 59.9 47.1 62.4
47.3 62.1 52.1 47.8 65.1 42.9 38.5 65.9
51.3 52.6 44.9 47.8 60.2 56.4 67.6 31.9
53.9 50.6 72.5 47.8 50.5 25.1 45.0 86.0
53.7 61.2 63.4 51.5 48.6 42.1 49.3 50.0
66.4 64.6 47.4 48.1 45.8 64.7 58.7 56.9
45.9 82.9 46.0 51.0 67.0 49.3 69.5 56.5
55.0 39.2 85.0 46.7 41.6 45.4 71.2 42.7
46.9 39.2 55.3 46.1 43.2 67.7 60.6 68.2
81.6 39.2 54.7 63.5 67.9 50.9 40.4 49.0
54.4 39.2 43.2 43.2 51.7 48.4 50.7 59.4
49.7 60.2 40.2 62.3 41.4 48.6 45.6 46.2
51.4 65.3 31.5 50.6 41.4 82.3 45.2 46.0
58.3 46.3 38.2 59.1

(For example, a cost-to-charge ratio of
53.0% means the actual cost of care is 53%
of what the hospital charges.) Use various
techniques discussed in this chapter to
organize, summarize, and describe the data.
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79. Fifteen air samples from a certain region
were obtained, and for each one the carbon
monoxide concentration was determined.
The results (in ppm) were

9.3 10.7 8.5 9.6 12.2 15.6 9.2 10.5
9.0 13.2 11.0 8.8 13.7 12.1 9.8

Using the interpolation method suggested
in Section 1.3, compute the 10% trimmed
mean.

80. a. For what value of c is the quantityP ðxi � cÞ2 minimized? [Hint: Take the
derivative with respect to c, set equal to
0, and solve.]

b. Using the result of part (a), which of

the two quantities
P ðxi � �xÞ2 andP ðxi � lÞ2 will be smaller than the

other (assuming that �x 6¼ l)?

81. The article “A Longitudinal Study of the
Development of Elementary School Chil-
dren’s Private Speech” (Merrill-Palmer Q.
1990: 443–463) reported on a study of
children talking to themselves (private
speech). It was thought that private speech
would be related to IQ, because IQ is sup-
posed to measure mental maturity, and it
was known that private speech decreases
as students progress through the primary
grades. The study included 33 stu-
dents whose first-grade IQ scores are given
here:

82 96 99 102 103 103 106 107 108 108
108 108 109 110 110 111 113 113 113 113
115 115 118 118 119 121 122 122 127 132
136 140 146

Use various techniques discussed in this
chapter to organize, summarize, and describe
the data.

82. The accompanying specific gravity values
for various wood types used in construction
appeared in the article “Bolted Connection
Design Values Based on European Yield
Model” (J. Struct. Engr. 1993: 2169–2186):

.31 .35 .36 .36 .37 .38 .40 .40 .40

.41 .41 .42 .42 .42 .42 .42 .43 .44

.45 .46 .46 .47 .48 .48 .48 .51 .54

.54 .55 .58 .62 .66 .66 .67 .68 .75

Construct a stem-and-leaf display using
repeated stems, and comment on any
interesting features of the display.

83. In recent years, some evidence suggests
that high indoor radon concentration may
be linked to the development of childhood
cancers, but many health professionals
remain unconvinced. The article “Indoor
Radon and Childhood Cancer” (Lancet
1991: 1537–1538) presented the accompa-
nying data on radon concentration (Bq/m3)
in two different samples of houses. The first
sample consisted of houses in which a child
diagnosed with cancer had been residing.
Houses in the second sample had no
recorded cases of childhood cancer.

Cancer: 3 5 6 7 8 9 9 10 10 10
11 11 11 11 12 13 13 15 15 15
16 16 16 17 18 18 18 20 21 21
22 22 23 23 27 33 34 38 39 45
57 210

No cancer: 3 3 5 6 6 7 7 7 8 8
9 9 9 9 11 11 11 11 11 12
12 13 14 17 17 21 21 24 24 29
29 29 29 33 38 39 55 55 85

a. Construct a side-by-side stem-and-leaf
display, and comment on any interesting
features.

b. Calculate the standard deviation of each
sample. Which sample appears to have
greater variability, according to these
values?

c. Calculate the iqr for each sample. Now
which sample has greater variability, and
why is this different than the result of part
(b)?

84. Elevated energy consumption during exer-
cise continues after the workout ends.
Because calories burned after exercise con-
tribute to weight loss and have other conse-
quences, it is important to understand this
process. The paper “Effect of Weight
Training Exercise and Treadmill Exercise on
Post-Exercise Oxygen Consumption” (Med.
Sci. Sports Exercise 1998: 518–522) repor-
ted the accompanying data from a study in
which oxygen consumption (liters) was
measured continuously for 30 min for each
of 15 subjects both after a weight training
exercise and after a treadmill exercise.
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a. Construct side-by-side boxplots of the
weight and treadmill observations, and
comment on what you see.

b. Because the data is in the form of
(x, y) pairs, with x and y measurements
on the same variable under two different
conditions, it is natural to focus on the
differences within pairs: d1 = x1 − y1,
…, dn = xn − yn. Construct a boxplot of
the sample differences. What does it
suggest?

Subject 1 2 3 4 5 6

Weight (x) 14.6 14.4 19.5 24.3 16.3 22.1
Treadmill (y) 11.3 5.3 9.1 15.2 10.1 19.6

Subject 7 8 9 10 11 12

Weight (x) 23.0 18.7 19.0 17.0 19.1 19.6
Treadmill (y) 20.8 10.3 10.3 2.6 16.6 22.4

Subject 13 14 15

Weight (x) 23.2 18.5 15.9
Treadmill (y) 23.6 12.6 4.4

85. Anxiety disorders and symptoms can often
be effectively treated with benzodiazepine
medications. It is known that animals
exposed to stress exhibit a decrease in
benzodiazepine receptor binding in the
frontal cortex. The paper “Decreased Ben-
zodiazepine Receptor Binding in Prefrontal
Cortex in Combat-Related Posttraumatic
Stress Disorder” (Amer. J. Psychiatry 2000:
1120–1126) described the first study of
benzodiazepine receptor binding in indi-
viduals suffering from PTSD. The accom-
panying data on a receptor binding measure
(adjusted distribution volume) was read
from a graph in the paper.

PTSD: 10 20 25 28 31 35 37 38 38 39 39 42 46

Healthy: 23 39 40 41 43 47 51 58 63 66 67 69 72

Use various methods from this chapter to
describe and summarize the data.

86. The article “Can We Really Walk
Straight?” (Amer. J. Phys. Anthropol. 1992:
19–27) reported on an experiment in which
each of 20 healthy men was asked to walk
as straight as possible to a target 60 m away
at normal speed. Consider the following

observations on cadence (number of strides
per second):

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

Use themethods developed in this chapter to
summarize the data; include an interpreta-
tion or discussion wherever appropriate.
[Note: The author of the article used a rather
sophisticated statistical analysis to conclude
that people cannot walk in a straight line and
suggested several explanations for this.]

87. The mode of a numerical data set is the
value that occurs most frequently in the set.

a. Determine the mode for the cadence
data given in the previous exercise.

b. For a categorical sample, how would
you define the modal category?

88. Specimens of three different types of rope
wire were selected, and the fatigue limit
(MPa) was determined for each specimen,
resulting in the accompanying data.

Type 1: 350 350 350 358 370 370 370 371
371 372 372 384 391 391 392

Type 2: 350 354 359 363 365 368 369 371
373 374 376 380 383 388 392

Type 3: 350 361 362 364 364 365 366 371
377 377 377 379 380 380 392

a. Construct a comparative boxplot, and
comment on similarities and differences.

b. Construct a comparative dotplot (a
dotplot for each sample with a common
scale). Comment on similarities and
differences.

c. Does the comparative boxplot of part
(a) give an informative assessment of
similarities and differences? Explain
your reasoning.

89. The three measures of center introduced in
this chapter are the mean, median, and
trimmed mean. Two additional measures of
center that are occasionally used are the
midrange, which is the average of the
smallest and largest observations, and the
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midquarter, which is the average of the two
quartiles. Which of these five measures of
center are resistant to the effects of outliers
and which are not? Explain your reasoning.

90. The authors of the article “Predictive Model
for Pitting Corrosion in Buried Oil and Gas
Pipelines” (Corrosion 2009: 332–342)
provided the data on which their investi-
gation was based.

a. Consider the following sample of 61
observations on maximum pitting depth
(mm) of pipeline specimens buried in
clay loam soil.

0.41 0.41 0.41 0.41 0.43 0.43 0.43 0.48 0.48
0.58 0.79 0.79 0.81 0.81 0.81 0.91 0.94 0.94
1.02 1.04 1.04 1.17 1.17 1.17 1.17 1.17 1.17
1.17 1.19 1.19 1.27 1.40 1.40 1.59 1.59 1.60
1.68 1.91 1.96 1.96 1.96 2.10 2.21 2.31 2.46
2.49 2.57 2.74 3.10 3.18 3.30 3.58 3.58 4.15
4.75 5.33 7.65 7.70 8.13 10.41 13.44

Construct a stem-and-leaf display in which
the two largest values are shown in a last
row labeled HI.

b. Refer back to (a), and create a his-
togram based on eight classes with 0 as
the lower limit of the first class and
class widths of .5, .5, .5, .5, 1, 2, 5, and
5, respectively.

c. The accompanying comparative boxplot
shows plots of pitting depth for four
different types of soils. Describe its
important features.

91. Consider a sample x1, x2, …, xn and sup-
pose that the values of �x, s2, and s have
been calculated.

a. Let yi ¼ xi � �x for i = 1, …, n. How do
the values of s2 and s for the yi’s com-
pare to the corresponding values for the
xi’s? Explain.

b. Let zi ¼ ðxi � �xÞ=s for i = 1,…, n.What are
the values of the sample variance and
sample standard deviation for the zi’s?

92. Let �xn and s2n denote the sample mean and
variance for the sample x1,…, xn and let�xnþ 1

and s2nþ 1 denote these quantities when an
additional observation xn+1 is added to the
sample.

a. Show how �xnþ 1 can be computed from
�xn and xn+1.

b. Show that

ns2nþ 1 ¼ ðn� 1Þs2n þ
n

nþ 1
ðxnþ 1 � �xnÞ2

so that s2nþ 1 can be computed from
xn+1, �xn, and s2n.

c. Suppose that a sample of 15 strands of
drapery yarn has resulted in a sample
mean thread elongation of 12.58 mm
and a sample standard deviation of
.512 mm. A 16th strand results in an
elongation value of 11.8. What are the
values of the sample mean and sample
standard deviation for all 16 elongation
observations?

93. Lengths of bus routes for any particular
transit system will typically vary from one
route to another. The article “Planning of
City Bus Routes” (J. Institut. Engr. 1995:
211–215) gives the following information
on lengths (km) for one particular system:

Length: 6–8 8–10 10–12 12–14 14–16
Frequency: 6 23 30 35 32
Length: 16–18 18–20 20–22 22–24 24–26
Frequency: 48 42 40 28 27
Length: 26–28 28–30 30–35 35–40 40–45
Frequency: 26 14 27 11 2C CL SCL SYCL
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a. Draw a histogram corresponding to
these frequencies.

b. What proportion of these route lengths
are less than 20? What proportion of
these routes have lengths of at least 30?

c. Roughly what is the value of the 90th
percentile of the route length distribution?

d. Roughly what is the median route
length?

94. A study carried out to investigate the dis-
tribution of total braking time (reaction
time plus accelerator-to-brake movement
time, in msec) during real driving condi-
tions at 60 km/h gave the following sum-
mary information on the distribution of
times (“A Field Study on Braking
Responses during Driving,” Ergonomics
1995: 1903–1910):

mean = 535 median = 500 mode = 500
sd = 96 minimum = 220 maximum = 925
5th percentile = 400 10th percentile = 430
90th percentile = 640 95th percentile = 720

What can you conclude about the shape of
a histogram of this data? Explain your
reasoning.

95. The sample data x1, x2, …, xn sometimes
represents a time series, where xt = the
observed value of a response variable x at
time t. Often the observed series shows a
great deal of random variation, which makes
it difficult to study longer-term behavior. In
such situations, it is desirable to produce a
smoothed version of the series. One tech-
nique for doing so involves exponential
smoothing. The value of a smoothing con-
stant a is chosen (0 < a < 1). Then with �xt
defined as the smoothed value at time t, we
set �x1 ¼ x1, and for t = 2, 3, …, n, �xt ¼
axt þ 1� að Þ�xt�1.

a. Consider the following time series in
which xt = temperature (°F) of effluent
at a sewage treatment plant on day t: 47,

54, 53, 50, 46, 46, 47, 50, 51, 50, 46,
52, 50, 50. Plot each xt against t on a
two-dimensional coordinate system (a
time series plot). Does there appear to
be any pattern?

b. Calculate the �xt’s using a = .1. Repeat
using a = .5. Which value of a gives a
smoother �xt series?

c. Substitute �xt�1 ¼ axt�1 þ 1� að Þ�xt�2

on the right-hand side of the expression
for �xt, then substitute �xt�2 in terms of
xt�2 and �xt�3, and so on. On how many
of the values xt, xt–1, …, x1 does �xt
depend? What happens to the coefficient
on xt−k as k increases?

d. Refer to part (c). If t is large, how sen-
sitive is �xt to the initialization �x1 ¼ x1?
Explain.

96. Consider numerical observations x1; . . .; xn:
It is frequently of interest to know whether
the xi’s are (at least approximately) sym-
metrically distributed about some value. If
n is at least moderately large, the extent of
symmetry can be assessed from a stem-and-
leaf display or histogram. However, if n is
not very large, such pictures are not partic-
ularly informative. Consider the follow-
ing alternative. Let y1 denote the smallest
xi, y2 the second-smallest xi, and so on.
Then plot the following pairs as points on a
two-dimensional coordinate system: ðyn � ~x;
~x� y1Þ, ðyn�1 � ~x;~x� y2Þ, ðyn�2 � ~x;~x� y3Þ,
…. There are n/2 points when n is even and
(n − 1)/2 when n is odd.

a. What does this plot look like when there
is perfect symmetry in the data? What
does it look like when observations
stretch out more above the median than
below it (a long upper tail)?

b. Construct the plot for the nitrogen data
presented in Example 1.17, and com-
ment on the extent of symmetry or nat-
ure of departure from symmetry.
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2Probability

Introduction
The term probability refers to the study of randomness and uncertainty. In any situation in which one
of a number of possible outcomes may occur, the theory of probability provides methods for
quantifying the chances, or likelihoods, associated with the various outcomes. The language of
probability is constantly used in an informal manner in both written and spoken contexts. Examples
include such statements as “It is likely that the Dow Jones Industrial Average will increase by the end
of the year,” “There is a 50–50 chance that the incumbent will seek reelection,” “There will probably
be at least one section of that course offered next year,” “The odds favor a quick settlement of the
strike,” and “It is expected that at least 20,000 concert tickets will be sold.” In this chapter, we
introduce some elementary probability concepts, indicate how probabilities can be interpreted, and
show how the rules of probability can be applied to compute the probabilities of many interesting
events. The methodology of probability will then permit us to express in precise language such
informal statements as those given above.

The study of probability as a branch of mathematics goes back over 300 years, where it had its
genesis in connection with questions involving games of chance. Many books are devoted exclusively
to probability and explore in great detail numerous interesting aspects and applications of this lovely
branch of mathematics. Our objective here is more limited in scope: We will focus on those topics
that are central to a basic understanding and also have the most direct bearing on problems of
statistical inference.

2.1 Sample Spaces and Events

In probability, an experiment refers to any action or activity whose outcome is subject to uncertainty.
Although the word experiment generally suggests a planned or carefully controlled laboratory testing
situation, we use it here in a much wider sense. Thus experiments that may be of interest include
tossing a coin once or several times, selecting a card or cards from a deck, weighing a loaf of bread,
measuring the commute time from home to work on a particular morning, determining blood types
from a group of individuals, or calling people to conduct a survey.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. L. Devore et al., Modern Mathematical Statistics with Applications,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-030-55156-8_2
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The Sample Space of an Experiment

DEFINITION The sample space of an experiment, denoted by S , is the set of all possible
outcomes of that experiment.

Example 2.1 The simplest experiment to which probability applies is one with two possible out-
comes. One such experiment consists of examining a single fuse to see whether it is defective. The
sample space for this experiment can be abbreviated as S = {N, D}, where N represents not defective,
D represents defective, and the braces are used to enclose the elements of a set. Another such
experiment would involve tossing a thumbtack and noting whether it landed point up or point down,
with sample space S = {U, D}, and yet another would consist of observing the sex assigned to the next
child born at the local hospital, with S = {M, F} . ■

Example 2.2 If we examine three fuses in sequence and note the result of each examination, then an
outcome for the entire experiment is any sequence of N’s and D’s of length 3, so

S = {NNN, NND, NDN, NDD, DNN, DND, DDN, DDD} 

If we had tossed a thumbtack three times, the sample space would be obtained by replacing N by U in
S above. A similar notational change would yield the sample space for the experiment in which the
assigned sexes of three newborn children are observed. ■

Example 2.3 Two gas stations are located at a certain intersection. Each one has six gas pumps.
Consider the experiment in which the number of pumps in use at a particular time of day is observed
for each of the stations. An experimental outcome specifies how many pumps are in use at the first
station and how many are in use at the second one. One possible outcome is (2, 2), another is (4, 1),
and yet another is (1, 4). The 49 outcomes in S are displayed in the accompanying table.

First station

Second station

0 1 2 3 4 5 6

0 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)
1 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

The sample space for the experiment in which a six-sided die is thrown twice results from deleting
the 0 row and 0 column from the table, giving 36 outcomes. ■

Example 2.4 If a new cell phone battery has a voltage that is outside certain limits, that battery is
characterized as a failure (F); if the battery has a voltage within the prescribed limits, it is a success
(S). Suppose an experiment consists of testing each battery as it comes off an assembly line until we
first observe a success. Although it may not be very likely, a possible outcome of this experiment is
that the first 10 (or 100 or 1000 or…) are F’s and the next one is an S. That is, for any positive integer
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n, we may have to examine n batteries before seeing the first S. The sample space is
S = {S, FS, FFS, FFFS, …}, which contains an infinite number of possible outcomes. The same
abbreviated form of the sample space is appropriate for an experiment in which, starting at a specified
time, the sex of each newborn infant at a hospital is recorded until the birth of a female is observed. ■

Events
In our study of probability, we will be interested not only in the individual outcomes but also in
various collections of outcomes from S .

DEFINITION An event is any collection (subset) of outcomes contained in the sample space S .
An event is said to be simple if it consists of exactly one outcome and compound
if it consists of more than one outcome.

When an experiment is performed, a particular event A is said to occur if the resulting experimental
outcome is contained in A. In general, exactly one simple event will occur, but many compound
events will occur simultaneously.

Example 2.5 Consider an experiment in which each of three vehicles taking a particular freeway
exit turns left (L) or right (R) at the end of the off-ramp. The eight possible outcomes that comprise the
sample space are LLL, RLL, LRL, LLR, LRR, RLR, RRL, and RRR. Thus there are eight simple events,
among which are E1 = {LLL} and E5 = {LRR}. Some compound events include

A = {RLL, LRL, LLR} = the event that exactly one of the three vehicles turns right
B = {LLL, RLL, LRL, LLR} = the event that at most one of the vehicles turns right
C = {LLL, RRR} = the event that all three vehicles turn in the same direction.

Suppose that when the experiment is performed, the outcome is LLL. Then the simple event E1 has
occurred and so also have the events B and C, but not A. ■

Example 2.6 (Example 2.3 continued) When the number of pumps in use at each of two six-pump
gas stations is observed, there are 49 possible outcomes, so there are 49 simple events: E1 ¼ fð0; 0Þg,
E2 ¼ fð0; 1Þg; . . .;E49 ¼ fð6; 6Þg. Examples of compound events are

A = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} = the event that the number of pumps in use is
the same for both stations

B = {(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)} = the event that the total number of pumps in use is four
C = {(0, 0), (0, 1), (1, 0), (1, 1)} = the event that at most one pump is in use at each station. ■

Example 2.7 (Example 2.4 continued) The sample space for the cell phone battery experiment
contains an infinite number of outcomes, so there are an infinite number of simple events. Compound
events include

A = {S, FS, FFS} = the event that at most three batteries are examined
B = {S, FFS, FFFFS} = the event that exactly one, three, or five batteries are examined
C = {FS, FFFS, FFFFFS, …} = the event that an even number of batteries are examined. ■

Some Relations from Set Theory
An event is nothing but a set, so relationships and results from elementary set theory can be used to
study events. The following operations will be used to construct new events from given events.
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DEFINITION 1. The complement of an event A, denoted by A′, is the set of all outcomes in S that
are not contained in A.

2. The intersection of two events A and B, denoted by A\B and read “A and B,” is
the event consisting of all outcomes that are in both A and B.

3. The union of two events A and B, denoted by A[B and read “A or B,” is the
event consisting of all outcomes that are either in A or in B or in both events (so
that the union includes outcomes for which both A and B occur as well as
outcomes for which exactly one occurs)—that is, all outcomes in at least one of
the events.

Example 2.8 (Example 2.3 continued) For the experiment in which the number of pumps in use at a
single six-pump gas station is observed, let A = {0, 1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {1, 3, 5}.
Then

A B = {0, 1, 2, 3, 4, 5, 6} = S A C = {0, 1, 2, 3, 4, 5} 
A B = {3, 4}          A C = {1, 3}      A' = {5, 6}      (A C)' = {6} ■

Example 2.9 (Example 2.4 continued) In the cell phone battery experiment, define A, B, and C as in
Example 2.7. Then

A[B ¼ fS;FS;FFS;FFFFSg
A\B ¼ fS;FFSg

A0 ¼ FFFS;FFFFS;FFFFFS; . . .f g

and

C0 ¼ fS;FFS;FFFFS; . . .g ¼ the event that an odd number of batteries are examined. �

The complement, intersection, and union operators from set theory correspond to the not, and, and or
operators from computer science. Readers with prior programming experience may be aware of an
important relationship between these three operators, first discovered by 19-century British mathe-
matician Augustus De Morgan.

DE MORGAN’S LAWS Let A and B be two events in the sample space of some experiment.
Then

ðA[BÞ0 ¼ A0 \B0

ðA\BÞ0 ¼ A0 [B0

De Morgan’s laws state that the complement of a union is an intersection, and the complement of an
intersection is a union (see Exercise 11).

Sometimes A and B have no outcomes in common, so that the intersection of A and B contains no
outcomes.

1.

2.
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DEFINITION When A and B have no outcomes in common, they are said to be disjoint or
mutually exclusive events. Mathematicians write this compactly as A\B = ∅,
where ∅ denotes the event consisting of no outcomes whatsoever (the “null” or
“empty” event).

Example 2.10 A small city has three automobile dealerships: a GM dealer selling Chevrolets and
Buicks; a Ford dealer selling Fords and Lincolns; and a Chrysler dealer selling Rams and Jeeps. If an
experiment consists of observing the brand of the next vehicle sold, then the events A = {Chevrolet,
Buick} and B = {Ford, Lincoln} are mutually exclusive, because the next vehicle sold cannot be both
a GM product and a Ford product. ■

Venn diagrams are often used to visually represent sample spaces and events. To construct a
Venn diagram, draw a rectangle whose interior will represent the sample space S . Then any event A is
represented as the interior of a closed curve (often a circle) contained in S . Figure 2.1 shows examples
of Venn diagrams.

The operations of union and intersection can be extended to more than two events. For any three
events A, B, and C, the event A\B\C is the set of outcomes contained in all three events, whereas
A[B[C is the set of outcomes contained in at least one of the three events. A collection of several
events is said to be mutually exclusive (or pairwise disjoint) if no two events have any outcomes in
common. De Morgan’s laws also extend; e.g. (A[B[C)′ = A′\B′\C′.

A B A BA B
A

A B

Shaded region
is A'

Figure 2.1 Venn diagrams

Exercises Section 2.1 (1–12)

1. Ann and Bev have each applied for several
jobs at a local university. Let A be the event
that Ann is hired, and let B be the event that
Bev is hired. Express in terms of A and
B the following events:

a. Ann is hired but not Bev.
b. At least one of them is hired.
c. Exactly one of them is hired.

2. Two voters, Al and Bill, are each choosing
between one of three candidates—1, 2, and
3—who are running for city council. An
experimental outcome specifies both Al’s
choice and Bill’s choice, e.g., the pair (3, 2).

a. List all elements of S .
b. List all outcomes in the event A that Al

and Bill make the same choice.
c. List all outcomes in the event B that

neither of them votes for candidate 2.

3. Four universities—1, 2, 3, and 4—are par-
ticipating in a holiday basketball tournament.
In the first round, 1 will play 2 and 3 will play
4. Then the two winners will play for the
championship, and the two losers will also
play. One possible outcome can be denoted
by 1324: 1 beats 2 and 3 beats 4 in first-round
games, and then 1 beats 3 and 2 beats 4.
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a. List all outcomes in S .
b. Let A denote the event that 1 wins the

tournament. List outcomes in A.
c. Let B denote the event that 2 gets into

the championship game. List outcomes
in B.

d. What are the outcomes in A[B and in
A\B? What are the outcomes in A′?

4. Suppose that vehicles taking a particular
freeway exit can turn right (R), turn left (L),
or go straight (S). Consider observing the
direction for each of three successive
vehicles.

a. List all outcomes in the event A that all
three vehicles go in the same direction.

b. List all outcomes in the event B that all
three vehicles take different directions.

c. List all outcomes in the event C that
exactly two of the three vehicles turn
right.

d. List all outcomes in the event D that
exactly two vehicles go in the same
direction.

e. List the outcomes in D′, C[D, and
C\D.

5. Three components are connected to form a
system as shown in the accompanying
diagram. Because the components in the
2–3 subsystem are connected in parallel,
that subsystem will function if at least one
of the two individual components func-
tions. For the entire system to function,
component 1 must function and so must the
2–3 subsystem.

The experiment consists of determining the
condition of each component: S (success) for
a functioning component and F (failure) for a
nonfunctioning component.

a. What outcomes are contained in the
event A that exactly two out of the three
components function?

b. What outcomes are contained in the
event B that at least two of the compo-
nents function?

c. What outcomes are contained in the
event C that the system functions?

d. List outcomes in C′, A[C, A\C,
B[C, and B\C.

6. Each of a sample of four home mortgages
is classified as fixed rate (F) or variable
rate (V).

a. What are the 16 outcomes in S?
b. Which outcomes are in the event that

exactly three of the selected mortgages
are fixed rate?

c. Which outcomes are in the event that all
four mortgages are of the same type?

d. Which outcomes are in the event that at
most one of the four is a variable rate
mortgage?

e. What is the union of the events in parts
(c) and (d), and what is the intersection
of these two events?

f. What are the union and intersection of
the two events in parts (b) and (c)?

7. A family consisting of three persons—A, B,
and C—belongs to a medical clinic that
always has a doctor at each of stations 1, 2,
and 3. During a certain week, each member
of the family visits the clinic once and is
assigned at random to a station. The
experiment consists of recording the station
number for each member. One outcome is
(1, 2, 1) for A to station 1, B to station 2,
and C to station 1.

a. List the 27 outcomes in the sample
space.

b. List all outcomes in the event that all
three members go to the same station.

c. List all outcomes in the event that all
members go to different stations.

d. List all outcomes in the event that no
one goes to station 2.

2

1

3
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8. A college library has five copies of a certain
text on reserve. Copies 1 and 2 are first
printings, whereas 3, 4, and 5 are second
printings. A student examines these books
in random order, stopping only when a
second printing has been selected. One
possible outcome is 5, and another is 213.

a. List the outcomes in S .
b. Let A denote the event that exactly one

book must be examined. What out-
comes are in A?

c. Let B be the event that book 5 is the one
selected. What outcomes are in B?

d. Let C be the event that book 1 is not
examined. What outcomes are in C?

9. An academic department has just com-
pleted voting by secret ballot for a depart-
ment head. The ballot box contains four
slips with votes for candidate A and three
slips with votes for candidate B. Suppose
these slips are removed from the box one
by one.

a. List all possible outcomes.
b. Suppose a running tally is kept as slips

are removed. For what outcomes does
A remain ahead of B throughout the
tally?

10. A construction firm is currently working on
three different buildings. Let Ai denote the
event that the ith building is completed by
the contract date. Use the operations of

union, intersection, and complementation to
describe each of the following events in
terms of A1, A2, and A3, draw a Venn dia-
gram, and shade the region corresponding
to each one.

a. At least one building is completed by
the contract date.

b. All buildings are completed by the
contract date.

c. Only the first building is completed by
the contract date.

d. Exactly one building is completed by
the contract date.

e. Either the first building or both of the
other two buildings are completed by
the contract date.

11. Use Venn diagrams to verify De Morgan’s
laws:
a. ðA[BÞ0 ¼ A0 \B0

b. ðA\BÞ0 ¼ A0 [B0

12. a. In Example 2.10, identify three events
that are mutually exclusive.

b. Suppose there is no outcome common
to all three of the events A, B, and
C. Are these three events necessarily
mutually exclusive? If your answer is
yes, explain why; if your answer is no,
give a counterexample using the exper-
iment of Example 2.10.

2.2 Axioms, Interpretations, and Properties of Probability

Given an experiment and its sample space S , the objective of probability is to assign to each event A a
number P(A), called the probability of the event A, which will give a precise measure of the chance
that A will occur. To ensure that the probability assignments will be consistent with our intuitive notions
of probability, all assignments must satisfy the following axioms (basic properties) of probability.

For any event A, P(A) ≥ 0.
P(S ) = 1.
If A1, A2, A3, . . . is an infinite collection of disjoint events, then




1 )(( )
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Axiom 1 reflects the intuitive notion that the chance of A occurring should be nonnegative. The
sample space is by definition the event that must occur when the experiment is performed (S contains
all possible outcomes), so Axiom 2 says that the maximum possible probability of 1 is assigned to S .
The third axiom formalizes the idea that if we wish the probability that at least one of a number of
events will occur, and no two of the events can occur simultaneously, then the chance of at least one
occurring is the sum of the chances of the individual events.

You might wonder why the third axiom contains no reference to a finite collection of disjoint
events. It is because the corresponding property for a finite collection can be derived from our three
axioms. We want our axiom list to be as short as possible and not contain any property that can be
derived from others on the list.

PROPOSITION P(∅) = 0, where ∅ is the null event. This, in turn, implies that the property
contained in Axiom 3 is valid for a finite collection of events.

Proof First consider the infinite collection A1 = ∅, A2 = ∅, A3 = ∅, …. Since ∅\∅ = ∅, the
events in this collection are disjoint and [Ai = ∅. Axiom 3 then gives

Pð£Þ ¼
X

Pð£Þ

This can happen only if P(∅) = 0.
Now suppose that A1, A2, …, Ak are disjoint events, and append to these the infinite collection

Ak+1 = ∅, Ak+2 = ∅, Ak+3 = ∅, …. Then the events A1, A2, …, Ak, Ak+1,… are disjoint, since
A\∅ = ∅ for all events. Again invoking Axiom 3,

P
[k
i¼1

Ai

 !
¼ P

[1
i¼1

Ai

 !
¼
X1
i¼1

PðAiÞ ¼
Xk
i¼1

PðAiÞþ
X1

i¼kþ 1

PðAiÞ ¼
Xk
i¼1

PðAiÞþ
X1

i¼kþ 1

0 ¼
Xk
i¼1

PðAiÞ

as desired. ■

Example 2.11 Consider evaluating a refurbished hard drive with a certifier. The certifier either
deems the drive acceptable (the outcome A) or unacceptable (the outcome U). The sample space for
this event is therefore S = {A, U}. The axioms specify P(S ) = 1, so the probability assignment will be
completed by determining P(A) and P(U). Since A and U are disjoint and their union is S , the
foregoing proposition implies that

1 = P(S ) = P(A) + P(U) 

It follows that P(U) = 1 – P(A). One possible assignment of probabilities is P(A) = .5, P(U) = .5,
whereas another possible assignment is P(A) = .75, P(U) = .25. In fact, letting p represent any fixed
number between 0 and 1, P(A) = p, P(U) = 1 – p is an assignment consistent with the axioms. ■

Example 2.12 (Example 2.4 continued) Consider testing cell phone batteries coming off an
assembly line one by one until a battery having a voltage within prescribed limits is found. The
simple events are E1 = {S}, E2 = {FS}, E3 = {FFS}, E4 = {FFFS}, …. Suppose the probability of
any particular battery being satisfactory is .99. Then it can be shown that the probability assignment
P(E1) = .99, P(E2) = (.01)(.99), P(E3) = (.01)2(.99),… satisfies the axioms. In particular, because the
Ei’s are disjoint and S = E1 E2 E3 …, Axioms 2 and 3 require that
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P(S ) = P(E1) + P(E2) + P(E3) + · · · 1 = = .99[1 + .01 + (.01)2 + (.01)3 + · · ·]

This can be verified using the formula for the sum of a geometric series:

aþ arþ ar2 þ ar3 þ � � � ¼ a

1� r

However, another legitimate (according to the axioms) probability assignment of the same “geometric”
type is obtained by replacing .99 by any other number p between 0 and 1 (and .01 by 1 − p). ■

Interpreting Probability
Examples 2.11 and 2.12 show that the axioms do not completely determine an assignment of
probabilities to events. The axioms serve only to rule out assignments inconsistent with our intuitive
notions of probability. In the certifier experiment of Example 2.11, two particular assignments were
suggested. The appropriate or correct assignment depends on the nature of the refurbished hard drives
and also on one’s interpretation of probability. The interpretation that is most frequently used and
most easily understood is based on the notion of relative frequencies.

Consider an experiment that can be repeatedly performed in an identical and independent fashion,
and let A be an event consisting of a fixed set of outcomes of the experiment. Simple examples of
such repeatable experiments include the tack-tossing and die-rolling experiments previously dis-
cussed. If the experiment is performed n times, on some of the replications the event A will occur (the
outcome will be in the set A), and on others, A will not occur. Let n(A) denote the number of
replications on which A does occur. Then the ratio n(A)/n is called the relative frequency of occur-
rence of the event A in the sequence of n replications.

For example, let A be the event that a flight arrives on time at a certain airport. The results of ten
such flights (the first ten replications) might be as follows.

Flight 1 2 3 4 5 6 7 8 9 10
On time
(did A occur)?

Y Y N Y N Y Y Y Y N

Relative
frequency of A

1 1 .667 .75 .6 .667 .714 .75 .778 .7

Figure 2.2 shows the relative frequency, n(A)/n, of on-time arrivals as n increases. We see that the
relative frequency fluctuates a lot for smaller values of n (this is also visible in the table); but, as
n increases, the relative frequency appears to stabilize.

(a) (b)
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Figure 2.2 (a) Initial fluctuation and (b) eventual stabilization of relative frequency
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More generally, both empirical evidence and mathematical theory indicate that any relative fre-
quency of this sort will stabilize as the number of replications n increases. That is, as n gets arbitrarily
large, n(A)/n approaches a limiting value we refer to as the long-run (or limiting) relative frequency
of the event A. The objective interpretation of probability identifies this limiting relative frequency
with P(A); e.g., in Figure 2.2b, the limiting relative frequency is .72, and so we say the probability of
event A is P(A) = .72. A formal justification of this interpretation is provided by the Law of Large
Numbers, a theorem we’ll encounter in Chapter 6.

Suppose that probabilities are assigned to events in accordance with their limiting relative fre-
quencies. Then a statement such as “the probability of a flight arriving on time is .72” means that of a
large number of flights, roughly 72% will arrive on time. Similarly, if B is the event that a certain
brand of dishwasher will need service while under warranty, then “P(B) = .1” is interpreted to mean
that in the long run 10% of all such dishwashers will need warranty service. This does not mean that
exactly 1 out of every 10 will need service, or exactly 20 out of 200 will need service, because 10 and
200 are not the long run. Such misinterpretations of probability as a guarantee on short-term outcomes
are at the heart of the infamous gambler’s fallacy.

This relative frequency interpretation of probability is said to be objective because it rests on a
property of the experiment rather than on any particular individual concerned with the experiment.
For example, two different observers of a sequence of coin tosses should both use the same proba-
bility assignments, since the observers have nothing to do with limiting relative frequency.

In practice, this interpretation is not as objective as it might seem, because the limiting relative
frequency of an event will not be known. Thus we will have to assign probabilities based on our
beliefs about the limiting relative frequency of events under study. Fortunately, there are many
experiments for which there will be a consensus with respect to probability assignments. When we
speak of a fair coin, we shall mean P(H) = P(T) = .5, and a fair die is one for which limiting
relative frequencies of the six outcomes are all equal, suggesting probability assignments
P(1) = ��� = P(6) = 1/6.

Because the objective interpretation of probability is based on the notion of limiting frequency, its
applicability is limited to experimental situations that are repeatable. Yet the language of probability
is often used in connection with situations that are inherently unrepeatable. Examples include: “The
chances are good for a peace agreement”; “It is likely that our company will be awarded the contract”;
and “Because their best quarterback is injured, I expect them to score no more than 10 points against
us.” In such situations we would like, as before, to assign numerical probabilities to various outcomes
and events (e.g., the probability is .9 that we will get the contract). We must therefore adopt an
alternative interpretation of these probabilities. Because different observers may have different prior
information and opinions concerning such experimental situations, probability assignments may now
differ from individual to individual. Interpretations in such situations are thus referred to as subjective.
The book by Winkler listed in the references gives a very readable survey of several subjective
interpretations. Importantly, even subjective interpretations of probability must satisfy the three
axioms (and all properties that follow from the axioms) in order to be valid.

More Probability Properties

COMPLEMENT RULE For any event A, P(A) = 1 – P(A′).
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Proof Since by definition of A′, A = SA while A and A′ are disjoint, 1 = P(S ) = P(A ) = P(A) + P( )A A ,
from which the desired result follows. ■

This proposition is surprisingly useful because there are many situations in which P(A′) is more easily
obtained by direct methods than is P(A).

Example 2.13 Consider a system of five identical components connected in series, as illustrated in
Figure 2.3.

Denote a component that fails by F and one that doesn’t fail by S (for success). Let A be the event
that the system fails. For A to occur, at least one of the individual components must fail. Outcomes in
A include SSFSS (1, 2, 4, and 5 all work, but 3 does not), FFSSS, and so on. There are, in fact, 31
different outcomes in A! However, A′, the event that the system works, consists of the single outcome
SSSSS. We will see in Section 2.5 that if 90% of all these components do not fail and different
components fail independently of one another, then P(A′) = .95 = .59. Thus P(A) = 1 − .59 = .41; so
among a large number of such systems, roughly 41% will fail. ■

In general, the Complement Rule is useful when the event of interest can be expressed as “at least
…,” because the complement “less than …” may be easier to work with. (In some problems, “more
than …” is easier to deal with than “at most ….”) When you are having difficulty calculating
P(A) directly, think of first determining P(A′).

PROPOSITION For any event A, P(A) � 1.

This follows from the previous proposition: 1 ¼ PðAÞþPðA0Þ �PðAÞ, because P(A′) � 0 by
Axiom 1.

When A and B are disjoint, we know that PðA[BÞ ¼ P Að ÞþP Bð Þ. How can this union proba-
bility be obtained when the events are not disjoint?

ADDITION RULE For any events A and B,

PðA[BÞ ¼ PðAÞþPðBÞ � PðA\BÞ:

Notice that the proposition is valid even if A and B are disjoint, since then P(A\B) = 0. The key idea
is that, in adding P(A) and P(B), the probability of the intersection A\B is actually counted twice, so
P(A\B) must be subtracted out.

Proof Note first that A[B ¼ A[ ðB\A0Þ, as shown in Figure 2.4 (p. 60). Because A and (B\A′) are
disjoint, PðA[BÞ ¼ P Að Þ þPðB\A0Þ. But B ¼ ðB\AÞ [ ðB\A0Þ(the union of the part of B in
A and the part of B not in A). Furthermore, (B\A) and (B\A′) are disjoint, so
P Bð Þ ¼ PðB\AÞþPðB\A0Þ. Combining these results gives

1 2 3 4 5

Figure 2.3 A system of five components connected in series
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PðA[BÞ ¼ PðAÞþP B\A0ð Þ ¼ PðAÞþ ½PðBÞ � PðA\BÞ� ¼ PðAÞþPðBÞ � PðA\BÞ

Example 2.14 In a certain residential suburb, 60% of all households get internet service from the
local cable company, 80% get television service from that company, and 50% get both services from
the company. If a household is randomly selected, what is the probability that it gets at least one of
these two services from the company, and what is the probability that it gets exactly one of the
services from the company?

With A = {gets internet service from the cable company} and B = {gets television service from
the cable company}, the given information implies that P(A) = .6, P(B) = .8, and P(A\B) = .5. The
Addition Rule then applies to give

Pðgets at least one of these two services from the companyÞ
¼ PðA[BÞ ¼ PðAÞþPðBÞ � PðA\BÞ ¼ :6þ :8� :5 ¼ :9

The event that a household gets only television service from the company can be written as A′\B, i.e.
(not internet) and television. Now Figure 2.4 implies that

:9 ¼ PðA[BÞ ¼ PðAÞþP A0 \Bð Þ ¼ :6þP A0 \Bð Þ

from which P(A′\B) = .3. Similarly, PðA\B0Þ ¼ PðA[BÞ � P Bð Þ ¼ :1. This is all illustrated in
Figure 2.5, from which we see that

Pðexactly oneÞ ¼ P A\B0ð Þ þP A0 \Bð Þ ¼ :1þ :3 ¼ :4

The probability of a union of more than two events can be computed analogously. For three events A,
B, and C, the result is

PðA[B[CÞ ¼ PðAÞþPðBÞþPðCÞ � PðA\BÞ � PðA\CÞ � PðB\CÞþPðA\B\CÞ

This can be seen by examining a Venn diagram of A[B[C, which is shown in Figure 2.6.

A B

Figure 2.4 Representing A[B as a union of disjoint events ■

.5.1 .3

B) P(A B') P(A'

Figure 2.5 Probabilities for Example 2.14 ■
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When P(A), P(B), and P(C) are added, outcomes in certain intersections are double counted and
the corresponding probabilities must be subtracted. But this results in P(A\B\C) being subtracted
once too often, so it must be added back. One formal proof involves applying the Addition Rule to
P((A[B)[C), the probability of the union of the two events A[B and C; see Exercise 30. More
generally, a result concerning P(A1[ ��� [ Ak) can be proved by induction or by other methods. The
pattern of additions and subtractions (or, equivalently, the method of deriving such union probability
formulas) is often called the inclusion–exclusion principle.

Determining Probabilities Systematically
When the number of possible outcomes (simple events) is large, there will be many compound events.
A simple way to determine probabilities for these events that avoids violating the axioms and derived
properties is to first determine probabilities P(Ei) for all simple events. These should satisfy
P(Ei) � 0 and

P
i PðEiÞ ¼ 1. Then the probability of any compound event A is computed by adding

together the P(Ei)’s for all Ei’s in A:

PðAÞ ¼
X
EiinA

P Eið Þ

Example 2.15 During off-peak hours a commuter train has five cars. Suppose a commuter is twice
as likely to select the middle car (#3) as to select either adjacent car (#2 or #4), and is twice as likely
to select either adjacent car as to select either end car (#1 or #5). Let pi = P(car i is selected) = P(Ei).
Then we have p3 = 2p2 = 2p4 and p2 = 2p1 = 2p5 = p4. This gives

1 ¼
X

PðEiÞ ¼ p1 þ 2p1 þ 4p1 þ 2p1 þ p1 ¼ 10p1

implying p1 = p5 = .1, p2 = p4 = .2, and p3 = .4. The probability that one of the three middle cars is
selected (a compound event) is then p2 + p3 + p4 = .8. ■

Equally Likely Outcomes
In many experiments consisting of N outcomes, it is reasonable to assign equal probabilities to all
N simple events. These include such obvious examples as tossing a fair coin or fair die once (or any fixed
number of times), or selecting one or several cards from a well-shuffled deck of 52. With p = P(Ei)
for every i,

1 ¼
XN
i¼1

P Eið Þ ¼
XN
i¼1

p ¼ p � N so p ¼ 1
N

That is, if there are N possible outcomes, then the probability assigned to each is 1/N.

A B

C

Figure 2.6 A[B[C
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Now consider an event A, with N(A) denoting the number of outcomes contained in A. Then

PðAÞ ¼
X
EiinA

P Eið Þ ¼
X
EiinA

1
N

¼ NðAÞ
N

Once we have counted the number N of outcomes in the sample space, to compute the probability of
any event we must count the number of outcomes contained in that event and take the ratio of the two
numbers. Thus when outcomes are equally likely, computing probabilities reduces to counting.

Example 2.16 When two dice are rolled separately, there are N = 36 outcomes (delete the first row
and column from the table in Example 2.3). If both the dice are fair, all 36 outcomes are equally
likely, so P(Ei) = 1/36 for each simple event. The event A = {sum of two numbers is 8} consists of
the five outcomes (2, 6), (3, 5), (4, 4), (5, 3), and (6, 2), so

PðAÞ ¼ NðAÞ
N

¼ 5
36

�

The next section of this book develops some useful counting methods.

Exercises: Section 2.2 (13–30)

13. A mutual fund company offers its cus-
tomers several different funds: a money
market fund, three different bond funds
(short, intermediate, and long term), two
stock funds (moderate and high risk), and a
balanced fund. Among customers who own
shares in just one fund, the percentages of
customers in the different funds are as
follows:

Money market 20% High-risk
stock

18%

Short bond 15% Moderate-risk
stock

25%

Intermediate bond 10% Balanced 7%
Long bond 5%

A customer who owns shares in just one
fund is randomly selected.

a. What is the probability that the selected
individual owns shares in the balanced
fund?

b. What is the probability that the indi-
vidual owns shares in a bond fund?

c. What is the probability that the selected
individual does not own shares in a
stock fund?

14. Consider randomly selecting a student at a
certain university, and let A denote the event
that the selected individual has a Visa credit
card and B be the analogous event for a
MasterCard. Suppose that PðAÞ ¼ :5;PðBÞ
¼ :4; andPðA\BÞ ¼ :25.

a. Compute the probability that the selec-
ted individual has at least one of the two
types of cards (i.e., the probability of the
event A[B).

b. What is the probability that the selected
individual has neither type of card?

c. Describe, in terms of A and B, the event
that the selected student has a Visa card
but not a MasterCard, and then calculate
the probability of this event.

15. A consulting firm presently has bids out on
three projects. Let Ai = {awarded project i},
for i = 1, 2, 3, and suppose that P(A1) = .22,
P(A2) = .25, P(A3) = .28, P(A1\A2) = .11,
P(A1\A3) = .05, P(A2\A3) = .07, and
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PðA1 \A2 \A3Þ ¼ :01: Express in words
each of the following events, and compute
the probability of each event:

a. A1 [A2

b. A0
1 \A0

2 ½Hint: ðA1 [A2Þ0 ¼ A0
1 \A0

2�
c. A1 [A2 [A3

d. A0
1 \A0

2 \A0
3

e. A0
1 \A0

2 \A3

f. ðA0
1 \A0

2Þ [A3

16. A particular state will elect both a governor
and a senator. Let A be the event that a
randomly selected voter has a favorable
view of a certain party’s senatorial candi-
date, and let B be the corresponding event
for that party’s gubernatorial candidate.
Suppose that P A0ð Þ ¼ :44; P B0ð Þ ¼ :57;
and PðA[BÞ ¼ :68.

a. What is the probability that a randomly
selected voter has a favorable view of
both candidates?

b. What is the probability that a randomly
selected voter has an unfavorable view
of at least one of these candidates?

c. What is the probability that a randomly
selected voter has a favorable view of
exactly one of these candidates?

17. Consider the type of clothes dryer (gas or
electric) purchased by each of five different
customers at a certain store.

a. If the probability that at most one of
these customers purchases an electric
dryer is .428, what is the probability that
at least two purchase an electric dryer?

b. If P(all five purchase gas) = .116 and
P(all five purchase electric) = .005,
what is the probability that at least one
of each type is purchased?

18. An individual is presented with three dif-
ferent glasses of cola, labeled C, D, and
P. He is asked to taste all three and then list
them in order of preference. Suppose the
same cola has actually been put into all
three glasses.

a. What are the simple events in this
ranking experiment, and what proba-
bility would you assign to each one?

b. What is the probability that C is ranked
first?

c. What is the probability that C is ranked
first and D is ranked last?

19. Let A denote the event that the next request
for assistance from a statistical software
consultant relates to the SPSS package, and
let B be the event that the next request is for
help with SAS. Suppose that P(A) = .30
and P(B) = .50.

a. Why is it not the case that PðAÞþ
PðBÞ ¼ 1?

b. Calculate P A0ð Þ.
c. Calculate PðA[BÞ.
d. Calculate PðA0 \B0Þ.

20. A box contains four 40-W bulbs, five 60-W
bulbs, and six 75-W bulbs. If bulbs are
selected one by one in random order, what is
the probability that at least two bulbs must
be selected to obtain one that is rated 75 W?

21. Human visual inspection of solder joints on
printed circuit boards can be very subjec-
tive. Part of the problem stems from the
numerous types of solder defects (e.g., pad
nonwetting, knee visibility, voids) and even
the degree to which a joint possesses one or
more of these defects. Consequently, even
highly trained inspectors can disagree on
the disposition of a particular joint. In one
batch of 10,000 joints, inspector A found
724 that were judged defective, inspector B
found 751 such joints, and 1159 of the
joints were judged defective by at least one
of the inspectors. Suppose that one of the
10,000 joints is randomly selected.

a. What is the probability that the selected
joint was judged to be defective by nei-
ther of the two inspectors?

b. What is the probability that the selected
joint was judged to be defective by
inspector B but not by inspector A?
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22. A factory operates three different shifts.
Over the last year, 200 accidents have
occurred at the factory. Some of these can
be attributed at least in part to unsafe
working conditions, whereas the others are
unrelated to working conditions. The
accompanying table gives the percentage of
accidents falling in each type of accident–
shift category.

Shift Unsafe conditions Unrelated to conditions

Day 10% 35%
Swing 8% 20%
Night 5% 22%

Suppose one of the 200 accident reports is
randomly selected from a file of reports,
and the shift and type of accident are
determined.

a. What are the simple events?
b. What is the probability that the selected

accident was attributed to unsafe
conditions?

c. What is the probability that the selected
accident did not occur on the day shift?

23. An insurance company offers four different
deductible levels—none, low, medium, and
high—for its homeowner’s policyholders and
three different levels—low, medium, and
high—for its automobile policyholders. The
accompanying table gives proportions for the
various categories of policyholders who have
both types of insurance. For example, the
proportion of individuals with both low
homeowner’s deductible and low auto
deductible is .06 (6% of all such individuals).

Auto

Homeowner’s

N L M H

L .04 .06 .05 .03
M .07 .10 .20 .10
H .02 .03 .15 .15

Suppose an individual having both types of
policies is randomly selected.

a. What is the probability that the
individual has a medium auto deduc-
tible and a high homeowner’s
deductible?

b. What is the probability that the indi-
vidual has a low auto deductible? A low
homeowner’s deductible?

c. What is the probability that the
individual is in the same category
for both auto and homeowner’s
deductibles?

d. Based on your answer in part (c), what
is the probability that the two categories
are different?

e. What is the probability that the indi-
vidual has at least one low deductible
level?

f. Using the answer in part (e), what is the
probability that neither deductible level
is low?

24. The route used by a driver in commuting
to work contains two intersections with
traffic signals. The probability that he
must stop at the first signal is .4, the
analogous probability for the second sig-
nal is .5, and the probability that he must
stop at one or more of the two signals is
.6. What is the probability that he must
stop

a. At both signals?
b. At the first signal but not at the second

one?
c. At exactly one signal?

25. The computers of six faculty members in a
certain department are to be replaced. Two
of the faculty members have selected lap-
top machines, and the other four have
chosen desktop machines. Suppose that
only two of the setups can be done on a
particular day, and the two computers to
be set up are randomly selected from the
six (implying 15 equally likely outcomes;
if the computers are numbered 1, 2, …, 6,
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then one outcome consists of computers 1
and 2, another consists of computers 1 and
3, and so on).

a. What is the probability that both selec-
ted setups are for laptop computers?

b. What is the probability that both selec-
ted setups are desktop machines?

c. What is the probability that at least one
selected setup is for a desktop
computer?

d. What is the probability that at least one
computer of each type is chosen for
setup?

26. Use the axioms to show that if one event
A is contained in another event B (i.e., A is
a subset of B), then P(A) � P(B). [Hint:
For such A and B, A and B\A′ are disjoint
and B ¼ A[ ðB\A0Þ, as can be seen from a
Venn diagram.] For general A and B, what
does this imply about the relationship
among PðA\BÞ; PðAÞ; and PðA[BÞ?

27. The three major options on a car model
are an automatic transmission (A), a sun-
roof (B), and an upgraded stereo (C). If
70% of all purchasers request A, 80%
request B, 75% request C, 85% request
A or B, 90% request A or C, 95% request
B or C, and 98% request A or B or C,
compute the probabilities of the following
events. [Hint: “A or B” is the event that at
least one of the two options is requested;
try drawing a Venn diagram and labeling
all regions.]

a. The next purchaser will request at least
one of the three options.

b. The next purchaser will select none of
the three options.

c. The next purchaser will request only an
automatic transmission and neither of
the other two options.

d. The next purchaser will select exactly
one of these three options.

28. A certain system can experience three dif-
ferent types of defects. Let Ai (i = 1, 2, 3)
denote the event that the system has a
defect of type i. Suppose that

P A1ð Þ ¼ :12 P A2ð Þ ¼ :07 P A3ð Þ ¼ :05

PðA1 [A2Þ ¼ :13 PðA1 [A3Þ ¼ :14

PðA2 [A3Þ ¼ :10 PðA1 \A2 \A3Þ ¼ :01

a. What is the probability that the system
does not have a type 1 defect?

b. What is the probability that the system
has both type 1 and type 2 defects?

c. What is the probability that the system
has both type 1 and type 2 defects but
not a type 3 defect?

d. What is the probability that the system
has at most two of these defects?

29. In Exercise 7, suppose that any incoming
individual is equally likely to be assigned to
any of the three stations irrespective of
where other individuals have been
assigned. What is the probability that

a. All three family members are assigned
to the same station?

b. At most two family members are
assigned to the same station?

c. Every family member is assigned to a
different station?

30. Apply the Addition Rule to the union of the
two events (A[B) and C in order to verify
the formula for PðA[B[CÞ.
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2.3 Counting Methods

When the various outcomes of an experiment are equally likely (the same probability is assigned to each
simple event), the task of computing probabilities reduces to counting. In particular, ifN is the number of
outcomes in a sample space and N(A) is the number of outcomes contained in an event A, then

PðAÞ ¼ NðAÞ
N

ð2:1Þ

If a list of the outcomes is available or easy to construct and N is small, then the numerator and
denominator of Equation (2.1) can be obtained without the benefit of any general counting principles.

There are, however, many experiments for which the effort involved in constructing such a list is
prohibitive because N is quite large. By exploiting some general counting rules, it is possible to
compute probabilities of the form (2.1) without a listing of outcomes. These rules are also useful in
many problems involving outcomes that are not equally likely. Several of the rules developed here
will be used in studying probability distributions in the next chapter.

The Fundamental Counting Principle
Our first counting rule applies to any situation in which an event consists of ordered pairs of objects and
we wish to count the number of such pairs. By an ordered pair, we mean that, if O1 and O2 are objects,
then the pair (O1,O2) is different from the pair (O2,O1). For example, if an individual selects one airline
for a trip fromLosAngeles toChicago and a second one for continuing on toNewYork, one possibility is
(American, United), another is (United, American), and still another is (United, United).

PROPOSITION If the first element or object of an ordered pair can be selected in n1 ways, and
for each of these n1 ways the second element of the pair can be selected in n2
ways, then the number of pairs is n1n2.

Example 2.17 A homeowner doing some remodeling requires the services of both a plumbing
contractor and an electrical contractor. If there are 12 plumbing contractors and 9 electrical con-
tractors available in the area, in how many ways can the contractors be chosen? If we denote the
plumbers by P1; . . .;P12 and the electricians by Q1; . . .;Q9, then we wish the number of pairs of the
form (Pi, Qj). With n1 = 12 and n2 = 9, the proposition yields N = (12)(9) = 108 possible ways of
choosing the two types of contractors. ■

In Example 2.17, the choice of the second element of the pair did not depend on which first
element was chosen or occurred. As long as there is the same number of choices of the second
element for each first element, the foregoing proposition is valid even when the set of possible second
elements depends on the first element.

Example 2.18 A family has just moved to a new city and requires the services of both an obste-
trician and a pediatrician. There are two easily accessible medical clinics, each having two obste-
tricians and three pediatricians. The family will obtain maximum health insurance benefits by joining
a clinic and selecting both doctors from that clinic. In how many ways can this be done? Denote the
obstetricians by O1, O2, O3, and O4 and the pediatricians by P1; . . .;P6. Then we wish the number of
pairs (Oi, Pj) for which Oi and Pj are associated with the same clinic. Because there are four
obstetricians, n1 = 4, and for each there are three choices of pediatrician, so n2 = 3. Applying the
proposition rule gives N = n1n2 = 12 possible choices. ■
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If a six-sided die is tossed five times in succession, then each possible outcome is an ordered
collection of five numbers such as (1, 3, 1, 2, 4) or (6, 5, 2, 2, 2). We will call an ordered collection of
k objects a k-tuple (so a pair is a 2-tuple and a triple is a 3-tuple). Each outcome of the die-tossing
experiment is then a 5-tuple. The following theorem, called the Fundamental Counting Principle,
generalizes the previous proposition to k-tuples.

FUNDAMENTAL
COUNTING
PRINCIPLE

Suppose a set consists of ordered collections of k elements (k-tuples) and that
there are n1 possible choices for the first element; for each choice of the first
element, there are n2 possible choices of the second element; …; for each
possible choice of the first k − 1 elements, there are nk choices of the kth
element. Then there are n1n2 � . . . � nk possible k-tuples.

Example 2.19 (Example 2.17 continued) Suppose the home remodeling job involves first pur-
chasing several kitchen appliances. They will all be purchased from the same dealer, and there are five
dealers in the area. With the dealers denoted by D1, …, D5, there are N = n1n2n3 = (5)(12)(9) = 540
3-tuples of the form (Di, Pj, Qk), so there are 540 ways to choose first an appliance dealer, then a
plumbing contractor, and finally an electrical contractor. ■

Example 2.20 (Example 2.18 continued) If each clinic has both three specialists in internal
medicine and two general surgeons, there are n1n2n3n4 = (4)(3)(3)(2) = 72 ways to select one doctor
of each type such that all doctors practice at the same clinic. ■

Tree Diagrams
In many counting and probability problems, a tree diagram can be used to represent pictorially all
the possibilities. The tree diagram associated with Example 2.18 appears in Figure 2.7. Starting from
a point on the left side of the diagram, for each possible first element of a pair a straight-line segment
emanates rightward. Each of these lines is referred to as a first-generation branch. Now for any given
first-generation branch we construct another line segment emanating from the tip of the branch for
each possible choice of a second element of the pair. Each such line segment is a second-generation
branch. Because there are four obstetricians, there are four first-generation branches, and three
pediatricians for each obstetrician yield three second-generation branches emanating from each first-
generation branch.

Figure 2.7 Tree diagram for Example 2.18
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Permutations
So far the successive elements of a k-tuple were selected from entirely different sets (e.g., appliance
dealers, then plumbers, and finally electricians). In several tosses of a die, the set from which
successive elements are chosen is always {1, 2, 3, 4, 5, 6}, but the choices are made “with
replacement” so that the same element can appear more than once. If the die is rolled once, there are
obviously 6 possible outcomes; for two rolls, there are 62 = 36 possibilities, since we distinguish
(3, 5) from (5, 3). In general, if k selections are made with replacement from a set of n distinct objects
(such as the six sides of a die), then the total number of possible outcomes is nk.

We now consider a fixed set consisting of n distinct elements and suppose that a k-tuple is formed
by selecting successively from this set without replacement so that an element can appear in at most
one of the k positions.

DEFINITION Any ordered sequence of k objects taken without replacement from a set of n dis-
tinct objects is called a permutation of size k of the objects. The number of
permutations of size k that can be constructed from the n objects is denoted by nPk.

The number of permutations of size k is obtained immediately from the Fundamental Counting
Principle. The first element can be chosen in n ways; for each of these n ways the second element can
be chosen in n – 1 ways; and so on. Finally, for each way of choosing the first k – 1 elements, the kth
element can be chosen in n – (k – 1) = n – k + 1 ways, so

nPk ¼ nðn� 1Þðn� 2Þ � � � � � ðn� kþ 2Þðn� kþ 1Þ

Example 2.21 Ten teaching assistants are available for grading papers in a particular course. The
first exam consists of four questions, and the professor wishes to select a different assistant to grade
each question (only one assistant per question). In how many ways can assistants be chosen to grade
the exam? Here n = the number of assistants = 10 and k = the number of questions = 4. The number
of different grading assignments is then 10P4 = (10)(9)(8)(7) = 5040. ■

Example 2.22 The Birthday Problem. Disregarding the possibility of a February 29 birthday,
suppose a randomly selected individual is equally likely to have been born on any one of the other
365 days. If ten people are randomly selected, what is the probability that all have different birthdays?

Imagine we draw ten days, with replacement, from the calendar to represent the birthdays of the
ten randomly selected people. One possible outcome of this selection would be (March 31, December
30,…, September 27, February 12). There are 36510 such outcomes. The number of outcomes among
them with no repeated birthdays is

ð365Þð364Þ � � � � � ð356Þ ¼ 365P10

(any of the 365 calendar days may be selected first; if March 31 is chosen, any of the other 364 days
is acceptable for the second selection; and so on). Hence, the probability all ten randomly selected
people have different birthdays equals 365P10/365

10 = .883. Equivalently, there’s only a .117 chance
that at least two people out of these ten will share a birthday. It’s worth noting that the first probability
can be rewritten as
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365P10

36510
¼ 365

365
� 364
365

� � � � � 356
365

We may think of each fraction as representing the chance the next birthday selected will be different
from all previous ones. (This is an example of conditional probability, the topic of the next section.)

Now replace 10 with k (i.e., k randomly selected birthdays); what is the smallest k for which there
is at least a 50–50 chance that two or more people will have the same birthday? Most people
incorrectly guess that we need a very large group of people for this to be true; the most common guess
is that 183 people are required (half the days on the calendar). But the required value of k is actually
much smaller: the probability that k randomly selected people all have different birthdays equals
365Pk/365

k, which not surprisingly decreases as k increases. Figure 2.8 displays this probability for
increasing values of k. As it turns out, the smallest k for which this probability falls below .5 is just
k = 23. That is, there is less than a 50–50 chance (.4927, to be precise) of 23 randomly selected
people all having different birthdays, and thus a probability .5073 that at least two people in a random
sample of 23 will share a birthday.

The expression for nPk can be rewritten with the aid of factorial notation. Recall that 7! (read “7
factorial”) is compact notation for the descending product of integers (7)(6)(5)(4)(3)(2)(1). More
generally, for any positive integer m, m! = m(m – 1)(m – 2) � � � � � (2)(1). This gives 1! = 1, and we
also define 0! = 1.

Using factorial notation, (10)(9)(8)(7) = (10)(9)(8)(7)(6!)/6! = 10!/6!. More generally,

nPk ¼ nðn� 1Þ � � � � � ðn� kþ 1Þ

¼ nðn� 1Þ � � � � � ðn� kþ 1Þðn� kÞðn� k � 1Þ � � � � � ð2Þð1Þ
ðn� kÞðn� k � 1Þ � � � � � ð2Þð1Þ

which becomes

nPk ¼ n!

ðn� kÞ!
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Figure 2.8 P(no birthday match) in Example 2.22 ■
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For example, 9P3 = 9!/(9 − 3)! = 9!/6! = 9 � 8 � 7 � 6!/6! = 9 � 8 � 7. Note also that because 0! = 1,
nPn = n!/(n – n)! = n!/0! = n!/1 = n!, as it should.

Combinations
Often the objective is to count the number of unordered subsets of size k that can be formed from a
set consisting of n distinct objects. For example, in bridge it is only the 13 cards in a hand and not the
order in which they are dealt that is important; in the formation of a committee, the order in which
committee members are listed is frequently unimportant.

DEFINITION Given a set of n distinct objects, any unordered subset of size k of the objects is
called a combination. The number of combinations of size k that can be formed

from n distinct objects will be denoted by n
k

� �
or nCk.

The number of combinations of size k from a particular set is smaller than the number of permutations
because, when order is disregarded, some of the permutations correspond to the same combination.
Consider, for example, the set {A, B, C, D, E} consisting of five elements. There are 5P3 =
5!/(5 − 3)! = 60 permutations of size 3. There are six permutations of size 3 consisting of the
elements A, B, and C because these three can be ordered 3 � 2 � 1 = 3! = 6 ways: (A, B, C), (A, C, B),
(B, A, C), (B, C, A), (C, A, B), and (C, B, A). These six permutations are equivalent to the single
combination {A, B, C}. Similarly, for any other combination of size 3, there are 3! permutations, each
obtained by ordering the three objects. Thus,

60 ¼ 5P3 ¼ 5
3

� �
� 3! so

5
3

� �
¼ 60

3!
¼ 10

These ten combinations are

fA;B;Cg fA;B;Dg fA;B;Eg fA;C;Dg fA;C;Eg
fA;D;Eg fB;C;Dg fB;C;Eg fB;D;Eg fC;D;Eg

When there are n distinct objects, any permutation of size k is obtained by ordering the k unordered
objects of a combination in one of k! ways, so the number of permutations is the product of k! and the
number of combinations. This gives

nCk or
n
k

� �
¼ nPk

k!
¼ n!

k!ðn� kÞ!

Notice that n
n

� �
¼ 1 and n

0

� �
¼ 1 because there is only one way to choose a set of (all) n elements or

of no elements, and n
1

� �
¼ n since there are n subsets of size 1.

Example 2.23 A bridge hand consists of any 13 cards selected from a 52-card deck without regard

to order. There are 52
13

� �
¼ 52!=ð13! � 39!Þ different bridge hands, which works out to approximately

635 billion. Since there are 13 cards in each suit, the number of hands consisting entirely of clubs

and/or spades (no red cards) is 26
13

� �
¼ 26!=ð13! � 13!Þ ¼ 10;400;600. One of these 26

13

� �
hands

consists entirely of spades, and one consists entirely of clubs, so there are 26
13

� �
� 2

� �
hands that
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consist entirely of clubs and spades with both suits represented in the hand. Suppose a bridge hand is
dealt from a well-shuffled deck (i.e., 13 cards are randomly selected from among the 52 possibilities)
and let

A = {the hand consists entirely of spades and clubs with both suits represented}
B = {the hand consists of exactly two suits}

The N ¼ 52
13

� �
possible outcomes are equally likely, so

PðAÞ ¼ NðAÞ
N

¼
26
13

� �
� 2

52
13

� � ¼ :0000164

Since there are 4
2

� �
¼ 6 combinations consisting of two suits, of which spades and clubs is one such

combination,

PðBÞ ¼ NðBÞ
N

¼
6

26
13

� �
� 2

� �
52
13

� � ¼ :0000983

That is, a hand consisting entirely of cards from exactly two of the four suits will occur roughly once
in every 10,000 hands. If you play bridge only once a month, it is likely that you will never be dealt
such a hand. ■

Example 2.24 A university has received a shipment of 25 new laptops for staff and faculty, of
which 10 have AMD processors and 15 have Intel chips. If 6 of these 25 laptops are selected at
random to be checked by a technician, what is the probability that exactly 3 of those selected have
Intel processors (so that the other 3 are AMD)?

Let D3 = {exactly 3 of the 6 selected have Intel processors}. Assuming that any particular set of
6 laptops is as likely to be chosen as is any other set of 6, we have equally likely outcomes, so P(D3) =
N(D3)/N,whereN is the numberofways of choosing6 laptops from the 25andN(D3) is the number ofways

of choosing3withAMDprocessors and 3with Intel chips. ThusN = 25
6

� �
. To obtainN(D3), think offirst

choosing 3 of the 15 Intel laptops and then 3 of theAMD laptops. There are 15
3

� �
ways of choosing the 3

with Intel processors, and there are 10
3

� �
ways of choosing the 3 with AMD processors; by the

Fundamental Counting Principle, N(D3) is the product of these two numbers. So,

PðD3Þ ¼ NðD3Þ
N

¼
15
3

� �
10
3

� �
25
6

� � ¼
15!
3!12!

� 10!
3!7!

25!
6!19!

¼ :3083

Next, let D4 = {exactly 4 of the 6 laptops selected have Intel processors} and define D5 and D6 in an
analogous manner. Notice that the events D3, D4, D5, and D6 are disjoint. Thus, the probability that at
least 3 laptops with Intel processors are selected is
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P D3 [D4 [D5 [D6ð Þ ¼ P D3ð ÞþP D4ð ÞþP D5ð ÞþP D6ð Þ

¼
15

3

� �
10

3

� �
25

6

� � þ
15

4

� �
10

2

� �
25

6

� � þ
15

5

� �
10

1

� �
25

6

� � þ
15

6

� �
10

0

� �
25

6

� � ¼ :8530

�

Exercises: Section 2.3 (31–48)

31. The College of Science Student Council
has one representative from each of the five
science departments (biology, chemistry,
statistics, mathematics, physics). In how
many ways can

a. Both a council president and a vice
president be selected?

b. A president, a vice president, and a
secretary be selected?

c. Two members be selected for the
Dean’s Council?

32. A friend is giving a dinner party. Her cur-
rent wine supply includes 8 bottles of zin-
fandel, 10 of merlot, and 12 of cabernet
(she drinks only red wine), all from differ-
ent wineries.

a. If she wants to serve 3 bottles of
zinfandel and serving order is important,
how many ways are there to do this?

b. If 6 bottles of wine are to be randomly
selected from the 30 for serving, how
many ways are there to do this?

c. If 6 bottles are randomly selected, how
many ways are there to obtain two
bottles of each variety?

d. If 6 bottles are randomly selected, what
is the probability that this results in two
bottles of each variety being chosen?

e. If 6 bottles are randomly selected, what
is the probability that all of them are the
same variety?

33. a. Beethoven wrote 9 symphonies and
Mozart wrote 27 piano concertos. If a
university radio station announcer

wishes to play first a Beethoven sym-
phony and then a Mozart concerto, in
how many ways can this be done?

b. The station manager decides that on
each successive night (7 days per
week), a Beethoven symphony will be
played, followed by a Mozart piano
concerto, followed by a Schubert string
quartet (of which there are 15). For
roughly how many years could this
policy be continued before exactly the
same program would have to be
repeated?

34. A chain of home electronics stores is
offering a special price on a complete set of
components (receiver, CD/MP3 player,
speakers). A purchaser is offered a choice
of manufacturer for each component:

Receiver Kenwood, Onkyo, Pioneer, Sony,
Yamaha

CD/MP3
player

Onkyo, Pioneer, Sony, Panasonic

Speakers Boston, Infinity, Polk

A switchboard display in the store allows a
customer to connect any selection of com-
ponents (consisting of one of each type).
Use the product rules to answer the fol-
lowing questions:

a. In how many ways can one component
of each type be selected?

b. In how many ways can components be
selected if both the receiver and the
CD/MP3 player are to be Sony?

c. In how many ways can components be
selected if none is to be Sony?
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d. In how many ways can a selection be
made if at least one Sony component is
to be included?

e. If someone flips switches on the selec-
tion in a completely random fashion,
what is the probability that the system
selected contains at least one Sony
component? Exactly one Sony
component?

35. A particular iPod playlist contains 100
songs, of which 10 are by the Beatles.
Suppose the shuffle feature is used to play
the songs in random order (the randomness
of the shuffling process is investigated in
“Does Your iPod Really Play Favorites?”
(The Amer. Statistician 2009: 263–268)).
What is the probability that the first Beatles
song heard is the fifth song played?

36. A local bar stocks 12 American beers, 8
Mexican beers, and 9 German beers. You
ask the bartender to pick out a five-beer
“sampler” for you. Assume the bartender
makes the five selections at random and
without replacement.

a. What is the probability you get at least
four American beers?

b. What is the probability you get five
beers from the same country?

37. The statistics department at the authors’
university participates in an annual volley-
ball tournament. Suppose that all 16
department members are willing to play.

a. How many different six-person volley-
ball rosters could be generated? (That is,
how many years could the department
participate in the tournament without
repeating the same six-person team?)

b. The statistics department faculty consists
of 5 women and 11 men. How many
rosters comprised of exactly 2 women
and 4 men be generated?

c. The tournament’s rules actually require
that each team includes at least two
women. Under this rule, how many
valid teams could be generated?

d. Suppose this year the department deci-
des to randomly select its six players.
What is the probability the randomly
selected team has exactly two women?
At least two women?

38. A production facility employs 20 workers
on the day shift, 15 workers on the swing
shift, and 10 workers on the graveyard
shift. A quality control consultant is to
select 6 of these workers for in-depth
interviews. Suppose the selection is made
in such a way that any particular group of 6
workers has the same chance of being
selected as does any other group (drawing 6
slips without replacement from among 45).

a. How many selections result in all 6
workers coming from the day shift? What
is the probability that all 6 selected
workers will be from the day shift?

b. What is the probability that all 6 selec-
ted workers will be from the same shift?

c. What is the probability that at least two
different shifts will be represented
among the selected workers?

d. What is the probability that at least one
of the shifts will be unrepresented in the
sample of workers?

39. An academic department with five faculty
members narrowed its choice for depart-
ment head to either candidate A or candi-
date B. Each member then voted on a slip
of paper for one of the candidates. Suppose
there are actually three votes for A and two
for B. If the slips are selected for tallying in
random order, what is the probability that
A remains ahead of B throughout the vote
count (for example, this event occurs if the
selected ordering is AABAB, but not for
ABBAA)?

40. An experimenter is studying the effects of
temperature, pressure, and type of catalyst
on yield from a chemical reaction. Three
different temperatures, four different pres-
sures, and five different catalysts are under
consideration.
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a. If any particular experimental run
involves the use of a single temperature,
pressure, and catalyst, how many
experimental runs are possible?

b. How many experimental runs involve
use of the lowest temperature and two
lowest pressures?

41. Refer to the previous exercise and suppose
that five different experimental runs are to
be made on the first day of experimentation.
If the five are randomly selected from
among all the possibilities, so that any
group of five has the same probability of
selection, what is the probability that a
different catalyst is used on each run?

42. A box in a certain supply room contains
four 40-W lightbulbs, five 60-W bulbs, and
six 75-W bulbs. Suppose that three bulbs
are randomly selected.

a. What is the probability that exactly two
of the selected bulbs are rated 75 W?

b. What is the probability that all three of
the selected bulbs have the same rating?

c. What is the probability that one bulb of
each type is selected?

d. Suppose now that bulbs are to be
selected one by one until a 75-W bulb is
found. What is the probability that it is
necessary to examine at least six bulbs?

43. Fifteen telephones have just been received
at an authorized service center. Five of
these telephones are cellular, five are
cordless, and the other five are corded
phones. Suppose that these components are
randomly allocated the numbers 1, 2,…, 15
to establish the order in which they will be
serviced.

a. What is the probability that all the
cordless phones are among the first ten
to be serviced?

b. What is the probability that after ser-
vicing ten of these phones, phones of
only two of the three types remain to be
serviced?

c. What is the probability that two phones
of each type are among the first six
serviced?

44. Three molecules of type A, three of type B,
three of type C, and three of type D are
to be linked together to form a chain
molecule. One such chain molecule is
ABCDABCDABCD, and another is
BCDDAAABDBCC.

a. How many such chain molecules are
there? [Hint: If the three A’s were dis-
tinguishable from one another—A1, A2,
A3—and the B’s, C’s, and D’s were
also, how many molecules would there
be? How is this number reduced when
the subscripts are removed from the
A’s?]

b. Suppose a chain molecule of the type
described is randomly selected. What is
the probability that all three molecules
of each type end up next to each other
(such as in BBBAAADDDCCC)?

45. Three married couples have purchased
theater tickets and are seated in a row
consisting of just six seats. If they take their
seats in a completely random fashion (ran-
dom order), what is the probability that Jim
and Paula (husband and wife) sit in the two
seats on the far left? What is the probability
that Jim and Paula end up sitting next to
one another? What is the probability that at
least one of the wives ends up sitting next
to her husband?

46. A popular Dilbert cartoon strip (popular
among statisticians, anyway) shows an
allegedly “random” number generator pro-
ducing the sequence 999999 with the
accompanying comment, “That’s the prob-
lem with randomness: you can never be
sure.” Most people would agree that
999999 seems less “random” than, say,
703928, but in what sense is that true?
Imagine we randomly generate a six-digit
number; i.e., we make six draws with
replacement from the digits 0 through 9.
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a. What is the probability of generating
999999?

b. What is the probability of generating
703928?

c. What is the probability of generating a
sequence of six identical digits?

d. What is the probability of generating a
sequence with no identical digits?
(Comparing the answers to (c) and
(d) gives some sense of why some
sequences feel intuitively more random
than others.)

e. Here’s a real challenge: what is the
probability of generating a sequence
with exactly one repeated digit?

47. Show that n
k

� �
¼ n

n� k

� �
. Give an inter-

pretation involving subsets.

48. Consider a group of 10 children.

a. How many ways can the children be
split into groups of sizes 2, 3, and 5?
[Hint: First select 2 children from the
original 10, then 3 from the remaining
8. Apply the Fundamental Counting
Principle.]

b. Verify that your answer to (a) is
equivalent to 10!

2!3!5!.
c. Generalize the previous result by

showing that the number of ways to
partition n objects into groups of sizes
k1, …, kr (with k1 þ � � � þ kr ¼ n) is
equal to n!

k1!���kr !.

2.4 Conditional Probability

The probabilities assigned to various events depend on what is known about the experimental
situation when the assignment is made. Subsequent to the initial assignment, partial information
relevant to the outcome of the experiment may become available. Such information may cause us to
revise some of our probability assignments. For a particular event A, we have used P(A) to represent
the probability assigned to A; we now think of P(A) as the original or “unconditional” probability of
the event A.

In this section, we examine how the information “an event B has occurred” affects the probability
assigned to A. For example, A might refer to an individual having a particular disease in the presence
of certain symptoms. If a blood test is performed on the individual and the result is negative
(B = negative blood test), then the probability of having the disease will change—it should decrease,
but not usually to zero, since blood tests are not infallible.

Example 2.25 Complex components are assembled in a plant that uses two different assembly lines,
A and A′. Line A uses older equipment than A′, so it is somewhat slower and less reliable. Suppose on
a given day line A has assembled 8 components, of which 2 have been identified as defective (B) and
6 as nondefective (B′), whereas A′ has produced 1 defective and 9 nondefective components. This
information is summarized in the accompanying table.

Line

Condition

B B′

A 2 6
A′ 1 9
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Unaware of this information, the sales manager randomly selects 1 of these 18 components for a
demonstration. Prior to the demonstration,

Pðline A component selectedÞ ¼ PðAÞ ¼ NðAÞ
N

¼ 8
18

¼ :444

However, if the chosen component turns out to be defective, then the event B has occurred, so the
component must have been 1 of the 3 in the B column of the table. Since these 3 components are
equally likely among themselves, the probability the component was selected from line A, given that
event B has occurred, is

PðA; given BÞ ¼ 2
3
¼ 2=18

3=18
¼ PðA\BÞ

PðBÞ ð2:2Þ
■

In Equation (2.2), the conditional probability is expressed as a ratio of unconditional probabilities.
The numerator is the probability of the intersection of the two events, whereas the denominator is the
probability of the conditioning event B. A Venn diagram illuminates this relationship (Figure 2.9).

Given that B has occurred, the relevant sample space is no longer S but consists of just outcomes in
B, and A has occurred if and only if one of the outcomes in the intersection A\B occurred. So the
conditional probability of A given B should, logically, be the ratio of the likelihoods of these two
events.

The Definition of Conditional Probability
Example 2.25 demonstrates that when outcomes are equally likely, computation of conditional
probabilities can be based on intuition. When experiments are more complicated, though intuition
may fail us, we want to have a general definition of conditional probability that will yield intuitive
answers in simple problems. Figure 2.9 and Equation (2.2) suggest the appropriate definition.

DEFINITION For any two events A and B with P(B) > 0, the conditional probability of
A given that B has occurred, denoted PðAjBÞ, is defined by

PðAjBÞ ¼ PðA\BÞ
PðBÞ ð2:3Þ

A

B

“conditioning” on event B

B = new “sample
space”

A    B = what remains
of event A

Figure 2.9 Motivating the definition of conditional probability
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Example 2.26 Suppose that of all individuals buying a new iPhone, 60% include a heavy-duty
phone case in their purchase, 40% include a portable battery, and 30% include both a heavy-
duty case and a portable battery. Consider randomly selecting an iPhone buyer and let A = {heavy-
duty case purchased} and B = {portable battery purchased}. Then P(A) = .60, P(B) = .40, and
P(both purchased) = P(A\B) = .30. Given that the selected individual purchased a portable battery,
the probability that a heavy-duty case was also purchased is

PðAjBÞ ¼ PðA\BÞ
PðBÞ ¼ :30

:40
¼ :75

That is, of all those purchasing a portable battery, 75% purchased a heavy-duty phone case. Similarly,

P batteryjcaseð Þ ¼ PðBjAÞ ¼ PðA\BÞ
PðAÞ ¼ :30

:60
¼ :50

Notice that P(A|B) 6¼ P(A) and P(B|A) 6¼ P(B). Notice also that P(A|B) 6¼ P(B|A): these represent two
different probabilities computed using different pieces of “given” information. ■

Example 2.27 A culture website includes three sections entitled “Art” (A), “Books” (B), and
“Cinema” (C). Reading habits of a randomly selected reader with respect to these sections are

Read regularly A B C A\B A\C B\C A\B\C

Probability .14 .23 .37 .08 .09 .13 .05

Figure 2.10 encapsulates this information.

We thus have

PðAjBÞ ¼ PðA\BÞ
PðBÞ ¼ :08

:23
¼ :348

PðAjB[CÞ ¼ PðA\ ðB[CÞÞ
PðB[CÞ ¼ :04þ :05þ :03

:47
¼ :12

:47
¼ :255

PðAjreads at least oneÞ ¼ PðAjA[B[CÞ ¼ PðA\ ðA[B[CÞÞ
PðA[B[CÞ

¼ PðAÞ
PðA[B[CÞ ¼

:14
:49

¼ :286

.05
.0 2 .03 .07

.04 .08

.20
.51

A B

C

Figure 2.10 Venn diagram for Example 2.27
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and

PðA[BjCÞ ¼ PððA[BÞ \CÞ
PðCÞ ¼ :04þ :05þ :08

:37
¼ :459 �

The Multiplication Rule for P(A∩B)
The definition of conditional probability yields the following result, obtained by multiplying both
sides of Equation (2.3) by P(B).

MULTIPLICATION RULE PðA\BÞ ¼ PðAjBÞ � PðBÞ

This rule is important because it is often the case that P(A\B) is desired, whereas both P(B) and
P(A|B) can be specified from the problem description. By reversing the roles of A and B, the
Multiplication Rule can also be written as PðA\BÞ ¼ P BjAð Þ � PðAÞ.
Example 2.28 Four individuals have responded to a request by a blood bank for blood donations.
None of them has donated before, so their blood types are unknown. Suppose only type O+ is desired
and only one of the four actually has this type. If the potential donors are selected in random order for
typing, what is the probability that at least three individuals must be typed to obtain the desired type?

Define B = {first type not O+} and A = {second type not O+}. Since three of the four potential
donors are not O+, P(B) = 3/4. Given that the first person typed is not O+, two of the three indi-
viduals left are not O+, and so P(A|B) = 2/3. The Multiplication Rule now gives

P at least three individuals are typedð Þ ¼ Pðfirst two typed are not O+Þ
¼ PðA\BÞ
¼ P AjBð Þ � PðBÞ
¼ 2

3
� 3
4
¼ 6

12
¼ :5 �

The Multiplication Rule is most useful when the experiment consists of several stages in succession.
The conditioning event B then describes the outcome of the first stage and A the outcome of the
second, so that P(A|B)—conditioning on what occurs first—will often be known. The rule is easily
extended to experiments involving more than two stages. For example,

P A1 \A2 \A3ð Þ ¼ P A3jA1 \A2ð Þ � P A1 \A2ð Þ
¼ P A3jA1 \A2ð Þ � P A2jA1ð Þ � P A1ð Þ ð2:4Þ

where A1 occurs first, followed by A2, and finally A3.

Example 2.29 Using Equation (2.4) for the blood typing experiment of Example 2.28,
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P third type is O+ð Þ
¼ Pðthird is j first isn’t\ second isn’tÞ � P second isn’t j first isn’tð Þ � P first isn’tð Þ
¼ 1

2
� 2
3
� 3
4
¼ 1

4
¼ :25 �

When the experiment of interest consists of a sequence of several stages, it is convenient to represent
these with a tree diagram. Once we have an appropriate tree diagram, probabilities and conditional
probabilities can be entered on the various branches; this will make repeated use of the Multiplication
Rule quite straightforward.

Example 2.30 An online retailer sells three different brands of Bluetooth earbuds. Of its earbud
sales, 50% are brand 1 (the least expensive), 30% are brand 2, and 20% are brand 3. Each manu-
facturer offers a 1-year warranty. It is known that 25% of brand 1’s earbuds will be returned within
the 1-year warranty period, whereas the corresponding percentages for brands 2 and 3 are 20% and
10%, respectively.

1. What is the probability that a randomly selected purchaser has bought brand 1 earbuds that will be
returned while under warranty?

2. What is the probability that a randomly selected purchaser has earbuds that will be returned while
under warranty?

3. If a customer returns earbuds under warranty, what is the probability that they are brand 1
earbuds? Brand 2? Brand 3?

The first stage of the problem involves a customer selecting one of the three brands of earbud. Let
Ai = {brand i is purchased}, for i = 1, 2, and 3. Then P(A1) = .50, P(A2) = .30, and P(A3) = .20.
Once a brand of earbud is selected, the second stage involves observing whether the selected earbuds
get returned during the warranty period. With B = {returned} and B′ = {not returned}, the given
information implies that P(B|A1) = .25, P(B|A2) = .20, and P(B|A3) = .10.

The tree diagram representing this experimental situation appears in Figure 2.11 (p. 80). The initial
branches correspond to different brands of earbuds; there are two second-generation branches ema-
nating from the tip of each initial branch, one for “returned” and the other for “not returned.” The
probability P(Ai) appears on the ith initial branch, whereas the conditional probabilities P(B|Ai) and
P(B′|Ai) appear on the second-generation branches. To the right of each second-generation branch
corresponding to the occurrence of B, we display the product of probabilities on the branches leading
out to that point. This is simply the Multiplication Rule in action. The answer to question 1 is thus
P(A1\B) = P(B|A1) � P(A1) = .125. The answer to question 2 is

P Bð Þ ¼ P brand 1 and returnedð Þ or brand 2 and returnedð Þ or brand 3 and returnedð Þ½ �
¼ P A1 \Bð ÞþP A2 \Bð ÞþP A3 \Bð Þ
¼ :125þ :060þ :020 ¼ :205

Finally,

PðA1jBÞ ¼ PðA1 \BÞ
PðBÞ ¼ :125

:205
¼ :61
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PðA2jBÞ ¼ PðA2 \BÞ
PðBÞ ¼ :060

:205
¼ :29

and
P A3jBð Þ ¼ 1� P A1jBð Þ � P A2jBð Þ ¼ :10

Notice that the initial or prior probability of brand 1 is .50, whereas once it is known that the
selected earbuds were returned, the posterior probability of brand 1 increases to .61. This is because
brand 1 earbuds are more likely to be returned under warranty than are the other brands. In contrast,
the posterior probability of brand 3 is P(A3|B) = .10, which is much less than the prior probability
P(A3) = .20. ■

The Law of Total Probability and Bayes’ Theorem
The computation of a posterior probability P(Aj|B) from given prior probabilities P(Ai) and condi-
tional probabilities P(B|Ai) occupies a central position in elementary probability. The general rule for
such computations, which is really just a simple application of the Multiplication Rule, goes back to
the Reverend Thomas Bayes, who lived in the eighteenth century. To state it we first need another
result. Recall that events A1,…, Ak are mutually exclusive if no two have any common outcomes. The
events are exhaustive if A1 Ak = S , so that one Ai must occur.

LAW OF TOTAL
PROBABILITY

Let A1, …, Ak be mutually exclusive and exhaustive events. Then for any
other event B,

Brand 2

Bran
d 1

Brand 3

Returned

Not returned

Returned

Not returned

Not returned

Returned

P(A 1
) =

 .5
0

P(A2) = .30

P(A
3 ) = .20

P(B  A3) =
 .10

P(B   A2) =
 .20

P(B  A1) =
 .25

P(B '  A1) = .75

 

P(B '  A2) = .80

P(B'  A3) = .90

P(B  A1)   P(A1) = P(B    A1) = .125

P(B  A2)   P(A2) = P(B    A2) = .060

P(B  A3)   P(A3) = P(B    A3) = .020

P(B) = .205

Figure 2.11 Tree diagram for Example 2.30
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PðBÞ ¼ PðBjA1Þ � PðA1Þþ � � � þPðBjAkÞ � PðAkÞ

¼
Xk
i¼1

PðBjAiÞPðAiÞ
ð2:5Þ

Proof Because theAi’s aremutually exclusive and exhaustive, ifB occurs it must be in conjunctionwith
exactly one of the Ai’s. That is, B = (A1 and B) or… or (Ak and B) = (A1\B) [ ��� [ (Ak \ B), where
the events (Ai\B) are mutually exclusive. This “partitioning of B” is illustrated in Figure 2.12. Thus

PðBÞ ¼
Xk
i¼1

PðAi \BÞ ¼
Xk
i¼1

PðBjAiÞPðAiÞ

as desired.

An example of the use of Equation (2.5) appeared in answering question 2 of Example 2.30, where
A1 = {brand 1}, A2 = {brand 2}, A3 = {brand 3}, and B = {returned}.

Example 2.31 A certain university has three colleges: Letters & Science (45% of the student body),
Business (32%), and Engineering (23%). Of the students in the College of Letters & Science, 11%
traveled out of state during the most recent spring break, compared to 14% in Business and just 3% in
Engineering. If we select a student completely at random from this student body, what’s the prob-
ability he/she traveled out of state for spring break?

Define A1 = {the student belongs to Letters & Science}; define A2 and A3 similarly for Business
and Engineering, respectively. Let B = {the student traveled out of state for spring break}. The
percentages provided above imply that

P A1ð Þ ¼ :45 P A2ð Þ ¼ :32 P A3ð Þ ¼ :23
P BjA1ð Þ ¼ :11 P BjA2ð Þ ¼ :14 P BjA3ð Þ ¼ :03

Notice that A1, A2, A3 form a partition of the sample space (the student body). Apply the Law of Total
Probability:

PðBÞ ¼ ð:11Þð:45Þþ ð:14Þð:32Þþ ð:03Þð:23Þ ¼ :1012 �

A1

A2
A4

A3

B

Figure 2.12 Partition of B by mutually exclusive and exhaustive Ai’s ■

2.4 Conditional Probability 81



BAYES’ THEOREM Let A1, …, Ak be a collection of mutually exclusive and exhaustive events
with P(Ai) > 0 for i = 1, …, k. Then for any other event B for which
P(B) > 0,

PðAjjBÞ ¼ PðAj \BÞ
PðBÞ ¼ PðBjAjÞPðAjÞPk

i¼1 PðBjAiÞPðAiÞ
j ¼ 1; . . .; k ð2:6Þ

The transition from the second to the third expression in (2.6) rests on using the Multiplication Rule
in the numerator and the Law of Total Probability in the denominator.

The proliferation of events and subscripts in (2.6) can be a bit intimidating to probability new-
comers. When k = 2, so that the partition of S consists of just A1 = A and A2 = A′, Bayes’
Theorem becomes

PðAjBÞ ¼ PðAÞPðBjAÞ
PðAÞPðBjAÞþPðA0ÞPðBjA0Þ

As long as there are relatively few events in the partition, a tree diagram (as in Example 2.30) can be
used as a basis for calculating posterior probabilities without ever referring explicitly to Bayes’
theorem.

Example 2.32 Incidence of a rare disease. Only 1 in 1000 adults is afflicted with a rare disease for
which a diagnostic test has been developed. The test is such that when an individual actually has the
disease, a positive result will occur 99% of the time, whereas an individual without the disease will
show a positive test result only 2% of the time. If a randomly selected individual is tested and the
result is positive, what is the probability that the individual has the disease?

[Note: The sensitivity of this test is 99%, whereas the specificity—how specific positive results are
to this disease—is 98%. As an indication of the accuracy of medical tests, an article in the October 29,
2010, New York Times reported that the sensitivity and specificity for a new DNA test for colon
cancer were 86% and 93%, respectively. The PSA test for prostate cancer has sensitivity 85% and
specificity about 30%, while the mammogram for breast cancer has sensitivity 75% and specificity
92%. And then there are Covid19 tests. All tests are less than perfect.]

To use Bayes’ theorem, let A1 = {individual has the disease}, A2 = {individual does not have
the disease}, and B = {positive test result}. Then P(A1) = .001, P(A2) = .999, P(B|A1) = .99, and
P(B|A2) = .02. The tree diagram for this problem is in Figure 2.13 (p. 83).

Next to each branch corresponding to a positive test result, the Multiplication Rule yields the
recorded probabilities. Therefore, P(B) = .00099 + .01998 = .02097, from which we have

PðA1jBÞ ¼ PðA1 \BÞ
PðBÞ ¼ :00099

:02097
¼ :047

This result seems counterintuitive; because the diagnostic test appears so accurate, we expect
someone with a positive test result to be highly likely to have the disease, whereas the computed
conditional probability is only .047. However, because the disease is rare and the test isn’t perfectly
reliable, most positive test results arise from errors rather than from diseased individuals. The
probability of having the disease has increased by a multiplicative factor of 47 (from prior .001 to
posterior .047); but to get a further increase in the posterior probability, a diagnostic test with much
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smaller error rates is needed. If the disease were not so rare (e.g., 25% incidence in the population),
then the error rates for the present test would provide good diagnoses.

This example shows why it makes sense to be tested for a rare disease only if you are in a high-risk
group. For example, most of us are at low risk for HIV infection, so testing would not be indicated,
but those who are in a high-risk group should be tested for HIV. For some diseases the degree of risk
is strongly influenced by age. Young women are at low risk for breast cancer and should not be tested,
but older women do have increased risk and need to be tested. There is some argument about where to
draw the line. If we can find the incidence rate for our group and the sensitivity and specificity for the
test, then we can do our own calculation to see if a positive test result would be informative. ■

An important contemporary application of Bayes’ theorem is in the identification of spam e-mail
messages. A nice expository article on this appears in Statistics: A Guide to the Unknown (see the
bibliography).

A1 = Has disease

A
2 = Doesn't have disease

.001

.999 .02

.98

.01

.99

B = +Test

B = +Test

B ' = −Test

B ' = −Test

P(A1   B) = .00099

P(A2    B) = .01998

Figure 2.13 Tree diagram for the rare disease problem

Exercises: Section 2.4 (49–73)

49. The population of a particular country
consists of three ethnic groups. Each indi-
vidual belongs to one of the four major
blood groups. The accompanying joint
probability table gives the proportions of
individuals in the various ethnic group–
blood group combinations.

Ethnic group

Blood group

O A B AB

1 .082 .106 .008 .004
2 .135 .141 .018 .006
3 .215 .200 .065 .020

Suppose that an individual is randomly
selected from the population, and define
events by A = {type A selected}, B = {type
B selected}, and C = {ethnic group 3
selected}.

a. Calculate P(A), P(C), and P(A\C).
b. Calculate both P(A|C) and P(C|A) and

explain in context what each of these
probabilities represents.

c. If the selected individual does not have
type B blood, what is the probability
that he or she is from ethnic group 1?

50. Suppose an individual is randomly selected
from the population of all adult males liv-
ing in the United States. Let A be the event
that the selected individual is over 6 ft in
height, and let B be the event that the
selected individual is a professional bas-
ketball player. Which do you think is lar-
ger, P(A|B) or P(B|A)? Why?

51. Return to the credit card scenario of Exercise
14, where A = {Visa}, B = {MasterCard},
P(A) = .5, P(B) = .4, and P(A\B) = .25.
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Calculate and interpret each of the following
probabilities (a Venn diagram might help).

a. P BjAð Þ
b. P B0jAð Þ
c. P AjBð Þ
d. P A0jBð Þ
e. Given that the selected individual has at

least one card, what is the probability
that he or she has a Visa card?

52. Reconsider the system defect situation
described in Exercise 28.

a. Given that the system has a type 1
defect, what is the probability that it has
a type 2 defect?

b. Given that the system has a type 1
defect, what is the probability that it has
all three types of defects?

c. Given that the system has at least one
type of defect, what is the probability
that it has exactly one type of defect?

d. Given that the system has both of the
first two types of defects, what is the
probability that it does not have the third
type of defect?

53. If two bulbs are randomly selected from the
box of lightbulbs described in Exercise 42
and at least one of them is found to be rated
75 W, what is the probability that both of
them are 75-W bulbs? Given that at least
one of the two selected is not rated 75 W,
what is the probability that both selected
bulbs have the same rating?

54. A department store sells sport shirts in three
sizes (small, medium, and large), three
patterns (plaid, print, and stripe), and two
sleeve lengths (long and short). The
accompanying tables give the proportions
of shirts sold in the various category com-
binations.

Short-sleeved

Size

Pattern

Pl Pr St

S .04 .02 .05
M .08 .07 .12
L .03 .07 .08

Long-sleeved

Size

Pattern

Pl Pr St

S .03 .02 .03
M .10 .05 .07
L .04 .02 .08

a. What is the probability that the next
shirt sold is a medium, long-sleeved,
print shirt?

b. What is the probability that the next
shirt sold is a medium print shirt?

c. What is the probability that the next
shirt sold is a short-sleeved shirt? A
long-sleeved shirt?

d. What is the probability that the size of the
next shirt sold is medium? That the pat-
tern of the next shirt sold is a print?

e. Given that the shirt just sold was a
short-sleeved plaid, what is the proba-
bility that its size was medium?

f. Given that the shirt just sold was a
medium plaid, what is the probability
that it was short-sleeved? Long-sleeved?

55. One box contains six red balls and four
green balls, and a second box contains
seven red balls and three green balls. A ball
is randomly chosen from the first box and
placed in the second box. Then a ball is
randomly selected from the second box and
placed in the first box.

a. What is the probability that a red ball is
selected from the first box and a red ball
is selected from the second box?

b. At the conclusion of the selection pro-
cess, what is the probability that the
numbers of red and green balls in the
first box are identical to the numbers at
the beginning?

56. A system consists of two identical pumps,
#1 and #2. If one pump fails, the system will
still operate. However, because of the added
strain, the extra remaining pump is now
more likely to fail than was originally
the case. That is, r = P(#2 fails|#1 fails) >
P(#2 fails) = q. If at least one pump fails by
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the end of the pump design life in 7% of all
systems and both pumps fail during that
period in only 1%, what is the probability
that pump #1 will fail during the pump
design life?

57. A certain shop repairs both audio and video
components. Let A denote the event that the
next component brought in for repair is an
audio component, and let B be the event
that the next component is an MP3 player
(so the event B is contained in A). Suppose
that P(A) = .6 and P(B) = .05. What is
PðB jAÞ?

58. In Exercise 15, Ai = {awarded project i},
for i = 1, 2, 3. Use the probabilities given
there to compute the following probabili-
ties, and explain in words the meaning of
each one.

a. P A2jA1ð Þ
b. PðA2 \A3jA1Þ
c. PðA2 [A3jA1Þ
d. PðA1 \A2 \A3jA1 [A2 [A3Þ

59. Refer back to the culture website scenario
in Example 2.27.

a. Given that someone regularly reads at
least one of the three sections listed
(Arts, Books, Cinema), what is the
probability she reads all three?

b. Given that someone regularly reads all
three sections, what is the probability
she reads at least one? [Think carefully!]

60. Three plants manufacture hard drives and
ship them to a warehouse for distribution.
Plant I produces 54% of the warehouse’s
inventory with a 4% defect rate. Plant II
produces 35% of the warehouse’s inventory
with an 8% defect rate. Plant III produces
the remainder of the warehouse’s inventory
with a 12% defect rate.

a. Draw a tree diagram to represent this
information.

b. A warehouse inspector selects one hard
drive at random. What is the probability
that it is a defective hard drive and from
Plant II?

c. What is the probability that a randomly
selected hard drive is defective?

d. Suppose a hard drive is defective. What
is the probability that it came from Plant
II?

61. For any events A and B with P(B) > 0,
show that P(A | B) + P(A′ | B) = 1.

62. If PðB jAÞ[PðBÞ show that PðB0 jAÞ\
PðB0Þ: [Hint: Add PðB0 jAÞ to both sides of
the given inequality, and then use the result
of the previous exercise.]

63. Show that for any three events A, B, and
C with P(C) > 0, PðA[BjCÞ ¼ PðA jCÞþ
PðB jCÞ � PðA\B jCÞ:

64. At a gas station, 40% of the customers use
regular gas (A1), 35% use midgrade gas
(A2), and 25% use premium gas (A3). Of
those customers using regular gas, only
30% fill their tanks (event B). Of those
customers using midgrade gas, 60% fill
their tanks, whereas of those using pre-
mium, 50% fill their tanks.

a. What is the probability that the next
customer will request midgrade gas and
fill the tank (A2\B)?

b. What is the probability that the next
customer fills the tank?

c. If the next customer fills the tank, what
is the probability that regular gas is
requested? Midgrade gas? Premium
gas?

65. Seventy percent of the light aircraft that
disappear while in flight in a certain coun-
try are subsequently discovered. Of the
aircraft that are discovered, 60% have an
emergency locator, whereas 90% of the
aircraft not discovered do not have such a
locator. Suppose a light aircraft has
disappeared.

a. If it has an emergency locator, what is
the probability that it will not be
discovered?

b. If it does not have an emergency loca-
tor, what is the probability that it will be
discovered?
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66. Components of a certain type are shipped to
a supplier in batches of ten. Suppose that
50% of all such batches contain no defective
components, 30% contain one defective
component, and 20% contain two defective
components. Two components from a batch
are randomly selected and tested. What are
the probabilities associated with 0, 1, and 2
defective components being in the batch
under each of the following conditions?

a. Neither tested component is defective.
b. One of the two tested components is

defective.
[Hint: Draw a tree diagram with three
first-generation branches for the three
different types of batches.]

67. Verify the multiplication rule for conditional
probabilities: PðA\BjCÞ ¼ PðAjB\CÞ � PðBjCÞ:

68. For customers purchasing a full set of tires
at a particular tire store, consider the events

A = {tires purchased were made in the
United States}

B = {purchaser has tires balanced
immediately}

C = {purchaser requests front-end align-
ment}

along with A′, B′, and C′. Assume the
following unconditional and conditional
probabilities:

PðAÞ ¼ :75 P BjAð Þ ¼ :9 P BjA0ð Þ ¼ :8

PðCjA\BÞ ¼ :8 PðCjA\B0Þ ¼ :6

PðCjA0 \BÞ ¼ :7 PðCjA0 \B0Þ ¼ :3

a. Construct a tree diagram consisting of
first-, second-, and third-generation
branches, and place an event label and
appropriate probability next to each
branch.

b. Compute PðA\B\CÞ.
c. Compute PðB\CÞ.
d. Compute PðCÞ.
e. Compute PðAjB\CÞ; the probability of

a purchase of U.S. tires given that both
balancing and an alignment were
requested.

69. A professional organization (for statisti-
cians, of course) sells term life insurance
and major medical insurance. Of those who
have just life insurance, 70% will renew
next year, and 80% of those with only a
major medical policy will renew next year.
However, 90% of policyholders who have
both types of policy will renew at least one
of them next year. Of the policyholders
75% have term life insurance, 45% have
major medical, and 20% have both.

a. Calculate the percentage of policyhold-
ers that will renew at least one policy
next year.

b. If a randomly selected policyholder
does in fact renew next year, what is the
probability that he or she has both types
of policies?

70. At a large university, in the never-ending
quest for a satisfactory textbook, the
Statistics Department has tried a different
text during each of the last three quarters.
During the fall quarter, 500 students used
the text by Professor Mean; during the
winter quarter, 300 students used the text
by Professor Median; and during the spring
quarter, 200 students used the text by Pro-
fessor Mode. A survey at the end of each
quarter showed that 200 students were
satisfied with Mean’s book, 150 were sat-
isfied with Median’s book, and 160 were
satisfied with Mode’s book. If a student
who took statistics during one of these
quarters is selected at random and admits to
having been satisfied with the text, is the
student most likely to have used the book
by Mean, Median, or Mode? Who is the
least likely author? [Hint: Draw a tree dia-
gram or use Bayes’ theorem.]

71. A friend who lives in Los Angeles makes
frequent consulting trips to Washington,
D.C.; 50% of the time she travels on airline
#1, 30% of the time on airline #2, and the
remaining 20% of the time on airline #3.
For airline #1, flights are late into D.C. 30%
of the time and late into L.A. 10% of the
time. For airline #2, these percentages are
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25 and 20%, whereas for airline #3 the
percentages are 40 and 25%. If we learn
that on a particular trip she arrived late at
exactly one of the two destinations, what
are the posterior probabilities of having
flown on airlines #1, #2, and #3? Assume
that the chance of a late arrival in L.A. is
unaffected by what happens on the flight to
D.C. [Hint: From the tip of each first-
generation branch on a tree diagram, draw
three second-generation branches labeled,
respectively, 0 late, 1 late, and 2 late.]

72. Suppose a single gene controls the color of
hamsters: black (B) is dominant and brown
(b) is recessive. Hence, a hamster will be
black unless its genotype is bb. Two ham-
sters, each with genotype Bb, mate and
produce a single offspring. The laws of
genetic recombination state that each parent
is equally likely to donate either of its two
alleles (B or b), so the offspring is equally
likely to be any of BB, Bb, bB, or bb (the
middle two are genetically equivalent).

a. What is the probability their offspring
has black fur?

b. Given that their offspring has black fur,
what is the probability its genotype is
Bb?

73. Refer back to the scenario of the previous
exercise. In the figure below, the genotypes

of both members of Generation I are
known, as is the genotype of the male
member of Generation II. We know that
hamster II2 must be black-colored thanks to
her father, but suppose that we don’t know
her genotype exactly (as indicated by B in
the figure).

a. What are the possible genotypes of
hamster II2, and what are the corre-
sponding probabilities?

b. If we observe that hamster III1 has a
black coat (and hence at least one
B gene), what is the probability her
genotype is Bb?

c. If we later discover (through DNA
testing on poor little hamster III1) that
her genotype is BB, what is the posterior
probability that her mom is also BB?

2.5 Independence

The definition of conditional probability enables us to revise the probability P(A) originally assigned
to A when we are subsequently informed that another event B has occurred; the new probability of
A is P(A|B). In our examples, it was frequently the case that P(A|B) differed from the unconditional
probability P(A), indicating that the information “B has occurred” resulted in a change in the chance
of A occurring. There are other situations, though, in which the chance that A will occur or has
occurred is not affected by knowledge that B has occurred, so that P(A|B) = P(A). It is then natural to
think of A and B as independent events, meaning that the occurrence or nonoccurrence of one event
has no bearing on the chance that the other will occur.

BB

Bb

1

1

1

2

2

B–Generation II

Generation III

Generation I Bb
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DEFINITION TwoeventsA andB are independent ifP(A|B) = P(A) and aredependentotherwise.

The definition of independence might seem “unsymmetrical” because we do not demand that P BjAð Þ ¼
PðBÞ also. However, using the definition of conditional probability and the Multiplication Rule,

PðBjAÞ ¼ PðA\BÞ
PðAÞ ¼ PðAjBÞPðBÞ

PðAÞ ð2:7Þ

The right-hand side of Equation (2.7) is P(B) if and only if P AjBð Þ ¼ PðAÞ (independence), so the
equality in the definition implies the other equality (and vice versa). It is also straightforward to show
that if A and B are independent, then so are the following pairs of events: (1) A′ and B, (2) A and B′,
and (3) A′ and B′ (see Exercise 77).

Example 2.33 Consider an ordinary deck of 52 cards comprised of the four “suits” spades, hearts,
diamonds, and clubs, with each suit consisting of the 13 ranks ace, king, queen, jack, ten,…, and two.
Suppose someone randomly selects a card from the deck and reveals to you that it is a face card (that
is, a king, queen, or jack). What now is the probability that the card is a spade? If we let A = {spade}
and B = {face card}, then P(A) = 13/52, P(B) = 12/52 (there are three face cards in each of the four
suits), and P(A\B) = P(spade and face card) = 3/52. Thus

PðAjBÞ ¼ PðA\BÞ
PðBÞ ¼ 3=52

12=52
¼ 3

12
¼ 1

4
¼ 13

52
¼ PðAÞ

Therefore, the likelihood of getting a spade is not affected by knowledge that a face card had been selected.
Intuitively this is because the fraction of spades among face cards (3 out of 12) is the same as the fraction of
spades in the entire deck (13 out of 52). It is also easily verified that P(B|A) = P(B), so knowledge that a
spade has been selected does not affect the likelihood of the card being a jack, queen, or king. ■

Example 2.34 Let A and B be any two mutually exclusive events with P(A) > 0. For example, for a
randomly chosen automobile, let A = {car is blue} and B = {car is red}. Since the events are
mutually exclusive, if B occurs, then A cannot possibly have occurred, so P(A|B) = 0 6¼ P(A). The
message here is that if two events are mutually exclusive, they cannot be independent. When A and
B are mutually exclusive, the information that A occurred says something about B (it cannot have
occurred), so independence is precluded. ■

P(A∩B) When Events Are Independent
Frequently the nature of an experiment suggests that two events A and B should be assumed inde-
pendent. This is the case, for example, if a manufacturer receives a circuit board from each of two
different suppliers, each board is tested on arrival, and A = {first is defective} and B = {second is
defective}. If P(A) = .1, it should also be the case that P(A|B) = .1; knowing the condition of the
second board shouldn’t provide information about the condition of the first. Our next result shows
how to compute P(A\B) when the events are independent.

PROPOSITION A and B are independent if and only if

PðA\BÞ ¼ PðAÞ � PðBÞ ð2:8Þ
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Proof By the Multiplication Rule, P(A\B) = P(A|B) � P(B), and this equals P(A) � P(B) if and only
if P(A|B) = P(A). ■

Because of the equivalence of independence with Equation (2.8), the latter can be used as a
definition of independence.1

Example 2.35 It is known that 3% of a certain machine tool manufacturing company’s band saws
break down within the first six months of ownership, compared to only 1% of its industrial lathes. If a
machine shop purchases both a band saw and a lathe made by this company, what is the probability
that both machines will break down within six months?

Let A denote the event that the band saw breaks down in the first six months, and define
B analogously for the industrial lathe. Then P(A) = .03 and P(B) = .01. Assuming that the two
machines function independently of each other, the desired probability is

PðA\BÞ ¼ PðAÞ � PðBÞ ¼ ð:03Þð:01Þ ¼ :0003

The probability that neither machine breaks down in that time period is

P A0 \B0ð Þ ¼ P A0ð Þ � P B0ð Þ ¼ ð:97Þð:99Þ ¼ :9603

Note that, although the independence assumption is reasonable here, it can be questioned. In particular,
if heavy use causes a breakdown in one machine, it could also cause trouble for the other one. ■

Example 2.36 Each day, Monday through Friday, a batch of components sent by a first supplier
arrives at a certain inspection facility. Two days a week, a batch also arrives from a second supplier.
Eighty percent of all supplier 1’s batches pass inspection, and 90% of supplier 2’s do likewise. What
is the probability that, on a randomly selected day, two batches pass inspection? We will answer this
assuming that on days when two batches are tested, whether the first batch passes is independent of
whether the second batch does so. Figure 2.14 displays the relevant information.

2 batches

1 batch

.6

.4 .8

1st p
asse

s

.2

1st fails

.2

Fails

.8

Passe
s

.9

2nd passe
s

.1

2nd fails
.9

2nd passes

.1

2nd fails

.4      (.8      .9)

Figure 2.14 Tree diagram for Example 2.36

1However, the multiplication property is satisfied if P(B) = 0, yet P(A|B) is not defined in this case. To make the
multiplication property completely equivalent to the definition of independence, we should append to that definition that
A and B are also independent if either P(A) = 0 or P(B) = 0.
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P two passð Þ ¼ Pðtwo received\ both pass)

¼ P both passjtwo receivedð Þ � P two receivedð Þ
¼ :8ð Þ :9ð Þ½ � :4ð Þ ¼ :288 �

Independence of More Than Two Events
The notion of independence of two events can be extended to collections of more than two events.
Although it is possible to extend the definition for two independent events by working in terms of
conditional and unconditional probabilities, it is more direct and less cumbersome to proceed along
the lines of the last proposition.

DEFINITION Events A1, …, An are mutually independent if for every k (k = 2, 3, …, n) and
every subset of distinct indices i1, i2, …, ik,

PðAi1 \Ai2 \ � � � \AikÞ ¼ PðAi1Þ � PðAi2Þ � � � � � PðAikÞ

To paraphrase the definition, the events are mutually independent if the probability of the intersection
of any subset of the n events is equal to the product of the individual probabilities. In using this
multiplication property for more than two independent events, it is legitimate to replace one or more
of the Ai’s by their complements (e.g., if A1, A2, and A3 are independent events, then so are
A0
1;A

0
2; and A0

3). As was the case with two events, we frequently specify at the outset of a problem
the independence of certain events. The definition can then be used to calculate the probability of an
intersection.

Example 2.37 The article “Reliability Evaluation of Solar Photovoltaic Arrays” (Solar Energy
2002: 129–141) presents various configurations of solar photovoltaic arrays consisting of crystalline
silicon solar cells. Consider first the system illustrated in Figure 2.15a. There are two subsystems
connected in parallel, each one containing three cells. In order for the system to function, at least one
of the two parallel subsystems must work. Within each subsystem, the three cells are connected in
series, so a subsystem will work only if all cells in the subsystem work. Consider a particular lifetime
value t0, and suppose we want to determine the probability that the system lifetime exceeds t0. Let Ai

denote the event that the lifetime of cell i exceeds t0 (i = 1, 2, …, 6). We assume that the Ai’s are
independent events (whether any particular cell lasts more than t0 hours has no bearing on whether
any other cell does) and that P(Ai) = .9 for every i since the cells are all made the same way.

1 2 3

4 5 6

1 2 3

4 5 6

(a) (b)

Figure 2.15 System configurations for Example 2.37: (a) series–parallel; (b) total-cross-tied
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Then

P system lifetime exceeds t0ð Þ ¼ P½ðA1 \A2 \A3Þ [ ðA4 \A5 \A6Þ�
¼ PðA1 \A2 \A3ÞþPðA4 \A5 \A6Þ
� P½ðA1 \A2 \A3Þ \ ðA4 \A5 \A6Þ�

¼ :9ð Þ :9ð Þ :9ð Þþ :9ð Þ :9ð Þ :9ð Þ � :9ð Þ :9ð Þ :9ð Þ :9ð Þ :9ð Þ :9ð Þ
¼ :927

Alternatively,

P system lifetime exceeds t0ð Þ ¼ 1� Pðboth subsystem lives are� t0Þ
¼ 1� ½Pðsubsystem life is� t0Þ�2

¼ 1� ½1� Pðsubsystem life is[ t0Þ�2

¼ 1� ½1� :93�2 ¼ :927

Next consider the total-cross-tied system shown in Figure 2.15b, obtained from the series–parallel
array by connecting ties across each column of junctions. Now the system fails as soon as an entire
column fails, and system lifetime exceeds t0 only if the life of every column does so. For this
configuration,

P system lifetime exceeds t0ð Þ ¼ ½P column lifetime exceeds t0ð Þ�3

¼ ½1� Pðcolumn lifetime is� t0Þ�3

¼ ½1� Pðboth cells in a column have lifetime� t0Þ�3

¼ ½1� ð1� :9Þ2�3 ¼ :970 �

Exercises: Section 2.5 (74–92)

74. Reconsider the credit card scenario of
Exercise 51 (Section 2.4), and show that
A and B are dependent first by using the
definition of independence and then by
verifying that the multiplication property
does not hold.

75. An oil exploration company currently has
two active projects, one in Asia and the
other in Europe. Let A be the event that the
Asian project is successful and B be the
event that the European project is success-
ful. Suppose that A and B are independent
events with P(A) = .4 and P(B) = .7.

a. If the Asian project is not successful,
what is the probability that the Euro-
pean project is also not successful?
Explain your reasoning.

b. What is the probability that at least one
of the two projects will be successful?

c. Given that at least one of the two pro-
jects is successful, what is the proba-
bility that only the Asian project is
successful?

76. In Exercise 15, is any Ai independent of any
other Ai? Answer using the multiplication
property for independent events.

77. If A and B are independent events, show
that A′ and B are also independent. [Hint:
First establish a relationship among
PðA0 \BÞ; PðBÞ; and PðA\BÞ.]

78. Suppose that the proportions of blood
phenotypes in a particular population are as
follows:
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A B AB O
.42 .10 .04 .44

Assuming that the phenotypes of two ran-
domly selected individuals are independent
of each other, what is the probability that
both phenotypes are O? What is the prob-
ability that the phenotypes of two randomly
selected individuals match?

79. The probability that a grader will make a
marking error on any particular question of
a multiple-choice exam is .1. If there are ten
questions and questions are marked inde-
pendently, what is the probability that no
errors are made? That at least one error is
made? If there are n questions and the
probability of a marking error is p rather
than .1, give expressions for these two
probabilities.

80. An aircraft seam requires 25 rivets. The
seam will have to be reworked if any of
these rivets is defective. Suppose rivets are
defective independently of one another,
each with the same probability.

a. If 20% of all seams need reworking,
what is the probability that a rivet is
defective?

b. How small should the probability of a
defective rivet be to ensure that only
10% of all seams need reworking?

81. A boiler has five identical relief valves. The
probability that any particular valve will
open on demand is .95. Assuming inde-
pendent operation of the valves, calculate
P(at least one valve opens) and P(at least
one valve fails to open).

82. Two pumps connected in parallel fail
independently of each other on any given
day. The probability that only the older
pump will fail is .10, and the probability
that only the newer pump will fail is .05.
What is the probability that the pumping
system will fail on any given day (which
happens if both pumps fail)?

83. Consider the system of components con-
nected as in the accompanying picture.

Components 1 and 2 are connected in par-
allel, so that subsystem works if and only if
either 1 or 2 works; since 3 and 4 are con-
nected in series, that subsystem works if
and only if both 3 and 4 work. If compo-
nents work independently of one another
and P(component works) = .9, calculate
P(system works).

84. Refer back to the series–parallel system
configuration introduced in Example 2.37,
and suppose that there are only two cells
rather than three in each parallel subsystem
[in Figure 2.15a, eliminate cells 3 and 6,
and re-number cells 4 and 5 as 3 and 4].
Using P(Ai) = .9, the probability that sys-
tem lifetime exceeds t0 is easily seen to be
.9639. To what value would .9 have to be
changed in order to increase the system
lifetime reliability from .9639 to .99? [Hint:
Let P(Ai) = p, express system reliability in
terms of p, and then let x = p2.]

85. Consider independently rolling two fair
dice, one red and the other green. Let A be
the event that the red die shows 3 dots, B be
the event that the green die shows 4 dots,
and C be the event that the total number of
dots showing on the two dice is 7.

a. Are these events pairwise independent
(i.e., are A and B independent events,
are A and C independent, and are B and
C independent)?

b. Are the three events mutually
independent?

86. Components arriving at a distributor are
checked for defects by two different
inspectors (each component is checked by
both inspectors). The first inspector detects
90% of all defectives that are present, and
the second inspector does likewise. At least
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one inspector fails to detect a defect on
20% of all defective components. What is
the probability that the following occur?

a. A defective component will be detected
only by the first inspector? By exactly
one of the two inspectors?

b. All three defective components in a
batch escape detection by both inspec-
tors (assuming inspections of different
components are independent of one
another)?

87. A quality control inspector is inspecting
newly produced items for faults. The
inspector searches an item for faults in a
series of independent “fixations,” each of a
fixed duration. Given that a flaw is actually
present, let p denote the probability that the
flaw is detected during any one fixation
(this model is discussed in “Human Per-
formance in Sampling Inspection,” Hum.
Factors 1979: 99–105).

a. Assuming that an item has a flaw, what
is the probability that it is detected by
the end of the second fixation (once a
flaw has been detected, the sequence of
fixations terminates)?

b. Give an expression for the probability
that a flaw will be detected by the end of
the nth fixation.

c. If when a flaw has not been detected in
three fixations, the item is passed, what
is the probability that a flawed item will
pass inspection?

d. Suppose 10% of all items contain a flaw
[P(randomly chosen item is flawed) = .1].
With the assumption of part (c), what is
the probability that a randomly chosen
item will pass inspection (it will auto-
matically pass if it is not flawed, but could
also pass if it is flawed)?

e. Given that an item has passed inspection
(no flaws in three fixations), what is the
probability that it is actually flawed?
Calculate for p = .5.

88. a. A lumber company has just taken
delivery on a lot of 10,000 2 � 4 boards.
Suppose that 20% of these boards (2000)
are actually too green to be used in first-
quality construction. Two boards are
selected at random, one after the other.
Let A = {the first board is green} and
B = {the second board is green}. Com-
pute P(A), P(B), and P(A\B) (a tree
diagram might help). Are A and
B independent?

b. With A and B independent and P(A) =
P(B) = .2, what is P(A\B)? How
much difference is there between this
answer and P(A\B) in part (a)? For
purposes of calculating P(A\B), can
we assume that A and B of part (a) are
independent to obtain essentially the
correct probability?

c. Suppose the lot consists of ten boards,
of which two are green. Does the
assumption of independence now yield
approximately the correct answer for
P(A\B)? What is the critical difference
between the situation here and that of
part (a)? When do you think that an
independence assumption would be
valid in obtaining an approximately
correct answer to P(A\B)?

89. Refer to the assumptions stated in Exercise
83, and answer the question posed there for
the system in the accompanying picture.
How would the probability change if this
were a subsystem connected in parallel to
the subsystem pictured in Figure 2.15a?

90. Professor Stander Deviation can take one of
two routes on his way home from work. On
the first route, there are four railroad
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crossings. The probability that he will be
stopped by a train at any particular one of
the crossings is .1, and trains operate
independently at the four crossings. The
other route is longer but there are only two
crossings, independent of each other, with
the same stoppage probability for each as
on the first route. On a particular day,
Professor Deviation has a meeting sched-
uled at home for a certain time. Whichever
route he takes, he calculates that he will be
late if he is stopped by trains at least half
the crossings encountered.

a. Which route should he take to minimize
the probability of being late to the
meeting?

b. If he tosses a fair coin to decide on a
route and he is late, what is the proba-
bility that he took the four-crossing
route?

91. Suppose identical tags are placed on both
the left ear and the right ear of a fox. The
fox is then let loose for a period of time.
Consider the two events C1 = {left ear tag
is lost} and C2 = {right ear tag is lost}. Let
p = P(C1) = P(C2), and assume C1 and C2

are independent events. Derive an expres-
sion (involving p) for the probability that
exactly one tag is lost given that at most

one is lost (“Ear Tag Loss in Red Foxes,”
J. Wildlife Manag. 1976: 164–167).

92. It’s a commonly held misconception that if
you play the lottery n times, and the prob-
ability of winning each time is 1/N, then
your chance of winning at least once is n/N.
That’s true if you buy n tickets in one week,
but not if you buy a single ticket in each of
n independent weeks. Let’s explore further.

a. Suppose you play a game n independent
times, with P(win) = 1/N each time.
Find an expression for the probability
you win at least once. [Hint: Consider
the complement.]

b. How does your answer to (a) compare
to n/N for the easy task of rolling a 4 on
a fair die (so N = 6) in n = 3 tries? In
n = 6 tries? In n = 10 tries?

c. Now consider a weekly lottery where
you must guess the 6 winning numbers

from 1 to 49, so N ¼ 49
6

� �
. If you play

this lottery every week for a year
(n = 52), how does your answer to
(a) compare to n/N?

d. Show that when n is much smaller than
N, the fraction n/N is not a bad approx-
imation to (a). [Hint: Use the binomial
theorem from high school algebra.]

2.6 Simulation of Random Events

As probability models in engineering and the sciences have grown in complexity, many problems
have arisen that are too difficult to attack “analytically,” i.e., using just mathematical tools such as
those in the previous sections. Instead, computer simulation provides us an effective way to estimate
probabilities of very complicated events (and, in later chapters, of other properties of random phe-
nomena). In this section, we introduce the principles of probability simulation, demonstrate a few
examples with R code, and discuss the precision of simulated probabilities.

Suppose an investigator wishes to determine P(A), but either the experiment on which A is defined
or the A event itself is so complicated as to preclude the use of probability rules and properties. The
general method for estimating this probability via computer simulation is as follows:
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– Write a program that simulates (mimics) the underlying random experiment.
– Run the program many times, with each run independent of all others.
– During each run, record whether or not the event A of interest occurs.

If the simulation is run a total of n independent times, then the estimate of P(A), denoted by P̂ðAÞ, is

P̂ðAÞ ¼ number of times A occurs
number of runs

¼ nðAÞ
n

For example, if we run a simulation program 10,000 times and the event of interest A occurs in 6174
of those runs, then our estimate of P(A) is P̂ðAÞ ¼ 6174=10;000 ¼ :6174. Notice that our definition is
consistent with the long-run relative frequency interpretation of probability discussed in Section 2.2.

The Backbone of Simulation: Random Number Generators
All modern software packages are equipped with a function called a random number generator
(RNG). A typical call to this function (such as ran or rand) will return a single, supposedly “random”
number, though such functions typically permit the user to request a vector or even a matrix of
“random” numbers. It is more proper to call these results pseudorandom numbers, since there is
actually a deterministic (i.e., nonrandom) algorithm by which the software generates these values. We
will not discuss the details of such algorithms here; see the book by Law listed in the references. What
will matter to us are the following two characteristics:

1. Each number created by an RNG is as likely to be any particular number in the interval [0, 1) as it
is to be any other number in this interval (up to computer precision, anyway).2

2. Successive values created by RNGs are independent, in the sense that we cannot predict the next
value to be generated from the current value (unless we somehow know the exact parameters of
the underlying algorithm).

A typical simulation program manipulates numbers on the interval [0, 1) in a way that mimics the
experiment of interest; several examples are provided below. Arguably the most important building
block for such programs is the ability to simulate a basic event that occurs with a known probability,
p. Since RNGs produce values equally likely to be anywhere in the interval [0, 1), it follows that in
the long run a proportion p of them will lie in the interval [0, p). So, suppose we need to simulate an
event B with P(B) = p. In each run of our simulation program, we can call for a single “random”
number, which we’ll call u, and apply the following rules:

– If 0� u < p, then event B has occurred on this run of the program.
– If p� u < 1, then event B has not occurred on this run of the program.

Example 2.38 Let’s begin with an example in which the exact probability can be obtained ana-
lytically, so that we may verify that our simulation method works. Suppose we have two independent
devices which function with probabilities .6 and .7, respectively. What is the probability both devices
function? That at least one device functions?

2In the language of Chapter 4, the numbers produced by an RNG follow essentially a uniform distribution on the
interval [0, 1).
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Let B1 and B2 denote the events that the first and second devices function, respectively; we know
that P(B1) = .6, P(B2) = .7, and B1 and B2 are independent. Our first goal is to estimate the probability
of A = B1\B2, the event that both devices function. The following “pseudo-code” will allow us to
obtain P̂ðAÞ.
0. Set a counter for the number of times A occurs to zero.

Repeat n times:

1. Generate two random numbers, u1 and u2. (These will help us determine whether B1 and B2 occur,
respectively.)

2. If u1 < .6 AND u2 < .7, then A has occurred. Add 1 to the count of occurrences of A.

Once the n runs are complete, then P̂ðAÞ ¼ count of the occurrences of Að Þ=n.
Figure 2.16 shows actual implementation code in R. We ran the program with n = 10,000 (as in

the code) twice; the event A occurred 4218 times in the first run and 4157 the second time, providing
estimated probabilities of P̂ðAÞ ¼ :4218 and :4157, respectively. Compare these to the exact proba-
bility of A: by independence, P(A) = P(B1)P(B2) = (.6)(.7) = .42. Our simulation estimates were both
“in the ballpark” of the right answer. We’ll discuss the precision of these estimates shortly.

By replacing the “and” operator && in the above code with “or” operator ||, we can estimate the
probability at least one device functions, P(B1 [ B2). In one simulation (again with n = 10,000), the
event B1[B2 occurred 8802 times, giving the estimate P̂ðB1 [B2Þ ¼ :8802. This is quite close to the
exact probability:

PðB1 [B2Þ ¼ 1� PðB0
1 \B0

2Þ ¼ 1� ð1� :6Þð1� :7Þ ¼ :88 �

Example 2.39 Consider the following game: You’ll flip a coin 25 times, winning $1 each time it
lands heads (H) and losing $1 each time it lands tails (T). Unfortunately for you, the coin is biased in
such a way that P(H) = .4 and P(T) = .6. What’s the probability you come out ahead; i.e., you have
more money at the end of the game than you had at the beginning? We’ll use simulation to find out.

Now each run of the simulation requires 25 “random” objects: the results of the 25 coin tosses.
What’s more, we need to keep track of how much money you have won or lost at the end of the 25
tosses. Let A = {you come out ahead}, and use the following pseudo-code:

0. Set a counter for the number of times A occurs to zero.
Repeat n times:

1. Set your initial dollar amount to zero.
2. Generate 25 random numbers u1, …, u25.

A=0
for(i in 1:10000){

u1=runif(1); u2=runif(1) 
if(u1<.6 && u2<.7){

  A=A+1
 } 
}

Figure 2.16 R code for Example 2.38
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3. For each ui < .4, heads was tossed, so add 1 to your dollar amount. For each ui � .4, the flip was
tails and 1 is deducted.

4. If the final dollar amount is positive (i.e., $1 or greater), add 1 to the count of occurrences for A.

Once the n runs are complete, then P̂ðAÞ ¼ count of the occurrences of Að Þ=n.
R code for Example 2.39 appears in Figure 2.17. Our code gave a final count of 1567 occurrences

of A, out of 10,000 runs. Thus, the estimated probability that you come out ahead in this game is
P̂ðAÞ ¼ 1567=10,000 ¼ :1567.

Readers familiar with basic programming will recognize that many “for” loops like those in the
preceding examples can be sped up by vectorization, i.e., by using a function call that generates all the
required random numbers simultaneously, rather than one at a time. Similarly, the if/else statements
used in the preceding programs to determine whether a random number lies in an interval can be
rewritten in terms of true/false bits, which automatically generate a 1 if a statement is true and a 0
otherwise. For example, the R code

if (u < .5){

A = A+1

}

can be replaced by the single line of code

A = A+(u < .5);

If the statement in parentheses is true, R assigns a value 1 to (u<.5), and so 1 is added to the
count A.

The previous two examples have both assumed independence of certain events: the functionality of
neighboring devices, or the outcomes of successive coin flips. With the aid of some built-in functions
within R, we can also simulate counting experiments similar to those in Section 2.3, even though
draws without replacement from a finite population are not independent. To illustrate, let’s use
simulation to estimate some of the combinatorial probabilities from Section 2.3.

A=0
for (i in 1:10000){

dollar=0 
for (j in 1:25){

  u=runif(1)
if (u<.4){

dollar=dollar+1
  } 

else{dollar=dollar-1}
 } 

if (dollar>0){
  A=A+1
 } 
}

Figure 2.17 R code for Example 2.39 ■
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Example 2.40 Consider again the situation presented in Example 2.24: A university warehouse has
received a shipment of 25 laptops, of which 10 have AMD processors and 15 have Intel chips; a
particular technician will check 6 of these 25 laptops, selected at random. Of interest is the probability
of the event D3 = {exactly 3 of the 6 selected have Intel chips}. Although the initial probability of
selecting a laptop with an Intel processor is 15/25, successive selections are not independent (the
conditional probability that the next laptop also has an Intel chip is not 15/25). So, the method of the
preceding examples does not apply.

Instead, we use the sampling tool built into our software, as follows:

0. Set a counter for the number of times D3 occurs to zero.
Repeat n times:

1. Sample 6 numbers, without replacement, from the integers 1 through 25. (1–15 correspond to the
labels for the 15 laptops with Intel processors, and 16–25 identify the 10 with AMD processors.)

2. Count how many of these 6 numbers fall between 1 and 15, inclusive.
3. If exactly 3 of these 6 numbers fall between 1 and 15, add 1 to the count of occurrences for D3.

Once the n runs are complete, then P̂ðD3Þ ¼ ðcount of the occurrences of D3Þ=n.
R code for this example appears in Figure 2.18. Vital to the execution of this simulation is the fact

that R (like many statistical software packages) has a built-in mechanism for randomly sampling
without replacement from a finite set of objects (here, the integers 1–25). For more information on
this function, type help(sample) in R.

In the code, the line sum(chips<=15) performs two actions. First, chips<=15 converts each

of the 6 numbers in the vector chips into a 1 if the entry is between 1 and 15 (and into a 0
otherwise). Second, sum() adds up the 1’s and 0’s, which is equivalent to identifying how many 1’s
appear (i.e., how many of the 6 numbers fell between 1 and 15).

Our code resulted in event D3 occurring 3054 times, so P̂ðD3Þ ¼ 3054=10,000 ¼ :3054, which is
quite close to the “exact” answer of .3083 found in Example 2.24. The other probability of interest,
the chance of randomly selecting at least 3 laptops with Intel processors, can be estimated by
modifying one line of code: change intel==3 to intel>=3. One simulation provided a count of
8522 occurrences in 10,000 trials, for an estimated probability of .8522 (close to the combinatorial
solution of .8530). ■

Precision of Simulation
In Example 2.38, we gave two different estimates P̂ðAÞ for a probability P(A). Which is more
“correct”? Without knowing P(A) itself, there’s no way to tell. However, thanks to the theory we will
develop in subsequent chapters, we can quantify the precision of simulated probabilities. Of course,
we must have written code that faithfully simulates the random experiment of interest. Further, we

D=0
for (i in 1:10000){

chips=sample(25,6)
intel=sum(chips<=15) 
if (intel==3){

D=D+1
} 

}

Figure 2.18 R code for Example 2.40
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assume that the results of each single run of our program are independent of the results of all other
runs. (This generally follows from the aforementioned independence of computer-generated random
numbers.)

If this is the case, then a measure of the disparity between the true probability P(A) and the
estimated probability P̂ðAÞ based on n runs of the simulation is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ðAÞ½1� P̂ðAÞ�

n

s
ð2:9Þ

This measure of precision is called the (estimated) standard error of the estimate P̂ðAÞ; see Sec-
tion 3.5 for a derivation. The standard error is analogous to the standard deviation from Chapter 1.
Expression (2.9) tells us that the amount by which P̂ðAÞ typically differs from P(A) depends upon two
values: P̂ðAÞ itself and the number of runs n. You can make sense of the former this way: if P(A) is very
small, then P̂ðAÞ will presumably be small as well, in which case they cannot deviate by very much
since both are bounded below by zero. (Standard error quantifies the absolute difference between them,
not the relative difference.) A similar comment applies if P(A) is very large, i.e., near 1.

As for the relationship to n, Expression (2.9) indicates that the amount by which P̂ðAÞ will
typically differ from P(A) is inversely proportional to the square root of n. So, in particular, as
n increases the tendency is for P̂ðAÞ to vary less and less. This speaks to the precision of P̂ðAÞ: our
estimate becomes more precise as n increases, but not at a very fast rate.

Let’s think a bit more about this relationship: suppose your simulation results thus far were too
imprecise for your taste. By how much would you have to increase the number of runs to gain one
additional decimal place of precision? That’s equivalent to reducing the estimated standard error by a
factor of 10. Since precision is proportional to 1=

ffiffiffi
n

p
, you would need to increase n by a factor of 100

to achieve the desired improvement; e.g., if using n = 10,000 runs is insufficient for your purposes,
then you’ll need 1,000,000 runs to get one additional decimal place of precision. Typically, this will
mean running your program 100 times longer—not a big deal if 10,000 runs only take a nanosecond
but prohibitive if they require, say, an hour.

Example 2.41 (Example 2.39 continued) Based on n = 10,000 runs, we estimated the probability of
coming out ahead in a certain game to be P̂ðAÞ ¼ :1567. Substituting into (2.9), we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:1567½1� :1567�

10; 000

s
¼ :0036

This is the (estimated) standard error of our estimate .1567. We interpret as follows: some simulation
experiments with n = 10,000 will result in an estimated probability that is within .0036 of the actual
probability, whereas other such experiments will give an estimated probability that deviates by more
than .0036 from the actual P(A); .0036 is roughly the size of a typical deviation between the estimate
and what it is estimating. ■

In Chapter 8, we will return to the notion of standard error and develop a so-called confidence
interval estimate for P(A): a range of numbers we can be very certain contains P(A).
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Exercises Section 2.6 (93–112)

93. Refer to Example 2.38.

a. Modify the code in Figure 2.16 to esti-
mate the probability that exactly one of
the two devices functions properly. Then
find the exact probability using the tech-
niques from earlier sections of this
chapter, and compare it to your estimated
probability.

b. Calculate the estimated standard error
for the estimated probability in (a).

94. Imagine you have five independently
operating components, each working
properly with probability .8. Use simulation
to estimate the probability that

a. All five components work properly.
b. At least one of the five components

works properly.
[Hints for (a) and (b): You can adapt the
code from Example 2.38, but the and/or
statements will become tedious. Con-
sider using the max and min functions
instead.]

c. Calculate the estimated standard errors
for your answers in (a) and (b).

95. Consider the system depicted in Exercise
89. Assume the seven components operate
independently with the following proba-
bilities of functioning properly: .9 for
components 1 and 2; .8 for each of com-
ponents 3, 4, 5, 6; and .95 for component 7.
Write a program to estimate the reliability
of the system (i.e., the probability the sys-
tem functions properly).

96. You have an opportunity to answer six
trivia questions about your favorite sports
team, and you will win a pair of tickets to
their next game if you can correctly answer
at least three of the questions. Write a
simulation program to estimate the chance
you win the tickets under each of the fol-
lowing assumptions.

a. You have a 50–50 chance of getting any
question right, independent of all others.

b. Being a true fan, you have a 75%
chance of getting any question right,
independent of all others.

c. The first three questions are fairly easy,
so you have a .75 chance of getting each
of those right. However, the last three
questions are much harder, and you only
have a .3 probability of correctly answer
each of those.

97. In the game “Now or Then” on the televi-
sion show The Price is Right, the contestant
faces a wheel with 6 sectors. Each sector
contains a grocery item and a price, and the
contestant must decide whether the price is
“now” (i.e., the item’s price the day of the
taping) or “then” (the price at some speci-
fied past date, such as September 2003).
The contestant wins a prize (bedroom fur-
niture, a Caribbean cruise, etc.) if he/she
guesses correctly on three adjacent sectors.
That is, numbering the sectors 1–6 clock-
wise, correct guesses on sectors 5, 6, and 1
wins the prize but not on sectors 5, 6, and 3,
since the latter are not all adjacent. (The
contestant gets to guess on all six sectors, if
need be.)
Write a simulation program to estimate the
probability the contestant wins the prize,
assuming her/his guesses are independent
from item to item. Provide estimated
probabilities under of the following
assumptions: (1) each guess is “wild” and
thus has probability .5 of being correct, and
(2) the contestant is a good shopper, with
probability .8 of being correct on any item.

98. Refer to the game in Example 2.39. Under
the same conditions as in that example,
estimate the probability the player is ahead
at any time during the 25 plays. [Hint: This
occurs if the player’s dollar amount is
positive at any of the 25 steps in the
loop. So, you will need to keep track of
every value of the dollar variable, not just
the final result.]
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99. Refer again to Example 2.39. Estimate the
probability that the player experiences a
“swing” of at least $5 during the game.
That is, estimate the chance that the dif-
ference between the largest and smallest
dollar amounts during the game is at least
5. (This would happen, for instance, if the
player was at one point ahead at +$2 but
later fell behind to –$3.)

100. Teresa and Peter each have a fair coin.
Teresa tosses her coin repeatedly until
obtaining the sequence HTT. Peter tosses
his coin until the sequence HTH is
obtained.

a. Write a program to simulate Teresa’s
coin tossing and, separately, Peter’s.
Your program should keep track of the
number of tosses each author requires
on each simulation run to achieve his
target sequence.

b. Estimate the probability that Peter
obtains his sequence with fewer tosses
than Teresa requires to obtain her
sequence.

101. A 40-question multiple-choice exam is
sometimes administered in lower-level
statistics courses. The exam has a peculiar
feature: 10 of the questions have two
options, 13 have three options, 13 have four
options, and the other 4 have five options.
(FYI, this is completely real!) What is the
probability that, purely by guessing, a stu-
dent could get at least half of these ques-
tions correct? Write a simulation program
to answer this question.

102. Major League Baseball teams (usually)
play a 162-game season, during which fans
are often excited by long winning streaks
and frustrated by long losing streaks. But
how unusual are these streaks, really? How
long a streak would you expect if the
team’s performance were independent from
game to game?
Write a program that simulates a 162-game
season, i.e., a string of 162 wins and losses,
with P(win) = p for each game (the value
of p to be specified later). Use your

program with at least 10,000 runs to answer
the following questions.

a. Suppose you’re rooting for a “.500”
team—that is, p = .5. What is the
probability of observing a streak of at
least five wins in a 162-game season?
Estimate this probability with your
program, and include a standard error.

b. Suppose instead your team is quite
good: a .600 team overall, so p = .6.
Intuitively, should the probability of a
winning streak of at least five games be
higher or lower? Explain.

c. Use your program with p = .6 to esti-
mate the probability alluded to in (b). Is
your answer higher or lower than (a)? Is
that what you anticipated?

103. A derangement of the numbers 1 through
n is a permutation of all n those numbers
such that none of them is in the “right
place.” For example, 34251 is a derange-
ment of 1 through 5, but 24351 is not
because 3 is in the 3rd position. We will use
simulation to estimate the number of
derangements of the numbers 1 through 12.

a. Write a program that generates random
permutations of the integers 1, 2,…, 12.
Your program should determine whe-
ther or not each permutation is a
derangement.

b. Based on your program, estimate P(D),
where D = {a permutation of 1–12 is a
derangement}.

c. From Section 2.3, we know the number
of permutations of n items. (How many
is that for n = 12?) Use this information
and your answer to part (b) to estimate
the number of derangements of the
numbers 1 through 12.
[Hint for (a): Use random sampling
without replacement as in Example
2.40.]

104. The famous Birthday Problem was pre-
sented in Example 2.22. Now suppose you
have 500 Facebook friends. Make the same
assumptions here as in the Birthday
Problem.
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a. Write a program to estimate the proba-
bility that, on at least one day during the
year, Facebook tells you three (or more)
of your friends share that birthday.
Based on your answer, should you be
surprised by this occurrence?

b. Write a program to estimate the proba-
bility that, on at least one day during the
year, Facebook tells you five (or more)
of your friends share that birthday.
Based on your answer, should you be
surprised by this occurrence?
[Hint: Generate 500 birthdays with
replacement, and then determine whe-
ther any birthday occurs three or more
times (five or more for part (b)). The
table function in R may prove useful.]

105. Consider the following game: you begin
with $20. You flip a fair coin, winning $10
if the coin lands heads and losing $10 if the
coin lands tails. Play continues until you
either go broke or have $100 (i.e., a net
profit of $80). Write a simulation program
to estimate:

a. The probability you win the game.
b. The probability the game ends within

ten coin flips.
[Note: This is a special case of the
Gambler’s Ruin problem.]

106. Consider the Coupon Collector’s Problem:
10 different coupons are distributed into
cereal boxes, one per box, so that any
randomly selected box is equally likely to
have any of the 10 coupons inside. Write a
program to simulate the process of buying
cereal boxes until all 10 distinct coupons
have been collected. For each run, keep
track of how many cereal boxes you pur-
chased to collect the complete set of cou-
pons. Then use your program to answer the
following questions.

a. What is the probability you collect all
10 coupons with just 10 cereal boxes?

b. Use counting techniques to determine
the exact probability in (a). [Hint: Relate
this to the Birthday Problem.]

c. What is the probability you require
more than 20 boxes to collect all 10
coupons?

d. Using techniques from Chapters 3 and 5,
it can be shown that it takes about 29.3
boxes, on the average, to collect all 10
coupons. What’s the probability of col-
lecting all 10 coupons in fewer than
average boxes (i.e., less than 29.3)?

107. Consider the following famous puzzle from
the early days of probability, investigated
by Pascal and Fermat. Which of the fol-
lowing events is more likely: to roll at least
one 6 in four rolls of a fair die, or to roll at
least one double-6 in 24 rolls of two fair
dice?

a. Write a program to simulate a set of four
die rolls many times, and use the results
to estimate P(at least one 6 in 4 rolls).

b. Now adapt your program to simulate
rolling a pair of dice 24 times. Repeat
this simulation many times, and use
your results to estimate P(at least one
double-6 in 24 rolls).

108. The Problem of the Points. Pascal and
Fermat also explored a question concern-
ing how to divide the stakes in a game that
has been interrupted. Suppose two players,
Blaise and Pierre, are playing a game
where the winner is the first to achieve a
certain number of points. The game gets
interrupted at a moment when Blaise needs
n more points to win and Pierre needs
m more to win. How should the game’s
prize money be divvied up? Fermat argued
that Blaise should receive a proportion of
the total stake equal to the chance he
would have won if the game hadn’t been
interrupted (and Pierre receives the
remainder).
Assume the game is played in rounds,
the winner of each round gets 1 point,
rounds are independent, and the two
players are equally likely to win any
particular round.

102 2 Probability

http://dx.doi.org/10.1007/978-3-030-55156-8_3
http://dx.doi.org/10.1007/978-3-030-55156-8_5


a. Write a program to simulate the rounds
of the game that would have happened
after play was interrupted. A single
simulation run should terminate as soon
as Blaise has n wins or Pierre has
m wins (equivalently, Blaise has
m losses). Use your program to estimate
P(Blaise gets 10 wins before 15 losses),
which is the proportion of the total stake
Blaise should receive if n = 10 and
m = 15.

b. Use your same program to estimate the
relevant probability when n = m = 10.
Logically, what should the answer be?
Is your estimated probability close to
that?

c. Finally, let’s assume Pierre is actually
the better player: P(Blaise wins a
round) = .4. Again with n = 10 and
m = 15, what proportion of the stake
should be awarded to Blaise?

109. Twenty faculty members in a certain
department have just participated in a
department chair election. Suppose that
candidate A has received 12 of the votes
and candidate B the other 8 votes. If the
ballots are opened one by one in random
order and the candidate selected on each
ballot is recorded, use simulation to esti-
mate the probability that candidate A
remains ahead of candidate B throughout
the vote count (which happens if, for
example, the result is AA…AB…B but not
if the result is AABABB…).

110. Show that the (estimated) standard error for
P̂ðAÞ is at most 1=

ffiffiffiffiffi
4n

p
.

111. Simulation can be used to estimate numer-
ical constants, such as p. Here’s one
approach: consider the part of a disk of
radius 1 that lies in the first quadrant (a
quarter-circle). Imagine two random num-
bers, x and y, both between 0 and 1. The
pair (x, y) lies somewhere in the first
quadrant; let A denote the event that (x, y)
falls inside the quarter-circle.

a. Write a program that simulates pairs
(x, y) in order to estimate P(A), the
probability that a randomly selected pair
of points in the square [0, 1] � [0, 1]
lies in the quarter-circle of radius 1.

b. Using techniques from Chapter 5, it can
be shown that the exact probability of
A is p/4 (which makes sense, because
that’s the ratio of the quarter-circle’s
area to the square’s area). Use that fact
to come up with an estimate of p from
your simulation. How close is your
estimate to 3.14159…?

112. Consider the quadratic equation ax2 + bx +
c = 0. Suppose that a, b, and c are random
numbers between 0 and 1 (like those pro-
duced by an RNG). Estimate the probability
that the roots of this quadratic equation are
real. [Hint: Think about the discriminant.]
This probability can be computed exactly
using methods from Chapter 5, but a triple
integral is required.

Supplementary Exercises: (113–140)

113. The undergraduate statistics club at a cer-
tain university has 24 members.

a. All 24 members of the club are eligible
to attend a conference next week, but
they can only afford to send 4 people. In
how many possible ways could 4
attendees be selected?

b. All club members are eligible for any of
the four positions of president, VP,
secretary, or treasurer. In how many
possible ways can these positions be
occupied?

c. Suppose it’s agreed that two people will
be cochairs, one person secretary, and
one person treasurer. How many ways
are there to fill these positions now?

114. A small manufacturing company will start
operating a night shift. There are 20
machinists employed by the company.
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a. If a night crew consists of 3 machinists,
how many different crews are possible?

b. If the machinists are ranked 1, 2, …, 20
in order of competence, how many of
these crews would not have the best
machinist?

c. How many of the crews would have at
least 1 of the 10 best machinists?

d. If a 3-person crew is selected at random
to work on a particular night, what is the
probability that the best machinist will
not work that night?

115. A factory uses three production lines to
manufacture cans of a certain type. The
accompanying table gives percentages of
nonconforming cans, categorized by type of
nonconformance, for each of the three lines
during a particular time period.

Line 1 Line 2 Line 3

Blemish 15 12 20
Crack 50 44 40
Pull Tab Problem 21 28 24
Surface Defect 10 8 15
Other 4 8 2

During this period, line 1 produced 500
nonconforming cans, line 2 produced 400
such cans, and line 3 was responsible for
600 nonconforming cans. Suppose that one
of these 1500 cans is randomly selected.

a. What is the probability that the can was
produced by line 1? That the reason for
nonconformance is a crack?

b. If the selected can come from line 1,
what is the probability that it had a
blemish?

c. Given that the selected can had a surface
defect, what is the probability that it
came from line 1?

116. An employee of the records office at a
university currently has ten forms on his
desk awaiting processing. Six of these are
withdrawal petitions, and the other four are
course substitution requests.

a. If he randomly selects six of these forms
to give to a subordinate, what is the
probability that only one of the two
types of forms remains on his desk?

b. Suppose he has time to process only
four of these forms before leaving for
the day. If these four are randomly
selected one by one, what is the proba-
bility that each succeeding form is of a
different type from its predecessor?

117. One satellite is scheduled to be launched
from Cape Canaveral in Florida, and
another launching is scheduled for Van-
denberg Air Force Base in California. Let
A denote the event that the Vandenberg
launch goes off on schedule, and let B rep-
resent the event that the Cape Canaveral
launch goes off on schedule. If A and B are
independent events with P(A) > P(B) and
P(A[B) = .626, P(A\B) = .144, deter-
mine the values of P(A) and P(B).

118. A transmitter is sending a message by using
a binary code, namely a sequence of 0’s
and 1’s. Each transmitted bit (0 or 1) must
pass through three relays to reach the
receiver. At each relay, the probability is .2
that the bit sent will be different from the bit
received (a reversal). Assume that the
relays operate independently of one
another.

Transmitter ! Relay 1 ! Relay 2
! Relay 3 ! Receiver

a. If a 1 is sent from the transmitter, what
is the probability that a 1 is sent by all
three relays?

b. If a 1 is sent from the transmitter, what is
the probability that a 1 is received by the
receiver? [Hint: The eight experimental
outcomes can be displayed on a tree
diagram with three generations of bran-
ches, one generation for each relay.]
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c. Suppose 70% of all bits sent from the
transmitter are 1’s. If a 1 is received by
the receiver, what is the probability that
a 1 was sent?

119. Individual A has a circle of five close
friends (B, C, D, E, and F). A has heard a
certain rumor from outside the circle and
has invited the five friends to a party to
circulate the rumor. To begin, A selects one
of the five at random and tells the rumor to
the chosen individual. That individual then
selects at random one of the four remaining
individuals and repeats the rumor. Contin-
uing, a new individual is selected from
those not already having heard the rumor
by the individual who has just heard it, until
everyone has been told.

a. What is the probability that the rumor is
repeated in the order B, C, D, E, and F?

b. What is the probability that F is the third
person at the party to be told the rumor?

c. What is the probability that F is the last
person to hear the rumor?

120. Refer to the previous exercise. If at each
stage the person who currently “has” the
rumor does not know who has already
heard it and selects the next recipient at
random from all five possible individuals,
what is the probability that F has still not
heard the rumor after it has been told ten
times at the party?

121. A chemist is interested in determining
whether a certain trace impurity is present
in a product. An experiment has a proba-
bility of .80 of detecting the impurity if it is
present. The probability of not detecting the
impurity if it is absent is .90. The prior
probabilities of the impurity being present
and being absent are .40 and .60, respec-
tively. Three separate experiments result in
only two detections. What is the posterior
probability that the impurity is present?

122. Fasteners used in aircraft manufacturing are
slightly crimped so that they lock enough to
avoid loosening during vibration. Suppose
that 95% of all fasteners pass an initial

inspection. Of the 5% that fail, 20% are so
seriously defective that they must be
scrapped. The remaining fasteners are sent
to a re-crimping operation, where 40%
cannot be salvaged and are discarded. The
other 60% of these fasteners are corrected
by the re-crimping process and subse-
quently pass inspection.

a. What is the probability that a randomly
selected incoming fastener will pass
inspection either initially or after re-
crimping?

b. Given that a fastener passed inspection,
what is the probability that it passed the
initial inspection and did not need re-
crimping?

123. One percent of all individuals in a certain
population are carriers of a particular dis-
ease. A diagnostic test for this disease has a
90% detection rate for carriers and a 5%
detection rate for noncarriers. Suppose the
test is applied independently to two differ-
ent blood samples from the same randomly
selected individual.

a. What is the probability that both tests
yield the same result?

b. If both tests are positive, what is the
probability that the selected individual
is a carrier?

124. A system consists of two components. The
probability that the second component
functions in a satisfactory manner during its
design life is .9, the probability that at least
one of the two components does so is .96,
and the probability that both components
do so is .75. Given that the first component
functions in a satisfactory manner
throughout its design life, what is the
probability that the second one does also?

125. A certain company sends 40% of its over-
night mail parcels via express mail service
E1. Of these parcels, 2% arrive after the
guaranteed delivery time (denote the event
“late delivery” by L). If a record of an
overnight mailing is randomly selected
from the company’s file, what is the
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probability that the parcel went via E1 and
was late?

126. Refer to the previous exercise. Suppose that
50% of the overnight parcels are sent via
express mail service E2 and the remaining
10% are sent via E3. Of those sent via E2,
only 1% arrive late, whereas 5% of the
parcels handled by E3 arrive late.

a. What is the probability that a randomly
selected parcel arrived late?

b. If a randomly selected parcel has arrived
on time, what is the probability that it
was not sent via E1?

127. A company uses three different assembly
lines—A1, A2, and A3—to manufacture a
particular component. Of those manufac-
tured by line A1, 5% need rework to remedy
a defect, whereas 8% of A2’s components
need rework and 10% of A3’s need rework.
Suppose that 50% of all components are
produced by line A1, 30% are produced by
line A2, and 20% come from line A3. If a
randomly selected component needs
rework, what is the probability that it came
from line A1? From line A2? From line A3?

128. Disregarding the possibility of a February
29 birthday, suppose a randomly selected
individual is equally likely to have been
born on any one of the other 365 days. If
ten people are randomly selected, what is
the probability that either at least two have
the same birthday or at least two have the
same last three digits of their Social Secu-
rity numbers? [Note: The article “Methods
for Studying Coincidences” (F. Mosteller
and P. Diaconis, J. Amer. Statist. Assoc.
1989: 853–861) discusses problems of this
type.]

129. One method used to distinguish between
granitic (G) and basaltic (B) rocks is to
examine a portion of the infrared spectrum
of the sun’s energy reflected from the rock
surface. Let R1, R2, and R3 denote measured
spectrum intensities at three different
wavelengths; typically, for granite R1 <
R2 < R3, whereas for basalt R3 < R1 < R2.

When measurements are made remotely
(using aircraft), various orderings of the
Ri’s may arise whether the rock is basalt or
granite. Flights over regions of known
composition have yielded the following
information:

Granite Basalt

R1 < R2 < R3 60% 10%
R1 < R3 < R2 25% 20%
R3 < R1 < R2 15% 70%

Suppose that for a randomly selected rock
specimen in a certain region, P(granite) =
.25 and P(basalt) = .75.

a. Show that P(granite | R1 < R2 < R3)
> P(basalt | R1 < R2 < R3). If measure-
ments yielded R1 < R2 < R3, would you
classify the rock as granite or basalt?

b. If measurements yielded R1 < R3 < R2,
how would you classify the rock?
Answer the same question for
R3 < R1 < R2.

c. Using the classification rules indicated
in parts (a) and (b), when selecting a
rock from this region, what is the
probability of an erroneous classifica-
tion? [Hint: Either G could be classified
as B or B as G, and P(B) and P(G) are
known.]

d. If P(granite) = p rather than .25, are
there values of p (other than 1) for
which a rock would always be classified
as granite?

130. In a Little League baseball game, team A’s
pitcher throws a strike 50% of the time and
a ball 50% of the time, successive pitches
are independent of each other, and the
pitcher never hits a batter. Knowing this,
team B’s manager has instructed the first
batter not to swing at anything. Calculate
the probability that

a. The batter walks on the fourth pitch.
b. The batter walks on the sixth pitch (so

two of the first five must be strikes),
using a counting argument or con-
structing a tree diagram.
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c. The batter walks.
d. The first batter up scores while no one is

out (assuming that each batter pursues a
no-swing strategy).

131. The Matching Problem. Four friends—
Allison, Beth, Carol, and Diane—who have
identical calculators are studying for a
statistics exam. They set their calculators
down in a pile before taking a study break
and then pick them up in random order
when they return from the break.

a. What is the probability all four friends
pick up the correct calculator?

b. What is the probability that at least one
of the four gets her own calculator?
[Hint: Let A be the event that Alice gets
her own calculator, and define events B,
C, and D analogously for the other three
students. How can the event {at least
one gets her own calculator} be
expressed in terms of the four events A,
B, C, and D? Now use a general law of
probability.]

c. Generalize the answer from part (b) to
n individuals. Can you recognize the
result when n is large (the approxima-
tion to the resulting series)?

132. A particular airline has 10 a.m. flights from
Chicago to New York, Atlanta, and Los
Angeles. Let A denote the event that the New
York flight is full and define events B and
C analogously for the other two flights.
Suppose P(A) = .6, P(B) = .5, P(C) = .4
and the three events are independent.What is
the probability that

a. All three flights are full? That at least
one flight is not full?

b. Only the New York flight is full? That
exactly one of the three flights is full?

133. The Secretary Problem. A personnel man-
ager is to interview four candidates for a job.
These are ranked 1, 2, 3, and 4 in order of
preference and will be interviewed in ran-
dom order. However, at the conclusion of
each interview, the manager will know only
how the current candidate compares to those

previously interviewed. For example, the
interview order 3, 4, 1, 2 generates no
information after the first interview and
shows that the second candidate is worse
than the first, and that the third is better than
the first two. However, the order 3, 4, 2, 1
would generate the same information after
each of the first three interviews. The man-
agerwants to hire the best candidate butmust
make an irrevocable hire/no hire decision
after each interview. Consider the following
strategy: Automatically reject the first s can-
didates, and then hire the first subsequent
candidate who is best among those already
interviewed (if no such candidate appears,
the last one interviewed is hired).
For example, with s = 2, the order 3, 4, 1, 2
would result in the best being hired,
whereas the order 3, 1, 2, 4 would not. Of
the four possible s values (0, 1, 2, and 3),
which one maximizes P(best is hired)?
[Hint: Write out the 24 equally likely
interview orderings; s = 0 means that the
first candidate is automatically hired.]

134. Consider four independent events A1, A2,
A3, and A4 and let pi = P(Ai) for i = 1, 2, 3,
4. Express the probability that at least one
of these four events occurs in terms of the
pi’s, and do the same for the probability that
at least two of the events occur.

135. A box contains the following four slips of
paper, each having exactly the same
dimensions: (1) win prize 1; (2) win prize 2;
(3) win prize 3; (4) win prizes 1, 2, and 3.
One slip will be randomly selected. Let
A1 = {win prize 1}, A2 = {win prize 2}, and
A3 = {win prize 3}. Show that A1 and A2 are
independent, that A1 and A3 are indepen-
dent, and that A2 and A3 are also indepen-
dent (this is pairwise independence).
However, show that P(A1\A2\A3) 6¼
P(A1) � P(A2) � P(A3), so the three events
are not mutually independent.

136. Consider a woman whose brother is afflic-
ted with hemophilia, which implies that the
woman’s mother has the hemophilia gene
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on one of her two X chromosomes (almost
surely not both, since that is generally
fatal). Thus there is a 50–50 chance that the
woman’s mother has passed on the bad
gene to her. The woman has two sons, each
of whom will independently inherit the
gene from one of her two chromosomes. If
the woman herself has a bad gene, there is a
50–50 chance she will pass this on to a son.
Suppose that neither of her two sons is
afflicted with hemophilia. What then is the
probability that the woman is indeed the
carrier of the hemophilia gene? What is this
probability if she has a third son who is also
not afflicted?

137. Jurors may be a priori biased for or against
the prosecution in a criminal trial. Each juror
is questioned by both the prosecution and
the defense (the voir dire process), but this
may not reveal bias. Even if bias is revealed,
the judge may not excuse the juror for cause
because of the narrow legal definition of
bias. For a randomly selected candidate for
the jury, define events B0, B1, and B2 as the
juror being unbiased, biased against the
prosecution, and biased against the defense,
respectively. Also letC be the event that bias
is revealed during the questioning and D be
the event that the juror is eliminated
for cause. Let bi = P(Bi) (i = 0, 1, 2), c =
P(C | B1) = P(C | B2), and d = P(D | B1\C)
= P(D |B2\C) [“FairNumber ofPeremptory
Challenges in Jury Trials,” J. Amer. Statist.
Assoc. 1979: 747–753].

a. If a juror survives the voir dire process,
what is the probability that he/she is
unbiased (in terms of the bi’s, c, and d)?
What is the probability that he/she is
biased against the prosecution? What is
the probability that he/she is biased
against the defense? [Hint: Represent
this situation using a tree diagram with
three generations of branches.]

b. What are the probabilities requested in
(a) if b0 = .50, b1 = .10, b2 = .40 (all
based on data relating to the famous trial

of the Florida murderer Ted Bundy),
c = .85 (corresponding to the extensive
questioning appropriate in a capital
case), and d = .7 (a “moderate” judge)?

138. Gambler’s Ruin. Allan and Beth currently
have $2 and $3, respectively. A fair coin is
tossed. If the result of the toss is H, Allan
wins $1 from Beth, whereas if the coin toss
results in T, then Beth wins $1 from Allan.
This process is then repeated, with a coin toss
followed by the exchange of $1, until one of
the two players goes broke (one of the two
gamblers is ruined). We wish to determine

a2 ¼ P Allan is the winnerjhe starts with $2ð Þ

To do so, let’s also consider probabilities

ai ¼ P Allan winsjhe starts with $ið Þ for
i ¼ 0; 1; 3; 4; and 5:

a. What are the values of a0 and a5?
b. Use the Law of Total Probability to

obtain an equation relating a2 to a1 and
a3. [Hint: Condition on the result of the
first coin toss, realizing that if it is a H,
then from that point Allan starts
with $3.]

c. Using the logic described in (b),
develop a system of equations relating
ai (i = 1, 2, 3, 4) to ai–1 and ai+1. Then
solve these equations. [Hint: Write each
equation so that ai − ai–1 is on the left-
hand side. Then use the result of the first
equation to express each other ai − ai–1
as a function of a1, and add together
all four of these expressions (i = 2, 3,
4, 5).]

d. Generalize the result to the situation in
which Allan’s initial fortune is $a and
Beth’s is $b. [Note: The solution is a bit
more complicated if p = P(Allan wins
$1) 6¼ .5.]

139. An event A is said to attract event B if
P(B | A) > P(B) and repel B if P(B | A) <
P(B). (This refines the notion of dependent
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events by specifying whether A makes
B more likely or less likely to occur.)

a. Show that if A attracts B, then A repels B′.
b. Show that if A attracts B, then A′ repels B.
c. Prove the Law of Mutual Attraction:

event A attracts event B if, and only if,
B attracts A.

140. A fair coin is tossed repeatedly until either
the sequence TTH or the sequence THT is
observed. Let B be the event that stopping
occurs because TTH was observed (i.e.,

that TTH is observed before THT). Calcu-
late P(B). [Hint: Consider the following
partition of the sample space: A1 = {1st
toss is H}, A2 = {1st two tosses are TT},
A3 = {1st three tosses are THT}, and
A4 = {1st three tosses are THH}. Also
denote P(B) by p. Apply the Law of Total
Probability, and p will appear on both sides
in various places. The resulting equation is
easily solved for p.]
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3Discrete Random Variables
and Probability Distributions

Introduction
Suppose a city’s traffic engineering department monitors a certain intersection during a one-hour
period in the middle of the day. Many characteristics might be of interest: the number of vehicles that
enter the intersection, the largest number of vehicles in the left turn lane during a signal cycle, the
speed of the fastest vehicle going through the intersection, the average speed �x of all vehicles entering
the intersection. The value of each one of the foregoing variable quantities is subject to uncertainty—
we don’t know a priori how many vehicles will enter, what the maximum speed will be, etc. So each
of these is referred to as a random variable—a variable quantity whose value is determined by what
happens in a chance experiment.

The most commonly encountered random variables are one of two fundamentally different types:
discrete random variables and continuous random variables. In this chapter, we examine the basic
properties and discuss the most important examples of discrete variables. Chapter 4 focuses on
continuous random variables.

3.1 Random Variables

In any experiment, numerous characteristics can be observed or measured, but in most cases an
experimenter will focus on some specific aspect or aspects of a sample. For example, in a study of
commuting patterns in a metropolitan area, each individual in a sample might be asked about
commuting distance and the number of people commuting in the same vehicle, but not about IQ,
income, family size, and other such characteristics. Alternatively, a researcher may test a sample of
components and record only the number that have failed within 1000 h, rather than record the
individual failure times.

In general, each outcome of an experiment can be associated with a number by specifying a rule of
association, e.g., the number among the sample of ten components that fail to last 1000 h, or the total
baggage weight for a sample of 25 airline passengers. Such a rule of association is called a random
variable—a variable because different numerical values are possible and random because the
observed value depends on which of the possible experimental outcomes results (Figure 3.1).
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DEFINITION For a given sample space S of some experiment, a random variable (rv)
is any rule that associates a number with each outcome in S . In mathematical
language, a random variable is a function whose domain is the sample space
and whose range is some subset of real numbers.

Random variables are customarily denoted by uppercase letters, such as X and Y, near the end of our
alphabet. In contrast to our previous use of a lowercase letter, such as x, to denote a variable, we will
now use lowercase letters to represent some particular value of the corresponding random variable.
The notation X(s) = x means that x is the value associated with the outcome s by the rv X.

Example 3.1 When a student attempts to connect to a university’s WIFI network, either there is a
failure (F) or there is a success (S).With S = {S,F}, define a rvX byX(S) = 1,X(F) = 0.The rvX indicates
whether (1) or not (0) the student can connect. ■

In Example 3.1, the rv X was specified by explicitly listing each element of S and the associated
number. If S contains more than a few outcomes, such a listing is tedious, but it can frequently be
avoided.

Example 3.2 Consider the experiment in which a telephone number is dialed using a random
number dialer (such devices are used extensively by polling organizations), and define a rv Y by

Y ¼ 1 if the selected number is on the National Do Not Call Registry
0 if the selected number is not on the registry

�

For example, if 916-528-2966 appears on the national registry, then Y(916-528-2966) = 1, whereas
Y(213-772-7350) = 0 tells us that the number 213-772-7350 is not on the registry. A word description
of this sort is more economical than a complete listing, so we will use such a description whenever
possible. ■

In Examples 3.1 and 3.2, the only possible values of the random variable were 0 and 1. Such a
random variable arises frequently enough to be given a special name, after the individual who first
studied it.

DEFINITION Any random variable whose only possible values are 0 and 1 is called a
Bernoulli random variable.

We will often want to define and study several different random variables from the same sample
space.

−2 −1 1 20

Figure 3.1 A random variable

112 3 Discrete Random Variables and Probability Distributions



Example 3.3 Example 2.3 described an experiment in which the number of pumps in use at each of
two gas stations was determined. Define rvs X, Y, and U by

X = the total number of pumps in use at the two stations
Y = the difference between the number of pumps in use at station 1 and the number in use at station 2
U = the maximum of the numbers of pumps in use at the two stations

If this experiment is performed and s = (2, 3) results, then X((2, 3)) = 2 + 3 = 5, so we say that the
observed value of X is x = 5. Similarly, the observed value of Y would be y = 2 − 3 = −1, and the
observed value of U would be u = max(2, 3) = 3. ■

Each of the random variables of Examples 3.1–3.3 can assume only a finite number of possible
values. This need not be the case.

Example 3.4 Consider any general inspection process, wherein items are examined one by one until
we find an item that falls within required specification limits. The sample space of such an experiment
is S = {S, FS, FFS, …}. Define a rv X by

X ¼ the number of items examined until a ‘‘good’’ one is found

Then XðSÞ ¼ 1;XðFSÞ ¼ 2;XðFFSÞ ¼ 3; . . .;XðFFFFFFSÞ ¼ 7, and so on. Any positive integer is a
possible value of X, so the set of possible values is infinite. ■

Example 3.5 Suppose that in some random fashion, a location (latitude and longitude) in the
continental USA is selected. Define a rv Y by

Y ¼ the height above sea level at the selected location

For example, if the selected location were (39° 50′ N, 98° 35′ W), then it might be the case that
Y((39° 50′ N, 98° 35′ W)) = 1748.26 ft. The largest possible value of Y is 14,494 (Mt. Whitney), and
the smallest possible value is −282 (Death Valley). The set of all possible values of Y is the set of all
numbers in the interval between −282 and 14,494—that is,

y: y is a number;�282� y� 14;494f g ¼ �282; 14;494½ �

and there are infinitely many numbers in this interval (an entire continuum). ■

Two Types of Random Variables
In Section 1.2 we distinguished between data resulting from observations on a counting variable and
data obtained by observing values of a measurement variable. A slightly more formal distinction
characterizes two different types of random variables.

DEFINITION A discrete random variable is a rv whose possible values constitute either
a finite set or a countably infinite set.1

1For those unfamiliar with the term, a countably infinite set is one for which the elements can be enumerated: a first
element, a second element, and so on. The set of all positive integers and the set of all integers are both countably
infinite, but an interval like [2, 5] on the number line is not.
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A random variable is continuous if both of the following apply:

i. Its set of possible values consists either of all numbers in a single interval on the
number line (possibly infinite in extent, e.g., from �1 to 1) or all numbers in a
disjoint union of such intervals (e.g., [0, 10] [ [20, 30]).

ii. No possible value of the variable has positive probability, that is, P(X = c) = 0 for any
possible value c.

Although any interval on the number line contains infinitely many numbers, it can be shown that there
is no way to create a listing of all these values—there are just too many of them. The second condition
describing a continuous random variable is perhaps counterintuitive, since it would seem to imply a
total probability of zero for all possible values. But we shall see in Chapter 4 that intervals of values
have positive probability; the probability of an interval will decrease to zero as the width of the
interval shrinks to zero.

Example 3.6 All random variables in Examples 3.1–3.4 are discrete. As another example, suppose
we select married couples at random and do a blood test on each person until we find a pair of spouses
who have the same Rh factor. With X = the number of blood tests to be performed, possible values of
X are 2, 4, 6, 8, …. Since the possible values have been listed in sequence, X is a discrete rv. ■

To study basic properties of discrete rvs, only the tools of discrete mathematics—summation and
differences—are required. The study of continuous variables requires the continuous mathematics of
the calculus—integrals and derivatives.

Exercises: Section 3.1 (1–10)

1. A concrete beam may fail either by shear
(S) or flexure (F). Suppose that three failed
beams are randomly selected and the type
of failure is determined for each one. Let
X = the number of beams among the three
selected that failed by shear. List each
outcome in the sample space along with the
associated value of X.

2. Give three examples of Bernoulli rvs (other
than those in the text).

3. Using the experiment in Example 3.3,
define two more random variables and list
the possible values of each.

4. Let X = the number of nonzero digits in a
randomly selected zip code. What are the
possible values of X? Give three possible
outcomes and their associated X values.

5. If the sample space S is an infinite set, does this
necessarily imply that any rvX defined from S
will have an infinite set of possible values? If
yes, say why. If no, give an example.

6. Starting at a fixed time, each car entering an
intersection is observed to see whether it
turns left (L), right (R), or goes straight
ahead (A). The experiment terminates as
soon as a car is observed to turn left. Let
X = the number of cars observed. What are
possible X values? List five outcomes and
their associated X values.

7. For each random variable defined here,
describe the set of possible values for the
variable, and state whether the variable is
discrete.

a. X = the number of unbroken eggs in a
randomly chosen standard egg carton

b. Y = the number of students on a class
list for a particular course who are
absent on the first day of classes

c. U = the number of times a duffer has
to swing at a golf ball before hitting it

d. X = the length of a randomly selected
rattlesnake
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e. Z = the amount of royalties earned
from the sale of a first edition of
10,000 textbooks

f. Y = the pH of a randomly chosen soil
sample

g. X = the tension (psi) at which a ran-
domly selected tennis racket has been
strung

h. X = the total number of coin tosses
required for three individuals to obtain
a match (HHH or TTT)

8. Each time a component is tested, the trial is
a success (S) or failure (F). Suppose the
component is tested repeatedly until a
success occurs on three consecutive trials.
Let Y denote the number of trials necessary
to achieve this. List all outcomes corre-
sponding to the five smallest possible val-
ues of Y, and state which Y value is
associated with each one.

9. An individual named Claudius is located at
the point 0 in the accompanying diagram.

A2

A1 A4B4

A3

B3B1

B2

0

Using an appropriate randomization device
(such as a tetrahedral die, one having four

sides), Claudius first moves to one of the
four locations B1, B2, B3, B4. Once at one of
these locations, he uses another random-
ization device to decide whether he next
returns to 0 or next visits one of the other
two adjacent points. This process then
continues; after each move, another move
to one of the (new) adjacent points is
determined by tossing an appropriate die or
coin.

a. Let X = the number of moves that
Claudius makes before first returning
to 0. What are possible values of X? Is
X discrete or continuous?

b. If moves are allowed also along the
diagonal paths connecting 0 to A1, A2,
A3, and A4, respectively, answer the
questions in part (a).

10. The number of pumps in use at both a six-
pump station and a four-pump station will
be determined. Give the possible values for
each of the following random variables:

a. T = the total number of pumps in use
b. X = the difference between the num-

bers in use at stations 1 and 2
c. U = the maximum number of pumps in

use at either station
d. Z = the number of stations having

exactly two pumps in use

3.2 Probability Distributions for Discrete Random Variables

When probabilities are assigned to various outcomes in S , these in turn determine probabilities
associated with the values of any particular rv X. The probability distribution of X says how the total
probability of 1 is distributed among (allocated to) the various possible X values.

Example 3.7 Six batches of components are ready to be shipped by a supplier. The number of
defective components in each batch is as follows:

Batch 1 2 3 4 5 6
Number of defectives 0 2 0 1 2 0

One of these batches is to be randomly selected for shipment to a customer. Let X be the number of
defectives in the selected batch. The three possible X values are 0, 1, and 2. Of the six equally likely
simple events, three result in X = 0, one in X = 1, and the other two in X = 2. Let p(0) denote the
probability that X = 0 and p(1) and p(2) represent the probabilities of the other two possible values of
X. Then
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pð0Þ ¼ PðX ¼ 0Þ ¼ Pðlot 1 or 3 or 6 is sentÞ ¼ 3
6
¼ :500

pð1Þ ¼ PðX ¼ 1Þ ¼ Pðlot 4 is sentÞ ¼ 1
6
¼ :167

pð2Þ ¼ PðX ¼ 2Þ ¼ Pðlot 2 or 5 is sentÞ ¼ 2
6
¼ :333

That is, a probability of .500 is distributed to the X value 0, a probability of .167 is placed on the
X value 1, and the remaining probability, .333, is associated with the X value 2. The values of X along
with their probabilities collectively specify the probability distribution or probability mass function of
X. If this experiment were repeated over and over again, in the long run X = 0 would occur one-half
of the time, X = 1 one-sixth of the time, and X = 2 one-third of the time. ■

DEFINITION The probability distribution or probability mass function (pmf) of a discrete
rv is defined for every number x by

p(x) = P(X = x) = P(all s ∈ S: X(s) = x).2

The support of p(x) consists of all x values for which p(x) > 0. We will display
a pmf for the values in its support, and it is always understood that p(x) = 0
otherwise (i.e., for all other x values).

In words, for every possible value x of the random variable, the pmf specifies the probability of
observing that value when the experiment is performed. The conditions pðxÞ� 0 and

P
pðxÞ ¼ 1,

where the summation is over all possible x, are required of any pmf.

Example 3.8 Consider randomly selecting a student at a large public university, and define a
Bernoulli rv by X = 1 if the selected student does not qualify for in-state tuition (a success from the
university administration’s point of view) and X = 0 if the student does qualify. If 20% of all students
do not qualify, the pmf for X is

pð0Þ ¼ P X ¼ 0ð Þ ¼ P the selected student does qualifyð Þ ¼ :8

p 1ð Þ ¼ P X ¼ 1ð Þ ¼ P the selected student does not qualifyð Þ ¼ :2

pðxÞ ¼ PðX ¼ xÞ ¼ 0 for x 6¼ 0 or 1:

That is,

pðxÞ ¼ :8 if x ¼ 0
:2 if x ¼ 1

�

Figure 3.2 (p. 117) is a picture of this pmf, called a line graph. ■

Example 3.9 An electronics laboratory has five identical-looking power sources, of which only two
are fully charged. The power sources will be tested one by one until a fully charged one is found. Let
the rv Y = the number of tests necessary to identify a fully charged source. Let A and B represent the
two fully charged power sources and C, D, E the other three. Then the pmf of Y is

2P(X = x) is read “the probability that the rv X assumes the value x.” For example, P(X = 2) denotes the probability that
the resulting X value is 2.
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pð1Þ ¼ PðY ¼ 1Þ ¼ PðA or B tested firstÞ ¼ 2
5
¼ :4

pð2Þ ¼ PðY ¼ 2Þ ¼ PðC;D; or E first; and then A or BÞ
¼ PðC;D; or E firstÞ � PðA or B nextj C;D; or E firstÞ ¼ 3

5
� 2
4
¼ :3

pð3Þ ¼ PðY ¼ 3Þ ¼ PðC;D; or E first and second; and then A or BÞ ¼ 3
5
� 2
4
� 2
3
¼ :2

pð4Þ ¼ PðY ¼ 4Þ ¼ PðC;D; and E all done firstÞ ¼ 3
5
� 2
4
� 1
3
¼ :1

pðyÞ ¼ 0 for y 6¼ 1; 2; 3; 4

The pmf can be presented compactly in tabular form:

where any y value not listed receives zero probability. This pmf can also be displayed in a line graph
(Figure 3.3).

The name “probability mass function” is suggested by a model used in physics for a system of
“point masses.” In this model, masses are distributed at various locations x along a one-dimensional
axis. Our pmf describes how the total probability mass of 1 is distributed at various points along the
axis of possible values of the random variable (where and how much mass at each x).

1

1
x

0

p(x)

Figure 3.2 The line graph for the pmf in Example 3.8

.5

1
y

0 2 3 4

p(y)

Figure 3.3 The line graph for the pmf in Example 3.9 ■

y 1 2 3 4

p(y) .4 .3 .2 .1
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Another useful pictorial representation of a pmf, called a probability histogram, is similar to
histograms discussed in Chapter 1. Above each x in the support of X, construct a rectangle centered at
x. The height of each rectangle is proportional to p(x), and the base is the same for all rectangles.
When possible values are equally spaced, the base is frequently chosen as the distance between
successive x values (though it could be smaller). Figure 3.4 shows two probability histograms.

A Parameter of a Probability Distribution
In Example 3.8, we had p(0) = .8 and p(1) = .2 because 20% of all students did not qualify for in-
state tuition. At another university, it may be the case that p(0) = .9 and p(1) = .1. More generally, the
pmf of any Bernoulli rv can be expressed in the form p(1) = a and p(0) = 1 − a, where 0 < a < 1.
Because the pmf depends on the particular value of a, we often write p(x; a) rather than just p(x):

pðx; aÞ ¼ 1� a if x ¼ 0
a if x ¼ 1

�
ð3:1Þ

Then each choice of a in Expression (3.1) yields a different pmf.

DEFINITION Suppose p(x) depends on a quantity that can be assigned any one of a number
of possible values, with each different value determining a different probability
distribution. Such a quantity is called a parameter of the distribution. The
collection of all probability distributions for different values of the parameter is
called a family of probability distributions.

The quantity a in Expression (3.1) is a parameter. Each different number a between 0 and 1 deter-
mines a different member of a family of distributions; two such members are

pðx; :6Þ ¼ :4 if x ¼ 0
:6 if x ¼ 1

�
and pðx; :5Þ ¼ :5 if x ¼ 0

:5 if x ¼ 1

�

Every probability distribution for a Bernoulli rv has the form of Expression (3.1), so it is called the
family of Bernoulli distributions.

Example 3.10 In many communication systems, a receiver will send a short signal back to the
transmitter to indicate whether a message has been received correctly or with errors. These signals are
often called an acknowledgement (A) and a nonacknowledgement (N), respectively. (Bit sum checks
and other tools are used by the receiver to determine the absence or presence of errors.) Let p = P(A),
assume that successive transmission attempts are independent, and define a rv X = number of
attempts required to successfully transmit one message. Then

0 1 1 2 3 4

ba

Figure 3.4 Probability histograms: (a) Example 3.8; (b) Example 3.9
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pð1Þ ¼ PðX ¼ 1Þ ¼ PðAÞ ¼ p
pð2Þ ¼ PðX ¼ 2Þ ¼ PðNAÞ ¼ PðNÞ � PðAÞ ¼ ð1� pÞp

and

pð3Þ ¼ PðX ¼ 3Þ ¼ PðNNAÞ ¼ PðNÞ � PðNÞ � PðAÞ ¼ ð1� pÞ2p

Continuing this way, a general formula emerges:

pðxÞ ¼ ð1� pÞx�1p x ¼ 1; 2; 3; . . . ð3:2Þ

The parameter p can assume any value between 0 and 1. Expression (3.2) describes the family of
geometric distributions. In most modern communication systems, p is very close to 1, but in a noisy
system (such as on a WIFI network with lots of interference and/or intervening walls), p could be
considerably lower. ■

The Cumulative Distribution Function
For some fixed value x, we often wish to compute the probability that the observed value of X will be
at most x. For example, the pmf in Example 3.7 was

pðxÞ ¼
:500 x ¼ 0
:167 x ¼ 1
:333 x ¼ 2

8<
:

The probability that X is at most 1 is then

PðX� 1Þ ¼ pð0Þþ pð1Þ ¼ :500þ :167 ¼ :667

In this example, X � 1.5 iff X � 1, so P(X � 1.5) = P(X � 1) = .667. Similarly, P(X � 0) =
P(X = 0) = .5, and P(X � .75) = .5 also. Since 0 is the smallest possible value of X, P(X � −1.7) =
0, P(X � −.0001) = 0, and so on. The largest possible X value is 2, so P(X � 2) = 1. And if x is any
number larger than 2, P(X � x) = 1; that is, P(X � 5) = 1, P(X � 10.23) = 1, and so on.

Critically, notice that P(X < 1) = P(X = 0) = .5 6¼ P(X � 1), since the latter probability includes
the probability mass at the x value 1, while P(X < 1) does not. When X is a discrete random variable
and x is in the support of X, P(X < x) < P(X � x).

DEFINITION The cumulative distribution function (cdf) F(x) of a discrete rv variable
X with pmf p(x) is defined for every number x by

FðxÞ ¼ PðX� xÞ ¼
X
y:y� x

pðyÞ ð3:3Þ

For any number x, F(x) is the probability that the observed value of X
will be at most x.

Example 3.11 An online retailer sells flash drives with either 16, 32, 64, 128, or 256 GB of memory.
The accompanying table gives the distribution of Y = the amount of memory in a purchased drive:
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y 16 32 64 128 256

p(y) .05 .10 .35 .40 .10

Let’s first determine F(y) for each of the five possible values of Y:

Fð16Þ ¼ PðY � 16Þ ¼ PðY ¼ 16Þ ¼ pð16Þ ¼ :05
Fð32Þ ¼ PðY � 32Þ ¼ PðY ¼ 16 or 32Þ ¼ pð16Þþ pð32Þ ¼ :15
Fð64Þ ¼ PðY � 64Þ ¼ PðY ¼ 16 or 32 or 64Þ ¼ pð16Þþ pð32Þþ pð64Þ ¼ :50
Fð128Þ ¼ PðY � 128Þ ¼ pð16Þþ pð32Þþ pð64Þþ pð128Þ ¼ :90
Fð256Þ ¼ PðY � 256Þ ¼ 1

Now for any other number y, F(y) will equal the value of F at the closest possible value of y to the left
of y. For example,

Fð48:7Þ ¼ PðY � 48:7Þ ¼ PðY � 32Þ ¼ Fð32Þ ¼ :15

Fð127:999Þ ¼ PðY � 127:999Þ ¼ PðY � 64Þ ¼ Fð64Þ ¼ :50

If y is less than 16, F(y) = 0 [e.g., F(8) = 0], and if y is at least 256, F(y) = 1 [e.g., F(512) = 1]. The
cdf is thus

FðyÞ ¼

0 y\16
:05 16� y\32
:15 32� y\64
:50 64� y\128
:90 128� y\256
1 256� y

8>>>>>><
>>>>>>:

A graph of this cdf is shown in Figure 3.5.

320240160800
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Figure 3.5 A graph of the cdf of Example 3.11 ■
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For a discrete rv X, the graph of F(x) will have a jump at every possible value of X and will be flat
between possible values. Such a graph is called a step function.

Example 3.12 In Example 3.10, any positive integer was a possible X value, and the pmf was

pðxÞ ¼ ð1� pÞx�1p x ¼ 1; 2; 3; . . .

For any positive integer x,

FðxÞ ¼
X
y � x

pðyÞ ¼
Xx
y¼1

ð1� pÞy�1p ¼ p
Xx�1

y¼0

ð1� pÞy ð3:4Þ

To evaluate this sum, we use the fact that the partial sum of a geometric series is

Xk
y¼0

ay ¼ 1� akþ 1

1� a

Using this in Equation (3.4), with a = 1 − p and k = x − 1, gives

FðxÞ ¼ p � 1� ð1� pÞx
1� ð1� pÞ ¼ 1� ð1� pÞx x a positive integer

Since F is constant in between positive integers,

FðxÞ ¼ 0 x\1
1� ð1� pÞ½x� x� 1

�
ð3:5Þ

where [x] is the largest integer � x (e.g., [2.7] = 2).
In an extremely noisy channel with p = .15, the probability of having to transmit a message at most

5 times to get an acknowledgement is F(5) = 1 − (1 − .15)5 = .5563, whereas F(50) � 1.0000. This
cdf is graphed in Figure 3.6.

0 21 3 5 50 51

x

F(x)

1

4

Figure 3.6 A graph of F(x) for Example 3.12 ■
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In our examples thus far, the cdf has been derived from the pmf. This process can be reversed to
obtain the pmf from the cdf whenever the latter function is available. Suppose, for example, that
X represents the number of defective components in a shipment consisting of six components, so that
possible X values are 0, 1, …, 6. Then

pð3Þ ¼ PðX ¼ 3Þ
¼ pð0Þþ p 1ð Þþ p 2ð Þþ p 3ð Þ½ � � pð0Þþ p 1ð Þþ p 2ð Þ½ �
¼ PðX� 3Þ � PðX� 2Þ
¼ Fð3Þ � Fð2Þ

More generally, the probability that X falls in a specified interval is easily obtained from the cdf. For
example,

Pð2�X� 4Þ ¼ p 2ð Þþ p 3ð Þþ p 4ð Þ
¼ pð0Þþ � � � þ p 4ð Þ½ � � pð0Þþ p 1ð Þ½ �
¼ PðX� 4Þ � PðX� 1Þ
¼ Fð4Þ � Fð1Þ

Notice that P(2 � X � 4) 6¼ F(4) − F(2). This is because the X value 2 is included in 2 � X � 4,
so we do not want to subtract out its probability. However, P(2 < X � 4) = F(4) − F(2) because
X = 2 is not included in the interval 2 < X � 4.

PROPOSITION For any two numbers a and b with a � b,

Pða�X� bÞ ¼ FðbÞ � Fða�Þ

where F(a–) represents the limit of F(x) as x approaches a from the left. In
particular, if the only possible values are integers and if a and b are
integers, then

Pða�X� bÞ ¼ PðX ¼ a or aþ 1 or . . . or bÞ
¼ FðbÞ � Fða� 1Þ

Taking a = b yields P(X = a) = F(a) − F(a − 1) in this case.

The reason for subtracting F(a−) rather than F(a) is that we want to include the probability mass at
X = a; F(b) − F(a) gives P(a < X � b). This proposition will be used extensively when computing
binomial and Poisson probabilities in Sections 3.5 and 3.6.

Example 3.13 Let X = the number of days of sick leave taken by a randomly selected employee of a
large company during a particular year. If the maximum number of allowable sick days per year is 14,
possible values of X are 0, 1, …, 14. With F(0) = .58, F(1) = .72, F(2) = .76, F(3) = .81, F(4) = .88,
and F(5) = .94,

Pð2�X� 5Þ ¼ PðX ¼ 2; 3; 4; or 5Þ ¼ Fð5Þ � Fð1Þ ¼ :22
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and

PðX ¼ 3Þ ¼ Fð3Þ � Fð2Þ ¼ :05 �

Another View of Probability Mass Functions
It is often helpful to think of a pmf as specifying a mathematical model for a discrete population.

Example 3.14 Consider selecting at random a student who is among the 15,000 registered for the
current term at a certain university. Let X = the number of courses for which the selected student is
registered, and suppose that X has the following pmf:

One way to view this situation is to think of the population as consisting of 15,000 individuals,
each having his or her own X value; the proportion with each X value is given by p(x). An alternative
viewpoint is to forget about the students and think of the population itself as consisting of the
X values: There are some 1’s in the population, some 2’s, …, and finally some 7’s. The population
then consists of the numbers 1, 2, …, 7 (so is discrete), and p(x) gives a model for the distribution of
population values. ■

Once we have such a population model, we will use it to compute values of population charac-
teristics (e.g., the mean l) and make inferences about such characteristics.

Exercises: Section 3.2 (11–27)

11. Let X be the number of students who show
up at a professor’s office hours on a par-
ticular day. Suppose that the only possible
values of X are 0, 1, 2, 3, and 4, and that
p(0) = .30, p(1) = .25, p(2) = .20, and
p(3) = .15.

a. What is p(4)?
b. Draw both a line graph and a proba-

bility histogram for the pmf of X.
c. What is the probability that at least two

students come to the office hour? What
is the probability that more than two
students come to the office hour?

d. What is the probability that the pro-
fessor shows up for his office hour?

12. Airlines sometimes overbook flights. Sup-
pose that for a plane with 50 seats, 55
passengers have tickets. Define the random
variable Y as the number of ticketed pas-
sengers who actually show up for the flight.

The probability mass function of Y appears
in the accompanying table.

y 45 46 47 48 49 50 51 52 53 54 55

p(y) .05 .10 .12 .14 .25 .17 .06 .05 .03 .02 .01

a. What is the probability that the flight
will accommodate all ticketed passen-
gers who show up?

b. What is the probability that not all
ticketed passengers who show up can
be accommodated?

c. If you are the first person on the standby
list (which means you will be the first
one to get on the plane if there are any
seats available after all ticketed pas-
sengers have been accommodated),
what is the probability that you will be
able to take the flight? What is this
probability if you are the third person
on the standby list?

x 1 2 3 4 5 6 7

p(x) .01 .03 .13 .25 .39 .17 .02
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13. A mail-order computer business has six
telephone lines. Let X denote the number of
lines in use at a specified time. Suppose the
pmf of X is as given in the accompanying
table.

x 0 1 2 3 4 5 6

p(x) .10 .15 .20 .25 .20 .06 .04

Calculate the probability of each of the
following events.

a. {at most three lines are in use}
b. {fewer than three lines are in use}
c. {at least three lines are in use}
d. {between two and five lines, inclusive,

are in use}
e. {between two and four lines, inclusive,

are not in use}
f. {at least four lines are not in use}

14. A contractor is required by a county plan-
ning department to submit one, two, three,
four, or five forms (depending on the nature
of the project) in applying for a building
permit. Let Y = the number of forms
required of the next applicant. The proba-
bility that y forms are required is known to
be proportional to y—that is, p(y) = ky for
y = 1, …, 5.

a. What is the value of k? [Hint:P5
y¼1 pðyÞ ¼ 1.]

b. What is the probability that at most
three forms are required?

c. What is the probability that between
two and four forms (inclusive) are
required?

d. Could p(y) = y2/50 for y = 1, …, 5 be
the pmf of Y?

15. Many manufacturers have quality control
programs that include inspection of
incoming materials for defects. Suppose a
computer manufacturer receives computer
boards in lots of five. Two boards are
selected from each lot for inspection. We
can represent possible outcomes of the
selection process by pairs. For example, the
pair (1, 2) represents the selection of boards
1 and 2 for inspection.

a. List the ten different possible
outcomes.

b. Suppose that boards 1 and 2 are the
only defective boards in a lot of five.
Two boards are to be chosen at ran-
dom. Define X to be the number of
defective boards observed among those
inspected. Determine the probability
distribution of X.

c. Let F(x) denote the cdf of X. First
determine F(0) = P(X � 0), F(1), and
F(2), and then obtain F(x) for all
other x.

16. Some parts of California are particularly
earthquake-prone. Suppose that in one such
area, 30% of all homeowners are insured
against earthquake damage. Four home-
owners are to be selected at random; let
X denote the number among the four who
have earthquake insurance.

a. Find the probability distribution of X.
[Hint: Let S denote a homeowner who
has insurance and F one who does not.
One possible outcome is SFSS, with
probability (.3)(.7)(.3)(.3) and associ-
ated X value 3. There are 15 other
outcomes.]

b. Draw the corresponding probability
histogram.

c. What is the most likely value for X?
d. What is the probability that at least two

of the four selected have earthquake
insurance?

17. A new battery’s voltage may be acceptable
(A) or unacceptable (U). A certain flashlight
requires two batteries, so batteries will be
independently selected and tested until two
acceptable ones have been found. Suppose
that 90% of all batteries have acceptable
voltages. Let Y denote the number of bat-
teries that must be tested.

a. What is p(2), that is, P(Y = 2)?
b. What is p(3)? [Hint: There are two

different outcomes that result in Y = 3.]
c. To have Y = 5, what must be true of

the fifth battery selected? List the four
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outcomes for which Y = 5 and then
determine p(5).

d. Use the pattern in your answers for
parts (a)–(c) to obtain a general for-
mula for p(y).

18. Two fair six-sided dice are tossed inde-
pendently. Let M = the maximum of the
two tosses [thus M(1, 5) = 5, M(3, 3) = 3,
etc.].

a. What is the pmf of M? [Hint: First
determine p(1), then p(2), and so on.]

b. Determine the cdf of M and graph it.

19. Suppose that you read through this year’s
issues of theNewYork Times and record each
number that appears in a news article—the
income of a CEO, the number of cases of
wine produced by a winery, the total char-
itable contribution of a politician during the
previous tax year, the age of a celebrity,
and so on. Now focus on the leading digit
of each number, which could be 1, 2, …, 8,
or 9. Your first thought might be that the
leading digit X of a randomly selected
number would be equally likely to be one
of the nine possibilities (a discrete uniform
distribution). However, much empirical
evidence as well as some theoretical argu-
ments suggest an alternative probability
distribution called Benford’s law:

pðxÞ ¼ P 1st digit is xð Þ ¼ log10
xþ 1
x

� �
x ¼ 1; 2; . . .; 9

a. Without computing individual proba-
bilities from this formula, show that it
specifies a legitimate pmf.

b. Now compute the individual probabil-
ities and compare to the corresponding
discrete uniform distribution.

c. Obtain the cdf of X.
d. Using the cdf, what is the probability

that the leading digit is at most 3? At
least 5?

[Note: Benford’s law is the basis for some
auditing procedures used to detect fraud in
financial reporting—for example, by the
Internal Revenue Service.]

20. A library subscribes to two different weekly
news magazines, each of which is supposed
to arrive in Wednesday’s mail. In actuality,
each one may arrive on Wednesday,
Thursday, Friday, or Saturday. Suppose the
two arrive independently of one another,
and for each one P(W) = .3, P(Th) = .4,
P(F) = .2, and P(S) = .1. Let Y = the num-
ber of days beyond Wednesday that it takes
for both magazines to arrive (so possible
Y values are 0, 1, 2, or 3). Compute the pmf of
Y. [Hint: There are 16 possible outcomes;
Y(W, W) = 0, Y(F, Th) = 2, and so on.]

21. Refer to Exercise 13, and calculate and
graph the cdf F(x). Then use it to calculate
the probabilities of the events given in parts
(a)–(d) of that problem.

22. Let X denote the number of vehicles queued
up at a bank’s drive-up window at a partic-
ular time of day. The cdf of X is as follows:

FðxÞ ¼

0 x\0
:06 0� x\1
:19 1� x\2
:39 2� x\3
:67 3� x\4
:92 4� x\5
:97 5� x\6
1 6� x

8>>>>>>>>>><
>>>>>>>>>>:

Calculate the following probabilities
directly from the cdf:

a. p(2), that is, P(X = 2)
b. P(X > 3)
c. P(2 � X � 5)
d. P(2 < X < 5)

23. An insurance company offers its policy-
holders a number of different premium
payment options. For a randomly selected
policyholder, let X = the number of months
between successive payments. The cdf of
X is as follows:
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FðxÞ ¼

0 x\1
:30 1� x\3
:40 3� x\4
:45 4� x\6
:60 6� x\12
1 12� x

8>>>>>><
>>>>>>:

a. What is the pmf of X?
b. Using just the cdf, compute

P(3 � X � 6) and P(4 � X).

24. In Example 3.10, let Y = the number of
nonacknowledgements before the experi-
ment terminates. With p = P(A) and
1 − p = P(N), what is the pmf of Y? [Hint:
First list the possible values of Y, starting
with the smallest, and proceed until you see
a general formula.]

25. Alvie Singer lives at 0 in the accompanying
diagram and has four friends who live at A,
B, C, and D. One day Alvie decides to go
visiting, so he tosses a fair coin twice to
decide which of the four to visit. Once at a
friend’s house, he will either return home or
else proceed to one of the two adjacent
houses (such as 0, A, or C when at B), with
each of the three possibilities having prob-
ability 1=3. In this way, Alvie continues to
visit friends until he returns home.

B

C

A

D

0

a. Let X = the number of times that Alvie
visits a friend. Derive the pmf of X.

b. Let Y = the number of straight-line
segments that Alvie traverses (includ-
ing those leading to and from 0). What
is the pmf of Y?

c. Suppose that female friends live at
A and C and male friends at B and D. If
Z = the number of visits to female
friends, what is the pmf of Z?

26. After all students have left the classroom, a
statistics professor notices that four copies
of the text were left under desks. At the
beginning of the next lecture, the professor
distributes the four books in a completely
random fashion to each of the four students
(1, 2, 3, and 4) who claim to have left
books. One possible outcome is that 1
receives 2’s book, 2 receives 4’s book, 3
receives his or her own book, and 4
receives 1’s book. This outcome can be
abbreviated as (2, 4, 3, 1).

a. List the other 23 possible outcomes.
b. Let X denote the number of students

who receive their own book. Determine
the pmf of X.

27. Show that the cdf F(x) is a nondecreasing
function; that is, x1 < x2 implies that
F(x1) � F(x2). Under what condition will
F(x1) = F(x2)?

3.3 Expected Values of Discrete Random Variables

In Example 3.14, we considered a university with 15,000 students and let X = the number of courses
for which a randomly selected student is registered. The pmf of X follows. Since p(1) = .01, we know
that (.01) � (15,000) = 150 of the students are registered for one course, and similarly for the other
x values.
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1 2 3 4 5 6 7

( ) .01 .03 .13 .25 .39 .17 .02

150 450 1950 3750 5850 2550 300

x

p x

Number registered

To compute the average number of courses per student, i.e., the average value of X in the
population, we should calculate the total number of courses and divide by the total number of
students. Since each of 150 students is taking one course, these 150 contribute 150 courses to the
total. Similarly, 450 students contribute 2(450) courses, and so on. The population average value of
X is then

1ð150Þþ 2ð450Þþ 3ð1950Þþ � � � þ 7ð300Þ
15;000

¼ 4:57 ð3:7Þ

Since 150/15,000 = .01 = p(1), 450/15,000 = .03 = p(2), and so on, an alternative expression for
(3.7) is

1 � p 1ð Þþ 2 � p 2ð Þþ � � � þ 7 � p 7ð Þ ð3:8Þ

Expression (3.8) shows that to compute the population average value of X, we need only the possible
values of X along with their probabilities (proportions). In particular, the population size is irrelevant
as long as the pmf is given by (3.6). The average or mean value of X is then a weighted average of the
possible values 1, …, 7, where the weights are the probabilities of those values.

The Expected Value of X

DEFINITION Let X be a discrete rv with set of possible values D and pmf p(x).
The expected value or mean value of X, denoted by E(X) or µX or
just µ, is

EðXÞ ¼ lX ¼ l ¼
X
x2D

x � pðxÞ
This expected value will exist provided that

P
x2D jxj � pðxÞ\1.

Example 3.15 For the pmf in (3.6),

l ¼ 1 � p 1ð Þþ 2 � p 2ð Þþ � � � þ 7 � p 7ð Þ
¼ 1ð Þ :01ð Þþ 2ð Þ :03ð Þþ � � � þ 7ð Þ :02ð Þ
¼ :01þ :06þ :39þ 1:00þ 1:95þ 1:02þ :14 ¼ 4:57

If we think of the population as consisting of the X values 1, 2, …, 7, then l = 4.57 is the population
mean (we will often refer to l as the population mean rather than “the mean of X in the population”).
Notice that µ here is not 4, the ordinary average of 1, …, 7, because the distribution puts more weight
on 4, 5, and 6 than on other X values. ■

In Example 3.15, the expected value l was 4.57, which is not a possible value of X. The word
expected should be interpreted with caution because one would not expect to see an X value of 4.57
when a single student is selected.

(3.6)
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Example 3.16 Just after birth, each newborn child is rated on a scale called the Apgar scale. The
possible ratings are 0, 1, …, 10, with the child’s rating determined by color, muscle tone, respiratory
effort, heartbeat, and reflex irritability (the best possible score is 10). Let X be the Apgar score of a
randomly selected child born at a certain hospital during the next year, and suppose that the pmf of X is

x 0 1 2 3 4 5 6 7 8 9 10

p(x) .002 .001 .002 .005 .02 .04 .18 .37 .25 .12 .01

Then the mean value of X is

EðXÞ ¼ l ¼ ð0Þ :002ð Þþ 1ð Þ :001ð Þþ 2ð Þ :002ð Þ
þ � � � þ 8ð Þ :25ð Þþ 9ð Þ :12ð Þþ 10ð Þ :01ð Þ ¼ 7:15

(Again, l is not a possible value of the variable X.) If the stated model is correct, then the mean Apgar
score for the population of all children born at this hospital next year will be 7.15. ■

Example 3.17 Let X = 1 if a randomly selected component needs warranty service and = 0
otherwise. If the chance a component needs warranty service is p, then X is a Bernoulli rv with pmf
p(1) = p and p(0) = 1 − p, from which

EðXÞ ¼ 0 � pð0Þþ 1 � pð1Þ ¼ 0ð1� pÞþ 1ðpÞ ¼ p

That is, the expected value of X is just the probability that X takes on the value 1. If we conceptualize
a population consisting of 0’s in proportion 1 − p and 1’s in proportion p, then the population average
is l = p. ■

There is another frequently used interpretation of µ. Consider observing a first value x of our
random variable, then observe independently another value, then another, and so on. If after a very
large number of x values we average them, the resulting sample average will typically be close to µ; a
more rigorous version of this statement is provided by the Law of Large Numbers in Chapter 6. That
is, µ can be interpreted as the long-run average value of X when the experiment is performed
repeatedly. This interpretation is often appropriate for games of chance, where the “population” is not
a concrete set of individuals but rather the results of all hypothetical future instances of playing the
game.

Example 3.18 A standard American roulette wheel has 38 spaces. Players bet on which space a
marble will land in once the wheel has been spun. One of the simplest bets is based on the color of the
space: 18 spaces are black, 18 are red, and 2 are green. So, if a player “bets on black,” s/he has an
18/38 chance of winning. Casinos consider color bets an “even wager,” meaning that a player who
wages $1 on black, say, will profit $1 if the marble lands in a black space (and lose the wagered $1
otherwise).

Let X = the return on a $1 wager on black. Then the pmf of X is

x –$1 +$1

p(x) 20/38 18/38

and the expected value of X is E(X) = (–1)(20/38) + (1)(18/38) = −2/38 = −$.0526. If a player
makes $1 bets on black on successive spins of the roulette wheel, in the long run s/he can expect to
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lose about 5.26 cents per wager. Since players don’t necessarily make a large number of wagers, this
long-run average interpretation is perhaps more apt from the casino’s perspective: in the long run,
they will gain an average of 5.26 cents for every $1 wagered on black at the roulette table. ■

Thus far, we have assumed that the mean of any given distribution exists. If the set of possible
values of X is unbounded, so that the sum for lX is actually an infinite series, the expected value of
X might or might not exist, depending on whether the series converges or diverges.

Example 3.19 From Example 3.10, the general form for the pmf of X = number of attempts
required to successfully transmit one message is

pðxÞ ¼ ð1� pÞx�1p x ¼ 1; 2; 3; . . .

From the definition,

EðXÞ ¼
X
D

x � pðxÞ ¼
X1
x¼1

xpð1� pÞx�1 ¼ p
X1
x¼1

xð1� pÞx�1

¼ p
X1
x¼1

� d

dp
ð1� pÞx

� � ð3:9Þ

If we interchange the order of taking the derivative and the summation, the sum is that of a geometric
series. A little calculus reveals that the final result is E(X) = 1/p. If p is near 1, we expect a successful
transmission very soon, whereas if p is near 0, we expect many attempts before the first success. For
p = .5, E(X) = 2. ■

Example 3.20 Let X, the number of interviews a student has prior to getting a job, have pmf

pðxÞ ¼ k=x2 x ¼ 1; 2; 3; . . .

where k is chosen so that
P1

x¼1 ðk=x2Þ ¼ 1. [Because
P1

x¼1 ð1=x2Þ ¼ p2=6, the value of k is 6/p2.]
The expected value of X is

l ¼ EðXÞ ¼
X1
x¼1

x
k

x2
¼ k

X1
x¼1

1
x

ð3:10Þ

The sum on the right of Equation (3.10) is the famous harmonic series of mathematics and can be
shown to equal 1. E(X) is not finite here because p(x) does not decrease sufficiently fast as x in-
creases; statisticians say that the probability distribution of X has “a heavy tail.” If a sequence of
X values is chosen using this distribution, the sample average will not settle down to some finite
number but will tend to grow without bound.

Statisticians use the phrase “heavy tails” in connection with any distribution having a large amount
of probability far from l (so heavy tails do not require l = 1). Such heavy tails make it difficult to
make inferences about l. ■

The Expected Value of a Function
Often we will be interested in the expected value of some function h(X) rather than X itself. An easy
way of computing the expected value of h(X) is suggested by the following example.
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Example 3.21 The cost of a certain vehicle diagnostic test depends on the number of cylinders X in
the vehicle’s engine. Suppose the cost function is h(X) = 20 + 3X + .5X2. Since X is a random
variable, so is Y = h(X). The pmf of X and the derived pmf of Y are as follows:

x 4 6 8
)

y 40 56 76

p(x) .5 .3 .2 p(y) .5 .3 .2

With D* denoting the possible values of Y,

E½hðXÞ� ¼ EðYÞ ¼
X
y2D�

y � pðyÞ ¼ ð40Þð:5Þþ ð56Þð:3Þþ ð76Þð:2Þ ¼ $52

¼ hð4Þ � ð:5Þþ hð6Þ � ð:3Þþ hð8Þ � ð:2Þ ¼
X
D

hðxÞ � pðxÞ
ð3:11Þ

According to Expression (3.11), it was not necessary to determine the pmf of Y to obtain E(Y);
instead, the desired expected value is a weighted average of the possible h(x) (rather than x) values. ■

LAW OF THE
UNCONSCIOUS
STATISTICIAN

If the rv X has a set of possible values D and pmf p(x), then the expected
value of any function h(X), denoted by E[h(X)] or µh(X), is computed by

E½hðXÞ� ¼
X
x2D

hðxÞ � pðxÞ

assuming that
P

D jhðxÞj � pðxÞ\1.

According to this proposition, E[h(X)] is computed in the same way that E(X) itself is, except that
h(x) is substituted in place of x. That is, E[h(X)] is a weighted average of possible h(X) values, where
the weights are the probabilities of the corresponding original X values.

Example 3.22 A computer store has purchased three computers at $500 apiece. It will sell them for
$1000 apiece. The manufacturer has agreed to repurchase any computers still unsold after a specified
period at $200 apiece. Let X denote the number of computers sold, and suppose that p(0) = .1,
p(1) = .2, p(2) = .3, and p(3) = .4. With h(X) denoting the profit associated with selling X units, the
given information implies that h(X) = revenue − cost = 1000X + 200(3 − X) − 1500 =
800X − 900. The expected profit is then

E hðXÞ½ � ¼ hð0Þ � pð0Þþ h 1ð Þ � p 1ð Þþ h 2ð Þ � p 2ð Þþ h 3ð Þ � p 3ð Þ
¼ �900ð Þ :1ð Þþ �100ð Þ :2ð Þþ 700ð Þ :3ð Þþ 1500ð Þ :4ð Þ
¼ $700 �

Because an expected value is a sum, it possesses the same properties as any summation; specifically,
the expected value “operator” can be distributed across addition and across multiplication by con-
stants. This important property is known as linearity of expectation.
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LINEARITY OF
EXPECTATION

For any functions h1(X) and h2(X) and any constants a1, a2, and b,

E½a1h1ðXÞþ a2h2ðXÞþ b� ¼ a1E½h1ðXÞ�þ a2E½h2ðXÞ� þ b

In particular, for any linear function aX + b,

EðaXþ bÞ ¼ a � EðXÞþ b ð3:12Þ

(or, using alternative notation, laX+b = a � lX + b).

Proof Let h Xð Þ ¼ a1h1ðXÞþ a2h2ðXÞþ b, and apply the Law of the Unconscious Statistician:

E½a1h1ðXÞþ a2h2ðXÞþ b� ¼
X
D

ða1h1ðxÞþ a2h2ðxÞþ bÞ � pðxÞ

¼ a1
X
D

h1ðxÞ � pðxÞþ a2
X
D

h2ðxÞ � pðxÞþ b
X
D

pðxÞ

(distributive property of addition)

¼ a1E½h1ðXÞ� þ a2E½h2ðXÞ� þ b½1� ¼ a1E½h1ðXÞ� þ a2E½h2ðXÞ� þ b

The special case of aX + b is obtained by setting a1 = a, h1(X) = X, and a2 = 0. ■

By induction, linearity of expectation applies to any finite number of terms. In Example 3.21,
straightforward computation gives E(X) = 4(.5) + 6(.3) + 8(.2) = 5.4 and E X2ð Þ ¼P x2 � pðxÞ ¼
42 :5ð Þþ 62 :3ð Þþ 82 :2ð Þ ¼ 31:6. Applying linearity of expectation to Y = h(X) = 20 + 3X + .5X2, we
obtain

lY ¼ E 20þ 3Xþ :5X2
� � ¼ 20þ 3EðXÞþ :5E X2

	 
 ¼ 20þ 3ð5:4Þþ :5ð31:6Þ ¼ $52;

which matches the result of Example 3.21.
The special case (3.12) states that the expected value of a linear function equals the linear

function evaluated at the expected value E(X). Because h(X) in Example 3.22 is linear and
E(X) = 2, E[h(X)] = 800(2) − 900 = $700, as before. Two special cases of (3.12) yield two
important rules of expected value:

1. For any constant a, µaX = a � µX (take b = 0).
2. For any constant b, µX+b = µX + b = E(X) + b (take a = 1).

Multiplication of X by a constant a changes the unit of measurement (from dollars to cents, where
a = 100; inches to cm, where a = 2.54; etc.). Rule 1 says that the expected value in the new units
equals the expected value in the old units multiplied by the conversion factor a. Similarly, if the
constant b is added to each possible value of X, then the expected value will be shifted by that same
constant amount.

One commonly made error is to substitute µX directly into the function h(X) when h is a nonlinear
function, in which case (3.12) does not apply. Consider Example 3.21: the mean of X is 5.4, and it’s
tempting to infer that the mean of Y = h(X) is simply h(5.4). However, since the function
h(X) = 20 + 3X + .5X2 is not linear in X, this does not yield the correct answer:
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hð5:4Þ ¼ 20þ 3ð5:4Þþ :5ð5:4Þ2 ¼ $50:78 6¼ $52 ¼ lY

In general, lhðXÞ does not equal hðlXÞ unless the function h(x) is linear.

The Variance and Standard Deviation of X
The expected value of X describes where the probability distribution is centered. Using the physical
analogy of placing point mass p(x) at the value x on a one-dimensional axis, if the axis were then
supported by a fulcrum placed at l, there would be no tendency for the axis to tilt. This is illustrated
for two different distributions in Figure 3.7.

Although both distributions pictured in Figure 3.7 have the same mean/fulcrum l, the distribution
of Figure 3.7b has greater spread or variability or dispersion than does that of Figure 3.7a. We will
use the variance of X to assess the amount of variability in (the distribution of) X, just as s2 was used
in Chapter 1 to measure variability in a sample.

DEFINITION
Let X have pmf p(x) and expected value l. Then the variance of X,
denoted by V(X) or r2X or just r2, is

VðXÞ ¼
X
D

½ðx� lÞ2 � pðxÞ� ¼ E½ðX � lÞ2�

The standard deviation of X, denoted by SD(X) or rX or just r, is

rX ¼
ffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p

The quantity hðXÞ ¼ ðX � lÞ2 is the squared deviation of X from its mean, and r2 is the expected
squared deviation—i.e., a weighted average of the squared deviations from µ. Taking the square root
of the variance to obtain the standard deviation returns us to the original units of the variable; e.g., if
X is measured in dollars, then both µ and r also have units of dollars. If most of the probability
distribution is close to l, as in Figure 3.7a, then r will typically be relatively small. However, if there
are x values far from l that have large probabilities (as in Figure 3.7b), then r will be larger.
Intuitively, the value of r describes a typical deviation from l.

Example 3.23 Consider again the distribution of the Apgar score X of a randomly selected newborn
described in Example 3.16. The mean value of X was calculated as l = 7.15, so

.5

1 2 3 5

.5

1 2 3 5 6 7 8

a b
p(x) p(x)

Figure 3.7 Two different probability distributions with l = 4
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VðXÞ ¼ r2 ¼
X10
x¼0

ðx� 7:15Þ2 � pðxÞ

¼ ð0� 7:15Þ2ð:002Þþ � � � þ ð10� 7:15Þ2ð:01Þ ¼ 1:5815

The standard deviation of X is r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5815

p ¼ 1:26. ■

When the pmf p(x) specifies a mathematical model for the distribution of population values, r2 is
the population variance, and r is the population standard deviation.

Properties of Variance
An alternative to the defining formula for V(X) reduces the computational burden.

PROPOSITION VðXÞ ¼ r2 ¼ EðX2Þ � l2

This equation is referred to as the variance shortcut formula.

In using this formula, E(X2) is computed first without any subtraction; then µ is computed, squared,
and subtracted (once) from E(X2). This formula is more efficient because it entails only one sub-
traction, and E(X2) does not require calculating squared deviations from µ.

Example 3.24 Referring back to the Apgar score scenario of Examples 3.16 and 3.23,

EðX2Þ ¼
X10
x¼1

x2 � pðxÞ ¼ ð02Þð:002Þþ ð12Þð:001Þþ � � � þ ð102Þð:01Þ ¼ 52:704

Thus, r2 ¼ 52:704� 7:15ð Þ2 ¼ 1:5815 as before, and again r = 1.26. ■

Proof of the Variance Shortcut Formula Expand (X − µ)2 in the definition of V(X), and then
apply linearity of expectation:

VðXÞ ¼ E½ðX � lÞ2� ¼ E½X2 � 2lXþ l2�
¼ EðX2Þ � 2lEðXÞþ l2

(by linearity of expectation)

¼ EðX2Þ � 2l � lþ l2 ¼ EðX2Þ � 2l2 þ l2

¼ EðX2Þ � l2 �

The quantity E(X2) in the variance shortcut formula is called the mean-square value of the random
variable X. Engineers may be familiar with the root-mean-square, or RMS, which is the square root of
E(X2). Do not confuse this with the square of the mean of X, i.e. µ2! For example, if X has a mean of
7.15, the mean-square value of X is not (7.15)2, because hðxÞ ¼ x2 is not linear. (In Example 3.24, the
mean-square value of X is 52.704.) It helps to look at the two formulas side by side:
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EðX2Þ ¼
X
D

x2 � pðxÞ versus l2 ¼
X
D

x � pðxÞ
 !2

The order of operations is clearly different. In fact, it can be shown using the variance shortcut
formula that E X2ð Þ� l2 for every random variable, with equality if and only if X is constant.

The variance of a function h(X) is the expected value of the squared difference between h(X) and
its expected value:

V ½hðXÞ� ¼ r2hðXÞ ¼
X
D

ðhðxÞ � lhðXÞÞ2 � pðxÞ
h i

¼
X
D

h2ðxÞ � pðxÞ
" #

�
X
D

hðxÞ � pðxÞ
" #2

When h(x) is a linear function, V[h(X)] simplifies considerably (see Exercise 42 for a proof).

PROPOSITION VðaXþ bÞ ¼ r2aXþ b ¼ a2 � r2X and raXþ b ¼ jaj � rX ð3:13Þ

In particular,

raX ¼ jaj � rX and rXþ b ¼ rX

The absolute value is necessary because a might be negative, yet a standard deviation cannot be.
Usually multiplication by a corresponds to a change in the unit of measurement (e.g., kg to lb or
dollars to euros); the sd in the new unit is just the original sd multiplied by the conversion factor. On
the other hand, the addition of the constant b does not affect the variance, which is intuitive, because
the addition of b changes the location (mean value) but not the spread of values. Together, (3.12) and
(3.13) comprise the rescaling properties of mean and standard deviation.

Example 3.25 In the computer sales scenario of Example 3.22, E(X) = 2 and

EðX2Þ ¼ ð02Þð:1Þþ ð12Þð:2Þþ ð22Þð:3Þþ ð32Þð:4Þ ¼ 5

so VðXÞ ¼ 5� 2ð Þ2 ¼ 1. The profit function Y = h(X) = 800X − 900 is linear, so (3.13) applies with

a = 800 and b = –900. Hence Y has variance a2r2X ¼ ð800Þ2ð1Þ ¼ 640;000 and standard deviation
$800. ■

Exercises: Section 3.3 (28–45)

28. The pmf for X = the number of major
defects on a randomly selected appliance of
a certain type is

x 0 1 2 3 4

p(x) .08 .15 .45 .27 .05

Compute the following:

a. E(X)
b. V(X) directly from the definition

c. The standard deviation of X
d. V(X) using the shortcut formula

29. An individual who has automobile insur-
ance from a company is randomly selected.
Let Y be the number of moving violations
for which the individual was cited during
the last 3 years. The pmf of Y is

y 0 1 2 3

p(y) .60 .25 .10 .05
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a. Compute E(Y).
b. Suppose an individual with Y viola-

tions incurs a surcharge of $100Y2.
Calculate the expected amount of the
surcharge.

30. Refer to Exercise 12 and calculate V(Y) and
rY. Then determine the probability that Y is
within 1 standard deviation of its mean value.

31. An appliance dealer sells three different
models of upright freezers having 13.5,
15.9, and 19.1 cubic feet of storage space,
respectively. Let X = the amount of storage
space purchased by the next customer to
buy a freezer. Suppose that X has pmf

x 13.5 15.9 19.1

p(x) .2 .5 .3

a. Compute E(X), E(X2), and V(X).
b. If the price of a freezer having capacity

X cubic feet is 17X + 180, what is the
expected price paid by the next cus-
tomer to buy a freezer?

c. What is the standard deviation of the
price 17X + 180 paid by the next
customer?

d. Suppose that although the rated
capacity of a freezer is X, the actual
capacity is h Xð Þ ¼ X � :01X2. What is
the expected actual capacity of the
freezer purchased by the next
customer?

32. Let X be a Bernoulli rv with pmf as in
Example 3.17.

a. Compute E(X2).
b. Show that V(X) = p(1 − p).
c. Compute E(X79).

33. Suppose that the number of plants of a
particular type found in a rectangular region
(called a quadrat by ecologists) in a certain
geographic area is a rv X with pmf

pðxÞ ¼ c=x3 for x ¼ 1; 2; 3; . . .

Is E(X) finite? Justify your answer (this is
another distribution that statisticians would
call heavy-tailed).

34. A small market orders copies of a certain
magazine for its magazine rack each week.
Let X = demand for the magazine, with
pmf

x 1 2 3 4 5 6

p(x) 1=15 2=15 3=15 4=15 3=15 2=15

Suppose the store owner actually pays
$2.00 for each copy of the magazine and
the price to customers is $4.00. If magazi-
nes left at the end of the week have no
salvage value, is it better to order three or
four copies of the magazine? [Hint: For
both three and four copies ordered, express
net revenue as a function of demand X, and
then compute the expected revenue.]

35. Let X be the damage incurred (in $) in a
certain type of accident during a given year.
Possible X values are 0, 1000, 5000, and
10,000, with probabilities .8, .1, .08, and
.02, respectively. A particular company
offers a $500 deductible policy. If the
company wishes its expected profit to be
$100, what premium amount should it
charge?

36. The n candidates for a job have been ranked
1, 2, 3, …, n. Let X = the rank of a ran-
domly selected candidate, so that X has pmf

pðxÞ ¼ 1=n x ¼ 1; 2; 3; . . .; n

(this is called the discrete uniform distri-
bution). Compute E(X) and V(X) using the
shortcut formula. [Hint: The sum of the first
n positive integers is n(n + 1)/2, whereas
the sum of their squares is given by
n(n + 1)(2n + 1)/6.]

37. Let X = the outcome when a fair die is
rolled once. If before the die is rolled you
are offered either $100 dollars or h(X) =
350/X dollars, would you accept the guar-
anteed amount or would you gamble?
[Hint: Determine E[h(X)], but be careful:
the mean of 350/X is not 350/µ.]
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38. A supply company currently has in stock
500 lb of fertilizer, which it sells to cus-
tomers in 10-pound bags. Let X equal the
number of bags purchased by a randomly
selected customer. Sales data shows that
X has the following pmf:

x 1 2 3 4

p(x) .2 .4 .3 .1

a. Compute the average number of bags
bought per customer.

b. Determine the standard deviation for
the number of bags bought per
customer.

c. Define Y to be the amount of fertilizer
left in stock, in pounds, after the first
customer. Construct the pmf of Y.

d. Use the pmf of Y to find the expected
amount of fertilizer left in stock, in
pounds, after the first customer.

e. Write Y as a linear function of X. Then
use rescaling properties to find the
mean and standard deviation of Y.

f. The supply company offers a discount
to each customer based on the formula
W = (X – 1)2. Determine the expected
discount for a customer.

g. Does your answer to part (f) equal

ðlX � 1Þ2? Why or why not?
h. Calculate the standard deviation of W.

39. Refer back to the roulette scenario in
Example 3.18. Two other ways to wager at
roulette are betting on a single number, or
on a four-number “square.” The pmfs for
the returns on a $1 wager on a number and
a square are displayed below. (Payoffs for
winning are always based on the odds of
losing a wager under the assumption the
two green spaces didn’t exist.)
Single number:

x –$1 +$35

p(x) 37/38 1/38

Square:

x –$1 +$8

p(x) 34/38 4/38

a. Determine the expected return from a
$1 wager on a single number, and then
on a square.

b. Compare your answers from (a) to
Example 3.18. What can be said about
the expected return for a $1 wager?
Based on this, does expected return
reflect most players’ intuition that bet-
ting on black is “safer” and betting on a
single number is “riskier”?

c. Calculate the standard deviations for
the two pmfs above as well as the pmf
in Example 3.18.

d. How do the standard deviations of the
three betting schemes (color, single
number, square) compare? How do
these values appear to relate to players’
intuitive sense of risk?

40. In the popular game Plinko on The Price Is
Right, contestants drop a circular disk (a
“chip”) down a pegged board; the chip
bounces down the board and lands in a slot
corresponding to one of five dollar mounts.
The random variable X = winnings from
one chip dropped from the middle slot has
roughly the following distribution.

x $0 $100 $500 $1000 $10,000

p(x) 0.39 0.03 0.11 0.24 0.23

a. Graph the probability mass function of
X.

b. What is the probability a contestant
makes money on a chip?

c. What is the probability a contestant
makes at least $1000 on a chip?

d. Determine the expected winnings.
Interpret this number.

e. Determine the corresponding standard
deviation.
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41. a. Draw a line graph of the pmf of X in
Exercise 34. Then determine the pmf
of −X and draw its line graph. From
these two pictures, what can you say
about V(X) and V(−X)?

b. Use the proposition involving
V(aX + b) to establish a general rela-
tionship between V(X) and V(−X).

42. Use the definition of variance to prove that
VðaXþ bÞ ¼ a2r2X . [Hint: With Y = aX + b,
E(Y) = al + b where l = E(X).]

43. Suppose E(X) = 5 and E[X(X − 1)] = 27.5.
What is

a. E(X2)? [Hint: E[X(X − 1)] = E[X2 − X] =
E(X2) − E(X).]

b. V(X)?
c. The general relationship among the

quantities E(X), E[X(X − 1)], and
V(X)?

44. Write a general rule for E(X − c) where c is
a constant. What happens when you let
c = l, the expected value of X?

45. A result called Chebyshev’s inequality
states that for any probability distribution of
a rv X and any number k that is at least 1,
Pð X � lj j � krÞ� 1=k2. In words, the
probability that the value of X lies at least
k standard deviations from its mean is at
most 1/k2.

a. What is the value of the upper bound
for k = 2? k = 3? k = 4? k = 5?
k = 10?

b. Compute l and r for the distribution
given in Exercise 13. Then evaluate
Pð X � lj j � krÞ for the values of
k given in part (a). What does this
suggest about the upper bound relative
to the corresponding probability?

c. Let X have possible values, −1, 0, and 1,
with probabilities 1/18, 8/9, and 1/18,
respectively. What is Pð X � lj j � 3rÞ,
and how does its value compare to the
corresponding bound?

d. Give a distribution for which
Pð X � lj j � 5rÞ ¼ :04.

3.4 Moments and Moment Generating Functions

The expected values of integer powers of X and X − µ are often referred to as moments, terminology
borrowed from physics. In this section, we’ll discuss the general topic of moments and develop a
shortcut for computing them.

DEFINITION The kth moment of a random variable X is E(Xk), while the kth moment
about the mean (or kth central moment) of X is E[(X − µ)k],
where µ = E(X).

For example, µ = E(X) is the “first moment” of X and corresponds to the center of mass of the

distribution of X. Similarly, V Xð Þ ¼ E½ðX�lÞ2� is the second moment of X about the mean, which is
known in physics as the moment of inertia.

Example 3.26 A popular brand of dog food is sold in 5, 10, 15, and 20 lb bags. Let X be the weight
of the next bag purchased, and suppose the pmf of X is

x 5 10 15 20

p(x) .1 .2 .3 .4

3.3 Expected Values of Discrete Random Variables 137



The first moment of X is its mean:

l ¼ EðXÞ ¼
X
x2D

xpðxÞ ¼ 5ð:1Þþ 10ð:2Þþ 15ð:3Þþ 20ð:4Þ ¼ 15 lbs

The second moment about the mean is the variance:

r2 ¼ E½ðX � lÞ2� ¼
X
x2D

ðx� lÞ2pðxÞ

¼ ð5� 15Þ2ð:1Þþ ð10� 15Þ2ð:2Þþ ð15� 15Þ2ð:3Þþ ð20� 15Þ2ð:4Þ ¼ 25;

for a standard deviation of 5 lbs. The third central moment of X is

E½ðX � lÞ3� ¼
X
x2D

ðx� lÞ3pðxÞ

¼ ð5� 15Þ3ð:1Þþ ð10� 15Þ3ð:2Þþ ð15� 15Þ3ð:3Þþ ð20� 15Þ3ð:4Þ ¼ �75

We’ll discuss an interpretation of this last number next. ■

It is not difficult to verify that the third moment about the mean is 0 if the pmf of X is symmetric. So,

we would like to use E½ðX � lÞ3� as a measure of lack of symmetry, but it depends on the scale of
measurement. If we switch the unit of weight in Example 3.26 from pounds to ounces or kilograms, the
value of the third moment about the mean (as well as the values of all the other moments) will change.
But we can achieve scale independence by dividing the third moment about the mean by r3:

E½ðX � lÞ3�
r3

¼ E
X � l
r

� �3" #
ð3:14Þ

Expression (3.14) is our measure of departure from symmetry, called the skewness coefficient. The
skewness coefficient for a symmetric distribution is 0 because its third moment about the mean is 0.

However, in the foregoing example the skewness coefficient is E½ðX�lÞ3�=r3 ¼ �75=53 ¼ �0:6.
When the skewness coefficient is negative, as it is here, we say that the distribution is negatively
skewed or that it is skewed to the left. Generally speaking, it means that the distribution stretches
farther to the left of the mean than to the right.

If the skewness coefficient were positive, then we would say that the distribution is positively
skewed or that it is skewed to the right. For example, reverse the order of the probabilities in the pmf
of Example 3.26, so the probabilities of the values 5, 10, 15, 20 are now .4, .3, .2, and .1 (customers
now favor much smaller bags of dog food). Exercise 61 shows that this changes the sign but not the
magnitude of the skewness coefficient, so it becomes +0.6 and the distribution is skewed right. Both
distributions are illustrated in Figure 3.8.
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The Moment Generating Function
Calculation of the mean, variance, skewness coefficient, etc., for a particular discrete rv requires
extensive, sometimes tedious, summation. Mathematicians have developed a tool, the moment gen-
erating function, that will allow us to determine the moments of a distribution with less effort.
Moreover, this function will allow us to derive properties of several important probability distribu-
tions in subsequent sections of the book.

Note first that e1:7X is a particular function of X; its expected value is Eðe1:7XÞ ¼P e1:7x � pðxÞ. The
number 1.7 in the foregoing expression can be replaced by any other number—2.5, 179, –3.25, etc.
Now consider replacing 1.7 by the letter t. Then the expected value depends on the numerical value of
t; that is, E(etX) is a function of t. It is this function that will generate moments for us.

DEFINITION The moment generating function (mgf) of a discrete random variable
X is defined to be

MXðtÞ ¼ EðetXÞ ¼
X
x2D

etxpðxÞ

where D is the set of possible X values. The moment generating function
exists iff MX(t) is defined for an interval that includes zero as well as
positive and negative values of t.

For any random variable X, the mgf evaluated at t = 0 is

MXð0Þ ¼ Eðe0XÞ ¼
X
x2D

e0xpðxÞ ¼
X
x2D

1pðxÞ ¼ 1

That is,MX(0) is the sum of all the probabilities, so it must always be 1. However, in order for the mgf
to be useful in generating moments, it will need to be defined for an interval of values of t including 0
in its interior. The moment generating function fails to exist in cases when moments themselves fail to
exist (see Example 3.30 below).

Example 3.27 The simplest example of an mgf is for a Bernoulli distribution, where only the
X values 0 and 1 receive positive probability. Let X be a Bernoulli random variable with p(0) = 1/3
and p(1) = 2/3. Then

5 10 15 20
0

0.1

0.2

0.3

0.4

5 10 15 20
0

0.1

0.2

0.3

0.4

x x

p(x) p(x)a b

Figure 3.8 Departures from symmetry: (a) skewness coefficient < 0 (skewed left);
(b) skewness coefficient > 0 (skewed right)
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MXðtÞ ¼ EðetXÞ ¼
X
x2D

etxpðxÞ ¼ et�0
1
3
þ et�1

2
3
¼ 1

3
þ et

2
3

A Bernoulli random variable will always have an mgf of the form p 0ð Þþ p 1ð Þet, a well-defined
function for all values of t. ■

A key property of the mgf is its “uniqueness,” the fact that it completely characterizes the
underlying distribution.

MGF UNIQUENESS
THEOREM

If the mgf exists and is the same for two distributions, then the two
distributions are identical. That is, the moment generating function
uniquely specifies the probability distribution; there is a one-to-one
correspondence between distributions and mgfs.

The proof of this theorem, originally due to Laplace, requires some sophisticated mathematics and is
beyond the scope of this textbook.

Example 3.28 Let X, the number of claims submitted on a renter’s insurance policy in a given year,
have mgf MX tð Þ ¼ :7þ :2et þ :1e2t. It follows that X must have the pmf p(0) = .7, p(1) = .2, and
p(2) = .1—because if we use this pmf to obtain the mgf, we getMX(t), and the distribution is uniquely
determined by its mgf. ■

Example 3.29 Consider testing individuals’ blood samples one by one in order to find someone
whose blood type is Rh+. The rv X = the number of tested samples should follow the pmf specified in
Example 3.10 with p = .85:

pðxÞ ¼ :85ð:15Þx�1 for x ¼ 1; 2; 3; . . .:

Determining the moment generating function here requires using the formula for the sum of a
geometric series: 1þ rþ r2 þ � � � ¼ 1= 1� rð Þ for |r| < 1. The moment generating function is

MXðtÞ ¼ EðetXÞ ¼
X
x2D

etxpðxÞ ¼
X1
x¼1

etx:85ð:15Þx�1 ¼ :85et
X1
x¼1

etðx�1Þð:15Þx�1

¼ :85et
X1
x¼1

ð:15etÞx�1 ¼ :85et½1þ :15et þð:15etÞ2 þ � � �� ¼ :85et

1� :15et

The condition on r requires |.15et| < 1. Dividing by .15 and taking logs gives t < –ln(.15) � 1.90;
i.e., this function is defined in the interval (–1, 1.90). The result is an interval of values that includes
0 in its interior, so the mgf exists. As a check, MX(0) = .85/(1 − .15) = 1, as required. ■

Example 3.30 Reconsider Example 3.20, where pðxÞ ¼ k=x2, x = 1, 2, 3, …. Recall that E(X) does
not exist for this distribution, portending a problem for the existence of the mgf:

MXðtÞ ¼ EðetXÞ ¼
X1
x¼1

etx
k

x2
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With the help of tests for convergence such as the ratio test, we find that the series converges if and
only if et � 1, which means that t � 0; i.e., the mgf is only defined on the interval (–1, 0]. Because
zero is on the boundary of this interval, not the interior of the interval (the interval must include both
positive and negative values), the mgf of this distribution does not exist. In any case, it could not be
useful for finding moments, because X does not have even a first moment (mean). ■

Obtaining Moments from the MGF

For any positive integer r, let MðrÞ
X ðtÞ denote the rth derivative of MX(t). By computing this and then

setting t = 0, we get the rth moment about 0.

THEOREM If the mgf of X exists, then EðXrÞ is finite for all positive integers r, and

EðXrÞ ¼ MðrÞ
X ð0Þ ð3:15Þ

Proof The proof of the finiteness of all moments is beyond the scope of this book. We will show that
Expression (3.15) is true for r = 1 and r = 2. A proof by mathematical induction can be used for
general r. The first derivative of the mgf is

d

dt
MXðtÞ ¼ d

dt

X
x2D

extpðxÞ ¼
X
x2D

@

@t
extpðxÞ ¼

X
x2D

xextpðxÞ

where we have interchanged the order of summation and differentiation. (This is justified inside the
interval of convergence, which includes 0 in its interior.) Next set t = 0 to obtain the first moment:

M0
Xð0Þ ¼ Mð1Þ

X ð0Þ ¼
X
x2D

xexð0ÞpðxÞ ¼
X
x2D

xpðxÞ ¼ EðXÞ

Differentiating a second time gives

d2

dt2
MXðtÞ ¼ d

dt

X
x2D

xextpðxÞ ¼
X
x2D

x
@

@t
extpðxÞ ¼

X
x2D

x2extpðxÞ

Set t = 0 to get the second moment:

M00
Xð0Þ ¼ Mð2Þ

X ð0Þ ¼
X
x2D

x2pðxÞ ¼ EðX2Þ �

For the pmfs in Examples 3.27 and 3.28, this may seem like needless work—after all, for simple
distributions with just a few values, we can quickly determine the mean, variance, etc. The real utility
of the mgf arises for more complicated distributions.

Example 3.31 (Example 3.29 continued) Recall that p = .85 is the probability of a person having
Rh+ blood, and we keep checking people until we find one with this blood type. If X is the number of

people we need to check, then pðxÞ ¼ :85 :15ð Þx�1, x = 1, 2, 3, …, and the mgf is
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MXðtÞ ¼ EðetXÞ ¼ :85et

1� :15et

Differentiating with the help of the quotient rule,

M0
XðtÞ ¼

:85et

ð1� :15etÞ2

Setting t = 0 then gives l ¼ EðXÞ ¼ M0
Xð0Þ ¼ 1=:85 ¼ 1:176. This corresponds to the formula

µ = 1/p when .85 is replaced by p.
To get the second moment, differentiate again:

M00
XðtÞ ¼

:85etð1þ :15etÞ
ð1� :15etÞ3

Setting t = 0, EðX2Þ ¼ M00
Xð0Þ ¼ 1:15

�
:852. Now use the variance shortcut formula:

VðXÞ ¼ r2 ¼ EðX2Þ � l2 ¼ 1:15=:852 � 1
:85

� �2
¼ :15

ð:85Þ2 ¼ :2076 �

There is an alternate way of doing the differentiation that can sometimes make the effort easier. Define
RX(t) = ln[MX(t)], where ln(u) is the natural log of u. In Exercise 54 you are requested to verify that if
the moment generating function exists,

l ¼ EðXÞ ¼ R0
Xð0Þ

r2 ¼ VðXÞ ¼ R00
Xð0Þ

Example 3.32 Here we apply RX(t) to Example 3.31. Using properties of logarithms,

RXðtÞ ¼ ln½MXðtÞ� ¼ ln
:85et

1� :15et

� �
¼ lnð:85Þþ t � lnð1� :15etÞ

The first derivative is

R0
XðtÞ ¼ 0þ 1� 1

1� :15et
ð�:15etÞ ¼ 1þ :15et

1� :15et
¼ 1

1� :15et

and the second derivative is

R00
XðtÞ ¼

:15et

ð1� :15etÞ2

Setting t to 0 gives

l ¼ EðXÞ ¼ R0
Xð0Þ ¼

1
:85

r2 ¼ VðXÞ ¼ R00
Xð0Þ ¼

:15

ð:85Þ2
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These are in agreement with the results of Example 3.31. ■

As mentioned in Section 3.3, it is common to transform a rv X using a linear function
Y = aX + b. What happens to the mgf when we do this?

PROPOSITION Let X have the mgf MX(t) and let Y = aX + b. Then MY tð Þ ¼ ebtMX atð Þ.

Example 3.33 Let X be a Bernoulli random variable with p(0) = 20/38 and p(1) = 18/38. Think of
X as the number of wins, 0 or 1, in a single play of roulette. If you play roulette at an American casino
and bet on red, then your chance of winning is 18/38 because 18 of the 38 possible outcomes are red.
From Example 3.27, MXðtÞ ¼ 20=38 þ etð18=38Þ. Suppose you bet $5 on red, and let Y be your
winnings. If X = 0 then Y = –5, and if X = 1 then Y = + 5. The linear equation Y = 10X − 5 gives the
appropriate relationship.

This equation is of the form Y = aX + b with a = 10 and b = –5, so by the foregoing proposition

MYðtÞ ¼ ebtMXðatÞ ¼ e�5tMXð10tÞ

¼ e�5t 20
38

þ e10t
18
38

� �
¼ e�5t � 20

38
þ e5t � 18

38

This implies that the pmf of Y is p(–5) = 20/38 and p(5) = 18/38; moreover, we can compute the
mean (and other moments) of Y directly from this mgf. ■

Exercises: Section 3.4 (46–61)

46. Let X be the number of pumps in use at a gas
station, and suppose X has the distribution
given by the accompanying table. Deter-
mine MX(t) and use it to find E(X) and V(X).

x 0 1 2 3 4 5 6

p(x) .04 .20 .34 .20 .15 .04 .03

47. In flipping a fair coin let X be the number of
tosses to get the first head. Then p(x) = .5x

for x = 1, 2, 3,…. Determine MX(t) and use
it to get E(X) and V(X).

48. If you toss a fair die with outcome X,
pðxÞ ¼ 1

6 for x = 1, 2, 3, 4, 5, 6. Find MX(t).

49. For the entry-level employees of a certain
fast food chain, the pmf ofX = highest grade
level completed is specified by p(9) = .01,
p(10) = .05, p(11) = .16, and p(12) = .78.

a. Determine the moment generating
function of this distribution.

b. Use (a) to determine the mean and
variance of this distribution.

50. Calculate the skewness coefficient for each
of the distributions in the previous four
exercises. Do those agree with the “shape”
of each distribution?

51. Given MX(t) = .2 + .3et + .5e3t, find p(x),
E(X), V(X).

52. If MX(t) = 1/(1 − t2), find E(X) and V(X) by
differentiating MX(t).

53. Show that g(t) = tet cannot be a moment
generating function.

54. Let MXðtÞ be the moment generating func-
tion of a rv X, and define RXðtÞ ¼
ln½MXðtÞ�. Show that

a. RXð0Þ ¼ 0
b. R0

Xð0Þ ¼ lX
c. R00

Xð0Þ ¼ r2X

55. If MXðtÞ ¼ e5tþ 2t2 then find E(X) and V(X)
by differentiating

a. MXðtÞ
b. RXðtÞ
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56. If MXðtÞ ¼ e5ðe
t�1Þ then find E(X) and V(X)

by differentiating

a. MXðtÞ
b. RXðtÞ

57. Using a calculation similar to the one in
Example 3.29 show that, if X has the dis-
tribution of Example 3.10, then its mgf is

MXðtÞ ¼ pet

1� ð1� pÞet

If Y has mgf MYðtÞ ¼ :75et=ð1� :25etÞ,
determine the probability mass function
pY(y) with the help of the uniqueness
property.

58. Let X have the moment generating function
of Example 3.29 and let Y = X − 1. Recall
thatX is the number of people who need to be
checked to get someone who is Rh+, so Y is
the number of people checked before the first
Rh+ person is found. Find MY(t) using the
last proposition in this section.

59. Let MXðtÞ ¼ e5tþ 2t2 and let Y = (X − 5)/2.
Find MYðtÞ and use it to find E(Y) and V(Y).

60. a. Prove the result in the last proposition
of this section: MaXþ bðtÞ ¼ ebtMXðatÞ.

b. Let Y = aX + b. Use (a) to establish the
relationships between the means and
variances of X and Y.

61. Let X be the number of points earned by a
randomly selected student on a 10 point
quiz, with possible values 0, 1, 2, …, 10
and pmf p(x), and suppose the distribution
has a skewness of c. Now consider revers-
ing the probabilities in the distribution, so
that p(0) is interchanged with p(10), p(1) is
interchanged with p(9), and so on. Show
that the skewness of the resulting distribu-
tion is −c. [Hint: Let Y = 10 − X and show
that Y has the reversed distribution. Use this
fact to determine lY and then the value of
skewness for the Y distribution.]

3.5 The Binomial Probability Distribution

Many experiments conform either exactly or approximately to the following list of requirements:
1. The experiment consists of a sequence of n smaller experiments called trials, where n is fixed in

advance of the experiment.
2. Each trial can result in one of the same two possible outcomes (dichotomous trials), which we

denote by success (S) or failure (F).
3. The trials are independent, so that the outcome on any particular trial does not influence the

outcome on any other trial.
4. The probability of success is constant from trial to trial (homogeneous trials); we denote this

probability by p.

DEFINITION An experiment for which Conditions 1–4 are satisfied—a fixed number
of dichotomous, independent, homogeneous trials—is called a binomial
experiment.

Example 3.34 The same coin is tossed successively and independently n times. We arbitrarily use
S to denote the outcome H (heads) and F to denote the outcome T (tails). Then this experiment
satisfies Conditions 1–4. Wagering on n spins of a roulette wheel, with S = win money and F = lose
money, also results in a binomial experiment so long as you bet the same way every time (e.g., always
on black, so that P(S) remains constant across different spins). Another binomial experiment was
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alluded to in Example 3.10: there, a binomial experiment would consist of sending a fixed number
n of messages across a communication channel, with S = message received correctly and
F = received message contains errors. ■

Some experiments involve a sequence of independent trials for which there are more than two
possible outcomes on any one trial. A binomial experiment can then be created by dividing the
possible outcomes into two groups.

Example 3.35 The color of pea seeds is determined by a single genetic locus. If the two alleles at
this locus are AA or Aa (the genotype), then the pea will be yellow (the phenotype), and if the allele is
aa, the pea will be green. Suppose we pair off 20 Aa seeds and cross the two seeds in each of the ten
pairs to obtain ten new genotypes. Call each new genotype a success S if it is aa and a failure
otherwise. Then with this identification of S and F, the experiment is binomial with n = 10 and
p = P(aa genotype). If each member of the pair is equally likely to contribute either a or A, then
p = P(a) � P(a) = (1/2)(1/2) = .25. ■

Example 3.36 A student has an iPod playlist containing 50 songs, of which 35 were recorded prior
to the year 2018 and the other 15 were recorded more recently. Suppose the shuffle function is used to
select five from among these 50 songs for listening during a walk between classes. Each selection of a
song constitutes a trial; regard a trial as a success if the selected song was recorded before 2018. Then

P S on first trialð Þ ¼ 35
50

¼ :70

and

PðS on second trialÞ ¼ PðSSÞþPðFSÞ
¼ Pðsecond Sjfirst SÞPðfirst SÞþPðsecond Sjfirst FÞPðfirst FÞ

¼ 34
49

� 35
50

þ 35
49

� 15
50

¼ 35
50

34
49

þ 15
49

� �
¼ 35

50
¼ :70

Similarly, it can be shown that P(S on ith trial) = .70 for i = 3, 4, 5, so the trials are homogeneous.
However,

PðS on fifth trial j SSSSÞ ¼ 31
46

¼ :67

whereas

PðS on fifth trial jFFFFÞ ¼ 35
46

¼ :76

The experiment is not binomial because the trials are not independent. In general, if sampling is
without replacement, the experiment will not yield independent trials. If songs had been selected with
replacement, then trials would have been independent, but this might have resulted in the same song
being listened to more than once. ■

Example 3.37 Suppose a state has 500,000 licensed drivers, of whom 400,000 are insured.
A sample of ten drivers is chosen without replacement. The ith trial is labeled S if the ith driver
chosen is insured. Although this situation would seem identical to that of Example 3.36, the important
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difference is that the size of the population being sampled is very large relative to the sample size. In
this case

PðS on 2jS on 1Þ ¼ 399;999
499;999

¼ :7999996 � :8

and

PðS on 10jS on first 9Þ ¼ 399;991
499;991

¼ :7999964 � :8

These calculations suggest that although the trials are not exactly independent, the conditional
probabilities differ so slightly from one another that for practical purposes the trials can be regarded as
independent with constant P(S) = .8. Thus, to a very good approximation, the experiment is binomial
with n = 10 and p = .8. ■

We will use the following convention in deciding whether a “without-replacement” experiment
can be treated as a binomial experiment.

RULE Consider sampling without replacement from a dichotomous population of size N. If
the sample size (number of trials) n is at most 5% of the population size, the
experiment can be analyzed as though it were exactly a binomial experiment.

By “analyzed,” we mean that probabilities based on the binomial experiment assumptions will be
quite close to the actual “without-replacement” probabilities, which are typically more difficult to
calculate. In Example 3.36, n/N = 5/50 = .1 > .05, so the binomial experiment is not a good
approximation, but in Example 3.37, n/N = 10/500,000 < .05.

The Binomial Random Variable and Distribution
In most binomial experiments, it is the total number of successes, rather than knowledge of exactly
which trials yielded successes, that is of interest.

DEFINITION Given a binomial experiment consisting of n trials, the binomial random
variable X associated with this experiment is defined as

X = the number of successes among the n trials

Suppose, for example, that n = 3. Then there are eight possible outcomes for the experiment:

S = {SSS, SSF, SFS, SFF, FSS, FSF, FFS, FFF} 

From the definition of X, X(SSF) = 2, X(SFF) = 1, and so on. Possible values for X in an n-trial
experiment are x = 0, 1, 2, …, n.

NOTATION WewillwriteX * Bin(n,p) to indicate thatX is a binomial rv based onn trials
with success probability p. Because the pmf of a binomial rvX depends on the
two parameters n and p, we denote the pmf by b(x; n, p).

Our next goal is to derive a formula for the binomial pmf. Consider first the case n = 4 for which each
outcome, its probability, and corresponding x value are listed in Table 3.1. For example,
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PðSSFSÞ ¼ PðSÞ � PðSÞ � PðFÞ � PðSÞ independent trials

¼ p � p � ð1� pÞ � p constant PðSÞ
¼ p3 � ð1� pÞ

In this special case, we wish b(x; 4, p) for x = 0, 1, 2, 3, and 4. For b(3; 4, p), we identify which of the
16 outcomes yield an x value of 3 and sum the probabilities associated with each such outcome:

b 3; 4; pð Þ ¼ PðFSSSÞþPðSFSSÞþPðSSFSÞþPðSSSFÞ ¼ 4p3 1� pð Þ

There are four outcomes with x = 3 and each has probability p3(1 − p) (the probability depends only
on the number of S’s, not the order of S’s and F’s), so

b 3; 4; pð Þ ¼ number of outcomes
with X ¼ 3

� 
� probability of any particular

outcome with X ¼ 3

� 

Similarly, b 2; 4; pð Þ ¼ 6p2ð1� pÞ2, which is also the product of the number of outcomes with X = 2
and the probability of any such outcome.

In general,

b x; n; pð Þ ¼ number of sequences of
length n consisting of x S

0
s

� 
� probability of any

particular such sequence

� 

Since the ordering of S′s and F′s is not important, the second factor in braces is px(1 − p)n–x (e.g., the
first x trials resulting in S and the last n − x resulting in F). The first factor is the number of ways of
choosing x of the n trials to be S′s—that is, the number of combinations of size x that can be
constructed from n distinct objects (trials here).

THEOREM bðx; n; pÞ ¼ n
x

� �
pxð1� pÞn�x x ¼ 0; 1; 2; . . .; n

Example 3.38 Each of six randomly selected cola drinkers is given a glass containing cola S and
one containing cola F. The glasses are identical in appearance except for a code on the bottom to
identify the cola. Suppose there is no tendency among cola drinkers to prefer one cola to the other.

Table 3.1 Outcomes and
probabilities for a binomial
experiment with four trials

Outcome x Probability Outcome x Probability

SSSS 4 p4 FSSS 3 p3(1 − p)

SSSF 3 p3(1 − p) FSSF 2 p2(1 − p)2

SSFS 3 p3(1 − p) FSFS 2 p2(1 − p)2

SSFF 2 p2(1 − p)2 FSFF 1 p(1 − p)3

SFSS 3 p3(1 − p) FFSS 2 p2(1 − p)2

SFSF 2 p2(1 − p)2 FFSF 1 p(1 − p)3

SFFS 2 p2(1 − p)2 FFFS 1 p(1 − p)3

SFFF 1 p(1 − p)3 FFFF 0 (1 − p)4
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Then p = P(a selected individual prefers S) = .5, so with X = the number among the six who prefer
S, X * Bin(6, .5).

Thus

PðX ¼ 3Þ ¼ bð3; 6; :5Þ ¼ 6
3

� �
ð:5Þ3ð:5Þ3 ¼ 20ð:5Þ6 ¼ :313

The probability that at least three prefer S is

Pð3�XÞ ¼
X6
x¼3

bðx; 6; :5Þ ¼
X6
x¼3

6
x

� �
ð:5Þxð:5Þ6�x ¼ :656

and the probability that at most one prefers S is

PðX� 1Þ ¼
X1
x¼0

bðx; 6; :5Þ ¼ :109 �

Computing Binomial Probabilities
Even for a relatively small value of n, the computation of binomial probabilities can be tedious.
Software and statistical tables are both available for this purpose; both are often in terms of the cdf
F(x) = P(X � x) of the distribution, either in lieu of or in addition to the pmf. Various other
probabilities can then be calculated using the proposition on cdfs from Section 3.2.

NOTATION For X * Bin(n, p), the cdf will be denoted by

Bðx; n; pÞ ¼ PðX� xÞ ¼
Xx
y¼0

bðy; n; pÞ x ¼ 0; 1; . . .; n

Many software packages, including R, have built-in functions to evaluate both the pmf and cdf of the
binomial distribution (and many other named distributions). Table 3.2 provides the code for per-
forming binomial calculations in R. In addition, Appendix Table A.1 shows the binomial cdf for
n = 5, 10, 15, 20, 25 in combination with selected values of p.

Example 3.39 Suppose that 20% of all copies of a particular textbook fail a binding strength test.
Let X denote the number among 15 randomly selected copies that fail the test. Then X has a binomial
distribution with n = 15 and p = .2: X * Bin(15, .2).

Table 3.2 Binomial probability calculations in R

Function: pmf cdf
Notation: b(x; n, p) B(x; n, p)
R: dbinom(x, n, p) pbinom(x, n, p)
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(a) The probability that at most 8 fail the test is

PðX� 8Þ ¼
X8
y¼0

bðy; 15; :2Þ ¼ Bð8; 15; :2Þ

This is found at the intersection of the p = .2 column and x = 8 row in the n = 15 part of
Table A.1: B(8; 15, .2) = .999. In R, we may type pbinom(8,15,.2).

(b) The probability that exactly 8 fail is P(X = 8) = b(8; 15, .2) = 15
8

� �
ð:2Þ8ð:8Þ7 = .0034. We can

evaluate this probability in R with the call dbinom(8,15,.2). To use Table A.1, write

PðX ¼ 8Þ ¼ PðX� 8Þ � PðX� 7Þ ¼ Bð8; 15; :2Þ � Bð7; 15; :2Þ

which is the difference between two consecutive entries in the p = .2 column. The result is
.999 − .996 = .003.

(c) The probability that at least 8 fail is PðX� 8Þ ¼ 1� PðX� 7Þ ¼ 1� Bð7; 15; :2Þ. The cdf may
be evaluated using R as above, or by looking up the entry in the x = 7 row of the p = .2 column
in Table A.1. In any case, we find P(X � 8) = 1 − .996 = .004.

(d) Finally, the probability that between 4 and 7, inclusive, fail is

Pð4�X� 7Þ ¼ PðX ¼ 4; 5; 6; or 7Þ ¼ PðX� 7Þ � PðX� 3Þ
¼ Bð7; 15; :2Þ � Bð3; 15; :2Þ ¼ :996� :648 ¼ :348

Notice that this latter probability is the difference between the cdf values at x = 7 and x = 3, not x = 7
and x = 4. ■

Example 3.40 An electronics manufacturer claims that at most 10% of its power supply units need
service during the warranty period. To investigate this claim, technicians at a testing laboratory
purchase 20 units and subject each one to accelerated testing to simulate use during the warranty
period. Let p denote the probability that a power supply unit needs repair during the period (the
proportion of all such units that need repair). The laboratory technicians must decide whether the data
resulting from the experiment supports the claim that p � .10. Let X denote the number among the
20 sampled that need repair, so X * Bin(20, p). Consider the following decision rule:

Reject the claim that p � .10 in favor of the conclusion that p > .10 if x � 5
(where x is the observed value of X), and consider the claim plausible if x � 4.

The probability that the claim is rejected when p = .10 (an incorrect conclusion) is

PðX� 5 when p ¼ :10Þ ¼ 1� Bð4; 20; :1Þ ¼ 1� :957 ¼ :043

The probability that the claim is not rejected when p = .20 (a different type of incorrect conclusion)
is

PðX� 4 when p ¼ :2Þ ¼ Bð4; 20; :2Þ ¼ :630

The first probability is rather small, but the second is intolerably large. When p = .20, so that the
manufacturer has grossly understated the percentage of units that need service, and the stated decision
rule is used, 63% of all samples will result in the manufacturer’s claim being judged plausible!
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One might think that the probability of this second type of erroneous conclusion could be made
smaller by changing the cutoff value 5 in the decision rule to something else. However, although
replacing 5 by a smaller number would yield a probability smaller than .630, the other probability
would then increase. The only way to make both “error probabilities” small is to base the decision
rule on an experiment involving many more units (i.e., to increase n). ■

The Mean and Variance of a Binomial Random Variable
For n = 1, the binomial distribution becomes the Bernoulli distribution. From Example 3.17, the
mean value of a Bernoulli variable is l = p, so the expected number of S’s on any single trial is
p. Since a binomial experiment consists of n trials, intuition suggests that for X * Bin(n, p),
E(X) = np, the product of the number of trials and the probability of success on a single trial. The
expression for V(X) is not so intuitive.

PROPOSITION If X * Bin(n, p), then E(X) = np, V(X) = np(1 − p) = npq, and
SD Xð Þ ¼ ffiffiffiffiffiffiffiffi

npq
p

(where q = 1 − p).

Thus, calculating the mean and variance of a binomial rv does not necessitate evaluating summations
of the sort we employed in Section 3.3. The proof of the result for E(X) is sketched in Exercise 86,
and both the mean and the variance are obtained below using the moment generating function.

Example 3.41 If 75% of all purchases at a store are made with a credit card and X is the number
among ten randomly selected purchases made with a credit card, then X	Bin 10; :75ð Þ. Thus
EðXÞ ¼ np ¼ 10ð Þ :75ð Þ ¼ 7:5, VðXÞ ¼ npq ¼ 10 :75ð Þ :25ð Þ ¼ 1:875, and r ¼ ffiffiffiffiffiffiffiffiffiffiffi

1:875
p ¼ 1:37.

Again, even though X can take on only integer values, E(X) need not be an integer. If we perform a
large number of independent binomial experiments, each with n = 10 trials and p = .75, then the
average number of S’s per experiment will be close to 7.5. ■

An important application of the binomial distribution is to estimating the precision of simulated
probabilities, as in Section 2.6. The relative frequency definition of probability justified defining an
estimate of a probability P(A) by P̂ðAÞ ¼ X=n, where n is the number of runs of the simulation
program and X equals the number of runs in which event A occurred. Assuming the runs of our
simulation are independent (and they usually are), the rv X has a binomial distribution with
parameters n and p = P(A). From the preceding proposition and the rescaling properties of mean and
standard deviation, we have

EðP̂ðAÞÞ ¼ E
1
n
X

� �
¼ 1

n
� EðXÞ ¼ 1

n
ðnpÞ ¼ p ¼ PðAÞ

Thus we expect the value of our estimate to coincide with the probability being estimated, in the sense
that there is no reason for P̂ðAÞ to be systematically higher or lower than P(A). Also,

SDðP̂ðAÞÞ ¼ SD
1
n
X

� �
¼ 1

n

����
���� � SDðXÞ ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞ½1� PðAÞ�

n

r
ð3:16Þ

Expression (3.16) is called the standard error of P̂ðAÞ (essentially a synonym for standard deviation)
and indicates the amount by which an estimate P̂ðAÞ “typically” varies from the true probability P(A).
However, this expression isn’t of much use in practice: we most often simulate a probability when
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P(A) is unknown, which prevents us from using (3.16). As a solution, we simply substitute the
estimate P̂ ¼ P̂ðAÞ into this expression and get

SDðP̂ðAÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ

n

s

This is the estimated standard error formula (2.9) given in Section 2.6. Very importantly, this esti-
mated standard error gets closer to 0 as the number of runs, n, in the simulation increases.

The Moment Generating Function of a Binomial Random Variable
Determining the mgf of a binomial rv relies on the binomial theorem, which states that

ðaþ bÞn ¼Pn
x¼0

n
x

� �
axbn�x. Using the definition,

MXðtÞ ¼ EðetXÞ ¼
X
x2D

etxpðxÞ ¼
Xn
x¼0

etx
n

x

� �
pxð1� pÞn�x

¼
Xn
x¼0

n

x

� �
ðpetÞxð1� pÞn�x ¼ ðpet þ 1� pÞn

Notice that the mgf satisfies the property MX(0) = 1 required of all moment generating functions. The
mean and variance can be obtained by differentiating MX(t):

M0
XðtÞ ¼ nðpet þ 1� pÞn�1pet and l ¼ M0

Xð0Þ ¼ np

Then the second derivative is

M00
XðtÞ ¼ nðn� 1Þðpet þ 1� pÞn�2petpet þ nðpet þ 1� pÞn�1pet

and
EðX2Þ ¼ M00

Xð0Þ ¼ nðn� 1Þp2 þ np

Therefore,

r2 ¼ VðXÞ ¼ EðX2Þ � ½EðXÞ�2
¼ nðn� 1Þp2 þ np� n2p2 ¼ np� np2 ¼ npð1� pÞ

in accord with the foregoing proposition.

Exercises: Section 3.5 (62–88)

62. Determine whether each of the following
rvs has a binomial distribution. If it does,
identify the values of the parameters n and
p (if possible).

a. X = the number of 4 s in 10 rolls of a
fair die

b. X = the number of multiple-choice
questions a student gets right on a 40-
question test, when each question has

four choices and the student is com-
pletely guessing

c. X = the same as (b), but half the
questions have four choices and the
other half have three

d. X = the number of women in a ran-
dom sample of 8 students, from a
class comprised of 20 women and 15
men
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e. X = the total weight of 15 randomly
selected apples

f. X = the number of apples, out of a
random sample of 15, that weigh more
than 150 grams

63. Compute the following binomial probabil-
ities directly from the formula for b(x; n, p):

a. b(3; 8, .6)
b. b(5; 8, .6)
c. P(3 � X � 5) when n = 8 and p = .6
d. P(1 � X) when n = 12 and p = .1

64. Use Appendix Table A.1 or software to
obtain the following probabilities:

a. B(4; 10, .3)
b. b(4; 10, .3)
c. b(6; 10, .7)
d. P(2 � X � 4) when X * Bin(10, .3)
e. P(2 � X) when X * Bin(10, .3)
f. P(X � 1) when X * Bin(10, .7)
g. P(2 < X < 6) when X * Bin(10, .3)

65. When circuit boards used in the manufac-
ture of DVD players are tested, the long-run
percentage of defectives is 5%. Let X = the
number of defective boards in a random
sample of size n = 25, so X * Bin(25, .05).

a. Determine P(X � 2).
b. Determine P(X � 5).
c. Determine P(1 � X � 4).
d. What is the probability that none of the

25 boards is defective?
e. Calculate the expected value and stan-

dard deviation of X.

66. A company that produces fine crystal
knows from experience that 10% of its
goblets have cosmetic flaws and must be
classified as “seconds.”

a. Among six randomly selected goblets,
how likely is it that only one is a second?

b. Among six randomly selected goblets,
what is the probability that at least two
are seconds?

c. If goblets are examined one by one,
what is the probability that at most five
must be selected to find four that are
not seconds?

67. Suppose that only 25% of all drivers come
to a complete stop at an intersection having
flashing red lights in all directions when no
other cars are visible. What is the proba-
bility that, of 20 randomly chosen drivers
coming to an intersection under these
conditions,

a. At most 6 will come to a complete
stop?

b. Exactly 6 will come to a complete
stop?

c. At least 6 will come to a complete
stop?

68. Refer to the previous exercise.

a. What is the expected number of drivers
among the 20 that come to a complete
stop?

b. What is the standard deviation of the
number of drivers among the 20 that
come to a complete stop?

c. What is the probability that the number
of drivers among these 20 that come to
a complete stop differs from the
expected number by more than 2
standard deviations?

69. Exercise 29 (Section 3.3) gave the pmf of Y,
the number of traffic citations for a randomly
selected individual insured by a company.
What is the probability that among 15 ran-
domly chosen such individuals

a. At least 10 have no citations?
b. Fewer than half have at least one

citation?
c. The number that have at least one

citation is between 5 and 10,
inclusive?3

70. A particular type of tennis racket comes in
a midsize version and an oversize version.
Sixty percent of all customers at a store
want the oversize version.

a. Among ten randomly selected cus-
tomers who want this type of racket,

3“Between a and b, inclusive” is equivalent to
(a � X � b).
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what is the probability that at least six
want the oversize version?

b. Among ten randomly selected cus-
tomers, what is the probability that the
number who want the oversize version
is within 1 standard deviation of the
mean value?

c. The store currently has seven rackets of
each version. What is the probability
that all of the next ten customers who
want this racket can get the version
they want from current stock?

71. Twenty percent of all telephones of a cer-
tain type are submitted for service while
under warranty. Of these, 60% can be
repaired, whereas the other 40% must be
replaced with new units. If a company
purchases ten of these telephones, what is
the probability that exactly two will end up
being replaced under warranty?

72. A March 29, 2019, Washington Post article
reported that (roughly) 5% of all students
taking the ACT were granted extra time.
Assume that 5% figure is exact, and con-
sider a random sample of 25 students who
have recently taken the ACT.

a. What is the probability that exactly 1
was granted extra time?

b. What is the probability that at least 1
was granted extra time?

c. What is the probability that at least 2
were granted extra time?

d. What is the probability that the number
among the 25 who were granted extra
time is within 2 standard deviations of
the number you would expect?

e. Suppose that a student who does not
receive extra time is allowed 3 h for the
exam, whereas an accommodated stu-
dent is allowed 4.5 h. What would you
expect the average time allowed the 25
selected students to be?

73. Suppose that 90% of all batteries from a
supplier have acceptable voltages. A certain

type of flashlight requires two type-D bat-
teries, and the flashlight will work only if
both its batteries have acceptable voltages.
Among ten randomly selected flashlights,
what is the probability that at least nine will
work? What assumptions did you make in
the course of answering the question
posed?

74. A k-out-of-n system functions provided that
at least k of the n components function.
Consider independently operating compo-
nents, each of which functions (for the
needed duration) with probability .96.

a. In a 3-component system, what is the
probability that exactly two compo-
nents function?

b. What is the probability a 2-out-of-3
system works?

c. What is the probability a 3-out-of-5
system works?

d. What is the probability a 4-out-of-5
system works?

e. What does the component probability
(previously .96) need to equal so that
the 4-out-of-5 system will function
with probability at least .9999?

75. Bit transmission errors between computers
sometimes occur, where one computer
sends a 0 but the other computer receives a
1 (or vice versa). Because of this, the
computer sending a message repeats each
bit three times, so a 0 is sent as 000 and a 1
as 111. The receiving computer “decodes”
each triplet by majority rule: whichever
number, 0 or 1, appears more often in a
triplet is declared to be the intended bit. For
example, both 000 and 100 are decoded as
0, while 101 and 011 are decoded as 1.
Suppose that 6% of bits are switched (0 to
1, or 1 to 0) during transmission between
two particular computers, and that these
errors occur independently during
transmission.
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a. Find the probability that a triplet is
decoded incorrectly by the receiving
computer.

b. Using your answer to part (a), explain
how using triplets reduces communi-
cation errors.

c. How does your answer to part
(a) change if each bit is repeated five
times (instead of three)?

d. Imagine a 25 kilobit message (i.e., one
requiring 25,000 bits to send). What is
the expected number of errors if there
is no bit repetition implemented? If
each bit is repeated three times?

76. A very large batch of components has
arrived at a distributor. The batch can be
characterized as acceptable only if the
proportion of defective components is at
most .10. The distributor decides to ran-
domly select 10 components and to accept
the batch only if the number of defective
components in the sample is at most 2.

a. What is the probability that the batch
will be accepted when the actual pro-
portion of defectives is .01? .05? .10?
.20? .25?

b. Let p denote the actual proportion of
defectives in the batch. A graph of
P(batch is accepted) as a function of
p, with p on the horizontal axis and
P(batch is accepted) on the vertical
axis, is called the operating charac-
teristic curve for the acceptance sam-
pling plan. Use the results of part (a) to
sketch this curve for 0 � p � 1.

c. Repeat parts (a) and (b) with “1”
replacing “2” in the acceptance sam-
pling plan.

d. Repeat parts (a) and (b) with “15”
replacing “10” in the acceptance sam-
pling plan.

e. Which of the three sampling plans, that
of part (a), (c), or (d), appears most
satisfactory, and why?

77. An ordinance requiring that a smoke
detector be installed in all previously con-
structed houses has been in effect in a city
for 1 year. The fire department is concerned
that many houses remain without detectors.
Let p = the true proportion of such houses
having detectors, and suppose that a ran-
dom sample of 25 homes is inspected. If the
sample strongly indicates that fewer than
80% of all houses have a detector, the fire
department will campaign for a mandatory
inspection program. Because of the costli-
ness of the program, the department prefers
not to call for such inspections unless
sample evidence strongly argues for their
necessity. Let X denote the number of
homes with detectors among the 25 sam-
pled. Consider rejecting the claim that
p � .8 if x � 15.

a. What is the probability that the claim is
rejected when the actual value of p is
.8?

b. What is the probability of not rejecting
the claim when p = .7? When p = .6?

c. How do the “error probabilities” of
parts (a) and (b) change if the value 15
in the decision rule is replaced by 14?

78. A toll bridge charges $1.00 for passenger
cars and $2.50 for other vehicles. Suppose
that during daytime hours, 60% of all
vehicles are passenger cars. If 25 vehicles
cross the bridge during a particular daytime
period, what is the resulting expected toll
revenue? [Hint: Let X = the number of
passenger cars; then the toll revenue h(X) is
a linear function of X.]

79. A student who is trying to write a paper for
a course has a choice of two topics, A and
B. If topic A is chosen, the student will
order two books through interlibrary loan,
whereas if topic B is chosen, the student
will order four books. The student believes
that a good paper necessitates receiving and
using at least half the books ordered for
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either topic chosen. If the probability that a
book ordered through interlibrary loan
actually arrives in time is .9 and books
arrive independently of one another, which
topic should the student choose to maxi-
mize the probability of writing a good
paper? What if the arrival probability is
only .5 instead of .9?

80. Twelve jurors are randomly selected from a
large population. At least in theory, each
juror arrives at a conclusion about the case
before the jury independently of the other
jurors.

a. In a criminal case, all 12 jurors must
agree on a verdict. Let p denote the
probability that a randomly selected
member of the population would reach
a guilty verdict based on the evidence
presented (so a proportion 1 − p would
reach “not guilty”). What is the prob-
ability, in terms of p, that the jury
reaches a unanimous verdict one way
or the other?

b. For what values of p is the probability
in part (a) the highest? For what value
of p is the probability in (a) the lowest?
Explain why this makes sense.

c. In most civil cases, only a nine-person
majority is required to decide a verdict.
That is, if nine or more jurors favor the
plaintiff, then the plaintiff wins; if at
least nine jurors side with the defen-
dant, then the defendant wins. Let
p denote the probability that someone
would side with the plaintiff based on
the evidence. What is the probability,
in terms of p, that the jury reaches a
verdict one way or the other? How
does this compare with your answer to
part (a)?

81. Customers at a gas station pay with a credit
card (A), debit card (B), or cash (C).
Assume that successive customers make
independent choices, with P(A) = .5,
P(B) = .2, and P(C) = .3.

a. Among the next 100 customers, what
are the mean and variance of the
number who pay with a debit card?
Explain your reasoning.

b. Answer part (a) for the number among
the 100 who don’t pay with cash.

82. An airport limousine can accommodate up
to four passengers on any one trip. The
company will accept a maximum of six
reservations for a trip, and a passenger must
have a reservation. From previous records,
20% of all those making reservations do not
appear for the trip. In the following ques-
tions, assume independence, but explain
why there could be dependence.

a. If six reservations are made, what is the
probability that at least one individual
with a reservation cannot be accom-
modated on the trip?

b. If six reservations are made, what is the
expected number of available places
when the limousine departs?

c. Suppose the probability distribution of
the number of reservations made is
given in the accompanying table.

Reservations 3 4 5 6
Probability .1 .2 .3 .4

Let X denote the number of passengers
on a randomly selected trip. Obtain the
probability mass function of X.

83. Let X be a binomial random variable with a
specified value of n.

a. Are there values of p (0 � p � 1) for
which V(X) = 0? Explain why this is
so.

b. For what value of p is V(X) maxi-
mized? [Hint: Either graph V(X) as a
function of p or else take a derivative.]

84. a. Verify the relationship b(x; n, 1 − p) =
b(n − x; n, p).

b. Verify the relationship B(x; n, 1 − p) =
1 − B(n − x − 1; n, p). [Hint: At most
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x S’s is equivalent to at least
(n − x) F’s.]

c. What do parts (a) and (b) imply about
the necessity of including values of
p > .5 in Appendix Table A.1?

85. Refer to Chebyshev’s inequality given
in Exercise 45 (Section 3.3). Calculate
P(|X− l| � kr) for k = 2 and k = 3 when
X * Bin(20, .5), and compare to the cor-
responding upper bounds. Repeat for X *
Bin(20, .75).

86. Show that E(X) = np when X is a binomial
random variable. [Hint: Express E(X) as a
sum with lower limit x = 1. Then factor out
np, let y = x − 1 so that the remaining sum

is from y = 0 to y = n − 1, and show that
the sum equals 1.]

87. At the end of this section we obtained the
mean and variance of a binomial rv using
the mgf. Obtain the mean and variance
instead from RXðtÞ ¼ ln½MXðtÞ�.

88. Obtain the moment generating function of
the number of failures, n − X, in a binomial
experiment, and use it to determine the
expected number of failures and the variance
of the number of failures. Are the expected
value and variance intuitively consistent with
the expressions for E(X) and V(X)? Explain.

3.6 The Poisson Probability Distribution

The binomial distribution was derived by starting with an experiment consisting of trials and applying
the laws of probability to various outcomes of the experiment. There is no simple experiment on
which the Poisson distribution is based, although we will shortly describe how it can be obtained from
the binomial distribution by certain limiting operations.

DEFINITION A random variable X is said to have a Poisson distribution with parameter
l (l > 0) if the pmf of X is

pðx; lÞ ¼ e�llx

x!
x ¼ 0; 1; 2; . . .

We shall see shortly that µ is in fact the expected value of X, so the notation
here is consistent with our previous use of the symbol µ. Because µ must be
positive, p(x; µ) > 0 for all possible x values. The fact that

P1
x¼0 pðx; lÞ ¼ 1

is a consequence of the Taylor series expansion of eµ, which appears in most
calculus texts:

el ¼ 1þ lþ l2

2!
þ l3

3!
þ � � � ¼

X1
x¼0

lx

x!
ð3:17Þ

If the two extreme terms in Expression (3.17) are multiplied by e–µ and then e–µ

is placed inside the summation, the result is

1 ¼
X1
x¼0

e�llx

x!

which shows that p(x; µ) fulfills the second condition necessary for specifying
a pmf.
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Example 3.42 The article “Detecting Clostridium difficile Outbreaks With Ward-Specific Cut-Off
Levels Based on the Poisson Distribution” (Infect. Control Hosp. Epidemiol. 2019: 265–266) rec-
ommends using a Poisson model for X = the number of sporadic C. difficile infections (CDIs) in a
month in a given hospital ward, as a way to determine when an “outbreak” (that is, an unusually large
number of CDIs) has occurred. The article considers several values for µ for different wards in a
particular hospital. For a ward in which µ = 3 CDIs per month, the probability of observing exactly 5
CDIs in a particular month is

PðX ¼ 5Þ ¼ e�335

5!
¼ :1008

and the chance of observing at least 5 CDIs is

PðX� 5Þ ¼ 1� PðX\5Þ ¼ 1�
X4
x¼0

e�33x

x!
¼ 1� e�3 1þ 3þ 32

2!
þ 33

3!
þ 34

4!

� �
¼ :1847

These probabilities might not be so low as to convince hospital supervisors that they have an outbreak
on their hands. On the other hand, in a ward with a historic mean of µ = 1 CDI per month, the
probabilities are P(X = 5) = .0031 and P(X � 5) = .0037, suggesting that five (or more) CDIs in one
month would be extremely unusual and should be considered a C. difficile outbreak. ■

The Poisson Distribution as a Limit
The rationale for using the Poisson distribution in many situations is provided by the following
proposition.

PROPOSITION Suppose that in the binomial pmf b(x; n, p) we let n ! 1 and p ! 0 in
such a way that np approaches a value l > 0. Then b(x; n, p) ! p(x; l).

Proof Begin with the binomial pmf:

bðx; n; pÞ ¼ n
x

� �
pxð1� pÞn�x ¼ n!

x!ðn� xÞ! p
xð1� pÞn�x

¼ n � ðn� 1Þ � � � � � ðn� xþ 1Þ
x!

pxð1� pÞn�x

Now multiply both the numerator and denominator by nx:

bðx; n; pÞ ¼ n

n

n� 1
n

� � � � � n� xþ 1
n

� ðnpÞ
x

x!
� ð1� pÞn
ð1� pÞx

Taking the limit as n ! 1 and p ! 0 with np ! l,

lim
n!1 bðx; n; pÞ ¼ 1 � 1 � � � � � 1 � l

x

x!
� lim

n!1
ð1� np=nÞn

1

� �

The limit on the right can be obtained from the calculus theorem that says the limit of (1 − an/n)
n is

e–a if an ! a. Because np ! l,
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lim
n!1 bðx; n; pÞ ¼ lx

x!
� lim
n!1 1� np

n

� �n
¼ lxe�l

x!
¼ pðx; lÞ �

According to the proposition, in any binomial experiment for which the number of trials n is large
and the success probability p is small, b(x; n, p) � p(x; l) where l = np. It is interesting to note that
Siméon Poisson discovered this eponymous distribution by this approach in the 1830s.

Table 3.3 shows the Poisson distribution for l = 3 along with three binomial distributions with
np = 3, and Figure 3.9 (from R) plots the Poisson along with the first two binomial distributions. The
approximation is of limited use for n = 30, but of course the accuracy is better for n = 100 and much
better for n = 300.

Table 3.3 Comparing the Poisson and three binomial distributions

x n = 30, p = .1 n = 100, p = .03 n = 300, p = .01 Poisson, l = 3

0 0.042391 0.047553 0.049041 0.049787
1 0.141304 0.147070 0.148609 0.149361
2 0.227656 0.225153 0.224414 0.224042
3 0.236088 0.227474 0.225170 0.224042
4 0.177066 0.170606 0.168877 0.168031
5 0.102305 0.101308 0.100985 0.100819
6 0.047363 0.049610 0.050153 0.050409
7 0.018043 0.020604 0.021277 0.021604
8 0.005764 0.007408 0.007871 0.008102
9 0.001565 0.002342 0.002580 0.002701
10 0.000365 0.000659 0.000758 0.000810

ox

Bin(30, .1)
x Bin(100,.03)
| Poisson(3)

ox

ox
o
x

o
x

ox

ox
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Figure 3.9 Comparing a Poisson and two binomial distributions
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Example 3.43
Suppose you have a 4-megabit modem (4,000,000 bits/s) with bit error probability 10−8. Assume bit
errors occur independently, and assume your bit rate stays constant at 4 Mbps. What is the probability
of exactly 3 bit errors in the next minute? Of at most 3 bit errors in the next minute?

Define a random variable X = the number of bit errors in the next minute. From the description,
X satisfies the conditions of a binomial distribution; specifically, since a constant bit rate of 4 Mbps
equates to 240,000,000 bits transmitted per minute, X * Bin(240,000,000, 10−8). Hence, the
probability of exactly three bit errors in the next minute is

PðX ¼ 3Þ ¼ bð3; 240;000;000; 10�8Þ ¼ 24;000;000
3

� �
ð10�8Þ3ð1� 10�8Þ239;999;997

For a variety of reasons, some calculators will struggle with this computation. The expression for the
chance of at most 3 bit errors, P(X � 3), is even worse. (The inability to compute such expressions
in the nineteenth century, even with modest values of n and p, was Poisson’s motive to derive an
easily computed approximation.)

We may approximate these probabilities using the Poisson distribution. The parameter µ is given
by µ = np = 240,000,000(10−8) = 2.4, whence

PðX ¼ 3Þ � pð3; 2:4Þ ¼ e�2:42:43

3!
¼ :20901416

Similarly, the probability of at most 3 bit errors in the next minute is approximated by

PðX� 3Þ �
X3
x¼0

pðx; 2:4Þ ¼
X3
x¼0

e�2:42:4x

x!
¼ :77872291

Using software, the exact probabilities (i.e., using the binomial model) are .2090141655 and
.7787229106, respectively. The Poisson approximations agree to eight decimal places and are clearly
more computationally tractable. ■

Many software packages will compute both p(x; µ) and the corresponding cdf P(x; µ) for specified
values of x and µ upon request; the relevant R functions appear in Table 3.4. Appendix Table A.2
exhibits the cdf P(x; l) for l = .1, .2, . . ., 1, 2, . . ., 10, 15, and 20. For example, if l = 2, then
P(X � 3) = P(3; 2) = .857, whereas P(X = 3) = P(3; 2) − P(2; 2) = .180.

The Mean, Variance, and MGF of a Poisson Random Variable
Since b(x; n, p) ! p(x; l) as n ! 1, p ! 0, np ! l, one might guess that the mean and variance of
a binomial variable approach those of a Poisson variable. These limits are, respectively, np ! l and
np(1 − p) ! l.

Table 3.4 Poisson probability calculations in R

Function: pmf cdf
Notation: p(x; µ) P(x; µ)
R: dpois(x, µ) ppois(x, µ)
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PROPOSITION If X has a Poisson distribution with parameter l, then E(X) = V(X) = l.

These results can also be derived directly from the definitions of mean and variance (see Exercise 104
for the mean).

Example 3.44 (Example 3.42 continued) For the hospital ward with µ = 3, the expected number of
CDIs in a month is 3 (obviously), and the standard deviation of the number of monthly CDIs is
rX ¼ ffiffiffi

l
p ¼ ffiffiffi

3
p ¼ 1:73. So, observing 2–4 CDIs in a month would not be unusual (those values are

within one sd of the mean), but a month with 7 CDIs on the ward would be alarming (since that’s
more than two standard deviations above average). ■

The moment generating function of the Poisson distribution is easy to derive, and it gives a direct
route to the mean and variance (Exercise 106).

PROPOSITION The Poisson moment generating function is

MXðtÞ ¼ elðe
t�1Þ

Proof The mgf is by definition

MXðtÞ ¼ EðetXÞ ¼
X1
x¼0

etxe�l l
x

x!
¼ e�l

X1
x¼0

ðletÞx
x!

¼ e�lele
t ¼ elðe

t�1Þ

This uses the series expansion
P1

x ¼ 0 ux=x! ¼ eu: ■

The Poisson Process
A very important application of the Poisson distribution arises in connection with the occurrence of
events over time. As an example, suppose that starting from a time point that we label t = 0, we are
interested in counting the number of radioactive pulses recorded by a Geiger counter. We make the
following assumptions about the way in which pulses occur:

1. There exists a parameter k > 0 such that for any short time interval of length Dt, the probability
that exactly one pulse is received is k � Dt + o(Dt).4

2. The probability of more than one pulse being received during Dt is o(Dt). [This, along with
Assumption 1, implies that the probability of no pulses during Dt is 1 − k � Dt − o(Dt)].

3. The number of pulses received during the time interval Dt is independent of the number
received prior to this time interval.

Informally, Assumption 1 says that for a short interval of time, the probability of receiving a single
pulse is approximately proportional to the length of the time interval, where k is the constant of
proportionality. Now let Pk(t) denote the probability that exactly k pulses will be received by the
counter during any particular time interval of length t.

PROPOSITION PkðtÞ ¼ e�ktðktÞk=k!, so that the number of pulses during a time interval
of length t is a Poisson rv with parameter µ = kt. The expected number
of pulses during any such time interval is then kt, so the expected number
during a unit interval of time is k.

4A quantity is o(Dt) (read “little o of delta t”) if, as Dt approaches 0, so does o(Dt)/Dt. That is, o(Dt) is even more
negligible than Dt itself. The quantity (Dt)2 has this property, but sin(Dt) does not.
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Example 3.43 hints at why this might be reasonable: if we “digitize” time—that is, divide time into
discrete pieces, such as transmitted bits—and look at the number of the resulting time pieces that
include an event, a binomial model is often applicable. If the number of time pieces is very large and
the success probability close to zero, which would occur if we divided a fixed time frame into ever-
smaller pieces, then we may invoke the Poisson approximation from earlier in this section. See
Exercise 105 for a derivation.

Example 3.45 Suppose pulses arrive at the Geiger counter at an average rate of six per minute, so
that k = 6. To find the probability that in a 30-second interval at least one pulse is received, note that
the number of pulses in such an interval has a Poisson distribution with parameter kt = 6(.5) = 3
(.5 min is used because k is expressed as a rate per minute). Then with X = the number of pulses
received in the 30-second interval,

PðX� 1Þ ¼ 1� PðX ¼ 0Þ ¼ 1� e�330

0!
¼ :950

In a one-hour interval (t = 60), the expected number of pulses is µ = kt = 6(60) = 360, with a
standard deviation of r ¼ ffiffiffi

l
p ¼ ffiffiffiffiffiffiffiffi

360
p ¼ 18:97. According to this model, in a typical hour we will

observe 360 ± 19 pulses arrive at the Geiger counter. ■

If in Assumptions 1–3 we replace “pulse” by “event,” then the number of events occurring during
a fixed time interval of length t has a Poisson distribution with parameter kt. Any process that has this
distribution is called a Poisson process, and k is called the rate of the process. Other examples of
situations giving rise to a Poisson process include monitoring the status of a computer system over
time, with breakdowns constituting the events of interest; recording the number of accidents in an
industrial facility over time; logging hits to a website; and observing the number of cosmic-ray
showers from an observatory over time.

Instead of observing events over time, consider observing events of some type that occur in a two-
or three-dimensional region. For example, we might select on a map a certain region R of a forest, go
to that region, and count the number of trees. Each tree would represent an event occurring at a
particular point in space. Under assumptions similar to 1–3, it can be shown that the number of events
occurring in a region R has a Poisson distribution with parameter k � a(R), where a(R) is the area or
volume of R. The quantity k is the expected number of events per unit area or volume.

Exercises: Section 3.6 (89–107)

89. Let X, the number of flaws on the surface of
a randomly selected carpet of a particular
type, have a Poisson distribution with
parameter µ = 5. Use software or Appendix
Table A.2 to compute the following
probabilities:

a. P(X � 8)
b. P(X = 8)
c. P(9 � X)
d. P(5 � X � 8)
e. P(5 < X < 8)

90. Suppose the number X of tornadoes
observed in a particular region during a 1-
year period has a Poisson distribution with
µ = 8.

a. Compute P(X � 5).
b. Compute P(6 � X � 9).
c. Compute P(10 � X).
d. What is the probability that the

observed number of tornadoes exceeds
the expected number by more than 1
standard deviation?
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91. Suppose that the number of drivers who
travel between a particular origin and des-
tination during a designated time period has
a Poisson distribution with parameter
µ = 20 (suggested in the article “Dynamic
Ride Sharing: Theory and Practice,”
J. Transp. Engr. 1997: 308–312). What is
the probability that the number of drivers
will

a. Be at most 10?
b. Exceed 20?
c. Be between 10 and 20, inclusive? Be

strictly between 10 and 20?
d. Be within 2 standard deviations of the

mean value?

92. Consider writing onto a computer disk and
then sending it through a certifier that
counts the number of missing pulses. Sup-
pose this number X has a Poisson distri-
bution with parameter µ = .2. (Suggested in
“Average Sample Number for Semi-
Curtailed Sampling Using the Poisson
Distribution,” J. Qual. Tech. 1983: 126–
129.)

a. What is the probability that a disk has
exactly one missing pulse?

b. What is the probability that a disk has
at least two missing pulses?

c. If two disks are independently selected,
what is the probability that neither
contains a missing pulse?

93. The article “Metal Hips Fail Faster, Raise
Other Health Concerns” on the www.
arthritis.com website reported that the
five-year failure rate of metal-on-plastic
implants was 1.7% (rates for metal-on-
metal and ceramic implants were signifi-
cantly higher). Use both a binomial calcu-
lation and a Poisson approximation to
answer each of the following.

a. Among 200 randomly selected such
implants, what is the probability that
exactly three will fail?

b. Among 200 randomly selected such
implants, what is the probability that at
most three will fail?

94. Suppose that only .10% of all computers of
a certain type experience CPU failure dur-
ing the warranty period. Consider a sample
of 10,000 computers.

a. What are the expected value and stan-
dard deviation of the number of com-
puters in the sample that have the
defect?

b. What is the (approximate) probability
that more than 10 sampled computers
have the defect?

c. What is the (approximate) probability
that no sampled computers have the
defect?

95. If a publisher of nontechnical books takes
great pains to ensure that its books are free
of typographical errors, so that the proba-
bility of any given page containing at least
one such error is .005 and errors are inde-
pendent from page to page, what is the
probability that one of its 400-page novels
will contain exactly one page with errors?
At most three pages with errors?

96. In proof testing of circuit boards, the
probability that any particular diode will
fail is .01. Suppose a circuit board contains
200 diodes.

a. How many diodes would you expect to
fail, and what is the standard deviation
of the number that are expected to fail?

b. What is the (approximate) probability
that at least four diodes will fail on a
randomly selected board?

c. If five boards are shipped to a particular
customer, how likely is it that at least
four of them will work properly? (A
board works properly only if all its
diodes work.)

97. Suppose small aircraft arrive at an airport
according to a Poisson process with rate
k = 8 per hour, so that the number of arri-
vals during a time period of t hours is a
Poisson rv with parameter µ = 8t.

a. What is the probability that exactly 6
small aircraft arrive during a 1-h per-
iod? At least 6? At least 10?
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b. What are the expected value and stan-
dard deviation of the number of small
aircraft that arrive during a 90-min
period?

c. What is the probability that at least 20
small aircraft arrive during a 2.5-h
period? That at most 10 arrive during
this period?

98. The number of people arriving for treat-
ment at an emergency room can be mod-
eled by a Poisson process with a rate
parameter of 5 per hour.

a. What is the probability that exactly
four arrivals occur during a particular
hour?

b. What is the probability that at least four
people arrive during a particular hour?

c. How many people do you expect to
arrive during a 45-min period?

99. The number of requests for assistance
received by a towing service is a Poisson
process with rate k = 4 per hour.

a. Compute the probability that exactly
ten requests are received during a par-
ticular 2-h period.

b. If the operators of the towing service
take a 30-min break for lunch, what is
the probability that they do not miss
any calls for assistance?

c. How many calls would you expect
during their break?

100. The article “Expectation Analysis of the
Probability of Failure for Water Supply
Pipes” (J. Pipeline Syst. Engr. Pract. 2012:
36–46) recommends using a Poisson pro-
cess to model the number of failures in
commercial water pipes. The article also
gives estimates of the failure rate k, in units
of failures per 100 miles of pipe per day, for
four different types of pipe and for many
different years.

a. For PVC pipe in 2008, the authors
estimate a failure rate of 0.0081 failures

per 100 miles of pipe per day. Consider
a 100-mile-long segment of such pipe.
What is the expected number of failures
in one year (365 days)? Based on this
expectation, what is the probability of
at least one failure along such a pipe in
one year?

b. For cast iron pipe in 2005, the authors’
estimate is k = 0.0864 failures per 100
miles per day. Suppose a town had
1500 miles of cast iron pipe under-
ground in 2005. What is the probability
of at least one failure somewhere along
this pipe system on any given day?

101. The article “Reliability-Based Service-Life
Assessment of Aging Concrete Structures”
(J. Struct. Engr. 1993: 1600–1621) sug-
gests that a Poisson process can be used to
represent the occurrence of structural loads
over time. Suppose the mean time between
occurrences of loads (which can be shown
to be = 1/k) is .5 year.

a. How many loads can be expected to
occur during a 2-year period?

b. What is the probability that more than
five loads occur during a 2-year
period?

c. How long must a time period be so that
the probability of no loads occurring
during that period is at most .1?

102. Automobiles arrive at a vehicle equipment
inspection station according to a Poisson
process with rate k = 10 per hour. Suppose
that with probability .5 an arriving vehicle
will have no equipment violations.

a. What is the probability that exactly ten
arrive during the hour and all ten have
no violations?

b. For any fixed y � 10, what is the
probability that y arrive during the
hour, of which ten have no violations?

c. What is the probability that ten “no-
violation” cars arrive during the next
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hour? [Hint: Sum the probabilities in
part (b) from y = 10 to 1.]

103. Suppose that trees are distributed in a forest
according to a two-dimensional Poisson
process with parameter k, the expected
number of trees per acre, equal to 80.

a. What is the probability that in a certain
quarter-acre plot, there will be at most
16 trees?

b. If the forest covers 85,000 acres, what
is the expected number of trees in the
forest?

c. Suppose you select a point in the forest
and construct a circle of radius.1 mile.
Let X = the number of trees within that
circular region. What is the pmf of X?
[Hint: 1 sq mile = 640 acres.]

104. Let X have a Poisson distribution with
parameter µ. Show that E(X) = µ directly
from the definition of expected value.
[Hint: The first term in the sum equals 0,
and then x can be canceled. Now factor out
µ and show that what is left sums to 1.]

105. a. In a Poisson process, what has to hap-
pen in both the time interval (0, t) and
the interval (t, t + Dt) so that no events
occur in the entire interval (0, t + Dt)?
Use this and Assumptions 1–3 to write
a relationship between P0(t + Dt) and
P0(t).

b. Use the result of part (a) to write an
expression for the difference P0(t+ Dt)
− P0(t). Then divide by Dt and let
Dt ! 0 to obtain an equation
involving (d/dt)P0(t), the derivative of
P0(t) with respect to t.

c. Verify that P0 tð Þ ¼ e�kt satisfies the
equation of part (b).

d. It can be shown in a manner similar to
parts (a) and (b) that the Pk(t)’s must
satisfy the system of differential
equations

d

dt
PkðtÞ ¼ kPk�1ðtÞ � kPkðtÞ
k ¼ 1; 2; 3; . . .

Verify that PkðtÞ ¼ e�ktðktÞk=k! satisfies
the system. (This is actually the only
solution.)

106. a. Use derivatives of the moment gener-
ating function to obtain the mean and
variance for the Poisson distribution.

b. As discussed in Section 3.4, obtain the
Poisson mean and variance from
RX(t) = ln[MX(t)]. In terms of effort,
how does this method compare with
the one in part (a)?

107. Show that the binomial moment generating
function converges to the Poisson moment
generating function if we let n ! 1 and
p ! 0 in such a way that np approaches a
value µ > 0. [Hint: Use the calculus theo-
rem that was used in showing that the
binomial probabilities converge to the
Poisson probabilities.] There is in fact a
theorem saying that convergence of the mgf
implies convergence of the probability
distribution. In particular, convergence of
the binomial mgf to the Poisson mgf
implies b(x; n, p) ! p(x; µ).

3.7 Other Discrete Distributions

This section introduces discrete distributions that are closely related to the binomial distribution.
Whereas the binomial distribution is the approximate probability model for sampling without
replacement from a finite dichotomous (S/F) population, the hypergeometric distribution is the exact
probability model for the number of S’s in the sample. The binomial rv X is the number of S’s when
the number n of trials is fixed, whereas the negative binomial distribution arises from fixing the
number of S’s desired and letting the number of trials be random.
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The Hypergeometric Distribution
The assumptions leading to the hypergeometric distribution are as follows:

1. The population or set to be sampled consists of N individuals, objects, or elements (a finite
population).

2. Each individual can be characterized as a success (S) or a failure (F), and there are M successes
in the population.

3. A sample of n individuals is selected without replacement in such a way that each subset of size
n is equally likely to be chosen.

The random variable of interest is X = the number of S’s in the sample. The probability distri-
bution of X depends on the parameters n, M, and N, so we wish to obtain P(X = x) = h(x; n, M, N).

Example 3.46 During a particular period, a university’s information technology office received 20
service orders for problems with laptops, of which 8 were Macs and 12 were PCs. A sample of 5 of
these service orders is to be selected for inclusion in a customer satisfaction survey. Suppose that the
5 are selected in a completely random fashion, so that any particular subset of size 5 has the same
chance of being selected as does any other subset (think of putting the numbers 1, 2, …, 20 on 20
identical slips of paper, mixing up the slips, and choosing 5 of them). What then is the probability that
exactly 2 of the selected service orders were for PC laptops?

In this example, the population size is N = 20, the sample size is n = 5, and the number of S’s
(PC = S) and F’s (Mac = F) in the population are M = 12 and N − M = 8, respectively. Let X = the
number of PCs among the 5 sampled service orders. Because all outcomes (each consisting of 5
particular orders) are equally likely,

PðX ¼ 2Þ ¼ hð2; 5; 12; 20Þ ¼ number of outcomes having X ¼ 2
number of possible outcomes

The number of possible outcomes in the experiment is the number of ways of selecting 5 from the 20

objects without regard to order—that is, 20
5

� �
. To count the number of outcomes having X = 2, note

that there are 12
2

� �
ways of selecting 2 of the PC orders, and for each such way there are 8

3

� �
ways

of selecting the 3 Mac orders to fill out the sample. The Fundamental Counting Principle from

Section 2.3 then gives 12
2

� �
� 8

3

� �
as the number of outcomes with X = 2, so

hð2; 5; 12; 20Þ ¼
12
2

� �
8
3

� �
20
5

� � ¼ ð66Þð56Þ
15; 504

¼ 77
323

¼ :238 �

In general, if the sample size n is smaller than the number of successes in the population (M), then the
largest possible X value is n. However, ifM < n (e.g., a sample size of 25 and only 15 successes in the
population), then X can be at most M. Similarly, whenever the number of population failures
(N − M) exceeds the sample size, the smallest possible X value is 0 (since all sampled individuals
might then be failures). However, if N − M < n, the smallest possible X value is n − (N − M). Thus,
the possible values of X satisfy the restriction max(0, n − N + M) � x � min(n, M). An argument
parallel to that of the previous example gives the pmf of X.
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PROPOSITION If X is the number of S’s in a random sample of size n drawn
from a population consisting of M S’s and (N − M) F’s, then
the probability distribution of X, called the hypergeometric
distribution, is given by

PðX ¼ xÞ ¼ hðx; n;M;NÞ ¼
M
x

� �
N �M
n� x

� �
N
n

� � ð3:18Þ

for x an integer satisfying max(0, n − N + M) � x � min(n, M).5

In Example 3.46, n = 5,M = 12, and N = 20, so h(x; 5, 12, 20) for x = 0, 1, 2, 3, 4, 5 can be obtained
by substituting these numbers into Equation (3.19).

Example 3.47 Capture–recapture. Five individuals from an animal population thought to be near
extinction in a region have been caught, tagged, and released to mix into the population. After they
have had an opportunity to mix, a random sample of ten of these animals is selected. Let X = the
number of tagged animals in the second sample. If there are actually 25 animals of this type in the
region, what is the probability that (a) X = 2? (b) X � 2?

Application of the hypergeometric distribution here requires assuming that every subset of 10
animals has the same chance of being captured. This in turn implies that released animals are no
easier or harder to catch than are those not initially captured. Then the parameter values are n = 10,
M = 5 (5 tagged animals in the population), and N = 25, so

hðx; 10; 5; 25Þ ¼
5
x

� �
20

10� x

� �
25
10

� � x ¼ 0; 1; 2; 3; 4; 5

For part (a),

PðX ¼ 2Þ ¼ hð2; 10; 5; 25Þ ¼
5
2

� �
20
8

� �
25
10

� � ¼ :385

For part (b),

PðX� 2Þ ¼ PðX ¼ 0; 1; or 2Þ ¼
X2
x¼0

hðx; 10; 5; 25Þ

¼ :057þ :257þ :385 ¼ :699 �

R and other software packages will easily generate hypergeometric probabilities; see Table 3.5 at the
end of this section. Comprehensive tables of the hypergeometric distribution are available, but

5If we define a
b

� �
¼ 0 for a < b, then h(x; n, M, N) may be applied for all integers 0 � x � n.
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because the distribution has three parameters, these tables require much more space than tables for the
binomial or Poisson distributions.

As in the binomial case, there are simple expressions for E(X) and V(X) for hypergeometric rvs.

PROPOSITION The mean and variance of the hypergeometric rv X having pmf
h(x; n, M, N) are

EðXÞ ¼ n �M
N

VðXÞ ¼ N � n

N � 1

� �
� n �M

N
1�M

N

� �

The proof will be given in Section 6.3. We do not give the moment generating function for the
hypergeometric distribution, because the mgf is more trouble than it is worth here.

The ratio M/N is the proportion of S’s in the population. Replacing M/N by p in E(X) and
V(X) gives

EðXÞ ¼ np VðXÞ ¼ N � n

N � 1

� �
� npð1� pÞ ð3:19Þ

Expression (3.19) shows that the means of the binomial and hypergeometric rvs are equal, whereas
the variances of the two rvs differ by the factor (N − n)/(N − 1), often called the finite population
correction factor. This factor is < 1, so the hypergeometric variable has smaller variance than does
the binomial rv. The correction factor can be written (1 − n/N)/(1 − 1/N), which is approximately 1
when n is small relative to N.

Example 3.48 (Example 3.47 continued) In the animal-tagging example, n = 10, M = 5, and
N = 25, so p ¼ 5=25 ¼ :2 and

EðXÞ ¼ 10 :2ð Þ ¼ 2

VðXÞ ¼ 15
24

ð10Þð:2Þð:8Þ ¼ ð:625Þð1:6Þ ¼ 1

If the sampling were carried out with replacement, V(X) = 1.6.
Suppose the population size N is not actually known, so the value x is observed and we wish to

estimate N. It is reasonable to equate the observed sample proportion of S’s, x/n, with the population
proportion, M/N, giving the estimate

N̂ ¼ M � n
x

If M = 100, n = 40, and x = 16, then N̂ ¼ 250. ■

Our rule in Section 3.5 stated that if sampling is without replacement but n/N is at most .05, then the
binomial distribution can be used to compute approximate probabilities involving the number of S’s in
the sample. A more precise statement is as follows: Let the population size, N, and number of
population S’s,M, get large with the ratioM/N approaching p. Then h(x; n,M, N) approaches b(x; n, p);
so for n/N small, the two are approximately equal provided that p is not too near either 0 or 1. This is
the rationale for our rule.
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The Negative Binomial and Geometric Distributions
The negative binomial distribution is based on an experiment satisfying the following conditions:

1. The experiment consists of a sequence of independent trials.
2. Each trial can result in either a success (S) or a failure (F).
3. The probability of success is constant from trial to trial, so P(S on trial i) = p for i = 1, 2, 3 ….
4. The experiment continues (trials are performed) until a total of r successes have been observed,

where r is a specified positive integer.
The random variable of interest is X = the number of trials required to achieve the rth success, and

X is called a negative binomial random variable. In contrast to the binomial rv, the number of
successes is fixed and the number of trials is random. Possible values of X are r, r + 1, r + 2, …,
since it takes at least r trials to achieve r successes.

Let nb(x; r, p) denote the pmf of X. The event {X = x} is equivalent to {r − 1 S’s in the first
(x − 1) trials and an S on the xth trial}; e.g., if r = 5 and x = 15, then there must be four S’s in the first
14 trials and trial 15 must be an S. Since trials are independent,

nbðx; r; pÞ ¼ PðX ¼ xÞ ¼ Pðr � 1 S’s on the first x� 1 trialsÞ � PðSÞ ð3:20Þ

The first probability on the far right of Expression (3.20) is the binomial probability

x� 1
r � 1

� �
pr�1ð1� pÞðx�1Þ�ðr�1Þ where p ¼ PðSÞ

Simplifying and then multiplying by the extra factor of p at the end of (3.20) yields the pmf.

PROPOSITION The pmf of the negative binomial rv X with parameters r = desired
number of S’s and p = P(S) is

nbðx; r; pÞ ¼ x� 1
r � 1

� �
prð1� pÞx�r x ¼ r; rþ 1; rþ 2; . . .

Example 3.49 A pediatrician wishes to recruit 4 couples, each of whom is expecting their first child,
to participate in a new natural childbirth regimen. Let p = P (a randomly selected couple agrees to
participate). If p = .2, what is the probability that exactly 15 couples must be asked before 4 are found
who agree to participate? Substituting r = 4, p = .2, and x = 15 into nb(x; r, p) gives

nbð15; 4; 2Þ ¼ 15� 1
4� 1

� �
:24:811 ¼ :050

The probability that at most 15 couples need to be asked is

PðX� 15Þ ¼
X15
x¼4

nbðx; 4; :2Þ ¼
X15
x¼4

x� 1
3

� �
:24:8x�4 ¼ :352 �

In the special case r = 1, the pmf is
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nbðx; 1; pÞ ¼ ð1� pÞx�1p x ¼ 1; 2; . . . ð3:21Þ

In Example 3.10, we derived the pmf for the number of trials necessary to obtain the first S, and the
pmf there is identical to Expression (3.21). The variable X = number of trials required to achieve one
success is referred to as a geometric random variable, and the pmf in (3.21) is called the geometric
distribution. The name is appropriate because the probabilities form a geometric series: p, (1 − p)p,
(1 − p)2p, …. To see that the sum of the probabilities is 1, recall that the sum of a geometric series is
aþ arþ ar2 þ � � � ¼ a=ð1�rÞ if rj j\1, so for p > 0,

pþð1� pÞpþð1� pÞ2pþ � � � ¼ p

1� ð1� pÞ ¼ 1

In Example 3.19, the expected number of trials until the first S was shown to be 1/p. Intuitively, we
would then expect to need r � 1/p trials to achieve the rth S, and this is indeed E(X). There is also a
simple formula for V(X) and for the mgf.

PROPOSITION If X is a negative binomial rv with parameters r and p, then

EðXÞ ¼ r

p
VðXÞ ¼ rð1� pÞ

p2
MXðtÞ ¼ pet

1� ð1� pÞet
� �r

See Exercise 123 for a derivation of these formulas. The corresponding formulas for the geometric
distribution are obtained by substituting r = 1 above.

Example 3.50 (Example 3.49 continued) With p = .2, the expected number of couples the doctor
must speak to in order to find 4 that will agree to participate is r/p = 4/.2 = 20. This makes sense,
since with p = .2 = 1/5 it will take 5 attempts, on average, to achieve one success. The corresponding
variance is 4(1 − .2)/(.2)2 = 80, for a standard deviation of about 8.9. ■

Since they are based on similar experiments, some caution must be taken to distinguish the
binomial and negative binomial models, as seen in the next example.

Example 3.51 In many communication systems, a receiver will send a short signal back to the
transmitter to indicate whether a message has been received correctly or with errors. (These signals
are often called an acknowledgement and a nonacknowledgement, respectively. Bit sum checks and
other tools are used by the receiver to determine the absence or presence of errors.) Assume we are
using such a system in a noisy channel, so that each message is sent error-free with probability .86,
independent of all other messages. What is the probability that in 10 transmissions, exactly 8 will
succeed? What is the probability the system will require exactly 10 attempts to successfully transmit 8
messages?

While these two questions may sound similar, they require two different models for solution. To
answer the first question, let X = the number of successful transmissions among the 10. Then X *
Bin(10, .86), and the answer is

PðX ¼ 8Þ ¼ bð8; 10; :86Þ ¼ 10
8

� �
ð:86Þ8ð:14Þ2 ¼ :2639
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However, the event {exactly 10 attempts required to successfully transmit 8 messages} is more
restrictive: not only must we observe 8 S’s and 2 F’s in 10 trials, but the last trial must be a success.
Otherwise, it took fewer than 10 tries to send 8 messages successfully. Define a variable Y = the
number of transmissions (trials) required to successfully transmit 8 messages. Then Y is negative
binomial, with r = 8 and p = .86, and the answer to the second question is

PðY ¼ 10Þ ¼ nbð10; 8; :86Þ ¼ 10� 1
8� 1

� �
ð:86Þ8ð:14Þ2 ¼ :2111

Notice this is smaller than the answer to the first question, which makes sense because (as we noted)
the second question imposes an additional constraint. In fact, you can think of the “–1” terms in the
negative binomial pmf as accounting for this loss of flexibility in the placement of S’s and F’s.

Similarly, the expected number of successful transmissions in 10 attempts is E(X) = np = 10(.86)
= 8.6, while the expected number of attempts required to successfully transmit 8 messages is
E(Y) = r/p = 8/.86 = 9.3. In the first case, the number of trials (n = 10) is fixed, while in the second
case the desired number of successes (r = 8) is fixed. ■

By expanding the binomial coefficient in front of pr(1 − p)x–r and doing some cancelation, it can
be seen that nb(x; r, p) is well defined even when r is not an integer. This generalized negative
binomial distribution has been found to fit observed data quite well in a wide variety of applications.

Alternative Definition of the Negative Binomial Distribution
There is not universal agreement on the definition of a negative binomial random variable (or, by
extension, a geometric rv). It is not uncommon in the literature, as well as in some textbooks
(including previous editions of this book), to see the number of failures preceding the rth success
called “negative binomial”; in our notation, this simply equals X − r. Possible values of this “number
of failures” variable are 0, 1, 2,…. Similarly, the geometric distribution is sometimes defined in terms
of the number of failures preceding the first success in a sequence of independent and identical trials.
If one uses these alternative definitions, then the pmf, mean, and mgf formulas must be adjusted
accordingly (the variance, however, will stay the same). See Exercise 124.

The developers of R are among those who have adopted this alternative definition; as a result, we
must be careful with our inputs to the relevant software functions. The pmf syntax for the distri-
butions in this section are cataloged in Table 3.5; cdfs may be invoked by changing the initial letter d
to p in R. Notice the input argument x − r for the negative binomial functions: R requests the number
of failures, rather than the number of trials.

For example, suppose X has a hypergeometric distribution with n = 10, M = 5, N = 25 as in
Example 3.47. Using R, we may calculate P(X = 2) = dhyper(2,5,20,10) and P(X � 2) =
phyper(2,5,20,10). If X is the negative binomial variable of Example 3.49 with parameters r = 4
and p = .2, then the chance of requiring 15 trials to achieve 4 successes (i.e., 11 total failures) can be
found in in R with dnbinom(11,4,.2).

Table 3.5 R code for hypergeometric and negative binomial calculations

Hypergeometric Negative Binomial

Function: pmf pmf
Notation: h(x; n, M, N) nb(x; r, p)
R: dhyper(x, M, N–M, n) dnbinom(x–r, r, p)
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Exercises: Section 3.7 (108–124)

108. An electronics store has received a ship-
ment of 20 table radios that have connec-
tions for an iPod or iPhone. Twelve of these
have two slots (so they can accommodate
both devices), and the other eight have a
single slot. Suppose that six of the 20 radios
are randomly selected to be stored under a
shelf where radios are displayed, and the
remaining ones are placed in a storeroom.
Let X = the number among the radios
stored under the display shelf that have two
slots.

a. What kind of a distribution does X have
(name and values of all parameters)?

b. Compute P(X = 2), P(X � 2), and
P(X � 2).

c. Calculate the mean value and standard
deviation of X.

109. Each of 12 refrigerators has been returned
to a distributor because of an audible, high-
pitched, oscillating noise when the refrig-
erator is running. Suppose that 7 of these
refrigerators have a defective compressor
and the other 5 have less serious problems.
If the refrigerators are examined in random
order, let X be the number among the first 6
examined that have a defective compressor.
Compute the following:

a. P(X = 5)
b. P(X � 4)
c. The probability that X exceeds its mean

value by more than 1 standard
deviation.

d. Consider a large shipment of 400
refrigerators, of which 40 have defec-
tive compressors. If X is the number
among 15 randomly selected refriger-
ators that have defective compressors,
describe a less tedious way to calculate
(at least approximately) P(X � 5) than
to use the hypergeometric pmf.

110. An instructor who taught two sections of
statistics last term, the first with 20 students

and the second with 30, decided to assign a
term project. After all projects had been
turned in, the instructor randomly ordered
them before grading. Consider the first 15
graded projects.

a. What is the probability that exactly 10
of these are from the second section?

b. What is the probability that at least 10
of these are from the second section?

c. What is the probability that at least 10
of these are from the same section?

d. What are the mean value and standard
deviation of the number among these
15 that are from the second section?

e. What are the mean value and standard
deviation of the number of projects not
among these first 15 that are from the
second section?

111. A geologist has collected 10 specimens of
basaltic rock and 10 specimens of granite.
The geologist instructs a laboratory assis-
tant to randomly select 15 of the specimens
for analysis.

a. What is the pmf of the number of
granite specimens selected for
analysis?

b. What is the probability that all speci-
mens of one of the two types of rock
are selected for analysis?

c. What is the probability that the number
of granite specimens selected for anal-
ysis is within 1 standard deviation of its
mean value?

112. Suppose that 20% of all individuals have an
adverse reaction to a particular drug.
A medical researcher will administer the
drug to one individual after another until the
first adverse reaction occurs. Define an
appropriate random variable and use its dis-
tribution to answer the following questions.

a. What is the probability that when the
experiment terminates, four individuals
have not had adverse reactions?

b. What is the probability that the drug is
administered to exactlyfive individuals?
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c. What is the probability that at most
four individuals do not have an adverse
reaction?

d. How many individuals would you
expect to not have an adverse reaction,
and to how many individuals would
you expect the drug to be given?

e. What is the probability that the number
of individuals given the drug is within
1 standard deviation of what you
expect?

113. Twenty pairs of individuals playing in a
bridge tournament have been seeded 1, …,
20. In the first part of the tournament, the
20 are randomly divided into 10 east–west
pairs and 10 north–south pairs.

a. What is the probability that x of the top
10 pairs end up playing east–west?

b. What is the probability that all of the
top five pairs end up playing the same
direction?

c. If there are 2n pairs, what is the pmf of
X = the number among the top n pairs
who end up playing east–west? What
are E(X) and V(X)?

114. A second-stage smog alert has been called
in an area of Los Angeles County in which
there are 50 industrial firms. An inspector
will visit 10 randomly selected firms to
check for violations of regulations.

a. If 15 of the firms are actually violating
at least one regulation, what is the pmf
of the number of firms visited by the
inspector that are in violation of at least
one regulation?

b. If there are 500 firms in the area, of
which 150 are in violation, approxi-
mate the pmf of part (a) by a simpler
pmf.

c. For X = the number among the 10
visited that are in violation, compute
E(X) and V(X) both for the exact pmf
and the approximating pmf in part (b).

115. Suppose that p = P(female birth) = .5.
A couple wishes to have exactly two female

children in their family. They will have
children until this condition is fulfilled.

a. What is the probability that the family
has x male children?

b. What is the probability that the family
has four children?

c. What is the probability that the family
has at most four children?

d. How many children would you expect
this family to have? How many male
children would you expect this family
to have?

116. A family decides to have children until it
has three children of the same sex.
Assuming P(B) = P(G) = .5, what is the
pmf of X = the number of children in the
family?

117. Three brothers and their wives decide to
have children until each family has two
female children. Let X = the total number
of male children born to the brothers. What
is E(X), and how does it compare to the
expected number of male children born to
each brother?

118. Individual A has a red die and B has a green
die (both fair). If they each roll until they
obtain five “doubles” (11, …, 66), what is
the pmf of X = the total number of times a
die is rolled? What are E(X) and SD(X)?

119. A shipment of 20 integrated circuits
(ICs) arrives at an electronics manufactur-
ing site. The site manager will randomly
select 4 ICs and test them to see whether
they are faulty. Unknown to the site man-
ager, 5 of these 20 ICs are faulty.

a. Suppose the shipment will be accepted
if and only if none of the inspected
ICs is faulty. What is the probability
this shipment of 20 ICs will be
accepted?

b. Now suppose the shipment will be
accepted if and only if at most one of
the inspected ICs is faulty. What is the
probability this shipment of 20 ICs will
be accepted?
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c. How do your answers to (a) and
(b) change if the number of faculty ICs
in the shipment is 3 instead of 5? Re-
calculate (a) and (b) to verify your
claim.

120. A carnival game consists of spinning a
wheel with 10 slots, nine red and one blue.
If you land on the blue slot, you win a
prize. Suppose your significant other really
wants that prize, so you will play until you
win.

a. What is the probability you’ll win on
the first spin?

b. What is the probability you’ll require
exactly 5 spins? At least 5 spins? At
most five spins?

c. What is the expected number of spins
required for you to win the prize, and
what is the corresponding standard
deviation?

121. A kinesiology professor, requiring volun-
teers for her study, approaches students one
by one at a campus hub. She will continue
until she acquires 40 volunteers. Suppose
that 25% of students are willing to volun-
teer for the study, that the professor’s
selections are random, and that the student
population is large enough that individual
“trials” (asking a student to participate)
may be treated as independent.

a. What is the expected number of stu-
dents the kinesiology professor will
need to ask in order to get 40 volun-
teers? What is the standard deviation?

b. Determine the probability that the
number of students the kinesiology
professor will need to ask is within one
standard deviation of the mean.

122. Refer back to the communication system of
Example 3.51. Suppose a voice packet can
be transmitted a maximum of 10 times; i.e.,
if the 10th attempt fails, no 11th attempt is
made to re-transmit the voice packet. Let
X = the number of times a message is
transmitted. Assuming each transmission
succeeds with probability p, determine the
pmf of X. Then obtain an expression for the
expected number of times a packet is
transmitted.

123. Newton’s generalization of the binomial
theorem can be used to show that, for any
positive integer r,

ð1� uÞ�r ¼
X1
k¼0

rþ k � 1
r � 1

� �
uk

Use this to derive the negative binomial
mgf presented in this section. Then obtain
the mean and variance of a negative bino-
mial rv using this mgf.

124. If X is a negative binomial rv, then the rv
Y = X − r is the total number of failures
preceding the rth success. (As mentioned in
this section, Y is also sometimes called a
negative binomial rv.)

a. Use an argument similar to the one
presented in this section to derive the
pmf of Y.

b. Obtain the mgf of Y. [Hint: Use the
mgf of X and the fact that Y = X − r.]

c. Determine the mean and variance of
Y. Are these intuitively consistent with
the expressions for E(X) and V(X)?
Explain.

3.8 Simulation of Discrete Random Variables

Probability calculations for complex systems often depend on the behavior of various random
variables. When such calculations are difficult or impossible, simulation is the fallback strategy. In
this section, we give a general method for simulating an arbitrary discrete random variable and
consider implementations in existing software for simulating common discrete distributions.
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Example 3.52 Let X = the amount of memory (GB) in a purchased flash drive, and suppose X has
the following pmf:

x 16 32 64 128 256

p(x) .05 .10 .35 .40 .10

We wish to simulate X. Recall from Section 2.6 that we begin with a “standard uniform” random
number generator, i.e., a software function that generates evenly distributed numbers in the interval
[0, 1). Our goal is to convert these decimals into the values of X with the probabilities specified by its
pmf: 5% 16’s, 10% 32’s, 35% 64’s, and so on. To that end, we partition the interval [0, 1) according
to these percentages: [0, .05) has probability .05; [.05, .15) has probability .1, since the length of the
interval is .1; [.15, .50) has probability .50 − .15 = .35; etc. Proceed as follows: given a value u from
the RNG,

• If 0 � u < .05, assign the value 16 to the variable x.
• If .05 � u < .15, assign x = 32.
• If .15 � u < .50, assign x = 64.
• If .50 � u < .90, assign x = 128.
• If .90 � u < 1, assign x = 256.

Repeating this algorithm n times gives n simulated values of X. An R program that implements this
algorithm appears in Figure 3.10; it returns a vector, x, containing n = 10,000 simulated values of the
specified distribution.

Figure 3.11 (p. 175) shows a graph of the results of executing the above code, in the form of a
histogram: the height of each rectangle corresponds to the relative frequency of each x value in the
simulation (i.e., the number of times that value occurred, divided by 10,000). The exact pmf of X is
superimposed for comparison; as expected, simulation results are similar, but not identical, to the
theoretical distribution.

Later in this section, we will present a faster, built-in way to simulate discrete distributions in R.
The method introduced above will, however, prove useful in adapting to the case of continuous
random variables in Chapter 4.

x <- NULL 
for (i in 1:10000){ 

u=runif(1)
if (u<.05)

x[i]<-16
else if (u<.15)

x[i]<-32
else if (u<.50)

x[i]<-64
else if (u<.90)

x[i]<-128
else

x[i]<-256
}

Figure 3.10 R simulation code
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In the preceding example, the selected subintervals of [0, 1) were not our only choices—any five
intervals with lengths .05, .10, .35, .40, and .10 would produce the desired result. However, those
particular five subintervals have one desirable feature: the “cut points” for the intervals (i.e., 0, .05,
.15, .50, .90, and 1) are precisely the possible heights of the graph of the cdf, F(x). This permits a
geometric interpretation of the algorithm, which can be seen in Figure 3.12. The value u provided by
the RNG corresponds to a position on the vertical axis between 0 and 1; we then “invert” the cdf by
matching this u-value back to one of the gaps in the graph of F(x), denoted by dashed lines in
Figure 3.12. If the gap occurs at horizontal position x, then x is our simulated value of the rv X for that
run of the simulation. This is often referred to as the inverse cdf method for simulating discrete
random variables. The general method is spelled out in the accompanying box.
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Figure 3.11 Simulation and exact distribution for Example 3.52 ■
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Figure 3.12 The inverse cdf method for Example 3.52
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Inverse cdf Method for
Simulating Discrete
Random Variables

Let X be a discrete random variable taking on values x1 < x2 < … with
corresponding probabilities p1, p2, …. Define F0 = 0; F1 = F(x1) = p1;
F2 = F(x2) = p1 + p2; and, in general, Fk ¼ F xkð Þ ¼ p1 þ � � � þ pk ¼
Fk�1 þ pk. To simulate a value of X, proceed as follows:

1. Use an RNG to produce a value, u, from [0, 1).
2. If Fk–1 � u < Fk, then assign x = xk.

Example 3.53 (Example 3.52 continued): Suppose the prices for the flash drives, in increasing order
of memory size, are $10, $15, $20, $25, and $30. If the store sells 80 flash drives in a week, what’s
the probability they will make a gross profit of at least $1800?

Let Y = the amount spent on a flash drive, which has the following pmf:

The gross profit for 80 purchases is the sum of 80 values from this distribution. Let A = {gross
profit � $1800}. We can use simulation to estimate P(A), as follows:

0. Set a counter for the number of times A occurs to zero.
Repeat n times:
1. Simulate 80 values y1, …, y80 from the above pmf (using, e.g., an inverse cdf program similar

to the one displayed in Figure 3.10).
2. Compute the week’s gross profit, g ¼ y1 þ � � � þ y80.
3. If g � 1800, add 1 to the count of occurrences for A.

Once the n runs are complete, then P̂ðAÞ = (count of the occurrences of A)/n.
Figure 3.13 shows the resulting values of g for n = 10,000 simulations in R. In effect, our program

is simulating a random variable G ¼ Y1 þ � � � þ Y80 whose pmf is not known (in light of all the
possible G values, it would not be worthwhile to attempt to determine its pmf analytically). The
highlighted bars in Figure 3.13 correspond to g values of at least $1800; in our simulation, such
values occurred 1940 times. Thus, P̂ðAÞ ¼ 1940=10; 000 ¼ :194, with an estimated standard error offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:194ð1� :194Þ=10; 000p ¼ :004.
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Figure 3.13 Simulated distribution of weekly gross profit for Example 3.53 ■

y 10 15 20 25 30

p(y) .05 .10 .35 .40 .10
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Simulations Implemented in R
Earlier in this section, we presented the inverse cdf method as a general way to simulate discrete
distributions applicable in any software. In fact, one can simulate generic discrete rvs in R by clever
use of the built-in sample function. We saw this function in the context of probability simulation in
Chapter 2. The sample function is designed to generate a random sample from any selected set of
values (even including text values, if desired); the “clever” part is that it can accommodate a set of
weights. The following short example illustrates their use.

To simulate, say, 35 values from the pmf in Example 3.53, one can use the following code in
R: sample(c(10,15,20,25,30),35,TRUE,c(.05,.10,.35,.40,.10)) . The func-
tion takes four arguments: the list of y values, the desired number of simulated values (the “sample
size”), whether to sample with replacement (here, TRUE), and the list of probabilities in the same
order as the y values.

Thanks to the ubiquity of the binomial, Poisson, and other distributions in probability modeling,
many software packages have built-in tools for simulating values from these distributions. Table 3.6
summarizes the relevant functions in R; the input argument size refers to the desired number of
simulated values of the distribution.

A word of warning (really, a reminder) about the way software treats the negative binomial
distribution: R defines a negative binomial rv as the number of failures preceding the rth success,
which differs from our definition. Assuming you want to simulate the number of trials required to
achieve r successes, execute the code in the last line of Table 3.6 and then add r to each value.

Example 3.54 The number of customers shipping express mail packages at a certain store during
any particular hour of the day is a Poisson rv with mean 5. Each such customer has 1, 2, 3, or 4
packages with probabilities .4, .3, .2, and .1, respectively. Let’s carry out a simulation to estimate the
probability that at most 10 packages are shipped during any particular hour.

Define an event A = {at most 10 packages shipped in an hour}. Our simulation to estimate
P(A) proceeds as follows.

0. Set a counter for the number of times A occurs to zero.
Repeat n times:
1. Simulate the number of customers in an hour, X, which is Poisson with µ = 5.
2. For each of the X customers, simulate the number of packages shipped according to the pmf

above.
3. If the total number of packages shipped is at most 10, add 1 to the counter for A.
R code to implement this simulation appear in Figure 3.14.

Table 3.6 Functions to simulate major discrete distributions in R

Distribution R code

Binomial rbinom(size, n, p)
Poisson rpois(size, µ)
Hypergeometric rhyper(size, M, N–M, n)
Negative binomial rnbinom(size, r, p)
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In R, 10,000 simulations resulted in 10 or fewer packages 5752 times, for an estimated probability

of P̂ðAÞ ¼ :5752, with an estimated standard error of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:5752ð1� :5752Þ=10; 000p ¼ :0049. ■

Simulation Mean, Standard Deviation, and Precision
In Section 2.6 and in the preceding examples, we used simulation to estimate the probability of an
event. But consider the “gross profit” variable in Example 3.53: since we have 10,000 simulated
values of this variable, we should be able to estimate its mean and its standard deviation. In general,
suppose we have simulated n values x1, …, xn of a random variable X. Then, not surprisingly, we
estimate µX and rX with the sample mean �x and sample standard deviation s, respectively, of the
n simulated values.

In Section 2.6, we introduced the standard error of an estimated probability, which quantifies the
precision of a simulation result P̂ðAÞ as an estimate of a “true” probability P(A). By analogy, it is
possible to quantify the amount by which a sample mean, �x, will generally differ from the corre-
sponding expected value µ. For n simulated values of a random variable, with sample standard
deviation s, the (estimated) standard error of the mean is

Estimated standard error of the mean ¼ sffiffiffi
n

p ð3:22Þ

Expression (3.22) will be derived in Chapter 6. As with an estimated probability, (3.22) indicates that
the precision of �x increases (i.e., its standard error decreases) as n increases, but not very quickly. To
increase the precision of �x as an estimate of µ by a factor of 10 (one decimal place) requires increasing
the number of simulation runs, n, by a factor of 100. Unfortunately, there is no general formula for the
standard error of s as an estimate of r.

Example 3.55 (Example 3.54 continued) The 10,000 simulated values of the random variable G,
which we denote by g1, …, g10000, are displayed in the histogram in Figure 3.13. From these
simulated values, we can estimate both the expected value and standard deviation of G:

l̂G ¼ �g ¼ 1
10;000

X10;000
i¼1

gi ¼ 1759:62

r̂G ¼ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
10;000� 1

X10;000
i¼1

ðgi � �gÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9999

X10;000
i¼1

ðgi � 1759:62Þ2
vuut ¼ 43:50

We estimate that the average weekly gross profit from flash drive sales is $1759.62, with a standard
deviation of $43.50.

A <- 0
for (i in 1:10000){
 x<-rpois(1,5)

packages <- sample(c(1,2,3,4),x, 
TRUE,c(.4,.3,.2,.1))

if (sum(packages)<=10){
A<-A+1

 } 
}

Figure 3.14 R simulation code for Example 3.54
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Applying (3.22), the (estimated) standard error of �g is s=
ffiffiffi
n

p ¼ 43:50=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10;000

p ¼ 0:435. If 10,000
runs are used to simulate G, it’s estimated that the resulting sample mean will differ from E(G) by
roughly 0.435. (In contrast, the sample standard deviation, s, estimates that the gross profit for a single
week—i.e., a single observation g—typically differs from E(G) by about $43.50.)

In Chapter 5, we will see how the expected value and variance of random variables like G, that are
sums of a fixed number of other rvs, can be obtained analytically. ■

Example 3.56 The “help desk” at a university’s computer center receives both hardware and
software queries. Let X and Y be the number of hardware and software queries, respectively, in a
given day. Each can be modeled by a Poisson distribution with mean 20. Because computer center
employees need to be allocated efficiently, of interest is the difference between the sizes of the two
queues: D = |X − Y|. Let’s use simulation to estimate (1) the probability the queue sizes differ by
more than 5; (2) the expected difference; (3) the standard deviation of the difference.

Figure 3.15 shows R code to simulate this process. The code exploits the built-in Poisson simu-
lator, as well as the fact that 10,000 simulated values may be called simultaneously.

The line sum((D>5)) performs two operations: first, (D>5) determines if each simulated
d value exceeds 5, returning a vector of logical bits; second, sum() tallies the “success” bits (1’s or
TRUEs) and gives a count of the number of times the event {D > 5} occurred in the 10,000
simulations. The results from one run were

P̂ðD[ 5Þ ¼ 3843
10;000

¼ :3843 l̂D ¼ �d ¼ 5:0380 r̂D ¼ s ¼ 3:8436

A histogram of the simulated values of D appears in Figure 3.16.

X<-rpois(10000,20)
Y<-rpois(10000,20)
D<-abs(X-Y)
sum((D>5))
mean(D)
sd(D)

Figure 3.15 R simulation code for Example 3.56
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Figure 3.16 Simulation histogram of D in Example 3.56 ■

Section 3.8 Exercises (125–137)

125. Consider the pmf given in Exercise 29 for
the random variable Y = the number of
moving violations for which the a randomly
selected insured individual was cited during
the last 3 years. Write a program to simu-
late this random variable, then use your
simulation to estimate E(Y) and SD(Y).
How do these compare to the exact values
of E(Y) and SD(Y)?

126. Consider the pmf given in Exercise 31 for
the random variable X = capacity of a
purchased freezer. Write a program to
simulate this random variable, then use
your simulation to estimate both E(X) and
SD(X). How do these compare to the exact
values of E(X) and SD(X)?

127. Suppose person after person is tested for
the presence of a certain characteristic. The
probability that any individual tests positive
is .75. Let X = the number of people who
must be tested to obtain five consecutive
positive test results. Use simulation to
estimate P(X � 25).

128. The matching problem. Suppose that
N items labeled 1, 2, …, N are shuffled so

that they are in random order. Of interest is
how many of these will be in their “correct”
positions (e.g., item #5 situated at the 5th
position in the sequence, etc.) after shuf-
fling.

a. Write program that simulates a permu-
tation of the numbers 1 to N and then
records the value of the variable
X = number of items in the correct
position.

b. Set N = 5 in your program, and use at
least 10,000 simulations to estimate
E(X), the expected number of items in
the correct position.

c. Set N = 52 in your program (as if you
were shuffling a deck of cards), and use
at least 10,000 simulations to estimate
E(X). What do you discover? Is this
surprising?

129. Exercise 101 of Chapter 2 referred to a
multiple-choice exam in which 10 of the
questions have two options, 13 have three
options, 13 have four options, and the other
4 have five options. Let X = the number of
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questions a student gets right, assuming
s/he is completely guessing.

a. Write a program to simulate X, and use
your program to estimate the mean and
standard deviation of X.

b. Estimate the probability a student will
score at least one standard deviation
above the mean.

130. Example 3.53 of this section considered the
gross profit G resulting from selling flash
drives to 80 customers per week. Of course,
it isn’t realistic for the number of customers
to remain fixed from week to week. So,
instead, imagine the number of customers
buying flash drives in a week follows a
Poisson distribution with mean 80, and that
the amount paid by each customer follows
the distribution for Y provided in that
example. Write a program to simulate the
random variable G, and use your simulation
to estimate

a. The probability that weekly gross sales
are at least $1800.

b. The mean of G.
c. The standard deviation of G.

131. Exercise 19 investigated Benford’s law, a
discrete distribution with pmf given by
p(x) = log10((x + 1)/x) for x = 1, 2, …, 9.
Use the inverse cdf method to write a pro-
gram that simulates the Benford’s law dis-
tribution. Then use your program to
estimate the expected value and variance of
this distribution.

132. Recall that a geometric rv has pmf pðxÞ ¼
p 1�pð Þx�1 for x = 1, 2, 3, …. In Example
3.12, it was shown that the cdf of this dis-
tribution is F(x) = 1 − (1 − p)x for positive
integers x.

a. Write a program that implements the
inverse cdf method to simulate a geo-
metric distribution. Your program
should have as inputs the numerical
value of p and the desired sample size.

b. Use your program to simulate 10,000
values from a geometric rv X with

p = .85. From these values, estimate
each of the following: P(X � 2),
E(X), SD(X). How do these compare to
the corresponding exact values?

133. Tickets for a particular flight are $250
apiece. The plane seats 120 passengers, but
the airline will knowingly overbook (i.e.,
sell more than 120 tickets), because not
every paid passenger shows up. Let t de-
note the number of tickets the airline sells
for this flight, and assume the number of
passengers that actually show up for the
flight, X, follows a Bin(t, .85) distribution.
Let B = the number of paid passengers who
show up at the airport but are denied a seat
on the plane, so B = X − 120 if X > 120
and B = 0 otherwise. If the airline must
compensate these passengers with $500
apiece, then the profit the airline makes on
this flight is 250t − 500B. (Notice that t is
fixed, but B is random.)

a. Write a program to simulate this sce-
nario. Specifically, your program
should take in t as an input and return
many values of the profit variable
250t − 500B, where B is described
above.

b. The airline wishes to determine the
optimal value of t, i.e., the number of
tickets to sell that will maximize their
expected profit. Run your program for
t = 140, 141, …, 150, and record the
average profit from many runs under
each of these settings. What value of
t appears to return the largest value?
[Note: If a clear winner does not
emerge, you might need to increase the
number of runs for each t value!]

134. Imagine the following simple game: flip a
fair coin repeatedly, winning $1 for every
head and losing $1 for every tail. Your net
winnings will potentially oscillate between
positive and negative numbers as play
continues. How many times do you think
net winnings will change signs in, say,
1000 coin flips? 5000 flips?
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a. Let X = the number of sign changes in
1000 coin flips. Write a program to
simulate X, and use your program to
estimate the probability of at least 10
sign changes.

b. Use your program to estimate both
E(X) and SD(X). Does your estimate
for E(X) match your intuition for the
number of sign changes?

c. Repeat parts (a)–(b) with 5000 flips.

135. Exercise 40 describes the game Plinko from
The Price is Right. Each contestant drops
between one and 5 chips down the Plinko
board, depending on how well s/he prices
several small items. Suppose the random
variable C = number of chips earned by a
contestant has the following distribution:

c 1 2 3 4 5

p(c) .03 .15 .35 .34 .13

The winnings from each chip follow the
distribution presented in Exercise 40. Write
a program to simulate Plinko; you will need
to consider both the number of chips a
contestant earns and how much money is
won on each of those chips. Use your
simulation to estimate the answers to the
following questions:

a. What is the probability a contestant
wins more than $11,000?

b. What is a contestant’s expected
winnings?

c. What is the corresponding standard
deviation?

d. In fact, a player gets one Plinko chip
for free and can earn the other four by
guessing the prices of small items
(waffle irons, alarm clocks, etc.).
Assume the player has a 50–50 chance
of getting each price correct, so
we may write C = 1 + R, where R *
Bin(4, .5). Use this revised model for
C to estimate the answers to (a)–(c).

136. Recall the Coupon Collector’s Problem
described in Exercise 106 of Chapter 2. Let
X = the number of cereal boxes purchased
in order to obtain all 10 coupons.

a. Use a simulation program to estimate
E(X) and SD(X). Also compute the
estimated standard error of your answer.

b. Repeat (a) with 20 coupons required
instead of 10. Does it appear to take
roughly twice as long to collect 20
coupons as 10? More than twice as
long? Less?

137. A small high school holds its graduation
ceremony in the gym. Because of seating
constraints, students are limited to a maxi-
mum of four tickets to graduation for family
and friends. Suppose 30% of students want
four tickets, 25% want three, 25% want
two, 15% want one, and 5% want none.

a. Write a simulation for 150 graduates
requesting tickets, where students’
requests follow the distribution descri-
bed above. In particular, keep track of
the variable T = the total number of
tickets requested by these 150 students.

b. The gym can seat a maximum of 410
guests. Based on your simulation,
estimate the probability that all stu-
dents’ requests can be accommodated.

Supplementary Exercises: (138–169)

138. Consider a deck consisting of seven cards,
marked 1, 2, …, 7. Three of these cards are
selected at random. Define a rv W by
W = the sum of the resulting numbers, and
compute the pmf of W. Then compute l
and r2. [Hint: Consider outcomes as unor-
dered, so that (1, 3, 7) and (3, 1, 7) are not
different outcomes. Then there are 35 out-
comes, and they can be listed.] (This type
of rv actually arises in connection with
Wilcoxon’s rank-sum test, in which there is
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an x sample and a y sample and W is the
sum of the ranks of the x’s in the combined
sample.)

139. After shuffling a deck of 52 cards, a dealer
deals out 5. Let X = the number of suits
represented in the five-card hand.

a. Show that the pmf of X is

x 1 2 3 4

p(x) .002 .146 .588 .264

[Hint: p(1) = 4P(all spades), p(2) =
6P(only spades and hearts with at least
one of each), and p(4) = 4P(2 spades \
one of each other suit).]

b. Compute l, r2, and r.

140. Let X be a rv with mean µ. Show that
E(X2) � µ2, and that E(X2) > µ2 unless
X is a constant. [Hint: Consider variance.]

141. Of all customers purchasing automatic
garage-door openers, 75% purchase a
chain-driven model. Let X = the number
among the next 15 purchasers who select
the chain-driven model.

a. What is the pmf of X?
b. Compute P(X > 10).
c. Compute P(6 � X � 10).
d. Compute l and r2.
e. If the store currently has in stock 10

chain-driven models and 8 shaft-driven
models, what is the probability that the
requests of these 15 customers can all be
met from existing stock?

142. A friend recently planned a camping
trip. He had two flashlights, one that
required a single 6-V battery and another
that used two size-D batteries. He had pre-
viously packed two 6-V and four size-D
batteries in his camper. Suppose the prob-
ability that any particular battery works is
p and that batteries work or fail indepen-
dently of one another. Our friend wants to
take just one flashlight. For what values of
p should he take the 6-V flashlight?

143. Binary data is transmitted over a noisy
communication channel. The probability

that a received binary digit is in error due to
channel noise is 0.05. Assume that such
errors occur independently within the bit
stream.

a. What is the probability that the 3rd error
occurs on the 50th transmitted bit?

b. On average, how many bits will be
transmitted correctly before the first
error?

c. Consider a 32-bit “word.” What is the
probability of exactly 2 errors in this
word?

d. Consider the next 10,000 bits. What
approximating model could we use for
X = the number of errors in these 10,000
bits? Give the name of the model and the
value(s) of the parameter(s).

144. A manufacturer of flashlight batteries
wishes to control the quality of its product
by rejecting any lot in which the propor-
tion of batteries having unacceptable volt-
age appears to be too high. To this end,
out of each large lot (10,000 batteries), 25
will be selected and tested. If at least 5 of
these generate an unacceptable voltage, the
entire lot will be rejected. What is the
probability that a lot will be rejected if

a. Five percent of the batteries in the lot
have unacceptable voltages?

b. Ten percent of the batteries in the lot
have unacceptable voltages?

c. Twenty percent of the batteries in the lot
have unacceptable voltages?

d. What would happen to the probabilities
in parts (a)–(c) if the critical rejection
number were increased from 5 to 6?

145. Of the people passing through an airport
metal detector, .5% activate it; let X = the
number among a randomly selected group
of 500 who activate the detector.

a. What is the (approximate) pmf of X?
b. Compute P(X = 5).
c. Compute P(5 � X).
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146. An educational consulting firm is trying to
decide whether high school students who
have never before used a hand-held calcu-
lator can solve a certain type of problem
more easily with a calculator that uses
reverse Polish logic or one that does not use
this logic. A sample of 25 students is
selected and allowed to practice on both
calculators. Then each student is asked to
work one problem on the reverse Polish
calculator and a similar problem on the
other. Let p = P(S), where S indicates that a
student worked the problem more quickly
using reverse Polish logic than without, and
let X = number of S’s.

a. If p = .5, what is P(7 � X � 18)?
b. If p = .8, what is P(7 � X � 18)?
c. If the claim that p = .5 is to be rejected

when either X � 7 or X � 18, what is
the probability of rejecting the claim
when it is actually correct?

d. If the decision to reject the claim p = .5
is made as in part (c), what is the
probability that the claim is not rejected
when p = .6? When p = .8?

e. What decision rule would you choose
for rejecting the claim p = .5 if you
wanted the probability in part (c) to be
at most .01?

147. Consider a disease whose presence can be
identified by carrying out a blood test. Let
p denote the probability that a randomly
selected individual has the disease. Suppose
n individuals are independently selected for
testing. One way to proceed is to carry out a
separate test on each of the n blood sam-
ples. A potentially more economical
approach, group testing, was introduced
during World War II to identify syphilitic
men among army inductees. First, take a
part of each blood sample, combine these
specimens, and carry out a single test. If no
one has the disease, the result will be neg-
ative, and only the one test is required. If at
least one individual is diseased, the test on
the combined sample will yield a positive
result, in which case the n individual tests

are then carried out. If p = .1 and n = 3,
what is the expected number of tests using
this procedure? What is the expected
number when n = 5? [The article “Random
Multiple-Access Communication and
Group Testing” (IEEE Trans. Commun.
1984: 769–774) applied these ideas to a
communication system in which the
dichotomy was active/idle user rather than
diseased/nondiseased.]

148. Let p1 denote the probability that any par-
ticular code symbol is erroneously trans-
mitted through a communication system.
Assume that on different symbols, errors
occur independently of one another. Sup-
pose also that with probability p2 an erro-
neous symbol is corrected upon receipt. Let
X denote the number of correct symbols in
a message block consisting of n symbols
(after the correction process has ended).
What is the probability distribution of X?

149. The purchaser of a power-generating unit
requires c consecutive successful start-ups
before the unit will be accepted. Assume that
the outcomes of individual start-ups are
independent of one another. Let p denote the
probability that any particular start-up is
successful. The randomvariable of interest is
X = the number of start-ups that must be
made prior to acceptance. Give the pmf
of X for the case c = 2. If p = .9, what is
P(X � 8)? [Hint: For x � 5, express
p(x) “recursively” in terms of the pmf
evaluated at the smaller values x − 3, x − 4,
…, 2.] (This problem was suggested by
the article “Evaluation of a Start-Up
Demonstration Test,” J. Qual. Tech. 1983:
103–106.)

150. A plan for an executive travelers’ club has
been developed by an airline on the premise
that 10% of its current customers would
qualify for membership.

a. Assuming the validity of this premise,
among 25 randomly selected current
customers, what is the probability that
between 2 and 6 (inclusive) qualify for
membership?
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b. Again assuming the validity of the
premise, what are the expected number
of customers who qualify and the stan-
dard deviation of the number who
qualify in a random sample of 100
current customers?

c. Let X denote the number in a random
sample of 25 current customers who
qualify for membership. Consider
rejecting the company’s premise in favor
of the claim that p > .10 if x � 7. What
is the probability that the company’s
premise is rejected when it is actually
valid?

d. Refer to the decision rule introduced in
part (c). What is the probability that the
company’s premise is not rejected even
though p = .20 (i.e., 20% qualify)?

151. Forty percent of seeds from maize (modern-
day corn) ears carry single spikelets, and
the other 60% carry paired spikelets. A seed
with single spikelets will produce an ear
with single spikelets 29% of the time,
whereas a seed with paired spikelets will
produce an ear with single spikelets 26% of
the time. Consider randomly selecting ten
seeds.

a. What is the probability that exactly five
of these seeds carry a single spikelet and
produce an ear with a single spikelet?

b. What is the probability that exactly five
of the ears produced by these seeds have
single spikelets? What is the probability
that at most five ears have single
spikelets?

152. A trial has just resulted in a hung jury
because eight members of the jury were in
favor of a guilty verdict and the other four
were for acquittal. If the jurors leave the
jury room in random order and each of the
first four leaving the room is accosted by a
reporter in quest of an interview, what is the
pmf of X = the number of jurors favoring
acquittal among those interviewed? How
many of those favoring acquittal do you
expect to be interviewed?

153. A reservation service employs five infor-
mation operators who receive requests for
information independently of one another,
each according to a Poisson process with
rate k = 2/min.

a. What is the probability that during a
given 1-min period, the first operator
receives no requests?

b. What is the probability that during a
given 1-min period, exactly four of the
five operators receive no requests?

c. Write an expression for the probability
that during a given 1-min period, all of
the operators receive exactly the same
number of requests.

154. Grasshoppers are distributed at random in a
large field according to a Poisson distribu-
tion with parameter k = 2 per square yard.
How large should the radius R of a circular
sampling region be taken so that the prob-
ability of finding at least one in the region
equals .99?

155. A newsstand has ordered five copies of a
certain issue of a photography magazine.
Let X = the number of individuals who
come in to purchase this magazine. If X has
a Poisson distribution with parameter
µ = 4, what is the expected number of
copies that are sold?

156. Individuals A and B begin to play a
sequence of chess games. Let S = {A wins
a game}, and suppose that outcomes of
successive games are independent with
P(S) = p and P(F) = 1 − p (they never
draw). They will play until one of them
wins ten games. Let X = the number of
games played (with possible values 10, 11,
…, 19).

a. For x = 10, 11, …, 19, obtain an
expression for p(x) = P(X = x).

b. If a draw is possible, with p = P(S),
q = P(F), 1 − p − q = P(draw), what
are the possible values of X? What is
P(20 � X)? [Hint: P(20 � X) =
1 − P(X < 20).]
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157. A test for the presence of a disease has
probability .20 of giving a false-positive
reading (indicating that an individual has
the disease when this is not the case) and
probability .10 of giving a false-negative
result. Suppose that ten individuals are
tested, five of whom have the disease and
five of whom do not. Let X = the number
of positive readings that result.

a. Does X have a binomial distribution?
Explain your reasoning.

b. What is the probability that exactly
three of the ten test results are positive?

158. The generalized negative binomial pmf, in
which r is not necessarily an integer, is

nb x; r; pð Þ ¼ kðr; xÞ 
 prð1� pÞx
x ¼ 0; 1; 2; . . .

where

kðr; xÞ ¼
ðxþ r � 1Þðxþ r � 2Þ � � � ðxþ r � xÞ

x!
x ¼ 1; 2; . . .

1 x ¼ 0

(

Let X, the number of plants of a certain
species found in a particular region, have
this distribution with p = .3 and r = 2.5.
What is P(X = 4)? What is the probability
that at least one plant is found?

159. A small publisher employs two typesetters.
The number of errors (in one book) made
by the first typesetter has a Poisson distri-
bution mean µ1, the number of errors made
by the second typesetter has a Poisson
distribution with mean µ2, and each type-
setter works on the same number of books.
Then if one such book is randomly selec-
ted, the function

pðx; l1; l2Þ ¼ :5e�l1
lx1
x!

þ :5e�l2
lx2
x!

x ¼ 0; 1; 2; . . .

gives the pmf of X = the number of errors
in the selected book.

a. Verify that p(x; µ1, µ2) is a legitimate
pmf (� 0 and sums to 1).

b. What is the expected number of errors
in the selected book?

c. What is the standard deviation of the
number of errors in the selected book?

d. How does the pmf change if the first
typesetter works on 60% of all such
books and the second typesetter works
on the other 40%?

160. The mode of a discrete random variable
X with pmf p(x) is that value x* for which
p(x) is largest (the most probable x value).

a. Let X * Bin(n, p). By considering the
ratio b(x + 1; n, p)/b(x; n, p), show that
b(x; n, p) increases with x as long as
x < np − (1 − p). Conclude that the
mode x* is the integer satisfying (n + 1)
p − 1 � x* � (n + 1)p.

b. Show that if X has a Poisson distribution
with parameter µ, the mode is the lar-
gest integer less than µ. If µ is an inte-
ger, show that both µ − 1 and µ are
modes.

161. For a particular insurance policy the number
of claims by a policy holder in 5 years is
Poisson distributed. If the filing of one claim
is four times as likely as the filing of
two claims, find the expected number of
claims.

162. If X is a hypergeometric rv, show directly
from the definition that E(X) = nM/N (con-
sider only the case n < M). [Hint: Factor
nM/N out of the sum for E(X), and show
that the terms inside the sum are of the
form h(y; n − 1, M − 1, N − 1), where y =
x − 1.]

163. Use the fact that

X
all x

ðx� lÞ2pðxÞ�
X

x:jx�lj � kr

ðx� lÞ2pðxÞ

to prove Chebyshev’s inequality, given in
Exercise 45 of this chapter.
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164. The simple Poisson process of Section 3.6
is characterized by a constant rate k at
which events occur per unit time. A gener-
alization is to suppose that the probability
of exactly one event occurring in the
interval (t, t + Dt) is k(t) � Dt + o(Dt) for
some function k(t). It can then be shown
that the number of events occurring during
an interval [t1, t2] has a Poisson distribution
with parameter

l ¼
Zt2
t1

kðtÞdt

The occurrence of events over time in this
situation is called a nonhomogeneous
Poisson process. The article “Inference
Based on Retrospective Ascertainment,”
J. Amer. Statist. Assoc. 1989: 360–372,
considers the intensity function

kðtÞ ¼ eaþ bt

as appropriate for events involving trans-
mission of HIV via blood transfusions.
Suppose that a = 2 and b = .6 (close to
values suggested in the paper), with time in
years.

a. What is the expected number of events
in the interval [0, 4]? In [2, 6]?

b. What is the probability that at most 15
events occur in the interval [0, .9907]?

165. Suppose a store sells two different coffee
makers of a particular brand, a basic model
selling for $30 and a fancy one selling for
$50. Let X denote the number of people
among the next 25 purchasing this brand
who choose the more expensive model.
Then h(X) = revenue = 50X + 30(25 − X)
= 20X + 750, a linear function. If the
choices are independent and have the same
probability, then how is X distributed?
Find the mean and standard deviation of
h(X). Explain why the choices might not
be independent with the same probability.

166. Let X be a discrete rv with possible values
0, 1, 2,. .. or some subset of these. The
function wðsÞ ¼ EðsXÞ ¼P1

x¼0 s
x � pðxÞ is

called the probability generating function
(pgf) of X.

a. Suppose X is the number of children
born to a family, and p(0) = .2, p(1)
= .5, and p(2) = .3. Determine the pgf
of X.

b. Determine the pgf when X has a Poisson
distribution with parameter µ.

c. Show that w(1) = 1.
d. Show that w0ð0Þ ¼ pð1Þ. (You’ll need to

assume that the derivative can be
brought inside the summation, which is
justified.) What results from taking the
second derivative with respect to s and
evaluating at s = 0? The third deriva-
tive? Explain how successive differen-
tiation of w(s) and evaluation at s = 0
“generates the probabilities in the dis-
tribution.” Use this to recapture the
probabilities of (a) from the pgf. [Note:
This shows that the pgf contains all the
information about the distribution—
knowing w(s) is equivalent to knowing
p(x).]

167. Three couples and two single individuals
have been invited to a dinner party. Assume
independence of arrivals to the party, and
suppose that the probability of any partic-
ular individual or any particular couple
arriving late is .4 (the two members of a
couple arrive together). Let X = the number
of people who show up late for the party.
Determine the pmf of X.

168. Consider a sequence of identical and inde-
pendent trials, each of which will be a success
S or failure F. Let p = P(S) and q = P(F).

a. Define a random variableX as the number
of trials necessary to obtain the first S, a
geometric random variable. Here is an
alternative approach to determining E(X).
Just as P(B) = P(B|A)P(A) +P(B|A′)P(A′),
it can be shown that
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E Xð Þ ¼ E XjAð ÞP Að ÞþE XjA0ð ÞP A0ð Þ

where EðXjAÞ denotes the expected
value of X given that the event A has
occurred. Now let A = {S on 1st trial}.
Show again that E(X) = 1/p. [Hint:
Denote E(X) by l. Then given that
the first trial is a failure, one trial has
been performed and, starting from the
second trial, we are still looking for the
first S. This implies that EðXjA0Þ ¼
EðXjFÞ ¼ 1þ l.]

b. The expected value property in (a) can
be extended to any partition A1, A2, …,
Ak of the sample space:

EðXÞ ¼EðXjA1Þ � PðA1Þþ
EðXjA2Þ � PðA2Þþ � � � þ
EðXjAkÞ � PðAkÞ

Now let Y = the number of trials neces-
sary to obtain two consecutive S’s. It is
not possible to determine E(Y) directly
from the definition of expected value,
because there is no formula for the pmf of
Y; the complication is the word consec-
utive. Use the weighted average formula
to determine E(Y). [Hint: Consider the
partition with k = 3 and A1 = {F},
A2 = {SS}, A3 = {SF}.]

169. For a discrete rv X taking values in
{0, 1, 2, 3, …}, we shall derive the fol-
lowing alternative formula for the mean:

lX ¼
X1
x¼0

½1� FðxÞ�

a. Suppose for now the range of X is
{0, 1, …, N} for some positive integer
N. By re-grouping terms, show that

PN
x¼0

½x � pðxÞ� ¼ pð1Þþ pð2Þþ pð3Þþ � � � þ pðNÞ
þ pð2Þþ pð3Þþ � � � þ pðNÞ

þ pð3Þþ � � � þ pðNÞ
..
.

þ pðNÞ
b. Re-write each row in the above expression

in terms of the cdf of X, and use this to
establish that

XN
x¼0

½x � pðxÞ� ¼
XN�1

x¼0

½1� FðxÞ�

c. Let N ! 1 in part (b) to establish the
desired result, and explain why the
resulting formula works even if the max-
imum value of X is finite. [Hint: If the
largest possible value of X is N, what does
1 − F(x) equal for x � N?] (This
derivation also implies that a discrete rv
X has a finite mean iff the seriesP ½1� FðxÞ� converges.)

d. Let X have a geometric distribution with
parameter p. Use the cdf of X and the
alternative mean formula just derived to
determine µX.
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4Continuous Random Variables
and Probability Distributions

Introduction
As mentioned at the beginning of Chapter 3, the two important types of random variables are discrete
and continuous. In this chapter, we study the second general type of random variable that arises in
many applied problems. Sections 4.1 and 4.2 present the basic definitions and properties of continuous
random variables, their probability distributions, and their various expected values. In Section 4.3, we
study in detail the normal distribution, arguably the most important and useful in probability and
statistics. Sections 4.4 and 4.5 discuss some other continuous distributions that are often used in
applied work. In Section 4.6, we introduce a method for assessing whether given sample data is
consistent with a specified distribution. Section 4.7 presents methods for obtaining the distribution of a
rv Y from the distribution of X when the two are related by some equation Y = g(X). The last section is
dedicated to the simulation of continuous rvs.

4.1 Probability Density Functions and Cumulative Distribution Functions

A discrete random variable (rv) is one whose possible values either constitute a finite set or else can
be listed in an infinite sequence (a list in which there is a first element, a second element, etc.).
A random variable whose set of possible values is an entire interval of numbers is not discrete.

Recall from Chapter 3 that a random variable X is continuous if (1) possible values comprise either
a single interval on the number line (for some A < B, any number x between A and B is a possible
value) or a union of disjoint intervals, and (2) P(X = c) = 0 for any number c that is a possible value
of X.

Example 4.1 If in the study of the ecology of a lake, we make depth measurements at randomly
chosen locations, then X = the depth at such a location is a continuous rv. Here A is the minimum
depth in the region being sampled, and B is the maximum depth. ■

Example 4.2 If a chemical compound is randomly selected and its pH X is determined, then X is a
continuous rv because any pH value between 0 and 14 is possible. If more is known about the
compound selected for analysis, then the set of possible values might be a subinterval of [0, 14], such
as 5.5 � x � 6.5, but X would still be continuous. ■
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Example 4.3 Let X represent the amount of time a randomly selected customer spends waiting for a
haircut before his/her haircut commences. Your first thought might be that X is a continuous random
variable, since a measurement is required to determine its value. However, there are customers lucky
enough to have no wait whatsoever before climbing into the barber’s chair. So it must be the case that
P(X = 0) > 0. Conditional on no chairs being empty, though, the waiting time will be continuous
since X could then assume any value between some minimum possible time A and a maximum
possible time B. This random variable is neither purely discrete nor purely continuous but instead is a
mixture of the two types. ■

One might argue that although in principle variables such as height, weight, and temperature are
continuous, in practice the limitations of our measuring instruments restrict us to a discrete (though
sometimes very finely subdivided) world. However, continuous models often approximate real-world
situations very well, and continuous mathematics (the calculus) is frequently easier to work with than
the mathematics of discrete variables and distributions.

Probability Distributions for Continuous Variables
Suppose the variable X of interest is the depth of a lake at a randomly chosen point on the surface. Let
M = the maximum depth (in meters), so that any number in the interval [0, M] is a possible value of
X. If we “discretize” X by measuring depth to the nearest meter, then possible values are nonnegative
integers less than or equal to M. The resulting discrete distribution of depth can be pictured using a
probability histogram. If we draw the histogram so that the area of the rectangle above any possible
integer k is the proportion of the lake whose depth is (to the nearest meter) k, then the total area of all
rectangles is 1. A possible histogram appears in Figure 4.1a.

If depth is measured much more accurately and the same measurement axis as in Figure 4.1a is
used, each rectangle in the resulting probability histogram is much narrower, although the total area of
all rectangles is still 1. A possible histogram is pictured in Figure 4.1b; it has a much smoother
appearance than that of Figure 4.1a. If we continue in this way to measure depth more and more
finely, the resulting sequence of histograms approaches a smooth curve, as pictured in Figure 4.1c.
Because for each histogram the total area of all rectangles equals 1, the total area under the smooth
curve is also 1. The probability that the depth at a randomly chosen point is between a and b is just the
area under the smooth curve between a and b. It is exactly a smooth curve of this type that specifies a
continuous probability distribution.

a b c

0 M 0 M 0 M

Figure 4.1 (a) Probability histogram of depth measured to the nearest meter; (b) probability histogram
of depth measured to the nearest centimeter; (c) a limit of a sequence of discrete histograms
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DEFINITION Let X be a continuous rv. Then a probability distribution or probability
density function (pdf) of X is a function f(x) such that for any two numbers
a and b with a � b,

Pða�X� bÞ ¼
Zb

a

f ðxÞdx

That is, the probability that X takes on a value in the interval [a, b] is the area
above this interval and under the graph of the density function, as illustrated
in Figure 4.2. The graph of f(x) is often referred to as the density curve.

For f(x) to be a legitimate pdf, it must satisfy the following two conditions:

1. f(x) � 0 for all x
2.

R1
�1 f ðxÞdx ¼ area under the entire graph of f ðxÞ½ � ¼ 1

The support of a pdf f(x) consists of all x values for which f(x) > 0. Although a pdf is defined for
�1\x\1, we will typically display a pdf for the values in its support, and it is always understood
that f(x) = 0 otherwise.

Example 4.4 The direction of an imperfection with respect to a reference line on a circular object
such as a tire, brake rotor, or flywheel is, in general, subject to uncertainty. Consider the reference line
connecting the valve stem on a tire to the center point, and let X be the angle measured clockwise to
the location of an imperfection. One possible pdf for X is

f ðxÞ ¼ 1
360

0� x\360

The pdf is graphed in Figure 4.3. Clearly f(x) � 0. The area under the density curve is just the area of a
rectangle: ðheightÞðbaseÞ ¼ 1

360

� �ð360Þ ¼ 1. The probability that the angle is between 90° and 180° is

Pð90�X� 180Þ ¼
Z180
90

1
360

dx ¼ x

360

���x¼180

x¼90
¼ 1

4
¼ :25

a b
x

 f(x)

Figure 4.2 P(a � X � b) = the area under the density curve between a and b
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The probability that the angle of occurrence is within 90° of the reference line is

Pð0�X� 90ÞþPð270�X\360Þ ¼ :25þ :25 ¼ :50 �

Because the pdf in Figure 4.3 is completely “level” (i.e., has a uniform height) on the interval
[0, 360), X is said to have a uniform distribution.

DEFINITION A continuous rv X is said to have a uniform distribution on the interval
[A, B] if the pdf of X is

f ðx; A;BÞ ¼ 1
B� A

A�X�B

The statement that X has a uniform distribution on [A, B] will be denoted
X * Unif[A, B].

The graph of any uniform pdf looks like the graph in Figure 4.3 except that the interval of positive
density is [A, B] rather than [0, 360).

In the discrete case, a probability mass function (pmf) tells us how little “blobs” of probability
mass of various magnitudes are distributed along the measurement axis. In the continuous case,
probability density is “smeared” in a continuous fashion along the interval of possible values. When
density is smeared uniformly over the interval, a uniform pdf, as in Figure 4.3, results.

When X is a discrete random variable, each possible value is assigned positive probability. This is
not true of a continuous random variable, because the area under a density curve that lies above any
single value is zero:

PðX ¼ cÞ ¼ Pðc�X� cÞ ¼
Zc

c

f ðxÞ dx ¼ 0

The fact that P(X = c) = 0 when X is continuous has an important practical consequence: The
probability that X lies in some interval between a and b does not depend on whether the lower limit
a or the upper limit b is included in the probability calculation:

Pða�X� bÞ ¼ Pða\X\bÞ ¼ Pða\X� bÞ ¼ Pða�X\bÞ ð4:1Þ

x

1

360

3600
x

36027018090

f (x) f (x)

Shaded area = P(90 ≤ X ≤ 180) 

Figure 4.3 The pdf and probability for Example 4.4
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In contrast, if X were discrete and both a and b were possible values of X (e.g., X * Bin(20, .3) and
a = 5, b = 10), then all four of the probabilities in (4.1) would be different. This also means that
whether we include the endpoints of the range of values for a continuous rv X is somewhat arbitrary;
for example, the pdf in Example 3.4 could be defined to be positive on (0, 360) or [0, 360] rather than
[0, 360), and the same applies for a uniform distribution on [A, B] in general.

The zero probability condition has a physical analog. Consider a solid circular rod (with cross-
sectional area of 1 in2 for simplicity). Place the rod alongside a measurement axis and suppose that
the density of the rod at any point x is given by the value f(x) of a density function. Then if the rod is

sliced at points a and b and this segment is removed, the amount of mass removed is
R b
a f ðxÞdx;

however, if the rod is sliced just at the point c, no mass is removed. Mass is assigned to interval
segments of the rod but not to individual points.

So, if P(X = c) = 0 when X is a continuous rv, then what does f(c) represent? After all, if X were
discrete, its pmf evaluated at x = c, p(c), would indicate the probability that X equals c. To help
understand what f(c) means, consider a small window near x = c—say, [c, c + Dx]. Using a rectangle
to approximate the area under f(x) between c and c + Dx (the usual “Riemann approximation” idea

from calculus), one obtains
R cþDx
c f ðxÞdx � Dx � f ðcÞ, from which

f ðcÞ �
R cþDx
c f ðxÞdx

Dx
¼ Pðc�X� cþDxÞ

Dx

This indicates that f(c) is not a probability, but rather roughly the probability of an interval divided by
the length of the chosen interval. If we associate mass with probability and remember that interval
length is the one-dimensional analogue of volume, then f represents their quotient, mass per volume,
more commonly known as density (hence, the name pdf). The height of the function f(x) at a
particular point reflects how “dense” the values of X are near that point—taller sections of f(x) contain
more probability within a fixed interval length than do shorter sections.

Example 4.5 Climate change has made effective modeling and management of floodwaters ever
more important in coastal areas. One variable of particular importance is the flow rate of water above
some minimum threshold (typically where the rate becomes hazardous and requires intervention). The
following pdf of X = hazardous flood rate (m3/s) is suggested under certain conditions by the article
“A Framework for Probabilistic Assessment of Clear-Water Scour Around Bridge Piers” (Structural
Safety 2017: 11–22):

f ðxÞ ¼ :04e�:04ðx�10Þ x� 10

The graph of f(x) is given in Figure 4.4; there is no density associated with flow rates below 10 m3/s,
because such flow rates are deemed nonhazardous under these particular conditions. The flow rate
density decreases rapidly (exponentially fast) as x increases from 10. Clearly f(x) � 0; to show thatR1
�1 f ðxÞdx ¼ 1, we use calculus:

Z1
�1

f ðxÞdx¼
Z10
�1

0dxþ
Z1
10

:04e�:04ðx�10Þdx ¼ :04e:4
Z1
10

e�:04xdx ¼ :04e:4 � e
�:04x

�:04

����
1

10

¼ 0� ð�e:4 � e�:04ð10ÞÞ ¼ 1
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According to this model, the probability that flood rate is at most 50 m3/s is

PðX� 50Þ ¼
Z50
�1

f ðxÞdx ¼
Z50
10

:04e�:04ðx�10Þdx ¼ :04e:4
Z50
10

e�0:4xdx ¼ :04e:4 � e
�:04x

�:04

����
50

10

¼ e:4ð�e�:04ð50Þ þ e�:04ð10ÞÞ ¼ :798

Similarly, the probability the flood rate hits at least 200 m3/s, the point at which a nearby bridge will
collapse, is

PðX� 200Þ ¼
Z1
200

:04e�:04ðx�10Þ dx ¼ :0005

Since X is a continuous rv, .0005 also equals P(X > 200), the probability that the flood rate exceeds
200 m3/s. The difference between these two events is {X = 200}, i.e., that flood rate is exactly 200,

which has probability zero: P(X = 200) =
R 200
200 f ðxÞdx = 0.

This last statement may feel uncomfortable to you: Is there really zero chance that the flood rate is
exactly 200 m3/s? If flow rate is treated as continuous, then “exactly 200” means X = 200.000…,
with an endless repetition of 0s. That is to say, X is not rounded to the nearest tenth or even
hundredth; we are asking for the probability that X equals one specific number, 200.000…, out of the
(uncountably) infinite collection of possible values of X. ■

Unlike discrete distributions such as the binomial, hypergeometric, and negative binomial, the
distribution of any given continuous rv cannot usually be derived using simple probabilistic argu-
ments (with a few notable exceptions). Instead, one must make a judicious choice of pdf based on
prior knowledge and available data. Fortunately, some general pdf families have been found to fit well
in a wide variety of experimental situations; several of these are discussed later in the chapter.

f (x)

x

0.02

0.00

P(X ≤ 50)

0.04

10 30 50 70 90 110 130

Figure 4.4 The density curve for flood rate in Example 4.5
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Just as in the discrete case, it is often helpful to think of the population of interest as consisting of
X values rather than individuals or objects. The pdf is then a model for the distribution of values in
this numerical population, and from this model various population characteristics (such as the mean)
can be calculated.

Several of the most important concepts introduced in the study of discrete distributions also play
an important role for continuous distributions. Definitions analogous to those in Chapter 3 involve
replacing summation by integration.

The Cumulative Distribution Function
The cumulative distribution function (cdf) F(x) for a discrete rv X gives, for any specified number x,
the probability P(X � x). It is obtained by summing the pmf p(y) over all possible values y satisfying
y � x. The cdf of a continuous rv gives the same probabilities P(X � x) and is obtained by
integrating the pdf f(y) between the limits �1 and x.

DEFINITION The cumulative distribution function F(x) for a continuous rv X is defined
for every number x by

FðxÞ ¼ PðX� xÞ ¼
Zx

�1
f ðyÞdy

For each x, F(x) is the area under the density curve to the left of x. This is illustrated in Figure 4.5,
where F(x) increases smoothly as x increases.

Example 4.6 Let X, the thickness of a membrane, have a uniform distribution on [A, B]. The density
function is shown in Figure 4.6. For x < A, F(x) = 0, since there is no area under the graph of the
density function to the left of such an x. For x � B, F(x) = 1, since all the area is accumulated to the
left of such an x. Finally, for A � x � B,

f(x) F(x)

x x

F(8)

Shaded area = F(8)

.5 1.0

.8

.6

.4

.2

0

.4

.3

.2

.1

0
5 6 7 8 9 10 5 6 7 8 9 10

Figure 4.5 A pdf and associated cdf
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FðxÞ ¼
Zx

�1
f ðyÞdy ¼

Zx

A

1
B� A

dy ¼ 1
B� A

� y
������
y¼x

y¼A

¼ x� A

B� A

The entire cdf is

FðxÞ ¼
0 x\A

x� A

B� A
A� x\B

1 x�B

8<
:

The graph of this cdf appears in Figure 4.7.

Using F(x) to Compute Probabilities
The importance of the cdf here, just as for discrete rvs, is that probabilities of various intervals can be
computed from a formula or table for F(x).

PROPOSITION Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a,

P X[ að Þ ¼ 1� FðaÞ
and for any two numbers a and b with a < b,

P a�X� bð Þ ¼ FðbÞ � FðaÞ

1

A B A Bxx

f(x)

B − A
1

B − A

Shaded area = F(x)

Figure 4.6 The pdf for a uniform distribution

A B x

1

F(x)

Figure 4.7 The cdf for a uniform distribution ■
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Figure 4.8 illustrates the second part of this proposition; the desired probability is the shaded area
under the density curve between a and b, and it equals the difference between the two shaded
cumulative areas. This is different from what is appropriate for a discrete integer-valued rv (e.g.,
binomial or Poisson): P(a � X � b) = F(b) − F(a − 1) when a and b are integers.

Example 4.7 Suppose the pdf of the magnitude X of a dynamic load on a bridge (in newtons) is
given by

f ðxÞ ¼ 1
8
þ 3

8
x 0� x� 2

For any number x between 0 and 2,

FðxÞ ¼
Zx

�1
f ðyÞdy ¼

Zx

0

1
8
þ 3

8
y

� �
dy ¼ x

8
þ 3x2

16

Thus

FðxÞ ¼
0 x\0

x

8
þ 3x2

16
0� x� 2

1 2\x

8><
>:

The graphs of f(x) and F(x) are shown in Figure 4.9. The probability that the load is between 1 and
1.5 N is

a b b a

f(x)

= −

Figure 4.8 Computing P(a � X � b) from cumulative probabilities

1
8

7
8

20 2

1

xx

f(x) F(x)

Figure 4.9 The pdf and cdf for Example 4.7
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Pð1�X� 1:5Þ ¼ Fð1:5Þ � Fð1Þ ¼ 1
8
ð1:5Þþ 3

16
ð1:5Þ2

� �
� 1

8
ð1Þþ 3

16
ð1Þ2

� �
¼ 19

64
¼ :297

The probability that the load exceeds 1 N is

PðX[ 1Þ ¼ 1� PðX� 1Þ ¼ 1� Fð1Þ ¼ 1� 1
8
ð1Þþ 3

16
ð1Þ2

� �
¼ 11

16
¼ :688 �

The beauty of the cdf in the continuous case is that once it is available, any probability involving
X can easily be calculated without any further integration.

Obtaining f(x) from F(x)
For X discrete, the pmf is obtained from the cdf by taking the difference between two F(x) values. The
continuous analog of a difference is a derivative. The following result is a consequence of the
Fundamental Theorem of Calculus.

PROPOSITION If X is a continuous rv with pdf f(x) and cdf F(x), then at every x at
which the derivative F′(x) exists, F′(x) = f(x).

Example 4.8 (Example 4.7 continued) The cdf in Example 4.7 is differentiable except at x = 0 and
x = 2, where the graph of F(x) has sharp corners. Since F(x) = 0 for x < 0 and F(x) = 1 for x > 2,
F′(x) = 0 = f(x) for such x. For 0 < x < 2,

F0ðxÞ ¼ d

dx

x

8
þ 3x2

16

� �
¼ 1

8
þ 3x

8
¼ f ðxÞ �

Percentiles of a Continuous Distribution
When we say that an individual’s test score was at the 85th percentile of the population, we mean that
85% of all population scores were below that score and 15% were above. Similarly, the 40th
percentile is the score that exceeds 40% of all scores and is exceeded by 60% of all scores.

DEFINITION Let p be a number between 0 and 1. The (100p)th percentile (equivalently, the
pth quantile) of the distribution of a continuous rvX, denoted by ηp, is defined by

p ¼ FðgpÞ ¼
Zgp
�1

f ðyÞdy ð4:2Þ

Assuming we can find the inverse of F(x), this can also be written as

gp ¼ F�1ðpÞ

In particular, the median of a continuous distribution is the 50th percentile, η.5
or F−1(.5). That is, half the area under the density curve is to the left of the
median and half is to the right of the median. We will also denote the median
of a distribution by ~l.
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According to Expression (4.2), ηp is that value on the measurement axis such that 100p% of the area
under the graph of f(x) lies to the left of ηp and 100(1 � p)% lies to the right. Thus η.75, the 75th
percentile, is such that the area under the graph of f(x) to the left of η.75 is .75. Figure 4.10 illustrates
the definition.

Example 4.9 The distribution of the amount of gravel (in tons) sold by a construction supply
company in a given week is a continuous rv X with pdf

f ðxÞ ¼ 3
2
ð1� x2Þ 0� x� 1

The cdf of sales for any x between 0 and 1 is

FðxÞ ¼
Zx

0

3
2
ð1� y2Þdy ¼ 3

2
y� y3

3

� �����
y¼x

y¼0

¼ 3
2

x� x3

3

� �

The graphs of both f(x) and F(x) appear in Figure 4.11.

The (100p)th percentile of this distribution satisfies the equation

p ¼ FðgpÞ ¼
3
2

gp �
g3p
3

" #

f(x) F(x)

x x

p = F(ηp)

Shaded area = p
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ηp

Figure 4.10 The (100p)th percentile of a continuous distribution

f(x) F(x)

1

.5

0 1 0 1.347x x

Figure 4.11 The pdf and cdf for Example 4.9
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that is,

g3p � 3gp þ 2p ¼ 0

For the median ~l = η.5, p = .5 and the equation to be solved is ~l3 � 3~lþ 1 ¼ 0; the solution is
~l = .347. If the distribution remains the same from week to week, then in the long run 50% of all
weeks will result in sales of less than .347 tons and 50% in more than .347 tons. ■

A continuous distribution whose pdf is symmetric—which means that the graph of the pdf to the
left of some point is a mirror image of the graph to the right of that point—has median ~l equal to the
point of symmetry, since half the area under the curve lies to either side of this point. Figure 4.12
gives several examples. The amount of error in a measurement of a physical quantity is often assumed
to have a symmetric distribution.

A Bμ
x

f (x)

μ
x

f (x)

μ
x

f (x)

Figure 4.12 Medians of symmetric distributions

Exercises: Section 4.1 (1–17)

1. Let X denote the amount of time for which
a book on 2-h reserve at a college library is
checked out by a randomly selected student
and suppose that X has density function

f ðxÞ ¼ :5x 0� x� 2

Calculate the following probabilities:

a. P(X � 1)
b. P(.5 � X � 1.5)
c. P(1.5 < X)

2. Suppose the reaction temperature X (in °C)
in a chemical process has a uniform distri-
bution with A = −5 and B = 5.

a. Compute P(X < 0).
b. Compute P(−2.5 < X < 2.5).
c. Compute P(−2 � X � 3).
d. For k satisfying −5 < k < k + 4 < 5,

compute P(k < X < k + 4). Interpret this
in words.

3. Suppose the error involved in making a
measurement is a continuous rv X with pdf

f ðxÞ ¼ :09375ð4� x2Þ �2� x� 2

a. Sketch the graph of f(x).
b. Compute P(X > 0).
c. Compute P(−1 < X < 1).
d. Compute P(X < −.5 or X > .5).

4. Let X denote the power (MW) generated by
a wind turbine at a given wind speed. The
article “An Investigation of Wind Power
Density Distribution at Location With Low
and High Wind Speeds Using Statistical
Model” (Appl. Energy 2018: 442–451)
proposes the Rayleigh distribution, with pdf

f ðx; hÞ ¼ x

h2
� e�x2=ð2h2Þ x[ 0

as a model for the X distribution. The value
of the parameter h depends upon the
prevailing wind speed.

a. Verify that f(x; h) is a legitimate pdf.
b. Suppose h = 100. What is the proba-

bility that X is at most 200? Less than
200? At least 200?
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c. What is the probability that X is between
100 and 200 (again assuming h = 100)?

d. Give an expression for the cdf of X.

5. A college professor never finishes his lec-
ture before the end of the hour and always
finishes his lecture within 2 min after the
hour. Let X = the time that elapses between
the end of the hour and the end of the
lecture and suppose the pdf of X is

f ðxÞ ¼ kx2 0� x� 2

a. Find the value of k. [Hint: Total area
under the graph of f(x) is 1.]

b. What is the probability that the lecture
ends within 1 min of the end of the
hour?

c. What is the probability that the lecture
continues beyond the hour for between
60 and 90 s?

d. What is the probability that the lecture
continues for at least 90 s beyond the
end of the hour?

6. The grade point averages (GPAs) for
graduating seniors at a college are dis-
tributed as a continuous rv X with pdf

f ðxÞ ¼ k½1� ðx� 3Þ2� 2� x� 4

a. Sketch the graph of f(x).
b. Find the value of k.
c. Find the probability that a GPA exceeds

3.
d. Find the probability that a GPA is within

.25 of 3.
e. Find the probability that a GPA differs

from 3 by more than .5.

7. The time X (min) for a laboratory assistant
to prepare the equipment for a certain
experiment is believed to have a uniform
distribution with A = 25 and B = 35.

a. Write the pdf of X and sketch its graph.
b. What is the probability that preparation

time exceeds 33 min?
c. What is the probability that preparation

time is within 2 min of the median time?
[Hint: Identify ~l from the graph of f(x).]

d. For any a such that 25 < a < a + 2 < 35,
what is the probability that preparation
time is between a and a + 2 min?

8. Commuting to work requires getting on a
bus near home and then transferring to a
second bus. If the waiting time (in minutes)
at each stop has a uniform distribution with
A = 0 and B = 5, then it can be shown that
the total waiting time Y has the pdf

f ðyÞ ¼ y=25 0� y\5
2=5� y=25 5� y� 10

	

a. Sketch the pdf of Y.
b. Verify that

R1
�1 f ðyÞdy ¼ 1:

c. What is the probability that total waiting
time is at most 3 min?

d. What is the probability that total waiting
time is at most 8 min?

e. What is the probability that total waiting
time is between 3 and 8 min?

f. What is the probability that total waiting
time is either less than 2 min or more
than 6 min?

9. Consider again the rv X = hazardous flood
rate given in Example 4.5. What is the
probability that the flood rate is

a. At most 40 m3/s?
b. More than 40 m3/s? At least 40 m3/s?
c. Between 40 and 60 m3/s?

10. A family of pdfs that has been used to
approximate the distribution of income, city
population size, and size of firms is the
Pareto family. The family has two param-
eters, k and h, both > 0, and the pdf is

f ðx; k; hÞ ¼ k � hk
xkþ 1

x� h

a. Sketch the graph of f(x; k, h).
b. Verify that the total area under the graph

equals 1.
c. If the rv X has pdf f(x; k, h), for any fixed

b > h, obtain an expression for P(X � b).
d. For h < a < b, obtain an expression for

the probability P(a � X � b).
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e. Find an expression for the (100p)th
percentile ηp.

11. The cdf of checkout duration X as described
in Exercise 1 is

FðxÞ ¼
0 x\0

x2=4 0� x\2
1 2� x

8<
:

Use this to compute the following:

a. P(X � 1)
b. P(.5 � X � 1)
c. P(X > .5)
d. The median checkout duration [Hint:

Solve Fð~lÞ ¼ :5.]
e. F′(x) to obtain the density function f(x)

12. The cdf for X = measurement error of
Exercise 3 is

FðxÞ ¼
0 x\� 2

:5þ3ð4x� x3=3Þ=32 �2�x\2
1 2�x

8<
:

a. Compute P(X < 0).
b. Compute P(−1 < X < 1).
c. Compute P(.5 < X).
d. Verify that f(x) is as given in Exercise 3

by obtaining F′(x).
e. Verify that ~l ¼ 0:

13. Suppose that in a certain traffic environ-
ment, the distribution of X = the time
headway (sec) between two randomly
selected consecutive cars has the form

f ðxÞ ¼ k

x4
x[ 1

a. Determine the value of k for which
f(x) is a legitimate pdf.

b. Obtain the cumulative distribution
function.

c. Use the cdf from (b) to determine the
probability that headway exceeds 2 s
and also the probability that headway is
between 2 and 3 s.

14. Let X denote the amount of space occupied
by an article placed in a 1-ft3 packing
container. The pdf of X is

f ðxÞ ¼ 90x8ð1� xÞ 0\x\1

a. Graph the pdf. Then obtain the cdf of
X and graph it.

b. What is P(X � .5) [i.e., F(.5)]?
c. Using part (a), what is P(.25 < X � .5)?

What is P(.25 � X � .5)?
d. What is the 75th percentile of the dis-

tribution?

15. Answer parts (a)–(d) of Exercise 14 for the
random variable X, lecture time past the
hour, given in Exercise 5.

16. Let X be a continuous rv with cdf

FðxÞ ¼
0 x� 0

x½1þ lnð4=xÞ�=4 0\x� 4
1 x[ 4

8<
:

[This type of cdf is suggested in the article
“Variability in Measured Bedload-
Transport Rates” (Water Resources Bull.
1985:39–48) as a model for a hydrologic
variable.] What is

a. P(X � 1)?
b. P(1 � X � 3)?
c. The pdf of X?

17. Let X be the temperature in °C at which a
chemical reaction takes place, and let Y be
the temperature in °F (so Y = 1.8X + 32).

a. If the median of the X distribution is ~l,
show that 1:8~lþ 32 is the median of the
Y distribution.

b. How is the 90th percentile of the Y dis-
tribution related to the 90th percentile of
the X distribution? Verify your
conjecture.

c. More generally, if Y = aX + b, how is
any particular percentile of the Y distri-
bution related to the corresponding per-
centile of the X distribution?
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4.2 Expected Values and Moment Generating Functions

In Section 4.1 we saw that the transition from a discrete cdf to a continuous cdf entails replacing
summation by integration. The same thing is true in moving from expected values and mgfs of
discrete variables to those of continuous variables.

Expected Values
For a discrete random variable X, E(X) was obtained by summing x � p(x) over possible X values.
Here we replace summation by integration and the pmf by the pdf to get a continuous weighted
average.

DEFINITION The expected or mean value of a continuous rv X with pdf f(x) is

l ¼ lX ¼ EðXÞ ¼
Z1
�1

x � f ðxÞdx

This expected value will exist provided that
R1
�1 xj jf ðxÞdx\1. In practice, the

limits of integration are specified by the support of the pdf (since f(x) = 0
otherwise).

Example 4.10 (Example 4.9 continued) The pdf of weekly gravel sales X was

f ðxÞ ¼ 3
2
ð1� x2Þ 0� x� 1

so

EðXÞ ¼
Z1
�1

x � f ðxÞdx ¼
Z1

0

x � 3
2
ð1� x2Þdx

¼ 3
2

Z1

0

ðx� x3Þdx ¼ 3
2

x2

2
� x4

4

� �����
x¼1

x¼0

¼ 3
8
¼ :375

If gravel sales are determined week after week according to the given pdf, then the long-run average
value of sales per week will be .375 ton. ■

Similar to the interpretation in the discrete case, the mean value µ can be regarded as the balance
point (or fulcrum or center of mass) of a continuous distribution. In Example 4.10, if a piece of
cardboard was cut out in the shape of the region under the density curve f(x), then it would balance if
supported at µ = 3/8 along the bottom edge. When a pdf f(x) is symmetric, then it will balance at its
point of symmetry, which must be the mean µ (assuming l exists). Recall from Section 4.1 that the
median is also the point of symmetry; in general, if a distribution is symmetric and the mean exists,
then it is equal to the median.

Often we wish to compute the expected value of some function h(X) of the rv X. If we think of
h(X) as a new rv Y, methods from Section 4.7 can be used to derive the pdf of Y, and E(Y) can be
computed from the definition. Fortunately, as in the discrete case, there is an easier way to compute
E[h(X)].
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If X is a continuous rv with pdf f(x) and h(X) is any function of X, then

lhðXÞ ¼ E½hðXÞ� ¼
Z1
�1

hðxÞ � f ðxÞdx

This expected value will exist provided that
R1
�1 jhðxÞjf ðxÞdx\1.

Importantly, except in the cases where h(x) is a linear function (see later in this section), E[h(X)] is not
equal to h(µX), the function h evaluated at the mean of X.

Example 4.11 The variation in a certain electrical current source X (in milliamps) can be modeled
by the pdf

f ðxÞ ¼ 1:25� :25x 2� x� 4

The average current from this source is

EðXÞ ¼
Z4

2

xð1:25� :25xÞdx ¼ 17
6

¼ 2:833 mA

If this current passes through a 220-ohm resistor, the resulting power (in microwatts) is given by the
expression h(X) = (current)2(resistance) = 220X2. The expected power is given by

EðhðXÞÞ ¼ Eð220X2Þ ¼
Z4

2

220x2ð1:25� :25xÞdx ¼ 5500
3

¼ 1833:3 microwatts

Notice that the expected power is not equal to 220(2.833)2, a common error that results from
substituting the mean current µX into the power formula. ■

Example 4.12 Two species are competing in a region for control of a limited amount of a resource.
Let X = the proportion of the resource controlled by species 1 and suppose X has pdf

f ðxÞ ¼ 1 0� x� 1

which is the uniform distribution on [0, 1]. (In her book Ecological Diversity, E. C. Pielou calls this
the “broken-stick” model for resource allocation, since it is analogous to breaking a stick at a
randomly chosen point.) Then the species that controls the majority of this resource controls the
amount

hðXÞ ¼ maxðX; 1� XÞ ¼ 1� X if 0�X\:5
X if :5�X� 1

	

The expected amount controlled by the species having majority control is then
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E½hðXÞ� ¼
Z1
�1

maxðx; 1� xÞ � f ðxÞdx ¼
Z1

0

maxðx; 1� xÞ � 1dx

¼
Z:5
0

ð1� xÞ � 1dxþ
Z1

:5

x � 1dx ¼ 3
4

�

In the discrete case, the variance of X was defined as the expected squared deviation from µ and was
calculated by summation. Here again integration replaces summation.

DEFINITION The variance of a continuous random variable X with pdf f(x) and mean
value l is

r2X ¼ VðXÞ ¼
Z1
�1

ðx� lÞ2 � f ðxÞdx ¼ E½ðX � lÞ2�

The standard deviation of X is SDðXÞ ¼ rX ¼ ffiffiffiffiffiffiffiffiffiffiffi
VðXÞp

.

As in the discrete case, r2X is the expected or average squared deviation about the mean l, and rX
can be interpreted roughly as the size of a representative deviation from the mean value l.

Example 4.13 Let X * Unif[A, B]. Since a uniform distribution is symmetric, the mean of X is at
the density curve’s point of symmetry, which is clearly the midpoint (A + B)/2. This can be verified
by integration:

l ¼
ZB
A

x � 1
B� A

dx ¼ 1
B� A

x2

2

����
B

A

¼ 1
B� A

B2 � A2

2
¼ AþB

2

The variance of X is then given by

r2 ¼
ZB
A

ðx� lÞ2 � 1
B� A

dx ¼ 1
B� A

ZB
A

x� AþB

2

� �2

dx

¼ 1
B� A

ZðB�AÞ=2

�ðB�AÞ=2

u2du substitute u ¼ x� AþB

2

¼ 2
B� A

ZðB�AÞ=2

0

u2du symmetry

¼ 2
B� A

u3

3

����
ðB�AÞ=2

0

¼ 2
B� A

ðB� AÞ3
23 � 3 ¼ ðB� AÞ2

12
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The standard deviation of X is the square root of the variance: r = (B − A)/
ffiffiffiffiffi
12

p
. Notice that the

standard deviation of a Unif[A, B] distribution is proportional to the length of the interval, B − A,
which matches our intuitive notion that a larger standard deviation corresponds to greater “spread” in
a distribution. ■

Section 3.3 presented several properties of expected value, variance, and standard deviation for
discrete random variables. Those same properties hold for the continuous case; proofs of these results
are obtained by replacing summation with integration in the proofs presented in Chapter 3.

PROPOSITION Let X be a continuous rv with pdf f(x), mean µ, and standard deviation r. Then
the following properties hold.

1. (variance shortcut)

VðXÞ ¼ EðX2Þ � l2 ¼
Z 1

�1
x2 � f ðxÞdx�

Z 1

�1
x � f ðxÞdx

� �2

2. (linearity of expectation) For any functions h1(X) and h2(X) and any constants
a1, a2, and b,

E½a1h1ðXÞþ a2h2ðXÞþ b� ¼ a1E½h1ðXÞ� þ a2E½h2ðXÞ� þ b

3. (rescaling) For any constants a and b,

EðaXþ bÞ ¼ aEðXÞþ b VðaXþ bÞ ¼ a2r2X raXþ b ¼ aj jrX

Example 4.14 (Example 4.10 continued) For X = weekly gravel sales, we computed E(X) = 3/8.
Since

EðX2Þ ¼
Z1
�1

x2 � f ðxÞdx ¼
Z1

0

x2 � 3
2
ð1� x2Þdx ¼ 3

2

Z1

0

ðx2 � x4Þdx ¼ 1
5
;

VðXÞ ¼ 1=5� ð3=8Þ2 ¼ 19=320 ¼ :059 and rX ¼
ffiffiffiffiffiffiffiffiffi
:059

p
¼ :244

Suppose the amount of gravel actually received by customers in a week is h(X) = X − .02X2; the
second term accounts for the small amount that is lost in transport. Then the average weekly amount
received by customers is

EðX � :02X2Þ ¼ EðXÞ � :02EðX2Þ ¼ :375� :02ð:2Þ ¼ :371 tons �

Example 4.15 When a dart is thrown at a circular target, consider the location of the landing point
relative to the bull’s eye. Let X be the angle in degrees measured from the horizontal, and assume that
X is uniformly distributed on [0, 360). By Example 4.13, E(X) = 180 and rX ¼ 360=

ffiffiffiffiffi
12

p
. Define Y to

be the angle measured in radians between �p and p, so Y = (2p/360)X � p. Then, applying the
rescaling properties with a = 2p/360 and b = –p,
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EðYÞ ¼ 2p
360

EðXÞ � p ¼ 2p
360

180� p ¼ 0:

and

rY ¼ 2p
360

����
���� � rX ¼ 2p

360
360ffiffiffiffiffi
12

p ¼ 2pffiffiffiffiffi
12

p �

As a special case of the result E(aX + b) = aE(X) + b, set a = 1 and b = �l, giving E(X − l) =
E(X) − l = 0. This can be interpreted as saying that the expected deviation from l is 0;R1
�1 ðx� lÞf ðxÞdx ¼ 0: The integral suggests a physical interpretation: With (x � l) as the lever arm
and f(x) as the weight function, the total torque is 0. Using a seesaw as a model with weight
distributed in accord with f(x), the seesaw will balance at l.

Approximating the Mean Value and Standard Deviation
Let X be a random variable with mean value l and variance r2. Then we have already seen that the
new random variable Y = h(X) = aX + b, a linear function of X, has mean value al + b and variance
a2r2. But what can be said about the mean and variance of Y if h(x) is a nonlinear function?

PROPOSITION
(The Delta Method)

Suppose h(x) is differentiable and that its derivative evaluated at l satisfies
h0ðlÞ 6¼ 0. Then if the variance of X is small, so that the distribution of X is
largely concentrated on an interval of values close to l, the mean value and
variance of Y = h(X) can be approximated as follows:

E½hðXÞ� � hðlÞ; V ½hðXÞ� � ½h0ðlÞ�2r2

The justification for these approximations is a first-order Taylor series expansion of h(X) about l; that
is, we approximate the function for values near l by the tangent line to the function at the point
(l, h(l)):

Y ¼ hðXÞ � hðlÞþ h0ðlÞðX � lÞ

Taking the expected value of this gives E½hðXÞ� � hðlÞ. Since hðlÞ and h0ðlÞ are numerical con-

stants, the variance of the linear approximation is V½hðXÞ� � 0þ ½h0ðlÞ�2VðX � lÞ ¼ ½h0ðlÞ�2r2.
Example 4.16 A chemistry student determined the mass m and volume X of an aluminum chunk and
took the ratio to obtain the density Y = h(X) = m/X. The mass is measured much more accurately, so
for an approximate calculation it can be regarded as a constant. The derivative of h(X) is −m/X2, so

r2Y � �m

l2X

� �2
r2X

The standard deviation is then rY � m=l2X
� �

rX . A particular aluminum chunk had measurements
m = 18.19 g and X = 6.6 cm3, which gives an estimated density Y = m/X = 18.19/6.6 = 2.76.
A rough value for the standard deviation of X is rX = .3 cm3. Our best guess for the mean of the
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X distribution is the measured value, so lY � h(lX) = 18.19/6.6 = 2.76, and the estimated standard
deviation for the estimated density is

rY � m

l2X
rX ¼ 18:19

6:62
ð:3Þ ¼ :125

Compare the estimate of 2.76, standard deviation .125, with the official value 2.70 for the density of
aluminum. ■

Moment Generating Functions
Moments and moment generating functions for discrete random variables were introduced in Sec-
tion 3.4. These concepts carry over to the continuous case.

DEFINITION The moment generating function (mgf) of a continuous random variable X is

MXðtÞ ¼ E etX
� � ¼ Z1

�1
etxf ðxÞdx:

As in the discrete case, the moment generating function exists if MX(t) is
defined for an interval that includes zero as well as positive and negative
values of t.

Just as before, when t = 0 the value of the mgf is always 1:

MXð0Þ ¼ E e0X
� � ¼ Z1

�1
e0xf ðxÞdx ¼

Z1
�1

f ðxÞdx ¼ 1

Example 4.17 At a store, the checkout time X in minutes has the pdf f(x) = 2e−2x, x � 0. Then

MXðtÞ ¼
Z1
�1

etxf ðxÞdx ¼
Z1
0

etxð2e�2xÞdx ¼
Z1
0

2e�ð2�tÞxdx

¼ � 2
2� t

e�ð2�tÞx
����
1

0

¼ 2
2� t

� 2
2� t

lim
x!1 e�ð2�tÞx

The limit above exists (in fact, it equals zero) provided the coefficient on x is negative, i.e.,
–(2 � t) < 0. This is equivalent to t < 2. The mgf exists because it is defined for an interval of values
including 0 in its interior, specifically (�1, 2). For t in that interval, the mgf of X is MX(t) =
2/(2 − t). Notice that MX(0) = 2/(2 – 0) = 1, as it must be. ■

The uniqueness property for the mgf of a discrete rv is equally valid in the continuous case. Two
distributions have the same pdf if and only if they have the same moment generating function,
assuming that the mgf exists. For example, if a random variable X is known to have mgf MX(t) =
2/(2 � t) for t < 2, then from Example 4.17 it must necessarily be the case that the pdf of X is
f ðxÞ ¼ 2e�2x for x � 0 and f(x) = 0 otherwise.
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In the discrete case we had a theorem on how to get moments from the mgf, and this theorem
applies also in the continuous case: the rth moment of a continuous rv with mgf MX(t) is given by

E Xrð Þ ¼ MðrÞ
X ð0Þ;

the rth derivative of the mgf with respect to t evaluated at t = 0, if the mgf exists.

Example 4.18 (Example 4.17 continued) The mgf of the rv X = checkout time at the store was
found to be MX(t) = 2/(2 − t) = 2(2 − t)−1 for t < 2. To find the mean and standard deviation, first
compute the derivatives:

M0
XðtÞ ¼ �2ð2� tÞ�2ð�1Þ ¼ 2

ð2� tÞ2

M00
XðtÞ ¼

d

dt
2ð2� tÞ�2
h i

¼ �4ð2� tÞ�3ð�1Þ ¼ 4

ð2� tÞ3

Setting t to 0 in the first derivative gives the expected checkout time as

EðXÞ ¼ Mð1Þ
X ð0Þ ¼ M0

Xð0Þ ¼ :5 min:

Setting t to 0 in the second derivative gives the second moment

EðX2Þ ¼ Mð2Þ
X ð0Þ ¼ M00

Xð0Þ ¼ :5;

from which V(X) = EðX2Þ � ½EðXÞ�2 ¼ :5� :52 ¼ :25 and r =
ffiffiffiffiffiffiffi
:25

p
= .5 min. ■

As in the discrete case, if X has the mgf MX(t) then the mgf of the linear function Y = aX + b is
MY(t) = ebtMX(at).

Example 4.19 Let X have a uniform distribution on the interval [A, B], so its pdf is f(x) = 1/(B − A),
A � x � B; f(x) = 0 otherwise. As verified in Exercise 32, the moment generating function of X is

MXðtÞ ¼
eBt � eAt

ðB� AÞt t 6¼ 0

1 t ¼ 0

8<
:

In particular, consider the situation in Example 4.15. Let X, the angle measured in degrees, be uniform
on [0, 360], so A = 0 and B = 360. Then

MXðtÞ ¼ e360t � 1
360t

t 6¼ 0; MXð0Þ ¼ 1

Now let Y = (2p/360)X − p, so Y is the angle measured in radians and Y is between �p and p. Using
the mgf rule for linear transformations with a = 2p/360 and b = �p,
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MYðtÞ ¼ ebtMXðatÞ ¼ e�ptMX
2p
360

t

� �

¼ e�pt e
360ð2p=360Þt � 1

360 2p
360 t
� �

¼ ept � e�pt

2pt
t 6¼ 0; MYð0Þ ¼ 1

This matches the general form of the moment generating function for a uniform random variable with
A = �p and B = p. Thus, by the uniqueness principle, Y * Unif[�p, p]. ■

Exercises: Section 4.2 (18–38)

18. Reconsider the distribution of checkout
duration X described in Exercises 1 and 11.
Compute the following:

a. E(X)
b. V(X) and rX
c. If the borrower is charged an amount

h(X) = X2 when checkout duration is X,
compute the expected charge E[h(X)].

19. Recall the distribution of hazardous flood
rate used in Example 4.5.

a. Obtain the mean and standard deviation
of this distribution.

b. What is the probability that the flood
rate is within 1 standard deviation of the
mean value?

20. The article “Forecasting Postflight Hip
Fracture Probability Using Probabilistic
Modeling” (J. Biomech. Engr. 2019)
examines the risk of bone breaks for astro-
nauts returning from space, who typically
lose density during missions. One quantity
the article’s authors model is the midpoint
fracture risk index (mFRI), the ratio of
applied load to bone strength at which the
chance of a fracture is 50–50. The arti-
cle suggests a uniform distribution on
[0.55, 1.45] to model this unitless index
value.

a. Calculate the mean and standard deviation
of mFRI using the specified model.

b. Determine the cdf of mFRI.

c. What is the probability that mFRI is less
than 1? Between 0.75 and 1.25?

d. What is the probability that mFRI is
within one standard deviation of its
expected value? Within two standard
deviations?

21. For the distribution of Exercise 14,

a. Compute E(X) and rX.
b. What is the probability that X is more

than 1 standard deviation from its mean
value?

22. Consider the pdf of X = grade point aver-
age given in Exercise 6.

a. Obtain and graph the cdf of X.
b. From the graph of f(x), what is ~l?
c. Compute E(X) and V(X).

23. Let X have a uniform distribution on the
interval [A, B].
a. Obtain an expression for the (100p)th

percentile.
b. Obtain an expression for the median, ~l.

How does this compare to the mean µ,
and why does that make sense for this
distribution?

c. For n a positive integer, compute E(Xn).

24. Consider the pdf for total waiting time Y for
two buses

f ðyÞ ¼ :04y 0� y\5
:4� :04y 5� y� 10

	

introduced in Exercise 8.

210 4 Continuous Random Variables and Probability Distributions



a. Compute and sketch the cdf of Y. [Hint:
Consider separately 0 � y < 5 and
5 � y � 10 in computingF(y). A graph
of the pdf should be helpful.]

b. Obtain an expression for the (100p)th
percentile. [Hint: Consider separately
0 < p < .5 and .5 � p < 1.]

c. Compute E(Y) and V(Y). How do these
compare with the expected waiting time
and variance for a single bus when the
time is uniformly distributed on [0, 5]?

25. An ecologist wishes to mark off a circular
sampling region having radius 10 m.
However, the radius of the resulting region
is actually a random variable R with pdf

f ðrÞ ¼ 3
4
½1� ð10� rÞ2� 9� r� 11

What is the expected area of the resulting
circular region?

26. The weekly demand for propane gas (in
1000s of gallons) from a particular facility
is an rv X with pdf

f ðxÞ ¼ 2 1� 1
x2

� �
1� x� 2

a. Compute the cdf of X.
b. Obtain an expression for the (100p)th

percentile. What is the value of ~l?
c. Compute E(X). How do the mean and

median of this distribution compare?
d. Compute V(X) and rX.
e. If 1.5 thousand gallons are in stock at the

beginning of the week and no new
supply is due in during the week, how
much of the 1.5 thousand gallons is
expected to be left at the end of the
week? [Hint: Let h(x) = amount left
when demand is x.]

27. If the temperature at which a compound
melts is a random variable with mean
value 120 °C and standard deviation 2 °C,
what are the mean temperature and
standard deviation measured in °F? [Hint:
°F = 1.8 °C + 32.]

28. Let X have the Pareto pdf introduced in
Exercise 10.

f ðx; k; hÞ ¼ k � hk
xkþ 1

x� h

a. If k > 1, compute E(X).
b. What can you say about E(X) if k = 1?
c. If k > 2, show that VðXÞ ¼

kh2ðk � 1Þ�2ðk � 2Þ�1:

d. If k = 2, what can you say about V(X)?
e. What conditions on k are necessary to

ensure that E(Xn) is finite?

29. The time (min) between successive visits to
a particular website has pdf f(x) = 4e−4x,
x � 0; f(x) = 0 otherwise. Use integration
by parts to obtain E(X) and V(X).

30. Suppose that the pdf of X is

f ðxÞ ¼ :5� x

8
0� x� 4

a. Show that E(X) = 4/3 and V(X) = 8/9.
b. The coefficient of skewness is defined as

E[(X − l)3]/r3. Show that its value for
the given pdf is .566. What would the
skewness be for a perfectly symmetric
pdf? Explain your reasoning.

31. a. If the voltage v across a medium is fixed
but current I is random, then resistance
will also be a random variable related to
I by R = v/I. If lI = 20 and rI = .5, use
the delta method to calculate approxi-
mations to lR and rR.

b. Let R have the distribution in Exercise
25, whose mean and variance are 10 and
1/5, respectively. Let h(R) = pR2, the
area of the ecologist’s sampling region.
How does E[h(R)] from Exercise 25
compare to the delta method approxi-
mation h(10)?

c. The variance of the region’s area is
V[h(R)] = 14008p2/175. Compute the
delta method approximation to V[h(R)].
How good is the approximation?
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32. Let X have a uniform distribution on the
interval [A, B], so its pdf is f(x) = 1/(B − A),
A � x � B, f(x) = 0 otherwise. Show that
the moment generating function of X is

MXðtÞ ¼ eBt � eAt

ðB� AÞt t 6¼ 0

33. Let X * Unif[0, 1]. Find a linear function
Y = g(X) such that the interval [0, 1] is
transformed into [–5, 5]. Use the relationship
for linear functions MaX+b(t) = ebtMX(at) to
obtain the mgf of Y from the mgf of X. Com-
pare your answer with the result of Exercise
32, and use this to obtain the pdf of Y.

34. If the pdf of a measurement error X is
f(x) = .5e–|x|, �1\x\1 show that

MXðtÞ ¼ 1
1� t2

for tj j\1:

35. Consider the rv X = hazardous flood rate in
Example 4.5.

a. Find the moment generating function and
use it to find the mean and variance.

b. Now consider a random variable whose
pdf is

f ðxÞ ¼ :04e�:04x x� 0

Find the moment generating function
and use it to find the mean and variance.
Compare with (a), and explain the sim-
ilarities and differences.

c. Let Y = X − 10 and use the relationship
for linear functions MaX+b(t) = ebtMX(at)
to obtain the mgf of Y from (a). Compare
with the result of (b) and explain.

36. Define RX(t) = ln[MX(t)]. It was shown in
Chapter 3 that R0

XðtÞ = E(X) and R00
XðtÞ =

V(X).

a. Determine MX(t) for the pdf in Exercise
29, and use this mgf to obtain E(X) and
V(X). How does this compare, in terms

of difficulty, with the integration by parts
required in that exercise?

b. Determine RX(t) for this same distribu-
tion, and use RX(t) to obtain E(X) and
V(X). How does the computational effort
here compare with that of (a)?

37. Let X be a nonnegative, continuous rv with
pdf f(x) and cdf F(x).
a. Show that, for any constant t > 0,R1

t
x � f ðxÞdx� t � PðX[ tÞ ¼ t � ½1� FðtÞ�

b. Assume the mean of X is finite (i.e., the
integral defining µ converges). Use part
(a) to show that

lim
t!1 t � ½1� FðtÞ� ¼ 0

38. Let X be a nonnegative, continuous rv with
cdf F(x).

a. Assuming the mean µ of X is finite,
show that

l ¼
Z1
0

½1� FðxÞ�dx

[Hint: Apply integration by parts to the
integral above, and use the result of the
previous exercise.]

b. A similar argument can be used to show
that the kth moment of X is given by

EðXkÞ ¼ k

Z1
0

xk�1½1� FðxÞ�dx

and that E(Xk) exists iff tk[1 − F(t)] ! 0
as t ! 1. (This was the topic of a 2012
article in The American Statistician.)
Suppose the lifetime X, in weeks, of a
low-grade transistor under continuous
use has cdf F(x) = 1 − (x + 1)−3 for
x > 0. Without finding the pdf of X,
determine its mean and its standard
deviation.
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4.3 The Normal Distribution

The normal distribution is the most important one in all of probability and statistics. Many numerical
populations have distributions that can be fit very closely by an appropriate normal curve. Examples
include heights, weights, and other physical characteristics, measurement errors in scientific exper-
iments, measurements on fossils, reaction times in psychological experiments, scores on various tests,
and numerous economic measures and indicators. Even when the underlying distribution is discrete,
the normal curve often gives an excellent approximation. In addition, even when individual variables
themselves are not normally distributed, sums and averages of the variables will under suitable
conditions have approximately a normal distribution; this is the content of the Central Limit Theo-
rem discussed in Chapter 6.

DEFINITION A continuous rv X is said to have a normal distribution with parameters l and
r, where �1\l\1 and r[ 0; if the pdf of X is

f ðx; l; rÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=ð2r2Þ �1\x\1 ð4:3Þ

The statement that X is normally distributed with parameters µ and r will be
denoted by X * N(µ, r).

Figure 4.13 presents graphs of f ðx; l; rÞ for several different (l, r) pairs. Each resulting density curve
is symmetric about l and bell-shaped, so the center of the bell (point of symmetry) is both the mean
of the distribution and the median. The value of r is the distance from l to the inflection points of the
curve (the points at which the curve changes between turning downward to turning upward). Large
values of r yield density curves that are quite spread out about l, whereas small values of r yield
density curves with a high peak above l and most of the area under the density curve quite close to l.
Thus a large r implies that a value of X far from l may well be observed, whereas such a value is
quite unlikely when r is small.

Clearly f(x; µ, r) � 0, but a clever calculus argument is required to prove that
R1
�1 f ðx; l; rÞdx ¼ 1

(see Exercise 66). It can be shown using calculus (Exercise 67) or moment generating functions
(Exercise 68) that E(X) = µ and V(X) = r2, so the parameters µ and r are the mean and the standard
deviation, respectively, of X.

μ μ + σ μ  μ + σμ μ + σ

Figure 4.13 Normal density curves
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The Standard Normal Distribution
To compute P(a � X � b) when X * N(l, r), we must evaluate

Zb

a

1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=ð2r2Þdx ð4:4Þ

None of the standard integration techniques can be used to evaluate (4.4), and there is no closed-form
expression for (4.4). Table 4.2 at the end of this section provides the code for performing such normal
calculations in R. For the purpose of hand calculation, we now introduce a special normal distri-
bution.

DEFINITION The normal distribution with parameter values l = 0 and r = 1 is called the
standard normal distribution. A random variable that has a standard normal
distribution is called a standard normal random variable and will be denoted
by Z. The pdf of Z, denoted /ðzÞ, is

/ðzÞ ¼ f ðz; 0; 1Þ ¼ 1ffiffiffiffiffiffi
2p

p e�z2=2 �1\z\1

The cdf of Z is PðZ � zÞ ¼ R z
�1 /ðyÞdy ¼ R z

�1
1ffiffiffiffi
2p

p e�y2=2dy, which we will

denote by U(z).

The standard normal distribution does not frequently serve as a model for a naturally arising pop-
ulation, since few variables have mean 0 and standard deviation 1. Instead, it is a reference distri-
bution from which information about other normal distributions can be obtained. Appendix Table A.3
gives values of U(z) for z = –3.49, –3.48, …, 3.48, 3.49 and is referred to as the standard normal
table or z table. Figure 4.14 illustrates the type of cumulative area (probability) tabulated in
Table A.3. From this table, various other probabilities involving Z can be calculated.

Example 4.20 Here we demonstrate how the z table is used to calculate various probabilities
involving a standard normal rv.
a. P(Z � 1.25) = U(1.25), a probability that is tabulated in Table A.3 at the intersection of the row

marked 1.2 and the column marked .05. The number there is .8944, so P(Z � 1.25) = .8944. See
Figure 4.15a. In R, we may type pnorm(1.25,0,1) or just pnorm(1.25).

0 z

Standard normal (z) curve

Shaded area = Φ(z)

Figure 4.14 Standard normal cumulative areas tabulated in Appendix Table A.3
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b. P(Z > 1.25) = 1 − P(Z � 1.25) = 1 − U(1.25), the area under the standard normal curve to the
right of 1.25 (an upper-tail area). Since U(1.25) = .8944, it follows that P(Z > 1.25) = .1056.
Since Z is a continuous rv, P(Z � 1.25) also equals .1056. See Figure 4.15b.

c. P(Z � − 1.25) = U(–1.25), a lower-tail area. Directly from the z table, U(–1.25) = .1056. By
symmetry of the normal curve, this is identical to the probability in (b).

d. P(–.38 � Z � 1.25) is the area under the standard normal curve above the interval [–.38, 1.25].
From Section 4.1, if Z is a continuous rv with cdf F(z), then P(a � Z � b) = F(b) − F(a). This
gives P(–.38 � Z � 1.25) = U(1.25) − U(–.38) = .8944 − .3520 = .5424 (see Figure 4.16).
To evaluate this probability in R, type pnorm(1.25, 0,1)-pnorm(-.38, 0, 1) or just
pnorm(1.25)-pnorm(-.38).

From Section 4.1, we have that the (100p)th percentile of the standard normal distribution, for any
p between 0 and 1, is the solution to the equation U(z) = p. So, we may write the (100p)th percentile
of the standard normal distribution as ηp = U−1(p). Software or the z table can be used to obtain this
percentile.

Example 4.21 The 99th percentile of the standard normal distribution is that value on the horizontal
axis such that the area under the curve to the left of the value is .9900. Appendix Table A.3 gives for
fixed z the area under the standard normal curve to the left of z, whereas here we have the area and
want the value of z. This is the “inverse” problem to P(Z � z) = ? so the table is used in an inverse
fashion: Find in the middle of the table .9900; the row and column in which it lies identify the 99th
z percentile. Here .9901 lies in the row marked 2.3 and column marked .03, so the 99th percentile is
(approximately) z = 2.33 (see Figure 4.17). By symmetry, the first percentile is the negative of the
99th percentile, so it equals −2.33 (1% lies below the first and above the 99th). See Figure 4.18.

z curve z curve

0

a b

1.25 1.250

Shaded area = Φ(1.25)

Figure 4.15 Normal curve areas (probabilities) for Example 4.20

0 1.25−.38 0−.38

−=

0 1.25

z curve

Figure 4.16 P(–.38 � Z � 1.25) as the difference between two cumulative areas ■
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To determine the 99th percentile of the standard normal distribution in R, use the command
qnorm(.99,0,1) or just qnorm(.99). ■

In general, the (100p)th percentile is identified by the row and column of Appendix Table A.3 in
which the entry p is found (e.g., the 67th percentile is obtained by finding .6700 in the body of the
table, which gives z = .44). If p does not appear, the number closest to it is often used, although linear
interpolation gives a more accurate answer. For example, to find the 95th percentile, we look for
.9500 inside the table. Although .9500 does not appear, both .9495 and .9505 do, corresponding to
z = 1.64 and 1.65, respectively. Since .9500 is halfway between the two probabilities that do appear,
we will use 1.645 as the 95th percentile and −1.645 as the 5th percentile.

za Notation
In statistical inference, we will need the values on the measurement axis that capture certain small tail
areas under the standard normal curve.

NOTATION za will denote the value on the measurement axis for which a of the area under
the z curve lies to the right of za. That is, za ¼ U�1ð1� aÞ (see Figure 4.19).

z curve

99th percentile = 2.33

0

Shaded area = .9900

Figure 4.17 Finding the 99th percentile

Shaded area = .01

z curve

0

−2.33 = 1st percentile 2.33 = 99th percentile

Figure 4.18 The relationship between the 1st and 99th percentiles
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For example, z.10 captures upper-tail area .10 and z.01 captures upper-tail area .01.
Since a of the area under the standard normal curve lies to the right of za, 1 − a of the area lies to

the left of za . Thus za is the 100(1 − a)th percentile of the standard normal distribution. By
symmetry the area under the standard normal curve to the left of −za is also a. The za’s are usually
referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and za
values.

Example 4.22 The 100(1 − .05)th = 95th percentile of the standard normal distribution is z.05, so
z.05 = 1.645. The area under the standard normal curve to the left of �z.05 is also .05. See Figure 4.20.

0

zα

z curve Shaded area = P(Z ≥ zα) = α

Figure 4.19 za notation illustrated

Table 4.1 Standard normal percentiles and critical values

Percentile 90 95 97.5 99 99.5 99.9 99.95
a (tail area) .1 .05 .025 .01 .005 .001 .0005
za = 100(1 � a)th percentile 1.28 1.645 1.96 2.33 2.58 3.08 3.27

0

z
.05 

= 95th percentile = 1.645–1.645 = –z
.05 

z curve

Shaded area = .05Shaded area = .05

Figure 4.20 Finding z.05 ■
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Nonstandardized Normal Distributions
When X * N(l, r), probabilities involving X may be computed by “standardizing.” A standardized
variable has the form (X � l)/r. Subtracting l shifts the mean from l to zero; dividing by r scales
the variable so that the standard deviation is 1 rather than r.

Standardizing amounts to calculating a distance from the mean value and then re-expressing the
distance as some number of standard deviations. For example, if l = 100 and r = 15, then x = 130
corresponds to z = (130 − 100)/15 = 30/15 = 2.00. Thus 130 is 2 standard deviations above (i.e., to
the right of) the mean value. Similarly, standardizing 85 gives (85 − 100)/15 = −1.00, so 85 is 1
standard deviation below the mean. According to the next proposition, the z table applies to any
normal distribution provided that we think in terms of number of standard deviations away from the
mean value.

PROPOSITION If X * N(µ, r), then the “standardized” rv Z defined by

Z ¼ X � l
r

has a standard normal distribution. Thus

Pða�X� bÞ ¼ P
a� l
r

� Z � b� l
r

� �
¼ U

b� l
r

� �
� U

a� l
r

 �
;

PðX� aÞ ¼ U
a� l
r

 �
; PðX� bÞ ¼ 1� U

b� l
r

� �
;

and the (100p)th percentile of the N(µ, r) distribution is given by

gp ¼ lþU�1ðpÞ � r:

Conversely, if Z * N(0, 1) and µ and r are constants (with r > 0), then the
“unstandardized” rv X = µ + rZ has a normal distribution with mean µ and
standard deviation r.

Proof Let X * N(µ, r). Then the cdf of Z = (X � µ)/r is given by

FZðzÞ ¼ PðZ� zÞ

¼ P
X � l
r

� z

� �

¼ PðX� lþ zrÞ ¼
Zlþ zr

�1
f ðx; l; rÞdx ¼

Zlþ zr

�1

1

r
ffiffiffiffiffiffi
2p

p e�ðx�lÞ2=ð2r2Þdx

Now make the substitution u = (x � µ)/r. The new limits of integration become �1 to z, and the
differential dx is replaced by r du, resulting in
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FZðzÞ ¼
Zz

�1

1

r
ffiffiffiffiffiffi
2p

p e�u2=2rdu ¼
Zz

�1

1ffiffiffiffiffiffi
2p

p e�u2=2du ¼ UðzÞ

Thus, the cdf of (X � µ)/r is the standard normal cdf, so (X � µ)/r * N(0, 1).
The probability formulas in the statement of the proposition follow directly from this main result,

as does the formula for the (100p)th percentile:

p ¼ PðX� gpÞ ¼ P
X � l
r

� gp � l

r

� �
¼ U

gp � l

r

 �
) gp � l

r
¼ U�1ðpÞ ) gp ¼ lþU�1ðpÞ � r

The converse statement Z * N(0, 1) ) µ + rZ * N(µ, r) is derived similarly. ■

The key idea of this proposition is that by standardizing, any probability involving X can be
expressed as a probability involving a standard normal rv Z, so that the z table can be used. This is
illustrated in Figure 4.21.

Software eliminates the need for standardizing X, although the standard normal distribution is still
important in its own right. Table 4.2 at the end of this section details the relevant R commands, which
are also illustrated in the following examples.

Example 4.23 The authors of the article “Assessing the Importance of Surgeon Hand Anthro-
pometry on the Design of Medical Devices” (J. Med. Devices 2017) investigate whether standard
surgical instruments, such as some surgical staplers, might be too large for some physicians’ hands.
According to their research, the proximal grip distance (a measure of one’s index finger) for male
surgeons follows a normal distribution with mean 7.20 cm and standard deviation 0.51 cm. To use
one particular stapler, the surgeon’s proximal grip distance must be at least 6.83 cm. What is the
probability a male surgeon’s hand is large enough to use this stapler? If we let X denote the proximal
grip distance of a randomly selected male surgeon, then standardizing gives X � 6.83 if and only if

X � 7:20
0:51

� 6:83� 7:20
0:51

Thus

PðX� 6:83Þ ¼ P
X � 7:20
0:51

� 6:83� 7:20
0:51

� �
¼ PðZ� � 0:73Þ

¼ 1� PðZ\� 0:73Þ ¼ 1� Uð�0:73Þ ¼ 1� :2327 ¼ :7673

xμ 0

(x− μ)/σ

N(μ,σ)
N(0,1)

=

Figure 4.21 Equality of nonstandard and standard normal curve areas
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This is illustrated in Figure 4.22. In other words, nearly a quarter of male surgeons would not be able
to use this particular surgical stapler, because their hands are too small (or the stapler is too large,
depending on your perspective).

As you might imagine, the situation is worse for female surgeons, whose proximal grip distance
distribution can be modeled as N(6.58, 0.50). Denoting the appropriate rv by Y, the probability a
female surgeon cannot use this stapler is

PðY\6:83Þ ¼ P
Y � 6:58
0:50

\
6:83� 6:58

0:50

� �
¼ PðZ\0:5Þ ¼ Uð0:5Þ ¼ :6915

Fortunately, as noted by the authors of the article, another brand of surgical stapler exists for which
the required proximal grip distance is only 5.13 cm, meaning that practically all surgeons of either sex
can comfortably use this other brand of stapler. ■

Example 4.24 The amount of distilled water dispensed by a machine is normally distributed with
mean value 64 oz and standard deviation .78 oz. What container size c will ensure that overflow
occurs only .5% of the time? If X denotes the amount dispensed, the desired condition is that
P(X > c) = .005, or, equivalently, that P(X � c) = .995. Thus c is the 99.5th percentile of the normal
distribution with l = 64 and r = .78. The 99.5th percentile of the standard normal distribution is
U−1(.995) � 2.58, so

c ¼ g:995 ¼ 64þð2:58Þð:78Þ ¼ 64þ 2:0 ¼ 66:0 oz

This is illustrated in Figure 4.23.

The R command to calculate this percentile is qnorm(.995,64,.78). ■

6.83

P(X ≥ 6.83)

7.20

Normal, μ = 7.20, σ = .51

0

–0.73

z curve

Figure 4.22 Normal curves for Example 4.23

c = 99.5th percentile = 66.0

Shaded area = .995

μ = 64

Figure 4.23 Distribution of amount dispensed for Example 4.24
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Example 4.25 The return on a diversified investment portfolio is normally distributed. What is the
probability that the return is within 1 standard deviation of its mean value? This question can be
answered without knowing either l or r, as long as the distribution is known to be normal. That is,
the answer is the same for any normal distribution:

P
X is within one standard

deviation of its mean

� �
¼ Pðl� r�X� lþ rÞ

¼ P
l� r� l

r
� Z� lþ r� l

r

 �
¼ P �1� Z� 1ð Þ
¼ Uð1Þ � Uð�1Þ ¼ :6826

The probability that X is within 2 standard deviations of the mean is P(−2 � Z � 2) = .9544 and
the probability that X is within 3 standard deviations of the mean is P(−3 � Z � 3) = .9973. ■

The results of Example 4.25 are often reported in percentage form and referred to as the empirical
rule (because empirical evidence has shown that histograms of real data can very frequently be
approximated by normal curves).

EMPIRICAL RULE If the population distribution of a variable is (approximately) normal, then
1. Roughly 68% of the values are within 1 SD of the mean.
2. Roughly 95% of the values are within 2 SDs of the mean.
3. Roughly 99.7% of the values are within 3 SDs of the mean.

It is indeed unusual to observe a value from a normal population that is much farther than 2 standard
deviations from l. These results will be important in the development of hypothesis-testing proce-
dures in later chapters.

The Normal MGF
The moment generating function provides a straightforward way to establish several important results
concerning normal distributions.

PROPOSITION The moment generating function of a normally distributed random variable X is

MXðtÞ ¼ eltþ r2t2=2

Proof Consider first the special case of a standard normal rv Z. Then

MZðtÞ ¼ EðetZÞ ¼
Z1
�1

etz
1ffiffiffiffiffiffi
2p

p e�z2=2dz ¼
Z1
�1

1ffiffiffiffiffiffi
2p

p e�ðz2�2tzÞ=2dz

Completing the square in the exponent, we have
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MZðtÞ ¼ et
2=2

Z1
�1

1ffiffiffiffiffiffi
2p

p e�ðz2�2tzþ t2Þ=2dz ¼ e t
2=2

Z1
�1

1ffiffiffiffiffiffi
2p

p e�ðz�tÞ2=2dz

The last integral is the area under a normal density with mean t and standard deviation 1, so the value

of the integral is 1. Therefore, MzðtÞ ¼ et
2=2.

Now let X be any normal rv with mean l and standard deviation r. Then, by the proposition earlier
in this section, (X − l)/r = Z, where Z is standard normal. Rewrite this relationship as X = l + rZ,
and use the property MaY þ bðtÞ ¼ ebtMYðatÞ:

MXðtÞ ¼ Mlþ rZðtÞ ¼ eltMZðrtÞ ¼ elter
2t2=2 ¼ eltþr2t2=2 �

The normal mgf can be used to establish that µ and r are indeed the mean and standard deviation of
X, as claimed earlier (Exercise 68). Also, by the mgf uniqueness property, any rv X whose moment
generating function has the form specified above is necessarily normally distributed. For example, if it

is known that the mgf of X is MXðtÞ ¼ e8t
2
, then X must be a normal rv with mean µ = 0 and standard

deviation r = 4, since the N(0, 4) distribution has e8t
2
as its mgf.

It was established earlier in this section that if X * N(µ, r) and Z = (X � µ)/r, then Z * N(0, 1),
and vice versa. This standardizing transformation is actually a special case of a much more general
property.

PROPOSITION Let X * N(µ, r). Then for any constants a and b with a 6¼ 0, aX + b is also
normally distributed. That is, any linear rescaling of a normal rv is normal.

The proof of this proposition uses mgfs and is left as an exercise (Exercise 70). This proposition
provides a much easier proof of the earlier relationship between X and Z. The rescaling formulas and
this proposition combine to give the following statement: if X is normally distributed and
Y = aX + b (a 6¼ 0), then Y is also normal, with mean lY ¼ alX þ b and standard deviation
rY ¼ jajrX .
The Normal Distribution and Discrete Populations
The normal distribution is often used as an approximation to the distribution of values in a discrete
population. In such situations, extra care must be taken to ensure that probabilities are computed in an
accurate manner.

Example 4.26 IQ (as measured by a standard test) is known to be approximately normally dis-
tributed with l = 100 and r = 15. What is the probability that a randomly selected individual has an
IQ of at least 125? Letting X = the IQ of a randomly chosen person, we wish P(X � 125). The
temptation here is to standardize X � 125 immediately as in previous examples. However, the IQ
population is actually discrete, since IQs are integer-valued. So, the normal curve is an approximation
to a discrete probability histogram, as pictured in Figure 4.24.
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The rectangles of the histogram are centered at integers, so IQs of at least 125 correspond to
rectangles beginning at 124.5, as shaded in Figure 4.24. Thus we really want the area under the
approximating normal curve to the right of 124.5. Standardizing this value gives P(Z � 1.63) =
.0516. If we had standardized X � 125, we would have obtained P(Z � 1.67) = .0475. The dif-
ference is not great, but the answer .0516 is more accurate. Similarly, P(X = 125) would be
approximated by the area between 124.5 and 125.5, since the area under the normal curve above the
single value 125 is zero. ■

The correction for discreteness of the underlying distribution in Example 4.26 is often called a
continuity correction. It is useful in the following application of the normal distribution to the
computation of binomial probabilities. The normal distribution was actually created as an approxi-
mation to the binomial distribution (by Abraham de Moivre in the 1730s).

Approximating the Binomial Distribution
Recall that the mean value and standard deviation of a binomial random variable X are l = np and
r ¼ ffiffiffiffiffiffiffiffi

npq
p

, respectively. Figure 4.25a (p. 224) displays a probability histogram for the binomial

distribution with n = 20, p = .6 [so l = 20(.6) = 12 and r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20ð:6Þð:4Þp ¼ 2:19]. A normal curve

with mean value and standard deviation equal to the corresponding values for the binomial distri-
bution has been superimposed on the probability histogram. Although the probability histogram is a
bit skewed (because p 6¼ .5), the normal curve gives a very good approximation, especially in the
middle part of the picture. The area of any rectangle (probability of any particular X value) except
those in the extreme tails can be accurately approximated by the corresponding normal curve area.

Thus P(X = 10) = 20
10

� �
ð:6Þ10ð:4Þ10 = .117, whereas the area under the normal curve between 9.5

and 10.5 is P(−1.14 � Z � −.68) = .120.
On the other hand, a normal distribution is a poor approximation to a discrete distribution that is

heavily skewed. For example, Figure 4.25b shows a probability histogram for the Bin(20, .1) dis-
tribution and the normal pdf with the same mean and standard deviation (µ = 2 and r = 1.34).
Clearly, we would not want to use this normal curve to estimate binomial probabilities, even with a
continuity correction.

125

Figure 4.24 A normal approximation to a discrete distribution
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PROPOSITION Let X be a binomial rv based on n trials with success probability p. Then if the
binomial probability histogram is not too skewed, X has approximately a normal
distribution with l = np and r ¼ ffiffiffiffiffiffiffiffi

npq
p

. In particular, for x = a possible value of
X,

PðX� xÞ ¼ B x; n; pð Þ � area under the normal curve to the left of xþ :5ð Þ

¼ U
xþ :5� npffiffiffiffiffiffiffiffi

npq
p

� �

In practice, the approximation is adequate provided that both np � 10 and
nq � 10.

If either np < 10 or nq < 10, the binomial distribution may be too skewed for the (symmetric) normal
curve to give accurate approximations.

Example 4.27 Suppose that 25% of all licensed drivers in a state do not have insurance. Let X be the
number of uninsured drivers in a random sample of size 50 (somewhat perversely, a success is an
uninsured driver), so that p = .25. Then l = 12.5 and r = 3.062. Since np = 50(.25) = 12.5 � 10
and nq = 37.5 � 10, the approximation can safely be applied:

PðX� 10Þ ¼ Bð10; 50; :25Þ � U
10þ :5� 12:5

3:062

� �
¼ Uð�:65Þ ¼ :2578

Similarly, the probability that between 5 and 15 (inclusive) of the selected drivers are uninsured is

Pð5�X� 15Þ ¼ Bð15; 50; :25Þ � Bð4; 50; :25Þ

� U
15:5� 12:5

3:062

� �
� U

4:5� 12:5
3:062

� �
¼ :8320

The exact probabilities are .2622 and .8348, respectively, so the approximations are quite good. In the
last calculation, the probability P(5 � X � 15) is being approximated by the area under the normal
curve between 4.5 and 15.5—the continuity correction is used for both the upper and lower limits. ■
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Figure 4.25 Binomial probability histograms with normal approximation curves superimposed:
(a) n = 20 and p = .6 (a good fit); (b) n = 20 and p = .1 (a poor fit)
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The wide availability of software for doing binomial probability calculations, even for large values
of n, has considerably diminished the importance of the normal approximation. However, it is
important for another reason. When the objective of an investigation is to make an inference about a
population proportion p, interest will focus on the sample proportion of successes P̂ = X/n rather than
on X itself. Because this proportion is just X multiplied by the constant 1/n, the earlier rescaling
proposition tells us that P̂ will also have approximately a normal distribution (with mean l = p and

standard deviation r ¼ ffiffiffiffiffiffiffiffiffiffi
pq=n

p Þ provided that both np � 10 and nq � 10. This normal approxi-
mation is the basis for several inferential procedures to be discussed in later chapters.

It is quite difficult to give a direct proof of the validity of this normal approximation (the first one
goes back almost 300 years to de Moivre). In Chapter 6, we’ll see that it is a consequence of an
important general result called the Central Limit Theorem.

Normal Distribution Calculations with Software
Many software packages, including R, have built-in functions to determine both probabilities under a
normal curve and quantiles (aka percentiles) of any given normal distribution. Table 4.2 summarizes
the relevant R code.

In the special case of a standard normal distribution, R will allow the user to drop the last two
arguments, µ and r. That is, the R commands pnorm(x) and pnorm(x,0,1) yield the same result
for any number x, and a similar comment applies to qnorm. R also has a built-in function for the
normal pdf: dnorm(x,µ,r). However, this function is generally only used when one desires to
graph a normal density curve, x vs. f(x; µ, r), since the pdf evaluated at particular x does not represent
a probability (as discussed in Section 4.1).

Exercises: Section 4.3 (39–70)

39. Let Z be a standard normal random variable
and calculate the following probabilities,
drawing pictures wherever appropriate.

a. P(0 � Z � 2.17)
b. P(0 � Z � 1)
c. P(−2.50 � Z � 0)
d. P(−2.50 � Z � 2.50)
e. P(Z � 1.37)
f. P(−1.75 � Z)
g. P(−1.50 � Z � 2.00)
h. P(1.37 � Z � 2.50)
i. P(1.50 � Z)
j. P(|Z| � 2.50)

40. In each case, determine the value of the
constant c that makes the probability
statement correct.

a. U(c) = .9838
b. P(0 � Z � c) = .291
c. P(c � Z) = .121
d. P(−c � Z � c) = .668
e. P(c � |Z|) = .016

41. Find the following percentiles for the
standard normal distribution. Interpolate
where appropriate.

a. 91st
b. 9th

Table 4.2 Normal probability and quantile calculations in R

Function cdf Quantile; i.e., the (100p)th percentile
Notation U x�l

r

� �
gp ¼ lþU�1ðpÞ � r

R pnorm(x,µ,r) qnorm(p,µ,r)
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c. 75th
d. 25th
e. 6th

42. Determine za for the following:

a. a = .0055
b. a = .09
c. a = .663

43. If X is a normal rv with mean 80 and
standard deviation 10, compute the fol-
lowing probabilities by standardizing:

a. P(X � 100)
b. P(X � 80)
c. P(65 � X � 100)
d. P(70 � X)
e. P(85 � X � 95)
f. P(|X − 80| � 10)

44. The plasma cholesterol level (mg/dL) for
patients with no prior evidence of heart
disease who experience chest pain is nor-
mally distributed with mean 200 and stan-
dard deviation 35. Consider randomly
selecting an individual of this type. What is
the probability that the plasma cholesterol
level

a. Is at most 250?
b. Is between 300 and 400?
c. Differs from the mean by at least 1.5

standard deviations?

45. The article “Reliability of Domestic-Waste
Biofilm Reactors” (J. Envir. Engr. 1995:
785–790) suggests that substrate concen-
tration (mg/cm3) of influent to a reactor is
normally distributed with l = .30 and
r = .06.

a. What is the probability that the concen-
tration exceeds .25?

b. What is the probability that the con-
centration is at most .10?

c. How would you characterize the largest
5% of all concentration values?

46. Suppose the diameter at breast height (in.)
of trees of a certain type is normally dis-
tributed with l = 8.8 and r = 2.8, as sug-
gested in the article “Simulating a

Harvester-Forwarder Softwood Thinning”
(Forest Products J., May 1997: 36–41).

a. What is the probability that the diameter
of a randomly selected tree will be at
least 10 in.? Will exceed 10 in.?

b. What is the probability that the diameter
of a randomly selected tree will exceed
20 in.?

c. What is the probability that the diameter
of a randomly selected tree will be
between 5 and 10 in.?

d. What value c is such that the interval
(8.8 − c, 8.8 + c) includes 98% of all
diameter values?

e. If four trees are independently selected,
what is the probability that at least one
has a diameter exceeding 10 in.?

47. There are two machines available for cut-
ting corks intended for use in wine bottles.
The first produces corks with diameters that
are normally distributed with mean 3 cm
and standard deviation .1 cm. The second
machine produces corks with diameters that
have a normal distribution with mean
3.04 cm and standard deviation .02 cm.
Acceptable corks have diameters between
2.9 and 3.1 cm. Which machine is more
likely to produce an acceptable cork?

48. Human body temperatures for healthy
individuals have approximately a normal
distribution with mean 98.25 °F and stan-
dard deviation .75 °F. (The past accepted
value of 98.6 °F was obtained by convert-
ing the Celsius value of 37°, which is cor-
rect to the nearest integer.)

a. Find the 90th percentile of the
distribution.

b. Find the 5th percentile of the
distribution.

c. What temperature separates the coolest
25% from the others?

49. The article “Monte Carlo Simulation—Tool
for Better Understanding of LRFD”
(J. Struct. Engr. 1993: 1586–1599) sug-
gests that yield strength (ksi) for A36 grade
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steel is normally distributed with l = 43
and r = 4.5.

a. What is the probability that yield
strength is at most 40? Greater than 60?

b. What yield strength value separates the
strongest 75% from the others?

50. The automatic opening device of a military
cargo parachute has been designed to open
when the parachute is 200 m above the
ground. Suppose opening altitude actually
has a normal distribution with mean value
200 m and standard deviation 30 m.
Equipment damage will occur if the para-
chute opens at an altitude of less than
100 m. What is the probability that there
is equipment damage to the payload of
at least 1 of 5 independently dropped
parachutes?

51. The temperature reading from a thermo-
couple placed in a constant temperature
medium is normally distributed with mean
l, the actual temperature of the medium,
and standard deviation r. What would the
value of r have to be to ensure that 95% of
all readings are within .1° of l?

52. The distribution of resistance for resistors
of a certain type is known to be normal,
with 10% of all resistors having a resistance
exceeding 10.256 X and 5% having a
resistance smaller than 9.671 ohms. What
are the mean value and standard deviation
of the resistance distribution?

53. If adult female heights are normally dis-
tributed, what is the probability that the
height of a randomly selected woman is

a. Within 1.5 SDs of its mean value?
b. Farther than 2.5 SDs from its mean

value?
c. Between 1 and 2 SDs from its mean

value?

54. A machine that produces ball bearings has
initially been set so that the true average
diameter of the bearings it produces is .500
in. A bearing is acceptable if its diameter is
within .004 in. of this target value. Sup-
pose, however, that the setting has changed
during the course of production, so that the
bearings have normally distributed diame-
ters with mean value .499 in. and standard
deviation .002 in. What percentage of the
bearings produced will not be acceptable?

55. The Rockwell hardness of a metal is
determined by impressing a hardened point
into the surface of the metal and then
measuring the depth of penetration of the
point. Suppose the Rockwell hardness of an
alloy is normally distributed with mean 70
and standard deviation 3. (Rockwell hard-
ness is measured on a continuous scale.)

a. If a specimen is acceptable only if its
hardness is between 67 and 75,what is the
probability that a randomly chosen spec-
imen has an acceptable hardness?

b. If the acceptable range of hardness is
(70 � c, 70 + c), for what value of
c would 95% of all specimens have
acceptable hardness?

c. If the acceptable range is as in part
(a) and the hardness of each of ten ran-
domly selected specimens is indepen-
dently determined, what is the expected
number of acceptable specimens among
the ten?

d. What is the probability that at most 8 of
10 independently selected specimens
have a hardness of less than 73.84?
[Hint: Y = the number among the ten
specimens with hardness less than 73.84
is a binomial variable; what is p?]
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56. The weight distribution of parcels sent in a
certain manner is normal with mean value
12 lb and standard deviation 3.5 lb. The
parcel service wishes to establish a weight
value c beyond which there will be a sur-
charge. What value of c is such that 99% of
all parcels are at least 1 lb under the sur-
charge weight?

57. Suppose Appendix Table A.3 contained
U(z) only for z � 0. Explain how you
could still compute

a. P(−1.72 � Z � −.55)
b. P(−1.72 � Z � .55)

Is it necessary to table U(z) for z negative?
What property of the standard normal
curve justifies your answer?

58. Let X be the birth weight, in grams, of a
randomly selected full-term baby. The
article “Fetal Growth Parameters and Birth
Weight: Their Relationship to Neonatal
Body Composition” (Ultrasound Obstetrics
Gynecol. 2009: 441–446) suggests that X is
normally distributed with mean 3500 and
standard deviation 600.

a. Sketch the relevant density curve,
including tick marks on the horizontal
scale.

b. What is P(3000 < X < 4500), and how
does this compare to P(3000 �
X � 4500)?

c. What is the probability that the weight of
such a newborn is less than 2500 g?

d. What is the probability that the weight
of such a newborn exceeds 6000 g
(roughly 13.2 lb)?

e. How would you characterize the most
extreme .1% of all birth weights?

f. Use the rescaling proposition from this
section to determine the distribution of
birth weight expressed in pounds (shape,

mean, and standard deviation), and then
recalculate the probability from part (c).
How does this compare to your previous
answer?

59. Based on extensive data from an urban
freeway near Toronto, Canada, “it is
assumed that free speeds can best be rep-
resented by a normal distribution” [“Impact
of Driver Compliance on the Safety and
Operational Impacts of Freeway Variable
Speed Limit Systems” (J. Transp. Engr.
2011: 260–268)]. The mean and standard
deviation reported in the article were
119 km/h and 13.1 km/h, respectively.

a. What is the probability that the speed of
a randomly selected vehicle is between
100 and 120 km/h?

b. What speed characterizes the fastest
10% of all speeds?

c. The posted speed limit was 100 km/h.
What percentage of vehicles was trav-
eling at speeds exceeding this posted
limit?

d. If five vehicles are randomly and inde-
pendently selected, what is the proba-
bility that at least one is not exceeding
the posted speed limit?

e. What is the probability that the speed of
a randomly selected vehicle exceeds 70
miles per hour?

60. Chebyshev’s inequality, introduced in
Chapter 3 Exercise 45, is valid for contin-
uous as well as discrete distributions. It
states that for any number k � 1,
Pð X � lj j � krÞ � 1/k2 (see the afore-
mentioned exercise for an interpretation
and Chapter 3 Exercise 163 for a proof).
Obtain this probability in the case of a
normal distribution for k = 1, 2, and 3, and
compare to the Chebyshev upper bound.
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61. Let X denote the number of flaws along a
100-m reel of magnetic tape (an integer-
valued variable). Suppose X has approxi-
mately a normal distribution with l = 25
and r = 5. Use the continuity correction to
calculate the probability that the number of
flaws is

a. Between 20 and 30, inclusive.
b. At most 30. Less than 30.

62. Let X have a binomial distribution with
parameters n = 25 and p. Calculate each of
the following probabilities using the normal
approximation (with the continuity correc-
tion) for the cases p = .5, .6, and .8 and
compare to the exact probabilities calcu-
lated from Appendix Table A.1.

a. P(15 � X � 20)
b. P(X � 15)
c. P(20 � X)

63. Suppose that 10% of all steel shafts pro-
duced by a process are nonconforming but
can be reworked (rather than having to be
scrapped). Consider a random sample of
200 shafts, and let X denote the number
among these that are nonconforming and
can be reworked. What is the (approximate)
probability that X is

a. At most 30?
b. Less than 30?
c. Between 15 and 25 (inclusive)?

64. Suppose only 70% of all drivers in a state
regularly wear a seat belt. A random sample
of 500 drivers is selected. What is the
probability that

a. Between 320 and 370 (inclusive) of the
drivers in the sample regularly wear a
seat belt?

b. Fewer than 325 of those in the sample
regularly wear a seat belt? Fewer than
315?

65. In response to concerns about nutritional
contents of fast foods, McDonald’s
announced that it would use a new cooking
oil for its French fries that would decrease
substantially trans-fatty acid levels and
increase the amount of more beneficial
polyunsaturated fat. The company claimed
that 97 out of 100 people cannot detect a
difference in taste between the new and old
oils. Assuming that this figure is correct (as
a long-run proportion), what is the
approximate probability that in a random
sample of 1000 individuals who have pur-
chased fries at McDonald’s,

a. At least 40 can taste the difference
between the two oils?

b. At most 5% can taste the difference
between the two oils?

66. The following proof that the normal pdf
integrates to 1 comes courtesy of Professor
Robert Young, Oberlin College. Let f(z)
denote the standard normal pdf, and con-
sider the function of two variables

gðx; yÞ ¼ f ðxÞ � f ðyÞ
¼ 1ffiffiffiffiffiffi

2p
p e�x2=2 1ffiffiffiffiffiffi

2p
p e�y2=2

¼ 1
2p

e�ðx2 þ y2Þ=2

Let V denote the volume under the graph of
g(x, y) above the xy-plane.

a. Let A denote the area under the standard
normal curve. By setting up the double
integral for the volume underneath g(x, y),
show that V = A2.

b. Using the rotational symmetry of g(x, y),
V can be determined by adding up the
volumes of shells from rotation about
the y-axis:
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V ¼
Z1
0

2p r� 1
2p

e�r2=2dr

Show this integral equals 1, then use (a) to
establish that the area under the standard
normal curve is 1.

c. Show that
R1
�1 f ðx; l; rÞdx = 1. [Hint:

Write out the integral, and then make a
substitution to reduce it to the standard
normal case. Then invoke (b).]

67. Suppose X * N(µ, r).
a. Show via integration that E(X) = µ.

[Hint: Make the substitution
u = (x − µ)/r, which will create two
integrals. For one, use the symmetry of
the pdf; for the other, use the fact that
the standard normal pdf integrates to 1.]

b. Show via integration that V(X) = r2.
[Hint: Evaluate the integral for

E½ðX � lÞ2� rather than using the vari-
ance shortcut formula. Use the same
substitution as in part (a).]

68. The moment generating function can be
used to find the mean and variance of the
normal distribution.

a. Use derivatives of MX(t) to verify that
E(X) = µ and V(X) = r2.

b. Repeat (a) using RX(t) = ln[MX(t)], and
compare with part (a) in terms of effort.

69. There is no nice formula for the standard
normal cdf U(z), but several good

approximations have been published in
articles. The following is from “Approxi-
mations for Hand Calculators Using Small
Integer Coefficients” (Math. Comput. 1977:
214–222). For 0 < z � 5.5,

PðZ � zÞ ¼ 1� UðzÞ

� :5 exp � ð83zþ 351Þzþ 562
ð703=zÞþ 165

� �	 �

The relative error of this approximation is
less than .042%. Use this to calculate
approximations to the following probabili-
ties, and compare whenever possible to the
probabilities obtained from Appendix
Table A.3.

a. P(Z � 1)
b. P(Z < –3)
c. P(–4 < Z < 4)
d. P(Z > 5)

70. a. Use mgfs to show that if X has a normal
distribution with parameters µX and rX,
then Y = aX + b (a linear function of
X) also has a normal distribution. What
are the parameters of the distribution of
Y [i.e., µY and rY]?

b. If when measured in °C, temperature is
normally distributed with mean 115 and
standard deviation 2, what can be said
about the distribution of temperature
measured in °F?

4.4 The Gamma Distribution and Its Relatives

The graph of any normal pdf is bell-shaped and thus symmetric. But in many situations, the variable
of interest to the experimenter might have a skewed distribution. A family of pdfs that yields a wide
variety of skewed distributional shapes is the gamma family. To define the family of gamma dis-
tributions, we first need to introduce a function that plays an important role in many branches of
mathematics.
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DEFINITION For a > 0, the gamma function C(a) is defined by

CðaÞ ¼
Z1
0

xa�1e�xdx

The most important properties of the gamma function are the following:
1. For any a > 1, C(a) = (a − 1) � C(a − 1) (via integration by parts)
2. For any positive integer, n, C(n) = (n − 1)!
3. C 1

2

� � ¼ ffiffiffi
p

p

The following proposition will prove useful for several computations that follow.

PROPOSITION For any a, b > 0,

Z1
0

xa�1e�x=bdx ¼ baCðaÞ ð4:5Þ

Proof Make the substitution u = x/b, so that x = bu and dx = b du:

Z1
0

xa�1e�x=bdx ¼
Z1
0

ðbuÞa�1e�ubdu ¼ ba
Z1
0

ua�1e�udu ¼ baCðaÞ

The last equality comes from the definition of the gamma function. ■

The Family of Gamma Distributions
With the preceding proposition in mind, we make the following definition.

DEFINITION A continuous random variable X is said to have a gamma distribution
if the pdf of X is

f ðx; a; bÞ ¼ 1
baCðaÞ x

a�1e�x=b x[ 0 ð4:6Þ

where the parameters a and b satisfy a > 0, b > 0. When b = 1, X is said to
have a standard gamma distribution, and its pdf may be denoted f(x; a).
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It’s clear that f(x; a, b) � 0 for all x; the previous proposition guarantees that this function integrates
to 1, as required. Figure 4.26a illustrates the graphs of the gamma pdf for several (a, b) pairs, whereas
Figure 4.26b presents graphs of the standard gamma pdf. For the standard pdf, when a � 1, f(x; a) is
strictly decreasing as x increases; when a > 1, f(x; a) rises to a maximum and then decreases. The
parameter b in (4.6) is called a scale parameter because values other than 1 either stretch or compress
the pdf in the x direction.

PROPOSITION The moment generating function of a gamma random variable is

MXðtÞ ¼ 1
ð1� btÞa

Proof By definition, the mgf is

MXðtÞ ¼ EðetXÞ ¼
Z1
0

etx
xa�1

CðaÞba e
�x=bdx ¼

Z1
0

xa�1

CðaÞba e
�xð�tþ 1=bÞdx

Now use Expression (4.5): provided –t + 1/b > 0, i.e., t < 1/b,

1
CðaÞba

Z1
0

xa�1e�ð�tþ 1=bÞxdx ¼ 1
CðaÞba � CðaÞ

1
�tþ 1=b

� �a

¼ 1
ð1� btÞa �

The mean and variance can be obtained from the moment generating function (Exercise 82), but they
can also be obtained directly through integration (Exercise 83).

PROPOSITION The mean and variance of a random variable X having the gamma
distribution f(x; a, b) are
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α = 1, β = 1
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Figure 4.26 (a) Gamma density curves; (b) standard gamma density curves
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EðXÞ ¼ l ¼ ab VðXÞ ¼ r2 ¼ ab2

When X is a standard gamma rv, the cdf of X, which is

Gðx; aÞ ¼
Zx

0

ya�1e�y

CðaÞ dy x[ 0 ð4:7Þ

is called the incomplete gamma function. (In mathematics literature, the incomplete gamma function
sometimes refers to (4.7) without the denominator C(a) in the integrand.) In Appendix Table A.4, we
present a small tabulation of G(x; a) for a = 1, 2, …, 10 and x = 1, 2, …, 15. Table 4.3 (p. 236)
provides the R commands related to the gamma cdf, which are illustrated in the following examples.

Example 4.28 Suppose the reaction time X (in seconds) of a randomly selected individual to a
certain stimulus has a standard gamma distribution with a = 2. Since X is continuous,

Pð3�X� 5Þ ¼ PðX� 5Þ � PðX� 3Þ ¼ Gð5; 2Þ � Gð3; 2Þ ¼ :960� :801 ¼ :159

This probability can be obtained in R with pgamma(5,2)- pgamma(3,2).
The probability that the reaction time is more than 4 s is

PðX[ 4Þ ¼ 1� PðX� 4Þ ¼ 1� Gð4; 2Þ ¼ 1� :908 ¼ :092 �

The incomplete gamma function can also be used to compute probabilities involving gamma dis-
tributions for any b > 0.

PROPOSITION Let X have a gamma distribution with parameters a and b. Then for
any x > 0, the cdf of X is given by

PðX� xÞ ¼ G
x

b
; a

� �
;

the incomplete gamma function evaluated at x/b.

The proof is similar to that of Expression (4.5).

Example 4.29 Web servers typically have security algorithms that detect and flag “abnormal”
connections from suspicious IP addresses, which can indicate possible hackers. Data from the article
“Exact Inferences for a Gamma Distribution” (J. Quality Technol. 2014: 140–149) suggests that, for
one particular server receiving abnormal connections from one specific IP address, the time X in hours
between attempted connections can be modeled using a gamma distribution with a = 2 and b = 2.5.
(In fact, the article provides a range of estimates for the parameters; we’ll encounter such interval
estimates in Chapter 8.) The average time between connections from this suspicious IP address is
E(X) = (2)(2.5) = 5 h, whereas V(X) = (2)(2.5)2 = 12.5 and rX =

ffiffiffiffiffiffiffiffiffi
12:5

p � 3.5 h. The probability
that a connection from this suspicious IP address will arrive between 5 and 10 h after the previous
attempt is
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Pð5�X� 10Þ ¼ PðX� 10Þ � PðX� 5Þ
¼ Gð10=2:5; 2Þ � Gð5=2:5; 2Þ
¼ Gð4; 2Þ � Gð2; 2Þ ¼ :908� :594 ¼ :314

The probability that two connection attempts from this IP address are separated by more than 15 h is

PðX[ 15Þ ¼ 1� PðX� 15Þ
¼ 1� Gð15=2:5; 2Þ ¼ 1� Gð6; 2Þ ¼ 1� :983 ¼ :017

Software can also perform these calculations. For instance, the R commands

pgamma(10,2,1/2.5)-pgamma(5,2,1/2.5)  and  1-pgamma(15,2,1/2.5) 

compute the two probabilities above and return .3144 and .0174, respectively. ■

The Exponential Distribution
The family of exponential distributions provides probability models that are widely used in engi-
neering and science disciplines.

DEFINITION X is said to have an exponential distribution with parameter k (k > 0)
if the pdf of X is

f ðx; kÞ ¼ ke�kx x[ 0 ð4:8Þ

The exponential pdf is a special case of the general gamma pdf (4.6) in which a = 1 and b = 1/k;
some sources write the exponential pdf in the form (1/b)e–x/b. The mean and variance of X are then

l ¼ ab ¼ 1
k

r2 ¼ ab2 ¼ 1

k2

Both the mean and standard deviation of the exponential distribution equal 1/k. Graphs of several
exponential pdfs appear in Figure 4.27.
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Figure 4.27 Exponential density curves
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Unlike the general gamma pdf, the exponential pdf can be easily integrated. In particular, the cdf
of X is

Fðx; kÞ ¼ 0 x\0
1� e�kx x� 0

	

Example 4.30 The response time X at an online computer terminal (the elapsed time between the
end of a user’s inquiry and the beginning of the system’s response to that inquiry) has an exponential
distribution with expected response time equal to 5 s. Then E(X) = 1/k = 5, so k = .2. The proba-
bility that the response time is at most 10 s is

PðX� 10Þ ¼ Fð10; :2Þ ¼ 1� e�ð:2Þð10Þ ¼ 1� e�2 ¼ 1� :135 ¼ :865

The probability that response time is between 5 and 10 s is

Pð5�X� 10Þ ¼ Fð10; :2Þ � Fð5; :2Þ ¼ 1� e�2
� �� 1� e�1

� � ¼ :233 �

The exponential distribution is frequently used as a model for the distribution of times between the
occurrence of successive events, such as customers arriving at a service facility or calls coming into a
switchboard. The reason for this is that the exponential distribution is closely related to the Poisson
process discussed in Chapter 3.

THEOREM Suppose that the number of events occurring in any time interval of length t has a
Poisson distribution with parameter µ = kt (where k, the rate of the event process, is
the expected number of events occurring in 1 unit of time) and that numbers of
occurrences in nonoverlapping intervals are independent of one another. Then the
distribution of elapsed time between the occurrence of two successive events is
exponential with parameter k.

Although a complete proof is beyond the scope of the text, the result is easily verified for the time X1

until the first event occurs:

PðX1 � tÞ ¼ 1� PðX1 [ tÞ ¼ 1� Pðno events in ð0; t�Þ

¼ 1� e�kt � ðktÞ0
0!

¼ 1� e�kt

which is exactly the cdf of the exponential distribution.

Example 4.31 Video-on-demand services must carefully model customers’ or clients’ requests for
videos to optimize the use of the available bandwidth. The article “Distributed Client-Assisted
Patching for Multicast Video-on-Demand Service in an Enterprise Network” (J. Comput. 2017:
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511–520) describes a series of experiments in this area, where client requests are modeled by a
Poisson process. In one such experiment, the “request rate” was k = 0.8 requests per second. Then
the time X between successive requests has an exponential distribution with parameter value 0.8.
The probability that more than 2 s elapse between requests is

PðX[ 2Þ ¼ 1� PðX� 2Þ ¼ 1� Fð2; 0:8Þ ¼ e�ð0:8Þð2Þ ¼ :202

The average time between requests under this setting is E(X) = 1/k = 1/0.8 = 1.25 s (you could also
deduce this directly from the rate without using the exponential model). ■

Another important application of the exponential distribution is to model the distribution of com-
ponent lifetime. A partial reason for the popularity of such applications is the “memoryless”
property of the exponential distribution. Suppose component lifetime is exponentially distributed
with parameter k. After putting the component into service, we leave for a period of t0 h and then
return to find the component still working; what now is the probability that it lasts at least an
additional t hours? In symbols, we wish P(X � t + t0 | X � t0). By the definition of conditional
probability,

PðX� tþ t0 jX� t0Þ ¼ P½ðX� tþ t0Þ \ ðX� t0Þ�
PðX� t0Þ

But the event X � t0 in the numerator is redundant, since both events can occur if and only if
X � t + t0. Therefore,

PðX� tþ t0jX� t0Þ ¼ PðX� tþ t0Þ
PðX� t0Þ ¼ 1� Fðtþ t0; kÞ

1� Fðt0; kÞ ¼ e�kðtþ t0Þ

e�kt0
¼ e�kt

This conditional probability is identical to the original probability P(X � t) that the component
lasted t hours. Thus the distribution of additional lifetime is exactly the same as the original dis-
tribution of lifetime, so at each point in time the component shows no effect of wear. In other words,
the distribution of remaining lifetime is independent of current age.

Although the memoryless property can be justified at least approximately in many applied
problems, in other situations components deteriorate with age or occasionally improve with age (at
least up to a certain point). More general lifetime models are then furnished by the gamma, Weibull,
and lognormal distributions (the latter two are discussed in the next section).

Gamma and Related Calculations with Software
Table 4.3 summarizes the syntax for the gamma and exponential cdfs in R, which follows the pattern
of the other distributions. In a sense, the exponential commands are redundant, since they are just a
special case (a = 1) of the gamma distribution.

Table 4.3 R code for gamma and exponential cdfs

Gamma cdf Exponential cdf

Notation G(x/b; a) F(x; k) = 1 − e–kx

R pgamma(x,a,1/b) pexp(x,k)
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Notice how R parameterizes the distributions: for both the gamma and exponential cdfs, the R
functions take as their last input the “rate” parameter k = 1/b. So, for the gamma rv with parameters
a = 2 and b = 2.5 from Example 4.29, P(X � 15) would be evaluated as pgamma(15,2,1/2.5).
This can be remedied by using a name assignment in the last argument in R; specifically,
pgamma(15,2,scale = 2.5) will instruct R to use b = 2.5 in its gamma probability calculation
and produce the same answer as the previous expressions. Interestingly, as of this writing the same
option does not exist in the pexp function.

To graph gamma or exponential density curves, one can request their pdfs in R by replacing the
leading letter p with d. To find quantiles of either of these distributions, the appropriate replacement
is q. For example, the 75th percentile of the gamma distribution from Example 4.29 can be deter-
mined with qgamma(.75,2,scale = 2.5).

Exercises: Section 4.4 (71–83)

71. Evaluate the following:

a. C(6)
b. C(5/2)
c. G(4; 5) (the incomplete gamma function)
d. G(5; 4)
e. G(0; 4)

72. Let X have a standard gamma distribution
with a = 7. Evaluate the following:

a. P(X � 5)
b. P(X < 5)
c. P(X > 8)
d. P(3 � X � 8)
e. P(3 < X < 8)
f. P(X < 4 or X > 6)

73. Suppose the time spent by a randomly
selected student at a campus computer
laboratory has a gamma distribution with
mean 20 min and variance 80 min2.

a. What are the values of a and b?
b. What is the probability that a student uses

the laboratory for at most 24 min?
c. What is the probability that a student

spends between 20 and 40 min at the
laboratory?

74. Suppose that when a type of transistor is
subjected to an accelerated life test, the
lifetime X (in weeks) has a gamma

distribution with mean 24 weeks and stan-
dard deviation 12 weeks.

a. What is the probability that a transistor
will last between 12 and 24 weeks?

b. What is the probability that a transistor
will last at most 24 weeks? Is the med-
ian of the lifetime distribution less than
24? Why or why not?

c. What is the 99th percentile of the life-
time distribution?

d. Suppose the test will actually be termi-
nated after t weeks. What value of t is
such that only .5% of all transistors
would still be operating at termination?

75. Let X = the time between two successive
arrivals at the drive-up window of a local
bank. If X has an exponential distribution
with k = 1 (which is identical to a standard
gamma distribution with a = 1), compute
the following:

a. The expected time between two succes-
sive arrivals

b. The standard deviation of the time
between successive arrivals

c. P(X � 4)
d. P(2 � X � 5)

76. Let X denote the distance (m) that an ani-
mal moves from its birth site to the first
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territorial vacancy it encounters. Suppose
that for banner-tailed kangaroo rats, X has
an exponential distribution with parameter
k = .01386 (as suggested in the article
“Competition and Dispersal from Multiple
Nests,” Ecology 1997: 873–883).

a. What is the probability that the distance
is at most 100 m? At most 200 m?
Between 100 and 200 m?

b. What is the probability that distance
exceeds the mean distance by more than
2 standard deviations?

c. What is the value of the median dis-
tance?

77. In studies of anticancer drugs it was found
that if mice are injected with cancer cells,
the survival time can be modeled with the
exponential distribution. Without treatment
the expected survival time was 10 h. What
is the probability that

a. A randomly selected mouse will survive
at least 8 h? At most 12 h? Between 8
and 12 h?

b. The survival time of a mouse exceeds
the mean value by more than 2 standard
deviations? More than 3 standard devi-
ations?

78. The special case of the gamma distribution
in which a is a positive integer n is called
an Erlang distribution. If we replace b by
1/k in Expression (4.6), the Erlang pdf is

f ðx; k; nÞ ¼ kn

ðn� 1Þ! x
n�1e�kx x[ 0

It can be shown that if the times between
successive events are independent, each
with an exponential distribution with
parameter k, then the total time X that
elapses before all of the next n events occur
has pdf f(x; k, n).

a. What is the expected value of X? If the
time (in minutes) between arrivals of

successive customers is exponentially
distributed with k = .5, how much time
can be expected to elapse before the
tenth customer arrives?

b. If customer interarrival time is expo-
nentially distributed with k = .5, what is
the probability that the tenth customer
(after the one who has just arrived) will
arrive within the next 30 min?

c. The event {X � t} occurs if and only if
at least n events occur in the next t units
of time. Use the fact that the number of
events occurring in an interval of length
t has a Poisson distribution with mean kt
to write an expression (involving Pois-
son probabilities) for the Erlang cumu-
lative distribution function F(t; k, n) =
P(X � t).

79. A system consists of five identical compo-
nents connected in series as shown:

As soon as one component fails, the entire
system will fail. Suppose each component
has a lifetime that is exponentially dis-
tributed with k = .01 and that components
fail independently of one another. Define
events Ai = {ith component lasts at least
t hours}, i = 1, …, 5, so that the Ai’s are
independent events. Let X = the time at
which the system fails—that is, the shortest
(minimum) lifetime among the five com-
ponents.

a. The event {X � t} is equivalent to what
event involving A1, …, A5?

b. Using the independence of the five Ai’s,
compute P(X � t). Then obtain F(t) =
P(X � t) and the pdf of X. What type of
distribution does X have?

c. Suppose there are n components, each
having exponential lifetime with
parameter k. What type of distribution
does X have?

1 2 3 4 5
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80. If X has an exponential distribution with
parameter k, derive a general expression for
the (100p)th percentile of the distribution.
Then specialize to obtain the median.

81. The article “Numerical Prediction of Sur-
face Wear and Roughness Parameters
During Running-In for Line Contacts
Under Mixed Lubrication” (J. Tribol., Nov.
2018) proposes probability models for
several variables that arise in studying the
wear of mechanical components like gears
and piston rings. These variables include
X = wear particle thickness (microns) and
W = wear loss (cubic microns).

a. The article’s authors make mathematical
arguments that (1) X should follow an
exponential distribution and (2) the pdfs
of W and X should be related by

fWðwÞ / w2 � fXðwÞ

What distribution are the authors spec-
ifying for W? Identify the name and
parameter values of the distribution.

b. If the variance of W is 3.0 (one of sev-
eral values considered in the article),
what are the numerical values of the
parameters of W’s distribution, and what
is the value of the k parameter for X’s
exponential distribution?

82. Determine the mean and variance of the
gamma distribution by differentiating the
moment generating function MX(t).

83. Determine the mean and variance of the
gamma distribution by first using integra-
tion to obtain E(X) and E(X2). [Hint:
Express the integrand in terms of a gamma
density, and use Expression (4.5).]

4.5 Other Continuous Distributions

The normal, gamma (including exponential), and uniform families of distributions provide a wide
variety of probability models for continuous variables, but there are many practical situations in
which no member of these families fits a set of observed data very well. Statisticians and other
investigators have developed other families of distributions that are often appropriate in practice.

The Weibull Distribution
The family of Weibull distributions was introduced by the Swedish physicist Waloddi Weibull in
1939; his 1951 article “A Statistical Distribution Function of Wide Applicability” (J. Appl. Mech. 18:
293–297) discusses a number of applications.

DEFINITION A random variable X is said to have a Weibull distribution with parameters a
and b (a > 0, b > 0) if the pdf of X is

f ðx; a; bÞ ¼ a
ba

xa�1e�ðx=bÞa x[ 0 ð4:9Þ

In some situations there are theoretical justifications for the appropriateness of the Weibull distri-
bution, but in many applications f(x; a, b) simply provides a good fit to observed data for particular
values of a and b. When a = 1, the pdf reduces to the exponential distribution (with k = 1/b), so the
exponential distribution is a special case of both the gamma and Weibull distributions. However,
there are gamma distributions that are not Weibull distributions and vice versa, so one family is not a
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subset of the other. Both a and b can be varied to obtain a number of different distributional shapes, as
illustrated in Figure 4.28. Note that b is a scale parameter, so different values stretch or compress the
graph in the x-direction.

Integrating to obtain E(X) and E(X2) yields the mean and variance of X:

l ¼ bC 1þ 1
a

� �
r2 ¼ b2 C 1þ 2

a

� �
� C 1þ 1

a

� �� �2( )

The computation of l and r2 thus necessitates using the gamma function from the previous section.
(The mgf of the Weibull distribution is very complicated, and so we do not include it here.) On the
other hand, the integration

R x
0 f ðy; a; bÞdy is easily carried out to obtain the cdf of X:

Fðx; a; bÞ ¼ 0 x\0
1� e�ðx=bÞa x� 0

	
ð4:10Þ

Example 4.32 One of the most common applications of the Weibull distribution is to model the time
to repair for some item under industrial use. The article “Supply Chain Inventories of Engineered
Shipping Containers” (Intl. J. Manuf. Engr. 2016) discusses modeling the time to repair for highly
engineered reusable shipping containers, which are quite expensive and need to be monitored care-
fully. For one specific application, the article suggests using a Weibull distribution with a = 10 and
b = 3.5 (the time to repair, X, is measured in months).

The expected time to repair, variance, and standard deviation are

l ¼ 3:5 � C 1þ 1
10

� �
¼ 3:33 months

r2 ¼ ð3:5Þ2 � C 1þ 2
10

� �
� C 1þ 1

10

� �� �2( )
¼ 0:16 ) r ¼ 0:4 months

The probability that a shipping container requires repair within the first 3 months is
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Figure 4.28 Weibull density curves
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PðX� 3Þ ¼ Fð3; 10; 3:5Þ ¼ 1� e�ð3=3:5Þ10 ¼ :193

Similarly, P(2 � X � 4) = .974, indicating that the distribution is almost entirely concentrated
between 2 and 4 months.

The 95th percentile of this distribution—i.e., the value c which separates the longest-lasting 5% of
shipping containers from the rest—is determined from

:95 ¼ 1� e�ðc=3:5Þ10

Solving this equation gives c � 3.906 months. ■

Frequently, a Weibull model may be reasonable except that the smallest possible X value may be
some value c not assumed to be zero (this would also apply to a gamma model). The quantity c can
then be regarded as a third parameter of the distribution, which is what Weibull did in his original
work. For, say, c = 3, all curves in Figure 4.28 would be shifted 3 units to the right. This is equivalent
to saying that X � c has the pdf (4.9), so that the cdf of X is obtained by replacing x in (4.10) by
x � c.

Example 4.33 An understanding of the volumetric properties of asphalt is important in designing
mixtures that will result in high-durability pavement. The article “Is a Normal Distribution the Most
Appropriate Statistical Distribution for Volumetric Properties in Asphalt Mixtures” (J. Testing Eval.,
Sept. 2009: 1–11) used the analysis of some sample data to recommend that for a particular mixture,
X = air void volume (%) be modeled with a three-parameter Weibull distribution. Suppose the values
of the parameters are c = 4, a = 1.3, and b = .8 (quite close to estimates given in the article).

For x � 4, the cumulative distribution function is

Fðx; a; b; cÞ ¼ Fðx; 1:3; :8; 4Þ ¼ 1� e�½ðx�4Þ=:8�1:3

The probability that the air void volume of a specimen is between 5% and 6% is

Pð5�X� 6Þ ¼ Fð6; 1:3; :8; 4Þ � Fð5; 1:3; :8; 4Þ ¼ e�½ð5�4Þ=:8�1:3 � e�½ð6�4Þ=:8�1:3

¼ :263� :037 ¼ :226

Figure 4.29 shows a graph of the corresponding Weibull density function, in which the shaded area
corresponds to the probability just calculated.
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Figure 4.29 Weibull density curve with threshold = 4, shape = 1.3, scale = .8 ■
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The Lognormal Distribution
Lognormal distributions have been used extensively in engineering, medicine, and more recently,
finance.

DEFINITION A nonnegative rv X is said to have a lognormal distribution if the rv Y = ln(X) has
a normal distribution. The resulting pdf of a lognormal rv when ln(X) is normally
distributed with parameters l and r is

f ðx; l; rÞ ¼ 1ffiffiffiffiffiffi
2p

p
rx

e�½lnðxÞ�l�2=ð2r2Þ x[ 0

Be careful here: the parameters l and r are not the mean and standard deviation of X but of ln(X). The
mean and variance of X can be shown to be

EðXÞ ¼ elþ r2=2 VðXÞ ¼ e2lþ r2 � ðer2 � 1Þ

In Chapter 6, we will present a theoretical justification for this distribution in connection with the
Central Limit Theorem, but as with other distributions, the lognormal can be used as a model even in
the absence of such justification. Figure 4.30 illustrates graphs of the lognormal pdf; although a
normal curve is symmetric, a lognormal curve has a positive skew.

Because ln(X) has a normal distribution, the cdf of X can be expressed in terms of the cdf U(z) of a
standard normal rv Z. For x > 0,

Fðx; l; rÞ ¼ PðX� xÞ ¼ P½lnðXÞ� lnðxÞ� ¼ P
lnðXÞ � l

r
� lnðxÞ � l

r

� �

¼ P Z� lnðxÞ � l
r

� �
¼ U

lnðxÞ � l
r

� � ð4:11Þ

Differentiating F(x; µ, r) with respect to x gives the lognormal pdf f(x; µ, r) above.
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Figure 4.30 Lognormal density curves
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Example 4.34 According to the article “Predictive Model for Pitting Corrosion in Buried Oil and
Gas Pipelines” (Corrosion 2009: 332–342), the lognormal distribution has been reported as the best
option for describing the distribution of maximum pit depth data from cast iron pipes in soil. The
authors suggest that a lognormal distribution with l = .353 and r = .754 is appropriate for maximum
pit depth (mm) of buried pipelines. For this distribution, the mean value and variance of pit depth are

EðXÞ ¼ e:353þð:754Þ2=2 ¼ e:6383 ¼ 1:893

VðXÞ ¼ e2ð:353Þþ ð:754Þ2 � ðeð:754Þ2 � 1Þ ¼ ð3:57697Þð:765645Þ ¼ 2:7387

The probability that maximum pit depth is between 1 and 2 mm is

Pð1�X� 2Þ ¼ Pðlnð1Þ� lnðXÞ� lnð2ÞÞ
¼ Pð0� lnðXÞ� :693Þ

¼ P
0� :353
:754

� Z� :693� :353
:754

� �
¼ Uð:45Þ � Uð�:47Þ ¼ :354

Figure 4.31 illustrates this probability.

What value c is such that only 1% of all specimens have a maximum pit depth exceeding c? The
desired value satisfies

:99 ¼ PðX� cÞ ¼ P Z� lnðcÞ � :353
:754

� �
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Figure 4.31 Lognormal density curve with µ = .353 and r = .754
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The z critical value 2.33 captures an upper-tail area of .01 (z.01 = 2.33) and thus a cumulative area of
.99. This implies that

lnðcÞ � :353
:754

¼ 2:33

from which ln(c) = 2.1098 and c = 8.247. Thus 8.247 mm is the 99th percentile of the maximum pit
depth distribution. ■

As with the Weibull distribution, a third parameter c can be introduced so that the domain of the
distribution is x > c rather than x > 0.

The Beta Distribution
All families of continuous distributions discussed so far except for the uniform distribution have
positive density over an infinite interval (although typically the density function decreases rapidly to
zero beyond a few standard deviations from the mean). The beta distribution provides positive density
only for X in an interval of finite length.

DEFINITION A random variable X is said to have a beta distribution with parameters
a, b (both positive), A, and B if the pdf of X is

f ðx; a; b;A;BÞ ¼ 1
B� A

� Cðaþ bÞ
CðaÞ � CðbÞ

x� A

B� A

� �a�1 B� x

B� A

� �b�1

A� x�B

The case A = 0, B = 1 gives the standard beta distribution.

Figure 4.32 illustrates several standard beta pdfs. Graphs of the general pdf are similar, except they
are shifted and then stretched or compressed to fit over [A, B]. Unless a and b are integers, integration
of the pdf to calculate probabilities is difficult, so either a table of the incomplete beta function or
software is generally used.
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Figure 4.32 Standard beta density curves
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The standard beta distribution is commonly used to model variation in the proportion or percentage
of a quantity occurring in different samples, such as the proportion of a 24-h day that an individual is
asleep or the proportion of a certain element in a chemical compound.

The mean and variance of X are

l ¼ AþðB� AÞ � a
aþ b

r2 ¼ ðB� AÞ2ab
ðaþ bÞ2ðaþ bþ 1Þ

Example 4.35 Project managers often use a method labeled PERT—for program evaluation and
review technique—to coordinate the various activities making up a large project. (One successful
application was in the construction of the Apollo spacecraft.) A standard assumption in PERT analysis
is that the time necessary to complete any particular activity once it has been started has a beta
distribution with A = the optimistic time (if everything goes well) and B = the pessimistic time (if
everything goes badly). Suppose that in constructing a single-family house, the time X (in days)
necessary for laying the foundation has a beta distribution with A = 2, B = 5, a = 2, and b = 3. Then
a/(a + b) = .4, so E(X) = 2 + (3)(.4) = 3.2. For these values of a and b, the pdf of X is a simple
polynomial function. The probability that it takes at most 3 days to lay the foundation is

PðX� 3Þ ¼
Z3

2

1
3
� 4!
1! � 2!

x� 2
3

� �
5� x

3

� �2

dx

¼ 4
27

Z3

2

ðx� 2Þð5� xÞ2dx ¼ 4
27

� 11
4

¼ 11
27

¼ :407
�

Many software packages can be used to perform probability calculations for the Weibull, lognormal,
and beta distributions. Interested readers should consult the help menus in those packages.

Exercises: Section 4.5 (84–98)

84. The lifetime X (in hundreds of hours) of a
type of vacuum tube has a Weibull distri-
bution with parameters a = 2 and b = 3.
Compute the following:

a. E(X) and V(X)
b. P(X � 6)
c. P(1.5 � X � 6)

(This Weibull distribution is suggested as a
model for time in service in “On the
Assessment of Equipment Reliability:
Trading Data Collection Costs for Preci-
sion,” J. Engr. Manuf. 1991: 105–109).

85. Many U.S. railroad tracks were built using
A7 steel, and there is renewed interest in
the properties of this metal. The article
“Stress-State, Temperature, and Strain Rate

Dependence of Vintage ASTM A7 Steel”
(J. Engr. Mater. Tech. 2019) describes,
among other things, the distribution of
manganese within A7 steel specimens. The
authors found that the nearest-neighbor
distance (NND, in microns) of manganese
particles along longitudinal planes in A7
steel follow a Weibull distribution with
(approximate) parameter values a = 1.18
and b = 21.61.

a. What is the probability of observing a
NND between 20 and 40 lm? Less than
20 lm? More than 40 lm?

b. What are the mean and standard devia-
tion of this distribution?

c. What is the median of this distribution?
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86. In recent years the Weibull distribution has
been used to model engine emissions of
various pollutants. Let X denote the amount
of NOx emission (g/gal) from a randomly
selected four-stroke engine of a certain
type, and suppose that X has a Weibull
distribution with a = 2 and b = 10 (sug-
gested by information in the article
“Quantification of Variability and Uncer-
tainty in Lawn and Garden Equipment NOx

and Total Hydrocarbon Emission Factors,”
J. Air Waste Manag. Assoc. 2002: 435–
448).

a. What is the cdf of X?
b. Compute P(X � 10) and

P(X � 10).
c. Determine the mean and standard devi-

ation of X.
d. Determine the 75th percentile of this

distribution.

87. Let X have a Weibull distribution with the
pdf from Expression (4.10). Verify that
l = bC(1 + 1/a). [Hint: In the integral for
E(X), make the change of variable y =
(x/b)a, so that x = by1/a.]

88. a. In Exercise 84, what is the median life-
time of such tubes? [Hint: Use Expres-
sion (4.10).]

b. If X has a Weibull distribution with the
cdf from Expression (4.10), obtain a
general expression for the (100p)th
percentile of the distribution.

c. In Exercise 86, engines whose NOx

emissions exceed a threshold of t g/gal
must be replaced to meet new environ-
mental regulations. For what value of
t would 10% of these engines require
replacement?

89. Let X denote the ultimate tensile strength
(ksi) at −200° of a randomly selected steel
specimen of a certain type that exhibits
“cold brittleness” at low temperatures.
Suppose that X has a Weibull distribution
with a = 20 and b = 100.

a. What is the probability that X is at most
105 ksi?

b. If specimen after specimen is selected,
what is the long-run proportion having
strength values between 100 and 105
ksi?

c. What is the median of the strength dis-
tribution?

90. The authors of the article “Study on the
Life Distribution of Microdrills” (J. Engr.
Manuf. 2002: 301–305) suggested that a
reasonable probability model for drill life-
time was a lognormal distribution with
l = 4.5 and r = .8.

a. What are the mean value and standard
deviation of lifetime?

b. What is the probability that lifetime is at
most 100?

c. What is the probability that lifetime is at
least 200? Greater than 200?

91. The article referenced in Exercise 85 also
considered the distribution of areas (square
microns) of single manganese particles in
through thickness planes of A7 steel. The
authors determined that a lognormal distri-
bution with parameters µ = 1.513 and
r = 1.006 to be an appropriate model for
these manganese particle areas.

a. Determine the mean and standard devi-
ation of this distribution.

b. What is the probability of observing a
particle area less than 10 square
microns? Between 10 and 20 lm2?

c. Determine the probability of observing a
manganese particle area less than the
mean value. Why does this probability
not equal .5?

92. a. Use Equation (4.11) to write a formula
for the median ~l of the lognormal dis-
tribution. What is the median for the area
distribution of the previous exercise?

b. Recalling that za is our notation for the
100(1 � a) percentile of the standard
normal distribution, write an expression
for the 100(1 � a) percentile of the
lognormal distribution. In the previous
exercise, what value will particle area
exceed only 5% of the time?
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93. A theoretical justification based on a
material failure mechanism underlies the
assumption that ductile strength X of a
material has a lognormal distribution.
Suppose the parameters are l = 5 and
r = .1.

a. Compute E(X) and V(X).
b. Compute P(X > 125).
c. Compute P(110 � X � 125).
d. What is the value of median ductile

strength?
e. If ten different samples of an alloy steel

of this type were subjected to a strength
test, how many would you expect to
have strength of at least 125?

f. If the smallest 5% of strength values
were unacceptable, what would the
minimum acceptable strength be?

94. The article “The Statistics of Phytotoxic Air
Pollutants” (J. Roy. Statist Soc. 1989: 183–
198) suggests the lognormal distribution as
a model for SO2 concentration above a
forest. Suppose the parameter values are
l = 1.9 and r = .9.

a. What are the mean value and standard
deviation of concentration?

b. What is the probability that concentration
is at most 10? Between 5 and 10?

95. What condition on a and b is necessary for
the standard beta pdf to be symmetric?

96. Suppose the proportion X of surface area in
a randomly selected quadrat that is covered
by a certain plant has a standard beta dis-
tribution with a = 5 and b = 2.

a. Compute E(X) and V(X).
b. Compute P(X � .2).
c. Compute P(.2 � X � .4).
d. What is the expected proportion of the

sampling region not covered by the plant?

97. Let X have a standard beta density with
parameters a and b.
a. Verify the formula for E(X) given in the

section.
b. Compute E[(1 − X)m]. If X represents

the proportion of a substance consisting
of a particular ingredient, what is the
expected proportion that does not con-
sist of this ingredient?

98. Stress is applied to a 20-in. steel bar that is
clamped in a fixed position at each end. Let
Y = the distance from the left end at which
the bar snaps. Suppose Y/20 has a standard
beta distribution with E(Y) = 10 and
VðYÞ ¼ 100=7:

a. What are the parameters of the relevant
standard beta distribution?

b. Compute P(8 � Y � 12).
c. Compute the probability that the bar

snaps more than 2 in. from where you
expect it to snap.

4.6 Probability Plots

An investigator will often have obtained a numerical sample consisting of n observations and wish to
know whether it is plausible that this sample came from a population distribution of some particular
type (e.g., from a normal distribution). For one thing, many formal procedures from statistical
inference are based on the assumption that the population distribution is of a specified type. The use
of such a procedure is inappropriate if the actual underlying probability distribution differs greatly
from the assumed type. Additionally, understanding the underlying distribution can sometimes give
insight into the physical mechanisms involved in generating the data. An effective way to check a
distributional assumption is to construct what is called a probability plot. The basis for our con-
struction is a comparison between percentiles of the sample data and the corresponding percentiles of
the assumed underlying distribution.
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Sample Percentiles
The details involved in constructing probability plots differ a bit from source to source. Roughly
speaking, sample percentiles are defined in the same way that percentiles of a population distribution
are defined. The sample 50th percentile (i.e., the sample median) should separate the smallest 50% of
the sample from the largest 50%, the sample 90th percentile should be such that 90% of the sample
lies below that value and 10% lies above, and so on. Unfortunately, we run into problems when we
actually try to compute the sample percentiles for a particular sample of n observations. If, for
example, n = 10, then we can split off 20% or 30% of the data, but there is no value that will split off
exactly 23% of these ten observations. To proceed further, we need an operational definition of
sample percentiles (this is one place where different people and different software packages do
slightly different things).

Statistical convention states that when n is odd, the sample median is the middle value in the
ordered list of sample observations, for example, the sixth-largest value when n = 11. This amounts
to regarding the middle observation as being half in the lower half of the data and half in the upper
half. Similarly, suppose n = 10. Then if we call the third-smallest value the 25th percentile, we are
regarding that value as being half in the lower group (consisting of the two smallest observations) and
half in the upper group (the seven largest observations). This leads to the following general definition
of sample percentiles.

DEFINITION Order the n sample observations from smallest to largest. Then the ith-smallest
observation in the list is taken to be the sample [100(i – .5)/n]th percentile.

For example, if n = 10, the percentages corresponding to the ordered sample observations are
100(1 − .5)/10 = 5%, 100(2 − .5)/10 = 15%, 25%, …, and 100(10 − .5)/10 = 95%. That is, the
smallest observation is the sample 5th perecentile, the next-smallest value is the sample 15th per-
centile, and so on. All other percentiles could then be determined by interpolation; e.g., the sample
10th percentile would then be halfway between the 5th percentile (smallest sample observation) and
the 15th percentile (second-smallest observation) of the n = 10 values. For the purposes of a prob-
ability plot, such interpolation will not be necessary, because a probability plot will be based only on
the percentages 100(i − .5)/n corresponding to the n sample observations.

A Probability Plot
We now wish to determine whether our sample data could plausibly have come from some particular
population distribution (e.g., a normal distribution with µ = 10 and r = 3). If the sample was actually
selected from the specified distribution, the sample percentiles (ordered sample observations) should
be reasonably close to the corresponding population distribution percentiles. That is, for i = 1, 2, …,
n there should be reasonable agreement between the ith-smallest sample observation and the theo-
retical [100(i − .5)/n]th percentile for the specified distribution. Consider the (sample percentile,
population percentile) pairs—that is, the pairs

ith smallest sample
observation

;
½100ði� :5Þ=n�th percentile
of the population distribution

� �

for i = 1, …, n. Each such pair can be plotted as a point on a two-dimensional coordinate system. If
the sample percentiles are close to the corresponding population distribution percentiles, the first
number in each pair will be roughly equal to the second number, and the plotted points will then fall
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close to a 45° line passing through (0, 0). Substantial deviations of the plotted points from this 45°
line suggest that the assumed distribution might be wrong.

Example 4.36 The value of a physical constant is known to an experimenter. The experimenter
makes n = 10 independent measurements of this value using a measurement device and records the
resulting measurement errors (error = observed value � true value). These observations appear in the
accompanying table.

Is it plausible that the random variable measurement error has a standard normal distribution? The
needed standard normal (z) percentiles are also displayed in the table and were determined as follows:
the 5th percentile of the distribution under consideration, N(0,1), is such that U(z) = .05. From
software or Appendix Table A.3, the solution is roughly z = –1.645. The other nine population
(z) percentiles were found in a similar fashion.

Thus the points in the probability plot are (–1.91, –1.645), (–1.25, –1.037), …, and (1.56,1.645).
Figure 4.33 shows the resulting plot. Although the points deviate a bit from the 45º line, the pre-
dominant impression is that this line fits the points reasonably well. The plot suggests that the
standard normal distribution is a realistic probability model for measurement error.
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Figure 4.33 Plots of pairs (observed value, z percentile) for the data of Example 4.36 ■
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An investigator is typically not interested in knowing whether a particular probability distribution,
such as the normal distribution with l = 0 and r = 1 or the exponential distribution with k = .1, is a
plausible model for the population distribution from which the sample was selected. Instead, the
investigator will want to know whether some member of a family of probability distributions provides
a plausible model—the family of normal distributions, the family of exponential distributions, the
family of Weibull distributions, and so on. The values of any parameters are usually not specified at the
outset. If the family of Weibull distributions is under consideration as a model for lifetime data, the
issue is whether there are any values of the parameters a and b for which the corresponding Weibull
distribution gives a good fit to the data. Fortunately, it is almost always the case that just one
probability plot will suffice for assessing the plausibility of an entire family. If the plot deviates
substantially from a straight line, but not necessarily the 45° line, no member of the family is plausible.

To see why, let’s focus on a plot for checking normality. As mentioned earlier, such a plot can be
very useful in applied work because many formal statistical procedures are appropriate (i.e., give
accurate inferences) only when the population distribution is at least approximately normal. These
procedures should generally not be used if a normal probability plot shows a very pronounced
departure from linearity. The key to constructing an omnibus normal probability plot is the rela-
tionship between standard normal (z) percentiles and those for any other normal distribution, which
was presented in Section 4.3:

percentile for a
Nðl; rÞdistribution ¼ lþ r � ðcorresponding z percentileÞ

If each sample observation was exactly equal to the corresponding N(l, r) percentile, then the pairs
(observation, l + r � [z percentile]) would fall on the 45° line, y = x. But since l + rz is itself a linear
function, the pairs (observation, z percentile) would also fall on a straight line, just not the line with
slope 1 and y-intercept 0. (The latter pairs would pass through the line z = x/r � l/r, but the equation
itself isn’t important.)

DEFINITION A plot of the n pairs

ðith-smallest observation; ½100ði� :5Þ=n�th z percentileÞ

on a two-dimensional coordinate system is called a normal probability plot. If the
sample observations are in fact drawn from a normal distribution, then the points
should fall close to a straight line (although not necessarily a 45° line). Thus a plot
for which the points fall close to some straight line suggests that the assumption of a
normal population distribution is plausible.

Example 4.37 The accompanying sample consisting of n = 20 observations on dielectric break-
down voltage of a piece of epoxy resin appeared in the article “Maximum Likelihood Estimation in
the 3-Parameter Weibull Distribution” (IEEE Trans. Dielectrics Electr. Insul. 1996: 43–55). Values
of (i � .5)/n for which z percentiles are needed are (1 − .5)/20 = .025, (2 − 5)/20 = .075, …, and
.975.

Observation 24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94
z percentile −1.96 −1.44 −1.15 −.93 −.76 −.60 −.45 −.32 −.19 −.06

Observation 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88
z percentile .06 .19 .32 .45 .60 .76 .93 1.15 1.44 1.96
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Figure 4.34 shows the resulting normal probability plot. The pattern in the plot is quite straight,
indicating it is plausible that the population distribution of dielectric breakdown voltage is normal.

There is an alternative version of a normal probability plot in which the z percentile axis is
replaced by a nonlinear probability axis. The scaling on this axis is constructed so that plotted points
should again fall close to a line when the sampled distribution is normal. Figure 4.35 shows such a
plot from Minitab for the breakdown voltage data of Example 4.37. Here the z values are replaced by
the corresponding normal percentiles. The plot remains the same, and it is just the labeling of the axis
that changes. Minitab and various other software packages use the refinement (i − .375)/(n + .25) of
the expression (i − .5)/n in order to get a better approximation to what is expected for the ordered
values from the standard normal distribution.
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Figure 4.34 Normal probability plot for the dielectric breakdown voltage sample ■

Figure 4.35 Normal probability plot of the breakdown voltage data from Minitab
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Departures from Normality
A nonnormal population distribution can often be placed in one of the following three categories:

1. It is symmetric and has “lighter tails” than does a normal distribution; that is, the density curve
declines more rapidly out in the tails than does a normal curve.

2. It is symmetric and heavy-tailed compared to a normal distribution.
3. It is skewed.

A uniform distribution is light-tailed, since its density function drops to zero outside a finite
interval. The density function f(x) = 1/[p(1 + x2)], for �1\x\1; is one example of a heavy-tailed

distribution, since 1/(1 + x2) declines much less rapidly than does e�x2=2. Lognormal and Weibull
distributions are among those that are skewed. When the points in a normal probability plot do not
adhere to a straight line, the pattern will frequently suggest that the population distribution is in a
particular one of these three categories.

Figure 4.36 illustrates typical normal probability plots corresponding to the three situations
above. If the sample was selected from a light-tailed distribution, the largest and smallest observations
are usually not as extreme as would be expected from a normal random sample. Visualize a straight
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Figure 4.36 Probability plots that suggest a nonnormal distribution:
(a) a plot consistent with a light-tailed distribution; (b) a plot consistent with

a heavy-tailed distribution; (b) a plot consistent with a (positively) skewed distribution
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line drawn through the middle part of the plot; points on the far right tend to be above the line
(z percentile > observed value), whereas points on the left end of the plot tend to fall below the
straight line (z percentile < observed value). The result is an S-shaped pattern of the type pictured in
Figure 4.36a. For sample observations from a heavy-tailed distribution, the opposite effect will occur,
and a normal probability plot will have an S shape with the opposite orientation, as in Figure 4.36b. If
the underlying distribution is positively skewed (a short left tail and a long right tail), the smallest
sample observations will be larger than expected from a normal sample and so will the largest
observations. In this case, points on both ends of the plot will fall below a straight line through the
middle part, yielding a curved pattern, as illustrated in Figure 4.36c. For example, a sample from a
lognormal distribution will usually produce such a pattern; a plot of (ln(observation), z percentile)
pairs should then resemble a straight line.

Even when the population distribution is normal, the sample percentiles will not coincide exactly
with the theoretical percentiles because of sampling variability. How much can the points in the
probability plot deviate from a straight line pattern before the assumption of population normality is
no longer plausible? This is not an easy question to answer. Generally speaking, a small sample from
a normal distribution is more likely to yield a plot with a nonlinear pattern than is a large sample. The
book Fitting Equations to Data (see the bibliography) presents the results of a simulation study in
which numerous samples of different sizes were selected from normal distributions. The authors
concluded that there is typically greater variation in the appearance of the probability plot for sample
sizes smaller than 30, and only for much larger sample sizes does a linear pattern generally pre-
dominate. When a plot is based on a small sample size, only a very substantial departure from
linearity should be taken as conclusive evidence of nonnormality. A similar comment applies to
probability plots for checking the plausibility of other types of distributions.

Beyond Normality
Consider a family of probability distributions involving two parameters, h1 and h2, and let F(x; h1, h2)
denote the corresponding cdf. The family of normal distributions is one such family, with h1 = l,
h2 = r, and Fðx; l; rÞ ¼ U ðx� lÞ=r½ �. Another example is the Weibull family, with h1 = a, h2 = b,
and

Fðx; a; bÞ ¼ 1� e�ðx=bÞa

Still another family of this type is the gamma family, for which the cdf is an integral involving the
incomplete gamma function that cannot be expressed in any simpler form.

The parameters h1 and h2 are said to be location and scale parameters, respectively, if F(x; h1, h2)
is a function of (x � h1)/h2. The parameters l and r of the normal family are location and scale
parameters, respectively. Changing l shifts the location of the bell-shaped density curve to the right
or left, and changing r amounts to stretching or compressing the measurement scale (the scale on the
horizontal axis when the density function is graphed). Another example is given by the cdf

Fðx; h1; h2Þ ¼ 1� e�eðx�h1Þ=h2 �1\x\1

A random variable with this cdf is said to have an extreme value distribution. It is used in applications
involving component lifetime and material strength.
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Although the form of the extreme value cdf might at first glance suggest that h1 is the point of
symmetry for the density function, and therefore the mean and median, this is not the case. Instead,
P(X � h1) = F(h1; h1, h2) = 1 − e−1 = .632, and the density function f(x; h1, h2) = F′(x; h1, h2) is
negatively skewed (a long lower tail). Similarly, the scale parameter h2 is not the standard deviation
(l = h1 − 5772h2 and r = 1.283h2). However, changing the value of h1 does change the location of
the density curve, whereas a change in h2 rescales the measurement axis.

The parameter b of the Weibull distribution is a scale parameter. However, a is not a location
parameter but instead is called a shape parameter. The same is true for the parameters a and b of the
gamma distribution. In the usual form, the density function for any member of either the gamma or
Weibull distribution is positive for x > 0 and zero otherwise. A location (or shift) parameter can be
introduced as a third parameter c (we noted this for the Weibull distribution in Section 4.5) to shift the
density function so that it is positive if x > c and zero otherwise.

When the family under consideration has only location and scale parameters, the issue of whether
any family member is a plausible population distribution can be addressed by a single probability plot.
This is exactly what we did to obtain an omnibus normal probability plot. One first obtains the
percentiles of the standard distribution, the one with h1 = 0 and h2 = 1, for percentages 100(i − .5)/n
(i = 1, …, n). The n (observation, standardized percentile) pairs give the points in the plot.

Somewhat surprisingly, this methodology can be applied to yield an omnibus Weibull probability
plot. The key result is that if X has a Weibull distribution with shape parameter a and scale parameter
b, then the transformed variable ln(X) has an extreme value distribution with location parameter
h1 = ln(b) and scale parameter h2 = 1/a (see Exercise 154). Thus a plot of the (ln(observation),
extreme value standardized percentile) pairs that shows a strong linear pattern provides support for
choosing the Weibull distribution as a population model.

Example 4.38 As climate change continues, more areas experience extreme wind events, which
both safety engineers and FEMA must accurately model because they affect home damage. Engineers
frequently use the Weibull distribution to model maximum wind speed in a given region. The article
“Estimation of Extreme Wind Speeds by Using Mixed Distributions” (Engr. Invest. Technol. 2013:
153–162) provides measurements of X = maximum wind speed (m/s) for 45 stations in the
Netherlands. A Weibull probability plot can be constructed by plotting the logarithms of those
observations against the (100p)th percentiles of the extreme value distribution for p = (1 − .5)/45,
(2 − .5)/45, …, (45 − .5)/45. The (100p)th percentile η(p) satisfies

p ¼ FðgðpÞÞ ¼ 1� e�egðpÞ

from which gðpÞ ¼ ln½� lnð1� pÞ�.

Percentile x ln(x) Percentile x ln(x)

–4.49 17.7 2.87 –0.30 25.8 3.25
–3.38 18.9 2.94 –0.24 25.8 3.25
–2.86 20.9 3.04 –0.18 25.9 3.25
–2.51 21.4 3.06 –0.12 25.9 3.25
–2.25 21.7 3.08 –0.06 26.0 3.26
–2.04 22.3 3.10 0.00 26.2 3.27
–1.86 22.6 3.12 0.06 26.2 3.27
–1.70 22.8 3.13 0.12 26.4 3.27
–1.56 23.0 3.14 0.19 26.6 3.28
–1.44 23.1 3.14 0.25 26.7 3.28

(continued)
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Percentile x ln(x) Percentile x ln(x)

–1.33 23.2 3.14 0.31 26.8 3.29
–1.22 23.3 3.15 0.38 26.9 3.29
–1.12 23.7 3.17 0.44 26.9 3.29
–1.03 24.0 3.18 0.51 27.0 3.30
–0.94 24.1 3.18 0.58 27.3 3.31
–0.86 24.1 3.18 0.66 28.0 3.33
–0.78 24.2 3.19 0.74 28.1 3.34
–0.71 24.4 3.19 0.83 28.8 3.36
–0.64 25.2 3.23 0.94 29.2 3.37
–0.57 25.6 3.24 1.06 29.4 3.38
–0.50 25.6 3.24 1.22 30.0 3.40
–0.43 25.7 3.25 1.50 31.1 3.44
–0.37 25.7 3.25

The pairs (2.87, –4.49), (2.94, –3.38), …, (3.44, 1.50) are plotted as points in Figure 4.37. The
straightness of the plot argues strongly that ln(X) is compatible with an extreme value distribution,
and so X itself can be well-modeled by a Weibull distribution.

It should be noted that many statistical software packages have built-in Weibull probability plot
functionality that does not require the user to transform the data or calculate the extreme value
percentiles. ■

The gamma distribution is an example of a family involving a shape parameter for which there is
no transformation into a distribution that depends only on location and scale parameters. Construction
of a probability plot necessitates first estimating the shape parameter from sample data (some methods
for doing this are described in Chapter 7).

Sometimes an investigator wishes to know whether the transformed variable Xh has a normal
distribution for some value of h (by convention, h = 0 is identified with the logarithmic transfor-
mation, in which case X has a lognormal distribution). The book Graphical Methods for Data
Analysis (see the bibliography) discusses this type of problem as well as other refinements of
probability plotting.
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Figure 4.37 A Weibull probability plot of the maximum wind speed data
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Formal Tests of a Distributional Fit
Given the limitations of probability plots, there is need for an alternative. Statisticians have developed
several formal procedures for assessing whether sample data could plausibly have come from a
normally distributed population. The Ryan-Joiner test quantifies on a zero-to-one scale how closely
the pattern of points in a normal probability plot adheres to a straight line, with higher values
corresponding to a more linear pattern. If this quantified value is too low, the test casts doubt on
population normality. (In the formal language of Chapter 9, the test “rejects” the claim of a normal
population if the probability plot is sufficiently nonlinear.) The Ryan–Joiner measure appears in the
top-right corner of Figure 4.35 (RJ = 0.988); its very high value on a [0, 1] scale implies that
population normality is plausible. The Shapiro–Wilk test proceeds similarly, although it quantifies
linearity somewhat differently, and is more ubiquitous among statistical software packages: R, SAS,
Stata, SPSS, and JMP all include the Shapiro–Wilk test among their options.

The Ryan–Joiner and Shapiro–Wilk tests are specialized to assessing normality; i.e., they are not
designed to detect conformance with other distributions (gamma, Weibull, etc.). The Anderson–
Darling (AD) test and the Kolmogorov–Smirnov (KS) test can both be applied to a wider collection of
distributions. Each of these latter tests is based on comparing the cdf F(x) of the theorized distribution
(e.g., the Weibull cdf) to the “empirical” cdf Fn(x) of the sample data, defined for any real
number x by

FnðxÞ ¼ the proportion of the sample values x1; . . .; xnf g that are� x

If F(x) and Fn(x) are “too far apart” in some sense, this indicates that the sample data is incom-
patible with the theorized population distribution (and so that theory should be “rejected”). The AD
and KS tests differ in how they quantify the disparity between F(x) and Fn(x). (Specific to assessing
normality, a 2011 article in the Journal of Statistical Modeling and Analysis found that the Shapiro–
Wilk test has greater capability of detecting normality violations than either the AD or KS tests.)

Exercises: Section 4.6 (99–109)

99. The accompanying normal probability plot
was constructed from a sample of 30
readings on tension for mesh screens
behind the surface of video display tubes.
Does it appear plausible that the tension
distribution is normal? Explain.

100. A sample of 15 female collegiate golfers
was selected and the clubhead velocity

(km/h) while swinging a driver was deter-
mined for each one, resulting in the fol-
lowing data (“Hip Rotational Velocities
during the Full Golf Swing,” J. Sports Sci.
Med. 2009: 296–299):

69.0 69.7 72.7 80.3 81.0
85.0 86.0 86.3 86.7 87.7
89.3 90.7 91.0 92.5 93.0

The corresponding z percentiles are

−1.83 −1.28 −0.97 −0.73 −0.52
−0.34 −0.17 0.0 0.17 0.34
0.52 0.73 0.97 1.28 1.83

Construct a normal probability plot and a
dotplot. Is it plausible that the population
distribution is normal?
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101. Construct a normal probability plot for the
following sample of observations on coat-
ing thickness for low-viscosity paint
(“Achieving a Target Value for a Manu-
facturing Process: A Case Study,” J. Qual.
Tech. 1992: 22–26). Would you feel com-
fortable estimating population mean thick-
ness using a method that assumed a normal
population distribution? Explain.

.83 .88 .88 1.04 1.09 1.12
1.29 1.31 1.48 1.49 1.59 1.62
1.65 1.71 1.76 1.83

102. The article “A Probabilistic Model of
Fracture in Concrete and Size Effects on
Fracture Toughness” (Mag. Concrete Res.
1996: 311–320) gives arguments for why
fracture toughness in concrete specimens
should have a Weibull distribution and
presents several histograms of data that
appear well fit by superimposed Weibull
curves. Consider the following sample of
n = 18 observations on toughness for high-
strength concrete (consistent with one of
the histograms); values of pi = (i − 5)/18
are also given.

Observation .47 .58 .65 .69 .72 .74
pi .0278 .0833 .1389 .1944 .2500 .3056
Observation .77 .79 .80 .81 .82 .84
pi .3611 .4167 .4722 .5278 .5833 .6389
Observation .86 .89 .91 .95 1.01 1.04
pi .6944 .7500 .8056 .8611 .9167 .9722

Construct a Weibull probability plot and
comment.

103. Construct a normal probability plot for the
escape time data given in Exercise 46 of
Chapter 1. Does it appear plausible that
escape time has a normal distribution?
Explain.

104. The article “Reducing Uncertainty of
Design Floods of Two-Component Mixture
Distributions by Utilizing Flood Timescale
to Classify Flood Types in Seasonally
Snow Covered Region” (J. Hydrol. 2019:

588–608) reports the accompanying data on
annual precipitation (mm/yr) at 34 water-
sheds in Norway.

527.9 598.2 668.5 1136.6 1160.1
1177.0 1512.7 1542.5 1642.6 2383.8
2628.5 2671.5 697.7 859.0 884.3
1182.3 1195.6 1212.8 1872.1 1976.3
2082.9 2872.3 3221.6 3430.2 894.3
1030.7 1035.5 1294.2 1441.7 1475.4
2266.3 2337.0 2365.0 4029.7

a. Construct a normal probability plot. Is
normality plausible?

b. Construct a Weibull probability plot. Is
the Weibull distribution family plausi-
ble?

105. Construct a probability plot that will allow
you to assess the plausibility of the log-
normal distribution as a model for the
nitrogen data of Example 1.17.

106. The accompanying observations are pre-
cipitation values during March over a 30-
year period in Minneapolis–St. Paul.

0.77 1.20 3.00 1.62 2.81 2.48
1.74 0.47 3.09 1.31 1.87 0.96
0.81 1.43 1.51 0.32 1.18 1.89
1.20 3.37 2.10 0.59 1.35 0.90
1.95 2.20 0.52 0.81 4.75 2.05

a. Construct and interpret a normal proba-
bility plot for this data set.

b. Calculate the square root of each value
and then construct a normal probability
plot based on this transformed data.
Does it seem plausible that the square
root of precipitation is normally
distributed?

c. Repeat part (b) after transforming by
cube roots.

107. The accompanying data set consists of
observations on shower-flow rate (L/min)
for a sample of n = 129 houses in Perth,
Australia (“An Application of Bayes
Methodology to the Analysis of Diary
Records in a Water Use Study,” J. Amer.
Statist. Assoc. 1987: 705–711):
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4.6 12.3 7.1 7.0 4.0 9.2 6.7 6.9 11.5 5.1
11.2 10.5 14.3 8.0 8.8 6.4 5.1 5.6 9.6 7.5
7.5 6.2 5.8 2.3 3.4 10.4 9.8 6.6 3.7 6.4
8.3 6.5 7.6 9.3 9.2 7.3 5.0 6.3 13.8 6.2
5.4 4.8 7.5 6.0 6.9 10.8 7.5 6.6 5.0 3.3
7.6 3.9 11.9 2.2 15.0 7.2 6.1 15.3 18.9 7.2
5.4 5.5 4.3 9.0 12.7 11.3 7.4 5.0 3.5 8.2
8.4 7.3 10.3 11.9 6.0 5.6 9.5 9.3 10.4 9.7
5.1 6.7 10.2 6.2 8.4 7.0 4.8 5.6 10.5 14.6

10.8 15.5 7.5 6.4 3.4 5.5 6.6 5.9 15.0 9.6
7.8 7.0 6.9 4.1 3.6 11.9 3.7 5.7 6.8 11.3
9.3 9.6 10.4 9.3 6.9 9.8 9.1 10.6 4.5 6.2
8.3 3.2 4.9 5.0 6.0 8.2 6.3 3.8 6.0

Construct a normal probability plot of this
data and comment.

108. Let the ordered sample observations be
denoted by y1, y2, …, yn (y1 being the
smallest and yn the largest). Our suggested
check for normality is to plot the
(U−1[(i − .5)/n], yi) pairs. Suppose we
believe that the observations come from a
distribution with mean 0, and let w1, …, wn

be the ordered absolute values of the xi’s.
A half-normal plot is a probability plot of
the wi’s. That is, since P(|Z| � w) =
P(−w � Z � w) = 2U(w) − 1, a half-

normal plot is a plot of the (U−1[(pi + 1)/2], wi)
pairs, where pi = (i − 5)/n. The virtue of
this plot is that small or large outliers in the
original sample will now appear only at the
upper end of the plot rather than at both ends.
Construct a half-normal plot for the follow-
ing sample of measurement errors, and
comment: −3.78, −1.27, 1.44, −.39, 12.38,
−43.40, 1.15, −3.96, −2.34, 30.84.

109. The following failure time observations
(1000s of hours) resulted from accelerated
life testing of 16 integrated circuit chips of
a certain type:

82.8 11.6 359.5 502.5 307.8 179.7
242.0 26.5 244.8 304.3 379.1 212.6
229.9 558.9 366.7 204.6

Use the corresponding percentiles of the
exponential distribution with k = 1 to con-
struct a probability plot. Then explain why
the plot assesses the plausibility of the
sample having been generated from any
exponential distribution.

4.7 Transformations of a Random Variable

Often we need to deal with a transformation Y = g(X) of the random variable X. For example,
g(X) could be a simple change of time scale: if X is the time to complete a task in minutes, then
Y = 60X is the completion time expressed in seconds. How can we get the pdf of Y from the pdf of X?
Consider first a simple example.

Example 4.39 The interval X in minutes between calls to a 911 center is exponentially distributed
with mean 2 min, so its pdf fX(x) = .5e–.5x for x > 0. In order to get the pdf of Y = 60X, we first
obtain its cdf:

FYðyÞ ¼ PðY � yÞ ¼ Pð60X� yÞ ¼ PðX� y=60Þ ¼ FXðy=60Þ

¼
Zy=60
0

:5e�:5xdx ¼ 1� e�y=120

Differentiating this with respect to y gives fY(y) = (1/120)e–y/120 for y > 0. We see that the distribution
of Y is exponential with mean 120 s (2 min).

There is nothing special here about the mean 2 and the multiplier 60. It should be clear that if we
multiply an exponential random variable with mean l by a positive constant c we get another
exponential random variable with mean cl. ■

Sometimes it isn’t possible to evaluate the cdf in closed form. Could the pdf of Y be obtained
without evaluating the integral? Yes, thanks to the following theorem.
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TRANSFORMATION
THEOREM

Let X have pdf fX(x) and let Y = g(X), where g is monotonic (either strictly
increasing or strictly decreasing) on the set of all possible values of X, so it
has an inverse function X ¼ g�1ðYÞ ¼ hðYÞ. Assume that h has a derivative
h0ðyÞ. Then

fYðyÞ ¼ fXðhðyÞÞ � jh0ðyÞj ð4:12Þ

Proof Here is the proof assuming that g is monotonically increasing. The proof for g monotonically
decreasing is similar. First find the cdf of Y:

FYðyÞ ¼ PðY � yÞ ¼ PðgðXÞ� yÞ ¼ PðX� hðyÞÞ ¼ FXðhðyÞÞ

The third equality above, wherein g(X) � y is true iff X � g−1(y) = h(y), relies on g being a
monotonically increasing function. Now differentiate the cdf with respect to y, using the Chain Rule:

fYðyÞ ¼ d

dy
FYðyÞ ¼ d

dy
FXðhðyÞÞ ¼ F0

XðhðyÞÞ � h0ðyÞ ¼ fXðhðyÞÞ � h0ðyÞ

The absolute value on the derivative in (4.12) is needed only in the other case where g is decreasing.
The set of possible values for Y is obtained by applying g to the set of possible values for X. ■

Example 4.40 Let’s apply the Transformation Theorem to the situation introduced in Example 4.39.
There Y = g(X) = 60X and X = h(Y) = Y/60.

fYðyÞ ¼ fX ½hðyÞ� h0ðyÞj j ¼ :5e�:5x 1
60

����
���� ¼ 1

120
e�y=120 y[ 0

This matches the pdf of Y derived through the cdf in Example 4.39. ■

Example 4.41 Let X * Unif[0, 1], so fX(x) = 1 for 0 � x � 1, and define a new variable
Y ¼ 2

ffiffiffiffi
X

p
. The function g(x) = 2

ffiffiffi
x

p
is monotone on [0, 1], with inverse x = h(y) = y2/4. Apply the

Transformation Theorem:

fYðyÞ ¼ fXðhðyÞÞjh0ðyÞj ¼ ð1Þ 2y
4

����
���� ¼ y

2
0� y� 2

The range 0 � y � 2 comes from the fact that y = 2
ffiffiffi
x

p
maps [0, 1] to [0, 2]. A graphical repre-

sentation may help in understanding why the transform Y ¼ 2
ffiffiffiffi
X

p
yields fY(y) = y/2 if X * Unif[0, 1].

Figure 4.38a shows the uniform distribution with [0, 1] partitioned into ten subintervals. In Fig-
ure 4.38b the endpoints of these intervals are shown after transforming according to y = 2

ffiffiffi
x

p
. The

heights of the rectangles are arranged so each rectangle still has area .1, and therefore the probability in
each interval is preserved. Notice the close fit of the dashed line, which has the equation fY(y) = y/2.
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Example 4.42 The variation in a certain electrical current source X (in milliamps) can be modeled
by the pdf

fXðxÞ ¼ 1:25� :25x 2� x� 4

If this current passes through a 220-X resistor, the resulting power Y (in microwatts) is given by the
expression Y = 220X2. The function y = g(x) = 220x2 is monotonically increasing on the range of X,

the interval [2, 4], and has inverse function x = h(y) = g−1(y) =
ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
. (Notice that g(x) is a

parabola and thus not monotone on the entire real number line, but for the purposes of the Trans-
formation Theorem g(x) only needs to be monotone on the range of the rv X.) Apply (4.12):

fYðyÞ ¼ fXðhðyÞÞ � h0ðyÞj j

¼ fXð
ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
Þ � d

dy

ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p����
����

¼ ð1:25� :25
ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
Þ � 1

2
ffiffiffiffiffiffiffiffiffiffi
220y

p ¼ 5

8
ffiffiffiffiffiffiffiffiffiffi
220y

p � 1
1760

The set of possible Y values is determined by substituting x = 2 and x = 4 into g(x) = 220x2; the
resulting range for Y is [880, 3520]. Therefore, the pdf of Y = 220X2 is

fYðyÞ ¼
5

8
ffiffiffiffiffiffiffiffiffiffi
220y

p � 1
1760

880� y� 3520

0 otherwise

8><
>:

The pdfs of X and Y appear in Figure 4.39.
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Figure 4.38 The effect on the pdf if X is uniform on [0, 1] and Y ¼ 2
ffiffiffiffi
X

p
■
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The Transformation Theorem requires a monotonic transformation, but there are important
applications in which the transformation is not monotone. Nevertheless, it may be possible to use the
theorem anyway with a little trickery.

Example 4.43 In this example, we start with a standard normal random variable Z, and we transform
to Y = Z2. (The squares of normal random variables are important because the sample variance is built
from squares, and we will subsequently need the distribution of the sample variance.) This is not
monotonic over the interval for Z, ð�1; 1Þ: However, consider the transformation U = |Z|. Because
Z has a symmetric distribution, the pdf of U is fU(u) = fZ(u) + fZ(–u) = 2 fZ(u). Don’t despair if this is
not intuitively clear, because we’ll verify it shortly. For the time being, assume it to be true. Then
Y = Z2 = |Z|2 = U2, and the transformation in terms of U is monotonic because its set of possible
values is ð0; 1Þ. Thus we can use the Transformation Theorem with h(y) = y1/2:

fYðyÞ ¼ fU ½hðyÞ� h0ðyÞj j ¼ 2fZ ½hðyÞ� h0ðyÞj j

¼ 2ffiffiffiffiffiffi
2p

p e�:5ðy1=2Þ2 1
2
y�1=2

����
���� ¼ 1ffiffiffiffiffiffiffiffi

2p y
p e�y=2 y[ 0

You were asked to believe intuitively that fU(u) = 2 fX(u). Here is a little derivation that works as long
as the distribution of Z is symmetric about 0. If u > 0,

FUðuÞ ¼ PðU� uÞ ¼ Pð Zj j � uÞ ¼ Pð�u� Z � uÞ ¼ 2Pð0� Z � uÞ
¼ 2 FZðuÞ � FZð0Þ½ �:

Differentiating this with respect to u gives fU(u) = 2 fX(u). ■

Example 4.44 Sometimes the Transformation Theorem cannot be used at all, and you need to use
the cdf. Let fX(x) = (x + 1)/8, −1 � x � 3, and Y = X2. The transformation is not monotonic on
[–1, 3]; and, since fX(x) is not an even function, we can’t employ the symmetry trick of the previous
example. Possible values of Y are {y: 0 � y � 9}. Considering first 0 � y � 1,

0.8
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0.4

0.2

0
2 3 4

0.0008
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0.0002

0
0 880 1760 2640 3520

a b
fX (x) fY ( y)

x y

Figure 4.39 pdfs from Example 4.42: (a) pdf of X; (b) pdf of Y ■

4.7 Transformations of a Random Variable 261



FYðyÞ ¼ PðY � yÞ ¼ PðX2 � yÞ ¼ Pð� ffiffiffi
y

p �X� ffiffiffi
y

p Þ ¼
Z ffiffi

y
p

� ffiffi
y

p

uþ 1
8

du ¼
ffiffiffi
y

p
4

Then, on the other subinterval, 1 < y � 9,

FYðyÞ ¼ PðY � yÞ ¼ PðX2 � yÞ ¼ P � ffiffiffi
y

p �X� ffiffiffi
y

p� � ¼ P �1�X� ffiffiffi
y

p� �

¼
Z ffiffi

y
p

�1

uþ 1
8

du ¼ ð1þ yþ 2
ffiffiffi
y

p Þ=16

Differentiating, we get

fYðyÞ ¼
1

8
ffiffiffi
y

p 0\y� 1

yþ ffiffiffi
y

p
16y

1\y� 9

8>><
>>:

Figure 4.40 shows the pdfs of both X and Y.
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Figure 4.40 Pdfs from Example 4.44: (a) pdf of X; (b) pdf of Y ■

Exercises: Section 4.7 (110–124)

110. Relative to the winning time, the time X of
another runner in a ten kilometer race has
pdf fX(x) = 2/x3, x > 1. The reciprocal
Y = 1/X represents the ratio of the time for
the winner divided by the time of the other
runner. Find the pdf of Y. Explain why
Y also represents the speed of the other
runner relative to the winner.

111. Let X be the fuel efficiency in miles per
gallon of an extremely inefficient vehicle (a
military tank, perhaps?), and suppose X has

the pdf fX(x) = 2x, 0 < x < 1. Determine the
pdf of Y = 1/X, which is fuel efficiency in
gallons per mile. [Note: The distribution of
Y is a special case of the Pareto distribution
(see Exercise 10).]

112. Let X have the pdf fX(x) = 2/x3, x > 1. Find
the pdf of Y ¼ ffiffiffiffi

X
p

.

113. Let X have an exponential distribution with
mean 2, so fXðxÞ ¼ 1

2e
�x=2, x > 0. Find the

pdf of Y ¼ ffiffiffiffi
X

p
. [Note: Suppose you choose
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a point in two dimensions randomly, with
the horizontal and vertical coordinates
chosen independently from the standard
normal distribution. Then X has the distri-
bution of the squared distance from the
origin and Y has the distribution of the
distance from the origin. Y has a Rayleigh
distribution (see Exercise 4).]

114. If X is distributed as N(l, r), find the pdf of
Y = eX. Verify that the distribution of
Y matches the lognormal pdf provided in
Section 3.5.

115. If the length of a side of a square X is
random with the pdf fX(x) = x/8, 0 < x < 4,
and Y is the area of the square, find the pdf
of Y.

116. Let X * Unif(0, 1). Determine the pdf of
Y ¼ �lnðXÞ:

117. Let X * Unif(0, 1). Determine the pdf of
Y ¼ tan½pðX � :5Þ�: [Note: The random
variable Y has the Cauchy distribution,
named after the famous mathematician.]

118. If X * Unif[0, 1], find a linear transfor-
mation Y = cX + d such that Y is uniformly
distributed on [A, B], where A and B are any
two numbers such that A < B. Is there any
other solution? Explain.

119. If X has the pdf fX(x) = x/8, 0 < x < 4, find
a transformation Y = g(X) such that Y *
Unif[0, 1]. [Hint: The target is to achieve
fY(y) = 1 for 0 � y � 1. The Transfor-
mation Theorem will allow you to find h(y),
from which g(x) can be obtained.]

120. a. If a measurement error X is uniformly
distributed on [–1, 1], find the pdf of
Y = |X|, which is the magnitude of the
measurement error.

b. If X * Unif[–1, 1], find the pdf of
Y = X2.

c. If X * Unif[–1, 3], find the pdf of
Y = X2.

121. If a measurement error X is distributed as
N(0, 1), find the pdf of |X|, which is the
magnitude of the measurement error.

122. AAnn is expected at 7:00 pm after an all-day
drive. She may be as much as one hour early
or asmuch as three hours late. Assuming that
her arrival time X is uniformly distributed
over that interval, find the pdf of |X − 7|, the
absolute difference between her actual and
predicted arrival times.

123. A circular target has radius 1 foot. Assume
that you hit the target (we shall ignore
misses) and that the probability of hitting
any region of the target is proportional to
the region’s area. If you hit the target at a
distance Y from the center, then let X = pY2

be the corresponding area. Show that

a. X is uniformly distributed on [0, p]. [Hint:
Show that FX(x) = P(X � x) = x/p.]

b. Y has pdf fY(y) = 2y, 0 < y < 1.

124. In the previous exercise, suppose instead
that Y is uniformly distributed on [0, 1].
Find the pdf of X = pY2. Geometrically
speaking, why should X have a pdf that is
unbounded near 0?

4.8 Simulation of Continuous Random Variables

In Sections 2.6 and 3.8, we discussed the need for simulation of random events and discrete random
variables in situations where an “analytic” solution is very difficult or simply not possible. This
section presents methods for simulating continuous random variables, including some of the built-in
simulation tools of R.

The Inverse CDF Method
Section 3.8 introduced the inverse cdf method for simulating discrete random variables. The basic
idea was this: generate a Unif[0, 1) random number and align it with the cdf of the random variable
X we want to simulate. Then, determine which X value corresponds to that cdf value. We now extend
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this methodology to the simulation of values from a continuous distribution; the heart of the algorithm
relies on the following theorem, often called the probability integral transform.

THEOREM Consider a continuous distribution with pdf f and cdf F. Let U * Unif[0, 1),
and define a random variable X by

X ¼ F�1ðUÞ ð4:13Þ

Then the pdf of X is f.

Before proving this theorem, let’s consider its practical usage: Suppose we want to simulate a
continuous rv whose pdf is f(x), i.e., obtain successive values of X having pdf f(x). If we can determine
the corresponding cdf F(x) and apply its inverse F�1 to values u1, …, un, obtained from a standard
uniform distribution, then x1 ¼ F�1ðu1Þ; . . .; xn ¼ F�1ðunÞ will be values from the desired distribu-
tion f. A graphical description of the algorithm appears in Figure 4.41.

Proof Apply the Transformation Theorem (Section 4.7) with fU(u) = 1 for 0 � u < 1, X = g(U)
= F−1(U), and thus U = h(X) = g−1(X) = F(X). The pdf of the transformed variable X is

fXðxÞ ¼ fUðhðxÞÞ � h0ðxÞj j ¼ fUðFðxÞÞ � F0ðxÞj j ¼ 1 � f ðxÞj j ¼ f ðxÞ

In the last step, the absolute values may be removed because a pdf is always nonnegative. ■

The following box describes the implementation of the inverse cdf method justified by the pre-
ceding theorem.

1

u1

u2

0

F(x)

F −1(u2) F −1(u1)
x

Figure 4.41 The inverse cdf method, illustrated
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INVERSE CDF
METHOD

It is desired to simulate n values from a distribution pdf f(x). Let F(x) be the
corresponding cdf. Repeat n times:

1. Use a random number generator (RNG) to produce a value, u, from [0, 1).
2. Assign x = F−1(u).

The resulting values x1, …, xn form a simulation of a random variable with
the original pdf, f(x).

Example 4.45 Consider the electrical current distribution model of Example 4.42, where the pdf of
X is given by f(x) = 1.25 − .25x for 2 � x � 4. Suppose a simulation of X is required as part of
some larger system analysis. To implement the above method, the inverse of the cdf of X is required.
First, compute the cdf:

FðxÞ ¼ PðX� xÞ ¼
Zx

2

f ðyÞdy

¼
Zx

2

ð1:25� :25yÞdy ¼ �0:125x2 þ 1:25x� 2 2� x� 4

To find the probability integral transform (4.13), set u = F(x) and solve for x:

u ¼ FðxÞ ¼ �0:125x2 þ 1:25x� 2 ) x ¼ F�1ðuÞ ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8u

p

The equation above can be solved using the quadratic formula; care must be taken to select the
solution whose values lie in the interval [2, 4] (the other solution, x ¼ 5þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 8u
p

, does not have
that feature). Beginning with the usual Unif[0, 1) RNG, the algorithm for simulating X is the
following: given a value u from the RNG, assign x = 5� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 8u
p

. Repeating this algorithm n times
gives n simulated values of X. An R program that implements this algorithm appears in Figure 4.42; it
returns a vector, x, containing n = 10,000 simulated values of the specified distribution.

As discussed in Chapter 2, this program can be accelerated by “vectorizing” the operations rather
than using a for loop. In fact, a single line of code can produce the desired result:

x<-5-sqrt(9-8*runif(10000))

The pdf of the rv X and a histogram of simulation results appear in Figure 4.43.

x <- NULL
for (i in 1:10000){

u<-runif(1)
x[i]<-5-sqrt(9-8*u)

}

Figure 4.42 R simulation code for Example 3.42
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Example 4.46 The lifetime of a certain type of drill bit has an exponential distribution with mean
100 h. An analysis of a large manufacturing process that uses these drill bits requires the simulation
of this lifetime distribution, which can be achieved through the inverse cdf method. From Section 4.4,
the cdf of this exponential distribution is F(x) = 1 − e–.01x, and so the inverse cdf is x = F−1(u) =
–100ln(1 − u). Applying this function to Unif[0, 1) random numbers will generate the desired
simulation. (Don’t let the negative sign at the front worry you: since 0 � u < 1, 1 − u lies between 0
and 1, and so its logarithm is negative and the resulting value of x is actually positive.)

As a check, the code x=-100*log(1-runif(10000)) was submitted to R and the resulting
sample mean and sd were obtained using mean(x) and sd(x). Exponentially distributed rvs have
standard deviation equal to the mean, so the theoretical answers are µ = 100 and r = 100. The
simulation yielded �x = 99.3724 and s = 100.8908, both of which are reasonably close to 100 and
validate the inverse cdf formula.

In general, an exponential distribution with mean µ (equivalently, parameter k = 1/µ) can be
simulated using the transform x = –µln(1 − u). ■

The preceding two examples illustrated the inverse cdf method for fairly simple density functions:
a linear polynomial and an exponential function. In practice, the algebraic complexity of f(x) can often
be a barrier to implementing this simulation technique. After all, the algorithm requires that we can
(1) obtain the cdf F(x) in closed form and (2) find the inverse function of F in closed form. Consider,
for example, attempting to simulate values from the N(0, 1) distribution: its cdf is the function

denoted U(z) and given by the integral expression ð1= ffiffiffiffiffiffi
2p

p Þ R z
�1 e�u2=2du. There is no closed-form

expression for this integral, let alone a method to solve u = U(z) for z and implement (4.13). (As a
reminder, the lack of a closed-form expression for U(z) is the reason that software or tables are always
required for calculations involving normal probabilities.) Thankfully, most statistical software
packages have built-in tools to simulate normally distributed variates (using a very clever algorithm
called the Box-Muller method; see Section 5.6). We’ll discuss R’s built-in simulation tools at the end
of this section.

As the next example illustrates, even when F(x) can be determined in closed form we cannot
necessarily implement the inverse cdf method, because F(x) cannot always be inverted. This difficulty
surfaces in practice when attempting to simulate values from a gamma distribution.
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Figure 4.43 (a) Theoretical pdf and (b) R simulation results for Example 4.45 ■
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Example 4.47 The measurement error X (in mV) of a particular voltmeter has the following dis-
tribution: f(x) = (4 − x2)/9 for –1 � x � 2 (and f(x) = 0 otherwise). To use the inverse cdf method
to simulate X, begin by calculating its cdf:

FðxÞ ¼
Zx

�1

4� y2

9
dy ¼ �x3 þ 12xþ 11

27

To implement step 2 of the inverse cdf method requires solving F(x) = u for x; since F(x) is a cubic
polynomial, this is not a simple task. Advanced computer algebra systems can solve this equation,
though the general solution is unwieldy (and such a solution doesn’t exist at all for 5th-degree and
higher polynomials). Readers familiar with numerical analysis methods may recognize that, for any
specified numerical value of u, a root-finding algorithm (such as Newton–Raphson) can be imple-
mented to approximate the solution x. This latter method, however, is computationally intensive,
especially if it’s desirable to generate 10,000 or more simulated values of x. ■

The preceding example suggests that in practice not every continuous distribution can be simulated
via the inverse cdf method. When the inverse cdf method of simulation cannot be implemented, the
accept–reject method provides an alternative. The downside of the accept–reject method is that only
some of the random numbers generated by software will be used (“accepted”), while others will be
“rejected.” As a result, one needs to create more—sometimes, many more—random variates than the
desired number of simulated values. For information on the accept–reject method, consult the texts by
Ross or Carlton and Devore listed in the bibliography.

Built-in Simulation Packages for R
As was true for the most common discrete distributions, many software packages have built-in tools
for simulating values from the continuous models named in this chapter. Table 4.4 summarizes the
relevant R functions for the uniform, normal, gamma, and exponential distributions; the variable
n refers to the desired number of simulated values of the distribution. R includes similar commands
for the Weibull, lognormal, and beta distributions.

As was the case with the cdf commands discussed in Section 4.4, R parameterizes the gamma and
exponential distributions using the “rate” parameter k = 1/b. In the gamma simulation command, this
can be overridden by naming the final argument scale, as in rgamma(n,a,scale=b). The
command rnorm(n) will generate standard normal variates (i.e., with µ = 0 and r = 1). Similarly,
R will generate standard uniform variates (A = 0 and B = 1), the basis for many of our simulation
methods, with the command runif(n).

Table 4.4 Functions to simulate major continuous distributions in R

Distribution R code

Unif[A, B] runif(n,A,B)
N(µ, r) rnorm(n,µ,r)
Gamma(a, b) rgamma(n,a,1/b)
Exponential(k) rexp(n,k)
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Precision of Simulation Results
Section 3.8 discusses in detail the precision of estimates associated with simulating discrete random
variables. The same results apply in the continuous case. In particular, the estimated standard error in

using a sample proportion p̂ to estimate the true probability of an event is still
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ=np

, where
n is the simulation size. Also, the estimated standard error in using a sample mean, �x, to estimate the
true expected value µ of a (continuous) rv X is s=

ffiffiffi
n

p
, where s is the sample standard deviation of the

simulated values of X. Refer back to Section 3.8 for more details.

Exercises: Section 4.8 (125–130)

125. The amount of time (hours) required to
complete an unusually short statistics
homework assignment is modeled by the
pdf f(x) = x/2 for 0 < x < 2 (and = 0
otherwise).

a. Obtain the cdf and then its inverse.
b. Write a program to simulate 10,000

values from this distribution.
c. Compare the sample mean and standard

deviation of your 10,000 simulated val-
ues to the theoretical mean and sd of this
distribution (which you can deter-
mine by calculating the appropriate
integrals).

126. The Weibull distribution was introduced in
Section 4.5.

a. Find the inverse of the Weibull cdf.
b. Write a program to simulate n values

from a Weibull distribution. Your pro-
gram should have three inputs: the
desired number of simulated values
n and the two parameters a and b. It
should have a single output: an n � 1
vector of simulated values.

c. Use your program from part (b) to sim-
ulate 10,000 values from a Weibull(4, 6)
distribution and estimate the mean of
this distribution. The correct value of the
mean is 6C(5/4) � 5.438; how close is
your sample mean?

127. Consider the pdf for the rv X = magnitude
(in newtons) of a dynamic load on a bridge,
given in Example 4.7:

f ðxÞ ¼ 1
8
þ 3

8
x 0� x� 2

Write a program to simulate values from this
distribution using the inverse cdf method.

128. In distributed computing, any given task is
split into smaller subtasks which are han-
dled by separate processors (which are then
re-combined by a multiplexer). Consider a
distributed computing system with 4 pro-
cessors, and suppose for one particular
purpose that pdf of completion time for a
particular subtask (microseconds) on any
one of the processors is given by f ðxÞ ¼
20=ð3x2Þ for 4 � x � 10 and = 0 other-
wise. That is, the subtask completion times
X1, X2, X3, X4 of the four processors each
have the specified pdf.

a. Write a program to simulate the above
pdf using the inverse cdf method.

b. The overall time to complete any task is
the largest of the four subtask comple-
tion times: if we call this variable Y, then
Y = max(X1, X2, X3, X4). (We assume
that the multiplexing time is negligible.)
Use your program in part (a) to simulate
10,000 values of the rv Y. Create a
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histogram of the simulated values of Y,
and also use your simulation to estimate
both E(Y) and rY.

129. Consider the following pdf:

f ðx;h; sÞ ¼ h
s
ð1� x=sÞh�1 0� x\s

where h > 0 and s > 0 are the parameters
of the model. [This pdf is suggested for
modeling waiting time in the article “A
Model of Pedestrians’ Waiting Times for
Street Crossings at Signalized Intersec-
tions” (Trans. Res. 2013: 17–28).]

a. Write a function to simulate values from
this distribution, implementing the
inverse cdf method. Your function
should have three inputs: the desired
number of simulated values n and values
for the two parameters for h and s.

b. Use your function in part (a) to simulate
10,000 values from this wait time dis-
tribution with h = 4 and s = 80. Esti-
mate E(X) under these parameter
settings. How close is your estimate to
the correct value of 16?

130. Explain why the transformation x = –µln(u)
may be used to simulate values from an
exponential distribution with mean µ. (This
expression is slightly simpler than the one
established in this section.)

Supplementary Exercises: (131–159)

131. An insurance company issues a policy
covering losses up to 5 (in thousands of
dollars). The loss, X, follows a distribution
with density function f ðxÞ ¼ 3=x4 for
x � 1 and = 0 otherwise. What is the
expected value of the amount paid under
the policy?

132. A 12-in. bar clamped at both ends is sub-
jected to an increasing amount of stress
until it snaps. Let Y = the distance from the
left end at which the break occurs. Suppose
Y has pdf

f ðyÞ ¼ y

24
1� y

12

 �
0� y� 12

Compute the following:

a. The cdf of Y, and graph it.
b. P(Y � 4),P(Y > 6), andP(4 � Y � 6).
c. E(Y), E(Y2), and V(Y).
d. The probability that the break point

occurs more than 2 in. from the expec-
ted break point.

e. The expected length of the shorter seg-
ment when the break occurs.

133. Let X denote the time to failure (in years) of
a hydraulic component. Suppose the pdf of
X is f(x) = 32/(x + 4)3 for x > 0.
a. Verify that f(x) is a legitimate pdf.
b. Determine the cdf.
c. Use the result of part (b) to calculate the

probability that time to failure is
between 2 and 5 years.

d. What is the expected time to failure?
e. If the component has a salvage value

equal to 100/(4 + x) when its time to
failure is x, what is the expected salvage
value?

134. The completion time X for a task has cdf F
(x) given by

FðxÞ ¼
0 x\0
x3

3 0� x\1
1� 1

2
7
3 � x
� �

7
4 � 3

4 x
� �

1� x\ 7
3

1 x� 7
3

8>><
>>:

a. Obtain the pdf f(x) and sketch its graph.
b. Compute P(.5 � X � 2).
c. Compute E(X).

135. The breakdown voltage of a randomly
chosen diode of a certain type is known to
be normally distributed with mean value
40 V and standard deviation 1.5 V.

a. What is the probability that the voltage
of a single diode is between 39 and 42?
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b. What value is such that only 15% of all
diodes have voltages exceeding that
value?

c. If four diodes are independently selec-
ted, what is the probability that at least
one has a voltage exceeding 42?

136. The article “Computer Assisted Net Weight
Control” (Qual. Prog. 1983: 22–25) sug-
gests a normal distribution with mean
137.2 oz and standard deviation 1.6 oz, for
the actual contents of jars of a certain type.
The stated contents was 135 oz.

a. What is the probability that a single jar
contains more than the stated contents?

b. Among ten randomly selected jars, what
is the probability that at least eight contain
more than the stated contents?

c. Assuming that the mean remains at
137.2, to what value would the standard
deviation have to be changed so that
95% of all jars contain more than the
stated contents?

137. When circuit boards used in the manufac-
ture of MP3 players are tested, the long-run
percentage of defectives is 5%. Suppose
that a batch of 250 boards has been
received and that the condition of any
particular board is independent of that of
any other board.

a. What is the approximate probability that
at least 10% of the boards in the batch
are defective?

b. What is the approximate probability that
there are exactly ten defectives in the
batch?

138. Let X be a nonnegative continuous random
variable with pdf f(x), cdf F(x), and mean
E(X).

a. The definition of expected value is
E(X) =

R1
0 xf ðxÞdx. Replace the first

x inside the integral with
R x
0 1 dy to

create a double integral expression for
EðXÞ: [The “order of integration”
should be dy dx.]

b. Re-arrange the order of integration,
keeping track of the revised limits of
integration, to show that

EðXÞ ¼
Z1
0

Z1
y

f ðxÞdxdy

c. Evaluate the dx integral in (b) to show
that E(X) =

R1
0 ½1� FðyÞ�dy. (This

provides an alternate derivation of the
formula established in Exercise 38.)

d. Use the result of (c) to verify that the
expected value of an exponentially dis-
tributed rv with parameter k is 1/k.

139. The reaction time (in seconds) to a stimulus
is a continuous random variable with pdf
f ðxÞ ¼ 1:5=x2 for 1 � x � 3 and = 0
otherwise.

a. Obtain the cdf.
b. Using the cdf, what is the probability

that reaction time is at most 2.5 s?
Between 1.5 and 2.5 s?

c. Compute the expected reaction time.
d. Compute the standard deviation of

reaction time.
e. If an individual takes more than 1.5 s to

react, a light comes on and stays on
either until one further second has
elapsed or until the person reacts
(whichever happens first). Determine
the expected amount of time that the
light remains lit. [Hint: Let h(X) = the
time that the light is on as a function of
reaction time X.]

140. Let X denote the temperature at which a
certain chemical reaction takes place. Sup-
pose that X has pdf f ðxÞ ¼ ð4� x2Þ=9 for
–1 � x � 2 and = 0 otherwise.
a. Sketch the graph of f(x).
b. Determine the cdf and sketch it.
c. Is 0 the median temperature at which the

reaction takes place? If not, is the median
temperature smaller or larger than 0?

d. Suppose this reaction is independently
carried out once in each of ten different
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laboratories and that the pdf of reaction
time in each laboratory is as given. Let
Y = the number among the ten labora-
tories at which the temperature exceeds
1. What kind of distribution does
Y have? (Give the name and values of
any parameters.)

141. The article “Determination of the MTF of
Positive Photoresists Using the Monte
Carlo Method” (Photographic Sci. Engr.
1983: 254–260) proposes the exponential
distribution with parameter k = .93 as a
model for the distribution of a photon’s free
path length (lm) under certain circum-
stances. Suppose this is the correct model.

a. What is the expected path length, and
what is the standard deviation of path
length?

b. What is the probability that path length
exceeds 3.0? What is the probability
that path length is between 1.0 and 3.0?

c. What value is exceeded by only 10% of
all path lengths?

142. The article “The Prediction of Corrosion by
Statistical Analysis of Corrosion Profiles”
(Corrosion Sci. 1985: 305–315) suggests
the following cdf for the depth X of the
deepest pit in an experiment involving the
exposure of carbon manganese steel to
acidified seawater.

Fðx; h1; h2Þ ¼ e�e�ðx�h1Þ=h2 �1\x\1

(This is called the Gumbel distribution.)
The investigators proposed the values
h1 = 150 and h2 = 90. Assume this to be
the correct model.

a. What is the probability that the depth of
the deepest pit is at most 150? At most
300? Between 150 and 300?

b. Below what value will the depth of the
maximum pit be observed in 90% of all
such experiments?

c. What is the density function of X?

d. The density function can be shown to be
unimodal (a single peak). Above what
value on the measurement axis does this
peak occur? (This value is the mode.)

e. It canbe shown thatE(X) � .5772h2 + h1.
What is themean for the given values of h1
and h2, and how does it compare to the
median and mode? Sketch the graph of the
density function.

143. Let t = the amount of sales tax a retailer
owes the government for a certain period.
The article “Statistical Sampling in Tax
Audits” (Statistics Law 2008: 320–343)
proposes modeling the uncertainty in t by
regarding it as a normally distributed ran-
dom variable with mean value l and stan-
dard deviation r (in the article, these two
parameters are estimated from the results of
a tax audit involving n sampled transac-
tions). If a represents the amount the retailer
is assessed, then an underassessment results
if t > a and an overassessment if a > t. We
can express this in terms of a loss function, a
function that shows zero loss if t = a but
increases as the gap between t and a in-
creases. The proposed loss function is
Lða; tÞ ¼ t � a if t > a and = k(a � t) if
t � a (k > 1 is suggested to incorporate the
idea that overassessment is more serious
than underassessment).

a. Show that a	 ¼ lþ rU�1 1=ðkþ 1Þð Þ is
the value of a that minimizes the
expected loss, where U�1 is the inverse
function of the standard normal cdf.

b. If k = 2 (suggested in the article),
l = $100,000, and r = $10,000, what is
the optimal value of a, and what is
the resulting probability of overassess-
ment?

144. A mode of a continuous distribution is a
value x* that maximizes f(x).

a. What is the mode of a normal distribu-
tion with parameters l and r?
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b. Does the uniform distribution with
parameters A and B have a single mode?
Why or why not?

c. What is the mode of an exponential
distribution with parameter k? (Draw a
picture.)

d. If X has a gamma distribution with
parameters a and b, and a > 1, find the
mode. [Hint: ln[f(x)] will be maximized
if and only if f(x) is, and it may be sim-
pler to take the derivative of ln[f(x)].]

145. The article “Error Distribution in Naviga-
tion” (J. Institut. Navigation 1971: 429–
442) suggests that the frequency distribu-
tion of positive errors (magnitudes of
errors) is well approximated by an expo-
nential distribution. Let X = the lateral
position error (nautical miles), which can
be either negative or positive. Suppose the
pdf of X is

f ðxÞ ¼ :1 e�:2jxj � 1\x\1

a. Sketch a graph of f(x) and verify that it
is a legitimate pdf (show that it inte-
grates to 1).

b. Obtain the cdf of X and sketch it.
c. Compute P(X � 0), P(X � 2),

P(−1 � X � 2), and the probability
that an error of more than 2 miles is
made.

146. In some systems, a customer is allocated to
one of two service facilities. If the service
time for a customer served by facility i has
an exponential distribution with parameter
ki (i = 1, 2) and p is the proportion of all
customers served by facility 1, then the pdf
of X = the service time of a randomly
selected customer is

f ðx; k1; k2; pÞ ¼
pk1e

�k1x þð1� pÞk2e�k2x x[ 0

This is often called the hyperexponential
or mixed exponential distribution. This

distribution is also proposed in the article
“Statistical Behavior Modeling for Driver-
Adaptive Precrash Systems” (IEEE Trans.
Intelligent Transp. Syst. 2013: 1–9) as a
model for modeling what the authors call
“the criticality level of a situation.”

a. Verify that f(x; k1, k2, p) is indeed a pdf.
b. If p = .5, k1 = 40, k2 = 200 (k values

suggested in the cited article), calculate
P(X > .01).

c. If X has f(x; k1, k2, p) as its pdf, what is
E(X)?

d. Using the fact that E(X2) = 2/k2 when
X has an exponential distribution with
parameter k, compute E(X2) when X has
pdf f(x; k1, k2, p). Then compute V(X).

e. The coefficient of variation of a random
variable (or distribution) is CV = r/l.
What is the CV for an exponential rv?
What can you say about the value of CV
when X has a hyperexponential
distribution?

f. What is the CV for an Erlang distribu-
tion with parameters k and n as defined
in Exercise 78? [Note: In applied work,
the sample CV is used to decide which
of the three distributions might be
appropriate.]

g. For the parameter values given in (b),
calculate the probability that X is within
one standard deviation of its mean
value. Does this probability depend
upon the values of the k’s (it does not
depend on k when X has an exponential
distribution)?

147. Suppose a state allows individuals filing tax
returns to itemize deductions only if the
total of all itemized deductions is at least
$5000. Let X (in 1000’s of dollars) be the
total of itemized deductions on a randomly
chosen form. Assume that X has the pdf

f ðx; aÞ ¼ k=xa x� 5
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a. Find the value of k. What restriction on
a is necessary?

b. What is the cdf of X?
c. What is the expected total deduction on

a randomly chosen form? What restric-
tion on a is necessary for E(X) to be
finite?

d. Show that ln(X/5) has an exponential
distribution with parameter a − 1.

148. Let Ii be the input current to a transistor and
Io be the output current. Then the current
gain is proportional to ln(Io/Ii). Suppose the
constant of proportionality is 1 (which
amounts to choosing a particular unit of
measurement), so that current gain = X =
ln(Io/Ii). Assume X is normally distributed
with l = 1 and r = .05.

a. What type of distribution does the ratio
Io/Ii have?

b. What is the probability that the output
current is more than twice the input
current?

c. What are the expected value and vari-
ance of the ratio of output to input
current?

149. The article “Response of SiCf/Si3N4 Com-
posites Under Static and Cyclic Loading—
An Experimental and Statistical Analysis”
(J. Engr. Mater. Tech. 1997: 186–193)
suggests that tensile strength (MPa) of
composites under specified conditions can
be modeled by a Weibull distribution with
a = 9 and b = 180.

a. Sketch a graph of the density function.
b. What is the probability that the strength

of a randomly selected specimen will
exceed 175? Will be between 150 and
175?

c. If two randomly selected specimens are
chosen and their strengths are indepen-
dent of each other, what is the proba-
bility that at least one has strength
between 150 and 175?

d. What strength value separates the
weakest 10% of all specimens from the
remaining 90%?

150. Suppose the lifetime X of a component,
when measured in hours, has a gamma
distribution with parameters a and b.
a. Let Y = lifetime measured in minutes.

Derive the pdf of Y.
b. What is the probability distribution of

Y = cX?

151. Based on data from a dart-throwing exper-
iment, the article “Shooting Darts”
(Chance, Summer 1997: 16–19) proposed
that the horizontal and vertical errors from
aiming at a point target should be inde-
pendent of each other, each with a normal
distribution having mean 0 and variance r2.
It can then be shown that the pdf of the
distance V from the target to the landing
point is

f ðmÞ ¼ m
r2

� e�m2=ð2r2Þ m[ 0

a. This pdf is a member of what family
introduced in this chapter?

b. If r = 20 mm (close to the value sug-
gested in the paper), what is the proba-
bility that a dart will land within 25 mm
(roughly 1 in.) of the target?

152. The article “Three Sisters Give Birth on the
Same Day” (Chance, Spring 2001: 23–25)
used the fact that three Utah sisters had all
given birth on March 11, 1998, as a basis
for posing some interesting questions
regarding birth coincidences.

a. Disregarding leap year and assuming
that the other 365 days are equally
likely, what is the probability that three
randomly selected births all occur on
March 11? Be sure to indicate what, if
any, extra assumptions you are making.

b. With the assumptions used in part (a),
what is the probability that three ran-
domly selected births all occur on the
same day?

c. The author suggested that, based on
extensive data, the length of gestation
(time between conception and birth)
could be modeled as having a normal
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distribution with mean value 280 days
and standard deviation 19.88 days. The
due dates for the three Utah sisters were
March 15, April 1, and April 4, respec-
tively. Assuming that all three due dates
are at the mean of the distribution, what
is the probability that all births occurred
on March 11? [Hint: The deviation of
birth date from due date is normally
distributed with mean 0.]

d. Explain how you would use the infor-
mation in part (c) to calculate the
probability of a common birth date.

153. Let X denote the lifetime of a component,
with f(x) and F(x) the pdf and cdf of X. The
probability that the component fails in the
interval (x, x + Dx) is approximately
f(x) � Dx. The conditional probability that it
fails in (x, x + Dx) given that it has lasted at
least x is f(x) � Dx/[1 − F(x)]. Dividing this
by Dx produces the failure rate function:

rðxÞ ¼ f ðxÞ
1� FðxÞ

An increasing failure rate function indicates
that older components are increasingly
likely to wear out, whereas a decreasing
failure rate is evidence of increasing relia-
bility with age. In practice, a “bathtub-
shaped” failure is often assumed.

a. If X is exponentially distributed, what is
r(x)?

b. If X has a Weibull distribution with
parameters a and b, what is r(x)? For
what parameter values will r(x) be
increasing? For what parameter values
will r(x) decrease with x?

c. Since r(x) = −(d/dx)ln[1 − F(x)],
ln½1� FðxÞ� ¼ R

rðxÞdx: Suppose

rðxÞ ¼ a 1� x

b

� �
0� x� b

so that if a component lasts b hours, it will
last forever (while seemingly unreasonable,
this model can be used to study just “initial
wearout”). What are the cdf and pdf of X?

154. Let X have a Weibull distribution with
shape parameter a and scale parameter b.
Show that the the transformed variable
Y = ln(X) has an extreme value distribution
as defined in Section 4.6, with h1 = ln(b)
and h2 = 1/a.

155. Let X have a Weibull distribution with
parameters a = 2 and b. Show that
Y = 2X2/b2 has a gamma distribution, and
identify its parameters.

156. Let X have the pdf f(x) = 1/[p(1 + x2)] for
�1\x\1 (a central Cauchy distribu-
tion), and show that Y = 1/X has the same
distribution. [Hint: Consider P(|Y| � y),
the cdf of |Y|, then obtain its pdf and show it
is identical to the pdf of |X|.]

157. A store will order q gallons of a liquid
product to meet demand during a particular
time period. This product can be dispensed
to customers in any amount desired, so
demand during the period is a continuous
random variable X with cdf F(x). There is a
fixed cost c0 for ordering the product plus a
cost of c1 per gallon purchased. The per
gallon sale price of the product is d. Liquid
left unsold at the end of the time period has
a salvage value of e per gallon. Finally, if
demand exceeds q, there will be a shortage
cost for loss of goodwill and future busi-
ness; this cost is f per gallon of unfulfilled
demand. Show that the value of q that
maximizes expected profit, denoted by q*,
satisfies

Pðsatisfying demandÞ ¼ Fðq	Þ
¼ d � c1 þ f

d � eþ f

Then determine the value of F(q*) if
d = $35, c0 = $25, c1 = $15, e = $5, and
f = $25. [Hint: Let x denote a particular
value of X. Develop an expression for profit
when x � q and another expression for
profit when x > q. Now write an integral
expression for expected profit (as a function
of q) and differentiate.]
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158. A function g(x) is convex if the chord
connecting any two points on the function’s
graph lies above the graph. When g(x) is
differentiable, an equivalent condition is
that for every x, the tangent line at x lies
entirely on or below the graph. (See the
accompanying figure.) How does g(l) =
g[E(X)] compare to E[g(X)]? [Hint: The
equation of the tangent line at x = l is
y = g(l) + g′(l) � (x � l). Use the condi-
tion of convexity, substitute X for x, and
take expected values.] Note: Unless g(x) is

linear, the resulting inequality, usually
called Jensen’s inequality, is strict (< rather
than � ); it is valid for both continuous and
discrete rvs.

x

Tangent

line
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5Joint Probability Distributions
and Their Applications

Introduction
In Chapters 3 and 4, we developed probability models for a single random variable. Many problems
in probability and statistics lead to models involving several random variables simultaneously. In this
chapter, we first discuss probability models for the joint behavior of several random variables, putting
special emphasis on the case in which the variables are independent of each other. We then study
expected values of functions of several random variables, including covariance and correlation as
measures of the degree of association between two variables.

Section 5.3 develops properties of linear combinations of random variables, with particular
emphasis on the sum and the average. The next section considers conditional distributions, the
distributions of random variables given the values of other random variables. In Section 5.5 we
extend the normal distribution of Chapter 4 to two possibly dependent rvs. The next section is about
transformations of two or more random variables, generalizing the results of Section 4.7. In the last
section of this chapter we discuss the distribution of order statistics: the minimum, maximum, median,
and other quantities that can be found by arranging the observations in order.

5.1 Jointly Distributed Random Variables

There are many experimental situations in which more than one random variable (rv) will be of
interest to an investigator. For example X might be the number of books checked out from a public
library on a particular day and Y the number of videos checked out on the same day. Or X and Y might
be the height and weight, respectively, of a randomly selected adult. In general, the two rvs of interest
could both be discrete, both be continuous, or one could be discrete and the other continuous. In
practice, the two “pure” cases—both of the same type—predominate. We shall first consider joint
probability distributions for two discrete rvs, then for two continuous variables, and finally for more
than two variables.

The Joint Probability Mass Function for Two Discrete Random Variables
The probability mass function (pmf) of a single discrete rv X specifies how much probability mass is
placed on each possible X value. The joint pmf of two discrete rvs X and Y describes how much
probability mass is placed on each possible pair of values (x, y).
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DEFINITION Let X and Y be two discrete rvs defined on the sample space of an experiment. The
joint probability mass function p(x, y) is defined for each pair of numbers (x, y) by

pðx; yÞ ¼ PðX ¼ x and Y ¼ yÞ

A function p(x; y) can be used as a joint pmf provided that p(x; y)≥0 for all x and y andP
x

P
y pðx; yÞ ¼ 1. Let A be any set consisting of pairs of (x, y) values, such as {(x, y): x + y < 10}.

Then the probability that the random pair (X, Y) lies in A is obtained by summing the joint pmf over
pairs in A:

PððX; YÞ 2 AÞ ¼
XX

pðx; yÞ
ðx; yÞ 2 A

As in previous chapters, we will display a joint pmf for the values in its support—i.e., the set of all
(x, y) values for which p(x, y) > 0—with the understanding that p(x, y) = 0 otherwise.

Example 5.1 A large insurance agency services a number of customers who have purchased both a
homeowner’s policy and an automobile policy from the agency. For each type of policy, a deductible
amount must be specified. For an automobile policy, the choices are $100 and $250, whereas for a
homeowner’s policy, the choices are 0, $100, and $200. Suppose an individual with both types of
policy is selected at random from the agency’s files. Let X = the deductible amount on the auto policy
and Y = the deductible amount on the homeowner’s policy. Possible (X, Y) pairs are then (100, 0),
(100, 100), (100, 200), (250, 0), (250, 100), and (250, 200); the joint pmf specifies the probability
associated with each one of these pairs, with any other pair having probability zero. Suppose the joint
pmf is given in the accompanying joint probability table:

Then p(100, 100) = P(X = 100 and Y = 100) = P($100 deductible on both policies) = .10. The
probability P(Y � 100) is computed by summing probabilities of all (x, y) pairs for which y � 100:

PðY � 100Þ ¼ p 100; 100ð Þþ p 250; 100ð Þþ p 100; 200ð Þþ p 250; 200ð Þ ¼ :75 �

Looking at the joint probability table in Example 5.1, we see that P(X = 100), i.e., pX(100), equals
.20 + .10 + .20 = .50, and similarly pX(250) = .05 + .15 + .30 = .50 as well. That is, the pmf of X at
a specified number is calculated by fixing an x value (say, 100 or 250) and summing across all
possible y values; e.g., pX(250) = p(250,0) + p(250,100) + p(250,200). The pmf of Y can be obtained
by analogous summation, adding “down” the table instead of “across.” In fact, by adding across rows
and down columns, we could imagine writing these probabilities in the margins of the joint proba-
bility table; for this reason, pX and pY are called the marginal distributions of X and Y.

p(x, y)

y
0 100 200

x
100 .20 .10 .20
250 .05 .15 .30
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DEFINITION The marginal probability mass functions of X and of Y, denoted by pX(x)
and pY(y), respectively, are given by

pXðxÞ ¼
X
y

pðx; yÞ pYðyÞ ¼
X
x

pðx; yÞ

Thus to obtain the marginal pmf of X evaluated at, say, x = 100, the probabilities p(100, y) are added
over all possible y values. Doing this for each possible X value gives the marginal pmf of X alone (i.e.,
without reference to Y). From the marginal pmfs, probabilities of events involving only X or only
Y can be computed.

Example 5.2 (Example 5.1 continued) The possible X values are x = 100 and x = 250, so com-
puting row totals in the joint probability table yields

pX 100ð Þ ¼ p 100; 0ð Þþ p 100; 100ð Þþ p 100; 200ð Þ ¼ :50

And

pX 250ð Þ ¼ p 250; 0ð Þþ p 250; 100ð Þþ p 250; 200ð Þ ¼ :50

The marginal pmf of X is then

pXðxÞ ¼ :50 x ¼ 100; 250

Similarly, the marginal pmf of Y is obtained from column totals as

pYðyÞ ¼ :25 y ¼ 0; 100
:50 y ¼ 200

�

so PðY � 100Þ ¼ pY 100ð Þþ pY 200ð Þ ¼ :75 as before. ■

The Joint Probability Density Function for Two Continuous Random Variables
The probability that the observed value of a continuous rv X lies in a one-dimensional set A (such as
an interval) is obtained by integrating the pdf f(x) over the set A. Similarly, the probability that the pair
(X, Y) of continuous rvs falls in a two-dimensional set A (such as a rectangle) is obtained by
integrating a function called the joint density function.

DEFINITION Let X and Y be continuous rvs. Then f(x, y) is the joint probability density function
for X and Y if for any two-dimensional set A

PððX; YÞ 2 AÞ ¼
ZZ
A

f ðx; yÞ dx dy

In particular, if A is the two-dimensional rectangle fðx; yÞ : a� x� b; c� y� dg,
then
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PððX; YÞ 2 AÞ ¼ Pða�X� b; c� Y � dÞ ¼
Zb
a

Zd
c

f ðx; yÞdy dx

For f(x, y) to be a joint pdf, it must satisfy f(x, y) � 0 and
R1
�1
R1
�1 f ðx; yÞdx dy ¼ 1. We can think

of f(x, y) as specifying a surface at height f(x, y) above the point (x, y) in a three-dimensional
coordinate system. Then P((X, Y) 2 A) is the volume underneath this surface and above the region
A, analogous to the area under a curve in the one-dimensional case. This is illustrated in Figure 5.1.

Example 5.3 A bank operates both a drive-up facility and a walk-up window. On a randomly
selected day, let X = the proportion of time that the drive-up facility is in use (at least one customer is
being served or waiting to be served) and Y = the proportion of time that the walk-up window is in
use. Then the set of possible values for (X, Y) is the rectangle D ¼ fðx; yÞ : 0� x� 1; 0� y� 1g.
Suppose the joint pdf of (X, Y) is given by

f ðx; yÞ ¼ 6
5
ðxþ y2Þ 0� x� 1; 0� y� 1

To verify that this is a legitimate pdf, note that fðx; yÞ � 0 and

Z1
�1

Z1
�1

fðx; yÞdxdy¼
Z1
0

Z1
0

6
5
ðxþ y2Þdxdy

¼
Z1
0

Z1
0

6
5
xdxdyþ

Z1
0

Z1
0

6
5
y2dxdy

¼
Z1
0

6
5
xdxþ

Z1
0

6
5
y2dy ¼ 6

10
þ 6

15
¼ 1

y

x

f (x, y)

Surface f (x, y)

A = Shaded

 rectangle

Figure 5.1 P((X, Y) 2 A) = volume under density surface above A
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The probability that neither facility is busy more than one-quarter of the time is

P 0�X� 1
4
; 0� Y � 1

4

� �
¼
Z1=4
0

Z1=4
0

6
5
ðxþ y2Þdxdy

¼ 6
5

Z1=4
0

Z1=4
0

xdxdyþ 6
5

Z1=4
0

Z1=4
0

y2dxdy

¼ 6
20

� x
2

2

����
x¼1=4

x¼0

þ 6
20

� y
3

3

����
y¼1=4

y¼0

¼ 7
640

¼ :0109 �

The marginal pmf of one discrete variable results from summing the joint pmf over all values of the
other variable. Similarly, the marginal pdf of one continuous variable is obtained by integrating the
joint pdf over all values of the other variable.

DEFINITION The marginal probability density functions of X and Y, denoted by fX (x) and fY (y),
respectively, are given by

fXðxÞ ¼
Z1
�1

f ðx; yÞdy for �1\x\1

fYðyÞ ¼
Z1
�1

f ðx; yÞdx for �1\y\1

Example 5.4 (Example 5.3 continued) The marginal pdf of X, which gives the probability distri-
bution of busy time for the drive-up facility without reference to the walk-up window, is

fXðxÞ ¼
Z1
�1

f ðx; yÞ dy ¼
Z1
0

6
5
ðxþ y2Þ dy ¼ 6

5
xþ 2

5

for 0 � x � 1 and 0 otherwise. Similarly, the marginal pdf of Y is

fYðyÞ ¼ 6
5
y2 þ 3

5
0� y� 1

Then, for example,

P
1
4
� Y � 3

4

� �
¼
Z3=4
1=4

6
5
y2 þ 3

5

� �
dy ¼ 37

80
¼ :4625: �
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In Examples 5.3–5.4, the region of positive joint density was a rectangle, which made computation of
the marginal pdfs relatively easy. Consider now an example in which the region of positive density is
a more complicated figure.

Example 5.5 A nut company markets cans of deluxe mixed nuts containing almonds, cashews, and
peanuts. Suppose the net weight of each can is exactly 1 lb, but the weight contribution of each type
of nut is random. Because the three weights sum to 1, a joint probability model for any two gives all
necessary information about the weight of the third type. Let X = the weight of almonds in a selected
can and Y = the weight of cashews. Then the region of positive density is D ¼ fðx; yÞ : 0� x� 1;
0� y� 1; xþ y� 1g, the shaded region pictured in Figure 5.2.

Now let the joint pdf for (X, Y) be

f ðx; yÞ ¼ 24xy 0� x� 1; 0� y� 1; xþ y� 1

For any fixed x, f(x, y) increases with y; for fixed y, f(x, y) increases with x. This is appropriate because
the word deluxe implies that most of the can should consist of almonds and cashews rather than
peanuts, so that the density function should be large near the upper boundary and small near the
origin. The surface determined by f(x, y) slopes upward from zero as (x, y) moves away from either
axis.

Clearly, f(x, y) � 0. To verify the second condition on a joint pdf, recall that a double integral is
computed as an iterated integral by holding one variable fixed (such as x as in Figure 5.2), integrating
over values of the other variable lying along the straight line passing through the value of the fixed
variable, and finally integrating over all possible values of the fixed variable. Thus

Z1
�1

Z1
�1

f ðx; yÞdydx¼
ZZ
D

f ðx; yÞdydx ¼
Z1
0

Z1�x

0

24xydy

8<
:

9=
;

¼
Z1
0

24x
y2

2

����
y¼1�x

y¼0

( )
dx ¼

Z1
0

12xð1� xÞ2dx ¼ 1

x

(0, 1)

x(1, 0)

y

(x, 1−x)

Figure 5.2 Region of positive density for Example 5.5
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To compute the probability that the two types of nuts together make up at most 50% of the can, let
A ¼ fðx; yÞ : 0� x� 1; 0� y� 1; and xþ y� :5g, as shown in Figure 5.3. Then

PððX; YÞ 2 AÞ ¼
ZZ
A

f ðx; yÞ dx dy ¼
Z:5
0

Z:5�x

0

24xy dy dx ¼ :0625

The marginal pdf for almonds is obtained by holding X fixed at x and integrating f(x, y) along the
vertical line through x:

fXðxÞ ¼
Z1
�1

f ðx; yÞ dy ¼
Z1�x

0

24xy dy ¼ 12xð1� xÞ2 0� x� 1

By symmetry of f(x, y) and the region D, the marginal pdf of Y is obtained by replacing x and X in

fX(x) by y and Y, respectively: fYðyÞ ¼ 12yð1� yÞ2 for 0 � y � 1. ■

Independent Random Variables
In many situations, information about the observed value of one of the two variables X and Y gives
information about the value of the other variable. In Example 5.1, the marginal probability of X at
x = 250 was .5, as was the probability that X = 100. If, however, we are told that the selected
individual had Y = 0, then X = 100 is four times as likely as X = 250. Thus there is a dependence
between the two variables.

In Chapter 2 we pointed out that one way of defining independence of two events is to say that
A and B are independent if PðA\BÞ ¼ PðAÞ � PðBÞ: Here is an analogous definition for the inde-
pendence of two rvs.

x 1.50

1

.5

0

  
y = .5 − x

A = Shaded region

x +y = 1x +y = .5

Figure 5.3 Computing P((X, Y) 2 A) for Example 5.5
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DEFINITION Two random variables X and Y are said to be independent if for every pair of
x and y values,

p x; yð Þ ¼ pXðxÞ � pYðyÞ when X and Y are discrete

or

f x; yð Þ ¼ fXðxÞ � fYðyÞ when X and Y are continuous

ð5:1Þ

If (5.1) is not satisfied for all (x, y), then X and Y are said to be dependent.

The definition says that two variables are independent if their joint pmf or pdf is the product of the
two marginal pmfs or pdfs.

Example 5.6 In the insurance situation of Examples 5.1 and 5.2,

p 100; 100ð Þ ¼ :10 6¼ :5ð Þ :25ð Þ ¼ pX 100ð Þ � pY 100ð Þ

so X and Y are not independent. Independence of X and Y requires that every entry in the joint
probability table be the product of the corresponding row and column marginal probabilities. ■

Example 5.7 (Example 5.5 continued) Because f(x, y) in the nut scenario has the form of a product,
X and Y might appear to be independent. However, although fX 3

4

� � ¼ fY 3
4

� � ¼ 9
16 ; f

3
4 ;

3
4

� � ¼ 0 6¼ 9
16 � 9

16

so the variables are not in fact independent. To be independent, f(x, y) must have the form g(x) � h(y) and
the region of positive density must be a rectangle whose sides are parallel to the coordinate axes. ■

Independence of two random variables is most useful when the description of the experiment
under study tells us that X and Y have no effect on each other. Then once the marginal pmfs or pdfs
have been specified, the joint pmf or pdf is simply the product of the two marginal functions. It
follows that

P fa�X� bg\ fc� Y � dgð Þ ¼ P a�X� bð Þ � P c� Y � dð Þ

Example 5.8 Suppose that the lifetimes of two components are independent of each other and that
the first lifetime, X1, has an exponential distribution with parameter k1 whereas the second, X2, has an
exponential distribution with parameter k2. Then the joint pdf is

f ðx1; x2Þ ¼ fX1ðx1Þ � fX2ðx2Þ ¼ k1e
�k1x1 � k2e�k2x2 ¼ k1k2e

�k1x1�k2x2 x1 [ 0; x2 [ 0

Let k1 = 1/1000 and k2 = 1/1200, so that the expected lifetimes are 1000 h and 1200 h, respectively.
The probability that both component lifetimes are at least 1500 h is

Pð1500�X1; 1500�X2Þ ¼ Pð1500�X1Þ � Pð1500�X2Þ ¼ e�k1ð1500Þ � e�k2ð1500Þ ¼ ð:2231Þ ð:2865Þ ¼ :0639
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The probability that the sum of their lifetimes, X1 + X2, is at most 3000 h requires a double integral of
the joint pdf:

PðX1 þX2 � 3000Þ ¼ PðX1 � 3000� X2Þ ¼
Z3000
0

Z3000�x2

0

f ðx1; x2Þdx1dx2

¼
Z3000
0

Z3000�x2

0

k1k2e
�k1x1�k2x2dx1dx2

¼
Z3000
0

k2e
�k2x2 �e�k1x1

� 	3000�x2
0 dx2

¼
Z3000
0

k2e
�k2x2 1� e�k1ð3000�x2Þ

h i
dx2

¼ k2

Z3000
0

e�k2x2 � e�3000k1eðk1�k2Þx2
h i

dx2 ¼ :7564 �

More than Two Random Variables
To model the joint behavior of more than two random variables, we extend the concept of a joint
distribution of two variables.

DEFINITION If X1, X2,…, Xn are all discrete random variables, the joint pmf of the variables
is the function

p x1; x2; . . .; xnð Þ ¼ P fX1 ¼ x1g\ fX2 ¼ x2g\ � � � \ fXn ¼ xngð Þ

If the variables are continuous, the joint pdf of X1;X2; . . .;Xn is the function
f ðx1; x2; . . .; xnÞ such that for any n intervals ½a1; b1�; . . .; ½an; bn�;

Pða1 �X1 � b1; . . .; an �Xn � bnÞ ¼
Zb1
a1

. . .

Zbn
an

f ðx1; . . .; xnÞ dxn. . .dx1

and more generally, for any n-dimensional set A, P((X1, ... , Xn) 2 A) results
from integrating f( ) over A.

Example 5.9 A binomial experiment consists of n dichotomous (success–failure), homogenous
(constant success probability) independent trials. Now consider a trinomial experiment in which each
of the n trials can result in one of three possible outcomes. For example, each successive customer at
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a store might pay with cash, a credit card, or a debit card. The trials are assumed independent.
Let p1 = P(trial results in a type 1 outcome), and define p2 and p3 analogously for type 2 and type 3
outcomes. The random variables of interest here are Xi = the number of trials that result in a type
i outcome for i = 1, 2, 3.

In n = 10 trials, the probability that the first five are type 1 outcomes, the next three are type 2, and
the last two are type 3—i.e., the probability of the experimental outcome 1111122233—is p51 � p32 � p23.
This is also the probability of the outcome 1122311123, and in fact the probability of any outcome
that has exactly five 1’s, three 2’s, and two 3’s. Now to determine the probability P(X1 = 5, X2 = 3,
and X3 = 2), we have to count the number of outcomes that have exactly five 1’s, three 2’s, and two

3’s. First, there are 10
5

� �
ways to choose five of the trials to be the type 1 outcomes. Now from the

remaining five trials, we choose three to be the type 2 outcomes, which can be done in 5
3

� �
ways.

This determines the remaining two trials which consist of type 3 outcomes. So the total number of
ways of choosing five 1’s, three 2’s, and two 3’s is

10
5

� �
� 5

3

� �
¼ 10!

5!5!
� 5!
3!2!

¼ 10!
5!3!2!

¼ 2520

Thus we see that P(X1 = 5, X2 = 3, X3 = 2) = 2520 p51 � p32 � p23 . Generalizing this to n trials gives

p x1; x2; x3ð Þ ¼ P X1 ¼ x1;X2 ¼ x2;X3 ¼ x3ð Þ ¼ n!

x1!x2!x3!
px11 p

x2
2 p

x3
3

for x1 = 0, 1, 2, …; x2 = 0, 1, 2, …; x3 = 0, 1, 2, … such that x1 + x2 + x3 = n. Notice that whereas
there are three random variables here, the third variable X3 is actually redundant, because for example
in the case n = 10, having X1 = 5 and X2 = 3 implies that X3 = 2 (just as in a binomial experiment
there are actually two rvs—the number of successes and number of failures—but the latter is
redundant).

As an example, the genetic allele of a pea section can be either AA, Aa, or aa. A simple genetic
model specifies P(AA) = .25, P(Aa) = .50, and P(aa) = .25. If the alleles of ten independently
obtained sections are determined, the probability that exactly five of these are Aa and two are AA is

p 2; 5; 3ð Þ ¼ 10!
2!5!3!

:25ð Þ2 :50ð Þ5 :25ð Þ3¼ :0769 �

The trinomial scenario of Example 5.9 can be generalized by considering a multinomial experiment
consisting of n independent and identical trials, in which each trial can result in any one of r possible
outcomes. Let pi = P(outcome i on any particular trial), and define random variables by Xi = the
number of trials resulting in outcome i (i = 1, . . ., r). The joint pmf of X1, . . ., Xr is called the
multinomial distribution. An argument analogous to what was done in Example 5.9 gives the joint
pmf of X1, . . ., Xr:

pðx1; . . .; xrÞ ¼ n!

x1!x2! � � � xr! p
x1
1 � � � � � pxrr for xi ¼ 0; 1; 2; . . . with x1 þ � � � þ xr ¼ n
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The case r = 2 reduces to the binomial distribution, with X1 = number of successes and
X2 = n − X1 = number of failures. Both the multinomial and binomial distributions model discrete
rvs (counts). Now, let’s consider some examples with more than two continuous random variables.

Example 5.10 When a certain method is used to collect a fixed volume of rock samples in a region,
there are four resulting rock types. Let X1, X2, and X3 denote the proportion by volume of rock types
1, 2, and 3 in a randomly selected sample (the proportion of rock type 4 is 1 − X1 − X2 − X3, so a
variable X4 would be redundant). If the joint pdf of X1, X2, X3 is

f ðx1; x2; x3Þ ¼ kx1x2ð1� x3Þ 0� x1 � 1; 0� x2 � 1; 0� x3 � 1; x1 þ x2 þ x3 � 1

then k is determined by

1 ¼
Z1
�1

Z1
�1

Z1
�1

f ðx1; x2; x3Þ dx3dx2dx1

¼
Z1
0

Z1�x1

0

Z1�x1�x2

0

kx1x2ð1� x3Þdx3
2
4

3
5dx2

8<
:

9=
;dx1

This iterated integral has value k/144, so k = 144. The probability that rocks of types 1 and 2 together
account for at most 50% of the sample is

PðX1 þX2 � :5Þ ¼
ZZZ

0� xi � 1 for i ¼ 1; 2; 3

x1 þ x2 þ x3 � 1; x1 þ x2 � :5

� 
f ðx1; x2; x3Þdx3dx2dx1

¼
Z:5
0

Z:5�x1

0

Z1�x1�x2

0

144x1x2ð1� x3Þdx3
2
4

3
5dx2

8<
:

9=
;dx1 ¼ 5

32
�

The notion of independence of more than two random variables is similar to the notion of inde-
pendence of more than two events.

DEFINITION The random variables X1;X2; . . .;Xn are said to be independent if for every subset
Xi1 ;Xi2 ; . . .;Xik of the variables (each pair, each triple, and so on), the joint pmf or
pdf of the subset is equal to the product of the marginal pmfs or pdfs.

Thus if the variables are independent with n = 4, then the joint pmf or pdf of any two variables is the
product of the two marginals, and similarly for any three variables and all four variables together.
Most important, once we are told that n variables are independent, then the joint pmf or pdf is the
product of the n marginals.
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Example 5.11 If X1, …, Xn represent the lifetimes of n components, the components operate
independently of each other, and each lifetime is exponentially distributed with parameter k, then

f ðx1; x2; . . .; xnÞ ¼ ke�kx1
� � � ke�kx2

� � � � � � � ke�kxn
� � ¼ kne�kRxi x1 � 0; x2 � 0; . . .; xn � 0

If these n components are connected in series, so that the system will fail as soon as a single
component fails, then the probability that the system lasts past time t is

PðfX1 [ tg\ . . .\fXn [ tgÞ ¼
Z1
t

. . .

Z1
t

f ðx1; . . .; xnÞ dx1. . .dxn

¼
Z1
t

ke�kx1dx1

0
@

1
A � � � � �

Z1
t

ke�kxndxn

0
@

1
A

¼ ðe�ktÞn ¼ e�nkt

Therefore,

Pðsystem lifetime� tÞ ¼ 1� e�nkt for t� 0

which shows that system lifetime has an exponential distribution with parameter nk; the expected
value of system lifetime is 1/(nk).

A variation on the foregoing scenario appeared in the article “A Method for Correlating Field Life
Degradation with Reliability Prediction for Electronic Modules” (Quality and Reliability Engr. Intl.
2005: 715–726). The investigators considered a circuit card with n soldered chip resistors. The failure
time of a card is the minimum of the individual solder connection failure times (mileages here). It was
assumed that the solder connection failure mileages were independent, that failure mileage would
exceed t if and only if the shear strength of a connection exceeded a threshold d, and that each shear
strength was normally distributed with a mean value and standard deviation that depended on the
value of mileage t: l(t) = a1 − a2t and r(t) = a3 + a4t (a weld’s shear strength typically deteriorates
and becomes more variable as mileage increases). Then the probability that the failure mileage of a
card exceeds t is

P T [ tð Þ ¼ 1� U
d � a1 � a2tð Þ

a3 þ a4t

� �� �n

The cited article suggested values for d and the ai’s based on data. In contrast to the exponential
scenario, normality of individual lifetimes does not imply normality of system lifetime. ■

In many experimental situations to be considered in this book, independence is a reasonable
assumption, so that specifying the joint distribution reduces to deciding on appropriate marginal
distributions.
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Exercises: Section 5.1 (1–22)

1. A service station has both self-service and
full-service islands. On each island, there is a
single regular unleaded pump with two hoses.
Let X denote the number of hoses being used
on the self-service island at a particular time,
and let Y denote the number of hoses on the
full-service island in use at that time. The
joint pmf of X and Y appears in the accom-
panying tabulation.

p(x, y)

y
0 1 2

x
0 .10 .04 .02
1 .08 .20 .06
2 .06 .14 .30

a. What is PðX ¼ 1 and Y ¼ 1Þ?
b. Compute PðX� 1 and Y � 1Þ:
c. Give a word description of the event fX 6¼

0 and Y 6¼ 0g; and compute the probability
of this event.

d. Compute the marginal pmf of X and of
Y. Using pX(x), what is PðX� 1Þ?

e. Are X and Y independent rvs? Explain.

2. A large but sparsely populated county has
two small hospitals, one at the south end of
the county and the other at the north end. The
south hospital’s emergency room has 4 beds,
whereas the north hospital’s emergency room
has only 3 beds. Let X denote the number of
south beds occupied at a particular time on a
given day, and let Y denote the number of
north beds occupied at the same time on the
same day. Suppose that these two rvs are
independent, that the pmf of X puts proba-
bility masses .1, .2, .3, .2, and .2 on the
x values 0, 1, 2, 3, and 4, respectively, and
that the pmf of Y distributes probabilities .1,
.3, .4, and .2 on the y values 0, 1, 2, and 3,
respectively.

a. Display the joint pmf of X and Y in a joint
probability table.

b. Compute P(X � 1 and Y � 1) by adding
probabilities from the joint pmf, and verify
that this equals the product of P(X � 1)
and P(Y � 1).

c. Express the event that the total number of
beds occupied at the two hospitals com-
bined is at most 1 in terms of X and Y, and
then calculate this probability.

d. What is the probability that at least one of
the two hospitals has no beds occupied?

3. A market has both an express checkout line
and a superexpress checkout line. Let X1

denote the number of customers in line at the
express checkout at a particular time of day,
and let X2 denote the number of customers in
line at the superexpress checkout at the same
time. Suppose the joint pmf of X1 and X2 is as
given in the accompanying table.

x2
0 1 2 3

x1

0 .08 .07 .04 .00
1 .06 .15 .05 .04
2 .05 .04 .10 .06
3 .00 .03 .04 .07
4 .00 .01 .05 .06

a. What is PðX1 ¼ 1; X2 ¼ 1Þ, that is, the
probability that there is exactly one cus-
tomer in each line?

b. What is PðX1 ¼ X2Þ, that is, the proba-
bility that the numbers of customers in the
two lines are identical?

c. Let A denote the event that there are at
least two more customers in one line than
in the other line. Express A in terms of X1

and X2, and calculate the probability of
this event.

d. What is the probability that the total
number of customers in the two lines is
exactly four? At least four?

e. Determine the marginal pmf of X1, and
then calculate the expected number of
customers in line at the express checkout.

f. Determine the marginal pmf of X2.
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g. By inspection of PðX1 ¼ 4Þ;PðX2 ¼ 0Þ;
and PðX1 ¼ 4; X2 ¼ 0Þ, are X1 and X2

independent random variables? Explain
your reasoning.

4. Suppose 51% of the individuals in a certain
population have brown eyes, 32% have blue
eyes, and the remainder have green eyes.
Consider a random sample of 10 people from
this population.

a. What is the probability that 5 of the 10
people have brown eyes, 3 of 10 have blue
eyes, and the other 2 have green eyes?

b. What is the probability that exactly one
person in the sample has blue eyes and
exactly one has green eyes?

c. What is the probability that at least 7 of the
10 people have brown eyes? [Hint: Think
of brown as a success and all other eye
colors as failures.]

5. At a certain university, 20% of all students
are freshmen, 18% are sophomores, 21% are
juniors, and 41% are seniors. As part of a
promotion, the university bookstore is run-
ning a raffle for which all students are eligi-
ble. Ten students will be randomly selected to
receive prizes (in the form of textbooks for
the term).

a. What is the probability the winners consist
of two freshmen, two sophomores, two
juniors, and four seniors?

b. What is the probability the winners are
split equally among under-classmen
(freshmen and sophomores) and upper-
classmen (juniors and seniors)?

c. The raffle resulted in no freshmen being
selected. The freshman class president
complained that something must be amiss
for this to occur. Do you agree? Explain.

6. According to the Mars Candy Company, the
long-run percentages of various colors of
M&M milk chocolate candies are as follows:

Blue:
24%

Orange:
20%

Green:
16%

Yellow:
14%

Red:
13%

Brown:
13%

a. In a random sample of 12 candies, what is
the probability that there are exactly two of
each color?

b. In a random sample of 6 candies, what is
the probability that at least one color is not
included?

c. In a random sample of 10 candies, what is
the probability that there are exactly 3 blue
candies and exactly 2 orange candies?

d. In a random sample of 10 candies, what is
the probability that there are atmost 3 orange
candies? [Hint: Think of an orange candy as
a success and any other color as a failure.]

e. In a random sample of 10 candies, what is
the probability that at least 7 are either
blue, orange, or green?

7. The number of customers waiting for gift-wrap
service at a department store is an rv X with
possible values 0, 1, 2, 3, 4 and corresponding
probabilities .1, .2, .3, .25, .15. A randomly
selected customer will have 1, 2, or 3 packages
for wrapping with probabilities .6, .3, and .1,
respectively. Let Y = the total number of
packages to be wrapped for the customers
waiting in line (assume that the number of
packages submitted by one customer is inde-
pendent of the number submitted by any other
customer).

a. Determine PðX ¼ 3; Y ¼ 3Þ, that is,
p(3, 3).

b. Determine p(4, 11).

8. Let X denote the number of Sony 65” 4 K
Ultra HD televisions sold during a particular
week by a certain store. The pmf of X is

x 0 1 2 3 4

pX(x) .1 .2 .3 .25 .15

Sixty percent of all customers who purchase
these TVs also buy an extended warranty. Let
Y denote the number of purchasers during this
week who buy an extended warranty.

a. What is PðX ¼ 4; Y ¼ 2Þ? [Hint: This
probability is PðY ¼ 2jX ¼ 4Þ� PðX ¼ 4Þ;
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now think of the four purchases as four
trials of a binomial experiment, with
success on a trial corresponding to
buying an extended warranty.]

b. Calculate PðX ¼ YÞ.
c. Determine the joint pmf of X and Y and

then the marginal pmf of Y.

9. The joint probability distribution of the
number X of cars and the number Y of
buses per signal cycle at a proposed left-
turn lane is displayed in the accompanying
joint probability table.

p(x, y)
y

0 1 2

x

0 .025 .015 .010
1 .050 .030 .020
2 .125 .075 .050
3 .150 .090 .060
4 .100 .060 .040
5 .050 .030 .020

a. What is the probability that there is
exactly one car and exactly one bus
during a cycle?

b. What is the probability that there is at
most one car and at most one bus during
a cycle?

c. What is the probability that there is
exactly one car during a cycle? Exactly
one bus?

d. Suppose the left-turn lane is to have a
capacity of five cars, and one bus is
equivalent to three cars. What is the
probability of an overflowduring a cycle?

e. Are X and Y independent rvs? Explain.

10. A stockroom currently has 30 components
of a certain type, of which 8 were provided
by supplier 1, 10 by supplier 2, and 12 by
supplier 3. Six of these are to be randomly
selected for a particular assembly. Let
X = the number of supplier 1’s components
selected, Y = the number of supplier 2’s
components selected, and p(x, y) denote the
joint pmf of X and Y.

a. What is p(3, 2)? [Hint: Each sample of
size 6 is equally likely to be selected.

Therefore,p(3, 2) = (number of outcomes
with X = 3 and Y = 2)/(total number of
outcomes). Now use the product rule for
counting to obtain the numerator and
denominator.]

b. Using the logic of part (a), obtain
p(x, y). (This can be thought of as a mul-
tivariate hypergeometric distribution—
sampling without replacement from a
finite population consisting of more than
two categories.)

11. Each front tire of a vehicle is supposed to
be filled to a pressure of 26 psi. Suppose the
actual air pressure in each tire is a random
variable—X for the right tire and Y for the
left tire, with joint pdf

f ðx; yÞ ¼ kðx2 þ y2Þ 20� x� 30; 20� y� 30

a. What is the value of k?
b. What is the probability that both tires

are under-filled?
c. What is the probability that the differ-

ence in air pressure between the two
tires is at most 2 psi?

d. Determine the (marginal) distribution of
air pressure in the right tire alone.

e. Are X and Y independent rvs?

12. Annie and Alvie have agreed to meet
between 5:00 p.m. and 6:00 p.m. for dinner
at a local health-food restaurant. Let X =
Annie’s arrival time and Y = Alvie’s arrival
time. Suppose X and Y are independent
with each uniformly distributed on the
interval [5, 6].

a. What is the joint pdf of X and Y?
b. What is the probability that they both

arrive between 5:15 and 5:45?
c. If the first one to arrive will wait only

10 min before leaving to eat elsewhere,
what is the probability that they have
dinner at the health-food restaurant?
[Hint: The event of interest is
A ¼ ðx; yÞ : x� yj j � 1

6

� �
.]
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13. Two different professors have just submit-
ted final exams for duplication. Let X de-
note the number of typographical errors on
the first professor’s exam and Y denote the
number of such errors on the second exam.
Suppose X has a Poisson distribution with
parameter µ1, Y has a Poisson distribution
with parameter µ2, and X and Y are
independent.

a. What is the joint pmf of X and Y?
b. What is the probability that at most one

error is made on both exams combined?
c. Obtain a general expression for the

probability that the total number of
errors in the two exams is m (where m is
a nonnegative integer). [Hint: A ¼ fðx; yÞ :
xþ y ¼ mg ¼ fðm; 0Þ; ðm� 1; 1Þ; . . .;
ð1;m� 1Þ; ð0;mÞg. Now sum the joint
pmf over (x, y) 2 A and use the binomial
theorem, which says thatPm

k¼0
m
k

� �
akbm�k ¼ ðaþ bÞm for any

a, b.]

14. Two components of a computer have the
following joint pdf for their useful lifetimes
X and Y:

f ðx; yÞ ¼ xe�xð1þ yÞ x� 0; y� 0

a. What is the probability that the lifetime
X of the first component exceeds 3?

b. What are the marginal pdfs of X and Y?
Are the two lifetimes independent?
Explain.

c. What is the probability that the lifetime
of at least one component exceeds 3?

15. You have two lightbulbs for a particular
lamp. Let X = the lifetime of the first bulb
and Y = the lifetime of the second bulb
(both in thousands of hours). Suppose that
X and Y are independent and that each has
an exponential distribution with parameter
k = 1.

a. What is the joint pdf of X and Y?
b. What is the probability that each bulb

lasts at most 1000 h (i.e., X � 1 and
Y � 1)?

c. What is the probability that the total
lifetime of the two bulbs is at most 2?
[Hint: Draw a picture of the region A ¼
fðx; yÞ: x� 0; y� 0; xþ y� 2g before
integrating.]

d. What is the probability that the total
lifetime is between 1 and 2?

16. Suppose that you have ten lightbulbs, that
the lifetime of each is independent of all the
other lifetimes, and that each lifetime has an
exponential distribution with parameter k.

a. What is the probability that all ten bulbs
fail before time t?

b. What is the probability that exactly k of
the ten bulbs fail before time t?

c. Suppose that nine of the bulbs have
lifetimes that are exponentially dis-
tributed with parameter k and that the
remaining bulb has a lifetime that is
exponentially distributed with parameter
h (it is made by another manufacturer).
What is the probability that exactly five
of the ten bulbs fail before time t?

17. Consider a system consisting of three
components as pictured. The system will
continue to function as long as the first
component functions and either component
2 or component 3 functions. Let X1, X2, and
X3 denote the lifetimes of components 1, 2,
and 3, respectively. Suppose the Xi’s are
independent of each other and each Xi

has an exponential distribution with
parameter k.

1

3

2
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a. Let Y denote the system lifetime. Obtain
the cumulative distribution function of
Y and differentiate to obtain the pdf.
[Hint: FðyÞ ¼ PðY � yÞ; express the
event fY � yg in terms of unions
and/or intersections of the three events
fX1 � yg; fX2 � yg; and fX3 � yg.]

b. Compute the expected system lifetime.

18. a. For f ðx1; x2; x3Þ as given in Example
5.10, compute the joint marginal den-
sity function of X1 and X3 alone (by
integrating over x2).

b. What is the probability that rocksof types1
and 3 together make up at most 50% of the
sample? [Hint: Use the result of part (a).]

c. Compute the marginal pdf of X1 alone.
[Hint: Use the result of part (a).]

19. An ecologist selects a point inside a circular
sampling region according to a uniform
distribution. Let X = the x coordinate of the
point selected and Y = the y coordinate of
the point selected. If the circle is centered at
(0, 0) and has radius r, then the joint pdf of
X and Y is

f ðx; yÞ ¼ 1
pr2

x2 þ y2 � r2

a. What is the probability that the selected
point is within r/2 of the center of the
circular region? [Hint: Draw a picture of
the region of positive density
D. Because f(x; y) is constant on D,
computing a probability reduces to
computing an area.]

b. What is the probability that both X and
Y differ from 0 by at most r/2?

c. Answer part (b) for r=
ffiffiffi
2

p
replacing r/2.

d. What is the marginal pdf of X? Of Y?
Are X and Y independent?

20. Each customer making a particular Internet
purchase must pay with one of three types
of credit cards (think Visa, MasterCard,
Amex). Let Ai (i = 1, 2, 3) be the event that
a type i credit card is used, with P(A1) = .5,
P(A2) = .3, P(A3) = .2. Suppose that the

number of customers who make a purchase
on a given day, N, is a Poisson rv with
parameter µ. Define rvs X1, X2, X3 by
Xi = the number among the N customers
who use a type i card (i = 1, 2, 3). Show
that these three rvs are independent with
Poisson distributions having parameters
.5µ, .3µ, and .2µ, respectively. [Hint: For
nonnegative integers x1, x2, x3, let n = x1 +
x2 + x3, so P(X1 = x1, X2 = x2, X3 = x3) =
P(X1 = x1, X2 = x2, X3 = x3, N = n). Now
condition on N = n, in which case the three
Xi’s have a trinomial distribution (multi-
nomial with 3 categories) with category
probabilities .5, .3, and .2.]

21. Consider randomly selecting two points A
and B on the circumference of a circle by
selecting their angles of rotation, in
degrees, independently from a uniform
distribution on the interval [0, 360]. Con-
nect points A and B with a straight line
segment. What is the probability that this
random chord is longer than the side of an
equilateral triangle inscribed inside the cir-
cle? [Hint: Place one of the vertices of the
inscribed triangle at A. You should then be
able to intuit the answer visually without
having to do any integration.]
(This is called Bertrand’s Chord Problem
in the probability literature. There are other
ways of randomly selecting a chord that
give different answers from the one appro-
priate here.)

22. Consider the following technique, called
the accept–reject method, for simulating
values from a continuous distribution
f. Identify a distribution g from which val-
ues can already be simulated and a constant
c � 1 such that f(x) � cg(x) for all
x. Proceed as follows: (1) Generate
Y * g and, independently, U * Unif[0, 1).
(2) If u � f(y)/cg(y), then let x = y
(i.e., “accept” the y value); otherwise, dis-
card (“reject”) y. (3) Repeat steps (1)–(2)
until the desired number of x values is
obtained.
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a. Show that the probability a y value is
“accepted” equals 1/c. [Hint: According
to the algorithm, this occurs iff U �
f(Y)/cg(Y). Compute the relevant double
integral.]

b. Argue that the average number of
y values required to generate a single
accepted x value is c.

c. Show that the accept–reject method
does result in observations from f by
showing that P(accepted value � x) =
F(x), where F is the cdf corresponding
to f. [Hint: Let X denote the accepted
value. Then P(X � x) = P(Y � x | Y
is accepted) = P(Y � x \ Y is
acc.)/P(Y is acc.).]

5.2 Expected Values, Covariance, and Correlation

We previously saw that any function h(X) of a single rv X is itself a random variable. However, to
compute E[h(X)], it was not necessary to obtain the probability distribution of h(X); instead, E[h(X)]
was computed as a weighted average of h(X) values, where the weight function was the pmf p(x) or
pdf f(x) of X. A similar result holds for a function h(X, Y) of two jointly distributed random variables.

LAW OF THE
UNCONSCIOUS
STATISTICIAN

Let X and Y be jointly distributed rvs with pmf p(x, y) or pdf f(x, y) according to
whether the variables are discrete or continuous. Then the expected value of a
function h(X, Y), denoted by E½hðX; YÞ� or lhðX;YÞ, is given by

E½hðX; YÞ� ¼

P
x

P
y
hðx; yÞ � pðx; yÞ if X and Y are discrete

R1
�1

R1
�1

hðx; yÞ � f ðx; yÞdx dy if X and Y are continuous

8><
>: ð5:2Þ

The Law of the Unconscious Statistician generalizes to computing the expected value of a function
h(X1, …, Xn) of n random variables. If the Xi’s are discrete, E[h(X1, …, Xn)] is an n-dimensional sum;
if the Xi’s are continuous, it is an n-dimensional integral.

Example 5.12 Five friends have purchased tickets to a concert. If the tickets are for seats 1–5 in a
particular row and the tickets are randomly distributed among the five, what is the expected number
of seats separating any particular two of the five? Let X and Y denote the seat numbers of the
first and second individuals, respectively. Possible (X, Y) pairs are 1; 2ð Þ; 1; 3ð Þ; . . .; 5; 4ð Þf g, from
which

pðx; yÞ ¼ :05 x ¼ 1; . . .; 5; y ¼ 1; . . .; 5; x 6¼ y

The number of seats separating the two individuals is hðX; YÞ ¼ jX � Yj � 1. The accompanying
table gives h(x, y) for each possible (x, y) pair.

h(x, y)

x
1 2 3 4 5

y

1 – 0 1 2 3
2 0 – 0 1 2
3 1 0 – 0 1
4 2 1 0 – 0
5 3 2 1 0 –
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Thus

E½hðX; YÞ� ¼
XX

hðx; yÞ � pðx; yÞ
ðx; yÞ

¼
X5
x¼1

X5
y¼1

ðjx� yj � 1Þ � 1
20

¼ 1

x 6¼y

�

Example 5.13 In Example 5.5, the joint pdf of the amount X of almonds and amount Y of cashews in
a 1-lb can of nuts was

f ðx; yÞ ¼ 24xy 0� x� 1; 0� y� 1; xþ y� 1

If 1 lb of almonds costs the company $6.00, 1 lb of cashews costs $10.00, and 1 lb of peanuts costs
$3.50, then the total cost of the contents of a can is

hðX; YÞ ¼ 6Xþ 10Y þ 3:5 ð1� X � YÞ ¼ 3:5þ 2:5Xþ 6:5Y

(since 1 – X − Y of the weight consists of peanuts). The expected total cost is

E½h ðX; YÞ� ¼
Z1
�1

Z1
�1

hðx; yÞ � f ðx; yÞdx dy

¼
Z1
0

Z1�x

0

ð3:5þ 2:5xþ 6:5yÞ � 24xydy dx ¼ $7:10 �

Properties of Expected Value
In Chapters 3 and 4, we saw that expected values can be distributed across addition, subtraction, and
multiplication by constants. In the language of mathematics, expected value is a linear operator. This
was a simple consequence of expectation being a sum or an integral, both of which are linear. This
obvious but important property, linearity of expectation, extends to more than one variable.

LINEARITY OF
EXPECTATION

Let X and Y be random variables. Then, for any functions h1, h2
and any constants a1, a2, b,

E½a1h1ðX; YÞþ a2h2ðX; YÞþ b� ¼ a1E½h1ðX; YÞ� þ a2E½h2ðX; YÞ� þ b

In the previous example, E(3.5 + 2.5X + 6.5Y) can be rewritten as 3.5 + 2.5E(X) + 6.5E(Y); the
means of X and Y can be computed either by using (5.2) or by first finding the marginal pdfs of X and
Y and then performing the appropriate single integrals.

As another illustration, linearity of expectation tells us that for any two rvs X and Y,

Eð5XY2 � 4XY þ eX þ 12Þ ¼ 5EðXY2Þ � 4EðXYÞþEðeXÞþ 12 ð5:3Þ
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In general, we cannot distribute the expected value operation any further. But when h(X, Y) is a
product of a function of X and a function of Y, the expected value simplifies in the case of inde-
pendence.

PROPOSITION Let X and Y be independent random variables. If hðX; YÞ ¼ g1ðXÞ � g2ðYÞ;
then

E½hðX; YÞ� ¼ E g1ðXÞ � g2ðYÞ½ � ¼ E g1ðXÞ½ � � E g2ðYÞ½ �;

assuming E[g1(X)] and E[g2(Y)] exist.

Proof Consider two continuous rvs; the discrete case is similar. Apply (5.2):

E½hðX; YÞ� ¼ E½g1ðXÞ � g2ðYÞ� ¼
Z1
�1

Z1
�1

g1ðxÞ � g2ðyÞ � f ðx; yÞdx dy by (5:2Þ

¼
Z1
�1

Z1
�1

g1ðxÞ � g2ðyÞ � fXðxÞ � fYðyÞdx dy because X and Y are independent

¼
Z1
�1

g1ðxÞ � fXðxÞdx
0
@

1
A Z1

�1
g2ðyÞ � fYðyÞdy

0
@

1
A ¼ E½g1ðXÞ�E½g2ðYÞ� �

So, if X and Y are independent, Expression (5.3) simplifies further, to 5EðXÞEðY2Þ � 4EðXÞEðYÞþ
EðeXÞþ 12. Not surprisingly, both linearity of expectation and the foregoing proposition can be
extended to more than two random variables.

Covariance
When two random variables X and Y are not independent, it is frequently of interest to assess how
strongly they are related to each other.

DEFINITION The covariance between two rvs X and Y is

CovðX; YÞ ¼ E½ðX � lXÞðY � lYÞ�

¼

X
x

X
y

ðx� lXÞðy� lYÞpðx; yÞ if X andY are discrete

Z1
�1

Z1
�1

ðx� lXÞðy� lYÞf ðx; yÞdx dy if X andY are continuous

8>>>><
>>>>:

The rationale for the definition is as follows. Suppose X and Y have a strong positive relationship to
each other, by which we mean that large values of X tend to occur with large values of Y and small
values of X with small values of Y (e.g., X = height and Y = weight). Then most of the probability
mass or density will be associated with (x − lX) and (y − lY) either both positive (both X and Y above
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their respective means) or both negative, so the product (x − lX)(y − lY) will tend to be positive.
Thus for a strong positive relationship, Cov(X, Y) should be quite positive. For a strong negative
relationship, the signs of (x − lX) and (y − lY) will tend to be opposite, yielding a negative product.
Thus for a strong negative relationship, Cov(X, Y) should be quite negative. If X and Y are not
strongly related, positive and negative products will tend to cancel each other, yielding a covariance
near 0. Figure 5.4 illustrates the different possibilities. The covariance depends on both the set of
possible pairs and the probabilities. In Figure 5.4, the probabilities could be changed without altering
the set of possible pairs, and this could drastically change the value of Cov(X, Y).

Example 5.14 The joint and marginal pmfs for X = automobile policy deductible amount and
Y = homeowner policy deductible amount in Example 5.1 were

from which lX ¼P x � pXðxÞ ¼ 175 and lY ¼ 125. Therefore,

CovðX; YÞ ¼
X

ðx; yÞ

X
ðx� 175Þðy� 125Þpðx; yÞ

¼ ð100� 175Þð0� 125Þð:20Þþ � � � þ ð250� 175Þð200� 125Þð:30Þ
¼ 1875 �

The following proposition summarizes some important properties of covariance.

PROPOSITION For any two random variables X and Y,

1. Cov(X, Y) = Cov(Y, X)
2. Cov(X, X) = V(X)
3. (Covariance shortcut formula) Cov(X, Y) = E(XY) – µX � µY
4. (Distributive property of covariance) For any rv Z and any constants, a, b, c,

Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z)

y
a b c

x

y y

x x

µY µY µY

µX µX µX

Figure 5.4 p x; yð Þ ¼ 1
10 for each of ten pairs corresponding to indicated points; (a) positive covariance; (b) negative

covariance; (c) covariance near zero

p(x, y)
y

x 100 250 y 0 100 2000 100 200

x 100 .20 .10 .20 pXðxÞ .5 .5 pY ðyÞ .25 .25 .50
250 .05 .15 .30
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Proof Property 1 is obvious from the definition of covariance. To establish Property 2, replace Y with
X in the definition:

CovðX;XÞ ¼ E½ðX � lXÞðX � lXÞ� ¼ E½ðX � lXÞ2� ¼ VðXÞ

To prove Property 3, apply linearity of expectation:

CovðX; YÞ ¼ E½ðX � lXÞðY � lYÞ�
¼ EðXY � lXY � lYXþ lXlYÞ
¼ EðXYÞ � lXEðYÞ � lYEðXÞþ lXlY
¼ EðXYÞ � lXlY � lXlY þ lXlY ¼ EðXYÞ � lXlY

Property 4 also follows from linearity of expectation (Exercise 39). ■

According to Property 3 (the covariance shortcut), no intermediate subtractions are necessary to
calculate covariance; only at the end of the computation is lX � lY subtracted from E(XY).

Example 5.15 (Example 5.5 continued) The joint and marginal pdfs of X = amount of almonds and
Y = amount of cashews were

f ðx; yÞ ¼ 24xy 0� x� 1; 0� y� 1; xþ y� 1

fXðxÞ ¼ 12xð1� xÞ2 0� x� 1 fYðyÞ ¼ 12yð1� yÞ2 0� y� 1

It is easily verified that lX ¼ lY ¼ 2
5
, and

EðXYÞ ¼
Z1
�1

Z1
�1

xyf ðx; yÞdx dy ¼
Z1
0

Z1�x

0

xy � 24xy dy dx

¼ 8
Z1
0

x2ð1� xÞ3dx ¼ 2
15

Thus CovðX; YÞ ¼ 2
15 � 2

5

� �
2
5

� � ¼ 2
15 � 4

25 ¼ � 2
75. A negative covariance is reasonable here

because more almonds in the can imply fewer cashews. ■

Correlation
It would appear that the relationship in the insurance example is quite strong since Cov(X, Y) = 1875,
whereas in the nut example Cov(X, Y) = –2/75 would seem to imply quite a weak relation-
ship. Unfortunately, the covariance has a serious defect that makes it impossible to interpret a
computed value of the covariance. In the insurance example, suppose we had expressed the deduc-
tible amount in cents rather than in dollars. Then 100X would replace X, 100Y would replace Y, and
the resulting covariance would be Cov(100X, 100Y) = (100) (100) Cov(X, Y) = 18,750,000. [To see
why, apply properties 1 and 4 of the previous proposition.] If, on the other hand, the deductible
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amount had been expressed in hundreds of dollars, the computed covariance would have changed to
(.01) (.01) (1875) = .1875. The defect of covariance is that its computed value depends critically on
the units of measurement. Ideally, the choice of units should have no effect on a measure of strength
of relationship. This is achieved by scaling the covariance.

DEFINITION The correlation coefficient of X and Y, denoted by Corr(X,Y), or qX,Y, or just q, is
defined by

qX;Y ¼ CovðX; YÞ
rX � rY

Example 5.16 It is easily verified that in the insurance scenario of Example 5.14, EðX2Þ ¼
36;250; r2X ¼ 36;250� 175ð Þ2¼ 5625; rX ¼ 75;EðY2Þ ¼ 22;500; r2Y ¼ 6875; and rY ¼ 82:92: This
gives

q ¼ 1875
ð75Þð82:92Þ ¼ :301

The following proposition shows that q remedies the defect of Cov(X, Y) and also suggests how to
recognize the existence of a strong (linear) relationship.

■

PROPOSITION For any two rvs X and Y,

1. Corr(X, Y) = Corr(Y, X)
2. Corr(X, X) = 1
3. (Scale invariance property) If a, b, c, d are constants and ac > 0,

Corr(aX + b, cY + d) = Corr(X,Y)
4. –1 � Corr(X,Y) � 1.

Proof Property 1 is clear from the definition of correlation and the corresponding property of covari-
ance. To see why Property 2 is true, write CorrðX;XÞ ¼ CovðX;XÞ= rX � rX½ � ¼ VðXÞ=r2X ¼ 1. The
second-to-last step uses Property 2 of covariance. The proofs of Properties 3 and 4 appear as exercises.■

Property 3 (scale invariance) says precisely that the correlation coefficient is not affected by a
linear change in the units of measurement. If, say, Y = completion time for a chemical reaction in
seconds and X = temperature in °C, then Y/60 = time in minutes and 1.8X + 32 = temperature in °F,
but Corr(X, Y) will be exactly the same as Corr(1.8X + 32, Y/60).

According to Properties 2 and 4, the strongest possible positive relationship is evidenced by
q = +1 whereas the strongest possible negative relationship corresponds to q = –1. Therefore, the
correlation coefficient provides information about both the nature and strength of the relationship
between X and Y: The sign of q indicates whether X and Y are positively or negatively related, and the
magnitude of q describes the strength of that relationship on an absolute 0 to 1 scale.

If we think of p(x, y) or f(x, y) as prescribing a mathematical model for how the two numerical
variables X and Y are distributed in some population (height and weight, verbal SAT score and
quantitative SAT score, etc.), then q is a population characteristic or parameter that measures how
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strongly X and Y are related in the population. In Chapter 12, we will consider taking a sample of
pairs x1; y1ð Þ; . . .; xn; ynð Þ from the population. The sample correlation coefficient r will then be
defined and used to make inferences about q.

While superior to covariance, the correlation coefficient q is actually not a completely general
measure of the strength of a relationship.

PROPOSITION 1. If X and Y are independent, then q = 0, but q = 0 does not imply
independence.

2. q = 1 or –1 iff Y = aX + b for some numbers a and b with a 6¼ 0.

Exercise 38 and Example 5.17 relate to Statement 1, and Statement 2 is investigated in Exercises 41
and 42(d).

This proposition says that q is a measure of the degree of linear relationship between X and Y,
and only when the two variables are perfectly related in a linear manner will q be as positive or
negative as it can be. A q less than 1 in absolute value indicates only that the relationship is not
completely linear, but there may still be a very strong nonlinear relation. Also, q = 0 does not
imply that X and Y are independent, but only that there is complete absence of a linear relation-
ship. When q = 0, X and Y are said to be uncorrelated. Two variables could be uncorrelated yet
highly dependent because of a strong nonlinear relationship, so be careful not to conclude too much
from knowing that q = 0.

Example 5.17 In the manufacture of metal disks, small divots sometimes occur on the surface. If we
represent the disk surface by the region x2 + y2 � r2, one possible joint density function for the
location (X, Y) of a divot is

f ðx; yÞ ¼ 3
2pr3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
x2 þ y2 � r2

(This model reflects the fact that it’s more likely to see blemishes closer to the disk’s edge, since that’s
where cutting has occurred.)

Since f(x, y) is an even function of x and y, simple symmetry arguments show that E(X) = 0,
E(Y) = 0, and E(XY) = 0, from which qX,Y = 0. So, by definition X and Y are uncorrelated.

However, X and Y are clearly not independent. For instance, if X = 0 (so the divot is on the
midline), then Y can range from –r to r; however, if X � r (divot near the “right” edge), then Y must
necessarily be close to 0.

You could also verify that X and Y are not independent by determining their marginal distributions
and observing that f(x, y) 6¼ fX(x) � fY(y), but the marginal pdfs are tedious here. ■

The next result provides an alternative view of zero correlation.

PROPOSITION Two rvs X and Y are uncorrelated if, and only if, E[XY] = µX � µY.

Proof By its definition, Corr(X, Y) = 0 iff Cov(X, Y) = 0. Apply the covariance shortcut formula:

q ¼ 0 , CovðX; YÞ ¼ 0 , E½XY � � lX � lY ¼ 0 , E½XY � ¼ lX � lY �
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Contrast this with an earlier proposition from this section: If X and Y are independent, then
E[g1(X)g2(Y)] = E[g1(X)] � E[g2(Y)] for all functions g1 and g2. Thus, independence is stronger than
zero correlation, the latter just being the special case corresponding to g1(X) = X and g2(Y) = Y.

Correlation Versus Causation
A value of q near 1 does not necessarily imply that increasing the value of X causes Y to increase. It
implies only that large X values are associated with large Y values. For example, in the population of
children, vocabulary size and number of cavities are quite positively correlated, but it is certainly not
true that cavities cause vocabulary to grow. Instead, the values of both these variables tend to increase
as the value of age, a third variable, increases. For children of a fixed age, there is probably a very low
correlation between number of cavities and vocabulary size. In summary, association (a high cor-
relation) is not the same as causation.

Exercises: Section 5.2 (23–42)

23. The two most common types of errors
made by programmers are syntax errors and
logic errors. Let X denote the number of
syntax errors and Y the number of logic
errors on the first run of a program. Sup-
pose X and Y have the following joint pmf
for a particular programming assignment:

p(x, y)
x

0 1 2 3

y
0 .71 .03 .02 .01
1 .04 .06 .03 .01
2 .03 .03 .02 .01

a. What is the probability a program has
more syntax errors than logic errors on the
first run?

b. Find the marginal pmfs of X and Y.
c. Are X and Y independent? How can you

tell?
d. What is the average number of syntax

errors in thefirst run of a program?What is
the average number of logic errors?

e. Suppose an evaluator assigns points
to each program with the formula
100− 4X − 9Y.What is the expected point
score for a randomly selected program?

24. An instructor has given a short quiz con-
sisting of two parts. For a randomly selec-
ted student, let X = the number of points

earned on the first part and Y = the number
of points earned on the second part. Sup-
pose that the joint pmf of X and Y is given
in the accompanying table.

p(x, y)
y

0 5 10 15

x
0 .02 .06 .02 .10
5 .04 .15 .20 .10
10 .01 .15 .14 .01

a. If the score recorded in the grade book is
the total number of points earned on the
two parts, what is the expected recorded
score E(X + Y)?

b. If the maximum of the two scores is
recorded, what is the expected recorded
score?

25. The difference between the number of
customers in line at the express checkout
and the number in line at the superexpress
checkout in Exercise 3 is X1 – X2. Calcu-
late the expected difference.

26. Six individuals, including A and B, take
seats around a circular table in a completely
random fashion. Suppose the seats are
numbered 1,…, 6. Let X = A’s seat number
and Y = B’s seat number. If A sends a
written message around the table to B in the
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direction in which they are closest, how
many individuals (including A and B)
would you expect to handle the message?

27. A surveyor wishes to lay out a square
region with each side having length
L. However, because of measurement error,
he instead lays out a rectangle in which the
north–south sides both have length X and
the east–west sides both have length
Y. Suppose that X and Y are independent
and that each one is uniformly distributed
on the interval [L − A, L + A] (where
0 < A < L). What is the expected area of
the resulting rectangle?

28. Consider a small ferry that can accommo-
date cars and buses. The toll for cars is $3,
and the toll for buses is $10. Let X and
Y denote the number of cars and buses,
respectively, carried on a single trip. Sup-
pose the joint distribution of X and Y is as
given in the table of Exercise 9. Compute
the expected revenue from a single trip.

29. Annie and Alvie have agreed to meet for
lunchbetweennoon (0:00p.m.) and 1:00p.m.
Denote Annie’s arrival time by X, Alvie’s by
Y, and suppose X and Y are independent with
pdfs

fXðxÞ ¼ 3x2 0� x� 1 fYðyÞ ¼ 2y 0� y� 1

What is the expected amount of time that
the one who arrives first must wait for the
other person? [Hint: h(X, Y) = |X − Y|.]

30. Suppose that X and Y are independent rvs
with moment generating functions MX(t)
and MY(t), respectively. If Z = X + Y, show
that MZ(t) = MX(t) � MY(t). [Hint: Use the
proposition on the expected value of a
product.]

31. Compute the correlation coefficient q for
X and Y of Example 5.15 (the covariance
has already been computed).

32. a. Compute the covariance for X and Y in
Exercise 24.

b. Compute q for X and Y in the same
exercise.

33. Compute Cov(X,Y) and q for the variables
in Exercise 11.

34. Reconsider the computer component life-
times X and Y as described in Exercise 14.
Determine E(XY). What can be said about
Cov(X,Y) and q?

35. Referring back to Exercise 23, calculate
both Cov(X,Y) and q.

36. In practice, it is often desired to predict the
value of a variable Y from the known value of
some other variable, X. For example, a doctor
might wish to predict the lifespan Y of some-
one who smokes X cigarettes a day, or an
engineermay require predictions of the tensile
strength Y of steel made with concentration
X of a certain additive. A linear predictor of
Y is anything of the form Ŷ ¼ aþ bX; the
“hat” ^ on Y indicates prediction.
A common measure of the quality of a
predictor is given by the mean square

prediction error, E½ðY � ŶÞ2�.
a. Show that the choices of a and b that

minimizemean square prediction error are

b ¼ q � rY
rX

a ¼ lY � b � lX

where q = Corr(X, Y). The resulting
expression for Ŷ is often called the best
linear predictor of Y, given X. [Hint:
Expand the expression for mean square
prediction error, apply linearity of
expectation, and then use calculus.]

b. Determine the mean square prediction
error for the best linear predictor. How
does the value of q affect this quantity?

37. Recalling the definition of r2 for a single
rvX,write a formula that would be appropriate
for computing the variance of a function
h(X, Y) of two random variables. [Hint:
Remember that variance is just a special
expected value.] Then use this formula to
compute the variance of the recorded score
h(X,Y) [= max(X,Y)] in part (b) ofExercise 24.

38. Show that when X and Y are independent,
Cov(X,Y) = Corr(X,Y) = 0.
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39. Use linearity of expectation to establish the
covariance property

CovðaXþ bY þ c; ZÞ ¼ aCovðX; ZÞ
þ bCovðY; ZÞ

40. a. Use the properties of covariance to show
thatCov(aX + b, cY + d) = acCov(X,Y).

b. Use part (a) along with the rescaling
properties standard deviation to show
that Corr(aX + b, cY + d) = Corr(X, Y)
when ac > 0 (this is the scale invariance
property of correlation).

c. What happens if a and c have opposite
signs, so ac < 0?

41. Verify that if Y = aX + b (a 6¼ 0), then
Corr(X, Y) = +1 or –1. Under what condi-
tions will q = +1?

42. Consider the standardized variables ZX =
(X – µX)/rX and ZY = (Y – µY)/rY, and let
q = Corr(X, Y).

a. Use properties of covariance and
correlation to verify that Corr(X, Y) =
Cov(ZX, ZY) = E(ZXZY).

b. Use linearity of expectation along with
part (a) to show that E[(ZY – qZX)

2] =
1 – q2. [Hint: If Z is a standardized rv,
what are its mean and variance, and how
can you use those to determine E(Z2)?]

c. Use part (b) to show that –1 � q � 1.
d. Use part (b) to show that q = 1 implies

that Y = aX + bwhere a > 0, and q = –1
implies that Y = aX + b where a < 0.

5.3 Linear Combinations

A linear combination of random variables refers to anything of the form a1X1 þ � � � þ anXn þ b, where
theXi’s are randomvariables and the ai’s and b are numerical constants. (Some sources do not include the
constant b in the definition.) For example, suppose your investment portfolio with a particular financial
institution includes 100 shares of stock #1, 200 shares of stock #2, and 500 shares of stock #3. LetX1,X2,
and X3 denote the share prices of these three stocks at the end of the current fiscal year. Suppose also that
thefinancial institutionwill levy amanagement fee of $150. Then the value of your investments with this
institution at the end of the year is 100X1 + 200X2 + 500X3 – 150, which is a particular linear combi-
nation. Important special cases include the total X1 þ � � � þXn (take a1 = ⋯ = an = 1, b = 0), the
difference of two rvsX1–X2 (n = 2, a1 = 1, a2 = –1, b = 0), and anything of the form aX + b (take n = 1
or, equivalently, set a2 = ��� = an = 0). Another very important linear combination is the sample mean
X ¼ X1 þ . . .þXnð Þ=n; just take a1 = ⋯ = an = 1/n and b = 0.

Notice thatwe are not requiring theXi’s to be independent or to have the same probability distribution.
All the Xi’s could have different distributions and therefore different mean values and standard devia-
tions. In this section, we investigate the general properties of linear combinations. Section 6.2 will
explore some special properties of the total and sample mean under additional assumptions.

We first consider the expected value and variance of a linear combination.

THEOREM Let the rvs X1, X2, …, Xn have mean values l1, …, ln and standard deviations r1, …,
rn, respectively.

1. Whether or not the Xi’s are independent,

Eða1X1 þ � � � þ anXn þ bÞ ¼ a1EðX1Þþ � � � þ anEðXnÞþ b

¼ a1l1 þ � � � þ anln þ b
ð5:4Þ
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and

Vða1X1 þ � � � þ anXn þ bÞ ¼
Xn
i¼1

Xn
j¼1

aiajCovðXi;XjÞ

¼
Xn
i¼1

a2i r
2
i þ 2

XX
i\j

aiajCovðXi;XjÞ
ð5:5Þ

2. If X1, …, Xn are independent,

Vða1X1 þ � � � þ anXn þ bÞ ¼ a21VðX1Þþ � � � þ a2nVðXnÞ
¼ a21r

2
1 þ � � � þ a2nr

2
n ð5:6Þ

and

ra1X1 þ ��� þ anXn þ b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21r

2
1 þ � � � þ a2nr

2
n

q

A paraphrase of (5.4) is that the expected value of a linear combination is the same linear combination
of the expected values—for example, E(2X1 +5X2) = 2l1 + 5l2. The result (5.6) in Statement 2 is a
special case of (5.5) in Statement 1: When the Xi’s are independent, Cov(Xi, Xj) = 0 for i 6¼ j (this
simplification actually occurs when the Xi’s are uncorrelated, a weaker condition than independence).

Proof (n = 2) To establish (5.4), we could invoke linearity of expectation from Section 5.2, but we
present a direct proof here. Suppose that X1 and X2 are continuous with joint pdf f(x1, x2). Then

Eða1X1 þ a2X2 þ bÞ ¼
Z1
�1

Z1
�1

ða1x1 þ a2x2 þ bÞf ðx1; x2Þdx1dx2

¼ a1

Z1
�1

Z1
�1

x1f ðx1; x2Þdx2dx1þ a2

Z1
�1

Z1
�1

x2f ðx1; x2Þdx1dx2

þ b

Z1
�1

Z1
�1

f ðx1; x2Þdx1dx2

¼ a1

Z1
�1

x1

Z1
�1

f ðx1; x2Þdx2
2
4

3
5dx1 þ a2

Z1
�1

x2

Z1
�1

f ðx1; x2Þdx1
2
4

3
5dx2 þ bð1Þ

¼ a1

Z1
�1

x1fX1ðx1Þdx1 þ a2

Z1
�1

x2fX2ðx2Þdx2 þ b

¼ a1EðX1Þþ a2EðX2Þþ b
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Summation replaces integration in the discrete case. The argument for (5.5) does not require speci-
fying whether either variable is discrete or continuous. Recalling that V(Y) = E[(Y – lY)

2],

Vða1X1 þ a2X2 þ bÞ ¼ E½ða1X1 þ a2X2 þ b� ða1l1 þ a2l2 þ bÞÞ2�
¼ E½ða1X1 � a1l1 þ a2X2 � a2l2Þ2�
¼ E½a21ðX1 � l1Þ2 þ a22ðX2 � l2Þ2 þ 2a1a2ðX1 � l1ÞðX2 � l2Þ�
¼ a21E½ðX1 � l1Þ2� þ a22E½ðX2 � l2Þ2� þ 2a1a2E½ðX1 � l1ÞðX2 � l2Þ�

where the last equality comes from linearity of expectation. We recognize the terms in this last
expression as variances and covariance, all together a21VðX1Þþ a22VðX2Þþ 2a1a2CovðX1;X2Þ, as
required. ■

Example 5.18 A gas station sells three grades of gasoline: regular, plus, and premium. These are
priced at $3.50, $3.65, and $3.80 per gallon, respectively. Let X1, X2, and X3 denote the amounts of
these grades purchased (gallons) on a particular day. Suppose the Xi’s are independent with
l1 = 1000, l2 = 500, l3 = 300, r1 = 100, r2 = 80, and r3 = 50. The revenue from sales is
Y = 3.5X1 + 3.65X2 + 3.8X3, and

EðYÞ ¼ 3:5l1 þ 3:65l2 þ 3:8l3 ¼ $6465

VðYÞ ¼ 3:52r21 þ 3:652r22 þ 3:82r23 ¼ 243;864

rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243;864

p
¼ $493:83 �

Example 5.19 Recall that a hypergeometric rv X is the number of successes in a random sample
of size n selected without replacement from a population of size N consisting of M successes and
N – M failures. It is tricky to obtain the mean value and variance of X directly from the pmf, and the
hypergeometric moment generating function is very complicated. We now show how the foregoing
proposition on linear combinations can be used to accomplish this task.

To this end, let X1 = 1 if the first individual or object selected is a success and X1 = 0 if it is a
failure; define X2, X3, …, Xn analogously for the second selection, third selection, and so on. Each Xi

is a Bernoulli rv, and each has the same marginal distribution: p(1) = M/N and p(0) = 1 –M/N (this is
obvious for X1, which is based on the very first draw from the population, and can be verified for the
other draws as well). Thus E(Xi) = 0(1 – M/N) + 1(M/N) = M/N. The total number of success in the
sample is X ¼ X1 þ � � � þXn (a 1 is added in for each success and a 0 for each failure), so

EðXÞ ¼ E X1ð Þþ � � � þE Xnð Þ ¼ M=N þM=N þ � � � þM=N ¼ nðM=NÞ ¼ np

where p denotes the success probability on any particular draw (trial). That is, just as in the case of a
binomial rv, the expected value of a hypergeometric rv is the success probability on any trial
multiplied by the number of trials. Notice that we were able to apply Equation (5.4), even though the
Xi’s are not independent.

Since each Xi is Bernoulli, it follows that V(Xi) = p(1 – p) orM/N(1 –M/N). However, the variance
of X here is not the same as the binomial variance, precisely because the successive draws are not
independent. Consider p(x1, x2), the joint pmf of X1 and X2:
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p 1; 1ð Þ ¼ M

N

M � 1
N � 1

� �
; p 0; 0ð Þ ¼ N �M

N

� �
N �M � 1

N � 1

� �
; p 1; 0ð Þ ¼ p 0; 1ð Þ ¼ M

N

N �M

N � 1

� �

This is also the joint pmf of any pair Xi, Xj. A slightly tedious calculation then results in

Cov(Xi;XjÞ ¼ � pð1� pÞ
N � 1

for i 6¼ j

Applying Equation (5.5) yields

VðXÞ ¼ VðX1 þ � � � þXnÞ ¼
Xn
i¼1

VðXiÞþ 2
XX

i\j

CovðXi;XjÞ

¼ nVðX1Þþ 2
n

2

� �
CovðX1;X2Þ

¼ npð1� pÞþ nðn� 1Þ � �pð1� pÞ
N � 1

¼ � � � ¼ npð1� pÞ N � n

N � 1

� �

This is quite close to the binomial variance provided that n is much smaller than N so that the last term
in parentheses is close to 1. ■

The following corollary expresses the n = 2 case of the main theorem for ease of use, including the
important special cases of the sum and the difference of two random variables.

COROLLARY For any two rvs X1 and X2, and any constants a1, a2, b,

Eða1X1 þ a2X2 þ bÞ ¼ a1EðX1Þþ a2EðX2Þþ b

and

Vða1X1 þ a2X2 þ bÞ ¼ a21VðX1Þþ a22VðX2Þþ 2a1a2CovðX1;X2Þ

In particular, E(X1 + X2) = E(X1) + E(X2) and, if X1 and X2 are independent,
V(X1 + X2) = V(X1) + V(X2).

1 Also, E(X1 – X2) = E(X1) – E(X2) and, if X1

and X2 are independent, V(X1 – X2) = V(X1) + V(X2).

The expected value of a difference is the difference of the two expected values, but the variance of a
difference between two independent variables is the sum, not the difference, of the two variances. There
is just as much variability in X1 – X2 as in X1 + X2: Writing X1 – X2 = X1 + (–1)X2, the term (–1)X2 has
the same amount of variability as X2 itself.

Example 5.20 An automobile manufacturer equips a particular model with either a six-cylinder
engine or a four-cylinder engine. Let X1 and X2 be fuel efficiencies (mpg) for independently and
randomly selected six-cylinder and four-cylinder cars, respectively. With l1 = 22, l2 = 26, r1 = 1.2,
and r2 = 1.5,

1This property of independent rvs can also be written as r21 þr22 ¼ r2X1 þX2
. In part because the formula has the format

a2 + b2 = c2, statisticians sometimes call this property the Pythagorean Theorem.
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EðX1 � X2Þ ¼ l1 � l2 ¼ 22� 26 ¼ �4 mpg

VðX1 � X2Þ ¼ r21 þ r22 ¼ 1:22 þ 1:52 ¼ 3:69

rX1�X2 ¼
ffiffiffiffiffiffiffiffiffi
3:69

p
¼ 1:92 mpg

If we re-label so that X1 refers to the four-cylinder car, then E(X1 – X2) = 26 – 22 = 4 mpg, but the
standard deviation of the difference is still 1.92 mpg. ■

The PDF of a Sum of Continuous RVs
Generally speaking, knowing the mean and standard deviation of a random variable W is not enough
to specify its probability distribution and thus be able to compute probabilities such as P(W > 10) or
P(W � –2). In the case of independent rvs, a general method exists for determining the pdf of the
sum X1 þ � � � þXn from their marginal pdfs. We present first the result for two random variables.

THEOREM Suppose X and Y are independent, continuous rvs with marginal pdfs fX(x) and fY(y),
respectively. Then the pdf of the rv W = X + Y is given by

fWðwÞ ¼
Z1
�1

fXðxÞfYðw� xÞdx

[In mathematics, this integral operation is known as the convolution of fX(x) and
fY(y) and is sometimes denoted fW ¼ fX I fY .] The limits of integration are determined
by which x values make both fX(x) > 0 and fY(w – x) > 0.

Proof Since X and Y are independent, their joint pdf is given by fX(x) � fY(y). The cdf of W is then

FWðwÞ ¼ PðW �wÞ ¼ PðXþ Y �wÞ

To calculate P(X + Y � w), we must integrate over the set of numbers {(x, y): x + y � w}, which
is the shaded region indicated in Figure 5.5.

y

x

x + y = w

Figure 5.5 Region of integration for P(X + Y � w)
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The resulting limits of integration are –1 < x < 1 and –1 < y � w – x, and so

FWðwÞ ¼ PðXþ Y �wÞ

¼
Z1
�1

Zw�x

�1
fXðxÞfYðyÞdydx ¼

Z1
�1

fXðxÞ
Zw�x

�1
fYðyÞdydx

¼
Z1
�1

fXðxÞFYðw� xÞdx

The pdf of W is the derivative of this expression with respect to w; taking the derivative underneath
the integral sign yields the desired result. ■

By a similar argument, the pdf of W = X + Y can be determined even when X and Y are not
independent. Assuming X and Y have joint pdf f(x, y), fWðwÞ ¼

R1
�1 f ðx;w� xÞdx.

Example 5.21 In a standby system, a component is used until it wears out and is then immediately
replaced by another, not necessarily identical, component. (The second component is said to be “in
standby mode,” i.e., waiting to be used.) The overall lifetime of a standby system is just the sum of the
lifetimes of its individual components. Let X and Y denote the lifetimes of the two components of a
standby system, and suppose X and Y are independent exponentially distributed random variables
with mean lifetimes 3 weeks and 4 weeks, respectively. Let W = X + Y, the system lifetime.

Using Equation (5.4), the expected lifetime of the standby system is E(W) = E(X) + E(Y) =
3 + 4 = 7 weeks. SinceX and Y are exponential, the variance of each one is the square of its mean (9 and
16, respectively); since they are also independent,

VðWÞ ¼ VðXÞþVðYÞ ¼ 32 þ 42 ¼ 25

It follows that rW = 5 weeks. Since µW 6¼ rW, W cannot itself be exponentially distributed, but we
can use the previous theorem to find its pdf.

The marginal pdfs of X and Y are fX(x) = (1/3)e–x/3 for x > 0 and fY(y) = (1/4)e–y/4 for y > 0.
Substituting y = w – x, the inequalities x > 0 and w – x > 0 imply 0 < x < w, which specify the limits
of integration of the convolution integral:

fWðwÞ ¼
Z1
�1

fXðxÞfYðw� xÞdx ¼
Zw
0

ð1=3Þe�x=3ð1=4Þe�ðw�xÞ=4dx ¼ 1
12

e�w=4
Zw
0

e�x=12dx

¼ e�w=4ð1� e�w=12Þ w[ 0

A graph of this pdf appears in Figure 5.6. As a check, the mean and variance of W can be verified
directly from its pdf.
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The probability that the system lasts more than its expected lifetime of 7 weeks is given by

PðW [ 7Þ ¼
Z1
7

fWðwÞdw ¼
Z1
7

e�w=4ð1� e�w=12Þdw ¼ :4042 �

As a generalization of the previous proposition, the pdf of the sum W ¼ X1 þ � � � þXn of n inde-
pendent, continuous rvs can be determined by successive convolution: fW ¼ f1 I � � � I fn. In most
situations, it isn’t practical to evaluate such a complicated object. Thankfully, as we’ll see next, such
tedious computations can sometimes be avoided with the use of moment generating functions.

Moment Generating Functions for Linear Combinations
A proposition in Section 5.2 stated that the expected value of a product of functions of independent
random variables is the product of the individual expected values. We now use this to formulate the
moment generating function of a linear combination of independent random variables.

PROPOSITION Let X1, X2, …, Xn be independent rvs with moment generating functions
MX1ðtÞ;MX2ðtÞ; . . .;MXnðtÞ, respectively. Then the moment generating function of
Y = a1X1 + a2X2 + ��� + anXn + b is

MYðtÞ ¼ ebt �MX1ða1tÞ �MX2ða2tÞ � � � � �MXnðantÞ

In the special case that a1 = a2 = ��� = an = 1 and b = 0, so Y = X1 + ⋯ + Xn,

MYðtÞ ¼ MX1ðtÞ �MX2ðtÞ � � � � �MXnðtÞ

That is, the mgf of a sum of independent rvs is the product of the individual
mgfs.

0.10

0.08

0.06

0.04

0.02

0
0 10 20

w

fW(w)

30

Figure 5.6 The pdf of W = X + Y for Example 5.21
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Proof First, we write the moment generating function of Y as the expected value of a product.

MYðtÞ ¼ E½etY � ¼ E½etða1X1 þ a2X2 þ ��� þ anXn þ bÞ�
¼ E½eta1X1 þ ta2X2 þ ��� þ tanXn þ tb� ¼ ebtE½ea1tX1 � ea2tX2 � � � � � eantXn �

The last expression inside brackets is the product of functions of X1, X2, …, Xn. Since the Xi’s are
independent, the expected value can be distributed across this product:

ebtE½eta1X1 � eta2X2 � � � � � etanXn � ¼ ebtE½eta1X1 � � E½eta2X2 � � � � � � E½etanXn �
¼ ebtMX1ða1tÞ �MX2ða2tÞ � � � � �MXnðantÞ �

Now suppose we wish to determine the pdf of some linear combination of independent rvs. Provided
we have their mgfs, the previous proposition makes it easy to determine the mgf of the linear
combination. Then, if we can recognize this mgf as belonging to some known distributional family
(binomial, exponential, etc.), the uniqueness property of mgfs guarantees our linear combination has
that particular distribution. The next several propositions illustrate this technique.

PROPOSITION If X1, X2, …, Xn are independent, normally distributed rvs (with possibly
different means and/or sds), then any linear combination of the Xi’s also
has a normal distribution. In particular, the sum of independent normally
distributed rvs itself has a normal distribution, and the difference X1 – X2

between two independent, normally distributed variables is itself normally
distributed.

Proof Let Y = a1X1 + a2X2 + ⋯ + anXn + b, where Xi is normally distributed with mean li and

standard deviation ri, and the Xi are independent. From Section 4.3, MXiðtÞ ¼ eli tþr2i t
2=2.

Therefore,

MYðtÞ ¼ ebtMX1ða1tÞ �MX2ða2tÞ � � � � �MXnðantÞ
¼ ebtel1a1tþr21a

2
1t

2=2el2a2tþ r22a
2
2t

2=2 � � � � � elnantþr2na
2
nt

2=2

¼ eðl1a1 þ l2a2 þ ��� þlnan þ bÞtþðr21a21 þ r22a
2
2 þ ��� þr2na

2
nÞt2=2

¼ eltþr2t2=2;

where l ¼ a1l1 þ a2l2 þ � � � þ anln þ b and r2 ¼ a21r
2
1 þ a22r

2
2 þ � � � þ a2nr

2
n. We recognize this

function as the mgf of a normal random variable, and it follows that Y is normally distributed by the
uniqueness property of mgfs. Notice that the mean and variance are in agreement with the first
proposition of this section. ■

Example 5.22 (Example 5.18 continued) The total revenue from the sale of the three grades of
gasoline on a particular day was Y = 3.5X1 + 3.65X2 + 3.8X3, and we calculated lY = $6465 and
(assuming independence) rY = $493.83. If the Xi’s are (approximately) normally distributed, the
probability that revenue exceeds $5000 is
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PðY [ 5000Þ � P Z[
5000� 6465

493:83

� �
¼ P Z[ �2:967ð Þ ¼ 1� Uð�2:967Þ ¼ :9985 �

This same method may be applied to discrete rvs, as the next proposition indicates.

PROPOSITION Suppose X1,…, Xn are independent Poisson random variables, where Xi has mean
µi. Then Y ¼ X1 þ � � � þXn also has a Poisson distribution, with mean
l1 þ � � � þ ln .

Proof From Section 3.6, the mgf of a Poisson rv with mean µ is elðe
t�1Þ. Since Y is the sum of the

Xi’s, and the Xi’s are independent,

MYðtÞ ¼ MX1ðtÞ � � � � �MXnðtÞ ¼ el1ðe
t�1Þ � � � � � elnðet�1Þ ¼ eðl1 þ ��� þ lnÞðet�1Þ

This is the mgf of a Poisson rv with mean l1 þ � � � þ ln. Therefore, by the uniqueness property of
mgfs, Y has a Poisson distribution with mean l1 þ � � � þ ln. ■

Example 5.23 During the open enrollment period at a large university, the number of freshmen
registering for classes through the online registration system in one hour follows a Poisson distri-
bution with mean 80 students; denote this rv by X1. Define X2, X3, and X4 similarly for sophomores,
juniors, and seniors, and suppose the corresponding means are 125, 118, and 140, respectively.
Assume these four counts are independent. The rv Y = X1 + X2 + X3 + X4 represents the total number
of undergraduate students registering in one hour; by the preceding proposition, Y is also a Poisson rv,
but with mean 80 + 125 + 118 + 140 = 463 students and standard deviation

ffiffiffiffiffiffiffiffi
463

p ¼ 21:5 students.
The probability that more than 500 students enroll during one hour, exceeding the registration
system’s capacity, is then P(Y > 500) = 1 – P(Y � 500) = .042 (using software). ■

Because of the properties stated in the preceding two propositions, both the normal and Poisson
models are sometimes called additive distributions, meaning that the sum of independent rvs from
that family (normal or Poisson) will also belong to that family. The next proposition shows that not all
of the major probability distributions are additive; its proof is left as an exercise (Exercise 65).

PROPOSITION Suppose X1, …, Xn are independent exponential random variables with common
parameter k. Then Y ¼ X1 þ � � � þXn has a gamma distribution, with parameters
a = n and b = 1/k.

Therefore, the exponential distribution is not additive, although it can be shown that its “parent,” the
gamma distribution, is additive under certain conditions (see Exercise 64). Notice that this proposition
requires the Xi’s to have the same “rate” parameter k; i.e., the Xi’s must be independent and iden-
tically distributed for their sum to have a gamma distribution. As we saw in Example 5.21, the sum of
two independent exponential rvs with different parameter values follows neither an exponential nor a
gamma distribution.
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Exercises: Section 5.3 (43–67)

43. A shipping company handles containers in
three different sizes: (1) 27 ft3 (3 � 3 � 3),
(2) 125 ft3, and (3) 512 ft3. Let Xi (i = 1, 2, 3)
denote the number of type i containers
shipped during a given week. With li =
E(Xi) and r2i ¼ VðXiÞ, suppose that themean
values and standard deviations are as
follows:

l1 ¼ 200 l2 ¼ 250 l3 ¼ 100
r1 ¼ 10 r2 ¼ 12 r3 ¼ 8

a. Assuming that X1, X2, X3 are indepen-
dent, calculate the expected value and
standard deviation of the total volume
shipped. [Hint: Volume = 27X1 +
125X2 + 512X3.]

b. Would your calculations necessarily be
correct if the Xi’s were not independent?
Explain.

c. Suppose the Xi’s are independent with
each one (approximately) normal. What is
the (approximate) probability that the total
volume shipped is at most 100,000 ft3?

44. Let X1, X2, and X3 represent the times
necessary to perform three successive
repair tasks at a service facility. Suppose
they are independent, normal rvs with
expected values l1, l2, and l3 and vari-
ances r21; r

2
2; and r23, respectively.

a. If l1 = l2 = l3 = 60, r21 ¼ r22 ¼ r23 ¼ 15,
calculate P(X1 + X2 +X3 � 200).

b. Using the li’s and ri’s from (a), what is
P(150 � X1 + X2 + X3 � 200)?

c. Using the li’s and ri’s given in part (a),
calculate Pð55�XÞ and Pð58�X� 62Þ.
[Hint: X ¼ X1 þX2 þX3ð Þ=3.]

d. Using the values from part (a), calculate
P(–10 � X1 – .5X2 – .5X3 � 5).

e. If l1 = 40, l2 = 50, l3 = 60, r21 ¼ 10;
r22 ¼ 12; and r23 ¼ 14, calculate
P(X1 + X2 + X3 � 160) and also
P(X1 + X2 � 2X3).

45. Five automobiles of the same type are to be
driven on a 300-mile trip. The first two
have six-cylinder engines, and the other
three have four-cylinder engines. Let X1,
X2, X3, X4, and X5 be the observed fuel
efficiencies (mpg) for the five cars. Sup-
pose these variables are independent and
normally distributed with l1 = l2 = 30,
l3 = l4 = l5 = 35, and r = 2.5 for the two
larger engines and 3.6 for the three smaller
engines. Define a rv Y by

Y ¼ X1 þX2

2
� X3 þX4 þX5

3

so that Y is a measure of the difference in
efficiency between the six-cylinder and
four-cylinder engines. Compute P(Y � 0)
and P(–3 � Y � 3). [Hint: Y is a linear
combination; what are the ai’s?]

46. Exercise 28 introduced random variables
X and Y, and the number of cars and
buses, respectively, carried by a ferry on
a single trip. These rvs are, in fact,
independent.

a. Compute the expected value, variance,
and standard deviation of the total
number of vehicles on a single trip.

b. If each car is charged $3 and each
bus $10, compute the expected value,
variance, and standard deviation of the
revenue resulting from a single trip.

47. A concert has three pieces of music to be
played before intermission. The time taken
to play each piece has a normal distribution.
Assume that the three times are indepen-
dent of each other. The mean times are 15,
30, and 20 min, respectively, and the
standard deviations are 1, 2, and 1.5 min,
respectively. What is the probability that
this part of the concert takes at most one
hour? Are there reasons to question the
independence assumption? Explain.
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48. Refer to Exercise 3.

a. Calculate the covariance between X1 =
the number of customers in the express
checkout and X2 = the number of cus-
tomers in the superexpress checkout.

b. Calculate V(X1 + X2). How does this
compare to V(X1) + V(X2)?

49. Suppose your waiting time for a bus in the
morning is uniformly distributed on [0, 8],
whereas waiting time in the evening is
uniformly distributed on [0, 10] indepen-
dent of morning waiting time.

a. If you take the bus each morning and
evening for a week, what is your total
expected waiting time? [Hint: Define rvs
X1, …, X10 and use a rule of expected
value.]

b. What is the variance of your total wait-
ing time?

c. What are the expected value and variance
of the difference between morning and
evening waiting times on a given day?

d. What are the expected value and vari-
ance of the difference between total
morning waiting time and total evening
waiting time for a particular week?

50. An insurance office buys paper by the ream
(500 sheets) for use in the copier, fax, and
printer. Each ream lasts an average of
4 days, with standard deviation 1 day. The
distribution is normal, independent of pre-
vious reams.

a. Find the probability that the next ream
outlasts the present one by more than
two days.

b. How many reams must be purchased if
they are to last at least 60 days with
probability at least 80%?

51. If two loads are applied to a cantilever
beam as shown in the accompanying
drawing, the bending moment at 0 due to
the loads is a1X1 + a2X2.

X1 X2

a1 a2

0

a. Suppose that X1 and X2 are independent
rvs with means 2 and 4 kips, respec-
tively, and standard deviations .5 and 1.0
kip, respectively. If a1 = 5 ft and
a2 = 10 ft, what is the expected bending
moment and what is the standard devi-
ation of the bending moment?

b. If X1 and X2 are normally distributed,
what is the probability that the bending
moment will exceed 75 kip-ft?

c. Suppose the positions of the two loads
are random variables. Denoting them by
A1 and A2, assume that these variables
have means of 5 and 10 ft, respectively,
that each has a standard deviation of .5,
and that all Ai’s and Xi’s are independent
of each other. What is the expected
moment now?

d. For the situation of part (c), what is the
variance of the bending moment?

e. If the situation is as described in part
(a) except that Corr(X1, X2) = .5 (so that
the two loads are not independent),
what is the variance of the bending
moment?

52. One piece of PVC pipe is to be inserted
inside another piece. The length of the first
piece is normally distributed with mean
value 20 in. and standard deviation .5 in.
The length of the second piece is a normal
rv with mean and standard deviation 15 in.
and .4 in., respectively. The amount of
overlap is normally distributed with mean
value 1 in. and standard deviation .1 in.
Assuming that the lengths and amount of
overlap are independent of each other,
what is the probability that the total
length after insertion is between 34.5 in.
and 35 in.?
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53. Two airplanes are flying in the same
direction in adjacent parallel corridors. At
time t = 0, the first airplane is 10 km ahead
of the second one. Suppose the speed of the
first plane (km/h) is normally distributed
with mean 520 and standard deviation 10
and the second plane’s speed, independent
of the first, is also normally distributed with
mean and standard deviation 500 and 10,
respectively.

a. What is the probability that after 2 h of
flying, the second plane has not caught
up to the first plane?

b. Determine the probability that the planes
are separated by at most 10 km after
2 h.

54. Three different roads feed into a particular
freeway entrance. Suppose that during a
fixed time period, the number of cars
coming from each road onto the freeway
is a random variable, with expected value
and standard deviation as given in the
table.

Road 1 Road 2 Road 3

Expected value 800 1000 600
Standard deviation 16 25 18

a. What is the expected total number of
cars entering the freeway at this point
during the period? [Hint: Let Xi = the
number from road i.]

b. What is the standard deviation of the
total number of entering cars? Have you
made any assumptions about the rela-
tionship between the numbers of cars on
the different roads?

c. WithXidenoting the number of cars enter-
ing from road i during the period, suppose
Cov(X1, X2) = 80, Cov(X1, X3) = 90, and
Cov(X2, X3) = 100 (so that the three
streams of traffic are not independent).
Compute the expected total number of
entering cars and the standard deviation of
the total.

55. Consider independent rvs X1; . . .;Xn from a
continuous distribution having median 0, so
that the probability of any one observation
being positive is .5. Now disregard the signs
of the observations, rank them from smallest
to largest in absolute value, and then let
W = the sum of the ranks of the observa-
tions having positive signs. For example, if
the observations are –.3, +.7, +2.1, and –2.5,
then the ranks of positive observations are 2
and 3, so W = 5. In the statistics literature,
W is calledWilcoxon’s signed-rank statistic.
W can be represented as follows:

W ¼ 1 � Y1 þ 2 � Y2 þ 3 � Y3 þ � � � þ n � Yn
¼
Xn
i¼1

i � Yi

where the Yi’s are independent Bernoulli
rvs, each with p = .5 (Yi = 1 corresponds to
the observation with rank i being positive).
Compute the following:

a. E(Yi) and then E(W) using the equation
for W [Hint: The first n positive integers
sum to n(n + 1)/2.]

b. V(Yi) and then V(W) [Hint: The sum of
the squares of the first n positive integers
is n(n + 1)(2n + 1)/6.]

56. In Exercise 51, the weight of the beam itself
contributes to the bending moment.
Assume that the beam is of uniform thick-
ness and density so that the resulting load is
uniformly distributed on the beam. If the
weight of the beam is random, the resulting
load from the weight is also random; denote
this load by W (kip-ft).

a. If the beam is 12 ft long,W has mean 1.5
and standard deviation .25, and the fixed
loads are as described in part (a) of
Exercise 51, what are the expected value
and variance of the bending moment?
[Hint: If the load due to the beam were
w kip-ft, the contribution to the bending

moment would be w
R 12
0 xdx.]
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b. If all three variables (X1, X2, and W) are
normally distributed, what is the proba-
bility that the bending moment will be at
most 200 kip-ft?

57. A professor has three errands to take care of
in the Administration Building. Let Xi =
the time that it takes for the ith errand
(i = 1, 2, 3), and let X4 = the total time in
minutes that she spends walking to and
from the building and between each errand.
Suppose the Xi’s are independent, normally
distributed, with the following means and
standard deviations: l1 = 15, r1 = 4,
l2 = 5, r2 = 1, l3 = 8, r3 = 2, l4 = 12,
r4 = 3. She plans to leave her office at
precisely 10:00 a.m. and wishes to post a
note on her door that reads, “I will return by
t a.m.” What time t should she write down
if she wants the probability of her arriving
after t to be .01?

58. In an area having sandy soil, 50 small trees
of a certain type were planted, and another
50 trees were planted in an area having clay
soil. Let X = the number of trees planted in
sandy soil that survive 1 year and Y = the
number of trees planted in clay soil that
survive 1 year. If the probability that a tree
planted in sandy soil will survive 1 year is
.7 and the probability of 1-year survival in
clay soil is .6, compute an approximation to
P(–5 � X – Y � 5). [Hint: Use a normal
approximation from Section 3.3. Do not
bother with the continuity correction.]

59. Let X and Y be independent rvs, with
X * N(0, 1) and Y * N(0, 1).

a. Use convolution to show that X + Y is
also normal, and identify its mean and
standard deviation.

b. Use the additive property of the normal
distribution presented in this section to
verify your answer to part (a).

60. Karen throws two darts at a boardwith radius
10 in.; let X and Y denote the distances of the
two darts from the center of the board. Under

the system Karen uses, the score she
obtains depends on W = X + Y, the sum of
these two distances. Assume X and Y are
independent.

a. If X and Y are both uniform distributed
on the interval [0, 10], use convolution
to determine the pdf of W = X + Y. Be
very careful with your limits of
integration!

b. Based on the pdf in part (a), calculate
P(X + Y � 5).

c. If Karen’s darts are equally likely to land
anywhere on the board, it can be shown
that the pdfs of X and Y are fX(x) = x/50
for 0 � x � 10 and fY(y) = y/50 for
0 � y � 10. Use convolution to
determine the pdf of W = X + Y. Then,
calculate P(X + Y � 5).

61. Siblings Matt and Liz both enjoy playing
roulette. One day, Matt brought $10 to the
local casino and Liz brought $15. They sat
at different tables, each made $1 wagers on
red on consecutive spins (10 spins for Matt,
15 for Liz). Let X = the number of times
Matt won and Y = the number of times Liz
won.

a. What is a reasonable probability model
for X? [Hint: Successive spins of a
roulette wheel are independent, and
P(land on red) = 18/38.]

b. What is a reasonable probability model
for Y?

c. What is a reasonable probability model
for X + Y, the total number of times
Matt and Liz win that day? Explain.
[Hint: Since the siblings sat at different
table, their gambling results are
independent.]

d. Use moment generating functions, along
with your answers to (a) and (b), to show
that your answer to part (c) is correct.

e. Generalize part (d): If X1, …, Xk

are independent binomial rvs, with
Xi * Bin(ni, p), show that their sum is
also binomially distributed.
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f. Does the result of part (e) hold if the
parameter p has a different value for each
Xi (e.g., if Matt bets on red but Liz bets
on the number 27)?

62. The children attending Milena’s birthday
party are enjoying taking swings at a piñata.
Let X = the number of swings it takes
Milena to hit the piñata once (since she’s
the birthday girl, she goes first), and let
Y = the number of swings it takes her
brother Lucas to hit the piñata once (he
goes second). Assume the results of suc-
cessive swings are independent (the chil-
dren don’t improve, since they’re
blindfolded), and that each child has a .2
probability of hitting the piñata on any
attempt.

a. What is a reasonable probability model
for X?

b. What is a reasonable probability model
for Y?

c. What is a reasonable probability model
for X + Y, the total number of swings
taken by Milena and Lucas? Explain.
(Assume Milena’s and Lucas’ results are
independent.)

d. Use moment generating functions, along
with your answers to (a) and (b), to
show that your answer to part (c) is
correct.

e. Generalize part (d): If X1, …, Xr are
independent geometric rvs with common
parameter p, show that their sum has a
negative binomial distribution.

f. Does the result of part (e) hold if the
probability parameter p is different for
each Xi (e.g., if Milena has probability .4
on each attempt while Lucas’ success
probability is only .1)?

63. Let X1, …, Xn be independent rvs, with Xi

having a negative binomial distribution
with parameters ri and p (i = 1, …, n). Use
moment generating functions to show that
X1 þ � � � þXn has a negative binomial

distribution, and identify the parameters of
this distribution. Explain why this answer
makes sense, based on the negative bino-
mial model. [Note: Each Xi may have a
different parameter ri, but all have the same
p parameter.]

64. Let X and Y be independent gamma random
variables, both with the same scale param-
eter b. The value of the other parameter is a1
for X and a2 for Y. Use moment generating
functions to show that X + Y is also gamma
distributed, with shape parameter a1 + a2
and scale parameter b. Is X + Y gamma
distributed if the scale parameters are dif-
ferent? Explain.

65. Let X and Y be independent exponen-
tial random variables with common
parameter k.

a. Use convolution to show that X + Y has
a gamma distribution, and identify the
parameters of that gamma distribution.

b. Use the previous exercise to establish
the same result.

c. Generalize part (b): If X1, …, Xn are
independent exponential rvs with com-
mon parameter k, what is the distribu-
tion of their sum?

66. For men, pulse rates (in beats per minute)
are normally distributed with mean 70 and
standard deviation 10. Women’s pulse rates
are normally distributed with mean 77 and
standard deviation 12. Let X ¼ the sample
average pulse rate for a random sample of
40 men and let Y ¼ the sample average
pulse rate for a random sample of 36
women.

a. What is the distribution of X ? Of Y?
[Hint: X ¼ 1

40X1 þ � � � þ 1
40X40, and sim-

ilarly for Y .]
b. What is the distribution of X – Y? Justify

your answer.
c. Calculate Pð�2�X � Y � 1Þ.
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d. Calculate PðX � Y � �15Þ. If you
actually observed X � Y � �15, would
you doubt that l1 – l2 = –7? Explain.

67. The Laplace (or double exponential)
distribution has pdf f ðxÞ ¼ 1

2e
�jxj for

�1\x\1.

a. The mean of the Laplace distribution is
clearly 0, by symmetry. Determine the
variance of the Laplace distribution.

b. Show that the mgf of the Laplace
distribution is MXðtÞ ¼ 1=ð1� t2Þ for
�1\t\1.

c. Now let Yn ¼ X1 þ � � � þXn, where the
Xi are iid Laplace rvs. Determine the
mean, variance, and mgf of Yn.

d. Define a standardized version of Yn by
Zn ¼ ðYn � lYnÞ=rYn . Determine the mgf
of Zn.

e. Show that as n ! 1, the limiting mgf

of Zn is et
2=2, the mgf of a standard

normal rv.

(This is a preview of the celebrated Central
Limit Theorem, which we’ll encounter in
Chapter 6.)

5.4 Conditional Distributions and Conditional Expectation

The distribution of Y can depend strongly on the value of another variable X. For example, if X is
height and Y is weight, the weight distribution for men who are 6 ft tall is very different from the
weight distribution for short men. The conditional distribution of Y given X = x describes for each
possible x how probability is distributed over the set of possible y values. We define the conditional
distribution of Y given X, but the conditional distribution of X given Y can be obtained by just
reversing the roles of X and Y. Both definitions are analogous to that of the conditional probability
P(A|B) as the ratio PðA\BÞ=PðBÞ.

DEFINITION Let X and Y be two discrete random variables with joint pmf p(x, y) and marginal
X pmf pX(x). Then for any x value such that pX(x) > 0, the conditional probability
mass function of Y given X = x is

pY jXðyjxÞ ¼ pðx; yÞ
pXðxÞ

An analogous formula holds in the continuous case. Let X and Y be two continuous
random variables with joint pdf f(x,y) and marginal X pdf fX(x). Then for any x value
such that fX(x) > 0, the conditional probability density function of Y givenX = x is

fY jXðyjxÞ ¼ f ðx; yÞ
fXðxÞ

Example 5.24 For a discrete example, reconsider Example 5.1, where X represents the deductible
amount on an automobile policy and Y represents the deductible amount on a homeowner’s policy.
Here is the joint distribution again.
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The distribution of Y depends on X. In particular, let’s find the conditional probability that Y is 200,
given that X is 250, using the definition of conditional probability from Section 2.4:

PðY ¼ 200jX ¼ 250Þ ¼ PðY ¼ 200\X ¼ 250Þ
PðX ¼ 250Þ ¼ :3

:05þ :15þ :3
¼ :6

With our new definition we obtain the same result:

pY jXð200j250Þ ¼ pð250; 200Þ
pXð250Þ ¼ :3

:05þ :15þ :3
¼ :6

The conditional probabilities for the two other possible values of Y are

pY jXð0j250Þ ¼ pð250; 0Þ
pXð250Þ ¼ :05

:05þ :15þ :3
¼ :1

pY jXð100j250Þ ¼ pð250; 100Þ
pXð250Þ ¼ :15

:05þ :15þ :3
¼ :3

Thus, pY jX 0j250ð Þþ pY jX 100j250ð Þþ pY jX 200j250ð Þ ¼ :1þ :3þ :6 ¼ 1. This is no coincidence;
conditional probabilities satisfy the properties of ordinary probabilities. They are nonnegative and
they sum to 1. Essentially, the denominator in the definition of conditional probability is designed to
make the total be 1.

Reversing the roles of X and Y, we find the conditional probabilities for X, given that Y = 0:

pXjYð100j0Þ ¼ pð100; 0Þ
pYð0Þ ¼ :20

:20þ :05
¼ :8

pXjYð250j0Þ ¼ pð250; 0Þ
pYð0Þ ¼ :05

:20þ :05
¼ :2

Again, the conditional probabilities add to 1. ■

Example 5.25 For a continuous example, recall Example 5.5, where X is the weight of almonds and
Y is the weight of cashews in a can of mixed nuts. The sum of X + Y is at most one pound, the total
weight of the can of nuts. The joint pdf of X and Y is

f ðx; yÞ ¼ 24xy 0� x� 1; 0� y� 1; xþ y� 1

In Example 5.5 it was shown that

fXðxÞ ¼ 12xð1� xÞ2 0� x� 1

p(x, y)

y
0 100 200

x
100 .20 .10 .20
250 .05 .15 .30
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The conditional pdf of Y given that X = x is

fY jXðyjxÞ ¼ f ðx; yÞ
fXðxÞ ¼ 24xy

12xð1� xÞ2 ¼
2y

ð1� xÞ2 0� y� 1� x

This can be used to calculate conditional probabilities for Y. For example,

PðY � :25jX ¼ :5Þ ¼
Z:25
�1

fY jXðyj:5Þdy ¼
Z:25
0

2y

ð1� :5Þ2dy ¼ 4y2
� 	:25

0 ¼ :25

Given that the weight of almonds (X) is .5 lb, the probability is .25 for the weight of cashews (Y) to be
less than .25 lb.

Just as in the discrete case, the conditional distribution assigns a total probability of 1 to the set of
all possible Y values. That is, integrating the conditional density over its set of possible values should
yield 1:

Z1
�1

fY jXðyjxÞdy ¼
Z1�x

0

2y

ð1� xÞ2dy ¼
y2

ð1� xÞ2
" #1�x

0

¼ 1

Whenever you calculate a conditional density, we recommend doing this integration as a validity
check. ■

Conditional Distributions and Independence
Recall that in Section 5.1 two random variables were defined to be independent if their joint pmf or
pdf factors into the product of the marginal pmfs or pdfs. We can understand this definition better with
the help of conditional distributions. For example, suppose there is independence in the discrete case.
Then

pY jXðyjxÞ ¼ pðx; yÞ
pXðxÞ ¼ pXðxÞpYðyÞ

pXðxÞ ¼ pYðyÞ

That is, independence implies that the conditional distribution of Y is the same as the unconditional
(i.e., marginal) distribution, and that this is true no matter the value of X. The implication works in the
other direction, too. If pY jXðyjxÞ ¼ pYðyÞ, then

pðx; yÞ
pXðxÞ ¼ pYðyÞ

so p(x, y) = pX(x) pY(y), and therefore X and Y are independent.

In Example 5.7 we said that independence necessitates the region of positive density being a
rectangle (possibly infinite in extent). In terms of conditional distributions, this region tells us the
domain of Y for each possible x value. For independence we need to have the domain of Y (the
interval of positive density) be the same for each x, implying a rectangular region.
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Conditional Expectation and Variance
Because the conditional distribution is a valid probability distribution, it makes sense to define the
conditional mean and variance.

DEFINITION Let X and Y be two discrete random variables with conditional probability mass
function pY|X(y|x). Then the conditional expectation (or conditional mean) of
Y given X = x is

lY jX¼x ¼ EðY jX ¼ xÞ ¼
X
y

y � pY jXðyjxÞ

Analogously, for two continuous rvs X and Y with conditional probability density
function fY|X(y|x),

lY jX¼x ¼ EðY jX ¼ xÞ ¼
Z1
�1

y � fY jXðyjxÞdy

More generally, the conditional mean of any function h(Y) is given by

EðhðYÞjX ¼ xÞ ¼

X
y

½hðyÞ � pY jXðyjxÞ� ðdiscrete case)

Z1
�1

hðyÞ � fY jXðyjxÞdy ðcontinuous case)

8>>>><
>>>>:

In particular, the conditional variance of Y given X = x is

r2Y jX¼x ¼ VðYjX ¼ xÞ ¼ E½ðY � lY jX¼xÞ2jX ¼ x� ¼ EðY2jX ¼ xÞ � l2Y jX¼x

Example 5.26 Having previously found the conditional distribution of Y given X = 250 in Example
5.24, let’s compute the conditional mean and variance.

lY jX¼250 ¼E YjX ¼ 250ð Þ ¼ 0pY jX 0j250ð Þþ 100pY jX 100j250ð Þ
þ 200pY jX 200j250ð Þ ¼ 0 :1ð Þþ 100 :3ð Þþ 200 :6ð Þ ¼ 150

The average homeowner’s policy deductible, among customers with a $250 auto deductible, is $150.
Given that the possibilities for Y are 0, 100, and 200 and most of the probability is on the latter two
values, it is reasonable that the conditional mean should be between 100 and 200.

Using the alternative (shortcut) formula for the conditional variance requires first obtaining the
conditional expectation of Y2:

E Y2jX ¼ 250
� � ¼ 02pY jX 0j250ð Þþ 1002pY jX 100j250ð Þþ 2002pY jX 200j250ð Þ

¼ 02 :1ð Þþ 1002 :3ð Þþ 2002 :6ð Þ ¼ 27;000
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Thus,

r2Y jX¼250 ¼ V Y jX ¼ 250ð Þ ¼ E Y2jX ¼ 250
� �� l2Y jX¼250 ¼ 27;000� 1502 ¼ 4500:

Taking the square root gives rY jX¼250 ¼ $67:08, which is in the right ballpark when we recall that the
possible values of Y are 0, 100, and 200. ■

Example 5.27 (Example 5.25 continued) Suppose a 1-lb can of mixed nuts contains .1 lbs of
almonds (i.e., we know that X = .1). Given this information, the amount of cashews Y in the can is
constrained by 0 � y � 1 – x = .9, and the expected amount of cashews in such a can is

EðY jX ¼ :1Þ ¼
Z:9
0

y � fY jXðyj:1Þdy ¼
Z:9
0

y � 2y

ð1� :1Þ2 dy ¼ :6

The conditional variance of Y given that X = .1 is

VðY jX ¼ :1Þ ¼
Z:9
0

ðy� :6Þ2 � fY jXðyj:1Þdy ¼
Z:9
0

ðy� :6Þ2 � 2y

ð1� :1Þ2 dy ¼ :045

Using the aforementioned shortcut, this can also be calculated in two steps:

EðY2jX ¼ :1Þ ¼
Z:9
0

y2 � fY jXðyj:1Þdy

¼
Z:9
0

y2 � 2y

ð1� :1Þ2 dy ¼ :405

) VðY jX ¼ :1Þ ¼ :405� ð:6Þ2 ¼ :045

More generally, conditional on X = x lbs (where 0 < x < 1), integrals similar to those above can be
used to show that the conditional mean amount of cashews is 2(1 – x)/3, and the corresponding
conditional variance is (1 – x)2/18. This formula implies that the variance gets smaller as the weight of
almonds (x) in a can approaches 1 lb. Does this make sense? When the weight of almonds is 1 lb, the
weight of cashews is guaranteed to be 0, implying that the variance is 0. Indeed, Figure 5.2 shows
that the set of possible y values narrows to 0 as x approaches 1. ■

The Laws of Total Expectation and Variance
By the definition of conditional expectation, the rv Y has a conditional mean for every possible value
x of the variable X. In Example 5.26, we determined the mean of Y given that X = 250, but a different
mean would result if we conditioned on X = 100. For the continuous rvs in Example 5.27, every
value x between 0 and 1 yielded a different conditional mean of Y (and, in fact, we even found a
general formula for this conditional expectation). As it turns out, these conditional means can be
related back to the unconditional mean of Y, i.e., µY. Our next example illustrates the connection.
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Example 5.28 Apartments in a certain city have x = 0, 1, 2, or 3 bedrooms (0 for a studio apart-
ment), and y = 1, 1.5, or 2 bathrooms. The accompanying table gives the proportions of apartments
for the various number of bedroom/number of bathroom combinations.

p(x, y)
y

1 1.5 2

x

0 .10 .00 .00 .1
1 .20 .08 .02 .3
2 .15 .10 .15 .4
3 .05 .05 .10 .2

.50 .23 .27

Let X and Y denote the number of bedrooms and bathrooms, respectively, in a randomly selected
apartment in this city. The marginal distribution of Y comes from the column totals in the joint
probability table, from which it is easily verified that E(Y) = 1.385 and V(Y) = .179275. The con-
ditional distributions (pmfs) of Y given that X = x for x = 0, 1, 2, and 3 are as follows:

x ¼ 0: pY jX¼ 0ð1Þ ¼ 1 ðall studio apartments have one bathroom)

x ¼ 1: pY jX¼1ð1Þ ¼ :667; pY jX¼1ð1:5Þ ¼ :267; pY jX¼1ð2Þ ¼ :067

x ¼ 2: pY jX¼2ð1Þ ¼ :375; pY jX¼2ð1:5Þ ¼ :25; pY jX¼2ð2Þ ¼ :375

x ¼ 3: pY jX¼ 3ð1Þ ¼ :25; pY jX¼ 3ð1:5Þ ¼ :25; pY jX¼ 3ð2Þ ¼ :50

From these conditional pmfs, we obtain the expected value of Y given X = x for each of the four
possible x values:

EðY jX ¼ 0Þ ¼ 1; EðYjX ¼ 1Þ ¼ 1:2; EðY jX ¼ 2Þ ¼ 1:5; EðY jX ¼ 3Þ ¼ 1:625

So, on the average, studio apartments have 1 bathroom, one-bedroom apartments have 1.2 bathrooms,
2-bedroom apartments have 1.5 baths, and luxurious 3-bedroom apartments have 1.625 baths.

Now, instead of writing E(Y|X = x) for some specific value x, let’s consider the expected number
of bathrooms for an apartment of randomly selected size, X. This expectation, denoted E(Y|X), is itself
a random variable, since it is a function of the random quantity X. Its smallest possible value is 1,
which occurs when X = 0, and that happens with probability .1 (the sum of probabilities in the first
row of the joint probability table). Similarly, the random variable E(Y|X) takes on the value 1.2 with
probability pX(1) = .3. Continuing in this manner, the probability distribution of the rv E(Y|X) is as
follows:

The expected value of this random variable, denoted E[E(Y|X)], is computed by taking the
weighted average of the four values of E(Y|X = x) against the probabilities specified by pX(x), as
suggested by the preceding table:

Value of E(Y|X) 1 1.2 1.5 1.625

Probability of value .1 .3 .4 .2
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E½EðY jXÞ� ¼ 1ð:1Þþ 1:2ð:3Þþ 1:5ð:4Þþ 1:625ð:2Þ ¼ 1:385

But this is exactly E(Y), the expected number of bathrooms. ■

LAW OF TOTAL
EXPECTATION

For any two random variables X and Y,

E½EðY jXÞ� ¼ EðYÞ

(This is sometimes referred to as computing E(Y) by means of
iterated expectation.)

The Law of Total Expectation says that E(Y) is a weighted average of the conditional means
E(Y|X = x), where the weights are given by the pmf or pdf of X. It is analogous to the Law of
Total Probability, which describes how to find P(B) as a weighted average of conditional probabilities
P(B|Ai).

Proof Here is the proof when both rvs are discrete; in the jointly continuous case, simply replace
summation by integration and pmfs by pdfs.

E½EðYjXÞ� ¼
X
x2DX

EðY jX ¼ xÞpXðxÞ ¼
X
x2DX

X
y2DY

ypY jXðyjxÞpXðxÞ

¼
X
x2DX

X
y2DY

y
pðx; yÞ
pXðxÞ pXðxÞ ¼

X
y2DY

y
X
x2DX

pðx; yÞ ¼
X
y2DY

ypYðyÞ ¼ EðYÞ �

In Example 5.28, the use of iterated expectation to compute E(Y) is unnecessarily cumbersome;
working from the marginal pmf of Y is more straightforward. However, there are many situations in
which the distribution of a variable Y is only expressed conditional on the value of another variable
X. For these so-called hierarchical models, the Law of Total Expectation proves very useful.

Example 5.29 A ferry goes from the left bank of a small river to the right bank once an hour. The
ferry can accommodate at most two vehicles. The probability that no vehicles show up is .1, that
exactly one shows up is .7, and that two or more show up is .2 (but only two can be transported). The
fare paid for a vehicle depends upon its weight, and the average fare per vehicle is $25. What is the
expected fare for a single trip made by this ferry?

Let X represent the number of vehicles that show up, and let Y denote the total fare for a single
trip. The conditional mean of Y, given X, is E(Y | X) = 25X. So, by the Law of Total Expectation,

EðYÞ ¼ E½EðYjXÞ� ¼ E½25X� ¼
X2
x¼0

25x � pXðxÞ½ �

¼ ð0Þð:1Þþ ð25Þð:7Þþ ð50Þð:2Þ ¼ $27:50 �

Now consider computing the variance of Y by conditioning on the value of X. There are two
contributions to V(Y). The first part is the variance of the random variable E(Y|X). The second part
involves the random variable V(Y|X)—the variance of Y as a function of X—and in particular the
expected value of this random variable.
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LAW OF TOTAL VARIANCE For any two random variables X and Y,

VðYÞ ¼ V½EðY jXÞ� þE½VðYjXÞ�

Proving the Law of Total Variance requires some slightly clever algebra; see Exercise 90.

Example 5.30 Let’s verify the Law of Total Variance for the apartment scenario of Example 5.28.
The pmf of the rv E(Y|X) appears in that example, from which its variance is given by

V½EðYjXÞ� ¼ ð1� 1:385Þ2ð:1Þþ ð1:2� 1:385Þ2ð:3Þþ ð1:5� 1:385Þ2ð:4Þþ ð1:625� 1:385Þ2ð:2Þ
¼ :0419

Recall that 1.385 is the mean of the rv E(Y|X), which, by the Law of Total Expectation, is also E(Y).
The second term in the Law of Total Variance involves the variable V(Y|X), which requires deter-
mining the conditional variance of Y given X = x for x = 0, 1, 2, 3. Using the four conditional
distributions displayed in Example 5.28, these are

VðY jX ¼ 0Þ ¼ 0; VðYjX ¼ 1Þ ¼ :0933; VðY jX ¼ 2Þ ¼ :1875; VðY jX ¼ 3Þ ¼ :171875

The rv V(Y|X) takes on these four values with probabilities .1, .3, .4, and .2, respectively (again, these
are inherited from the distribution of X). Thus,

E½VðY jXÞ� ¼ 0ð:1Þþ :0933ð:3Þþ :1875ð:4Þþ :171875ð:2Þ ¼ :137375

Combining, V[E(Y|X)] + E[V(Y | X)] = .0419 + .137375 = .179275. This is exactly V(Y) computed
using the marginal pmf of Y in Example 5.28, and the Law of Total Variance is verified for this
example. ■

The computation of V(Y) in Example 5.30 is clearly not efficient; it is much easier, given the joint
pmf of X and Y, to determine the variance of Y from its marginal pmf. As with the Law of Total
Expectation, the real worth of the Law of Total Variance comes from its application to hierarchical
models, where the distribution of one variable (Y, say) is only known conditional on the distribution
of another rv.

Example 5.31 In the manufacture of ceramic tiles used for heat shielding, the proportion of tiles that
meet the required thermal specifications varies from day to day. Let P denote the proportion of tiles
meeting specifications on a randomly selected day, and suppose P can be modeled by the following
pdf:

f ðpÞ ¼ 9p8 0\ p\1

At the end of each day, a random sample of n = 20 tiles is selected and each tile is tested. Let Y denote
the number of tiles among the 20 that meet specifications; conditional on P = p, Y * Bin(20, p). Find
the expected number of tiles meeting thermal specifications in a daily sample of 20, and find the
corresponding standard deviation.

From the properties of the binomial distribution, we know that E(Y|P = p) = np = 20p, so
E(Y|P) = 20P. Applying the Law of Total Expectation,
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EðYÞ ¼ E½EðYjPÞ� ¼ E½20P� ¼
Z1
0

20p � f ðpÞdp ¼
Z1
0

180p9dp ¼ 18

This is reasonable: since E(P) = .9 by integration, the expected proportion of good tiles is 90%, and
thus the expected number of good tiles in a random sample of 20 tiles is 18.

Determining the standard deviation of Y requires the two pieces of the Law of Total Variance.
First, using the rescaling property of variance,

V ½EðY jPÞ� ¼ Vð20PÞ ¼ 202VðPÞ ¼ 400VðPÞ

The variance of P can be determined directly from the pdf of P via integration. The result is
V(P) = 9/1100, so V[E(Y|P)] = 400(9/1100) = 36/11. Second, the binomial variance formula
np(1 – p) implies that the conditional variance of Y given P is V(Y|P) = 20P(1 – P), so

E½VðYjPÞ� ¼ E½20Pð1� PÞ� ¼
Z1
0

20pð1� pÞ � 9p8dp ¼ 18
11

Therefore, by the Law of Total Variance,

VðYÞ ¼ V ½EðY jPÞ�þE½VðY jPÞ� ¼ 36
11

þ 18
11

¼ 54
11

¼ 4:909;

and the standard deviation of Y is rY ¼ ffiffiffiffiffiffiffiffiffiffiffi
4:909

p ¼ 2:22. This “total” standard deviation accounts for
two effects: day-to-day variation in quality as modeled by P (the first term in the variance expression),
and random variation in the number of observed good tiles as modeled by the binomial distribution
(the second term). ■

Here is an example where the Laws of Total Expectation and Variance are helpful in finding the
mean and variance of a random variable that is neither discrete nor continuous.

Example 5.32 The probability of a claim being filed on an insurance policy is .1, and only one claim
can be filed. If a claim is filed, the claim amount is exponentially distributed with mean $1000. Recall
from Section 3.4 that µ = r for an exponential rv, so the variance is the square of this value. We want
to find the mean and variance of the amount paid. Let X be the number of claims (0 or 1) and let
Y be the payment. We know that E(Y|X = 0) = 0 and E(Y| X = 1) = 1000. Also, V(Y|X = 0) = 0 and
V(Y|X = 1) = 10002 = 1,000,000. Here is a table for the distribution of E(Y|X = x) and V(Y|X = x):

x P(X = x) E(Y|X = x) V(Y|X = x)

0 .9 0 0
1 .1 1000 1,000,000

Therefore,

EðYÞ ¼ E½EðY jXÞ� ¼ EðY jX ¼ 0Þ � PðX ¼ 0ÞþEðY jX ¼ 1Þ � PðX ¼ 1Þ ¼ 0ð:9Þþ 1000ð:1Þ ¼ 100

The average claim amount across all customers is $100. Next, the variance of the conditional mean is
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V ½EðY jXÞ� ¼ ð0� 100Þ2ð:9Þþ ð1000� 100Þ2ð:1Þ ¼ 90;000;

and the expected value of the conditional variance is

E½VðY jXÞ� ¼ 0ð:9Þþ 1;000;000ð:1Þ ¼ 100;000

Now apply the Law of Total Variance to get V(Y):

VðYÞ ¼ V ½EðY jXÞ�þE½VðY jXÞ� ¼ 90;000þ 100;000 ¼ 190;000

Taking the square root gives the standard deviation, rY = $434.89.
Suppose that we want to compute the mean and variance of Y directly. Notice that X is discrete, but

the conditional distribution of Y given X = 1 is continuous. The random variable Y itself is neither
discrete nor continuous, because it has probability .9 of being 0, but the other .1 of its probability is
spread out from 0 to 1. Such “mixed” distributions may require a little extra effort to evaluate means
and variances, although it is not especially hard in this case (because the discrete mass is at 0 and
doesn’t contribute to expectations):

EðYÞ ¼ ð:9Þð0Þþ ð:1Þ
Z1
0

y
1

1000
e�y=1000dy ¼ ð:1Þð1000Þ ¼ 100

EðY2Þ ¼ ð:9Þ2ð0Þþ ð:1Þ
Z1
0

y2
1

1000
e�y=1000dy ¼ ð:1Þð2;000;000Þ ¼ 200;000

VðYÞ ¼ E Y2
� �� ½EðYÞ�2 ¼ 200;000� 10;000 ¼ 190;000

These agree with what we found using the theorems. ■

Exercises: Section 5.4 (68–90)

68. According to the 2017 CIRP report The
American Freshman, 36.2% of first-year
college students indentify as liberals, 22.4%
as conservatives, and 41.4% characterize
themselves as middle-of-the-road. Choose
two students at random, let X be the number
of liberals among the two, and let Y be the
number of conservatives among the two.

a. Using the multinomial distribution from
Section 5.1, give the joint probability
mass function p(x, y) of X and Y and the
corresponding joint probability table.

b. Determine the marginal probability mass
functions by summing p(x, y) numeri-
cally. How could these be obtained
directly? [Hint: What are the univariate
distributions of X and Y?]

c. Determine the conditional probability
mass function of Y given X = x for x = 0,
1, 2. Compare this to the binomial distri-
bution with n = 2 – x and p = .224/.638.
Why should this work?

d. Are X and Y independent? Explain.
e. Find E(Y|X = x) for x = 0, 1, 2. Do this

numerically and then compare with the
use of the formula for the binomial
mean, using the binomial distribution
given in part (c).

f. Determine V(Y|X = x) for x = 0, 1, 2. Do
this numerically and then compare with
the use of the formula for the binomial
variance, using the binomial distribution
given in part (c).
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69. Teresa and Allison each have arrival times
uniformly distributed between 12:00 and
1:00. Their times do not influence each
other. If Y is the first of the two times and
X is the second, on a scale of 0–1, it can be
shown that the joint pdf of X and Y is
f(x, y) = 2 for 0 < y < x < 1.

a. Determine the marginal density of X.
b. Determine the conditional density of

Y given X = x.
c. Determine the conditional probability

that Y is between 0 and .3, given that
X is .5.

d. Are X and Y independent? Explain.
e. Determine the conditional mean of

Y given X = x.
f. Determine the conditional variance of

Y given X = x.

70. Refer back to the previous exercise.

a. Determine the marginal density of Y.
b. Determine the conditional density of

X given Y = y.
c. Determine the conditional mean of

X given Y = y.
d. Determine the conditional variance of

X given Y = y.

71. A pizza place has two phones. On each
phone the waiting time until the first call is
exponentially distributed with mean one
minute. Each phone is not influenced by the
other. Let X be the shorter of the two
waiting times and let Y be the longer. It can
be shown that the joint pdf of X and Y is
f x; yð Þ ¼ 2e�ðxþ yÞ; 0\x\y\1.

a. Determine the marginal density of X.
b. Determine the conditional density of

Y given X = x.
c. Determine the probability that Y is

greater than 2, given that X = 1.
d. Are X and Y independent? Explain.
e. Determine the conditional mean of

Y given X = x.
f. Determine the conditional variance of

Y given X = x.

72. A class has 10 mathematics majors, 6
computer science majors, and 4 statistics
majors. A committee of two is selected at
random to work on a problem. Let X be the
number of mathematics majors, and let Y be
the number of computer science majors
chosen.

a. Determine the joint probability mass
function p(x, y). This generalizes the
hypergeometric distribution studied in
Section 3.6. Give the joint probability
table showing all nine values, of which
three should be 0.

b. Determine the marginal probability mass
functions by summing numerically.
How could these be obtained directly?
[Hint: What are the univariate distribu-
tions of X and Y?]

c. Determine the conditional probability
mass function of Y given X = x for
x = 0, 1, 2. Compare with the hyperge-
ometric h(y; 2 − x, 6, 10) distribution.
Intuitively, why should this work?

d. Are X and Y independent? Explain.
e. Determine E(Y|X = x), x = 0, 1, 2. Do

this numerically and then compare with
the use of the formula for the hyperge-
ometric mean, using the hypergeometric
distribution given in part (c).

f. Determine V(Y|X = x), x = 0, 1, 2. Do
this numerically and then compare with
the use of the formula for the hyperge-
ometric variance, using the hypergeo-
metric distribution given in part (c).

73. A one-foot-long stick is broken at a point
X (measured from the left end) chosen ran-
domly uniformly along its length. Then the
left part is broken at a point Y chosen ran-
domly uniformly along its length. In other
words, X is uniformly distributed between
0 and 1 and, given X = x, Y is uniformly
distributed between 0 and x.

a. DetermineE(Y|X = x) and thenV(Y|X = x).
b. Determine f(x,y) using fX(x) and fY|X(y|x).
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c. Determine fY(y).
d. Use fY(y) from (c) to get E(Y) and V(Y).
e. Use (a) and the Laws of Total Expecta-

tion and Variance to get E(Y) and V(Y).

74. A system consisting of two components
will continue to operate only as long as
both components function. Suppose the
joint pdf of the lifetimes (months) of the
two components in a system is given by
f x; yð Þ ¼ c 10� xþ yð Þ½ � for x [ 0;
y[ 0; xþ y \ 10.

a. If the first component functions for
exactly 3 months, what is the probability
that the second functions for more than
2 months?

b. Suppose the system will continue to
work only as long as both components
function. Among 20 of these systems
that operate independently of each other,
what is the probability that at least half
work for more than 3 months?

75. Refer back to Exercise 1 of this chapter.

a. Given that X = 1, determine the
conditional pmf of Y—that is, pY|X(0|1),
pY|X(1|1), and pY|X(2|1).

b. Given that two hoses are in use at the
self-service island, what is the condi-
tional pmf of the number of hoses in use
on the full-service island?

c. Use the result of part (b) to calculate the
conditional probability P(Y � 1|X = 2).

d. Given that two hoses are in use at the
full-service island, what is the condi-
tional pmf of the number in use at the
self-service island?

76. The joint pdf of pressures for right and left
front tires is given in Exercise 11.

a. Determine the conditional pdf of Y given
that X = x and the conditional pdf of
X given that Y = y.

b. If the pressure in the right tire is found to
be 22 psi, what is the probability that the
left tire has a pressure of at least 25 psi?
Compare this to P(Y � 25).

c. If the pressure in the right tire is found to
be 22 psi, what is the expected pressure
in the left tire, and what is the standard
deviation of pressure in this tire?

77. Suppose that X is uniformly distributed
between 0 and 1. Given X = x, Y is uni-
formly distributed between 0 and x2.

a. DetermineE(Y|X = x) and thenV(Y|X = x).
b. Determine f ðx; yÞ using fXðxÞ and

fY jXðyjxÞ.
c. Determine fYðyÞ.

78. Refer back to the previous exercise.

a. Use fYðyÞ from the previous exercise to
get E(Y) and V(Y).

b. Use part (a) of the previous exercise and
the Laws of Total Expectation and
Variance to get E(Y) and V(Y).

79. David and Peter independently choose at
random a number from 1, 2, 3, with each
possibility equally likely. Let X be the
larger of the two numbers, and let Y be the
smaller.

a. Determine p(x, y).
b. Determine pX(x), x = 1, 2, 3.
c. Determine pY|X(y|x).
d. Determine E(Y|X = x) for x = 1, 2, 3.
e. Determine V(Y|X = x) for x = 1, 2, 3.

80. Refer back to the previous exercise. Find

a. E(X).
b. pY(y).
c. E(Y) using pY(y).
d. E(Y) using E(Y|X).
e. E(X) + E(Y). Why does your answer

make intuitive sense?
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81. Refer back to the previous two exercises.
Find

a. pX|Y(x|y).
b. E(X|Y = y) for y = 1, 2, 3.
c. V(X|Y = y) for y = 1, 2, 3.

82. Consider three ping-pong balls numbered
1, 2, and 3. Two balls are randomly selec-
ted with replacement. If the sum of the two
resulting numbers exceeds 4, two balls are
again selected. This process continues until
the sum is at most 4. Let X and Y denote
the last two numbers selected. Possible
(X, Y) pairs are {(1, 1), (1, 2), (1, 3), (2, 1),
(2, 2), (3, 1)}.

a. Determine pX,Y(x,y).
b. Determine pY|X(y|x).
c. Determine E(Y|X = x). Is this a linear

function of x?
d. Determine E(X|Y = y). What special

property of p(x, y) allows us to get this
from (c)?

e. Determine V(Y|X = x).

83. Let X be a random digit (0, 1, 2, …, 9 are
equally likely), and let Y be a random digit
not equal to X. That is, the nine digits other
than X are equally likely for Y.

a. Determine pX(x), pY|X(y|x), and pX,Y(x, y).
b. Determine a formula for E(Y|X = x).

84. Consider the situation in Example 5.29, and
suppose further that the standard deviation
for fares per car is $4.

a. Find the variance of the rv E(Y|X).
b. Using Expression (5.6) from the previ-

ous section, the conditional variance of
Y given X = x is 42x = 16x. Determine
the mean of the rv V(Y|X).

c. Use the Law of Total Variance to find rY,
the unconditional standard deviation of Y.

85. This week the number X of claims coming
into an insurance office is Poisson with
mean 100. The probability that any

particular claim relates to automobile
insurance is .6, independent of any other
claim. If Y is the number of automobile
claims, then Y is binomial with X trials,
each with “success” probability .6.

a. Determine E(Y|X = x) and V(Y|X = x).
b. Use part (a) to find E(Y).
c. Use part (a) to find V(Y).

86. In the previous exercise, show that the
distribution of Y is Poisson with mean 60.
[You will need to recognize the Maclaurin
series expansion for the exponential func-
tion.] Use the knowledge that Y is Poisson
with mean 60 to find E(Y) and V(Y).

87. The heights of American men follow a
normal distribution with mean 70 in. and
standard deviation 3 in. Suppose that the
weight distribution (lbs) for men that are
x inches tall also has a normal distribution,
but with mean 4x – 104 and standard
deviation .3x – 17. Let Y denote the weight
of a randomly selected American man. Find
the (unconditional) mean and standard
deviation of Y.

88. A statistician is waiting behind one person to
check out at a store. The checkout time for
the first person, X, can be modeled by an
exponential distribution with some parame-
ter k > 0. The statistician observes the first
person’s checkout time, x; being a statisti-
cian, she surmises that her checkout time
Y will follow an exponential distribution
with mean x.

a. Determine E(Y|X = x) and V(Y|X = x).
b. Use the Laws of Total Expectation and

Variance to find E(Y) and V(Y).
c. Write out the joint pdf of X and Y. [Hint:

You have fX(x) and fY|X(y|x).] Then write
an integral expression for the marginal
pdf of Y (from which, at least in theory,
one could determine the mean and vari-
ance of Y). What happens?
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89. In the game Plinko on the television game
show The Price is Right, contestants have
the opportunity to earn “chips” (flat, cir-
cular disks) that can be dropped down a peg
board into slots labeled with cash amounts.
Every contestant is given one chip auto-
matically and can earn up to four more
chips by correctly guessing the prices of
certain small items. If we let p denote the
probability a contestant correctly guesses
the price of a prize, then the number of
chips a contestant earns, X, can be modeled
as X = 1 + N, where N * Bin(4, p).

a. Determine E(X) and V(X).
b. For each chip, the amount of money

won on the Plinko board has the fol-
lowing distribution:

Value $0 $100 $500 $1,000 $10,000

Probability .39 .03 .11 .24 .23

Determine the mean and variance of the
winnings from a single chip.

c. Let Y denote the total winnings of a
randomly selected contestant. Using
results from the previous section, the

conditional mean and variance of Y,
given a player gets x chips, are µx and
r2x, respectively, where µ and r2 are the
mean and variance for a single chip
computed in (b). Find expressions for
the (unconditional) mean and standard
deviation of Y. [Note: Your answers will
be functions of p.]

d. Evaluate your answers to part (c) for
p = 0, .5, and 1. Do these answers make
sense? Explain.

90. Let X and Y be any two random variables.

a. Show that E½VðYjXÞ� ¼ E Y2½ � � E l2YjX
h i

.

[Hint: Use the variance shortcut formula
and apply the Law of Total Expectation
to the first term.]

b. Show that VðE½Y jX�Þ ¼ E l2Y jX
h i

�
ðE½Y �Þ2. [Hint: Use the variance short-
cut formula again; this time, apply the
Law of Total Expectation to the second
term.]

c. Combine the previous two results to
establish the Law of Total Variance.

5.5 The Bivariate Normal Distribution

Perhaps the most useful joint distribution is the bivariate normal distribution. Although the formula
may seem rather complicated, it is based on a simple quadratic expression in the standardized
variables (subtract the mean and then divide by the standard deviation). The bivariate normal pdf is

f ðx; yÞ ¼ 1

2pr1r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p exp � 1
2ð1� q2Þ

x� l1
r1

� �2

�2q
x� l1
r1

� �
y� l2
r2

� �
þ y� l2

r2

� �2
" # !

for �1\x\1;�1\y\1. The notation used here for the five parameters reflects the roles they
play. Some careful integration shows that µ1 and r1 are the mean and standard deviation, respectively,
of X; µ2 and r2 are the mean and standard deviation of Y; and q is the correlation coefficient between
the two variables. The integration required to do bivariate normal probability calculations is quite
difficult. Computer code is available for calculating P(X � x, Y � y) approximately using numerical
integration, and some software packages (e.g., R, SAS, Stata) include this feature.
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The density surface in three dimensions looks like a mountain with elliptical cross sections,
as shown in Figure 5.7a. The vertical cross sections are all proportional to normal densities. If we set
f(x, y) = c to investigate the contours (curves along which the density is constant), this amounts to
equating the exponent of the joint pdf to a constant. The contours are then concentric ellipses centered
at (x, y) = (l1, l2), as shown in Figure 5.7b.

If q = 0, then the bivariate normal pdf simplifies to f(x,y) = fX(x) fY(y), where X	Nðl1; r1Þ and
Y 	Nðl2; r2Þ. That is, X and Y have independent normal distributions. (In this case, the elliptical
contours reduce to circles.) Recall that in Section 5.2 we emphasized that independence of X and
Y implies q = 0 but, in general, q = 0 does not imply independence. However, we have just seen that
when X and Y are bivariate normal q = 0 does imply independence. Therefore, in the bivariate normal
case q = 0 if and only if the two rvs are independent.

Regardless of whether or not q = 0, the marginal distribution fX(x) is just a normal pdf with mean
l1 and standard deviation r1:

fXðxÞ ¼ 1

r1
ffiffiffiffiffiffi
2p

p e�ðx�l1Þ2=ð2r21Þ

The integration to show this [integrating f(x, y) on y from –1 to 1] is rather messy. Likewise, the
marginal distribution of Y isN(µ2, r2). These two marginal pdfs are, in fact, just special cases of a much
stronger result (whose proof relies on some advanced matrix theory and will not be presented here).

THEOREM Random variables X and Y have a bivariate normal distribution if and only if every
linear combination of X and Y is normal; i.e., the rv aX + bY + c has a normal
distribution for any constants a, b, c (except the case a = b = 0).

Example 5.33 Many students applying for college take the SAT, which consists of math and verbal
components (the latter is currently called evidence-based reading and writing). Let X and Y denote the
math and verbal scores, respectively, for a randomly selected student. According to the College
Board, the population of students taking the exam in 2017 had the following results:

l1 ¼ 527; r1 ¼ 107; l2 ¼ 533; r2 ¼ 100; q ¼ :77

x

y

a

b

x

y

f(x, y)

Figure 5.7 (a) A graph of the bivariate normal pdf; (b) contours of the bivariate normal pdf

5.5 The Bivariate Normal Distribution 331



Suppose that X and Y have approximately (because both X and Y are discrete) a bivariate normal
distribution. Let’s determine the probability that a student’s total score across these two components
exceeds 1250, the minimum admission score for a particular university.

Our goal is to calculate P(X + Y > 1250). Using the bivariate normal pdf, the desired probability
is a daunting double integral:

1

2pð107Þð100Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :772

p
Z1
�1

Z1
1250�y

e� ðx�527Þ=107½ �2�2ð:77Þðx�527Þðy�533Þ=ð107Þð100Þþ ½ðy�533Þ=100�2f g= 2ð1�:772Þ½ �dxdy

This is not a practical way to solve this problem! Instead, recognize X + Y as a linear combination of
X and Y; by the preceding theorem, X + Y has a normal distribution. The mean and variance of
X + Y are calculated using the formulas from Section 5.3:

EðXþ YÞ ¼ EðXÞþEðYÞ ¼ l1 þ l2 ¼ 527þ 533 ¼ 1060

VðXþ YÞ ¼ VðXÞþVðYÞþ 2CovðX; YÞ
¼ r21 þ r22 þ 2qr1r2 ¼ 1072 þ 1002 þ 2ð:77Þð107Þð100Þ ¼ 37;927

Therefore, PðXþ Y [ 1250Þ ¼ 1� U 1250�1060ffiffiffiffiffiffiffiffiffiffi
37;927

p
� �

� 1� Uð:98Þ ¼ :1635.

Suppose instead we wish to determine P(X < Y), the probability a student scores lower on math
than on reading. If we rewrite this probability as P(X – Y < 0), then we may apply the preceding
theorem to the linear combination X – Y. With E(X – Y) = –6 and V(X – Y) = 4971,

PðX\YÞ ¼ PðX � Y\0Þ ¼ U
0� ð�6Þffiffiffiffiffiffiffiffiffiffi

4971
p

� �
� Uð:09Þ ¼ :5359 �

Independent Normal Random Variables
As alluded to earlier in this section, if X and Y are independent normal rvs then the joint distribution
of X and Y is trivially bivariate normal (specifically with q = 0). In Section 5.3, we proved that any
linear combination of independent normal rvs is itself normally distributed, which comports with the
earlier theorem in this section. In fact, we can generalize to the case of two linear combinations of
independent normal rvs.

PROPOSITION Let U and V be linear combinations of the independent normal rvs X1, …, Xn.
Then the joint distribution of U and V is bivariate normal. The converse is also
true: if U and V have a bivariate normal distribution, then they can be expressed
as linear combinations of independent normal rvs.

The proof uses the methods of the next section together with a little matrix theory.

Example 5.34 How can we simulate bivariate normal rvs with a specified correlation q? Let Z1 and
Z2 be independent standard normal rvs (which can be generated using software, or by applying the
Box–Muller method described in Exercise 107), and define two new variables
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U ¼ Z1 V ¼ q � Z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� Z2

Then U and V are linear combinations of independent normal rvs, so their joint distribution is
bivariate normal by the preceding proposition. It can be shown (Exercise 129) that U and V each have
mean 0 and standard deviation 1, and Corr(U, V) = q.

Now suppose we wish to simulate from a bivariate normal distribution with an arbitrary set of
parameters µ1, r1, µ2, r2, and q. Define X and Y by

X ¼ l1 þ r1U ¼ l1 þ r1Z1; Y ¼ l2 þ r2V ¼ l2 þ r2ðqZ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Z2Þ ð5:7Þ

Since X and Y in Expression (5.7) are linear functions of U and V, it follows from Section 5.2 that
Corr(X, Y) = Corr(U, V) = q. Moreover, since lU ¼ lV ¼ 0 and rU ¼ rV ¼ 1, these linear trans-
formations give X and Y the desired means and standard deviations. So, to simulate a bivariate normal
distribution, create a pair of independent standard normal variates z1 and z2, and then apply the
formulas for X and Y in Expression (5.7). (Notice also that we’ve just proved the “converse” part of
the foregoing proposition.) ■

Conditional Distributions of X and Y
The conditional density of Y given X = x results from dividing the marginal density of X into f(x, y).
The algebra is again tedious, but the result is fairly simple.

PROPOSITION Let X and Y have a bivariate normal distribution. Then the conditional distribution
of Y, given X = x, is normal with mean and variance

lY jX¼x ¼ EðY jX ¼ xÞ ¼ l2 þ qr2
x� l1
r1

r2Y jX¼x ¼ VðY jX ¼ xÞ ¼ r22ð1� q2Þ

Notice that the conditional mean of Y is a linear function of x, and the conditional variance of
Y doesn’t depend on x at all. When q = 0, the conditional mean is the mean of Y, µ2, and the
conditional variance is just the variance of Y, r22. In other words, if q = 0, then the conditional
distribution of Y is the same as the unconditional distribution of Y. When q is close to 1 or –1 the
conditional variance will be much smaller than V(Y), which says that knowledge of X will be very
helpful in predicting Y. If q is near 0 then X and Y are nearly independent and knowledge of X is not
very useful in predicting Y.

Example 5.35 Let X and Y be the heights of a randomly selected mother and her daughter,
respectively. A similar situation was one of the first applications of the bivariate normal distribution,
by Francis Galton in 1886, and the data was found to fit the distribution very well. Suppose a bivariate
normal distribution with mean l1 = 64 in. and standard deviation r1 = 3 in. for X and mean l2 = 65
in. and standard deviation r2 = 3 in. for Y. Here l2 > l1, which is in accord with the increase in
height from one generation to the next. Assume q = .4. Then

lY jX¼x ¼ l2 þ qr2
x� l1
r1

¼ 65þ :4ð3Þ x� 64
3

¼ 65þ :4ðx� 64Þ ¼ :4xþ 39:4
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r2Y jX¼x ¼ VðYjX ¼ xÞ ¼ r22ð1� q2Þ ¼ 9 1� :42
� � ¼ 7:56 and rY jX¼x ¼ 2:75:

Notice that the conditional variance is 16% less than the variance of Y. Squaring the correlation gives
the percentage by which the conditional variance is reduced relative to the variance of Y. ■

Regression to the Mean
The formula for the conditional mean can be re-expressed as

lY jX¼x � l2
r2

¼ q � x� l1
r1

In words, when the formula is expressed in terms of standardized variables, the standardized con-
ditional mean is just q times the standardized x. In particular, for the height scenario

lY jX¼x � 65

3
¼ :4 � x� 64

3

If the mother is 5 in. above the mean of 64 in. for mothers, then the daughter’s conditional expected
height is just 2 in. above the mean for daughters. In this example, with equal standard deviations for
Y and X, the daughter’s conditional expected height is always closer to its mean than the mother’s
height is to its mean. One can think of the conditional expectation as falling back toward the mean,
and that is why Galton called this regression to the mean.

Regression to the mean occurs in many contexts. For example, let X be a baseball player’s average
for the first half of the season and let Y be the average for the second half. Most of the players with a
high X (say, above .300) will not have such a high Y. The same kind of reasoning applies to the
“sophomore jinx,” which says that if a player has a very good first season, then the player is unlikely
to do as well in the second season.

The Multivariate Normal Distribution
The multivariate normal distribution extends the bivariate normal distribution to situations involving
models for n random variables X1, X2, …, Xn with n > 2. The joint density function is quite com-
plicated; the only way to express it compactly is to make use of matrix algebra notation, and
probability calculations based on this distribution are extremely complex. Here are some of the most
important properties of the distribution:

• The distribution of any linear combination of X1, X2, …, Xn is normal.
• The marginal distribution of any Xi is normal.
• The joint distribution of any pair Xi, Xj is bivariate normal.
• The conditional distribution of any Xi, given values of the other n – 1 variables, is normal.

Many procedures for the analysis of multivariate data (observations simultaneously on three or
more variables) are based on assuming that the data was selected from a multivariate normal dis-
tribution. The book by Rencher and Christensen (see the bibliography) provides more information on
multivariate analysis and the multivariate normal distribution.
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Exercises: Section 5.5 (91–100)

91. For a few years, the SAT consisted of three
components: writing, critical reading, and
mathematics. Let W = SAT Writing score
and X = SAT Critical Reading score for a
randomly selected student. According to
the College Board, in 2012 W had mean
488 and standard deviation 114, while
X had mean 496 and standard deviation
114. Suppose X and W have a bivariate
normal distribution with Corr(X, W) = .5.

a. An English department plans to use
X + W, a student’s total score on the
nonmath sections of the SAT, to help
determine admission. Determine the
distribution of X + W.

b. Calculate P(X + W > 1200).
c. Suppose the English department wishes

to admit only those students who score
in the top 10% on this Critical Read-
ing + Writing criterion. What combined
score separates the top 10% of students
from the rest?

92. Refer to the previous exercise. Let Y =
SAT Mathematics score, which had mean
514 and standard deviation 117 in the year
2012. Let T = W + X + Y, a student’s
grand total score on the three components
of the SAT.

a. Find the expected value of T.
b. Assume Corr(W, Y) = .2. and Corr(X, Y)

= .25. Find the variance of T. [Hint: Use
Expression (5.5) from Section 5.3.]

c. Suppose W, X, Y have a multivariate
normal distribution, in which case T is
also normally distributed. Determine
P(T > 2000).

d. What is the 99th percentile of SAT
grand total scores, according to this
model?

93. Let X = height (inches) and Y = weight
(lbs) for an American male. Suppose X and
Y have a bivariate normal distribution, the

mean and sd of heights are 70 in and 3 in,
the mean and sd of weights are 170 lbs and
20 lbs, and q = .9.

a. Determine the distribution of Y given
X = 68, i.e., the weight distribution for
5′8″ American males.

b. Determine the distribution of Y given
X = 70, i.e., the weight distribution for
5′10″ American males. In what ways is
this distribution similar to that of part
(a), and how are they different?

c. Calculate P(Y < 180|X = 72), the prob-
ability that a 6-foot-tall American male
weighs less than 180 lb.

94. In electrical engineering, the unwanted
“noise” in voltage or current signals is often
modeled by a Gaussian (i.e., normal) dis-
tribution. Suppose that the noise in a par-
ticular voltage signal has a constant mean
of 0.9 V, and that two noise instances
sampled s seconds apart have a bivariate
normal distribution with covariance equal
to 0.04e–|s|/10. Let X and Y denote the noise
at times 3 s and 8 s, respectively.

a. Determine Cov(X, Y).
b. Determine rX and rY. [Hint: V(X) =

Cov(X, X).]
c. Determine Corr(X, Y).
d. Find the probability we observe greater

voltage noise at time 3 s than at time
8 s.

e. Find the probability that the voltage
noise at time 3 s is more than 1 V above
the voltage noise at time 8 s.

95. For a Calculus I class, the final exam score
Y and the average X of the four earlier tests
have a bivariate normal distribution with
mean l1 = 73, standard deviation r1 = 12,
mean l2 = 70, standard deviation r2 = 15.
The correlation is q = .71. Determine

a. lY jX¼x

b. r2Y jX¼x

c. rY jX¼x
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d. P(Y > 90|X = 80), i.e., the probability
that the final exam score exceeds 90
given that the average of the four earlier
tests is 80.

96. Refer to the previous exercise. Suppose a
student’s Calculus I grade is determined by
4X + Y, the total score across five tests.

a. Find the mean and standard deviation of
4X + Y.

b. Determine P(4X + Y < 320).
c. Suppose the instructor sets the curve in

such a way that the top 15% of students,
based on total score across the five tests,
will receive As. What point total is
required to get an A in Calculus I?

97. Let X and Y, reaction times (sec) to two
different stimuli, have a bivariate normal
distribution with mean l1 = 20 and stan-
dard deviation r1 = 2 for X and mean
l2 = 30 and standard deviation r2 = 5 for
Y. Assume q = .8. Determine

a. lY jX¼x

b. r2Y jX¼x

c. rY jX¼x

d. P(Y > 46 | X = 25)

98. Refer to the previous exercise.

a. One researcher is interested in X + Y, the
total reaction time to the two stimuli.
Determine the mean and standard devi-
ation of X + Y.

b. If X and Y were independent, what
would be the standard deviation of

X + Y? Explain why it makes sense that
the sd in part (a) is much larger than this.

c. Another researcher is interested in Y – X,
the difference in the reaction times to the
two stimuli. Determine the mean and
standard deviation of Y – X.

d. If X and Y were independent, what
would be the standard deviation of Y –

X? Explain why it makes sense that the
sd in part (c) is much smaller than this.

99. Let X and Y be the times for a randomly
selected individual to complete two differ-
ent tasks, and assume that (X, Y) has a
bivariate normal distribution with l1 = 100,
r1 = 50, l2 = 25, r2 = 5, q = .4. From
statistical software we obtain P(X < 100,
Y < 25) = .3333, P(X < 50, Y < 20)
= .0625, P(X < 50, Y < 25) = .1274, and
P(X < 100, Y < 20) = .1274.

a. Determine P(50 < X < 100, 20 < Y < 25).
b. Leave the other parameters the same but

change the correlation to q = 0 (inde-
pendence). Now re-compute the proba-
bility in part (a). Intuitively, why should
the original be larger?

100. One of the propositions of this section gives
an expression for E(Y|X = x).

a. By reversing the roles of X and Y give a
similar formula for E(X|Y = y).

b. Both E(Y|X = x) and E(X|Y = y) are
linear functions. Show that the product
of the two slopes is q2.

5.6 Transformations of Multiple Random Variables

In Chapter 4 we discussed the problem of starting with a single random variable X, forming some
function of X, such as Y = X2 or Y = eX, and investigating the distribution of this new random variable
Y. We now generalize this scenario by starting with more than a single random variable. Consider as
an example a system having a component that can be replaced just once before the system itself
expires. Let X1 denote the lifetime of the original component and X2 the lifetime of the replacement
component. Then any of the following functions of X1 and X2 may be of interest to an investigator:
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1. The total lifetime, X1 + X2.
2. The ratio of lifetimes X1/X2 (for example, if the value of this ratio is 2, the original component

lasted twice as long as its replacement).
3. The ratio X1/(X1 + X2), which represents the proportion of system lifetime during which the

original component operated.

The Joint Distribution of Two New Random Variables
Given two random variables X1 and X2, consider forming two new random variables Y1 = u1(X1, X2)
and Y2 = u2(X1, X2). (Since most applications assume that the Xi’s are continuous, we restrict our-
selves to that case.) Our focus is on finding the joint distribution of these two new variables. The u1(�)
and u2(�) functions express the new variables in terms of the original ones. The upcoming general
result presumes that these functions can be inverted to solve for the original variables in terms of the
new ones:

X1 ¼ v1 Y1; Y2ð Þ; X2 ¼ v2 Y1; Y2ð Þ

For example, if

y1 ¼ x1 þ x2 and y2 ¼ x1
x1 þ x2

then multiplying y2 by y1 gives an expression for x1, and then we can substitute this into the
expression for y1 and solve for x2:

x1 ¼ y1y2 ¼ v1 y1; y2ð Þ x2 ¼ y1 1� y2ð Þ ¼ v2 y1; y2ð Þ

Finally, let f(x1, x2) denote the joint pdf of the two original variables, let g(y1,y2) denote the joint pdf
of the two new variables, and define two sets S and T by

S ¼ x1; x2ð Þ : f x1; x2ð Þ[ 0f g T ¼ y1; y2ð Þ : g y1; y2ð Þ[ 0f g

That is, S is the region of positive density for the original variables and T is the region of positive
density for the new variables; T is the “image” of S under the transformation.

TRANSFORMATION
THEOREM (bivariate case)

Suppose that the partial derivative of each vi(y1, y2) with respect to
both y1 and y2 exists and is continuous for every (y1, y2) 2 T. Form
the 2 � 2 matrix

M ¼
@v1ðy1;y2Þ

@y1
@v1ðy1;y2Þ

@y2
@v2ðy1;y2Þ

@y1
@v2ðy1;y2Þ

@y2

 !

The determinant of this matrix, called the Jacobian, is

detðMÞ ¼ @v1
@y1

� @v2
@y2

� @v1
@y2

� @v2
@y1
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The joint pdf for the new variables then results from taking the joint
pdf f(x1, x2) for the original variables, replacing x1 and x2 by their
expressions in terms of y1 and y2, and finally multiplying this by the
absolute value of the Jacobian:

g y1; y2ð Þ ¼ f v1 y1; y2ð Þ; v2 y1; y2ð Þð Þ � j detðMÞj y1; y2ð Þ 2 T

The theorem can be rewritten slightly by using the notation

detðMÞ ¼ @ðx1; x2Þ
@ðy1; y2Þ
����

����
Then we have

gðy1; y2Þ ¼ f ðx1; x2Þ � @ðx1; x2Þ
@ðy1; y2Þ
����

����;
which is the natural extension of the univariate Transformation Theorem fY(y) = fX(x) � |dx/dy| dis-
cussed in Chapter 4.

Example 5.36 Continuing with the component lifetime situation, suppose that X1 and X2 are inde-
pendent, each having an exponential distribution with parameter k. Let’s determine the joint pdf of

Y1 ¼ u1 X1;X2ð Þ ¼ X1 þX2 and Y2 ¼ u2 X1;X2ð Þ ¼ X1

X1 þX2

We have already inverted this transformation:

x1 ¼ v1 y1; y2ð Þ ¼ y1y2 x2 ¼ v2 y1; y2ð Þ ¼ y1 1� y2ð Þ

The image of the transformation, i.e., the set of (y1, y2) pairs with positive density, is y1 > 0 and
0 < y2 < 1. The four relevant partial derivatives are

@v1
@y1

¼ y2
@v1
@y2

¼ y1
@v2
@y1

¼ 1� y2
@v2
@y2

¼ �y1

from which the Jacobian is det(M) = − y1y2 − y1(1 − y2) = −y1.
Since the joint pdf of X1 and X2 is

f ðx1; x2Þ ¼ ke�kx1 � ke�kx2 ¼ k2e�kðx1 þ x2Þ x1 [ 0; x2 [ 0

we have, by the Transformation Theorem,

gðy1; y2Þ ¼ k2e�ky1 � y1 ¼ k2y1e
�ky1 � 1 y1 [ 0; 0\y2\1

In the last step, we’ve factored the joint pdf into two parts: the first part is a gamma pdf with
parameters a = 2 and b = 1/k, and the second part is a uniform pdf on (0, 1). Since the pdf factors and
the region of positive density is rectangular, we have discovered that
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• The distribution of system lifetime X1 + X2 is gamma (with a = 2, b = 1/k);
• The distribution of the proportion of system lifetime during which the original component func-

tions is uniform on (0, 1); and
• Y1 = X1 + X2 and Y2 = X1 / (X1 + X2) are independent of each other. ■

In the foregoing example, because the joint pdf factored into one pdf involving y1 alone and
another pdf involving y2 alone, the individual (i.e., marginal) pdfs of the two new variables were
obtained from the joint pdf without any further effort. Often this will not be the case—that is, Y1 and
Y2 will not be independent. Then to obtain the marginal pdf of Y1, the joint pdf must be integrated
over all values of the second variable.

In fact, in many applications an investigator wishes to obtain the distribution of a single function
Y1 = u1(X1, X2) of the original variables. To accomplish this, a second function Y2 = u2(X1, X2) is
created, the joint pdf is obtained, and then y2 is integrated out. There are of course many ways to
select the second function. The choice should be made so that the transformation can be easily
inverted and the subsequent integration is straightforward.

Example 5.37 Consider a rectangular coordinate system with a horizontal x1-axis and a vertical
x2-axis as shown in Figure 5.8a.

First a point (X1, X2) is randomly selected, where the joint pdf of X1, X2 is

f ðx1; x2Þ ¼ x1 þ x2 0\x1\1; 0\x2\1

Then a rectangle with vertices (0, 0), (X1, 0), (0, X2), and (X1, X2) is formed as shown in Figure 5.8a.
What is the distribution of X1X2, the area of this rectangle? Define

Y1 ¼ u1 X1;X2ð Þ ¼ X1X2 and Y2 ¼ u2 X1;X2ð Þ ¼ X2

The inverse of this transformation is easily obtained:

x1 ¼ v1 y1; y2ð Þ ¼ y1
y2

and x2 ¼ v2 y1; y2ð Þ ¼ y2

10

x2 y2

1

0 x1 y1

10

1

0

A possible
rectangle

ba

(X1, X2)

Figure 5.8 Regions of positive density for Example 5.37
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Notice that because x2 (=y2) is between 0 and 1 and y1 is the product of the two xi’s, it must be the
case that 0 < y1 < y2. The region of positive density for the new variables is then T = {(y1, y2):
0 < y1 < y2, 0 < y2 < 1}, the triangular region shown in Figure 5.8b.

Since @v2 /@y1 = 0, the product of the two off-diagonal elements in the matrix M will be 0, so only
the two diagonal elements contribute to the Jacobian:

M ¼ 1=y2 y1=y22
0 1

� �
) detðMÞ ¼ 1

y2

The joint pdf of the two new variables is now

gðy1; y2Þ ¼ f
y1
y2

; y2

� �
� detðMÞj j ¼ y1

y2
þ y2

� �
� 1
y2

0\y1\y2\1

Finally, to obtain the marginal pdf of Y1 alone, we must now fix y1 at some arbitrary value between
0 and 1, and integrate out y2. Figure 5.8b shows that for any value of y1, the values of y2 range from
y1 to 1:

g1ðy1Þ ¼
Z1
y1

y1
y2

þ y2

� �
� 1
y2

dy2 ¼ 2ð1� y1Þ 0\y1\1

This marginal pdf can now be integrated to obtain any desired probability involving the area. For
example, integrating from 0 to .5 gives P(Y1 < .5) = .75. ■

The Joint Distribution of More Than Two New Variables
Consider now starting with three random variables X1, X2, and X3, and forming three new variables
Y1, Y2, and Y3. Suppose again that the transformation can be inverted to express the original variables
in terms of the new ones:

x1 ¼ v1 y1; y2; y3ð Þ; x2 ¼ v2 y1; y2; y3ð Þ; x3 ¼ v3 y1; y2; y3ð Þ

Then the foregoing theorem can be extended to this new situation. The Jacobian matrix has dimension
3 � 3, with the entry in the ith row and jth column being @vi /@yj. The joint pdf of the new variables
results from replacing each xi in the original pdf f(�) by its expression in terms of the yjs and
multiplying by the absolute value of the Jacobian.

Example 5.38 Consider n = 3 identical components with independent lifetimes X1, X2, X3, each
having an exponential distribution with parameter k. If the first component is used until it fails, replaced
by the second one which remains in service until it fails, and finally the third component is used until
failure, then the total lifetime of these components is Y3 = X1 + X2 + X3. (This design structure, where
one component is replaced by the next in succession, is called a standby system.) To find the distribution
of total lifetime, let’s first define two other new variables: Y1 = X1 and Y2 = X1 + X2 (so that Y1 <
Y2 < Y3). After finding the joint pdf of all three variables, we integrate out thefirst two variables to obtain
the desired information. Solving for the old variables in terms of the new gives

x1 ¼ y1 x2 ¼ y2 � y1 x3 ¼ y3 � y2
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It is obvious by inspection of these expressions that the three diagonal elements of the Jacobian
matrix are all 1s and that the elements above the diagonal are all 0s, so the determinant is 1, the
product of the diagonal elements. Since

f ðx1; x2; x3Þ ¼ k3e�kðx1 þ x2 þ x3Þ x1 [ 0; x2 [ 0; x3 [ 0

by substitution,

gðy1; y2; y3Þ ¼ k3e�ky3 0\y1\y2\y3

Integrating this joint pdf first with respect to y1 between 0 and y2 and then with respect to y2 between 0
and y3 (try it!) gives

g3ðy3Þ ¼ k3

2
y23e

�ky3 y3 [ 0

which is the gamma pdf with a = 3 and b = 1/k. This result is a special case of the last proposition
from Section 5.3, stating that the sum of n iid exponential rvs has a gamma distribution with a = n. ■

Exercises: Section 5.6 (101–108)

101. Let X1 and X2 be independent, standard
normal rvs.

a. Define Y1 = X1 + X2 and Y2 = X1 – X2.
Determine the joint pdf of Y1 and Y2.

b. Determine the marginal pdf of Y1. [Note:
We know the sum of two independent
normal rvs is normal, so you can check
your answer against the appropriate
normal pdf.]

c. Are Y1 and Y2 independent?

102. Consider two components whose lifetimes
X1 and X2 are independent and exponen-
tially distributed with parameters k1 and k2,
respectively. Obtain the joint pdf of total
lifetime X1 + X2 and the proportion of total
lifetime X1/(X1 + X2) during which the first
component operates.

103. Let X1 denote the time (hr) it takes to per-
form a first task and X2 denote the time it
takes to perform a second one. The second
task always takes at least as long to perform
as the first task. The joint pdf of these
variables is

f ðx1; x2Þ ¼ 2ðx1 þ x2Þ 0� x1 � x2 � 1

a. Obtain the pdf of the total completion
time for the two tasks.

b. Obtain the pdf of the difference X2 − X1

between the longer completion time and
the shorter time.

104. An exam consists of a problem section and
a short-answer section. Let X1 denote the
amount of time (hr) that a student spends on
the problem section and X2 represent the
amount of time the same student spends on
the short-answer section. Suppose the joint
pdf of these two times is

f ðx1; x2Þ ¼ cx1x2

x1=3\x2\x1=2; 0\x1\1

a. What is the value of c?
b. If the student spends exactly .25 h on the

short-answer section, what is the probabil-
ity that at most .60 h was spent on the
problem section? [Hint: First obtain the
relevant conditional distribution.]

c. What is the probability that the amount
of time spent on the problem part of the
exam exceeds the amount of time spent
on the short-answer part by at least .5 h?
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d. Obtain the joint distributionofY1 = X2/X1,
the ratio of the two times, and Y2 = X2.
Then obtain the marginal distribution of
the ratio.

105. Consider randomly selecting a point (X1,
X2, X3) in the unit cube according to the
joint pdf

f ðx1; x2; x3Þ ¼ 8x1x2x3 0\x1\1;

0\x2\1; 0\x3\1

Then form a rectangular solid whose ver-
tices are (0, 0, 0), (X1, 0, 0), (0, X2, 0),
(X1, X2, 0), (0, 0, X3), (X1, 0, X3), (0, X2,
X3), and (X1, X2, X3). The volume of this
solid is Y3 = X1X2X3. Obtain the pdf of Y3.
[Hint: Let Y1 = X1 and Y2 = X1X2.]

106. Let X1 and X2 be independent, each having
a standard normal distribution. The pair
(X1, X2) corresponds to a point in a two-
dimensional coordinate system. Consider
now changing to polar coordinates via the
transformation

Y1 ¼ X2
1 þX2

2

Y2 ¼

arctan X2
X1

� �
X1 [ 0;X2 � 0

arctan X2
X1

� �
þ 2p X1 [ 0;X2\0

arctan X2
X1

� �
þ p X1\0

0 X1 ¼ 0

8>>>>>><
>>>>>>:

from which X1 ¼
ffiffiffiffiffi
Y1

p
cosðY2Þ; X2 ¼ffiffiffiffiffi

Y1
p

sinðY2Þ. Obtain the joint pdf of the
new variables and then the marginal dis-
tribution of each one. [Note: It would be
preferable to let Y2 = arctan(X2/X1), but in

order to insure invertibility of the arctan
function, it is defined to take on values only
between −p/2 and p/2. Our specification of
Y2 allows it to assume any value between
0 and 2p.]

107. The result of the previous exercise suggests
how observed values of two independent
standard normal variables can be generated
by first generating their polar coordinates
with an exponential rv with k ¼ 1

2 and an
independent Unif(0, 2p) rv: Let U1 and U2

be independent Unif(0, 1) rvs, and then let

Y1 ¼ �2 ln U1ð Þ Y2 ¼ 2pU2

Z1 ¼
ffiffiffiffiffi
Y1

p
cosðY2Þ Z2 ¼

ffiffiffiffiffi
Y1

p
sinðY2Þ

Show that the Zi’s are independent standard
normal. [Note: This is called the Box–
Muller transformation after the two indi-
viduals who discovered it. Now that sta-
tistical software packages will generate
almost instantaneously observations from a
normal distribution with any mean and
variance, it is thankfully no longer neces-
sary for people like you and us to carry out
the transformations just described—let the
software do it!]

108. Let X1 and X2 be independent random
variables, each having a standard normal
distribution. Show that the pdf of the ratio
Y = X1/X2 is given by f(y) = 1/[p(1 + y2)]
for −1 < y < 1. (This is called the stan-
dard Cauchy distribution; its density curve
is bell-shaped, but the tails are so heavy that
µ does not exist.)

5.7 Order Statistics

Many statistical procedures involve ordering the sample observations from smallest to largest and
then manipulating these ordered values in various ways. For example, the sample median is either the
middle value in the ordered list or the average of the two middle values depending on whether the
sample size n is odd or even. The sample range is the difference between the largest and smallest
values. And a trimmed mean results from deleting the same number of observations from each end of
the ordered list and averaging the remaining values.

Throughout this section, we assume that we have a collection of rvs X1, X2, …, Xn with the
following properties:
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1. The Xi’s are independent rvs.
2. Every Xi has the same probability distribution (e.g., they all follow an exponential distribution

with the same parameter k).
3. The distribution shared by the Xi’s is continuous, with cumulative distribution function F(x) and

density function f(x).

Assumptions 1 and 2 can be paraphrased by saying that the Xi’s are a random sample from the
specified distribution. The continuity assumption in 3 implies that P(Xi = Xj) = 0 for i 6¼ j; thus, with
probability 1, the n sample observations will all be distinct (no ties). Of course, in practice all
measuring instruments have accuracy limitations, so tied values may in fact result.

DEFINITION The order statistics from a random sample are the random variables
Y1, … Yn given by

Y1 = the smallest among X1, X2, …, Xn (i.e., the sample minimum)
Y2 = the second smallest among X1, X2, …, Xn

..

.

Yn = the largest among X1, X2, …, Xn (the sample maximum)

Thus, with probability 1, Y1\Y2\ � � �\Yn�1\Yn:

The sample median is then Y(n + 1)/2 when n is odd, the sample range is Yn − Y1, and for n = 10 the

20% trimmed mean is
P8

i¼3 Yi=6. The order statistics are defined as random variables (hence the use
of uppercase letters); observed values are denoted by y1, …, yn.

The Distributions of Yn and Y1
The key idea in obtaining the distribution of the sample maximum Yn is the observation that Yn is at
most y if and only if every one of the Xi’s is at most y. Similarly, the distribution of Y1 is based on the
fact that it will exceed y if and only if all Xi’s exceed y.

Example 5.39 Consider 5 identical components connected in parallel, as illustrated in Figure 5.9a.

a

b

Figure 5.9 Systems of components for Example 5.39: (a) parallel connection; (b) series connection
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Let Xi denote the lifetime, in hours, of the ith component (i = 1, 2, 3, 4, 5). Suppose that the Xi’s are
independent and that each has an exponential distribution with k = .01, so the expected lifetime of
any particular component is 1/k = 100 h. Because of the parallel configuration, the system will
continue to function as long as at least one component is still working, and will fail as soon as the last
component functioning ceases to do so. That is, the system lifetime is Y5, the largest order statistic in a
sample of size 5 from the specified exponential distribution. Now Y5 will be at most y if and only if
every one of the five Xi’s is at most y. With G5(y) denoting the cumulative distribution function of Y5,

G5ðyÞ ¼ P Y5 � yð Þ ¼ P X1 � y\X2 � y\ � � � \X5 � yð Þ
¼ P X1 � yð Þ � P X2 � yð Þ � � � � � P X5 � yð Þ
¼ FðyÞ½ �5¼ 1� e�:01y

� 	5
The pdf of Y5 can now be obtained by differentiating the cdf with respect to y.

Suppose instead that the five components are connected in series rather than in parallel (Fig-
ure 5.9b). In this case the system lifetime will be Y1, the smallest of the five order statistics, since the
system will crash as soon as a single one of the individual components fails. Note that system lifetime
will exceed y hours if and only if the lifetime of every component exceeds y hours. Thus

G1ðyÞ ¼ P Y1 � yð Þ ¼ 1� P Y1 [ yð Þ
¼ 1� P X1 [ y\X2 [ y\ � � � \X5 [ yð Þ
¼ 1� P X1 [ yð Þ � P X2 [ yð Þ � � � � � P X5 [ yð Þ
¼ 1� e�:01y

� 	5¼ 1� e�:05y

This is the form of an exponential cdf with parameter .05. More generally, if the n components in a
series connection have lifetimes that are independent, each exponentially distributed with the same
parameter k, then system lifetime will be exponentially distributed with parameter nk. The expected
system lifetime will then be 1/(nk), much smaller than the expected lifetime of an individual
component. ■

An argument parallel to that of the previous example for a general sample size n and an arbitrary
pdf f(x) gives the following general results.

PROPOSITION Let Y1 and Yn denote the smallest and largest order statistics, respectively, based
on a random sample from a continuous distribution with cdf F(x) and pdf f(x).
Then the cdf and pdf of Yn are

GnðyÞ ¼ FðyÞ½ �n gnðyÞ ¼ n FðyÞ½ �n�1�f ðyÞ

The cdf and pdf of Y1 are

G1ðyÞ ¼ 1� 1� FðyÞ n g1ðyÞ ¼ n� ½1� FðyÞ½ �n�1�f ðyÞ
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Example 5.40 Let X denote the contents of a one-gallon container, and suppose that its pdf is
f(x) = 2x for 0 � x � 1 (and 0 otherwise) with corresponding cdf F(x) = x2 on [0, 1]. Consider a
random sample of four such containers. The order statistics Y1 and Y4 represent the contents of the
least-filled container and the most-filled container, respectively. The pdfs of Y1 and Y4 are

g1ðyÞ ¼ 4 1� y2
� �3�2y ¼ 8y 1� y2

� �3
0� y� 1

g4ðyÞ ¼ 4 y2
� �3�2y ¼ 8y7 0� y� 1

The corresponding density curves appear in Figure 5.10.

Let’s determine the expected value of Y4 − Y1, the difference between the contents of the most-
filled container and the least-filled container; Y4 − Y1 is just the sample range. Apply linearity of
expectation:

EðY4 � Y1Þ ¼ EðY4Þ � EðY1Þ ¼
Z1
0

y � 8y7dy�
Z1
0

y � 8yð1� y2Þ3dy

¼ 8
9
� 384
945

¼ :889� :406 ¼ :483

If random samples of four containers were repeatedly selected and the sample range of contents
determined for each one, the long-run average value of the range would be .483 gallons. ■

The Distribution of the ith Order Statistic
We have already obtained the (marginal) distribution of the largest order statistic Yn and also that of
the smallest order statistic Y1. A generalization of the argument used previously results in the
following proposition; the method of derivation is suggested in Exercise 114.

PROPOSITION Suppose X1, X2, …, Xn is a random sample from a continuous distribution
with cdf F(x) and pdf f(x). The pdf of the ith smallest order statistic Yi is

giðyÞ ¼ n!

ði� 1Þ!ðn� iÞ! ½FðyÞ�
i�1½1� FðyÞ�n�if ðyÞ ð5:8Þ

0.0 2.0 4.0 6.0 8.0 0.1

2.0

1.5

1.0

0.5

0.0

Y1

0.0 2.0 4.0 6.0 8.0 0.1

8

6

4

2

0

Y4

g1(y)
a g4(y)

b

y y

Figure 5.10 Density curves for the order statistics (a) Y1 and (b) Y4 in Example 5.40
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An intuitive justification for Expression (5.8) will be given shortly. Notice that it is consistent with the
pdf expressions for g1(y) and gn(y) given previously; just substitute i = 1 and i = n, respectively.

Example 5.41 Suppose that component lifetime is exponentially distributed with parameter k. For a
random sample of n = 5 components, the expected value of the sample median lifetime is

EðY3Þ ¼
Z1
0

y � g3ðyÞdy ¼
Z1
0

y � 5!
2! � 2! ð1� e�kyÞ2ðe�kyÞ2 � ke�kydy

Expanding out the integrand and integrating term by term, the expected value is .783/k. The median
of the original exponential distribution is, from solving Fð~lÞ ¼ :5, ~l ¼ � lnð:5Þ=k ¼ :693=k. Thus if
sample after sample of five components is selected, the long-run average value of the sample median
Y3 will be somewhat larger than the median value of the individual lifetime distribution. This is
because the exponential distribution has a positive skew. ■

There’s an intuitive “derivation” of Expression (5.8), the general order statistic pdf. LetD be a number
quite close to 0, and consider the three intervals (−1, y], (y, y + D], and (y + D,1). For a single X, the
probabilities of these three intervals are p1 ¼ PðX� yÞ ¼ FðyÞ; p2 ¼ Pðy\X� yþDÞ ¼R yþD
y f ðxÞdx � f ðyÞ � D; p3 ¼ PðX[ yþDÞ ¼ 1� FðyþDÞ.
For a random sample of size n, it is very unlikely that two or more X’s will fall in the middle

interval, since its width is only D. The probability that the ith order statistic falls in the middle interval
is then approximately the probability that i −1 of the X’s are in the first interval, one is in the middle,
and the remaining n − i are in the third. This is just a multinomial probability:

Pðy\Yi � yþDÞ � n!

ði� 1Þ!1!ðn� iÞ! ½FðyiÞ�
i�1 � f ðyÞ � D � ½1� FðyþDÞ�n�i

Dividing both sides by D and taking the limit as D ! 0 gives exactly Expression (5.8). That is, we
may interpret the pdf gi(y) as loosely specifying that i – 1 of the original observations are below y, one
is “at” y, and the other n – i are above y.

The Joint Distribution of All n Order Statistics

We now develop the joint pdf of Y1, Y2, …, Yn. Consider first a random sample X1, X2, X3 of fuel
efficiency measurements (mpg). The joint pdf of this random sample is

f x1; x2; x3ð Þ ¼ f x1ð Þ � f x2ð Þ � f x3ð Þ

The joint pdf of Y1, Y2, Y3 will be positive only for values of y1, y2, y3 satisfying y1 < y2 < y3. What is
this joint pdf at the values y1 = 28.4, y2 = 29.0, y3 = 30.5? There are six different ways to obtain
these ordered values:
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X1 = 28.4 X2 = 29.0 X3 = 30.5 X1 = 28.4 X2 = 30.5 X3 = 29.0
X1 = 29.0 X2 = 28.4 X3 = 30.5 X1 = 29.0 X2 = 30.5 X3 = 28.4
X1 = 30.5 X2 = 28.4 X3 = 29.0 X1 = 30.5 X2 = 29.0 X3 = 28.4

These six possibilities come from the 3! ways to order the three numerical observations once their
values are fixed. Thus

g 28:4; 29:0; 30:5ð Þ ¼ f 28:4ð Þ � f 29:0ð Þ � f 30:5ð Þþ � � �
þ f 30:5ð Þ � f 29:0ð Þ � f 28:4ð Þ

¼ 3!f 28:4ð Þ � f 29:0ð Þ � f 30:5ð Þ

Analogous reasoning with a sample of size n yields the following result:

PROPOSITION Let g(y1, y2, …, yn) denote the joint pdf of the order statistics Y1, Y2, …, Yn
resulting from a random sample of Xi’s from a pdf f(x). Then

gðy1; y2; . . .; ynÞ ¼ n!f ðy1Þ � f ðy2Þ � � � � � f ðynÞ y1\y2\ � � �\yn

For example, if we have a random sample of component lifetimes and the lifetime distribution is
exponential with parameter k, then the joint pdf of the order statistics is

gðy1; . . .; ynÞ ¼ n!kne�kðy1 þ ��� þ ynÞ 0\y1\y2\ � � �\yn\1

Example 5.42 Suppose X1, X2, X3, and X4 are independent random variables, each uniformly
distributed on the interval from 0 to 1. The joint pdf of the four corresponding order statistics Y1, Y2,
Y3, and Y4 is f(y1, y2, y3, y4) = 4!�1 for 0 < y1 < y2 < y3 < y4 < 1. The probability that every pair of
Xi’s is separated by more than .2 is the same as the probability that Y2 − Y1 > .2, Y3 − Y2 > .2, and
Y4 − Y3 > .2. This latter probability results from integrating the joint pdf of the Yi’s over the region
.6 < y4 < 1, .4 < y3 < y4 − .2, .2 < y2 < y3 − .2, 0 < y1 < y2 − .2:

PðY2 � Y1 [ :2; Y3 � Y2 [ :2; Y4 � Y3 [ :2Þ ¼
Z1
:6

Zy4�:2

:4

Zy3�:2

:2

Zy2�:2

0

4!dy1dy2dy3dy4

The inner integration gives 4!(y2 −.2), and this must then be integrated between .2 and y3 − .2.
Making the change of variable z2 = y2 − .2, the integration of z2 is from 0 to y3 − .4. The result of
this integration is 4!�(y3 − .4)2/2. Continuing with the 3rd and 4th integration, each time making an
appropriate change of variable so that the lower limit of each integration becomes 0, the result is

PðY2 � Y1 [ :2; Y3 � Y2 [ :2; Y4 � Y3 [ :2Þ ¼ :44 ¼ :0256

A more general multiple integration argument for n independent uniform [0, B] rvs shows that the
probability that all values are separated by at least d is
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Pðall values are separated by more than dÞ ¼ ½1� ðn� 1Þd=B�n 0� d�B=ðn� 1Þ
0 d[B=ðn� 1Þ

�

As an application, consider a year that has 365 days, and suppose that the birth time of someone born
in that year is uniformly distributed throughout the 365-day period. Then in a group of 10 inde-
pendently selected people born in that year, the probability that all of their birth times are separated by
more than 24 h (d = 1 day) is (1 − 9/365)10 = .779. Thus the probability that at least two of the 10
birth times are separated by at most 24 h is .221. As the group size n increases, it becomes more likely
that at least two people have birth times that are within 24 h of each other (but not necessarily on the
same day). For n = 16, this probability is .467, and for n = 17 it is .533. So with as few as 17 people
in the group, it is more likely than not that at least two of the people were born within 24 h of each
other. Coincidences such as this are not as surprising as one might think. The probability that at least
two people are born on the same day (assuming equally likely birthdays) is much easier to calculate
than what we have shown here; see The Birthday Problem in Example 2.22. ■

The Joint Distribution of Two Order Statistics
Finally, we consider the joint distribution of two order statistics Yi and Yj with i < j. Consider first
n = 6 and the two order statistics Y3 and Y5. We must then take the joint pdf of all six order statistics,
hold y3 and y5 fixed, and integrate out y1, y2, y4, and y6. That is,

gðy3; y5Þ ¼
Z1
y5

Zy5
y3

Zy3
�1

Zy3
y1

6!f ðy1Þ � � � � � f ðy6Þdy2dy1dy4dy6

The result of this integration is

g3;5ðy3; y5Þ ¼ 6!
2!1!1!

½Fðy3Þ�2½Fðy5Þ � Fðy3Þ�1 � � �½1� Fðy5Þ�1f ðy3Þf ðy5Þ
�1\y3\y5\1

The foregoing derivation generalizes as follows.

PROPOSITION Let gi;jðyi; yjÞ denote the joint pdf of the order statistics Yi and Yj, i < j, resulting
from a random sample of Xi’s from a pdf f(x). Then

gi;jðyi; yjÞ ¼ n!

ði� 1Þ!ðj� i� 1Þ!ðn� jÞ!FðyiÞ
i�1�

½FðyjÞ � FðyiÞ�j�i�1 � � � � � ½1� FðyjÞ�n�jf ðyiÞf ðyjÞ
for �1\yi\yj\1

.
This joint pdf can be “derived” intuitively by considering a multinomial probability similar to the
argument presented for the marginal pdf of Yi. In this case, there are five relevant intervals: (−1, yi],
(yi, yi + D1], (yi + D1, yj], (yj, yj + D2], and (yj + D2, 1).
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Exercises: Section 5.7 (109–121)

109. A friend of ours takes the bus five days per
week to her job. The five waiting times
until she can board the bus are a random
sample from a uniform distribution on the
interval from 0 to 10 min.

a. Determine the pdf and then the expected
value of the largest of the five waiting
times.

b. Determine the expected value of the
difference between the largest and
smallest times.

c. What is the expected value of the sample
median waiting time?

d. What is the standard deviation of the
largest time?

110. Refer back to Example 5.40. Because
n = 4, the sample median is (Y2 + Y3)/2.
What is the expected value of the sample
median, and how does it compare to the
median of the population distribution?

111. Referring back to Exercise 109, suppose
you learn that the smallest of the five
waiting times is 4 min. What is the condi-
tional density function of the largest wait-
ing time, and what is the expected value of
the largest waiting time in light of this
information?

112. Let X represent a measurement error. It is
natural to assume that the pdf f(x) is sym-
metric about 0, so that the density at a value
−c is the same as the density at c (an error of a
given magnitude is equally likely to be pos-
itive or negative). Consider a random sample
of n measurements, where n = 2 k + 1, so
that Yk+1 is the sample median. What can be
said about E(Yk+1)? If the X distribution is
symmetric about some other value, so that
value is the median of the distribution, what
does this imply about E(Yk+1)? [Hints:
For the first question, symmetry implies
that 1� FðxÞ ¼ P X[ xð Þ ¼ P X \ � xð Þ
¼ F �xð Þ. For the second question, consider
W ¼ X � ~l; what is the median of the dis-
tribution of W?]

113. A store is expecting n deliveries between
the hours of noon and 1 p.m. Suppose the
arrival time of each delivery truck is uni-
formly distributed on this one-hour interval
and that the times are independent of each
other. What are the expected values of the
ordered arrival times?

114. The pdf of the second-largest order statistic,
Yn–1, can be obtained using reasoning
analogous to how the pdf of Yn was first
obtained.

a. For any number y, Yn–1 � y if and only if
at least n – 1 of the original X’s
are � y. (Do you see why?) Use this fact
to derive a formula for the cdf of Yn–1 in
terms of F, the cdf of the X’s. [Hint:
Separate “at least n – 1” into two cases and
apply the binomial formula.]

b. Differentiate part (a) to obtain the pdf of
Yn–1. Simplify and verify it matches the
formula for gn–1(y) provided in this
section.

115. Let X be the amount of time an ATM is in
use during a particular one-hour period, and
suppose that X has the cdf F(x) = xh for
0 < x < 1 (where h > 1). Give expressions
involving the gamma function for both the
mean and variance of the ith smallest
amount of time Yi from a random sample of
n such time periods.

116. The logistic pdf f ðxÞ ¼ e�x= 1þ e�xð Þ2 for
�1\x\1 is sometimes used to describe
the distribution of measurement errors.

a. Graph the pdf. Does the appearance of
the graph surprise you?

b. For a random sample of size n, obtain an
expression involving the gamma func-
tion for the moment generating function
of the ith smallest order statistic Yi. This
expression can then be differentiated to
obtain moments of the order statistics.
[Hint: Set up the appropriate integral,
and then let u ¼ 1=ð1þ e�xÞ.]
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117. An insurance policy issued to a boat owner
has a deductible amount of $1000, so the
amount of damage claimed must exceed
this deductible before there will be a pay-
out. Suppose the amount (1000s of dollars)
of a randomly selected claim is a continu-
ous rv with pdf f(x) = 3/x4 for x > 1. Con-
sider a random sample of three claims.

a. What is the probability that at least one
of the claim amounts exceeds $5000?

b. What is the expected value of the largest
amount claimed?

118. Conjecture the form of the joint pdf of three
order statistics Yi, Yj, Yk (i < j < k) in a
random sample of size n.

119. Use the intuitive argument sketched in this
section to obtain the general formula for the
joint pdf of two order statistics given in the
last proposition.

120. Consider a sample of size n = 3 from the
standard normal distribution, and obtain the
expected value of the largest order statistic.
What does this say about the expected value
of the largest order statistic in a sample of
this size from any normal distribution?
[Hint: With /(x) denoting the standard
normal pdf, use the fact that d=dxð Þ/ðxÞ ¼
�x/ðxÞ along with integration by parts.]

121. Let Y1 and Yn be the smallest and largest
order statistics, respectively, from a random
sample of size n.

a. Use the last proposition in this section to
determine the joint pdf of Y1 and Yn.
(Your answer will include the pdf f and
cdf F of the original random sample.)

b. LetW1 = Y1 andW2 = Yn − Y1 (the latter
is the sample range). Use the method of
Section 5.6 to obtain the joint pdf of W1

and W2, and then derive an expression
involving an integral for the pdf of the
sample range.

c. For the case in which the random sample
is from a uniform distribution on [0, 1],
carry out the integration of (b) to obtain an

explicit formula for the pdf of the sample
range. [Hint: For the Uniform[0, 1] dis-
tribution, what are f and F?]

Supplementary Exercises: (122–150)

122. Suppose the amount of rainfall in one
region during a particular month has an
exponential distribution with mean value
3 in., the amount of rainfall in a second
region during that same month has an
exponential distribution with mean value
2 in., and the two amounts are independent
of each other. What is the probability that
the second region gets more rainfall during
this month than does the first region?

123. Two messages are to be sent. The time
(min) necessary to send each message has
an exponential distribution with parameter
k = 1, and the two times are independent of
each other. It costs $2 per minute to send
the first message and $1 per minute to send
the second. Obtain the density function of
the total cost of sending the two messages.
[Hint: First obtain the cumulative distribu-
tion function of the total cost, which
involves integrating the joint pdf.]

124. A restaurant serves three fixed-price din-
ners costing $25, $35, and $50. For a ran-
domly selected couple dining at this
restaurant, let X = the cost of the man’s
dinner and Y = the cost of the woman’s
dinner. The joint pmf of X and Y is given in
the following table:

p(x, y)

y

25 35 50

x
25 .05 .05 .10
35 .05 .10 .35
50 0 .20 .10

a. Compute the marginal pmfs of X and Y.
b. What is the probability that the man’s

and the woman’s dinner cost at most
$35 each?
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c. Are X and Y independent? Justify your
answer.

d. What is the expected total cost of the
dinner for the two people?

e. Suppose that when a couple opens for-
tune cookies at the conclusion of the
meal, they find the message “You will
receive as a refund the difference
between the cost of the more expensive
and the less expensive meal that you
have chosen.” How much does the
restaurant expect to refund?

125. A health-food store stocks two different
brands of a type of grain. Let X = the
amount (lb) of brand A on hand and Y =
the amount of brand B on hand. Suppose
the joint pdf of X and Y is

f ðx; yÞ ¼ kxy x� 0; y� 0; 20� xþ y� 30

a. Draw the region of positive density and
determine the value of k.

b. Are X and Y independent? Answer by
first deriving the marginal pdf of each
variable.

c. Compute P(X + Y � 25).
d. What is the expected total amount of

this grain on hand?
e. Compute Cov(X, Y) and Corr(X, Y).
f. What is the variance of the total amount

of grain on hand?

126. Let X1, X2, …, Xn be random variables
denoting n independent bids for an item that
is for sale. Suppose each X i is uniformly
distributed on the interval [100, 200]. If the
seller sells to the highest bidder, how much
can he expect to earn on the sale? [Hint: Let
Y ¼ maxðX1;X2; . . .;XnÞ. Find FY(y) by
using the results of Section 5.7 or else by
noting that Y � y iff each Xi is � y. Then
obtain the pdf and E(Y).]

127. Suppose a randomly chosen individual’s
verbal score X and quantitative score Y on a
nationally administered aptitude examina-
tion have joint pdf

f ðx; yÞ ¼ 2
5
ð2xþ 3yÞ 0� x� 1; 0� y� 1

You are asked to provide a prediction t of
the individual’s total score X + Y. The error
of prediction is the mean squared error
E[(X + Y − t)2]. What value of t minimizes
the error of prediction?

128. Let X1 and X2 be quantitative and verbal
scores on one aptitude exam, and let Y1 and
Y2 be corresponding scores on another
exam. If Cov(X1, Y1) = 5, Cov(X1, Y2) = 1,
Cov(X2, Y1) = 2, and Cov(X2, Y2) = 8,
what is the covariance between the two
total scores X1 + X2 and Y1 + Y2?

129. Let Z1 and Z2 be independent standard
normal rvs and let

U ¼ Z1 V ¼ q � Z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� Z2

a. By definition, U has mean 0 and stan-
dard deviation 1. Show that the same is
true for V.

b. Use the properties of covariance to show
that Cov(U, V) = q.

c. Show that Corr(U, V) = q.

130. You are driving on a highway at speed X1.
Cars entering this highway after you travel
at speeds X2, X3, …. Suppose these Xi’s are
independent and identically distributed with
pdf f(x) and cdf F(x). Unfortunately there is
no way for a faster car to pass a slower one
—it will catch up to the slower one and
then travel at the same speed. For example,
if X1 = 52.3, X2 = 37.5, and X3 = 42.8,
then no car will catch up to yours, but the
third car will catch up to the second. Let
N = the number of cars that ultimately tra-
vel at your speed (in your “cohort”),
including your own car. Possible values of
N are 1, 2, 3, …. Show that the pmf of N is
p(n) = 1/[n(n + 1)], and then determine the
expected number of cars in your cohort.
[Hint: N = 3 requires that X1 < X2,
X1 < X3, X4 < X1.]
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131. Suppose the number of children born to an
individual has pmf p(x). A Galton–Watson
branching process unfolds as follows: At
time t = 0, the population consists of a
single individual. Just prior to time t = 1,
this individual gives birth to X1 individuals
according to the pmf p(x), so there are X1

individuals in the first generation. Just prior
to time t = 2, each of these X1 individuals
gives birth independently of the others
according to the pmf p(x), resulting in X2

individuals in the second generation (e.g., if
X1 = 3, then X2 = Y1 + Y2 + Y3, where Yi is
the number of progeny of the ith individual
in the first generation). This process then
continues to yield a third generation of size
X3, and so on.

a. If X1 = 3, Y1 = 4, Y2 = 0, Y3 = 1, draw a
tree diagram with two generations of
branches to represent this situation.

b. Let A be the event that the process ulti-
mately becomes extinct (one way for A to
occur would be to have X1 = 3 with none
of these three second-generation individ-
uals having any progeny) and let p* =
P(A). Argue that p* satisfies the equation

p
 ¼
X

ðp
Þx � pðxÞ

That is, p* = w(p*) where w(s) is the
probability generating function intro-
duced in Exercise 166 from Chapter 3.
[Hint: A ¼ Sx ðA\fX1 ¼ xgÞ, so the
Law of Total Probability can be applied.
Now given that X1 = 3, A will occur if
and only if each of the three separate
branching processes starting from the
first generation ultimately becomes
extinct; what is the probability of this
happening?

c. Verify that one solution to the equation
in (b) is p* = 1. It can be shown that this
equation has just one other solution, and
that the probability of ultimate extinc-
tion is in fact the smaller of the two
roots. If p(0) = .3, p(1) = .5, and p(2) =
.2, what is p*? Is this consistent with the

value of l, the expected number of
progeny from a single individual? What
happens if p(0) = .2, p(1) = .5, and
p(2) = .3?

132. Let f(x) and g(y) be pdfs with corresponding
cdfs F(x) and G(y), respectively. With c
denoting a numerical constant satisfying
|c|� 1, consider

f ðx; yÞ ¼ f ðxÞgðyÞf1þ c½2FðxÞ � 1�½2GðyÞ � 1�g

a. Show that f(x, y) satisfies the conditions
necessary to specify a joint pdf for two
continuous rvs.

b. What is the marginal pdf of the first
variable X? Of the second variable Y?

c. For what values of c are X and Y
independent?

d. If f(x) and g(y) are normal pdfs, is the
joint distribution of X and Y bivariate
normal?

133. The joint cumulative distribution func-
tion of two random variables X and Y,
denoted by F(x, y), is defined by

Fðx; yÞ ¼ P½ðX� xÞ \ ðY � yÞ�
�1\x\1; �1\y\1

a. Suppose that X and Y are both continuous
variables. Once the joint cdf is available,
explain how it can be used to determine
the probability P½ðX; YÞ 2 A�, where
A is the rectangular region fðx; yÞ:
a � x� b; c � y � dg.

b. Suppose the only possible values of
X and Y are 0, 1, 2, … and consider the
values a = 5, b = 10, c = 2, and d = 6
for the rectangle specified in (a).
Describe how you would use the joint
cdf to calculate the probability that the
pair (X, Y) falls in the rectangle. More
generally, how can the rectangular
probability be calculated from the joint
cdf if a, b, c, and d are all integers?

c. Determine the joint cdf for the scenario
of Example 5.1. [Hint: First determine
F(x, y) for x = 100, 250 and y = 0, 100,
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and 200. Then describe the joint cdf for
various other (x, y) pairs.]

d. Determine the joint cdf for the scenario
of Example 5.3 and use it to calculate
the probability that X and Y are both
between .25 and .75. [Hint: For 0 �
x � 1 and 0 � y � 1, Fðx; yÞ ¼R x
0

R y
0 f ðu; vÞdvdu.]

e. Determine the joint cdf for the scenario of
Example 5.5. [Hint: Proceed as in (d), but
be careful about the order of integration
and consider separately (x, y) points that
lie inside the triangular region of positive
density and then points that lie outside
this region.]

134. A circular sampling region with radius X is
chosen by a biologist, where X has an
exponential distribution with mean value
10 ft. Plants of a certain type occur in this
region according to a (spatial) Poisson
process with “rate” .5 plant per square foot.
Let Y denote the number of plants in the
region.

a. Find E Y jX ¼ xð Þ and V Y jX ¼ xð Þ
b. Use part (a) to find E(Y).
c. Use part (a) to find V(Y).

135. The number of individuals arriving at a post
office to mail packages during a certain
period is a Poisson random variable X with
mean value 20. Independently of the others,
any particular customer will mail either 1,
2, 3, or 4 packages with probabilities .4, .3,
.2, and .1, respectively. Let Y denote the
total number of packages mailed during this
time period.

a. Find E Y jX ¼ xð Þ and V Y jX ¼ xð Þ.
b. Use part (a) to find E(Y).
c. Use part (a) to find V(Y).

136. Consider a sealed-bid auction in which
each of the n bidders has his/her valuation
(assessment of inherent worth) of the item
being auctioned. The valuation of any par-
ticular bidder is not known to the other
bidders. Suppose these valuations consti-
tute a random sample X1; . . .;Xn from a

distribution with cdf F(x), with corre-
sponding order statistics Y1 � Y2 � � � �
� Yn. The rent of the winning bidder is the
difference between the winner’s valuation
and the price. The article “Mean Sample
Spacings, Sample Size and Variability in an
Auction-Theoretic Framework” (Oper. Res.
Lett. 2004: 103–108) argues that the rent is
just Yn � Yn�1 (do you see why?).

a. Suppose that the valuation distribution
is uniform on [0, 100]. What is the
expected rent when there are n = 10
bidders?

b. Referring back to (a), what happens
when there are 11 bidders? More gen-
erally, what is the relationship between
the expected rent for n bidders and for
n + 1 bidders? Is this intuitive? [Note:
The cited article presents a counterex-
ample.]

137. Suppose two identical components are
connected in parallel, so the system con-
tinues to function as long as at least one of
the components does so. The two lifetimes
are independent of each other, each having
an exponential distribution with mean
1000 h. Let W denote system lifetime.
Obtain the moment generating function of
W, and use it to calculate the expected
lifetime.

138. Sandstone is mined from two different
quarries. Let X = the amount mined (in
tons) from the first quarry each day and
Y = the amount mined (in tons) from the
second quarry each day. The variables
X and Y are independent, with µX = 12,
rX = 4, µY = 10, rY = 3.

a. Find the mean and standard deviation of
the variable X + Y, the total amount of
sandstone mined in a day.

b. Find the mean and standard deviation of
the variable X – Y, the difference in the
mines’ performances in a day.

c. The manager of the first quarry sells
sandstone at $25/ton, while the manager
of the second quarry sells sandstone at
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$28/ton. Find the mean and standard
deviation for the combined amount of
money the quarries generate in a day.

d. Assuming X and Y are both normally
distributed, find the probability that the
quarries generate more than $750 rev-
enue in a day.

139. In cost estimation, the total cost of a pro-
ject is the sum of component task costs.
Each of these costs is a random variable
with a probability distribution. It is cus-
tomary to obtain information about the
total cost distribution by adding together
characteristics of the individual component
cost distributions—this is called the “roll-
up” procedure. Since E(X1 + ��� + Xn) =
E(X1) + ��� + E(Xn), the roll-up procedure
is valid for mean cost. Suppose that there
are two component tasks and that X1 and
X2 are independent, normally distributed
random variables. Is the roll-up procedure
valid for the 75th percentile? That is, is the
75th percentile of the distribution of
X1 + X2 the same as the sum of the 75th
percentiles of the two individual distribu-
tions? If not, what is the relationship
between the percentile of the sum and
the sum of percentiles? For what per-
centiles is the roll-up procedure valid in
this case?

140. Random sums. If X1, X2, …, Xn are inde-
pendent rvs, each with the same mean value
l and variance r2, then the methods of
Section 5.3 show that E(X1 + ��� + Xn)
= nl and V(X1 + X2 + ��� + Xn) = nr2. In
some applications, the number of Xi’s under
consideration is not a fixed number n but
instead a rv N. For example, let N be the
number of components of a certain type
brought into a repair shop on a particular
day and let Xi represent the repair time for
the ith component. Then the total repair
time is TN = X1 + X2 + ��� + XN, the sum
of a random number of rvs.

a. Suppose that N is independent of the
Xi’s. Use the Law of Total Expectation

to obtain an expression for E(TN) in
terms of l and E(N).

b. Use the Law of Total Variance to obtain
an expression for V(TN) in terms of l,
r2, E(N), and V(N).

c. Customers submit orders for stock pur-
chases at a certain online site according to
a Poisson processwith a rate of 3 per hour.
The amount purchased by any particular
customer (in thousands of dollars) has an
exponential distribution with mean 30,
and purchase amounts are independent of
the number of customers. What is the
expected total amount ($) purchased dur-
ing a particular 4-h period, and what is the
standard deviation of this total amount?

141. The mean weight of luggage checked by a
randomly selected tourist-class passenger
flying between two cities on a certain air-
line is 40 lb, and the standard deviation is
10 lb. The mean and standard deviation for
a business-class passenger are 30 lb and
6 lb, respectively.

a. If there are 12 business-class passengers
and 50 tourist-class passengers on a par-
ticular flight, what are the expected value
of total luggage weight and the standard
deviation of total luggage weight?

b. If individual luggage weights are inde-
pendent, normally distributed rvs, what
is the probability that total luggage
weight is at most 2500 lb?

142. The amount of soft drink that Ann con-
sumes on any given day is independent of
consumption on any other day and is nor-
mally distributed with l = 13 oz and
r = 2. If she currently has two six-packs of
16-oz bottles, what is the probability that
she still has some soft drink left at the end
of 2 weeks (14 days)? Why should we
worry about the validity of the indepen-
dence assumption here?

143. A student has a class that is supposed to
end at 9:00 a.m. and another that is sup-
posed to begin at 9:10 a.m. Suppose the
actual ending time of the 9 a.m. class is a
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normally distributed rv X1 with mean 9:02
and standard deviation 1.5 min and that the
starting time of the next class is also a
normally distributed rv X2 with mean 9:10
and standard deviation 1 min. Suppose also
that the time necessary to get from one
classroom to the other is a normally
distributed rv X3 with mean 6 min and
standard deviation 1 min. Assuming inde-
pendence of X1, X2, and X3, what is the
probability that the student makes it to the
second class before the lecture starts? Why
should we worry about the reasonableness
of the independence assumption here?

144. This exercise provides an alternative
approach to establishing the properties of
correlation.

a. Use the general formula for the variance
of a linear combination to write an
expression for V(aX + Y). Then let
a = rY/rX, and show that q � –1.
[Hint: Variance is always � 0, and
Cov(X, Y) = rX � rY � q.]

b. By considering V(aX – Y), conclude that
q � 1.

c. Use the fact that V(W) = 0 only if W is a
constant to show that q = 1 only if
Y = aX + b.

145. A rock specimen from a particular area is
randomly selected and weighed two differ-
ent times. Let W denote the actual weight
and X1 and X2 the two measured weights.
Then X1 = W + E1 and X2 = W + E2,
where E1 and E2 are the two measurement
errors. Suppose that the Ei’s are indepen-
dent of each other and of W and that
V E1ð Þ ¼ V E2ð Þ ¼ r2E.

a. Express q, the correlation coefficient
between the two measured weights X1

and X2, in terms of r2W , the variance of
actual weight, and r2X , the variance of
measured weight.

b. Compute q when rW = 1 kg and rE =
.01 kg.

146. Let A denote the percentage of one con-
stituent in a randomly selected rock speci-
men, and let B denote the percentage of a
second constituent in that same specimen.
Suppose D and E are measurement errors in
determining the values of A and B so that
measured values are X = A + D and Y =
B + E, respectively. Assume that measure-
ment errors are independent of each other
and of actual values.

a. Show that

CorrðX; YÞ ¼ CorrðA;BÞ
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CorrðX1;X2Þ

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CorrðY1; Y2Þ

p
where X1 and X2 are replicate measure-
ments on the value ofA, and Y1 and Y2 are
defined analogously with respect to
B. What effect does the presence of
measurement error have on the
correlation?

b. What is the maximum value of
Corr(X, Y) when Corr(X1, X2) = .8100,
Corr(Y1, Y2) = .9025? Is this disturbing?

147. Let X1, …, Xn be independent rvs with
mean values l1, …, ln and variances r21,
…, r2n. Consider a function h(x1, …, xn),
and use it to define a new random variable
Y = h(X1, …, Xn). Under rather general
conditions on the h function, if the ris are
all small relative to the corresponding lis, it
can be shown that E(Y) � h(l1, …, ln) and

VðYÞ � @h

@x1

� �2

�r21 þ � � � þ @h

@xn

� �2

�r2n

where each partial derivative is evaluated at
(x1, …, xn) = (l1, …, ln). Suppose three
resistors with resistances X1, X2, X3 are
connected in parallel across a battery with
voltage X4. Then byOhm’s law, the current is

Y ¼ X4
1
X1

þ 1
X2

þ 1
X3

� �
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Let l1 = 10 X, r1 = 1.0 X, l2 = 15 X,
r2 = 1.0 X, l3 = 20 X, r3 = 1.5 X, l4 =
120 V, r4 = 4.0 V. Calculate the approxi-
mate expected value and standard deviation
of the current (suggested by “Random
Samplings,” CHEMTECH 1984: 696–697).

148. A more accurate approximation to
E[h(X1, …, Xn)] in the previous exercise is

E h X1; . . .;Xnð Þ½ � � hðl1; . . .; lnÞþ
1
2
r21

@2h

@x21

� �

þ � � � þ 1
2
r2n

@2h

@x2n

� �

Compute this for Y = h(X1, X2, X3, X4)
given in the previous exercise, and compare
it to the leading term h(l1, …, ln).

149. The following example is based on “Con-
ditional Moments and Independence” (The
American Statistician 2008: 219). Con-
sider the following joint pdf of two rvs
X and Y:

f x; yð Þ ¼ e�½ðln xÞ2 þðln yÞ2�=2

2pxy
½1þ sinð2p ln xÞ sinð2p ln yÞ�

for x[ 0; y[ 0

a. Show that the marginal distribution of
each rv is lognormal. [Hint: When
obtaining the marginal pdf of X, make
the change of variable u = ln(y).]

b. Obtain the conditional pdf of Y given
that X = x. Then show that for every

positive integer n, E(Yn|X = x) = E(Yn).
[Hint: Make the change of variable
ln(y) = u + n in the second integrand.]

c. Redo (b) with X and Y interchanged.
d. The results of (b) and (c) suggest intu-

itively that X and Y are independent rvs.
Are they in fact independent?

150. Let Y0 denote the initial price of a particular
security and Yn denote the price at the end of
n additionalweeks for n =1, 2, 3,…. Assume
that the successive price ratios Y1/Y0, Y2/Y1,
Y3/Y2,… are independent of one another and
that each ratio has a lognormal distribution
with µ = .4 and r = .8 (the assumptions of
independence and lognormality are common
in such scenarios).

a. Calculate the probability that the secu-
rity price will increase over the course
of a week.

b. Calculate the probability that the secu-
rity price will be higher at the end of
the next week, be lower the week after
that, and then be higher again at the
end of the following week. [Hint: What
does “higher” say about the ratio
Yi+1/Yi?]

c. Calculate the probability that the secu-
rity price will have increased by at least
20% over the course of a five-week
period. [Hint: Consider the ratio Y5/Y0,
and write this in terms of successive
ratios Yi+1/Yi.]
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6Statistics and Sampling Distributions

Introduction

This chapter helps make the transition between probability and inferential statistics. Given a sample of
n observations from a population, we will be calculating estimates of the population mean, median,
standard deviation, and various other population characteristics (parameters). Prior to obtaining data,
there is uncertainty as to which of all possible samples will occur. Because of this, estimates such
as �x, ~x, and swill vary from one sample to another. The behavior of such estimates in repeated sampling
is described by what are called sampling distributions. Any particular sampling distribution will give an
indication of how close the estimate is likely to be to the value of the parameter being estimated.

The first two sections use probability results to study sampling distributions. A particularly
important result is the Central Limit Theorem, which shows how the behavior of the sample mean can
be described by a normal distribution when the sample size is large. The last two sections introduce
several distributions related to samples from a normal population distribution. Many inferential
procedures are based on properties of these sampling distributions.

6.1 Statistics and Their Distributions

The observations in a single sample were denoted in Chapter 1 by x1, x2, …, xn. Consider selecting
two different samples of size n from the same population distribution. The xi’s in the second sample
will virtually always differ at least a bit from those in the first sample. For example, a first sample of
n = 3 cars of a particular model might result in fuel efficiencies x1 = 30.7, x2 = 29.4, x3 = 31.1,
whereas a second sample may give x1 = 28.8, x2 = 30.0, and x3 = 31.1. Before we obtain data, there
is uncertainty about the value of each xi. Because of this uncertainty, before the data becomes
available we view each observation as a random variable and denote the sample by X1, X2, …, Xn

(uppercase letters for random variables).
This variation in observed values in turn implies that the value of any function of the sample

observations—such as the sample mean, sample standard deviation, or sample iqr—also varies from
sample to sample. That is, prior to obtaining x1, …, xn, there is uncertainty as to the value of �x, the
value of s, and so on.

Example 6.1 Suppose that material strength for a randomly selected specimen of a particular type
has a Weibull distribution with parameter values a = 2 (shape) and b = 5 (scale). The corresponding
density curve is shown in Figure 6.1. Formulas from Section 4.5 give
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l ¼ EðXÞ ¼ 4:4311 ~l ¼ 4:1628 r2 ¼ VðXÞ ¼ 5:365 r ¼ 2:316

The mean exceeds the median because of the distribution’s positive skew.
We used statistical software to generate six different samples, each with n = 10, from this dis-

tribution (material strengths for six different groups of ten specimens each). The results appear in
Table 6.1, followed by the values of the sample mean, sample median, and sample standard deviation
for each sample. Notice first that the ten observations in any particular sample are all different from
those in any other sample. Second, the six values of the sample mean are all different from each other,
as are the six values of the sample median and the six values of the sample standard deviation. The
same would be true of the sample 10% trimmed means, sample iqrs, and so on.

0 5 10
0

15

.05

.10

.15

x 

f (x)

Figure 6.1 The Weibull density curve for Example 6.1

Table 6.1 Samples from the Weibull distribution of Example 6.1

Sample

1 2 3 4 5 6

Observation
1 6.1171 5.07611 3.46710 1.55601 3.12372 8.93795
2 4.1600 6.79279 2.71938 4.56941 6.09685 3.92487
3 3.1950 4.43259 5.88129 4.79870 3.41181 8.76202
4 0.6694 8.55752 5.14915 2.49759 1.65409 7.05569
5 1.8552 6.82487 4.99635 2.33267 2.29512 2.30932
6 5.2316 7.39958 5.86887 4.01295 2.12583 5.94195
7 2.7609 2.14755 6.05918 9.08845 3.20938 6.74166
8 10.2185 8.50628 1.80119 3.25728 3.23209 1.75468
9 5.2438 5.49510 4.21994 3.70132 6.84426 4.91827
10 4.5590 4.04525 2.12934 5.50134 4.20694 7.26081

Mean 4.401 5.928 4.229 4.132 3.620 5.761
Median 4.360 6.144 4.608 3.857 3.221 6.342
SD 2.642 2.062 1.611 2.124 1.678 2.496
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Furthermore, the value of the sample mean from any particular sample can be regarded as a point
estimate (“point” because it is a single number, corresponding to a single point on the number line) of
the population mean l, whose value is known to be 4.4311. None of the estimates from these six
samples is identical to what is being estimated. The estimates from the second and sixth samples are
much too large, whereas the fifth sample gives a substantial underestimate. Similarly, the sample
standard deviation gives a point estimate of the population standard deviation, r ¼ 2:316. All six of
the resulting estimates are in error by at least a small amount. ■

In summary, the values of the individual sample observations vary from sample to sample, so in
general the value of any quantity computed from sample data, and the value of a sample characteristic
used as an estimate of the corresponding population characteristic, will virtually never coincide with
what is being estimated.

DEFINITION A statistic is any quantity whose value can be calculated from sample data. Prior
to obtaining data, there is uncertainty as to what value of any particular statistic
will result. Therefore, a statistic is a random variable and will be denoted by an
uppercase letter; a lowercase letter is used to represent the calculated or observed
value of the statistic.

Thus the sample mean, regarded as a statistic (before a sample has been selected or an experiment has
been carried out), is denoted by X; the calculated value of this statistic from a particular sample is �x:
Similarly, S represents the sample standard deviation thought of as a statistic, and its computed value
is s.

Any statistic, being a random variable, has a probability distribution. The probability distribution
of any particular statistic depends not only on the population distribution (normal, uniform, etc.) and
the sample size n but also on the method of sampling. Our next definition describes a sampling
method often encountered, at least approximately, in practice.

DEFINITION The rvs X1, X2, …, Xn are said to form a (simple) random sample of size n if

1. The Xi’s are independent rvs.
2. Every Xi has the same probability distribution.

Such a collection of random variables is also referred to as being independent
and identically distributed (iid).

If sampling is either with replacement or from an infinite (conceptual) population, Conditions 1 and 2
are satisfied exactly. These conditions will be approximately satisfied if sampling is without
replacement, yet the sample size n is much smaller than the population size N. In practice, if
n/N � .05 (at most 5% of the population is sampled), we can proceed as if the Xi’s form a random
sample. The virtue of this sampling method is that the probability distribution of any statistic can be
more easily obtained than for any other sampling method.

The probability distribution of a statistic is sometimes referred to as its sampling distribution to
emphasize that it describes how the statistic varies in value across all samples that might be selected.
There are two general methods for obtaining information about a statistic’s sampling distribution. One
method involves calculations based on probability rules, and the other involves carrying out a
simulation experiment.
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Deriving the Sampling Distribution of a Statistic
Probability rules can be used to obtain the distribution of a statistic provided that it is a “fairly simple”
function of the Xi’s and either there are relatively few different X values in the population or else the
population distribution has a “nice” form. Our next two examples illustrate such situations.

Example 6.2 An online florist offers three different sizes for Mother’s Day bouquets: a small
arrangement costing $80 (including shipping), a medium-sized one for $100, and a large one with a
price tag of $120. If 20% of all purchasers choose the small arrangement, 30% choose medium, and
50% choose large (because they really love Mom!), then the probability distribution of the cost of a
single randomly selected flower arrangement is given by

ð6:1Þ

Suppose only two bouquets are sold today. Let X1 = the cost of the first bouquet and X2 = the cost of
the second. Suppose that X1 and X2 are independent, each with the probability distribution shown in
(6.1), so that X1 and X2 constitute a random sample from the distribution (6.1). Table 6.2 lists possible
(x1, x2) pairs, the probability of each pair computed using (6.1) and the assumption of independence,

and the resulting �x and s2 values. (Note that when n = 2, s2 ¼ ðx1 � �xÞ2 þðx2 � �xÞ2.)

Now to obtain the probability distribution of X, the sample average cost per bouquet, we must
consider each possible value �x and compute its probability. For example, �x ¼ 100 occurs three times
in the table with probabilities .10, .09, and .10, so

PðX ¼ 100Þ ¼ :10þ :09þ :10 ¼ :29

Similarly, s2 = 800 appears twice in the table with probability .10 each time, so

PðS2 ¼ 800Þ ¼ PðX1 ¼ 80;X2 ¼ 120ÞþPðX1 ¼ 120;X2 ¼ 80Þ
¼ :10þ :10 ¼ :20

The complete sampling distributions of X and S2 appear in (6.2) and (6.3).

Table 6.2 Outcomes, probabilities, and values of �x and s2 for Example 6.2

x1 x2 p(x1, x2) �x s2

80 80 (.2)(.2) = .04 80 0
80 100 (.2)(.3) = .06 90 200
80 120 (.2)(.5) = .10 100 800

100 80 (.3)(.2) = .06 90 200
100 100 (.3)(.3) = .09 100 0
100 120 (.3)(.5) = .15 110 200
120 80 (.5)(.2) = .10 100 800
120 100 (.5)(.3) = .15 110 200
120 120 (.5)(.5) = .25 120 0
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ð6:2Þ

ð6:3Þ

Figure 6.2 depicts a probability histogram for both the original distribution of X (6.1) and the X
distribution (6.2). The figure suggests first that the mean (i.e., expected value) of X is equal to the
mean $106 of the original distribution, since both histograms appear to be centered at the same place.
Indeed, from (6.2),

EðXÞ ¼
X

�xpXð�xÞ ¼ 80ð:04Þþ � � � þ 120ð:25Þ ¼ 106 ¼ l

Second, it appears that the X distribution has smaller spread (variability) than the original distribution,
since the values of �x are more concentrated toward the mean. Again from (6.2),

VðXÞ ¼
X

ð�x� lXÞ2pXð�xÞ ¼
X

ð�x� 106Þ2pXð�xÞ
¼ ð80� 106Þ2ð:04Þþ � � � þ ð120� 106Þ2ð:25Þ ¼ 122

Notice that VðXÞ ¼ 122 ¼ 244=2 ¼ r2=2, exactly half the population variance; that is a consequence
of the sample size n = 2, and we’ll see why in the next section.

Finally, the mean value of S2 is

EðS2Þ ¼
X

s2pS2ðs2Þ ¼ 0ð:38Þþ 200ð:42Þþ 800ð:20Þ ¼ 244 ¼ r2

That is, the X sampling distribution is centered at the population mean l, and the S2 sampling
distribution (histogram not shown) is centered at the population variance r2.

If four flower arrangements had been purchased on the day of interest, the sample average cost X
would be based on a random sample of four Xi’s, each having the distribution (6.1). More calculation
eventually yields the distribution of X for n = 4 as

�x 80 85 90 95 100 105 110 115 120

pXð�xÞ .0016 .0096 .0376 .0936 .1761 .2340 .2350 .1500 .0625

80 100 1009080 110 120120

.2

x x

.3

.04
.12

.29 .30
.25

.5a b

Figure 6.2 Probability histograms for (a) the underlying population distribution
and (b) the sampling distribution of X in Example 6.2
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From this, EðXÞ ¼ 106 ¼ l and VðXÞ ¼ 61 ¼ r2=4. Figure 6.3 is a probability histogram of this
distribution.

Example 6.2 should suggest first of all that the computation of p�Xð�xÞ and pS2ðs2Þ can be tedious. If
the original distribution (6.1) had allowed for more than the three possible values 80, 100, and 120,
then even for n = 2 the computations would have been more involved. The example should also
suggest, however, that there are some general relationships between EðXÞ;VðXÞ;EðS2Þ, and the mean
l and variance r2 of the original distribution. These are stated in the next section. Now consider an
example in which the random sample is drawn from a continuous distribution.

Example 6.3 The time that it takes to serve a customer at the cash register in a minimarket is a
random variable having an exponential distribution with parameter k. Suppose X1 and X2 are service
times for two different customers, assumed independent of each other. Consider the total service time
To = X1 + X2 for the two customers, also a statistic. The cdf of To is, for t � 0,

FToðtÞ ¼ PðX1 þX2 � tÞ ¼
Z Z

ðx1;x2Þ:x1 þ x2 � tf g

f ðx1; x2Þ dx1 dx2

¼
Z t

0

Zt�x1

0

ke�kx1 � ke�kx2 dx2 dx1

¼
Z t

0

ðke�kx1 � ke�ktÞdx1 ¼ 1� e�kt � kte�kt

The region of integration is pictured in Figure 6.4.

80 90 100 110 120
x

Figure 6.3 Probability histogram for X based on n = 4 in Example 6.2 ■
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The pdf of To is obtained by differentiating FToðtÞ:

fToðtÞ ¼ k2te�kt t� 0 ð6:4Þ

This is a gamma pdf (a = 2 and b = 1/k). This distribution for To can also be derived by convolution
or by the moment generating function argument from Section 5.3.

Since FXð�xÞ ¼ PðX��xÞ ¼ PðTo � 2�xÞ ¼ FToð2�xÞ, differentiating with respect to �x and using (6.4)
plus the chain rule gives us the pdf of X ¼ To=2:

fXð�xÞ ¼ 4k2�xe�2k�x �x� 0 ð6:5Þ

The mean and variance of the underlying exponential distribution are l = 1/k and r2 = 1/k2. Using
Expressions (6.4) and (6.5), it can be verified that EðXÞ ¼ 1=k;VðXÞ ¼ 1=ð2k2Þ;EðToÞ ¼ 2=k, and
VðToÞ ¼ 2=k2. These results again suggest some general relationships between means and variances
of X, To, and the underlying distribution. ■

Simulation Experiments
The second method of obtaining information about a statistic’s sampling distribution is to perform a
simulation experiment. This method is often used when a derivation via probability rules or properties of
distributions is too difficult or complicated to be carried out. Simulations are virtually always done with
the aid of computer software. The following characteristics of a simulation experimentmust be specified:

1. The statistic of interest (X, S, a particular trimmed mean, etc.)
2. The population distribution (normal with l = 100 and r = 15, uniform with lower limit A = 5 and

upper limit B = 10, etc.)
3. The sample size n (e.g., n = 10 or n = 50)
4. The number of replications k (e.g., k = 10,000).

Then use a computer to obtain k different random samples, each of size n, from the designated
population distribution. For each such sample, calculate the value of the statistic and construct a
histogram of the k calculated values. This histogram gives the approximate sampling distribution of
the statistic. The larger the value of k, the better the approximation will tend to be (the actual sampling
distribution emerges as k ! 1). In practice, k = 10,000 may be enough for a “fairly simple” statistic
and population distribution, but modern computers allow for a much larger number of replications.

x1

x2

x1

(x1, t − x1)

x
1  + x

2  = t

Figure 6.4 Region of integration to obtain cdf of To in Example 6.3
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Example 6.4 Consider a simulation experiment in which the population distribution is quite skewed.
Figure 6.5 shows the density curve for lifetimes of a certain type of electronic control. This is actually
a lognormal distribution with E[ln(X)] = 3 and V[ln(X)] = 0.16; that is, ln(X) is normal with mean 3
and standard deviation 0.4.

Imagine the statistic of interest is the sample mean, X. For any given sample size n, we repeat the
following procedure k times:

• Generate values x1, …, xn from a lognormal distribution with the specified parameter values;
equivalently, generate y1, …, yn from a N(3, 0.4) distribution and apply the transformation x = ey

to each value.
• Calculate and store the sample mean �x of the n x-values.

We performed this simulation experiment at four different sample sizes: n = 5, 10, 20, and 30. The
experiment utilized k = 1000 replications (a very modest value) for each sample size. The resulting
histograms along with a normal probability plot from R for the 1000 �x values based on n = 30 are
shown in Figure 6.6 on the next page.

The first thing to notice about the histograms is that each one is centered approximately at the
mean of the population being sampled, lX ¼ e3þ 0:16=2 � 21:76. Had the histograms been based on an
unending sequence of �x values, their centers would have been exactly at the population mean.

Second, note the spread of the histograms relative to each other. The smaller the value of n, the
greater the extent to which the sampling distribution spreads out about the mean value. This is why
the histograms for n = 20 and n = 30 are based on narrower class intervals than those for the two
smaller sample sizes. For the larger sample sizes, most of the �x values are quite close to µX. This is the
effect of averaging. When n is small, a single unusual x value can result in an �x value far from the
center. With a larger sample size, any unusual x values, when averaged in with the other sample
values, still tend to yield an �x value close to lX. Combining these insights yields an intuitively-
appealing result: X based on a large n tends to be closer to l than does X based on a small n.

Third and finally, consider the shapes of the histograms. Recall from Figure 6.5 that the population
from which the samples were drawn is quite skewed. But as the sample size n increases, the
distribution of X appears to become progressively less skewed. In particular, when n = 30 the
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Figure 6.5 Density curve for the simulation experiment of Example 6.4:
a lognormal distribution with E(X) = 21.76 and V(X) = 82.14
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distribution of the 1000 �x values appears to be approximately normal, a fact validated by the normal
probability plot in Figure 6.6e. We will discover in the next section that this is part of a much broader
phenomenon known as the Central Limit Theorem: as the sample size n increases, the sampling
distribution of X becomes increasingly normal, irrespective of the population distribution from which
values were sampled.
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Figure 6.6 Results of the simulation experiment of Example 6.4: (a) X histogram for n = 5;
(b) X histogram for n = 10; (c) X histogram for n = 20; (d) X histogram for n = 30;

(e) normal probability plot for n = 30 (from R) ■
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Example 6.5 The 2017 study described in Example 4.23 determined that the variable X = proximal
grip distance for female surgeons follows a normal distribution with mean 6.58 cm and standard
deviation 0.50 cm. Consider the statistic Q1 = the sample 25th percentile (equivalently, the lower
quartile). To investigate the sampling distribution of Q1 we repeated the following procedure
k = 1000 times:

• Generate a sample x1, …, xn from the N(6.58, 0.50) distribution.
• Calculate and store the lower quartile, q1, of the n resulting x values.

The results of two such simulation experiments—one for n = 5, another for n = 40—are shown in
Figure 6.7. Similar to X’s behavior in the previous example, we see that the sampling distribution ofQ1

has greater variability for small n than for large n. Both sampling distributions appear to be centered
roughly at 6.5 cm, which is perhaps not surprising: the 25th percentile of the population distribution is

g:25 ¼ lþU�1ð:25Þ � r ¼ 6:83þð�0:675Þð0:50Þ � 6:49 cm

In fact, even with an infinite set of replications (i.e., the “true” sampling distribution), the mean of
Q1 is not exactly g:25, but that difference decreases as n increases. ■
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Figure 6.7 Sample histograms of Q1 based on 1000 samples, each consisting of n observations: (a) n = 5, (b) n = 40

Exercises: Section 6.1 (1–10)

1. A particular brand of dishwasher soap is
sold in three sizes: 25, 40, and 65 oz. 20%
of all purchasers select a 25-oz box, 50%
select a 40-oz box, and the remaining 30%
choose a 65-oz box. Let X1 and X2 denote
the package sizes selected by two inde-
pendently selected purchasers.

a. Determine the sampling distribution of
X, calculate EðXÞ, and compare to l.

b. Determine the sampling distribution of
the sample variance S2, calculate E(S2),
and compare to r2.

2. There are two traffic lights on the way to
work. Let X1 be the number of lights that
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are red, requiring a stop, and suppose that
the distribution of X1 is as follows:

x1 0 1 2

p(x1) .2 .5 .3
l = 1.1, r2 = .49

Let X2 be the number of lights that are red
on the way home; X2 is independent of X1.
Assume that X2 has the same distribution as
X1, so that X1, X2 is a random sample of
size n = 2.

a. Let To = X1 + X2, and determine the
probability distribution of To.

b. Calculate lTo . How does it relate to l,
the population mean?

c. Calculate r2To . How does it relate to r2,
the population variance?

3. It is known that 80% of all Brand A MP3
players work in a satisfactory manner
throughout the warranty period (are “suc-
cesses”). Suppose that n = 10 players are
randomly selected. Let X = the number of
successes in the sample. The statistic X/n is
the sample proportion (fraction) of suc-
cesses. Obtain the sampling distribution of
this statistic. [Hint: One possible value of
X/n is .3, corresponding to X = 3. What is
the probability of this value (what kind of
random variable is X)?]

4. A box contains ten sealed envelopes num-
bered 1, …, 10. The first five contain no
money, the next three each contain $5, and
there is a $10 bill in each of the last two.
A sample of size 3 is selected with
replacement (so we have a random sample),
and you get the largest amount in any of the
envelopes selected. If X1, X2, and X3 denote
the amounts in the selected envelopes, the
statistic of interest is M = the maximum of
X1, X2, and X3.

a. Obtain the probability distribution of
this statistic.

b. Describe how you would carry out a
simulation experiment to compare the
distributions of M for various sample

sizes. How would you guess the distri-
bution would change as n increases?

5. Let X be the number of packages being
mailed by a randomly selected customer at
a shipping facility. Suppose the distribution
of X is as follows:

x 1 2 3 4

p(x) .4 .3 .2 .1

a. Consider a random sample of size n = 2
(two customers), and let X be the sam-
ple mean number of packages shipped.
Obtain the sampling distribution of X.

b. Refer to part (a) and calculate
PðX� 2:5Þ.

c. Again consider a random sample of size
n = 2, but now focus on the statistic
R = the sample range (difference
between the largest and smallest values
in the sample). Obtain the sampling
distribution of R. [Hint: Calculate the
value of R for each outcome and use the
probabilities from part (a).]

d. If a random sample of size n = 4 is
selected, what is PðX� 1:5Þ? [Hint:
You should not have to list all possible
outcomes, only those for which
�x� 1:5.]

6. A company maintains three offices in a
region, each staffed by two employees.
Information concerning yearly salaries
(1000s of dollars) is as follows:

Office 1 1 2 2 3 3
Employee 1 2 3 4 5 6
Salary 29.7 33.6 30.2 33.6 25.8 29.7

a. Suppose two of these employees are
randomly selected from among the six
(without replacement). Determine the
sampling distribution of the sample
mean salary X.

b. Suppose one of the three offices is ran-
domly selected. Let X1 and X2 denote the
salaries of the two employees. Deter-
mine the sampling distribution of X.
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c. How does EðXÞ from parts (a) and
(b) compare to the population mean
salary l?

7. The number of dirt specks on a randomly
selected square yard of polyethylene film of
a certain type has a Poisson distribution
with a mean value of 2 specks per square
yard. Consider a random sample of n = 5
film specimens, each having area 1 square
yard, and let X be the resulting sample
mean number of dirt specks. Obtain the first
21 probabilities in the X sampling distri-
bution. [Hint: What does a moment gener-
ating function argument say about the
distribution of X1 + � � � + X5?]

8. Suppose the amount of liquid dispensed by
a machine is uniformly distributed with
lower limit A = 8 oz and upper limit
B = 10 oz. Describe how you would carry
out simulation experiments to compare the
sampling distribution of the sample iqr for
sample sizes n = 5, 10, 20, and 30.

9. Carry out a simulation experiment using a
statistical computer package or other soft-
ware to study the sampling distribution of X
when the population distribution is Weibull
with a = 2 and b = 5, as in Example 6.1.
Consider the four sample sizes n = 5, 10,
20, and 30, and in each case use at least
1000 replications. For which of these
sample sizes does the X sampling distribu-
tion appear to be approximately normal?

10. Carry out a simulation experiment using a
statistical computer package or other
software to study the sampling distribution
of X when the population distribution is
lognormal with E[ln(X)] = 3 and V[ln(X)]
= 1. Consider the four sample sizes
n = 10, 20, 30, and 50, and in each case
use at least 1000 replications. For which
of these sample sizes does the X sampling
distribution appear to be approximately
normal?

6.2 The Distribution of Sample Totals, Means, and Proportions

Throughout this section, we will be primarily interested in the properties of two particular rvs derived
from random samples: the sample total To and the sample mean X:

To ¼ X1 þ � � � þXn ¼
Xn
i¼1

Xi; X ¼ X1 þ � � � þXn

n
¼ To

n

The importance of the sample mean X springs from its use in drawing conclusions about the pop-
ulation mean l. Some of the most frequently used inferential procedures are based on properties of
the sampling distribution of X. A preview of these properties appeared in the calculations and
simulation experiments of the previous section, where we noted relationships between EðXÞ and l
and also among VðXÞ, r2, and n.

PROPOSITION Let X1, X2, …, Xn be a random sample from a distribution with mean value l and
standard deviation r. Then

1. E(To) = nµ

2. V(To) = nr2 and rTo ¼
ffiffiffi
n

p
r

3. If the Xi’s are normally distributed,
then To is also normally
distributed.

1. EðXÞ ¼ l

2. VðXÞ ¼ r2

n
and rX ¼ rffiffiffi

n
p

3. If the Xi’s are normally distributed,
then X is also normally distributed.



Proof From the main theorem of Section 5.3, the expected value of a sum is the sum of the
individual expected values; moreover, when the variables in the sum are independent, the variance of
the sum is the sum of the individual variances:

EðToÞ ¼ EðX1 þ � � � þXnÞ ¼ EðX1Þþ � � � þEðXnÞ ¼ lþ � � � þ l ¼ nl

VðToÞ ¼ VðX1 þ � � � þXnÞ ¼ VðX1Þþ � � � þVðXnÞ ¼ r2 þ � � � þ r2 ¼ nr2

rTo ¼
ffiffiffiffiffiffiffi
nr2

p
¼ ffiffiffi

n
p

r

The corresponding results for X can be derived by writing X ¼ 1
n
� To and using basic rescaling

properties, such as E(cY) = cE(Y). Property 3 is a consequence of the more general result from
Section 5.3 that any linear combination of independent normal rvs is normal. ■

According to Property 1, the distribution of X is centered precisely at the mean of the population
from which the sample has been selected. If the sample mean is used to compute an estimate
(educated guess) of the population mean µ, there will be no systematic tendency for the estimate to be
too large or too small.

Property 2 shows that the X distribution becomes more concentrated about µ as the sample size
n increases, because its standard deviation decreases. In marked contrast, the distribution of To
becomes more spread out as n increases. Averaging moves probability in toward the middle, whereas
totaling spreads probability out over a wider and wider range of values. The expression r=

ffiffiffi
n

p
for the

standard deviation of X is called the standard error of the mean, and it indicates the typical amount
by which a value of X will deviate from the true mean, µ (in contrast, r itself represents the typical
difference between an individual Xi and µ).

When r is unknown, as is usually the case when µ is unknown and we are trying to estimate it, we
may substitute the sample standard deviation, s, of our sample into the standard error formula and say
that an observed value of X will typically differ by about s=

ffiffiffi
n

p
from µ. This is the estimated standard

error formula presented in Sections 3.8 and 4.8.
Finally, Property 3 says that X and To are both normally distributed when the population distri-

bution is normal. In particular, probabilities such as Pða�X� bÞ and P(c � To � d) can be
obtained simply by standardizing, with the appropriate means and standard deviations provided by
Properties 1 and 2. Figure 6.8 illustrates the X part of the proposition.

Example 6.6 The amount of time that a patient spends in a certain outpatient surgery center is a
random variable with a mean value of 4.5 h and a standard deviation of 1.4 h. Let X1, …, X25 be the
times for a random sample of 25 patients. Then the expected total time for the 25 patients is

X distribution
when  n = 10

X distribution
when  n = 4

Population
distribution

Figure 6.8 A normal population distribution and X sampling distributions
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E(To) = nµ = 25(4.5) = 112.5 h, whereas the expected sample mean amount of time is
EðXÞ ¼ l ¼ 4:5 h. The standard deviations of To and X are

rTo ¼
ffiffiffi
n

p
r ¼

ffiffiffiffiffi
25

p
ð1:4Þ ¼ 7 h

rX ¼ rffiffiffi
n

p ¼ 1:4ffiffiffiffiffi
25

p ¼ :28 h

Suppose further that such patient times follow a normal distribution; i.e., Xi * N(4.5, 1.4). Then the
total time spent by 25 randomly selected patients in this center is also normal: To * N(112.5, 7). The
probability their total time exceeds five days (120 h) is

PðTo [ 120Þ ¼ 1� PðTo � 120Þ ¼ 1� U
120� 112:5

7

� �
¼ 1� Uð1:07Þ ¼ :8577

This same probability can be reframed in terms of X: for 25 patients, a total time of 120 h equates to
an average time of 120/25 = 4.8 h, and since X�Nð4:5; :28Þ,

PðX[ 4:8Þ ¼ 1� U
4:8� 4:5

:28

� �
¼ 1� Uð1:07Þ ¼ :8577 ■

Example 6.7 Resistors used in electronics manufacturing are labeled with a “nominal” resistance as
well as a percentage tolerance. For example, a 330-X resistor with a 5% tolerance is anticipated to
have an actual resistance between 313.5 and 346.5 X. Consider five such resistors, randomly selected
from the population of all resistors with those specifications, and model the resistance of each by a
uniform distribution on [313.5, 346.5]. If these are connected in series, the resistance R of the system
is given by R ¼ X1 þ � � � þX5, where the Xi’s are the iid uniform resistances.

A random variable uniformly distributed on [A, B] has mean (A + B)/2 and standard deviation
ðB� AÞ= ffiffiffiffiffi

12
p

. For our uniform model, the mean resistance is E(Xi) = (313.5 + 346.5)/2 = 330 X, the
nominal resistance, with a standard deviation of ð346:5� 313:5Þ= ffiffiffiffiffi

12
p ¼ 9:526X. The system’s

resistance has mean and standard deviation

EðRÞ ¼ nl ¼ 5ð330Þ ¼ 1650X; rR ¼ ffiffiffi
n

p
r ¼

ffiffiffi
5

p
ð9:526Þ ¼ 21:3X

But what is the probability distribution of R? Is R also uniformly distributed? Determining the exact pdf
of R is difficult (it requires four convolutions). And the mgf of R, while easy to obtain, is not recog-
nizable as coming from any particular family of known distributions. Instead, we resort to a simulation
of R, the results of which appear in Figure 6.9. For 10,000 iterations, five independent uniform variates
on [313.5, 346.5] were created and summed; see Section 4.8 for information on simulating values from
a uniform distribution. The histogram in Figure 6.9 clearly indicates that R is not uniform; in fact, if
anything, R appears (from the simulation, anyway) to be approximately normally distributed!
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The Central Limit Theorem
When iid Xi’s are normally distributed, so are To and X for every sample size n. The simulation results
from Example 6.7 suggest that even when the population distribution is not normal, summing (or
averaging) produces a distribution more bell-shaped than the one being sampled. Upon reflection, this
is quite intuitive: in order for R to be near 5(346.5) = 1732.5, its theoretical maximum, all five
randomly selected resistors would have to exert resistances at the high end of their common range
(i.e., every Xi would have to be near 346.5). Thus, R-values near 1732.5 are unlikely, and the same
applies to R’s theoretical minimum of 5(313.5) = 1567.5. On the other hand, there are many ways for
R to be near the mean value of 1650: all five resistances in the middle, two low and one middle and
two high, and so on. Thus, R is more likely to be “centrally” located than out at the extremes. (This is
analogous to the well-known fact that rolling a pair of dice is far more likely to result in a sum of 7
than 2 or 12, because there are more ways to obtain 7.)

This general pattern of behavior for sample totals and sample means is formalized by the most
important theorem of probability, the Central Limit Theorem (CLT).

CENTRAL LIMIT
THEOREM (CLT)

Let X1, X2, …, Xn be a random sample from a distribution with mean l and
standard deviation r. Then, in the limit as n ! 1, the standardized versions of
X and To have the standard normal distribution. That is,

lim
n!1P

X � l
r=

ffiffiffi
n

p � z

� �
¼ PðZ� zÞ ¼ UðzÞ
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Figure 6.9 Simulated distribution of the random variable R in Example 6.7 ■
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and

lim
n!1P

To � nlffiffiffi
n

p
r

� z

� �
¼ PðZ� zÞ ¼ UðzÞ

where Z is a standard normal rv. It is customary to say that X and To are
asymptotically normal, and that their standardized versions converge in
distribution to Z. Thus when n is sufficiently large, X has approximately a
normal distribution with lX ¼ l and r�X ¼ r=

ffiffiffi
n

p
. Equivalently, for large n the

sum To has approximately a normal distribution with lTo ¼ nl and rTo ¼
ffiffiffi
n

p
r.

Figure 6.10 illustrates the Central Limit Theorem. A partial proof of the CLT appears in the appendix
to this chapter. It is shown that, if the moment generating function exists, then the mgf of the
standardized X (and of To) approaches the standard normal mgf. With the aid of an advanced
probability theorem, this implies the CLT statement about convergence of probabilities.

A practical difficulty in applying the CLT is in knowing when n is “sufficiently large.” The
problem is that the accuracy of the approximation for a particular n depends on the shape of the
original underlying distribution being sampled. If the underlying distribution is symmetric and there
is not much probability far out in the tails, then the approximation will be good even for a small n,
whereas if it is highly skewed or has “heavy” tails, then a large n will be required. For example, if the
distribution is uniform on an interval, then it is symmetric with no probability in the tails, and the
normal approximation is very good for n as small as 10 (in Example 6.9, even for n = 5, the
distribution of the sample total appeared rather bell-shaped). However, at the other extreme, a
distribution can have such fat tails that its mean fails to exist and the Central Limit Theorem does not
apply, so no n is big enough. A popular, although frequently somewhat conservative, convention is
that the Central Limit Theorem may be safely applied when n > 30. Of course, there are exceptions,
but this rule applies to most distributions of real data.

Example 6.8 When a batch of a certain chemical product is prepared, the amount of a particular
impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g. If 50
batches are independently prepared, what is the (approximate) probability that the sample average
amount of impurity X is between 3.5 and 3.8 g? According to the convention mentioned above,
n = 50 is large enough for the CLT to be applicable. The sample mean X then has approximately a
normal distribution with mean value l�X ¼ 4:0 and rX ¼ 1:5=

ffiffiffiffiffi
50

p ¼ :2121, so

X distribution for
small to moderate n

Population
distribution

X distribution for
large n (approximately normal)

Figure 6.10 The Central Limit Theorem for X illustrated
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Pð3:5�X� 3:8Þ � P
3:5� 4:0
:2121

� Z � 3:8� 4:0
:2121

� �
¼ Uð�:94Þ � Uð�2:36Þ ¼ :1645 ■

Example 6.9 Suppose the number of times a randomly selected customer of a large bank uses the
bank’s ATM during a particular period is a random variable with a mean value of 3.2 and a standard
deviation of 2.4. Among 100 randomly selected customers, how likely is it that the sample mean
number of times the bank’s ATM is used exceeds 4? Let Xi denote the number of times the ith
customer in the sample uses the bank’s ATM. Notice that Xi is a discrete rv, but the CLT is not limited
to continuous random variables. Also, although the fact that the standard deviation of this nonneg-
ative variable is quite large relative to the mean value suggests that its distribution is positively
skewed, the large sample size implies that X does have approximately a normal distribution. Using
lX ¼ 3:2 and rX ¼ r=

ffiffiffi
n

p ¼ 2:4=
ffiffiffiffiffiffiffiffi
100

p ¼ :24,

PðX[ 4Þ � P Z[
4� 3:2
:24

� �
¼ 1� Uð3:33Þ ¼ :0004

■

Example 6.10 Consider the distribution shown in Figure 6.11 for the amount purchased (rounded to
the nearest dollar) by a randomly selected customer at a particular gas station. (A similar distribution
for purchases in Britain (in £) appeared in the article “Data Mining for Fun and Profit,” Stat. Sci.
2000: 111–131; there were big spikes at the values 10, 15, 20, 25, and 30.) The distribution is
obviously quite nonnormal.

We asked R to select 1000 different samples, each consisting of n = 15 observations, and calculate
the value of the sample mean X for each one. Figure 6.12 is a histogram of the resulting 1000 values;
this is the approximate sampling distribution of X under the specified circumstances. This distribution
is clearly approximately normal even though the sample size is not all that large. As further evidence
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Figure 6.11 Probability distribution of X = amount of gasoline purchased ($) in Example 6.10
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for normality, Figure 6.13 shows a normal probability plot of the 1000 �x values; the linear pattern is
very prominent. It is typically not nonnormality in the central part of the population distribution that
causes the CLT to fail, but instead very substantial skewness or extremely heavy tails.

The CLT can also be generalized so it applies to nonidentically-distributed independent random
variables and certain linear combinations. Roughly speaking, if n is large and no individual term is
likely to contribute too much to the overall value, then asymptotic normality prevails (see Exercise
68). It can also be generalized to sums of variables which are not independent, provided the extent of
dependence between most pairs of variables is not too strong.
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Figure 6.12 Approximate sampling distribution of the sample mean amount purchased when n = 15 and the
population distribution is as shown in Figure 6.11
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Figure 6.13 Normal probability plot of the 1000 �x values based on samples of size n = 15 ■
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Other Applications of the Central Limit Theorem
The CLT can be used to justify the normal approximation to the binomial distribution discussed
in Chapter 4. Recall that a binomial variable X is the number of successes in a binomial
experiment consisting of n independent success/failure trials with p = P(success) for any
particular trial. Define new rvs X1, X2, …, Xn by

Xi ¼ 1 if the ith trial results in a success
0 if the ith trial results in a failure

�
ði ¼ 1; . . .; nÞ

Because the trials are independent and P(success) is constant from trial to trial, the Xi’s are iid (a
random sample from a Bernoulli distribution). When the Xi’s are summed, a 1 is added for every
success that occurs and a 0 for every failure so X = X1 + � � � + Xn, their total. The sample mean
of the Xi’s is X ¼ X=n, the sample proportion of successes, which in previous discussions we
have denoted P̂. The CLT then implies that if n is sufficiently large, both X and P̂ are
approximately normal when n is large. We summarize properties of the P̂ distribution in the
following corollary; Statements 1 and 2 were derived in Section 3.5.

COROLLARY Consider an event A in the sample space of some experiment with p = P(A). Let
X = the number of times A occurs when the experiment is repeated n independent
times, and define

P̂ ¼ P̂ðAÞ ¼ X

n

Then

1. EðP̂Þ ¼ p

2. VðP̂Þ ¼ pð1� pÞ
n

and rP̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
3. As n increases, the distribution of P̂ approaches a normal distribution.

In practice, Property 3 is taken to say that P̂ is approximately normal, provided that
np � 10 and n(1 – p) � 10.

The necessary sample size for this approximation depends on the value of p: When p is close to .5, the
distribution of each Bernoulli Xi is reasonably symmetric (see Figure 6.14), whereas the distribution is
quite skewed when p is near 0 or 1. Using the approximation only if both np � 10 and n(1 – p) � 10
ensures that n is large enough to overcome any skewness in the underlying Bernoulli distribution.

0 1 0 1

a b

Figure 6.14 Two Bernoulli distributions: (a) p = .4 (reasonably symmetric); (b) p = .1 (very skewed)
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Example 6.11 A computer simulation in the style of Section 2.6 is used to determine the probability
that a complex system of components operates properly throughout the warranty period. Unknown to
the investigator, the true probability is P(A) = .18. If 10,000 simulations of the underlying process are
run, what is the chance the estimated probability P̂ðAÞ will be within .01 of the true probability P(A)?

Apply the preceding corollary, with n = 10,000 and p = P(A) = .18. The expected value of P̂ðAÞ is
p = .18, and the standard deviation is rP̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:18ð:82Þ=10;000p ¼ :00384. Since np = 1800 � 10
and n(1 – p) = 8200 � 10, a normal distribution can safely be used to approximate the distribution
of P̂ðAÞ. This sample proportion is within .01 of the true probability if and only if :17\P̂ðAÞ\:19, so
the desired likelihood is approximately

Pð:17\ P̂\ :19Þ � P
:17� :18
:00384

\ Z\
:19� :18
:00384

� �
¼ Uð2:60Þ � Uð�2:60Þ ¼ :9906

■

The normal distribution serves as a reasonable approximation to the binomial pmf when n is large
because the binomial distribution is additive; i.e., a binomial rv can be expressed as the sum of other,
iid rvs. Other additive distributions include the Poisson, negative binomial, gamma, and (of course)
normal distributions; some of these were discussed at the end of Section 5.3. In particular, CLT
justifies normal approximations to the following distributions:

• Poisson, when µ is large
• Negative binomial, when r is large
• Gamma, when a is large

As a final application of the CLT, first recall from Section 4.5 that X has a lognormal distribution if
ln(X) has a normal distribution.

PROPOSITION Let X1, X2,…, Xn be a random sample from a distribution for which only positive
values are possible [P(Xi > 0) = 1]. Then if n is sufficiently large, the product
Y = X1 X2, � � � � �, Xn has approximately a lognormal distribution; that is,
ln(Y) has a normal distribution.

To verify this, note that
lnðYÞ ¼ ln X1ð Þþ ln X2ð Þþ � � � þ lnðXnÞ

Since ln(Y) is a sum of independent and identically distributed rvs [the ln(Xi)’s], it is approximately
normal when n is large, so Y itself has approximately a lognormal distribution. As an example of the
applicability of this result, it has been argued that the damage process in plastic flow and crack
propagation is a multiplicative process, so that variables such as percentage elongation and rupture
strength have approximately lognormal distributions.

The Law of Large Numbers
In the simulation sections of Chapters 2–4, we described how a sample proportion P̂ could estimate a
true probability p, and a sample mean X served to approximate a theoretical expected value µ.
Moreover, in both cases the precision of the estimation improves as the number of simulation runs, n,
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increases. We would like to be able to say that our estimates “converge” to the correct answers in
some sense. Such a convergence statement is justified by another important theoretical result, called
the Law of Large Numbers.

To begin, recall the first proposition in this section: If X1, X2, …, Xn is a random sample from a
distribution with mean l and standard deviation r, then EðXÞ ¼ l and VðXÞ ¼ r2=n. As n increases,
the expected value of X remains at l but the variance approaches zero; that is,

E½ðX � lÞ�2 ¼ VðXÞ ¼ r2=n ! 0. We say that X converges in mean square to l because the mean of
the squared difference between X and l goes to zero. This is one form of the Law of Large Numbers.

Another form of convergence states that as the sample size n increases, X is increasingly unlikely
to differ by any set amount from µ. More precisely, let e be a positive number close to 0, such as .01
or .001, and consider Pð X � l

�� ��� eÞ, the probability that X differs from l by at least e (at least .01, at
least .001, etc.). We will prove shortly that, no matter how small the value of e, this probability will
approach zero as n ! 1. Because of this, statisticians say that X converges to l in probability.

The two forms of the Law of Large Numbers are summarized in the following theorem.

LAW OF LARGE
NUMBERS

If X1, X2, . . . , Xn is a random sample from a distribution with mean l,
then X converges to l

1. in mean square: E½ðX � lÞ2� ! 0 as n ! 1
2. in probability: Pð X � l

�� ��� eÞ ! 0 as n ! 1 for any e > 0.

Proof The proof of Statement 1 appears a few paragraphs above. For Statement 2, recall
Chebyshev’s inequality (Exercises 45 and 163 in Chapter 3), which states that for any rv Y,
P(|Y – µY| � krY) � 1/k2 for any k � 1 (i.e., the probability that Y is at least k standard
deviations away from its mean is at most 1/k2). Let Y ¼ X, so lY ¼ EðXÞ ¼ l and
rY ¼ rX ¼ r=

ffiffiffi
n

p
. Now, for any e > 0, determine the value of k such that e ¼ krY ¼ kr=

ffiffiffi
n

p
;

solving for k yields k ¼ e
ffiffiffi
n

p
=r, which for sufficiently large n will exceed 1. Apply Chebyshev’s

inequality:

Pð Y � lYj j � krYÞ� 1
k2

) P X � l
�� ��� e

ffiffiffi
n

p
r

� rffiffiffi
n

p
� �

� 1

ðe ffiffiffi
n

p
=rÞ2

) P X � l
�� ��� e
� �� r2

e2n
! 0 as n ! 1

That is, Pð X � l
�� ��� eÞ ! 0 ! 0 as n ! 1 for any e > 0. ■

Convergence of X to µ in probability actually holds even if the variance r2 does not exist (a heavy-
tailed distribution) as long as µ is finite. But then Chebyshev’s inequality cannot be used, and the
proof is much more complicated.

In statistical language, the Law of Large Numbers states that X is a consistent estimator of µ. Other
statistics are also consistent estimators of the corresponding parameters. For example, it can be shown
that the sample proportion P̂ is a consistent estimator of the population proportion p (Exercise 24),

and the sample variance S2 =
P ðXi � XÞ2=ðn� 1Þ is a consistent estimator of the population

variance r2.
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Exercises: Section 6.2 (11–27)

11. The inside diameter of a randomly selected
piston ring is a random variable with mean
value 12 cm and standard deviation .04 cm.

a. If X is the sample mean diameter for a
random sample of n = 16 rings, where
is the sampling distribution of X cen-
tered, and what is the standard deviation
of the X distribution?

b. Answer the questions posed in part
(a) for a sample size of n = 64 rings.

c. For which of the two random samples,
the one of part (a) or the one of part (b),
is X more likely to be within .01 cm of
12 cm? Explain your reasoning.

12. Refer to the previous exercise. Suppose the
distribution of diameter is normal.

a. Calculate Pð11:99�X� 12:01Þ when
n = 16.

b. How likely is it that the sample mean
diameter exceeds 12.01 when n = 25?

13. The National Health Statistics Reports dated
Oct. 22, 2008 stated that for a sample size of
277 18-year-old American males, the sam-
ple mean waist circumference was 86.3 cm.
A somewhat complicated method was used
to estimate various population percentiles,
resulting in the following values:

5th 10th 25th 50th 75th 90th 95th
69.6 70.9 75.2 81.3 95.4 107.1 116.4

a. Is it plausible that the waist size distri-
bution is at least approximately normal?
Explain your reasoning. If your answer
is no, conjecture the shape of the pop-
ulation distribution.

b. Suppose that the population mean waist
size is 85 cm and that the population
standard deviation is 15 cm. How likely
is it that a random sample of 277 indi-
viduals will result in a sample mean
waist size of at least 86.3 cm?

c. Referring back to (b), suppose now that
the population mean waist size is 82 cm
(closer to the median than the mean).

Now what is the (approximate) proba-
bility that the sample mean will be at
least 86.3? In light of this calculation,
do you think that 82 is a reasonable
value for l?

14. There are 40 students in an elementary
statistics class. On the basis of years of
experience, the instructor knows that the
time needed to grade a randomly chosen
first examination paper is a random variable
with an expected value of 6 min and a
standard deviation of 6 min.

a. If grading times are independent and the
instructor begins grading at 6:50 p.m.
and grades continuously, what is the
(approximate) probability that he is
through grading before the 11:00 p.m.
TV news begins?

b. If the sports report begins at 11:10, what is
the probability that he misses part of the
report if he waits until grading is done
before turning on the TV?

15. The tip percentage at a restaurant has a
mean value of 18% and a standard devia-
tion of 6%.

a. What is the approximate probability that
the sample mean tip percentage for a
random sample of 40 bills is between 16
and 19%?

b. If the sample size had been 15 rather
than 40, could the probability requested
in part (a) be calculated from the given
information?

16. The time taken by a randomly selected
applicant for a mortgage to fill out a cer-
tain form has a normal distribution with
mean value 10 min and standard deviation
2 min. If five individuals fill out a form on
one day and six on another, what is the
probability that the sample average amount
of time taken on each day is at most
11 min?

17. The lifetime of a type of battery is normally
distributed with mean value 10 h and
standard deviation 1 h. There are four
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batteries in a package. What lifetime value
is such that the total lifetime of all batteries
in a package exceeds that value for only 5%
of all packages?

18. Let X represent the amount of gasoline
(gallons) purchased by a randomly selected
customer at a gas station. Suppose that the
mean value and standard deviation of X are
11.5 and 4.0, respectively.

a. In a sample of 50 randomly selected cus-
tomers, what is the approximate proba-
bility that the sample mean amount
purchased is at least 12 gallons?

b. In a sample of 50 randomly selected
customers, what is the approximate
probability that the total amount of
gasoline purchased is at most 600
gallons?

c. What is the approximate value of the
95th percentile for the total amount
purchased by 50 randomly selected
customers?

19. Suppose that the fracture angle under pure
compression of a randomly selected speci-
men of fiber reinforced polymer-matrix
composite material is normally distributed
with mean value 53 and standard deviation
1 (suggested in the article “Stochastic
Failure Modelling of Unidirectional Com-
posite Ply Failure,” Reliability Engr. Syst.
Safety 2012: 1–9; this type of material is
used extensively in the aerospace industry).

a. If a random sample of 4 specimens is
selected, what is the probability that the
sample mean fracture angle is at most
54? Between 53 and 54?

b. How many such specimens would be
required to ensure that the first proba-
bility in (a) is at least .999?

20. The first assignment in a statistical com-
puting class involves running a short pro-
gram. If past experience indicates that 40%
of all students will make no programming
errors, compute the (approximate) proba-
bility that in a class of 50 students

a. At least 25 will make no errors. [Hint:
Normal approximation to the binomial.]

b. Between 15 and 25 (inclusive) will
make no errors.

21. The number of parking tickets issued in a
certain city on any given weekday has a
Poisson distribution with parameter µ = 50.
What is the approximate probability that

a. Between 35 and 70 tickets are given out
on a particular day? [Hint: When µ is
large, a Poisson rv has approximately a
normal distribution.]

b. The total number of tickets given out
during a 5-day week is between 225 and
275?

c. Use software to obtain the exact prob-
abilities in (a) and (b), and compare to
the approximations.

22. Suppose the distribution of the time X (in
hours) spent by students at a certain uni-
versity on a particular project is gamma
with parameters a = 50 and b = 2.
Because a is large, it can be shown that
X has approximately a normal distribution.
Use this fact to compute the probability that
a randomly selected student spends at most
125 h on the project.

23. The Central Limit Theorem says that X is
approximately normal if the sample size is
large. More specifically, the theorem states
that the standardized X has a limiting stan-
dard normal distribution. That is, the rv
(X � lÞ=ðr= ffiffiffi

n
p Þ has a distribution appro-

aching the standard normal. Can you rec-
oncile this with the Law of Large Numbers?

24. Assume a sequence of independent trials,
each with probability p of success. Use the
Law of Large Numbers to show that
the proportion of successes approaches p as
the number of trials becomes large.

25. LetYnbe the largest order statistic in a sample
of size n from the uniform distribution on
[0, h]. Show that Yn converges in probability
to h, that is, that Pð Yn � hj j � eÞ ! 0 as n
approaches 1. [Hint: The pdf of the largest
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order statistic appears in Section 5.7, so the
relevant probability can be obtained by
integration (Chebyshev’s inequality is not
relevant here).]

26. A friend commutes by bus to and from
work 6 days/week. Suppose that waiting
time is uniformly distributed between 0 and
10 min, and that waiting times going and
returning on various days are independent
of each other. What is the approximate

probability that total waiting time for an
entire week is at most 75 min?

27. It can be shown that if Yn converges in
probability to a constant s, then h(Yn)
converges to h(s) for any function h �ð Þ that
is continuous at s. Use this to obtain a
consistent estimator for the rate parameter k
of an exponential distribution. [Hint: How
does µ for an exponential distribution relate
to the exponential parameter k?]
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6.3 The v2, t, and F Distributions

The previous section explored the sampling distribution of the sample mean, X, with particular
attention to the special case when our sample X1; . . .;Xn is drawn from a normally distributed
population. In this section, we introduce three distributions closely related to the normal: the chi-
squared (v2), t, and F distributions. These distributions will then be used in the next section to
describe the sampling variability of several statistics on which important inferential procedures are
based.

The Chi-Squared Distribution

DEFINITION For a positive integer m, let Z1; . . .;Zm be iid standard normal random variables.
Then the chi-squared distribution with m degrees of freedom (df) is defined to
be the distribution of the rv

X ¼ Z2
1 þ � � � þ Z2

m

This will sometimes be denoted by X� v2m .

Our first goal is to determine the pdf of this distribution. We start with the m = 1 case, where we may
write X ¼ Z2

1 . As in previous chapters, let UðzÞ and /ðzÞ denote the cdf and pdf, respectively, of the
standard normal distribution. Then the cdf of X, for x > 0, is given by

FðxÞ ¼ PðX� xÞ ¼ PðZ2
1 � xÞ ¼ Pð� ffiffiffi

x
p � Z1 �

ffiffiffi
x

p Þ ¼ Uð ffiffiffi
x

p Þ � Uð� ffiffiffi
x

p Þ
¼ Uð ffiffiffi

x
p Þ � ½1� Uð ffiffiffi

x
p Þ� ¼ 2Uð ffiffiffi

x
p Þ � 1

Above, we’ve used the symmetry property Uð�zÞ ¼ 1� UðzÞ of the standard normal distribution.
Differentiate to obtain the pdf for x > 0:

f ðxÞ ¼ F0ðxÞ ¼ 2U0ð ffiffiffi
x

p Þ � 1
2
ffiffiffi
x

p � 0 ¼ /ð ffiffiffi
x

p Þ � 1ffiffiffi
x

p ¼ 1ffiffiffiffiffiffi
2p

p e�ð ffiffixp Þ2=2 � 1ffiffiffi
x

p ¼ 1ffiffiffiffiffiffi
2p

p x�1=2e�x=2 ð6:6Þ

We have established the v21 pdf. But this expression looks familiar: comparing (6.6) to the gamma pdf
in Expression (4.6), and recalling that Cð12Þ ¼

ffiffiffi
p

p
, we find that the v21 distribution is exactly the same

as the gamma distribution with parameters a = 1/2 and b = 2!
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To generalize to any number of degrees of freedom, recall that the moment generating function of
the gamma distribution is MðtÞ ¼ ð1� btÞ�a. So, the mgf of a v21 rv—that is, the mgf of Z2 when

Z * N(0, 1)—is MðtÞ ¼ ð1� 2tÞ�1=2. Using the definition of the chi-squared distribution and
properties of mgfs, we find that for X� v2m ,

MXðtÞ ¼ MZ2
1
ðtÞ � � � � � MZ2

m
ðtÞ ¼ ð1� 2tÞ�1=2 � � � � � ð1� 2tÞ�1=2 ¼ ð1� 2tÞ�m=2;

which we recognize as the mgf of the gamma distribution with a = m/2 and b = 2. By the uniqueness
of mgfs, we have established the following distributional result.

PROPOSITION The chi-squared distribution with m degrees of freedom is the gamma distri-
bution with a = m/2 and b = 2. In particular, the pdf of the v2m distribution is

f ðx; mÞ ¼ 1

2m=2Cðm=2Þ x
ðm=2Þ�1e�x=2 x[ 0

Moreover, if X� v2m then E(X) = m, V(X) = 2m, and MXðtÞ ¼ ð1� 2tÞ�m=2.

The mean and variance stated in the proposition follow from properties of the gamma distribution:

l ¼ ab ¼ m
2
� 2 ¼ m; r2 ¼ ab2 ¼ m

2
� 22 ¼ 2m

Figure 6.15 shows graphs of the chi-squared pdf for 1, 2, 3, and 5 degrees of freedom. Notice that the
pdf is unbounded near x = 0 for 1 df and the pdf is exponentially decreasing for 2 df. Indeed, the chi-
squared for 2 df is exponential with mean 2, f ðxÞ ¼ 1

2e
�x=2 for x > 0. If m > 2 the pdf is unimodal with

a peak at x = m – 2, as shown in Exercise 31. The distribution is skewed, but it becomes more
symmetric as the number of degrees of freedom increases, and for large df values the distribution is
approximately normal (see Exercise 29).
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Figure 6.15 The chi-squared pdf for 1, 2, 3, and 5 DF
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Without software, it is difficult to integrate a chi-squared pdf, so Table A.5 in the appendix has
critical values for chi-squared distributions. For example, the second row of the table is for 2 df, and
under the heading .01 the value 9.210 indicates that Pðv22 [ 9:210Þ ¼ :01. We will use the notation
v2:01;2 ¼ 9:210. In general v2a;v ¼ c means that Pðv2v [ cÞ ¼ a. Instructions for chi-squared compu-
tations using R appear at the end of this section.

Example 6.12 The article “Reliability analysis of LED-based electronic devices” (Proc. Engr. 2012:
260–269) uses chi-squared distributions to model the lifecycle, in thousands of hours, of certain LED
lamps. In one particular setting, the authors suggest a parameter value of m = 8 df. Let X represent this
v28 rv. The mean and standard deviation of X are E(X) = m = 8 thousand hours and SDðXÞ ¼ ffiffiffiffiffi

2m
p ¼ffiffiffiffiffi

16
p ¼ 4 thousand hours.

We can use the gamma cdf, as illustrated in Chapter 4, to determine probabilities concerning X,
because the v28 distribution is the same as the gamma distribution with a = 8/2 = 4 and b = 2. For
instance, the probability an LED lamp of this type has a lifecycle between 6 and 10 thousand hours is

Pð6�X� 10Þ ¼ Gð10=2; 4Þ � Gð6=2; 4Þ ¼ Gð5; 4Þ � Gð3; 4Þ
¼ :735� :353 ¼ :382

Next, what values define the “middle 95%” of lifecycle values for these LED lamps? We desire the
.025 and .975 quantiles of the v28 distribution; from Appendix Table A.5, they are

v2:975;8 ¼ 2:180 and v2:025;8 ¼ 17:534

That is, the middle 95% of lifecycle values ranges from 2.180 to 17.534 h. ■

Given the definition of the chi-squared distribution, the following properties should come as no
surprise. Proofs of both statements rely on moment generating functions (Exercises 32 and 33).

PROPOSITION 1. If X3 ¼ X1 þX2, X1 and X2 are independent, X1 � v2v1 , and X2 � v2v2 , then

X3 � v2v1 þ v2
.

2. If X3 ¼ X1 þX2, X1 and X2 are independent, X1 � v2v1 , and X3 � v2v3 with

m3 > m1, then X2 � v2v3�v1
.

Statement 1 says that the chi-squared distribution is an additive distribution; we saw in Chapter 5 that
the normal and Poisson distributions are also additive. Statement 2 establishes a “subtractive”
property of chi-squared, which will be critical in the next section for establishing the sampling
distribution of the sample variance S2.
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The t Distribution

DEFINITION Let Z be a standard normal rv and let Y be a v2v rv independent of Z. Then the
t distribution with m degrees of freedom (df) is defined to be the distribution of
the ratio

T ¼ Zffiffiffiffiffiffiffiffi
Y=m

p
We will sometimes abbreviate this distribution by T * tm.

With some careful calculus, we can obtain the t pdf.

PROPOSITION The pdf of a random variable T having a t distribution with m degrees of
freedom is

f ðtÞ ¼ 1ffiffiffi
p

p
m
Cððmþ 1Þ=2Þ

Cðm=2Þ
1

ð1þ t2=mÞðmþ 1Þ=2 �1\t\1

Proof A tm variable is defined in terms of a standard normal Z and a v2m variable Y. They are
independent, so their joint pdf f(y, z) is the product of their individual pdfs. We first find the cdf of
T and then differentiate to obtain the pdf:

FðtÞ ¼ PðT � tÞ ¼ P
Zffiffiffiffiffiffiffiffi
Y=m

p � t

 !
¼ P Z� t

ffiffiffiffi
Y

m

r !
¼
Z1
0

Zt ffiffiffiffiffiy=m
p

�1
f ðy; zÞ dz dy

Differentiating with respect to t using the Fundamental Theorem of Calculus,

f ðtÞ ¼ d

dt
FðtÞ ¼

Z1
0

@

@t

Zt ffiffiffiffiffiy=m
p

�1
f ðy; zÞ dz dy ¼

Z1
0

f y; t

ffiffiffi
y

m

r� �
�
ffiffiffi
y

m

r
dy

Now substitute the joint pdf—that is, the product of the marginal pdfs of Y and Z—and integrate:

f ðtÞ ¼
Z1
0

ym=2�1

2m=2Cðm=2Þ e
�y=2 � 1ffiffiffiffiffiffi

2p
p e�½t

ffiffiffiffiffi
y=v

p
�2=2 �

ffiffiffi
y

m

r
dy

¼ 1

2m=2Cðm=2Þ ffiffiffiffiffiffiffiffi
2pm

p
Z1
0

yðmþ 1Þ=2�1e�1½1=2þ t2=ð2vÞ�y dy
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The integral can be evaluated using Expression (4.5) from the section on the gamma distribution:

f ðtÞ ¼ 1

2m=2Cðm=2Þ ffiffiffiffiffiffiffiffi
2pm

p � Cððmþ 1Þ=2Þ
½1=2þ t2=ð2vÞ�m=2þ 1=2

¼ Cððmþ 1Þ=2Þffiffiffiffiffi
pm

p
Cðm=2Þ

1

ð1þ t2=mÞðmþ 1Þ=2 ; �1\t\1
■

The pdf has a maximum at 0 and decreases symmetrically as |t| increases. As m becomes large, the
t pdf approaches the standard normal pdf, as shown in Exercise 36. It makes sense that the t distri-
bution would be close to the standard normal for large m, because T ¼ Z=

ffiffiffiffiffiffiffiffiffi
v2v=v

p
, and v2v=v converges

to 1 by the Law of Large Numbers, as shown in Exercise 30.
Figure 6.16 shows t density curves for m = 1, 5, and 20 alongwith the standard normal (z) curve.Notice

how fat the tails are for 1 df, as compared to the standard normal. However, as the number of df increases,
the t pdf becomes more like the standard normal. For 20 df there is not much difference.

Integration of the t pdf is difficult without software, so values of upper-tail areas are given in
Table A.7. For example, the value in the column labeled 2 and the row labeled 3.0 is .048, meaning
that P(T > 3.0) = .048 when T * t2. We write this as t.048,2 = 3.0. In general we write ta,m = c if
P(T > c) = a when T * tm. A tabulation of these t critical values (i.e., ta,m) for frequently used tail
areas a appears in Table A.6.

Using Cð1=2Þ ¼ ffiffiffi
p

p
, we obtain the pdf for the t distribution with 1 df as f ðtÞ ¼ 1= p 1þ t2ð Þ½ �,

which is also known as the Cauchy distribution. This distribution has such heavy tails that the mean
does not exist (Exercise 37).

The mean and variance of a t variable can be obtained directly from the pdf, but it’s instructive to
derive them through the definition in terms of independent standard normal and chi-squared variables,

T ¼ Z=
ffiffiffiffiffiffiffiffi
Y=v

p
. Recall from Section 5.2 that E(UV) = E(U)E(V) if U and V are independent and the

expectations of U and V both exist. Thus,

EðTÞ ¼ EðZÞEð1=
ffiffiffiffiffiffiffiffi
Y=v

p
Þ ¼ EðZÞm1=2EðY�1=2Þ

.2

.1

0

.4

.3

.5

−5 −3 −1 1 3 5
t

5 df

1 df

z
20 df

f (t)

Figure 6.16 Comparison of t curves to the z curve
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Of course, E(Z) = 0, so E(T) = 0 if EðY�1=2Þ exists. Let’s compute E(Yk) for any k if Y is chi-squared,
using Expression (4.5):

EðYkÞ ¼
Z1
0

yk
yðm=2Þ�1

2m=2Cðm=2Þ e
�y=2dy ¼ 1

2m=2Cðm=2Þ
Z1
0

yðkþ m=2Þ�1e�y=2dy

¼ 1

2m=2Cðm=2Þ � 2
kþ m=2Cðkþ m=2Þ ¼ 2kCðkþ m=2Þ

Cðm=2Þ for kþ m=2[ 0 ð6:7Þ

If k + m/2 � 0, the integral does not converge and EðYkÞ does not exist. When k ¼ �1
2, we require

that m > 1 for the integral to converge. Thus, the mean of a t variable fails to exist if m = 1 and the
mean is indeed 0 otherwise.

For the variance of T we need E(T2) = E(Z2) � E[1/(Y/m)] = 1 � mE(Y–1). Using k = –1 in Expression
(6.7), we obtain, with the help of the property C(a + 1) = aC(a),

EðY�1Þ ¼ 2�1Cð�1þ m=2Þ
Cðm=2Þ ¼ 2�1

m=2� 1
¼ 1

m� 2
) VðTÞ ¼ m � 1

m� 2
¼ m

m� 2

provided that –1 + m/2 > 0, or m > 2. For 1 or 2 df the variance of T does not exist. For m > 2, the
variance always exceeds 1, and for large df the variance is close to 1. This is appropriate because any
t curve spreads out more than the z curve, but for large df the t curve approaches the z curve.

The F Distribution

DEFINITION Let Y1 and Y2 be independent chi-squared random variables with m1 and m2
degrees of freedom, respectively. The F distribution with m1 numerator
degrees of freedom and m2 denominator degrees of freedom is defined to be
the distribution of the ratio

F ¼ Y1=v1
Y2=v2

; ð6:8Þ

This distribution will sometimes be denoted Fv1;v2 .

The pdf of a random variable having an F distribution is

f ðx; m1; m2Þ ¼ C½ðm1 þ m2Þ=2�
Cðm1=2ÞCðm2=2Þ

m1
m2

� �m1=2

� xm1=2�1

ð1þ m1x=m2Þðm1 þ m2Þ=2 x[ 0

Its derivation (Exercise 40) is similar to the derivation of the t pdf. Figure 6.17 shows the F density
curves for several choices of m1 and m2 = 10.
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The mean of the F distribution can be obtained with the help of Equation (6.8): E(F) = m2/(m2 – 2)
if m2 > 2, and it does not exist if m2 � 2 (Exercise 41).

What happens to F if the degrees of freedom are large? If m2 is large, then the denominator of
Expression (6.8) will be close to 1 (see Exercise 30), and approximately the F will be just the
numerator chi-squared over its degrees of freedom. Similarly, if both m1 and m2 are large, then both the
numerator and denominator will be close to 1, and the F ratio therefore will be close to 1.

Except for a few special choices of degrees of freedom, integration of the F pdf is difficult without
software, so F critical values (values that capture specified F distribution tail areas) are given in
Table A.8. For example, the value in the column labeled 1 and the row labeled 2 and .100 is 8.53,
meaning that P(F1,2 > 8.53) = .100. We can express this as F.1,1,2 = 8.53, where Fa;v1;v2 ¼ c means
that PðFv1;v2 [ cÞ ¼ a.

That same table can also be used to determine some lower-tail areas. Since 1/F = (X2/m2)/(X1/m1),
the reciprocal of an F variable also has an F distribution, but with the degrees of freedom reversed,
and this can be used to obtain lower-tail critical values. For example, .100 = P(F1,2 > 8.53) =
P(1/F1,2 < 1/8.53) = P(F2,1 < .117). This can be written as F.9,2,1 = .117 because .9 = P(F2,1 > .117).
In general,

Fp;m1;m2 ¼
1

F1�p;m2;m1

Finally, recalling the definition T ¼ Z=
ffiffiffiffiffiffiffiffi
X=v

p
of a tm rv, it follows that

T2 ¼ Z2

X=m
� v21=1

v2m=m
¼ F1;m

That is, t2v ¼ F1;v. In theory, we can use this to obtain tail areas. For example,

:100 ¼ PðF1;2 [ 8:53Þ ¼ PðT2
2 [ 8:53Þ ¼ Pð T2j j[

ffiffiffiffiffiffiffiffiffi
8:53

p
Þ ¼ 2PðT2 [ 2:92Þ;

and therefore .05 = P(T2 > 2.92). We previously determined that .048 = P(T2 > 3.0), which is very
nearly the same statement. In terms of our notation, t:05;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F:10;1;2

p
, and we can similarly show that

in general ta;v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
F2a;1;v

p
if 0 < a < .5.
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Figure 6.17 F density curves
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Chi-squared, t, and F Calculations with Software
Although we have made several references in this section to the statistical tables in the appendix,
software alleviates the need to rely on such tables. The commands for the cdf and quantile functions
of the v2, t, and F distributions in R are presented in Table 6.3.

Critical values can be computed by substituting p = 1 – a into the quantile functions. For instance,
the a = .1 critical value of the F1,2 distribution, F.1,1,2 = 8.53, can be obtained with qf(.9, 1, 2)
in R.

Exercises: Section 6.3 (28–50)

28. a. Use Table A.5 to find v2:05;2.
b. Verify the answer to (a) by integrating

the pdf.
c. Verify the answer to (a) by using

software.

29. Why should v2v be approximately normal
for large m? What theorem applies here, and
why?

30. Apply the Law of Large Numbers to show
that v2v=v approaches 1 as m becomes large.

31. Show that the v2v density function has a
maximum at m – 2 if m > 2.

32. Show that if X1 and X2 are independent,
X1 � v2v1 , andX2 � v2v2 , then X1 þX2 � v2v1 þ v2

.
[Hint: Use mgfs.]

33. a. Show that if X1 and X2 are independent,
X1 � v2v1 , and X1 þX2 � v2v3 with

m3 > m1, then X2 � v2v3�v1
. [Hint: Use

mgfs.]
b. In the setting of part (a), can we allow

m3 < m1? The answer is no: show that if
X1 and X2 are independent, X1 � v2v1 ,

and X1 þX2 � v2v3 , then m3 � m1. [Hint:
Calculate the variance of X1 þX2.]

34. a. Use Table A.6 to find t:102;1.
b. Verify the answer to part (a) by inte-

grating the pdf.
c. Verify the answer to part (a) using

software.

35. a. Use Table A.6 to find t:005;10.
b. Use Table A.8 to find F:01;1;10 and relate

this to the value you obtained in part (a).
c. Verify the answer to part (b) using

software.

36. Show that the t pdf approaches the standard
normal pdf for large df values. [Hint:
Cðxþ 1=2Þ=½ ffiffiffixp

CðxÞ� ! 1 and ð1þ a=xÞx
! ea as x ! 1:]

37. Show directly from the pdf that the mean of
a t1 (Cauchy) random variable does not
exist.

38. Show that the ratio of two independent stan-
dard normal random variables has the t1 dis-
tribution. [Hint: Split the domain of the
denominator into positive and negative parts.]

39. a. Use Table A.8 to find F:1;2;4.
b. Verify the answer to part (a) using the

pdf.
c. Verify the answer to part (a) using

software.

40. Derive the F pdf by applying the method
used to derive the t pdf.

41. Let X have an F distribution with m1
numerator df and m2 denominator df.

a. Determine the mean value of X.
b. Determine the variance of X.

42. IsEðFv1;v2Þ ¼ Eðv2v1=v1Þ=Eðv2v2=v2Þ? Explain.
43. Show that Fp;v1;v2 ¼ 1=F1�p;v2;v1 .

44. a. Use Table A.6 to find t:25;10.
b. Use (a) to find the median of the F1;10

distribution.

Table 6.3 R code for chi-squared, t, and F calculations

Chi-squared t F

cdf pchisq(x, m) pt(x, m) pf(x, m1, m2)
Quantile qchisq(p, m) qt(p, m) qf(p, m1, m2)
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c. Verify the answer to part (b) using
software.

45. Show that if X has a gamma distribution
and c > 0 is a constant, then cX has a
gamma distribution. In particular, if X is
chi-squared distributed, then cX has a
gamma distribution.

46. Suppose T * t9. Determine the distribution
of 1/T2.

47. Let Z1; Z2;X1;X2;X3 be independent rvs
with each Zi �Nð0; 1Þ and each Xi �
Nð0; 5Þ. Construct a variable involving the
Zi’s and Xi’s which has an F3,2 distribution.

48. Let Z1, Z2, …, Z10 be independent standard
normal. Use these to construct

a. A v24 random variable.
b. A t4 random variable.
c. An F4,6 random variable.
d. A Cauchy random variable.
e. An exponential random variable with

mean 2.

f. An exponential random variable with
mean 1.

g. A gamma random variable with mean 1
and variance 1

2. [Hint: Use part (a) and
Exercise 45.]

49. a. Use Exercise 29 to approximate
Pðv250 [ 70Þ, and compare the result
with the answer given by software,
.03237.

b. Use the formula from Table A.5,

v2a;v � v 1� 2= 9vð Þþ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 9vð Þp� �3

, to

approximate Pðv250 [ 70Þ, and com-
pare with part (a).

50. The difference of two independent normal
variables itself has a normal distribution. Is
it true that the difference between two
independent chi-squared variables has a
chi-squared distribution? Explain.

6.4 Distributions Based on Normal Random Samples

Let X1; . . .;Xn be a random sample from a normally distributed population. We saw previously that
the sampling distribution of the sample mean, X, is then also normal. In this section, we develop the
sampling distribution of the sample variance S2, the joint distribution of X and S2, and the distri-
butions of other important statistics when sampling from a normal distribution. The v2, t, and
F distributions of Section 6.3 will feature centrally in this section, and the results established here will
serve as the backbone for many of the statistical inference procedures in the second half of this book.

The Joint Sampling Distribution of X and S2

For a random sample X1; . . .;Xn, the sample variance S2 is defined as a rv by

S2 ¼ 1
n� 1

Xn
i¼1

ðXi � XÞ2

This can be used to calculate an estimate of r2 when the population mean l is unknown. This is the
same formula presented in Section 1.4, but now we acknowledge that S2, like any statistic, will vary
in value from sample to sample. To establish the sampling distribution of S2 when sampling from a
normal population, we first need the following critical result.

THEOREM If X1, X2, …, Xn form a random sample from a normal distribution, then X and S2

are independent.
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Proof Consider the covariances between the sample mean and the deviations from the sample mean.
Using the linearity of the covariance operator,

CovðXi � X;XÞ ¼ CovðXi;XÞ � CovðX;XÞ

¼ CovðXi;
1
n

Xn
k¼1

XkÞ � VðXÞ

¼ 1
n
CovðXi;XiÞþ 1

n

X
k 6¼i

CovðXi;XkÞ � VðXÞ

¼ 1
n
VðXiÞþ 0� VðXÞ ¼ 1

n
r2 � r2

n
¼ 0

The middle term in the third line is zero because independence of the Xi’s implies that Cov(Xi, Xk) = 0
for k 6¼ i. This shows that X is uncorrelated with all the deviations of the observations from their
mean. In general, this would not imply independence, but in the special case of the bivariate normal
distribution, being uncorrelated is equivalent to independence. Both X and Xi � X are linear com-
binations of the independent normal observations, so their joint distribution is bivariate normal, as
discussed in Section 5.5. Because the sample variance S2 is composed of the deviations Xi � X, we
conclude that X and S2 are independent. ■

To better understand the foregoing independence property, consider selecting sample after sample
of size n from a particular population distribution, calculating �x and s for each sample, and then
plotting the resulting (�x, s) pairs. Figure 6.18a shows the result for 1000 samples of size n = 5 from a
standard normal population distribution. The elliptical pattern, with axes parallel to the coordinate
axes, suggests no relationship between �x and s, that is, independence of the statistics X and
S (equivalently, X and S2). However, this independence fails for data from a nonnormal distribution.
Figure 6.18b illustrates what happens for samples of size 5 from an exponential distribution with
mean 1. This plot shows a strong relationship between the two statistics, which is what might be
expected for data from a highly skewed distribution.
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Figure 6.18 Plot of ð�x; sÞ pairs for (a) samples from a normal distribution; (b) samples from a nonnormal distribution

6.4 Distributions Based on Normal Random Samples 389

http://dx.doi.org/10.1007/978-3-030-55156-8_5


We are now ready to derive the sampling distribution of S2 when sampling from a normally
distributed population. Notice that we’ll then know the joint distribution of X and S2, since it was
established in Section 6.2 that X�Nðl; r= ffiffiffi

n
p Þ and we just proved that these two statistics are

independent.

PROPOSITION If X1, X2, …, Xn form a random sample from a N(l, r) distribution, then
ðn� 1ÞS2=r2 � v2n�1.

Proof To begin, write

X
ðXi � lÞ2 ¼

X
½ðXi � XÞþ ðX � lÞ�2

¼
X

ðXi � XÞ2 þ 2ðX � lÞ
X

ðXi � XÞþ
X

ðX � lÞ2

The middle term on the second line vanishes (do you see why?). Dividing through by r2, we obtain

X Xi � l
r

� �2
¼
X Xi � X

r

� �2
þ
X X � l

r

� �2
¼
X Xi � X

r

� �2
þ n

X � l
r

� �2

This can be re-written as

X Xi � l
r

� �2
¼
X Xi � X

� �2
r2

þ X � l
r=

ffiffiffi
n

p
� �2

X Xi � l
r

� �2
¼ ðn� 1ÞS2

r2
þ X � l

r=
ffiffiffi
n

p
� �2 ð6:9Þ

If Xi * N(µ, r), then (Xi − l)/r is a standard normal rv. So, the left-hand side of (6.9) is the sum of
squares of n iid standard normal rvs, which by definition has a v2n distribution. At the same time, the
rightmost term in (6.9) is the square of the standardized version of X. So, it’s distributed as Z2 with
Z * N(0, 1), which by definition is v21. And, critically, the two terms on the right-hand side of (6.9)
are independent, because S2 and X are independent. Therefore, from the “subtractive” property of the
chi-squared distribution in Section 6.3 (with m3 ¼ n and m1 ¼ 1), we conclude that ðn� 1ÞS2=r2
� v2n�1, as claimed. ■

Intuitively, the degrees of freedom make sense because s2 is built from the deviations
ðx1 � �xÞ; ðx2 � �xÞ; . . .; ðxn � �xÞ, which sum to zero:

X
ðxi � �xÞ ¼

X
xi �

X
�x ¼ n�x� n�x ¼ 0

The last deviation is determined by the first (n – 1) deviations, so it is reasonable that s2 has only (n – 1)
degrees of freedom. The degrees of freedom help to explain why the definition of s2 has (n – 1) and not
n in the denominator.

Knowing that ðn� 1ÞS2=r2 � v2n�1, it can be shown (see Exercise 52) that the expected value of S
2

is r2, and also that the variance of S2 approaches 0 as n becomes large.
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A t-Distributed Statistic
In Section 6.3, we defined the t distribution as a particular ratio involving a normal rv and a chi-
squared rv. From the definition it is not obvious how the t distribution can be applied to data, but the
next result puts the distribution in more directly usable form. This result was originally discovered in
1908 by William Sealy Gosset, a statistician at the Guinness Brewery in Dublin, Ireland.

GOSSET’S THEOREM If X1, X2, …, Xn is a random sample from a N(l, r) distribution, then
the rv

X � l
S=

ffiffiffi
n

p

has the t distribution with (n – 1) degrees of freedom, tn–1.

Proof Re-express the fraction in a slightly messier way:

X � l
S=

ffiffiffi
n

p ¼ ðX � lÞ=ðr= ffiffiffi
n

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1ÞS2

r2
=ðn� 1Þ

r

The numerator on the right-hand side is standard normal. The denominator is the square root of a v2n�1

variable, divided by its degrees of freedom. This chi-squared variable is independent of the numerator,
so by definition the ratio has the t distribution with n − 1 degrees of freedom. ■

It’s worth comparing the two rvs

Z ¼ X � l
r=

ffiffiffi
n

p and T ¼ X � l
S=

ffiffiffi
n

p ð6:10Þ

When X1; . . .;Xn are iid normal rvs, then Z has a standard normal distribution. By contrast, the rv T—
obtained by replacing r with S in the expression for Z in (6.10)—has a tn–1 distribution. Replacing the
constant r with the rv S results in T having greater variability than Z, which is consistent with the
comparison between the t distributions and the standard normal distribution described in Section 6.3
(look back at Figure 6.16).

An F-Distributed Statistic
Suppose that we have a random sample ofm observations from the normal population Nðl1; r1Þ and an
independent random sample of n observations from a second normal populationNðl2; r2Þ. Then for the
sample variance S21 from the first group we know ðm� 1ÞS21=r21 is v2m�1, and similarly for the second
group ðn� 1ÞS22=r22 is v2n�1. Thus, according to the definition of the F distribution given in (6.8),

S21=r
2
1

S22=r
2
2

¼
ðm� 1ÞS21=r21

m� 1
ðn� 1ÞS22=r22

n� 1

�Fm�1;n�1 ð6:11Þ

6.4 Distributions Based on Normal Random Samples 391



The F distribution, via Expression (6.11), will be used in Chapter 10 to compare the variances from
two independent groups. Also, for several independent groups, in Chapter 11 we will use the F dis-
tribution to see if the differences among sample means are bigger than would be expected by chance.

Exercises: Section 6.4 (51–58)

51. Show that when sampling from a normal
distribution, the sample variance S2 has a
gamma distribution, and identify the
parameters a and b. [Hint: See Exercise 45.]

52. Knowing that ðn� 1ÞS2=r2 � v2n�1 for a
normal random sample,

a. Show that E(S2) = r2.
b. Show that V(S2) = 2r4/(n–1). What

happens to this variance as n gets large?
c. Apply Expression (6.7) to show that

EðSÞ ¼ r

ffiffiffi
2

p
Cðn=2Þffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

C½ðn� 1Þ=2� :

Then show that EðSÞ ¼ r
ffiffiffiffiffiffiffiffi
2=p

p
if n = 2.

Is E(S) = r for normal data?

53. Suppose X1; . . .;X13 form a random sample
from a normal distribution with mean 5 and
standard deviation 8.

a. Calculate PðX\9:13Þ.
b. Calculate P

P ðXi � XÞ2\1187
	 


.

[Hint: How does this relate to S2?]
c. Calculate

P X\9:13\ P ðXi � XÞ2\1187
	 


.

d. In this context, construct a rv that has a
t distribution, and identify its df.

54. In the unusual situation that the population
mean µ is known but the population vari-
ance r2 is not, we might consider the fol-
lowing alternative statistic for estimating r2:

r̂2 ¼ 1
n

Xn
i¼1

ðXi � lÞ2

a. Show that Eðr̂2Þ ¼ r2 regardless of
whether the Xi’s are normally dis-
tributed (but still assuming they com-
prise a random sample from some
population distribution).

b. Now assume the Xi’s are normally dis-
tributed. Determine a scaling constant
c so that the rv c � r̂2 has a chi-squared
distribution, and identify the number of
degrees of freedom.

c. Determine the variance of r̂2 assuming
the Xi’s are normally distributed.

55. Suppose X1; . . .;X27 are iid Nð5; 4Þ rvs. Let
X and S denote their sample mean and
sample standard deviation, respectively.
Calculate Pð X � 5

�� ��[ 0:4SÞ.
56. It was established in this section that X and

S2 are independent rvs when sampling from
a normal population. Is the same true for X

and r̂2 ¼ ð1=nÞP ðXi � lÞ2, the estimator
from Exercise 54? Let’s find out.

a. Let X * N(l, r).

Determine CovðX � l; ðX � lÞ2Þ and

CovðX; ðX � lÞ2Þ. [Hint: Use the
covariance shortcut formula.]

b. Use part (a) to show that X and r̂2 are
uncorrelated. Does it follow that X and
r̂2 are independent?

c. The proof of the independence of X
and S2 relied critically on the fact
that CovðX;Xi � XÞ ¼ 0. Calculate
CovðX;Xi � lÞ. Based on this result,
does it appear that X and r̂2 are
independent?

57. Suppose we have a sample of size n from a
Nðl; rÞ distribution. Define rvs Z and T as
in Expression (6.10).

a. Calculate Pð�2� Z� 2Þ for n = 5, 10,
and 15. How does sample size affect
your answer?

b. Calculate Pð�2� T � 2Þ for n = 5, 10,
and 15. How does sample size affect
your answer?

58. Suppose that we have a random sample of
size m from a Nðl1; r1Þ distribution and an
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independent random sample of size n from
a Nðl2; r2Þ distribution. To assess whether
the two populations have equal variances—
a requirement of several procedures later in
this book—we consider the ratio of the two
sample variances:

R ¼ S21
S22

a. If the two populations indeed have
equal variances—that is, if r21 ¼ r22—
then what is the distribution of R?

b. A common convention for accepting
that the population variances might be
equal is that the larger sample standard
deviation should be no more than twice
the smaller. Express that condition in
terms of R.

c. For the specific case m = 10 and n = 15,
calculate the probability of the condition
in part (b), assuming that the two pop-
ulation variances are indeed equal.

d. If the population variances really are
equal, but the sample sizes are now
m = 50 and n = 60, will the probability
in part (c) be higher or lower? Why?

Supplementary Exercises: (59–68)

59. A small high school holds its graduation
ceremony in the gym. Because of seating
constraints, students are limited to a
maximum of four tickets to graduation for
family and friends. The vice principal
knows that historically 30% of students
want four tickets, 25% want three, 25%
want two, 15% want one, and 5% want
none.

a. Let X = the number of tickets requested
by a randomly selected graduating stu-
dent, and assume the historical distri-
bution applies to this rv. Find the mean
and standard deviation of X.

b. Let To = the total number of tickets
requested by the 150 students graduating

this year. Assuming all 150 students’
requests are independent, determine the
mean and standard deviation of To.

c. The gym can seat a maximum of 500
guests. Calculate the (approximate)
probability that all students’ requests
can be accommodated. [Hint: Express
this probability in terms of To. What
distribution does To have?]

60. Suppose that for a certain individual, calo-
rie intake at breakfast is a random variable
with expected value 500 and standard
deviation 50, calorie intake at lunch is
random with expected value 900 and stan-
dard deviation 100, and calorie intake at
dinner is a random variable with expected
value 2000 and standard deviation 180.
Assuming that intakes at different meals are
independent of each other, what is the
probability that average calorie intake per
day over the next (365-day) year is at most
3500? [Hint: Let Xi, Yi, and Zi denote the
three calorie intakes on day i. Then total
intake is given by

P ðXi þ Yi þ ZiÞ.]
61. Suppose the proportion of rural voters in a

certain state who favor a particular guber-
natorial candidate is .45 and the proportion
of suburban and urban voters favoring the
candidate is .60. If a sample of 200 rural
voters and 300 urban and suburban voters
is obtained, what is the approximate prob-
ability that at least 250 of these voters favor
this candidate?

62. Let l denote the true pH of a chemical
compound. A sequence of n independent
sample pH determinations will be made.
Suppose each sample pH is a random
variable with expected value l and standard
deviation. 1. How many determinations are
required if we wish the probability that the
sample average is within .02 of the true pH
to be at least .95? What theorem justifies
your probability calculation?

63. A large university has 500 single employ-
ees who are covered by its dental plan.
Suppose the number of claims filed during
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the next year by such an employee is a
Poisson rv with mean value 2.3. Assuming
that the number of claims filed by any such
employee is independent of the number
filed by any other employee, what is the
approximate probability that the total
number of claims filed is at least 1200?

64. Consider independent and identically dis-
tributed random variables X1, X2, X3, …
where each Xi has a discrete uniform dis-
tribution on the integers 0, 1, 2, …, 9; that
is, P(Xi = k) = 1/10 for k = 0, 1, 2, …, 9.
Now form the sum

Un ¼
Xn
i¼1

1

ð10Þi Xi

¼ :1X1 þ :01X2 þ � � � þ ð:1ÞnXn

Intuitively, this is just the first n digits in the
decimal expansion of a random number on
the interval [0, 1]. Show that as n ! 1, Un

converges in distribution to an rv U uni-
formly distributed on [0, 1], i.e. that
PðUn � uÞ ! PðU� uÞ, by showing that
the moment generating function of Un

converges to the moment generating func-
tion of U.
[The argument for this appears on p. 52 of
the article “A Few Counter Examples
Useful in Teaching Central Limit Theo-
rems,” The American Statistician, Feb.
2013.]

65. The Empirical Rule from Chapter 4 states
that roughly 68% of a standard normal
distribution is within ±1 of its center, 95%
within ±2, and 99.7% within ±3.

a. For the t2 distribution, determine what
percent of the total area is within ±1,
±2, and ±3 of its center.

b. For the t2 distribution, determine how far
you must go out to capture 68, 95, and
99.7% of the total area under the pdf.

66. a. Show that if X�Fm1;m2 , then the distri-
bution of m1 � X approaches v2m1 as
m2 ! 1. [Hint: Apply Exercise 30.]
What is the limiting distribution of X it-
self as m1 ! 1?

b. Show that if X�Fm1;m2 , then the distri-
bution of m2=X approaches v2m2 as
m1 ! 1. What is the limiting distribu-
tion of X itself as m1 ! 1?

67. Suppose that we have a random sample of
10 observations from a Nðl1; r1Þ distribu-
tion and an independent random sample of
12 observations from a Nðl2; r2Þ distribu-
tion. Let S21 and S22 denote the sample
variances of these two random samples.

a. Determine

P 2:90
r21
r22

� S21
S22

� 8:12
r21
r22

� �

b. Define a rv r̂21 ¼ 1
10

P10
i¼1ðXi � l1Þ2

from the first random sample and define
r̂22 similarly for the second random
sample. Determine

P 2:19
r21
r22

� r̂21
r̂22

� 4:30
r21
r22

� �

68. Let X1, X2, … be a sequence of indepen-
dent, but not necessarily identically dis-
tributed random variables, and let To ¼
X1 þ � � � þXn. Lyapunov’s Theorem states
that the standardized rv ðTo � lToÞ=rTo
converges to a N(0, 1) distribution as
n ! 1, provided that

lim
n!1

Pn
i¼1 Eð Xi � lij j3Þ

r3To
¼ 0

where µi = E(Xi). This limit is sometimes
referred to as the Lyapunov condition for
convergence.

a. Assuming E(Xi) = µi and V Xið Þ ¼ r2i ,
write expressions for lTo and rTo .

b. Show that the Lyapunov condition is
automatically met when the Xi’s are iid.

[Hint: Let s ¼ Eð Xi � lij j3Þ, which we
assume is finite, and observe that s is the
same for every Xi. Then simplify the
limit.]
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c. Let X1, X2, … be independent random
variables, with Xi having an exponential
distribution with mean i. Show that
X1 + � � � + Xn has an approximately
normal distribution as n increases.

d. An online trivia game presents progres-
sively harder questions to players;
specifically, the probability of answering

the ith question correctly is 1/i. Assume
any player’s successive answers are
independent, and let To denote the
number of questions a player has right
out of the first n. Show that To has an
approximately normal distribution for
large n.

Appendix: Proof of the Central Limit Theorem

First, here is a restatement of the theorem. Let X1, X2, …, Xn be a random sample from a distribution
with mean l and standard deviation r. Then, if Z is a standard normal random variable,

lim
n!1P

X � l
r=

ffiffiffi
n

p � z

� �
¼ PðZ� zÞ ¼ UðzÞ

The theorem says that the distribution of the standardized X approaches the standard normal distri-
bution. Our proof is for the special case in which the moment generating function exists, which
implies also that all its derivatives exist and that they are continuous. We will show that the mgf of the
standardized X approaches the mgf of the standard normal distribution. Convergence of the mgf
implies convergence of the distribution, though we will not prove that here (the mathematics is
beyond the scope of this book).

To simplify the proof slightly, define new rvs by Wi = (Xi – l)/r for i = 1, 2,…, n, the stan-
dardized versions of the Xi. Then Xi = µ + rWi, from which X ¼ lþ rW and we may write the
standardized X expression as

Y ¼ X � l
r=

ffiffiffi
n

p ¼ ðlþ rWÞ � l
r=

ffiffiffi
n

p ¼ ffiffiffi
n

p �W ¼ 1ffiffiffi
n

p
Xn
i¼1

Wi

Let MW(t) denote the common mgf of the Wi’s (since the Xi’s are iid, so are the Wi’s). We will obtain
the mgf of Y in terms of MW(t); we then want to show that the mgf of Y converges to the mgf of a

standard normal random variable, MZðtÞ ¼ et
2=2.

From the mgf properties in Section 5.3, we have the following:

MYðtÞ ¼ MW1 þ ��� þWnðt=
ffiffiffi
n

p Þ ¼ ½MWðt=
ffiffiffi
n

p Þ�n

For the limit, we will use the fact thatMW(0) = 1, a basic property of all mgfs. And, critically, because
theWi’s are standardized rvs, E(Wi) = 0 and V(Wi) = 1, from which we also haveM0

Wð0Þ ¼ EðWÞ ¼ 0

and M00
Wð0Þ ¼ EðW2Þ ¼ VðWÞþ ½EðWÞ�2 ¼ 1.

To determine the limit as n ! 1, we take a natural logarithm, make the substitution x ¼ 1=
ffiffiffi
n

p
,

then apply L’Hôpital’s Rule twice:
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lim
n!1 ln½MYðtÞ� ¼ lim

n!1n ln½MWðt=
ffiffiffi
n

p Þ�

¼ lim
x!0

ln½MWðtxÞ�
x2

substitute x ¼ 1=
ffiffiffi
n

p

¼ lim
x!0

M0
WðtxÞ � t=MWðtxÞ

2x
L’Hôpital’s Rule

¼ lim
x!0

tM0
WðtxÞ

2xMWðtxÞ
¼ lim

x!0

t2M00
WðtxÞ

2MWðtxÞþ 2xtM0
WðtxÞ

L’Hôpital’s Rule

¼ t2M00
Wð0Þ

2MWð0Þþ 2ð0ÞtM0
Wð0Þ

¼ t2ð1Þ
2ð1Þþ 0

¼ t2

2

You can verify for yourself that at each use of L’Hôpital’s Rule, the preceding fraction had the
indeterminate 0/0 form. Finally, since the logarithm function and its inverse are continuous, we may

conclude that MYðtÞ ! et
2=2, which completes the proof. ■
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7Point Estimation

Introduction
Given a parameter of interest, such as a population mean l or population proportion p, the objective
of point estimation is to use a sample to compute a number that represents, in some sense, a “good
guess” for the true value of the parameter. The resulting number is called a point estimate. In
Section 7.1, we present some general concepts of point estimation. In Section 7.2, we describe and
illustrate two important methods for obtaining point estimates: the method of moments and the
method of maximum likelihood.

Obtaining a point estimate entails calculating the value of a statistic such as the sample mean X or
sample proportion P̂. We should therefore be concerned that the chosen statistic utilizes all the
relevant information available about the parameter of interest. The idea of “no information loss” is
made precise by the concept of sufficiency, which is developed in Section 7.3. Finally, Section 7.4
further explores the meaning of efficient estimation and properties of maximum likelihood estimators.

7.1 Concepts and Criteria for Point Estimation

Statistical inference is frequently directed toward drawing some type of conclusion about one or more
parameters (population characteristics). To do so requires that an investigator obtain sample data from
each of the populations under study. Conclusions can then be based on the computed values of
various sample quantities. For example, let l (a parameter) denote the average salary of all alumni
from a certain university. A random sample of n = 250 alumni might be chosen and the salary for
each one determined, resulting in observed values x1, x2, …, x250. The sample mean salary x could
then be used to draw a conclusion about the value of l. Similarly, if r is the standard deviation of the
alumni salary distribution (population sd, another parameter), the value of the sample standard
deviation s can be used to infer something about r.

Recall from the previous chapter that before data is available, the sample observations are con-
sidered random variables (rvs) X1, X2, …, Xn. It follows that any function of the Xi’s—that is, any
statistic—such as the sample mean X or sample standard deviation S is also a random variable. That
is, its value will generally vary from one sample to another, and before a particular sample is selected,
there is uncertainty as to what value the statistic will assume. The same is true if available data
consists of more than one sample. For example, we can represent the salaries of m statistics alumni
and n computer science alumni by X1, …, Xm and Y1, …, Yn, respectively. The difference between the
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two sample mean salaries is X � Y , the natural statistic for making inferences about l1 – l2, the
difference between the population mean salaries.

When discussing general concepts and methods of inference, it is convenient to have a generic
symbol for the parameter of interest. We will use the Greek letter h for this purpose.

DEFINITION A point estimate of a parameter h is a single number that can be regarded as a
sensible value for h. A point estimate is obtained by selecting a suitable statistic
and determining its value from the given sample data. The selected statistic is
called the point estimator of h.

Suppose, for example, that the parameter of interest is l = the true average battery life (in hours) for a
certain type of cell phone under continuous use. A random sample of n = 3 phones might yield
observed lifetimes x1 = 5.0, x2 = 6.4, x3 = 5.9. The computed value of the sample mean lifetime is
x ¼ 5:77, and it is reasonable to regard 5.77 h as a plausible value of l, our “best guess” for the value
of l based on the available sample information. The point estimator used was the statistic X, and the
point estimate of l was x ¼ 5:77. If the three observed lifetimes had instead been x1 = 5.6, x2 = 4.5,
and x3 = 6.1, use of the same estimator X would have resulted in a different point estimate,
x ¼ ð5:6þ 4:5þ 6:1Þ=3 ¼ 5:40 h.

The symbol ĥ (“theta hat”) is customarily used to denote the point estimate resulting from a given

sample; we shall also use it to denote the estimator, as an uppercase Ĥ is somewhat awkward to write.
Thus l̂ ¼ X is read as “the point estimator of l is the sample mean X.” The statement “the point
estimate of l is 5.77 h” can be written concisely as l̂ ¼ x ¼ 5:77. Notice that in writing a statement

like ĥ ¼ 72:5, there is no indication of how this point estimate was obtained (i.e., what statistic was
used). We recommend that both the estimator/statistic and the resulting estimate be reported.

Example 7.1 An automobile manufacturer has developed a new type of bumper, which is supposed
to absorb impacts with less damage than previous bumpers. The manufacturer has used this bumper in
a sequence of 25 controlled crashes against a wall, each at 10 mph, using one of its compact car
models. Let X = the number of crashes that result in no visible damage to the automobile (a “suc-
cess”). The parameter to be estimated is p = the proportion of all such crashes that result in no visible
damage; equivalently, p = P(no visible damage in a crash). If X is observed to be x = 15, the most
reasonable estimator and estimate are

estimator ¼ P̂ ¼ X

n
estimate ¼ p̂ ¼ x

n
¼ 15

25
¼ :60

■

If for each parameter of interest there were only one reasonable point estimator, there would not be
much to point estimation. In most problems, though, there will be more than one reasonable
estimator.

Example 7.2 Many communities have added fluoride to drinking water since the 1940s, but the
solubility of sodium fluoride in particular is important to many industries. The article “A Review of
Sodium Fluoride Solubility in Water” (J. Chem. Engr. Data 2017: 1743–1748) provides the fol-
lowing n = 16 values for the solubility of sodium fluoride (millimoles of NaF per kilogram of H2O,
mmol/kg) at 25 °C:
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956 974 980 980 982 983 983 985
985 985 987 987 995 999 1000 1007

One goal in the article was to estimate l = the true mean solubility of NaF at 25 °C. A dotplot of
the sample data suggests a symmetric measurement distribution, so l could also represent the true
median solubility. The given observations are assumed to be the result of a random sample X1, X2,…,
X16 from this symmetric distribution. Consider the following estimators and resulting estimates for l:

a. Estimator ¼ X, estimate ¼ x ¼Pxi=n ¼ 15;768=16 ¼ 985:5mmol=kg
b. Estimator ¼ ~X, estimate ¼ ~x ¼ 985þ 985ð Þ=2 ¼ 985mmol=kg
c. Estimator ¼ Xe ¼ ½minðXiÞþmaxðXiÞ�=2 = the midrange (i.e., the average of the two extreme

values), estimate = ½minðxiÞþmaxðxiÞ�=2 = (956 + 1007)/2 = 981.5 mmol/kg
d. Estimator ¼ Xtrð6:25Þ, the 6.25% trimmed mean (discard the smallest and largest values of the

sample and then average), estimate ¼ xtrð6:25Þ ¼ 15;768�956�1007ð Þ=14 ¼ 986:1mmol=kg.

Each one of the different estimators (a)–(d) uses a different measure of the center of the sample to
estimate l.Which of the estimates is closest to the true value? This question cannot be answeredwithout
already knowing the true value. However, a question that can be addressed is, “Which estimator, when
used on other samples of Xi’s, will tend to produce estimates closest to the true value?” ■

Example 7.3 Continuing the previous example, suppose we also want to estimate the population
variance r2. A natural estimator is the sample variance:

r̂2 ¼ S2 ¼
P ðXi � XÞ2

n� 1

The corresponding point estimate is

r̂2 ¼ s2 ¼
P ðxi � xÞ2

n� 1
¼
P ðxi � 985:5Þ2

16� 1
¼ ð956� 985:5Þ2 þ � � � þ ð1007� 985:5Þ2

15
¼ 135:87

A point estimate of r would then be r̂ ¼ s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
135:87

p ¼ 11:66mmol=kg.
An alternative estimator would result from using divisor n instead of n – 1 (i.e., the average

squared deviation):

r̂2 ¼
P ðXi � XÞ2

n
estimate ¼ ð956� 985:5Þ2 þ � � � þ ð1007� 985:5Þ2

16
¼ 127:38

We will indicate shortly why many statisticians prefer S2 to the estimator with divisor n. ■

Assessing Estimators: Accuracy and Precision
When a particular statistic is selected to estimate an unknown parameter, two criteria often used to
assess the quality of that estimator are its accuracy and its precision. Loosely speaking, an estimator is
accurate if it has no systematic tendency to overestimate or underestimate the value of the parameter,
across repeated values of the estimator calculated from different samples. An estimator is precise if
those same repeated values are typically “close together,” so that two statisticians using the same
estimator (but two different random samples) are liable to get similar point estimates. The notions of
accuracy and precision are made more rigorous by the following definitions.
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DEFINITION A point estimator ĥ is said to be an unbiased estimator of h if EðĥÞ ¼ h for every

possible value of h. The difference EðĥÞ � h is called the bias of ĥ (and equals 0 if ĥ is
unbiased).

The standard error of ĥ is its standard deviation, rĥ ¼
ffiffiffiffiffiffiffiffiffiffi
VðĥÞ

q
. If the standard

error itself involves unknown parameters whose values can be estimated, substi-

tution of these estimates into rĥ yields the estimated standard error of ĥ. The
estimated standard error can be denoted by either r̂ĥ or by sĥ.

Unbiasedness requires that the sampling distribution of the estimator be centered at the value of h,
whatever that value might be. Thus if h = 50, the mean value of the estimator must be 50, if h = .25

the mean value must be .25, and so on. The bias of an estimator ĥ quantifies its accuracy by

measuring how far, on the average, ĥ differs from h. The standard error of ĥ quantifies its precision by

measuring the variability of ĥ across different possible realizations (i.e., different random samples).
Intuitively its value describes the “typical” deviation between an estimate and the mean value of the
estimator. It is important to note that both bias and standard error are properties of an estimator (the
random variable), such as X, and not of any specific value or estimate, x.

Figure 7.1 illustrates bias and standard error for three potential estimators of a population

parameter h. Figure 7.1a shows the distribution of an estimator ĥ1 whose expected value is very close

to h but whose distribution is quite dispersed. Hence, ĥ1 has low bias but relatively high standard

error. In contrast, the distribution of ĥ2 displayed in Figure 7.1b is very concentrated but is “off

target”: the values of ĥ2 across different random samples will systematically overestimate h. So, ĥ2
has low standard error but high bias. The “ideal” estimator is illustrated in Figure 7.1c: ĥ3 has a mean
roughly equal to h, so it has low bias, and it also has a relatively small standard error.

θ
θ1

θ

pdf of θ2

θ2

θ

pdf of θ3

θ3

ba

c

pdf of θ1

Figure 7.1 Three potential types of estimators: (a) accurate, but not precise; (b) precise, but not accurate;
(c) both accurate and precise ■
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It may seem as though it is necessary to know the value of h (in which case estimation is

unnecessary!) to decide whether an estimator ĥ is unbiased. This is not usually the case, though, as
we’ll see in the next several examples.

Example 7.4 In Example 7.1, the sample proportion P̂ ¼ X=n was used as an estimator of p = the
true proportion of successes in all possible crash tests. Because X, the number of sample successes,
has a Bin(n, p) distribution, the mean of P̂ is

EðP̂Þ ¼ E
X

n

� �
¼ 1

n
EðXÞ ¼ 1

n
ðnpÞ ¼ p

Thus P̂ is unbiased regardless of the value of p and the sample size n. The standard error of the
estimator is

rP̂ ¼
ffiffiffiffiffiffiffiffiffiffi
VðP̂Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

X

n

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2

VðXÞ
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2

npð1� pÞ
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r

Since p is unknown (else why estimate?), we could substitute p̂ ¼ x=n into rP̂, yielding the estimated

standard error r̂P̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ=np

. When n = 25 and p̂ ¼ :6, this gives r̂P̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:6Þð:4Þ=25p ¼ :098.
Alternatively, since the largest value of p(1 – p) is attained when p = .5, an upper bound on the

standard error is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:5Þð:5Þ=np ¼ 1=ð2 ffiffiffi

n
p Þ. Notice that the precision of the estimator P̂ improves (i.e.,

its standard error decreases) as the sample size n increases. ■

Example 7.5 In the solubility study of Example 7.2, suppose we use the estimator X to estimate l.
Properties of X derived in Chapter 6 include

EðXÞ ¼ l and rX ¼ rffiffiffi
n

p ;

where r denotes the standard deviation of the population distribution of solubility measurements
(another parameter whose value is unknown). Thus, the sampling distribution of X is centered at µ—
i.e., X is an unbiased estimator of l—regardless of its value and the sample size n. As with the sample
proportion, the standard error of the sample mean decreases (that is, its precision improves) with
increasing sample size.

Since the value of r is almost always unknown, we can estimate the standard error of X by
r̂X ¼ s=

ffiffiffi
n

p
, where s denotes the sample standard deviation. For the 16 observations presented in

Example 7.2, s = 11.66. The estimated standard error is then s=
ffiffiffi
n

p ¼ 11:66=
ffiffiffiffiffi
16

p ¼ 2:92. This
quantity indicates that, based on the available data, we believe our estimate of µ, x ¼ 985:5mmol=kg,
is liable to differ by about ±2.92 mmol/kg from the actual value of µ. ■
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Example 7.6 Suppose that X, the reaction time (s) to a stimulus, has a uniform distribution on the
interval from 0 to an unknown upper limit h. An investigator wants to estimate h on the basis of a
random sample X1, X2, …, Xn of reaction times. Since h is the largest possible reaction time in the

entire population, consider as a first estimator the largest sample reaction time: ĥb ¼
maxðX1; . . .; XnÞ. If n = 5 and x1 = 1.7, x2 = 4.2, x3 = 2.4, x4 = 3.9, x5 = 1.3, the point estimate of h

is ĥb ¼ maxð1:7; 4:2; 2:4; 3:9; 1:3Þ ¼ 4:2 s.
For an unbiased estimator, some samples will yield estimates that exceed h and other samples will

yield estimates smaller than h—otherwise h could not possibly be the center of the estimator’s

distribution. However, our proposed estimator ĥb will never overestimate h—the largest sample value
cannot exceed the largest population value—and will underestimate h unless the largest sample value

equals h. This intuitive argument shows that ĥb is a biased estimator (hence the subscript b). More
precisely, using results on ordered values from a random sample (Section 5.7), it can be shown (see
Exercise 62) that

EðĥbÞ ¼ n

nþ 1
� h\ h and VðĥbÞ ¼ nh2

ðnþ 1Þ2ðnþ 2Þ

The bias of ĥb is given by EðĥbÞ � h ¼ nh=ðnþ 1Þ � h ¼ �h=ðnþ 1Þ. Because the bias is negative,
we say that ĥb is biased low, meaning that it systematically underestimates the true value of h.

Thankfully, the bias approaches 0 as n increases and is negligible for large n. The standard error of ĥb
can be estimated by substituting the known value of ĥb for the unknown h in the square root of the
variance formula above.

It is easy to modify ĥb to obtain an unbiased estimator of h. Consider the estimator

ĥu ¼ nþ 1
n

� ĥb ¼ nþ 1
n

�maxðX1; . . .;XnÞ

Using this estimator on the data gives the estimate (6/5)(4.2) = 5.04 s. The fact that (n + 1)/n > 1

implies that ĥu will overestimate h for some samples and underestimate it for others. The mean value
of this estimator is

EðĥuÞ ¼ E
nþ 1
n

� ĥb
� �

¼ nþ 1
n

� E½ĥb�

¼ nþ 1
n

� n

nþ 1
h ¼ h

Thus, by definition, ĥu is an unbiased estimator of h. If ĥu is used repeatedly on different samples to
estimate h, some estimates will be too large and others will be too small, but in the long run there will
be no systematic tendency to underestimate or overestimate h. ■

Mean Squared Error
Rather than consider bias and variance (accuracy and precision) separately, another popular way to

quantify the idea of ĥ being close to h is to consider the squared error ðĥ� hÞ2. For some samples, ĥ
will be quite close to h and the resulting squared error will be very small, whereas the squared error

will be quite large whenever a sample produces an estimate ĥ that is far from the target. An omnibus
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measure of quality is the mean squared error (expected squared error), which entails averaging the
squared error over all possible samples and resulting estimates.

DEFINITION The mean squared error (MSE) of an estimator ĥ is E½ðĥ� hÞ2�.

For the estimators whose distributions are displayed in Figure 7.1a and b, the mean squared error is

comparatively large, since there are many values of ĥ in those two distributions that are quite some

distance from h. On the other hand, the estimator ĥ3 in Figure 7.1c has much lower MSE. In fact,
mean squared error penalizes an estimator for having either high bias (poor accuracy) or high
variance (poor precision), as indicated by the following proposition.

PROPOSITION For any estimator ĥ of a parameter h,

MSE ¼ VðĥÞþ ½EðĥÞ � h�2 ¼ variance of estimatorþ biasð Þ2

In particular, for any unbiased estimator of h, its MSE and variance are equal.

The proof of this result is a simple application of the variance shortcut formula and is left as an
exercise (Exercise 23).

Example 7.7 (Example 7.4 continued) Consider once again estimating a population proportion of
“successes” p. We have already established that the sample proportion P̂ ¼ X=n is an unbiased
estimator of p with variance equal to p(1 – p)/n. Hence, its mean squared error is

E½ðP̂� pÞ2� ¼ VðP̂Þþ 02 ¼ pð1� pÞ
n

Now consider the alternative estimator ~P ¼ ðXþ 2Þ=ðnþ 4Þ; that is, add two successes and two
failures to the sample and then calculate the new sample proportion of successes. One intuitive
justification for this estimator is that

X

n
� :5

����
���� ¼ X � :5n

n

����
���� while

Xþ 2
nþ 4

� :5

����
���� ¼ X � :5n

nþ 4

����
����;

from which we see that ~P is always somewhat closer to .5 than is P̂. (It seems particularly reasonable
to move the estimate toward .5 when the number of successes in the sample is close to 0 or n. For
example, if there are no successes at all in the sample, is it sensible to estimate the population
proportion of successes as zero, especially if n is small?)

The bias of ~P is

E
Xþ 2
nþ 4

� �
� p ¼ EðXÞþ 2

nþ 4
� p ¼ npþ 2

nþ 4
� p ¼ 2=n� 4p=n

1þ 4=n

This bias is not zero unless p = .5. However, as n increases the numerator approaches zero and the
denominator approaches 1, so the bias approaches zero. The variance of ~P is
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V
Xþ 2
nþ 4

� �
¼ VðXþ 2Þ

ðnþ 4Þ2 ¼ VðXÞ
ðnþ 4Þ2 ¼

npð1� pÞ
ðnþ 4Þ2 ¼ pð1� pÞ

nþ 8þ 16=n

This variance approaches zero as the sample size increases. Finally, the mean squared error of ~P is

MSE ¼ pð1� pÞ
nþ 8þ 16=n

þ 2=n� 4p=n
1þ 4=n

� �2

So how does the mean squared error of the usual estimator P̂ compare to that of the alternative
estimator ~P? If one MSE were smaller than the other for all values of p, then we could say that one
estimator is always preferred to the other (using MSE as our criterion). But as Figure 7.2 shows, this
is not the case at least for the sample sizes n = 10 and n = 100, and in fact is not true for any other
sample size.

According to Figure 7.2, the two MSEs are quite different when n is small. In this case the
alternative estimator is better for values of p near .5 (since it moves the sample proportion toward .5)
but not for extreme values of p. For large n, the two MSEs are quite similar, but again neither
dominates the other. ■

Example 7.8 (Example 7.3 continued) Let’s return now to the problem of estimating population
variance r2 based on a random sample X1, …, Xn. First consider the sample variance estimator

S2 ¼PðXi � XÞ2=ðn� 1Þ. Applying the property E(Y2) = V(Y) + [E(Y)]2 to the computing formulaP ðXi � XÞ2 ¼PX2
i � ð1=nÞ PXið Þ2 from Section 1.4 gives

.010

.005

0

.020

.015

.025

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

MSE

a b

p

.0010

.0005

0

.0020

.0015

.0025

MSE

p

alternative

usual usual

alternative

n = 10 n = 100

Figure 7.2 Graphs of MSE for the usual and alternative estimators of p
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E
X

Xi � X
� 	2h i

¼ E
X

X2
i �

1
n

X
Xi


 �2� �

¼
X

EðX2
i Þ �

1
n
E

X
Xi


 �2� �

¼
X

ðr2 þ l2Þ � 1
n

V
X

Xi


 �
þ E

X
Xi

h i
 �2� �

¼ nr2 þ nl2 � 1
n

nr2 þðnlÞ2
h i

¼ nr2 þ nl2 � r2 � nl2 ¼ ðn� 1Þr2 )
E½S2� ¼ 1

n� 1
E
X

Xi � X
� 	2h i

¼ 1
n� 1

ðn� 1Þr2 ¼ r2

Thus we have shown that the sample variance S2 is an unbiased estimator of r2 for any population
distribution.

The estimator from Example 7.3 that uses divisor n can be expressed as (n – 1)S2/n, and

E
ðn� 1ÞS2

n

� �
¼ n� 1

n
E S2
� 	 ¼ n� 1

n
r2 6¼ r2

This estimator is therefore biased; in particular, its bias is (n – 1)r2/n – r2 = –r2/n. Because the bias is
negative, the estimator with divisor n tends to underestimate r2, and this is why the divisor n – 1 is
preferred by many statisticians (although when n is large, the bias is small and there is little difference
between the two).

This is not quite the whole story, however. Let’s now consider all estimators of the form

r̂2 ¼ c
X

ðXi � XÞ2

The expected value of such an estimator is

E c
X

ðXi � XÞ2
h i

¼ cE
X

ðXi � XÞ2
h i

¼ cðn� 1Þr2

Clearly the only unbiased estimator of this type is the sample variance, with c = 1/(n – 1). Annoy-
ingly, the variance of r̂2 depends on the underlying population distribution. So suppose the random
sample has come from a normal distribution. Then from Section 6.4, we know that the rv (n – 1)S2/r2

has a chi-squared distribution with n – 1 degrees of freedom. The variance of a v2n�1rv is 2(n – 1), so
the variance of the estimator is

V c
X

ðXi � XÞ2
h i

¼ V cr2 � ðn� 1ÞS2
r2

� �
¼ ðcr2Þ2V ðn� 1ÞS2

r2

� �
¼ c2r4 � 2ðn� 1Þ

Substituting these expressions into the relationship MSE = variance + (bias)2, the value of c for
which MSE is minimized turns out to be c = 1/(n + 1); see Exercise 65. So in this situation, mini-
mizing the MSE yields a rather unnatural (and never used) estimator.

As a final blow, even though S2 is unbiased for estimating r2, it is not true that the sample standard
deviation S is unbiased for estimating r. This is because the square root function is not linear, and the
expected value of the square root is not the square root of the expected value. Why not find an
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unbiased estimator for r and use it, rather than S? Unfortunately there is no estimator of r that is
unbiased for all possible population distributions (although in special cases, such as the normal
distribution, an unbiased estimator can be deduced). Thankfully, the bias of S is not serious unless n is
quite small, so we shall generally employ it as an estimator of r. ■

Example 7.9 (Example 7.6 continued) Consider again the two estimators ĥb and ĥu for the popu-
lation maximum of a Uniform [0, h] distribution. Using the formulas presented in Example 7.6, the

mean squared error of ĥb is given by

MSE ¼ varianceþðbiasÞ2 ¼ nh2

ðnþ 1Þ2ðnþ 2Þ þ � h
nþ 1

� �2
¼ 2h2

ðnþ 1Þðnþ 2Þ

Since ĥu was found to be unbiased, its mean squared error is simply its variance:

MSE ¼ VðĥuÞ ¼ V
nþ 1
n

� ĥb
� �

¼ nþ 1
n

� �2
�VðĥbÞ ¼ nþ 1

n

� �2
� nh2

ðnþ 1Þ2ðnþ 2Þ ¼
h2

nðnþ 2Þ

Taken together, we find that ĥu has less bias than ĥb (obviously) but a larger variance. The use of

mean squared error combines these two considerations, and for n > 1 it can be shown that ĥu has a

smaller MSE than ĥb and is therefore the preferred estimator. ■

Unbiased Estimation
Finding an estimator whose mean squared error is smaller than that of every other estimator for all
values of the parameter is sometimes not feasible. One common approach is to restrict the class of
estimators under consideration in some way, and then seek the estimator that is best in that restricted
class.

Statistical practitioners who buy into the Principle of Unbiased Estimation would employ an
unbiased estimator in preference to a biased estimator, even if the latter has a smaller MSE. On this
basis, the sample proportion of successes should be preferred to the alternative estimator of p in

Example 7.7, and the unbiased estimator ĥu should be preferred to the biased estimator ĥb in Example
7.9 (minimizing MSE would lead us to the same estimator in that instance).

In Example 7.2, we proposed several different estimators for the mean l of a symmetric distri-
bution. If there were a unique unbiased estimator for l, the estimation dilemma could be resolved by
using that estimator. Unfortunately, this is not the case.

PROPOSITION If X1, X2, …, Xn is a random sample from a distribution with mean l, then X is
an unbiased estimator of l. If in addition the distribution is continuous and
symmetric, then ~X and any trimmed mean are also unbiased estimators of l.

The fact that EðXÞ ¼ l, so X is an unbiased estimator of µ, was established previously. The unbi-
asedness of the other estimators is more difficult to verify; the argument requires invoking results on
distributions of ordered values from Section 5.7.

According to the preceding proposition, the Principle of Unbiased Estimation by itself does not
always allow us to select a single estimator. When the underlying population is normal, even the third
estimator in Example 7.2 is unbiased, and there are many other unbiased estimators. If two or more
estimators of a parameter are unbiased, then naturally one selects the estimator among them with the
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smallest standard error (equivalently, the least variance). The resulting ĥ is called the minimum
variance unbiased estimator (MVUE) of h.

Example 7.10 (Example 7.9 continued) We showed in Example 7.6 that when X1, …, Xn is a

random sample from a uniform distribution on [0, h], the estimator ĥu ¼ ðnþ 1Þ=n �maxðX1; . . .;XnÞ
is unbiased for h. However, this is not the only unbiased estimator of h. The expected value of a
uniformly distributed rv is just the midpoint of the support, so here E(Xi) = h/2. This implies that

EðXÞ ¼ h=2, from which Eð2XÞ ¼ h. That is, the estimator ĥ2 ¼ 2X is also unbiased for h.
If X is uniformly distributed on the interval [0, h], then from Chapter 4 we have V(X) = r2 =

(h – 0)2/12 = h2/12. Hence, the variance (and MSE) of ĥ2 are

Vðĥ2Þ ¼ Vð2XÞ ¼ 4VðXÞ ¼ 4 � r
2

n
¼ 4 � h

2=12
n

¼ h2

3n

For n > 1, Vðĥ2Þ will be greater than VðĥuÞ, so ĥu is a better estimator than ĥ2. More advanced

methods can be used to show that ĥu is the MVUE of h—that is, every other unbiased estimator of

h has variance that exceeds the variance of ĥu. ■

One of the triumphs of mathematical statistics has been the development of methodology for iden-
tifying the MVUE in a wide variety of situations. The most important result of this type for our
purposes concerns estimating the mean l of a normal distribution.

THEOREM Let X1, …, Xn be a random sample from a normal distribution with parameters l and r.
Then the estimator l̂ ¼ X is the MVUE for l.

Whenever we are convinced that the population being sampled is normal, the result says that X should
be used to estimate l. For a proof in the special case that r is known, see Exercise 55.

Again, in some situations it is possible to obtain an estimator with small bias that would be
preferred to the best unbiased estimator. This is illustrated in Figure 7.3. However, MVUEs are often
easier to obtain than the type of biased estimator whose distribution is pictured.

Consistency
As a researcher’s sample size increases and thus more of the population is observed, any reasonable
estimator should, in some sense, “converge to” the parameter it is estimating. For instance, the Law of
Large Numbers (Section 6.2) states that the sample mean X of a random sample converges to the
theoretical mean µ in a specific mathematical sense as n ! 1. This intuitive notion is called
consistency.

pdf of , a biased estimator

pdf of 

θ

, the MVUE

θ1

θ2

Figure 7.3 A biased estimator that is preferable to the MVUE
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DEFINITION Let X1; . . .;Xn be a random sample from a distribution that depends on a parameter h.

Then an estimator ĥ is a consistent estimator of h if ĥ converges to h as n ! 1,
either in the sense that

1. E½ðĥ� hÞ2� ! 0 as n ! 1, or

2. Pðjĥ� hj � eÞ ! 0 as n ! 1 for every e[ 0.1

Statement 1 in the definition requires that the mean squared error of ĥ converge to 0 as the sample size
increases to infinity; this is known formally as convergence in mean square or convergence in

quadratic mean. Statement 2 says that ĥ converges to h in probability. Intuitively, this means that the
chance of an estimate differing from the value of h by any small amount approaches 0 as the sample
size increases. Other examples of consistent estimators include the sample proportion P̂ as an esti-
mator of a population proportion p and sample standard deviation S as an estimator of population
standard deviation r. All estimators introduced in subsequent chapters are consistent.

Some Complications
Although it was stated previously that X is the MVUE for a population mean when sampling from a
normal distribution, that does not mean X should be used irrespective of the distribution being sampled.

Example 7.11 Suppose we wish to estimate the number of calories h in a certain food. Using standard
measurement techniques, we will obtain a random sample X1; . . .;Xn of n calorie measurements.
Imagine that the population distribution is a member of one of the following three families:

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�ðx�hÞ2=ð2r2Þ �1\ x\1 ð7:1Þ

f ðxÞ ¼ 1

p½1þðx� hÞ2� �1\ x\1 ð7:2Þ

f ðxÞ ¼ 1
2c

h� c� x� hþ c ð7:3Þ

The pdf (7.1) is the normal distribution, (7.2) is called the Cauchy distribution, and (7.3) is a uniform
distribution. All three distributions are symmetric about h, which is therefore the median of each
distribution. (The value h is also the mean for the normal and uniform distributions, but the mean of
the Cauchy distribution fails to exist.)

Consider the four estimators proposed in Example 7.2: X, ~X, Xe (the average of the two extreme
observations), and Xtr (a trimmed mean). The best estimator for h depends crucially on which
distribution is being sampled. In particular,

1. If the random sample comes from a normal distribution, then X is the best of the four esti-
mators, since it has minimum variance among all unbiased estimators.

2. If the random sample comes from a Cauchy distribution, then X and Xe are terrible estimators
for h, whereas ~X is quite good (the MVUE is not known). X and Xe are bad because they are
very sensitive to outlying observations, and the heavy tails of the Cauchy distribution make a
few such observations likely to appear in any sample.

1In fact, Statement 1 implies Statement 2. But there exist unusual cases for which Statement 1 fails—typically, when the
variance of the estimator is infinite—and Statement 2 still holds.
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3. If the underlying distribution is the particular uniform distribution in (7.3), then the best
estimator is Xe; in general, this estimator is greatly influenced by outlying observations, but
here the lack of tails makes such observations impossible.

4. The trimmed mean is best in none of these three situations but works reasonably well in all
three. That is, Xtr does not suffer too much in comparison with the best procedure in any of the
three situations.

More generally, research over the past several decades has established that when estimating a point
of symmetry of a continuous probability distribution, a trimmed mean with trimming proportion
between 10 and 20% from each end of the sample produces reasonably behaved estimates over a very
wide range of possible population models. For this reason, a trimmed mean with small trimming
percentage is said to be a robust estimator. ■

Example 7.12 Suppose a type of component has a lifetime distribution that is exponential with
parameter k, so that expected lifetime is l = 1/k. A sample of n such components is selected, and
each is put into operation. If the experiment is continued until all n lifetimes X1, …, Xn have been
observed, then X is an unbiased estimator of l.

In some experiments, though, the components are left in operation only until the time of the rth
failure, where r < n. This procedure is referred to as censoring. Let Y1 denote the time of the first
failure (the minimum lifetime among the n components), Y2 denote the time at which the second
failure occurs (the second smallest lifetime), and so on. Since the experiment terminates at time Yr, the
total accumulated lifetime at termination is

Tr ¼
Xr
i¼1

Yi þðn� rÞYr

We now demonstrate that l̂ ¼ Tr=r is an unbiased estimator for l. To do so, we need two properties
of exponential variables:

1. The memoryless property (see Section 4.4) says that at any time point, remaining lifetime has
the same exponential distribution as original lifetime.

2. If X1, …, Xk are independent exponential rvs with parameter k, then min(X1, …, Xk) is
exponential with parameter kk and has expected value 1/(kk). See Example 5.39.

Since all n components last until Y1, n – 1 last an additional Y2 – Y1, n – 2 an additional Y3 – Y2
amount of time, and so on, another expression for Tr is

Tr ¼ nY1 þðn� 1ÞðY2 � Y1Þþ ðn� 2ÞðY3 � Y2Þþ � � � þ ðn� rþ 1ÞðYr � Yr�1Þ

But Y1 is the minimum of n exponential variables, so E(Y1) = 1/(nk). Similarly, Y2 – Y1 is the smallest
of the n – 1 remaining lifetimes, each exponential with parameter k (by the memoryless property), so
E(Y2 – Y1) = 1/[(n – 1)k]. Continuing, E(Yi+1 – Yi) = 1/[(n – i)k], so

EðTrÞ ¼ nEðY1Þþ ðn� 1ÞEðY2 � Y1Þþ � � � þ ðn� rþ 1ÞEðYr � Yr�1Þ
¼ n � 1

nk
þðn� 1Þ � 1

ðn� 1Þk þ � � � þ ðn� rþ 1Þ � 1
ðn� rþ 1Þk ¼ r

k

Therefore, E(Tr/r) = (1/r)E(Tr) = (1/r) � (r/k) = 1/k = l as claimed.
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As an example, suppose 20 components are tested and r = 10. Then if the first ten failure times are
11, 15, 29, 33, 35, 40, 47, 55, 58, and 72, the point estimate of l is

l̂ ¼ 11þ 15þ � � � þ 72þð10Þð72Þ
10

¼ 111:5

The advantage of the experiment with censoring is that it terminates more quickly than the uncen-
sored experiment. However, it can be shown that V(Tr/r) = 1/(k2r), which is larger than 1/(k2n), the
variance of X in the uncensored experiment. ■

The form of an estimator ĥ may be sufficiently complicated so that standard statistical theory
cannot be applied to obtain a formula for its standard error. If we assume the population has a certain
distribution f ðx; hÞ, then we can use software to simulate repeated samples from that distribution,

calculate the value of ĥ for each sample, and use the standard deviation of these various ĥ values to
estimate rĥ. Of course, software packages cannot perform such a simulation without the user spec-
ifying a numerical value of h in advance, and the value of h is unknown for our data. In many
simulation studies, the researcher will therefore perform this process for a variety of h values, each

one returning a different estimated standard error of ĥ.

On other occasions, sample data is available from which a point estimate ĥ has been obtained, so
we have an estimate of h but no measure of the uncertainty in that estimate. In that scenario, repeated

values from the pdf f ðx; ĥÞ—that is, the pdf specified by plugging in h ¼ ĥ—are simulated, and the
estimated standard error is obtained as before. This procedure is known as the parametric bootstrap;
we will consider bootstrap methods in greater depth in subsequent chapters.

Exercises: Section 7.1 (1–24)

1. The accompanying data on IQ for first graders
at a university laboratory school was intro-
duced in Exercise 81 of Chapter 1.

82 96 99 102 103 103 106 107 108 108 108
108 109 110 110 111 113 113 113 113 115 115
118 118 119 121 122 122 127 132 136 140 146

a. Calculate a point estimate of the mean value
of IQ for the conceptual population of all
first graders in this school, and state which
estimator you used. [Hint:

P
xi ¼ 3753.]

b. Calculate a point estimate of the IQ value
that separates the lowest 50% of all such
students from the highest 50%, and state
which estimator you used.

c. Calculate and interpret a point estimate of
the population standard deviation r.
Which estimator did you use? [Hint:P

x2i ¼ 432,015.]
d. Calculate a point estimate of the propor-

tion of all such students whose IQ exceeds

100. [Hint: Think of an observation as a
“success” if it exceeds 100.]

e. Calculate a point estimate of the popula-
tion coefficient of variation r/l, and state
which estimator you used.

2. A sample of 20 students who had recently
taken introductory statistics yielded the fol-
lowing information on brand of calculator
owned (T = Texas Instruments, H = Hewlett-
Packard, C = Casio, S = Sharp):

T T H T C T T S C H
S S T H C T T T H T

a. Estimate the true proportion of all such
students who own a Texas Instruments
calculator.

b. Of the ten students who owned a TI cal-
culator, 4 had graphing calculators. Esti-
mate the proportion of students who do
not own a TI graphing calculator.
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3. Consider the following sample of observa-
tions on coating thickness for low-viscosity
paint (“Achieving a Target Value for a
Manufacturing Process: A Case Study,”
J. Qual. Technol. 1992: 22–26):

.83 .88 .88 1.04 1.09 1.12 1.29 1.31
1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83

Assume that the distribution of coating
thickness is normal (a normal probability
plot strongly supports this assumption).

a. Calculate a point estimate of the mean
value of coating thickness, and state which
estimator you used.

b. What is the estimated standard error of the
estimator that you used in part (a)?

c. Calculate a point estimate of the median of
the coating thickness distribution, and
state which estimator you used.

d. Calculate a point estimate of the value that
separates the largest 10% of all values in
the thickness distribution from the
remaining 90%, and state which estimator
you used. [Hint: Express what you are
trying to estimate in terms of l and r.]

e. Estimate P(X < 1.5), i.e., the proportion of
all thickness values less than 1.5. [Hint: If
you knew the values of l and r, you could
calculate this probability. These values are
not available, but they can be estimated.]

4. The data set mentioned in Exercise 1 also
includes these third grade verbal IQ obser-
vations for males and females, respectively.

Males
117 103 121 112 120 132 113 117 132
149 125 131 136 107 108 113 136 114
Females
114 102 113 131 124 117 120 90
114 109 102 114 127 127 103

Prior to obtaining data, denote the male
values by X1 …, Xm and the female values
by Y1, …, Yn. Suppose that the Xi’s consti-
tute a random sample from a distribution

with mean l1 and standard deviation r1 and
that the Yi’s form a random sample (inde-
pendent of the Xi’s) from another distribution
with mean l2 and standard deviation r2.

a. Use rules of expected value to show that
X � Y is an unbiased estimator of l1 – l2.
Calculate the estimate for the given data.

b. Use rules of variance from Chapter 5 to
obtain expressions for the variance and
standard deviation (standard error) of the
estimator in part (a), and then compute the
estimated standard error.

c. Calculate a point estimate of the ratio
r1/r2 of the two standard deviations.

d. Suppose one male third grader and one
female third grader are randomly selected.
Calculate a point estimate of the standard
deviation of the difference X – Y between
male and female IQ.

5. As an example of a situation in which several
different statistics could reasonably be used to
calculate a point estimate, consider a popu-
lation of N invoices. Associated with each
invoice is its “book value,” the recorded
amount of that invoice. Let T denote the total
book value, a known amount. Some of these
book values are erroneous. An audit will be
carried out by randomly selecting n invoices
and determining the audited (correct) value
for each one. Suppose that the sample gives
the following results (in dollars).

Invoice
1 2 3 4 5

Book value 300 720 526 200 127
Audited value 300 520 526 200 157
Error 0 200 0 0 −30

Let X = the sample mean audited value,
Y = the sample mean book value, and D =
the sample mean error. Propose three differ-
ent statistics for estimating the total audited
(i.e., correct) value h—one involving just
N and X, another involving N, T, and D, and
the last involving T and X=Y . Then calculate
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the resulting estimates when N = 5000 and
T = 1,761,300. [The article “Statistical
Models and Analysis in Auditing,” Stat. Sci.
1989: 2–33 discusses properties of these
estimators.]

6. Consider the accompanying data on cycles to
failure for a sample of 12 turbine blades
(“Effect of Aluminized Coating on Combined
Low and High Cycle Fatigue Life of Turbine
Blade at Elevated Temperature,” J. Engr. Gas
Turbines Power 2019):

209 226 281 494 568 953
488 655 943 973 1193 1358

The article’s authors used an appropriate
probability plot to support the use of a log-
normal distribution (see Section 4.5) as a
model for cycles to failure.

a. Estimate the parameters of the distribu-
tion. [Hint: Remember that X has a log-
normal distribution with parameters l and
r if ln(X) is normally distributed with
mean l and standard deviation r.]

b. Use the estimates of part (a) to estimate
the true mean cycles to failure for this
type of turbine blade. [Hint: What is E(X)
for the lognormal distribution?]

7. a. A random sample of 10 houses in a par-
ticular area, each of which is heated with
natural gas, is selected and the amount of
gas (therms) used during the month of
January is determined for each house. The
resulting observations are 103, 156, 118,
89, 125, 147, 122, 109, 138, 99. Let l
denote the average gas usage during
January by all houses in this area. Com-
pute a point estimate of l.

b. Suppose there are 10,000 houses in this
area that use natural gas for heating. Let s
denote the total amount of gas used by all
of these houses during January. Estimate
s using the data of part (a). What

estimator did you use in computing your
estimate?

c. Use the data in part (a) to estimate p, the
proportion of all houses that used at least
100 therms.

d. Give a point estimate of the population
median usage (the middle value in the
population of all houses) based on the
sample of part (a). What estimator did you
use?

8. In a random sample of 80 components of a
certain type, 12 are found to be defective.

a. Give a point estimate of the proportion of
all such components that are not defective.

b. A system is to be constructed by randomly
selecting two of these components and
connecting them in series, as shown here.

The series connection implies that the sys-
tem will function if and only if neither
component is defective (i.e., both compo-
nents work properly). Estimate the propor-
tion of all such systems that work
properly. [Hint: If p denotes the probability
that a component works properly, express
P(system works) in terms of p.]

c. Let P̂ be the sample proportion of suc-
cesses. Is P̂2 an unbiased estimator for p2?
[Hint: Recall that for any rv Y, E(Y2)
= V(Y) + [E(Y)]2].

9. Each of 150 newly manufactured items is
examined and the number of scratches
per item is recorded (the items are supposed
to be free of scratches), yielding the following
data:

Number of scratches
per item

0 1 2 3 4 5 6 7

Observed frequency 18 37 42 30 13 7 2 1
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Let X = the number of scratches on a ran-
domly chosen item, and assume that X has a
Poisson distribution with parameter µ.

a. Find an unbiased estimator of µ and
compute the estimate for the data.

b. What is the standard deviation (standard
error) of your estimator? Compute the
estimated standard error. [Hint: r2X ¼ l
when X is Poisson.]

10. Using a long rod that has length l, you are
going to lay out a square plot in which the
length of each side is l. Thus the area of the
plot will be l2. However, you do not know
the value of l, so you decide to make n in-
dependent measurements X1, X2, … Xn of
the length. Assume that each Xi has mean l
(unbiased measurements) and variance r2.

a. Show that X
2
is not an unbiased estimator

for l2. [Hint: For any rv Y, E(Y2) =
V(Y) + [E(Y)]2. Apply this with Y ¼ X.]

b. For what value of k is the estimator

X
2 � kS2 unbiased for l2? [Hint: Com-

pute EðX2 � kS2Þ.]
11. Let X1 (X2) denote the number of male (fe-

male) teenagers in a random sample of size
n1 (n2) who have vaped during the previous
12 months. Denote the probabilities that a
randomly selected teenage male and female
vaped in the last 12 months by p1 and p2,
respectively. Define P̂i ¼ Xi=ni for i = 1, 2.

a. Show that P̂1 � P̂2 is an unbiased esti-
mator for p1 – p2. [Hint: E(Xi) = npi for
i = 1, 2.]

b. What is the standard error of the esti-
mator in part (a)?

c. How would you use the observed values
x1 and x2 to estimate the standard error of
your estimator?

d. If n1 = n2 = 200, x1 = 107, and x2 = 62,
use the estimator of part (a) to obtain an
estimate of p1 – p2.

e. Use the result of part (c) and the data of
part (d) to estimate the standard error of
the estimator.

12. Suppose a certain type of fertilizer has an
expected yield per acre of l1 with variance
r2, whereas the expected yield for a second
type of fertilizer is l2 with the same variance
r2. Let S21 and S22 denote the sample vari-
ances of yields based on sample sizes n1 and
n2, respectively, of the two fertilizers. Show
that the following pooled (combined) esti-
mator is unbiased for estimating r2:

r̂2 ¼ ðn1 � 1ÞS21 þðn2 � 1ÞS22
n1 þ n2 � 2

13. The time a customer spends in service after
waiting in a queue is often modeled with an
exponential distribution. Let X1; . . .;Xn be a
random sample of service times. Since the
parameter k of the exponential distribution
is the reciprocal of the expected value, a

reasonable estimator of k is k̂ ¼ 1=X.

a. Show using a moment generating func-
tion argument that X has a gamma dis-
tribution, with parameters a ¼ n and
b ¼ 1=ðnkÞ.

b. Show that the mean and variance of the

estimator k̂ are

Eðk̂Þ ¼ nk
n� 1

and

Vðk̂Þ ¼ n2k2

ðn� 1Þ2ðn� 2Þ

[Hint: Determine E(1/Y) and E(1/Y2)
when Y has a gamma distribution, using
the gamma pdf and Expression (4.5). For
the variance, use the variance shortcut
formula.]

c. Propose a formula for the estimated

standard error of k̂.

14. Refer back to the previous exercise. Con-
sider the following alternative estimator of
the parameter k:

k̂a ¼ n� 1P
Xi

¼ n� 1
n

� 1
X
¼ n� 1

n
k̂
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a. Determine the mean, variance, and MSE

of k̂a. [Hint: Use rescaling properties.]

b. Which of the two estimators, k̂ or k̂a, is
preferable? Explain your reasoning.

15. Consider a random sample X1, …, Xn from
the pdf

f ðx; hÞ ¼ :5ð1þ hxÞ � 1� x� 1

for some �1� h� 1 (this distribution arises

in particle physics). Show that ĥ ¼ 3X is an
unbiased estimator of h. [Hint: First deter-
mine l ¼ EðXÞ ¼ EðXÞ.]

16. A sample of n captured jet fighters results in
serial numbers x1, x2, x3, …, xn. The CIA
knows that the aircraft were numbered
consecutively at the factory starting with a
and ending with b, so that the total number
of planes manufactured is b – a + 1 (e.g., if
a = 17 and b = 29, then 29 − 17 + 1 = 13
planes having serial numbers 17, 18, 19, …,
28, 29 were manufactured). However, the
CIA does not know the values of a or b.
A CIA statistician suggests using the esti-
mator max(Xi) – min(Xi) + 1 to estimate the
total number of planes manufactured.

a. If n = 5, x1 = 237, x2 = 375, x3 = 202,
x4 = 525, and x5 = 418, what is the
corresponding estimate?

b. Under what conditions on the sample
will the value of the estimate be exactly
equal to the true total number of planes?
Will the estimate ever be larger than the
true total? Do you think the estimator is
unbiased for estimating b – a + 1?
Explain in one or two sentences.

(A similar method was used to estimate
German tank production in World War II.)

17. Let X1, X2, …, Xn represent a random sam-
ple from a Rayleigh distribution with pdf

f ðx; hÞ ¼ x

h
e�x2=ð2hÞ x[ 0

a. It can be shown that E(X2) = 2h. Use this
fact to construct an unbiased estimator of
h based on

P
X2
i (and use rules of

expected value to show that it is
unbiased).

b. Estimate h from the following measure-
ments of blood plasma beta concentra-
tion (in pmol/L) for n = 10 men,
assuming the population of measure-
ments follows a Rayleigh distribution.

16.88 10.23 4.59 6.66 13.68
14.23 19.87 9.40 6.51 10.95

18. Suppose the true average growth l of one
type of plant during a 1-year period is
identical to that of a second type, but the
variance of growth for the first type is r2,
whereas for the second type, the variance is
4r2. Let X1, …, Xm be m independent
growth observations on the first type [so
E(Xi) = l, V(Xi) = r2], and let Y1, …, Yn be
n independent observations on the second
type [E(Yi) = l, V(Yi) = 4r2]. Let c be a
numerical constant and consider the esti-
mator l̂ ¼ cXþð1� cÞY ; for any c be-
tween 0 and 1, this is a weighted average of
the two sample means.

a. Show that for any c the estimator is
unbiased.

b. For fixed m and n, what value c mini-
mizes Vðl̂Þ? [Hint: The estimator is a
linear combination of the two sample
means and these means are independent.
Once you have an expression for the
variance, differentiate with respect to c.]

19. In Chapter 3, we defined a negative bino-
mial rv as the number of trials required to
achieve the rth success in a sequence of
independent and identical success/failure
trials. The probability mass function
(pmf) of X is

nbðx; r; pÞ ¼ x� 1

r � 1

� �
prð1� pÞx�r

x ¼ r; rþ 1; rþ 2; . . .
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a. Suppose that r � 2. Show that

P̂ ¼ ðr � 1Þ=ðX � 1Þ

is an unbiased estimator for p. [Hint:
Write out EðP̂Þ as a sum, then make the
substitutions y ¼ x� 1 and s ¼ r � 1.]

b. A reporter wishing to interview five indi-
viduals who support a certain candidate
begins asking people whether (S) or not
(F) they support the candidate. If the
sequence of responses is SFFSFFFSSS,
estimate p = the true proportion who
support the candidate.

20. Let X1, X2, …, Xn be a random sample from
a pdf f(x) that is symmetric about l, so that
~X is an unbiased estimator of l. If n is large,

it can be shown that Vð~XÞ � 1=f4n½f ðlÞ�2g.
When the underlying pdf is Cauchy (see
Example 7.11), VðXÞ ¼ 1, so X is a terrible
estimator. What is Vð~XÞ in this case when
n is large?

21. An investigator wishes to estimate the pro-
portion of students at a certain university
who have violated the honor code. Having
obtained a random sample of n students, she
realizes that asking each, “Have you vio-
lated the honor code?” will probably result
in some untruthful responses. Consider the
following scheme, called a randomized
response technique. The investigator makes
up a deck of 100 cards, of which 50 are of
type I and 50 are of type II.

Type I: Have you violated the honor code
(yes or no)?
Type II: Is the last digit of your telephone
number a 0, 1, or 2 (yes or no)?

Each student in the random sample is asked
to mix the deck, draw a card, and answer the
resulting question truthfully. Because of the
irrelevant question on type II cards, a yes
response no longer stigmatizes the

respondent, so we assume that responses are
truthful. Let p denote the proportion of
honor-code violators (i.e., the probability of
a randomly selected student being a viola-
tor), and let k = P(yes response). Then k
and p are related by k = .5p + (.5)(.3).

a. Let Y denote the number of yes respon-
ses, so Y * Bin(n, k). Thus Y/n is an
unbiased estimator of k. Derive an esti-
mator for p based on Y. If n = 80 and
y = 20, what is your estimate? [Hint:
Solve k = .5p + .15 for p and then sub-
stitute Y/n for k.]

b. Use the fact that E(Y/n) = k to show that
your estimator p̂ is unbiased.

c. If therewere 70 type I and 30 type II cards,
what would be your estimator for p?

22. Return to the problem of estimating the
population proportion p and consider
another adjusted estimator, namely

P̂ ¼ Xþ ffiffiffiffiffiffiffiffi
n=4

p
nþ ffiffiffi

n
p

(The justification for this estimator comes
from the Bayesian approach to point esti-
mation.)
a. Determine the mean squared error of this

estimator. What is interesting about this
MSE?

b. Compare the MSE of this estimator to
the MSE of the usual estimator (the
sample proportion).

23. Show that MSEðĥÞ ¼ E½ðĥ� hÞ2� ¼
VðĥÞþ ½EðĥÞ � h�2 (the mean squared error
proposition from earlier in this section).

[Hint: Write µ for EðĥÞ. Expand the two
quadratic expressions, and use the variance

shortcut formula to rewrite VðĥÞ.]
24. Show that ĥ is a consistent estimator of h (in

the mean-square sense) if and only if both

(1) EðĥÞ ! h and (2) VðĥÞ ! 0 as n ! 1.
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7.2 The Methods of Moments and Maximum Likelihood

The point estimators introduced in Section 7.1 were obtained via common sense and/or educated
guesswork. We now introduce two “constructive” methods for obtaining point estimators: the method
of moments and the method of maximum likelihood. By constructive we mean that the general
definition of each type of estimator suggests explicitly how to obtain the estimator in any specific
problem. Although maximum likelihood estimators are generally preferable to moment estimators
because of certain efficiency properties, they often require significantly more computation than do
moment estimators. (It is sometimes the case the two methods produce the same estimator.)

The Method of Moments
The basic idea of this method is to equate certain sample characteristics, such as the sample mean, to
the corresponding population expected values. Then solving these equations for unknown parameter
values yields the estimators.

DEFINITION Let X1, …, Xn be a random sample from some distribution. For k = 1, 2, 3, …,
the kth population moment, or kth moment of the distribution, is E(Xk). The
kth sample moment is ð1=nÞPn

i¼1 X
k
i :

Thus the first population moment is E(X) = l and the first sample moment is
P

Xi=n ¼ X. The
second population and sample moments are E(X2) and

P
X2
i =n, respectively. The population

moments will be functions of any unknown parameters h1, h2, … .

DEFINITION Let X1, X2, …, Xn be a random sample from a distribution depending on parameters
h1, …, hm whose values are unknown. Then the method of moments estimators

(mmes) ĥ1; . . .; ĥm are obtained by equating the first m sample moments to the
corresponding first m population moments and solving for h1, …, hm.

If, for example, m = 2, E(X) and E(X2) will be functions of h1 and h2. Setting EðXÞ ¼PXi=n ¼ X
and EðX2Þ ¼PX2

i =n gives two equations in h1 and h2. The solution then defines the estimators.

Example 7.13 Let X1, …, Xn represent a random sample of service times of n customers at a certain
facility, where the underlying distribution is assumed exponential with parameter k. Since there is
only one parameter to be estimated, the estimator is obtained by equating E(X) to X. Since E(X) = 1/k

for an exponential distribution, this gives 1=k ¼ X or k ¼ 1=X. The mme of k is then k̂ ¼ 1=X. ■

Example 7.14 Let X1, …, Xn be a random sample from a gamma distribution with parameters a and
b. From Section 4.4, E(X) = ab and E(X2) = b2C(a + 2)/C(a) = b2(a + 1)a. The mmes of a and b are
obtained by solving

X ¼ ab
1
n

X
X2
i ¼ aðaþ 1Þb2
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A little straightforward algebra gives the estimators

â ¼ X
� 	2

1
n

P
X2
i � X

� 	2 b̂ ¼
1
n

P
X2
i � X

� 	2
X

To illustrate, the article cited in Example 4.29 recommends using the gamma distribution to model
times between attempted connections to a server from suspicious IP addresses. The article includes
the following n = 31 observations for such interarrival times (hours) for one particular server being
“hit” by a specific suspicious IP address:

2.3403 8.0347 8.4395 17.3053 2.9156 10.1836 2.1481 4.0839 2.3567 6.0122
1.0270 0.1208 12.9981 14.9370 3.7714 1.3228 0.3270 9.9028 3.4356 4.0326
3.0470 1.3922 0.3828 0.6180 4.0120 4.4803 8.6706 0.2933 2.9467 17.3828
0.9431

from which x ¼ 5:157 and 1=31ð ÞP x2i ¼ 51:168. The parameter estimates are

â ¼ ð5:157Þ2
51:168� ð5:157Þ2 ¼ 1:082 b̂ ¼ 51:168� ð5:157Þ2

5:157
¼ 4:765

These estimates of a and b fall into the range of parameter estimates suggested by the article’s
authors. (We’ll consider interval estimates of parameters in Chapter 8.) ■

Example 7.15 Let X1, …, Xn be a random sample from the following discrete distribution:

pðxÞ ¼ xþ r � 1
r � 1

� �
prð1� pÞx x ¼ 0; 1; 2; . . .

This is a variant on the generalized negative binomial distribution with parameters r and p (see
Chapter 3, Exercise 124). It can be shown for this distribution that E(X) = r(1 – p)/p and V(X) =
r(1 – p)/p2, from which E(X2) = V(X) + [E(X)]2 = r(1 – p)(r – rp + 1)/p2. Equating E(X) to X and
E(X2) to ð1=nÞPX2

i eventually gives

p̂ ¼ X
1
n

P
X2
i � X

� 	2 r̂ ¼ X
� 	2

1
n

P
X2
i � X

� 	2�X

As an illustration, the article “Chains of Transmission and Control of Ebola Virus Disease in Con-
akry, Guinea, in 2014: an Observational Study” (Lancet Infect. Dis. 2015: 320–326) describes a study
of the number of secondary Ebola cases stemming from 152 infected people (a secondary case means
they give someone else the disease). The data is as follows:

Number of cases 0 1 2 3 4 5 8 9 14 17
Frequency 109 16 9 5 5 2 1 3 1 1

7.2 The Methods of Moments and Maximum Likelihood 417

http://dx.doi.org/10.1007/978-3-030-55156-8_4
http://dx.doi.org/10.1007/978-3-030-55156-8_8
http://dx.doi.org/10.1007/978-3-030-55156-8_3


A follow-up letter in the same journal investigated modeling these counts with a generalized
negative binomial distribution. First,

x ¼
X

xi=152 ¼ ½0ð109Þþ 1ð16Þþ � � � þ 17ð1Þ�=152 ¼ 0:954

and

X
x2i =152 ¼ ½02ð109Þþ 12ð16Þþ � � � þ 172ð1Þ�=152 ¼ 6:704

Thus, the mmes for p and r in this case are

p̂ ¼ 0:954

6:704� ð0:954Þ2 ¼ :165 r̂ ¼ ð0:954Þ2
6:704� ð0:954Þ2 � 0:954

¼ :188

Although r by definition must be positive, the denominator of r̂ could potentially turn out negative,
which would indicate that the generalized negative binomial distribution is not appropriate (or that the
moment estimator is flawed). ■

Maximum Likelihood Estimation
The method of maximum likelihood was first introduced by R. A. Fisher, a geneticist and statistician,
in the 1920s. Most statisticians recommend this method, at least when the sample size is large, since
the resulting estimators have certain desirable efficiency properties (see the proposition on large
sample behavior toward the end of this section, as well as Section 7.4). The following example
illustrates the key underlying concept.

Example 7.16 A May 2018 article on www.howtogeek.com discusses traditional criteria for
“strong” passwords and the emerging advice to use longer passphrases by concatenating several
everyday words. Suppose that 10 students at a certain university are randomly selected, and it is found
that the first, third, and tenth students use passphrases for their email accounts, whereas the other
seven students do not. Let p = P(passphrase); i.e., p is the proportion of all students at the university
using a passphrase on their email accounts. Define Bernoulli random variables X1, X2, …, X10 by

Xi ¼ 1 if the ith student uses a passphrase
0 if not

�
i ¼ 1; 2; . . .10

For the obtained sample, x1 = x3 = x10 = 1 and the other seven xi’s are all zero. Students’ decisions
about whether to use passphrases are presumably independent of one another, so that the Xi’s are
independent and the probability of observing the obtained sample is

p � ð1� pÞ � p � ð1� pÞ � ð1� pÞ � � � p ¼ p3ð1� pÞ7 ð7:4Þ

We now ask, “For what value of p is the obtained sample most likely to have occurred?” That is, we
wish to find the value of p that maximizes the joint pmf (7.4) or, equivalently, maximizes the natural
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log of (7.4).2 Figure 7.4a shows a graph of the likelihood (7.4) as a function of p. It appears that the
graph reaches its peak above p = .3, which is the proportion of passphrases in the sample. Figure 7.4b
shows a graph of the natural logarithm of (7.4), whose maximum will occur at the same value.

Here,

ln½p3ð1� pÞ7� ¼ 3 lnðpÞþ 7 lnð1� pÞ
d

dp
ln½p3ð1� pÞ7� ¼ 3

p
� 7
1� p

¼ 0 ) p ¼ 3
10

So p = 3/10 = .30 maximizes the (log of the) probability of the specified sample, as conjectured. For
that reason, the point estimate p̂ ¼ :30 is called the maximum likelihood estimate of the parameter p.3

To be clear, we could also have differentiated (7.4) directly and set that derivative equal to 0 to obtain
the same result; taking the logarithm simply made the calculus easier.

Now suppose that rather than being told each individual student’s decision, we had only been
informed that three of the ten used passphrases. Then we would have the observed value of the

binomial random variable X = the number of passphrases. The pmf of X is 10
x

� �
pxð1� pÞ10�x; for

x = 3, this becomes 10
3

� �
p3ð1� pÞ7. The binomial coefficient 10

3

� �
is irrelevant to the maximization,

and so the value of p that maximizes the likelihood of observing X = 3 is again p̂ ¼ :30. ■
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Figure 7.4 Likelihood and log likelihood plotted against p

2Since the natural logarithm is a monotone function, finding u to maximize ln[g(u)] is equivalent to finding u to
maximize g(u). Taking the logarithm will frequently make differentiation easier.
3In general, the second derivative should be examined to make sure a maximum has been obtained, but here this is
obvious from the figure.
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DEFINITION Let X1, …, Xn have a joint distribution (i.e., a joint pmf or pdf) that depends
on a parameter h whose value is unknown. This joint distribution, regarded as a
function of h, is called the likelihood function and is denoted by L(h). The

maximum likelihood estimate (mle) ĥ is the value of h that maximizes the
likelihood function.

Echoing the terminology from the previous section, we call ĥ a maximum likelihood estimate if it’s

expressed in terms of our observed sample data and a maximum likelihood estimator if ĥ is regarded
as a function of the random variables X1, …, Xn.

In Example 7.16, the joint pmf of X1, …, X10 became p3(1 – p)7 once the observed values of the
Xi’s were substituted. So, the likelihood function would be written L(p) = p3(1 – p)7. If we take the

perspective that our data consists of a single binomial observation, then LðpÞ ¼ 10
3


 �
p3ð1� pÞ7. In

either case, the value of p that maximizes L(p) is p̂ ¼ :3.
The likelihood function tells us how likely the observed sample is, as a function of the possible

parameter value. Maximizing the likelihood gives the parameter value for which the observed sample
is most likely to have been generated, that is, the parameter value that “agrees most closely” with the
observed data. As in Example 7.16, maximizing the likelihood is equivalent to maximizing the
logarithm of the likelihood; the latter is typically computationally easier, since the likelihood is
typically a product and so its logarithm is a sum. We will use ‘ðhÞ to denote the natural logarithm of
the likelihood function, ‘ðhÞ ¼ ln½LðhÞ�, commonly referred to as the log-likelihood function.

Example 7.17 Suppose X1, …, Xn is a random sample from an exponential distribution with
parameter k. Because of independence, the likelihood function is a product of the individual pdfs:

LðkÞ ¼ f ðx1; . . .; xn; kÞ ¼ ðke�kx1Þ � � � � � ðke�kxnÞ ¼ kne�k
P

xi

Next, we determine the value of k that maximizes the logarithm of this function:

‘ðkÞ ¼ ln½LðkÞ� ¼ n lnðkÞ � k
X

xi

‘0ðkÞ ¼ n

k
�
X

xi ¼ 0 )

k ¼ nP
xi
¼ 1

x

Thus the mle is k̂ ¼ 1=X. This is exactly the same as the mme that we found in Example 7.13; as

noted previously, the two methods often yield the same estimator. Unfortunately, k̂ is not an unbiased
estimator (see Exercise 13), since Eð1=XÞ 6¼ 1=EðXÞ. ■

Example 7.18 In Chapter 3, we indicated that the Poisson distribution could be used for modeling
the number of events of some sort that occur in a two-dimensional region (e.g., the occurrence of
tornadoes in a particular Midwest county during a given time period). Assume that when the region
R being sampled has area a(R), the number X of events occurring in R has a Poisson distribution with
mean k � a(R), so k represents the expected number of events per unit area, and that nonoverlapping
regions yield independent X’s. (This is called a spatial Poisson process.)

Suppose an ecologist selects n nonoverlapping regions R1, …, Rn and counts the number of plants
of a certain species found in each region. The joint pmf (likelihood) is then
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LðkÞ ¼ pðx1; . . .; xn; kÞ ¼ k � aðR1Þ½ �x1e�k�aðR1Þ

x1!
� � � � � k � aðRnÞ½ �xne�k�aðRnÞ

xn!

¼ aðR1Þ½ �x1 � � � � � aðRnÞ½ �xn �kRxi � e�kRaðRiÞ

x1! � � � � � xn! ¼ C � kRxi � e�kRaðRiÞ;

where the quantity C does not involve the parameter k (and, hence, will not impact maximization).
Then,

‘ðkÞ ¼ ln½LðkÞ� ¼ lnðCÞþ lnðkÞ �
X

xi � k
X

aðRiÞ

‘0ðkÞ ¼ 0þ
P

xi
k

�
X

aðRiÞ ¼ 0 )

k ¼
P

xiP
aðRiÞ

The mle is k̂ ¼PXi=
P

aðRiÞ. This is intuitively reasonable because k is the true density (plants per

unit area), whereas k̂ is the sample density:
P

Xi is the number of plants counted, and
P

aðRiÞ is just
the total area sampled. Because E(Xi) = k � a(Ri), the estimator is unbiased.

Sometimes an alternative sampling procedure is used. Instead of fixing regions to be sampled, the
ecologist will select n points in the entire region of interest and let yi = the distance from the ith point
to the nearest plant. The cdf of Y = distance to the nearest plant is

FYðyÞ ¼ PðY � yÞ ¼ 1� PðY [ yÞ ¼ 1� P
no plants in a

circle of radius y

� �

¼ 1� e�kpy2ðkpy2Þ0
0!

¼ 1� e�kpy2

Taking the derivative of FY(y) with respect to y yields

fYðy; kÞ ¼ 2pkye�kpy2 y� 0

If we now form the likelihood L(k) = fY(y1; k) � � � � � fY(yn; k), differentiate ln[L(k)], and so on, the
resulting mle is

k̂ ¼ n

p
P

Y2
i

¼ number of plants observed
total area sampled

which is also a sample plant density. It can be shown that in a sparse environment (small k), the
distance method is in a certain sense better, whereas in a dense environment, the first sampling
method is better. ■

The definition of mles can be extended in the natural way to distributional families that include two

or more parameters. The mles of parameters h1; . . .; hm are those values ĥ1; . . .; ĥm that maximize the
likelihood function Lðh1; . . .; hmÞ or, equivalently, the logarithm of the likelihood function.
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Example 7.19 Let X1, …, Xn be a random sample from a normal distribution, which includes the
two parameters µ and r. The likelihood function is

Lðl; rÞ ¼ f ðx1; . . .; xn; l; rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�ðx1�lÞ2=ð2r2Þ. . .
1ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�ðxn�lÞ2=ð2r2Þ

¼ 2pr2
� 	�n=2

e�Rðxi�lÞ2=ð2r2Þ

so

‘ðl; rÞ ¼ ln½Lðl; rÞ� ¼ � n

2
lnð2pÞ � n ln r� 1

2r2
X

ðxi � lÞ2

To find the maximizing values of l and r, we must take the partial derivatives of ‘ðl; rÞ with respect
to both l and r, equate them to zero, and solve the resulting two equations. Omitting the details, the
resulting mles are

l̂ ¼ X r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðXi � XÞ2

n

s

Notice that the mle of r is not the sample standard deviation, S, since the denominator in the mle is
n and not n – 1. ■

Example 7.20 Let X1, …, Xn be a random sample from a Weibull pdf

f ðx; a; bÞ ¼ a
ba

� xa�1 � e�ðx=bÞa x� 0

Writing the likelihood Lða; bÞ and log-likelihood ‘ða; bÞ, then setting both @‘=@a ¼ 0 and @‘=@b ¼ 0
yields the equations

a ¼
P ½xai � lnðxiÞ�P

xai
�
P

lnðxiÞ
n

� ��1

b ¼
P

xai
n

� �1=a

These two equations cannot be solved explicitly to give general formulas for the mles â and b̂.
Instead, for any sample x1, …, xn, the equations must be solved using an iterative numerical
procedure.

The iterative mle computations can be done using statistical software. In R, the command

fitdistr(x, `̀ weibull'') will return â and b̂ assuming the data is stored in the vector x (the
MASS package must be installed first). As an example, consider the following data on the survival
time (weeks) of male mice subjected to 240 rads of gamma radiation (from A. J. Gross and V. Clark,
Survival Distributions: Reliability Applications in the Biomedical Sciences):

A Weibull probability plot supports the plausibility of assuming that survival time has a Weibull
distribution. With the aid of software, maximum likelihood estimates of the Weibull parameters are

152 115 109 94 88 137 152 77 160 165
125 40 128 123 136 101 62 153 83 69
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â ¼ 3:799 and b̂ ¼ 125:88. Figure 7.5 shows the Weibull log likelihood as a function of both a and
b. The surface near the top has a rounded shape, allowing the maximum to be found easily, but for
some distributions the surface can be much more irregular, and the maximum may be hard to find.

Some Properties of MLEs
In Example 7.19, we obtained the mle of r when the underlying distribution is normal. The mle of r2,
as well as many other mles, can be easily derived using the following proposition.

MLE INVARIANCE
PRINCIPLE

Let ĥ1; ĥ2; . . .; ĥm be the mles of the parameters h1; h2; . . .; hm. Then the
mle of any function hðh1; h2; . . .; hmÞ of these parameters is the

function hðĥ1; ĥ2; . . .; ĥmÞ of the mles.

For an intuitive idea of the proof, consider the special case m = 1, with h1 = h, and assume that h(�) is
a one-to-one function. On the graph of the likelihood as a function of the parameter h, the highest

point occurs where h ¼ ĥ. Now consider the graph of the likelihood as a function of h(h). In the new
graph the same heights occur, but the height that was previously plotted at h = a is now plotted at

hðhÞ ¼ hðaÞ, and the highest point is now plotted at hðhÞ ¼ hðĥÞ. Thus, the maximum remains the

same, but it now occurs at hðĥÞ.
Example 7.21 (Example 7.19 continued) In the case of a random sample from a normal distribution,

the mles of l and r are l̂ ¼ X and r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðXi � XÞ2=n

q
. To obtain the mle of the function

h(µ, r) = r2, substitute the mles into the function:

cr2 ¼ r̂2 ¼ 1
n

X
ðXi � XÞ2

The mle of r2 is not the unbiased estimator (the sample variance S2 is), although they are close when
n is large. Similarly, the mle of the population coefficient of variation, defined by h(µ,r) = 100l/r, is
simply 100l̂=r̂. ■
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Figure 7.5 Weibull log likelihood for Example 7.20 ■
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Example 7.22 (Example 7.20 continued) From Section 4.5, the mean value of a Weibull rv X is

l ¼ b � Cð1þ 1=aÞ

The mle of l is therefore l̂ ¼ b̂ � Cð1þ 1=âÞ, where â and b̂ are the mles of a and b. In particular, the
mle of l in this case is not the mme X, although the latter is an unbiased estimator. At least for large n,
l̂ is a better estimator than X because the mle has lower mean squared error. ■

The method of maximum likelihood estimation has considerable intuitive appeal. The following
proposition provides additional rationale for the use of mles; see Section 7.4 for more details.

THEOREM Under very general conditions on the joint distribution of the sample, when the
sample size is large, the maximum likelihood estimator of any parameter h (1) is
close to h (consistency), (2) is approximately unbiased, and (3) has variance that
is nearly as small as can be achieved by any unbiased estimator. Stated another

way, the mle ĥ is at least approximately the MVUE of h.

Because of this result and the fact that calculus-based techniques can usually be used to derive the
mles (although numerical methods, such as Newton–Raphson, are sometimes necessary), maximum
likelihood estimation is the most widely used estimation technique among statisticians. Many of the
estimators used in the rest of this book are mles.

One consequence of the preceding theorem is that when the mle and the moments estimator differ for
a given distribution, the mle will nearly always have smaller variance. Thus, although formulas for
mmes are often easier to determine, the extra computation required for mles is typically worth the price.

Some Complications
Sometimes calculus cannot be used to obtain mles.

Example 7.23 Suppose the waiting time for a bus is uniformly distributed on [0, h] and the results
x1, …, xn of a random sample from this distribution have been observed. Since f(x; h) = 1/h for
0 � x � h and 0 otherwise,

LðhÞ ¼ f ðx1; . . .; xn; hÞ ¼ 1=hn 0� x1 � h; . . .; 0� xn � h
0 otherwise

�

As long as h � max(xi), LðhÞ ¼ 1=hn [ 0, but for h < max(xi), the likelihood drops to 0. This is
illustrated in Figure 7.6. Calculus will not work because the maximum of the likelihood occurs at a

point of discontinuity, but the figure shows that the mle is ĥ ¼ max xið Þ. Thus if my waiting times are

2.3, 3.7, 1.5, 0.4, and 3.2, then the mle is ĥ ¼ 3:7. Note that this mle is biased (see Example 7.6).

Likelihood

max(xi) θ

Figure 7.6 The likelihood function for Example 7.23 ■
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Example 7.24 A method often used to estimate the size of a wildlife population involves performing
a capture/recapture experiment. In this experiment, an initial sample of M animals is captured, each
of these animals is tagged, and the animals are then returned to the population. After allowing enough
time for the tagged individuals to mix into the population, another sample of size n is captured. With
X = the number of tagged animals in the second sample, the objective is to use the observed x to
estimate the population size N.

The parameter of interest is h = N, which can assume only integer values, so even after deter-
mining the likelihood function (the pmf of X here), using calculus to obtain N would present diffi-
culties. If we think of a “success” as a previously tagged animal being recaptured, then the sampling
is without replacement from a population containing M successes and N – M failures, so that X is a
hypergeometric rv and the likelihood function is

LðNÞ ¼ hðx; n;M;NÞ ¼
M
x

� �
� N �M

n� x

� �
N
n

� �

The integer-valued nature of N notwithstanding, it would be difficult to take the derivative of L(N).
However, let’s consider the ratio of L(N) to L(N – 1):

LðNÞ
LðN � 1Þ ¼ � � � ¼ ðN �MÞ � ðN � nÞ

NðN �M � nþ xÞ

This ratio is larger than 1 if and only if N < Mn/x. The value of N for which L(N) is maximized is
therefore the largest integer less than Mn/x. If we use standard mathematical notation [r] for the
greatest integer less than or equal to r, the mle of N is N̂ ¼ ½Mn=x�. As an illustration, if M = 200 fish
are taken from a lake and tagged, subsequently n = 100 fish are recaptured, and among the 100 there
are x = 11 tagged fish, then N̂ ¼ ½ð200Þð100Þ=11� ¼ ½1818:18� ¼ 1818.

The estimate is actually rather intuitive; x/n is the proportion of the recaptured sample that is
tagged, whereas M/N is the proportion of the entire population that is tagged. The estimate is obtained
by equating these two proportions (estimating a population proportion by a sample proportion). ■

Obtaining an mle requires that the underlying distribution be specified. Suppose X1, X2, …, Xn is a
random sample from some pdf f(x; h) that is symmetric about h, but the investigator is unsure of the
form of the f function. It is then desirable to use an estimator that is robust, that is, one that performs
well for a wide variety of underlying pdfs. One such estimator, called an M-estimator, is based on a
generalization of maximum likelihood estimation. Instead of maximizing the log-likelihoodP

ln½f ðx; hÞ� for a specified f, one maximizes
P

w½f ðx; hÞ�, where the “objective function” w is
selected to yield an estimator with good robustness properties. The book by David Hoaglin et al. (see
the bibliography) contains a good exposition on this subject.

Exercises: Section 7.2 (25–37)

25. A random sample of n bike helmets man-
ufactured by a company is selected. Let
X = the number among the n that are
flawed, and let p = P(flawed). Assume that
only X is observed, rather than the sequence
of S’s and F’s.

a. Derive the maximum likelihood estima-
tor of p. If n = 20 and x = 3, what is the
estimate?

b. Is the estimator of part (a) unbiased?
c. If n = 20 and x = 3, what is the mle of

the probability h = (1 – p)5 that none of
the next five helmets examined is
flawed?
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26. Let X have a Weibull distribution with
parameters a and b, so

EðXÞ ¼ b � Cð1þ 1=aÞ
VðXÞ ¼ b2fCð1þ 2=aÞ � ½Cð1þ 1=aÞ�2g

a. Based on a random sample X1, …, Xn,
write equations for the method of
moments estimators of b and a. Show
that, once the estimate of a has been
obtained, the estimate of b can be found
using the gamma function and that the
estimate of a is the solution to a com-
plicated equation involving the gamma
function.

b. If n = 20, x ¼ 28:0, and
P

x2i ¼
16,500; compute the estimates. [Hint:
[C(1.2)]2/C(1.4) = .95.]

27. Let X denote the proportion of allotted time
that a randomly selected student spends
working on a certain aptitude test. Suppose
the pdf of X is

f ðx; hÞ ¼ ðhþ 1Þxh 0� x� 1

for some h > –1. A random sample of ten
students yields data x1 = .92, x2 = .79,
x3 = .90, x4 = .65, x5 = .86, x6 = .47,
x7 = .73, x8 = .97, x9 = .94, x10 = .77.
a. Use the method of moments to obtain an

estimator of h, and then compute the
estimate for this data.

b. Obtain the maximum likelihood esti-
mator of h, and then compute the esti-
mate for the given data.

28. Two different computer systems are moni-
tored for a total of n weeks. Let Xi denote
the number of breakdowns of the first sys-
tem during the ith week, and suppose the
Xi’s are independent and drawn from a
Poisson distribution with parameter µ1.
Similarly, let Yi denote the number of
breakdowns of the second system during
the ith week, and assume independence
with each Yi Poisson with parameter µ2.
Derive the mles of µ1, µ2, and µ1 – µ2.
[Hint: Using independence, write the joint

pmf (likelihood) of the Xi’s and Yi’s toge-
ther.]

29. Refer to Exercise 25. Instead of selecting
n = 20 helmets to examine, suppose we
examine helmets in succession until we
have found r = 3 flawed ones. If the 20th
helmet is the third flawed one, what is the
mle of p? Is this the same as the estimate in
Exercise 25? Why or why not? Is it the
same as the estimate computed from the
unbiased estimator of Exercise 19?

30. Six Pepperidge Farm bagels were weighed,
yielding the following data (grams):

117.6 109.5 111.6 109.2 119.1 110.8

a. Assuming that the six bagels are a ran-
dom sample and the weight is normally
distributed, estimate the true average
weight and standard deviation of the
weight using maximum likelihood.

b. Again assuming a normal distribution,
estimate the weight below which 95% of
all bagels will have their weights. [Hint:
What is the 95th percentile in terms of l
and r? Now use the invariance
principle.]

c. Suppose we choose another bagel and
weigh it. Let X = weight of the bagel.
Use the given data to obtain the mle of
the probability P(X � 113.4). [Hint:
P(X � 113.4) = U[(113.4 – l)/r)].]

31. Suppose a measurement is made on some
physical characteristic whose value is
known, and let X denote the resulting
measurement error. It is often reasonable to
assume that E(X) = 0 and that X has a
normal distribution. Thus, the pdf of any
particular measurement error is

f ðx; hÞ ¼ 1ffiffiffiffiffiffiffiffi
2ph

p e�x2=2h

where h denotes the population variance.
Let X1, … Xn be a random sample of such
measurement errors.
a. Determine the likelihood function of h.

426 7 Point Estimation



b. Obtain and simplify the log-likelihood
function.

c. Differentiate the log-likelihood function
to determine the mle of h.

d. The precision of a normal distribution is
defined as s = 1/h. Find the mle of s.

32. Let X1, …, Xn be a random sample from a
gamma distribution with parameters a and b.
a. Derive the equations whose solution

yields the maximum likelihood estima-
tors of a and b. Does it appear that they
can be solved explicitly?

b. Show that the mle of l = ab is l̂ ¼ X.

33. Let X1, X2, …, Xn represent a random
sample from the Rayleigh distribution with
density function given in Exercise 17.

a. Determine the maximum likelihood
estimator of h and then calculate the
estimate for the blood plasma beta con-
centration data given in that exercise. Is
this estimator the same as the unbiased
estimator suggested in Exercise 17?

b. Determine the mle of the median of the
blood plasma beta concentration distri-
bution. [Hint: First express the median
of the Rayleigh distribution in terms
of h.]

34. Consider a random sample X1, X2, …, Xn

from the shifted exponential pdf

f ðx; k; hÞ ¼ ke�kðx�hÞ x� h

Taking h = 0 gives the pdf of the expo-
nential distribution considered previously
(with positive density to the right of zero).
An example of the shifted exponential
distribution appeared in Example 4.5, in
which the variable of interest was haz-
ardous flood rate and h was the lowest
water flow rate considered hazardous.
a. Obtain the maximum likelihood estima-

tors of h and k.
b. If n = 10 hazardous flood rate observa-

tions are made, resulting in the values
13.11, 10.64, 12.55, 12.20, 15.44,

13.42, 20.39, 18.93, 27.82, and 11.30,
calculate the maximum likelihood esti-
mates of h and k.

35. Twenty identical components are put on test.
The lifetime distribution of each is expo-
nential with parameter k. The experimenter
then leaves the test facility unmonitored. On
her return 24 h later, the experimenter
immediately terminates the test after noticing
that y = 15 of the 20 components are still in
operation (so 5 have failed). Derive the mle
of k. [Hint: Let Y = the number that survive
24 h. Then Y * Bin(n, p). What is the mle
of p? Now notice that p = P(Xi � 24),
where Xi is exponentially distributed. This
relates k to p, so the former can be estimated
once the latter has been.]

36. The article “A Model of Pedestrians’
Waiting Times for Street Crossings at Sig-
nalized Intersections” (Transp. Res. 2013:
17–28) suggested that under some circum-
stances the distribution of waiting time
X could be modeled with the following pdf:

f ðx; h; sÞ ¼ h
s
ð1� x=sÞh�1 0� x\s

where h > 0 and s > 0.

a. Suppose we observe a random sample of
waiting times X1, …, Xn, and suppose
that the value of the parameter s is
known. Find the mle of h.

b. Suppose instead that h is known but s is
unknown. Determine an equation whose
solution is the mle of s.

37. Let X1; . . .;Xn be a random sample from the
Laplace distribution (also called the double
exponential distribution) with pdf
f ðx; hÞ ¼ e�jx�hj for �1\ x\1.

a. Determine the method of moments esti-
mator for h.

b. Determine the maximum likelihood
estimator for h. [Hint: It can be shown
that the expression

P jxi � cj is mini-
mized by c ¼ ~x, the median of the xi’s.]
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7.3 Sufficiency

An investigator who wishes to make an inference about some parameter h will base conclusions on
the value of one or more statistics—the sample mean X, the sample standard deviation S, the sample
range Yn � Y1, and so on. Intuitively, some statistics will contain more information about h than will
others. Sufficiency, the topic of this section, will help us decide which functions of the data are most
informative for making inferences.

As a first point, we note that a statistic T = t(X1, …, Xn) will not be useful for drawing conclusions
about h unless the distribution of T depends on h. Consider, for example, a random sample of size
n = 2 from a normal distribution with mean l and variance r2, and let T = X1 − X2. Then T has a
normal distribution with mean 0 and variance 2r2, which does not depend on l. Thus this statistic
cannot be used as a basis for drawing any conclusions about l, although it certainly does carry
information about the variance r2.

The relevance of this observation to sufficiency is as follows. Suppose an investigator is given the
value of some statistic T, and then examines the conditional distribution of the sample X1; . . .;Xn

given the value of the statistic—for example, the conditional distribution given that T ¼ X ¼ 28:7. If
this conditional distribution does not depend upon h, then it can be concluded that there is no
additional information about h in the sample over and above what is provided by T. In this sense, for
purposes of making inferences about h, it is sufficient to know the value of T, which contains all
information in the data relevant to h.

Example 7.25 An investigation of major defects on new vehicles of a certain type involved selecting
an initial random sample of n = 3 vehicles and determining for each one the value of X = the number
of major defects. This resulted in observations x1 = 1, x2 = 0, and x3 = 3. You, as a consulting
statistician, have been provided with a description of the experiment, from which it is reasonable to
assume that X has a Poisson distribution, but you have been told only that the total number of defects
T for the three sampled vehicles was 4.

Knowing that T ¼PXi ¼ 4, would there be any additional advantage in having the observed
values of the individual Xi’s when making an inference about the Poisson parameter µ? Or, is it
instead the case that the statistic T contains all relevant information about µ in the data? To address
this issue, consider the conditional distribution of (X1, X2, X3) given that

P
Xi ¼ 4. First of all, there

are only a few possible (x1, x2, x3) triples for which x1 + x2 + x3 = 4. For example, (0, 4, 0) is a
possibility, as are (2, 2, 0) and (1, 0, 3), but not (1, 2, 3) or (5, 0, 2). That is,

PðX1 ¼ x1;X2 ¼ x2;X3 ¼ x3jT ¼ 4Þ ¼ 0 unless x1 þ x2 þ x3 ¼ 4

Now consider the triple (2, 1, 1), which is consistent with T = 4. A moment generating function
argument shows that T has a Poisson distribution with parameter 3µ. From this we calculate the
conditional probability that ðX1;X2;X3Þ ¼ ð2; 1; 1Þ, given T ¼PXi ¼ 4, as follows:

PðX1 ¼ 2;X2 ¼ 1;X3 ¼ 1jT ¼ 4Þ ¼ PðX1 ¼ 2;X2 ¼ 1;X3 ¼ 1\ T ¼ 4Þ
PðT ¼ 4Þ

¼ PðX1 ¼ 2;X2 ¼ 1;X3 ¼ 1Þ
PðT ¼ 4Þ

¼
e�ll2

2! � e�ll1

1! � e�ll1

1!
e�3ll4

4!

¼ 4
27
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The particular probability isn’t important; what’s critical is that this conditional probability does
not depend on the unknown parameter µ. The same holds true for every other triple that sums to 4,
indicating that the conditional distribution of ðX1;X2;X3Þ given T does not involve µ. Thus once the
value of the statistic T ¼PXi has been provided, there is no additional information about µ in the
individual observations.

To put this another way, think of obtaining the data from the experiment in two stages:
1. Observe the value of T = X1 + X2 + X3 from a Poisson distribution with parameter 3µ.
2. Having observed T = 4, now obtain the individual xi’s from the conditional distribution

PðX1 ¼ x1;X2 ¼ x2;X3 ¼ x3jT ¼ 4Þ

Since the conditional distribution in step 2 does not involve µ, there is no additional information
about µ resulting from the second stage of the data generation process. This argument holds more
generally for any sample size n and values of t other than 4 (e.g., the total number of defects among
10 randomly selected vehicles might be

P
Xi ¼ 16). Once the value of

P
Xi is known, there is no

further information in the data about the Poisson parameter; it is “sufficient” to be told the total. ■

DEFINITION A statistic T = t(X1, …, Xn) is said to be sufficient for making inferences about a
parameter h if the joint distribution of X1; . . .;Xn given that T = t does not
depend upon h, for every possible value t of the statistic T.

The notion of sufficiency formalizes the idea that a statistic T contains all relevant information about
h. Once the value of T for the given data is available, it is of no benefit to know anything else about
the sample.

The Factorization Theorem
How can a sufficient statistic be identified? It may seem as though one would have to select a statistic,
determine the conditional distribution of the Xi’s given any particular value of the statistic (no easy
task—look at the last example!), and keep doing this until hitting paydirt by finding one that satisfies
the defining condition. This would be terribly time-consuming, and when the Xi’s are continuous
there are additional technical difficulties in obtaining the relevant conditional distribution. Fortu-
nately, the next result provides a relatively straightforward way of proceeding.

THE NEYMAN
FACTORIZATION
THEOREM

Let f ðx1; . . .; xn; hÞ denote the joint pmf or pdf of X1; . . .;Xn. Then T =
t(X1, …, Xn) is a sufficient statistic for h if and only if there exist functions
g and h such that

f ðx1; . . .; xn; hÞ ¼ gðtðx1; . . .; xnÞ; hÞ � hðx1; . . .; xnÞ

That is, the joint pmf or pdf can be represented as a product of two factors, in
which one factor includes h and involves the data only through t(x1, …, xn)
while the other factor does not depend on h.

Before sketching a proof of this theorem, we consider several examples.
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Example 7.26 Let’s generalize the previous example by considering a random sample X1; . . .;Xn

from a Poisson distribution with parameter µ, for example, the numbers of blemishes on n indepen-
dently selected iPhone cases or the numbers of errors in n batches of tax returns where each batch
consists of many returns. The joint pmf of these variables is

f ðx1; :::; xn; lÞ ¼ e�llx1

x1!
� � � � � e

�llxn

xn!
¼ e�nllRxi

 � 1

x1! � � � � � xn!
� �

The factor inside the first set of parentheses includes the parameter µ and involves the data only
through

P
Xi, whereas the factor inside the second set of parentheses does not depend on µ. So we

have the desired factorization, and by the factorization theorem the sufficient statistic for µ is
T ¼PXi, as we ascertained in Example 7.25 directly from the definition of sufficiency. ■

A sufficient statistic is not unique: any one-to-one function of a sufficient statistic is itself sufficient.
In the Poisson example, the sample mean X ¼ ð1=nÞPXi is a one-to-one function of

P
Xi (knowing

the value of the sum of the n observations is equivalent to knowing their mean), so the sample mean is
also a sufficient statistic.

Example 7.27 Suppose that the waiting time for a bus on a weekday morning is uniformly dis-
tributed on the interval from 0 to h, and consider a random sample X1, …, Xn of waiting times (i.e.,
times on n independently selected mornings). The joint pdf of these times is

f ðx1; . . .; xn; hÞ ¼ 1
h
� 1
h
� � � � � 1

h
¼ 1

hn
0� x1 � h; . . .; 0� xn � h

To obtain the desired factorization, we introduce notation for an indicator function: I(A) = 1 if the
statement A is true, and I(A) = 0 otherwise. For instance, we may write the joint pdf of the wait times
more formally as

f ðx1; . . .; xn; hÞ ¼ 1
hn

Ið0� x1 � h; . . .; 0� xn � hÞ

The statement A is that all xi’s are between 0 and h. But the xi’s will all be between 0 and h if and only
if (1) the smallest of the xi’s is at least 0 and (2) the largest is at most h. Thus, the joint pdf can be
reexpressed as

f ðx1; . . .; xn; hÞ ¼ 1
hn

Ið0�minðx1; . . .; xnÞ and maxðx1; . . .; xnÞ� hÞ

¼ 1
hn

Iðmaxðx1; . . .; xnÞ� hÞ
� �

� Ið0�minðx1; . . .; xnÞÞ

The factor inside the square brackets includes h and involves the xi’s only through the function
tðx1; . . .; xnÞ ¼ maxðx1; . . .; xnÞ. Voilà, we have our desired factorization, and the sufficient statistic
for the uniform parameter h is T ¼ maxðX1; . . .;XnÞ. All the information about h in this uniform
random sample is contained in the largest of the n observations; knowing the values of the other n – 1
observations provides no further information toward estimating h. ■

Proof of the Factorization Theorem A general proof when the Xi’s constitute a random sample
from a continuous distribution is fraught with technical details that are beyond the level of our text. So
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we content ourselves with a proof in the discrete case. For the sake of concise notation, denote X1, X2,
…, Xn by X and x1, x2, …, xn by x.

Suppose first that T = t(x) is sufficient, so that P(X = x | T = t) does not depend upon h. Focus on
a value t for which t(x) = t (e.g., x = (3, 0, 1) and tðxÞ ¼P xi, so t = 4). The event that X = x is then
identical to the event that both X = x and T = t because the first equality implies the second one.
Thus

f x; hð Þ ¼ PðX ¼ x; hÞ ¼ PðX ¼ x\T ¼ t; hÞ
¼ PðX ¼ xjT ¼ t; hÞ � PðT ¼ t; hÞ ¼ PðX ¼ xjT ¼ tÞ � PðT ¼ t; hÞ

Since the first factor in the last product does not involve h and the other involves the data only
through t, we have our desired factorization.

Now let’s go the other way: assume a factorization, and show that T is sufficient, i.e., that the
conditional probability that X = x given that T = t does not involve h.

PðX ¼ xjT ¼ t; hÞ ¼ PðX ¼ x\T ¼ t; hÞ
PðT ¼ t; hÞ ¼ PðX ¼ x; hÞ

PðT ¼ t; hÞ ¼ gðt; hÞhðxÞP
u:tðuÞ¼t PðX ¼ u; hÞ

¼ gðt; hÞhðxÞP
u:tðuÞ¼t gðtðuÞ; hÞ � hðuÞ

¼ gðt; hÞhðxÞP
u:tðuÞ¼t gðt; hÞ � hðuÞ

¼ hðxÞP
u:tðuÞ¼t hðuÞ

Sure enough, this final ratio does not involve h. ■

Jointly Sufficient Statistics
When the joint pmf or pdf of the data involves a single unknown parameter h, there is frequently a
single statistic (single function of the data) that is sufficient. However, when there are several
unknown parameters—for example, the mean l and standard deviation r of a normal distribution, or
the shape parameter a and scale parameter b of a gamma distribution—we must expand our notion of
sufficiency.

DEFINITION Suppose the joint distribution of X1; . . .;Xn involves m unknown parameters h1,
h2,…, hm. The k statistics T1 ¼ t1ðX1; . . .;XnÞ; . . .; Tk ¼ tkðX1; . . .;XnÞ are said to
be jointly sufficient for the parameters if the conditional distribution of the Xi’s
given that T1 = t1, …, Tk = tk does not depend on any of the unknown param-
eters, and this is true for all possible values t1, t2, …, tk of the statistics.

Example 7.28 Consider a random sample X1;X2;X3 of size n = 3 from any continuous distribution,
and let T1 < T2 < T3 be their ordered values (these were denoted Y1\Y2\Y3 in Section 5.7.) Then
given, for example, that the three ordered values are 21.4 < 23.8 < 26.0, the original Xi’s are equally
likely to be any one of the 3! = 6 permutations of these numbers: (23.8, 21.4, 26.0), (26.0, 23.8, 21.4)
and so on. More formally, for any values t1, t2, and t3 satisfying t1 < t2 < t3,

P X1 ¼ x1;X2 ¼ x2;X3 ¼ x3jT1 ¼ t1; T2 ¼ t2; T3 ¼ t3ð Þ

¼ 1=3! ðx1; x2; x3Þ ¼ ðt1; t2; t3Þ; . . .; ðt3; t2; t1Þ
0 otherwise

�
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This conditional distribution clearly does not involve any unknown parameters. Generalizing this
argument to a sample of size n, we see that for a random sample from a continuous distribution, the
n ordered values are jointly sufficient for h1, h2, …, hm regardless of whether m = 1 (e.g., the
exponential distribution has a single parameter) or 2 (the normal distribution) or even m > 2. ■

The factorization theorem extends to the case of jointly sufficient statistics: T1; . . .; Tk are jointly
sufficient for h1; . . .; hm if and only if the joint pmf or pdf of the Xi’s can be represented as a product of
two factors, where the first includes the hi’s and involves the data only through t1; . . .; tk and the
second does not involve the hi’s.

Example 7.29 Let X1, …, Xn be a random sample from a Nðl; rÞ distribution. The joint pdf is

f ðx1; . . .; xn; l; rÞ ¼
Qn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�ðxi�lÞ2=ð2r2Þ ¼ 1
rn

� e� Rx2i � 2lRxi þ nl2
� 	

=ð2r2Þ
� �

� 1
2p

� �n=2

This factorization shows that the two statistics
P

Xi and
P

X2
i are jointly sufficient for the two

parameters l and r. Since
PðXi � XÞ2 ¼PX2

i � n X
� 	2

, there is a one-to-one correspondence

between the two sufficient statistics and the statistics X and
PðXi � XÞ2; that is, values of the two

original sufficient statistics uniquely determine values of the latter two statistics, and vice versa. This
implies that the latter two statistics are also jointly sufficient, which in turn implies that the sample
mean and sample standard deviation are jointly sufficient statistics. The sample mean and sample
standard deviation (or sample variance) encapsulate all the information about l and r that is
contained in the sample data. ■

Minimal Sufficiency
When X1; . . .;Xn constitute a random sample from a normal distribution, the n ordered values are
jointly sufficient for l and r (see Example 7.28), and the sample mean and sample sd are also jointly
sufficient (as shown in Example 7.29). Both the ordered values and the pair ðX; SÞ reduce the data
without any information loss, but the sample mean and variance represent a greater reduction. In
general, we would like the greatest possible reduction without information loss. A minimal (possibly
jointly) sufficient statistic is a function of every other sufficient statistic. That is, given the value(s) of
any other sufficient statistic(s), the value(s) of the minimal sufficient statistic(s) can be calculated.
A minimal sufficient statistic is the sufficient statistic having the smallest dimensionality, and thus
represents the greatest possible reduction of the data without any information loss.

A general discussion of minimal sufficiency is beyond the scope of our text. In the case of a normal
distribution with values of both l and r unknown, it can be shown that the sample mean and sample
sd are jointly minimal sufficient (so the same is true of

P
Xi and

P
X2
i ). It is intuitively reasonable

that because there are two unknown parameters, there should be a pair of sufficient statistics. It is
indeed often the case that the number of minimal sufficient statistic(s) matches the number of
unknown parameters. But this is not always true. Consider a random sample X1; . . .;Xn from the pdf
f(x;h) = 1/{p[1 + (x − h)]2}, i.e., from a Cauchy distribution with location parameter h. Because the
Cauchy distribution is continuous, the n ordered values are jointly sufficient for h. It would seem,
though, that a single sufficient statistic (one-dimensional) could be found for the single parameter
h. Unfortunately this is not the case: it can be shown that the ordered values are minimal sufficient!
So going beyond the ordered values to any single function of the Xi’s as a point estimator of h entails
a loss of information from the original data.
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Improving an Estimator
Because a sufficient statistic contains all the information the data has to offer about the value of h, it is
reasonable that an estimator of h, or any function of h, should depend on the data only through the
sufficient statistic. A general result due to C. R. Rao and David Blackwell shows how to start with an
unbiased statistic that is not a function of sufficient statistics and create an improved estimator that is
both unbiased and sufficient.

RAO–BLACKWELL
THEOREM

Suppose that the joint distribution of X1; . . .;Xn depends on some unknown
parameter h and that T is sufficient for h. Consider estimating h(h), a
specified function of h. If U is any unbiased estimator for estimating h(h),
then the estimator U* = E(U|T) is also unbiased for h(h) and has variance
no greater than the original unbiased estimator U.

Proof First of all, we must show that U* is indeed an estimator—i.e., that it is a function of the Xi’s
and not of h. This follows because, given that T is sufficient, the distribution of U conditional on
T does not involve h, so the expected value E(U |T) will of course not involve h. Second, the fact that
U and U* have the same expected value (i.e., they are both unbiased estimators of h(h)) follows from
the Law of Total Expectation introduced in Section 5.4:

EðU�Þ ¼ E½EðUjTÞ� ¼ EðUÞ ¼ hðhÞ

Finally, the fact that U* has smaller variance than U is a consequence of Law of Total Variance:

VðUÞ ¼ V E UjTð Þ½ � þE V UjTð Þ½ � ¼ V U�ð Þ þE V UjTð Þ½ �

Because V(U|T), being a variance, is positive, it follows that V(U) � V(U*) as desired. ■

Example 7.30 Suppose again that the number of major defects on a randomly selected new vehicle
of a certain type has a Poisson distribution with parameter µ. Now consider estimating e�l, the
probability that a vehicle has no such defects, based on a random sample of n vehicles. Let’s start with
the very simple estimator

U ¼ 1 if X1 ¼ 0
0 if X1 [ 0

�

Using indicator function notation, this could be abbreviated U ¼ IðX1 ¼ 0Þ. Then

EðUÞ ¼ 1 � P X1 ¼ 0ð Þþ 0 � P X1 [ 0ð Þ ¼ P X1 ¼ 0ð Þ ¼ e�ll0

0!
¼ e�l

Our estimator is therefore unbiased for estimating the probability of no defects. But the sufficient
statistic here is T ¼PXi, and of course the estimator U is not a function of T. The improved
estimator is U� ¼ EðUjTÞ ¼ PðX1 ¼ 0jPXiÞ. The event that X1 = 0 and T = t is identical to the
event that the first vehicle has no defects and the total number of defects on the last n − 1 vehicles is
t. Also, an mgf argument shows that T has a Poisson(nµ) distribution and the sum of the last n − 1
Xi’s has a Poisson distribution with parameter (n − 1)µ. Thus
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PðX1 ¼ 0jT ¼ tÞ ¼ P X1 ¼ 0\ T ¼ tð Þ
PðT ¼ tÞ ¼ P X1 ¼ 0\ Pn

i¼2 Xi ¼ t
� 	

PðT ¼ tÞ

¼ P X1 ¼ 0ð ÞP Pn
i¼2 Xi ¼ t

� 	
PðT ¼ tÞ ¼

e�ll0

0! � e�ðn�1Þl½ðn�1Þl�t
t!

e�nlðnlÞt
t!

¼ 1� 1
n

� �t

That is, the improved unbiased estimator is U* = (1–1/n)T. Though the variance of U* is difficult to
derive, the Rao–Blackwell Theorem guarantees that its variance is no larger than that of U.

If, for example, there are a total of t = 15 defects among n = 10 randomly selected vehicles, then
the estimate is u� = (1 – 1/10)15 = 206. For this same sample, l̂ ¼ x ¼ 1:5, so the maximum like-
lihood estimate of e�l is e�1:5 ¼ :223. Here, as in some other situations, the principles of unbiased
estimation and maximum likelihood are in conflict. However, if n is large, the improved estimate is

ð1� 1=nÞt ¼ ½ð1� 1=nÞn�x � e�x, which is the mle of e�l. That is, the unbiased and maximum
likelihood estimators are “asymptotically equivalent.” ■

Further Comments
The Rao–Blackwell Theorem also helps us limit the scope of possible estimators to consider for a
given distribution. If the statistic U is purely a function of the sufficient statistic T (and doesn’t
otherwise rely on the Xi’s), then U and U* are the same—in a sense, there was nothing to improve. If
U is not purely a function of T, then the term E½VðUjTÞ� in the proof will be strictly positive, and so
U* has strictly smaller variance than U. Said another way, for any statistic not based solely on a
sufficient statistic, there exists some other estimator that is superior.

For example, in Section 7.1 we looked at several potential estimators for the parameter h of a
Uniform[0, h] distribution, including maxðX1; . . .;XnÞ and 2X. In fact, one could concoct an endless
set of candidates—when asked, students often propose estimators of the form Xþ cS for some
judicious choice c > 0. But we saw in Example 7.27 that maxðX1; . . .;XnÞ is sufficient for h, so any
statistic that is not purely a function of the sample maximum is necessarily inferior to some other
estimator. Since neither X nor S can be completely determined by the sample maximum, any
estimator relying on one or both of these should be rejected out of hand.

We have emphasized that in general there will not be a unique sufficient statistic. Suppose there are
two different sufficient statistics T1 and T2 such that the first one is not a one-to-one function of the
second (e.g., we are not considering T1 ¼

P
Xi and T2 ¼ X). Then it would be distressing if we

started with an unbiased estimator U and found that E(U | T1) 6¼ E(U | T2), so our improved estimator
depended on which sufficient statistic we used. Fortunately there are general conditions under which,
starting with a minimal sufficient statistic T, the improved estimator is the unique MVUE (minimum
variance unbiased estimator).

Maximum likelihood is by far the most popular method for obtaining point estimates, so it would
be disappointing if maximum likelihood estimators did not make full use of sample information.
Fortunately the mles do not suffer from this defect. If T1, …, Tk are jointly sufficient statistics for
parameters h1, …, hm, then the joint pmf or pdf factors as

f x1; . . .; xn; h1; . . .; hmð Þ ¼ g t1; . . .; tk; h1; . . .; hmð Þ � h x1; . . .; xnð Þ;

and the mles result from maximizing f ð�Þ with respect to the hi’s. Because the hð�Þ factor does not
involve the parameters, this is equivalent to maximizing the gð�Þ factor with respect to the hi’s. The

resulting ĥi’s will involve the data only through the ti’s. Thus it is always possible to find a maximum
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likelihood estimator that is a function of just the sufficient statistic(s). There are contrived examples of
situations where the mle is not unique, in which case an mle that is not a function of the sufficient
statistics can be constructed—but there is also one that is a function of the sufficient statistics.

The concept of sufficiency is very compelling when an investigator is sure the underlying dis-
tribution that generated the data is a member of some particular family (normal, exponential, etc.).
However, two different families of distributions might each furnish plausible models for the data in a
particular application, and yet the sufficient statistics for these two families might be different (an
analogous comment applies to maximum likelihood estimation). For example, there are data sets for
which a gamma probability plot suggests that a member of the gamma family would give a reasonable
model and also a lognormal probability plot (normal probability plot of the logs of the observations)
indicates that lognormality is plausible. Yet the jointly sufficient statistics for the parameters of the
gamma family are not the same as those for the parameters of the lognormal family. When estimating
some parameter h in such situations (e.g., the mean l or median ~l), one would look for a robust
estimator that performs well for a wide variety of underlying distributions, as discussed in
Section 7.1.

Exercises: Section 7.3 (38–50)
38. The long run proportion of vehicles that

pass a certain emissions test is p. Suppose
that three vehicles are independently
selected for testing. Let Xi = 1 if the ith
vehicle passes the test and Xi = 0 other-
wise (i = 1, 2, 3), and let T = X1 + X2 +
X3. Use the definition of sufficiency to show
that T is sufficient for p by obtaining the
conditional distribution of the Xi’s given
that T = t for each possible value t. Then
generalize by giving an analogous argu-
ment for the case of n vehicles.

39. Components of a certain type are shipped in
batches of size k. Suppose that whether or
not any particular component is satisfactory
is independent of the condition of any other
component, and that the long run propor-
tion of satisfactory components is p. Con-
sider n batches, and let Xi denote the
number of satisfactory components in the
ith batch (i = 1, 2, …, n). Statistician A is
provided with the values of all the Xi’s,
whereas statistician B is given only the
value of T ¼PXi. Use a conditional
probability argument to decide whether
statistician A has more information about
p than does statistician B.

40. Let X1; . . .;Xn be a random sample of
component lifetimes from an exponential
distribution with parameter k. Use the

factorization theorem to show that
P

Xi is a
sufficient statistic for k.

41. Identify a pair of jointly sufficient statistics
for the two parameters of a gamma distri-
bution based on a random sample of size
n from that distribution.

42. Identify a pair of jointly sufficient statistics
for the two parameters of a beta distribution
based on a random sample of size n from
that distribution.

43. Messages are sent repeatedly across a noisy
communication system until r arrive suc-
cessfully. LetX = the number of transmission
required, so that X has a negative binomial
distribution with parameters r (known) and
p (unknown). Determine a sufficient statistic
for p based on a random sample X1; . . .;Xn

from this negative binomial distribution.

44. Suppose waiting time for delivery of an
item is uniform on the interval from h1 to
h2. Consider a random sample of n waiting
times, and use the factorization theorem to
show that the sample minimum and maxi-
mum are a pair of jointly sufficient statistics
for h1 and h2. [Hint: Introduce an appro-
priate indicator function as we did in
Example 7.27.]

45. For h > 0 consider a random sample from a
uniform distribution on the interval from h
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to 2h, and use the factorization theorem to
determine a sufficient statistic for h.

46. Suppose that survival time X has a log-
normal distribution with parameters l and r
(which are the mean and standard deviation
of ln(X), not of X itself). Are

P
Xi andP

X2
i jointly sufficient for the two param-

eters? If not, what is a pair of jointly suf-
ficient statistics?

47. The probability that any particular component
of a certain type works in a satisfactory
manner is p. If n of these components are
independently selected, then the statistic X,
the number among the selected components
that perform in a satisfactory manner, is suf-
ficient for p. You must purchase two of these
n components for a particular system. Obtain
an unbiased statistic for the probability that
exactly one of your purchased components
will perform in a satisfactory manner. [Hint:
Start with the statistic U, the indicator func-
tion of the event that exactly one of the first
two components in the sample of size n per-
forms as desired, and improve on it by con-
ditioning on the sufficient statistic.]

48. In Example 7.30, we started with U =
I(X1 = 0) and used a conditional expecta-
tion argument to obtain an unbiased esti-
mator of the zero-defect probability based
on the sufficient statistic. Consider now
starting with a different statistic: U ¼P

IðXi ¼ 0Þ=n. Show that the improved
estimator based on the sufficient statistic is
identical to the one obtained in the cited
example. [Hint: Use the general property
E(Y + Z|T) = E(Y|T) + E(Z|T).]

49. In this section, it was established that
P

Xi

and X are both sufficient statistics for esti-
mating the parameter µ of a Poisson dis-
tribution. We know that EðXÞ ¼ l, but it is
also true that EðS2Þ ¼ r2 ¼ l for Poisson
data. So, another unbiased estimator for µ is
l̂ ¼ ðXþ S2Þ=2. Which of these three esti-
mators—X; S2; or l̂—is the best choice for
estimating µ? Why?

50. A particular quality characteristic of items
produced using a certain process is known to
be normally distributed with mean l and
standard deviation 1. Let X denote the value
of the characteristic for a randomly selected
item. An unbiased estimator for the param-
eter h = P(X � c), where c is a critical
threshold, is desired. The estimator will be
based on a random sample X1, …, Xn.
a. Obtain a sufficient statistic for l.

b. Consider the estimator ĥ ¼ IðX1 � cÞ.
Obtain an improved unbiased estimator
based on the sufficient statistic (it is
actually the minimum variance unbiased
estimator). [Hint: You may use the fol-
lowing facts: (1) The joint distribution
of X1 and X is bivariate normal with
means l and l, variances 1 and 1/n,
respectively, and correlation q (which
you should determine). (2) If Y1 and Y2
have a bivariate normal distribution,
then the conditional distribution of Y1
given that Y2 = y2 is normal with mean
l1 + (qr1/r2)(y2 − l2) and variance

r21ð1� qÞ2.]

7.4 Information and Efficiency

In this section we introduce the idea of Fisher information and two of its applications. The first
application is to find the minimum possible variance for an unbiased estimator. The second appli-
cation is to show that the maximum likelihood estimator is asymptotically unbiased and normal (that
is, for large n it has expected value approximately h and it has approximately a normal distribution)
with the minimum possible variance.
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To motivate Fisher information, consider a rv Y * Bin(n, p) with p unknown, and imagine
determining the mle of p from the log-likelihood function

‘ðpÞ ¼ ln
n

y

 !
pyð1� pÞn�y

" #
¼ ln

n

y

 !
þ y lnðpÞþ ðn� yÞ lnð1� pÞ

Figure 7.7 presents a graph of ‘ðpÞ for two cases: (n = 25, y = 19) and (n = 100, y = 76). By
definition, the mle maximizes ‘ðpÞ; both functions graphed in Figure 7.7 achieve a maximum at .76,
because the mle for the binomial model is p̂ ¼ y=n and here 19/25 = .76 = 76/100. But the curves are
not identical; in particular, the graph for n = 100 is much more concave than the one for n = 25. From
calculus, this means that the second derivative of ‘ðpÞ has greater magnitude when n = 100 than
when n = 25. Notice that in the vicinity of the local maximum, ‘ðpÞ is concave down and so its
second derivative is negative; the preceding observation can thus be restated as �‘00ðpÞ is larger when
n is larger.

What does any of this have to do with “information”? Intuitively, a sample of size n = 100
contains more information than does a sample of size n = 25. Statistician R. A. Fisher was one of the
first to notice the connection between sample size and the concavity of the log-likelihood function,
leading to the following definition.

p

Log-likelihood

n = 25, y = 19

n = 100, y = 76
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Figure 7.7 Binomial log-likelihood functions for n = 25 and n = 100
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DEFINITION Let f ðx; hÞ denote a pmf or pdf. The Fisher information I(h) in a single observation
X from f ðx; hÞ is defined by

IðhÞ ¼ E � @2

@h2
lnðf ðX; hÞÞ

� �
ð7:5Þ

Partial derivative notation is used in (7.5) to emphasize that the log-likelihood function depends on
both X and h. Since X is a random variable in the definition ‘ðhÞ ¼ ln f ðX; hÞ, ‘ðhÞ and its derivatives
with respect to h are also random variables. Thus (7.5) can be reexpressed as IðhÞ ¼ E½�‘00ðhÞ�.
Example 7.31 Let X be a Bernoulli rv, so f(x; p) = px(1–p)1–x, x = 0, 1. Then the second derivative
of the log-likelihood function is

‘00ðpÞ ¼ @2

@p2
ln½pxð1� pÞ1�x� ¼ @2

@p2
½x lnðpÞ� þ @2

@p2
½ð1� xÞ lnð1� pÞ� ¼ � x

p2
� 1� x

ð1� pÞ2

To calculate Fisher information, multiply by –1, replace x with X, and calculate the expected value of
the resulting expression:

IðpÞ ¼ E
X

p2
þ 1� X

ð1� pÞ2
" #

¼ EðXÞ
p2

þ 1� EðXÞ
ð1� pÞ2 ¼ p

p2
þ 1� p

ð1� pÞ2 ¼
1

pð1� pÞ

The denominator of this expression is maximized when p = .5, so the Fisher information in a single
Bernoulli trial is smallest when p = .5 and increases as p approaches 0 or 1. ■

Example 7.32 Suppose X has the pdf f ðx; hÞ ¼ hxh�1 for 0 � x � 1. Then

‘00ðhÞ ¼ @2

@h2
lnðhxh�1Þ ¼ @2

@h2
lnðhÞþ @2

@h2
½ðh� 1Þ lnðxÞ� ¼ � 1

h2
þ 0 ¼ � 1

h2

Since x does not appear in the second derivative, Fisher information here is easily determined to be
I(h) = E[–(–1/h2)] = 1/h2. ■

Although Expression (7.5) is often the computationally simplest method for determining Fisher
information, it is useful to have an alternative expression for I(h).

PROPOSITION

IðhÞ ¼ V
@

@h
ln f ðX; hÞ

� �
ð7:6Þ

provided that the order of the partial derivative and expectation operations in the
definition of Fisher information can be interchanged. Critically, for this inter-
change to be valid, the support of the distribution (i.e., the set of possible
x values) cannot depend on h.
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The quantity @
@h ln f ðX; hÞ that appears in (7.6) is referred to as the score function and will shortly play

an important role. The score function is simply ‘0ðhÞ, the first derivative of the log-likelihood
function, treated as a random variable. Under that perspective, the foregoing proposition can be
restated as IðhÞ ¼ Vð‘0ðhÞÞ.

Proof The proof presented here assumes a discrete distribution; for the continuous case, replace the
summations below with integrals. We first establish that, under the assumptions of the proposition,
the score function has expected value equal to zero; this fact will prove useful in its own right. By the
law of the unconscious statistician,

E½‘0ðhÞ� ¼ E
@

@h
lnðf ðX; hÞÞ

� �
¼
X
x

@

@h
lnðf ðx; hÞÞ � f ðx; hÞ

¼
X
x

@
@h f ðx; hÞ
f ðx; hÞ � f ðx; hÞ ¼

X
x

@

@h
f ðx; hÞ ¼ d

dh

X
x

f ðx; hÞ

¼ d

dh
½1� because every pmf sums to 1

¼ 0

To establish the equivalency of (7.5) and (7.6), take another derivative, which must also be 0 since
E½‘0ðhÞ� ¼ 0:

0 ¼ d

dh
E½‘0ðhÞ� ¼ d

dh

X
x

@

@h
lnðf ðx; hÞÞ � f ðx; hÞ ¼

X
x

@

@h
@

@h
lnðf ðx; hÞÞ � f ðx; hÞ

� �

¼
X
x

@2

@h2
lnðf ðx; hÞÞ � f ðx; hÞþ @

@h
lnðf ðx; hÞÞ � @

@h
f ðx; hÞ

� �

¼
X
x

@2

@h2
lnðf ðx; hÞÞ � f ðx; hÞ

� �
þ
X
x

@

@h
lnðf ðx; hÞÞ �

@
@h f ðx; hÞ
f ðx; hÞ � f ðx; hÞ

" #

¼ E
@2

@h2
lnðf ðX; hÞÞ

� �
þE

@

@h
lnðf ðX; hÞÞ �

@
@h f ðX; hÞ
f ðX; hÞ

" #

¼ �IðhÞþE
@

@h
lnðf ðX; hÞÞ � @

@h
lnðf ðX; hÞÞ

� �
¼ �IðhÞþE½f‘0ðhÞg2�

Therefore, IðhÞ ¼ E½f‘0ðhÞg2� ¼ Vð‘0ðhÞÞþ fE½‘0ðhÞ�g2 ¼ Vð‘0ðhÞÞþ 02 ¼ Vð‘0ðhÞÞ, completing the
proof. ■

Example 7.33 Reconsider the single Bernoulli observation X from Example 7.31. The score
function is

‘0ðpÞ ¼ @

@p
lnðf ðX; pÞÞ ¼ @

@p
½X ln pþð1� XÞ lnð1� pÞ� ¼ X

p
� 1� X

1� p
¼ X � p

pð1� pÞ
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[This expression indeed has mean zero, as indicated in the foregoing proof.] Apply (7.6):

IðpÞ ¼ V
X � p

pð1� pÞ
� �

¼ VðX � pÞ
½pð1� pÞ�2 ¼

VðXÞ
½pð1� pÞ�2 ¼

pð1� pÞ
½pð1� pÞ�2 ¼

1
pð1� pÞ ;

which agrees with the result in Example 7.31. ■

In principle, the same method could be applied to the pdf from Example 7.32, for which the score
function is

‘0ðhÞ ¼ @

@h
½lnðhÞþ ðh� 1Þ lnðXÞ� ¼ 1

h
þ lnðXÞ

Then Fisher information could be calculated via (7.6):

IðhÞ ¼ V
1
h
þ lnðXÞ

� �
¼ VðlnðXÞÞ

While the calculus to determine the variance of ln(X) is not insurmountable, the method using (7.5)
shown in Example 7.32 is computationally much easier.

Information in a Random Sample
The definition of Fisher information extends to n rvs X1; . . .;Xn; simply replace f ðX; hÞ in (7.5) or
(7.6) with the joint pmf/pdf of the Xi’s. When X1; . . .;Xn represent a random sample from some
distribution f ðx; hÞ, the Fisher information in the sample can be easily computed from the information
in a single observation.

ADDITIVE PRINCIPLE
OF INFORMATION

Let X1; . . .;Xn be a random sample from a distribution with pmf or
pdf f ðx; hÞ. Then the Fisher information in X1; . . .;Xn is simply
n times the Fisher information in a single observation. That is, if
In(h) denotes the Fisher information in the sample, then

InðhÞ ¼ n � IðhÞ;

where I(h) denotes the Fisher information in a single observation
from f ðx; hÞ.

Proof Since the Xi’s form a random sample, f ðx1; . . .; xn; hÞ ¼ f ðx1; hÞ � � � � � f ðxn; hÞ. The
result then follows from simple linearity properties:

InðhÞ ¼ E � @2

@h2
lnðf ðX1; . . .;Xn; hÞÞ

� �
¼ E � @2

@h2
lnðf ðX1; hÞ � � � � � f ðXn; hÞÞ

� �

¼ E � @2

@h2
Xn
i¼1

lnðf ðXi; hÞÞ
" #

¼ E �
Xn
i¼1

@2

@h2
lnðf ðXi; hÞÞ

" #

¼
Xn
i¼1

E � @2

@h2
lnðf ðXi; hÞÞ

� �
¼
Xn
i¼1

IðhÞ ¼ n � IðhÞ
■
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The Additive Principle of Information makes sense intuitively, because it says that twice as many
observations yield twice as much information. This property also saves us the hassle of constructing
large joint pmf/pdf expressions. The aforementioned connections between Fisher information and the
log-likelihood function still apply: with the log-likelihood ‘ðhÞ ¼ ln f ðX1; . . .;Xn; hÞ regarded as a
random variable,

InðhÞ ¼ E½�‘00ðhÞ� ¼ Vð‘0ðhÞÞ

Example 7.34 Continuing with Example 7.31, let X1, X2, …, Xn be a random sample from a
Bernoulli distribution. We saw that the information in a single observation is I(p) = 1/[p(1 – p)], and
therefore the Fisher information in the random sample is In(p) = nI(p) = n/[p(1 – p)].

Astute readers will notice that Fisher information here is exactly the reciprocal of the variance of P̂,
which is the mle of p for Bernoulli data. As we’ll see later in this section, this is not a coincidence. ■

The Cramér–Rao Inequality
We now use the concept of Fisher information to show that if a statistic is an unbiased estimator of
h, then its minimum possible variance is the reciprocal of In(h). Harald Cramér in Sweden and
C. R. Rao in India independently derived this inequality during World War II, but R. A. Fisher had
some notion of it 20 years previously.

CRAMÉR–RAO
INEQUALITY

Let X1; . . .;Xn be a random sample from the distribution with pmf or pdf
f(x; h) whose support does not depend on h. If the statistic T = t(X1, …, Xn)
is an unbiased estimator of the parameter h, then

VðTÞ� 1
InðhÞ ¼

1
nIðhÞ

Proof The clever idea here is to consider the correlation q between T and the score function and
exploit the fact that −1 � q � 1. We will need the fact from an earlier proof in this section that
the mean of the score function is zero: E½‘0ðhÞ� ¼ 0. Using this fact and the covariance expression
Cov(X, Y) = E(XY) – E(X)E(Y), the covariance of T and the score function ‘0ðhÞ is

CovðT ; ‘0ðhÞÞ ¼ EðT � ‘0ðhÞÞ � 0 ¼ E T � @
@h

ln f ðX1; . . .;Xn; hÞ
� �

¼ E T �
@
@h f ðX1; . . .;Xn; hÞ
f ðX1; . . .;Xn; hÞ

� �

¼
X

x1;...;xn

tðx1; . . .; xnÞ �
@
@h f ðx1; . . .; xn; hÞ
f ðx1; . . .; xn; hÞ � f ðx1; . . .; xn; hÞ

¼
X

x1;...;xn

tðx1; . . .; xnÞ � @
@h

f ðx1; . . .; xn; hÞ

¼ d

dh

X
x1;...;xn

tðx1; . . .; xnÞf ðx1; . . .; xn; hÞ ¼ d

dh
EðTÞ
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If T = t(X1, X2, …, Xn) is an unbiased estimator of h, then E(T) = h, so the derivative in the last
expression is just 1, from which we deduce that CovðT; ‘0ðhÞÞ ¼ 1.

Now recall from Section 5.2 that the correlation between two rvs X and Y is
qX,Y = CovðX; YÞ=ðrXrYÞ. Therefore,

CovðX; YÞ2 ¼ q2X;Yr
2
Xr

2
Y � 1r2Xr

2
Y ¼ VðXÞVðYÞ

Apply this to T and the score function ‘0ðhÞ:

1 ¼ CovðT ; ‘0ðhÞÞ2 �VðTÞVð‘0ðhÞÞ ¼ VðTÞ � InðhÞ;

and the desired inequality follows. ■

Because the variance of T must be at least 1/In(h), it is natural to call T an efficient estimator of h if
V(T) = 1/In(h).

DEFINITION Let T be an unbiased estimator of h. The efficiency of T is the ratio of the Cramér–
Rao lower bound to the variance of T:

efficiency of T ¼ 1=InðhÞ
VðTÞ ¼ 1

VðTÞ � InðhÞ

T is said to be an efficient estimator of h if T achieves the lower bound (so its
efficiency is 1; otherwise, efficiency will be less than 1). An efficient esti-
mator is a minimum variance unbiased (MVUE) estimator, as discussed in
Section 7.1.

Example 7.35 (Example 7.34 continued) Let X1; . . .;Xn be a random sample from a Bernoulli
distribution. We saw that the Fisher information in the sample is In(p) = n/[p(1 – p)], and therefore the
Cramér–Rao lower bound on the variance of any unbiased estimator of p is 1/In(p) = p(1 – p)/n. Let
T ¼ P̂ ¼PXi=n, the sample proportion of successes. It was established in Example 7.4 that P̂ is an
unbiased estimator of p and that VðP̂Þ ¼ pð1� pÞ=n. Because T is unbiased and V(T) is equal to the
lower bound, T has efficiency 1 and therefore it is an efficient estimator. ■

The Cramér–Rao inequality can be generalized to an estimator whose expected value is not h itself
but rather some function h(h). Using a similar proof, it can be shown (under the same requirements
about the pmf/pdf) that the lower bound on the variance of any statistic T with mean h(h) is

VðTÞ� ½h0ðhÞ�2
InðhÞ

In the special case that T is unbiased for h, then h(h) = h, h0ðhÞ ¼ 1, and we have the original
Cramér–Rao inequality. (See Exercises 59–60 for applications of this more general result.)
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Large-Sample Properties of the MLE

As mentioned briefly in Section 7.2, the maximum likelihood estimator ĥ has some nice properties.
First of all it is consistent, which means that it converges in probability to the parameter h as the
sample size increases. A verification of this is beyond the level of this book, but we can use it as a
basis for showing that the mle is asymptotically normal with mean h (asymptotic unbiasedness) and
variance equal to the Cramér–Rao lower bound.

THEOREM Let X1; . . .;Xn be a random sample from a distribution whose support does

not depend on h. Then for large n the maximum likelihood estimator ĥ has
approximately a normal distribution with mean h and variance 1/[nI(h)].

A proof of this result appears in the appendix to this chapter.

Example 7.36 It was established in Example 7.16 that the mle of p when sampling from a Bernoulli
distribution is the sample proportion P̂ ¼PXi=n. Recall from Example 7.35 that P̂ is unbiased and
efficient with the minimum variance of the Cramér–Rao inequality. Finally, P̂ is asymptotically
normal by the Central Limit Theorem. These properties are in accord with the asymptotic distribution
given by the theorem, P̂	Nðp; 1=½nIðpÞ�Þ. ■

Example 7.37 (Example 7.32 continued) Consider a random sample X1; . . .;Xn from the distribution
with pdf f ðx; hÞ ¼ hxh�1 for 0 � x � 1. The Fisher information in a single observation was found to
be I(h) = 1/h2. The maximum likelihood estimator of h (see Exercise 27 for a similar example) is

ĥ ¼ �1P
lnðXiÞ=n ð7:7Þ

The expected value of ln(X) for this distribution is –1/h, so the denominator of (7.7) converges in

probability to –1/h by the Law of Large Numbers. Therefore ĥ converges in probability to h, which

means that ĥ is consistent. (We knew this because the mle is always consistent, but it is also nice to

show it directly.) Determining the exact distribution of ĥ is quite difficult. However, by the preceding

theorem, for large n the distribution of ĥ is approximately normal, with mean h and variance
1/[nI(h)] = h2/n. ■

Sufficiency and Efficiency
As we discussed in Section 7.3, the Rao–Blackwell Theorem implies that any estimator not based
purely on sufficient statistics is necessarily inferior (has greater variance than) some other statistic. So,
we cannot expect a statistic to be an efficient estimator without first being sufficient.

The proof of the Cramér–Rao inequality considered the correlation between two random variables:
a statistic T and the score function ‘0ðhÞ. The inequality followed from the fact that qj j � 1, but we
know from Chapter 5 that equality can only occur—that is, qj j ¼ 1—if the two rvs are linear
functions of each other. So, suppose a statistic T ¼ tðX1; . . .;XnÞ is sufficient for h. By the Factor-
ization Theorem, the score function may then be written as
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‘0ðhÞ ¼ @

@h
ln f ðx1; . . .; xn; hÞ ¼ @

@h
ln½gðt; hÞ � hðx1; . . .; xnÞ�

¼ @

@h
ln½gðt; hÞ� þ @

@h
ln½hðx1; . . .; xnÞ� ¼ @

@h
ln½gðtðx1; . . .; xnÞ; hÞ�

Therefore, an estimator can only be efficient if it is a linear function of @

@h
ln½gðtðX1; . . .;XnÞ; hÞ�. In

particular, an efficient estimator can only depend on X1; . . .;Xn through the sufficient statistic
T ¼ tðX1; . . .;XnÞ. This result is consistent with the Rao–Blackwell Theorem.

Exercises: Section 7.4 (51–60)
51. The number of attempts required to suc-

cessfully transmit a message across a noisy
channel can be modeled by a geometric

distribution, whose pmf is ð1� pÞx�1p for
x = 1, 2, 3, …. To estimate the unknown
parameter p we obtain the random sample
X1, X2, …, Xn from this geometric distri-
bution.
a. Find the Fisher information in a single

observation X using both (7.5) and (7.6).
b. What is the Fisher information in the

random sample?
c. Determine the Cramér–Rao lower bound

for the variance of an unbiased estimator
of p.

52. Assume that the number of alpha particles
emitted in one second by a particular
radioactive source has a Poisson distribu-
tion with parameter µ. Consider estimating
µ based on a random sample X1, X2, …, Xn.

a. Find the Fisher information in a single
observation using both (7.5) and (7.6).

b. Find the Cramér–Rao lower bound for
the variance of an unbiased estimator of
µ.

c. Determine the mle of µ and show that
the mle is an efficient estimator.

d. Is the asymptotic distribution of the mle
in accord with the last theorem of this
section? Explain.

53. Let X1; . . .;Xn be a random sample from the
Uniform[0, h] distribution.

a. Use the expression IðhÞ ¼ E½ð‘0ðhÞÞ2� to
determine the Fisher information in a
single observation from this distribution.

b. Find theCramér–Rao lower bound for the
variance of an unbiased estimator of h.

c. In Examples 7.9 and 7.10, two unbiased
estimators for h were proposed, one with
variance h2=½nðnþ 2Þ� and another with
variance h2=ð3nÞ. Compare these vari-
ances to part (b) and explain why they
seem to contradict the Cramér–Rao
inequality. What assumption is violated,
causing the inequality not to apply here?

54. Survival times have the exponential distri-
bution with pdf f(x; k) = ke –kx for x � 0,
where k > 0 is unknown. However, we
wish to estimate the mean l = 1/k based on
the random sample X1, X2, …, Xn, so let’s
re-express the pdf in the form (1/l)e–x/l.
a. Find the information in a single obser-

vation and the Cramér–Rao lower
bound.

b. Determine the mle of l.
c. Find the mean and variance of the mle.
d. Is the mle an efficient estimator? Explain.

55. Let X1, X2, …, Xn be a random sample from
the normal distribution with known stan-
dard deviation r.
a. Find the mle of l.
b. Find the distribution of the mle.
c. Is the mle an efficient estimator? Explain.
d. How does the answer to part (b) com-

pare with the asymptotic distribution
given by the second theorem?

56. Let X1, X2, …, Xn be a random sample from
the normal distribution with known mean l
but with the variance r2 as the unknown
parameter.
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a. Find the Fisher information for r2 in a
single observation and the Cramér–Rao
lower bound.

b. Find the mle of r2.
c. Find the distribution of the mle.
d. Is the mle an efficient estimator?

Explain.
e. Is the answer to part (c) in conflict with

the asymptotic distribution of the mle
given by the second theorem? Explain.

57. Let X1, X2, …, Xn be a random sample from
the normal distribution with known mean l
but with the standard deviation r as the
unknown parameter.
a. Find the Fisher information for r in a

single observation.
b. Compare the answer in part (a) to the

answer in Exercise 56(a). Does the infor-
mation depend on the parameterization?

58. Let X1, X2, …, Xn be a random sample from
a continuous distribution with pdf f(x; h).
For large n, the variance of the sample

median is approximately 1=f4n½f ð~l; hÞ�2g.
If X1, X2, …, Xn is a random sample from
the normal distribution with known stan-
dard deviation r and unknown l, determine
the efficiency of the sample median.

59. Return to the geometric distribution from
Exercise 51. Let X1; . . .;Xn be a random
sample from this distribution, and let X
denote the sample mean.
a. Determine the expected value and vari-

ance of X as functions of p.
b. Using the generalization of the Cramér–

Rao inequality presented in this section,
determine the lower bound for the vari-
ance of any estimator whose expectation
is equal to EðXÞ from part (a).

c. Is X an efficient estimator of its expec-
tation?

60. Return to the exponential distribution from
Exercise 54. Let X1; . . .;Xn be a random
sample from this distribution, and let X
denote the sample mean.

a. Find the Fisher information for k in a
single observation from this distribution.

b. Determine the expected value and vari-
ance of X as functions of k.

c. Using the generalization of the Cramér–
Rao inequality presented in this section,
determine the lower bound for the vari-
ance of any estimator whose expectation
is equal to EðXÞ from part (b). Is X an
efficient estimator of its expectation?

d. Does it follow that 1=X is the MVUE of
k? Why or why not?

Supplementary Exercises: (61–78)

61. At time t = 0, there is one individual alive
in a certain population. A pure birth pro-
cess then unfolds as follows. The time until
the first birth is exponentially distributed
with parameter k. After the first birth, there
are two individuals alive. The time until the
first gives birth again is exponential with
parameter k, and similarly for the second
individual. Therefore, the time until the next
birth is the minimum of two exponential (k)
variables, which is exponential with
parameter 2k. Similarly, once the second
birth has occurred, there are three individ-
uals alive, so the time until the next birth is
an exponential rv with parameter 3k, and so
on (the memoryless property of the expo-
nential distribution is being used here).
Suppose the process is observed until the
sixth birth has occurred and the successive
birth times are 25.2, 41.7, 51.2, 55.5, 59.5,
61.8 (from which you should calculate the
times between successive births). Derive the
mle of k. [Hint: The likelihood is a product
of exponential terms.]

62. Let X1; . . .;Xn be a random sample from a
Uniform[0, h] distribution, and let Yn
denote the largest observation: Yn ¼
maxðX1; . . .;XnÞ. [This is the rv denoted ĥb
in several examples in Section 7.1.]
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a. Show that the pdf of Yn is

f ðyÞ ¼ nyn�1

hn
0� y� h

[Hint: Use the methods of Section 5.7,
or use the relationship FðyÞ ¼
P Y � yð Þ ¼ PðX1 � y\ � � � \Xn � yÞ.]

b. Use part (a) to determine the mean and
variance of Yn.

63. The proportion of iron in rock specimens
from a certain quarry is assumed to follow a
standard beta distribution with unknown
parameters a and b. Suppose the following
observations are made on a sample of n = 6
specimens: .873, .437, .249, .712, .501,
.618. Calculate the method of moments
estimates for a and b. [Hint: Be careful in
determining the formula for E(X2).]

64. Let X1, …, X n be a random sample from a
uniform distribution on the interval [−h, h].

a. Determine the mle of h. [Hint: Look
back at what we did in Example 7.23.]

b. Give an intuitive argument for why the
mle is either biased or unbiased.

c. Determine a sufficient statistic for h.
[Hint: See Example 7.27.]

d. Use the results of Section 5.7 to deter-
mine the joint pdf of the smallest order
statistic Y1 and the largest order statistic
Yn. Then use it to obtain the expected
value of the mle. [Hint: Draw the region
of joint positive density for Y1 and Yn,
and identify what the mle is for each
part of this region.]

e. What is an unbiased estimator for h?

65. Carry out the details for minimizing MSE
in Example 7.8: show that c = 1/(n + 1)

minimizes the MSE of r̂2 ¼ c
PðXi � XÞ2

when the population distribution is
normal.

66. Let X1, …, Xn be a random sample from a
pdf that is symmetric about l. An estimator
for l that has been found to perform well
for a variety of underlying distributions is
the Hodges–Lehmann estimator. To define

it, first compute for each i � j and each
j = 1, 2, …, n the pairwise average
Xi;j ¼ ðXi þXjÞ=2. Then the estimator is
l̂ = the median of the Xi;j’s. Compute the
value of this estimate using the data of
Exercise 53 of Chapter 1. [Hint: Construct a
square table with the xi’s listed on the left
margin and on top. Then compute averages
on and above the diagonal.]

67. For a normal population distribution, the
statistic

r̂ ¼ median(jX1 � ~Xj; . . .; jXn � ~XjÞ=:6745

can be used to estimate r. This estimator is
more resistant to the effects of outliers than
is the sample standard deviation. Compute
both the corresponding point estimate and
s for the data of Example 7.2.

68. When the sample standard deviation S is
based on a random sample from a normal
population distribution, it can be shown that

EðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn� 1Þ

p
Cðn=2Þr=C½ðn� 1Þ=2�

Use this to obtain an unbiased estimator for
r of the form cS. What is c when n = 20?

69. Each of n specimens is to be weighed twice
on the same scale. Let Xi and Yi denote the
two observed weights for the ith specimen.
Suppose Xi and Yi are independent of each
other, each normally distributed with mean
value li (the true weight of specimen i) and
variance r2.

a. Show that the mle of r2 is

r̂2 ¼P ðXi � YiÞ2=ð4nÞ. [Hint: If

z ¼ ðz1 þ z2Þ=2, then
Pðzi � zÞ2 ¼

ðz1 � z2Þ2=2.]
b. Is the mle r̂2 an unbiased estimator of

r2? Find an unbiased estimator of r2.
[Hint: For any rv Z, E(Z2) = V(Z) +
[E(Z)]2. Apply this to Z = Xi – Yi.]

70. For 0 < h < 1 consider a random sample
from a uniform distribution on the interval
from h to 1/h. Identify a sufficient statistic
for h.
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71. Let p denote the proportion of all individ-
uals who are allergic to a particular medi-
cation. An investigator tests individual after
individual to obtain a group of r individuals
who have the allergy. Let Xi = 1 if the ith
individual tested has the allergy and Xi = 0
otherwise (i = 1, 2, 3,…). Recall that in
this situation, Y = the number of individu-
als tested to obtain the desired group has a
negative binomial distribution. Use the
definition of sufficiency to show that Y is a
sufficient statistic for p.

72. The fraction of a bottle that is filled with a
particular liquid is a continuous random
variable X with pdf f ðx; hÞ ¼ hxh�1 for
0 < x < 1 (where h > 0).

a. Obtain the method of moments estima-
tor for h.

b. Is the estimator of (a) a sufficient
statistic? If not, what is a sufficient
statistic, and what is an estimator of h
(not necessarily unbiased) based on a
sufficient statistic?

73. Let X1, …, Xn be a random sample from a
normal distribution with both l and r
unknown. An unbiased estimator of h =
P(X � c) based on the jointly sufficient

statistics is desired. Let k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 1Þp

and w ¼ ðc� l̂Þ=r̂. Then it can be shown
that the minimum variance unbiased esti-
mator for h is

ĥ ¼
0 kw� � 1

P T\ kw
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffiffiffiffi
1�k2w2

p

 �

�1\kw\1

1 kw� 1

8<
:

where T has a t distribution with n – 2 df.
The article “Big and Bad: How the S.U.V.
Ran over Automobile Safety” (The New
Yorker, Jan. 24, 2004) reported that when
an engineer with Consumers Union (the
product testing and rating organization that
publishes Consumer Reports) performed
three different trials in which a Chevrolet
Blazer was accelerated to 60 mph and then

suddenly braked, the stopping distances
(ft) were 146.2, 151.6, and 153.4, respec-
tively. Assuming that braking distance is
normally distributed, obtain the minimum
variance unbiased estimate for the proba-
bility that distance is at most 150 ft, and
compare to the maximum likelihood esti-
mate of this probability.

74. Here is a result that allows for easy iden-
tification of a minimal sufficient statistic:
Suppose there is a function t(x1, …, xn)
such that for any two sets of observations
x1, …, xn and y1, …, yn, the likelihood ratio
f(x1, …, xn; h)/f(y1, …, yn; h) doesn’t
depend on h if and only if t(x1, …, xn) =
t(y1, …, yn). Then T = t(X1, …, Xn) is a
minimal sufficient statistic. The result is
also valid if h is replaced by h1, …, hm, in
which case there will typically be several
jointly minimal sufficient statistics. For
example, if the underlying pdf is exponen-
tial with parameter k, then the likelihood
ratio is kRxi�Ryi , which will not depend on k
if and only if

P
xi ¼

P
yi, so T ¼P xi is

a minimal sufficient statistic for k (and so is
the sample mean).

a. Identify a minimal sufficient statistic
when the Xi’s are a random sample from
a Poisson distribution.

b. Identify a minimal sufficient statistic or
jointly minimal sufficient statistics when
the Xi’s are a random sample from a
normal distribution with mean h and
variance h.

c. Identify a minimal sufficient statistic or
jointly minimal sufficient statistics when
the Xi’s are a random sample from a
normal distribution with mean h and
standard deviation h.

75. The principle of unbiased estimation has
been criticized on the grounds that in some
situations the only unbiased estimator is
patently ridiculous. Here is one such
example. Suppose that the number of
blemishes X on a randomly selected piece
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of fruit has a Poisson distribution with
parameter µ. You are going to purchase two
such pieces of fruit and wish to estimate
h ¼ e�2l, the probability that neither of
these has any blemishes. But your estimate
is based on observing the value of X for a

single piece. Obtain an estimator ĥ ¼ dðXÞ
that is unbiased for h; i.e., such that
E½dðXÞ� ¼ e�2l. [Hint: Set the summation
for E½dðXÞ� equal to e�2l, cancel e�l from
both sides, then expand what remains on
the right-hand side in a Taylor series and
compare the two sides to determine d(X).]
If X = 200, what is the estimate? Does this
seem reasonable? What is the estimate if
X = 199? Is this reasonable?

76. Let X, the payoff from playing a certain
game, have pmf

pðx; hÞ ¼ h x ¼ �1
ð1� hÞ2hx x ¼ 0; 1; 2; . . .

�

a. Verify that p(x; h) is a legitimate pmf,
and determine the expected payoff.
[Hint: Look back at how the properties
of a geometric random variable were
developed in Chapter 3.]

b. Let X1,…, Xn be the payoffs from n in-
dependent games of this type. Deter-
mine the mle of h. [Hint: Let Y denote
the number of observations among the
n that equal −1; that is,
Y ¼P IðXi ¼ �1Þ, where I(A) = 1 if
A occurs and 0 otherwise. Then, write
the likelihood as a single expression in
terms of

P
xi and y.]

c. What is the approximate variance of the
mle when n is large?

77. Regression through the origin. Let x denote
the number of items in an order and y de-
note time (min) necessary to process the
order. Processing time may be determined
by various factors other than order size. So
for any particular value of x, we now regard

the value of total production time as a
random variable Y. Consider the following
data obtained by specifying various values
of x and determining total production time
for each one.

x 10 15 18 20 25
y 301 455 533 599 750
x 27 30 35 36 40
y 810 903 1054 1088 1196

a. Plot the observed (x, y) pairs on a two-
dimensional coordinate system. Do all
points fall exactly on a line passing
through (0, 0)? Do the points tend to fall
close to such a line?

b. Consider the following probability
model for the data. Values x1, x2, …, xn
are specified, and at each xi we will
observe a value of the dependent vari-
able Yi. Assume that the Y1; . . .; Yn are
independent and normally distributed,
with Yi having mean value bxi and
variance r2. That is, rather than assume
that y = bx, a linear function of x pass-
ing through the origin, we are assuming
that the mean value of Y is a linear
function of x and that the variance of
Y is the same for any particular x value.
Obtain formulas for the maximum
likelihood estimates of b and r2, and
then calculate the estimates for the
given data. How would you interpret the
estimate of b? What value of processing
time would you predict when x = 25?
[Hint: The likelihood is a product of
individual normal pdfs with different
mean values and the same variance.
Proceed as in the estimation via maxi-
mum likelihood of the parameters l and
r2 based on a random sample from a
normal population distribution.]

78. Reconsider the “regression through the
origin” situation presented in the previous
exercise. Consider the following three
estimators for the slope parameter b (one of
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which is the mle obtained in the previous
exercise):

b̂1 ¼
P

YiP
xi

b̂2 ¼
1
n

X Yi
xi

b̂3 ¼
P

xiYiP
x2i

a. Show that all three of these estimators
are unbiased for b.

b. Determine the variance of all three
estimators, and comment on what you
find.

Proof of the Asymptotic Distribution of the MLE

Let ĥ denote the mle of h, and consider again the score function ‘0ðhÞ ¼ @

@h
ln f ðX1;X2; . . .;Xn; hÞ. Its

derivative ‘00ðhÞ at the true parameter value h is approximately equal to the following difference
quotient:

‘00ðhÞ � ‘0ðĥÞ � ‘0ðhÞ
ĥ� h

ð7:8Þ

Moreover, the error in Equation (7.8)—i.e., the difference between the two sides of the � sign—

approaches zero as n ! 1 because ĥ approaches h (consistency). Now, because ĥ is the mle, by

definition ‘0ðĥÞ ¼ 0, and (7.8) can be re-arranged to write

ĥ� h � ‘0ðhÞ
�‘00ðhÞ )

ffiffiffi
n

p
ĥ� h

 �

�
ffiffiffi
n

p
‘0ðhÞ

�‘00ðhÞ ¼
1ffiffi
n

p ‘0ðhÞ
1
n½�‘00ðhÞ� ð7:9Þ

Similar to the proof of the additive principle of information, the denominator may be written as

1
n
½�‘00ðhÞ� ¼ 1

n
� @2

@h2
ln f ðX1; hÞ

� �
þ � � � þ � @2

@h2
ln f ðXn; hÞ

� �� �
;

the average of n iid random variables each with mean I(h). Therefore, by the Law of Large Numbers,
the denominator converges to I(h). At the same time, the numerator of (7.9) is

1ffiffiffi
n

p ‘0ðhÞ ¼ 1ffiffiffi
n

p @

@h
ln f ðX1; hÞ

� �
þ � � � þ @

@h
ln f ðXn; hÞ

� �� �

The terms in parentheses are also iid, each with mean 0 (the mean of the score function is zero) and
variance I(h) by (7.6). It follows from the Central Limit Theorem that the numerator converges to a

normal rv with mean 0 and standard deviation
ffiffiffiffiffiffiffiffi
IðhÞp

.
Combining these two results, the ratio on the right-hand side of (7.9) is approximately normal with

mean 0 and standard deviation
ffiffiffiffiffiffiffiffi
IðhÞp

=IðhÞ ¼ 1=
ffiffiffiffiffiffiffiffi
IðhÞp

. That is,
ffiffiffi
n

p ðĥ� hÞ is approximately

Nð0; 1= ffiffiffiffiffiffiffiffi
IðhÞp Þ, and it follows that ĥ is approximately normal with mean h and variance 1/[nI(h)], the

Cramér–Rao lower bound. ■
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8Statistical Intervals Based on a Single
Sample

Introduction
A point estimate, because it is a single number, by itself provides no information about the precision
and reliability of estimation. Consider, for example, using the statistic X to calculate a point estimate
for the true average breaking strength of a certain brand of paper towels, and suppose that x = 9322.7
grams. Because of sampling variability, it is virtually never the case that x ¼ l. The point estimate
says nothing about how close it might be to l. An alternative to reporting a single sensible value for
the parameter being estimated is to calculate and report an entire interval of plausible values—an
interval estimate or confidence interval (CI).

A confidence interval is calculated by first selecting a confidence level, which is a measure of the
degree of reliability of the interval. A confidence interval with a 95% confidence level for the true
average breaking strength might have a lower limit of 9162.5 and an upper limit of 9482.9. Then at
the 95% confidence level, any value of l between 9162.5 and 9482.9 g is plausible. The higher the
confidence level, the more strongly we believe that the value of the parameter being estimated lies
within the interval (an interpretation of any particular confidence level will be given shortly).

Information about the precision of an interval estimate is conveyed by the width of the interval. If
the confidence level is high and the resulting interval is quite narrow, our knowledge of the value of
the parameter is reasonably precise. A very wide confidence interval, however, gives the message that
there is a great deal of uncertainty concerning the value of what we are estimating. Figure 8.1 shows
95% confidence intervals for true average breaking strengths of two different brands of paper towels.
One of these intervals suggests precise knowledge about l, whereas the other suggests a very wide
range of plausible values.

Brand 1:

Brand 2:

Strength

Strength

( )

( )

Figure 8.1 Confidence intervals indicating precise (Brand 1) and imprecise (Brand 2) information about l
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8.1 Basic Properties of Confidence Intervals

The basic concepts and properties of confidence intervals (CIs) are most easily introduced by first
focusing on a simple, albeit somewhat unrealistic, problem situation. Suppose that the parameter of
interest is a population mean l and that

1. The population distribution is normal.
2. The value of the population standard deviation r is known.

Population normality is often a reasonable assumption and can be checked by examining a normal
probability plot of the sample data. However, if the value of l is unknown, it is unlikely that the value
of r would be available (knowledge of a population’s center typically precedes information con-
cerning spread). In later sections, we will develop methods based on less restrictive assumptions.

Example 8.1 Titanium alloys are used in everything from offshore oil operations to toys (remember
the fidget spinner?). The article “Statistical Analysis of Tensile Strength and Elongation of Pulse TIG
Welded Titanium Alloy Joints Using Weibull Distribution” (Cogent Engr. 2016) described an
experiment designed to study various characteristics of a certain type of weld. A total of n = 31
experimental runs resulted in a sample mean tensile strength of x = 1064 MPa, and the data suggests
that tensile strength measurements can be modeled with a normal distribution (despite the Weibull
reference in the article’s title!). Assuming the population standard deviation for tensile strength of these
welds is r = 55 MPa (a value suggested by data in the article), we will see shortly how to obtain an
interval of plausible values for l, the true average tensile strength of all such titanium alloy welds. ■

The actual sample observations x1, x2, …, xn are assumed to be the result of a random sample
X1, …, Xn from a N(µ,r) distribution. The results of Chapter 6 then imply that the sample mean
X is normally distributed, with expected value l and standard deviation r=

ffiffiffi
n

p
. Standardizing

X by first subtracting its expected value and then dividing by its standard deviation yields the
variable

Z ¼ X � l
r=

ffiffiffi
n

p ð8:1Þ

Then Z has a standard normal distribution. Because the area under the standard normal curve between
−1.96 and 1.96 is .95,

P �1:96\
X � l
r=

ffiffiffi
n

p \1:96

� �
¼ :95 ð8:2Þ

The next step in the development of our CI is to manipulate the inequalities inside the parentheses in
(8.2) so that they appear in the equivalent form l < l < u, where the endpoints l and u involve X and
r=

ffiffiffi
n

p
. Multiplying all terms in the inequalities by r=

ffiffiffi
n

p
, subtracting X from each term, and then

multiplying through by −1 (to eliminate the negative sign in front of l) gives

X � 1:96 � rffiffiffi
n

p \ l\Xþ 1:96 � rffiffiffi
n

p

These endpoints also result from replacing each < by = in (8.2) and solving for l.
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Because this last set of inequalities is equivalent to those inside (8.2), it follows that

P X � 1:96 � rffiffiffi
n

p \l \ Xþ 1:96 � rffiffiffi
n

p
� �

¼ :95 ð8:3Þ

The event inside the parentheses in (8.3) has a somewhat unfamiliar appearance. Previously, the
random quantity has appeared in the middle with constants on both ends, as in a � Y � b. But in
(8.3) the random quantity appears on the two ends and the unknown constant l appears in the middle.
To interpret (8.3), think of a random interval having left endpoint X � 1:96 � r= ffiffiffi

n
p

and right endpoint
Xþ 1:96 � r= ffiffiffi

n
p

, which in interval notation is

X � 1:96 � rffiffiffi
n

p ; Xþ 1:96 � rffiffiffi
n

p
� �

ð8:4Þ

The interval (8.4) is random because the two endpoints of the interval involve a random variable.
Note that the interval is centered at the sample mean X and extends 1:96 � r= ffiffiffi

n
p

to each side of X.
Thus the interval’s width is 2 � 1:96 � r= ffiffiffi

n
p

, which is not random; only the location of the interval, its
midpoint X, is random (see Figure 8.2). Now (8.3) can be paraphrased as “the probability is .95 that
the random interval (8.4) includes or covers the true value of l.” Before any experiment is performed
and any data is gathered, it is quite likely (probability .95) that l will lie inside the interval in
Expression (8.4).

DEFINITION If after observing X1 = x1, X2 = x2,…, Xn = xn, we compute the observed sample
mean x and then substitute x into (8.4) in place of X, the resulting fixed interval is
called a 95% confidence interval for l. This CI can be expressed either as

x� 1:96 � rffiffiffi
n

p ; xþ 1:96 � rffiffiffi
n

p
� �

is a 95% confidence interval for l

or as

x� 1:96 � rffiffiffi
n

p \l\xþ 1:96 � rffiffiffi
n

p with 95% confidence

A concise expression for the interval is x� 1:96 � r= ffiffiffi
n

p
, where − gives the left

endpoint (lower limit) and + gives the right endpoint (upper limit).

X X

1.96σ / 1.96σ /n

− 1.96σ / n X + 1.96σ / n

n

Figure 8.2 The random interval (8.4) centered at X
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Example 8.2 (Example 8.1 Continued) The quantities needed for computation of the 95% CI for
true average tensile strength are r = 55, n = 31, and x = 1064. The resulting interval is

x� 1:96 � rffiffiffi
n

p ¼ 1064� 1:96 � 55ffiffiffiffiffi
31

p ¼ 1064� 19:4 ¼ ð1044:6; 1083:4Þ

We infer at the 95% confidence level that 1044.6 < l < 1083.4. That is, with a high degree of
certainty, the data indicates that the true mean tensile strength for this type of titanium alloy weld is
between 1044.6 and 1083.4 MPa. ■

Interpreting a Confidence Level
The confidence level 95% for the interval just defined was inherited from the probability .95 for the
random interval (8.4). Intervals having other levels of confidence will be introduced shortly. For now,
though, consider how 95% confidence can be interpreted.

We started with an event whose probability was .95—that the random interval (8.4) would capture
the true value of l—and then used the data in Example 8.1 to compute the CI (1044.6, 1083.4). It’s
therefore tempting to conclude that l is between 1044.6 and 1083.4 with probability .95. But by
substituting x = 1064 for X, all randomness disappears; the interval (1044.6, 1083.4) is not random,
and neither is l (while its value is unfortunately unknown to us, l is still a constant). Thus it is
incorrect to write P(l lies in (1044.6, 1083.4)) = .95.

A correct interpretation of “95% confidence” relies on the long-run relative frequency interpre-
tation of probability. To say that an event A has probability .95 is to say that if the experiment on
which A is defined is performed over and over again, in the long run A will occur 95% of the time.
Suppose we obtain another sample of tensile strength values and compute another 95% interval. Then
we consider repeating this for a third sample, a fourth sample, and so on. Let A be the event that
X � 1:96 � r= ffiffiffi

n
p

\l\Xþ 1:96 � r= ffiffiffi
n

p
. Since P(A) = .95, in the long run 95% of our computed CIs

will contain l. This is illustrated in Figure 8.3, where the vertical line cuts the measurement axis at
the true (but unknown) value of l. Notice that of the 11 intervals pictured, only intervals 3 and 11 fail
to contain l. In the long run, only 5% of all intervals so constructed would fail to contain l.

According to this interpretation, the confidence level 95% is not so much a statement about any
particular interval such as (1044.6, 1083.4), but pertains to what would happen if a very large number
of intervals were constructed using the same formula. Although this may seem unsatisfactory, the root
of the difficulty lies with our interpretation of probability—it applies to a long sequence of

Interval
number

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

True value of μ

Figure 8.3 Repeated construction of 95% CIs
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replications of an experiment, rather than just a single replication. There is another approach to the
construction and interpretation of CIs that uses the notion of subjective probability and Bayes’
theorem, as discussed in Chapter 15. The interval presented here (as well as each interval presented
subsequently) is called a “classical” CI because its interpretation rests on the classical notion of
probability (although the main ideas were developed as recently as the 1930s).

Other Levels of Confidence
The confidence level of 95% was inherited from the probability .95 for the initial inequalities in (8.2).
If a confidence level of 99% is desired, the initial probability of .95 must be replaced by .99, which
necessitates changing the z critical value in (8.2) from 1.96 to 2.576. A 99% CI then results from
using 2.576 in place of 1.96 in the formula for the 95% CI.

This suggests that any desired level of confidence can be achieved by replacing 1.96 or 2.576 with
the appropriate standard normal critical value. As Figure 8.4 shows, a probability of 1 − a is
achieved by using za/2, which captures upper-tail area a/2, in place of 1.96.

DEFINITION A 100(1 − a)% confidence interval for the mean l of a normal population
when the value of r is known is given by

x� za=2 � rffiffiffi
n

p ; xþ za=2 � rffiffiffi
n

p
� �

ð8:5Þ

or, equivalently, by x� za=2 � r=
ffiffiffi
n

p
.

The z critical values for the most commonly used confidence levels are displayed in Table 8.1.

0

z curve

1 − Shaded area =  /2

−z /2 z /2

Figure 8.4 Pð�za=2 � Z � za=2Þ ¼ 1� a

Table 8.1 Values of za=2 for 90, 95, and 99% confidence

Confidence level (%) a a/2 za/2
90 .10 .05 1.645
95 .05 .025 1.960
99 .01 .005 2.576
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Example 8.3 An introductory course has recently been changed, and the homework is now done
online through a course management system instead of from the textbook exercises. How can we see
if there has been improvement in student performance? Past experience suggests that the distribution
of final exam scores under the old system was normally distributed with mean 65 and standard
deviation 13. It is believed that the distribution is still normal with standard deviation 13, but the
mean has potentially changed. A random sample of 40 students has a mean final exam score of 70.7.
Let’s calculate a confidence interval for the new population mean using a confidence level of 90%.
From Table 8.1, the z critical value is za/2 = z.05 = 1.645. The desired interval is then

70:7� 1:645 � 13ffiffiffiffiffi
40

p ¼ 70:7� 3:4 ¼ ð67:3; 74:1Þ

With 90% confidence, we can say that 67.3 < l < 74.1, i.e., the true mean final exam score of all
students using the new homework system will be between 67.3 and 74.1. In particular, at a confidence
level of 90%, 65 is not a plausible value of l. Thus we can be confident that the population mean has
improved over the previous value of 65. ■

Confidence Level, Precision, and Choice of Sample Size
Why settle for a confidence level of 95% when a level of 99% is achievable? Because the price paid
for the higher confidence level is a wider interval. The 95% interval extends 1:96 � r= ffiffiffi

n
p

to each side
of x, so the width of the interval is 2ð1:96Þ � r= ffiffiffi

n
p ¼ 3:92 � r= ffiffiffi

n
p

. Similarly, the width of the 99%
interval is 2ð2:576Þ � r= ffiffiffi

n
p ¼ 5:152 � r= ffiffiffi

n
p

. That is, we have more confidence in the 99% interval
precisely because it is wider. The higher the desired degree of confidence, the wider the resulting
interval. In fact, the only 100% CI for l is (−1, 1), which is not terribly informative because, even
before sampling, we knew that this interval covers l.

If we think of the width of the interval as specifying its precision (with narrower intervals being
more precise), then the confidence level (or reliability) of the interval is inversely related to its
precision. A highly reliable interval estimate may be imprecise in that the endpoints of the interval
may be far apart, whereas a precise interval may possess relatively low reliability. Thus it cannot be
said unequivocally that a 99% interval is to be preferred to a 95% interval; the gain in reliability
entails a loss in precision.

An appealing strategy is to specify both the desired confidence level and interval width and then
determine the necessary sample size.

Example 8.4 Extensive monitoring of a certain operating system has suggested that response time to
a particular editing command is normally distributed with standard deviation 25 ms. A new operating
system has been installed, and an estimate of the true average response time l for the new envi-
ronment is desired. Assuming that response times are still normally distributed with r = 25, what
sample size is necessary to ensure that the resulting 95% CI has a width of (at most) 10? The sample
size n must satisfy

10 ¼ 2 � ð1:96Þ � ð25= ffiffiffi
n

p Þ
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Re-arranging this equation gives

ffiffiffi
n

p ¼ 2 � ð1:96Þ � ð25Þ=10 ¼ 9:80

so

n ¼ 9:802 ¼ 96:04

Since n must be an integer, a sample size of 97 is required. ■

The general formula for the sample size n necessary to ensure an interval width w is obtained from
w ¼ 2 � za=2 � r=

ffiffiffi
n

p
as

n ¼ za=2 � r
w=2

� �2

ð8:6Þ

The smaller the desired width w, the larger n must be. In addition, n is an increasing function of
r (more population variability necessitates a larger sample size) and also of the confidence level
100(1 − a)% (as a decreases, za/2 increases).

The half-width 1:96 � r= ffiffiffi
n

p
of the 95% CI is sometimes called the margin of error associated

with a 95% confidence level; that is, with 95% confidence, the point estimate x will be no farther than
this from l. Before obtaining data, an investigator may wish to determine a sample size for which a
particular value of the margin of error is achieved. For example, with l representing the average fuel
efficiency (mpg) for all cars of a certain type, the objective of an investigation may be to estimate l to
within 1 mpg with 95% confidence. More generally, if we wish to estimate l to within an amount
b (the specified bound on the margin of error) with 100(1 − a)% confidence, the necessary sample
size results from replacing w/2 by b in (8.6).

Deriving a General Confidence Interval
Let X1, X2, …, Xn denote the sample on which the CI for a parameter h is to be based. The general
strategy for deriving a CI relies on finding what’s known as a pivotal quantity.

DEFINITION Suppose a random variable satisfying the following two properties can be found:

1. The variable is a function of both X1, …, Xn and h.
2. The probability distribution of the variable does not depend on h or on

any other unknown parameters.

Such a random variable is called a pivotal quantity.

For example, if the population distribution is normal with r known and h = l unknown, the variable
Z ¼ ðX � lÞ=ðr= ffiffiffi

n
p Þ in (8.1) satisfies both properties: (1) Z clearly depends functionally on the Xi’s

and l, yet (2) Z has a N(0, 1) distribution, which does not depend on l. Hence Z is a pivotal quantity.
In general, the form of a pivotal quantity is usually suggested by examining the distribution of an

appropriate estimator ĥ.
Let hðX1; . . .;Xn; hÞ denote a general pivotal quantity. For any a between 0 and 1, constants a and

b can be found to satisfy
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P a\hðX1; . . .;Xn; hÞ\bð Þ ¼ 1� a ð8:7Þ

Critically, because of the second property of a pivotal quantity, a and b do not depend on h. In the
normal example, a = −za/2 and b = za/2. Now suppose the inequalities in (8.7) can be manipulated to
isolate h (typically, replace < by = and solve for h), giving the equivalent statement

P lðX1; . . .;XnÞ\h\uðX1; . . .;XnÞð Þ ¼ 1� a

Then l(x1, …, xn) and u(x1, …, xn) are the lower and upper confidence limits, respectively, for a
100(1 − a)% CI. In the normal example, we saw that l X1; . . .;Xnð Þ ¼ X � za=2 � r=

ffiffiffi
n

p
and

u X1; . . .;Xnð Þ ¼ Xþ za=2 � r=
ffiffiffi
n

p
.

Example 8.5 A theoretical model suggests that the time-to-breakdown of an insulating fluid between
electrodes at a particular voltage has an exponential distribution with unknown parameter k (see
Section 4.4). A random sample of n = 10 breakdown times yields the following sample data (in min):
x1 = 41.53, x2 = 18.73, x3 = 2.99, x4 = 30.34, x5 = 12.33, x6 = 117.52, x7 = 73.02, x8 = 223.63,
x9 = 4.00, x10 = 26.78. A 95% CI for both k and for the true average breakdown time are desired.

Let h(X1, X2, …, Xn, k) = 2k RXi. Using a moment generating function argument, it can be shown
that this random variable has a chi-squared distribution (see Section 6.3) with 2n degrees of freedom.
Since h is a function of both the Xi’s and k, yet its distribution v22n does not depend on k, it is a pivotal
quantity.

Appendix Table A.5 pictures a typical chi-squared density curve and tabulates critical values that
capture specified tail areas. The m = 2n = 2(10) = 20 row of the table shows that the .025 and .975
quantiles are 9.591 and 34.170, respectively. Thus for n = 10,

Pð9:591\2k
X

Xi\34:170Þ ¼ :95

Division by 2
P

Xi isolates k, yielding

P 9:591= 2
X

Xi

� �
\k\34:170= 2

X
Xi

� �� �
¼ :95

The lower limit of the 95% CI for k is l = 9.591/(2Rxi), and the upper limit is u = 34.170/(2
P

xi). For
the given data,

P
xi = 550.87, giving the interval (.00871, .03101). Based on the data, we are 95%

confident that the true value of the parameter k is between .00871 and .03101.
The mean of an exponential rv is l = 1/k. Since

P 2
X

Xi=34:170\1=k\2
X

Xi=9:591
� �

¼ :95

the 95% CI for true average breakdown time is (2
P

xi/34.170, 2
P

xi/9.591) = (32.24, 114.87). With
95% confidence, true mean breakdown time under these experimental conditions is between 32.24
and 114.87 min. This interval is obviously quite wide, reflecting substantial variability in breakdown
times and a small-sample size. Notice also that the two endpoints are not equidistant from the point
estimate; unlike in the normal case, here the CI for l is not of the form x� c. ■

A General Large-Sample Confidence Interval
Let X1, X2, …, Xn be a random sample from any population having a mean l and standard deviation
r. Provided that n is large, the Central Limit Theorem (CLT) implies that X has approximately a
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normal distribution whatever the nature of the population distribution. It then follows that Z ¼
ðX � lÞ=ðr= ffiffiffi

n
p Þ has approximately a standard normal distribution, so that

P �za=2\
X � l
r=

ffiffiffi
n

p \za=2

� �
� 1� a

An argument parallel with that given earlier in this section yields x� za=2 � r=
ffiffiffi
n

p
as a large-sample CI

for l with a confidence level of approximately 100(1 − a)%. That is, when n is large, the CI (8.5) for
l remains valid whatever the population distribution (provided that the qualifier “approximately” is
inserted in front of the confidence level).

The foregoing example is a special case of a general large-sample CI for a parameter h. Suppose

that ĥ is an estimator satisfying the following properties:

1. ĥ has approximately a normal distribution;

2. ĥ is (at least approximately) unbiased for h; and

3. an expression for rĥ, the standard deviation of ĥ, is available.

For example, in the above discussion h = l, l̂ ¼ X is an unbiased estimator whose distribution is
approximately normal when n is large, and rl̂ ¼ rX ¼ r=

ffiffiffi
n

p
. In Section 7.4, we saw that under very

general conditions a maximum likelihood estimator ĥ satisfies the first two properties when n is large,
so what follows can be applied to many mles.

Standardizing ĥ yields the rv Z ¼ ðĥ� hÞ=rĥ, which has approximately a standard normal dis-
tribution, making Z an approximate pivotal quantity. This justifies the probability statement

P �za=2\
ĥ� h
rĥ

\za=2

 !
� 1� a ð8:8Þ

from which a 100(1 – a)% CI for h may potentially be obtained. How we proceed then depends on the
formula for rĥ.

Suppose first that rĥ does not involve any unknown parameters. Then replacing each < by = in

(8.8) and solving for h results in confidence limits ĥ� za=2 � rĥ for h.
Next, suppose that rĥ doesn’t involve h itself but does involve at least one other unknown

parameter. Let sĥ be the estimate of rĥ obtained by using estimates in place of the unknown
parameters, e.g., s=

ffiffiffi
n

p
estimates r=

ffiffiffi
n

p
. Under general conditions (essentially that sĥ be close to rĥ

for most samples), a valid CI for h is then ĥ� za=2 � sĥ. The interval x� za=2 � s=
ffiffiffi
n

p
is an example; we

will encounter this interval in the next section.
Finally, suppose that rĥ involves the unknown h itself. This is the case, for example, when h = p, a

population proportion, as we’ll see in Section 8.3. Then ðĥ� hÞ=rĥ ¼ za=2 can be difficult to solve.

An approximate solution can often be obtained by replacing h in rĥ by its estimate ĥ. This results in

an estimated standard deviation sĥ, and the corresponding interval is again ĥ� za=2 � sĥ.

Example 8.6 A shipping company offers a flat fee for packages weighing up to 1 lb. Let X1; . . .;Xn

represent the weights (lb) of a random sample of packages ready for shipment, modeled by the pdf
f ðx; hÞ ¼ hxh�1 for 0 � x � 1. The goal is to obtain a CI for the parameter h.
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From Example 7.37, the maximum likelihood estimator of h is ĥ ¼ �n=
P

lnðXiÞ, which for large
n has approximately a normal distribution with mean h and standard deviation h=

ffiffiffi
n

p
. The preceding

discussion then suggests a CI of the form ĥ� za=2h=
ffiffiffi
n

p
, but this is impractical—the standard error is

a function of the unknown parameter h itself. One solution is to solve the system of inequalities

�za=2\
ĥ� h
h=

ffiffiffi
n

p \za=2

suggested by (8.8) for h. Alternatively, we could substitute ĥ for h in the standard deviation formula,

resulting in a CI with endpoints ĥ� za=2ĥ=
ffiffiffi
n

p
. That is, once the data is obtained and the value

ĥ ¼ �n=
P

lnðxiÞ is calculated, that value of ĥ is used twice to compute the CI. ■

One-Sided Confidence Intervals (Confidence Bounds)
The confidence intervals discussed thus far give both a lower confidence bound and an upper
confidence bound for the parameter being estimated. In some circumstances, an investigator will want
only one of these two types of bounds. For example, a psychologist may wish to calculate a 95%
upper confidence bound for true average reaction time to a particular stimulus, or a surgeon may want
only a lower confidence bound for true average remission time after colon cancer surgery.

In general, an upper confidence bound for a parameter h with confidence level 100ð1� aÞ%
based on a random sample X1; . . .;Xn is a quantity uðX1; . . .;XnÞ such that

Pðh\uðX1; . . .;XnÞÞ ¼ 1� a

Similarly, a lower confidence bound lðX1; . . .;XnÞ satisfies PðlðX1; . . .;XnÞ\hÞ ¼ 1� a. As with
two-sided confidence intervals, such bounds are evaluated by substituting the observed values
X1 ¼ x1;X2 ¼ x2; . . .;Xn ¼ xn. One-sided confidence bounds are often obtained by identifying a
pivotal quantity and manipulating an appropriate inequality statement to isolate the parameter h.

Example 8.7 Consider again the scenario of a random sample X1; . . .;Xn from a normal distribution
for which r is known. Because the cumulative area under the standard normal curve to the left of
1.645 is .95,

P
X � l
r=

ffiffiffi
n

p \1:645

� �
¼ :95

Manipulating the inequality inside the parentheses to isolate l on one side gives the inequality
x� 1:645r=

ffiffiffi
n

p
\l; the expression on the left is a lower confidence bound for l. Applied to the data

from Example 8.1, we obtain a 95% lower confidence bound of 1064� 1:645 � 55= ffiffiffiffiffi
31

p
=

1047.75 MPa for the true average tensile strength.
Starting with P(−1.645 < Z) = .95 and manipulating the inequality results in an upper confidence

bound. A similar argument gives a one-sided bound associated with any other confidence level. ■
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Exercises: Section 8.1 (1–12)

1. Consider a normal population distribution
with the value of r known.

a. What is the confidence level for the
interval x� 2:81r=

ffiffiffi
n

p
?

b. What is the confidence level for the
interval x� 1:44r=

ffiffiffi
n

p
?

c. What value of za/2 in the CI Formula (8.5)
results in a confidence level of 99.7%?

d. Answer the question posed in part (c) for
a confidence level of 75%.

2. Each of the following is a confidence interval
computed from (8.5) for l = true average
(i.e., population mean) resonance frequency
(Hz) for all tennis rackets of a certain type:

(114.4, 115.6) (114.1, 115.9)

a. What is the value of the sample mean
resonance frequency?

b. Both intervals were calculated from the
same sample data. The confidence level
for one of these intervals is 90% and for
the other is 99%. Which of the intervals
has the 90% confidence level, and why?

3. Suppose that a random sample of 50 bottles
of a particular brand of cough syrup is
selected and the alcohol content of each
bottle is determined. Let l denote the average
alcohol content for the population of all
bottles of the brand under study. Suppose that
the resulting 95% confidence interval is (7.8,
9.4).

a. Would a 90% confidence interval calcu-
lated from this same sample have been
narrower or wider than the given interval?
Explain your reasoning.

b. Consider the following statement: There
is a 95% chance that l is between 7.8 and
9.4. Is this statement correct? Why or why
not?

c. Consider the following statement: We can
be highly confident that 95% of all bottles
of this type of cough syrup have an
alcohol content that is between 7.8 and

9.4. Is this statement correct? Why or why
not?

d. Consider the following statement: If the
process of selecting a sample of size 50
and then computing the corresponding
95% interval is repeated 100 times, 95 of
the resulting intervals will include l. Is
this statement correct? Why or why not?

4. A CI is desired for the true average stray-load
loss l (watts) for a certain type of induction
motor when the line current is held at 10
amps for a speed of 1500 rpm. Assume that
stray-load loss is normally distributed with
r = 3.0.

a. Compute a 95% CI for l when n = 25
and x ¼ 58:3.

b. Compute a 95% CI for l when n = 100
and x ¼ 58:3.

c. Compute a 99% CI for l when n = 100
and x ¼ 58:3.

d. Compute an 82% CI for l when n = 100
and x ¼ 58:3.

e. How large must n be if the width of the
99% interval for l is to be 1.0?

5. Assume that the helium porosity (in per-
centage) of coal samples taken from any
particular seam is normally distributed with
true standard deviation .75.

a. Compute a 95% CI for the true average
porosity of a certain seam if the average
porosity for 20 specimens from the seam
was 4.85.

b. Compute a 98% CI for true average
porosity of another seam based on 16
specimens with a sample average porosity
of 4.56.

c. How large a sample size is necessary if
the width of the 95% interval is to be .40?

d. What sample size is necessary to estimate
true average porosity to within .2 with
99% confidence?

6. On the basis of extensive tests, the yield point
of a particular type of mild steel reinforcing
bar is known to be normally distributed with
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r = 100. The composition of the bar has been
slightly modified, but the modification is not
believed to have affected either the normality
or the value of r.

a. Assuming this to be the case, if a sample of
25 modified bars resulted in a sample
average yield point of 8439 lb, compute a
90% CI for the true average yield point of
the modified bar.

b. How would you modify the interval in
part (a) to obtain a confidence level of
92%?

7. By how much must the sample size n be
increased if the width of the CI (8.5) is to be
halved? If the sample size is increased by a
factor of 25, what effect will this have on the
width of the interval? Justify your assertions.

8. Let a1 > 0, a2 > 0, with a1 + a2 = a. Then

P �za1\
X � l
r=

ffiffiffi
n

p \za2

� �
¼ 1� a

a. Use this equation to derive a more general
expression for a 100(1 − a)% CI for l of
which the interval (8.5) is a special case.

b. Let a = .05 and a1 = a/4, a2 = 3a/4. Does
this result in a narrower or wider interval
than the interval (8.5)?

9. a. Generalize the method of Example 8.7 to
obtain a lower bound for l with a confi-
dence level of 100(1 − a)%.

b. Use part (a) to calculate a 99.5% confi-
dence lower bound for the data in Exer-
cise 5a.

c. What is the analogous formula for a
100(1 − a)% confidence upper bound on
l? Compute this 99% upper bound for the
data of Exercise 4a.

10. A random sample of n = 15 heat pumps of a
certain type yielded the following observa-
tions on lifetime (in years):

2.0 1.3 6.0 1.9 5.1 .4 1.0 5.3
15.7 .7 4.8 .9 12.2 5.3 .6

a. Assume that the lifetime distribution is
exponential and use an argument parallel
to that of Example 8.5 to obtain a 95%
CI for expected (true average) lifetime.

b. How should the interval of part (a) be
altered to achieve a confidence level of
99%?

c. What is a 95% CI for the standard
deviation of the lifetime distribution?
[Hint: What is the standard deviation of
an exponential random variable?]

11. Consider the next 1000 95% CIs for l that
a statistical consultant will obtain for vari-
ous clients. Suppose the data sets on which
the intervals are based are selected inde-
pendently of one another. How many of
these 1000 intervals do you expect to cap-
ture the corresponding value of l? What is
the probability that between 940 and 960 of
these intervals contain the corresponding
value of l? [Hint: Let Y = the number
among the 1000 intervals that contain l.
What kind of random variable is Y?]

12. The superintendent of a large school dis-
trict, having once had a course in proba-
bility and statistics, believes that the
number of teachers absent on any given day
has a Poisson distribution with parameter l.
Use the accompanying data on absences for
50 days to derive a large-sample CI for l.
[Hint: The mean and variance of a Poisson
variable both equal l, so

Z ¼ X � lffiffiffiffiffiffiffiffi
l=n

p
has approximately a standard normal dis-
tribution and is thus a pivotal quantity.
Now proceed as in Example 8.6.]

Number of
absences

0 1 2 3 4 5 6 7 8 9 10

Frequency 1 4 8 10 8 7 5 3 2 1 1
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8.2 The One-Sample t Interval and Its Relatives

The CI for l given in the previous section assumed that the population distribution is normal with the
value of r known. The derivation of the interval relied on the pivotal quantity Z ¼ ðX � lÞ=ðr= ffiffiffi

n
p Þ

in (8.1), which has a standard normal distribution under these assumptions. In this section, we will
construct a CI for l for the more realistic situation when r is unknown; this is the interval estimate
used in practice.

Consider the variable obtained by replacing r in Z by the sample standard deviation S. Define a
new random variable T by

T ¼ X � l
S=

ffiffiffi
n

p ð8:9Þ

It is important to contrast the behavior of Z in repeated sampling with that of T (this is really a
refresher from Section 6.4). The only variability in Z from one sample to another is because the value
of X in the numerator varies in value. However, there are two sources of sample-to-sample variability
in T: both X in the numerator and S in the denominator. Because of this extra variation in T, it stands
to reason that the distribution of T should be more spread out than that of Z. That is, the density curve
for T should be more spread out than the standard normal curve.

The One-Sample t Confidence Interval
Suppose that X1; . . .;Xn is a random sample from a normal population distribution. Then Gosset’s
Theorem from Section 6.4 states that the rv T in (8.9) follows a t distribution with n – 1 degrees of
freedom (df). Properties of the t family of distributions were detailed in Section 6.3; for now, it
suffices to recall that the t distribution with m df has a symmetric, bell-shaped density curve centered at
0 that is wider than a standard normal curve but converges to the standard normal curve as m ! 1 (so
the z curve may be thought of as the t curve with df = 1). See Figure 6.16 for an illustration. Recall
also the notation for values that capture particular upper-tail t curve areas.

NOTATION Let ta,m = the number on the measurement axis for which the area under the t curve
with m df to the right of ta,m is a; ta,m is called a t critical value.

This notation is illustrated in Figure 8.5. Appendix Table A.6 gives ta,m for selected values of a and m.
The columns of the table correspond to different values of a. To obtain t.05,15, go to the a = .05
column, look down to the m = 15 row, and read t.05,15 = 1.753. Similarly, t.05,22 = 1.717 (.05 column,
m = 22 row), and t.01,22 = 2.508. Statistical software packages can provide t critical values for any
specified tail area and df; for example, ta,m can be obtained in R with the command qt(1 – a, m).

0

Shaded area = α

tα,ν

tν curve

Figure 8.5 A pictorial definition of ta,m
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The values of ta,m exhibit regular behavior as we move across a row or down a column. For fixed m,
ta,m increases as a decreases, since we must move farther to the right of zero to capture area a in the
tail. For fixed a, as m is increased (i.e., as we look down any particular column of the t table) the value
of ta,m decreases. This is because a larger value of m implies a t distribution with smaller spread, so it is
not necessary to go so far from zero to capture tail area a. Furthermore, ta,m decreases more slowly as m
increases. Consequently, the table values are shown in increments of 2 between 30 and 40 df and then
jump to m = 50, 60, 120, and finally 1. Because t1 is the standard normal curve, the familiar za
values appear in the last row of the table.

Now let’s obtain the desired confidence interval. The pivotal quantity T in (8.9) has a tn�1

distribution, and the area under the corresponding t density curve between �ta=2;n�1 and ta=2;n�1 is
1 − a (area a/2 lies in each tail), so

Pð�ta=2;n�1\T\ta=2;n�1Þ ¼ 1� a ð8:10Þ

Expression (8.10) differs from similar expressions in Section 8.1 in that T and ta=2;n�1 are used in
place of Z and za/2, but it can be manipulated in the same manner to obtain a confidence interval for l.

PROPOSITION Let x and s be the sample mean and sample standard deviation computed from
the results of a random sample from a normal population with mean l. Then a
100(1 − a)% confidence interval for l, also called the one-sample t CI, is

x� ta=2;n�1 � sffiffiffi
n

p ; xþ ta=2;n�1 � sffiffiffi
n

p
� �

ð8:11Þ

or, more compactly, x� ta=2;n�1 � s=
ffiffiffi
n

p
.

An upper confidence bound for l is

xþ ta;n�1 � sffiffiffi
n

p

and replacing + by − in this latter expression gives a lower confidence bound
for l; both have confidence level 100(1 − a)%.

Example 8.8 Have you ever dreamed of owning a Porsche? Even though academic salaries leave
little room for luxuries, the authors thought maybe the purchase of a used Boxster, the least expensive
Porsche model, might be feasible. So on July 15, 2019 we went to www.cars.com to peruse prices.
The news was discouraging, so we instead selected a random sample of 16 such vehicles and obtained
the following odometer readings (miles):

80,000 30,100 97,500 58,551 73,787 51,800 69,267 44,530
42,192 104,920 41,442 27,418 43,436 77,219 5991 14,362

Figure 8.6 shows a normal probability plot of the data; this version includes a superimposed line
which makes it easier to judge whether the pattern in the plot is reasonably linear. Very clearly that is
the case. It is therefore quite plausible that the distribution of odometer readings is (at least
approximately) normal, which validates the use of the one-sample t confidence interval to estimate the
population mean odometer reading, µ.
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The sample mean and standard deviation are 53,907.2 and 28,287.2, respectively, and the (esti-
mated) standard error of the mean is s=

ffiffiffi
n

p
= 7071.8. Table A.6 shows that the t critical value for a

confidence level of 95% when df = 16 – 1 = 15 is t.025,15 = 2.131. The confidence interval is then

x� ta=2;n�1 � sffiffiffi
n

p ¼ 53;907:2� 2:131ð Þ 7071:8ð Þ ¼ 53;907:2� 15;070:0

¼ 38;837:2; 68;977:2ð Þ

That is, we can say with a confidence level of 95% that 38,837.2 < l < 68,977.2. This CI is quite
wide, indicating that our knowledge of µ is imprecise.

Remember that it is not correct at this point to write P(38,837.2 < l < 68,977.2) = .95, because
nothing inside the parentheses is random. The interval we have calculated may or may not include the
actual value of l. If we were to obtain sample after sample of size 16 from this population and for
each one use (8.11) with t = 2.131, in the long run 95% of the calculated CIs would include l
whereas 5% would not. Without knowing the value of l, we can’t know whether the particular
interval we have calculated is one of the “good” 95% or the “bad” 5%. ■

Gosset’s Theorem and the resulting one-sample t CI (8.11) assume a normal population distri-
bution, which can be validated using a normal probability plot. Thankfully, the one-sample t CI for l
is robust to small or even moderate departures from normality unless n is quite small. By “robust,” we
mean that if a t critical value for 95% confidence is used in calculating the interval, the actual
confidence will be reasonably close to the nominal 95% level, and similarly for other confidence
levels. As a result, many practitioners use (8.11) if either the population distribution is plausibly
normal or the sample size is “large”—n � 40 is a popular criterion.

It’s worth noting that if the sample size is large, whether we use a t or z critical value does
not make much practical difference. Thanks to the Central Limit Theorem, the random variable
ðX � lÞ=ðr= ffiffiffi

n
p Þ has an approximately standard normal distribution when n is large; simultaneously,

S is highly likely to be close to r, suggesting that T in (8.9) is also approximately normal. Thus, for
large n, one may apply the CI formula

Figure 8.6 Normal
probability plot of the Boxster
odometer reading data
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x� za=2 � sffiffiffi
n

p ; xþ za=2 � sffiffiffi
n

p
� �

ð8:12Þ

in lieu of (8.11). A large-sample upper confidence bound for l results from replacing za=2 with za in
the upper limit of the interval (8.12); an analogous lower bound is obtained from the same
replacement made to the lower limit of (8.12).

Example 8.9 A survey published by Gallup (Nov. 1, 2019) of 1526 adults asked how much each
person planned to “personally spend on Christmas gifts” in 2019. The mean response was $942 with a
standard deviation of $1116. Clearly the distribution of planned expenses is strongly positively
skewed (the standard deviation exceeds the mean); nevertheless, let’s calculate an (approximate) 99%
CI for l, the mean amount all US adults planned to spend on Christmas presents in 2019.

Because n = 1526 is very large, either Expression (8.11) or (8.12) is appropriate, even though the
population distribution is nonnormal. The z and t critical values are z:005 = 2.576 and
t:005;1525 = 2.579, so the resulting CIs will be essentially identical. Using the latter, the resulting CI is

942� 2:579 � 1116ffiffiffiffiffiffiffiffiffiffi
1526

p ¼ 942� 73:7 ¼ ð868:3; 1015:7Þ

At the 99% confidence level, we conclude that the average amount US adults planned to personally
spend on Christmas gifts in 2019 was between $868.30 and $1015.70. ■

Sample Size Determination
In Section 8.1, we considered the problem of determining the sample size required to achieve a
certain level of precision at a prescribed confidence level. Under the assumptions of that section, we
derived the formula

n ¼ za=2 � r
w=2

� �2

for the minimum sample size necessary to place an upper bound w on the width of the interval. Given
the discussion in this section, it might seem like the natural update to this formula is

n ¼ ta=2;n�1 � s
w=2

� �2

ð8:13Þ

where s is the sample standard deviation. However, this formula presents two practical problems.
First, sample size determination typically occurs before a study is carried out, in which case the

researcher doesn’t yet have a value for s. This can be addressed by using a sample standard deviation
from a previous, similar study, though that assumes variability has not changed significantly.
Another, more conservative method is to use range/4 as a crude estimate of the standard deviation;
this is “conservative” in the sense that for many distributions range/4 exceeds s, so use of this estimate
in (8.13) typically returns a somewhat larger n than needed. The range/4 formula has the advantage
that even in the absence of reliable data from which to calculate s, the range of potential values from a
particular process is typically easier to “guess.”
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Second, n now appears on both sides of the equation: we need to know n before finding the
t critical value, which then determines the sample size n on the left-hand side of (8.13). Technology
can solve this problem: many statistical software packages will search iteratively to find the smallest
n which satisfies (8.13). Alternatively, you can simply replace ta/2,n–1 with za/2 in (8.13) and solve for
n, but the result will be slightly smaller than the sample size actually required. Notice, though, that
even software still requires a value (or an estimate) for s.

Example 8.10 A supplier of carbon-ceramic brake disks for high-performance cars has recently
redesigned its manufacturing process. The company needs to estimate, among other things, the true
mean density l of their new ceramic material. Data from the previous process suggests that the
standard deviation for ceramic density is around 0.2 g/cm3. Assuming this value still approximately
holds for the new process, how large a sample will the company require to obtain a 99% CI for l no
wider than 0.1 g/cm3? Apply (8.13) with s = 0.2, w = 0.1, and t.005,n–1 � z.005 = 2.576:

n � 2:576ð0:2Þ
0:1=2

� �2

¼ 106:17

Since n must be an integer, a minimum of 107 ceramic specimens is required. As noted previously,
this will be a slight underestimate, because we used 2.576 in place of the unknown t critical value.
Statistical software, which does not use this approximation, indicates that at least 110 specimens are
required. ■

A Prediction Interval for a Single Future Value
In many applications, an investigator wishes to predict a single value of a variable to be observed at
some future time, rather than to estimate the mean value of that variable.

Example 8.11 Scientists worldwide routinely monitor the general health of forests, and engineers
investigate mechanical properties of various wood types. Consider the following core wood density
measurements (g/mm3) from a sample of 25 canopy trees in western Thailand (“Radial Variation of
Wood Functional Traits Reflect Size-Related Adaptations of Tree Mechanics and Hydraulics,”
Functional Ecology 2017):

391.2 431.0 447.1 375.3 470.7 543.7 592.7 546.7 601.8 598.8
492.3 454.4 548.7 494.9 585.6 647.8 639.2 700.4 640.1 620.5
755.2 668.7 644.6 717.7 663.0

Figure 8.7 shows a normal probability plot from R software. The straightness of the pattern
provides support for assuming that core wood density measurements in this population are at least
approximately normal.

The sample mean and standard deviation are x = 570.9 g/mm3 and s = 103.9 g/mm3, respectively.
A 95% CI for l = the population mean core wood density is

x� t:025;24 � sffiffiffi
n

p ¼ 570:9� 2:064 � 103:9ffiffiffiffiffi
25

p ¼ 570:9� 42:9

¼ ð528:0; 613:8Þ
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This is fine if researchers are interested in average properties of these trees. But what about a single
tree from this forest—what should we predict for its core wood density? A point prediction, anal-
ogous to a point estimate, is just x = 570.9 g/mm3. But this prediction unfortunately gives no
information about reliability or precision. A different type of interval is required to make inferences
about the density of an individual wood specimen. ■

The general scenario is as follows: We have available a random sample X1, X2, …, Xn from a
normal population distribution, and we wish to predict the value of Xn+1, a single future observation.
A point predictor is X, and the resulting prediction error is X � Xnþ 1. The expected value of the
prediction error is

EðX � Xnþ 1Þ ¼ EðXÞ � E Xnþ 1ð Þ ¼ l� l ¼ 0

Since Xn+1 is independent of X1,…, Xn, it is independent of X, so the variance of the prediction error is

VðX � Xnþ 1Þ ¼ VðXÞþV Xnþ 1ð Þ ¼ r2

n
þ r2 ¼ r2 1þ 1

n

� �

The prediction error is a linear combination of independent normally distributed rvs, so itself is
normally distributed. Thus

Z ¼ ðX � Xnþ 1Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1þ 1

n

� �q ¼ X � Xnþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1þ 1

n

� �q

Figure 8.7 Normal probability plot for the wood density data of Example 8.11
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has a standard normal distribution. As in the derivation of the distribution of ðX � lÞ=ðS= ffiffiffi
n

p Þ
in Section 6.4, it can be shown (Exercise 42) that replacing r by the sample standard deviation S
(of X1, …, Xn) results in

T ¼ X � Xnþ 1

S
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

q � t distributionwith n � 1 df

Manipulating this T variable using Expression (8.10) to isolate Xnþ 1 gives the following result.

PROPOSITION A prediction interval (PI) for a single observation to be selected from a normal
population distribution is

x� ta=2;n�1 � s
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
ð8:14Þ

The prediction level is 100(1 − a)%.

The interpretation of a 95% prediction level is similar to that of a 95% confidence level: if the interval
(8.14) is calculated for sample after sample, in the long run 95% of these intervals will include the
corresponding future values of X.

Example 8.12 (Example 8.11 continued) With n = 25, x = 570.9, s = 103.9, and t.025,24 = 2.064, a
95% PI for the core wood density of a single tree in this Thai forest is

x� t:025;24 � s
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
¼ 570:9� ð2:064Þð103:9Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

25

r
¼ 570:9� 218:7

¼ ð352:2; 789:6Þ

So, with 95% certainty, we predict that the core wood density of an as-yet-unmeasured tree in this
forest will be between 352.2 and 789.6 g/mm3. This PI is quite wide—more than five times as wide as
the previous CI—a reflection of substantial variability in wood density in this forest. ■

It’s worth contrasting the behavior of the one-sample t CI (8.11) with the PI (8.14). The PI is wider
than the CI because there is more variability in the prediction error (due to Xn+1) than in the estimation
error. In fact, as n gets arbitrarily large, the CI shrinks to the single value l, while the PI approaches
l ± za/2�r, an interval that covers the middle 100(1 – a)% of a normal distribution. That’s as it should
be: there is uncertainty about a single future X value even when there is no need to estimate any
parameters.

Tolerance Intervals
In addition to confidence intervals and prediction intervals, statisticians are sometimes called upon to
obtain a third type of interval called a tolerance interval (TI). A TI is an interval that with a high
degree of reliability captures a specified percentage of the population distribution. For example, if the
population distribution of women’s heights is normal, then the interval from l − 1.645r to
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l + 1.645r captures 90% of the height values in the population of women. It can then be shown that
if l and r are replaced by their natural estimates x and s based on a sample of size n = 20 and the
z critical value 1.645 is replaced by a tolerance critical value 2.310, the resulting interval contains at
least 90% of the population values with a confidence level of 95%.

Please consult one of the references for more information on TIs. And before you calculate a
particular statistical interval, be sure that it is the correct type of interval to fulfill your objective!

Intervals Based on Nonnormal Population Distributions
As mentioned previously, the one-sample t CI for l is robust to small or even moderate departures
from normality unless n is quite small. If, however, n is small and the population distribution is highly
nonnormal, then your actual confidence level may be considerably different from the one you think
you get from using a particular t critical value. It would certainly be distressing to believe that your
confidence level is about 95% when in fact it was really more like 88% (or worse)! The bootstrap
technique, discussed in the last section of this chapter, has been found to be quite successful at
estimating parameters in a wide variety of nonnormal situations.

In contrast to the confidence interval, the validity of the prediction interval described in this section
is closely tied to the normality assumption. The prediction interval (8.14) should not be used in the
absence of compelling evidence for normality. The excellent reference Statistical Intervals by Meeker
et al., cited in the bibliography, discusses alternative procedures of this sort for various other
situations.

Exercises: Section 8.2 (13–42)

13. Determine the values of the following
quantities:
a. t.1,15 b. t.05,15 c. t.05,25 d. t.05,40 e. t.005,40

14. Determine the t critical value that will
capture the desired t curve area in each of
the following cases:

a. Central area = .95, df = 10
b. Central area = .95, df = 20
c. Central area = .99, df = 20
d. Central area = .99, df = 50
e. Upper-tail area = .01, df = 25
f. Lower-tail area = .025, df = 5

15. Determine the t critical value for a two-
sided confidence interval in each of the
following situations:

a. Confidence level = 95%, df = 10
b. Confidence level = 95%, df = 15
c. Confidence level = 99%, df = 15
d. Confidence level = 99%, n = 5
e. Confidence level = 98%, df = 24
f. Confidence level = 99%, n = 38

16. Determine the t critical value for a lower or
an upper confidence bound for each of the
situations described in the previous exercise.

17. Here are the alcohol percentages for a
random sample of 16 beers (light beers
excluded):

4.68 4.13 4.80 4.63 5.08 5.79 6.29 6.79
4.93 4.25 5.70 4.74 5.88 6.77 6.04 4.95

a. Construct a normal probability plot of
the data. Is it plausible that these values
represent a sample from a normal
distribution?

b. Calculate a 95% CI for the mean alcohol
percentage of all nonlight beers.

c. Calculate a 95% CI for the mean
amount of alcohol, in ounces, in a 12-
oz. serving of (again, nonlight) beer.

18. A random sample of 50 patients who had
been seen at an outpatient clinic was
selected, and the waiting time to see a
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physician was determined for each one,
resulting in a sample mean time of
40.3 min and a sample standard deviation
of 28.0 min (suggested by the article “An
Example of Good but Partially Success-
ful OR Engagement: Improving Outpatient
Clinic Operations,” Interfaces 28, #5).

a. Calculate and interpret a 95% upper
confidence bound for true average
waiting time.

b. Based on the sample mean and standard
deviation, why is it doubtful that the
population of waiting times is normally
distributed? Does that invalidate the con-
fidence bound you calculated in part (a)?

19. Exercise 16 of Chapter 1 presented data on
the noise level (dBA) experienced by a
sample of 77 individuals working at a
particular office.

a. Construct a 95% confidence interval for
the true average noise level experienced
by people working in this office.

b. Would it be feasible to construct a valid
95% PI for the noise level experienced
by a single office worker? Why or why
not?

20. According to a study published in the
Calgary Herald (Sep. 17, 2005), the aver-
age daily commute time for workers in
Calgary is 28.5 min with a standard devi-
ation of 24.2 min. The survey respondents
constituted a random sample of 500 adults
living in Calgary.

a. Construct and interpret a 99% CI for the
true average daily commute time of all
adults living in Calgary.

b. Calculate a 99% CI for the average
weekly commute time of this
population.

21. An article in Issues in Accounting Educa-
tion reported on the job-changing habits of
individuals who started at a Big Eight
accounting firm. In a random sample of 44
such people who subsequently changed

jobs, the sample mean time to change was
35.02 months with a standard deviation of
18.94 months.

a. Construct and interpret a 95% CI for the
true average time to change jobs for this
population.

b. Construct a 95% PI for the time to
change jobs for a randomly selected
person starting at a Big Eight account-
ing firm. Are there any extra assump-
tions you must make for this interval to
be valid? Do those assumptions seem
credible here?

22. Frontier Airlines conducted a study of
passenger weights, including carry-on
items (Alaska J. Commerce, May 25,
2003). They found an average summer
weight of 183 lbs and an average winter
weight of 190 lbs. Suppose that both of
these surveys were based on random sam-
ples of 90 people and that the sample
standard deviations for the summer and
winter groups were 25 and 28, respectively.

a. Construct and interpret a 95% CI for
true average passenger weight (includ-
ing carry-ons) during the summer for
Frontier Airlines.

b. Repeat part (a) for the winter sample.
c. Federal Aviation Administration

(FAA) guidelines state that typical pas-
senger weight should be 190 lbs in the
summer and 195 lbs in the winter.
Based on the confidence intervals in
parts (a) and (b), do Frontier Airlines
passengers appear to meet FAA rec-
ommendations? Explain.

23. Consider the following sample of fat con-
tent (in percentage) of n = 10 randomly
selected hot dogs (“Sensory and Mechani-
cal Assessment of the Quality of Frank-
furters,” J. Texture Stud. 1990: 395–409):

25.2 21.3 22.8 17.0 29.8 21.0 25.5 16.0 20.9 19.5
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Assume that these were selected from a
normal population distribution.

a. Compute a 95% confidence interval for
the population mean fat content.

b. Would a 90% CI be wider or narrower
than the interval you computed in (a)?

c. Would a 95% CI based on a sample of
n = 20 hot dogs be wider or narrower
than the interval you computed in (a)?

d. Calculate a 95% PI for the fat content of
a single hot dog.

24. Here is a sample of ACT scores (average of
the Math, English, Social Science, and
Natural Science scores) for students taking
college freshman calculus:

24.00 28.00 27.75 27.00 24.25 23.50 26.25
24.00 25.00 30.00 23.25 26.25 21.50 26.00
28.00 24.50 22.50 28.25 21.25 19.75

a. Using an appropriate graph, see if it is
plausible that the observations were
selected from a normal distribution.

b. Calculate a two-sided 95% confidence
interval for the population mean.

c. The university ACT average for entering
freshmen that year was about 21. Are the
calculus students better than average, as
measured by the ACT?

25. A sample of 14 joint specimens of a par-
ticular type gave a sample mean propor-
tional limit stress of 8.48 MPa and a sample
standard deviation of .79 MPa (“Charac-
terization of Bearing Strength Factors in
Pegged Timber Connections,” J. Struct.
Engr. 1997: 326–332).

a. Calculate and interpret a 95% lower
confidence bound for the true average
proportional limit stress of all such
joints. What, if any, assumptions did
you make about the distribution of
proportional limit stress?

b. Calculate and interpret a 95% lower
prediction bound for the proportional
limit stress of a single joint of this type.

26. Even as traditional markets for sweetgum
lumber have declined, large section solid
timbers traditionally used for bridge con-
struction have become increasingly scarce.
The article “Development of Novel Indus-
trial Laminated Planks from Sweetgum
Lumber” (J. of Bridge Engr. 2008: 64–66)
described the manufacturing and testing of
composite beams designed to add value to
low-grade sweetgum lumber. Here is data
on the modulus of rupture (psi; the article
contained summary data expressed in
MPa):

6807.99 7637.06 6663.28 6165.03 6991.41 6992.23
6981.46 7569.75 7437.88 6872.39 7663.18 6032.28
6906.04 6617.17 6984.12 7093.71 7659.50 7378.61
7295.54 6702.76 7440.17 8053.26 8284.75 7347.95
7422.69 7886.87 6316.67 7713.65 7503.33 7674.99

a. Verify the plausibility of assuming a
normal population distribution.

b. Estimate the true average modulus of
rupture in a way that conveys informa-
tion about precision and reliability.

c. Predict the modulus for a single beam in
a way that conveys information about
precision and reliability. How does the
resulting prediction compare to the
estimate in (b)?

27. The n = 26 observations on escape time
given in Exercise 46 of Chapter 1 give a
sample mean and sample standard devia-
tion of 370.69 s and 24.36 s, respectively.
Assume the population distribution of
escape times is at least approximately
normal.

a. Calculate an upper confidence bound
for population mean escape time using a
confidence level of 95%.

b. Calculate an upper prediction bound for
the escape time of a single additional
worker using a prediction level of 95%.
How does this bound compare with the
confidence bound of part (a)?

c. Suppose that two additional workers
will be chosen to participate in the
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simulated escape exercise. Denote their
escape times by X27 and X28, and let
Xnew denote the average of these two
values. Modify the formula for a PI for a
single x value to obtain a PI for Xnew,
and calculate a 95% two-sided interval
based on the given escape data.

28. A study of the ability of individuals to walk
in a straight line (“Can We Really Walk
Straight?” Amer. J. Phys. Anthropol. 1992:
19–27) reported the accompanying data on
cadence (strides per second) for a sample of
n = 20 randomly selected healthy men.

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

A normal probability plot gives substantial
support to the assumption that the popu-
lation distribution of cadence is approxi-
mately normal.

a. Calculate and interpret a 95% confi-
dence interval for population mean
cadence.

b. Calculate and interpret a 95% predic-
tion interval for the cadence of a single
individual randomly selected from this
population.

29. Return to the odometer reading scenario of
Example 8.8. Calculate a prediction for an
additional Boxster’s odometer reading in a
way that provides information about preci-
sion and reliability. The authors actually
selected a 17th such vehicle and found its
odometer reading to be 19,815. Is that
consistent with your prediction?

30. Exercise 85 of Chapter 1 gave the
following observations on a receptor bind-
ing measure (adjusted distribution volume)
for a sample of 13 healthy individuals: 23,
39, 40, 41, 43, 47, 51, 58, 63, 66, 67,
69, 72.

a. Is it plausible that the population dis-
tribution from which this sample was
selected is normal?

b. Predict the adjusted distribution volume
of a single healthy individual by calcu-
lating a 95% prediction interval.

31. Here are the lengths (in minutes) of the 63
nine-inning games from the first week of
the 2001 major league baseball season:

194 160 176 203 187 163 162 183 152 177
177 151 173 188 179 194 149 165 186 187
187 177 187 186 187 173 136 150 173 173
136 153 152 149 152 180 186 166 174 176
198 193 218 173 144 148 174 163 184 155
151 172 216 149 207 212 216 166 190 165
176 158 198

Assume that this is a random sample of nine-
inning games (the mean differs by 12 s from
the mean for the whole season).

a. Give a 95% confidence interval for the
population mean.

b. Give a 95% prediction interval for the
length of the next nine-inning game. On
the first day of the next week, Boston
beat Tampa Bay 3–0 in a nine-inning
game of 152 min. Is this within the
prediction interval?

c. Compare the two intervals and explain
why one is much wider than the other.

d. Explore the issue of normality for the
data and explain how this is relevant to
parts (a) and (b).

32. A more extensive tabulation of t critical
values than what appears in this book shows
that for the t distribution with 20 df, the
areas to the right of the values .687, .860,
and 1.064 are .25, .20, and .15, respectively.
What is the confidence level for each of the
following three confidence intervals for the
mean l of a normal population distribution?
Which of the three intervals would you
recommend be used, and why?
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a. ðx� :687s=
ffiffiffiffiffi
21

p
; xþ 1:725s=

ffiffiffiffiffi
21

p
Þ

b. ðx� :860s=
ffiffiffiffiffi
21

p
; xþ 1:325s=

ffiffiffiffiffi
21

p
Þ

c. ðx� 1:064s=
ffiffiffiffiffi
21

p
; xþ 1:064s=

ffiffiffiffiffi
21

p
Þ

33. The following data on distilled alcohol
content (%) for a sample of 35 port wines
was extracted from the article “A Method
for the Estimation of Alcohol in Fortified
Wines Using Hydrometer Baumé and
Refractometer Brix” (Amer. J. Enol. Vitic.
2006: 486–490):

16.35 18.85 16.20 17.75 19.58 17.73 22.75 23.78 23.25
19.08 19.62 19.20 20.05 17.85 19.17 19.48 20.00 19.97
17.48 17.15 19.07 19.90 18.68 18.82 19.03 19.45 19.37
19.20 18.00 19.60 19.33 21.22 19.50 15.30 22.25

a. Calculate and interpret a 99% confi-
dence interval for the population mean.

b. Calculate and interpret a 90% lower
confidence bound for the population
mean.

c. It would be of interest to winemakers to
obtain a prediction interval for the alco-
hol content of an individual port wine.
Why should we hesitate to apply the PI
formula (8.14) to this data? [Hint: If you
haven’t done so already, make a graph.]

34. The article “Evaluating Tunnel Kiln Per-
formance” (Amer. Ceramic Soc. Bull., Aug.
1997: 59–63) gave the following summary
information for fracture strengths (MPa) of
n = 169 ceramic bars fired in a particular
kiln: x ¼ 89:10; s ¼ 3:73.

a. Calculate a (two-sided) confidence
interval for true average fracture
strength using a confidence level of
95%. Does it appear that true average
fracture strength has been precisely
estimated?

b. Suppose the investigators had believed a
priori that the population standard
deviation was about 4 MPa. Based on

this supposition, how large a sample
would have been required to estimate l
to within .5 MPa with 95% confidence?

35. As health care costs rise and health care
systems worldwide become overburdened,
patients are made to wait longer for critical
procedures. One Canadian study of 539
cardiac patients waiting for cardiac bypass
surgery found a mean wait time of 19 days
with a standard deviation of ten days
(“Wait Times Data Guide,” Ministry of
Health and Long-Term Care, Ontario,
Canada, 2006; wait time is measured from
the date a patient was recommended for
surgery to the date surgery was performed).
Assuming the data can be considered rep-
resentative of the Ontario population, con-
struct a 90% CI for the true mean wait time
for bypass surgery in Ontario.

36. A sample of 66 obese adults was put on a
low-carbohydrate diet for a year. The
average weight loss was 11 lb and the
standard deviation was 19 lb. Calculate a
99% lower confidence bound for the true
average weight loss. What does the bound
say about confidence that the mean weight
loss is positive?

37. A study was done on 41 first-year medical
students to see if their anxiety levels
changed during the first semester. One
measure used was the level of serum cor-
tisol, which is associated with stress. For
each of the 41 students the level was
compared during finals at the end of the
semester against the level in the first week
of classes. The average difference (end of
semester minus beginning) was +2.08 with
a standard deviation of 7.88. Find a 95%
lower confidence bound for the population
mean difference l. Does the bound suggest
that the mean population stress change is
necessarily positive?
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38. The article “Ultimate Load Capacities of
Expansion Anchor Bolts” (J. Energy Engr.
1993: 139–158) gave the following sum-
mary data on shear strength (kip) for a
sample of 3/8-in. anchor bolts: n ¼ 78;
x ¼ 4:25; s ¼ 1:30. Calculate a lower con-
fidence bound using a confidence level of
90% for true average shear strength.

39. University administrators wish to estimate
the mean time to graduation, for the popu-
lation of students who actually graduate, to
within ±3 months (one-quarter). It is
known that the maximum time to graduation
is eight years (96 months) and the mini-
mum time is three years (36 months), so
that a conservative estimate of the standard
deviation of graduation times is
range/4 = (96 − 36)/4 = 15 months. Use
this standard deviation estimate to deter-
mine the sample size required to achieve the
administrators’ goal with 95% confidence.
[Note: 3 months is not the desired interval
width; it’s the target margin of error.]

40. Young people may feel they are carrying
the weight of the world on their shoulders,
when what they are actually carrying too
often is an excessively heavy backpack.
The article “Effectiveness of a School-
Based Backpack Health Promotion

Program” (Work 2003: 113–123) reported
the following data for a sample of 131 sixth
graders: for backpack weight (lb),
x ¼ 13:83; s ¼ 5:05; for backpack weight
as a percentage of body weight, a 95%
confidence interval for the population mean
was (13.62, 15.89).
a. Calculate and interpret a 99% CI for

population mean backpack weight.
b. Obtain a 99% CI for population mean

weight as a percentage of body weight.
c. The American Academy of Orthopedic

Surgeons recommends that backpack
weight be at most 10% of body weight.
What does your calculation of (b) sug-
gest, and why?

41. Refer to the discussion below Expression
(8.12) concerning one-sided large-sample
confidence bounds. Determine the confi-
dence level for each of the following large-
sample one-sided confidence bounds:
a. Upper bound: xþ :84s=

ffiffiffi
n

p
b. Lower bound: x� 2:05s=

ffiffiffi
n

p
c. Upper bound: xþ :67s=

ffiffiffi
n

p

42. Use the results of Sections 6.3–6.4 to show
that the variable T on which the PI is based
does in fact have a t distribution with n − 1 df.

8.3 Intervals for a Population Proportion

The previous section focused primarily on interval estimates for a population mean, l. In this section,
we consider some methods for constructing a CI for a proportion. Let p denote the proportion of
“successes” in a population: the proportion of all students at your university that graduate, the
proportion of all production items that meet manufacturer specs, the proportion of all laptops that do
not need warranty service, etc.

A random sample of n individuals or objects will be selected, and X will denote the number of
successes in the sample. Provided that n is small relative to the population size, X can be regarded as a
Bin(n, p) random variable. Moreover, as discussed in Chapter 6 in connection with the Central Limit
Theorem, if both np � 10 and n(1 – p) � 10, X has approximately a normal distribution.

A natural estimator of the parameter p is the statistic P̂ = X/n, the sample proportion of successes.
As seen in Example 7.4, properties of X imply that
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EðP̂Þ ¼ p and rP̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r

Also, since P̂ is just X multiplied by the constant 1/n, P̂ has an approximately normal distribution.
Standardizing P̂ by subtracting its mean and dividing by its standard deviation then implies that

P �za=2\
P̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=np \za=2

 !
� 1� a

(This is only an approximate equality, because P̂ is only approximately normal.) The standardized
version of P̂ is also an approximate pivotal quantity. Proceeding as suggested in the subsection
“Deriving a General Confidence Interval” (Section 8.1), the confidence limits result from replacing
each < by = and solving for p. These equations are quadratic; sparing the reader the details, the two
roots are

p ¼
P̂þ z2a=2=2n

1þ z2a=2=n
� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ=nþ z2a=2=4n

2
q

1þ z2a=2=n

PROPOSITION Let p̂ denote the observed fraction of successes in a random sample of size
n from a population with true success proportion p. Then an approximate
100(1 – a)% confidence interval for p has endpoints

~p� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ=nþ z2a=2=4n

2
q

1þ z2a=2=n
ð8:15Þ

where ~p ¼ ½p̂þ z2a=2=2n	=½1þ z2a=2=n	. This is often referred to as the

score CI for p.

Example 8.13 Anyone using e-mail or surfing the web (these days, virtually everyone!) has
encountered phishing, fraudulent e-mails or websites designed to look legitimate and thus trick people
into revealing credit card numbers, passwords, etc. The article “Is Domain Highlighting Actually
Helpful in Identifying Phishing Web Pages?” (Human Factors 2016: 640–660) describes a study in
which 320 participants were shown webpages and asked to identify which were legitimate and which
were fraudulent. In one phase of the study, 157 participants misidentified a phishing website as safe.
Let p denote the proportion of all web users that would misidentify this fraudulent website under the
study’s settings. A point estimate for p is the sample proportion p̂ = 157/320 = .491. Using the score
interval (8.15), an approximate 95% confidence interval for p is

ð:491Þþ ð1:96Þ2=2ð320Þ
1þð1:96Þ2=320 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:491Þð:509Þ=320þð1:96Þ2=4ð320Þ2

q
1þð1:96Þ2=320

¼ :491� :054 ¼ :437; :545ð Þ
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With 95% confidence, we conclude that between 43.7% and 54.5% of all web users would fall for this
fraudulent website under the study’s settings.

The point of the article was to determine whether looking at a site’s URL in the browser’s address
bar can help people detecting phishing sites. In the part of the study just described, participants could
not see the URL; in a second phase, participants were shown different websites along with their
addresses, and only 31.6% of them made the same mistake. Using (8.15) again, with 95% confidence
we infer that between 26.7 and 36.8% of all web users would mistakenly think a particular fraudulent
website was safe even if they could see its web address. ■

One-sided confidence bounds are available for p, and they are constructed in a similar fashion to
those discussed in Section 8.1. To obtain an approximate 100(1 – a)% upper confidence bound for
p, simply replace ± with + and za/2 with za in (8.15). For a lower confidence bound, ± becomes a –
sign.

The “Traditional” Interval for p
If the sample size n is very large, then the terms z2/2n, and z2/n, and z2/4n2 in (8.15) are generally
quite negligible (small) compared to the other terms in the expression. Removing those “lesser” terms
simplifies the score interval to

p̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
ð8:16Þ

Expression (8.16), known as the Wald CI for p, is the one that for decades has appeared in intro-
ductory statistics textbooks. It clearly has a much simpler and more appealing form than the score CI.
So, why bother with (8.15)?

Suppose we use z.025 = 1.96 in theWald interval (8.16). Then our nominal confidence level (the one
we think we’re buying by using 1.96) is approximately 95%. So, before a sample is collected, the
chance that the random interval includes the actual value of p—i.e., the coverage probability—should
be about .95. But, as Figure 8.8 shows for the case n = 100, the actual coverage probability for this
interval can differ considerably from the nominal probability .95, particularly when p is not close to .5.
(The graph of coverage probability versus p is very jagged because the underlying binomial distri-
bution is discrete rather than continuous.) This is a serious deficiency of the Wald interval: the actual
confidence level can be considerably less than the nominal level, even for fairly large-sample sizes.

0

0.96

0.94

0.92

0.90

0.88

0.2 1

Coverage probability

p
0.4 0.6 0.8

0.86

Figure 8.8 Actual coverage probability for the Wald interval (8.16) for varying values of p when n = 100
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Research has shown that the score interval (8.15) rectifies this behavior: for virtually all sample
sizes and values of p, the actual confidence level will be quite close to the nominal level specified by
the choice of za/2. This is due largely to the fact that the score interval is shifted a bit toward .5
compared to the Wald interval. In particular, the midpoint ~p of the score interval is always a bit closer
to .5 than is the midpoint p̂ of the Wald interval; this is especially important when p is close to 0 or 1.

Sample Size Determination
Equating the width of the CI for p to a prespecified width w gives a quadratic equation for the sample
size n necessary to give an interval with a desired degree of precision. The solution is

n ¼
z2a=2 2p̂q̂� w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p̂q̂Þ2 þð1� 4p̂q̂Þw2

q	 

w2

ð8:17Þ

where q̂ ¼ 1� p̂. Neglecting the terms in the numerator involving w2, which will be quite small
because w is a (typically small) decimal value, gives

n ¼
4z2a=2p̂q̂

w2

This latter expression is what results from equating the width of the Wald interval to w.
These formulas unfortunately include p̂, which a researcher does not know in advance of the study

when trying to determine what sample size is required. The most conservative approach is to use the
fact that both expressions are maximized when p̂ ¼ q̂ ¼ :5. Thus if p̂q̂ ¼ ð:5Þð:5Þ ¼ :25 is used in
(8.17), the width of the CI will be at most w regardless of what value of p̂ results from the sample.
Alternatively, if the investigator has a rough estimate p0 from some prior study, p0 can be used in
place of p̂.

Example 8.14 Using the conservative method p̂ ¼ q̂ ¼ :5 proposed above, the sample size formula
(8.17) simplifies to

n ¼
z2 2ð:25Þ � w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ð:25ÞÞ2 þð1� 4ð:25ÞÞw2

q	 

w2

¼
z2 :5� w2 þ

ffiffiffiffiffiffiffiffiffiffi
ð:5Þ2

q	 

w2

¼ z2ð1� w2Þ
w2

The width of the 95% CI in Example 8.13 is .108. The value of n necessary to ensure a width of no
more than .08, irrespective of the value of p̂, is

n ¼ 1:962ð1� :082Þ
:082

¼ 596:4

Thus, a sample size of 597 should be used. The expression for n based on the Wald CI gives a slightly
larger value of 601. ■

Alternative Intervals for p
Even the score interval (8.15) is not perfect: because it relies on a normal approximation to the
binomial, it isn’t necessarily suited to situations where that approximation is poor (although it fares
much better than the Wald interval!). Interval estimation methods exist that do not rely on this normal
approximation and, hence, are reliable for all values of n and p. The so-called exact method, based on
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the binomial distribution, is guaranteed to produce an interval having coverage probability at least as
great as the nominal confidence level. But, the exact method tends to produce CIs that are very wide—
an undesirable property for a confidence interval.

These issues have been largely resolved by research reported in the 2014 article “A Coverage
Probability Approach to Finding an Optimal Binomial Confidence Procedure” (The Amer. Stat.,
Schilling and Doi). The article describes a computer-intensive method for determining what the authors
call the length/coverage optimal interval for p. That is, for any given sample data, their method
produces an interval that (1) has coverage probability at least as great as the specified confidence level,
regardless of the value of p, and (2) is the shortest among all such intervals. There is no explicit
“formula” for the length/coverage optimal interval, but the article’s authors have created online software
to compute the interval automatically. This can be accessed at http://shiny.stat.calpoly.edu/LCO-CI/.

Example 8.15 The Super Bowl is one of the most watched events in the country, but not everyone
watches it. Imagine that in a sample of 25 students at a university, all 25 said they watched the most
recent Super Bowl. What can be said about the parameter p = the proportion of all students at this
university who watched the game? Though p̂ = 25/25 = 1, it seems unrealistic to infer that 100% of
all students saw the most recent Super Bowl.

The Wald interval clearly should not be applied here; doing so results in a CI of 1 ± 0 = 1,
suggesting p is known to be 100% exactly (which, again, is just silly). Using the Schilling-Doi website,
with n = 25 and x = 25 the length/coverage optimal 95% confidence interval for p is (.866, 1). That is,
we are 95% confident that between 86.6% and 100% of all students at this university watched the most
recent Super Bowl. The score interval based on this data is nearly identical, (.867, 1), suggesting that
even for small-sample sizes the score interval is a wise choice. ■

Exercises: Section 8.3 (43–56)

43. According to Oklahoma State University’s
2015 Food Demand Survey, 859 of 1044
randomly selected adults support manda-
tory labels on foods produced with genetic
engineering (popularly called GMO prod-
ucts). Construct an approximate 95% con-
fidence interval for the proportion of all
adults who support mandatory labeling of
GMO products.

44. In a survey of 1100 drivers, 90% admitted
to careless or aggressive driving during the
previous six months (“Nine out of Ten
Drivers Admit in Survey to Having Done
Something Dangerous,” Knight Ridder
Newspapers, Jul. 8, 2005). Assuming these
1100 drivers may be treated as a random
sample of all drivers in the USA, construct
and interpret a 95% CI for the true
proportion of drivers who have engaged
in “dangerous” driving in the past six
months.

45. A June, 2019 Gallup survey of 1018 ran-
domly selected US adults found that 53%
supported the government sponsoring a
manned mission to Mars.

a. Construct and interpret a 95% lower
confidence bound for the proportion of all
US adults who support such a mission.

b. Does your answer to part (a) clearly
indicate that a majority of all US adults
feel this way (at least as of June, 2019)?
Explain.

46. The article “Teens and Young Adults
Embrace Online Multiplayer and Competi-
tive Video Games” (Washington Post, Apr.
3, 2018) reported that, in a survey of 522
Americans age 14–21, 38% said they con-
sider themselves a fan of competitive
gaming. Construct a 99% confidence
interval for the proportion of all Americans
in this age group that are fans of esports or
competitive gaming.
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47. As reported by CNBC (Dec. 11, 2018),
57% of people surveyed admitted to shop-
ping online while at work. The survey was
based on a random sample of n = 2020 US
adults. Construct and interpret a 90% upper
confidence bound for the proportion of all
US adults who shop online while at work.

48. The article “Repeatability and Repro-
ducibility for Pass/Fail Data” (J. Testing
Eval. 1997: 151–153) reported that in
n = 48 trials in a particular laboratory, 16
resulted in ignition of a particular type of
substrate by a lighted cigarette. Let p de-
note the long-run proportion of all such
trials that would result in ignition.

a. Use the score interval (8.15) to construct
a 95% CI for p.

b. Use the Wald interval (8.16) to con-
struct a 95% CI for p.

c. How do the intervals in parts (a) and
(b) compare? Is the narrower interval
preferable here? Why or why not?

49. The article “Limited Yield Estimation for
Visual Defect Sources” (IEEE Trans.
Semicon. Manuf. 1997: 17–23) reported
that, in a study of a particular wafer
inspection process, 356 dies were examined
by an inspection probe and 201 of these
passed the probe. Assuming a stable pro-
cess, calculate a 95% (two-sided) confi-
dence interval for the proportion of all dies
that pass the probe.

50. There is increasing concern within the
health sciences community over the use of
electronic tobacco products. The article
“Exposure to Tobacco and Nicotine Pro-
duct Advertising: Associations with Per-
ceived Prevalence of Use Among College
Students” (Amer. J. College Health, Vol-
ume 66, 2018, Issue 8) reported on a study
based on the Texas College Tobacco Pro-
ject survey administered in 2016. In a
sample of 5767 undergraduates ages 18–25,
9.1% said they had used electronic cigar-
ettes at least once during the previous
30 days. Calculate and interpret a confi-
dence interval using a 99% confidence level
for the proportion of all students in the

population sampled who used e-cigarettes
during the previous 30 days.

51. The article “Broad Agreement on Most
Ideas to Curb School Shootings” from the
Gallup.com website reported on a survey
carried out from March 5–11, 2018. There
was overwhelming support for more train-
ing of school and security personnel, and
for background checks for all gun sales.
However, opinion was more evenly split on
the issue of arming teachers; 42% of the
1515 adults in the sample favored provid-
ing teachers with weapons. Using a 95%
confidence level, calculate an upper confi-
dence bound for the percentage of all adults
in the USA who favor arming teachers.
Based on your interval, can you be confi-
dent that a majority of the population does
not favor such a policy?

52. In a sample of 1000 randomly selected
consumers who had opportunities to send in
a rebate claim form after purchasing a pro-
duct, 250 of these people said they never did
so (“Rebates: Get What You Deserve,”
Consumer Reports, May 2009: 7). Reasons
cited for their behavior included too many
steps in the process, amount too small,
missed deadline, fear of being placed on a
mailing list, lost receipt, and doubts about
receiving the money. Calculate an upper
confidence bound at the 95% confidence
level for the true proportion of such con-
sumers who never apply for a rebate. Based
on this bound, is there compelling evidence
that the true proportion of such consumers is
smaller than 1/3? Explain your reasoning.

53. A state legislator wishes to survey residents
of her district to see what proportion of the
electorate is aware of her position on using
state funds to pay for abortions.

a. What sample size is necessary if the
95% CI for p is to have width of at most
.10 irrespective of p?

b. If the legislator has strong reason to
believe that at least 2/3 of the electorate
know of her position, how large a sam-
ple size would you recommend?
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54. A mortgage company wishes to estimate
the proportion of all borrowers who default
on their home loans, to within a margin of
error of 2 percentage points (±.02). What
sample size is required to achieve this at the
90% confidence level? How does the
answer change if it is believed initially that
roughly 15% of all customers default?

55. A recent student project asked students at Cal
Poly (where one of the authors teaches)
whether they have ever been arrested on
alcohol- or drug-related charges, including
drunk driving. Out of 57 students surveyed in
the College of Business, only four reported
they had been arrested (the surveys were

made anonymous to encourage truthful
responses). Assuming these 57 students
comprise a random sample of all business
students at the school, and assuming students
answered truthfully, estimate with 95% con-
fidence the proportion of all business students
who have been arrested on such charges.

56. Reconsider the score CI (8.15) for p, and
focus on a confidence level of 95%. Show
that the confidence limits agree quite well
with those of the Wald interval (8.16) once
two successes and two failures have been
appended to the sample, i.e., (8.16) based
on (x + 2) S’s in (n + 4) trials. [Hint:
1.96 � 2.]

8.4 Confidence Intervals for the Population Variance and Standard
Deviation

Although inferences concerning a population variance r2 or standard deviation r are usually of less
interest than those about a mean or proportion, there are occasions when such procedures are needed.
In the case of a normal population distribution, inferences are based on a result from Section 6.4
concerning the sample variance S2: if X1, …, Xn is a random sample from a normal distribution with
variance r2, then the random variable

ðn� 1ÞS2
r2

ð8:18Þ

has a chi-squared (v2) distribution with n − 1 df.
As discussed in Section 6.3, the chi-squared distribution is a continuous probability distribution

with a single parameter m, the number of degrees of freedom. To specify inferential procedures that
use the chi-squared distribution, recall the notation for critical values from Section 6.3.

NOTATION Let v2a;m, called a chi-squared critical value, denote the number on the measurement

axis such that a of the area under the chi-squared curve with m df lies to the right of v2a;m.
See Figure 8.9a.

It was necessary to tabulate only upper-tail critical values for the t distribution (ta,m for small values of
a), because t density curves are symmetric. But chi-squared distributions are not symmetric, so
Appendix Table A.5 contains values of v2a;m for a both near 0 and near 1, as illustrated in Figure 8.9b.

For example, v2:025;14 ¼ 26:119 and v2:95;20 (the 5th percentile) = 10.851.
The rv (n − 1)S2/r2 in (8.18) satisfies the two properties of being a pivotal quantity: it is a function

of the parameter of interest r, yet its probability distribution, v2n�1, does not depend on this parameter.
So, the methods described in Section 8.1 can be applied to this rv in order to construct a confidence
interval for r. Analogous to Figure 8.9b, the area under a v2n�1 curve to the right of v2a=2;n�1 is a/2, as
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is the area to the left of v21�a=2;n�1. Thus the area captured between these two critical values is 1 − a,

from which we may infer

P v21�a=2;n�1\
ðn� 1ÞS2

r2
\v2a=2;n�1

� �
¼ 1� a ð8:19Þ

The inequalities in (8.19) are equivalent to

ðn� 1ÞS2
v2a=2;n�1

\r2\
ðn� 1ÞS2
v21�a=2;n�1

Substituting the computed value s2 into the limits gives a CI for r2, and taking square roots gives an
interval for r.

PROPOSITION A 100(1 − a)% confidence interval for the variance r2 of a normal popula-
tion is given by the endpoints

n� 1
v2a=2;n�1

� s2; n� 1
v21�a=2;n�1

� s2
 !

ð8:20Þ

A 100(1 − a)% confidence interval for r has lower and upper limits that are the
square roots of the corresponding limits in (8.20).

An upper confidence bound for r2 is obtained from the right endpoint of (8.20)
by substituting a for a/2 in the v2 critical value; taking the square root of that
quantity results in an upper confidence bound for r. The left endpoint of (8.20)
can be modified similarly to achieve lower confidence bounds.

Recall from Section 6.3 that the expected value of a chi-squared rv is its df; here, df = n – 1. As a
result, the upper critical value v2a=2;n�1 should exceed n – 1, and so the fraction appearing in the left

endpoint of (8.20) should be less than 1. Similarly, the fraction in the right endpoint should be greater
than 1, so that the interval’s endpoints lie on either side of the point estimate s2 (albeit not equidistant
from s2).

2 pdf

αShaded area = 

2
,

2
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2
.01,
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area = .01a b

Figure 8.9 v2a;t notation illustrated
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Example 8.16 The report “Strand Debonding for Pretensioned Girders” (NCHRP Research Report
849: 2017) includes the following yield strength measurements (ksi) for a sample of 16 reinforcing
bars of the type commonly used in bridges:

67.6 63.6 69.2 82.1 69.7 79.0 67.1 65.9
75.1 65.4 70.5 75.6 72.7 63.6 70.1 75.6

Figure 8.10 shows a normal probability plot, which indicates that a normal model for the population
of yield strength measurements is plausible.

Let r denote the true standard deviation of the yield strength distribution. The computed value of
the sample sd is s = 5.47; this is a point estimate of r. With df = 16 – 1 = 15, a 95% CI requires the
critical values v2:025;15 = 27.488 and v2:975;15 = 6.262. The resulting interval for r2 is

16� 1
27:488

� ð5:47Þ2; 16� 1
6:262

� ð5:47Þ2
� �

¼ 16:32; 71:67ð Þ

Taking the square root of the endpoints yields (4.04, 8.47) as the 95% CI for r. At the 95%
confidence level, the true standard deviation of yield strength for this type of bridge reinforcing bar is
between 4.04 and 8.47 ksi. ■

The confidence interval illustrated in the preceding example relies heavily on the normality
assumption. Research has shown that using (8.20) with data from nonnormal populations can result in
highly unreliable intervals, even when the sample size n is large. (For example, the coverage prob-
ability of an ostensible 95% CI can be far less than .95.) A more robust method is presented in the
article “Approximate Confidence Interval for Standard Deviation of Nonnormal Distributions”
(Comp. Stat. & Data Analysis 2006: 775–782) by D. Bonett. This interval, though typically wider
than (8.20), has been shown to achieve much better coverage probability for a wide variety of
nonnormal population distributions. It is now incorporated into the Minitab software package, which

Figure 8.10 Normal probability plot of the yield strength data in Example 8.16
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produces (8.20) and Bonett’s interval when users request a CI for population variance. See Exercise
92 for more information.

Alternatively, the bootstrap method presented in the next section can produce an interval estimate
for population standard deviation (or variance) without requiring population normality.

Exercises: Section 8.4 (57–62)

57. Determine the values of the following
quantities:
a. v2:1;15 b. v2:1;25 c. v2:01;25 d. v2:99;25
e. v2:995;25

58. Determine the following:

a. The 95th percentile of the v210
distribution

b. The 5th percentile of the v210 distribution
c. P(10.98 � Y � 36.78), where Y is a

v222 rv
d. P(Y < 14.611 or Y > 37.652), where

Y is a v225 rv

59. Exercise 17 provided alcohol percentage
data for a sample of 16 beers. The sample
standard deviation of those measurements
was s = .8483. Construct a 90% CI for the
population variance r2 of alcohol percent-
age in beers, and then a 90% CI for r.

60. Exercise 24 gave a random sample of 20
ACT scores from students taking college
freshman calculus. Calculate a 99% CI for
the standard deviation of the population
distribution. Is this interval valid whatever
the nature of the distribution? Explain.

61. Here are the names of 12 orchestra con-
ductors and their performance times in
minutes for Beethoven’s Ninth Symphony:

Bernstein 71.03 Furtwängler 74.38
Leinsdorf 65.78 Ormandy 64.72
Solti 74.70 Szell 66.22
Bohm 72.68 Karajan 66.90
Masur 69.45 Rattle 69.93
Steinberg 68.62 Tennstedt 68.40

a. Check to see that normality is a rea-
sonable assumption for the performance
time distribution.

b. Compute a 95% CI for the population
standard deviation, and interpret the
interval.

c. Supposedly, classical music is 100%
determined by the composer’s notation,
including all timings. Based on your
results, is this true or false?

62. Refer to the baseball game times in Exer-
cise 31. Calculate an upper confidence
bound with confidence level 95% for the
population standard deviation of game
time. Interpret your interval. Explore the
issue of normality for the data and explain
how this is relevant to your interval.

8.5 Bootstrap Confidence Intervals

How can a confidence interval for the mean be constructed if the population distribution is not normal
and the sample size n is small? Can we find confidence intervals for other parameters, such as the
population median or the 90th percentile of the population distribution? The bootstrap, developed by
Bradley Efron in the late 1970s, facilitates calculating estimates in situations where statistical theory
does not produce a formula for a confidence interval. The method substitutes heavy computation for
theory, and many statistical software packages now implement various bootstrap methods (this
includes SAS, R, JMP Pro, and Minitab). The parametric bootstrap, for applications with a known
(or assumed) population distribution, was briefly mentioned in Section 7.1. In this section we are
concerned with the case of an unknown distribution, for which the nonparametric bootstrap is
appropriate.
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The Bootstrap Method
Traditional inference (e.g., the presentation in Sections 8.1–8.4) relies on the sampling distribution of
a statistic—the distribution of the values of that statistic if we were to hypothetically take all possible
random samples of size n from the parent population. This is illustrated for the sample mean in
Figure 8.11a. In contrast, the bootstrap method considers what would happen if we were to draw
repeatedly from the sample at hand. For example, if we had n = 15 observations from some popu-
lation and we were interested in drawing inferences about the mean, the bootstrap distribution of X
would consist of all x values that could be obtained by taking a random sample of size 15 (called a
bootstrap sample or resample) from the original 15 observations. Obviously, for that to make sense,
bootstrap sampling must occur with replacement; otherwise, we would get the same sample over and
over again. Figure 8.11b diagrams the basic bootstrap method.

Philosophically, the bootstrap method treats the sample at hand as if it were the population, since
the sample represents in a sense everything the user knows about the underlying population. Again,
the advantage of bootstrapping is that the method applies in the absence of theory (e.g., the CLT) or
distributional requirements (e.g., normality). The steps in the basic bootstrap method are as follows.

BASIC BOOTSTRAP
METHOD

Suppose we wish to generate the bootstrap distribution of a statistic ĥ based
upon an observed sample x1, x2, …, xn from some population.

1. Take a random sample of size n with replacement from x1, x2, …, xn,
resulting in x
1; x



2; . . .; x



n.

2. Compute the value of the statistic ĥ from this bootstrap sample; label the

resulting value ĥ
.
3. Repeat steps 1 and 2 a large number of times (say, B times), giving values

ĥ
1; ĥ


2; . . .; ĥ



B for the statistic of interest.

These values ĥ
1; ĥ


2; . . .; ĥ



B approximate the bootstrap distribution of ĥ.
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Figure 8.11 Two versions of sampling variability: (a) creating the sampling distribution of �X; (b) creating the
bootstrap distribution of �X
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We use the word “approximate” above only because the process terminates after obtaining B re-

samples and B resulting values ĥ
. The complete bootstrap distribution of ĥ consists of all ĥ
 values
from all possible bootstrap samples, but the number of such samples can be unwieldy for even
moderate sample sizes. It can be shown that the number of bootstrap samples from an original sample

of size n is 2n� 1
n� 1

� �
; even for n = 15, this is more than 77 million, and the number of possible

bootstrap samples increases rapidly with n. In practice, B = 1000 is often used.
It has been shown experimentally that the bootstrap distribution of a statistic quite often resembles

the actual sampling distribution of that statistic. In particular, the standard error of a statistic ĥ, rĥ, can
often be well approximated by its bootstrap standard error, defined to be the sample standard

deviation of the ĥ
i ’s:

sboot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

X
ĥ
i � �h

� �2r

ð8:21Þ

The symbol �h
 in (8.21) denotes the mean of the bootstrap values of ĥ, i.e., �h
 ¼P ĥ
i =B. In the
bootstrap literature, B is sometimes used in place of B – 1 in (8.21); for typical values of B, there is
usually little difference between the resulting estimates.

Example 8.17 In a student project, Erich Brandt studied tips at a restaurant. Here is a random
sample of 30 observed tip percentages:

22.7 16.3 13.6 16.8 29.9 15.9 14.0 15.0 14.1 18.1 22.8 27.6 16.4 16.1 19.0
13.5 18.9 20.2 19.7 18.2 15.4 15.7 19.0 11.5 18.4 16.0 16.9 12.0 40.1 19.2

We would like to get a confidence interval for l, the population mean tip percentage at this
restaurant. However, this is not a very large sample and there is a problem with positive skewness, as
shown in the normal probability plot of Figure 8.12. Most of the tips are between 10 and 20%, but a
few big tips cause enough skewness to invalidate the normality assumption. The one-sample t interval
applied to this data would not be trustworthy.
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Figure 8.12 Normal probability plot (from Minitab) of the tip percentages

486 8 Statistical Intervals Based on a Single Sample



To implement the bootstrap method here, regard the 30 observations as constituting a population.
Then take a large number of random resamples with replacement, each of size 30, from this “pop-
ulation.” For each of these resamples compute the sample mean (because the population mean is the
parameter of interest). Then use the distribution of these resample means to get a confidence interval
for the population mean (we’ll explain how shortly). To help get a feeling for how this works, here is
the first of B = 1000 resamples generated using software

22.8 16.8 16.0 19.0 19.2 20.2 13.6 15.9 22.8 11.5 15.9 14.0 29.9 19.2 16.0
27.6 14.1 13.5 16.8 15.4 20.2 16.4 20.2 16.9 16.8 22.8 19.7 18.2 22.7 18.2

That is, x
1 = 22.8, x
2 = 16.8, …, x
30 = 18.2 for this bootstrap sample. Notice that some values from
the original sample are repeated (due to sampling with replacement), while some values don’t appear
at all. This first bootstrap sample has mean x
1 ¼ 18:41; the asterisk emphasizes that this is the mean
of a bootstrap resample and not of the original sample of 30 tip percentages. This process was
repeated 1000 times, resulting in resample means x
1 ; . . .; x



1000. Figure 8.13 displays a histogram of

these 1000 x
 values, the approximate bootstrap distribution of the statistic X. Notice that the
bootstrap distribution of X is somewhat right-skewed, inconsistent with a normal distribution.

In Example 8.17, the mean for the original 30 observations is x = 18.43. On the other hand, the
mean of the bootstrap distribution displayed in Figure 8.13 is 18.416. This is due to only taking 1000
bootstrap samples; it can be shown that the complete bootstrap distribution of X will always be
centered at the mean of the original sample. However, this is not the case for other statistics. For
example, the mean value of the bootstrap distribution of a trimmed mean is not necessarily the “true”
value of xtr (i.e., the trimmed mean of the original sample). The bias of a bootstrap distribution is
defined to be the difference between these two values. In practice, if this bias is small relative to the
magnitude of the data itself, there is little cause for concern.
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Figure 8.13 Histogram of the bootstrap distribution of �X for Example 8.17 ■
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Example 8.18 As data proliferates across every business sector, data base administrator (DBA) has
become an increasingly lucrative career choice. Figure 8.14a shows a histogram of the salaries for
115 DBAs with 0–2 years of experience (“The 2019 Data Professional Salary Survey Results,” www.
brentozar.com). Because some salaries are unusually high (both in the sample and the population), a
10% trimmed mean might be considered an appropriate measure of center. To estimate the population
trimmed mean, we must first understand the variability of the statistic Xtr; the bootstrap method is
appropriate because a theoretical description of the sampling distribution of trimmed means is not
available. Figure 8.14b shows the bootstrap distribution of Xtr based on B = 1000 resamples.
Interestingly, this bootstrap distribution appears to be approximately normal.
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Figure 8.14 Graphs for Example 8.18: (a) histogram of 115 salaries; (b) bootstrap distribution of �Xtr from this sample
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The 10% trimmed mean for the original 115 salaries is xtr = $86,320, while the center (i.e., mean)
value of the associated bootstrap distribution is $86,422. The bias of –$102 in this simulated boot-
strap distribution is small relative to the salaries themselves, suggesting the bootstrap distribution will
be a reasonable tool for inference on the population trimmed mean. ■

Bootstrap Interval Estimation
Once we have the bootstrap distribution of a statistic, several different methods can be used to obtain
a confidence interval for the corresponding parameter. If, as in Example 8.18, the bootstrap distri-
bution of the statistic appears reasonably bell-shaped, then a variation on the t interval from Sec-
tion 8.2 may be employed. Recall that the t interval for a mean l, assuming a normal sampling
distribution for X, is x� tn�1;a=2 � s=

ffiffiffi
n

p
; the s=

ffiffiffi
n

p
term is the estimated standard error of X. By

analogy, a confidence interval for a parameter h based on a bootstrapped statistic ĥ could be obtained

by replacing x in the one-sample t interval with the calculated value of ĥ from the sample and

replacing s=
ffiffiffi
n

p
with the bootstrap standard error of ĥ.

DEFINITION Suppose we wish to estimate a parameter h by the corresponding sample statistic ĥ.
A bootstrap t confidence interval for h with confidence level 100(1 – a)% is

ĥ� ta=2;n�1 � sboot ð8:22Þ

where the value of the statistic ĥ in (8.22) is obtained from the original sample.
The bootstrap t confidence interval is appropriate when the bootstrap distri-

bution of the statistic is approximately normal and the bias of the bootstrap dis-
tribution is small.

Example 8.19 (Example 8.18 continued) Let’s construct an interval estimate for the parameter
ltr, the population 10% trimmed mean salary for all database administrators with 0–2 years of
experience. Since the bootstrap distribution of Xtr in Figure 8.14b appears approximately normal, we
may reasonably apply the bootstrap t interval.

The 10% trimmed mean of the 115 salaries in the sample is xtr = $86,320. The bootstrap standard
error of Xtr— that is, the sample standard deviation of the bootstrap values displayed in Figure 8.14b—
is sboot = $2994 (the software that performed the bootstrapping provided this value). A 95%
confidence level requires t:025;114 ¼ 1:981, giving a CI of

86;320� 1:981ð2994Þ ¼ 86;320� 5931 ¼ ð80;389; 92;251Þ

We are 95% confident that the 10% trimmed mean for the salary distribution of this population of
DBAs is between $80,389 and $92,251. ■

If the bootstrap distribution of a statistic is not normal, this casts doubt on the normality of its
sampling distribution and suggests that a z- or t-based interval is not appropriate. Instead, we can use
percentiles of the bootstrap distribution itself to form an interval. After all, critical values such as
z = ±1.96 are used because they bound the “middle 95%” of a certain standardized distribution. Even
if a distribution is not symmetric, we can still identify the endpoints of the “middle 95%” of a
distribution.
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DEFINITION Suppose we have the bootstrap distribution of a statistic that estimates a certain
parameter. A 95% confidence bootstrap percentile interval for that parameter
has endpoints equal to the 2.5th percentile and the 97.5th percentile of this
bootstrap distribution.

Similarly, a bootstrap percentile interval with confidence level 100(1 – a)% for
a parameter has endpoints equal the a/2 and 1 – a/2 quantiles of the bootstrap
distribution of the corresponding statistic.

Bootstrap percentile intervals are appropriate when the bias of the bootstrap
distribution is low.

The .025 and .975 quantiles of a bootstrap distribution must be estimated from the B bootstrap
resamples actually obtained. For B = 1000 resamples, one typically uses the 25th-smallest and 25th-

largest values among ĥ
1; ĥ


2; . . .; ĥ



1000; that is, the endpoints of the 95% confidence bootstrap per-

centile interval are the 25th and 976th ordered ĥ
i values. A similar approach may be applied to other
values of B and other confidence levels.

Example 8.20 (Example 8.17 continued) Figure 8.13 shows the approximate bootstrap distribution
of x based on B = 1000 bootstrap resamples. The distribution does not appear normal. The 25th-
smallest and 25th-largest of the 1000 x
 values are 16.56 and 20.58, respectively. Thus, with 95%
confidence, we estimate that the true mean tip at the restaurant where Erich worked is between
16.56% and 20.58%. ■

A Refined Interval
Some caution must be taken when using a percentile interval. It is known that percentile intervals
sometimes have lower confidence levels than advertised. When the bootstrap distribution is skewed,
bias tends to be greater, and the percentile intervals are not equally likely to “miss” the value of a
parameter on the high and low sides. A somewhat sophisticated adjustment to the traditional per-
centile interval corrects for these problems: the bias-corrected and accelerated (BCa) interval is
almost always superior to the basic percentile interval and should be used whenever software is
available. BCa intervals are generally accurate unless the sample size is extremely small.

The acceleration aspect of the BCa interval is an adjustment for dependence of the standard error
of the estimator on the parameter that is being estimated. For example, suppose we are trying to
estimate the mean in the case of exponential data. In this case the standard deviation is equal to the
mean, and the standard error of X is r=

ffiffiffi
n

p ¼ l=
ffiffiffi
n

p
, so the standard error of the estimator X depends

strongly on the parameter l that is being estimated. If the histogram in Figure 8.13 resembled the
exponential pdf, we would expect the BCa method to make a substantial correction to the percentile
interval.

Bootstrapping the Median
The sample median ~X is less sensitive than X to the influence of individual observations. For the 30
tip percentages in Example 8.17, the median is 16.85, substantially less than the mean of 18.43. The
mean is pulled upward by the few large values, but these extremes have little effect on the median.
Unfortunately, it is more difficult to get confidence intervals for the population median than for the
mean, in part because we can easily estimate the standard error of a sample mean ðs= ffiffiffi

n
p Þ but no

analogous formula exists for the sample median.
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Example 8.21 (Example 8.17 continued) Let’s use the bootstrap method to get a confidence interval
for the true median tip percentage, ~l. As before, 1000 resamples of the original 30 observations are
taken with replacement, but now for each resample the sample median ~x
 is calculated. A histogram
of the bootstrap medians ~x
2; . . .;~x



1000 is shown in Figure 8.15.

It should be apparent that the distribution of the 1000 bootstrap medians is far from normal. As is
often the case with the median, the bootstrap distribution takes on just a few values and there are
many repeats. Instead of 1000 different values, as would be expected if we took 1000 samples from a
true continuous distribution, here there are only a handful of distinct values.

Because the bootstrap distribution is so nonnormal, we should use the percentile interval in which
the confidence limits for a 95% CI are taken from the 2.5 and 97.5 percentiles of the bootstrap
distribution. When the 1000 bootstrap medians displayed in Figure 8.15 are sorted, the 25th value is
15.95 and the 976th value is 18.90, so the 95% confidence interval for the population median is
(15.95, 18.90). ■

We should be a bit uncomfortable with the results of bootstrapping the median. Given that the
bootstrap distribution takes on just a few values but the true sampling distribution is continuous, we
should worry a little about how well the bootstrap distribution approximates the true sampling
distribution. On the other hand, the situation here is nowhere near as bad as it could be. Sometimes,
especially when the sample size is smaller, the bootstrap distribution has far fewer values.

Exercise 88 presents an alternative method for constructing a confidence interval for a population
median that can be applied to data from any continuous distribution, irrespective of the sample size.

Further Comments on Bootstrapping
Is the bootstrap guaranteed to work, or is it possible that the method can give grossly incorrect
estimates? The key here is how closely the original sample represents the whole distribution of the
random variable X. When the sample is small, then there is a possibility that important features of the
distribution are not included in the data set. In Example 8.17 the value 40.1% is highly influential. If
we drew another sample of 30 observations independent of this sample, the luck of the draw might
give no values above 25, and the sample would yield very different conclusions. The bootstrap is a
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Figure 8.15 Histogram of the bootstrap medians for Example 8.21
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useful method for making inferences from data, but it is dependent on a good sample. If this is all the
data that we can get, we will never know how well our sample represents the distribution, and
therefore how good our answer is. Of course, no statistical method will give good answers if the
sample is not representative of the population.

Exercises: Section 8.5 (63–70)

63. In a survey, students gave their study time
per week (h), and here are the 22 values:

15.0 10.0 10.0 15.0 25.0 7.0 3.0 8.0 10.0
10.0 11.0 7.0 5.0 15.0 7.5 7.5 12.0 7.0
10.5 6.0 10.0 7.5

A 95% confidence interval for the popula-
tion mean l is desired.

a. Compute the t-based confidence interval
of Section 8.2.

b. Create a normal probability plot. Is it
apparent that the data set is not normal,
so the t-based interval is of questionable
validity?

c. Use software to generate a bootstrap
sample of means. Create a histogram of
the resulting x
 values.

d. Use the standard deviation for part (c) to
get a 95% bootstrap t confidence interval
for l. Based on the histogram in part (c),
is this CI valid?

e. Use part (c) to form the 95% confidence
bootstrap percentile interval for l.

f. Which interval should be used, and
why?

64. Consider obtaining a 95% confidence
interval for the population median ~l of the
study hours data in the previous exercise.

a. Use software to generate a bootstrap
sample of medians.

b. Use the standard deviation for part (a) to
get a 95% bootstrap t confidence inter-
val for ~l.

c. Investigate the distribution of the boot-
strap medians and discuss the validity of
part (b).

d. Use the results of part (a) to form a 95%
confidence bootstrap percentile interval
for ~l.

e. For the study hours data, state your
preference between the median and the
mean, and explain your reasoning.

65. Here are 68 weight gains (lb) for pregnant
women from conception to delivery
(“Classifying Data Displays with an
Assessment of Displays Found in Popular
Software,” Teach. Statist., Autumn 2002:
96–101). A 95% CI for the population
mean weight gain l is desired.

25 14 20 38 21 22 36 38 35 37
35 24 31 28 25 32 23 30 39 26
38 20 21 11 35 42 31 25 59 23
43 38 21 76 22 26 10 19 25 25
15 31 34 36 35 33 24 44 35 43
7 32 25 27 31 14 25 16 25 47
35 −14 65 40 35 45 27 24

a. Compute the t-based confidence interval
of Section 8.2.

b. Check for normality to see if part (a) is
valid. Is the sample large enough that the
interval might be valid anyway?

c. Use software to generate a bootstrap
sample of means. Create a histogram of
the resulting x
 values.

d. Use the standard deviation for part (c) to
get a 95% bootstrap t confidence interval
for l. Based on the histogram in part (c),
is this CI valid?

e. Use part (c) to form the 95% confidence
bootstrap percentile interval for l.

f. Compare all three intervals. [Note: If
they are all close, then the bootstrap
supports the CI of part (a).]

66. Consider again the weight gain data from
the previous exercise.

a. Use the method of Section 8.4 to obtain
a 95% confidence interval for r. Discuss
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normality for the weight gain data: do
you have reason to be concerned about
the validity of this CI?

b. Use software to generate a bootstrap
distribution of standard deviations.
(That is, generate many resamples from
the given data, and for each one com-
pute the sample standard deviation s
i .)

c. Use the bootstrap standard deviation for
part (a) to get a 95% bootstrap t confi-
dence interval for r.

d. Investigate the distribution of the boot-
strap standard deviations and discuss the
validity of part (c).

e. Use part (b) to form the 95% confidence
bootstrap percentile interval for r.

67. Nine Australian soldiers were subjected to
extreme conditions, which involved a 100-
min walk with a 25-lb pack when the
temperature was 40 °C (104 °F). One of
them overheated (above 39 °C) and was
removed from the study. Here are the rectal
Celsius temperatures of the other eight at
the end of the walk (“Neural Network
Training on Human Body Core Tempera-
ture Data,” Combatant Protection and
Nutrition Branch, Aeronautical and Mar-
itime Research Laboratory of Australia,
DSTO TN-0241, 1999):

38.4 38.7 39.0 38.5 38.5 39.0 38.5 38.6

a. Compute the t-based confidence interval
of Section 8.2 for the populationmean l.

b. Check for the validity of part (a).
c. Use software to generate a bootstrap

sample of means. Create a histogram of
the resulting x
 values.

d. Use the standard deviation for part (c) to
get a 95% bootstrap t confidence inter-
val for l. Based on the histogram in part
(c), is this CI valid?

e. Use part (c) to form the 95% confidence
bootstrap percentile interval for l.

f. Compare the intervals and explain your
preference.

g. Based on your knowledge of normal
body temperature, would you say that
body temperature can be influenced by
environment?

68. Refer back to the body temperature data in
the previous exercise.

a. Obtain a bootstrap sample of 12.5%
trimmed means. [Hint: With n = 8, a
12.5% trimmed mean entails deleting
the largest and smallest value in each
resample.]

b. Use the standard deviation from the
bootstrap samples in part (a) to get a
95% bootstrap t confidence interval for
the population 12.5% trimmed mean ltr.

c. Investigate the distribution of the boot-
strap trimmed means and discuss the
validity of the interval in part (b).

d. Use the results of part (a) to form a 95%
confidence bootstrap percentile interval
for ltr.

e. Compare all the intervals for the mean l
and trimmed mean ltr. Are they fairly
similar? How do you explain that?

69. If you go to a major league baseball game,
how long do you expect the game to be?
From the 2430 games played in 2018, here
is a random sample of 25 times (min):

168 187 161 205 162 183 186 190 136
177 182 185 185 194 169 151 192 181
194 162 194 171 172 168 174

This is one of those rare instances in which
we can calculate a confidence interval and
compare with the actual population mean.
The mean duration of all 2430 games was
l = 184.94 min (a little more than 3 h), but
pretend we don’t know that.

a. Compute the t-based confidence interval
of Section 8.2.

b. Use a normal probability plot to see if
part (a) is valid.

c. Use software to generate a bootstrap
sample of means.
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d. Use the standard deviation for part (c) to
get a 95% bootstrap t confidence inter-
val for l.

e. Use part (c) to form the 95% confidence
bootstrap percentile interval for l.

f. Say which interval should be used and
explain why. Does your interval include
the true value, l = 184.94 min?

70. Because of extra-inning games, the median
might be a more meaningful statistic for the
length-of-game data in the previous exer-
cise. The median length of all 2430 MLB
games in 2018 was ~l = 182 min.

a. Use software and the data in the previ-
ous exercise to obtain a bootstrap sam-
ple of medians.

b. Obtain a 95% confidence bootstrap t in-
terval for the population median.

c. Investigate the distribution of the boot-
strap medians and discuss the validity of
part (b).

d. Determine a 95% confidence bootstrap
percentile interval for the median.
Compare your answer with the popula-
tion median.

Supplementary Exercises (71–92)

71. A manufacturer of college textbooks is
interested in estimating the strength of the
bindings produced by a particular binding
machine. Strength can be measured by
recording the force required to pull the
pages from the binding. If this force is
measured in pounds, how many books
should be tested to estimate the average
force required to break the binding to
within .1 lb with 95% confidence? Assume
that r is known to be .8.

72. According to the article “Fatigue Testing of
Condoms” (Polymer Testing 2009: 567–
571), “tests currently used for condoms are
surrogates for the challenges they face in
use,” including a test for holes, an inflation
test, a package seal test, and tests of
dimensions and lubricant quality (all fertile

territory for the use of statistical method-
ology!). The investigators developed a new
test that adds cyclic strain to a level well
below breakage and determines the number
of cycles to break. A sample of 20 condoms
of one particular type resulted in a sample
mean number of 1584 and a sample stan-
dard deviation of 607. Calculate and inter-
pret a confidence interval at the 99%
confidence level for the true average num-
ber of cycles to break. [Note: The article
presented the results of hypothesis tests
based on the t distribution; the validity of
these depends on assuming normal popu-
lation distributions.]

73. Before opening a new location, franchise
companies conduct market research to
determine if sufficient demand exists for
their products. A national sandwich chain
recently conducted a survey to investigate
opening a franchise in a particular town.
Among 300 households contacted through
random-digit dialing, 198 respondents
indicated they would patronize this shop.

a. Let p = the proportion of all households
in this town that would patronize the
sandwich franchise. Calculate and inter-
pret a 95% lower confidence bound for p.

b. From years of marketing experience, the
company knows they need more than
5000 households in the population to
patronize the shop—this accounts for
competing local businesses and varia-
tion in frequency of visitation by
potential patrons. This particular town
has 7700 households. Determine a 95%
lower confidence bound for the number
of households that will eat at the new
store. Can the company be confident
they will have enough customers?

c. Imagine the company ignored sampling
variability and simply used the sample
proportion from the survey to determine
the expected number of customers
(rather than the lower confidence
bound). Would that change their opin-
ion regarding the viability of the new
location? Explain.
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74. The Pew Forum on Religion and Public
Life reported on Dec. 9, 2009 that in a
survey of 2003 American adults, 25% said
they believed in astrology.

a. Calculate and interpret a confidence
interval at the 99% confidence level for
the proportion of all adult Americans
who believe in astrology.

b. What sample size would be required for
the width of a 99% CI to be at most .05
irrespective of the value of p̂?

c. The upper limit of the CI in (a) gives an
upper confidence bound for the pro-
portion being estimated. What is the
corresponding confidence level?

75. There were 12 first-round heats in the
men’s 100-m race at the 1996 Atlanta
Summer Olympics. Here are the reaction
times in seconds (time to first movement) of
the top four finishers of each heat. The first
12 are the 12 winners, then the second-
place finishers, and so on.

1st .187 .152 .137 .175 .172 .165
.184 .185 .147 .189 .172 .156

2nd .168 .140 .214 .163 .202 .173
.175 .154 .160 .169 .148 .144

3rd .159 .145 .187 .222 .190 .158
.202 .162 .156 .141 .167 .155

4th .156 .164 .160 .145 .163 .170
.182 .187 .148 .183 .162 .186

Because reaction time has little if any
relationship to the order of finish, it is
reasonable to view the times as coming
from a single population.

a. Estimate the population mean in a
way that conveys information about
precision and reliability. [Note:P

xi ¼ 8:08100;
P

x2i ¼ 1:37813:]
b. Calculate a 95% confidence interval for

the population proportion of reaction
times that are below .15. (Reaction
times below .10 are regarded as false
starts, meaning that the runner antici-
pates the starter’s gun, because such
times are considered physically impos-
sible. Linford Christie, who had a

reaction time of .160 in placing second
in his first-round heat, had two such
false starts in the finals and was
disqualified.)

76. Aphid infestation of fruit trees can be con-
trolled either by spraying with pesticide or
by inundation with ladybugs. In a particular
area, four different groves of fruit trees are
selected for experimentation. The first three
groves are sprayed with pesticides 1, 2, and
3, respectively, and the fourth is treated
with ladybugs, with the following results
on yield:

Treatment ni (number of trees) xi (bushels/tree) si
1 100 10.5 1.5
2 90 10.0 1.3
3 100 10.1 1.8
4 120 10.7 1.6

Let li = the true average yield
(bushels/tree) after receiving the ith treat-
ment. Then

h ¼ 1
3
ðl1 þ l2 þ l3Þ � l4

measures the difference in true average
yields between treatment with pesticides
and treatment with ladybugs. When n1, n2,

n3, and n4 are all large, the estimator ĥ
obtained by replacing each li by Xi is
approximately normal. Use this to derive a
large-sample 100(1 − a)% CI for h, and
compute the 95% interval for the given data.

77. It is important that face masks used by
firefighters be able to withstand high tem-
peratures because firefighters commonly
work in temperatures of 200–500 °F. In a
test of one type of mask, 11 of 55 masks had
lenses pop out at 250°. Construct a 90% CI
for the true proportion of masks of this type
whose lenses would pop out at 250°.

78. A journal article reports that a sample of
size 5 was used as a basis for calculating a
95% CI for the true average natural fre-
quency (Hz) of delaminated beams of a
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certain type. The resulting interval was
(229.764, 233.504). You decide that a
confidence level of 99% is more appropri-
ate than the 95% level used. What are the
limits of the 99% interval? [Hint: Use the
center of the interval and its width to
determine x and s.]

79. The article “The Association Between
Television Viewing and Irregular Sleep
Schedules Among Children Less Than 3
Years of Age” (Pediatrics 2005: 851–856)
reported the following 95% confidence
intervals for average TV viewing time
(hours per day) for three different age
groups.

0–11 months old 12–23 months old 24–35 months old
(0.8, 1.0) (1.4, 1.8) (2.1, 2.5)

a. Interpret each of these three intervals.
b. The three intervals are not the same

width. What might explain this?
c. Do the intervals suggest a relationship

between age and TV viewing time
among children of this age range?
Explain.

80. In Example 7.12, we introduced the con-
cept of a censored experiment in which
n components are put on test and the
experiment terminates as soon as r of the
components have failed. Suppose compo-
nent lifetimes are independent, each having
an exponential distribution with parameter
k. Let Y1 denote the time at which the first
failure occurs, Y2 the time at which the
second failure occurs, and so on, so that
Tr ¼ Y1 þ � � � þ Yr þ ðn� rÞYr is the total
accumulated lifetime at termination. Then it
can be shown that 2kTr has a chi-squared
distribution with 2r df. Use this fact to
develop a 100(1 − a)% CI formula for true
average lifetime 1/k. Compute a 95% CI
from the data in Example 7.12.

81. Exercises 77–78 from Chapter 7 introduced
“regression through the origin” to relate a
dependent variable y to an independent

variable x. The assumption there was that
for any fixed x value, the dependent vari-
able is a random variable Y with mean
value bx and variance r2 (so that Y has
mean value zero when x = 0). The data
consists of n independent ðxi; YiÞ pairs,
where each Yi is normally distributed with
mean bxi and variance r2. The likelihood is
then a product of normal pdfs with different
mean values but the same variance.

a. Show that the mle of b is

b̂ ¼ RxiYi=Rx2i .
b. Verify that the mle of (a) is unbiased.

c. Obtain an expression for Vðb̂Þ and then
for rb̂.

d. For purposes of obtaining a precise
estimate of b, is it better to have the xi’s
all close to 0 (the origin) or quite far
from 0? Explain your reasoning.

e. The natural prediction of Yi is b̂xi. Let

S2 ¼ RðYi � b̂xiÞ2=ðn� 1Þ, which is
analogous to sample variance. It can be

shown that T ¼ ðb̂� bÞ= S=
ffiffiffiffiffiffiffiffi
Rx2i

p� �
has a t distribution with n − 1 df. Use
this to obtain a CI formula for estimat-
ing b, and calculate a 95% CI using the
data from the cited exercises.

82. Let X1; . . .;Xn be a random sample from a
uniform distribution on the interval [0, h]
and Y ¼ maxðX1; . . .;XnÞ. Then methods
from Section 5.7 can be used to show that
the rv U ¼ Y=h has pdf

fUðuÞ ¼ nun�1 0� u� 1

a. Verify that

P ða=2Þ1=n � Y

h
�ð1� a=2Þ1=n

	 

¼ 1� a

and use this to derive a 100(1 − a)% CI
for h.

b. Verify that Pða1=n � Y=h� 1Þ ¼ 1� a,
and derive a 100(1 − a)% CI for h
based on this probability statement.
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c. Which of the two intervals derived in
(a) and (b) is shorter? If your waiting time
for a morning bus is uniformly dis-
tributed and observed waiting times are
x1 = 4.2, x2 = 3.5, x3 = 1.7, x4 = 1.2,
and x5 = 2.4, obtain a 95% CI for h by
using the shorter of the two intervals.

83. Let 0 < c < a. Then a 100(1 − a)% CI for
l when n is large is

x� zc � sffiffiffi
n

p ; xþ za�c � sffiffiffi
n

p
� �

The choice c = a/2 yields the large-sample
interval derived in Section 8.2; if c 6¼ a/2,
this confidence interval is not symmetric
about x. The width of the interval is
w ¼ sðzc þ za�cÞ=

ffiffiffi
n

p
. Show that w is min-

imized for the choice c = a/2, so that the
symmetric interval is the shortest. [Hints:
(1) By definition of za, U(za) = 1 − a, so
that za = U−1(1 − a); (2) the relationship
between the derivative of a function y =
f(x) and the inverse function x ¼ f�1ðyÞ is
ðd=dyÞf�1ðyÞ ¼ 1=f 0ðxÞ.]

84. Suppose x1, x2, …, xn are observed values
resulting from a random sample from a
symmetric but possibly heavy-tailed distri-
bution. Chapter 11 of Understanding
Robust and Exploratory Data Analysis (see
the bibliography) suggests the following
robust 95% CI for the population mean
(point of symmetry):

~x� conservative t critical value
1:075

� �
� iqrffiffiffi

n
p

The value of the quantity in parentheses is
2.10 for n = 10, 1.94 for n = 20, and 1.91
for n = 30. Compute this CI for the
restaurant tip data of Example 8.17, and
compare to the t CI appropriate for a nor-
mal population distribution.

85. a. Use the results of Example 8.5 to obtain
a 95% lower confidence bound for the
parameter k of an exponential

distribution, and calculate the bound
based on the data given in the example.

b. If lifetime X has an exponential distri-
bution, the probability that lifetime
exceeds t is given by PðX[ tÞ ¼ e�kt.
Use the result of part (a) to obtain a 95%
lower confidence bound for the proba-
bility that lifetime exceeds 100 min.

86. Let h1 and h2 denote the mean weights for
animals of two different species. A biolo-
gist wishes to estimate the ratio h1/h2.
Unfortunately the species are extremely
rare, so the estimate will be based on
finding a single animal of each species. Let
Xi denote the weight of the species i animal
(i = 1, 2), assumed to be normally dis-
tributed with mean hi and standard devia-
tion 1.

a. Show that the rv hðX1;X2; h1; h2Þ ¼
ðh2X1 � h1X2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

q
is a pivotal

quantity by determining the distribution
of h.

b. Show that h depends on h1 and h2 only
through h1/h2. [Hint: Divide numerator
and denominator by h2.]

c. Consider Expression (8.7) from the first
section of this chapter with a = −1.96
and b = 1.96. Now replace < by = and
solve for h1/h2. Then show that a con-
fidence interval results if x21 þ x22 �
1:962, whereas if this inequality is not
satisfied, the resulting confidence set is
the complement of an interval.

87. The one-sample CI for a normal mean and
PI for a single observation from a normal
distribution were both based on the central
t distribution. A CI for a particular per-
centile (e.g., the 1st percentile or the 95th
percentile) of a normal population distri-
bution is based on the noncentral t distri-
bution. A particular distribution of this type
is specified by both df and the value of the
noncentrality parameter d (d = 0 gives the
central t distribution). The key result is that
the variable
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T ¼
X�l
r=
ffiffi
n

p � ðz percentile) ffiffiffi
n

p

S=r

has a noncentral t distribution with df ¼
n� 1 and d ¼ � z percentileð Þ ffiffiffi

n
p

.
Let t.025,m,d and t.975,m,d denote the critical
values that capture upper-tail area .025 and
lower-tail area .025, respectively, under the
noncentral t curve with m df and noncen-
trality parameter d (when d = 0,
t.975 = −t.025, since central t distributions
are symmetric about 0).

a. Use the given information to obtain a
formula for a 95% confidence interval
for the (100p)th percentile of a normal
population distribution.

b. For d = 6.58 and df = 15, t.975 and t.025
are (from software) 4.1690 and 10.9684,
respectively. Use this information to
obtain a 95% CI for the 5th percentile of
the beer alcohol distribution considered
in Exercise 17.

88. In this exercise, we develop a CI for ~l that
is valid whatever the shape of the popula-
tion distribution as long as it is continuous.
Let X1, …, Xn be a random sample from the
distribution and Y1\ � � �\Yn denote the
corresponding ordered values (smallest
observation, second smallest, and so on).

a. What is PðX1\~lÞ? What is
PðfX1\~lg\ fX2\~lgÞ?

b. What is PðYn\~lÞ? What is PðY1 [ ~lÞ?
[Hint: What condition involving all of
the Xi’s is equivalent to the largest being
smaller than the population median?]

c. What is PðY1\~l\YnÞ? What does this
imply about the confidence level asso-
ciated with the CI ðy1; ynÞ for ~l?

d. An experiment carried out to study the
time (min) necessary for an anesthetic to
produce the desired result yielded the
following data: 31.2, 36.0, 31.5, 28.7,
37.2, 35.4, 33.3, 39.3, 42.0, 29.9.
Determine the confidence interval of
(c) and the associated confidence level.

89. Consider the situation described in the
previous exercise.

a. What is PðfX1\~lg\ fX2 [ ~lg\
� � � \ fXn [ ~lgÞ, that is, the probability
that only the first observation is smaller
than the median?

b. What is the probability that exactly one
of the n original observations is smaller
than the median?

c. What is Pð~l\Y2Þ? [Hint: The event in
parentheses occurs if all n of the
observations exceed the median. How
else can it occur?]

d. What is PðY2\~l\Yn�1Þ? What does
this imply about the confidence level
associated with the CI ðy2; yn�1Þ for ~l?

e. Determine the confidence level and CI
using part (d) with the data given in the
previous exercise.

90. The previous two exercises considered a CI
for a population median ~l based on the
ordered values from a random sample.
Let’s now consider a prediction interval for
the next observation Xn+1, which is
assumed to be independent of X1; . . .;Xn.

a. What is P(Xn+1 < X1)? What is
P({Xn+1 < X1} \ {Xn+1 < X2})?

b. What is P(Xn+1 < Y1)? What is
P(Xn+1 > Yn)?

c. What is PðY1\Xnþ 1\YnÞ? What does
this say about the prediction level for
the PI ðy1; ynÞ? Determine the prediction
level and interval for the data in the
previous two exercises.

91. Consider 95% CIs for two different
parameters h1 and h2, and let Ai (i = 1, 2)
denote the event that the value of hi is
included in the random interval that results
in the CI. Thus PðAiÞ = .95.

a. Suppose that the data on which the CI
for h1 is based is independent of the data
used to obtain the CI for h2 (e.g., we
might have h1 = l, the population mean
height for American females, and
h2 = p, the proportion of all iPhones
that don’t need warranty service). What
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can be said about the simultaneous
confidence level for the two intervals?
That is, how confident can we be that
the first interval contains the value of h1
and that the second contains the value
of h2? [Hint: Consider P(A1 \ A2).]

b. Now suppose the data for the first CI is
not independent of that for the second
one. What now can be said about the
simultaneous confidence level for both
intervals? [Hint: Consider PðA0

1 [A0
2Þ,

the probability that at least one interval
fails to include the value of what it is
estimating. Now use the fact that
PðA0

1 [A0
2Þ�PðA0

1ÞþPðA0
2Þ. The gen-

eralization of the bound on PðA0
1 [A0

2Þ
to the probability of a k-fold union is one
version of the Bonferroni inequality.]

c. What can be said about the simultane-
ous confidence level if the confidence
level for each interval separately is
100(1 − a)%? What can be said about
the simultaneous confidence level if a
100(1 – a)% CI is computed separately
for each of k parameters h1; . . .; hk?

92. The Bonett CI for a population variance r2

mentioned at the end of Section 8.4, unlike
the chi-squared method, does not hinge on
population normality. This interval
involves a transformation along with an
estimate of the kurtosis of the underlying

distribution, a measure of its “tail” behav-
ior. Specifically, Bonett defines a kurtosis
estimate by

�c4 ¼
n
P ðxi � xtrÞ4P ðxi � xÞ2

� �2
where xtr is the trimmed mean with trim
proportion 1=½2 ffiffiffiffiffiffiffiffiffiffiffi

n� 4
p 	. Then the

Bonett CI for r2 with confidence level
100(1 – a)% has endpoints

exp lnðc � S2Þ � za=2 � c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 3Þ�c4
nðn� 1Þ

s" #

where c = n/(n – za/2) is “an empirically
determined, small-sample adjustment”
(meaning Bonett found this value by trial
and error).

a. For the study hours data in Exercise 63,
n = 22, s = 4.603 and �c4 = 7.003. Use
Bonett’s formula to calculate a 95% CI
for the population variance r2.

b. Use part (a) to determine a 95% CI
for r.

c. Show that as n ! 1, both endpoints of
the Bonett CI converge to r2. [Hint: The
kurtosis estimate �c4 converges to a
constant, while S2 ! r2.]
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9Tests of Hypotheses Based
on a Single Sample

Introduction
A parameter can be estimated from sample data either by a single number (a point estimate) or an
entire interval of plausible values (a confidence interval). Frequently, however, the objective of an
investigation is not to estimate a parameter but to decide which of two contradictory claims about the
parameter is correct. Methods for accomplishing this comprise the part of statistical inference called
hypothesis testing. In this chapter, we first discuss some of the basic concepts and terminology in
hypothesis testing and then develop decision procedures for the most frequently encountered testing
problems based on a sample from a single population.

9.1 Hypotheses and Test Procedures

A statistical hypothesis, or just hypothesis, is a claim or assertion either about the value of a single
parameter (i.e., a characteristic of a population or a probability distribution), about the values of
several parameters, or about the form of an entire probability distribution. Examples include

• The claim l = $311, where l is the true average one-term textbook expenditure for students at a
university

• The statement p < .50, where p is the proportion of adults who approve of the job that the
President is doing

• The assertion that l1 − l2 > 5, where l1 and l2 denote the true average decreases in systolic
blood pressure for two different drugs

• The claim that stopping distance for a car under particular conditions has a normal distribution.

Hypotheses of the last sort will be considered briefly in Chapter 13. In this and the next several
chapters, we concentrate on hypotheses about parameters.

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration.
One hypothesis might be the claim l = $311 and the other l 6¼ $311, or the two contradictory
statements might be p � .50 and p < .50. The objective is to decide, based on sample information,
which of the two hypotheses is correct. In statistics, hypothesis-testing problems are formulated so
that one of the claims is initially assumed to be true. This initial claim will not be rejected in favor of
the alternative claim unless sample evidence provides strong evidence for the latter.
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DEFINITION The null hypothesis, denoted by H0, is the claim that is initially assumed to be true
(the “prior belief” claim). The alternative hypothesis, denoted by Ha, is the
assertion that is contradictory to H0.

The null hypothesis will be rejected in favor of the alternative hypothesis only if sample evidence
suggests that H0 is false. If the sample does not strongly contradict H0, we will continue to believe in
the plausibility of the null hypothesis. The two possible conclusions from a hypothesis-testing
analysis are then reject H0 or fail to reject H0.

A test of hypotheses is any method for using sample data to decide whether the null hypothesis
should be rejected. Thus if we test H0: l = $311 against the alternative Ha: l 6¼ $311, the null
hypothesis should be rejected only if sample data strongly suggests that l is something other than
$311. In the absence of strong evidence, H0 should not be rejected since it is still judged to be
plausible.

There is a familiar analogy to this in a criminal trial. One claim is the assertion that the defendant is
innocent. In the U.S. judicial system, this is the claim that is initially believed to be true. Only in the
face of strong evidence to the contrary should the jury reject this claim in favor of the alternative
assertion that the accused is guilty. In this sense, the claim of innocence is the favored or protected
hypothesis, and the burden of proof is placed on those who believe in the alternative claim.

Formulating Hypotheses
Sometimes an investigator does not want to accept a particular assertion unless and until data can
provide strong support for the assertion. In that situation, this assertion will be the investigator’s
alternative hypothesis Ha. (Examples will be given shortly.) Scientific research often involves trying
to decide whether a current theory should be replaced by a more plausible and satisfactory expla-
nation of the phenomenon under investigation. A conservative approach is to identify the current
theory with H0 and the researcher’s alternative explanation with Ha. Rejection of the current theory
will then occur only when evidence is much more consistent with the new theory. In many situations,
Ha is referred to as the “research hypothesis,” since it is the claim that the researcher would really like
to validate. The word null means “of no value, effect, or consequence,” which suggests that H0 should
be identified with the hypothesis of no change (from current opinion), no difference, no improvement,
and so on.

Example 9.1 Many have heard the claim that college students gain an average of 15 lb during their
first year, but is this popular legend rooted in reality? This was the subject of the article “The Effects
of College on Weight: Examining the ‘Freshman 15’Myth and Other Effects of College Over the Life
Cycle” (Demography 2017: 311–336). Let l denote the true average weight gain of students over the
course of their first year in college. We initially give the “freshman 15” story the benefit of the doubt,
so that our null hypothesis is H0: µ = 15. It would be noteworthy if 15 were an underestimate or an
overestimate, suggesting that the alternative hypothesis should be Ha: µ 6¼ 15. ■

Example 9.2 Vintners and wine consumers continue to debate whether to seal wine bottles with
corks or screwtops. Screwtops can reduce spoilage, but many wine enthusiasts associate them with
cheap or otherwise undesirable wines. An often-cited 2011 survey by Rebecca Bleibaum (Tragon
Corp.) found that about 20% of wine consumers would not buy screwtop wine, but negative attitudes
toward screwtops have abated over time. Let p denote the proportion of wine consumers today who
refuse to purchase screwtop wine. The null hypothesis is that no change has occurred since that
previous survey, H0: p = .2. A winery that was considering switching one of its wines from cork to
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screwtop bottling would naturally be interested in the alternative hypothesis that this proportion has
decreased, Ha: p < .2. ■

Example 9.3 Consumer Reports (Nov. 26, 2018) reported that some American automakers are
reducing sedan production in response to the increasing popularity of trucks and SUVs, despite the
fact that sedans typically get better gas mileage. Extensive experience with engines for a certain type
of light-duty truck indicates that highway fuel efficiency (miles per gallon) is normally distributed
with a mean value of 25 and a standard deviation of 3. The manufacturer is considering a modification
to increase average fuel efficiency. Let µ denote true average efficiency for the new, modified engines.
The appropriate null (no-improvement) hypothesis is H0: µ = 25. The alternative hypothesis asserts
that there has, in fact, been an improvement: Ha: µ > 25.

Sample data will be collected from modified engines. Because of the expense of changing the
manufacturing process, the new engine design will only be adopted if the data provides convincing
evidence that l really is greater than 25 mpg. ■

In our treatment of hypothesis testing, H0 will generally be stated as an equality claim. If h denotes
the parameter of interest, the null hypothesis will have the form H0: h = h0, where h0 is a specified
number called the null value of the parameter (i.e., the value claimed for h by the null hypothesis).
For instance, consider the truck gas mileage situation of Example 9.3. The alternative hypothesis is
Ha: µ > 25, the claim that the mean fuel efficiency is improved by the engine modification. The null
hypothesis was stated as H0: µ = 25, so the null value of the parameter is l0 = 25. But it would be
more mathematically natural to write H0: µ � 25, according to which the new engine either is no
better or is worse than the one currently used. The rationale for using a simplified null hypothesis is
that any reasonable procedure for deciding between H0: µ = 25 and Ha: µ > 25 will also be rea-
sonable for deciding between the claim that l � 25 and Ha, and should lead to exactly the same
conclusion for any particular sample. The use of a simplified H0 is preferred because it has certain
technical benefits, which will become apparent shortly.

The alternative to the null hypothesis H0: h = h0 will look like one of the following three
assertions:
1. Ha: h > h0 (in which case the implicit null hypothesis is h � h0)
2. Ha: h < h0 (so the implicit null hypothesis states that h � h0)
3. Ha: h 6¼ h0

Test Procedures
A test procedure is a rule, based on sample data, for deciding whether to reject H0. A test of H0: p = .2
versus Ha: p < .2 in Example 9.2 might be based on surveying a random sample of n = 200 current
wine consumers. Let X denote the number of people in the sample who refuse to buy screwtop wine, a
binomial random variable (at least approximately); let x represent the observed value of X. If H0 is
true, E(X) = np = 200(.2) = 40, whereas we can expect fewer than 40 refusers if Ha is true. An
x value just a bit below 40 does not strongly contradict H0, so it is reasonable to reject H0 in favor of
Ha only if x is substantially less than 40. One such test procedure is to reject H0 if x � 35 and not
reject H0 otherwise. This procedure has two elements: (1) a test statistic, or function of the sample
data, used to make a decision; and (2) a rejection region consisting of those test statistic values for
which H0 will be rejected in favor of Ha. In the wine scenario, X is the test statistic and the rejection
region consists of x = 0, 1, 2, …, 35; H0 will not be rejected if x = 36, 37, …, 199, or 200.
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DEFINITION A test procedure is specified by the following:
1. A test statistic, a function of the sample data on which the decision

(reject H0 or do not reject H0) is to be based
2. A rejection region, the set of all test statistic values for which H0 will

be rejected
The null hypothesis will then be rejected if and only if the observed or
computed test statistic value falls in the rejection region.

In the context of Example 9.3, let �X denote the sample average highway fuel efficiency of a random
sample of 10 trucks with the new, modified engine. If H0 is true, Eð�XÞ ¼ l ¼ 25, whereas if H0 is
false, we expect �X to exceed 25. Strong evidence against H0 is provided by a value �x that considerably
exceeds 25. Thus we might use �X as a test statistic along with the rejection region �x� 30.

In both the wine and truck examples, the choices of the test statistic and the form of the rejection
region make sense intuitively. However, the choice of cutoff value used to specify the rejection region
was somewhat arbitrary. Instead of rejecting H0: p = .2 in favor of Ha: p < .2 when x � 35, we
could use the rejection region x � 30. For this region, H0 would not be rejected if 33 respondents
refused to buy screwtop wine, whereas this occurrence would lead to rejection of H0 if the initially
suggested region were employed. Similarly, the rejection region �x� 27:5 might be used in the truck
engine problem in place of the region �x� 30. We’ll discuss shortly the tradeoffs between different
rejection region cutoffs and how they are most often determined in practice.

Errors in Hypothesis Testing
When a jury is called upon to render a verdict in a criminal trial, there are two possible erroneous
conclusions: convicting an innocent person, or letting a guilty person go free. Similarly, in statistical
hypothesis testing there are two potential errors whose consequences must be considered when
reaching a conclusion.

DEFINITION A type I error consists of rejecting the null hypothesis H0 when it is true.
A type II error involves not rejecting H0 when it is false (i.e., Ha is true).

Since in the U.S. judicial system the null hypothesis (a priori belief) is that the accused is innocent, a
type I error is analogous to convicting an innocent person, while a false acquittal (i.e., letting a guilty
person go free) equates to a type II error.

Example 9.4 (Example 9.3 continued) Before selecting a test procedure and collecting data, the
truck manufacturer must consider the possible type I and type II errors along with their consequences.
In this scenario, a type I error means that the manufacturer concludes the modified engine design
improves fuel efficiency when, in fact, it does not. Thus a type I error would lead the manufacturer to
perform a very expensive but ultimately useless overhaul of its truck engines. Because this is such a
consequential error, a test procedure should be selected that makes the chance of a type I error very
small: if the modified engine design is truly no better than the old one (i.e., H0 is true), this would
ensure a low probability of mistakenly rejecting H0 and proceeding with the change.

Balanced against this possibility is the threat of a type II error: failing to reject H0 when, in fact,
Ha: l > 25 is correct. That is, in a type II error the manufacturer would fail to recognize that the
modified engine design improves fuel efficiency and would continue to use the old, inferior design.
A type II error is often called an opportunity loss in business: the manufacturer has missed out on the
opportunity to build, sell, and profit from a superior engine design. ■
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It would be nice if test procedures could be developed that offered 100% protection against
committing both a type I error and a type II error. This is an impossible goal, though, because our
conclusion is based on sample data rather than a census of the entire population. There is always some
chance that random sampling variability will lead to an incorrect conclusion. Instead of demanding
error-free procedures, we must look for procedures for which both types of error are unlikely to occur.
That is, a good procedure is one for which the probability of making either type of error is small. The
choice of a particular rejection region cutoff value fixes the probabilities of type I and type II errors.
These error probabilities are traditionally denoted by a and b, respectively. Because H0 specifies a
unique value of the parameter, there is a single value of a. However, there is a different value of b for
each value of the parameter consistent with Ha.

Example 9.5 (Example 9.2 continued) A small winemaker will conduct a pilot study by surveying
n = 25 randomly selected customers about their views on screwtop wine bottles. The parameter of
interest is now p = the proportion of this winery’s customers who refuse to buy screwtop wine, but
the hypotheses will remain H0: p = .2 versus Ha: p < .2. Consider the following test procedure:

Test statistic: X = the number of surveyed customers who will not buy screwtop wine bottles
Rejection region: R3 ¼ f0; 1; 2; 3g; that is; rejectH0 if x� 3;

where x is the observed value of the test statistic.
This rejection region is called lower-tailed because it consists only of small values of the test statistic.

When H0 is true, X has a binomial probability distribution with n = 25 and p = .2. Then

a ¼ Pðtype I errorÞ ¼ PðH0 is rejectedwhen it is trueÞ
¼ PðX� 3 when X�Binð25; :2ÞÞ ¼ B 3; 25; :2ð Þ
¼ :234

That is, if H0 is actually true, 23.4% of all pilot surveys consisting of 25 customers would result in H0

being incorrectly rejected (a type I error). This error probability is quite large; we will consider shortly
how it can be made smaller.

In contrast to a, there is not a single b. Instead, there is a different b for each different p less than .2.
Thus there is a value of b for p = .15 [in which case X * Bin(25, .15)], another value of b for p = .1,
and so on. For example,

bð:1Þ ¼ Pðtype II error when p ¼ :1Þ
¼ PðH0 is not rejected when it is false because p ¼ :1Þ
¼ PðX[ 3 when X � Binð25; :1ÞÞ ¼ 1� B 3; 25; :1ð Þ ¼ :236

When p is actually .1 rather than .2 (a rather large departure from H0), roughly 24% of all surveys of
this type would result in H0 being incorrectly not rejected.

The accompanying table displays b for selected values of p (each calculated for the rejec-
tion region R3). Clearly, b decreases as the value of p moves farther below the null value .2.
Intuitively, the greater the departure from H0, the less likely it is that such a departure will sneak past
undetected.

p .19 .15 .12 .10 .08 .04
b(p) .727 .529 .352 .236 .135 .017
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Many of these values of b values are unacceptably large, due in part to the relatively small sample size.
The proposed test procedure is still reasonable for testing the more mathematically correct null

hypothesis that p � .2. In this case, there is no longer a single a, but instead there is an a for
each p that is at least .2: a(.2), a(.25), a(.314), a(.325), and so on. It is easily verified, though,
that a(p) < a(.2) = .234 for all p > .2. That is, the largest value of a occurs for the boundary value
.2 between H0 and Ha. Thus whatever the probability a is for the simplified null hypothesis, it will be
no larger for the more realistic H0. ■

Example 9.6 (Example 9.3 continued) Let X1, …, X10 denote the highway fuel efficiencies (mpg) of
10 randomly selected trucks with the new, modified engine. (If n = 10 seems small, bear in mind that
vehicles used for testing often cannot then be sold to customers.) Under the assumptions of Example
9.3, X1, …, X10 is a random sample of size 10 from a normal distribution with mean value l and
standard deviation r = 3. To test H0: l = 25 versus Ha: l > 25, consider the following test
procedure:

Test statistic: �X = the sample mean fuel efficiency of the 10 randomly selected trucks
Rejection region: R = [27.5, 1); that is, reject H0 if �x� 27:5,

where �x is the observed value of the test statistic
Because the rejection region consists only of large values of the test statistic, the test is said to be

upper-tailed.
The sample mean fuel efficiency �X then has a normal distribution with l�X ¼ l and

r�X ¼ r=
ffiffiffi
n

p ¼ 3=
ffiffiffiffiffi
10

p � :95. Calculation of a and b now involves a routine standardization of �X
followed by reference to the standard normal probabilities of Appendix Table A.3:

a ¼ Pðtype I errorÞ ¼ PðH0 is rejected when it is trueÞ
¼ Pð�X� 27:5 when �X� normal with l�X ¼ 25; r�X ¼ :95Þ

¼ 1� U
27:5� 25

:95

� �
¼ 1� Uð2:63Þ ¼ :0042

b 26:5ð Þ ¼ Pðtype II error when l ¼ 26:5Þ
¼ PðH0 is not rejected when it is false because l ¼ 26:5Þ
¼ Pð�X\27:5 when �X� normal with l�X ¼ 26:5; r�X ¼ :95Þ

¼ U
27:5� 26:5

:95

� �
¼ Uð1:05Þ ¼ :8531

bð28Þ ¼ U
27:5� 28

:95

� �
¼ :2993 bð29Þ ¼ :0571

For the specified test procedure, only 0.4% of all experiments carried out as described will result in H0

being rejected when it is actually true. However, the chance of a type II error is very large when
l = 26.5 (only a small departure from H0), somewhat less when l = 28, and quite small when l = 29
(a rather large departure from H0). These error probabilities are illustrated in Figure 9.1. Notice that a
is computed using the probability distribution of the test statistic when H0 is true, whereas
determination of b requires knowing the test statistic’s distribution when H0 is false.

506 9 Tests of Hypotheses Based on a Single Sample



As in Example 9.5, if the more realistic null hypothesis l � 25 is considered, there is an a for
each parameter value for which H0 is true: a(25), a(24.2), a(23.6), and so on. It is easily verified,
though, that a(25) is the largest of all these type I error probabilities. Focusing on the boundary value
amounts to working explicitly with the “worst case.” ■

Selecting the Rejection Region
The specification of a cutoff value for the rejection region in the examples just considered was fairly
arbitrary. Use of the rejection region R3 = {0, 1, 2, 3} in Example 9.5 resulted in a = .234,
b(.10) = .236, and b(.15) = .529. Many would think these error probabilities intolerably large.
Perhaps they can be decreased by changing the cutoff value.

Example 9.7 (Example 9.5 continued) Let us use the same survey plan and test statistic X as
previously described in the screwtop wine problem but now consider the rejection region R2 = {0, 1,
2}. Since X still has a binomial distribution with parameters n = 25 and p,

a ¼ PðH0 is rejected when p ¼ :2Þ
¼ PðX� 2when X � Binð25; :2ÞÞ ¼ B 2; 25; :2ð Þ ¼ :098

The type I error probability has been decreased by using the new rejection region. However, a price
has been paid for this decrease:

25

27.5

Shaded area = α .0042 

Shaded area = β(26.5)

a

b

c

26.5

27.5

Shaded area = β(28)

28

27.5

Figure 9.1 a and b illustrated for Example 9.6: (a) the distribution of �X when l = 25 (H0 true);
(b) the distribution of �X when l = 26.5 (H0 false); (c) the distribution of �X when l = 28 (H0 false)
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b :1ð Þ ¼ PðH0 is not rejected when p ¼ :1Þ
¼ PðX[ 2 when X�Binð25; :1ÞÞ ¼ 1� B 2; 25; :1ð Þ ¼ :463

bð:15Þ ¼ 1� Bð2; 25; :15Þ ¼ :746

Both these b’s are larger than the corresponding error probabilities .236 and .529 for the region R3. In
retrospect, this is not surprising: a is computed by summing over probabilities of test statistic values
in the rejection region, whereas b is the probability that X falls in the complement of the rejection
region. Making the rejection region smaller must therefore decrease a while increasing b for any fixed
alternative value of the parameter. ■

A similar trade-off between a and b would occur if we changed the rejection region cutoff in
Example 9.6. Looking at Figure 9.1, it’s clear that if we shifted the cutoff c = 27.5 to the left (e.g., to
c = 27), the two b’s illustrated would decrease (less cumulative area under the normal curves) but a
would increase (greater upper-tail area than before). The results of these examples can be generalized
in the following manner.

PROPOSITION Suppose a study and a sample size are fixed and a test statistic is chosen. Then
decreasing the size of the rejection region to obtain a smaller value of a results
in a larger value of b for any particular parameter value consistent with Ha, and
vice versa.

This proposition says that once the test statistic and n are fixed, there is no rejection region that will
simultaneously make both a and all b’s small. A region must be chosen to effect a compromise
between a and b. The approach adhered to by most statistical practitioners is to specify the largest
value of a that can be tolerated and find a rejection region having that value of a. This makes b as
small as possible subject to the bound on a. The resulting value of a is often referred to as the
significance level of the test. Traditional levels of significance are .10, .05, and .01, although the level
in any particular problem will depend on the seriousness of a type I error—the more serious this error,
the smaller should be the significance level. The corresponding test procedure is called a level a test
(e.g., a level .05 test or a level .01 test). A test with significance level a is one for which the type I
error probability is controlled at the specified level.

Example 9.8 (Example 9.6 continued) For the truck engine scenario, suppose a hypothesis test with
significance level a = .05 is desired. The rejection region will still have the form �x� c, but the value
of c is determined by a:

:05 ¼ Pðtype I errorÞ ¼ Pð�X� c when H0 is true)

¼ Pð�X� c when �X�Nð25; :95ÞÞ

¼ 1� U
c� 25
:95

� �
) U

c� 25
:95

� �
¼ :95

The last expression above implies that (c – 25)/.95 is the 95th percentile of the standard normal
distribution, z.05. Either from Section 4.3 or directly from Appendix Table A.3, z.05 = 1.645, from
which the desired rejection region cutoff is c = 25 + (1.645)(.95) � 26.56 mpg.

So, a level .05 test of H0: l = 25 versus Ha: l > 25 in this scenario involves rejecting H0 if and
only if �x� 26:56. Then b is the probability that �X\26:56 and can be calculated for any l > 25. ■
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Power
Many statistical software packages will calculate type II error probabilities for a variety of test
procedures, including those presented in this and subsequent chapters. This is typically expressed in
terms of power, defined as the probability that the test procedure will reject H0. For parameter values
consistent with Ha, this is simply 1 – b. As the name is meant to imply, greater power is better: lower
values of b (i.e., less chance of a type II error) correspond to higher power values.

Like b, there is not a single value for the power of a test procedure, but rather a different value for
each possible value of the parameter. As a result, though power can be calculated for a single
parameter value, it is more common to see a power curve, where the horizontal axis represents
possible values of the parameter and the vertical axis displays power.

Example 9.9 (Example 9.8 continued) Figure 9.2 shows the power curve for the test procedure that
rejects H0 when �x� 26:56. For each value of l consistent with Ha: l > 25, the power of the test
procedure is simply Pð�X� 26:56Þ: Note that the power of the test at l = 25 is a = .05 by the
definition of power. The power increases as the value of the parameter moves further from the null
value—a large departure from H0 is more likely to be detected than a small departure.

One final, but important, note: the probabilities a, b, and power are all functions of the selected test
procedure, not of any sample data. They reflect the chance that certain outcomes of the test procedure
will happen in the future, when a random sample of the specified size n is selected.

25 26 27 28 29 30

0.2

Power

µ

0.4

0.6

0.8

1.0

Figure 9.2 Power curve for the test procedure of Examples 9.8–9.9 ■

Exercises: Section 9.1 (1–14)

1. For each of the following assertions, state
whether it is a legitimate statistical hypothe-
sis and why:

a. H: r > 100
b. H: ~x ¼ 45
c. H: s � .20
d. H: r1/r2 < 1
e. H: �X � �Y ¼ 5
f. H: k � .01, where k is the parameter of

an exponential distribution used to model
component lifetime

2. For the following pairs of assertions, indicate
which do not comply with our rules for set-
ting up hypotheses and why (the subscripts 1
and 2 differentiate between quantities for two
different populations or samples):

a. H0: l = 100, Ha: l > 100
b. H0: r = 20, Ha: r � 20
c. H0: p 6¼ .25, Ha: p = .25
d. H0: l1 − l2 = 25, Ha: l1 − l2 > 100
e. H0: S21 ¼ S22; Ha: S21 6¼ S22
f. H0: l = 120, Ha: l = 150
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g. H0: r1/r2 = 1, Ha: r1/r2 6¼ 1
h. H0: p1 − p2 = −.1, Ha: p1 − p2 < −.1

3. To determine whether the girder welds in a
new performing arts center meet specifica-
tions, a random sample of welds is selected,
and tests are conducted on each weld in the
sample. Weld strength is measured as the
force required to break the weld. Suppose the
specifications state that mean strength of
welds should exceed 100 lb/in2; the inspec-
tion team decides to test H0: l = 100 versus
Ha: l > 100. Explain why it might be
preferable to use this Ha rather than l < 100.

4. Let l denote the true average radioactivity
level (picocuries per liter). The value 5 pCi/L
is considered the dividing line between safe
and unsafe water. Would you recommend
testing H0: l = 5 versus Ha: l > 5 or
H0: l = 5 versus Ha: l < 5? Explain your
reasoning. [Hint: Think about the conse-
quences of a type I and type II error for each
possibility.]

5. Before agreeing to purchase a large order of
polyethylene sheaths for a particular type of
high-pressure oil-filled submarine power
cable, a company wants to see conclusive
evidence that the true standard deviation of
sheath thickness is < .05 mm. What
hypotheses should be tested, and why? In this
context, what are the type I and type II
errors?

6. Many older homes have electrical systems
that use fuses rather than circuit breakers.
A manufacturer of 40-amp fuses wants to
make sure that the mean amperage at which
its fuses burn out is in fact 40. If the mean
amperage is lower than 40, customers will
complain because the fuses require replace-
ment too often. If the mean amperage is
higher than 40, the manufacturer might be
liable for damage to an electrical system due
to fuse malfunction. To verify the amperage
of the fuses, a sample of fuses is to be
selected and inspected. If a hypothesis test

were to be performed on the resulting data,
what null and alternative hypotheses would
be of interest to the manufacturer? Describe
type I and type II errors in the context of this
problem situation.

7. Water samples are taken from water used for
cooling as it is being discharged from a
power plant into a river. It has been deter-
mined that as long as the mean temperature
of the discharged water is at most 150 °F,
there will be no negative effects on the river’s
ecosystem. To investigate whether the plant
is in compliance with regulations that pro-
hibit a mean discharge-water temperature
above 150°, 50 water samples will be taken at
randomly selected times, and the temperature
of each sample recorded. The resulting
data will be used to test the hypotheses
H0: l = 150° versus Ha: l > 150°. In the
context of this situation, describe type I and
type II errors. Which type of error would you
consider more serious? Explain.

8. A regular type of laminate is currently being
used by a manufacturer of circuit boards.
A special laminate has been developed to
reduce warpage. The regular laminate will be
used on one sample of specimens and the
special laminate on another sample, and the
amount of warpage will then be determined
for each specimen. The manufacturer will
then switch to the special laminate only if it
can be demonstrated that the true average
amount of warpage for that laminate is less
than for the regular laminate. State the rele-
vant hypotheses, and describe the type I and
type II errors in the context of this situation.

9. Two different companies have applied to
provide internet service in a region. Let
p denote the proportion of all potential sub-
scribers who favor the first company over the
second. Consider testing H0: p = .5 versus
Ha: p 6¼ .5 based on a random sample of 25
individuals. Let X denote the number in the
sample who favor the first company and
x represent the observed value of X.
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a. Which of the following rejection regions
is most appropriate and why?

R1 ¼ x : x� 7 or x� 18f g;
R2 ¼ x : x� 8f g;R3 ¼ x : x� 17f g

b. Using the selected rejection region, what
would you conclude if 6 of the 25 queried
favored company 1?

c. In the context of this problem situation,
describe what type I and type II errors are.

d. What is the probability distribution of the
test statistic X when H0 is true? Use it to
compute the probability of a type I error.

e. For the region selected in part (a), com-
pute the probability of a type II error and
the power when p = .3, .4, .6, and .7.

10. For healthy individuals the level of pro-
thrombin in the blood is approximately nor-
mally distributed with mean 20 mg/dL and
standard deviation 4 mg/dL. Low levels
indicate low clotting ability. In studying the
effect of gallstones on prothrombin, the level
of each patient in a sample is measured to see
if there is a deficiency. Let l be the true
average level of prothrombin for gallstone
patients (and assume r = 4).

a. What are the appropriate null and alter-
native hypotheses?

b. Let �X denote the sample average level of
prothrombin in a sample of n = 20 ran-
domly selected gallstone patients. Con-
sider the test procedure with test statistic
�X and rejection region �x� 17:92: What is
the probability distribution of the test
statistic when H0 is true? What is the
probability of a type I error for the test
procedure?

c. What is the probability distribution of
the test statistic when l = 16.7? Using the
test procedure of part (b), what is the
probability that gallstone patients will be
judged not deficient in prothrombin, when
in fact l = 16.7 (a type II error)?

d. How would you change the test procedure
of part (b) to obtain a test with signifi-
cance level .05? What impact would this
change have on the error probability of
part (c)?

e. Consider the standardized test statistic
Z ¼ ð�X � 20Þ=ðr= ffiffiffi

n
p Þ ¼ ð�X � 20Þ=:8944:

What are the values of Z corresponding to
the rejection region of part (b)?

11. The calibration of a scale is to be checked by
weighing a 10-kg test specimen 25 times.
Suppose that the results of different weigh-
ings are independent of one another and that
the weight on each trial is normally dis-
tributed with r = .200 kg. Let l denote the
true average weight reading on the scale.

a. What hypotheses should be tested?
b. Suppose the scale is to be recalibrated if

either �x� 10.1032 or �x � 9.8968. What
is the probability that recalibration is
carried out when it is actually
unnecessary?

c. What is the probability that recalibration
is judged unnecessary when in fact
l = 10.1? When l = 9.8?

d. Let z ¼ ð�x� 10Þ=ðr= ffiffiffi
n

p Þ. For what value
c is the rejection region of part (b) equiv-
alent to the “two-tailed” region either
z � c or z � −c?

e. If the sample size were only 10 rather than
25, how should the procedure of part
(d) be altered so that a = .05?

f. Using the test of part (e), what would you
conclude from the following sample data?

9.981 10.006 9.857 10.107 9.888
9.728 10.439 10.214 10.190 9.793

12. A new design for the braking system on a
certain type of car has been proposed. For the
current system, the true average braking
distance at 40 mph under specified conditions
is known to be 120 ft. It is proposed that the
new design be implemented only if sample
data strongly indicates a reduction in true
average braking distance for the new design.

a. Define the parameter of interest and state
the relevant hypotheses.

b. Suppose braking distance for the new
system is normally distributed with
r = 10. Let �X denote the sample average
braking distance for a random sample of
36 observations. Which of the following
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rejection regions is appropriate: R1 ¼
f�x : �x� 124:80g; R2 ¼ f�x : �x� 115:20g;
R3 ¼ f�x : either �x� 125:13 or �x� 114:87g?

c. What is the significance level for the
appropriate region of part (b)? How
would you change the region to obtain a
test with a = .001?

d. What is the probability that the new
design is not implemented when its true
average braking distance is actually 115 ft
and the appropriate region from part (b) is
used?

e. Let Z ¼ ð�X � 120Þ=ðr= ffiffiffi
n

p Þ. What is the
significance level for the rejection
region {z: z � −2.33}? For the region
{z: z � −2.88}?

13. Let X1, …, Xn denote a random sample from
a normal population distribution with a
known value of r.

a. For testing the hypotheses H0: l = l0 ver-
susHa:l > l0 (wherel0 is a fixed number),
show that the test with test statistic �X and
rejection region �x� l0 þ 2:33r=

ffiffiffi
n

p
has

significance level .01.

b. Let d ¼ l� l0, the difference between
the true and hypothesized values of the
population mean. Graph the power func-
tion of the test procedure in part (a) as a
function of d.

c. Suppose the procedure of part (a) is used
to test H0: l � l0 versus Ha: l > l0. If
l0 = 100, n = 25, and r = 5, what is the
probability of committing a type I error
when l = 99? When l = 98? In general,
what can be said about the probability of a
type I error when the actual value of l is
less than l0? Verify your assertion.

14. Reconsider the situation of Exercise 11 and
suppose the rejection region is f�x : �x�
10:1004 or �x� 9:8940g ¼ fz : z� 2:51 or
z��2:65g:
a. What is a for this procedure?
b. What is b when l = 10.1? When l = 9.9?

Is this desirable?
c. Graph the power function for this test

procedure as a function of the unknown l.

9.2 Tests About a Population Mean

In Sections 8.1–8.2, confidence intervals for a population mean l were developed in two stages: first,
for the (unrealistic) scenario when the population standard deviation r is known, then for cases when
both l and r are unknown. We now develop test procedures for these same two cases. Later in this
section, we provide some practical advice on the implementation of hypothesis tests for l.

Tests About μ for Normal Data with Known r

Throughout this subsection, we assume that

1. The population distribution is normal.
2. The value of the population standard deviation r is known.

Although the assumption that the value of r is known is rarely met in practice, this case provides a
good starting point because of the ease with which general procedures and their properties can be
developed. Let X1, …, Xn represent a random sample of size n from the normal population. Then the
sample mean �X has a normal distribution with expected value l�X ¼ l and standard deviation
r�X ¼ r=

ffiffiffi
n

p
. The null hypothesis is H0: l = l0, so l0 is the null value of the parameter. When H0 is

true, l�X ¼ l0. Consider now the statistic Z obtained by standardizing �X under the assumption that H0

is true:
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Z ¼
�X � l0
r=

ffiffiffi
n

p ð9:1Þ

Substitution of the computed sample mean �x into (9.1) gives z, the distance between �x and l0
expressed in “standard deviation units.” For example, if the null hypothesis is H0: l = 100, r�X ¼ 2
and �x ¼ 103, then the test statistic value is given by z = (103 − 100)/2 = 1.5. That is, the observed
value of �x is 1.5 standard deviations (of �X) above what we expect it to be when H0 is true. The statistic
Z is a natural measure of the distance between �X, the estimator of l, and its expected value when H0 is
true. If this distance is too great in a direction consistent with Ha, the null hypothesis should be
rejected.

Suppose first that the alternative hypothesis has the form Ha: l > l0. Then an �x value less than l0
certainly does not provide support for Ha. Such an �x corresponds to a negative value of z, since �x� l0
is negative and the divisor r=

ffiffiffi
n

p
is positive. Similarly, an �x value that exceeds l0 by only a small

amount (corresponding to z which is positive but small) does not suggest that H0 should be rejected in
favor of Ha. The rejection of H0 is appropriate only when �x considerably exceeds l0—that is, when
the z value is positive and large. In summary, the appropriate rejection region has the form z � c for
some relatively large positive constant c.

As discussed in Section 9.1, the cutoff value c should be chosen to control the probability of a type
I error at the desired level a. This is easily accomplished because the distribution of the test statistic
Z when H0 is true is the standard normal distribution (that’s why l0 was subtracted in standardizing):

a ¼ Pðtype I errorÞ ¼ PðH0 is rejected when H0 is trueÞ
¼ PðZ� c when Z�Nð0; 1ÞÞ ¼ 1� UðcÞ )

UðcÞ ¼ 1� a ) c ¼ U�1ð1� aÞ ¼ za

That is, the rejection region z � za has type I error probability a. For instance, if a level .01 test is
desired, then H0 should be rejected if z � c = z.01 = 2.33. This test procedure is upper-tailed
because the rejection region consists only of large values of the test statistic.

Analogous reasoning for the alternative hypothesis Ha: l < l0 suggests a rejection region of the
form z � c, where c is a suitably chosen negative number (�x is far below l0 if and only if z is quite
negative). Because Z has a standard normal distribution when H0 is true, taking c = −za results in
P(type I error) = a. This is a lower-tailed test. For example, z.10 = 1.28 implies that the rejection
region z � −1.28 specifies a test with significance level .10.

Finally, when the alternative hypothesis is Ha: l 6¼ l0, H0 should be rejected if �x is too far to either
side of l0. This is equivalent to rejecting H0 if either z � c or z � −c. Suppose we desire a = .05.
Then,

:05 ¼ PðZ � c or Z��c when Z�Nð0; 1ÞÞ
¼ Uð�cÞþ 1� UðcÞ ¼ 2½1� UðcÞ�

Thus c is such that 1 − U(c), the area under the standard normal curve to the right of c, is .025 (and
not .05!). From Section 4.3 or Appendix Table A.3, c = 1.96, and the rejection region is {z � 1.96
or z � −1.96}. For any a, the two-tailed rejection region z � za/2 or z � −za/2 has type I error
probability a (since area a/2 is captured under each of the two tails of the z curve). Again, the key
reason for using the standardized test statistic Z is that because Z has a known distribution when H0 is
true (standard normal), a rejection region with desired type I error probability is easily obtained by
using an appropriate critical value.
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The foregoing test procedures are summarized in the accompanying box, and the corresponding
rejection regions are illustrated in Figure 9.3.

THE ONE-SAMPLE
z TEST

Null hypothesis: H0: l = l0

Test statistic value: z ¼ �x� l0
r=

ffiffiffi
n

p

Alternative Hypothesis Rejection Region for Level a Test
Ha: l > l0 z � za (upper-tailed test)
Ha: l < l0 z � −za (lower-tailed test)
Ha: l 6¼ l0 either z � za/2 or z � −za/2 (two-tailed test)

Use of the following sequence of steps is recommended when testing hypotheses about a parameter;
these steps will be repeated frequently throughout the remainder of the book. The formulation of
hypotheses (steps 1 and 2) should be done before examining the data.

1. Identify the parameter of interest and describe it in the context of the problem situation.
2. Determine the null value, and state the appropriate null and alternative hypotheses.
3. Check the plausibility of any assumptions or requirements for the test procedure under consid-

eration to be valid.
4. Give the formula for the computed value of the test statistic (substituting the null value and the

known values of any other parameters, but not those of any sample-based quantities).
5. State the rejection region for the selected significance level a.
6. Compute any necessary sample quantities, substitute into the formula for the test statistic value,

and compute that value.
7. Decide whether H0 should be rejected and state this conclusion in the problem context.

0 0zα −zα −zα /2 zα/2
0

Rejection region: either

z curve (probability distribution of test statistic Z when H0 is true)

a b c

Shaded area
= α = P(type I error)

Total shaded area
= α  = P(type I error)

Shaded area
= α /2

Shaded 
area = α /2

Rejection region: z  zα

Rejection region: z −zα

z zα /2 or z −zα /2

Figure 9.3 Rejection regions for z tests: (a) upper-tailed test; (b) lower-tailed test; (c) two-tailed test
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Example 9.10 If the activation temperature of an automated sprinkler system used for fire protection
in an office building is too high, a fire could do substantial damage before water is dispersed. On the
other hand, activation at too low a temperature could cause water damage when there is little fire
threat. A manufacturer of sprinkler systems used for fire protection in office buildings claims that the
true average system-activation temperature is 130°. A sample of n = 9 systems, when tested, yields a
sample average activation temperature of 131.08 °F. If the distribution of activation times is normal
with standard deviation 1.5 °F, does the data contradict the manufacturer’s claim at significance level
a = .01?

1. Parameter of interest: l = true average activation temperature
2. Hypotheses: H0: l = 130 (null value = l0 = 130)

Ha: l 6¼ 130 (a departure from the claimed value in either direction is of concern)
3. Assumptions/requirements: We have assumed an underlying normal population distribution of

activation temperatures with a known population standard deviation.
4. Test statistic value:

z ¼ �x� l0
r=

ffiffiffi
n

p ¼ �x� 130
1:5=

ffiffiffi
n

p

5. Rejection region: The form of Ha implies use of a two-tailed test with rejection region either
z � z.005 or z � −z.005. From Section 4.3 or Appendix Table A.3, z.005 = 2.576, so we reject
H0 if either z � 2.576 or z � −2.576.

6. Substituting n = 9 and �x ¼ 131:08;

z ¼ 131:08� 130

1:5=
ffiffiffi
9

p ¼ 1:08
:5

¼ 2:16

That is, the observed sample mean is a bit more than 2 standard deviations above what would have
been expected were H0 true.

7. The computed value z = 2.16 does not fall in the rejection region, so H0 cannot be rejected at
significance level .01. The data does not give sufficient evidence to conclude that the true average
differs from the design value of 130. ■

Power, b, and Sample Size Determination for the One-Sample z Test
The one-sample z tests are among the few in statistics for which there are simple formulas available
for b, the probability of a type II error. Consider first the upper-tailed test with rejection region
z � za. This is equivalent to �x� l0 þ za � r=

ffiffiffi
n

p
, so H0 will not be rejected if �x\l0 þ za � r=

ffiffiffi
n

p
.

Now let l′ denote a particular value of l that exceeds the null value l0. Then,

b l0ð Þ ¼ P H0 is not rejected when l¼l0ð Þ
¼ P �X\l0 þ za � r=

ffiffiffi
n

p
when l¼l0

� �
¼ P

�X � l0

r=
ffiffiffi
n

p \ za þ l0 � l0

r=
ffiffiffi
n

p when l¼l0
� �

¼ U za þ l0 � l0

r=
ffiffiffi
n

p
� �
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The power of the upper-tailed one-sample z test is then 1� bðl0Þ. As l′ increases, l0 − l′ becomes
more negative, so b(l′) will be small and power will be large when l′ greatly exceeds l0 (because the
value at which U is evaluated will then be quite negative). Power and b for the lower-tailed and two-
tailed tests are derived in an analogous manner.

In addition to specifying the a level, investigators may prescribe a desired power level at an
alternative value l′ that is of particular concern. In the sprinkler example, company officials might
view l′ = 132 as a very substantial departure from H0: l = 130 and therefore wish to have a 90%
chance of rejecting H0 (power = .90) at that temperature—that is, b(132) = .10—in addition to, say,
a = .01. More generally, consider the two restrictions P(type I error) = a and b(l′) = b for specified
a, l′, and b. Then for an upper-tailed test, the sample size n should be chosen to satisfy

U za þ l0 � l0

r=
ffiffiffi
n

p
� �

¼ b

This implies that

za þ l0 � l0

r=
ffiffiffi
n

p ¼ U�1ðbÞ ¼ �zb

It is easy to solve this equation for the desired n. A parallel argument yields the necessary sample size
for lower- and two-tailed tests as summarized in the next box.

Alternative Hypothesis Type II Error Probability b(l′) for a Level a Test

Ha: l > l0 U za þ l0 � l0

r=
ffiffiffi
n

p
� �

Ha: l < l0 1� U �za þ l0 � l0

r=
ffiffiffi
n

p
� �

Ha: l 6¼ l0 U za=2 þ l0 � l0

r=
ffiffiffi
n

p
� �

� U �za=2 þ l0 � l0

r=
ffiffiffi
n

p
� �

where U(z) = the standard normal cdf. For each case, power = 1 – b(l′).
The sample size n for which a level a test also has b(l′) = b at the alternative value l′ is

n ¼

r za þ zb

� �
l0 � l0

2
4

3
5
2

for a one-tailed

ðupper or lower) test
r za=2 þ zb
� �
l0 � l0

	 
2
for a two-tailed test

ðan approximate solution)

8>>>>><
>>>>>:

Example 9.11 Let l denote the true average tread life of a type of tire. Consider testing the
hypotheses H0: l = 30,000 versus Ha: l > 30,000 based on a sample of size n = 16 from a normal
population distribution with r = 1500. A test with a = .01 requires za = z.01 = 2.33. The probability
of making a type II error when l = 31,000 is

bð31;000Þ ¼ U 2:33þ 30;000� 31;000

1500=
ffiffiffiffiffi
16

p
 !

¼ U �:34ð Þ ¼ :3669
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The probability of rejecting H0 when l = 31,000, i.e., the power, is 1 – .3669 = .6331.
Since z.1 = 1.28, the requirement that the level .01 test also have b(31,000) = .1 necessitates

n ¼ 1500ð2:33þ 1:28Þ
30;000� 31;000

	 
2
¼ ð�5:42Þ2 ¼ 29:32

The sample size must be an integer, so n = 30 tires should be used. ■

The One-Sample t Test
We now modify the one-sample z test to accommodate the more realistic situation when r is
unknown, following a path similar to what was outlined in Section 8.2. Consider the test statistic
obtained by replacing r in (9.1) by the sample standard deviation, S:

T ¼
�X � l0
S=

ffiffiffi
n

p ð9:2Þ

Assuming X1, X2, …, Xn is a random sample from a normal distribution, the rv (9.2) follows a tn�1

distribution when H0: l = l0 is true. Knowledge of the test statistic’s distribution when H0 is true (the
“null distribution”) allows us to construct a rejection region for which the type I error probability is
controlled at the desired level. For instance, consider testing H0: l = l0 against Ha: l > l0 using
(9.2). Use of the upper-tail t critical value ta;n�1 to specify the rejection region t� ta;n�1 implies that

P type I errorð Þ ¼ P H0 is rejectedwhen it is trueð Þ
¼ PðT � ta;n�1 when T has a t distributionwith n� 1 dfÞ
¼ a

The rejection region for the t test differs from that of the z test only in that a t critical value ta;n�1

replaces the z critical value za. Similar comments apply to alternative hypotheses for which a lower-
tailed or two-tailed test is appropriate.

THE ONE-SAMPLE
t TEST

Null hypothesis: H0: l = l0

Test statistic value: t ¼ �x� l0
s=

ffiffiffi
n

p

Graphs of these rejection regions are essentially the same as those in Figure 9.3; simply replace the
z curves and z critical values with appropriate t curves and t critical values.

Example 9.12 Particulate matter from roads contributes to pollution when those particles are
washed into nearby waterways by rain. The size of the particles can impact the effectiveness of
various stormwater control measures. The authors of the article “Characterizing Runoff from Roads:
Particle Size Distributions, Nutrients, and Gross Solids” (J. Environ. Engr. 2016) took roadside
measurements at several sites in North Carolina. For each assay they recorded d50, the median size of
particles in the assay (a standard measure of particle size in such studies). Here are the d50 values
(microns) for n = 9 assays performed off I-40 near Black Mountain:

Alternative Hypothesis Rejection Region for a Level a Test
Ha: l > l0 t � ta,n–1 (upper-tailed)
Ha: l < l0 t � −ta,n–1 (lower-tailed)
Ha: l 6¼ l0 either t � ta/2,n–1 or t � −ta/2,n–1 (two-tailed)
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82.9 56.8 66.5 49.4 105.4 79.5 82.5 50.7 43.0

Previous studies indicated that the typical d50 value alongside roads of this type is 44 microns.
Does the sample data provide convincing statistical evidence that the true mean d50 value differs from
44 microns? Let’s carry out a test using a significance level of a = .01.
1. l = true average d50 value (microns) for particulate matter assays at the Black Mountain site
2. H0: l = 44

Ha: l 6¼ 44
3. A normal probability plot (not shown) indicates that the population distribution could plausibly be

normal, so the one-sample t test will be used.

4. t ¼ �x� l0
s=

ffiffiffi
n

p ¼ �x� 44
s=

ffiffiffi
n

p
5. From Appendix Table A.6, ta=2;n�1 ¼ t:005;8 ¼ 3:355. So we reject H0 if either t � 3.355 or

t � −3.355.
6. From the data provided, �x = 68.52 and s = 20.49. Substituting,

t ¼ 68:52� 44

20:49=
ffiffiffi
9

p ¼ 24:52
6:83

¼ 3:59

7. Because the computed value t = 3.59 falls in the rejection region (3.59 � 3.355), H0 is rejected at
the .01 level. Even this small sample of data provides convincing statistical evidence that the true
mean d50 value for roadside particulates at the Black Mountain site differs from the “typical” value
of 44 microns seen in other studies. ■

Some Practical Advice
The validity of the one-sample t test rests on Gosset’s Theorem, which assumes a normally distributed
population. The plausibility of this assumption can be checked with a normal probability plot. But as
we noted in Chapter 8, the t distributions are “robust” against violations of normality when the
sample size n is reasonably large. That is, when using data from a large sample (say, n > 40), the
results of applying the one-sample t test procedure should be reasonably accurate even if the
underlying population distribution is not normal.

We have also seen that, for n large, the z and tn–1 distributions are quite similar, so that using a
z distribution to determine rejection region cutoffs gives very similar results to the one-sample t test
procedure. In current practice, researchers typically use the one-sample t test even for large samples,
except in the extremely rare case where r is known.

The one situation in which inferences for l cannot be based on a t procedure is when the sample
size is small and the data strongly suggests a nonnormal population. Methods to address this situation
are considered at the end of this chapter and in Chapter 14.

Example 9.13 A sample of bills for meals was obtained at a restaurant (by Erich Brandt). For each
of 70 bills the tip was found as a percentage of the raw bill (before taxes). Does it appear that the
population mean tip percentage for this restaurant exceeds the standard 15%? Here are the 70 tip
percentages:
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14.21 20.24 20.10 14.94 15.69 15.04 12.04 20.16 17.85 16.35
19.12 20.37 15.29 18.39 27.55 16.01 10.94 13.52 17.42 14.48
29.87 17.92 19.74 22.73 14.56 15.16 16.09 16.42 19.07 13.74
13.46 16.79 19.03 19.19 19.23 12.39 16.89 18.93 13.56 17.70
11.48 13.96 21.58 11.94 19.02 17.73 20.07 40.09 19.88 22.79
15.23 16.09 19.19 11.91 18.21 15.37 16.31 16.03 48.77 12.31
21.53 12.76 18.07 14.11 15.86 20.67 15.66 18.54 27.88 13.81

Figure 9.4 shows a descriptive summary obtained from Minitab. The sample mean tip percentage
is 17.986, which obviously is greater than 15.

1. l = true average tip percentage
2. H0: l = 15

Ha: l > 15
3. The distribution is positively skewed because there are some very large tips (and a normal

probability plot therefore would not exhibit a linear pattern). But the large sample size
(n = 70 > 40) means that the one-sample t test does not require a normal population distribution.

4. t ¼ �x� 15
s=

ffiffiffi
n

p
5. Using a test with a significance level .05, H0 will be rejected if t � t:05;70�1 � 1.667 (an upper-

tailed test).
6. With n = 70, �x ¼ 17:986, and s = 5.937,

t ¼ 17:986� 15

5:937=
ffiffiffiffiffi
70

p ¼ 2:986
:7096

¼ 4:21

7. Since 4.21 > 1.667, H0 is rejected. There is convincing statistical evidence that the population
mean tip percentage exceeds 15%. ■

22.515.0 45.037.530.0

2716 1918

Mean

Median

95% Confidence Intervals

Anderson-Darting Normality Test

A-Squared 4.17
P-Value < 0.005
Mean 17.986
StDev 5.937
Variance 35.247
Skewness 2.9391
Kurtosis 12.0154

70N
Minimum 10.940
1st Quartile

3st Quartile

 14.540
Median 16.840

19.358
Maximum 48.770

95% Confidence Interval for Mean
16.571 19.402

95% Confidence Interval for Median
15.913 18.402

95% Confidence Interval for StDev
5.090 7.124

** * * *

Figure 9.4 Minitab descriptive summary for the tip data of Example 9.13
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Power, b, and Sample Size Determination for the One-Sample t Test
When the sample size is large (as in Example 9.13), power and sample size calculations for the one-
sample t test can be approximated by the formulas provided earlier in this section. Notice that a
plausible value of r must be specified; the sample standard deviation s may be used for this purpose,
although power and sample size calculations are often performed prior to collecting any data.

Alternatively, l′ values of interest are sometimes expressed as a certain number of standard
deviations from the null value. For example, researchers may be interested in a one-quarter sd
increase from the null value, in which case l′ = l0 + 0.25r. Re-expressing l′ in the form l0 + dr,
where the value d can be positive or negative, simplifies the expressions for b and n presented earlier
in this section so that they no longer depend explicitly on the unknown r. For instance, the formula
for b in an upper-tailed one-sample z test under this substitution becomes

bðl0Þ ¼ bðl0 þ drÞ ¼ U za þ l0 � ðl0 þ drÞ
r=

ffiffiffi
n

p
� �

¼ U za � d
ffiffiffi
n

p� �

The other formulas simplify in a similar fashion.
Exact calculations of power and b(l′) for the one-sample t test (i.e., not using the normal

approximations) are much less straightforward. This is because the test statistic T ¼ ð�X � l0Þ=ðS=
ffiffiffi
n

p Þ
in (9.2) does not have a t distribution when H0 is false. Rather, when the true value of l is anything
other than l0, T has a much more complicated distribution, related to the following definition.

DEFINITION Let Z * N(0, 1) and Y * v2m be independent random variables. For any real number
d, the random variable

Zþ dffiffiffiffiffiffiffiffi
Y=m

p ð9:3Þ

has a noncentral t distribution with m degrees of freedom and noncentrality
parameter d. Note that when d = 0, the rv (9.3) matches the definition of the t dis-
tribution from Section 6.3 and thus has a tm distribution.

There is no closed-form expression for the noncentral t pdf when d 6¼ 0, and so software is essential
for calculations based on it. It can be shown (Exercise 38) that when l ¼ l0, the one-sample t test
statistic (9.2) has a noncentral t distribution with n – 1 df and noncentrality parameter

d ¼ l0 � l0
r=

ffiffiffi
n

p ð9:4Þ

Now consider determining the power of a lower-tailed one-sample t test; the upper-tailed and two-
tailed calculations proceed similarly. Let Fðx; m; dÞ denote the cdf of the noncentral t distribution. Then

power ¼ PðT � � ta;n�1 when l ¼ l0 rather than l0Þ

¼ P T � � ta;n�1 when T � noncentral t; df ¼ n� 1; d ¼ l0 � l0
r=

ffiffiffi
n

p
� �

¼ F �ta;n�1; n� 1;
l0 � l0
r=

ffiffiffi
n

p
� �
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Many statistical software packages can calculate this quantity once all the inputs are specified. As in
the previous discussion, substitutions of the form l′ = l0 + dr simplify power and b expressions and
do not require knowledge (or even an estimate) of r.

Example 9.14 The true average voltage drop from collector to emitter of insulated gate bipolar
transistors of a certain type is supposed to be at most 2.5 V. An investigator selects a sample of
n = 10 such transistors and uses the resulting voltages as a basis for testing H0: l = 2.5 versus
Ha: l > 2.5 using a t test with significance level a = .05. If the standard deviation of the voltage
distribution is r = .100, how likely is it that H0 will be (correctly) rejected when l = 2.6?

For the values specified, the t critical value is t:05;10�1 ¼ 1:833 and, using (9.4), the noncentrality

parameter is d ¼ ð2:6� 2:5Þ=ð:100= ffiffiffiffiffi
10

p Þ ¼ 3:162. For this upper-tailed test,

power ¼ PðT � t:05;10�1 when l ¼ 2:6 rather than 2:5Þ
¼ P T � 1:833 when T � noncentral t; df ¼ 9; d ¼ 3:162ð Þ
¼ 1� F 1:833; 9; 3:162ð Þ

The R command pt(1.833, df = 9, ncp = 3.162) reveals that F(1.833; 9, 3.162) = .1025,
so the power under these circumstances is 1 – .1025 = .8975. The value .1025 itself is b(2.6).

Rather than compute one power value at a time, software can be instructed to create one or more
power curves. Figure 9.5 shows Minitab power curves using the setting of this example for three
different sample sizes: n = 5, 10, and 20. The horizontal axis, labeled Difference, represents the
quantity l0 � l0. The previous power value of .8975 corresponds to the height of the n = 10 curve in
Figure 9.5 at horizontal value l0 � l0 = 2.6 – 2.5 = .1.

Figure 9.5 Power curves for Example 9.14
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Figure 9.5 reveals two intuitive features of the power of this t test. First, for any fixed difference
l0 � l0, power increases with sample size: the n = 20 power curve lies above the curves for the
smaller sample sizes. That is, for any fixed departure from H0, a larger sample size will increase the
likelihood of correctly detecting that H0 is false and Ha is true. Second, for any fixed sample size,
power increases as the “Difference” increases, i.e., as the distance between l′ and l0 grows. We are
more likely to reject H0: l = 2.5 in favor of Ha: l > 2.5 if the true value of l is 2.6, say, than if
l = l′ = 2.51, since the latter represents a very small departure from H0 and is thus much more
difficult to detect.

Software can also provide the sample size necessary to obtain a certain power or b at a specified
alternative value l′. For example, how large must n be to increase the power at l′ = 2.6 to 95%
(equivalently, reduce the chance of a type II error to b(2.6) = .05)? Figure 9.6 shows the result of
making the appropriate request to Minitab, from which the answer n = 13 is obtained.

Power and Sample Size

1-Sample t Test

Testing mean = null (versus > null)
Calculating power for mean = null + 0.1
Alpha = 0.05 Sigma = 0.1

Sample Size Target Power Actual Power
13 0.9500 0.9597

Figure 9.6 Minitab sample size output for Example 9.14 ■

Exercises: Section 9.2 (15–38)
15. Let the test statistic Z have a standard

normal distribution when H0 is true. Give
the significance level for each of the fol-
lowing situations:

a. Ha: l > l0, rejection region z � 1.88
b. Ha: l < l0, rejection region z � −2.75
c. Ha: l 6¼ l0, rejection region z � 2.88

or z � −2.88

16. Let the test statistic T have a t distribution
when H0 is true. Give the significance level
for each of the following situations:

a. Ha: l > l0, df = 15, rejection region
t � 3.733

b. Ha: l < l0, n = 24, rejection region
t � −2.500

c. Ha: l 6¼ l0, n = 31, rejection region
t � 1.697 or t � −1.697

17. The true average diameter of ball bearings
of a certain type is supposed to be .5 in.
A one-sample t test will be carried out to
see whether this is the case. What

conclusion is appropriate in each of the
following situations?
a. n = 13, t = 1.6, a = .05
b. n = 13, t = −1.6, a = .05
c. n = 25, t = −2.6, a = .01
d. n = 25, t = −3.9

18. The drying time (min) of a particular paint
on a test board under controlled conditions
is known to be normally distributed with
l = 75 and r = 9. A new additive has been
developed for the purpose of improving
drying time. The hypotheses H0: l = 75
versus Ha: l < 75 are to be tested using a
random sample of n = 25 observations.
Assume drying times are still normally
distributed with r = 9.
a. How many standard deviations (of �X)

below the null value is �x ¼ 72:3?
b. If �x ¼ 72:3, what is the conclusion

using a = .01?
c. What is a for the test procedure that

rejects H0 when z � −2.88?
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d. For the test procedure of part (c), what
is b(70)?

e. If the test procedure of part (c) is used,
what n is necessary to ensure that
b(70) = .01?

f. If a level .01 test is used with n = 100,
what is the probability of a type II error
when l = 76?

19. The melting point of each of 16 samples of
a brand of hydrogenated vegetable oil was
determined, resulting in �x ¼ 94:32. Assume
that the distribution of melting point is
normal with r = 1.20.
a. Test H0: l = 95 versus Ha: l 6¼ 95

using a two-tailed level .01 test.
b. If a level .01 test is used, what is b(94), the

probability of a type II error when l = 94?
c. What value of n is necessary to ensure

that b(94) = .1 when a = .01?

20. Answer the following questions for the tire
problem in Example 9.11.
a. If �x ¼ 30;960 and a level a = .01 test is

used, what is the decision?
b. If a level .01 test is used, what is

b(30,500)? What is the power at
l0= 30,500 miles?

c. If a level .01 test is used and it is also
required that b(30,500) = .05, what
sample size n is necessary?

d. If �x ¼ 30;960, what is the smallest a at
which H0 can be rejected (based on
n = 16)?

21. Lightbulbs of a certain type are advertised
as having an average lifetime of 750 h. The
price of these bulbs is very favorable, so a
potential customer has decided to go ahead
with a purchase arrangement unless it can
be conclusively demonstrated that the true
average lifetime is smaller than what is
advertised. A random sample of 50 bulbs
was selected, the lifetime of each bulb
determined, and the appropriate hypotheses
were tested, resulting in the accompanying
output.

Variable N Mean StDev SEMean Z P-Value

Lifetime 50 738.44 38.20 5.40 −2.14 0.016

What conclusion would be appropriate for
a significance level of .05? A significance
level of .01? What significance level and
conclusion would you recommend?

22. The industry standard for the amount of
alcohol poured into many types of drinks
(e.g., gin for a gin and tonic, whiskey on
the rocks) is 1.5 oz. Each individual in a
sample of 8 bartenders with at least 5 years
of experience was asked to pour rum for a
rum and coke into a short, wide (tumbler)
glass, resulting in the following data:

2.00 1.78 2.16 1.91 1.70 1.67 1.83 1.48

(Summary quantities agree with those given
in the article “Bottoms Up! The Influence
of Elongation on Pouring and Consumption
Volume,” J. Consumer Res. 2003: 455–
463.)
a. What does a boxplot suggest about the

distribution of the amount poured?
b. Carry out a test of hypotheses to decide

whether there is strong evidence for
concluding that the true average amount
poured differs from the industry standard.

c. Does the validity of the test you carried out
in (b) depend on any assumptions about
the population distribution? If so, check
the plausibility of such assumptions.

d. Suppose the actual standard deviation of
the amount poured is .20 oz. Determine
the probability of a type II error for the
test of (b) when the true average amount
poured is actually (1) 1.6, (2) 1.7,
(3) 1.8.

23. Exercise 46 in Chapter 1 gave n = 26
observations on escape time (sec) for oil
workers in a simulated exercise, from
which the sample mean and sample stan-
dard deviation are 370.69 and 24.36,
respectively. Suppose the investigators had
believed a priori that true average escape
time would be at most 6 min. Does the data
contradict this prior belief? Assuming nor-
mality, test the appropriate hypotheses
using a significance level of .05.
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24. Although the U.S. Food and Drug Admin-
istration recommends against using kitchen
utensils to dose liquid medicines, many
people still do so, resulting in dosing errors
and even pediatric poisonings. The letter
“Spoons Systematically Bias Dosing of
Liquid Medicine” (Annals of Internal Med.
2010: 66–67) reported on an experiment
involving a sample of 195 individuals.
Each individual was asked to pour exactly
5 mL of a liquid medication into a medium-
sized tablespoon whose capacity was
15 mL. The sample mean amount poured
was 4.58 mL and the sample standard
deviation was 2.55 mL. Does this data
indicate that the true average amount
poured is different from the desired dose?
Test at the .05 level.

25. Consider the following core wood density
measurements (g/mm3) from a sample of 25
canopy trees in western Thailand (“Radial
Variation of Wood Functional Traits
Reflect Size-Related Adaptations of Tree
Mechanics and Hydraulics,” Functional
Ecology 2017: 260–272)

391.2 431.0 447.1 375.3 470.7
543.7 592.7 546.7 601.8 598.8
492.3 454.4 548.7 494.9 585.6
647.8 639.2 700.4 640.1 620.5
755.2 668.7 644.6 717.7 663.0

a. Perform a hypothesis test at the .05 level
to determine if the true mean core wood
density differs from 600 g/mm3.

b. This data appeared in Example 8.11,
where a 95% CI for l was computed to
be (528.0, 613.8). Explain how the
results of your hypothesis test in part
(a) are consistent with this confidence
interval.

26. The article “Development of Novel Indus-
trial Laminated Planks from Sweetgum
Lumber” (J. Bridge Engr. 2008: 64–66)
provides the following data on the modulus
of rupture (psi) for a sample of planks:

6807.99 7637.06 6663.28 6165.03 6991.41 6992.23
6981.46 7569.75 7437.88 6872.39 7663.18 6032.28
6906.04 6617.17 6984.12 7093.71 7659.50 7378.61
7295.54 6702.76 7440.17 8053.26 8284.75 7347.95
7422.69 7886.87 6316.67 7713.65 7503.33 7674.99

a. Perform a hypothesis test at the .01 level to
determine if the true modulus of rupture for
this type of plank differs from 7500 psi.

b. A 99% confidence interval for l is
(6929.7, 7476.7); this was calculated
using the one-sample t interval of
Chapter 8. Explain how the results of your
hypothesis test in part (a) are consistent
with this confidence interval.

27. On the label, Pepperidge Farm bagels are said
to weigh four ounces each (113 g). A random
sample of six bagels resulted in the following
weights (in grams):

117.6 109.5 111.6 109.2 119.1 110.8

a. Based on this sample, is there any reason
to doubt that the population mean is at
least 113 g?

b. Suppose that the population mean is
actually 110 g and that the distribution is
normal with standard deviation 4 g. Based
on a z test of H0: l = 113 against
Ha: l < 113 with a = .05, find the proba-
bility of rejecting H0 with six observations.

c. Under the conditions of part (b) with
a = .05, how many more observations
would be needed in order for the power to
be at least .95?

28. The target thickness for silicon wafers used in
a type of integrated circuit is 245 lm.
A sample of 50 wafers is obtained and the
thickness of each one is determined, resulting
in a sample mean thickness of 246.18 lm
and a sample standard deviation of 3.60 lm.
Does this data suggest that true average wafer
thickness is something other than the target
value? Test at the .10 level.

29. A well-designed and safe workplace can
contribute greatly to increased productivity.
It is especially important that workers not be
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asked to perform tasks, such as lifting, that
exceed their capabilities. The accompanying
data on maximum weight of lift (MAWL, in
kg) for a frequency of four lifts/min was
reported in the article “The Effects of Speed,
Frequency, and Load on Measured Hand
Forces for a Floor-to-Knuckle Lifting Task”
(Ergonomics 1992: 833–843); subjects were
randomly selected from the population of
healthy males age 18–30. Assuming that
MAWL is normally distributed, does the
following data suggest that the population
mean MAWL exceeds 25? Test using a sig-
nificance level of .05.

25.8 36.6 26.3 21.8 27.2

30. The article “The Foreman’s View of Quality
Control” (Quality Engr 1990: 257–280)
described an investigation into the coating
weights for large pipes resulting from a gal-
vanized coating process. Production standards
call for a true average weight of 200 lb per
pipe. The accompanying descriptive summary
and boxplot are from Minitab.

Variable N Mean Median TrMean StDev SE
Mean

ctg wt 30 206.73 206.00 206.81 6.35 1.16
Variable Min Max Q1 Q3
ctg wt 193.00 218.00 202.75 212.00

200 210190 220

Coating weight

a. What does the boxplot suggest about the
status of the specification for true average
coating weight?

b. A normal probability plot of the data was
quite straight. Use the descriptive output
to test the appropriate hypotheses.

31. The amount of shaft wear (.0001 in.) after a
fixed mileage was determined for each of
n = 8 internal combustion engines having
copper lead as a bearing material, resulting in
�x ¼ 3:72 and s = 1.25.

a. Assuming that the distribution of shaft wear
is normal with mean l, use the t test at level
.05 to testH0:l = 3.50versusHa:l > 3.50.

b. Using r = 1.25, what is the type II error
probability b(l′) of the test for the alter-
native l′ = 4.00?

32. The recommended daily dietary allowance
for zinc among males older than age 50 years
is 15 mg/day. The article “Nutrient Intakes
and Dietary Patterns of Older Americans: A
National Study” (J. Gerontol. 1992: M145–
150) reports the following summary data on
intake for a sample of males age 65–
74 years: n = 115, �x ¼ 11:3, and s = 6.43.
Does this data indicate that average daily zinc
intake in the population of all males age 65–
74 falls below the recommended allowance?

33. In an experiment designed to measure the
time necessary for an inspector’s eyes to
become used to the reduced amount of light
necessary for penetrant inspection, the sam-
ple average time for n = 9 inspectors was
6.32 s and the sample standard deviation was
1.65 s. It has previously been assumed that
the average adaptation time was at least 7 s.
Assuming adaptation time to be normally
distributed, does the data contradict prior
belief? Use the t test with a = .1.

34. A sample of 12 radon detectors of a certain
type was selected, and each was exposed to
100 pCi/L of radon. The resulting readings
were as follows:

105.6 90.9 91.2 96.9 96.5 91.3
100.1 105.0 99.6 107.7 103.3 92.4

a. Does this data suggest that the population
mean reading under these conditions dif-
fers from 100? State and test the appro-
priate hypotheses using a = .05.

b. Suppose that prior to the experiment, a
value of r = 7.5 had been assumed. How
many determinations would then have
been appropriate to obtain b = .10 for the
alternative l = 95? [Note: Software
required.]
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35. Show that for any D > 0, when the popula-
tion distribution is normal and r is known,
the two-tailed test satisfies b(l0 − D) =
b(l0 + D), so that b(l′) is symmetric about l0.

36. For a fixed alternative value l′, show that
b(l′) ! 0 as n ! 1 for either a one-tailed
or a two-tailed z test in the case of a normal
population distribution with known r.

37. Let Fðx; m; dÞ denote the cdf of the noncentral
t distribution.

a. Determine the power function of an
upper-tailed one-sample t test in terms of

F. [Hint: Imitate the steps shown for the
lower-tailed case in this section.]

b. Repeat part (a) for the two-tailed one-
sample t test.

38. Show that when l ¼ l0, the one-sample
t statistic (9.2) has a noncentral t distribution
with n – 1 df and noncentrality parameter d
given by (9.4). [Hint: ð�X � l0Þ=ðr= ffiffiffi

n
p Þ has a

standard normal distribution. Re-write (9.2)
and follow the steps in Section 6.4 that showed
why ð�X � lÞ=ðS= ffiffiffi

n
p Þ has a tn�1 distribution.]

9.3 Tests About a Population Proportion

Let p denote the proportion of individuals or objects in a population who possess a specified property
(e.g., students who graduate college debt-free or former smokers who now vape). If an individual or
object with the property is labeled a success (S), then p is the population proportion of successes.
Tests concerning p will be based on a random sample of size n from the population. Provided that n is
small relative to the population size, the rv X = the number of S’s in the sample has at least
approximately a binomial distribution. Furthermore, if n itself is large, both X and the estimator
P̂ ¼ X=n are approximately normally distributed. We first consider large-sample tests based on this
latter fact and then turn to the small-sample case that directly uses the binomial distribution.

Large-Sample Tests
The estimator P̂ ¼ X=n is unbiased [EðP̂Þ ¼ p], has approximately a normal distribution, and its

standard deviation is rP̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=np

. These facts were used in Section 8.3 to obtain a confidence

interval for p. When H0: p = p0 is true, EðP̂Þ ¼ p0 and rP̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
. It then follows that when

n is large and H0 is true, the test statistic

Z ¼ P̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p ð9:5Þ

has approximately a standard normal distribution.
Test procedures based on (9.5) can then be developed in a fashion similar to those of the first half

of Section 9.2. For instance, if the alternative hypothesis is Ha: p > p0 and the upper-tailed rejection
region z � za is used, then

Pðtype I errorÞ ¼ PðH0 is rejected when it is trueÞ
¼ PðZ � za when Z has approximately a standard normal distributionÞ � a

Thus the desired level of significance a is attained by using the critical value that captures area a in the
upper tail of the z curve. Rejection regions for the other two alternative hypotheses, lower-tailed for
Ha: p < p0 and two-tailed for Ha: p 6¼ p0, are justified in an analogous manner.
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THE ONE-PROPOR-
TION z TEST

Null hypothesis: H0: p = p0

Test statistic value: z ¼ p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p

Alternative Hypothesis Rejection Region for Level a Test
Ha: p > p0 z � za (upper-tailed)
Ha: p < p0 z � −za (lower-tailed)
Ha: p 6¼ p0 either z � za/2 or z � −za/2 (two-tailed)

These test procedures are valid provided that both np0 � 10 and
n(1 − p0) � 10.

Example 9.15 Obesity is an increasing problem in America among all age groups. The article
“Factors Affecting Obesity and Waist Circumference Among U.S. Adults” (Prevention of Chronic
Diseases 2019) reported that 686 individuals in a sample of 2014 adult men were found to be obese
(a body mass index exceeding 30; this index is a measure of weight relative to height). An earlier
survey based on people’s own assessment revealed that 20% of adult Americans considered them-
selves obese. Does the recent data suggest that the true proportion of men who are obese is more than
1.5 times the percentage from the self-assessment survey? Let’s carry out a test of hypotheses using a
significance level of .10.

1. p = the proportion of all American men who are obese.
2. Saying that the current percentage is 1.5 times the self-assessment percentage is equivalent to the

assertion that the current percentage is 30%, from which we have the null hypothesis H0: p = .30.
The phrase “more than” in the question implies that the alternative hypothesis is Ha: p > .30.

3. Since np0 = 2014(.3) � 10 and nq0 = 2014(.7) � 10, the large-sample z test can certainly be used.
4. The test statistic value is

z ¼ ðp̂� :3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:3Þð:7Þ=n

p
5. The form of Ha implies that an upper-tailed test is appropriate: Reject H0 if z � z.10 = 1.28.

6. p̂ ¼ 686=2014 ¼ :341, from which z ¼ ð:341� :3Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:3Þð:7Þ=2014p ¼ 3:98:
7. Since 3.98 exceeds the critical value 1.28, z lies in the rejection region. This justifies rejecting the

null hypothesis. Using a significance level of .10, it does appear that more than 30% of American
adult men are obese. ■

Power, b, and Sample Size Determination for the One-Proportion z Test
When H0 is true, the test statistic Z has approximately a standard normal distribution. Now suppose
that H0 is not true and that p = p′. Then Z still has approximately a normal distribution (because it is a
linear function of P̂), but its mean value and variance are no longer 0 and 1, respectively. Instead,

EðZÞ ¼ p0 � p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p VðZÞ ¼ p0ð1� p0Þ=n
p0ð1� p0Þ=n

The power for an upper-tailed test is P(Z � za when p = p′), whereas the chance of a type II error is
b(p′) = P(Z < za when p = p′). These can be computed by using the given mean and variance to
standardize and then referring to the standard normal cdf. In addition, if it is desired that the level a
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test also have b(p′) = b for a specified value of b, this equation can be solved for the necessary n as in
Section 9.2. General expressions for b(p′) and n are given in the accompanying box.

Alternative Hypothesis b(p′)

Ha: p > p0
U

p0 � p0 þ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
ffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
 !

Ha: p < p0
1� U

p0 � p0 � za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
ffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
 !

Ha: p 6¼ p0
U

p0 � p0 þ za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
ffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
 !

� U
p0 � p0 � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
ffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
 !

where q0 ¼ 1�p0, q0 ¼ 1�p0, and U(z) = the standard normal cdf. For each case, power = 1 – b(p′).
The sample size n for which the level a test also satisfies b(p′) = b is

n ¼
za

ffiffiffiffiffiffiffiffiffi
p0q0

p þ zb
ffiffiffiffiffiffiffiffi
p0q0

p
p0 � p0

	 
2
one-tailed test

za=2
ffiffiffiffiffiffiffiffiffi
p0q0

p þ zb
ffiffiffiffiffiffiffiffi
p0q0

p

p0 � p0

	 
2
two-tailed test (an approximate solution)

8>>><
>>>:

Example 9.16 A package-delivery service advertises that at least 90% of all packages brought to its
office by 9 a.m. for delivery in the same city are delivered by noon that day. Let p denote the true
proportion of such packages that are delivered as advertised and consider the hypotheses H0: p = .9 versus
Ha: p < .9. If only 80% of all packages are delivered as advertised, how likely is it that a level .01 test based
on n = 225 packages will detect such a departure from H0? With a = .01, p0 = .9, p′ = .8, and n = 225,

bð:8Þ ¼ 1� U
:9� :8� 2:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:9Þð:1Þ=225p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:8Þð:2Þ=225p

" #
¼ 1� Uð2:00Þ ¼ :0228

Thus the probability that H0 will be rejected using the test when p = .8—the power of the test
procedure—is 1 – .0228 = .9772. Roughly 98% of all samples of size 225 will result in correct
rejection of H0.

What should the sample size be to ensure 99% power when p is actually .8? The 99% power
requirement is equivalent to b(.8) = .01. Using za = zb = z.01= 2.33 in the sample size formula yields

n ¼ 2:33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:9Þð:1Þp þ 2:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:8Þð:2Þp
:8� :9

" #2
� 266 ■

Small-Sample Tests
Test procedures when the sample size n is small are based directly on the binomial distribution rather
than the normal approximation. Consider the alternative hypothesis Ha: p > p0 and again let X be the
number of successes in the sample. Then X is the test statistic, and the upper-tailed rejection region
has the form x � c. When H0 is true, X has a binomial distribution with parameters n and p0, so
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Pðtype I errorÞ ¼ PðH0 is rejected when it is trueÞ
¼ PðX� c when X�Binðn; p0ÞÞ
¼ 1� PðX� c� 1 when X�Binðn; p0ÞÞ
¼ 1� Bðc� 1; n; p0Þ

As the critical value c decreases, more x values are included in the rejection region and P(type I error)
increases. Because X has a discrete probability distribution, it is usually not possible to find a value of
c for which P(type I error) is exactly the desired significance level a (e.g., .05 or .01). Instead, the
largest rejection region of the form {c, c + 1, …, n} satisfying 1 − B(c − 1; n, p0) � a is used.

Let p′ denote a value of p consistent with the alternative hypothesis (so p′ > p0). When p = p′,
X * Bin(n, p′), so

bðp0Þ ¼ Pðtype II error when p ¼ p0Þ ¼ PðX\c when X�Binðn; p0ÞÞ
¼ Bðc� 1; n; p0Þ

and power = 1 – b(p′). Both of these are straightforward binomial probability calculations. On the
other hand, the sample size n necessary to ensure that a level a test also has specified b at a particular
alternative value p′ must be determined by trial and error using the binomial cdf.

Test procedures for Ha: p < p0 and for Ha: p 6¼ p0 are constructed in a similar manner. In the
former case, the appropriate rejection region has the form x � c (a lower-tailed test). The critical
value c is the largest number satisfying B(c; n, p0) � a. The rejection region when the alternative
hypothesis is Ha: p 6¼ p0 consists of both large and small x values.

Example 9.17 A plastics manufacturer has developed a new type of plastic trash can and proposes
to sell them with an unconditional 6-year warranty. To see whether this is economically feasible, 20
prototype cans are subjected to an accelerated life test to simulate 6 years of use. The proposed
warranty will be modified only if the sample data strongly suggests that fewer than 90% of such cans
would survive the 6-year period. Let p denote the proportion of all cans that would survive the
accelerated test. The relevant hypotheses are then H0: p = .9 versus Ha: p < .9. A decision will be
based on the test statistic X, the number among the 20 that survive. If the desired significance level is
a = .05, then c must satisfy B(c; 20, .9) � .05. From Appendix Table A.1, B(15; 20, .9) = .043 and
B(16; 20, .9) = .133. The appropriate rejection region is therefore x � 15. If the accelerated test
results in x = 14, H0 would be rejected in favor of Ha, necessitating a modification of the proposed
warranty. The probability of a type II error for the alternative value p′ = .8 is

bð:8Þ ¼ PðH0 is not rejected when X�Binð20; :8ÞÞ
¼ PðX[ 15 when X�Binð20; :8ÞÞ
¼ 1� Bð15; 20; :8Þ ¼ 1� :370 ¼ :630

That is, when p = .8, 63% of all samples consisting of n = 20 cans would result in H0 being
incorrectly not rejected; the power of this test procedure is just 37%. This error probability is high
because 20 is a small sample size and p′ = .8 is close to the null value p0 = .9. ■
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Exercises: Section 9.3 (39–48)

39. State DMV records indicate that of all
vehicles undergoing emissions testing dur-
ing the previous year, 70% passed on the
first try. A random sample of 200 cars
tested in a particular county during the
current year yields 124 that passed on the
initial test. Does this suggest that the true
proportion for this county during the cur-
rent year differs from the previous state-
wide proportion? Test the relevant
hypotheses using a = .05.

40. Natural cork in wine bottles is subject to
deterioration, and as a result wine in such
bottles may experience contamination. The
article “Effects of Bottle Closure Type on
Consumer Perceptions of Wine Quality”
(Amer. J. Enology Viticulture 2007: 182–
191) reported that in a tasting of commercial
chardonnays, 16 of 91 bottles were consid-
ered spoiled to some extent by cork-
associated characteristics. Does this data
provide strong evidence for concluding that
more than 15% of all such bottles are con-
taminated in this way? Carry out a test of
hypotheses using a significance level of .10.

41. A manufacturer of nickel–hydrogen batter-
ies randomly selects 100 nickel plates for
test cells, cycles them a specified number of
times, and determines that 14 of the plates
have blistered.
a. Does this provide compelling evidence

for concluding that more than 10% of all
plates blister under such circumstances?
State and test the appropriate hypothe-
ses using a significance level of .05. In
reaching your conclusion, what type of
error might you have committed?

b. If it is really the case that 15% of all
plates blister under these circumstances
and a sample size of 100 is used, how
likely is it that the null hypothesis of
part (a) will not be rejected by the level
.05 test? Answer this question for a
sample size of 200.

c. How many plates would have to be
tested to have b(.15) = .10 for the test
of part (a)?

42. A random sample of 150 recent donations
at a blood bank reveals that 82 were type A
blood. Does this suggest that the actual
percentage of type A donations differs from
40%, the percentage of the population
having type A blood? Carry out a test of the
appropriate hypotheses using a significance
level of .01. Would your conclusion have
been different if a significance level of .05
had been used?

43. A university library ordinarily has a com-
plete shelf inventory done once every year.
Because of new shelving rules instituted the
previous year, the head librarian believes it
may be possible to save money by post-
poning the inventory. The librarian decides
to select at random 1000 books from the
library’s collection and have them searched
in a preliminary manner. If evidence indi-
cates strongly that the true proportion of
misshelved or unlocatable books is <.02,
then the inventory will be postponed.

a. Among the 1000 books searched, 15
were misshelved or unlocatable. Test
the relevant hypotheses and advise the
librarian what to do (use a = .05).

b. If the true proportion of misshelved and
lost books is actually .01, what is the
probability that the inventory will be
(unnecessarily) taken?

c. If the true proportion is .05, what is the
probability that the inventory will be
postponed?

44. The authors of the article “Luck of the
Draw: Creating Chinese Brand Names”
(J. of Advertising Res. 2008: 523–530)
counted the number of “strokes” in the
characters for the names of 1202 Chinese
brand names. Certain totals for the number
of strokes are considered lucky in Chinese
culture, and the researchers hypothesized
that a majority of Chinese brand names
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would have a “lucky” number of strokes.
Among the 1202 names sampled, 715 had a
“lucky” number of strokes. Test the
researchers’ hypothesis at the a = .01 sig-
nificance level.

45. A plan for an executive traveler’s club has
been developed by an airline on the premise
that 5% of its current customers would
qualify for membership. A random sample
of 500 customers yielded 40 who would
qualify.

a. Using this data, test at level .01 the null
hypothesis that the company’s premise
is correct against the alternative that it is
not correct.

b. What is the probability that when the test
of part (a) is used, the company’s pre-
mise will be judged correct when in fact
10% of all current customers qualify?

46. Each of a group of 20 intermediate tennis
players is given two rackets, one having
nylon strings and the other synthetic gut
strings. After several weeks of playing with
the two rackets, each player will be asked to
state a preference for one of the two types
of strings. Let p denote the proportion of all
such players who would prefer gut to
nylon, and let X be the number of players in
the sample who prefer gut. Because gut
strings are more expensive, consider the
null hypothesis that at most 50% of all such
players prefer gut. We simplify this to H0:
p = .5, planning to reject H0 only if sample
evidence strongly favors gut strings.

a. Whichof the rejection regions {15, 16, 17,
18, 19, 20}, {0, 1, 2, 3, 4, 5}, or {0, 1, 2, 3,
17, 18, 19, 20} is most appropriate, and
why are the other two not appropriate?

b. What is the probability of a type I error
for the chosen region of part (a)? Does
the region specify a level .05 test? Is it
the best level .05 test?

c. If 60% of all enthusiasts prefer gut,
calculate the probability of a type II
error using the appropriate region from
part (a). Repeat if 80% of all enthusiasts
prefer gut.

d. If 13 out of the 20 players prefer gut,
should H0 be rejected using a signifi-
cance level of .10?

47. A manufacturer of plumbing fixtures has
developed a new type of washerless faucet.
Let p = P(a randomly selected faucet of
this type will develop a leak within 2 years
under normal use). The manufacturer has
decided to proceed with production unless
it can be determined that p is too large; the
borderline acceptable value of p is specified
as .10. The manufacturer decides to subject
n of these faucets to accelerated testing
(approximating 2 years of normal use).
With X = the number among the n faucets
that leak before the test concludes, pro-
duction will commence unless the observed
X is too large. It is decided that if p = .10,
the probability of not proceeding should be
at most .10, whereas if p = .30 the proba-
bility of proceeding should be at most .10.
Can n = 10 be used? n = 20? n = 25?
What is the appropriate rejection region for
the chosen n, and what are the actual error
probabilities when this region is used?

48. Scientists have recently become concerned
about the safety of Teflon cookware and
various food containers because
perfluorooctanoic acid (PFOA) is used in
the manufacturing process. An article in the
July 27, 2005, New York Times reported
that of 600 children tested, 96% had PFOA
in their blood. According to the FDA, 90%
of all Americans have PFOA in their blood.
a. Does the data on PFOA incidence

among children suggest that the per-
centage of all children who have PFOA
in their blood exceeds the FDA per-
centage for all Americans? Carry out an
appropriate test of hypotheses.

b. If 95% of all children have PFOA in
their blood, how likely is it that the null
hypothesis tested in (a) will be rejected
when a significance level of .01 is
employed?

c. Referring back to (b), what sample size
would be necessary for the relevant
probability to be .10?
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9.4 P-Values

Using the rejection region method to test hypotheses entails first selecting a significance level a. Then
after computing the value of the test statistic, the null hypothesis H0 is rejected if the value falls in the
rejection region and is otherwise not rejected. We now consider another way of reaching a conclusion
in a hypothesis-testing analysis. This alternative approach is based on calculation of a certain
probability called a P-value. One advantage is that the P-value provides an intuitive measure of the
strength of evidence in the data against H0.

DEFINITION The P-value is the probability, calculated assuming that the null hypothesis is true,
of obtaining a value of the test statistic at least as contradictory to H0 as the value
calculated from the available sample.

The definition is quite a mouthful! Here are some key points:

• The P-value is a probability.
• This probability is calculated assuming that H0 is true.
• The P-value is a function of the sample data.
• To determine the P-value, we must decide which values of the test statistic are “at least as

contradictory to H0” as the value obtained from our sample.

Example 9.18 Urban storm water can be contaminated by many sources, including discarded
batteries. When ruptured, these batteries release metals of environmental significance. The paper
“Urban Battery Litter” (J. Environ. Engr. 2009: 46–57) presented summary data for characteristics of
a variety of batteries found in urban areas around Cleveland. A sample of 51 Panasonic AAA batteries
gave a sample mean zinc mass of 2.06 g and a sample standard deviation of .141 g. Does this data
provide compelling evidence for concluding that the population mean zinc mass exceeds 2.0 g?

With l denoting the true average zinc mass (g) for such batteries, the relevant hypotheses are
H0: l = 2.0 versus Ha: l > 2.0. The sample size is large enough so that the one-sample t test can be
used without making any specific assumption about the shape of the population distribution. The test
statistic value is

t ¼ �x� 2:0
s=

ffiffiffi
n

p ¼ 2:06� 2:0

:141=
ffiffiffiffiffi
51

p ¼ 3:04

Now we must decide which values of t are “at least as contradictory to H0.” Let’s first consider an
easier task: Which values of �x are at least as contradictory to the null hypothesis as 2.06 g, the mean
of the observations in our sample? Because > appears in Ha, it should be clear that 2.10 g is at least as
contradictory to H0 as is 2.06, so is 2.25, and so in fact is any �x value that exceeds 2.06. An �x value
that exceeds 2.06 g corresponds to a value of t that exceeds 3.04. Thus the P-value is

P-value ¼ PðT � 3:04 when l ¼ 2:0Þ

Since the test statistic T was created by subtracting the null value 2.0 in the numerator, when l = 2.0
(i.e., when H0 is true) T has approximately a t distribution with 51 – 1 = 50 df. As a result,
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P-value ¼ PðT � 3:04 when l ¼ 2:0Þ
� area under the t50 curve to the right of 3:04

� :0019

The area under the t curve was determined using software. ■

We will shortly illustrate how to determine the P-value for any z or t test; that is, any test where the
reference distribution is the standard normal or some t distribution. For the moment, though, let’s
focus on reaching a conclusion once the P-value is available. Because it is a probability, the P-value
must be between 0 and 1. What kinds of P-values provide evidence against the null hypothesis?
Consider two specific instances:

• P-value = .250: In this case, fully 25% of all possible test statistic values are more contradictory to
H0 than the one that came out of our sample. So our data is not all that contradictory to the null
hypothesis: even if H0 is true, we’d see “more extreme” data than ours one-quarter of the time.

• P-value = .0019: Here, only .19% of all possible test statistic values are at least as contradictory to
H0 as what we obtained. Thus the sample appears to be highly contradictory to the null hypothesis.

More generally, the smaller the P-value, the more evidence there is in the sample data against the
null hypothesis and for the alternative hypothesis. That is, H0 should be rejected in favor of Ha when
the P-value is sufficiently small. So what constitutes “sufficiently small”?

Whatever rule we use, it should not result in decisions that contradict the rejection region pro-
cedures we have seen previously. Consider, for instance, an upper-tailed z test at the a = .01 level, for
which the z critical value is z.01 = 2.33. Using precisely the logic of the previous example, the P-value
of the hypothesis test should be the area under the standard normal curve to the right of the observed
test statistic value z. Two such possible P-values are illustrated in Figure 9.7. But the rejection region
already prescribes that we should reject H0 if z � 2.33 and fail to reject H0 if z < 2.33. Figure 9.7a
shows that for any z value in the rejection region, the resulting P-value will be � .01; conversely, as
seen in Figure 9.7b, the P-value will be > .01 precisely when z < 2.33, instructing us to not reject H0.

The preceding illustration generalizes to other tests (lower- and two-tailed, t as well as z) and other
significance levels, leading to the following decision rule.

z2.33

P-value < .01

z 2.33

P-value > .01

a b

Figure 9.7 P-values for an upper-tailed z test: (a) P-value � .01 if z � 2.33 (reject H0);
(b) P-value > .01 if z < 2.33 (do not reject H0)
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DECISION RULE BASED
ON THE P-VALUE

Select a significance level a (as before, the desired type I error
probability). Then reject H0 if P-value� a; do not reject H0 if
P-value[ a.

Figure 9.8 provides an easy way to visualize the decision rule. The calculation of the P-value depends
on whether the test is upper-, lower-, or two-tailed. However, once it has been calculated, the
comparison with a does not depend on which type of test was used.

In Example 9.18, we calculated P-value = .0019. Then using a significance level of .01, we would
reject the null hypothesis in favor of the alternative hypothesis because .0019 � .01. However,
suppose we had selected a significance level of .001, which requires more substantial evidence from
the data before H0 can be rejected. In this case we would not reject H0 because .0019 > .001. Note
that a should be specified before data is collected and the P-value calculated. It would be unethical to
compute the P-value first and then select a significance level that would guarantee the desired
outcome (e.g., deliberately choosing a greater than the P-value so that H0 is rejected).

Example 9.19 The true average time to initial relief of pain for a best-selling pain reliever is known
to be 10 min. Let l denote the true average time to relief for a company’s newly developed reliever.
Suppose that when data from an experiment involving the new pain reliever was analyzed, the
P-value for testing H0: l = 10 versus Ha: l < 10 was calculated as .0384. Since the P-value is less
than a = .05, H0 would be rejected by anyone carrying out the test at level .05. However, at level .01,
H0 would not be rejected because .0384 > .01. Again, a should be specified in advance of analyzing
the data. ■

The most widely used statistical computer packages automatically include a P-value when a
hypothesis-testing analysis is performed. A conclusion can then be drawn directly from the output,
without reference to a table of critical values. With the P-value in hand, an investigator can see at a
quick glance whether H0 should be rejected at the prescribed a level. In addition, knowing the P-value
allows a decision maker to distinguish between a close call (e.g., a = .05, P-value = .0498) and a
very clear-cut conclusion (e.g., a = .05, P-value = .0003), something that would not be possible just
from the statement “H0 can be rejected at significance level .05.”

P-Values for z Tests
The P-value for a z test (i.e., one based on a test statistic whose distribution when H0 is true is at least
approximately standard normal) is easily determined from the information in Appendix Table A.3.
Consider an upper-tailed test and let z denote the computed value of the test statistic Z. As illustrated
in Figure 9.7, the P-value is just the area to the right of the computed value z under the standard
normal curve. The corresponding cumulative area is U(z), so in this case P-value = 1� UðzÞ. An
analogous argument for a lower-tailed test shows that the P-value is the area captured by the
computed value z in the lower tail of the standard normal curve, UðzÞ.

0 1

P-value

Fail to Reject H
0

Reject H
0

α

Figure 9.8 Comparing a and the P-value
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More care must be exercised in the case of a two-tailed test. Suppose first that z is positive. We
know to reject H0 if and only if z � za/2, which occurs precisely when 1� UðzÞ� a=2, or
2½1� UðzÞ� � a. Comparing this to the earlier decision rule, we infer that the P-value is precisely the
quantity 2½1� UðzÞ�. If z is negative, a similar argument leads to P-value = 2½1� Uð�zÞ�. Since
−z = |z| when z is negative, the P-value = 2[1 − U(|z|)] for either positive or negative z.

P-value ¼
1� UðzÞ for an upper-tailed test
UðzÞ for a lower-tailed test
2 1� U zj jð Þ½ � for a two-tailed test

8<
:

Each of these is the probability of getting a value at least as extreme as what was obtained (assuming
H0 true). The three cases are illustrated in Figure 9.9.

The next example illustrates the use of the P-value approach to hypothesis testing by means of a
sequence of steps modified from our previously recommended sequence.

Example 9.20 A Gallup poll (reported July 15, 2019) found that 29% of 1018 U.S. adults support
statehood for the District of Columbia. Thirty years prior, 31% of U.S. adults held this opinion. Does
the 2019 sample provide convincing statistical evidence at the a = .10 level that the proportion of
U.S. adults supporting DC statehood changed over those thirty years?

1. Parameter of interest: p = proportion of all U.S. adults in 2019 who support statehood for the
District of Columbia

z curve

z curve

z curve

Calculated z

Calculated z

Calculated z, −z

0

0

0

1.  Upper-tailed test
Ha contains the inequality >

Ha contains the inequality <

Ha contains the inequality ≠

2. Lower-tailed test

3.  Two-tailed test

P-value = area in upper tail = 1 – Φ(z)

P-value = area in lower tail

= Φ(z)

P-value = sum of area in two tails = 2[1 – Φ(|z|)]

Figure 9.9 Determination of the P-value for a z test
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2. Null hypothesis: H0: p = .31 (no change since 1989)
Alternative hypothesis: Ha: p 6¼ .31

3. Assuming H0 is true, np = np0 = 1018(.31) � 10 and nq = nq0 = 1018(1 – .31) � 10. Thus, a
one-proportion z test may be applied.

4. Formula for test statistic value: z ¼ p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p ¼ p̂� :31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:31Þð:69Þ=np
5. Calculation of test statistic value: z ¼ :29� :31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:31Þð:69Þ=1018p ¼ �1:38

6. Determination of P-value: Because the test is two-tailed,

P-value ¼ 2½1� Uðj �1:38jÞ� ¼ :1676

7. Conclusion: Using a significance level of .10, H0 would not be rejected since .1676 > .10. At this
significance level, there is insufficient evidence to conclude that the proportion of U.S. adults who
support DC becoming a state changed over thirty years. ■

P-Values for t Tests
Just as the P-value for a z test is a z curve area, the P-value for a t test will be a t curve area. Figure 9.9
illustrates the three possible cases: simply replace each z value or z curve with a t value or t curve. The
number of df for the one-sample t test is n − 1.

The table of t critical values used previously for confidence and prediction intervals doesn’t
contain enough information about any particular t distribution to allow for accurate determination of
desired areas, so we have included another t table in Appendix Table A.7, one that contains a
tabulation of upper-tail t curve areas. Each different column of the table is for a different number of df,
and the rows are for calculated values of the test statistic t ranging from 0.0 to 4.0 in increments of .1.
For example, the number .074 appears at the intersection of the 1.6 row and the 8 df column, so the
area under the 8 df curve to the right of 1.6 (an upper-tail area) is .074. Because t curves are
symmetric, .074 is also the area under the 8 df curve to the left of −1.6 (a lower-tail area).

Suppose, for example, that a test ofH0: l = 100 versusHa: l > 100 is based on the 8 df t distribution.
If the calculated value of the test statistic is t = 1.6, then the P-value for this upper-tailed test is .074.
Because .074 exceeds .05, we would not be able to reject H0 at a significance level of .05. If the
alternative hypothesis isHa: l < 100 and a test based on 20 df yields t = −3.2, then Appendix Table A.7
shows that the P-value is the captured lower-tail area .002. The null hypothesis can be rejected at either
level .05 or .01. Finally, forHa: l 6¼ 100 if a t test is based on 20 df and t = 3.2, then the P-value for this
two-tailed test is 2(.002) = .004. This would also be the P-value for t = −3.2. The tail area is doubled
because values both larger than 3.2 and smaller than −3.2 are more contradictory to H0 than what was
calculated (values farther out in either tail of the t curve; see the bottom graph in Figure 9.9).

Example 9.21 The recommended daily intake of calcium for adults ages 18–30 is 1000 mg/day.
The article “Dietary and Total Calcium Intakes Are Associated with Lower Percentage Total Body
and Truncal Fat in Young, Healthy Adults” (J. Amer. College of Nutr. 2011: 484–490) reported the
following summary data for a sample of 76 healthy Caucasian males from southwestern Ontario,
Canada: n = 76, �x = 1093, s = 477. Let’s carry out a test at significance level .01 to see whether the
population mean daily intake exceeds the recommended value.

1. l = the mean daily calcium intake for this population (healthy Caucasian males from south-
western Ontario)

2. H0: l = 1000
Ha: l > 1000
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3. Since n = 76 > 40, the one-sample t test is valid here (even if the calcium intake distribution is not
normally distributed).

4. t ¼ �x� 1000
s=

ffiffiffi
n

p

5. t ¼ 1093� 1000

477=
ffiffiffiffiffi
76

p ¼ 1:70

6. The P-value is the area under the t75 curve to the right of 1.70 (the inequality in Ha implies that the
test is upper-tailed). From Table A.7, this area is between .047 (the upper-tail area at 60 df) and
.046 (the upper-tail area at 120 df). Software gives a P-value of .0467.

7. Because this P-value is larger than .01, H0 cannot be rejected. There is not compelling evidence to
conclude at significance level .01 that the population mean daily intake exceeds the recommended
value (even though the sample mean does so). Note that the opposite conclusion would result from
using a significance level of .05. But the smaller a that we used requires more persuasive evidence
from the data before rejecting H0. ■

More on Interpreting P-Values
The P-value resulting from carrying out a test on a selected sample is not the probability that H0 is
true, nor is it the probability of rejecting the null hypothesis. Once again, it is the probability,
calculated assuming that H0 is true, of obtaining a test statistic value at least as contradictory to the
null hypothesis as the value that actually resulted. For example, consider testing H0: l = 50 against
H0: l < 50 using a lower-tailed z test. If the calculated value of the test statistic is z = −2.00, then

P-value ¼ UðzÞ ¼ Uð�2:00Þ ¼ :0228

But if a second sample is selected, the resulting value of z will almost surely be different from −2.00,
so the corresponding P-value will also likely differ from .0228. Because the test statistic value itself
varies from one sample to another, the P-value will also vary from one sample to another. That is, the
test statistic is a random variable, and so the P-value will also be a random variable. A first sample
may give a P-value of .0228, a second sample result in a P-value of .1175, a third yield .0606 as the
P-value, and so on.

If H0 is false, we hope the P-value will be close to 0 so that the null hypothesis can be rejected. On
the other hand, when H0 is true, we’d like the P-value to exceed the selected significance level so that
the correct decision to not reject H0 is made. The next example presents simulations to show how the
P-value behaves both when the null hypothesis is true and when it is false.

Example 9.22 The fuel efficiency (mpg) of any particular new vehicle under specified driving
conditions may not be identical to the EPA figure that appears on the vehicle’s sticker. Suppose that
four different vehicles of a particular type are to be selected and driven over a certain course, after
which the fuel efficiency of each one is to be determined. Let l denote the true average fuel efficiency
under these conditions.

Consider testing H0: l = 30 versus H0: l > 30 using the one-sample t test based on the resulting
sample. Since the test is based on n − 1 = 3 degrees of freedom, the P-value for an upper-tailed test is
the area under the t curve with 3 df to the right of the calculated t.

Let’s first suppose that H0 is true. We used software to generate 10,000 different samples, each
containing 4 observations, from a normal population distribution with mean value l = 30 and
standard deviation r = 2. The first sample and resulting summary quantities were
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x1 ¼ 30:830; x2 ¼ 32:232; x3 ¼ 30:276; x4 ¼ 27:718 )
�x ¼ 30:264 s ¼ 1:8864 t ¼ 30:264� 30

1:8864=
ffiffiffi
4

p ¼ :2799

The P-value is the area under the t3 curve to the right of .2799, which according to software is .3989.
Using a significance level of .05, the null hypothesis would of course not be rejected. The values of
t for the next four samples were −1.7591, .6082, −.7020, and 3.1053, with corresponding P-values
.912, .293, .733, and .0265.

Figure 9.10a (p. 575) shows a histogram of the 10,000 P-values from this simulation experiment.
About 4.5% of these P-values are in the first class interval from 0 to .05. Thus when using a
significance level of .05, the null hypothesis is rejected in roughly 4.5% of these 10,000 tests. If we
continue to generate samples and carry out the test for each one at significance level .05, in the long
run 5% of the P-values will be in the first class interval—because when H0 is true and a test with
significance level .05 is used, by definition the probability of rejecting H0 (i.e., of committing a type I
error) is .05.

Looking at the histogram, it appears that the distribution of P-values is relatively flat. In fact, it can
be shown that when H0 is true, the probability distribution of the P-value is a uniform [0, 1]
distribution. Since PðU� :05Þ ¼ :05 for a Uniform [0, 1] rv, we again have that the probability of
rejecting H0 when it is true is .05, the chosen significance level.

Now consider what happens when H0 is false because l = 31. We again generated 10,000 different
samples of size 4, but now each from a normal distribution with l = 31 and r = 2. The t statistic and
P-value were calculated as before for each sample, and Figure 9.10b gives a histogram of the 10,000
resulting P-values. The shape of this histogram is quite different from that of Figure 9.10a: there is a
much greater tendency for the P-value to be small (closer to 0) when l = 31 than when l = 30. Again
H0 is rejected at significance level .05 whenever the P-value is at most .05 (in the first class interval).
Unfortunately this is the case for only about 19% of the 10,000 P-values. So only about 19% of the
10,000 tests correctly reject the null hypothesis (an estimate of the test’s power); for the other 81%, a
type II error is committed. The difficulty is that the sample size is extremely small and 31 is not very
different from the value asserted by the null hypothesis.

Figure 9.10c illustrates what happens to the P-value when H0 is false because l = 32 (still with
n = 4 and r = 2). The histogram is even more concentrated toward values close to 0 than was the
case when l = 31. In general, as l moves further to the right of the null value 30, the distribution of
the P-values will become more and more concentrated on values close to 0. Even here, a bit fewer
than 50% of the 10,000 P-values are smaller than .05. So it is still slightly more likely than not that
the null hypothesis is incorrectly not rejected, principally because n is so small.

The big idea of this example is that because the value of any test statistic is random, the P-value
will also be a random variable and thus have a distribution. The farther the actual value of the
parameter is from the value specified by the null hypothesis, the more the distribution of the P-value
will be concentrated on values close to 0 and the greater the chance that the test will correctly reject
H0 (corresponding to smaller b).
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Figure 9.10 P-value simulation results for Example 9.22 ■
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Exercises: Section 9.4 (49–63)

49. For which of the given P-values would the
null hypothesis be rejected when perform-
ing a level .05 test?
a. 001 b. .021 c. .078 d. .047 e. .148

50. Pairs of P-values and significance levels, a,
are given. For each pair, state whether the
observed P-value would lead to rejection of
H0 at the given significance level.

a. P-value = .084, a = .05
b. P-value = .003, a = .001
c. P-value = .498, a = .05
d. P-value = .084, a = .10
e. P-value = .039, a = .01
f. P-value = .218, a = .10

51. Let l denote the mean reaction time to a
certain stimulus. For a one-sample z test of
H0: l = 5 versus Ha: l > 5 (i.e., assuming
r is known), find the P-value associated
with each of the given values of the z test
statistic.

a. 1.42 b. .90 c. 1.96 d. 2.48 e. –.11

52. Newly purchased tires of a certain type are
supposed to be filled to a pressure of
30 lb/in2. Let l denote the true average
pressure. Find the P-value associated with
each given one-sample z statistic value for
testing H0: l = 30 versus Ha: l 6¼ 30.

a. 2.10 b. –1.75 c. –.55 d. 1.41 e. –5.3

53. Give as much information as you can about
the P-value of a t test in each of the fol-
lowing situations:
a. Upper-tailed test, df = 8, t = 2.0
b. Lower-tailed test, df = 11, t = −2.4
c. Two-tailed test, df = 15, t = −1.6
d. Upper-tailed test, df = 19, t = −.4
e. Upper-tailed test, df = 5, t = 5.0
f. Two-tailed test, df = 40, t = −4.8

54. The paint used to make lines on roads must
reflect enough light to be clearly visible at
night. Let l denote the true average

reflectometer reading for a new type of
paint under consideration. A test of
H0: l = 20 versus Ha: l > 20 will be based
on a random sample of size n from a normal
population distribution. What conclusion is
appropriate in each of the following situa-
tions?
a. n = 15, t = 3.2, a = .05
b. n = 9, t = 1.8, a = .01
c. n = 24, t = −.2

55. Let l denote true average serum receptor
concentration for all pregnant women. The
average for all women is known to be 5.63.
The article “Serum Transferrin Receptor for
the Detection of Iron Deficiency in Preg-
nancy” (Amer. J. Clin. Nutrit. 1991: 1077–
1081) reports that P-value > .10 for a test
of H0: l = 5.63 versus Ha: l 6¼ 5.63 based
on n = 176 pregnant women. Using a sig-
nificance level of .01, what would you
conclude?

56. An aspirin manufacturer fills bottles by
weight rather than by count. Since each
bottle should contain 100 tablets, the aver-
age weight per tablet should be 5 grains.
Each of 100 tablets taken from a very large
lot is weighed, resulting in a sample aver-
age weight per tablet of 4.87 grains and a
sample standard deviation of .35 grain.
Does this information provide strong evi-
dence for concluding that the company is
not filling its bottles as advertised? Test the
appropriate hypotheses using a = .01 by
first computing the P-value and then com-
paring it to the specified significance level.

57. Because of variability in the manufacturing
process, the actual yielding point of a
sample of mild steel subjected to increasing
stress will usually differ from the theoretical
yielding point. Let p denote the true pro-
portion of samples that yield before their
theoretical yielding point. If on the basis of
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a sample it can be concluded that more than
20% of all specimens yield before the the-
oretical point, the production process will
have to be modified.

a. If 15 of 60 specimens yield before the
theoretical point, what is the P-value
when the appropriate test is used, and
what would you advise the company to
do?

b. If the true percentage of “early yields” is
actually 50% (so that the theoretical
point is the median of the yield distri-
bution) and a level .01 test is used, what
is the probability that the company
concludes a modification of the process
is necessary?

58. Standard-size boxes for a particular brand
of cereal indicate a net weight of 14 oz.
A consumer group purchases a random
sample of 50 such cereal boxes and weighs
their contents. If the average of these 50
weights is 13.8 oz with a standard devia-
tion of 1.1 oz, does the consumer group
have sufficient evidence to conclude that
the cereal company is under-filling its
packages? Test at the a = .05 level using
the P-value method.

59. A random sample of soil specimens was
obtained, and the amount of organic matter
(%) in the soil was determined for each
specimen, resulting in the accompanying
data (from “Engineering Properties of
Soil,” Soil Sci. 1998: 93–102).

1.10 5.09 0.97 1.59 4.60 0.32 0.55 1.45
0.14 4.47 1.20 3.50 5.02 4.67 5.22 2.69
3.98 3.17 3.03 2.21 0.69 4.47 3.31 1.17
0.76 1.17 1.57 2.62 1.66 2.05

The values of the sample mean and sample
standard deviation are 2.481 and 1.616,
respectively. Does this data suggest that the
true average percentage of organic matter in
such soil is something other than 3%?
Carry out a test of the appropriate
hypotheses at significance level .10 by first

determining the P-value. Would your con-
clusion be different if a = .05 had been
used? [Note: A normal probability plot of
the data shows an acceptable pattern in
light of the reasonably large sample size.]

60. Repeat the analysis of Exercise 40 using the
P-value method. Do you arrive at the same
conclusion?

61. A pen has been designed so that true
average writing lifetime under controlled
conditions (involving the use of a writing
machine) is at least 10 h. A random sample
of 18 pens is selected, the writing lifetime
of each is determined, and a normal prob-
ability plot of the resulting data supports
the use of a one-sample t test.

a. What hypotheses should be tested if the
investigators believe a priori that the
design specification has been satisfied?

b. What conclusion is appropriate if the
hypotheses of part (a) are tested,
t = −2.3, and a = .05?

c. What conclusion is appropriate if the
hypotheses of part (a) are tested,
t = −1.8, and a = .01?

d. What should be concluded if the
hypotheses of part (a) are tested and
t = −3.6?

62. A spectrophotometer used for measuring
CO concentration [ppm (parts per million)
by volume] is checked for accuracy by
taking readings on a manufactured gas
(called span gas) in which the CO con-
centration is very precisely controlled at
70 ppm. If the readings suggest that the
spectrophotometer is not working properly,
it will have to be recalibrated. Assume that
if it is properly calibrated, measured con-
centration for span gas samples is normally
distributed. On the basis of the six readings
—85, 77, 82, 68, 72, and 69—is recali-
bration necessary? Carry out a test of the
relevant hypotheses using the P-value
approach with a = .05.
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63. The relative conductivity of a semicon-
ductor device is determined by the amount
of impurity “doped” into the device during
its manufacture. A silicon diode to be used
for a specific purpose requires an average
cut-on voltage of .60 V, and if this is not
achieved, the amount of impurity must be
adjusted. A sample of diodes was selected
and the cut-on voltage was determined.
The accompanying SAS output resulted

from a request to test the appropriate
hypotheses.

N Mean Std Dev T Prob >|T|
15 0.6453333 0.0899100 1.9527887 0.0711

[Note: By default, SAS’s P-value is for a
two-tailed test.] What would be concluded
for a significance level of .01? .05? .10?

9.5 The Neyman–Pearson Lemma and Likelihood Ratio Tests

The test procedures presented thus far are (hopefully) intuitively reasonable, but have not been shown
to be “best” in any sense. How can an optimal test be obtained, one for which the type II error
probability is as small as possible, subject to controlling the type I error probability at the desired
level?

Simple Hypotheses
Our starting point here will be a rather unrealistic situation from a practical viewpoint: testing a simple
null hypothesis against a simple alternative hypothesis. A simple hypothesis is one which, when true,
completely specifies the distribution of the sample Xi’s. Suppose, for example, that X1; . . .;Xn form a
random sample from an exponential distribution with parameter k. Then the hypothesis H: k = 5 is
simple, since when H is true each Xi has an exponential distribution with parameter k = 5. We might
then consider H0: k = 5 versus Ha: k = 10, both of which are simple hypotheses. The hypothesis
Ha: k < 5 is not simple, because when Ha is true, the distribution of each Xi might be exponential with
k = 4 or with k = 2.8 or ….

Similarly, if the Xi’s constitute a random sample from a normal distribution with known r, then
H: l = 100 is a simple hypothesis. But if the value of r is unknown, this hypothesis is not simple
because the distribution of each Xi is not completely specified; it could be N(100, 15) or N(100, 12) or
N(100, r) for any other positive value of r. For a hypothesis to be simple, the value of every
parameter in the pmf or pdf of the Xi’s must be specified.

Throughout this chapter we have always employed composite (that is, not simple) alternative
hypotheses. In practice, a pair of simple hypotheses such as H0: k = 5 versus Ha: k = 10 are almost
never tested, since they imply that no other k value is possible (what if both are false because
k = 7.6?). However, when hypothesis testing was developed about a century ago, early statistical
pioneers developed optimal methods for a pair of simple hypotheses and then built up from that
foundation.

The Neyman–Pearson Lemma
The next result was a milestone in the theory of hypothesis testing—a method for constructing a best
test for a pair of simple hypotheses. Let f ðx1; . . .; xn; hÞ be the joint pmf or pdf of the Xi’s. Our simple
null hypothesis will assert that h = h0 and the simple alternative hypothesis will claim that h = ha.
The result carries over to the case of more than one parameter as long as the value of each parameter
is completely specified in both H0 and Ha.
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THE NEYMAN–
PEARSON LEMMA

For testing a simple null hypothesis H0: h = h0 versus a simple alternative
hypothesis Ha: h = ha, let k be a fixed positive number and form the
rejection region

R	 ¼ ðx1; . . .; xnÞ: f ðx1; . . .; xn; haÞf ðx1; . . .; xn; h0Þ � k

� �
ð9:6Þ

Let a* = P((X1, …, Xn) 2 R* when h = h0), the probability of a type I error
using R*, and let b* denote the type II error probability (i.e., the probability
that the Xi’s lie in the complement of R* when h = ha).
Then for any other test procedure with type I error probability a satisfying
a � a*, the probability of a type II error must satisfy b � b*. That is, the
test with rejection region R* has the smallest type II error probability among
all tests for which the type I error probability is at most a*.

The test statistic value in (9.6) is called a likelihood ratio—it’s the ratio of the alternative likelihood to
the null likelihood. We’ll explore likelihood ratio tests more deeply later in this section. As in
previous sections of this chapter, the constant k in the rejection region is tied to the type I error
probability a*. In the continuous case, k can be selected to give one of the traditional significance
levels (.05, .01, and so on), whereas in the discrete case a* = .057 or .039 may be as close as one can
get to .05.

Roughly speaking, the Neyman–Pearson Lemma prescribes, subject to a given significance level,
the test procedure that minimizes the chance of committing a type II error. Equivalently, it maximizes
the power of the hypothesis test—that is, R* in (9.6) defines the most powerful test of the simple
hypotheses H0: h = h0 versus Ha: h = ha at its level of significance.

Example 9.23 As part of quality control at a semiconductor plant, consider randomly selecting n = 5
newly-made integrated circuits of a certain type and determining the number of defects on each one.
Let Xi denote the number of such defects for the ith selected circuit (i = 1,…, 5), and suppose that the
Xi’s form a random sample from a Poisson distribution with parameter l. Let’s find the best test for
testing H0: l = 1 versus Ha: l = 2. The Poisson likelihood is f ðx1; . . .; x5; lÞ ¼ e�5l lRxi=Pxi!.
Substituting first l = 2, then l = 1, and then taking the ratio of these two likelihoods as in (9.6) gives
the rejection region

R	 ¼ ðx1; . . .; x5Þ : e�52Rxi � k
 �

Multiplying both sides of the inequality by e5 and taking a logarithm allows us to re-write the
rejection region as

P
xi � c, where c = ln(ke5)/ln(2).

This latter rejection region is completely equivalent to R*: for any particular value k there will be a
corresponding value c, and vice versa. But it is much easier to express the rejection region in this
latter form and then select c to obtain a desired significance level than it is to determine an appropriate
value of k for the likelihood ratio. In particular, the rv Y =

P
Xi has a Poisson distribution with

parameter 5l (via a moment generating function argument), so when H0 is true Y * Poisson(5). If
we use c = 10 in the rejection region, then from Table A.2

a	 ¼ PðY � 10 when Y � Poisson(5)Þ ¼ 1� :968 ¼ :032
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Choosing instead c = 9 gives a* = .068. If we insist that the significance level be at most .05, then the
optimal rejection region is R	 ¼ ðx1; . . .; x5Þ :

P
xi � 10f g, and a* = P(type I error) = .032.

When Ha is true, the test statistic Y has a Poisson distribution with parameter 5(2) = 10. Thus

b	 ¼ P H0 is not rejected when Ha is trueð Þ
¼ PðY\10 when Y � Poisson(10)Þ ¼ :458

The Neyman–Pearson Lemma guarantees that any other test procedure based on these 5 observations,
provided its type I error probability is � .032, must necessarily have a type II error probability
greater than or equal to .458. Equivalently, every test in this situation with a � .032 has power no
better than 1 – .458 = .542; to increase power here would require increasing a*.

Obviously the type II error probability here is quite large (and the power rather low). This is
because the sample size n = 5 is too small to allow for effective discrimination between l = 1 and
l = 2. For a sample size of 10, the best test having significance level at most .05 uses c = 16, for
which a* = .049 (Poisson parameter = 10) and b* = .157 (Poisson parameter = 20).

Finally, returning to a sample size of n = 5, c = 10 implies that 10 = ln(ke5)/ln(2), from which
k = 210/e5 � 6.9. For the best test to have a significance level of at most .05, the null hypothesis
should be rejected only when the likelihood for the alternative value of l is more than about 7 times
what it is for the null value. ■

Example 9.24 Let X1, …, Xn be a random sample from a normal distribution with mean l and
variance 1; the argument to be presented will work for any other known value of r. Consider testing
H0: l = l0 versus Ha: l = la where la > l0. The likelihood ratio in (9.6) is

1
2p

� �n=2
e� 1=2ð ÞR xi�lað Þ2

1
2p

� �n=2
e� 1=2ð ÞR xi�l0ð Þ2

¼ eðla�l0ÞRxi� n=2ð Þ l2a�l20ð Þ

¼ e�n l2a�l20ð Þ=2h i
� e la�l0ð ÞRxi
h i

The term in the first set of brackets is a numerical constant. Then la − l0 > 0 implies that the
likelihood ratio will be at least k if and only if

P
xi � k′ for some k′, that is, if and only if �x� k00

for some k″, which means if and only if

z ¼ �x� l0
1=

ffiffiffi
n

p � c

for some c. WhenH0 is true, the rv Z has a standard normal distribution (because r = 1; again, this argument
works for any r). If we now let c = z.01 = 2.33, then a* = P(Z � c) = .01. By the Neyman–Pearson
Lemma, our old friend the one-sample z test has minimum b among all tests for which a � .01. ■

Proof of the Neyman–Pearson Lemma We shall consider the case in which the Xi’s have a
discrete distribution, so that type I and type II error probabilities are obtained by summation. In the
continuous case, integration replaces summation. Let R denote the rejection region of any test
procedure based on the Xi’s, so that

a ¼ PððX1; . . .;XnÞ 2 R when h ¼ h0Þ ¼
X
R

f ðx1; . . .; xn; h0Þ

b ¼ PððX1; . . .;XnÞ 2 R0 when h ¼ haÞ ¼ 1�
X
R

f ðx1; . . .; xn; haÞ
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(b is the probability outside the rejection region R, and the complement rule has been applied). Next,
let k > 0 be any constant, and consider the linear combination kaþ b:

kaþ b ¼ k
X
R

f ðx1; . . .; xn; h0Þþ 1�
X
R

f ðx1; . . .; xn; haÞ

¼ 1þ
X
R

k � f ðx1; . . .; xn; h0Þ � f ðx1; . . .; xn; haÞ½ �

The expression in brackets can be positive or negative. Now comes the clever part: among all possible
test procedures, kaþ b is minimized by choosing R to be exactly the set where the expression in
brackets is negative (or zero). That is, kaþ b is minimized by using the rejection region

ðx1; . . .; xnÞ:k � f ðx1; . . .; xn; h0Þ � f ðx1; . . .; xn; haÞ� 0f g ¼ ðx1; . . .; xnÞ: f ðx1; . . .; xn; haÞf ðx1; . . .; xn; h0Þ � k

� �
;

which is precisely R* from (9.6).
With a* and b* defined as in the statement of the Neyman–Pearson Lemma, what we have

established is that using R* minimizes kaþ b, i.e., that ka	 þ b	 � kaþ b for all other choices of
rejection region. In particular, for all test procedures satisfying a� a	, a� a	 � 0, and so for these
test procedures

ka	 þ b	 � kaþ b ) b	 � bþ kða� a	Þ� bþ 0 ¼ b

Thus we have shown that b* � b for all such procedures, as desired. ■

An essentially identical argument shows that the same rejection region (9.6) can be used to
minimize the chance of a type I error, subject to a constraint on the type II error probability. That is,
with the same notation as above, the chance of a type I error is � a* for all test procedures for which
P(type II error) � b*.

Power and Uniformly Most Powerful Tests
The Neyman–Pearson Lemma identifies the most powerful test procedure when both hypotheses are
simple. Next consider the more realistic scenario where one or both of the hypotheses are composite.
In previous sections, the term power was primarily used when Ha was true (the chance of correctly
rejecting H0). The following definition generalizes this idea.

DEFINITION Let X0 and Xa be two disjoint sets of possible values of h, and consider testing
H0: h 2 X0 versus Ha: h 2 Xa using a test with rejection region R. Then the power
function of the test, denoted by p(�), is the probability of rejecting H0 considered as a
function of h:

pðh0Þ ¼ P ðX1; . . .;XnÞ 2 Rwhen h ¼ h0ð Þ

The power function is easily related to the type I and type II error probabilities:

pðh0Þ ¼ Pðtype I error when h ¼ h0Þ ¼ aðh0Þ when h0 2 X0

1� Pðtype II error when h ¼ h0Þ ¼ 1� bðh0Þ when h0 2 Xa

�
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Since we don’t want to reject the null hypothesis when h 2 X0 and do want to reject it when h 2 Xa,
we desire a test for which the power function is close to 0 whenever h′ is in X0 and close to 1
whenever h′ is in Xa. The ideal power function, though not achievable in practice, is

pðh0Þ ¼ 0 when h0 2 X0

1 when h0 2 Xa

�

Example 9.25 The drying time (min) of a particular paint on a test board under controlled conditions
is known to be normally distributed with l = 75 and r = 9. A new additive has been developed for
the purpose of improving drying time. Assume that drying time with the additive is still normally
distributed with the same standard deviation, and consider testing H0: l � 75 versus Ha: l < 75
based on a sample of size n = 100. A test with significance level .10 rejects H0 if z � –z.10 = −1.28,
where z ¼ ð�x� 75Þ=ð9= ffiffiffiffiffiffiffiffi

100
p Þ ¼ ð�x� 75Þ=:9. Manipulating the inequality in the rejection region to

isolate �x gives the equivalent rejection region �x� 73.848.
If l ¼ l0, then �X has a normal distribution with mean l0 and standard deviation r=

ffiffiffi
n

p
= .9. Thus

the power function of the test is

pðl0Þ ¼ Pð�X� 73:848 when l ¼ l0Þ ¼ U
73:848� l0

:9

� �

The ideal power function for these hypotheses equals 0 for l � 75 (H0 is true) and equals 1 for
l < 75 (Ha is true). Figure 9.11 shows both the actual power function pðl0Þ and the ideal function.
The maximum power for l � 75 (i.e., in X0) occurs at l = 75, on the boundary between X0 and Xa;
specifically, pð75Þ = .10 = a by design. Because the power function is continuous, there are values of
l smaller than 75 for which the power is quite small (barely above .10). Even with a large sample
size, it is difficult to detect a very small departure from the null hypothesis. But as n increases, the
actual power function will approach the ideal.

69 70 71 72 73 74 75 76 7768
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Figure 9.11 Graphs of power functions for Example 9.25 ■
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The Neyman–Pearson lemma says that when X0 consists of a single value h0 and Xa also consists
of a single value ha, the rejection region R* in (9.6) specifies a test for which the power p(ha) at the
alternative value ha is maximized subject to p(h0) � a for some specified value of a. That is, R*
specifies a most powerful test subject to the restriction on the power when the null hypothesis is true.
What about best tests when at least one of the two hypotheses is composite?

Example 9.26 (Example 9.23 continued) Consider again a random sample of size n = 5 from a
Poisson distribution, and suppose we now wish to test H0: l � 1 versus Ha: l > 1. Both of these
hypotheses are composite. Arguing as in Example 9.23, for any value la exceeding 1, the most
powerful test of H0: l = 1 versus Ha: l = la with significance level equal to .032 (i.e., p(1) = .032)
rejects the null hypothesis when

P
xi � 10. Furthermore, it is easily verified that the p(l′) < .032

for l′ < 1.
Thus the test that rejects H0: l � 1 in favor of H0: l > 1 when

P
xi � 10 has maximum power

for any l′ = la > 1, subject to the condition that p(l′) � p(1) = .032 whenever l′ � 1. This test is
uniformly most powerful. ■

More generally, a uniformly most powerful (UMP) level a test is one for which p(h′) is max-
imized for every h′ 2 Xa subject to p(h′) � a for h′ 2 X0. Unfortunately UMP tests are fairly rare,
especially in commonly encountered situations when H0 and Ha are assertions about a single
parameter h while the distribution of the Xi’s involves at least one other “nuisance parameter.” For
example, when the population distribution is normal with values of both l and r unknown, r is a
nuisance parameter when testing H0: l = l0 versus Ha: l 6¼ l0. Be careful here—the null hypothesis
is not simple, because X0 consists of all pairs (l, r) for which l = l0 and r > 0, and there is certainly
more than one such pair. In this situation, the one-sample t test is not UMP.

However, suppose we restrict attention to unbiased tests, those for which the smallest value of
p(h′) for h′ 2 Xa is at least as large as the largest value of p(h′) for h′ 2 X0. Unbiasedness simply says
that we are at least as likely to reject the null hypothesis when H0 is false as we are to reject it when
H0 is true. The test proposed in Example 9.25 involving paint drying times is unbiased because, as
Figure 9.11 shows, the power function at or to the right of 75 is smaller than it is to the left of 75. It
can be shown that the one-sample t test is UMP unbiased; that is, it is uniformly most powerful
among all tests that are unbiased. Several other commonly used tests also have this property. Please
consult the references by Casella and Berger or DeGroot and Schervish for more details on UMP
tests.

Likelihood Ratio Tests
The likelihood ratio principle, described below, is a frequently used method for finding an appro-
priate test statistic in a new situation. As before, denote the joint pmf or pdf of X1, …, Xn by
f ðx1; . . .; xn; hÞ. In the case of a random sample, it will be a product f ðx1; hÞ. . .::f ðxn; hÞ. As in the
development of maximum likelihood estimates, when f ðx1; . . .; xn; hÞ is regarded as a function of h, it
is called the likelihood function and is sometimes denoted L(h).

Again consider testing H0: h 2 X0 versus Ha: h 2 Xa, where X0 and Xa are disjoint sets, and let
X ¼ X0 [Xa. The set X is called the parameter space, since it represents all possible values of the
parameter h under consideration. In the Neyman–Pearson Lemma, the test statistic is the ratio of the
likelihood when h 2 Xa = {ha} to the likelihood when h 2 X0 = {h0}, rejecting H0 when the value of
the ratio is “sufficiently large.” For one or more composite hypotheses, we instead consider the ratio
of the likelihood when h 2 X0 to the likelihood when h 2 X; the latter effectively puts no constraints
on the value of h. A very small value of this ratio argues against the null hypothesis, since a small
value arises when the data is much more consistent with Ha than with H0. More formally,
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1. Find the largest value of L(h) for h 2 X by finding the maximum likelihood estimate of h; denote

this estimate by ĥmle. Substitute this mle into the likelihood function to obtain LðĥmleÞ:
2. Find the largest value of L(h) for h 2 X0 by finding the maximum likelihood estimate of h within

X0; denote this estimate by ĥ0. Substitute this restricted mle into the likelihood function to obtain

Lðĥ0Þ.
Because X0 is a subset of X, this restricted likelihood Lðĥ0Þ can’t be any larger than the likelihood

LðĥmleÞ obtained in the first step, and will be much smaller when the data is much more consistent
with Ha than with H0.

3. Form the likelihood ratio test statistic

K ¼ Lðĥ0Þ
LðĥmleÞ

¼ f ðx1; . . .; xn; ĥ0Þ
f ðx1; . . .; xn; ĥmleÞ

and reject the null hypothesis in favor of the alternative when this ratio is � k. The critical value
k is chosen to give a test with the desired significance level. In practice, the inequality K� k is
often re-expressed in terms of a more convenient statistic (such as the sum or mean of the
observations) whose distribution is known or can be derived.
The above prescription, called a likelihood ratio test, remains valid if the single parameter h is

replaced by several parameters h1,…, hm. The mles of all parameters must be obtained in both steps 1
and 2 and substituted back into the likelihood function.

Example 9.27 Consider a random sample from a normal distribution with the values of both
parameters unknown. We wish to test H0: l = l0 versus Ha: l 6¼ l0. Here X consists of all values of
l and r for which −1 < l < 1 and r > 0, and the likelihood function is

Lðl; rÞ ¼ 1
2pr2

� �n=2

e�1=ð2r2Þ
P

ðxi�lÞ2

In Section 7.2 we obtained the mles as l̂mle ¼ �x; r̂2mle ¼
P ðxi � �xÞ2=n: Substituting these estimates

back into the likelihood function gives

Lðl̂mle; r̂mleÞ ¼ � � � ¼ 1

2p
P ðxi � �xÞ2=n

 !n=2

e�n=2

Within X0, l in the foregoing likelihood is replaced by l0, so that only r must be estimated. More
precisely, the mle of l subject to the constraint l = l0 is trivially l̂0 ¼ l0. It is easily verified that the

other mle under X0 is r̂20 ¼
P ðxi � l0Þ2=n: Substitution of this estimate in the likelihood function

yields

Lðl̂0; r̂0Þ ¼ � � � ¼ 1

2p
P ðxi � l0Þ2=n

 !n=2

e�n=2

Thus we reject H0 in favor of Ha when
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K ¼ Lðl̂0; r̂0Þ
Lðl̂mle; r̂mleÞ ¼ � � � ¼

P ðxi � �xÞ2P ðxi � l0Þ2
 !n=2

� k

Raising both sides of this inequality to the power 2/n, we reject H0 whenever

P ðxi � �xÞ2P ðxi � l0Þ2
� k2=n ¼ k0

This is intuitively reasonable: the value l0 is implausible for l if the sum of squared deviations about
the sample mean is much smaller than the sum of squared deviations about l0.

The denominator of this latter ratio can be expressed as

X
½ðxi � �xÞþ ð�x� l0Þ�2 ¼

X
ðxi � �xÞ2 þ 2

X
ð�x� l0Þðxi � �xÞþ nð�x� l0Þ2

The middle (i.e., cross-product) term in this expression is 0, because the constant �x� l0 can be
moved outside the summation, and then the sum of deviations from the sample mean is 0. Thus we
should reject H0 when

P ðxi � �xÞ2P ðxi � �xÞ2 þ nð�x� l0Þ2
¼ 1

1þ nð�x� l0Þ2=
P ðxi � �xÞ2 � k0

This latter ratio will be small when the second term in the denominator is large, so the condition for
rejection becomes

nð�x� l0Þ2P ðxi � �xÞ2 � k00

Dividing both sides by n − 1 and taking square roots gives the rejection region

either
�x� l0
s=

ffiffiffi
n

p � c or
�x� l0
s=

ffiffiffi
n

p � �c

If we now let c ¼ ta=2;n�1, we have exactly the two-tailed one-sample t test!
The bottom line is that when testing H0: l = l0 against the two-sided ( 6¼) alternative, the one-

sample t test is the likelihood ratio test. This is also true of the upper-tailed version of the t test when
the alternative is Ha: l > l0 and of the lower-tailed test when the alternative is Ha: l < l0. We could
trace back through the argument to recover the critical constant k from c, but there is no point in doing
this; the rejection region in terms of t is much more convenient than the rejection region in terms of
the original likelihood ratio. ■

A number of tests discussed subsequently in this book, including the “pooled” t test from the next
chapter and various tests from ANOVA (the analysis of variance) and regression analysis, can be
derived by the likelihood ratio principle.

In many situations, the inequality for the rejection region of a likelihood ratio test cannot be
manipulated to express the test procedure in terms of a simple statistic whose distribution can
be ascertained. The following large-sample result, valid under fairly general conditions, can then be
used.
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THEOREM If the sample size n is sufficiently large, then the statistic �2 lnðKÞ has approximately a
chi-squared distribution with m degrees of freedom when H0 is true, where m is the
difference between the number of “freely varying” parameters in X and the number of
such parameters in X0.

For example, if the distribution sampled is bivariate normal with the 5 parameters l1, l2 r1 r2, and
q and the null hypothesis asserts that l1 = l2 and r1 = r2, then m = 5 − 3 = 2.

By its definition 0�K� 1, and the likelihood ratio test rejects H0 when this likelihood ratio is
much less than 1. This is equivalent to rejecting H0 when �2 lnðKÞ is large and positive. The large-
sample version of the test described in the theorem is thus upper-tailed: H0 should be rejected if
�2 lnðKÞ� v2a;m, an upper-tail critical value extracted from Table A.5.

Example 9.28 Suppose a scientist makes n measurements of some physical characteristic, such as
the specific gravity of a liquid. Let X1, …, Xn denote the resulting measurement errors. Assume that
these Xi’s are independent and identically distributed according to the double exponential (Laplace)
distribution: f ðxÞ ¼ :5e� x�hj j for �1\x\1: This pdf is symmetric about h with somewhat heavier
tails than the normal pdf. If h = 0 then the measurements are unbiased, so it is natural to test
H0: h = 0 versus Ha: h 6¼ 0. Here m = 1 − 0 = 1. The likelihood is

LðhÞ ¼ ð:5Þne�R xi�hj j

Because of the minus sign preceding the summation, the likelihood is maximized when
P jxi � hj is

minimized. The absolute value function is not differentiable, and therefore differential calculus cannot
be used. Instead, consider for a moment the case n = 5 and let y1\ � � �\y5 denote the ordered values
of the xi’s. For example, suppose a random sample of size 5 from the Laplace distribution with h = 0
is −.24998, .75446, −.19053, 1.16237, .83229, so (y1, …, y5) = (−.24998, −.19053, .75446, .83229,
1.16237). Then

X
xi � hj j ¼

X
yi � hj j ¼

y1 þ y2 þ y3 þ y4 þ y5 � 5h h\y1
�y1 þ y2 þ y3 þ y4 þ y5 � 3h y1 � h\y2
�y1 � y2 þ y3 þ y4 þ y5 � h y2 � h\y3
�y1 � y2 � y3 þ y4 þ y5 þ h y3 � h\y4
�y1 � y2 � y3 � y4 þ y5 þ 3h y4 � h\y5
�y1 � y2 � y3 � y4 � y5 þ 5h h� y5

8>>>>>><
>>>>>>:

The graph of this expression as a function of h appears in Figure 9.12 (p. 551), from which it is
apparent that the minimum occurs at y3 ¼ ~x ¼ :75446, the sample median. (The situation is similar
whenever n is odd. When n is even, the function achieves its minimum for any h between yn/2 and
y(n/2)+1; one such h is ðyn=2 þ yðn=2Þþ 1Þ=2 ¼ ~x. In summary, the mle of h is the sample median.)

The likelihood ratio statistic for testing the relevant hypotheses is K ¼ ð:5Þne�R xij j=½ð:5Þne�R xi�~xj j�.
Simplifying and computing �2 lnðKÞ gives the rejection region 2

P
xij j � 2

P
xi � ~xj j � v2a;1 for the

large-sample version of the likelihood ratio test.
Suppose that a sample of n = 30 errors results in

P
xij j ¼ 38:6 and

P
xi � ~xj j ¼ 37:3. Then

�2 lnðKÞ ¼ 2
X

xij j �
X

xi � ~xj j
� �

¼ 2:6
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Comparing this to v2:05;1 ¼ 3:84, we would not reject the null hypothesis at the 5% significance level.
It is plausible that the measurement process indeed has mean/median 0, as desired. ■
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Figure 9.12 Determining the mle of the double exponential parameter by minimizing
P

xi � hj j

Exercises: Section 9.5 (64–74)

64. For a random sample of n individuals tak-
ing a licensing exam, let Xi = 1 if the ith
individual in the sample passes the exam
and Xi = 0 otherwise (i = 1, …, n).

a. With p denoting the proportion of all
exam-takers who pass, show that the
most powerful test of H0: p = .5 versus
Ha: p = .75 rejects H0 when

P
xi � c.

b. If n = 20 and you want a � .05 for the
test of (a), would you reject H0 if 15 of
the 20 individuals in the sample pass the
exam?

c. What is the power of the test you used
in (b) when p = .75 [i.e., what is
p(.75)]?

d. Is the test derived in (a) UMP for testing
the hypotheses H0: p = .5 versus
Ha: p > .5? Explain your reasoning.

e. Graph the power function p(p) of the
test for the hypotheses of (d) when
n = 20 and a � .05.

f. Return to the scenario of (a), and sup-
pose the test is based on a sample size of
50. If the probability of a type II error is
approximately .025, what is the

approximate significance level of the
test (use a normal approximation)?

65. The error X in a measurement has a normal
distribution with mean value 0 and variance
r2. Consider testing H0: r2 = 2 versus
Ha: r2 = 3 based on a random sample
X1, …, Xn of errors.

a. Show that a most powerful test rejects
H0 when

P
x2i � c:

b. For n = 10, find the value of c for the
test in (a) that results in a = .05.

c. Is the test of (a) UMP for H0: r
2 = 2

versusHa: r
2 > 2? Justify your assertion.

66. Suppose that X, the fraction of a container
that is filled, has pdf f(x;h) = hxh−1 for
0 < x < 1 (where h > 0), and let X1, …, Xn

be a random sample from this distribution.
a. Show that the most powerful test for

H0: h = 1 versus Ha: h = 2 rejects the
null hypothesis if

P
ln(xi) � c.

b. Is the test of (a) UMP for testing
H0: h = 1 versus Ha: h > 1? Explain
your reasoning.
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c. If n = 50, what is the (approximate)
value of c for which the test has sig-
nificance level .05?

67. Consider a random sample of n component
lifetimes, where the distribution of lifetime
is exponential with parameter k.

a. Obtain a most powerful test for
H0: k = 1 versus Ha: k = .5, and
express the rejection region in terms of a
“simple” statistic.

b. Is the test of (a) uniformly most pow-
erful for H0: k = 1 versus Ha: k < 1?
Justify your answer.

68. Consider a random sample of size n from
the “shifted exponential” distribution with
pdf f x; hð Þ ¼ e�ðx�hÞ for x > h and 0
otherwise (the graph is that of the ordinary
exponential pdf with k = 1 shifted so that it
begins its descent at h rather than at 0). Let
Y1 denote the smallest order statistic, and
show that the likelihood ratio test of
H0: h � 1 versus Ha: h > 1 rejects the null
hypothesis if y1, the observed value of Y1,
is � c.

69. Suppose that each of n randomly selected
individuals is classified according to his/her
genotype with respect to a particular
genetic characteristic and that the three
possible genotypes are AA, Aa, and aa with
long-run proportions (probabilities) h2,
2h(1 − h), and (1 − h)2, respectively
(0 < h < 1). It is then straightforward to
show that the likelihood is

h2x1 � ½2hð1� hÞ�x2 � ð1� hÞ2x3

where x1, x2, and x3 are the number of
individuals in the sample who have the AA,
Aa, and aa genotypes, respectively. Show
that the most powerful test for testing
H0: h = .5 versus Ha: h = .8 rejects the
null hypothesis when 2x1 + x2 � c. Is this
test UMP for the alternative Ha: h > .5?
Explain. [Note: The fact that the joint
distribution of X1, X2, and X3 is multinomial

can be used to obtain the value of c that
yields a test with any desired significance
level when n is large.]

70. The error in a measurement is normally
distributed with mean l and standard
deviation 1. Consider a random sample of
n errors, and show that the likelihood ratio
test for H0: l = 0 versus Ha: l 6¼ 0 rejects
the null hypothesis when either �x� c or
�x� �c. What is c for a test with a = .05?
How does the test change if the standard
deviation of an error is r0 (known) and the
relevant hypotheses are H0: l = l0 versus
Ha: l 6¼ l0?

71. Measurement error in a particular situation
is normally distributed with mean value l
and standard deviation 4. Consider testing
H0: l = 0 versus Ha: l 6¼ 0 based on a
sample of n = 16 measurements.

a. Verify that the usual test with signifi-
cance level .05 rejects H0 if either
�x� 1:96 or �x��1:96. [Note: That this
test is unbiased follows from the fact
that the way to capture the largest area
under the z curve above an interval
having width 3.92 is to center that
interval at 0 (so it extends from −1.96 to
1.96).]

b. Consider the test that rejects H0 if either
�x� 2:17 or �x��1:81. What is a, that
is, p(0)?

c. What is the power of the test proposed
in (b) when l = .1 and when l = −.1?
(Note that .1 and −.1 are very close to
the null value, so one would not expect
large power for such values.) Is the test
unbiased?

d. Calculate the power of the usual test
when l = .1 and when l = −.1. Is the
usual test a most powerful test? [Hint:
Refer to your calculations in (c).] [Note:
It can be shown that the usual test is
most powerful among all unbiased
tests.]
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72. A test of whether a coin is fair will be based
on n = 50 tosses. Let X be the resulting
number of heads. Consider two rejection
regions:R1 = {x: either x � 17 or x � 33}
and R2 = {x: either x � 18 or x � 37}.

a. Determine the significance level (type I
error probability) for each rejection
region.

b. Determine the power of each test when
p = .49. Is the test with rejection region
R1 a uniformly most powerful level .033
test? Explain.

c. Is the test with rejection region R2

unbiased? Explain.
d. Sketch the power function for the test

with rejection region R1, and then do so
for the test with the rejection region R2.
What does your intuition suggest about
the desirability of using the rejection
region R2?

73. Reconsider the one-sample t test of Exam-
ple 9.27.
a. With t ¼ ð�x� l0Þ=ðs=

ffiffiffi
n

p Þ, show that
the likelihood ratio is equal to

K ¼ ½1þ t2=ðn� 1Þ��n=2, and therefore
the approximate chi-square statistic is
�2 lnðKÞ ¼ n ln½1þ t2=ðn� 1Þ�.

b. Apply part (a) to test the hypotheses of
Exercise 59, using the data given there.
Compare your results with the answers
found in Exercise 59.

74. The test statistic in the Neyman–Pearson
Lemma and the likelihood ratio test statistic
K are intimately related. Consider testing
H0: h = h0 versus Ha: h = ha, and let K*
denote the test statistic in (9.6). Show that

K ¼ 1=K	 if Lðh0Þ� LðhaÞ
1 otherwise

�

9.6 Further Aspects of Hypothesis Testing

We close this chapter by briefly considering several additional aspects of hypothesis testing, including
the distinction between statistical significance (rejecting H0 at a particular a) and the practical import
of a departure from H0, the relationship between tests and confidence intervals or bounds, and test
procedures based on bootstrapping.

Statistical Versus Practical Significance
Although the process of reaching a decision by using the methodology of classical hypothesis testing
involves selecting a level of significance and then rejecting or not rejecting H0 at that level, simply
reporting the a used and the decision reached conveys little of the information contained in the sample
data. Especially when the results of an experiment are to be communicated to a large audience,
rejection of H0 at level .05 will be much more convincing if the observed value of the test statistic
greatly exceeds the 5% critical value than if it barely exceeds that value. This is precisely what led to
the notion of P-value as a way of reporting significance without imposing a particular a on others who
might wish to draw their own conclusions. In fact, the editorial “Moving to a World Beyond
‘p < 0.05’ ” (The American Statistician 2019) calls for researchers to always report their actual
P-values, rather than just whether hypotheses were rejected at the .05 level, and some research
journals have begun adopting this policy.

Even if a P-value is included in a summary of results, however, there may be difficulty in
interpreting this value and in making a decision. This is in part because a small P-value, which would
ordinarily indicate statistical significance in that it would strongly suggest rejection of H0 in favor of
Ha, may be the result of a large sample size in combination with a departure from H0 that has little
practical significance. In many experimental situations, only departures from H0 of large magnitude
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would be worthy of detection, whereas a small departure from H0 would have little practical
importance. The editorial cited above also recommends the abolishment of the phrase “statistically
significant” precisely because of this confusion.

Consider as an example testing H0: l = 100 versus Ha: l > 100 where l is the mean of a normal
population with r = 10. Suppose a true value of l = 101 would not represent a serious departure
from H0, in the sense that not rejecting H0 when l = 101 would be a relatively inconsequential error;
this would be the case, for example, if l represented the average IQ score within some population. For
a reasonably large sample size n this l would lead to an �x value near 101, so we would not want this
sample evidence to argue strongly for rejection of H0 when �x ¼ 101 is observed. For various sample
sizes, Table 9.1 records both the P-value when �x ¼ 101 and also the probability of not rejecting H0 at
level .01 when l = 101.

The second column in Table 9.1 shows that even for moderately large sample sizes, the P-value of
�x ¼ 101 argues very strongly for rejection of H0 whereas the observed �x itself suggests that in
practical terms the true value of l differs little from the null value l0 = 100. The third column points
out that even when there is little practical difference between the true l (101) and the null value (100),
for a fixed a a large sample size will almost always lead to rejection of the null hypothesis at that
level. To summarize, one must be especially careful in interpreting evidence when the sample size is
very large, since any small departure from H0 will almost surely be detected by a test, yet such a
departure may have little practical significance.

The Relationship Between Confidence Intervals and Hypothesis Tests
A confidence interval (Chapter 8) specifies a range of plausible values for an unknown population
parameter. In contrast, the test procedures of this chapter focused on deciding whether a parameter
equals a particular specified value. Not surprisingly, these two statistical inference methods are related
and, in general, will yield consistent conclusions about a parameter when based on the same sample.

Consider again a hypothesis test for a population mean l of the form H0: l = 100 versus
Ha: l 6¼ 100. Rather than following the techniques of this chapter, what if we constructed a confi-
dence interval for l instead? If 100 is within this confidence interval, then 100 is a plausible value of
l; hence, we should not reject the claim that l equals 100 (i.e., don’t reject H0). Conversely, if 100
falls outside the confidence interval for l, then 100 is not a plausible value for l, and we should reject
the hypothesis l = 100 in favor of the alternative l 6¼ 100. More generally, for H0: l = l0 versus
Ha: l 6¼ l0, we reject H0 if and only if l0 falls outside a confidence interval for l.

Table 9.1 An illustration of the effect of sample size on P-values and b

n P-value when �x = 101 b(101) for level .01 test

25 .3085 .9664
100 .1587 .9082
400 .0228 .6293
900 .0013 .2514
1600 .0000335 .0475
2500 .000000297 .0038
10,000 7.69 
 10−24 .0000
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Two important mathematical connections need to be made here. First, in the preceding scenario,
both the confidence interval and the alternative hypothesis were “two-sided.” This is not coincidence:
suppose instead that we wanted to decide between the claims H0: l = l0 and Ha: l < l0. We would
only decide in favor of Ha if the data provided convincing evidence that l is lower than l0. This
suggests computing an upper confidence bound for l: if we can say with confidence that l is at most
some value B, and B is less than l0, then the data provides convincing evidence that l is also less than
l0. On the other hand, if l0 is less than B, then the confidence statement “l < B” doesn’t tell us
whether l is lower than l0 or not. Hence, we would not be comfortable rejecting H0: l = l0 in favor
of the alternative Ha: l < l0. By the same reasoning, testing H0: l = l0 against the “upper-tailed”
alternative Ha: l > l0 is equivalent to computing a lower confidence bound for l and observing
whether l0 falls below that bound.

Second, any interval estimate carries with it an associated level of confidence (e.g., 95%), and
every hypothesis test is carried out at a specified level of significance (e.g., 5%). A hypothesis test at
significance level a is equivalent to the appropriate confidence interval/bound at confidence level
100(1 – a)%. This should seem intuitively reasonable, but a mathematical demonstration can also be
given (Exercise 80).

Example 9.29 Refer back to Example 9.12, in which data was provided on the d50 value (a measure
of particulate matter size) for n = 9 roadside assays performed near Black Mountain, NC. Using the
summary statistics �x = 68.52 microns, s = 20.49, and the t critical value t:005;8 = 3.355, a 99% CI for
the true mean l is

68:52� 3:355 � 20:49ffiffiffi
9

p ¼ 68:52� 22:91 ¼ ð45:61; 91:43Þ

Because the interval does not include the value 44 microns, we can reject H0: l = 44 in favor of
Ha: l 6¼ 44 at the .01 level of significance. The significance level a = .01 of the hypothesis test aligns
with the selected confidence level: 99% = 100(1 – .01)%.

If the researchers were instead interested in testing H0: l = 44 versus Ha: l > 44, then a lower
confidence bound for l would be required, and H0 would be rejected if that lower confidence bound
exceeded 44 microns (since it would then follow that l also exceeds 44). ■

Some caution must be taken when applying this notion of “duality” between intervals and tests to a
population proportion p. This is because the standard deviation of P̂ is estimated differently for

confidence intervals and hypothesis tests:
ffiffiffiffiffiffiffiffiffiffi
p̂q̂=n

p
for the former,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0q0=n

p
for the latter. Hence, it is

possible (though uncommon, especially for larger sample sizes) to get mutually contradictory con-
clusions about a hypothesized value p0 when comparing a hypothesis test to the corresponding
confidence interval.

General Large-Sample z Tests
The large-sample tests for p presented in Section 9.3 are a special case of more general large-sample

procedures for a parameter h. Let ĥ be an estimator of h that is at least approximately unbiased and
has approximately a normal distribution. (Recall that, under very general conditions, maximum
likelihood estimators have both of these properties.) The null hypothesis has the form H0: h = h0,
where h0 denotes a number (the null value) appropriate to the problem context. A large-sample test

statistic results from standardizing ĥ under the assumption that H0 is true [so that EðĥÞ ¼ h0]:
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Test statistic: Z ¼ ĥ� h0
rĥ

If the alternative hypothesis is Ha: h > h0, an upper-tailed test whose significance level is approxi-
mately a is specified by the rejection region z � za. The other two alternatives, Ha: h < h0 and
Ha: h 6¼ h0, are tested using a lower-tailed z test and a two-tailed z test, respectively.

In some cases, when H0 is true the standard deviation of ĥ, rĥ, involves no unknown parameters.

For example, if h = l and ĥ ¼ �X, rĥ ¼ r�X ¼ r=
ffiffiffi
n

p
, which involves no unknown parameters if the

value of r is known. In the case h = p, rĥ ¼ rP̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=np

, which involves the parameter of
interest p itself. But rĥ does not involve any unknown parameters when H0 is true, because we simply
substitute p ¼ p0 into the standard error. When rĥ does involve unknown parameters, it is often
possible to use an estimated standard deviation Sĥ in place of rĥ and still have Z approximately
normally distributed when H0 is true (because when n is large, sĥ � rĥ for most samples). The one-
sample t test for large n furnishes an example of this: when r is unknown, we use Sĥ ¼ S�X ¼ S=

ffiffiffi
n

p
in

place of r=
ffiffiffi
n

p
in the denominator of the test statistic (9.1), resulting in a tn–1-distributed statistic.

When n is large, the tn–1 and z distributions are virtually indistinguishable, and so the use of z-based
rejection regions or P-values is not inappropriate in this situation.

Bootstrap Hypothesis Testing for μ
The bootstrap technique was introduced in Chapter 8 as a way of producing interval estimates for
parameters without making additional assumptions about the population (e.g., normality). Analogous
methodology exists for testing hypotheses about an unknown parameter (here, l) when the one-
sample t procedure described earlier is not applicable. Typically, this occurs when the sample size n is
not large and the sample data is heavily skewed or otherwise indicate that population normality is not
plausible.

The fundamental bootstrap concepts from Section 8.5 carry over to the hypothesis testing situa-
tion: first, a sample of data x1; . . .; xn is obtained. To approximate the sampling distribution of a
statistic (here, �X), many resamples of size n are randomly selected with replacement from x1; . . .; xn,
and the statistic of interest is calculated for each resample. The distribution of those resample means
�x	1;�x

	
2; . . .;�x

	
B—the bootstrap distribution of �X—provides a reasonable approximation to the sampling

distribution of �X. Inferences about the population mean l can then be made.
Hypothesis testing introduces one wrinkle: we need information about the distribution of �X when

the null hypothesis H0: l = l0 is true. The linchpin of the basic bootstrap method is to treat the
observed sample x1; . . .; xn as a population from which resamples will be drawn; however, this
“population” does not have mean l0. The mean of the original sample is of course the observed
sample mean �x, not l0. To address this issue, the sample data must be adjusted as follows: create new
observations w1; . . .;wn by

wi ¼ xi � �xþ l0; i ¼ 1; . . .; n

This action simply relocates the original sample data in order to have mean l0; plots of the xi’s and the
wi’s would be indistinguishable except for where they are centered. Now if we apply the basic
bootstrap method to w1; . . .;wn, the resulting resample means �w	

1; �w
	
2; . . .; �w

	
B provide a semblance of

what the distribution of �X would look like if H0 were true.
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From this bootstrap distribution of �w	
i ’s, a bootstrap P-value can be obtained by determining what

proportion of bootstrap means are at least as contradictory to H0 as the observed value of the test
statistic, �x. For example, if the alternative hypothesis is Ha: l < l0, then the bootstrap P-value is the
proportion of values among �w	

1; �w
	
2; . . .; �w

	
B that are less than or equal to �x, the sample mean of the

original data.

Example 9.30 As 3D printing increases in popularity, the accuracy and precision of 3D scanners
have become ever more critical. The article “3D Scanning Automation for Die Casting Quality
Control” (Die Casting Engr., May, 2017: 16–18) describes a study in which a scanner was used on
the same complicated object 12 times. For each run, the “flatness” (a sort of tolerance for surface
smoothness) was recorded, resulting in the following measurements (microns):

23.50 22.73 23.63 23.50 23.16 23.61
23.54 22.64 23.55 23.41 23.49 23.18

Does the data provide convincing statistical evidence that the true mean flatness under these
settings exceeds 23 microns? Let’s test the hypotheses H0: l = 23 versus Ha: l > 23. Figure 9.13
shows a normal probability plot of the data; its strongly nonlinear pattern indicates that the population
distribution is very likely nonnormal. Since the sample size is small (n = 12), a one-sample t test
would not be appropriate.

Instead, we proceed with a bootstrap hypothesis test as described previously. The mean of the
sample data is �x = 23.3283. An adjusted “population” w1; . . .;w12 is created by subtracting �x from
each xi and adding l0 = 23:

Figure 9.13 Normal probability plot of the flatness data in Example 9.30
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w1 ¼ x1 � �xþ l0 ¼ 23:50� 23:3283þ 23 ¼ 23:1717; w2 ¼ 22:73� 23:3283þ 23 ¼ 22:4017;

and so on. (A quick check confirms that the mean of the wi’s is l0 = 23, as it should be.) Then
bootstrap resampling is performed on the wi’s: take a sample of size 12 with replacement from
w1; . . .;w12, calculate the resample mean, and repeat. Figure 9.14 shows the result of B = 10,000
bootstrap resamples in R.

The bootstrap distribution in Figure 9.14 is clearly skewed, validating the decision not to use a
t test. The histogram in Figure 9.14 shows how the statistic �X would be expected to behave across
repeated samples of size n = 12 from the population if the null hypothesis is true and the population
mean is 23. Because this is an upper-tailed test, the bootstrap P-value is the proportion of these
bootstrap values that are at least as large as the real sample mean, �x = 23.3283. As is evident from the
histogram, this is an extremely low probability—in fact, zero of the 10,000 resampled means were as
large as �x. Thus our bootstrap P-value is 0, indicating that we should reject H0 at any significance
level. The data makes it clear that the population mean flatness of 3D scans under these settings is
greater than 23 microns. ■

Figure 9.14 Bootstrap distribution for Example 9.30

Exercises: Section 9.6 (75–82)

75. Consider the large-sample level .01 test in
Section 9.3 for testing H0: p = .2 against
Ha: p > .2.

a. For the alternative value p = .21, com-
pute b(.21) for sample sizes n = 100,
2500, 10,000, 40,000, and 90,000.

b. For p̂ ¼ x=n ¼ :21, determine the
P-value when n = 100, 2500, 10,000,
and 40,000.

c. In most situations, would it be reason-
able to use a level .01 test in conjunction

with a sample size of 40,000? Why or
why not?

76. Reconsider the paint-drying problem dis-
cussed in Example 9.25. The hypotheses
were H0: l = 75 versus Ha: l < 75, with r
assumed to have value 9. Consider the
alternative value l = 74, which in the
context of the problem would presumably
not be a practically significant departure
from H0.
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a. For a level .01 test, compute b at this
alternative for sample sizes n = 100,
900, and 2500.

b. If the observed value of �X is �x ¼ 74,
what can be said about the resulting
P-value when n = 2500? Is the data
statistically significant at any of the
standard values of a?

c. Would you really want to use a sample
size of 2500 along with a level .01 test
(disregarding the cost of such an
experiment)? Explain.

77. When X1, X2,…, Xn are independent N(l, r)
variables and n is large, the sample variance
S2 has approximately a normal distribution
with EðS2Þ ¼ r2 and VðS2Þ ¼ 2r4=ðn� 1Þ.
a. Consider testing H0: r = r0. Use the

mean and variance provided to construct
a test statistic that has an approximately
standard normal distribution when H0 is
true.

b. A manufacturer of exercise weights
previously employed a process for
which the standard deviation of the
actual mass of its 10-lb. weights was
.1 lb. After improving the process, the
manufacturers wished to test H0: r = .1
versus Ha: r < .1, where r denotes the
true standard deviation using the new
process. A sample of 100 such weights
has a sample standard deviation of
.07 lb. Use this information and the test
statistic in part (a) to determine whether
H0 should be rejected at the .05 level.
[Note: Hypothesis testing for a popula-
tion variance can also be based on the
chi-squared distribution discussed in
Section 8.4. See Exercises 98–99.]

78. When X1, X2, …, Xn are independent Pois-
son variables, each with parameter l, and
n is large, the sample mean �X has approxi-
mately a normal distribution with Eð�XÞ ¼ l
and Vð�XÞ ¼ l=n. This implies that

Z ¼
�X � lffiffiffiffiffiffiffiffi
l=n

p
has approximately a standard normal dis-
tribution. For testing H0: l = l0, we can
replace l by l0 in the equation for Z to
obtain a test statistic. This statistic is
actually preferred to the one-sample t statis-
tic with denominator S=

ffiffiffi
n

p
when the Xi’s

are Poisson because it is tailored explicitly
to the Poisson assumption. If the number of
requests for consulting received by a certain
statistician during a 5-day work week has a
Poisson distribution and the total number of
consulting requests during a 36-week
period is 160, does this suggest that the
true average number of weekly requests
exceeds 4.0? Test using a = .02.

79. Consider the tip percentage data from
Example 9.13.
a. Use the summary statistics �x = 17.986,

s = 5.937, n = 70 and the t critical value
t:05;69 = 1.667 to construct a 95% lower
confidence bound for the population
mean tip percentage l.

b. Consider testing the hypotheses
H0: l = 15 versus Ha: l > 15. Accord-
ing to the bound in part (a), what is the
rejection decision at the .05 level?
Explain your reasoning.

c. Can the lower confidence bound in part
(a) be used to test H0: l = 15 versus
Ha: l 6¼ 15 at the .05 level? Explain.

d. Return to the upper-tailed alternative
Ha: l > 15. Does the lower confidence
bound in part (a) prescribe a rejection
decision at the .01 level? At the .10
level?

80. This exercise establishes the “duality”
between confidence intervals/bounds and
hypothesis tests for the one-sample t proce-
dures. (Similar derivations apply to other
inference methods.)
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a. Consider the lower-tailed t test of
H0: l = l0 versus Ha: l < l0. Show that
the test statistic t = ð�x� l0Þ=ðs=

ffiffiffi
n

p Þ
falls in the level a rejection region if and
only if l0 exceeds the one-sample t up-
per confidence bound for l with confi-
dence level 100(1 – a)%.

b. Next, consider the upper-tailed alterna-
tive Ha: l > l0. Show that the test
statistic falls in the level a rejection
region if and only if l0 is less than the
lower 100(1 – a)% confidence bound
for l.

c. Finally, show the equivalency between
the (two-sided) confidence interval for l
and the two-tailed one-sample t test of
H0: l = l0 versus Ha: l 6¼ l0.

81. Use the bootstrap hypothesis-testing
method described in this section to test
H0: l = 115 versus Ha: l < 115 for the
bagel data presented in Exercise 27.

82. Use the bootstrap hypothesis-testing
method described in this section to test
H0: l = 1.5 versus Ha: l 6¼ 1.5 for the alco-
hol content data presented in Exercise 22.

Supplementary Exercises: (83–102)

83. When a drug is recalled for safety concerns
(e.g., too many people having serious
adverse reactions), the pharmaceutical
company making the drug can only re-issue
it by convincing the FDA that the refor-
mulated version of the drug is safer than the
original version.

a. In words, what are the null and alter-
native hypotheses for this situation?
[Hint: the FDA will not allow re-
issuance unless they see convincing
evidence of a safety improvement.]

b. Describe the possible type I and type II
errors in this scenario.

c. Which of the two possible errors is
worse, and why? On that basis, how
should the FDA determine the a level
for testing whether the reformulated
drug is safer?

84. A sample of 50 lenses used in eyeglasses
yields a sample mean thickness of 3.05 mm
and a sample standard deviation of .34 mm.
The desired true average thickness of such
lenses is 3.20 mm. Does the data strongly
suggest that the true average thickness of
such lenses is something other than what is
desired? Test using a = .05.

85. In the previous exercise, suppose the
experimenter had believed before collecting
the data that the value of r was approxi-
mately .30. If the experimenter wished the
probability of a type II error to be .05 when
l = 3.00, was a sample size of 50 unnec-
essarily large?

86. It is specified that a certain type of iron
should contain .85 g of silicon per 100 g of
iron (.85%). The silicon content of each of
25 randomly selected iron specimens was
determined, and the accompanying output
resulted from a test of the appropriate
hypotheses.

Variable N Mean St Dev SE
Mean

T P

sil cont 25 0.8880 0.1807 0.0361 1.05 0.30

a. What hypotheses were tested?
b. What conclusion would be reached for a

significance level of .05, and why?
Answer the same question for a signif-
icance level of .10.

87. A hot-tub manufacturer advertises that with
its heating equipment, a temperature of
100 °F can be achieved in at most 15 min.
A random sample of 32 tubs is selected,
and the time necessary to achieve a 100 °F
temperature is determined for each tub. The
sample average time and sample standard
deviation are 17.5 min and 2.2 min,
respectively. Does this data cast doubt on
the company’s claim? Compute the P-value
and use it to reach a conclusion at level .05
(assume that the heating-time distribution is
approximately normal).

88. The true average breaking strength of
ceramic insulators of a certain type is sup-
posed to be at least 10 psi. They will be

560 9 Tests of Hypotheses Based on a Single Sample



used for a particular application unless
sample data indicates conclusively that this
specification has not been met. A test of
hypotheses using a = .01 is to be based on
a random sample of ten insulators. Assume
that the breaking-strength distribution is
normal with unknown standard deviation.
[Note: Software is required for this exer-
cise.]

a. If the true standard deviation is .80, how
likely is it that insulators will be judged
satisfactory when true average breaking
strength is actually only 9.5? Only 9.0?

b. What sample size would be necessary to
have a 75% chance of detecting that H0

is false when true average breaking
strength is 9.5 when the true standard
deviation is .80?

89. The article “Caffeine Knowledge, Atti-
tudes, and Consumption in Adult Women”
(J. Nutrit. Ed. 1992: 179–184) reports the
following summary data on daily caffeine
consumption for a sample of adult women:
n = 47, �x ¼ 215 mg, s = 235 mg, and
range = 5 − 1176.

a. Does it appear plausible that the popu-
lation distribution of daily caffeine
consumption is normal? Is it necessary
to assume a normal population distri-
bution to test hypotheses about the
value of the population mean con-
sumption? Explain your reasoning.

b. Suppose it had previously been believed
that mean consumption was at most
200 mg. Does the given data contradict
this prior belief? Test the appropriate
hypotheses at significance level .10 and
include a P-value in your analysis.

90. The incidence of a certain type of chro-
mosome defect in the U.S. adult male
population is believed to be 1 in 75.
A random sample of 800 individuals in
U.S. penal institutions reveals 16 who have
such defects. Can it be concluded that the
incidence rate of this defect among pris-
oners differs from the presumed rate for the
entire adult male population?

a. State and test the relevant hypotheses
using a = .05. What type of error might
you have made in reaching a
conclusion?

b. What P-value is associated with this
test? Based on this P-value, could H0 be
rejected at significance level .20?

91. In an investigation of the toxin produced by
a certain poisonous snake, a researcher
prepared 26 different vials, each containing
1 g of the toxin, and then determined the
amount of antitoxin needed to neutralize
the toxin. The sample average amount of
antitoxin necessary was found to be
1.89 mg, and the sample standard deviation
was .42. Previous research had indicated
that the true average neutralizing amount
was 1.75 mg/g of toxin. Does the new data
contradict the value suggested by prior
research? Test the relevant hypotheses
using the P-value approach. Does the
validity of your analysis depend on any
assumptions about the population distribu-
tion of neutralizing amount? Explain.

92. The sample average unrestrained compres-
sive strength for 45 specimens of a partic-
ular type of brick was computed to be 3107
psi, and the sample standard deviation was
188. The distribution of unrestrained com-
pressive strength may be somewhat
skewed. Does the data strongly indicate that
the true average unrestrained compressive
strength is less than the design value of
3200? Test using a = .001.

93. To test the ability of auto mechanics to
identify simple engine problems, an auto-
mobile with a single such problem was
taken in turn to 72 different car repair
facilities. Only 42 of the 72 mechanics who
worked on the car correctly identified the
problem. Does this strongly indicate that
the true proportion of mechanics who could
identify this problem is less than .75?
Compute the P-value and reach a conclu-
sion accordingly.

94. Chapter 8 presented a CI for the variance
r2 of a normal population distribution.
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The key result there was that the rv
v2 ¼ ðn� 1ÞS2=r2 has a chi-squared dis-
tribution with n − 1 df. Consider the null
hypothesis H0: r2 ¼ r20 (equivalently,
r = r0). Then when H0 is true, the test
statistic v2 ¼ ðn� 1ÞS2=r20 has a chi-
squared distribution with n − 1 df. If the
relevant alternative is Ha: r2 [ r20,
rejecting H0 if v2 � v2a;n�1 gives a test with
significance level a. To ensure reasonably
uniform characteristics for a particular
application, it is desired that the true stan-
dard deviation of the softening point of a
certain type of petroleum pitch be at most
.50 °C. The softening points of ten different
specimens were determined, yielding a
sample standard deviation of .58 °C. Does
this strongly contradict the uniformity
specification? Test the appropriate
hypotheses using a = .01.

95. Referring to the previous exercise, suppose
an investigator wishes to test H0: r

2 = .04
versus Ha: r

2 < .04 based on n = 21 obser-
vations. The computed value of 20s2/.04 is
8.58. Place bounds on the P-value and then
reach a conclusion at level .01.

96. When the population distribution is normal
and n is large, the sample standard devia-
tion S has approximately a normal distri-
bution with E(S) � r and V(S) � r2/(2n).
We already know that in this case, for any
n, �X is normal with Eð�XÞ ¼ l and
Vð�XÞ ¼ r2=n.

a. Assuming that the underlying distribu-
tion is normal, what is an approximately
unbiased estimator of the 99th percentile
h = l + 2.33r?

b. As discussed in Section 6.4, when the
Xi’s are normal �X and S are independent
rvs (one measures location whereas the
other measures spread). Use this to

compute VðĥÞ and rĥ for the estimator ĥ
of part (a). What is the estimated stan-
dard error r̂ĥ?

c. Write a test statistic for testingH0: h = h0
that has approximately a standard normal
distribution when H0 is true. If soil pH is
normally distributed in a certain region
and 64 soil samples yield �x ¼ 6:33,
s = .16, does this provide strong evi-
dence for concluding that at most 99% of
all possible samples would have a pH of
less than 6.75? Test using a = .01.

97. Let X1, X2, …, Xn be a random sample from
an exponential distribution with parameter
k. Then it can be shown that 2k

P
Xi has a

chi-squared distribution with m = 2n (by
first showing that 2kXi has a chi-squared
distribution with m = 2).

a. Use this fact to obtain a test statistic and
rejection region that together specify a
level a test for H0: l = l0 versus each of
the three commonly encountered alter-
natives. [Hint: E(Xi) = l = 1/k, so
l = l0 is equivalent to k = 1/l0.]

b. Suppose that ten identical components,
each having exponentially distributed
time until failure, are tested. The
resulting failure times are

95 16 11 3 42 71 225 64 87 123

Use the test procedure of part (a) to
decide whether the data strongly sug-
gests that the true average lifetime is less
than the previously claimed value of 75.

98. Suppose the population distribution is nor-
mal with known r. Let c be such that
0 < c < a. For testing H0: l = l0 versus
Ha: l 6¼ l0, consider the test that rejects
H0 if either z � zc or z � −za–c, where the
test statistic is Z ¼ ð�X � l0Þ=ðr=

ffiffiffi
n

p Þ:

a. Show that P(type I error) = a.
b. Derive an expression for b(l′). [Hint:

Express the test in the form “reject H0 if
either �x� c1 or � c2.”]

c. Let D > 0. For what values of c (relative
to a) will b(l0 + D) < b(l0 − D)?
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99. After a period of apprenticeship, an orga-
nization gives an exam that must be passed
to be eligible for membership. Let p =
P(randomly chosen apprentice passes). The
organization wishes an exam that most but
not all should be able to pass, so it decides
that p = .90 is desirable. For a particular
exam, the relevant hypotheses are
H0: p = .90 versus Ha: p 6¼ .90. Suppose
ten people take the exam, and let X = the
number who pass.

a. Does the lower-tailed region {0, 1, …,
5} specify a level .01 test?

b. Show that even though Ha is two-sided,
no two-tailed test is a level .01 test.

c. Sketch a graph of power as a function of
p′ for this test. Is this desirable?

100. A service station has six gas pumps. When
no vehicles are at the station, let pi denote the
probability that the next vehicle will select
pump i (i = 1, 2,…, 6). Based on a sample of
size n, we wish to test H0: p1 ¼ � � � ¼ p6
versus the alternative Ha: p1 = p3 = p5,
p2 = p4 = p6 (note that Ha is not a simple
hypothesis). Let X be the number of
customers in the sample that select an even-
numbered pump.

a. Show that the likelihood ratio test
rejects H0 if either X � c or
X � n − c. [Hint: When Ha is true, let
h denote the common value of p2, p4,
and p6.]

b. Let n = 10 and c = 9. Determine the
power of the test both when H0 is true

and also when p2 ¼ p4 ¼ p6 ¼ 1=10;
p1 ¼ p3 ¼ p5 ¼ 7=30:

101. Consider testing a pair of simple hypothe-
ses H0: h = h0 versus Ha: h = ha. Rather
than prescribing the significance level and
minimizing P(type II error), imagine trying
to minimize the linear combination
a � aþ b � b for some specified constants
a > 0 and b > 0. Show that a � aþ b � b is
minimized by using the rejection region

R	 ¼ ðx1; . . .; xnÞ: f ðx1; . . .; xn; haÞf ðx1; . . .; xn; h0Þ �
a

b

� �

[Hint: Imitate the first half of the proof of
the Neyman-Pearson Lemma, but use
a � aþ b � b in place of ka + b].

102. Refer back to the scenario introduced
in Example 9.23, where H0: l = 1 versus
Ha: l = 2 was tested based on a sample
from a Poisson(l) distribution. Suppose
committing a type II error is considered 3
times as problematic as a type I error, and
so the manufacturers wish to minimize
a + 3b.

a. Determine the test procedure that mini-
mizes a + 3b when n = 5. [Hint: Refer
back to the previous exercise.]

b. For the test procedure in part (a), what
are a, b, and the (minimized) value of
a + 3b?

c. Repeat parts (a)–(b) for n = 10.
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10Inferences Based on Two Samples

Introduction
Chapters 8 and 9 presented confidence intervals (CIs) and hypothesis-testing procedures for single
parameters, such as a population mean l and a population proportion p. In this chapter, we extend
these methods to situations involving the means, proportions, and variances of two different popu-
lation distributions. For example, let l1 and l2 denote the true average decrease in cholesterol for two
drugs. Then an investigator might wish to use results from patients assigned at random to two
different groups as a basis for testing the null hypothesis l1 = l2 versus the alternative hypothesis
l1 6¼ l2. As another example, let p1 denote the true proportion of all metal-on-metal hip replacements
that fail, and let p2 represent the true proportion of all ceramic-on-ceramic replacements that fail.
Based on surveys of 500 people with each type of hip replacement, we might like an interval estimate
for the difference p1 − p2.

10.1 The Two-Sample z Confidence Interval and Test

The inferences discussed in this section concern a difference l1 � l2 between the means of two
different population distributions. An investigator might, for example, wish to test hypotheses about
the difference between the true mean stopping distances of two different braking systems under
identical conditions. One such hypothesis would state that l1 � l2 ¼ 0, i.e., that l1 = l2. Alterna-
tively, it may be appropriate to estimate l1 � l2 by computing a 95% CI. Such inferences would be
based on a sample of stopping distances for each braking system.

ASSUMPTIONS 1. X1, X2, …, Xm is a random sample from a population with mean l1
and standard deviation r1.

2. Y1, Y2, …, Yn is a random sample from a population with mean l2
and standard deviation r2.

3. The X and Y samples are independent of each other.

The natural estimator of l1 � l2 is X � Y , the difference between the corresponding sample means.
The test statistic results from standardizing this estimator, so we need expressions for the expected
value and standard deviation of X � Y .
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PROPOSITION The expected value of X � Y is l1 � l2, so X � Y is an unbiased estimator
of l1 � l2. The standard deviation of X � Y is

rX�Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r

Proof Both these results depend on the rules of expected value and variance presented in Chapter 5.
By linearity of expectation,

EðX � YÞ ¼ EðXÞ � EðYÞ ¼ l1 � l2

Because the X and Y samples are independent, X and Y are independent quantities, so the variance of
the difference is the sum of VðXÞ and VðYÞ:

VðX � YÞ ¼ VðXÞþVðYÞ ¼ r21
m

þ r22
n

The standard deviation of X � Y is the square root of this expression. ■
Regarding l1 � l2 as a parameter h, its estimator is ĥ ¼ X � Y with standard deviation rĥ given

by the proposition. When r1 and r2 both have known values, the test statistic will have the form

ðĥ� null valueÞ=rĥ; this form of a test statistic was used in several one-sample problems in the
previous chapter. If r1 and r2 are unknown, the sample standard deviations must be used to estimate
rĥ (the topic of Section 10.2).

Confidence Interval for l1 � l2 With Known r’s
In Chapters 8 and 9, the first CI and test procedure for a population mean l were based on the
assumption that the population distribution was normal with the value of the population standard
deviation r known to the investigator. Similarly, we first assume here that both population distri-
butions are normal and that the values of both r1 and r2 are known.

Because the population distributions are normal, both X and Y have normal distributions. This
implies that X � Y is normally distributed, with expected value l1 � l2 and standard deviation rX�Y

given in the foregoing proposition. Standardizing X � Y gives the standard normal variable

Z ¼ X � Y � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r ð10:1Þ

Since the area under the z curve between �za=2 and za/2 is 1 − a, it follows that

P �za=2\
X � Y � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
m

þ r22
n

r \za=2

0
BB@

1
CCA ¼ 1� a

Manipulation of the inequalities inside the parentheses to isolate l1 � l2 yields the equivalent
probability statement
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P X � Y � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r
\l1 � l2\X � Y þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r !
¼ 1� a

This implies that a 100(1 − a)% CI for l1 � l2 has lower limit ð�x� �yÞ � za=2 � rX�Y and upper limit

ð�x� �yÞþ za=2 � rX�Y . This interval is a special case of the general formula ĥ� za=2 � rĥ.
If both m and n are large, the CLT implies that both X and Y are approximately normal. In that

case, this interval remains valid with a confidence level of approximately 100(1 − a)% irrespective of
the population distributions.

TWO-SAMPLE
z INTERVAL

Assuming independent random samples from normal population distributions, a CI
for l1 � l2 with a confidence level of 100(1 − a)% has endpoints

�x� �y� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r

An upper or lower confidence bound can also be calculated by retaining the appro-
priate sign (+ or −) and replacing za/2 by za.
These confidence limits may also be applied to samples from nonnormal popula-
tions, provided that both sample sizes are large (say, m > 40 and n > 40); the
confidence level is then approximate.

In practice, the assumption of known r’s is generally unrealistic. If information was available con-
cerning the population standard deviations, typically both l1 and l2 would also be known. In
Section 10.2, we will examine the more realistic scenario when the values of all four parameters are
unknown.

Example 10.1 The article “Reflective Tape Applied to Bicycle Frame and Conspicuity Enhance-
ment at Night” (Hum. Factors 2017: 485–500) describes a series of studies to determine the distance
at which drivers can see a bicyclist ahead in the road (“detection distance”) at night. One study
compared detection distance when the bicycle had a typical red reflector mounted on the rear of the
bike versus having reflective tape wrapped around the posterior forks, seat post, and rear reflector
panel. The sample mean detection distances under these two conditions were �x ¼ 67:66 m and
�y ¼ 168:28 m, respectively.

Suppose these observations were based on independent random samples of m = n = 64 drivers, and
that the population standard deviations under these two conditions are r1 = 30 m and r2 = 40 m
(values consistent with information in the article). Then a 95% CI for l1 � l2, the true difference in
mean detection distance under these two settings, is

ð67:66� 168:28Þ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
302

64
þ 402

64

r
¼ �100:62 � 1:96 6:25ð Þ ¼ �112:87; �88:37ð Þ

Note that the confidence level is approximate, because with large sample sizes but no assumption of
normality we are relying on the CLT. The interval indicates that average nighttime detection distance
is between 88.37 and 112.87 m greater (that is, better) for bikes using reflective tape versus those just
relying on the standard red rear reflector. ■
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If the standard deviations r1 and r2 are known and the investigator uses equal sample sizes, then
the sample size m = n for each sample that yields a 100(1 − a)% interval of width w is

m ¼ n ¼
z2a=2ðr21 þ r22Þ

ðw=2Þ2

which will generally have to be rounded up to an integer. (Recall that w/2 represents the desired

bound on the interval’s margin of error. The sample size formula results from setting w=2 ¼
za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21=nþ r22=n

p
and solving for n.)

Test Procedures for l1 � l2 with Known r’s
In a hypothesis-testing problem, the null hypothesis will state that l1 � l2 has a specified value.
Denoting this null value by D0, the null hypothesis becomes H0: l1 � l2 = D0. For example, the null
hypothesis might state that the difference in true average fuel efficiencies (mpg) between cars having a
turbocharged engine and a nonturbo engine is −3 (that is, on average turbocharging decreases fuel
efficiency by 3 mpg). The null value would be D0 = +3 if the subscripts 1 and 2 instead referred to
nonturbo and turbo engines, in that order. Often D0 = 0, in which case H0 is equivalent to asserting
that l1 ¼ l2. A test statistic results from replacing l1 � l2 in Expression (10.1) by the null value D0.
Because the test statistic Z is obtained by standardizing X � Y under the assumption that H0 is true, it
has a standard normal distribution in this case.

Consider the alternative hypothesis Ha: l1 � l2 > D0. A value �x� �y that considerably exceeds D0

(the expected value of X � Y when H0 is true) provides evidence against H0 and for Ha. Such a value
of �x� �y corresponds to a positive and large value of z. Thus H0 should be rejected in favor of Ha if
z is greater than or equal to an appropriately chosen critical value. Because the test statistic Z has a
standard normal distribution when H0 is true, the upper-tailed rejection region z � za gives a test
with significance level (type I error probability) a. Rejection regions for the other two alternatives
Ha: l1 � l2 < D0 and Ha: l1 � l2 6¼ D0 that yield tests with desired significance level a are lower-
tailed and two-tailed, respectively.

As in the confidence interval discussion, z-based inference is still approximately correct here for
samples from nonnormal populations provided both m and n are large. (Note, though, that here we
still assume known population standard deviations.)

TWO-SAMPLE z TEST Null hypothesis: H0: l1 � l2 = D0

Test statistic value: z ¼ �x� �y� D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r

Because these are z tests, a P-value is computed as it was for the z tests in Chapter 9: P-value =
1− U(z) for an upper-tailed test, = U(z) for a lower-tailed test, and¼ 2½1� Uð zj jÞ� for a two-tailed test.

These test procedures may also be applied to samples from nonnormal populations, provided that
both sample sizes are large (say, m > 40 and n > 40).

Alternative Hypothesis Rejection Region for Level a Test

Ha: l1 − l2 > D0 z � za (upper-tailed test)
Ha: l1 − l2 < D0 z � −za (lower-tailed test)
Ha: l1 − l2 6¼ D0 either z � za/2 or z � −za/2 (two-tailed test)
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Example 10.2 Each student in a class of 21 responded to a questionnaire that requested their grade
point average (GPA) and the number of hours they studied each week. For those who studied less
than 10 h/week the GPAs were

2.80 3.40 4.00 3.60 2.00 3.00 3.47 2.80 2.60 2.00

and for those who studied at least 10 h/week the GPAs were

3.00 3.00 2.20 2.40 4.00 2.96 3.41 3.27 3.80 3.10 2.50

Normal probability plots for both sets are reasonably linear, so the normality assumption is
tenable. Because the standard deviation of GPAs for the whole campus is r = .6, it is reasonable to
apply that value here to both (conceptual) populations. The sample means are 2.97 for the <10 study
hours group and 3.06 for the � 10 study hours group. Treating the two samples as random, is there
evidence that true average GPA is higher for students who study more? Let’s carry out a test of
significance at level .05 using the seven-step procedure outline in Section 9.2.

1. Parameter: l1 � l2, the difference between true mean GPA for the (conceptual) <10 population
and true mean GPA for the � 10 population

2. Hypotheses:
H0: l1 � l2 = 0 (i.e., l1 ¼ l2)

Ha: l1 � l2 \ 0 i:e:; l1\l2ð Þ

3. Assumptions/requirements: We have assumed underlying normal distributions for the GPAs of
both populations, each with a known population standard deviation.

4. Test statistic value: With D0 = 0, the test statistic value is

z ¼ �x� �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r

5. Rejection region: The inequality in Ha implies that the test is lower-tailed. For a = .05, za =
z.05 = 1.645. H0 will be rejected if z � −1.645.

6. Substitutingm = 10, �x ¼ 2:97, r1 = .6, n = 11, �y ¼ 3:06, and r2 = .6 into the formula for z yields

z ¼ 2:97� 3:06ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:62

10
þ :62

11

r ¼ �:09
:262

¼ �:34

That is, the value of �x� �y is only one-third of a standard deviation below what would be
expected when H0 is true.

7. Because the value of z is not even close to the rejection region, there is no reason to reject the
null hypothesis. This test does not provide convincing statistical evidence that students who
study � 10 h per week have a higher mean GPA than those studying <10 h per week. ■

Power, b, and Sample Size Determination
Both power and b (the probability of a type II error) are easily calculated when the population
distributions are normal with known values of r1 and r2. Consider the case in which the alternative
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hypothesis is Ha: l1 � l2 > D0. Let D′ denote a value of l1 � l2 that exceeds D0, a value for which
H0 is false and Ha is true. The upper-tailed rejection region z � za can be re-expressed in the form
�x� �y�D0 þ zarX�Y . Thus the probability of a type II error when l1 � l2 = D′ is

bðD0Þ ¼ Pðnot rejecting H0 when l1 � l2 ¼ D0Þ
¼ PðX � Y \D0 þ zarX�Y when l1 � l2 ¼ D0Þ

When l1 � l2 = D′, X � Y is normally distributed with mean value D′ and standard deviation rX�Y

(the same standard deviation as when H0 is true); using these values to standardize the inequality in
parentheses gives b.

Alternative Hypothesis b D0ð Þ ¼ Pðtype II error when l1 � l2 ¼ D0Þ

Ha : l1 � l2 [ D0 U za � D0 � D0
rX�Y

� �

Ha : l1 � l2 \D0 1� U �za � D0 � D0
rX�Y

� �

Ha : l1 � l2 6¼ D0 U za=2 � D0 � D0
rX�Y

� �
� U �za=2 � D0 � D0

rX�Y

� �

where rX�Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr21=mÞþ ðr22=nÞ

p
. For each case, power = 1� bðD0Þ.

Example 10.3 (Example 10.2 continued) If l1 ¼ l2 – .5 (true average GPA is .5 lower for the less-
studious group), what is the probability of detecting such a departure from H0 based on a level .05 test
with sample sizes m = 10 and n = 11? The value of rX�Y for these sample sizes (the denominator of
z) was previously calculated as .262. The probability of a type II error for the lower-tailed level .05
test when l1 � l2 ¼ D0 ¼ �:5 is

bð�:5Þ ¼ 1� U �1:645��:5� 0
:262

� �
¼ 1� U 0:263ð Þ ¼ :396

Thus the probability of detecting such a departure is power = 1 − b(–.5) = .604. Clearly, we have a
mediocre chance of detecting a difference of –.5 with these sample sizes. Perhaps we should not
conclude from Example 10.2 that there is no relationship between study time and GPA, because the
sample sizes were insufficient. ■

As in Chapter 9, sample sizes m and n can be determined that will satisfy both P(type I error) = a
specified a and P(type II error when l1 � l2 = D′) = a specified b. For an upper-tailed test, equating
the previous expression for b(D′) to the specified value of b gives

r21
m

þ r22
n

¼ ðD0 � D0Þ2
ðza þ zbÞ2

When the two sample sizes are equal, this equation yields
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m ¼ n ¼ ðr21 þ r22Þðza þ zbÞ2
ðD0 � D0Þ2

This expression is also correct for a lower-tailed test, whereas a is replaced by a/2 for a two-tailed
test.

Using a Comparison to Identify Causality
Investigators are often interested in comparing either the effects of two different treatments on some
outcome, or the response after treatment with the response after no treatment (treatment vs. control). If
the individuals or objects to be used in the comparison are not assigned by the investigators to the two
different conditions, the study is said to be observational. The difficulty with drawing conclusions
based on an observational study is that although statistical analysis may indicate a significant dif-
ference in response between the two groups, the difference may be due to some underlying factors
that had not been controlled, rather than to any difference in the effects of the treatments.

Example 10.4 Many investigations in the last several years have explored the potential benefits of
consuming a moderate amount of alcohol. As reported by CNN (July 27, 2017), a Danish study found
that light-to-moderate drinkers (those consuming a few glasses of wine 3–4 days per week) had a
lower risk of developing diabetes than those who rarely consumed alcohol. The study was based on
tracking more than 70,000 Danes over a five-year period, and a test of the difference between the new
diabetes development rates between these two groups resulted in an extremely low P-value. The
difference was also considered clinically meaningful; that is, the low P-value was not simply the
result of the very large sample size.

Should we conclude that moderate alcohol consumption causes a decreased likelihood of diabetes?
Should health professionals recommend a few glasses of wine per day to help prevent diabetes onset?
Not necessarily: since individuals in the study decided for themselves how much to drink, there could
be some other underlying factor that the moderate drinkers have in common that would explain their
lower risk of diabetes. For instance, most drinkers in the study specifically consumed wine, and wine-
drinkers tend to be wealthier. Perhaps other lifestyle features of those wealthier individuals can help
explained the observed relationship. (Using advanced statistical methods, the researchers “adjusted”
for several factors including age, diet, and education, but they can’t account for every possible
alternative explanation.) ■

Once upon a time, it was argued that the studies linking smoking and lung cancer were all obser-
vational, and therefore that nothing had been proved. This was the view of the great statistician
R. A. Fisher, whomaintained till his death in 1962 that the observational studies did not show causation.
He said that people who choose to smokemight be more susceptible to lung cancer. This explanation for
the relationship had plenty of opposition then, and fewwould support it now.At that time fewwomen got
lung cancer because few women smoked, but when smoking increased among women, so did lung
cancer. Furthermore, the incidence of lung cancer was higher for those who smoked more, and quitters
had reduced incidence. Eventually, the physiological effects on the body were better understood, and
nonobservational animal studies made it clear that smoking does, in fact, cause lung cancer.

To establish causation through a statistical study, we must try to eliminate the possibility that the
groups being compared (e.g., drinkers and nondrinkers) have some other distinguishing feature (e.g.,
wealth) that could explain the study results. A randomized controlled experiment results when
investigators assign subjects to the two treatments in a random fashion. When statistical significance
is observed in such an experiment, the investigator and other interested parties will have more
confidence in the conclusion that the difference in response has been caused by a difference in
treatments.
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Example 10.5 Many advertisers have touted “green labeling”—discussing the environmental
impact of a product in advertisements (e.g., “now with less phosphates”)—as a way to increase sales.
But is this really effective? The article “How Green Should You Be: Can Environmental Associations
Enhance Brand Performance?” (J. Mark. Res. 2008: 547–563) discussed a randomized controlled
experiment in which shoppers were shown one of three brochures describing a (made-up) brand of
detergent: one brochure that provided generic information about the brand, one that included infor-
mation on the environmental performance of the brand, and one that additionally included an
“environmental certification” label. Brochure types were randomly assigned to the study participants.
The authors of the article then assessed participants’ attitude toward the brand, including the likeli-
hood of purchasing that detergent.

What the researchers found contradicted conventional wisdom: shoppers who saw the “green”
advertisements were no more positively disposed to the product than those who had seen the generic
advertisement. In other words, the presence of environmental information did not cause people to be
more apt to purchase that brand of detergent. (To be more precise, the experiment uncovered no
statistically significant differences in customer attitudes between the three brochures.) ■

Observational studies, experiments, and the issue of establishing causality are discussed at greater
length in the (nonmathematical) books by Utts, Moore, and Freedman et al., listed in the
bibliography.

Exercises: Section 10.1 (1–12)

1. An article in Consumer Reports compared
various types of batteries. The average life-
times of Duracell AA batteries and Ener-
gizer AA batteries were given as 4.1 h and
4.5 h, respectively. Suppose these are the
population average lifetimes.

a. Let X be the sample average lifetime of
100 Duracell batteries and Y be the sam-
ple average lifetime of 100 Energizer
batteries. What is the mean value of X �
Y (i.e., where is the distribution of X � Y
centered)? How does your answer depend
on the specified sample sizes?

b. Suppose the population standard devia-
tions of lifetime are 1.8 h for Duracell
batteries and 2.0 h for Eveready batteries.
With the sample sizes given in part (a),
what is the variance of the statistic X � Y ,
and what is its standard deviation?

c. For the sample sizes given in part (a),
draw a picture of the approximate distri-
bution curve of X � Y (include a mea-
surement scale on the horizontal axis).
Would the shape of the curve necessarily

be the same for sample sizes of 10 bat-
teries of each type? Explain.

2. According to a 2018 report by the CDC, the
mean body mass index (BMI) for American
adult men is 29.1 kg/m2, while the mean for
women is 29.6 kg/m2. Suppose these are
population averages.

a. Let X be the sample average BMI of 50
randomly selected American adult men Y
be the sample average BMI of 75 ran-
domly selected American adult women.
What is the expected value of X � Y?
How does your answer depend on the
specified sample sizes?

b. Suppose the population standard devia-
tions of BMI are 4.7 for men and 6.2 for
women (these values are consistent with
the study). With the sample sizes given in
part (a), what is the variance of the statistic
X � Y , and what is its standard deviation?

c. For the sample sizes given in part (a),
what is the approximate distribution of
X � Y , and why?
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d. Would the shape of the distribution in part
(c) necessarily be the same for sample
sizes of 5 men and 7 women? Explain.

3. Let l1 and l2 denote true average tread lives
(miles) for two competing brands of size
P205/65R15 tires.

a. Test H0: l1�l2 = 0 versus Ha: l1�l2 6¼ 0
at level .05 using the following informa-
tion: m = 45, �x ¼ 42; 500, r1 = 2200,
n = 45, �y ¼ 40;400, and r2 = 1900.

b. Use the information in part (a) to compute
a 95% CI for l1 � l2. Does the resulting
interval suggest that l1 � l2 has been
precisely estimated?

4. Let l1 denote true average tread life for a
premium brand of P205/65R15 tire and let l2
denote the true average tread life for an
economy brand of the same size.

a. Test H0: l1 � l2 = 5000 versus the alter-
native Ha: l1 � l2 > 5000 at level .01
using the following information:
m = 45, �x ¼ 42;500, r1 = 2200, n = 45,
�y ¼ 36;800, and r2 = 1500.

b. Use the information in part (a) to compute
a 99% lower confidence bound for
l1 � l2. Is your answer consistent with
the test in part (a)?

5. Persons having Raynaud’s syndrome are apt
to suffer a sudden impairment of blood cir-
culation in fingers and toes. In an experiment
to study the extent of this impairment, each
subject immersed a forefinger in water and
the resulting heat output (cal/cm2/min) was
measured. For m = 10 subjects with the
syndrome, the average heat output was
�x ¼ :64, and for n = 10 nonsufferers, the
average output was 2.05. Let l1 and l2
denote the true average heat outputs for the
two types of subjects. Assume that the two
distributions of heat output are normal with
r1 = .2 and r2 = .4.

a. Consider testing H0: l1 � l2 = −1.0
versus Ha: l1 � l2\� 1:0 at level .01.

Describe in words what Ha says, and then
carry out the test.

b. Compute the P-value for the value of
Z obtained in part (a).

c. What is the probability of a type II error
when the actual difference between l1 and
l2 is l1 � l2 = −1.2? What is the power?

d. Assuming that m = n, what sample sizes
are required to ensure that b = .1 when
l1 � l2 ¼ �1:2?

6. An experiment to compare the tension bond
strength of polymer latex modified mortar to
that of unmodified mortar resulted in �x ¼
18:12 kgf/cm2 for the modified mortar
(m = 40) and �y ¼ 16:87 kgf/cm2 for the
unmodified mortar (n = 32). Let l1 and l2 be
the true average tension bond strengths for
the modified and unmodified mortars,
respectively. Assume that the bond strength
distributions are both normal.

a. Assuming that r1 = 1.6 and r2 = 1.4, test
H0: l1 � l2 ¼ 0 versus Ha: l1 � l2 [ 0
at level .01.

b. Compute the probability of a type II error
for the test of part (a) when l1 � l2 = 1.

c. Suppose the investigator decided to use a
level .05 test and wished b = .10 when
l1 � l2 = 1. If m = 40, what value of n is
necessary?

7. What affects the time a consumer spends
looking at a product on the shelf prior to
selection? The following data summarized
elapsed time (in seconds) for purchasers of
fabric softener and washing-up liquid; the
former is much more expensive than the lat-
ter. These products were chosen because
they’re similar with respect to shelf space and
number of brands available.

Product Sample size Sample mean

Fabric softener 15 30.42
Washing-up liquid 19 26.53

10.1 The Two-Sample z Confidence Interval and Test 573



a. What assumptions, if any, are necessary
for the inferential procedures of this sec-
tion to be valid in this situation? Why?

b. Assuming that r1 = r2 = 8.5 s, test to see
if there is a significant difference in the
true average time purchasers spend look-
ing at these two products, at the a = .01
significance level.

8. An experiment was performed to compare
the fracture toughness of high-purity nickel
maraging steel with commercial-purity steel
of the same type. The sample average
toughness was �x ¼ 65:6 for m = 32 speci-
mens of the high-purity steel, whereas for
n = 38 specimens of commercial steel
�y ¼ 59:8. Because the high-purity steel is
more expensive, its use for a certain appli-
cation can be justified only if its fracture
toughness exceeds that of commercial-purity
steel by more than 5. Suppose that both
toughness distributions are normal.

a. Assuming that r1 = 1.2 and r2 = 1.1, test
the relevant hypotheses using a = .001.

b. Compute b and power for the test con-
ducted in part (a) when l1 � l2 = 6.

9. A study seeks to compare hospitals based on
the performance of their intensive care units.
The response variable is the mortality ratio,
the ratio of the number of deaths over the
predicted number of deaths based on the
condition of the patients. The comparison
will be between hospitals with nurse staffing
problems and hospitals without such prob-
lems. Assume, based on past experience, that
the standard deviation of the mortality ratio
will be around .2 in both types of hospital.
How many of each type of hospital should be
included in the study in order to have both
the type I and type II error probabilities be
.05, if the true difference of mean mortality
ratio for the two types of hospital is .2? If we

conclude that hospitals with nurse staffing
problems have a higher mortality ratio, does
this imply a causal relationship? Explain.

10. To decide whether chemistry or physics
majors have higher starting salaries in
industry, n B.S. graduates of each type are
surveyed, yielding �x ¼ $61;500 for chem-
istry and �y ¼ $61;000 for physics. Assume
r = $2500 for both populations.
Calculate the P-value for the appropriate two-
sample z test, assuming that the data was
based on n = 100. Then repeat the calcula-
tion for n = 400. Is the small P-value for
n = 400 indicative of a difference that has
practical significance? Would you have been
satisfied with just a report of the P-value?
Comment briefly.

11. a. Show for the upper-tailed test with r1 and
r2 known that as either m or n increases, b
decreases when l1 � l2 [D0.

b. For the case of equal sample sizes
(m = n) and fixed a, what happens to the
necessary sample size n as b is decreased,
where b is the desired type II error
probability at a fixed alternative?

12. The level of monoamine oxidase (MAO) ac-
tivity in blood platelets (nm/mg protein/h)
was determined for each individual in a
sample of 43 chronic schizophrenics, result-
ing in �x ¼ 2:69, as well as for 45 normal
subjects, resulting in �y ¼ 6:35. Assume that
r1 = 2.3 and r2 = 4.0. Does this data
strongly suggest that true average MAO
activity for normal subjects ismore than twice
the activity level for schizophrenics? Derive a
test procedure and carry out the test using
a = .01. [Hint: Let l1 and l2 refer to true
average MAO activity for schizophrenics and
normal subjects, respectively, and consider
the parameter h = 2l1 � l2. Write H0 and
Ha in terms of h, estimate h, and derive rĥ.]
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10.2 The Two-Sample t Confidence Interval and Test

In the previous section, we illustrated the use of a CI and test procedure for the difference of two
means under the assumptions of normally distributed populations with known standard deviations.
For large samples, the CLT allows us to use these methods even when the two populations of interest
are not normal.

In practice, though, it is virtually always the case that the values of the population standard
deviations are unknown. We now proceed by extending the one-sample t procedures from Chapters 8
and 9 to the analysis of a difference of means. Such inferential methods still assume normal popu-
lation distributions, though (as discussed below) that assumption can be relaxed for large sample
sizes.

We continue under the assumptions 1–3 stated at the beginning of Section 10.1. Since it is no
longer assumed that the population standard deviations r1 and r2 are known, they will be replaced in
Expression (10.1) by the sample standard deviations S1 and S2, respectively. The following theorem
stems from a result first presented by B. L. Welch in 1938.

WELCH’S THEOREM When the population distributions are both normal, the standardized variable

T ¼ X � Y � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
m

þ S22
n

r ð10:2Þ

has approximately a t distribution with df m estimated from the data by

m ¼
s21
m

þ s22
n

� �2

ðs21=mÞ2
m� 1

þ ðs22=nÞ2
n� 1

¼
ðse1Þ2 þðse2Þ2
h i2
ðse1Þ4
m� 1

þ ðse2Þ4
n� 1

ð10:3Þ

where se1 ¼ s1=
ffiffiffiffi
m

p
and se2 ¼ s2=

ffiffiffi
n

p
(round m down to the nearest integer).

The cumbersome Expression (10.3) is called Welch’s degrees of freedom (or Welch–Satterthwaite,
after another statistician researching this problem around the same time). Of course, statistical soft-
ware packages have (10.3) built in. Manipulating T from (10.2) in a probability statement to isolate
l1 � l2 gives a CI, whereas a test statistic results from replacing l1 � l2 by the null value D0.

TWO-SAMPLE
t PROCEDURES

The two-sample t confidence interval for l1 � l2 with approximate confi-
dence level 100(1 − a)% is

�x� �y� ta=2;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r

where m = Welch’s df formula (10.3). One-sided confidence bounds can be cal-
culated by retaining the appropriate sign (+ or −) and replacing ta=2;m by ta;m.
The two-sample t test for testing H0: l1 � l2 = D0 is as follows:
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Test statistic value: t ¼ �x� �y� D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r

A P-value can be computed as described in Section 9.4 for the one-sample t test.

Example 10.6 Which way of dispensing champagne, the traditional vertical method or a tilted
“beer-like” pour, preserves more of the tiny gas bubbles that improve flavor and aroma? The fol-
lowing data was reported in the article “On the Losses of Dissolved CO2 during Champagne Serving”
(J. Agr. Food Chem. 2010: 8768–6775).

Temperature (°C) Type of pour n Mean (g/L) SD

18
18
12
12

Traditional
Slanted
Traditional
Slanted

4
4
4
4

4.0
3.7
3.3
2.0

.5
.3
.2
.3

Assuming that the sampled distributions are normal, let’s calculate confidence intervals for the
difference between true average dissolved CO2 loss for the traditional pour and that for the slanted
pour at each of the two temperatures.

For the 18°C temperature, Welch’s df is

m ¼
:52

4
þ :32

4

� �2

ð:52=4Þ2
3

þ ð:32=4Þ2
3

¼ :007225
:00147083

¼ 4:91

Rounding down, the CI will be based on 4 df. For a confidence level of (approximately) 99%, we
need t.005,4 = 4.604. The desired interval is

4:0� 3:7� ð4:604Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:52

4
þ :32

4

r
¼ :3� ð4:604Þð:2915Þ ¼ :3� 1:3 ¼ ð�1:0; 1:6Þ

Thus we can be highly confident that �1:0\l1 � l2\1:6, where l1 and l2 are true average losses
for the traditional and slant methods, respectively. Notice that this CI contains 0, so at the 99%
confidence level, it is plausible that l1 � l2 ¼ 0, that is, that l1 ¼ l2.

The df formula for the 12°C comparison yields df = .00105625/.00020208 = 5.23, necessitating
the use of t.005,5 = 4.032 for a 99% CI. The resulting interval is (.6, 2.0). Thus 0 is not a plausible
value for this difference. It appears from the CI that the true average loss when the slant method is
used is smaller than that when the traditional method is used, so that the slant method is better at this
temperature. This in fact was the conclusion reported in the popular media. ■

Alternative Hypothesis Rejection Region for Approximate Level a Test

Ha: l1 � l2 > D0

Ha: l1 � l2 < D0

Ha: l1 � l2 6¼ D0

t � ta,m (upper-tailed test)
t � −ta,m (lower-tailed test)
either t � ta/2,m or t � −ta/2,m (two-tailed test)
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Example 10.7 What color should you use for your Web site’s background? The authors of “Waiting
for the Web: How Screen Color Affects Time Perception” (J. Mark. Res. 2004) compared subjects’
time perception based on the background color of a Web site being downloaded. Subjects were
randomly assigned to see a blue background or a yellow background; the Web sites were otherwise
identical, including the actual download time. Data consistent with the information in the article
appears in Figure 10.1. Values of summary statistics appear in Table 10.1.

Let’s test to see whether background color affects users’ average perception of download time, at
the 5% level. (A higher “perceived quickness” rating indicates the subject thought the page down-
loaded faster.)

1. The parameters of interest are
l1 = true mean perceived quickness rating with a blue background
l2 = true mean perceived quickness rating with a yellow background

2. H0: l1 � l2 = 0
Ha: l1 � l2 6¼ 0

3. Subjects were randomly assigned to blue or yellow background color, so it is reasonable to treat
the groups’ responses as independent. Normal probability plots of data consistent with the
article appear in Figure 10.2; the patterns in both plots are reasonably linear, so neither one
suggests a marked deviation from normality. (We can be a little forgiving about some curvature
here, since m = 25 and n = 24 are not too small.) It is therefore valid to use the two-sample t test
for this analysis.

1 2

Perceived quickness rating
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Blue

Yellow
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Figure 10.1 Comparative boxplot for Example 10.7

Table 10.1 Values of summary statistics for Example 10.7

Perceived quickness rating

n Mean SD

Blue
Yellow

25
24

3.67
3.04

1.07
1.07
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4. The null value is D0 = 0, so the test statistic value is

t ¼ �x� �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r

5. Welch’s df formula (10.3) gives m = 46.9, which we round down to 46 df. From software,
t:025;46 ¼ 2:013, so we will reject H0 if either t � 2.013 or t � –2.013.

6. Using the values in Table 10.1,

t ¼ ð3:67� 3:04Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:07Þ2
25

þ ð1:07Þ2
24

s ¼ 2:06

7. Since 2.06 � 2.013, using a significance level of .05 we can (barely) reject the null hypothesis
in favor of the alternative hypothesis, confirming the conclusion stated in the article: users’
perceptions of the speed at which a Web site downloads differ depending on whether the
background color is blue or yellow. However, someone demanding more compelling evidence
might select a = .01, a level for which H0 cannot be rejected.

Using the P-value approach, for this two-tailed test and with the aid of software,

P-value � 2 � P T � 2:06when T 	 t46ð Þ ¼ 2ð:023Þ ¼ :046

Because .046 � .05, H0 would again barely be rejected at the a = .05 significance level (but not
rejected at the .01 level, since .046 > .01).

This isn’t the whole story: the same study also measured the sense of relaxation users felt when
viewing the Web sites. They found that an increased sense of relaxation associated with the color blue
accounted for subjects’ higher average perceived quickness. Blue backgrounds don’t make down-
loads seem quicker per se; they relax the user more and make download time less noticeable. ■

Figure 10.2 Normal probability plots for Example 10.7
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Motivation for Welch’s Theorem
Dividing numerator and denominator of (10.2) by the standard deviation of the numerator gives

½X � Y � ðl1 � l2Þ�
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
m

þ r22
n

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
m

þ S22
n

r , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
m

þ r22
n

r

The numerator of this ratio is a standard normal rv because it results from standardizing the normally
distributed difference X � Y . The denominator is independent of the numerator because the sample
variances are independent of the sample means for normal samples. However, in order for (10.2) to be
a t random variable, the denominator needs to be the square root of a chi-squared rv divided by its df,
and unfortunately this is not the case. So let us try to express the denominator at least approximately

as
ffiffiffiffiffiffiffiffiffi
W=m

p
with W 	 v2m , yielding

S21
m

þ S22
n
¼ r21

m
þ r22

n

� �
W

m

To determine m we equate the means and variances of both sides, with the help of E(W) = m,
V(W) = 2m, ðm� 1ÞS21=r21 	 v2m�1, and ðn� 1ÞS22=r22 	 v2n�1 from Sections 6.3 and 6.4. It follows that
EðS21Þ ¼ r21, VðS21Þ ¼ 2r41= m� 1ð Þ, and similarly for S22. The mean of the left-hand side is

E
S21
m

þ S22
n

� �
¼ r21

m
þ r22

n

which is also the mean of the right-hand side, so the means are equal. The variance of the left-hand
side is

V
S21
m

þ S22
n

� �
¼ 2r41

ðm� 1Þm2
þ 2r42

ðn� 1Þn2

and the variance of the right-hand side is

V
r21
m

þ r22
n

� �
W

m

� �
¼ r21

m
þ r22

n

� �2

� 2m
m2

¼ r21
m

þ r22
n

� �2

� 2
m

Now equate these two variances, substituting sample variances for the unknown population variances,
and solve for m. This gives Expression (10.3) in Welch’s Theorem.

Large-Sample t Procedures
We have seen in previous chapters that t-based CIs and hypothesis tests can be applied to data from
nonnormal populations provided that the sample sizes are sufficiently large. The same is true for the
two-sample t procedures: Welch’s Theorem is still approximately correct even if the X’s and Y’s are
not sampled from normal distributions, so long as both sample sizes are large enough. We’ll continue
to use the convention that m > 40 and n > 40 qualify as “large” samples.

Also in parallel with previous chapters, for large samples there is little practical difference between
using z or t critical values for inference. It can be shown (Exercise 97) that Welch’s df satisfies m �
min(m – 1, n – 1), so that m is large if both m and n are. In that situation, using z values for the
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procedures of this section—equivalently, substituting s1 and s2 for r1 and r2 in the two-sample
z procedures of Section 10.1—will yield similar results to the two-sample t procedures.

Example 10.8 A study was carried out in an attempt to improve student performance in a low-level
university mathematics course. Experience had shown that many students had fallen by the wayside,
meaning that they had dropped out or completed the course with minimal effort and low grades. The
study involved assigning the students to sections based on odd or even Social Security number. It is
important that the assignment to sections not be on the basis of student choice, because then the
differences in performance might be attributable to differences in student attitude or ability. Half of
the sections were taught traditionally, whereas the other half were taught in a way that hopefully
would keep the students involved. They were given frequent assignments that were collected and
graded, they had frequent quizzes, and they were allowed retakes on exams.

Prof. Lotus Hershberger conducted the experiment and he supplied the final exam scores, out of 40
points possible, for the 79 students taught traditionally (the control group) and for the 85 students
taught with more involvement (the experimental group). Table 10.2 summarizes the data. Does this
information suggest that true mean for the experimental condition exceeds that for the control con-
dition? Let’s use a test with a = .05.

Let l1 and l2 denote the true mean scores for the control condition and the experimental condition,
respectively. The two hypotheses are H0: l1 � l2 = 0 versus Ha: l1 � l2 < 0. Welch’s degrees of
freedom m = 145 here; since the t145 and z curves are virtually indistinguishable, we’ll use the latter
here. H0 will be rejected if z � −z.05 = −1.645. Then

z ¼ ð23:87� 27:34Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:602

79
þ 8:852

85

r ¼ �3:47
1:620

¼ �2:14

Since −2.14 � −1.645, H0 is rejected at significance level .05. Alternatively, the P-value for a
lower-tailed z test is

P-value ¼ UðzÞ ¼ U �2:14ð Þ ¼ :016

which implies rejection at significance level .05.
We have shown fairly conclusively that the experimental method of instruction is an improvement.

Nevertheless, there is more to be said. It is important to view the data graphically to see if there is
anything strange. Figure 10.3 combines a boxplot and dotplot.

The plot shows that both groups have outlying observations at the low end; some students showed
up for the final but performed very poorly. What happens if we compare the groups while ignoring the
low performers whose scores are below 10? The resulting summary information is in Table 10.3.

Table 10.2 Summary results for Example 10.8

Group Sample size Sample mean Sample SD

Control
Experimental

79
85

23.87
27.34

11.60
8.85
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Notice that the means and standard deviations for the two groups are now very similar. Indeed,
based on Table 10.3 the test statistic value is −.34, giving no reason to reject the null hypothesis. For
the majority of the students, there appears to be not much effect from the experimental treatment. It is
the low performers who make a big difference in the results. There were 18 low performers in the
control group but only 9 in the experimental group. The effect of the experimental instruction is to
decrease the number of students who perform at the bottom of the scale. This is in accord with the
goals of the experimental treatment, which was designed to keep students on track. ■

Pooled t Procedures
Alternatives to the two-sample t procedures described in this section result from assuming not only that
the two population distributions are normal but also that they have equal, albeit unknown, standard
deviations r1 ¼ r2

� �
. That is, the two population distribution curves are assumed normal with equal

spreads, the only possible difference between them being where they are centered (i.e., at l1 and l2).
Let r denote the common population standard deviation. Then standardizing X � Y gives

Z ¼ X � Y � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m
þ r2

n

r ¼ X � Y � ðl1 � l2Þ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

þ 1
n

r

which has a standard normal distribution. Before this variable can be used as a basis for making
inferences about l1 � l2, the common variance must be estimated from sample data. One estimator
of r2 is S21, the variance of the m observations in the first sample, and another is S22, the variance of the
second sample. Intuitively, a better estimator than either individual sample variance results from
combining the two sample variances. A first thought might be to use ðS21 þ S22Þ=2, the ordinary
average of the two sample variances. However, if m > n then the first sample contains more

Control Exper
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Figure 10.3 Boxplot/dotplot for the teaching experiment

Table 10.3 Summary results without poor performers

Group Sample size Sample mean Sample SD

Control
Experimental

61
76

29.59
29.88

5.005
4.950
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information about r2 than does the second sample, and an analogous comment applies if m < n. The
following weighted average of the two sample variances, called the pooled (i.e., combined) estimator
of r2, adjusts for any difference between the two sample sizes:

S2p ¼
m� 1

mþ n� 2
S21 þ

n� 1
mþ n� 2

S22

It can be shown (Exercise 39) that S2p is proportional to a chi-squared rv with m + n − 2 df. In turn, the

rv that results if S2p replaces r2 in the above Z statistic follows a t distribution with m + n − 2 df
(Exercise 40). In the same way that earlier standardized variables were used as a basis for deriving
confidence intervals and test procedures, this t variable immediately leads to the pooled t confidence
interval for estimating l1 � l2 and the pooled t test for testing hypotheses about a difference between
means. In particular, the pooled t test statistic for testing H0: l1 � l2 ¼ D0 is

Tp ¼ ðX � YÞ � D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p
m

þ S2p
n

s ¼ ðX � YÞ � D0

Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

þ 1
n

r ;

and Tp 	 tmþ n�2 when H0 is true.
In the past, many statisticians recommended these pooled t procedures over the two-sample

t procedures. The pooled t test, for example, can be derived from the likelihood ratio principle,
whereas the two-sample t test is not a likelihood ratio test. Furthermore, the significance level for the
pooled t test is exact, whereas it is only approximate for the two-sample t test. Finally, power and
sample sizes calculations using the pooled t procedure can easily be performed by software using a
noncentral t distribution (Exercise 123).

However, statistical research has shown that while the pooled t test does outperform the two-
sample t test by a bit (more power for the same a) when r1 ¼ r2, the former test can easily lead to
erroneous conclusions if applied when the population standard deviations are different. Analogous
comments apply to the behavior of the two confidence intervals. That is, the pooled t procedures are
not robust to violations of their equal variance assumption.

It has been suggested that one could carry out a preliminary test of H0: r1 ¼ r2 and use a pooled
t procedure if this null hypothesis is not rejected. Unfortunately, the usual “F test” of equal variances
(Section 10.5) is quite sensitive to the assumption of normal population distributions, much more so
than t procedures. We therefore recommend the conservative approach of using two-sample t pro-
cedures unless there is really compelling evidence for doing otherwise, particularly when the two
sample sizes are different.

Power and Type II Error Probabilities
Determining power and b for the two-sample t test is complicated. The most recent versions of R,
SAS, Minitab, and JMP will calculate power for the pooled t test—that is, assuming a common value
for r1 and r2—but not for the two-sample t test. However, Prof. Russell Lenth (Univ. of Iowa) has
developed a Java software package that performs such power calculations for the two-sample t test;
the package can be downloaded for free from his Web site. The software will also calculate sample
sizes necessary to obtain a specified power for a particular value of l1 � l2.

In general, power will increase (b will decrease) as the sample sizes increase, as a increases, and as
l1 � l2 moves farther from D0. When m and n are both large, the quantity T in (10.2) also has an
approximately normal distribution, and so the power, b, and sample size formulas from Section 10.1
provide approximately correct values. Population sd’s in those formulas can be replaced by sample sd’s.
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Exercises: Section 10.2 (13–42)

13. Determine the number of degrees of free-
dom for the two-sample t test or CI in each
of the following situations:

a. m = 10, n = 10, s1 = 5.0, s2 = 6.0
b. m = 10, n = 15, s1 = 5.0, s2 = 6.0
c. m = 10, n = 15, s1 = 2.0, s2 = 6.0
d. m = 12, n = 24, s1 = 5.0, s2 = 6.0

14. A 2008 study in the J. Family Econ. Issues
compared the work and home habits of
female and male lawyers in Canada. All
participants in the survey had at least one
child; single parents and couples who are
both lawyers were excluded. Two of the
variables measured were the weekly number
of hours spent in the office and the number of
hours spent with their children on weekdays.

Weekly work
hours

Weekday
hours w/kids

n Mean SD Mean SD

Mothers 230 41.38 11.90 3.27 1.68
Fathers 604 48.09 10.30 1.82 1.29

a. Estimate, with 95% confidence, the
difference in the average weekly num-
ber of work hours between mothers and
fathers who practice law.

b. Estimate, with 95% confidence, the
difference in the average number of
hours female and male lawyers spend
with their kids on weekdays. Then,
convert this interval into an estimate for
the difference in average weekly hours
spent with kids (Hint: The first interval
is a daily average, and a work week has
5 days).

[Note: Interestingly, the study also found
that “contrary to assumptions in the litera-
ture and the workplace, mothers practicing
law are significantly more committed to
their careers than fathers.”]

15. The article “ReturnMigration, Investment in
Children, and Intergenerational Mobility:
Comparing Sons of Foreign- and Native-
Born Fathers” (J. Hum. Res. 2008: 299–324)

presented the following summary data on
years of education both for sample of sons of
native-born fathers in Germany and another
sample of sons of foreign-born fathers.

n �x s

Foreign-born 251 9.2 1.9
Native-born 640 11.7 2.6

Does the true average years of education for
sons of native-born fathers appear to exceed
that for those with foreign-born fathers?
State and test the appropriate hypotheses
using a significance level of .01.

16. The accompanying time-to-repair (min)
data for both high rail and low rail breaks
on curved track appeared in the article
“Uncertainty Estimation in Railway Track
Life-Cycle Cost” (J. Rail Rapid Transit
2009: 285–293). (On a curved track, the
high rail is the outer rail with the larger
radius, while the low rail is the inner rail
with the smaller radius.)

High: 159 120 480 149 270 547 340
43 228 202 240 218

Low: 258 154 216 240 169 75 340
202 202 216

Normal probability plots of both samples
show reasonably linear patterns.

a. Construct a comparative boxplot and
comment on interesting features.

b. Carry out a test of hypotheses at sig-
nificance level .10 to decide if there is
evidence for concluding that true aver-
age repair time for high rails exceeds
that for low rails by more than 30 min.

c. Obtain and interpret a confidence
interval at the 90% confidence level for
the difference between true average
repair times for high and low rails.

17. Due to recent concerns about player con-
cussions, football helmets have recently
increased in both size and mass. Have these
changes made a difference? The article
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“The Effects of Helmet Weight on
Hybrid III Head and Neck Responses by
Comparing Unhelmeted and Helmeted
Impacts” (J. Biomech. Engr. 2016) reports
on an experiment in which repeated impact
trials were performed on an artificial human
head both wearing and not wearing a
football helmet.

a. The following summary information for
the variable head acceleration (g) is
consistent with information in the article.

Sample size Mean SD

Helmet 24 43.1 4.5
No helmet 24 75.4 7.2

Test whether the average head acceler-
ation is reduced by helmet wear at the
.05 significance level.

b. The researchers were concerned that the
mass of the helmet might increase the
force experienced by the upper neck.
The following summary information for
resultant neck force (Newtons) is con-
sistent with information in the article.

Sample size Mean SD

Helmet 24 1331 93
No helmet 24 945 77

Test whether the average resultant neck
force is increased by helmet wear at the
.05 level.
[Note: The authors conclude that “the
increased neck forces provide a possible
explanation as to why there has not
been a … reduction in concussion rates
despite improvements in helmets’ abil-
ity to reduce head accelerations.”]

c. If the null hypotheses in (a) and (b) are
in fact both true, what can be said about
the chance that at least one type I error
is committed by the two tests?

18. The article “Evaluation of a Ventilation
Strategy to Prevent Barotrauma in Patients
at High Risk for Acute Respiratory Dis-
tress Syndrome” (New Engl. J. Med. 1998:

355–358) reported on an experiment in
which 120 patients with similar clinical
features were randomly divided into a
control group and a treatment group, each
consisting of 60 patients. The sample mean
ICU stay (days) and sample standard
deviation for the treatment group were
19.9 and 39.1, respectively, whereas these
values for the control group were 13.7
and 15.8.

a. Calculate a point estimate for the dif-
ference between true average ICU stay
for the treatment and control groups.
Does this estimate suggest that there is a
significant difference between true
average stays under the two conditions?

b. Answer the question posed in part (a) by
carrying out a formal test of hypotheses.
Is the result different from what you
conjectured in part (a)?

c. Does it appear that ICU stay for patients
given the ventilation treatment is normally
distributed? Explain your reasoning.

d. Estimate true average length of stay for
patients given the ventilation treatment
in a way that conveys information about
precision and reliability.

19. What impact does fast-food consumption
have on various dietary and health charac-
teristics? The article “Effects of Fast-Food
Consumption on Energy Intake and Diet
Quality among Children in a National
Household Study” (Pediatrics 2004: 112–
118) reported the accompanying summary
data on daily calorie intake both for a sample
of teens who said they did not typically eat
fast food and another sample of teens who
said they did usually eat fast food.

Eat fast food Sample size Sample mean Sample SD

No 663 2258 1519
Yes 413 2637 1138

a. Estimate the difference between true
average calorie intake for teens who typ-
ically don’t eat fast foods and true average
intake for thosewho do eat fast foods, and
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do so in a way that conveys information
about reliability and precision.

b. Does this data provide strong evidence
for concluding that true average calorie
intake for teens who typically eat fast
food exceeds true average intake for
those who don’t typically eat fast food
by more than 200 cal/day? Carry out a
test at significance level .05 based on
determining the P-value.

20. Much research has focused on comparing
business environment cultures across several
countries. The article “Perception of Internal
Factors for Corporate Entrepreneurship: A
Comparison of Canadian and U.S. Man-
agers” (Entrep. Theory Pract. 1999: 9–24)
presented the following summary data on
hours per week managers spent thinking
about new ideas.

Country Sample size Sample mean Sample SD

U.S. 174 5.8 6.0
Canada 353 5.1 4.6

Does it appear that true average time per
week that U.S. managers spend thinking
about new ideas differs from that for Cana-
dian managers? State and test the relevant
hypotheses.

21. Credit card spending and resulting debt
pose very real threats to consumers in
general, and the potential for abuse is
especially serious among college students.
It has been estimated that about two-thirds
of all college students possess credit cards,
and 80% of these students received cards
during their first year of college. The article
“College Students’ Credit Card Debt and
the Role of Parental Involvement: Impli-
cations for Public Policy” (J. Public Policy
Mark. 2001: 105–113) reported that for 209
students whose parents had no involvement
whatsoever in credit card acquisition or
payments, the sample mean total account
balance was $421 with a sample standard
deviation of $686, whereas for 75 students
whose parents assisted with payments even

though they were under no legal obligation
to do so, the sample mean and sample
standard deviation were $666 and $1048,
respectively. All sampled students were at
most 21 years of age.

a. Do you think it is plausible that the
distributions of total debt for these two
types of students are normal? Why or
why not? Is it necessary to assume
normality in order to compare the two
groups using an inferential procedure
described in this chapter? Explain.

b. Estimate the true average difference
between total balance for noninvolve-
ment students and postacquisition-
involvement students using a method
that incorporates precision into the
estimate. Then interpret the estimate.
[Note: Data was also reported in the
article for preacquisition involvement
only and for both pre- and postacquisi-
tion involvement.]

22. Returning to the previous exercise, the
mean and standard deviation of the number
of credit cards for the no-involvement
group were 2.22 and 1.58, respectively,
whereas the mean and standard deviation
for the payment-help group were 2.09 and
1.65, respectively. Does it appear that the
true average number of cards for no-
involvement students exceeds the average
for payment-help students? Carry out an
appropriate test of significance.

23. Expert and amateur pianists were compared
in a study “Maintaining Excellence:
Deliberate Practice and Elite Performance
in Young and Older Pianists” (J. Exp. Psy-
chol. Gen. 1996: 331–340). The researchers
used a keyboard that allowed measurement
of the force applied by a pianist in striking a
key. All 48 pianists played Prelude Number
1 from Bach’s Well-Tempered Clavier. For
24 amateur pianists the mean force applied
was 74.5 with standard deviation 6.29, and
for 24 expert pianists the mean force was
81.8 with standard deviation 8.64. Do
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expert pianists hit the keys harder?
Assuming normally distributed data, state
and test the relevant hypotheses, and
interpret the results.

24. The article “Supervised Exercise Versus
Non-Supervised Exercise for Reducing
Weight in Obese Adults” (J. Sport. Med.
Phys. Fit. 2009: 85–90) reported on an
investigation in which participants were
randomly assigned either to a supervised
exercise program or a control group. Those
in the control group were told only that they
should take measures to lose weight. After
4 months, the sample mean decrease in
body fat for the 17 individuals in the
experimental group was 6.2 kg with a
sample standard deviation of 4.5 kg,
whereas the sample mean and sample
standard deviation for the 17 people in the
control group were 1.7 kg and 3.1 kg,
respectively. Assume normality of the two
body fat loss distributions (as did the
investigators).

a. Calculate a 99% lower prediction bound
for the body fat loss of a single ran-
domly selected individual subjected to
the supervised exercise program. Can
you be highly confident that such an
individual will actually lose body fat?

b. Does it appear that true average
decrease in body fat is more than 2 kg
larger for the experimental condition
than for the control condition? Carry out
a test of appropriate hypotheses using a
significance level of .01.

25. Fusible interlinings are being used with
increasing frequency to support outer fab-
rics and improve the shape and drape of
various pieces of clothing. The article
“Compatibility of Outer and Fusible Inter-
lining Fabrics in Tailored Garments” (Tex-
tile Res. J. 1997: 137–142) gave the
accompanying data on extensibility (%) at
100 g/cm for both high-quality fabric
(H) and poor-quality fabric (P) specimens.

H 1.2 .9 .7 1.0 1.7 1.7 1.1 .9 1.7
1.9 1.3 2.1 1.6 1.8 1.4 1.3 1.9 1.6
.8 2.0 1.7 1.6 2.3 2.0

P 1.6 1.5 1.1 2.1 1.5 1.3 1.0 2.6

a. Construct normal probability plots to
verify the plausibility of both samples
having been selected from normal pop-
ulation distributions.

b. Construct a comparative boxplot. Does
it suggest that there is a difference
between true average extensibility for
high-quality fabric specimens and that
for poor-quality specimens?

c. The sample mean and standard devia-
tion for the high-quality sample are
1.508 and .444, respectively, and those
for the poor-quality sample are 1.588
and .530. Use the two-sample t test
to decide whether true average extensi-
bility differs for the two types of
fabric.

26. Imaging of the colon with a contrast dye to
evaluate for injury requires that the colon
first be distended by pumping in carbon
dioxide. The article “Determination of
Normal Distribution of Distended Colon
Volumes to Guide Performance of Colonic
Imaging With Fluid Distention” (Curr.
Probl. Diagn. Radiol. 2016: 185–188)
reported that for a sample of 85 female
patients undergoing this procedure, the
mean colon length after distention was
201.8 cm and the standard deviation was
32.2 cm, whereas for a sample of 31 males
the mean and standard deviation were
180.2 cm and 38.6 cm, respectively.

a. Carry out a test at significance level .1
to decide whether true average length
differs by sex (the article reported a
P-value for this test).

b. Construct and interpret 90% CI for the
difference in true average colon length
between the two sexes under these
settings. Is your interval consistent
with the result of the test in part (a)?
Explain.
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27. Research has shown that good hip range of
motion and strength in throwing athletes
results in improved performance and
decreased body stress. The article “Func-
tional Hip Characteristics of Baseball
Pitchers and Position Players” (Am.
J. Sport. Med. 2010: 383–388) reported on
a study involving samples of 40 profes-
sional pitchers and 40 professional position
players. For the pitchers, the sample mean
trail leg total arc of motion (degrees) was
75.6 with a sample standard deviation of
5.9, whereas the sample mean and sample
standard deviation for position players were
79.6 and 7.6, respectively. Assuming nor-
mality, test appropriate hypotheses to
decide whether true average range of
motion for the pitchers is less than that for
the position players (as hypothesized by the
investigators). In reaching your conclusion,
what type of error might you have
committed?

28. Tennis elbow is thought to be aggravated
by the impact experienced when hitting the
ball. The article “Forces on the Hand in the
Tennis One-Handed Backhand” (Int.
J. Sport Biomech. 1991: 282–292) reported
the force (Newtons) on the hand just after
impact on a one-handed backhand drive for
six advanced players and for eight inter-
mediate players.

Type of player Sample size Sample mean Sample SD

1. Advanced 6 40.3 11.3
2. Intermediate 8 21.4 8.3

In their analysis of the data, the authors
assumed that both force distributions were
normal. Calculate a 95% CI for the differ-
ence between true average force for
advanced players (l1) and true average
force for intermediate players (l2). Does
your interval provide compelling evidence
for concluding that the two l’s are differ-
ent? Would you have reached the same
conclusion by calculating a CI for l2 � l1

(i.e., by reversing the 1 and 2 labels on the
two types of players)? Explain.

29. As the population ages, there is increasing
concern about accident-related injuries to
the elderly. The article “Age and Gender
Differences in Single-Step Recovery from a
Forward Fall” (J. Gerontol A Biol. Sci.
Med. Sci. 1999 54(1):M44–50) reported on
an experiment in which the maximum lean
angle—the farthest a subject is able to lean
and still recover in one step—was deter-
mined for both a sample of younger
females (21–29 years) and a sample of
older females (67–81 years). The following
observations are consistent with summary
data given in the article:

Younger: 29; 34; 33; 27; 28; 32; 31; 34; 32; 27
Older: 18; 15; 23; 13; 12

Does the data suggest that true average
maximum lean angle for older females is
more than 10 degrees smaller than it is for
younger females? State and test the relevant
hypotheses at significance level. 10 by
obtaining a P-value.

30. The article “Effect of Internal Gas Pressure
on the Compression Strength of Beverage
Cans and Plastic Bottles” (J. Test. Eval.
1993: 129–131) includes the accompanying
data on compression strength (lb) for a
sample of 12-oz aluminum cans filled with
strawberry drink and another sample filled
with cola. Does the data suggest that the
extra carbonation of cola results in a higher
average compression strength? Base your
answer on a P-value. What assumptions are
necessary for your analysis?

Beverage Sample
size

Sample
mean

Sample
SD

Strawberry
drink

15 540 21

Cola 15 554 15

31. Which foams more when you pour it, Coke
or Pepsi? Here are measurements by Diane
Warfield on the foam volume (mL) after
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pouring a 12-oz can of Coke, based on a
sample of 12 cans:

312.2 292.6 331.7 355.1 362.9 331.7
292.6 245.8 280.9 320.0 273.1 288.7

and here are measurements for Pepsi, based
on a sample of 12 cans:

148.3 210.7 152.2 117.1 89.7 140.5
128.8 167.8 156.1 136.6 124.9 136.6

a. Verify graphically that normality is an
appropriate assumption.

b. Calculate a 99% confidence interval for
the population difference in mean
volumes.

c. Does the upper limit of your interval in
(b) give a 99% lower confidence bound
for the difference between the two l’s? If
not, calculate such a bound and interpret
it in terms of the relationship between the
foam volumes of Coke and Pepsi.

d. Summarize in a sentence what you have
learned about the foam volumes of
Coke and Pepsi.

32. In a comparative study conducted at Vir-
ginia Tech, two Principles of Economics
classes were run in an identical fashion
except for one respect: one class used an
interactive electronic teaching system
(called WITS) for seven “research exer-
cises,” while the other class discussed the
research exercises but did not use the
interactive devices. Final exam score results
are summarized below (“Technology
Improves Learning in Large Principles of
Economics Classes: Using Our WITS,”
Am. Econ. Rev. 2004: 442–446).

Sample size Sample mean Sample SD

WITS 62 77.45 11.1
Traditional 64 74.25 8.7

a. Test the see whether the true mean final
exam scores using WITS and using
traditional instruction are different, at
the a = .10 significance level.

b. Construct a 90% CI for the difference in
true mean final exam score for WITS
instruction and traditional instruction. Is
your interval consistent with the test in
part (a)?

c. What does the interval in part (b) say
about the practical significance of the
test?

33. The article “Characterization of Bearing
Strength Factors in Pegged Timber Con-
nections” (J. Struct. Engr. 1997: 326–332)
gave the following summary data on pro-
portional stress limits for specimens
constructed using two different types of
wood:

Type of wood Sample size Sample mean Sample SD

Red oak 14 8.48 .79
Douglas fir 10 6.65 1.28

Assuming that both samples were selected
from normal distributions, carry out a test
of hypotheses to decide whether the true
average proportional stress limit for red oak
joints exceeds that for Douglas fir joints by
more than 1 MPa.

34. According to the article “Fatigue Testing of
Condoms” (Polym. Test. 2009: 567–571),
“tests currently used for condoms are sur-
rogates for the challenges they face in use,”
including a test for holes, an inflation test, a
package seal test, and tests of dimensions
and lubricant quality (all fertile territory for
the use of statistical methodology!). The
investigators developed a new test that adds
cyclic strain to a level well below breakage
and determines the number of cycles to
break. The cited article reported that for a
sample of 20 natural latex condoms of a
certain type, the sample mean and sample
standard deviation of the number of cycles
to break were 4358 and 2218, respectively,
whereas a sample of 20 polyisoprene con-
doms gave a sample mean and sample
standard deviation of 5805 and 3990,
respectively. Is there strong evidence for
concluding that the true average number of
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cycles to break for the polyisoprene con-
dom exceeds that for the natural latex
condom by more than 1000 cycles? [Note:
The article presented the results of
hypothesis tests based on the t distribution;
the validity of these depends on assuming
normal population distributions.]

35. Exercise 22 from Chapter 9 gave the fol-
lowing data on amount (oz) of alcohol poured
into a short, wide tumbler glass by a sample of
experienced bartenders: 2.00, 1.78, 2.16,
1.91, 1.70, 1.67, 1.83, 1.48. The cited article
also gave summary data on the amount
poured by a different sample of experienced
bartenders into a tall, slender (highball) glass;
the following observations are consistentwith
the reported summary data: 1.67, 1.57, 1.64,
1.69, 1.74, 1.75, 1.70, 1.60.

a. What does a comparative boxplot sug-
gest about similarities and differences in
the data?

b. Carry out a test of hypotheses to decide
whether the true average amount poured
is different for the two types of glasses;
be sure to check the validity of any
assumptions necessary to your analysis,
and report a P-value.

36. Is the incidence of head or neck pain among
video display terminal users related to the
monitor angle (degrees from horizontal)?
The paper, “An Analysis of VDT Monitor
Placement and Daily Hours of Use for
Female Bifocal Users” (Work 2003: 77–80),
reported the accompanying data. Carry out
an appropriate test of hypotheses (be sure to
include a P-value in your analysis).

Pain Sample size Sample mean Sample SD

Yes
No

32
40

2.20
3.20

3.42
2.52

37. The article “Gender Differences in Indi-
viduals with Comorbid Alcohol Depen-
dence and Post-Traumatic Stress Disorder”

(Am. J. Addict. 2003: 412–423) reported the
accompanying data on total score on the
Obsessive-Compulsive Drinking Scale
(OCSD).

Gender Sample size Sample mean Sample SD

Male 44 19.93 7.74
Female 40 16.26 7.58

Formulate hypotheses and carry out an
appropriate analysis. Does your conclusion
depend on whether a significance level of
.05 or .01 was employed? (The cited paper
reported P-value < .05; presumably .05
would have been replaced by .01 if the
P-value were really that small).

38. Which factors are relevant to the time a
consumer spends looking at a product on
the shelf prior to selection? The article
“Effects of Base Price upon Search
Behavior of Consumers in a Supermarket”
(J. Econ. Psychol. 2003: 637–652) reported
the following data on elapsed time (sec) for
fabric softener purchasers and washing-up
liquid purchasers; the former product is
significantly more expensive than the latter.
These products were chosen because they
are similar with respect to allocated shelf
space and number of alternative brands.

Product Sample
size

Sample
mean

Sample
SD

Fabric softener 15 30.47 19.15
Washing-up
liquid

19 26.53 15.37

a. What if any assumptions are needed
before an inferential procedure can be
used to compare true average elapsed
times?

b. If just the two sample means had been
reported, would they provide persuasive
evidence for a significant difference
between true average elapsed times for
the two products?
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c. Carry out an appropriate test of signifi-
cance and state your conclusion.

39. Let X1; . . .;Xm 	Nðl1;rÞ and Y1; . . .;
Yn 	Nðl2;rÞ be independent random
samples from the specified normal popula-
tion distributions (note that the population
sd’s are equal). Let S21 and S22 denote the
sample variance of the two samples, and
define a pooled variance estimator of r2 by

S2p ¼
m� 1

mþ n� 2
S21 þ

n� 1
mþ n� 2

S22

Show that ðmþ n� 2ÞS2p=r2 has a chi-
squared distribution with m + n – 2 df.
[Hint: Recall from Chapter 6 that
ðm� 1ÞS21=r2 	 v2m�1 and similarly for the
second sample variance. What is the dis-
tribution of the sum of two independent
chi-squared rvs?]

40. Refer back to the scenario of the previous
exercise.

a. Verify that the standardized variable
½ðX � YÞ � ðl1 � l2Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð1=mþ 1=nÞp

has a standard normal distribution.
b. Show that the pooled t variable

Tp ¼ ðX � YÞ � ðl1 � l2Þ

Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

þ 1
n

r

has a t distribution with m + n − 2 df.
[Hint: create a t-distributed variable
using the standard normal rv from part

(a) and the chi-squared rv from the
previous exercise.]

41. Consider the pooled t variable Tp from part
(b) of the previous exercise.

a. Use this t variable to obtain a pooled
t confidence interval formula for
l1 � l2.

b. The article “Effect of Welding on a
High-Density Polyethylene Liner”
(J. Mater. Civil Engr. 1996: 94–100)
reported the following data on tensile
strength (psi) of liner specimens both
when a certain fusion process was used
and when this process was not used.

No fusion 2748 2700 2655 2822 2511 3213 3220 2753
3149 3257

Fused 3027 3356 3359 3297 3125 2910 2889 2902

Use the pooled t formula from part (a) to
estimate the difference between true
average tensile strength for the two
processes with a 95% confidence
interval.

c. Estimate the difference between the two
l’s using the two-sample t interval dis-
cussed in this section, and compare it to
the interval of part (b).

42. Refer to the previous two exercises.
Describe the pooled t test for testing
H0: l1 � l2 = 0 when both population
distributions are normal with r1 = r2. Then
use this test procedure to test the hypothe-
ses in Example 10.7.
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10.3 Analysis of Paired Data

In Sections 10.1 and 10.2, we considered estimating or testing for a difference between two means l1
and l2. This was done by utilizing the results of a random sample X1, …, Xm from the distribution
with mean l1 and a completely independent (of the X’s) sample Y1, …, Yn from the distribution with
mean l2. That is, either m individuals were selected from population 1 and n different individuals
from population 2, or m individuals were given one treatment and another n individuals were given
the other treatment. In contrast, there are a number of experimental situations in which there is only
one set of n individuals or experimental objects, and two observations are made on each individual or
object, resulting in a natural pairing of values.

Example 10.9 Homes are typically appraised before sale. Appraisers hired by lenders such as banks
have an incentive to assign a higher value to a house (so the home loan will be larger), while
borrowers’ appraisers might be inclined to value the same house at a lower price. The article
“Distressed Properties: Valuation Bias and Accuracy” (J. Real Estate Fin. Econ. 2010) describes a
study in which a random sample of 20 residential properties being purchased in New Orleans after
foreclosure was selected. Each property was appraised both by the borrower and by the lender,
resulting in the following data (thousands of dollars).

House 1 2 3 4 5 6 7 8
Lender’s appraisal 24.3 31.1 108.5 20.0 58.2 23.6 38.7 54.2
Borrower’s appraisal 18.6 21.8 98.1 10.2 50.2 15.7 29.8 45.5

House 9 10 11 12 13 14 15 16
Lender’s appraisal 21.3 145.3 123.4 171.0 41.2 123.1 47.4 26.1
Borrower’s appraisal 14.6 135.8 111.4 156.5 31.2 109.7 39.7 18.6

House 17 18 19 20
Lender’s appraisal 76.9 52.5 101.2 33.6
Borrower’s appraisal 67.5 42.2 90.0 26.4

Figure 10.4 displays a plot of this data. At first glance, it appears that lenders’ appraisals are
perhaps a little higher on average than borrowers’, but there is a great deal of variability in both
samples. So, perhaps any differences between the samples can be attributed to this variability.

However, looking back at the original data, a clearer picture emerges: for every single house, the
lender’s appraisal exceeds the borrower’s appraisal. Figure 10.5 displays the difference in appraised
value (lender’s appraisal minus borrower’s appraisal) for these 20 homes. As we will see, a correct
analysis of this data focuses on these differences.

25 50 75

House appraisal (thousands of dollars)

Lender

Borrower
100 125 150

Figure 10.4 Plot of original data from Example 10.9

10.3 Analysis of Paired Data 591



ASSUMPTIONS The data consists of n independently selected pairs (X1, Y1), (X2, Y2), …, (Xn, Yn),
with E(Xi) = l1 and E(Yi) = l2. Let D1 = X1 − Y1, …, Dn = Xn − Yn, so the Di’s
are the differences within pairs. Then the Di’s are assumed to be normally dis-
tributed with mean value lD and standard deviation rD.

We are again interested in hypothesis testing or estimation for the difference l1 � l2. The denomi-
nator of the two-sample t statistic was obtained by first applying the rule VðX � YÞ ¼ VðXÞþVðYÞ.
However, with paired data, the X and Y observations within each pair are often not independent, so X
and Y are not independent of each other, and the rule is not valid. We must therefore abandon the two-
sample t procedures and look for an alternative method of analysis.

A Confidence Interval for lD
Because different pairs are independent, the Di’s are independent of each other. If we let D = X − Y,
where X and Y are the first and second observations, respectively, within a randomly selected pair,
then the expected difference is

lD ¼ E X � Yð Þ ¼ EðXÞ � EðYÞ ¼ l1 � l2

(recall that linearity of expectation is valid even when X and Y are dependent). Thus a confidence
interval for lD is equivalent to one for l1 � l2. An analogous comment applies to a test of
hypotheses. But since the Di’s constitute a normal random sample (of differences) with mean lD,
inferences about lD can be performed using one-sample t procedures from Chapters 8 and 9. That is,
to draw conclusions about l1 � l2 when data is paired, form the differences D1, D2,…, Dn and carry
out a one-sample t procedure, based on n − 1 df, on the Di’s.

Let �D and SD denote the sample mean and standard deviation, respectively, of the n paired dif-
ferences D1, …, Dn. In the same way that the t CI for a single population mean l is based on the
t variable T ¼ ðX � lÞ=ðS= ffiffiffi

n
p Þ, a t confidence interval for lD (= l1 � l2) is based on the fact that

T ¼
�D� lD
SD=

ffiffiffi
n

p ð10:4Þ

has a t distribution with n − 1 df. Manipulation of this t variable, as in previous derivations of CIs,
yields the following interval.

6.0 8.4

Difference in appraisals (Lender minus Borrower, thousands of dollars)

4.418.01 13.27.2 9.6 12.0

Figure 10.5 Plot of differences from Example 10.9 ■
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PAIRED
t INTERVAL

The paired t CI for lD with confidence level 100(1 − a)% has endpoints

�d � ta=2;n�1 � sDffiffiffinp

where �d and sD are the observed values of the sample mean and standard
deviation of the paired differences. A one-sided confidence bound results
from retaining the relevant sign (+ or –) and replacing ta/2 by ta.

When n is small, the validity of this interval requires that the distribution of differences be at least
approximately normal. For large n, the CLT ensures that the interval is at least approximately valid
without any restrictions on the distribution of differences.

Example 10.10 Adding computerized medical images to a database promises to provide great
resources for physicians. However, there are other methods of obtaining such information, so the
issue of efficiency of access needs to be investigated. The article “The Comparative Effectiveness of
Conventional and Digital Image Libraries” (J. Audio Media Med. 2001: 8–15) reported on an
experiment in which 13 computer-proficient medical professionals were timed both while retrieving
an image from a library of slides and while retrieving the same image from a computer database with
a Web front end.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13
Slide 30 35 40 25 20 30 35 62 40 51 25 42 33
Digital 25 16 15 15 10 20 7 16 15 13 11 19 19
Difference 5 19 25 10 10 10 28 46 25 38 14 23 14

Let lD denote the true mean difference between slide retrieval time (sec) and digital retrieval time.
Using the paired t confidence interval to estimate lD requires that the difference distribution be at least
approximately normal. The slight curvature in the normal probability plot from JMP (Figure 10.6)
isn’t enough to invalidate the normality assumption.

Figure 10.6 Normal probability plot of the differences in Example 10.10
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For the 13 differences, �d ¼ 20:5 and sD = 11.96. The t critical value required for a 95% confi-
dence level is t.025,12 = 2.179, and the 95% CI is

�d � ta=2;n�1 � sDffiffiffinp ¼ 20:5� 2:179 � 11:96ffiffiffiffiffi
13

p ¼ 20:5� 7:2 ¼ ð13:3; 27:7Þ

Thus we can be highly confident (at the 95% confidence level) that 13.3 < lD < 27.7. This
interval of plausible values is rather wide, a consequence of the sample standard deviation being large
relative to the sample mean. A sample size much larger than 13 would be required to estimate
with substantially more precision. Notice, however, that 0 lies well outside the interval, suggesting
that lD > 0; this is confirmed by a formal hypothesis test. We can conclude from the experiment that
computer retrieval appears to be faster on average. ■

The Paired t Test
Hypothesis testing for paired data also involves calculating the n paired differences and working with
that single sample of values. The T variable in (10.4) forms the basis for such tests. And since
lD ¼ l1 � l2, any hypothesis about the mean difference is equivalent to a hypothesis about the
difference between means.

PAIRED t TEST Null hypothesis: H0: lD = D0

Test statistic value: t ¼
�d � D0

sD=
ffiffiffi
n

p

Alternative Hypothesis Rejection Region for Level a Test
Ha: lD > D0
Ha: lD < D0
Ha: lD 6¼ D0

t� ta;n�1
t� � ta;n�1
either t� ta=2;n�1 or t� � ta=2;n�1

A P-value can be calculated as was done for earlier t tests.

Example 10.11 Musculoskeletal neck-and-shoulder disorders are all too common among office staff
who perform repetitive tasks using visual display units. The article “Upper-Arm Elevation During
Office Work” (Ergonomics 1996: 1221–1230) reported on a study to determine whether more varied
work conditions would have any impact on arm movement. The accompanying data was obtained
from a sample of n = 16 subjects. Each observation is the amount of time, expressed as a proportion
of total time observed, during which arm elevation was below 30°. The two measurements from each
subject were obtained 18 months apart. During this period, work conditions were changed, and
subjects were allowed to engage in a wider variety of work tasks. Does the data suggest that true
average time during which elevation is below 30° differs after the change from what it was before the
change? This particular angle is important because in Sweden, where the research was conducted,
workers’ compensation regulations assert that arm elevation less than 30° is not harmful.
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Subject 1 2 3 4 5 6 7 8
Before 81 87 86 82 90 86 96 73
After 78 91 78 78 84 67 92 70
Difference 3 �4 8 4 6 19 4 3

Subject 9 10 11 12 13 14 15 16
Before 74 75 72 80 66 72 56 82
After 58 62 70 58 66 60 65 73
Difference 16 13 2 22 0 12 �9 9

Figure 10.7 shows a normal probability plot of the 16 differences; the pattern in the plot is quite
straight, supporting the normality assumption. A boxplot of these differences appears in Figure 10.8;
the box is located considerably to the right of zero, suggesting that perhaps lD > 0 (note also that 13
of the 16 differences are positive and only two are negative).

Figure 10.7 A normal probability plot from Minitab of the differences in Example 10.11

2010−10 0

Difference

Figure 10.8 A boxplot of the differences in Example 10.11
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Let’s now use the recommended sequence of steps (refer back to Example 9.20) to test the
appropriate hypotheses using the P-value method.

1. Let lD denote the true average difference between elevation time before the change in work
conditions and time after the change.

2. H0: lD = 0 (there is no difference between true average time before the change and true
average time after the change)

Ha: lD 6¼ 0 (there is a difference)
3. The paired t test requires data from a normal population. Figure 10.7 validates the plausibility

of this assumption.

4: t ¼
�d � 0
sD=

ffiffiffi
n

p ¼
�d

sD=
ffiffiffi
n

p
5. From the n = 16 differences, �d ¼ 6:75 and sD = 8.234, so

t ¼ 6:75

8:234=
ffiffiffiffiffi
16

p ¼ 3:28 � 3:3

6. Appendix Table A.7 shows that the area to the right of 3.3 under the t curve with 15 df is .002.
The inequality in Ha implies that a two-tailed test is appropriate, so the P-value is approxi-
mately 2(.002) = .004 (software gives .0051).

7. Since .004 � .01, the null hypothesis can be rejected at either significance level .05 or .01. It
does appear that the true average difference between times is something other than zero; that is,
true average time after the change is different from that before the change. Recalling that arm
elevation should be kept under 30°, we can conclude that the situation became worse because
the amount of time below 30° decreased. ■

Paired t Versus Two-Sample t Procedures
Consider using the two-sample t test on paired data. The numerators of the paired t and two-sample
t test statistics are identical, since

�d ¼ 1
n

X
di ¼ 1

n

X
ðxi � yiÞ ¼ 1

n

X
xi � 1

n

X
yi ¼ �x� �y

The difference between the two test statistics is due entirely to the denominators. Each test statistic is
obtained by standardizing X � Y ð¼ �DÞ; but in the presence of dependence the two-sample t stan-
dardization is incorrect. To see this, recall from Section 5.3 that

VðX � YÞ ¼ VðXÞþVðYÞ � 2CovðX; YÞ

Since the correlation between X and Y is q ¼ CorrðX; YÞ ¼ CovðX; YÞ=½ ffiffiffiffiffiffiffiffiffiffiffi
VðXÞp � ffiffiffiffiffiffiffiffiffiffiffi

VðYÞp �, it follows
that

VðX � YÞ ¼ r21 þ r22 � 2qr1r2
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Applying this to X � Y yields

VðX � YÞ ¼ Vð�DÞ ¼ V
1
n

X
Di

� �
¼ VðDiÞ

n
¼ r21 þ r22 � 2qr1r2

n

The two-sample t test is based on the assumption of independence, in which case q = 0. But in many
paired experiments, there will be a strong positive dependence between X and Y (large X associated with
large Y), so that q will be positive and the variance of X � Y will be smaller than r21=nþ r22=n. Thus
whenever there is positive dependence within pairs, the denominator for the paired t statistic should be
smaller than for t of the independent-samples test, resulting in a larger test statistic and a smallerP-value.

Similarly, when data is paired, the paired tCIwill usually be narrower than the (incorrect) two-sample
t CI. This is because there is typically much less variability in the differences than in the x and y values.

The paired t and two-sample t procedures described in this section and the previous section apply
when we want to compare two populations, treatments, or conditions based upon a quantitative
measurement (profit, sales, time, etc.). Many situations exist in which researchers can design their
study using their choice of either “matched pairs” or two independent samples. However, once that
design decision is made, only one analysis procedure is correct. In Examples 10.9–10.11, it would be
wrong to use the two-sample t procedures from Section 10.2, since they are predicated on having two
independent random samples of data. Similarly, even when investigators gather two independent
samples of the same size (m = n), the paired t procedures would not be appropriate because no natural
pairing would exist between the individuals in sample #1 and the unrelated individuals in sample #2.

Sometimes, as in our examples, paired data results from two observations being taken on the same
individual or object. Even when this cannot be done, paired data with dependence within pairs can be
obtained by matching on one or more characteristics thought to influence responses. For example, in a
pharmaceutical study to compare the efficacy of two drugs for lowering blood pressure, the experi-
menter’s budget might allow for the treatment of 100 patients. If 50 patients are randomly selected for
treatment with the first drug and another 50 independently selected for treatment with the second
drug, an independent-samples experiment results.

However, the experimenter, knowing that blood pressure is influenced by age and weight, might
decide to create pairs of patients so that within each of the resulting 50 pairs, age and weight were
approximately equal (though there might be sizable differences between pairs). Then the two drugs
would be randomly assigned to the subjects within each pair, for a total of 50 observations on each
drug. The benefit of this matching (or “blocking”) is that we can account for unwanted sources of
variation (e.g., age and weight) that might otherwise have masked differences in the two treatments.

Exercises: Section 10.3 (43–55)

43. The Weaver–Dunn procedure with a fiber
mesh tape augmentation is commonly used
to treat AC joint (a joint in the shoulder)
separations requiring surgery. The article
“TightRope Versus Fiber Mesh Tape
Augmentation of Acromioclavicular Joint
Reconstruction” (Am. J. Sport Med. 2010:
1204–1208) described the investigation of a
new method which was hypothesized to
provide superior stability (less movement)
compared to the W–D procedure. The

authors of the cited article kindly provided
the accompanying data on anteposterior
(forward–backward) movement (mm) for
six matched pairs of shoulders:

Subject 1 2 3 4 5 6

Fiber mesh 20 30 20 32 35 33
TightRope 15 18 16 19 10 12

Carry out a test of hypotheses at signifi-
cance level .01 to see if true average
movement for the TightRope treatment is
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indeed less than that for the Fiber Mesh
treatment. Be sure to check any assump-
tions underlying your analysis.

44. Hexavalent chromium has been identified
as an inhalation carcinogen and an air toxin
of concern in a number of different locales.
The article “Airborne Hexavalent Chro-
mium in Southwestern Ontario” (J. Air
Waste Manage. 1997: 905–910) gave the
accompanying data on both indoor and
outdoor concentration (nanograms/m3) for
a sample of houses selected from a certain
region.

House 1 2 3 4 5 6 7 8 9

Indoor .07 .08 .09 .12 .12 .12 .13 .14 .15
Outdoor .29 .68 .47 .54 .97 .35 .49 .84 .86

House 10 11 12 13 14 15 16 17

Indoor .15 .17 .17 .18 .18 .18 .18 .19
Outdoor .28 .32 .32 1.55 .66 .29 .21 1.02

House 18 19 20 21 22 23 24 25

Indoor .20 .22 .22 .23 .23 .25 .26 .28
Outdoor 1.59 .90 .52 .12 .54 .88 .49 1.24

House 26 27 28 29 30 31 32 33

Indoor .28 .29 .34 .39 .40 .45 .54 .62
Outdoor .48 .27 .37 1.26 .70 .76 .99 .36

a. Calculate a confidence interval for the
population mean difference between
indoor and outdoor concentrations using a
confidence level of 95%, and interpret the
resulting interval.

b. If a 34th house was to be randomly
selected from the population, between
what values would you predict the dif-
ference in concentrations to lie?

45. Shoveling is not exactly a high-tech activ-
ity, but will continue to be a required task
even in our information age. The article “A
Shovel with a Perforated Blade Reduces
Energy Expenditure Required for Digging
Wet Clay” (Hum. Factors 2010: 492–502)
reported on an experiment in which each of
13 workers was provided with both a con-
ventional shovel and a shovel whose blade

was perforated with small holes. The
authors of the cited article provided the
following data on stable energy expenditure
[kcal/kg(subject)/lb(clay)]:

Worker 1 2 3 4 5 6 7

Conventional .0011 .0014 .0018 .0022 .0010 .0016 .0028
Perforated .0011 .0010 .0019 .0013 .0011 .0017 .0024

Worker 8 9 10 11 12 13

Conventional .0020 .0015 .0014 .0023 .0017 .0020
Perforated .0020 .0013 .0013 .0017 .0015 .0013

a. Calculate a confidence interval at the
95% confidence level for the true aver-
age difference between energy expen-
diture for the conventional shovel and
the perforated shovel (a normal proba-
bility plot of the sample differences
shows a reasonably linear pattern).
Based on this interval, does it appear
that the shovels differ with respect to
true average energy expenditure?
Explain.

b. Carry out a test of hypotheses at sig-
nificance level .05 to see if true average
energy expenditure using the conven-
tional shovel exceeds that using the
perforated shovel; include a P-value in
your analysis.

46. The article “Effect of Wearable Technology
Combined With a Lifestyle Intervention on
Long-term Weight Loss” (JAMA 2017:
1161–1171) describes a study in which
adults in a large cohort were provided the
same weight-loss regimen for six months.
Then, participants were randomly assigned
to either (1) self-monitor diet and physical
activity using a Web site or (2) track diet
and physical activity with a wearable
device and accompanying Web interface.
The weights of all subjects (in kg) were
recorded at the beginning of the study and
24 months later. The following summary is
consistent with information in the article.
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Treatment Baseline 24 Months Difference

(1) n = 233 Mean: 95.2 89.3 –5.9
SD: 16.4 15.1 6.9

(2) n = 237 Mean: 96.3 92.8 –3.5
SD: 16.5 15.7 7.3

a. Construct and interpret a 95% confi-
dence interval for the population mean
weight loss under the first treatment
(self-monitoring with a Web site).

b. Construct and interpret a 95% confi-
dence interval for the population mean
weight loss under the second treatment
(tracking with a wearable device).

c. How confident can you be that both the
intervals in (a) and (b) contain the val-
ues of population mean weight loss?

d. Does the data show at the .05 level that
the two population means in parts
(a) and (b) are different? Perform the
appropriate hypothesis test. [Note: This
does not require a paired t procedure!]

47. Refer back to Example 10.9. Here are the
differences in appraisals displayed in
Figure 10.5:

5.7 9.3 10.4 9.8 8.0 7.9 8.9 8.7 6.7 9.5
12.0 14.5 10.0 13.4 7.7 7.5 9.4 10.3 11.2 7.2

a. Construct a normal probability plot of
these 20 differences. Is it plausible that
the population distribution of differ-
ences is normal?

b. Construct and interpret a 95% upper
confidence bound for the true mean
difference in appraised home value.

c. Test the hypothesis that the true mean
difference in appraised home value is
less than $10,000 at the .05 level. Is
your answer consistent with part (b)?

48. Management at a large retail appliance
chain required all full-time sales staff to
attend a one-day training session on
improving sales technique. To evaluate the
effectiveness of this rather expensive train-
ing, the number of sales in the week prior to
the training and the number of sales in the

week following the training was recorded
for each salesperson. Data for the 10 full-
times salespersons at one branch of the
store appears in the accompanying table.

Salesperson 1 2 3 4 5 6 7 8 9 10

After sales training 44 53 30 41 53 63 55 68 35 41
Before sales training 50 45 25 40 45 55 40 54 33 49
Difference –6 8 5 1 8 8 15 14 2 –8

Does the data provide convincing statistical
evidence that, on average, employees make
a greater number of weekly sales after the
training? Test the appropriate hypotheses at
the .01 level. Validate any necessary
conditions.

49. The article “Less Is Better: When Low-
value Options Are Valued More Highly
than High-value Options” (J. Behav. Decis.
Making 1998: 107–121) describes several
experiments pertaining to consumer
behavior. In one experiment, 46 students
were split into two groups: 23 who were
shown 7 oz of ice cream in a 5-oz cup (the
cup was overflowing) and 23 who were
shown 8 oz of ice cream in a 10-oz cup
(there was a lot of empty space left over).
Each student was then asked, “What is the
most you are willing to pay for a serving?”
The researchers theorized that students
would pay more, on average, for the
overflowing cup even though it contained
less ice cream.

a. Which is the correct method of analysis
for this situation: the paired t test, or the
two-sample t procedure from the previ-
ous section? Why?

b. The sample averages for the 7 oz and
8 oz groups were $2.26 and $1.66,
respectively; information in the article
suggests the corresponding standard
deviations are $0.84 and $0.81, respec-
tively. Test the researchers’ hypothesis
at the a = .05 level. Indicate any
assumptions required for your method
to be valid.
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c. In a second experiment, a different
group of 23 students were shown both
of the aforementioned ice cream cups,
side by side. Each student then indicated
how much s/he was willing to pay for
each ice cream serving. Which is the
correct method of analysis for this sec-
ond experiment: the paired t test, or the
two-sample t procedure from the previ-
ous section? Why?

d. It is hypothesized that under this con-
dition, students will be willing to pay
more for the 8 oz serving. Test this
hypothesis at the .05 level using the
following information: sample average
for 7 oz serving = $1.56; sample aver-
age for 8 oz serving = $1.85; standard
deviation of sample differences = $0.32.
Indicate any assumptions required for
your method to be valid.

e. Can you explain why the two experi-
ments gave “opposite” results? [Hint:
This is not a statistics question.]

50. The article discussed in the previous exercise
also describes an experiment in which 35
students were asked to price two boxes of
silverware: a 24-piece box with all 24 pieces
intact, and a 40-piece box with only 31 pie-
ces of silverware intact. Each student indi-
cated the amount s/he would be willing to
pay for each box. The sample average
amount students were willing to pay for the
24-piece and 40-piece boxes were $29.70
and $32.03, respectively. The standard
deviation of the differences was $6.41. Test
the hypothesis that, on average, students are
willing to pay more for the box with more
silverware even though it was not
completely intact. Use a .05 level of
significance.

51. Chapter 1 Exercise 81 describes a study of
children’s private speech (talking to them-
selves). The 33 children were each

observed in about 100 ten-second intervals
in the first grade, and again in the second
and third grades. Because private speech
occurs more in challenging circumstances,
the children were observed while doing their
mathematics. The speech was classified as
on task (about the math lesson), off task, or
mumbling (the observer could not tell what
was said). Here are the 33 first-grade
mumble scores, followed by the third-
grade scores:

20.8 24.4 19.4 33.3 26.0 56.6 39.5 24.7 21.6
19.2 43.0 26.3 22.7 49.4 35.4 56.8 45.4 28.7
34.0 26.9 48.4 27.6 52.6 5.9 38.5 22.1 22.2
32.1 48.1 19.5 42.2 20.3 20.0

28.8 57.0 23.9 46.9 50.0 64.6 54.2 55.3 21.4
44.3 11.7 58.6 76.1 76.4 48.6 37.2 69.8 29.1
46.5 50.0 69.6 69.8 59.4 22.7 84.9 42.0 67.2
38.3 78.5 38.1 60.4 57.8 38.7

The numbers are in the same order for each
grade; for example, the third student
mumbled in 19.4% of the intervals in the
first grade and 23.9% of the intervals in the
third grade.

a. Verify graphically that normality is
plausible for the population distribution
of differences.

b. Find a 95% confidence interval for the
difference of population means, and
interpret the result.

52. Can people operate touch screen devices
more quickly with their index finger or their
thumb? Holding the device in landscape or
portrait position? The article “Evaluation of
a Psychomotor Vigilance Task (PVT) for
Touch Screen Devices” (Hum. Factors
2017: 661–670) describes a study in which
13 participants performed a series of tasks
on an iPod holding it two different ways:
(1) in portrait position using their index
finger and (2) in landscape position using
their thumb. The median response time, in
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milliseconds, was recorded for each par-
ticipant under both settings. Those obser-
vations are summarized in the
accompanying table.

iPod position Mean SD

Portrait/index 224.09 39.30
Landscape/thumb 211.50 30.74
Difference 12.59 15.28

Test whether the results under the two
positions are significantly different at the
.05 significance level.

53. It has been estimated that between 1945
and 1971, as many as 2 million children
were born to mothers treated with diethyl-
stilbestrol (DES), a nonsteroidal estrogen
recommended for pregnancy maintenance.
The FDA banned this drug in 1971 because
research indicated a link with the incidence
of cervical cancer. The article “Effects of
Prenatal Exposure to Diethylstilbestrol
(DES) on Hemispheric Laterality and Spa-
tial Ability in Human Males” (Hormones
Behav. 1992: 62–75) discussed a study in
which 10 males exposed to DES and their
unexposed brothers underwent various
tests. This is the summary data on the
results of a spatial ability test: �x ¼ 12:6
(exposed), �y ¼ 13:7, and standard error of
mean difference = .5. Test at level .05 to
see whether exposure is associated with
reduced spatial ability by obtaining the
P-value.

54. As integrated circuits operate at ever-
smaller resolutions, the clean handling of
wafers in the manufacturing process has
become even more important. The article
“Particle Free Handling of Substrates”

(IEEE Trans. Semicond. Manuf. 2016:
314–319) provides the following data on
the number of particles detected pre- and
post-handling for a sample of 16 wafers:

Pre 5 5 32 14 2 2 17 13
Post 236 684 1256 3605 40 92 173 44
Diff. 231 679 1224 3591 38 90 156 31

Pre 18 27 5 18 52 20 17 35
Post 51 88 189 610 124 1218 2023 3057
Diff. 33 61 184 592 72 1198 2006 3022

a. The researchers desired a confidence
interval for lD, the average increase in
number of particles per wafer due to
handling. Why should the paired t in-
terval not be applied here? [Hint: Con-
struct a normal probability plot of the
differences.]

b. A normal probability plot of the loga-
rithms of the difference values shows
that the population of ln(D) values is
plausibly normal (i.e., D may be log-
normal). Take the logarithm of the dif-
ferences, and use those values to
construct a 95% CI for E½lnðDÞ�.

c. It can be shown that exponentiating the
endpoints of the interval from part
(b) produces a confidence interval not
for lD, but rather the population median
~lD. Exponentiate the limits of the
interval from part (b), and interpret this
interval.

55. Construct a paired data set for which t = ∞,
so that the data is highly significant when
the correct analysis is used, yet t for the
two-sample t test is quite near zero, so the
incorrect analysis yields an insignificant
result.
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10.4 Inferences About Two Population Proportions

Having presented methods for comparing the means of two different populations, we now turn to the
comparison of two population proportions. The notation for this scenario is an extension of the
notation used in the corresponding one-population problem. Let p1 and p2 denote the proportions of
individuals in populations 1 and 2, respectively, who possess a particular characteristic. Equivalently,
if we use the label S (success) for an individual who possesses the characteristic of interest—favors a
particular proposition, has read at least one book within the last month, etc.—then p1 and p2 represent
the probabilities of seeing the label S on a randomly chosen individual from populations 1 and 2,
respectively.

We will assume the availability of a sample of m individuals from the first population and n from
the second. The variables X and Y will represent the number of individuals in each sample possessing
the characteristic that defines p1 and p2. Provided the population sizes are much larger than the sample
sizes, the distribution of X can be taken to be binomial with parameters m and p1, and similarly,
Y * Bin(n, p2). Furthermore, the samples are assumed to be independent of each other, so that
X and Y are independent rvs.

The obvious estimator for p1 − p2, the difference in population proportions, is the corresponding
difference in sample proportions. With P̂1 ¼ X=m and P̂2 ¼ Y=n, the estimator of p1 − p2 can be
expressed as P̂1 � P̂2 ¼ X=m� Y=n:

PROPOSITION Let X * Bin(m, p1) and Y * Bin(n, p2) with X and Y independent variables.
Define P̂1 ¼ X=m and P̂2 ¼ Y=n. Then

EðP̂1 � P̂2Þ ¼ p1 � p2;

so P̂1 � P̂2 is an unbiased estimator of p1 − p2, and

VðP̂1 � P̂2Þ ¼ p1q1
m

þ p2q2
n

ðwhere qi ¼ 1� piÞ

Proof Since E(X) = mp1 and E(Y) = np2,

E
X

m
� Y

n

� �
¼ 1

m
EðXÞ � 1

n
EðYÞ ¼ 1

m
mp1 � 1

n
np2 ¼ p1 � p2

Since V(X) = mp1q1, V(Y) = np2q2, and X and Y are independent,

V
X

m
� Y

n

� �
¼ V

X

m

� �
þð�1Þ2V Y

n

� �
¼ 1

m2
VðXÞþ 1

n2
VðYÞ ¼ p1q1

m
þ p2q2

n ■

We will focus first on situations in which both m and n are large. Then because P̂1 and P̂2 individually
have approximately normal distributions, the estimator P̂1 � P̂2 also has approximately a normal
distribution. Standardizing P̂1 � P̂2 yields a variable Z whose distribution is approximately standard
normal:
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Z ¼ P̂1 � P̂2 � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
m

þ p2q2
n

r

A Large-Sample Test Procedure
Analogous to the hypotheses for l1 � l2, the most general null hypothesis an investigator might
consider would be of the form H0: p1 − p2 = D0, where D0 is again a specified number. Although for
population means the caseD0 6¼ 0 presented no difficulties, for population proportions the casesD0 = 0
andD0 6¼ 0must be considered separately. Since the vastmajority of actual problems of this sort involve
D0 = 0 (i.e., the null hypothesis p1 = p2), we will concentrate on this case. WhenH0: p1− p2 = 0 is true,
let p denote the common value of p1 and p2 (and similarly for q). Then the standardized variable

Z ¼ P̂1 � P̂2 � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq

1
m

þ 1
n

� �s

has approximately a standard normal distribution when H0 is true. However, this Z cannot serve as a
test statistic because the value of p is unknown—H0 asserts only that there is a common value of p,
but H0 does not say what that value is. To obtain a usable test statistic having approximately a
standard normal distribution when H0 is true, p must be estimated from the sample data.

Assuming then that p1 = p2 = p, instead of separate samples of size m and n from two different
populations (two different binomial distributions), we really have a single sample of size m + n from
one population with proportion p. Since the total number of individuals in this combined sample
having the characteristic of interest is X + Y, the estimator of p is

P̂ ¼ Xþ Y

mþ n
¼ m

mþ n
P̂1 þ n

mþ n
P̂2 ð10:5Þ

The second expression for P̂ shows that it is actually a weighted average of estimators P̂1 and P̂2

obtained from the two samples. If we take (10.5) and substitute back into Z with Q̂ ¼ 1� P̂, the
resulting statistic has approximately a N(0, 1) distribution when H0 is true.

TWO-PROPORTION
z TEST

Null hypothesis: H0: p1 − p2 = 0

Test statistic value (large samples): z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂q̂

1
m

þ 1
n

� �s

Alternative Hypothesis Rejection Region for Approximate Level aTest
Ha : p1 � p2 [ 0 z � za
Ha : p1 � p2 \ 0 z � � za
Ha : p1 � p2 6¼ 0 either z � za=2 or z � � za=2

A P-value is calculated in the same way as for previous z tests.
These procedures are valid provided that n1p̂1 � 10, n1q̂1 � 10, n2p̂2 � 10,
and n2q̂2 � 10.

Example 10.12 Are customers more willing to buy a product or service just because they’re offered
multiple purchase plans? In a study published in Land Econ. (2006), home-owning residents of
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Madison, WI were offered the chance to buy wind-generated electricity for their homes as part of a
pilot program in the city. A random sample of 237 residents was offered seven different purchase
plans (ranging from 50 kWh to 600 kWh per month; the extra monthly cost of wind-generated power
was about $1 for 25 kWh). An independent random sample of 649 residents was offered just a single
choice for the amount they could purchase, with that amount randomly selected for each resident from
among the same seven options. Thirty-seven percent of those offered multiple options purchased
wind-generated electricity, compared to 24% of the single-option group.

Does this data suggest that customers are more willing to buy wind-generated electricity when
they’re offered multiple purchase plans, or could the disparity be attributed to chance? Test at the
a = .01 level.

1. The population being studied consists of all homeowners in Madison, WI. Within this popu-
lation, the parameter of interest is p1 – p2, the difference in the proportions who would buy
wind-generated electricity under the multiple-option scheme and the single-option scheme.

2. Researchers believed a priori that customers were more likely to buy in under the first scheme,
so the competing hypotheses are

H0: p1 � p2 ¼ 0 ði.e:; p1 ¼ p2Þ
Ha: p1 � p2 [ 0 ði:e:; p1 [ p2Þ

3. The data consists of two independent random samples. From the numbers provided,
n1p̂1 ¼ ð237Þð:37Þ � 88, n1q̂1 � 149, n2p̂2 ¼ ð649Þð:24Þ � 156, and n2q̂2 � 493; all of these
values are at least 10. The requirements for this large-sample z hypothesis test are satisfied.

4. The two-proportion z test statistic value is z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂q̂

1
m

þ 1
n

� �s :

5. For this upper-tailed test, we reject H0 if z � z.01 = 2.33.
6. The combined (pooled) estimate of the common proportion p under H0 is

p̂ ¼ 237
237þ 649

ð:37Þþ 649
237þ 649

ð:24Þ ¼ :275;

which results in a test statistic value of

z ¼ ð:37Þ � ð:24Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:275Þð:725Þ 1

237
þ 1

649

� �s ¼ 3:84

That is, the observed value of P̂1 � P̂2 is almost four standard deviations larger than what we’d
expect if H0 were true.

7. Since 3.84 � 2.33, H0 is rejected at the .01 significance level. The data very strongly suggests
that Madison homeowners are more likely to purchase wind-generated electricity if they are
offered several options for the amount of electricity they can buy.

Using a P-value approach, based on the direction of Ha, the P-value equals 1 – U(3.84) = .0003. If
residents were equally likely to buy wind-generated electricity under both schemes, the chance of
observing a disparity at least as large as the one in this study would be extremely small. Hence, again,
we would reject H0 in favor of the alternative hypothesis. ■
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Power, b, and Sample Sizes
Here the determination of power and b is a bit more cumbersome than it was for other large-sample
tests. The reason is that the denominator of Z is an estimate of the standard deviation of P̂1 � P̂2

assuming that p1 = p2 = p. When H0 is false, P̂1 � P̂2 must be re-standardized using

rP̂1�P̂2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
m

þ p2q2
n

r
ð10:6Þ

The form of r in (10.6) implies that power and b are functions of both p1 and p2, not just the
difference p1 − p2. So we denote the chance of a type II error by b(p1, p2).

Alternative Hypothesis b(p1, p2)

Ha: p1 − p2 > 0

Ha: p1 − p2 < 0

Ha: p1 − p2 6¼ 0

U

za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p�q

1
m

þ 1
n

� �s
� ðp1 � p2Þ

r

2
66664

3
77775

1� U

�za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p�q

1
m

þ 1
n

� �s
� ðp1 � p2Þ

r

2
66664

3
77775

U

za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p�q

1
m

þ 1
n

� �s
� ðp1 � p2Þ

r

2
66664

3
77775� U

�za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p�q

1
m

þ 1
n

� �s
� ðp1 � p2Þ

r

2
66664

3
77775

where �p ¼ ðmp1 þ np2Þ=ðmþ nÞ, �q ¼ ðmq1 þ nq2Þ=ðmþ nÞ, and r is given by (10.6).
For each case, power = 1 – b.

Alternatively, for specified p1 and p2, the sample sizes necessary to achieve b(p1, p2) = b can be
determined. For example, for the upper-tailed test, we equate −zb to the argument of U(�) (i.e., what’s
inside the parentheses) in the foregoing box. Ifm = n, there is a simple expression for the common value:

n ¼ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp1 þ p2Þðq1 þ q2Þ=2

p þ zb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1 þ p2q2

p	 
2
ðp1 � p2Þ2

ð10:7Þ

for an upper- or lower-tailed test, with a/2 replacing a for a two-tailed test.

Example 10.13 One of the truly impressive applications of statistics occurred in connection with the
design of the 1954 Salk polio vaccine experiment and analysis of the resulting data. Part of the
experiment focused on the efficacy of the vaccine in combating paralytic polio. Because it was
thought that without a control group of children, there would be no sound basis for assessment of the
vaccine, it was decided to administer the vaccine to one group and a placebo injection (visually
indistinguishable from the vaccine but known to have no effect) to a control group. For ethical reasons
and also because it was thought that the knowledge of vaccine administration might have an effect on
treatment and diagnosis, the experiment was conducted in a double-blind manner. That is, neither the
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individuals receiving injections nor those administering them actually knew who was receiving
vaccine and who was receiving the placebo (samples were numerically coded)—remember, at that
point it was not at all clear whether the vaccine was beneficial.

Let p1 and p2 be the probabilities of a child getting paralytic polio for the control and treatment
conditions, respectively. The objective was to test H0: p1 − p2 = 0 versus Ha: p1 − p2 > 0 (the
alternative hypothesis states that a vaccinated child is less likely to contract polio than an unvacci-
nated child). Supposing the true value of p1 is .0003 (an incidence rate of 30 per 100,000), the vaccine
would be a significant improvement if the incidence rate was halved—that is, p2 = .00015. Using a
level a = .05 test, it would then be reasonable to ask for sample sizes for which power = 90% (i.e.,
b = .1) when p1 = .0003 and p2 = .00015. Assuming equal sample sizes, the required n is obtained
from (10.7) as

n ¼ 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:5Þð:00045Þð:199955Þp þ 1:28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:00015Þð:99985Þþ ð:0003Þð:9997Þp	 
2
ð:0003� :00015Þ2

¼ ½ð:0349þ :0271Þ=:00015�2 � 171;000

The actual data for this experiment follows. Sample sizes of approximately 200,000 were used. The
reader can easily verify that z = 6.43, a highly significant value. The vaccine was judged a resounding
success!

Placebo: m = 201,229 x = number of cases of paralytic polio = 110
Vaccine: n = 200,745 y = 33 ■

A Large-Sample Confidence Interval for p1 − p2
As with means, many two-sample problems involve the objective of comparison through hypothesis
testing, but sometimes an interval estimate for p1 − p2 is appropriate. Both P̂1 ¼ X=m and P̂2 ¼ Y=n
have approximate normal distributions when m and n are both large. If we identify h with p1 − p2,

then ĥ ¼ P̂1 � P̂2 satisfies the conditions necessary for obtaining a large-sample CI (see Section 9.6).

In particular, the estimated standard deviation of ĥ is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp̂1q̂1=mÞþ ðp̂2q̂2=nÞ

p
. The 100(1 − a)%

interval ĥ� za=2 � r̂ĥ then becomes the two-proportion z interval

p̂1 � p̂2 � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1q̂1
m

þ p̂2q̂2
n

r

Like the two-proportion z test, this formula is suitable for large samples. Notice that the estimated
standard deviation of p̂1 � p̂2 (the square root expression) is different here from what it was for
hypothesis testing when D0 = 0.

Statistical research has shown that the actual confidence level for the two-proportion z CI can
sometimes deviate substantially from the nominal level (the level you think you are getting when you
use a particular z critical value—e.g., 95% when za/2 = 1.96). A suggested improvement is to add one
success and one failure to each of the two samples and then replace the p̂’s and q̂’s in the foregoing
formula by ~p’s and ~q’s where ~p1 ¼ ðxþ 1Þ=ðmþ 2Þ, etc. This adjusted interval can also be used
reliably when sample sizes are quite small.
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Example 10.14 Agritourism (visiting farms and participating in farm activities) is an increasingly
large part of the American tourism industry. The authors of “Examination of the Use of E-Marketing
by Small Farms in the Northeast,” (J. Food Distrib. Res. 2006 37(1)) investigated the relationship
between agritourism and presence on the Internet. In a survey of 640 farms in the northeastern United
States, 261 farms had a Web site for their farm business and 379 did not. Among farms with a Web
site, 167 had some type of agritourism activities, compared to 152 of the farms that did not have a
business Web site.

Let p1 = the proportion of all northeastern farms with Web sites that provide agritourism activities
and p2 = the proportion of all northeastern farms without Web sites that provide agritourism activities.
With p̂1 ¼ 167=261 ¼ :640 and p̂2 ¼ 152=379 ¼ :401, a 95% confidence interval for p1 – p2 is

ð:640� :401Þ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:640ð:360Þ

261
þ :401ð:599Þ

379

r
¼ :239 � :076 ¼ :163; :315ð Þ

We are 95% confident that the difference in the proportion of northeastern farms with Web sites that
offer agritourism activities and the proportion of northeastern farms without Web sites that offer
agritourism activities is between .163 and .315. (Using ~p1 ¼ 168=263 and ~p2 ¼ 153=381 based on
sample sizes of 263 and 381, respectively, the adjusted interval here is essentially identical to the
original interval.)

In particular, the agritourism rate is much higher among those farms which use a business Web site
to advertise. We observe here a positive association between having a Web site and providing
agritourism activities. One caveat: since this is only an observational study, we cannot conclude that
presence on the Internet causes farms to make money off agritourism. ■

Small-Sample Inferences
On occasion an inference concerning p1 − p2 may have to be based on samples for which at least one
sample size is small. Appropriate methods for such situations are not as straightforward as those for
large samples, and there is less agreement among statisticians as to recommended procedures.

The main issue here is that P̂1 � P̂2 is no longer approximately normal when m or n is small, and
no expression exists for the exact distribution of the difference of two (scaled) binomial rvs. Some
software packages will “adjust” the data by adding one success and one failure to each sample, as was
mentioned briefly in the context of confidence intervals. Alternatively, statistical software can be used
to simulate the sampling distribution of P̂1 � P̂2 using the underlying binomial models, and P-values
can be estimated therefrom.

One frequently used test in this situation, called Fisher’s exact test, is based on the hypergeometric
distribution. This method has its own deficiencies, as it assumes that both the sample sizes and the
total number of successes across the two samples are fixed. But Fisher’s exact test is the most-
commonly used alternative procedure for comparing two proportions from small samples. Please
consult an appropriate reference for more information.
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Exercises: Section 10.4 (56–70)

56. Independent random samples of 237
African-Americans and 396 Caucasian-
Americans were asked to identify their
“favorite” category of television program-
ming (“Television Types and TV Attitudes
of African-Americans, Latinos, and Cau-
casians,” J. Advert. Res. 2008: 235–246). In
the survey, 13.1% of African-Americans
and 18.7% of Caucasians indicated that
they prefer to watch the news more than
any other category.

a. Test the hypothesis that the proportion
of all people whose favorite TV viewing
category is news differs between the
populations of all African-Americans
and Caucasians, at the a = .01 signifi-
cance level.

b. Would your answer to part (a) be dif-
ferent if you used a .10 significance
level? Explain.

c. The same survey found that 33.3% of
213 randomly selected Latinos chose
the news as their favorite television
program. Repeat part (a), but compare
the populations of Latinos and African-
Americans.

57. A sample of 300 urban adult residents of a
particular state revealed 63 who favored
increasing the highway speed limit from 55
to 65 mph, whereas a sample of 180 rural
residents yielded 75 who favored the
increase. Does this data indicate that the
sentiment for increasing the speed limit is
different for the two groups of residents?

a. Test H0: p1 = p2 versus Ha: p1 6¼ p2
using a = .05, where p1 refers to the
urban population.

b. If the true proportions favoring the
increase are actually p1 = .20 (urban)
and p2 = .40 (rural), what is the

probability that H0 will be rejected
using a level .05 test with m = 300,
n = 180?

58. It is thought that the front cover and the
nature of the first question on mail surveys
influence the response rate. The article
“The Impact of Cover Design and First
Questions on Response Rates for a Mail
Survey of Skydivers” (Leisure Sci. 1991:
67–76) tested this theory by experimenting
with different cover designs. One cover was
plain; the other used a picture of a skydiver.
The researchers speculated that the return
rate would be lower for the plain cover.

Cover Number sent Number returned

Plain 207 104
Skydriver 213 109

Does this data support the researchers’
hypothesis? Test the relevant hypotheses
using a = .10 by first calculating a P-value.

59. Do teachers find their work rewarding and
satisfying? The article “Work-Related Atti-
tudes” (Psych. Rep. 1991: 443–450) reports
the results of a survey of 395 elementary
school teachers and 266 high school teach-
ers. Of the elementary school teachers, 224
said they were very satisfied with their jobs,
whereas 126 of the high school teachers
were very satisfied with their work. Esti-
mate the difference between the proportion
of all elementary school teachers who are
satisfied and all high school teachers who
are satisfied by calculating a CI.

60. Several states have an annual “sales tax
holiday” to encourage spending. A survey
of 695 randomly selected shoppers at a
large retail center in Texas asked how
important people felt the tax holiday was
(Am. J. Bus. 2007). 565 shoppers indicated
that the tax holiday was important in their
decision to shop.
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a. Estimate the proportion of all Texas
shoppers for whom the tax holiday is
important in their decision to shop.

b. In the same study, 195 of 250 men said
the tax holiday was important in their
decision to shop, compared to 370 of
445 women. Test the hypothesis that
women are more likely than men to
consider the tax holiday important, at
the 5% significance level.

61. The author of the article “Food and Eating
on Television: Impacts and Influences”
(Nutrition Food Sci. 2000: 24–29) exam-
ined hundreds of hours of BBC television
footage and categorized food images for
both TV programs and commercials. Out of
1785 food images in TV programs, 322
showed sugary and/or fatty foods, while
511 out of 1186 commercial food images
were sugary and/or fatty.

a. Construct a 99% CI for the difference in
the proportion of food images that
include sugary/fatty foods in TV pro-
grams and in commercials. Assume
these two samples are representative of
all food images on the BBC.

b. What does the CI in part (a) say about
the disparity between food images in
TV programs and those in commercials?

62. The authors of the article “Adjuvant
Radiotherapy and Chemotherapy in Node-
Positive Premenopausal Women with
Breast Cancer” (New Engl. J. Med. 1997:
956–962) reported on the results of an
experiment designed to compare treating
cancer patients with only chemotherapy to
treatment with a combination of
chemotherapy and radiation. Of the 154
individuals who received the
chemotherapy-only treatment, 76 survived

at least 15 years, whereas 98 of the 164
patients who received the hybrid treatment
survived at least that long.

a. With p1 denoting the proportion of all
such women who, when treated with
just chemotherapy, survive at least
15 years and p2 denoting the analogous
proportion for the hybrid treatment,
calculate a 99% CI for p1 – p2.

b. Based on the interval from part (a), can
either treatment be judged superior to
the other? Why or why not?

63. The article “Luck of the Draw: Creating
Chinese Brand Names” (J. Advertising Res.
2008: 523–530) explores the use of “lucky”
brand names in China, and whether that use
varies by the uncertainty in a brand’s
business environment (its market sector). In
a sample of 654 brands from sectors with
low uncertainty, 372 names were consid-
ered lucky; among 548 “high-uncertainty”
brands, 343 had lucky names. (In Chinese
culture, the number of strokes required to
write a name determines its luck.) The
authors of the article theorized that com-
panies would use “lucky” brand names
more often in high-uncertainty business
environments. Test the authors’ hypothesis
at the a = .05 significance level. [Hint: The
two populations are all Chinese brands in
low-uncertainty business environments and
all Chinese brands in high-uncertainty
business environments.]

64. Air travelers often complain that recircu-
lated air in the cabin leads to the spread of
colds, while the airline industry generally
disputes this claim. A 2002 study in the
J. Am. Med. Assoc. reported the following
information for passengers on flights with
and without recirculated air:
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Post-flight respiratory
symptoms?

Recirculated air
on the flight?

Yes No

Yes 111 472
No 108 409

Assume these represent independent ran-
dom samples from the two relevant popu-
lations. Does the data suggest that the
likelihood of catching a cold is higher on
flights with recirculated air? Test at the a =
.05 significance level.

65. In a 2017 class project, two team mem-
bers each approached 50 students on
campus (randomly selected using system-
atic sampling). Each student was asked to
participate in a survey, but the survey
itself was a ruse: the real goal was to see
who would agree to be surveyed by
Melissa (who has a British accent) or
Kristine (an American accent). In the end,
41 of 50 students agreed to be surveyed
by Melissa, while 27 of 50 took Kristine’s
(fake) survey.

a. Test the hypothesis of equal population
proportions at the .01 significance level.
Find the P-value for the test, and inter-
pret your results. Be sure to clearly
define your parameters!

b. Can it be concluded that there is a
causal relationship between inter-
viewer’s accent and willingness to be
surveyed? Explain.

66. Statin drugs are used to decrease choles-
terol levels and therefore hopefully to
decrease the chances of a heart attack. In a
British study (“MRC/BHF Heart Protection
Study of Cholesterol Lowering with Sim-
vastin in 20,536 High-Risk Individuals: A

Randomized Placebo-Controlled Trial,”
Lancet 2002: 7–22) 20,536 at-risk adults
were assigned randomly to take either a 40-
mg statin pill or placebo. The subjects had
coronary disease, artery blockage, or dia-
betes. After 5 years there were 1328 deaths
(587 from heart attack) among the 10,269
in the statin group and 1507 deaths (707
from heart attack) among the 10,267 in the
placebo group.

a. Give a 95% confidence interval for the
difference in population death
proportions.

b. Give a 95% confidence interval for the
difference in population heart attack
death proportions.

c. Is it reasonable to say that most of the
difference in death proportions is due to
heart attacks, as would be expected?

67. Using the traditional formula, a 95% CI for
p1 − p2 is to be constructed based on equal
sample sizes from the two populations. For
what value of n (= m) will the resulting
interval have width at most .1 irrespective
of the results of the sampling?

68. In medical investigations, the ratio h =
p1/p2 is often of more interest than the
difference p1 − p2 (e.g., individuals given
treatment 1 are how many times as likely to
recover as those given treatment 2?). Let

ĥ ¼ P̂1=P̂2. When m and n are both large,

the statistic lnðĥÞ has approximately a nor-
mal distribution with approximate mean
value ln(h) and approximate standard
deviation [(m − x)/(mx) + (n − y)/(ny)]1/2.

a. Use these facts to obtain a large-sample
95% CI formula for estimating ln(h),
and then a CI for h itself.

610 10 Inferences Based on Two Samples



b. The article “Low-Dose Aspirin for
Preventing Recurrent Venous Throm-
boembolism (VT)” (New Engl. J. Med.
2012: 1979–1987) reports a study in
which VT recurred in 73 of 411 patients
randomly assigned a placebo and in 57
of the 411 assigned to an aspirin regi-
men. Calculate an interval of plausible
values for h at the 95% confidence level.
What does this interval suggest about
the efficacy of the aspirin treatment?

69. All the examples of this section featured
success/failure data from two independent
samples. McNemar’s Test handles paired
binary responses. For example, suppose
that before a major policy speech by a
political candidate, n individuals are selec-
ted and asked whether (S) or not (F) they
favor the candidate. Then after the speech
the same n people are asked the same
question. The responses can be entered in a
table as follows:

S F
After

X2X1

X4X3

S

F

Before

where X1 + X2 + X3 + X4 = n. Let p1, p2,
p3, and p4 denote the four cell probabilities,
so that p1 = P(S before and S after), and so
on. We wish to test the hypothesis that the
true proportion of supporters (S) after the

speech has not increased against the alter-
native that it has increased.

a. State the two hypotheses of interest in
terms of p1, p2, p3, and p4.

b. Construct an estimator for the after/before
difference in success probabilities.

c. When n is large, it can be shown that the
random variable (Xi − Xj)/n has approx-
imately a normal distribution with vari-
ance [pi + pj − (pi − pj)

2]/n. Construct a
test statistic with approximately a stan-
dard normal distribution whenH0 is true.

d. If x1 = 350, x2 = 150, x3 = 200, and
x4 = 300, what do you conclude?

70. McNemar’s test, developed in the previous
exercise, can also be used when individuals
are “matched” to yield n pairs and then one
member of each pair is given treatment 1
and the other is given treatment 2. Then X1

is the number of pairs in which both treat-
ments were successful, and similarly for X2,
X3, and X4. Suppose the following data is
obtained from such a matched pairs design
to assess the effectiveness of a certain
migraine headache medicine. Use McNe-
mar’s test to determine whether the medi-
cine is effective in the treatment of
migraines.

Medicine

S F

Placebo
S 44 34
F 46 30

10.5 Inferences About Two Population Variances

Methods for comparing two population variances (or standard deviations) are occasionally needed,
though such problems arise much less frequently than those involving means or proportions. For the
case in which the populations under investigation are normal, the procedures are based on the
F distribution from Sections 6.3 and 6.4.
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Testing Hypotheses
A test procedure for hypotheses concerning the ratio r1=r2, as well as a CI for this ratio, is based on
the following result from Section 6.4.

THEOREM Let X1; . . .;Xm be a random sample from a normal distribution with standard deviation
r1, let Y1; . . .; Yn be another random sample (independent of the Xi’s) from a normal
distribution with standard deviation r2, and let S1 and S2 denote the two sample
standard deviations. Then the rv

F ¼ S21=r
2
1

S22=r
2
2

ð10:8Þ

has an F distribution with m1 = m − 1 and v2 = n − 1.

Under the null hypothesis of equal population standard deviations, (10.8) reduces to the ratio of
sample variances. For a test statistic we use this ratio of sample variances, and the claim that r1 ¼ r2
is rejected if the ratio differs by too much from 1.

THE F TEST FOR
EQUALITY OF
VARIANCES

Null hypothesis: H0: r1 ¼ r2(equivalently, r
2
1 ¼ r22)

Test statistic value: f ¼ s21=s
2
2

Alternative Hypothesis Rejection Region for a Level a Test

Ha: r1 [ r2
Ha: r1\r2
Ha: r1 6¼ r2

f � Fa,m–1,n–1

f � F1–a,m–1,n–1

either f � Fa/2,m–1,n–1 or f � F1–a/2,m–1,n–1

Since critical values are tabled only for a = .10, .05, .01, and .001 in Appendix Table A.8, the two-
tailed test can be performed only at levels .20, .10, .02, and .002 without statistical software.

Example 10.15 Is there less variation in weights of some baked goods than others? Here are the
weights (in grams) for a sample of Bruegger’s bagels and another sample of Wolferman’s English
muffins:

B:
W:

99.8
99.0

105.4
98.2

94.7
98.1

107.8
102.1

114.3
102.9

106.3
104.1 98.8 99.5

The normality assumption is very important for the use of the F test. Normal probability plots from
Minitab are shown in Figure 10.9. There is no apparent reason to doubt normality of either population
distribution here.
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Notice the difference in slopes for the two sources. This suggests different variabilities because the
z-score vertical axis is related to the horizontal axis (grams) by z = (grams − mean)/(std dev). Thus,
when score is plotted against grams the slope is the reciprocal of the standard deviation. Now let’s test
H0: r1 ¼ r2 against a two-sided alternative with a = .02. We need the critical values F.01,5,7 = 7.46
and F.99,5,7 = 1/F.01,7,5 = 1/10.46 = .0956; here we have used the reciprocal property

Fp;m1m2 ¼ 1=F1�p;m2;m1 ð10:9Þ

from Section 6.3. From the sample data

f ¼ s21
s22

¼ 6:7652

2:3382
¼ 8:37

which exceeds 7.46, so the hypothesis of equal standard deviations is rejected. We conclude that there
is a difference in weight variation, and the English muffins are less variable.

Notice that it is not really necessary to use the lower-tailed critical value here if the groups are
chosen so the first group has the larger variance, and therefore the value of f ¼ s21=s

2
2 exceeds 1.

Because f > 1, the only comparison is between the computed f and the upper critical value 7.46. It
does not change the result of the test to fix things so f > 1, so it is not cheating to simplify the test in
this way. ■

P-Values for F Tests
Recall that the P-value for an upper-tailed t test is the area under the relevant t curve (the one with
appropriate df) to the right of the calculated t. In the same way, the P-value for an upper-tailed F test
is the area under the F curve with appropriate numerator and denominator df to the right of the
calculated f. Figure 10.10 illustrates this for a test based on m1 = 4 and m2 = 6.

90 95 100 105 110 115 120
grams

2

1

0

−1

−2

S
co

re

brand
bruegger's
wolferman's

Mean
104.7
100.3

StDev
6.765
2.338

N
6
8

AD
0.206
0.548

P
0.762
0.107

Figure 10.9 Normal plot for baked goods
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Unfortunately, tabulation of F curve upper-tail areas is much more cumbersome than for t curves
because two df’s are involved. For each combination of m1 and m2, our F table gives only the four
critical values that capture areas .10, .05, .01, and .001. Figure 10.11 shows what can be said about
the P-value depending on where f falls relative to the four critical values.

For example, for a test with m1 = 4 and m2 = 6,

f = 2.16 ) P-value > .10
f = 5.70 ) .01 < P-value < .05
f = 25.03 ) P-value < .001

Once we know that .01 < P-value < .05, H0 would be rejected at a significance level of .05 but not at
a level of .01. When P-value < .001, H0 should be rejected at any reasonable significance level.

The F tests discussed in succeeding chapters will all be upper-tailed. If, however, a lower-tailed
F test is appropriate, then (10.9) should be used to obtain lower-tailed critical values so that bounds on
the P-value can be established. In the case of a two-tailed test, the bounds from a one-tailed test should
be multiplied by 2. For example, if f = 5.82 when m1 = 4 and m2 = 6, then since 5.82 falls between the
.05 and .01 critical values, 2(.01) < P-value < 2(.05), giving .02 < P-value < .10. H0 would then be

f = 6.23

F curve for
v1 = 4, v2 = 6

Shaded area = P-value
                 = .025

Figure 10.10 A P-value for an upper-tailed F test

v2

v1

α 1  .  .  . 4          .  .  .

6 .10
.05
.01

.001

3.18
4.53
9.15

21.92

P-value > .10 P-value < .001.01 <P-value < .05 .001 < P-value < .01

.05 < P-value < .10

Figure 10.11 Obtaining P-value information from the F table for an upper-tailed F test
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rejected if a = .10 but not if a = .01. In this case, we cannot say from our table what conclusion is
appropriate when a = .05 (since we don’t know whether the P-value is smaller or larger than this).
However, statistical software shows that the area to the right of 5.82 under the F4,6 curve is .029, so the
P-value is 2(.029) = .058 and the null hypothesis should therefore not be rejected at level .05. More
generally, good statistical software will provide an exact P-value for any test based on an
F distribution.

A Confidence Interval for r1=r2
The CI for r1=r2 is based on the probability statement implied by (10.8):

P F1�a=2;m1;m2\
S21=r

2
1

S22=r
2
2

\Fa=2;m1;m2

� �
¼ 1� a

Manipulating the inequalities to isolate r21=r
2
2 yields

s21
s22

� 1
Fa=2;m1;m2

\
r21
r22

\
s21
s22

� 1
F1�a=2;m1;m2

¼ s21
s22

� Fa=2;m2;m1

Equation (10.9) has been used here to simplify the upper bound and enable use of Table A.8. Thus
the confidence interval for r21=r

2
2 is

s21
s22

� 1
Fa=2;m�1;n�1

;
s21
s22

� Fa=2;n�1;m�1

� �

An interval for r1=r2 results from taking the square root of each limit:

s1
s2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa=2;m�1;n�1

p ;
s1
s2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa=2;n�1;m�1

p !

In the interval for the ratio of population standard deviations, notice that the limits of the interval are
proportional to the ratio of sample standard deviations. Of course, the lower limit is less than the ratio
of sample standard deviations, and the upper limit exceeds it.

Example 10.16 Let’s calculate a confidence interval using the data of Example 10.15. The sample
standard deviations are s1 = 6.765 for 6 Bruegger’s bagels and s2 = 2.338 for 8 Wolferman English
muffins. Then a 98% confidence interval for the ratio r1=r2 is

6:765
2:338

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
F:01;5;7

p ;
6:765
2:338

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
F:01;7;5

p !
¼ 2:89 � 1ffiffiffiffiffiffiffiffiffi

7:46
p ; 2:89 �

ffiffiffiffiffiffiffiffiffiffiffi
10:46

p� �
¼ ð1:06; 9:35Þ

Because 1 is not included in the interval, it suggests that the two standard deviations differ. By comparing
theCI calculationwith the hypothesis test calculation, it should be clear that a two-tailed test would reject
equality at the 2% level, and this is consistent with the results of Example 10.15. ■
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It is important to emphasize that the methods of this section are strongly dependent on the
normality assumption. Expression (10.8) is valid only in the case of normal data or nearly normal
data. Otherwise, the F distribution in (10.8) does not apply. The t procedures of this chapter are robust
to the normality assumption, meaning that the procedures still work in the case of moderate depar-
tures from normality, but this is not true for comparison of standard deviations based on (10.8).

For nonnormal data, alternative tests for equal variance are available, including Levene’s test and
an extension of the method by Bonett mentioned in Section 8.4. Consult your local statistician for
more information.

Exercises: Section 10.5 (71–78)

71. Obtain or compute the following quantities:

a. F.05,5,8

b. F.05,8,5

c. F.95,5,8

d. F.95,8,5

e. The 99th percentile of the F distribution
with m1 = 10, m2 = 12

f. The 1st percentile of the F distribution
with m1 = 10, m2 = 12

g. P(F � 6.16) for m1 = 6, m2 = 4
h. P(.177 � F � 4.74) for m1 = 10, m2 = 5

72. Give as much information as you can about
the P-value of the F test in each of the
following situations:

a. m1 = 5, m2 = 10, upper-tailed test,
f = 4.75

b. m1 = 5, m2 = 10, upper-tailed test,
f = 2.00

c. m1 = 5, m2 = 10, two-tailed test, f = 5.64
d. m1 = 5, m2 = 10, lower-tailed test,

f = .200
e. m1 = 35, m2 = 20, upper-tailed test,

f = 3.24

73. Refer to Exercise 41. Does the data suggest
that the standard deviation of the strength
distribution for fused specimens is smaller
than that for not-fused specimens? Carry
out a test at significance level .01 by

obtaining as much information as you can
about the P-value.

74. Return to the data on maximum lean angle
given in Exercise 29. Carry out a test at
significance level .10 to see whether the
population standard deviations for the two
age groups are different (normal probability
plots support the necessary normality
assumption).

75. Refer to the railway repair time data in
Exercise 16. Carry out a test at significance
level .01 to see whether the population
standard deviation for time-to-repair is larger
for high rail breaks than for low rail breaks.

76. Exercise 35 presented data on the pour size
of two groups of experienced bartenders,
one group pouring into tumblers and the
other into highball glasses. Test the
hypothesis that the variability in the two
(conceptual) populations of pour sizes is
different, at the a = .02 level.

77. Return to the fat loss experiment described
in Exercise 24. Calculate a 95% CI for the
ratio of the population standard deviations
for the experimental and control groups.

78. For the data of Exercise 29 find a 90%
confidence interval for the ratio of popula-
tion standard deviations, and relate your CI
to the test of Exercise 74.
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10.6 Inferences Using the Bootstrap and Permutation Methods

In this chapter we have discussed how to make comparisons based on normal data. We have also
considered comparisons of means when the sample sizes are large enough for t procedures to apply
even in the absence of normality. What about other cases (e.g., smaller, skewed data sets), for which
such methods are inappropriate? We now consider computer-intensive “resampling” techniques for
confidence intervals and hypothesis tests that can be applied to many comparison situations.

The Two-Sample Bootstrap CI
The bootstrap for two samples is similar to the one-sample bootstrap of Section 8.5, except that
samples with replacement are taken from the two original samples separately. That is, a resample is
taken from the first group, a separate resample is taken from the second group, and then the difference
of means (or some other comparison statistic) is computed. This process is repeated a large number of
times, resulting in the bootstrap distribution of the comparison statistic.

If the bootstrap distribution appears normal, then a bootstrap t confidence interval can be com-
puted in a similar manner to the one presented in Section 8.5, with sboot replacing the standard error
expression from Section 10.2. If the statistic being bootstrapped is X � Y , it is common to use a
conservative t critical value with df = min(m – 1, n – 1); Welch’s df formula (10.3) is also sometimes
used in practice, partly to agree with the classic two-sample t interval for l1 � l2. (On the other hand,
if we are bootstrapping a difference of medians or trimmed means there is no concern about
agreement with a t interval.) Another reasonable alternative is to use a z critical value (df = ∞; the
software package Stata does this).

If the bootstrap distribution does not look normal, then the percentile interval should be calculated,
just as was done in Section 8.5. A CI with confidence level approximately 95% requires determining
the 2.5 and 97.5 percentiles of the bootstrap distribution. The bias corrected and adjusted (BCa) in-
terval is a further refinement available in some software packages, including R and Stata. Once a valid
100(1 – a)% CI has been calculated, the hypothesis l1 � l2 ¼ D0 is rejected at significance level a in
favor of the two-sided (i.e., 6¼) alternative if and only if the CI does not include D0.

Example 10.17 As an example of the bootstrap for two samples, consider data from a study of
children talking to themselves (private speech), introduced in Exercise 81 of Chapter 1. The children
were each observed in many 10-second intervals (about 100) and the researchers computed the
percentage of intervals in which private speech occurred. Because private speech tends to occur when
there is a challenging task, the students were observed when they were doing arithmetic. The private
speech is classified as on task if it is about arithmetic, off task if it is about something else, and
mumbling if the subject is not clear.

Here we consider just the off-task percentages for the 18 male and 15 female first graders:

B: 4.9, 5.5, 6.5, 0.0, 0.0, 3.0, 2.8, 6.4, 1.0, 0.9, 0.0, 28.1, 8.7, 1.6, 5.1, 17.0, 4.7, 28.1
G: 0.0, 1.3, 2.2, 0.0, 1.3, 0.0, 0.0, 0.0, 0.0, 3.9, 0.0, 10.1, 5.2, 3.2, 0.0

The two-sample t interval of Section 10.2 should not be applied: the sample sizes are rather small, and
with the large number of zeroes (a majority for the girls), the population normality assumption is clearly
violated. Nevertheless, it is useful to give that CI purely for comparison purposes. The 95% interval is

�x� �y� t:025;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
18

þ s22
15

r
¼ 6:906� 1:813� 2:080

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:7192

18
þ 2:8462

15

r
¼ 5:093� 2:080ð2:1825Þ ¼ 5:093� 4:540 ¼ ð:55; 9:63Þ

Welch's formula was used to obtain m = 21.

10.6 Inferences Using the Bootstrap and Permutation Methods 617

http://dx.doi.org/10.1007/978-3-030-55156-8_8
http://dx.doi.org/10.1007/978-3-030-55156-8_8
http://dx.doi.org/10.1007/978-3-030-55156-8_8
http://dx.doi.org/10.1007/978-3-030-55156-8_1#Par547
http://dx.doi.org/10.1007/978-3-030-55156-8_1


Again, the t method is of questionable validity, because the sample sizes might not be large enough
to compensate for the nonnormality. The bootstrap method involves drawing a random resample of
size 18 with replacement from the 18 boys, drawing a random resample of size 15 with replacement
from the 15 girls, and calculating the difference of resampled means �x
 � �y
. This process is repeated
a large number of times, creating a bootstrap distribution for the statistic X � Y . Here are random
resamples from the boys and girls:

B: 0.0, 3.0, 2.8, 0.9, 3.0, 0.0, 0.0, 6.5, 6.4, 8.7, 6.4, 1.0, 0.9, 5.5, 17.0, 17.0, 0.0, 3.0
G: 1.3, 0.0, 0.0, 0.0, 0.0, 1.3, 1.3, 0.0, 3.2, 0.0, 1.3, 5.2, 0.0, 0.0, 0.0

For these two resamples, the difference of means is �x
 � �y
 ¼ 4:56� :91 ¼ 3:65. Doing this
1000 times (using the R package boot) gives the bootstrap distribution displayed in Figure 10.12.

The bootstrap distribution looks almost normal, but with some positive skewness. If the original
sample of boys and girls is representative of their populations, then the histogram in Figure 10.12
should resemble the true sampling distribution of X � Y in this scenario. For example, the standard
deviation of the bootstrap distribution (i.e., of the 1000 �x
 � �y
 values) is sboot = 2.1874, very close to
the 2.1825 that was computed for the estimated standard error in the two-sample t interval above.

In the presence of a not-quite-normal bootstrap distribution, we use the percentile interval. The
confidence limits for a 95% confidence interval are the 2.5 percentile and the 97.5 percentile of the
�x
 � �y
 distribution. When the 1000 bootstrap differences of means were sorted, the 25th value from
the bottom was 1.029 and the 25th value from the top was 9.760. This gives a 95% CI of (1.029,
9.760). The skewness of the bootstrap distribution pushes the endpoints a little to the right of the
endpoints of the two-sample t interval. In addition, one can use software to compute the BCa
refinement, as discussed in Section 8.5. The improved interval (1.625, 10.446), obtained from R, is
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Figure 10.12 Histogram and normal plot of the bootstrapped difference in means from R
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moved even farther to the right compared to the previous intervals. This last interval is the most
trustworthy.

Neither of these bootstrap intervals includes 0, implying that the hypothesis l1 � l2 = 0 should be
rejected at the .05 significance level in favor of the conclusion that the two population means are
different. ■

Permutation Tests
Permutation tests provide a template for comparing two (or more) populations without requiring large
samples or assuming any specific distribution for the data. The relevant null hypothesis is that the two
population distributions are identical (which implies both equal means and equal standard deviations).
The idea behind such tests is that under the null hypothesis, every observation comes from the same
distribution, and so the group labels (e.g., population 1 vs population 2 or treatment vs control) are
meaningless. If that’s true, then we can permute—that is, scramble or rearrange—the group labels
without changing the group population means. We look at all possible label arrangements (or at least
a large number), compute the difference of means for each of these, and compute a P-value by seeing
how extreme is our original difference of means.

Example 10.18 The article “Comparison of Platelet Function and Viscoelastic Test Results between
Healthy Dogs and Dogs with Naturally Occurring Chronic Kidney Disease” (Amer. J. Veterinary Res.
2017: 589–600), first presented in Example 1.18, provides data on the fibrinogen levels (mg/dl of
blood) for two samples of dogs: 11 with chronic kidney disease (CKD) and 10 with normal kidney
function. Researchers were concerned that CKD increases the production of fibrinogen, which can
lead to excessive blood clotting. Boxplots of both samples show considerable skewness and the
sample sizes are small, so a two-sample t test would be of questionable validity.

In order to demonstrate the permutation test method, consider an even smaller-scale version of this
data: measurements 315, 290, 275 for the CKD dogs (m = 3) and 313, 250 for the healthy dogs
(n = 2). Under the null hypothesis of equal population distributions, it should not matter if we reassign
the labels “CKD” and “healthy.” Therefore, we consider all ways of selecting three from among the
five observations to be the CKD sample, leaving the other two for the healthy sample. Under H0, the
ten choices listed in Table 10.4 are equally likely.

Table 10.4 All possible rearrangements of m = 3 and n = 2 observations

CKD dogs �x Healthy dogs �y �x� �y

315 290 275 293.3 313 250 281.5 11.8

315 290 313 306.0 275 250 262.5 43.5
315 290 250 285.0 313 275 294.0 –9.0
315 275 313 301.0 290 250 270.0 31.0
315 275 250 280.0 290 313 301.5 –21.5
315 313 250 292.7 290 275 282.5 10.2
290 275 313 292.7 315 250 282.5 10.2
290 275 250 271.7 315 313 314.0 –42.3
290 313 250 284.3 275 315 295.0 –10.7
275 313 250 279.3 290 315 302.5 –23.2
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How extreme is our original difference of means, 293.3 – 281.5 = 11.8 (the top row of Table 10.4),
in this set of ten differences? Because it is the third-largest of the ten �x� �y values, our P-value for
one-sided test is 3/10 = .3, the fraction of arrangements that give a difference at least as large as our
original difference. ■

When m = 3 and n = 2, it is simple enough to deal with all 5
3

� �
¼ 10 arrangements. What happens

when we try to use the whole set of 21 dogs?

Example 10.19 (Example 10.18 continued) Now consider a permutation test for the full dog health
data:

CKD dogs: 183, 190, 250, 275, 290, 315, 320, 330, 410, 500, 821 (m = 11, �x ¼ 353:1)
Healthy dogs: 99, 160, 165, 170, 178, 181, 190, 201, 250, 313 (n = 10, �y ¼ 190:7)

Here we are dealing with 21
11

� �
¼ 352;715 possible permutations of the 11 CKD dogs and 10

healthy dogs. Even on a reasonably fast computer it might take a while to generate this many
differences and see how many are at least as large as the value �x� �y ¼ 353:1� 190:7 ¼ 162:4 from
the original data. Instead, we can take a random sample of all possible arrangements and get quite
close to the exact answer. Figure 10.13 shows a histogram of 2000 values of �x� �y created by
randomly permuting the group labels; though this is short of all possible arrangements, this should
give us a reasonable estimate of the P-value. Of the 2000 label permutations, only two resulted in an
�x� �y value of 162.4 or higher, for an estimated P-value of 2/2000 = .001. Thus, we have convincing
statistical evidence to conclude that dogs with chronic kidney disease do have higher blood fibrinogen
levels, on average, than healthy dogs.

The method shown in Example 10.19 could equally be applied to the difference of two sample
medians or any other comparison statistic. The general permutation test method is summarized in the
accompanying box.

Figure 10.13 Permutation distribution for Example 10.19 ■
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Permutation Tests Let h1 and h2 be the same parameters (means, medians, standard deviations,
etc.) for two different populations, and consider testing H0: h1 = h2 based on
independent samples of sizes m and n, respectively. Suppose that when H0 is
true, the two population distributions are identical in all respects, so all
m + n observations have actually been selected from the same population
distribution. In this case, the labels 1 and 2 are arbitrary, as any m of the
m + n observations have the same chance of ending up in the first sample
(leaving the remaining n for the second sample).

An exact permutation test computes a suitable comparison statistic for all
possible rearrangements and sets the P-value equal to the fraction of these that
are at least as extreme as the statistic computed on the original samples. This is
the P-value for a one-tailed test, and it needs to be doubled for a two-tailed test.

For an approximate permutation test, instead of all possible arrangements,
we take a random sample with replacement from the set of all possible
arrangements.

Permutation tests do not assume a specific underlying distribution, such as the normal distribution.
However, this does not mean that there are no assumptions whatsoever. The null hypothesis in a
permutation test is that the two distributions are the same, and any deviation can increase the prob-
ability of rejecting the null hypothesis. Thus, strictly speaking, we are doing a test for equal means only
if the distributions are alike in all other respects, including shape and variability. See Exercise 94 for a
(pathological) example in which the permutation test underestimates the true P-value.

Inferences Based on Other Statistics
The bootstrap and permutation methods are not limited to comparing means. In any of the previous
examples, we could have considered the difference of two medians or two trimmed means instead.
Likewise, these methods can be employed for inferences concerning the variability of two populations.
Section 10.5 discussed the use of the F distribution for comparing two variances, but this inferential
method is strongly dependent on normality. Bootstrapping does not require this assumption.

Example 10.20 Consider the off-task private speech data from Example 10.17. The sample standard
deviations for boys and girls are 8.72 and 2.85, respectively. The method of Section 10.5 gives for the
ratio of male to female variances the 95% confidence interval

s21
s22

1
F:025;17;14

;
s21
s22

1
F:975;17;14

� �
¼ 8:722

2:852
1

2:900
;
8:722

2:852
1

:3633

� �
¼ ð3:23; 25:77Þ

Taking the square root gives (1.80, 5.08) as the 95% confidence interval for the ratio of standard
deviations. However, the legitimacy of this interval is seriously in question because of the skewed
distributions.

Let’s apply the bootstrap method to this problem. Take random resamples of 18 boys and 15 girls,
calculate the standard deviations s
1 and s
2 of the two resamples, and then compute their ratio s
1=s



2.

One such pair of resamples returned s
1 ¼ 5:264 for the boys and s
2 ¼ 1:505 for the girls, for a ratio
of 5.264/1.505 = 3.498. This process was repeated 1000 times using the boot package in R.

The resulting bootstrap distribution (not shown) is strongly skewed to the right, so a percentile
interval is required. The 2.5 percentile is 1.013 and the 97.5 percentile is 7.888, so the 95% confi-
dence interval for the population ratio of standard deviations is (1.013, 7.888). The BCa refinement
gives the interval (0.885, 7.382).
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These two intervals differ in an important respect: the percentile interval excludes 1 but the BCa
refinement includes 1. In other words, the BCa interval allows the possibility that the two population
standard deviations are the same, but the percentile interval does not. We expect the BCa method to
be an improvement, and this is verified in the next example, where we see that the BCa result is
consistent with the results of a permutation test. ■

Next, consider testing H0: r1 = r2. Again, the traditional F test of Section 10.5 requires data from
normal populations and is not robust to violations of that assumption, so its validity is questionable
for nonnormal data (even when the sample sizes are large). Instead, we might use a permutation test.

It must be re-emphasized that the permutation assumes identical distributions under H0, not just
identical sd’s. So, for instance, data from two populations with very different shapes or means but the
same variability would likely result in a low P-value from the permutation test, even if the statement
r1 = r2 is true. In fairness, the F test also assumes identical shapes (the normal curve), though not
necessarily the same means. A graphical exploration of the data may illuminate the nature of the
differences between two groups if a permutation test rejects its null hypothesis.

Example 10.21 (Example 10.20 continued) We know that the ratio of sample standard deviations
for off-task private speech, males versus females, is 8.72/2.85 = 3.064. The idea of the permutation
test is to find out how unusual this value is if we blur the distinction between males and females. That
is, we remove the labels from the 18 males and 15 females and then consider all possible choices of
18 from the 33 children. For each of these possible choices we find the ratio of the standard deviation
of the first 18 to the standard deviation of the last 15. The one-tailed P-value is the fraction that is at
least as big as the original ratio value of 3.064.

Because there are more than a billion possible choices of 18 from 33, we instead selected 5000
random choices. Of these, 432 were at least as large as 3.064, so the one-tailed P-value is
432/5000 = .0864. For a two-tailed P-value we double this and get .1728. The permutation test does
not reject H0: r1 ¼ r2 in favor of Ha: r1 6¼ r2 at the 5% level (or even the 10% level).

How does the permutation test result compare with the previous results? Recall that theF interval and
the “unadjusted” percentile interval ruled out the possibility that the two standard deviations are the
same, but the BCa refinement disagreed, because 1 was included in the BCa interval. Taking it for
granted that the permutation test is a valid approach and the permutation test does not reject the equality
of standard deviations, the BCa interval is the only one of the three CIs consistent with this result. ■

The Analysis of Paired Data
The bootstrap can be used for paired data if we work with the paired differences, as in the paired
t methods of Section 10.3.

Example 10.22 Consider once again the private speech study from Example 10.17. The study
included the percentage of intervals with on-task private speech for 33 children in the first, second,
and third grades. Here we will consider just the 15 girls’ scores in first and second grade. Is there a
change in on-task private speech when the girls go from the first to the second grade? Here are the
percentages of intervals in which on-task private speech occurred, and also the differences.

Grade 1 Grade 2 Difference

25.7 18.6 7.1
36.0 17.4 18.6
27.6 2.6 25.0
29.7 0.9 28.8
36.0 1.5 34.5
35.1 14.1 21.0
42.0 3.3 38.7

(continued)
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Grade 1 Grade 2 Difference

7.6 1.6 6.0
14.1 0.0 14.1
25.0 1.5 23.5
20.2 0.0 20.2
24.4 2.1 22.3
10.4 18.4 �8.0
21.1 2.6 18.5
5.6 26.0 �20.4

Figure 10.14 shows a histogram for the differences; there is a pronounced negative skew.

The paired t method of Section 10.3 requires normality, so the skewness might invalidate this, but
we present results here anyway for comparison purposes. The 95% confidence interval for the
population mean difference is

�d � t:025;15�1
sDffiffiffiffiffi
15

p ¼ 16:66� 2:145
15:43ffiffiffiffiffi

15
p ¼ 16:66� 8:54 ¼ ð8:12; 25:20Þ

The bootstrap focuses on the 15 differences and uses the method of Section 8.5. Using Stata, we
drew 1000 resamples of size 15 with replacement from the 15 differences; the 1000 resample means
�d
1 ; . . .; �d



1000 constitute the bootstrap distribution. Figure 10.15 shows a histogram of these mean

differences.
The histogram of �d
 values is negatively skewed, which is expected because of the negative

skewness shown in Figure 10.14 for the original sample. The 95% percentile interval has the 2.5th
percentile of the bootstrap distribution as its lower limit and the 97.5th percentile as its upper limit:
(7.91, 23.97). This interval is to the left of the paired t interval because of the negative skewness of
the bootstrap distribution. The BCa refinement from Stata yields the interval (6.43, 23.12), which is
even farther to the left.
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Figure 10.14 Histogram of differences for girls from Stata
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All of the intervals agree that there is a substantial population difference between first grade and
second grade. There is a strong reduction in the on-task private speech of girls between first and
second grades. ■

A permutation test for paired data involves permutations within the pairs. Under the null
hypothesis of identical population distributions, the two observations in a pair have the same pop-
ulation mean, so the population mean difference is zero even if the order is reversed. Therefore, we
consider all possible orderings of the n pairs. Because there are two possible orderings within each
pair, there are 2n arrangements of n pairs. The one-tailed P-value is the fraction of the 2n differences
that are at least as extreme as the observed value, and the two-tailed P-value is double this.

Example 10.23 To see how the permutation test works for paired data, first consider a scaled-down
version of the data from Example 10.22 with only the first three pairs: (25.7, 18.6), (36.0, 17.4), and
(27.6, 2.6). They give a mean difference of (7.1 + 18.6 + 25.0)/3 = 16.9. Here are all 8 = 23 per-
mutations with the corresponding mean differences.

Arrangements Mean difference

(25.7, 18.6) (36.0, 17.4) (27.6, 2.6) 16.90
(25.7, 18.6) (36.0, 17.4) (2.6, 27.6) .23
(25.7, 18.6) (17.4, 36.0) (27.6, 2.6) 4.50
(25.7, 18.6) (17.4, 36.0) (2.6, 27.6) −12.17
(18.6, 25.7) (36.0, 17.4) (27.6, 2.6) 12.17
(18.6, 25.7) (36.0, 17.4) (2.6, 27.6) −4.50
(18.6, 25.7) (17.4, 36.0) (27.6, 2.6) −.23
(18.6, 25.7) (17.4, 36.0) (2.6, 27.6) −16.90
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Figure 10.15 Histogram of bootstrap differences for girls from Stata
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Because the mean difference for the original sample is the highest value of eight, the one-tailed
P-value is 1/8 = .125, and the two-tailed P-value is 2(1/8) = .25.

Next, let’s apply the permutation test to the paired data for all 15 girls of Example 10.22. In
principle it is no harder to deal with the 2n = 215 = 32,768 arrangements when all 15 pairs are
included, but this exact approach is generally approximated using a random sample. We used Stata to
draw an additional 4999 samples. Of the 4999, none yielded a mean difference as large as the value
�d ¼ 16:66 obtained for the original sample of 15 differences. Therefore, the one-tailed P-value is
1/5000 = .0002, and the two-tailed P-value is 2(.0002) = .0004. Rejection of the null hypothesis at
the 5% level was to be expected, given that none of the confidence intervals in Example 10.22
included 0.

It is interesting to compare the permutation test result with the paired t test of Section 10.3. For
testing the null hypothesis of 0 population mean difference, the value of t is

�d � 0

sD=
ffiffiffiffiffi
15

p ¼ 16:66

15:425=
ffiffiffiffiffi
15

p ¼ 4:183

The two-tailed P-value for this is .0009, not very different from the result of the permutation test. ■

Exercises: Section 10.6 (79–94)

79. A student project by Heather Kral studied
students on “lifestyle floors” of a dormitory
in comparison to students on other floors.
On a lifestyle floor the students share a
common major, and there are a faculty
coordinator and resident assistant from that
department. Here are the GPAs of 30 stu-
dents on lifestyle floors (L) and 30 students
on other floors (N):

L: 2.00 2.25 2.60 2.90 3.00 3.00 3.00 3.00
3.00 3.20 3.20 3.25 3.30 3.30 3.32 3.50
3.50 3.60 3.60 3.70 3.75 3.75 3.79 3.80
3.80 3.90 4.00 4.00 4.00 4.00

N: 1.20 2.00 2.29 2.45 2.50 2.50 2.50 2.50
2.65 2.70 2.75 2.75 2.79 2.80 2.80 2.80
2.86 2.90 3.00 3.07 3.10 3.25 3.50 3.54
3.56 3.60 3.70 3.75 3.80 4.00

Notice that the lifestyle GPAs have a large
number of repeats and the distribution is
skewed, so there is some question about
normality.

a. Obtain a 95% confidence interval for
the difference of population means
using the two-sample t interval.

b. Use software to generate a bootstrap
sample of differences of means. Check
the bootstrap distribution for normality
using a normal probability plot.

c. Use the standard deviation of the boot-
strap distribution along with the mean
and t critical value from (a) to get a 95%
confidence interval for the difference of
means.

d. Use the bootstrap sample and the per-
centile method to obtain a 95% confi-
dence interval for the difference of
means.

e. Compare your three confidence inter-
vals. If they are very similar, why do
you think this is the case?

f. Interpret your results. Is there a sub-
stantial difference between lifestyle and
other floors? Why do you think the
difference is as big as it is?

80. For the data of the previous exercise, now
consider testing the hypothesis of equal
population variances.

a. Carry out a two-tailed test using the
method of Section 10.5. Recall that this
method requires the data to be normal,
and the method is sensitive to departures
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from normality. Check the data for
normality to see if the F test is justified.

b. Carry out a two-tailed permutation test
for the hypothesis of equal population
variances (or standard deviations). Why
does it not matter whether you use
variances or standard deviations?

c. Compare the two results and summarize
your conclusions.

81. For the data of the previous two exercises,
we want a 95% confidence interval for the
ratio of population standard deviations.

a. Use the method of Section 10.5. Recall
that this method requires the data to be
normal, and the method is sensitive to
departures from normality. Check the
data for normality to see if the F distri-
bution can be used for the ratio of
sample variances.

b. Use software to generate a bootstrap
sample of ratios of standard deviations.
Then use the percentile method to
obtain a 95% confidence interval for the
ratio of population standard deviations.

c. Compare the two results and discuss the
relationship of the results to those of the
previous exercise.

82. In this application from major league base-
ball, the populations represent an abstrac-
tion of what the players can do, so the
populations will vary from year to year. The
Colorado Rockies and the Arizona Dia-
mondbacks played nine games in Phoenix
and ten games in Denver in 2001. The
thinner air in Denver causes curve balls to
curve less and it allows fly balls to travel
farther. Does this mean that more runs are
scored in Denver? The numbers of runs
scored by the two teams in the nine Phoenix
games (P) and ten Denver games (D) are

P: 5.09 15.88 3 8.47 11.65
6.48 11.65 7.41 9.53

D: 10 18 15.56 19 8.1
14 13.76 10 20.12 10.59

The fractions occur because the numbers
have been adjusted for nine innings (54
outs). For example, in the third Denver

game the Rockies won 10 to 7 on a home
run with two out in the bottom of the tenth
inning, so there were 59 outs instead of 54,
and the number of runs is adjusted to
(54/59)(17) = 15.56. We want to compare
the average runs in Denver with the aver-
age runs in Phoenix.
a. Find a 95% confidence interval for the

difference of population means using
the two-sample t interval.

b. Use software to generate a bootstrap
sample of differences of means. Check
the bootstrap distribution for normality
using a normal probability plot.

c. Use the standard deviation of the boot-
strap distribution along with the mean
and t critical value from (a) to get a 95%
confidence interval for the difference of
means.

d. Use the bootstrap sample and the per-
centile method to obtain a 95% confi-
dence interval for the difference of
means.

e. Compare your three confidence inter-
vals. If you used a standard normal
critical value in place of the t critical
value in (c), why would that make this
interval more like the one in (d)? Why
should the three intervals be fairly
similar for this data set?

f. Interpret your results. Is there a sub-
stantial difference between the two
locations? Compare the difference with
what you thought it would be. If you
were a major league pitcher, would you
want to be traded to the Rockies?

83. For the data of the previous exercise we
want to compare population medians for
the runs in Denver versus the runs in
Phoenix.

a. Use software to generate a bootstrap
sample of differences of medians. Check
the bootstrap distribution for normality
using a normal probability plot.

b. Use the standard deviation of the boot-
strap distribution along with the differ-
ence of the medians in the original
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sample and the t critical value from the
previous exercise to get a 95% confi-
dence interval for the difference of
population medians.

c. Use the bootstrap sample and the per-
centile method to obtain a 95% confi-
dence interval for the difference of
population medians.

d. Compare the two confidence intervals.
e. How do the results for the median

compare with the results for the mean?
In terms of precision (measured by the
width of the confidence interval) which
gives the best results?

84. Can the right diet help us cope with dis-
eases associated with aging such as Alz-
heimer’s disease? A study (“Reversals of
Age-Related Declines in Neuronal Signal
Transduction, Cognitive, and Motor
Behavioral Deficits with Blueberry, Spi-
nach, or Strawberry Dietary Supplement,”
J. Neurosci. 1999: 8114–8121) investigated
the effects of fruit and vegetable supple-
ments in the diet of rats. The rats were
19 months old, which is aged by rat stan-
dards. The 40 rats were randomly assigned
to four diets, of which we will consider just
the blueberry diet and the control diet here.
After 8 weeks on their diets, the rats were
given a number of tests. We give the data
for just one of the tests, which measured
how many seconds they could walk on a
rod. Here are the times for the ten control
rats (C) and ten blueberry rats (B):

C: 15.00 7.00 2.44 5.60 3.63
6.24 4.12 8.21 3.90 0.95

B: 5.12 9.38 18.77 15.03 6.67
7.91 7.38 15.09 11.57 8.98

The objective is to obtain a 95% confi-
dence interval for the difference of popu-
lation means.

a. Determine a 95% confidence interval
for the difference of population means
using the two-sample t interval.

b. Use software to generate a bootstrap
sample of differences of means. Check

the bootstrap distribution for normality
using a normal probability plot.

c. Use the standard deviation of the boot-
strap distribution along with the mean
and t critical value from (a) to get a 95%
confidence interval for the difference of
means.

d. Use the bootstrap sample and the per-
centile method to obtain a 95% confi-
dence interval for the difference of
means.

e. Compare your three confidence inter-
vals. If they are very similar, why do
you think this is the case? If you had
used a critical value from the normal
table rather than the t table, would the
result of (c) agree better with the result
of (d)? Why?

f. Interpret your results. Do the blueber-
ries make a substantial difference?

85. For the data of the previous exercise, we
now want to test the hypothesis of equal
population means.

a. Carry out a two-tailed test using the two-
sample t test. Although this test requires
normal data, it will still work pretty well
for moderately nonnormal data. Never-
theless, you should check the data for
normality to see if the test is justified.

b. Carry out a two-tailed permutation test
for the hypothesis of equal population
means.

c. Compare the results of (a) and (b).
Would you expect them to be similar for
the data of this problem? Discuss their
relationship to the results of the previ-
ous exercise. Summarize your conclu-
sions about the effectiveness of
blueberries.

86. Researchers at the University of Alaska have
been trying to find inexpensive feed sources
for Alaska reindeer growers (“Effects of Two
Barley-Based Diets on Body Mass and
Intake Rates of Captive Reindeer During
Winter,” Poster Presentation: School of
Agriculture and Land Resources
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Management, University of Alaska Fair-
banks, 2002). They are focusing on Alaska-
grown barley because commercially avail-
able feed supplies are too expensive for
farmers. Typically, reindeer lose weight in
the fall and winter, and the researchers are
searching for a feed to minimize this loss.
Thirteen pregnant reindeer were randomly
divided into two groups to be fed on two
different varieties of barley, thual and
finaska. Here are the weight gains between
October 1 and December 15 for the seven
that were fed thual barley (T) and the six that
were fed finaska barley (F).

T: �5.83 �11.5 �5.5 �1.33 �3.83 �3.33 �7.17

F: �0.17 �0.67 �4 �3 �1.33 �0.5

The weight gains are all negative, indicat-
ing that all of the animals lost weight. The
thual barley is less fibrous and more
digestible, and the intake rates for the two
varieties of barley were very nearly the
same, so the experimenters expected less
weight loss for the thual variety.

a. Determine a 95% confidence interval
for the difference of population means
using the two-sample t interval.

b. Use software to generate a bootstrap
sample of differences of means. Check
the bootstrap distribution for normality
using a normal probability plot.

c. Use the standard deviation of the boot-
strap distribution along with the mean
and t critical value from (a) to obtain a
95% confidence interval for the differ-
ence of means.

d. Use the bootstrap sample and the per-
centile method to obtain a 95% confi-
dence interval for the difference ofmeans.

e. Compare your three confidence inter-
vals. If they are very similar, why do
you think this is the case?

f. Interpret your results. Is there a sub-
stantial difference? Is it in the direction
anticipated by the experimenters?

87. Consider using the data of the previous
exercise to test the hypothesis of equal
population variances.

a. Carry out a two-tailed test using the
method of Section 10.5. Recall that this
method requires the data to be normal,
and the method is sensitive to departures
from normality. Check the data for
normality to see if the F test is justified.

b. Carry out a two-tailed permutation test
for the hypothesis of equal population
variances (or standard deviations).

c. Compare the two results and summarize
your conclusions.

88. Recall the scenario from Example 10.8
about the experiment in the low-level col-
lege mathematics course. Here are the 85
final exam scores for those in the experi-
mental group (E) and the 79 final exam
scores for those in the control group (C):

E: 34 27 26 33 23 37 24 34 22 23 32 5 30
29 0 30 34 26 28 27 32 29 31 33 28 21
28 35 30 34 9 38 9 27 25 33 9 23 32
28 38 35 16 37 25 34 38 34 31 35 28 25
37 28 26 29 22 33 31 23 37 34 29 33 6
8 29 36 7 21 30 28 34 25 37 28 23 26

34 32 34 0 24 30 36 31
C: 37 22 29 29 33 22 32 36 29 6 4 37 0

35 28 33 35 24 21 0 32 28 27 8 30 37
35 25 29 3 33 33 28 32 39 20 32 22 24
38 22 29 29 36 0 32 27 7 19 35 26 22
28 28 32 9 33 30 36 28 3 8 31 29 9
0 0 20 32 7 8 33 29 9 0 30 26 25

32 29

a. Determine a 95% confidence interval
for the difference of population means
using a two-sample t interval.

b. Use software to generate a bootstrap
sample of differences of means. Check
the bootstrap distribution for normality
using a normal probability plot.

c. Use the standard deviation of the boot-
strap distribution along with the mean
and t critical value from (a) to get a 95%
confidence interval for the difference of
means.
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d. Use the bootstrap sample and the per-
centile method to obtain a 95% confi-
dence interval for the difference of
means.

e. Compare your three confidence inter-
vals. If they are very similar, why do
you think this is the case? In the light of
your results for (c) and (d), does the
two-sample t interval of (a) seem to
work, regardless of normality? Explain.

f. Are your results consistent with the
results of Example 10.8? Explain.

89. Return to the data of Example 10.8.

a. Carry out a two-tailed permutation test
for the hypothesis of equal population
means.

b. Compare the results for (a) and Example
10.8. Why should you have expected
(a) and Example 10.8 to give similar
results?

90. For the data of Example 10.8 it might be
more appropriate to compare medians.

a. Find the medians for the two groups.
With the help of a stem-and-leaf display
for each group, explain why the medi-
ans are much closer than the means.

b. Carry out a two-tailed permutation test
to compare population medians. Given
what you found in (a), explain why the
result of the permutation test was to be
expected.

91. Two students, Miguel Melo and Cody
Watson, compared textbook prices at the
campus bookstore and Amazon.com. To be
fair, they included the sales tax for the local
store and added shipping for Amazon. Here
are the prices for a sample of 27 books.

Campus Amazon Campus Amazon

100.41 106.94 59.50 69.24
99.34 113.94 87.66 73.84
51.53 61.44 26.56 33.98
20.45 31.59 44.63 40.39
28.69 29.89 96.69 117.99
70.66 83.94 18.06 27.94
98.81 107.74 103.06 115.74

111.56 115.99 14.61 24.69

(continued)

Campus Amazon Campus Amazon

97.22 108.29 77.03 88.04
61.89 78.44 99.34 113.94
70.39 82.94 81.81 90.74
58.17 65.74 48.88 58.94

108.38 122.09 76.50 91.94
61.63 63.49

a. Determine a 95% confidence interval for
the difference of population means using
the t method of Section 10.3. Check the
data for normality. Even if the normality
assumption is not valid here, explain
why the t method (or the z method of
Section 10.1) might still be appropriate.

b. Based on the 27 differences, use soft-
ware to obtain a bootstrap sample of
mean differences. Check the bootstrap
distribution for normality.

c. Use the standard deviation of the boot-
strap distribution along with the mean
and t critical value from (a) to get a 95%
confidence interval for the difference of
means.

d. Use the bootstrap sample and the per-
centile method to obtain a 95% confi-
dence interval for the difference of
means.

e. Compare your three confidence inter-
vals. In the light of your results for (d),
does nonnormality invalidate the results
of (a) and (c)? Explain.

f. Interpret your results. Is there a sub-
stantial difference between the two
ways to buy books? Assuming that the
populations remain unchanged and you
have just these two sources, where
would you buy?

92. Consider testing the hypothesis of equal
population means based on the data in the
previous exercise.

a. Carry out a two-tailed test using the
method of Section 10.3. Is the normality
assumption satisfied here? If not, why
might the test be valid anyway?

b. Carry out a two-tailed permutation test
for the hypothesis of equal population
means.
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c. Compare the results for (a) and (b). If
the two results are similar, does it tend
to validate (a), regardless of normality?

93. Compare bootstrapping with approximate
permutation tests in which random permu-
tations are used. Discuss the similarities
and differences.

94. Assume that X is uniformly distributed on
[−1, 1] and the Y distribution is uniform
on the two intervals [–101, –100] and
[100, 101]. Thus the means are both 0, but
the variances differ substantially. We take
random samples of size three from each
distribution and apply a permutation test for
the null hypothesis H0: l1 ¼ l2 against the
alternative Ha: l1\l2.

a. Show that the probability is 1/8 that all
three of the Y values come from the
interval [100, 101].

b. Show that, if all three Y values come
from [100, 101], then the P-value for the
permutation test is .05.

c. Explain why (a) and (b) are in conflict.
What is the probability that the permu-
tation test rejects the null hypothesis at
the .05 level?

Supplementary Exercises: (95–124)

95. A group of 115 University of Iowa students
was randomly divided into a build-up
condition group (m = 56) and a scale-
down condition group (n = 59). The task
for each subject was to build his or her own
pizza from a menu of 12 ingredients. The
build-up group was told that a basic cheese
pizza costs $5 and that each extra ingredi-
ent would cost 50 cents. The scale-down
group was told that a pizza with all 12
ingredients (ugh!!!) would cost $11 and
that deleting an ingredient would save 50
cents. The article “A Tale of Two Pizzas:
Building Up from a Basic Product Versus
Scaling Down from a Fully Loaded Pro-
duct” (Market. Lett. 2002: 335–344)
reported that the mean number of ingredi-
ents selected by the scale-down group was

significantly greater than the mean number
for the build-up group: 5.29 versus 2.71.
The calculated value of the appropriate
t statistic was 6.07. Would you reject the
null hypothesis of equality in favor of
inequality at a significance level of .05?
.01? .001? Can you think of other products
aside from pizza where one could build up
or scale down? [Note: A separate experi-
ment involved students from the University
of Rome, but details were a bit different
because there are typically not so many
ingredient choices in Italy.]

96. Is the number of export markets in which a
firm sells its products related to the firm’s
return on sales? The article “Technology
Industry Success: Strategic Options for
Small and Medium Firms” (Bus. Horizons,
Sept.–Oct. 2003: 41–46) gave the accom-
panying information on the number of export
markets for one group of firms whose return
on sales was less than 10% and another
group whose return was at least 10%.

Return Sample size Sample mean Sample SD

Less than 10% 36 5.12 .57
At least 10% 47 8.26 1.20

The investigators reported that an appropri-
ate test of hypotheses resulted in a P-value
between .01 and .05. What hypotheses do
you think were tested, and do you agree with
the stated P-value information? What
assumptions if any are needed in order to
carry out the test? Can the plausibility of
these assumptions be investigated based just
on the foregoing summary data? Explain.

97. Suppose when using a two-sample t proce-
dure that m < n, and show that m > m − 1.
(This is why some authors suggest using
min(m − 1, n − 1) as df in place of Welch’s
formula). What impact does this have on
the CI and test procedure?

98. The accompanying summary data on com-
pression strength (lb) for 12 � 10 � 8 in.
boxes appeared in the article “Compression
of Single-Wall Corrugated Shipping
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Containers Using Fixed and Floating Test
Platens” (J. Testing Eval. 1992: 318–320).
The authors stated that “the difference
between the compression strength using
fixed and floating platen method was found
to be small compared to normal variation in
compression strength between identical
boxes.” Do you agree?

Method Sample size Sample mean Sample SD

Fixed 10 807 27
Floating 10 757 41

99. The authors of the article “Dynamics of
Canopy Structure and Light Interception in
Pinus elliotti, North Florida” (Ecol.
Monogr. 1991: 33–51) planned an experi-
ment to determine the effect of fertilizer on
a measure of leaf area. A number of plots
were available for the study, and half were
selected at random to be fertilized. To
ensure that the plots to receive the fertilizer
and the control plots were similar, before
beginning the experiment tree density (the
number of trees per hectare) was recorded
for eight plots to be fertilized and eight
control plots, resulting in the given data.
Minitab output follows.

Fertilizer
plots

1024 1216 1312 1280 1216 1312 992 1120

Control
plots

1104 1072 1088 1328 1376 1280 1120 1200

Two sample T for fertilize vs. control

N Mean Std. Dev. SE Mean

Fertilize 8 1184 126 44

Control 8 1196 118 42

95% CI for mu fertilize-mu control:

(−144, 120)

a. Construct a comparative boxplot and
comment on any interesting features.

b. Would you conclude that there is a
significant difference in the mean tree
density for fertilizer and control plots?
Use a = .05.

c. Interpret the given confidence interval.

100. Is the response rate for questionnaires
affected by including some sort of incentive
to respond along with the questionnaire? In
one experiment, 110 questionnaires with no
incentive resulted in 75 being returned,
whereas 98 questionnaires that included a
chance to win a lottery yielded 66 respon-
ses (“Charities, No; Lotteries, No; Cash,
Yes,” Public Opinion Q. 1996: 542–562).
Does this data suggest that including an
incentive increases the likelihood of a
response? State and test the relevant
hypotheses at significance level .10 by
using the P-value method.

101. The article “Quantitative MRI and Elec-
trophysiology of Preoperative Carpal Tun-
nel Syndrome in a Female Population”
(Ergonomics 1997: 642–649) reported that
(−473.3, 1691.9) was a large-sample 95%
confidence interval for the difference
between true average thenar muscle volume
(mm3) for sufferers of carpal tunnel syn-
drome and true average volume for non-
sufferers. Calculate and interpret a 90%
confidence interval for this difference.

102. The following summary data on bending
strength (lb-in/in) of joints is taken from the
article “Bending Strength of Corner Joints
Constructed with Injection Molded
Splines” (Forest Prod. J. April 1997: 89–
92). Assume normal distributions.

Type Sample
size

Sample
mean

Sample
SD

Without side coating 10 80.95 9.59
With side coating 10 63.23 5.96

a. Calculate a 95% lower confidence
bound for true average strength of joints
with a side coating.

b. Calculate a 95% lower prediction bound
for the strength of a single joint with a
side coating.
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c. Calculate a 95% confidence interval for
the difference between true average
strengths for the two types of joints.

103. An experiment was carried out to compare
various properties of cotton/polyester spun
yarn finished with softener only and yarn
finished with softener plus 5% DP-resin
(“Properties of a Fabric Made with Tandem
Spun Yarns,” Textile Res. J. 1996: 607–
611). One particularly important character-
istic of fabric is its durability, that is, its
ability to resist wear. For a sample of 40
softener-only specimens, the sample mean
stoll-flex abrasion resistance (cycles) in the
filling direction of the yarn was 3975.0, with
a sample standard deviation of 245.1.
Another sample of 40 softener-plus speci-
mens gave a sample mean and sample
standard deviation of 2795.0 and 293.7,
respectively. Calculate a confidence interval
with confidence level 99% for the difference
between true average abrasion resistances
for the two types of fabrics. Does your
interval provide convincing evidence that
true average resistances differ for the two
types of fabrics? Why or why not?

104. The derailment of a freight train due to the
catastrophic failure of a traction motor
armature bearing provided the impetus for a
study reported in the article “Locomotive
Traction Motor Armature Bearing Life
Study” (Lubricat. Engr. August 1997: 12–
19). A sample of 17 high-mileage traction
motors was selected, and the amount of
cone penetration (mm/10) was determined
both for the pinion bearing and for the
commutator armature bearing, resulting in
the following data:

Motor 1 2 3 4 5 6
Commutator 211 273 305 258 270 209
Pinion 226 278 259 244 273 236

Motor 7 8 9 10 11 12

Commutator 223 288 296 233 262 291
Pinion 290 287 287 242 288 242

Motor 13 14 15 16 17

Commutator 278 275 210 272 264
Pinion 278 208 281 274 274

Calculate an estimate of the population
mean difference between penetration for
the commutator armature bearing and
penetration for the pinion bearing, and do
so in a way that conveys information about
the reliability and precision of the estimate.
[Note: A normal probability plot validates
the necessary normality assumption.]
Would you say that the population mean
difference has been precisely estimated?
Does it look as though population mean
penetration differs for the two types of
bearings? Explain.

105. The article “Two Parameters Limiting the
Sensitivity of Laboratory Tests of Condoms
as Viral Barriers” (J. Test. Eval. 1996: 279–
286) reported that, in brand A condoms,
among 16 tears produced by a puncturing
needle, the sample mean tear length was
74.0 lm, whereas for the 14 brand B tears,
the sample mean length was 61.0 lm (de-
termined using light microscopy and scan-
ning electron micrographs). Suppose the
sample standard deviations are 14.8 and
12.5, respectively (consistent with the
sample ranges given in the article). The
authors commented that the thicker brand B
condom displayed a smaller mean tear
length than the thinner brand A condom. Is
this difference in fact statistically signifi-
cant? State the appropriate hypotheses and
test at a = .05.

106. Information about hand posture and forces
generated by the fingers during manipula-
tion of various daily objects is needed for
designing high-tech hand prosthetic devi-
ces. The article “Grip Posture and Forces
During Holding Cylindrical Objects with
Circular Grips” (Ergonomics 1996: 1163–
1176) reported that for a sample of 11
females, the sample mean four-finger pinch
strength (N) was 98.1 and the sample
standard deviation was 14.2. For a sample
of 15 males, the sample mean and sample
standard deviation were 129.2 and 39.1,
respectively.
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a. A test carried out to see whether true
average strengths for the two genders
were different resulted in t = 2.51 and
P-value = .019.Does the appropriate test
procedure described in this chapter yield
this value of t and the stated P-value?

b. Is there substantial evidence for con-
cluding that true average strength for
males exceeds that for females by more
than 25 N? State and test the relevant
hypotheses.

107. After the Enron scandal in the fall of 2001,
faculty in accounting began to incorporate
ethics more into accounting courses. One
study looked at the effectiveness of such
educational interventions “pre-Enron” and
“post-Enron.” The data below shows stu-
dents’ improvement in score on the
Accounting Ethical Dilemma Instrument
(AEDI) across a one-semester accounting
class in Spring 2001 (“pre-Enron”) and
another in Spring 2002 (“post-Enron”).
(From “A Note in Ethics Educational
Interventions in an Undergraduate Auditing
Course: Is There an ‘Enron Effect’?” Issues
Account. Educ. 2004: 53–71.)

Improvement in
AEDI score

Class n Mean SD

2001 (pre-Enron) 37 5.48 13.83
2002 (post-Enron) 21 6.31 13.20

a. Test to see whether the 2001 class
showeda statistically significant improve-
ment in AEDI score across the semester.

b. Test to seewhether the 2002 class showed
a statistically significant improvement in
AEDI score across the semester.

c. Test to see whether the 2002 class showed
a statistically significantly greater
improvement in AEDI score than the 2001
class. In this respect, does there appear to
be an “Enron effect”?

108. Torsion during hip external rotation
(ER) and extension may be responsible for
certain kinds of injuries in golfers and other
athletes. The article “Hip Rotational

Velocities during the Full Golf Swing”
(J. Sport Sci. Med. 2009: 296–299) repor-
ted on a study in which peak ER velocity
and peak IR (internal rotation) velocity
(both in deg/s) were determined for a
sample of 15 female collegiate golfers
during their swings. The following data was
supplied by the article’s authors.

Golfer ER IR Diff.

1 −130.6 −98.9 −31.7
2 −125.1 −115.9 −9.2
3 −51.7 −161.6 109.9
4 −179.7 −196.9 17.2
5 −130.5 −170.7 40.2
6 −101.0 −274.9 173.9
7 −24.4 −275.0 250.6
8 −231.1 −275.7 44.6
9 −186.8 −214.6 27.8
10 −58.5 −117.8 59.3
11 −219.3 −326.7 107.4
12 −113.1 −272.9 159.8
13 −244.3 −429.1 184.8
14 −184.4 −140.6 −43.8
15 −199.2 −345.6 146.4

a. Is it plausible that the differences came
from a normally distributed population?

b. The article reported that mean(sd) =
–145.3(68.0) for ER velocity and =
−227.8(96.6) for IR velocity. Based just
on this information, could a test of
hypotheses about the difference
between true average IR velocity and
true average ER velocity be carried out?
Explain.

c. Do an appropriate hypothesis test about
the difference between true average IR
velocity and true average ER velocity
and interpret the result.

109. The accompanying summary data on the ratio
of strength to cross-sectional area for knee
extensors is taken from the article “Knee
Extensor and Knee Flexor Strength: Cross-
Sectional Area Ratios in Young and Elderly
Men” (J. Gerontol. 1992: M204–M210).

Group Sample size Sample mean Standard error

Young 13 7.47 .22
Elderly men 12 6.71 .28
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Does this data suggest that the true average
ratio for young men exceeds that for
elderly men? Carry out a test of appropriate
hypotheses using a = .05. Be sure to state
any assumptions necessary for your
analysis.

110. The accompanying data on response time
appeared in the article “The Extinguish-
ment of Fires Using Low-Flow Water Hose
Streams—Part II” (Fire Tech. 1991: 291–
320). The samples are independent, not
paired.

Good
visibility

.43 1.17 .37 .47 .68 .58 .50 2.75

Poor
visibility

1.47 .80 1.58 1.53 4.33 4.23 3.25 3.22

The authors analyzed the data with the
pooled t test. Does the use of this test appear
justified? [Hint: Check for normality.]

111. The accompanying data on the alcohol
content of wine is representative of that
reported in a study in which wines from the
years 1999 and 2000 were randomly
selected and the actual content was deter-
mined by laboratory analysis (London
Times August 5, 2001).

Wine 1 2 3 4 5 6

Actual 14.2 14.5 14.0 14.9 13.6 12.6
Label 14.0 14.0 13.5 15.0 13.0 12.5

The two-sample t test gives a test statistic
value of .62 and a two-tailed P-value of
.55. Does this convince you that there is no
significant difference between true average
actual alcohol content and true average
content stated on the label? Explain.

112. The article “The Accuracy of Stated Energy
Contents of Reduced-Energy, Commer-
cially Prepared Foods” (J. Am. Diet. Assoc.
2010: 116–123) presented the accompany-
ing data on vendor-stated gross energy and
measured value (both in kcal) for 10 dif-
ferent supermarket convenience meals):

Meal 1 2 3 4 5

Stated 180 220 190 230 200
Measured 212 319 231 306 211
Meal 6 7 8 9 10

Stated 370 250 240 80 180
Measured 431 288 265 145 228

Obtain a 95% confidence interval for the
difference of population means. By roughly
what percentage are the actual calories
higher than the stated value?
Note that the article calls this a conve-
nience sample and suggests that therefore it
should have limited value for inference.
However, even if the ten meals were a
random sample from their local store, there
could still be a problem in drawing con-
clusions about a purchase at your store.

113. How does energy intake compare to energy
expenditure? One aspect of this issue was
considered in the article “Measurement of
Total Energy Expenditure by the Doubly
Labelled Water Method in Professional
Soccer Players” (J. Sports Sci. 2002: 391–
397), which contained the accompanying
data (MJ/day).

Player 1 2 3 4 5 6 7

Expenditure 14.4 12.1 14.3 14.2 15.2 15.5 17.8
Intake 14.6 9.2 11.8 11.6 12.7 15.0 16.3

Test to see whether there is a significant
difference between intake and expenditure.
Does the conclusion depend on whether a
significance level of .05, .01, or .001 is
used?

114. An experimenter wishes to obtain a CI for
the difference between true average break-
ing strength for cables manufactured by
company I and by company II. Suppose
breaking strength is normally distributed
for both types of cable with r1 = 30 psi and
r2 = 20 psi.

a. If costs dictate that the sample size for
the type I cable should be three times
the sample size for the type II cable,
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how many observations are required if
the 99% CI is to be no wider than 20
psi?

b. Suppose a total of 400 observations is to
be made. How many of the observations
should be made on type I cable samples
if the width of the resulting interval is to
be a minimum?

115. To assess the tendency of people to
rationalize poor performance, 246 college
students were randomly assigned to one of
two groups: a negative feedback group and
a positive feedback group. All students took
a test which asked them to identify people’s
emotions based on photographs of their
faces. Those in the negative feedback group
were all given D grades, while those in the
positive feedback group received A’s (re-
gardless of how they actually performed).
A follow-up questionnaire asked students to
assess the validity of the test and the
importance of being able to read people’s
faces. The results of these two follow-up
surveys appear below.

Test validity
rating

Face reading
importance
rating

Group n �x s �x s

Positive feedback 123 6.95 1.09 6.62 1.19
Negative feedback 123 5.51 0.79 5.36 1.00

a. Test the hypothesis that negative feed-
back is associated with a lower average
validity rating than positive feedback at
the a = .01 level.

b. Test the hypothesis that students receiv-
ing positive feedback rate face-reading as
more important, on average, than do
students receiving negative feedback.
Again use a 1% significance level.

c. Is it reasonable to conclude that the
results seen in parts (a) and (b) are
attributable to the different types of
feedback? Why or why not?

116. The insulin-binding capacity (pmol/mg
protein) was measured for four different
groups of rats: (1) nondiabetic, (2) untreated

diabetic, (3) diabetic treated with a low
dose of insulin, (4) diabetic treated with a
high dose of insulin. The accompanying
table gives sample sizes and sample stan-
dard deviations. Denote the sample size for
the ith treatment by ni and the sample
variance by S2i ði ¼ 1; 2; 3; 4Þ. Assuming
that the true variance for each treatment is
r2, construct a pooled estimator of r2 that is
unbiased, and verify using rules of expected
value that it is indeed unbiased. What is
your estimate for the following actual data?
[Hint: Modify the pooled estimator S2p from
Section 10.2.]

Treatment

1 2 3 4

Sample size 16 18 8 12
Sample SD .64 .81 .51 .35

117. Suppose a level .05 test of H0: l1 � l2 = 0
versus Ha: l1 � l2 > 0 is to be performed,
assuming r1 = r2 = 10 and normality of
both distributions, using equal sample sizes
(m = n). Evaluate the probability of a type
II error when l1 � l2 = 1 and n = 25, 100,
2500, and 10,000. Can you think of real
situations in which the difference
l1 � l2 = 1 has little practical significance?
Would sample sizes of n = 10,000 be
desirable in such situations?

118. Are male college students more easily bored
than their female counterparts? This ques-
tion was examined in the article “Boredom
in Young Adults—Gender and Cultural
Comparisons” (J. Cross-Cult. Psych. 1991:
209–223). The authors administered a scale
called the Boredom Proneness Scale to 97
male and 148 female U.S. college students.
Does the accompanying data support the
research hypothesis that the mean Boredom
Proneness Rating is higher for men than for
women? Test the appropriate hypotheses
using a .05 significance level.

Sex Sample size Sample mean Sample SD

Male 97 10.40 4.83
Female 148 9.26 4.68
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119. Researchers sent 5000 resumes in response
to job ads that appeared in the Boston
Globe and Chicago Tribune. The resumes
were identical except that 2500 of them had
“white sounding” first names, such as Brett
and Emily, whereas the other 2500 had
“black sounding” names such as Tamika
and Rasheed. The resumes of the first type
elicited 250 responses and the resumes of
the second type only 167 responses (these
numbers are consistent with information
that appeared in a January 15, 2003, report
by the Associated Press). Does this data
strongly suggest that a resume with a
“black” name is less likely to result in a
response than is a resume with a “white”
name?

120. Is touching by a coworker sexual harass-
ment? This question was included on a
survey given to federal employees, who
responded on a scale of 1–5, with 1 meaning
a strong negative and 5 indicating a strong
yes. The table summarizes the results.

Sex Sample size Sample mean Sample SD

Female 4343 4.6056 .8659
Male 3903 4.1709 1.2157

Of course, with 1–5 being the only possible
values, the normal distribution does not
apply here, but the sample sizes are suffi-
cient that it does not matter. Obtain a two-
sided confidence interval for the difference
in population means. Does your interval
suggest that females are more likely than
males to regard touching as harassment?
Explain your reasoning.

121. Let X1, …, Xm be a random sample from a
Poisson distribution with parameter l1, and
let Y1, …, Yn be a random sample from
another Poisson distribution with parameter
l2. We wish to test H0: l1 � l2 = 0 against
one of the three standard alternatives. When
m and n are large, the CLT justifies using a
large-sample z test. However, the fact that
VðXÞ ¼ l=n suggests that a different
denominator should be used in

standardizing X � Y . Develop a large-
sample test procedure appropriate to this
problem, and then apply it to the following
data to test whether the plant densities for a
particular species are equal in two different
regions (where each observation is the
number of plants found in a randomly
located square sampling quadrat having
area 1 m2, so for region 1, there were 40
quadrats in which one plant was observed,
etc.):

Frequency

0 1 2 3 4 5 6 7

Region 1 28 40 28 17 8 2 1 1 m = 125
Region 2 14 25 30 18 49 2 1 1 n = 140

122. Referring to the previous exercise, develop
a large-sample confidence interval formula
for l1 � l2. Calculate the interval for the
data given there using a confidence level of
95%.

123. Refer back to the pooled t procedures
described at the end of Section 10.2. The
test statistic for testing H0: l1 � l2 ¼ D0 is

Tp ¼ ðX � YÞ � D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p
m þ S2p

n

q ¼ ðX � YÞ � D0

Sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n

� �q

Show that when l1 � l2 ¼ D0 (some
alternative value for the difference), then
Tp has a noncentral t distribution with
df = m + n – 2 and noncentrality parameter

d ¼ D0 � D0

r
ffiffiffiffiffiffiffiffiffi
1
mþ 1

n

p
[Hint: Look back at Exercises 39–40, as
well as Chapter 9 Exercise 38.]

124. Let R1 be a rejection region with signifi-
cance level a for testing H01: h 2 X1 versus
Ha1: h 62 X1, and let R2 be a level a rejec-
tion region for testing H02: h 2 X2 versus
Ha2: h 62 X2, where X1 and X2 are two
disjoint sets of possible values of h. Now
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consider testing H0: h 2 X1 [ X2 versus
the alternative Ha: h 62 X1 [ X2. The pro-
posed rejection region is R1 \ R2. That is,
H0 is rejected only if both H01 and H02 can
be rejected. This procedure is called a
union–intersection test (UIT).

a. Show that the UIT is a level a test.
b. As an example, let lT denote the mean

value of a particular variable for a gen-
eric (test) drug, and lR denote the mean
value of this variable for a brand-name
(reference) drug. In bioequivalence
testing, the relevant hypotheses are
H0: lT/lR � dL or lT/lR � dU (the
two aren’t bioequivalent) versus
Ha: dL < lT/lR < dU (bioequivalent).
The limits dL and dU are standards set by
regulatory agencies; the FDA often uses
.80 and 1.25 = 1/.8, respectively. By

taking logarithms and letting η = ln(l),
s = ln(d), the hypotheses become
H0: either ηT − ηR � sL or � sU versus
Ha: sL < ηT − ηR < sU. With this setup,
a type I error involves saying the drugs
are bioequivalent when they are not.
The FDA mandates a = .05.
Let D be an estimator of ηT − ηR with
standard error SD such that standardized
variable T = [D − (ηT − ηR)]/SD has a
t distribution with v df. The standard test
procedure is referred to as TOST for
“two one-sided tests” and is based on
the two test statistics TU = (D − sU)/SD
and TL = (D − sL)/SD. If v = 20, state
the appropriate conclusion in each of
the following cases: (1) sL = 2.0, sU =
−1.5; (2) sL = 1.5, sU = −2.0; (3) sL
= 2.0, sU = −2.0.
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11The Analysis of Variance

Introduction
In studying methods for the analysis of quantitative data, we first focused on problems involving a
single sample of numbers and then turned to a comparative analysis of two different samples. Now we
are ready for the analysis of several samples.

The analysis of variance, or more briefly ANOVA, refers broadly to a collection of statistical
procedures for the analysis of quantitative responses. The simplest ANOVA problem is referred to
variously as a single-factor, single-classification, or one-way ANOVA and involves the analysis of
data sampled from two or more numerical populations (distributions). The characteristic that labels
the populations is called the factor under study, and the populations are referred to as the levels of the
factor. Examples of such situations include the following:

1. An experiment to study the effects of five different brands of gasoline on automobile engine
operating efficiency (mpg)

2. An experiment to study the effects of four different sugar solutions (glucose, sucrose, fructose, and
a mixture of the three) on bacterial growth

3. An experiment to investigate whether hardwood concentration in pulp has an effect on tensile
strength of bags made from the pulp

4. An experiment to decide whether the color density of fabric specimens depends on the amount of
dye used

In (1) the factor of interest is gasoline brand, and there are five different levels of the factor. The
factor in (2) is sugar, with four levels (or five, if a control solution containing no sugar is used). The
factor in both of these first two examples is categorical in nature, and the levels correspond to possible
categories of the factor. In (3) and (4), the factors are concentration of hardwood and amount of dye,
respectively; both these factors are quantitative in nature, so the levels identify different settings of the
factor. When the factor of interest is quantitative, statistical techniques from regression analysis
(discussed in Chapter 12) can also be used to analyze the data.

Here we first introduce single-factor ANOVA. Section 11.1 presents the F test for testing the null
hypothesis that the population means are identical. Section 11.2 considers further analysis of the data
when H0 has been rejected. Section 11.3 covers some other aspects of single-factor ANOVA. Many
experimental situations involve studying the simultaneous impact of more than one factor. Various
aspects of two-factor ANOVA are considered in the last two sections of the chapter.
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11.1 Single-Factor ANOVA

Single-factor ANOVA focuses on a comparison of two or more populations. For example,
McDonalds may wish to compare the average revenue associated with three different advertising
campaigns, or a team of animal nutritionists may carry out an experiment to compare the effect of five
different diets on weight gain, or FedEx may want to compare the strengths of cardboard shipping
boxes from four different vendors. Let

I = the number of populations/treatments being compared
l1 = the mean of population 1 (or the true average response when treatment 1 is applied)
..
.

lI = the mean of population I (or the true average response when treatment I is applied)

Then the hypotheses of interest are

H0: l1 ¼ l2 ¼ � � � ¼ lI
versus

Ha: at least two of the li’s are different

If I = 4, H0 is true only if all four li’s are identical. Ha would be true, for example, if l1 = l2 6¼
l3 = l4, if l1 = l3 = l4 6¼ l2, or if all four li’s differ from each other. A test of these hypotheses
requires that we have available a random sample from each population or treatment. Since ANOVA
focuses on a comparison of means, you may wonder why the method is called analysis of variance
(actually, analysis of variability would be a better name). The following example illustrates why it is
appropriate to consider variability.

Example 11.1 The article “Compression of Single-Wall Corrugated Shipping Containers Using
Fixed and Floating Test Platens” (J. Test. Eval. 1992: 318–320) describes an experiment in which
several different types of boxes were compared with respect to compression strength (lb). Table 11.1
presents the results of an experiment involving I = 4 types of boxes (the sample means and standard
deviations are in good agreement with values given in the article).

With li denoting the true average compression strength for boxes of type i (i = 1, 2, 3, 4), the null
hypothesis is H0: l1 = l2 = l3 = l4. Figure 11.1a shows a comparative boxplot for the four samples.
There is a substantial amount of overlap among observations on the first three box types, but
compression strengths for the fourth type appear considerably smaller than for the others. This
suggests that H0 is not true.

Table 11.1 The data and summary quantities for Example 11.1

Type of box Compression strength (lb) Sample mean Sample SD

1 655.5 788.3 734.3 713.00 46.55
721.4 679.1 699.4

2 789.2 772.5 786.9 756.93 40.34
686.1 732.1 774.8

3 737.1 639.0 696.3 698.07 37.20
671.7 717.2 727.1

4 535.1 628.7 542.4 562.02 39.87
559.0 586.9 520.0

Grand mean = 682.50
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Figure 11.1 Boxplots for Example 11.1: (a) original data; (b) data with one mean altered;
(c) data with standard deviations altered
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The comparative boxplot in Figure 11.1b is based on adding 120 to each observation in the fourth
sample (giving a mean of 682.02 and the same standard deviation) and leaving the other samples
unaltered. Because the sample means are now closer together, it is no longer obvious whether H0

should be rejected.
Lastly, the comparative boxplot in Figure 11.1c is based on inflating the standard deviation of each

sample while maintaining the values of the original sample means. Once again, it is unclear from the
graph whether H0 is true, even though now the sample means are separated by the same amounts as
they were in Figure 11.1a.

These graphs suggest that it’s insufficient to consider only how far apart the sample means are in
assessing whether the population means are different; we must also account for the amount of
variability within each of the I samples. ■

Notation and Assumptions
In two-sample problems, we used the letters X and Y to designate the observations in the two samples.
Because this is cumbersome for three or more samples, it is customary to use a single letter with two
subscripts. The first subscript identifies the sample number, corresponding to the population or
treatment being sampled, and the second subscript denotes the position of the observation within that
sample. Let

Xij = the random variable denoting the jth measurement from the ith population or treatment
xij = the observed value of Xij when the experiment is performed

The observed data is often displayed in a rectangular table, such as Table 11.1. There, samples from
the different populations appear in different rows of the table, and xij is the jth number in the ith
sample. For example, x23 = 786.9 (the third observation from the second population), and
x41 = 535.1. When there is potential ambiguity, we will write xi,j rather than xij (e.g., if there were 15
observations on each of 12 treatments, x112 could mean x1,12 or x11,2). It is assumed that the Xij’s
within any particular sample are independent—a random sample from the ith population or treatment
distribution—and that different samples are independent of each other.

In some studies, different samples contain different numbers of observations. However, the con-
cepts and methods of single-factor ANOVA are most easily developed for the case of equal sample
sizes, known as a balanced study design. Unequal sample sizes will be considered in Section 11.3.
Restricting ourselves for the moment to balanced designs, let J denote the number of observations in
each sample (J = 6 in Example 11.1). The data set consists of n = IJ observations. The sample means
will be denoted by X1�;X2�; . . .;XI�. That is,

Xi� ¼ 1
J

XJ
j¼1

Xij i ¼ 1; 2; . . .; I

Similarly, the average of all IJ observations, called the grand mean, is

X�� ¼ 1
IJ

XI
i¼1

XJ
j¼1

Xij ¼ 1
I

XI
i¼1

Xi�

For the strength data in Table 11.1, �x1� ¼ 713:00, �x2� ¼ 756:93, �x3� ¼ 698:07, �x4� ¼ 562:02, and
�x:: ¼ 682:50. Additionally, let S21; S

2
2; . . .; S

2
I represent the sample variances:
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S2i ¼
1

J � 1

XJ
j¼1

Xij � Xi�
� �2

i ¼ 1; 2; . . .; I

From Example 11.1, s1 = 46.55, s21 ¼ 2166:90, and so on.

ANOVA ASSUMPTIONS The I population or treatment distributions are all normal with the same
variance r2. That is, the Xij’s are independent and normally distributed
with

E Xij

� � ¼ li V Xij

� � ¼ r2

The plausibility of independence of the samples (and of the individual observations within the
samples) stems from a study’s design. At the end of this section we discuss methods for checking the
plausibility of the normality and equal variance assumptions.

Sums of Squares and Mean Squares
Example 11.1 suggests the need for two distinct measures of variation: between-samples variation
(i.e., the disparity between the I sample means) and within-samples variation (assessing variation
separately within each sample and then combining). The test procedure we will develop shortly is
based on the following measures of variation in the data.

DEFINITION A measure of between-samples variation is the treatment sum of squares
SSTr, given by

SSTr ¼
X
i

X
j

Xi� � X��
� �2 ¼X

i

J Xi� � X��
� �2

¼ J X1� � X��
� �2 þ � � � þ XI� � X��

� �2h i

A measure of within-samples variation is the error sum of squares SSE,
given by

SSE ¼
X
i

X
j

Xij � Xi�
� �2 ¼X

i

ðJ � 1ÞS2i
� �

¼ ðJ � 1Þ S21 þ S22 þ � � � þ S2I
� �

Thus SSTr assesses variation in the means from the different samples, whereas SSE entails assessing
variability within each sample separately (via the sample variance) and then combining these
assessments.
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Example 11.2 (Example 11.1 continued) For the box compression data displayed in Figure 11.1a,

SSTr ¼ 6ð713:00� 682:50Þ2 þ 6ð756:93� 682:50Þ2 þ 6ð698:07� 682:50Þ2 þ 6ð562:02� 682:50Þ2
¼ 127; 374:7

while

SSE ¼ ð6� 1Þð46:55Þ2 þð6� 1Þð40:34Þ2 þð6� 1Þð37:20Þ2 þð6� 1Þð39:87Þ2
¼ 33; 838:4

Similar computations can be applied to the two modified versions of the original data; the various
sums of squares are summarized below.

For the altered data on which Figure 11.1b is based, �x4� ¼ 682:02 and the revised grand mean is
�x:: ¼ 712:50. This greatly reduces SSTr, reflecting the fact that the sample means are less far apart in
Figure 11.1b than in Figure 11.1a. Since the standard deviations of the samples were not changed,
SSE for the data displayed in Figure 11.1a, b are identical.

For the data used to construct Figure 11.1c, the value of SSTr is unchanged from Figure 11.1a—the
�xi�’s were not altered, so this measure of between-samples variation stays the same. On the other hand,
SSE for Figure 11.1c is much larger than for the actual data. Since the altered data exhibits much
greater within-samples variation than does the actual data, the corresponding SSE should be corre-
spondingly greater. ■

A descriptive understanding of the treatment and error sums of squares is provided by the
following fundamental identity.

THEOREM
(Fundamental
ANOVA Identity)

SSTrþ SSE ¼ SST

where SST is the total sum of squares given by

SST ¼
X
i

X
j

xij � �x��
� �2

The proof of the identity follows from squaring both sides of the relationship

xij � x�� ¼ xij � xi�
� �þ xi� � x��ð Þ ð11:1Þ

and summing over all i and j. This gives SST on the left and SSTr and SSE as the two extreme terms
on the right; the cross-product term is easily seen to be zero (Exercise 13).

The interpretation of the fundamental identity is an important aid to understanding ANOVA. SST
is a measure of the total variation in the data—the sum of all squared deviations about the grand
mean. The identity says that this total variation can be partitioned into two pieces. SSTr is the amount
of variation (between samples) that can be explained by possible differences in the li’s: when the li’s

Figure 11.1a Figure 11.1b Figure 11.1c

SSTr 127,374.7 14,004.6 127,374.7
SSE 33,838.4 33,838.4 211,488.0
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differ substantially, the individual sample means should be further from the grand mean than when the
li’s are identical or close to one another. SSE measures variation that would be present (within
samples) even if H0 were true; thus, SSE the part of total variation that is unexplained by the truth or
falsity of H0. If explained variation is large relative to unexplained variation, then H0 should be
rejected in favor of Ha.

Formal inference will require the sampling distributions of both the statistics SSTr and SSE. Recall a
result from Section 6.4: if X1, …, Xn is a random sample from a normal distribution, then the
sample mean X and the sample variance S2 are independent. Also, X is normally distributed, and
ðn� 1ÞS2=r2 has a chi-squared distributionwith n − 1 df. Similar results hold in our ANOVA situation.

THEOREM When the ANOVA assumptions are satisfied,

1. SSE and SSTr are independent random variables.
2. SSE/r2 has a chi-squared distribution with IJ – I df.

Furthermore, when H0: l1 ¼ � � � ¼ lI is true,

3. SSTr/r2 has a chi-squared distribution with I – 1 df.

Proof Independence of SSTr and SSE follows from the fact that SSTr is based on the individual
sample means whereas SSE is based on the sample variances, and Xi� is independent of S2i for each
i. Next, SSE/r2 can be expressed as the sum of chi-squared rvs:

SSE
r2

¼ ðJ � 1ÞS21
r2

þ � � � þ ðJ � 1ÞS2I
r2

Each term in the sum has a v2J�1 distribution, and dfs add because the samples are independent. Thus
SSE/r2 also has a chi-squared distribution, with df = (J – 1) + ��� + (J – 1) = I(J – 1) = IJ – I.

Now suppose H0 is true and let Yi ¼ Xi� for i ¼ 1; . . .; I. Then Y1, Y2, …, YI are independent and
normally distributed with the same mean and with variance r2/J. Thus, by the key result from
Section 6.4, ðI � 1ÞS2Y= r2=Jð Þ has a chi-squared distribution with I – 1 df when H0 is true.
Furthermore,

ðI � 1ÞS2Y
r2=J

¼ ðI � 1ÞJ
r2

� 1
I � 1

X
i

Yi � Y
� �2 ¼ J

r2
X

Xi� � X��
� �2 ¼ SSTr

r2
;

so under H0, SSTr=r2 � v2I�1. ■

SSTr and SSE provide measures of between- and within-samples variability, respectively, but they
are not (yet) directly comparable. Analogous to the definition of sample variance in Chapter 1,
wherein a sum of squares was divided by its degrees of freedom, we make the following definitions.

DEFINITION The mean square for treatments MSTr and the mean square for error MSE
are

MSTr ¼ SSTr
I � 1

MSE ¼ SSE
IJ � I
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The word “mean” is again being used in the sense of average; a mean square is a sum of squares
divided by its associated degrees of freedom. The next proposition sets the stage for our ultimate
ANOVA hypothesis test.

PROPOSITION When the ANOVA assumptions are satisfied,
E(MSE) = r2; that is, MSE is an unbiased estimator of r2.
Moreover, when H0: l1 ¼ � � � ¼ lI is true,
E(MSTr) = r2; in this case, MSTr is also an unbiased estimator of r2.

Proof The expected value of a chi-squared variable with m df is just m. Thus, from the previous
theorem,

E
SSE
r2

� �
¼ IJ � I ) EðMSEÞ ¼ E

SSE
IJ � I

� �
¼ r2

and

H0 true ) E
SSTr
r2

� �
¼ I � 1 ) EðMSTrÞ ¼ E

SSTr
I � 1

� �
¼ r2 ■

MSTr is unbiased for r2 when H0 is true, but what about when H0 is false? It can be shown
(Exercise 14) that in this case, E(MSTr) > r2. This is because the Xi�’s tend to differ more from each
other, and therefore from the grand mean, when the li’s are not identical than when they are the same.

The F Test
It follows from the preceding discussion that when H0 is true the values of MSTr and MSE should be
close to each other. Equivalently, the ratio of these two quantities should be relatively near 1. On the
other hand, if H0 is false then MSTr ought to exceed MSE, so their ratio will tend to exceed 1. This
suggests that a sensible test statistic for ANOVA is MSTr/MSE, but how large must this be to provide
convincing evidence against H0? Answering this question requires knowing the sampling distribution
of this ratio.

In Section 6.3 we introduced a family of probability distributions called F distributions, which became
the basis for inference on the ratio of two variances in Section 10.5. If Y1 and Y2 are two independent
chi-squared random variables with m1 and m2 df, respectively, then the ratio F = (Y1/m1)/(Y2/m2) has an
F distribution with m1 numerator df and m2 denominator df. Appendix Table A.8 gives F critical values for
a = .10, .05, .01, and .001. Values of m1 are identified with different columns of the table and the rows are
labeled with various values of m2. For example, the F critical value that captures upper-tail area .05 under
the F curve with m1 = 4 and m2 = 6 is F.05,4,6 = 4.53, whereas F.05,6,4 = 6.16 (so don’t accidentally switch
numerator and denominator df!). The key theoretical result that justifies the ANOVA test procedure is that
the test statistic MSTr/MSE has an F distribution when H0 is true.
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PROPOSITION When the ANOVA assumptions are satisfied and H0: l1 ¼ � � � ¼ lI is true, the
test statistic F = MSTr/MSE has an F distribution with I – 1 numerator df and
IJ – I denominator df.

This theorem follows immediately from rewriting F as

F ¼
SSTr
r2

h i
=ðI � 1Þ

SSE
r2

h i
=ðIJ � IÞ

and then applying the definition of the F distribution along with properties of SSTr and SSE
established earlier in this section. Here, finally, is the test procedure.

F TEST FOR SINGLE-FACTOR
ANOVA

Null hypothesis: H0: l1 ¼ � � � ¼ lI
Alternative hypothesis: Ha: not all of the li’s are equal

Test statistic value: f ¼ MSTr
MSE ¼ SSTr=ðI � 1Þ

SSE=ðIJ � IÞ
Rejection region for level a test: f [Fa;I�1;IJ�I

P-value calculation: area under FI�1; IJ�I curve to the right of f

Refer to Section 10.5 to see how P-value information for F tests can be obtained from the table of
F critical values. Alternatively, statistical software packages will automatically include the P-value
with ANOVA output.

The computations building up to the test statistic value f are often summarized in a tabular format,
called an ANOVA table, as displayed in Table 11.2. Tables produced by statistical software
customarily include a P-value column to the right of the f column.

Example 11.3 With the ever-increasing power demand driven by everyone’s electronic devices,
engineers have begun exploring ways to tap into the energy discharge from household items—a hot
stove pan, a candle flame, or even a hot soup bowl. The article “Low-Power Energy Harvesting of
Thermoelectric Battery Charger with Step-Up DC–DC Converter: Applicable Case Study for Per-
sonal Electronic Gadgets” (J. Energy Engr. 2017) describes an experiment to compare the charging
characteristics of five thermoelectric modules under certain conditions. Consider the accompanying
data on the maximum power per unit area (mW/cm2) for J = 4 replications of the experiment on each
of the I = 5 modules.

Table 11.2 An ANOVA table

Source of variation df Sum of squares Mean square f

Treatments I − 1 SSTr MSTr = SSTr/(I − 1) MSTr/MSE
Error IJ − I SSE MSE = SSE/(IJ − I)
Total IJ − 1 SST
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Module Max. power per cm2 �xi� si

1 98.8 93.1 96.6 91.8 95.08 3.21
2 82.5 87.5 88.8 91.3 87.53 3.70
3 77.7 74.7 76.2 78.8 76.85 1.79
4 82.6 80.5 82.8 84.1 82.50 1.49
5 91.9 87.5 86.9 90.0 89.08 2.31

Let li denote the true mean max power per unit area when module i is used (i = 1, 2, 3, 4, 5). The
null hypothesis H0: l1 = l2 = l3 = l4 = l5 states that the true average is identical for the five
modules. Let’s carry out a test at significance level .01 to see whether H0 should be rejected in favor
of the assertion that true average max power per unit area is not the same for all modules. (At this
point the plausibility of the normality and equal variance assumptions should be checked; we defer
those tasks to later in this section.)

Since I – 1 = 5 – 1 = 4 and IJ – I = 20 – 5 = 15, the F critical value for the rejection region is
F.01,4,15 = 4.89. The grand mean for the 20 observations is �x�� ¼ 86:20mW=cm2. The treatment and
error sums of squares are

SSTr ¼ 4 ð95:08� 86:20Þ2 þ � � � þ ð89:08� 86:20Þ2
h i

¼ 759:6

SSE ¼ ð4� 1Þ ð3:21Þ2 þ � � � þ ð2:31Þ2
h i

¼ 104:2

The remaining computations are summarized in the accompanying ANOVA table. Because f = 27.33
> F.01,4,15 = 4.89, H0 is rejected at significance level .01. The P-value is the area under the F4,15 curve
to the right of 27.33, which is 0 to several decimal places (and, in particular, far less than a = .01). The
modules clearly do not yield the same mean maximum power per cm2 in size.

Source of variation df Sum of squares Mean square f P-value

Treatments 4 759.6 189.90 27.33 <.0001
Error 15 104.2 6.95
Total 19 863.8

■

When the F test causes H0 to be rejected as in Example 11.3, researchers will naturally be interested
in further analysis to decide which li’s differ from which others. Methods for doing this are called
multiple comparison procedures and are described in the next two sections.

Checking the ANOVA Assumptions
In previous chapters, a normal probability plot was suggested for checking normality. The individual
sample sizes in ANOVA are typically too small for I separate plots to be informative. A single plot
can be constructed by first subtracting �x1� from each observation in the first sample, �x2� from each
observation in the second, and so on. These deviations are called residuals and are defined for single-
factor ANOVA by

residual ¼ eij ¼ xij � �xi�
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There are a total of IJ residuals, one for each observation. Table 11.3 shows the residuals for the 24
observations in Example 11.1. For instance, the first residual was computed as
e11 ¼ x11 � �x1� ¼ 655:5� 713:0 ¼ �57:5. Figure 11.2 displays a normal probability plot of these
residuals. The straightness of the pattern gives strong support to the normality assumption. An
analogous plot for the data of Example 11.3 conveys the same message.

The other ANOVA assumption is that the populations have equal variances. A popular informal
rule is that if the largest sample standard deviation is not much more than twice the smallest one, it is
permissible to assume equal variances. This is especially true for balanced or nearly-balanced study
designs. In Example 11.1, the largest s is only about 1.25 times the smallest. Example 11.3 violates
this informal rule slightly—the ratio of the largest s and smallest s is 3.70/1.49 = 2.48—but, again,
balance (i.e., equal sample sizes) makes this disparity somewhat less important.

Several formal tests of equal variance have been devised. If the likelihood ratio principle is applied
to the problem of testing for equal variances for normal data, then the result is Bartlett’s test. This is a
generalization of the F test for equal variances given in Section 10.5, and it is very sensitive to the
normality assumption. Since the ANOVA F test is robust in the presence of “mild” nonnormality (the
significance level is approximately correct), it would be unfortunate to have the equal variances
assumption invalidated not because they are different but because of such nonnormality. Levene’s
test is much less sensitive to the assumption of normality. Essentially, this test involves performing an

−1.4 −.7 0 .7 1.4

50

−50

0

z percentile

R
es

id
ua

l

Figure 11.2 A normal probability plot based on the data of Example 11.1

Table 11.3 Residuals for the data in Example 11.1

Type of box Residual

1 −57.50 75.30 21.30
8.40 −33.90 −13.60

2 32.27 15.57 29.97
−70.83 −24.83 17.87

3 39.03 −59.07 −1.77
−26.37 19.13 29.03

4 −26.92 66.68 −19.62
−3.02 24.88 −42.02
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ANOVA on the absolute values of the residuals. That is, Levene’s test performs an ANOVA F test
using the absolute residuals eij

�� �� in place of xij. The idea is to use absolute residuals to compare the
variability of the samples.

Example 11.4 To apply Levene’s test to the data from Example 11.1, we first take the absolute
values of the 24 residuals in Table 11.3. Then we apply ANOVA to the absolute residuals. With the
aid of software,

SSTr ¼ 115:3 MSTr ¼ 115:3=3 ¼ 38:44 f ¼ 0:08
SSE ¼ 9728:7 MSE ¼ 9728:7=20 ¼ 486:44

Compare 0.08 to the critical value F.10,3,20 = 2.38. Because 0.08 is much smaller than 2.38, there is
no reason to doubt that the population variances are equal.

We were somewhat more concerned about the power data from Example 11.3, since the sample
standard deviations were rather different. Computing the residuals, taking their absolute values, and
applying ANOVA to the results give

SSTr ¼ 7:903 MSTr ¼ 7:903=4 ¼ 1:976 f ¼ 1:17
SSE ¼ 25:265 MSE ¼ 25:265=15 ¼ 1:684

Because f = 1.17 < F.10,4,15 = 2.36, we do not reject a null hypothesis of equal population variances at
the .10 level (in fact, the P-value is .362). There was no need to worry. ■

Given that the absolute residuals are certainly not normally distributed, it might seem questionable
to subject them to ANOVA. Fortunately, Levene’s test works in spite of the normality assumption.
A common sample size of 10 is sufficient for excellent accuracy in Levene’s test, but smaller samples
can still give useful results when only approximate P-values are needed (i.e., when the Levene’s test
P-value falls far above or far below the chosen significance level).

Some software packages perform Levene’s test, but they will not necessarily get the same answer
because they do not necessarily use absolute deviations from the mean. For example, Minitab uses
absolute residuals with respect to the median, an especially good idea in case of skewed data. By
default, SAS uses the squared deviations from the mean, although the absolute deviations from the
mean can be requested. SAS also allows absolute deviations from the median (as the “BF” test,
because Brown and Forsythe studied this procedure).

The ANOVA F test is robust not only to mild departures from normality but also to mild
departures from equal variances. When the sample sizes are all the same, as we are assuming so far,
the test is especially insensitive to unequal variances. Also, there is a generalization of the two-sample
t test of Section 10.2 for more than two samples, and it does not demand equal variances. This test is
available in JMP, R, and SAS.

If there is a major violation of assumptions, then the situation can sometimes be corrected by a data
transformation, discussed in Section 11.3. Alternatively, the bootstrap can be used, by generalizing
the method of Section 10.6 from two groups to several. There is also a nonparametric version of
ANOVA (meaning no normality required) called the Kruskal–Wallis test, developed in Chapter 14.
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Exercises: Section 11.1 (1–14)

1. An experiment to compare I = 5 brands of
golf balls involved using a robotic driver to
hit J = 7 balls of each brand. The resulting
between-sample and within-sample esti-
mates of r2 were MSTr = 123.50 and
MSE = 22.16, respectively.

a. State and test the relevant hypotheses
using a significance level of .05.

b. What can be said about the P-value of
the test?

2. The lumen output was determined for each
of I = 3 different brands of 60-watt soft-
white lightbulbs, with J = 8 bulbs of each
brand tested. The sums of squares were
computed as SSE = 4773.3 and SSTr =
591.2. State the hypotheses of interest (in-
cluding word definitions of parameters),
and use the F test of ANOVA (a = .05) to
decide whether there are any differences in
true average lumen outputs among the three
brands for this type of bulb by obtaining as
much information as possible about the
P-value.

3. Freezing and thawing out food can
adversely affects its texture. In one experi-
ment described in the article “Effects of
Freezing Treatments Before Convective
Drying on Quality Parameters” (J. of Food
Engr. 2019: 15–24), apple pieces were
frozen using a –20 °C freezer (F20), a
–80 °C freezer (F80), or liquid nitrogen
(FLN). After being thawed out, texture tests
were performed on each piece. The fol-
lowing information summarizes the elastic
modulus (kPa) of the apple pieces. (Elastic
modulus measures the apple pieces’ resis-
tance to deformation under load.)

Freezing method J �xi� si

F20 8 61 10
F80 8 73 20
FLN 8 49 10

Assuming conditions are met, use the
ANOVA F test at level .05 to decide
whether there are any differences between

true mean elastic modulus of apple pieces
using the three freezing methods.

4. The article “Load-Carrying Capacity of
Lengthwise Cracked Wood Beams Retro-
fitted by Self-Tapping Screws” (J. Struct.
Engr. 2017) provides data on the maximum
load (kN) of J = 5 specimens of I = 4 types
of wood beams used in housing: intact
beams (L1), long, centered cracks (L2),
short, centered cracks (L3), and long, off-
center cracks (L4).

Beam type Maximum load (kN)

L1 32.53 19.18 7.50 18.18 21.89
L2 13.15 10.62 6.75 16.08 14.12
L3 13.25 18.52 12.02 18.83 12.80
L4 26.95 13.19 11.55 24.63 23.63

Use a significance level of .05 to test the null
hypothesis of no difference in true average
maximum load for these four beam types.

5. The article “Differences in Impact Perfor-
mance of Bicycle Helmets During Oblique
Impacts” (J. Biomech. Engr. 2018) describes
an experiment in which 10 different bicycle
helmet brands (4 of each brand, for 40 total
helmets) were strapped onto a mannequin
head and subjected to a frontal impact at
6.6m/s. At that speed, concussion without a
helmet is extremely likely. The peak linear
acceleration (PLA, in g) was measured in
each test; values over 300 g are associated
with a high risk of brain injury.

a. The sample mean PLAs for the 10 hel-
met brands are presented below; labels
are abbreviations used in the article for
the brand names.

BMIPS BSF BSP CW GMIPS
141 144 122 127 148

GS NW SOO ST SWE
175 147 117 142 129

Use these sample means to determine
SSTr and MSTr.

b. The value SSE = 3900 is consistent with
information provided in the article.

11.1 Single-Factor ANOVA 651



Construct an ANOVA table, and carry
out a hypothesis test at the .01 signifi-
cance level.

6. In an experiment to investigate the perfor-
mance of four different brands of spark
plugs intended for use on a 125-cc two-
stroke motorcycle, five plugs of each brand
were tested for the number of miles (at a
constant speed) until failure. The partial
ANOVA table for the data is given here.
Fill in the missing entries, state the relevant
hypotheses, and carry out a test by obtain-
ing as much information as you can about
the P-value.

Source df Sum of squares Mean square f

Brand
Error 14,713.69
Total 310,500.76

7. Consider the box compression data pre-
sented in Example 11.1. Carry out an
analysis of variance F test at significance
level .01, and summarize the results in an
ANOVA table.

8. Plastic waste, particularly microplastics in
oceans and waterways, has become an
increasing global environmental concern.
The article “Environmentally Relevant Con-
centrations of Microplastic Particles Influ-
ence Larval Fish Ecology” (Science, 3 June
2016: 1213–1216)describes an experiment in
which fertilized egg strands of European
perchwere placed in 15 identical tanks. Tanks
were then randomly assigned (1) no
microplastics, (2) a “typical” microplastic
concentration (10,000 particles/m3), or (3) a
high concentration (80,000 particles/m3).
After a three-week period, the successful
hatching rates were recorded for every tank;
the data appears below.

Microplastic level Hatching success rate

None 95 98 96 92 97
Typical 86 93 88 87 91
High 85 74 86 77 83

Does the data provide convincing statistical
evidence that microplastic level has an

effect on the success rate of eggs hatching
for European perch? Test at the .01 signif-
icance level.

9. One popular approach to lower back pain is
to apply a piece of durable tape along the
lower spine. In one study, 108 women with
lower back pain were randomly assigned to
receive one of four treatments: Kinesio tape
applied to a tense back (KTT), Kinesio tape
without any back tension (KTNT), Micro-
pore tape (MP), and no tape (CG, a control
group). After 10 days of treatment, each
woman’s lower back extension (degrees)
was measured. The accompanying table
summarizes the results.

Treatment J �xi� si

KTT 27 30° 14°
KTNT 27 29° 15°
MP 27 26° 13°
CG 27 27° 9°

(“Kinesio Taping Reduces Pain and
Improves Disability in Low Back Pain
Patients,” Physiotherapy 2019: 65–75.)

a. Calculate SSTr, MSTr, SSE, and MSE.
b. Test the null hypothesis that true mean

back extension after 10 days is the same
for all four treatments, at the .05 level.

10. Does music affect memorization skills, and
does it matter if the music includes vocals/
lyrics? In one experiment (P. Ramos, “The
Impact of Music on Short Term Memory
and Cognitive Processes,” Univ. of
Bridgeport, 2017), subjects were randomly
assigned to one of four environments:
(A) an instrumental-only version of Adele’s
“Million Years Ago” playing in back-
ground (B) a vocals-only version, (C) a
version with both instruments and vocals,
and (D) a control group with no ambient
music. All subjects were given a list of
everyday words to memorize in 90 seconds
and then asked to write down as many
words as they could remember. Information
consistent with that report appears below.
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Number of words
remembered

Condition J �xi� si

Instrumental only 26 10.2 2.8
Vocals only 26 7.7 2.1
Instruments & vocals 26 9.0 2.5
Control (no music) 26 10.7 3.0

Test whether music environment affects
memorization skills, as measured by pop-
ulation mean number of words remembered
using this activity, at the .01 significance
level.

11. The article referenced in Example 11.3 also
looked at the time (min) to charge a 4.2-V
battery.

Module Time to full charge (min)

1 200 199 204 208
2 233 229 226 224
3 140 146 146 136
4 169 174 171 166
5 205 212 214 208

a. Check the ANOVA assumptions with a
normal plot and a test for equal variances.

b. Does mean charge time differ across
these five thermoelectric modules? State
and test the relevant hypotheses using
a = .01.

12. Six samples of each of four types of cereal
grain grown in a certain region were ana-
lyzed to determine thiamin content, result-
ing in the following data (lg/g):

Grain Thiamin content

Wheat 5.2 4.5 6.0 6.1 6.7 5.8
Barley 6.5 8.0 6.1 7.5 5.9 5.6
Maize 5.8 4.7 6.4 4.9 6.0 5.2
Oats 8.3 6.1 7.8 7.0 5.5 7.2

a. Check the ANOVA assumptions.
b. Test to see if at least two of the grains

differ with respect to true average thi-
amin content. Use an a = .05 test based
on the P-value method.

13. Derive the fundamental identity SST =
SSTr + SSE by squaring both sides of
Equation (11.1) and summing over all i and
j. [Hint: For any particular i,P

j xij � �xi�
� � ¼ 0.]

14. In single-factor ANOVA with I treatments
and J observations per treatment, let l ¼
ð1=IÞP li.

a. Express E X��
� �

in terms of l. [Hint:

X�� ¼ ð1=IÞPXi�]

b. Express E X
2
i�

	 

in terms of r and the

li’s. [Hint: For any rv Y, EðY2Þ ¼
VðYÞþ ½EðYÞ�2.]

c. Express E X
2
��

	 

in terms of l and r.

d. Express E(SSTr) in terms of l, r, and
the li’s. Then show that

EðMSTrÞ ¼ r2 þ J

I � 1

X
li � lð Þ2

e. Using the result of part (d), what is
E(MSTr) when H0 is true? When H0 is
false, how does E(MSTr) compare to r2?

11.2 Multiple Comparisons in ANOVA

When the computed value of the F statistic in single-factor ANOVA is not significant, the analysis is
terminated because no differences among the li’s have been identified. But when H0 is rejected, the
investigator will usually want to know which of the li’s are different from each other. A method for
carrying out this further analysis is called a multiple comparisons procedure.
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Several of the most frequently used such procedures are based on the following central idea. First
calculate a confidence interval for each pairwise difference li − lj with i < j. Thus if I = 4, the six
required CIs would be for l1 − l2 (but not also for l2 − l1), l1 − l3, l1 − l4, l2 − l3, l2 − l4, and
l3 − l4. Then if the interval for l1 − l2 does not include 0, conclude that l1 and l2 differ significantly
from each other; if the interval includes 0, the two li’s are judged not significantly different.
Following the same line of reasoning for each of the other intervals, we end up being able to judge for
each pair of li’s whether or not they differ significantly from each other.

The procedures based on this idea differ in the method used to calculate the various CIs. Here we
present a popular method that controls the simultaneous confidence level for all I

2

� � ¼ I I�1ð Þ=2
intervals calculated.

Tukey’s Procedure
Tukey’s procedure involves the use of another probability distribution.

DEFINITION Let Z1, Z2,…, Zm be m independent standard normal rvs, and let W be a v2m rv
independent of the Zi’s. Then the distribution of

Q ¼ max Zi � Zj
�� ��ffiffiffiffiffiffiffiffiffi
W=m

p ¼ max Z1; . . .; Zmð Þ �min Z1; . . .; Zmð Þffiffiffiffiffiffiffiffiffi
W=m

p
is called the studentized range distribution. The distribution has two parameters:
m = the number of Zi’s and m = denominator df. We denote the critical value that
captures upper-tail area a under the density curve of Q by Qa,m,m. A tabulation of
these critical values appears in Appendix Table A.9.

Theword “range” reflects the fact that the numerator ofQ is indeed the rangeof theZi’s.Dividing the range

by
ffiffiffiffiffiffiffiffiffi
W=v

p
is the same as dividing each individual Zi by

ffiffiffiffiffiffiffiffiffi
W=v

p
. But Zi=

ffiffiffiffiffiffiffiffiffi
W=v

p
has a (Student) t

distribution1; “studentizing” refers to the division by
ffiffiffiffiffiffiffiffiffi
W=v

p
. So Q is actually the range of m variables

that have the t distribution (but they are not independent because the denominator is the same for each
one).

The identification of the quantities in the definition of Q with single-factor ANOVA is as follows:

Zi ¼ Xi� � li
r=

ffiffiffi
J

p m ¼ I W ¼ SSE
r2

¼ ðIJ � IÞMSE
r2

m ¼ IJ� I

Substituting into Q gives

Q ¼
max

Xi� � li
r=

ffiffiffi
J

p � Xj: � lj
r=

ffiffiffi
J

p
����

����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIJ � IÞMSE

r2
=ðIJ � IÞ

r ¼ max Xi� � Xj� � li � lj
� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE=J
p

1“Student” was the pseudonym used by the statistician Gossett, who derived the t distribution but published his work
using the pseudonym “Student” because his employer, the Guinness Brewing Co., would not permit publication under
his own name.
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In this latter expression for Q, the denominator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
is the estimated standard deviation of

Xi� � li. By definition of Q and Qa, PðQ�QaÞ ¼ 1� a, so

1� a ¼ P
max Xi� � Xj� � li � lj

� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p �Qa;I;IðJ�1Þ

 !

¼ P
Xi� � Xj: � li � lj

� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p �Qa;I;IðJ�1Þ for all i; j

 !

¼ P �Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
�Xi� � Xj: � li � lj

� ��Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
for all i; j

	 

¼ P Xi� � Xj: � Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
� li � lj �Xi� � Xj� þQa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
for all i; j

	 


(whew!). Replacing Xi�;Xj�, and MSE by the values calculated from the data gives the following
result.

PROPOSITION For each i < j, form the interval

�xi� � �xj� � Qa;I;IJ�I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
ð11:2Þ

There are IðI � 1Þ=2 such intervals: one for l1 − l2, another for l1 − l3, …,
and the last for lI−1 − lI. Then the simultaneous confidence level that every
interval includes the corresponding value of li − lj is 100(1 � a)%.

Notice that the second subscript on Qa is I, whereas the second subscript on Fa used in the ANOVA
F test is I − 1. Qa;I;IJ�I can be obtained in R with the command qtukey(1 – a, I, IJ – I).

We will say more about the interpretation of “simultaneous” shortly. Each interval that doesn’t
include 0 yields the conclusion that the corresponding values of li and lj are different—we say that li
and lj “differ significantly” from each other.

Example 11.5 An experiment was carried out to compare five different brands of automobile oil
filters with respect to their ability to capture foreign material. Let li denote the true average amount of
material captured by brand i filters (i = 1, …, 5) under controlled conditions. A sample of J = 9 filters
of each brand was used, resulting in the following sample mean amounts: �x1� ¼ 14:5; �x2� ¼
13:8; �x3� ¼ 13:3; �x4� ¼ 14:3, and �x5� ¼ 13:1. We will assume for this example that the conditions for
inference (approximate normality and equal variance) are met by the data set. Table 11.4 is the
ANOVA table summarizing the first part of the analysis.

Since f = 37.84 > F.001,4,40 = 5.70, H0 is decisively rejected.
We now use Tukey’s procedure to look for significant differences among the li’s. From Appendix

Table A.9, Q.05,5,40 = 4.04 (the second subscript on Q is 5 and not 5 – 1 as in F). Applying Equation
(11.2), the CI for each li – lj is

Table 11.4 ANOVA table for Example 11.5

Source of variation df Sum of squares Mean square f

Treatments (brands) 4 13.32 3.33 37.84
Error 40 3.53 .088
Total 44 16.85
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ð�xi� � �xj�Þ � 4:04
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:088=9

p
¼ �xi� � �xj�
� �� 0:4

Due to the balanced design, the margin of error is the same on all 5
2

� �
¼ 10 Tukey CIs; if the sample

sizes differed, this would not be the case (see Section 11.3). The resulting CIs are displayed in
Table 11.5; those marked with an asterisk do not include zero:

Thus brands 1 and 4 are not significantly different from one another, but they are significantly
higher than the other three brands in their true average contents. Brand 2 is significantly better than 3
and 5 but worse than 1 and 4, and brands 3 and 5 do not differ significantly. ■

While the CIs in Table 11.5 correctly indicate which means are believed to be significantly
different, this display is rather unwieldy. It is preferable to list out the observed sample means (say,
from smallest to largest) and somehow indicate which are “close enough” that the corresponding
population means are not judged to be significantly different. The following box describes how
nonsignificant differences can be identified visually using an “underscoring pattern.”

Tukey’s Method
for Identifying
Significantly
Different li’s

1. List the sample means in increasing order (make sure to identify the corre-
sponding population/treatment for each �xi�).

2. Starting at the far left, use the Tukey intervals to determine which means are
not significantly different from the first one in the list. Underscore that set of
means with a single line segment.

3. Continue in this fashion for the secondmean, thirdmean, etc., alwaysunderscoring
in the rightward direction. Duplicate underscorings should only be drawn once.

Any pair of sample means not underscored by the same line correspond to a
pair of population or treatment means that are judged significantly different.

In fact, it is not necessary to construct the Tukey intervals in order to perform step 2. Rather, the CI

for li � lj will include 0 if and only if �xi� and �xj� differ by less than Qa;I;IðJ�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
, the margin of

error of the confidence interval (11.2). This margin of error is sometimes referred to as Tukey’s
honestly significant difference (HSD).

Table 11.5 Tukey’s simultaneous confidence intervals for Example 11.4

i j CI for li – lj i j CI for li – lj
1 2 (0.3, 1.1)* 2 4 (−0.9, −0.1)*
1 3 (0.8, 1.6)* 2 5 (0.3, 1.1)*
1 4 (−0.2, 0.6) 3 4 (−1.4, −0.6)*
1 5 (1.0, 1.8)* 3 5 (−0.2, 0.6)
2 3 (0.1, 0.9)* 4 5 (0.8, 1.6)*
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As an example, consider I = 5 with

�x2�\�x5�\�x4�\�x1�\�x3�

Suppose the Tukey confidence intervals for l2 – l5 and l2 – l4 include zero, but those for l2 – l1 and
l2 – l3 do not. Then we draw a line segment starting from 2 and extending to 4:

Group: 2 5 4 1 3
Sample mean: �x2� �x5� �x4� �x1� �x3�

Next, suppose the mean for group 5 is not significantly different from that of group 4. Since we have
already accounted for that set, no duplicate line is drawn. Finally, if groups 4 and 1 are not signif-
icantly different, that pair is underscored:

Group: 2 5 4 1 3
Sample mean: x2� x5� x4� x1� x3�

The fact that �x3� isn’t underlined at all indicates that l3 is statistically significantly different from all
other group means.

Example 11.6 (Example 11.5 continued) The five sample means, arranged in order, are

Brand of filter: 5 3 2 4 1
Sample mean: 13:1 13:3 13:8 14:3 14:5

Only two of the Tukey CIs included zero: the interval for l1 – l4 and that for l3 – l5. Equivalently,

only those two pairs of means differ by less than the honestly significant difference 4:04
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:088=9

p ¼
:4 The resulting underscoring pattern is

Brand of filter: 5 3 2 4 1
Sample mean: 13:1 13:3 13:8 14:3 14:5

The mean for brand 2 is not underlined at all, since l2 was judged to be significantly different from all
other means.

If �x2� ¼ 13:6 rather than 13.8 with HSD = .4, the underscoring configuration would be

Brand of filter: 5 3 2 4 1
Sample mean: 13:1 13:3 13:6 14:3 14:5

The interpretation of this underscoring must be done with care, since we seem to have concluded that
brands 5 and 3 do not differ significantly, 3 and 2 also do not, yet 5 and 2 do differ. One could say
here that although evidence allows us to conclude that brands 5 and 2 differ from each other, neither
has been shown to be significantly different from brand 3. ■

Example 11.7 Almost anyone who attends physical therapy receives transcutaneous electrical nerve
stimulation (TENS), possibly combined with a cold compress, to address pain. The article “Effect of
Burst TENS and Conventional TENS Combined with Cryotherapy on Pressure Pain Threshold”
(Physiotherapy 2015: 155–160) summarizes an experiment in which 112 healthy women were each
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randomly assigned to one of seven treatments listed in the accompanying table (so, J = 16 for each
treatment). After the treatment, researchers measured each woman’s pain threshold, in kg of force
applied to the top of the humerus, resulting in the accompanying data.

Pain threshold (kg of force)

Treatment �xi� si
(1) Control 2.8 0.7
(2) Placebo TENS 2.3 0.9
(3) Conventional TENS 3.2 1.0
(4) Burst TENS 4.3 0.9
(5) Cryotherapy 4.4 0.9
(6) Cryotherapy + burst TENS 5.7 0.8
(7) Cryotherapy + conventional TENS 3.0 0.7

Let li = the true mean pain threshold after the ith treatment (i = 1, …, 7). We wish to test the null
hypothesis H0: l1 ¼ � � � ¼ l7 against the alternative that not all li’s are equal. From the sample
means and standard deviations, SSTr = 133.67 and SSE = 75.75, giving the ANOVA table in
Table 11.6.

Since f ¼ 30:88[F:01;6;105 ¼ 2:98, H0 is rejected at the .01 level; in fact, P-value � 0. We
conclude that the true mean pain threshold differs across the seven treatments.

Next, we apply Tukey’s method. There are I = 7 treatments and 105 df for error, so Q:01;7;105 �
5:02 (interpolating from Table A.9) and Tukey’s HSD ¼ 5:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:72=16

p ¼ 1:06. Ordering the means
and underscoring yields

ð2Þ ð1Þ ð7Þ ð3Þ ð4Þ ð5Þ ð6Þ
2:3 2:8 3:0 3:2 4:3 4:4 5:7

Higher pain thresholds are considered better. In that respect, treatment 6 (cryotherapy plus burst
TENS) is the clear winner, since the mean pain threshold under that treatment is highest and sig-
nificantly different than all others. Treatments 4 and 5 (just burst TENS or just cryotherapy) are next-
best and are not significantly different from each other. Finally, the other four treatments are not
honestly significantly different—and, in particular, treatments 3 and 7 are comparable to the control
and placebo groups.

Many research journals and some statistical software packages express the underscoring scheme
with letter groupings. Figure 11.3 (p. 659) shows Minitab output from this analysis. The A, B, C
letter groupings correspond to the three nonoverlapping sets identified above: treatment 6, treatments
4 and 5, and the rest.

Table 11.6 ANOVA table for Example 11.7

Source of variation df Sum of squares Mean square f

Treatments 6 133.67 22.28 30.88
Error 105 75.75 0.72
Total 111 209.42
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The Interpretation of a in Tukey’s Procedure
We stated previously that the simultaneous confidence level is controlled by Tukey’s method. So
what does “simultaneous” mean here? Consider calculating a 95% CI for a population mean l based
on a sample from that population and then a 95% CI for a population proportion p based on another
sample selected independently of the first one. Prior to obtaining data, the probability that the first
interval will include l is .95, and this is also the probability that the second interval will include p.
Because the two samples are selected independently of each other, the probability that both intervals
will include the values of the respective parameters is (.95)(.95) = (.95)2 = .9025. Thus the simul-
taneous or joint confidence level for the two intervals is roughly 90%—if pairs of intervals are
calculated over and over again from independent samples, in the long run 90.25% of the time the first
interval will capture l and the second will include p. Similarly, if three CIs are calculated based on
independent samples, the simultaneous confidence level will be 100(.95)3% � 86%. Clearly, as the
number of intervals increases, the simultaneous confidence level that all intervals capture their
respective parameters will decrease.

Now suppose that we want to maintain the simultaneous confidence level at 95%. Then for two
independent samples, the individual confidence level for each would have to be 100

ffiffiffiffiffiffiffi
:95

p
% � 97:5%.

The larger the number of intervals, the higher the individual confidence level would have to be to
maintain the 95% simultaneous level.

The tricky thing about the Tukey intervals is that they are not based on independent samples—
MSE appears in every one, and various intervals share the same �xi�’s (e.g., in the case I = 4, three
different intervals all use �x1�). This implies that there is no straightforward probability argument for
ascertaining the simultaneous confidence level from the individual confidence levels. Nevertheless, if
Q.05 is used, the simultaneous confidence level is controlled at 95%, whereas using Q.01 gives a
simultaneous 99% level. To obtain a 95% simultaneous level, the individual level for each interval
must be considerably larger than 95%. Said in a slightly different way, to obtain a 5% experimentwise
or family error rate, the individual or per-comparison error rate for each interval must be considerably
smaller than .05.

Confidence Intervals for Other Parametric Functions
In some situations, a CI is desired for a function of the li’s more complicated than a difference
li � lj. Let h ¼P cili, where the ci’s are constants. One such function is 1

2 l1 þ l2ð Þ�
1
3 l3 þ l4 þ l5ð Þ, which in the context of Example 11.5 measures the difference between the group
consisting of the first two brands and that of the last three brands. Because the Xij’s are normally

Grouping Information Using the Tukey Method and 99% Confidence
Treatment N Mean Grouping
6 16 5.700 A
5 16 4.400 B
4 16 4.300 B
3 16 3.200 C
7 16 3.000 C
1 16 2.800 C
2 16 2.300 C

Means that do not share a letter are significantly different. 

Figure 11.3 Tukey’s method using Minitab ■
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distributed with E(Xij) = li and V(Xij) = r2, the natural estimator ĥ ¼Pi ciXi� is normally distributed,
unbiased for h, and

VðĥÞ ¼ V
X
i

ciXi�

 !
¼
X
i

c2i V Xi�
� � ¼ r2

J

X
i

c2i

Estimating r2 by MSE and forming r̂ĥ results in a t variable ðĥ� hÞ=r̂ĥ, which can be manipulated to
obtain the following 100(1 – a)% confidence interval for

P
cili:

X
ci�xi� � ta=2;IðJ�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE �

X
c2i =J

q
ð11:3Þ

Example 11.8 (Example 11.5 continued) The parametric function for comparing the first two (store)
brands of oil filter with the last three (national) brands is h ¼ 1

2 l1 þ l2ð Þ � 1
3 l3 þ l4 þ l5ð Þ, from

which

X
c2i ¼

1
2

� �2

þ 1
2

� �2

þ � 1
3

� �2

þ � 1
3

� �2

þ � 1
3

� �2

¼ 5
6

With ĥ ¼ 1
2 �x1� þ�x2�ð Þ � 1

3 �x3� þ�x4� þ�x5�ð Þ ¼ :583 and MSE = .088, a 95% CI for h is

:583� 2:021
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:088Þ � ð5=6Þ=9

p
¼ :583� :182 ¼ ð:401; :765Þ ■

Notice that in the foregoing example the coefficients c1, …, c5 satisfy
P

ci ¼ 1
2 þ 1

2 � 1
3 � 1

3 � 1
3 ¼ 0.

When the coefficients sum to 0, the linear combination h ¼P cili is called a contrast among the
means, and the analysis is available in a number of statistical software programs.

Sometimes an experiment is carried out to compare each of several “new” treatments to a control
treatment. In such situations, a multiple comparisons technique called Dunnett’s method is appro-
priate.

Exercises: Section 11.2 (15–26)

15. An experiment to compare the spreading
rates of five different brands of yellow
interior latex paint available in a particular
area used 4 gallons (J = 4) of each paint.
The sample average spreading rates (ft2/gal)
for the five brands were �x1� ¼ 462:0,
�x2� ¼ 512:8, �x3� ¼ 437:5, �x4� ¼ 469:3, and
�x5� ¼ 532:1. The computed value of F was
found to be significant at level a = .05. With
MSE = 272.8, use Tukey’s procedure to
investigate significant differences in the true
average spreading rates between brands.

16. In the previous exercise, suppose
�x3� ¼ 427:5. Now which true average
spreading rates differ significantly from each

other? Be sure to use the method of under-
scoring to illustrate your conclusions, and
write a paragraph summarizing your results.

17. Repeat the previous exercise supposing that
�x2� ¼ 502:8 in addition to �x3� ¼ 427:5.

18. Consider the data on maximum load for
crackedwood beams presented in Exercise 4.
Would it make sense to apply Tukey’s
method to this data? Why or why not?
[Hint: The P-value from the analysis of
variance is .169.]

19. Use Tukey’s procedure on the data of
Example 11.1 to identify differences in true
average compression strength among the
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four box types. Is your answer consistent
with the boxplot in Figure 11.1a?

20. Use Tukey’s procedure on the data of
Example 11.3 to identify differences in true
mean maximum power per unit area among
the five modules.

21. Of the five modules in Example 11.3, the
first two are existing commercial devices
and the last three are prototypes constructed
by the study’s authors. Compute a 95% t CI
for the contrast h ¼ 1

2 l1 þ l2ð Þ�
1
3 l3 þ l4 þ l5ð Þ.

22. The article “Iron and Manganese Present in
Underground Water Promote Biochemical,
Genotoxic, and Behavioral Alterations in
Zebrafish” (Environ. Sci. Pollut. Res. 2019:
23555–23570) reports the following data
on micronucleus frequency in the muscle
tissues for zebrafish exposed to varying
concentrations of iron and manganese.
Micronuclei are a warning sign of possible
DNA damage. There were J = 10 zebrafish
in each group.

Treatment �xi� si

1. Control 53.72 4.30
2. Fe 0.8 139.11 6.41
3. Fe 1.3 93.62 4.49
4. Mn 0.2 134.66 13.20
5. Mn 0.4 141.12 8.32
6. Fe 0.8/Mn 0.2 101.25 15.41
7. Fe 1.3/Mn 0.4 124.50 9.60

a. Perform an analysis of variance at the
.01 significance level. [Note: Though
unequal variances are a concern here,
the balanced study design should at least
partially mitigate that issue.]

b. ApplyTukey’smethod to determinewhich
treatments result in significantly different
mean micronucleus frequencies.

c. Suppose that 100(1 − a)% CIs for
k different parametric functions are
computed from the same ANOVA data
set. Then it is easily verified that the
simultaneous confidence level is at least
100(1 − ka)%. Compute CIs with
simultaneous confidence level at

least 98% for the contrasts
l1 � 1

6 l2 þ l3 þ l4 þ l5 þ l6 þ l7ð Þ
and 1

4 l2 þ l3 þl6 þ l7ð Þ � 1
2 l4 þ l5ð Þ.

23. Refer back to the bike helmet data of
Exercise 5.

a. Apply Tukey’s procedure at the .05 level
to determine which bike helmets have
honestly significantly different mean peak
linear acceleration under the specified
experimental conditions. Use SSE= 3900.

b. Seven of the 10 brands are considered
road helmets (elongated shape with
aerodynamic venting), while three
brands—BMIPS (1), GMIPS (5), and
NW (7)—are nonroad helmets. Com-
pute a 95% CI for the contrast h ¼
1
7 l2 þ � � � þ l10ð Þ � 1

3 l1 þ l5 þ l7ð Þ,
where the first sum spans across the
seven road helmet brands.

24. Consider the accompanying data on plant
growth after the application of different
types of growth hormone.

Hormone Growth
1 13 17 7 14
2 21 13 20 17
3 18 15 20 17
4 7 11 18 10
5 6 11 15 8

a. Perform an F test at level a = .05.
b. What happens when Tukey’s procedure

is applied?

25. Consider a single-factor ANOVA experi-
ment in which I = 3, J = 5, x1� ¼ 10,
�x2� ¼ 12, and �x3� ¼ 20. Determine a value
of SSE for which f > F.05,2,12, so that
H0: l1 = l2 = l3 is rejected, yet when
Tukey’s procedure is applied none of the
li’s differ significantly from each other.

26. Refer to the previous exercise and suppose
x1� ¼ 10, �x2� ¼ 15, and �x3� ¼ 20. Can you
now find a value of SSE that produces such
a contradiction between the F test and
Tukey’s procedure?
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11.3 More on Single-Factor ANOVA

In this section, we consider some additional issues relating to single-factor ANOVA. These include an
alternative description of the model parameters, power and b for the F test, the relationship of the test
to procedures previously considered, data transformation, a random effects model, and formulas for
the case of unequal sample sizes.

An Alternative Description of the ANOVA Model
The assumptions of single-factor ANOVA can be described succinctly through the model equation

Xij ¼ li þ eij

where eij represents a random deviation from the population or true treatment mean li. The eij’s are
assumed to be independent, normally distributed rvs (implying that the Xij’s are also) with E(eij) = 0
[so that E(Xij) = li] and V(eij) = r2 [from which V(Xij) = r2 for every i and j]. An alternative
description of single-factor ANOVA will give added insight and suggest appropriate generalizations
to models involving more than one factor. Define a parameter l by

l ¼ 1
I

XI
i¼1

li

and parameters a1, …, aI by

ai ¼ li � l ði ¼ 1; . . .; IÞ

Then the treatment mean li can be written as l + ai, where l represents the true average overall
response across all populations/treatments, and ai is the effect, measured as a departure from l, due to
the ith treatment. Whereas we initially had I parameters, we now have I + 1: l, a1, …, aI. However,
because

P
ai ¼ 0 (the average departure from the overall mean response is zero), only I of these new

parameters are independently determined, so there are as many independent parameters as there were
before. In terms of l and the ai’s, the model equation becomes

Xij ¼ li þ ai þ eij ði ¼ 1; . . .; I; j ¼ 1; . . .; JÞ

In the next two sections, we will develop analogous models for two-factor ANOVA. The claim that
the li’s are identical is equivalent to the equality of the ai’s, and because

P
ai ¼ 0, the null

hypothesis becomes

H0 : a1 ¼ a2 ¼ � � � ¼ aI ¼ 0

In Section 11.1, it was stated that MSTr is an unbiased estimator of r2 when H0 is true but otherwise
tends to overestimate r2. More precisely, Exercise 14 established that

EðMSTrÞ ¼ r2 þ J

I � 1

X
li � lð Þ2 ¼ r2 þ J

I � 1

X
a2i

When H0 is true,
P

a2i ¼ 0 so E(MSTr) = r2 (MSE is unbiased whether or not H0 is true). If
P

a2i is
used as a measure of the extent to which H0 is false, then a larger value of

P
a2i will result in a greater
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tendency for MSTr to overestimate r2. More generally, formulas for expected mean squares for
multifactor models are used to suggest how to form F ratios to test various hypotheses.

Power and b for the F Test
Consider a set of parameter values a1, a2, …, aI for which H0 is not true. The power of the ANOVA
F test is the probability that H0 is rejected when that set is the set of true values, and the probability of
a type II error is b = 1 – power. One might think that power and b would have to be determined
separately for each different configuration of ai’s. Fortunately, power for the F test depends on the ai’s
only through

P
a2i , and so it can be simultaneously evaluated for many different alternatives. For

example,
P

a2i ¼ 4 for each of the following sets of ai’s, so power is identical for all three
alternatives:
1. a1 ¼ �1, a2 ¼ �1, a3 ¼ 1, a4 ¼ 1

2. a1 ¼ � ffiffiffi
2

p
, a2 ¼

ffiffiffi
2

p
, a3 ¼ 0, a4 ¼ 0

3. a1 ¼ � ffiffiffi
3

p
, a2 ¼

ffiffiffiffiffiffiffiffi
1=3

p
, a3 ¼

ffiffiffiffiffiffiffiffi
1=3

p
, a4 ¼

ffiffiffiffiffiffiffiffi
1=3

p
When H0 is false, the test statistic MSTr/MSE has a noncentral F distribution, a three-parameter
family. For one-way ANOVA, the first two parameters are still m1 = numerator df = I – 1 and m2 =
denominator df = IJ – I, while the noncentrality parameter k is given by

k ¼ J

r2
X

a2i

Power is an increasing function of the noncentrality parameter k (and b is a decreasing function of k).
Thus, for fixed values of r2 and J, the null hypothesis is more likely to be rejected for alternatives far
from H0 (large

P
a2i ) than for alternatives close to H0. For a fixed value of

P
a2i , power increases and

b decreases as the sample size J on each treatment increases, whereas power decreases and b
increases as the error variance r2 increases (since greater underlying variability makes it more difficult
to detect any given departure from H0).

Because hand computation of power, b, and sample size for the F test are quite difficult (as in the
case of t tests), software is typically required. For one-way ANOVA, and with the noncentral
F parameters specified as above,

b ¼ P H0 is not rejected when H0 is falseð Þ
¼ P F\Fa;I�1;IJ�I whenF� noncentralF

� �
¼ noncentral cdf evalulated atFa;I�1;IJ�I

and power = 1 – b. Many statistical packages (including SAS, JMP, and R) have a function that
calculates the cumulative area under a noncentral F curve (required inputs are the critical value Fa, the
numerator df, the denominator df, and k), and this area is b.

Example 11.9 The effects of four different heat treatments on yield point (tons/in2) of steel ingots
are to be investigated. A total of J = 8 ingots will be cast using each treatment. Suppose the true
standard deviation of yield point for any of the four treatments is r = 1. How likely is it that H0 will
not be rejected at level .05 if three of the treatments have the same expected yield point and the other
treatment has an expected yield point that is 1 ton/in2 greater than the common value of the other
three (i.e., the fourth yield is on average 1 standard deviation above those for the first three
treatments)?
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Suppose that l1 = l2 = l3 and l4 = l1 + 1, so l ¼ P
lið Þ=4 ¼ l1 þ 1

4. Then a1 ¼ l1 � l ¼ � 1
4,

a2 ¼ � 1
4, a3 ¼ � 1

4, a4 ¼ 3
4 so

k ¼ 8
12

� 1
4

� �2

þ � 1
4

� �2

þ � 1
4

� �2

þ 3
4

� �2
" #

¼ 6

The degrees of freedom are m1 = I – 1 = 3 and m2 = IJ – I = 28, and the F critical value for the .05 test
is F:05;3;28 ¼ 2:947. The probability of a type II error here is b � .54, obtained through the R
command pf(2.947,df1=3,df2=28,ncp=6), and power � .46. This power is rather low, so
we might decide to increase the value of J. How many ingots of each type would be required to yield
b � .05 (about 95% power) for the alternative under consideration? By trying different values of J, it
can be verified that J = 24 will meet the requirement, but any smaller J will not. ■

In lieu of directly accessing the noncentral F cdf, some software packages will calculate power
when the user specifies all the necessary information. For example, R has a function that allows
specification of all I of the means, along with any three among J, r2, a, and power. The function
calculates whichever quantity is unspecified. For example, we might wish to calculate the power
of the test with a = .05, r = 1, I = 4, J = 2, l1 = 100, l2 = 101, l3 = 102, and l4 = 106.
The R function calculates power = .904 (and so b = .096).

Minitab v.19 does something rather different. The user is asked to specify the maximum difference
between li’s rather than the individual means. For example, in the previous scenario the maximum
difference is 106 – 100 = 6. However, power depends not only on this maximum difference but on the
values of all the li’s. In this situation Minitab calculates the smallest possible value of power subject
to l1 = 100 and l4 = 106, which occurs when the two other li’s are both halfway between 100 and
106. This power is .86, so we can say that the power is at least .86 and b is at most .14 when the two
most extreme li’s are separated by 6. The software will also determine the necessary common sample
size if maximum difference and minimum power are specified.

Relationship of the F Test to the t Test
When the number of populations is just I = 2, the ANOVA F test is testing H0: l1 = l2 versus
Ha: l1 6¼ l2. In this case, a two-tailed, two-sample t test could also be used. In Section 10.2, we
mentioned the pooled t test, which requires equal variances, as an alternative to the two-sample
t procedure. With a little algebra, it can be shown that the single-factor ANOVA F test and the two-
tailed pooled t test are equivalent: for any given data set, the P-values for the two tests will be
identical, so the same conclusion will be reached by either test. (The test statistic values are related by
f = t2.)

The two-sample t test is more flexible than the F test when I = 2 for two reasons. First, it is not
based on the assumption that r1 = r2; second, it can be used to test Ha: l1 > l2 (an upper-tailed t test)
or Ha: l1 < l2 (a lower-tailed test) as well as Ha: l1 6¼ l2.

Single-Factor ANOVA When Sample Sizes Are Unequal
When the sample sizes from each population or treatment are not equal (i.e., an unbalanced study
design), let J1, J2, …, JI denote the I sample sizes and let n ¼Pi Ji denote the total number of
observations. The accompanying box gives ANOVA formulas and the test procedure.
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Grand mean: X�� ¼ 1
n

PI
i¼1

PJi
j¼1 Xij ¼ 1

n

PI
i¼1 JiXi� (a weighted average of the sample means)

Fundamental ANOVA Identity: SST = SSTr + SSE
where the three sums of squares and associated dfs are

SSTr ¼
XI
i¼1

XJi
j¼1

Xi� � X��
� �2 ¼XI

i¼1

Ji Xi� � X��
� �2

df ¼ I � 1

SSE ¼
XI
i¼1

XJi
j¼1

Xij � Xi�
� �2 ¼XI

i¼1

Ji � 1ð ÞS2i df ¼
XI
i¼1

Ji � 1ð Þ ¼ n� I

SST ¼
XI
i¼1

XJi
j¼1

Xij � X��
� �2 ¼ SSTrþ SSE df ¼ n� 1

Test statistic value:

f ¼ MSTr
MSE

whereMSTr ¼ SSTr
I � 1

and MSE ¼ SSE
n� I

Rejection region: f 	Fa;I�1;n�I

P-value: area under the FI�1;n�I curve to the right of f

Verification of the fundamental ANOVA identity proceeds as in the case of equal sample sizes.
However, it is somewhat trickier here to show that MSTr/MSE has the F distribution under H0.
Validity of the test procedure requires assuming, as before, that the population distributions are all
normal with the same variance. The methods described at the end of Section 11.1 for assessing these
with the residuals eij ¼ xij � �xi� can also be applied here.

Example 11.10 The article “On the Development of a New Approach for the Determination of
Yield Strength in Mg-Based Alloys” (Light Metal Age, Oct. 1998: 51–53) presented the following
data on elastic modulus (GPa) obtained by a new ultrasonic method for specimens of an alloy
produced using three different casting processes.

Process Observations Ji �xi� si

Permanent molding 45.5 45.3 45.4 44.4 44.6 43.9 44.6 44.0 8 44.71 .624
Die casting 44.2 43.9 44.7 44.2 44.0 43.8 44.6 43.1 8 44.06 .501
Plaster molding 46.0 45.9 44.8 46.2 45.1 45.5 6 45.58 .549

22

Let l1, l2, and l3 denote the true average elastic moduli for the three different processes under the
given circumstances. The relevant hypotheses are H0: l1 = l2 = l3 versus Ha: at least two of the li’s
are different. The test statistic is, of course, F = MSTr/MSE, based on I – 1 = 2 numerator df and
n – I = 22 – 3 = 19 denominator df. Relevant quantities include
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�x:: ¼ 1
22

½8ð357:7Þþ 8ð352:5Þþ 6ð273:5Þ� ¼ 44:71

SSTr ¼ 8ð44:71� 44:71Þ2 þ 8ð44:06� 44:71Þ2 þ 6ð45:58� 44:71Þ2 ¼ 7:93

SSE ¼ ð8� 1Þð:624Þ2 þð8� 1Þð:501Þ2 þð6� 1Þð:549Þ2 ¼ 6:00

The remaining computations are displayed in the accompanying ANOVA table. Since f = 12.56 >
F.001,2,19 = 10.16, the P-value is smaller than .001. Thus the null hypothesis should be rejected at any
reasonable significance level; there is compelling evidence for concluding that true average elastic
modulus somehow depends on which casting process is used.

Source of variation df Sum of squares Mean square f

Treatments 2 7.93 3.965 12.56
Error 19 6.00 .3158
Total 21 13.93

■

Multiple Comparisons When Sample Sizes Are Unequal
There is more controversy among statisticians regarding which multiple comparisons procedure to
use when sample sizes are unequal than there is in the case of equal sample sizes. The procedure that
we present here is called the Tukey–Kramer procedure for use when the I sample sizes J1, J2, …, JI
are reasonably close to each other (“mild imbalance”). It modifies Tukey’s method [Equation (11.2)]
by using averages of pairs of 1/Ji’s in place of 1/J. Let

dij ¼ Qa;I;n�I �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE
2

1
Ji

þ 1
Jj

� �s

Then the probability is approximately 1 – a that

Xi� � Xj�
� �� dij � li � lj � Xi� � Xj�

� �þ dij

for every i and j (i = 1, …, I and j = 1, …, I) with i 6¼ j.
The simultaneous confidence level 100(1 – a)% is now only approximate. The underscoring

method can still be used, but now the honestly significant difference dij used to decide whether �xi� and
�xj� can be connected by a line segment will depend on Ji and Jj.

Example 11.11 (Example 11.10 continued) The sample sizes for the elastic modulus data were
J1 = 8, J2 = 8, J3 = 6, and I = 3, n – I = 19, MSE = .316. A simultaneous confidence level of
approximately 95% requires Q.05,3,19 = 3.59, from which

d12 ¼ 3:59

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:316
2

1
8
þ 1

8

� �s
¼ :713 d13 ¼ :771 d23 ¼ :771

Since �x1� � �x2� ¼ 44:71� 44:06 ¼ :65\d12, l1 and l2 are judged not significantly different. The
accompanying underscoring scheme shows that l1 and l3 differ significantly, as do l2 and l3.
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■

Data Transformation
The use of ANOVA methods can be invalidated by substantial differences in the variances r21; . . .; r

2
I ,

which until now have been assumed equal with common value r2. It sometimes happens that
V Xij

� � ¼ r2i ¼ g lið Þ, a known function of li (so that when H0 is false, the variances are not equal).
For example, if Xij has a Poisson distribution with parameter li (approximately normal if li 	 10),
then r2i ¼ li, so g(li) = li is the known function. In such cases, one can often transform the Xij’s to
h(Xij)’s so that they will have approximately equal variances (while hopefully leaving the transformed
variables approximately normal), and then the F test can be used on the transformed observations.
The basic idea is that, if h(�) is a smooth function, then we can express it approximately using the first
terms of a Taylor series: h(Xij) � h(li) + h′(li)(Xij – li). Then V[h(Xij)] � V(Xij) � [h′(li)]

2 =
g(li) � [h′(li)]2. We now wish to find the function h(�) for which g(li) � [h′(li)]2 = c (a constant) for
every i. Solving this for h′(li) and integrating give the following result.

PROPOSITION If V(Xij) = g(li), a known function of li, then a transformation h(Xij) that
“stabilizes the variance” so that V[h(Xij)] is approximately the same for

each i is given by hðxÞ / R ½gðxÞ��1=2dx.

In the Poisson case, g(x) = x, so h(x) should be proportional to
R
x�1=2dx ¼ 2x1=2. Thus Poisson data

should be transformed to h xij
� � ¼ ffiffiffiffiffi

xij
p

before the analysis.

A Random Effects Model
The single-factor problems considered so far have all been assumed to be examples of a fixed effects
ANOVA model. By this we mean that the chosen levels of the factor under study are the only ones
considered relevant by the experimenter. The single-factor fixed effects model is

Xij ¼ lþ ai þ eij with
X

ai ¼ 0 ð11:4Þ

where the eij’s are random and both l and the ai’s are fixed parameters whose values are unknown.
In some single-factor problems, the particular levels studied by the experimenter are chosen, either

by design or through sampling, from a large population of levels. For example, to study the effect of
using different operators on task performance time for a particular machine, a sample of five operators
might be chosen from a large pool of operators. Similarly, the effect of soil pH on the yield of soybean
plants might be studied by using soils with four specific pH values chosen from among the many
possible pH levels. When the levels used are selected at random from a larger population of possible
levels, the factor is said to be random rather than fixed, and the fixed effects model (11.4) is no longer
appropriate. An analogous random effects model is obtained by replacing the fixed ai’s in (11.4) by
random variables. The resulting model description is

2. Die 1. Permanent 3. Plaster
44.06 44.71 45.58
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Xij ¼ lþAi þ eij with E Aið Þ ¼ E eij
� � ¼ 0

V eij
� � ¼ r2 V Aið Þ ¼ r2A

ð11:5Þ

with all Ai’s and eij’s normally distributed and independent of each other.

The condition E(Ai) = 0 in (11.5) is similar to the condition
P

ai ¼ 0 in (11.4); it states that the
expected or average effect of the ith level measured as a departure from l is zero.

For the random effects model (11.5), the hypothesis of no effects due to different levels is
H0 : r2A ¼ 0, which says that different levels of the factor contribute nothing to variability of the
response. Critically, although the hypotheses in the single-factor fixed and random effects models are
different, they are tested in exactly the same way: by forming F = MSTr/MSE and rejecting H0 if
f 	 Fa,I–1,n–I. This can be justified intuitively by noting in the random effects model that
E(MSE) = r2 (as for fixed effects), whereas

EðMSTrÞ ¼ r2 þ 1
I � 1

n�
P

J2i
n

� �
r2A ð11:6Þ

where again J1, J2, …, JI are the sample sizes and n ¼P Ji. The factor in parentheses on the right
side of (11.6) is nonnegative, so once again E(MSTr) = r2 if H0 is true (i.e., if r2A ¼ 0) and
E(MSTr) > r2 if H0 is false.

Example 11.12 When items are machined out of metal (or plastic or wood) sheets by drills,
undesirable burrs form along the edge. The article “Observation of Drilling Burr and Finding out the
Condition for Minimum Burr Formation” (Int. J. Manuf. Engr. 2014) reports on a study of the effect
that cutting speed has on burr size. Eighteen measurements were made at each of three speeds (20, 25,
and 31 m/min) that were randomly selected from the range of possible speeds for the particular
equipment used in the experiment. Each measurement is the burr height (mm) from drilling into a
low-alloy steel specimen. The data is summarized in the accompanying table along with the derived
ANOVA table. The very small f statistic and correspondingly large P-value indicates that H0: r2A ¼ 0
should not be rejected. The data does not indicate cutting speed impacts burr size.

Speed (m/min) �xi� si
20 1.558 2.018
25 1.998 2.415
31 1.867 2.148

Source of variation df SS MS f P-value

Cutting speed 2 1.837 0.9186 0.19 .828
Error 51 246.795 4.8931
Total 53 248.632

■
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Exercises: Section 11.3 (27–44)

27. The following data refers to yield of
tomatoes (kg/plot) for four different levels
of salinity; salinity level here refers to
electrical conductivity (EC), where the
chosen levels were EC = 1.6, 3.8, 6.0, and
10.2 nmhos/cm:

EC Yield

1.6 59.5 53.3 56.8 63.1 58.7
3.8 55.2 59.1 52.8 54.5
6.0 51.7 48.8 53.9 49.0

10.2 44.6 48.5 41.0 47.3 46.1

Use the F test at level a = .05 to test for any
differences in true average yield due to the
different salinity levels.

28. Apply the modified Tukey’s method to the
data in the previous exercise to identify
significant differences among the li’s.

29. A study at Bentley College, a large business
school in the eastern United States, exam-
ined students’ anxiety levels toward the
subject of accounting (“Determinants of
Accounting Anxiety in Business Students,”
J. College Teach. Learn. 2004). A repre-
sentative sample of 1020 students com-
pleted the Accounting Anxiety Rating Scale
(AARS) questionnaire; higher scores (out
of 100) indicate greater anxiety. Summary
data broken down by grade level appears in
the accompanying table.

Class level n �x s

Freshman 86 48.95 9.13
Sophomore 224 51.45 11.29
Junior 225 52.89 11.32
Senior 198 52.92 11.32
Graduate 287 45.55 10.10

a. Comment on the plausibility (or neces-
sity) of the normality and equal variance
assumptions for this example.

b. Test at a = .05 the hypothesis that the
mean accounting anxiety level for
business students varies by class level.

c. Apply the Tukey–Kramer method to
identify significant differences among
the li’s.

30. The article “From Dark to Light: Skin
Color and Wages among African Ameri-
cans” (J. Human Res. 2007: 701–738)
includes the following information on
hourly wages ($) for representative samples
of the indicated populations.

Skin color n �x s

White 513 15.94 7.73
Light Black 51 14.42 6.05
Medium Black 177 13.23 6.64
Dark Black 207 11.72 5.60

a. Does population mean hourly wage
appear to depend on skin color? Carry
out an appropriate test of hypotheses.

b. Identify significant differences among
the li’s at the .05 significance level.

31. The authors of the article “Exploring the
Impact of Social Media Practices on Wine
Sales in US Wineries” (J. Direct Data,
Digital Market. Pract. 2016: 272–283)
interviewed 361 winery managers. Each
manager was asked to report, as a percent-
age of sales, the impact of social media use
on their wine sales. Each winery’s social
media presence was then categorized by the
number of social media platforms it used:
0–2, 3–5, or 6 or more. Summary infor-
mation appears in the accompanying table.
Test to see whether an association exists
between social media presence and sales at
the .01 significance level.

No. of platforms n Mean SD

Two or fewer 107 12.76 13.00
Three to five 164 17.23 14.07
Six or more 90 21.56 17.35
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32. The article “Can You Test Me Now?
Equivalence of GMA Tests on Mobile and
Non-Mobile Devices” (Int. J. Select Assess.
2017: 61–71) describes a study in which
1769 people were recruited through Ama-
zon Mechanical Turk to take a general
mental ability test. (Researchers used the
WPT-R test, a variation on the Wonderlic
Personnel Test used by the NFL to evaluate
players.) Participants were randomly
assigned to take the test on one of three
electronic devices; the data is summarized
below.

Device n Mean score SD

Computer 724 33.98 7.65
Tablet 476 34.40 7.75
Smartphone 569 34.26 7.59

The goal of the study was to determine
whether the three devices can be considered
“equivalent” for the purpose of adminis-
tering mental ability tests. Perform an
ANOVA at the .05 significance level, and
explain what you discover.

33. Lipids provide much of the dietary energy
in the bodies of infants and young children.
There is a growing interest in the quality of
the dietary lipid supply during infancy as a
major determinant of growth, visual and
neural development, and long-term health.
The article “Essential Fat Requirements of
Preterm Infants” (Amer. J. Clin. Nutrit.
2000: 245S–250S) reported the following
data on total polyunsaturated fats (%) for
infants who were randomized to four dif-
ferent feeding regimens: breast milk, corn-
oil-based formula, soy-oil-based formula,
or soy-and-marine-oil-based formula:

Regimen Sample
size

Sample
mean

Sample
SD

Breast
milk

8 43.0 1.5

CO 13 42.4 1.3
SO 17 43.1 1.2
SMO 14 43.5 1.2

a. What assumptions must be made about
the four total polyunsaturated fat distri-
butions before carrying out a single-
factor ANOVA to decide whether there
are any differences in true average fat
content?

b. Carry out the test suggested in part (a).
What can be said about the P-value?

34. Samples of six different brands of diet/
imitation margarine were analyzed to deter-
mine the level of physiologically active
polyunsaturated fatty acids (PAPFUA, in
percentages). The data below is consistent
with a study carriedout byConsumerReports:

Brand PAPFUA

Imperial 14.1 13.6 14.4 14.3
Parkay 12.8 12.5 13.4 13.0 12.3
Blue Bonnet 13.5 13.4 14.1 14.3
Chiffon 13.2 12.7 12.6 13.9
Mazola 16.8 17.2 16.4 17.3 18.0
Fleischmann’s 18.1 17.2 18.7 18.4

a. Use ANOVA to test for differences
among the true average PAPFUA per-
centages for the different brands.

b. Compute CIs for all (li – lj)’s.
c. Mazola and Fleischmann’s are corn-

based, whereas the others are soybean-
based. Compute a CI for

l1 þ l2 þ l3 þ l4
4

� l5 þ l6
2

[Hint: Modify the expression for VðĥÞ that
led to (11.3) in the previous section.]

35. Subacromial impingement syndrome
(SIS) refers to shoulder pain resulting from
a particular impingement of the rotator cuff
tendon. The article “Evaluation of the
Effectiveness of Three Physiotheraputic
Treatments for SIS” (Physiotherapy 2016:
57–63) reports a study in which 99 SIS
sufferers were randomly assigned to receive
one of three treatments across 20 sessions.
The Constant–Murley score (CMS), a
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standard measure of shoulder functionality
and pain, was administered to each subject
before the experiment and again one month
post-treatment. The accompanying table
summarizes the change in CMS (higher
numbers are better) for the subjects.

Treatment n Mean SD

Ultrasound 32 5.1 10.3
Phonophoresis 33 6.4 9.3
Iontophoresis 34 6.5 18.1

Test to see whether the true mean increase
in CMS differs across the three different
treatments, at the a = .05 significance level.

36. In single-factor ANOVA with sample sizes
Ji (i = 1, …, I), show that SSTr ¼P

i Ji Xi� � X��
� �2¼Pi JiX

2
i� � nX

2
��, where

n ¼Pi Ji.

37. When sample sizes are equal (Ji = J), the
parameters a1, a2, …, aI of the alternative
parameterization to the model equation are
restricted by

P
ai ¼ 0. For unequal sample

sizes, the most natural restriction isP
Jiai ¼ 0. Use this to show that

EðMSTrÞ ¼ r2 þ 1
I � 1

X
Jia

2
i

What is E(MSTr) when H0 is true? [This
expectation is correct if

P
Jiai ¼ 0 is

replaced by the restriction
P

ai ¼ 0, or any
other single linear restriction on the ai’s
used to reduce the model to I independent
parameters, but

P
Jiai ¼ 0 simplifies the

algebra and yields natural estimates for the
model parameters.]

38. Reconsider Example 11.9 involving an
investigation of the effects of different heat
treatments on the yield point of steel ingots.

a. If J = 8 and r = 1, what is b for a level
.05 F test when l1 = l2, l3 = l1 – 1,
and l4 = l1 + 1?

b. For the alternative li’s of part (a), what
value of J is necessary to obtain b = .05?

c. If there are I = 5 heat treatments,
J = 10, and r = 1, what is b for the level
.05 F test when four of the li’s are
equal and the fifth differs by 1 from the
other four?

39. For unequal sample sizes, the noncentrality
parameter for F test power calculations is
k ¼P Jia2i =r

2. Referring to Exercise 27,
what is the power of the test when l2 = l3,
l1 = l2 – r, and l4 = l2 + r?

40. The following data on number of cycles to
failure (
106) appears in the article “An
Experimental Study of Influence of Lubri-
cation Methods on Efficiency and Contact
Fatigue Life of SpurGears” (J. Tribol.2018).

Lubrication
condition

Cycles to failure (
106)

D1 18.79 10.44 14.62 12.53 8.35 14.62
J1 16.70 18.79 12.53 26.10 10.44 18.27
J2 10.44 14.62 16.70 29.23 22.97 18.50
J4 6.26 6.26 6.26 6.26 4.70 5.22

a. Calculate the standard deviation of each
sample. Why should we be reluctant to
proceed with an analysis of variance?

b. Take the logarithm of the observations.
Do these transformedvalues adhere better
to the conditions for ANOVA? Explain.

c. Perform one-way ANOVA on these
transformed values.

41. Many studies have been conducted to
measure mercury (Hg) levels in fish, but
little information exists on Hg concentra-
tions in marine mammals. The article
“Factors Influencing Exposure of North
American River Otters…to Mercury Rela-
tive to a Large-Scale Reservoir in Northern
British Columbia, Canada” (Ecotoxicology
2019: 343–353) describes a study in which
river otters living in five Canadian
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reservoirs were tested for Hg concentration
(mg/kg). The accompanying summary
information was extracted from a graph in
the article.

Hg
concentration

ln(Concentration)

Reservoir n Mean SD Mean SD

PW 15 4.1 3.0 1.30 .41
MK 7 9.8 4.5 2.28 .21
NW 20 14.2 6.7 2.62 .18
50K 20 16.1 10.4 2.75 .20
FR 27 18.2 7.1 2.82 .38

Hg concentration distributions at all five
reservoirs were heavily right-skewed.

a. Why should we hesitate to perform one-
way ANOVA on the Hg concentration
data?

b. Consider the transformation y =
ln(concentration). Estimated summary
information appears above, and taking
the logarithm greatly reduces skewness.
Apply the ANOVA F test to the trans-
formed data, and report your findings at
the .05 significance level.

c. Apply Tukey’s method to the log-
transformed data, if appropriate.

42. Simplify E(MSTr) for the random effects
model when J1 = J2 = ��� = JI = J.

43. Suppose that Xij is a binomial variable with
parameters n and pi (so it is approximately
normal when npi 	 10 and nqi 	 10).
Then since li ¼ npi, V Xij

� � ¼ r2i ¼
npi 1� pið Þ ¼ li 1� li=nð Þ. How should
the Xij’s be transformed so as to stabilize
the variance? [Hint: g lið Þ ¼ li 1� li=nð Þ.]

44. In an experiment to compare the quality of
four different brands of magnetic tape
(A–D), five 5000-foot reels of each brand
were selected and the number of cosmetic
flaws on each reel was determined.

Brand No. of flaws

A 10 5 12 14 8
B 14 12 17 9 8
C 13 18 10 15 18
D 17 16 12 22 14

It is believed that the number of flaws has
approximately a Poisson distribution for
each brand. Analyze the data at level .01 to
see whether the expected number of flaws
per reel is the same for each brand.

11.4 Two-Factor ANOVA without Replication

In many situations there are two factors of simultaneous interest. For example, a baker might
experiment with I = 3 temperatures (325, 350, 375 °F) and J = 2 baking times (45 min, 60 min) to
optimize a new cake recipe. Or, an industrial engineer might wish to study the surface roughness
resulting from a certain machining process; she might carry out an experiment at various combina-
tions of cutting speed and feed rate.

Call the two factors of interest A and B. When factor A has I levels and factor B has J levels, there
are IJ different combinations (pairs) of levels of the two factors, each called a treatment. If the data
includes multiple observations for each treatment, the study is said to include replication. With Kij

= the number of observations on the treatment (factor A, factor B) = (i, j), we focus in this section on
the case Kij = 1 (i.e., no replication), so that the data consists of IJ observations. We will first discuss
the fixed effects model, in which the only levels of interest for the two factors are those actually
represented in the study. The case in which at least one factor is random is considered briefly at the
end of the section.
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Example 11.13 Is it really as easy to remove marks on fabrics from erasable pens as the word
“erasable” might imply? Consider the following data from an experiment to compare three different
brands of pens and four different wash treatments with respect to their ability to remove marks on a
particular type of fabric (based on “An Assessment of the Effects of Treatment, Time, and Heat on the
Removal of Erasable Pen Marks from Cotton and Cotton/Polyester Blend Fabrics,” J. Test. Eval.
1991: 394–397). The response variable is a quantitative indicator of overall specimen color change;
the lower this value, the more marks were removed.

Washing treatment

1 2 3 4 Average

Brand of pen
1 .97 .48 .48 .46 .598
2 .77 .14 .22 .25 .345
3 .67 .39 .57 .19 .455
Average .803 .337 .423 .300

Is there any difference in the true average amount of color change due either to the different brands
of pen or to the different washing treatments? ■

As in single-factor ANOVA, double subscripts are used to identify random variables and observed
values. Let

Xij = the random variable denoting the measurement when (factor A, factor B) = (i, j)
xij = the observed value of Xij

The xij’s are usually presented in a two-way table in which the ith row contains the observed values
when factor A is held at level i and the jth column contains the observed values when factor B is held
at level j. In the erasable-pen experiment of Example 11.13, the number of levels of factor A (pen
brand) is I = 3, the number of levels of factor B (washing treatment) is J = 4; x13 = .48, x22 = .14,
and so on.

Whereas in single-factor ANOVA we were interested only in row means and the grand mean, here
we are interested also in column means. Let

Xi� ¼ the average of data obtained
when factorA is held at level i

¼ 1
J

XJ
j¼1

Xij

X�j ¼ the average of data obtained
when factorB is held at level j

¼ 1
I

XI
i¼1

Xij

X�� ¼ the grand mean ¼ 1
IJ

XI
i¼1

XJ
j¼1

Xij

with observed values �xi�, �x�j, and �x��. Intuitively, to see whether there is any effect due to the levels of
factor A, we should compare the observed �xi�’s with each other, and information about the different
levels of factor B should come from the �x�j’s.
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A Two-Factor Fixed Effects Model
Proceeding by analogy to single-factor ANOVA, one’s first inclination in specifying a model is to let
lij = the true average response when (factor A, factor B) = (i, j), giving IJ mean parameters. Then let

Xij ¼ lij þ eij

where eij is the random amount by which the observed value differs from its expectation, and the eij’s
are assumed normal and independent with common variance r2. Unfortunately, there is no valid test
procedure for this choice of parameters. The reason is that under the alternative hypothesis of interest,
the lij’s are free to take on any values whatsoever and r2 can be any value greater than zero, so that
there are IJ + 1 freely varying parameters. But there are only IJ observations, so after using each xij as
an estimate of lij, there is no way to estimate r2.

To rectify this problem of a model having more parameters than observed values, we must specify
a model that is realistic yet involves relatively few parameters. For the no-replication (Kij = 1)
scenario, we assume the existence of a parameter l, I parameters a1, a2,…, aI, and J parameters b1,
b2,…, bJ such that

Xij ¼ lþ ai þ bj þ eij ði ¼ 1; . . .; I; j ¼ 1; . . .; JÞ ð11:7Þ

Taking expectations on both sides of (11.7) yields

lij ¼ lþ ai þ bj ð11:8Þ

The model specified in (11.7) and (11.8) is called an additive model, because each mean response lij
is the sum of a true grand mean (l), an effect due to factor A at level i (ai), and an effect due to factor
B at level j (bj). The difference between mean responses for factor A at levels i and i′ when B is held at
level j is lij – li′j . Critically, when the model is additive,

lij � li0j ¼ ðlþ ai þ bjÞ � ðlþ ai0 þ bjÞ ¼ ai � ai0

which is independent of the level j of the factor B. A similar result holds for lij – lij′. Thus additivity
means that the difference in mean responses for two levels of one of the factors is the same for all
levels of the other factor. Figure 11.4a shows a set of mean responses that satisfy the condition of
additivity (which implies parallel lines), and Figure 11.4b shows a nonadditive configuration of mean
responses.

1 2 3 4

Levels of A

1 2 3 4

Levels of A

a b

Levels of B 

Mean response

Levels of B

Mean response

Figure 11.4 Mean responses for two types of model: (a) additive; (b) nonadditive
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If additivity does not hold, we say that interaction is present. Factors A and B have an interaction
effect on the response variable if the effect of factor A on the (mean) response value depends upon the
level of factor B, and vice versa. The foregoing discussion implies that an additive model assumes
there is no interaction effect. The graphs in Figure 11.4 are called interaction plots; Figure 11.4a
displays data consistent with no interaction effect, whereas Figure 11.4b indicates a potentially strong
interaction.

When Kij = 1, there is insufficient data to estimate any potential interaction effects, and so the
additive model specified by (11.7) and (11.8) must be used. In Section 11.5, where Kij > 1, we will
consider models that include interaction effects.

Example 11.14 (Example 11.13 continued) When the observed xij’s are plotted in a manner anal-
ogous to that of Figure 11.4, we get the result shown in Figure 11.5. Although there is some
“crossing over” in the observed xij’s, the configuration is reasonably representative of what would be
expected under additivity with just one observation per treatment.

Expression (11.8) is still not quite our final model description, because the ai’s and bj’s are not
uniquely determined. Following are two different configurations of the ai’s and bj’s (with l = 0 for
convenience) that yield the same additive lij’s.

1

.9

1.0

Washing treatment

Brand 1

Brand 2

Brand 3

Color change

.8

.6

.7

.5

.4

.3

.1

.2

2 3 4

Figure 11.5 Plot of data from Example 11.13 ■
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b1 = 1 b2 = 4 b1 = 2 b2 = 5

a1 = 1 l11 = 2 l12 = 5 a1 = 0 l11 = 2 l12 = 5
a2 = 2 l21 = 3 l22 = 6 a2 = 1 l21 = 3 l22 = 6

By subtracting any constant c from all ai’s and adding c to all bj’s, other configurations corre-
sponding to the same additive model are obtained. This nonuniqueness is eliminated by use of the
following model, which imposes an extra constraint on the ai’s and bj’s.

TWO-FACTOR ANOVA
ADDITIVE MODEL
EQUATION

Xij ¼ lþ ai þ bj þ eij ð11:9Þ

where
PI

i¼1 ai ¼ 0,
PJ

j¼1 bj ¼ 0, and the eij’s are assumed to be
independent normal rvs with mean 0 and variance r2.

This is analogous to the alternative choice of parameters for single-factor ANOVA discussed in
Section 11.3. It is not difficult to verify that (11.9) is an additive model in which the parameters are
uniquely determined. Notice that there are now only I – 1 independently determined ai’s and J – 1
independently determined bj’s, so including l Expression (11.9) specifies (I – 1) + (J – 1) + 1 =
I + J – 1 parameters.

The interpretation of the parameters of (11.9) is straightforward: l is the true grand mean response
over all levels of both factors; ai is the effect of factor A at level i measured as a deviation from l; and
bj is the effect of factor B at level j. Unbiased (and maximum likelihood) estimators for these
parameters are

l̂ ¼ X�� âi ¼ Xi� � X:: b̂j ¼ X�j � X��

Test Procedures
There are two different hypotheses of interest in a two-factor experiment with Kij = 1. The first,
denoted by H0A, states that the different levels of factor A have no effect on true average response. The
second, denoted by H0B, asserts that there is no factor B effect.

H0A: a1 ¼ a2 ¼ � � � ¼ aI ¼ 0

versus HaA: at least one ai 6¼ 0

H0B: b1 ¼ b2 ¼ � � � ¼ bJ ¼ 0

versus HaB: at least one bj 6¼ 0

No factor A effect implies that all ai’s are equal, so they must all be 0 since they sum to 0, and
similarly for the bj’s. The analysis now follows closely that for single-factor ANOVA. The relevant
sums of squares and associated dfs are given in the accompanying box.
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SSA ¼
XI
i¼1

XJ
j¼1

Xi� � X��
� �2 ¼ J

XI
i¼1

â2i df ¼ I � 1

SSB ¼
XI
i¼1

XJ
j¼1

X�j � X��
� �2 ¼ I

XJ
j¼1

b̂2j df ¼ J � 1

SSE ¼
XI
i¼1

XJ
j¼1

Xij � Xi� � X�j þX��
� �2

df ¼ ðI � 1ÞðJ � 1Þ

SST ¼
XI
i¼1

XJ
j¼1

Xij � X��
� �2

df ¼ IJ � 1

The fundamental ANOVA identity is

SST ¼ SSAþ SSBþ SSE

SSA and SSB take the place of SSTr from single-factor ANOVA. The unwieldy expression for SSE

results from replacing l, ai, and bj in
P

Xij � lþ ai þ bj
� �� �2

by their respective estimators. Error df
is IJ – [number of mean parameters estimated] = IJ – (I + J – 1) = (I – 1)(J – 1). Analogous to single-
factor ANOVA, total variation is split into a part (SSE) that cannot be attributed to the truth or falsity
of H0A and H0B (i.e., unexplained variation) and two parts that can be explained by possible falsity of
the two null hypotheses.

Forming F ratios as in single-factor ANOVA, it can be shown as in Section 11.1 that if H0A is true,
the corresponding ratio has an F distribution with numerator df = I – 1 and denominator df =
(I – 1)(J – 1); an analogous result applies when testing H0B.

Hypotheses Test Statistic Value Rejection Region

H0A versus HaA fA ¼ MSA/MSE fA 	Fa;I�1;ðI�1ÞðJ�1Þ
H0B versus HaB fB ¼ MSB/MSE fB 	Fa;J�1;ðI�1ÞðJ�1Þ

The corresponding P-values for the two tests are the areas under the associated F curves to the right of
fA and fB, respectively.

Example 11.15 (Example 11.13 continued) The �xi�’s (row means) and �x�j’s (column means) for the
color change data are displayed along the right and bottom margins of the data table in Example
11.13. In addition, the grand mean is �x�� ¼ :466. Table 11.7 summarizes further calculations.

Table 11.7 ANOVA table for Example 11.15

Source of Variation df Sum of squares Mean square f P-value

Factor A (pen brand) I − 1 = 2 SSA = .1282 MSA = .0641 fA = 4.43 .066
Factor B (wash treatment) J − 1 = 3 SSB = .4797 MSB = .1599 fB = 11.05 .007
Error (I − 1)(J − 1) = 6 SSE = .0868 MSE = .01447
Total IJ − 1 = 11 SST = .6947
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The critical value for testing H0A at level of significance .05 is F.05,2,6 = 5.14. Since 4.43 < 5.14,
H0A cannot be rejected at significance level .05. Based on this (small) data set, we cannot conclude
that true average color change depends on brand of pen. Because F.05,3,6 = 4.76 and 11.05 	 4.76,
H0B is rejected at significance level .05 in favor of the assertion that color change varies with wash-
ing treatment. The same conclusions result from consideration of the P-values: .066 > .05 and
.007 � .05.

The plausibility of the normality and constant variance assumptions can be investigated graphi-
cally by first calculating the predicted values (also called fitted values) x̂ij and the residuals
(the differences between the observations and predicted values) eij:

x̂ij ¼ l̂þ âi þ b̂j ¼ �x�� þ �xi� � �x��ð Þ þ �x�j � �x��
� � ¼ �xi� þ�x�j � �x��

eij ¼ xij � x̂ij ¼ xij � �xi� � �x�j þ�x��

We can check the normality assumption with a normal plot of the residuals, Figure 11.6a, and
then the constant variance assumption with a plot of the residuals against the fitted values,
Figure 11.6b.

The normal probability plot is reasonably straight, so there is no reason to question normality for
this data set. In the plot of the residuals against the fitted values, look for differences in vertical spread
as we move horizontally across the graph. For example, if there were a narrow range for small fitted
values and a wide range for high fitted values, this would suggest that the variance is higher for
larger responses (this happens often, and it can sometimes be cured by transforming via logarithms).
No such problem occurs here, so there is no evidence against the constant variance assumption,
either. ■
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Expected Mean Squares
The plausibility of using the F tests just described is demonstrated by determining the expected mean
squares. After some tedious algebra,

EðMSEÞ ¼ r2 ðwhen the model is additiveÞ

EðMSAÞ ¼ r2 þ J

I � 1

XI
i¼1

a2i

EðMSBÞ ¼ r2 þ I

J � 1

XJ
j¼1

b2j

When H0A is true, MSA is an unbiased estimator of r2, so FA is a ratio of two unbiased estimators of
r2. When H0A is false, MSA tends to overestimate r2, so H0A should be rejected when the ratio FA is
too large. Similar comments apply to MSB and H0B.

Multiple Comparisons
When either H0A or H0B has been rejected, Tukey’s procedure can be used to identify significant
differences between the levels of the factor under investigation. The steps in the analysis are identical
to those for a single-factor ANOVA:

1. For comparing levels of factor A, obtain Qa,I,(I−1)(J−1).
For comparing levels of factor B, obtain Qa,J,(I−1)(J−1).

2. Compute Tukey’s honestly significant difference:

d ¼ Q � ðestimated SD of the sample means being comparedÞ

¼ Qa;I;ðI�1ÞðJ�1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
for factor A comparisons

Qa;J;ðI�1ÞðJ�1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=I

p
for factor B comparisons

(

(because, e.g., the standard deviation of Xi� ¼ ð1=JÞPXij is r=
ffiffiffi
J

p
).

3. Arrange the sample means in increasing order, then underscore those pairs differing by less than
d. Pairs not underscored by the same line correspond to significantly different levels of the given
factor.

Example 11.16 (Example 11.15 continued) Identification of significant differences among the four

washing treatments requires Q.05,4,6 = 4.90 and d ¼ 4:90
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:01447=3

p ¼ :340. The four factor
B sample means (column averages) are now listed in increasing order, and any pair differing by less
than .340 is underscored by a line segment:

x4� x2� x3� x1�
:300 :337 :423 :803

Washing treatment 1 is significantly worse than the other three treatments, but no other significant
differences are identified. In particular, it is not apparent which among treatments 2, 3, and 4 is best at
removing marks.

Notice that Tukey’s HSD is not required for comparing the levels of factor A, since the ANOVA
F test for that factor did not reveal any statistically significant effect. ■
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Randomized Block Experiments
In using single-factor ANOVA to test for the presence of effects due to the I different treatments under
study, once the IJ subjects or experimental units have been chosen, treatments should be allocated in a
completely random fashion. That is, J subjects should be chosen at random for the first treatment, then
another sample of J chosen at random from the remaining subjects for the second treatment, and so
on.

It frequently happens, though, that subjects or experimental units exhibit differences with respect
to other characteristics that may affect the observed responses. For example, some patients might be
healthier than others. When this is the case, the presence or absence of a significant F value may be
due to these other differences rather than to the presence or absence of factor effects. This was the
reason for introducing paired experiments in Chapter 10. The generalization of the paired experiment
to I > 2 is called a randomized block design. An extraneous factor, “blocks,” is constructed by
dividing the IJ units into J groups (with I units in each group) in such a way that within each block,
the I units are homogeneous with respect to other factors thought to affect the responses. Then within
each homogeneous block, the I treatments are randomly assigned to the I units or subjects in the
block.

Example 11.17 A consumer product-testing organization wished to compare the annual power
consumption for five different brands of dehumidifier. Because power consumption depends on the
prevailing humidity level, it was decided to monitor each brand at four different levels ranging from
moderate to heavy humidity (thus blocking on humidity level). Within each humidity level, brands
were randomly assigned to the five selected locations. The resulting amount of power consumption
(annual kWh) appears in Table 11.8, and the ANOVA calculations are summarized in Table 11.9.

Since fA = 95.57 	 F.05,4,12 = 3.26, H0 is rejected in favor of Ha. We conclude that power
consumption does depend on the brand of humidifier. To identify significantly different brands, we

use Tukey’s procedure; Q.05,5,12 = 4.51 and d ¼ 4:51
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
139:25=4

p ¼ 26:6.

Table 11.8 Power consumption data for Example 11.17

Blocks (humidity level)

Treatments (brands) 1 2 3 4 �xi�
1 685 792 838 875 797.50
2 722 806 893 953 843.50
3 733 802 880 941 839.00
4 811 888 952 1005 914.00
5 828 920 978 1023 937.25

Table 11.9 ANOVA table for Example 11.17

Source of variation df Sum of squares Mean square f

Treatments (brands) 4 53,231.00 13,307.75 fA = 95.57
Blocks 3 116,217.75 38,739.25 fB = 278.20
Error 12 1671.00 139.25
Total 19 171,119.75
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x1� x3� x2� x4� x5�
797:50 839:00 843:50 914:00 937:25

The underscoring indicates that the brands can be divided into three groups with respect to power
consumption.

Because the blocking factor is of secondary interest, F.05,3,12 is not needed, though the computed
value of FB is clearly highly significant. Figure 11.7 shows SAS output for this data. Notice that in the
first part of the ANOVA table, the sums of squares (SS’s) for treatments (brands) and blocks
(humidity levels) are combined into a single “model” SS.

In some experimental situations in which treatments are to be applied to subjects, a single subject
can receive all I of the treatments. Blocking is then often done on the subjects themselves to control
for variability between subjects, typically in random order; each subject is then said to act as its own
control. Social scientists sometimes refer to such experiments as repeated-measures designs. The
“units” within a block are then the different “instances” of treatment application. Similarly, blocks are
often taken as different time periods, locations, or observers.

Analysis of Variance Procedure

Dependent Variable: POWERUSE

Sum of Mean

Source DF Squares Square F Value Pr > F

Model  7 169448.750 24206.964 173.84 0.0001

Error 12 1671.000 139.250

Corrected Total 19 171119.750

 R-Square C.V. Root MSE POWERUSE Mean

0.990235 1.362242 11.8004 866.25000

Source DF Anova SS Mean Square F Value Pr > F

BRAND 4  53231.000 13307.750  95.57 0.0001

HUMIDITY 3 116217.750 38739.250 278.20 0.0001

Alpha = 0.05 df = 12 MSE = 139.25 
Critical Value of Studentized Range = 4.508
Minimum Significant Difference = 26.597 

Means with the same letter are not significantly different.

Tukey Grouping

A

A

A

B

B

B

C

Mean

937.250

914.000

843.500

839.000

797.500

N

4

4

4

4

4

BRAND

5

4

2

3

1

Figure 11.7 SAS output for consumption data ■
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In most randomized block experiments in which subjects serve as blocks, the subjects actually
participating in the experiment are selected from a large population. The subjects then contribute
random rather than fixed effects. This does not impact the procedure for comparing treatments when
Kij = 1 (one observation per “cell,” as in this section), but the procedure is altered if Kij > 1. We will
shortly consider two-factor models in which effects are random.

More on Blocking When I = 2, either the F test above or the paired differences t test can be used to
analyze the data. The resulting conclusion will not depend on which procedure is used, since
T2 = F and t2a=2;m ¼ Fa;1;m.

Just as with pairing, blocking entails both a potential gain and a potential loss in precision. If there is a
great deal of heterogeneity in experimental units, the value of the variance parameter r2 in the one-way
model will be large. The effect of blocking is to filter out the variation represented by r2 in the two-way
model appropriate for a randomized block experiment. Other things being equal, a smaller value of r2

results in a test that is more likely to detect departures from H0 (i.e., a test with greater power).
However, other things are not equal here, since the single-factor F test is based on I(J – 1) degrees

of freedom (df) for error, whereas the two-factor F test is based on (I – 1)(J – 1) df for error. Fewer
degrees of freedom for error results in a decrease in power, essentially because the denominator
estimator of r2 is not as precise. This loss in degrees of freedom can be especially serious if the
experimenter can afford only a small number of observations. Nevertheless, if it appears that blocking
will significantly reduce variability, it is probably worth the loss in degrees of freedom.

Models for Random Effects
In many experiments, the actual levels of a factor used in the experiment, rather than being the only
ones of interest to the experimenter, have been selected from a much larger population of possible
levels of the factor. In a two-factor situation, when this is the case for both factors, a random effects
model is appropriate. The case in which the levels of one factor are the only ones of interest while the
levels of the other factor are selected from a population of levels leads to a mixed effects model. The
two-factor random effects model when Kij = 1 is

Xij ¼ lþAi þBj þ eij ði ¼ 1; . . .; I; j ¼ 1; . . .; JÞ

where the Ai’s, Bj’s, and eij’s are all independent, normally distributed rvs with mean 0 and variances
r2A, r

2
B, and r2, respectively.

The hypotheses of interest are then H0A: r2A ¼ 0 (level of factor A does not contribute to variation
in the response) versus HaA: r2A [ 0 and H0B: r2B ¼ 0 versus HaB: r2B [ 0. Whereas E(MSE) = r2 as
before, the expected mean squares for factors A and B are now

EðMSAÞ ¼ r2 þ Jr2A and EðMSBÞ ¼ r2 þ Ir2B

Thus when H0A (H0B) is true, FA (FB) is still a ratio of two unbiased estimators of r2. It can be shown
that a test with significance level a for H0A versus HaA still rejects H0A if fA 	 Fa,I−1,(I−1)(J−1), and,
similarly, the same procedure as before is used to decide between H0B and HaB.

For the case in which factor A is fixed and factor B is random, the mixed model is

Xij ¼ lþ ai þBj þ eij ði ¼ 1; . . .; I; j ¼ 1; . . .; JÞ
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where
P

ai ¼ 0, and the Bj’s and eij’s are all independent, normally distributed rvs with mean 0 and
variances r2B and r2, respectively. Now the two null hypotheses are

H0A: a1 ¼ � � � ¼ aI ¼ 0 and H0B: r
2
B ¼ 0

Expected mean squares are

EðMSAÞ ¼ r2 þ J

I � 1

X
a2i and EðMSBÞ ¼ r2 þ Ir2B

The test procedures for H0A versus HaA and H0B versus HaB are exactly as before. For example, in the
analysis of the color change data in Example 11.13, if the four wash treatments were randomly
selected, then because fB = 11.05 > F.05,3,6 = 4.76, H0B: r2B ¼ 0 is rejected in favor of HaB: r2B [ 0.

Summarizing, when Kij = 1, although the hypotheses and expected mean squares differ from the
case of both effects fixed, the test procedures are identical.

Exercises: Section 11.4 (45–60)

45. The number of miles of useful tread wear
(in 1000’s) was determined for tires of each
of five different makes of subcompact car
(factor A, with I = 5) in combination with
each of four different brands of radial tires
(factor B, with J = 4), resulting in IJ = 20
observations. The values SSA = 30.6,
SSB = 44.1, and SSE = 59.2 were then
computed. Assume that an additive model
is appropriate.

a. Test H0: a1 = a2 = a3 = a4 = a5 = 0
(no differences in true average tire life-
time due to makes of cars) versus Ha: at
least one ai 6¼ 0 using a level .05 test.

b. Test H0: b1 = b2 = b3 = b4 = 0 (no
differences in true average tire lifetime
due to brands of tires) versus Ha: at least
one bj 6¼ 0 using a level .05 test.

46. Four different coatings are being considered
for corrosion protection of metal pipe. The
pipe will be buried in three different types
of soil. To investigate whether the amount
of corrosion depends either on the coating
or on the type of soil, 12 pieces of pipe are
selected. Each piece is coated with one of
the four coatings and buried in one of the
three types of soil for a fixed time, after
which the amount of corrosion (depth of

maximum pits, in .0001 in.) is determined.
The depths are shown in this table:

Soil type (B)

1 2 3

Coating (A)

1 64 49 50
2 53 51 48
3 47 45 50
4 51 43 52

a. Assuming the validity of the additive
model, carry out the ANOVA analysis
using an ANOVA table to see whether
the amount of corrosion depends on
either the type of coating used or the
type of soil. Use a = .05.

b. Compute l̂; â1; â2; â3; â4; b̂1; b̂2 and b̂3.

47. The article “Step-Counting Accuracy of
Activity Monitors in Persons with Down
Syndrome” (J. Intellect. Disabil. Res. 2019:
21–30) describes a study in which 17 people
with DS walked for a set time period with
multiple step-counting devices attached to
them. (Walking is a common form of exer-
cise for people with DS, and clinicians want
to insure that step counts for them are
accurate.) The accompanying table sum-
marizes the different step-counting methods
and the number of steps recorded for each
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participant. (LFE refers to a low frequency
extension filter applied to the device.)

Step-counting method Mean SD

Hand tally 668 70
Pedometer 557 202
Hip accelerometer 466 159
Hip accelerometer + LFE 606 93
Wrist accelerometer 449 89
Wrist accelerometer + LFE 579 85

Sums of squares consistent with this and
other information in the article include
SS(Method) = 596,748, SSE = 987,380,
and SST = 2,113,228.

a. Determine the sum of squares associated
with the blocking variable (subject), and
then construct an ANOVA table.

b. Assuming that model assumptions are
plausible, test the null hypothesis of “no
method effect” at the .01 significance level.

c. ApplyTukey’s procedure to these six step-
counting methods. Are any of the five
device-based methods not significantly
different from hand tally (considered by
the researchers to be the most correct)?

48. In an experiment to see whether the amount
of coverage of light-blue interior latex paint
depends either on the brand of paint or on
the brand of roller used, 1 gallon of each of
four brands of paint was applied using each
of three brands of roller, resulting in the
following data (number of square feet
covered).

Roller brand

1 2 3

1 454 446 451
Paint 2 446 444 447
brand 3 439 442 444

4 444 437 443

a. Construct the ANOVA table. [Hint: The
computations can be expedited by sub-
tracting 400 (or any other convenient
number) from each observation. This
does not affect the final results.]

b. Check the normality and constant vari-
ance assumptions graphically.

c. State and test hypotheses appropriate for
deciding whether paint brand has any
effect on coverage. Use a = .05.

d. Repeat part (c) for brand of roller.
e. Use Tukey’s method to identify signif-

icant differences among brands. Is there
one brand that seems clearly preferable
to the others?

49. The following data is presented in the
article “Influence of Cutting Parameters on
Drill Bit Temperature” (Ind. Lubr. Tribol.
2007: 186–193); values in the table are
temperatures in °C.

Feed rate

1 2 3

Spindle speed
1 275 325 365
2 380 415 420
3 425 420 405

a. Construct an ANOVA table from this
data.

b. Test whether spindle speed impacts drill
bit temperature at the .05 significance
level.

c. Test whether feed rate impacts drill bit
temperature at the .05 significance level.

50. A particular county employs three assessors
who are responsible for determining the
value of residential property in the county.
To see whether these assessors differ sys-
tematically in their assessments, 5 houses are
selected, and each assessor is asked to
determine the market value of each house.
With factor A denoting assessors (I = 3) and
factor B denoting houses (J = 5), suppose
SSA = 11.7, SSB = 113.5, and SSE = 25.6.

a. Test H0: a1 ¼ a2 ¼ a3 ¼ 0 at level .05.
(H0 states that there are no systematic
differences among assessors.)

b. Explain why a randomized block
experiment with only 5 houses was used
rather than a one-way ANOVA experi-
ment involving a total of 15 different
houses with each assessor asked to
assess 5 different houses (a different
group of 5 for each assessor).
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51. In a 2018 class activity, 54 students mea-
sured how much time (sec) it took to melt
each of the following in their mouths: (1) a
butterscotch chip, (2) a chocolate chip, (3) a
white chip (yes, white is a chip flavor).
Each student rolled a die to determine the
order in which to melt the chips.

a. Why was it important to randomize the
chip order?

b. Besides not having to recruit as many
students to get the same number of
observations, what is the advantage of
using blocking here, versus randomly
assigning one chip to each student?

c. Summary quantities include �x1� ¼ 88:15;
�x2� ¼ 60:49; �x3� ¼ 72:35; SS(Subject) =
135,833, and SSE = 31,506. Construct
an ANOVA table and test at signifi-
cance level .01 to see whether mean
melting time varies by chip flavor.

d. Judging from the F ratio for subjects, do
you think that blocking on subjects was
effective in this experiment? Explain.

52. The efficiency (%) of a 0.7 L Daihatsu
diesel engine at 3100 rpm was determined
at various torques (N-m) and coolant tem-
peratures (°C), resulting in the following
data kindly provided by the study’s authors
(“Performance of a Diesel Engine at High
Coolant Temperatures, J. Energy Resour.
Technol. 2017).

Coolant Temp. (°C)

90 100 125 150 175 200

Torque

12 24.07 23.81 23.55 22.84 24.34 24.62
15 26.52 26.00 26.06 25.33 26.92 27.08
18 28.50 28.23 26.67 26.42 28.94 28.74
21 28.61 29.96 28.38 27.16 29.35 29.16
24 28.47 28.34 28.20 26.55 28.87 27.27

a. Test at the .01 significance level whether
mean engine efficiencydifferswith torque.

b. Test at the .01 significance level whe-
ther mean engine efficiency differs with
coolant temperature.

c. Apply Tukey’s procedure as appropriate
to the results of (a) and (b).

53. An experiment was conducted to assess the
effect of current and voltage on the tensile
strength (ksi) of welds made using a tung-
sten inert gas (TIG) welding tool, which
resulted in the following data.

Voltage

10 12 14

Current
130 197.62 200.35 199.40
135 185.90 215.56 179.36
140 203.23 174.81 194.47

Use two-factor ANOVA to determine whe-
ther current or voltage impacts the tensile
strength of welds under these experimental
conditions at the .10 significance level. (Data
is from “To Investigate the [E]ffect of Process
Parameters on Mechanical Properties of TIG
Welded6351AluminumAlloybyANOVA,”
GE-Int. J. Engr. Res. 2014: 50–62.)

54. The article “Effect of Face Value on Pro-
duct Valuation in Foreign Currencies”
(J. Consum. Res. 2002) describes a class-
room experiment involving 97 business
students to see whether they could adjust
for exchange rates when deciding how
much to spend a product. The students
acted as buyers in a mock World Garment
Expo at which each would be purchasing
silk ties from six different nations. They
were provided pictures of the ties and the
exchange rates for each national currency
into US$; the pictures were randomly per-
muted to reduce any perceived quality dif-
ferences. Students then had to report how
much, in the foreign currencies, they would
pay for one silk tie. The average prices
students were willing to pay, converted
back into dollars, appear in the accompa-
nying table; exchange rates are the number
of foreign currency units (e.g., Norwegian
krone or Japanese yen) equaling $1.

Country (Exch. rate) Mean SD

Norway (9.5) $15.85 $15.36
Luxembourg (48) $15.45 $13.47
Japan (110) $15.91 $11.26
Korea (1100) $12.42 $10.17
Romania (24,500) $11.33 $12.05
Turkey (685,000) $10.77 $9.01
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Relevant sums of squares include
SS(Country) = 2752, SSE = 45,086, and
SST = 86,653.

a. What experimental design was used in
this study? What was the advantage of
using this method?

b. Construct an ANOVA table from the
information provided, then test the null
hypothesis of “no currency exchange
effect” at the .01 level.

c. The exchange rates vary by orders of
magnitude (this was deliberate). As the
exchange rate increases, what happens
to the average amount students are
willing to pay for a silk tie in that cur-
rency? (The article’s authors note that
“th[is] evidence is against the common
wisdom that when the home currency is
perceived to go a long way in foreign
currency terms, the foreign currency
will be treated as play money and that
people will overspend.”)

55. The strength of concrete used in commer-
cial construction tends to vary from one
batch to another. Consequently, small test
cylinders of concrete sampled from a batch
are “cured” for periods up to about 28 days
in temperature- and moisture-controlled
environments before strength measure-
ments are made. Concrete is then “bought
and sold on the basis of strength test
cylinders” (ASTM C 31 Standard Test
Method for Making and Curing Concrete
Test Specimens in the Field). The accom-
panying data resulted from an experiment
carried out to compare three different curing
methods with respect to compressive
strength (MPa). Analyze this data.

Batch Method A Method B Method C

1 30.7 33.7 30.5
2 29.1 30.6 32.6
3 30.0 32.2 30.5
4 31.9 34.6 33.5
5 30.5 33.0 32.4
6 26.9 29.3 27.8

(continued)

Batch Method A Method B Method C

7 28.2 28.4 30.7
8 32.4 32.4 33.6
9 26.6 29.5 29.2
10 28.6 29.4 33.2

56. Check the normality and constant variance
assumptions graphically for the data of
Example 11.17.

57. Suppose that in the experiment described in
Exercise 50 the five houses had actually
been selected at random from among those
of a certain age and size, so that factor B is
random rather than fixed. Test H0 : r2B ¼ 0
versus Ha : r2B [ 0 using a level .01 test.

58. a. Show that a constant d can be added to (or
subtracted from) each xij without affect-
ing any of the ANOVA sums of squares.

b. Suppose that each xij is multiplied by a
nonzero constant c. How does this affect
the ANOVA sums of squares? How
does this affect the values of the
F statistics FA and FB ? What effect does
“coding” the data by yij = cxij + d have
on the conclusions resulting from the
ANOVA procedures?

59. Use the fact that E Xij

� � ¼ lþ ai þ bj
with

P
ai ¼

P
bj ¼ 0 to show that

E Xi� � X��
� � ¼ ai, so that âi ¼ Xi� � X�� is

an unbiased estimator for ai.

60. Power for the F test in two-factor ANOVA
is calculated using a similar method to the
one shown in Section 11.3. For fixed values
of a1, a2, …, aI, power calculations are
based on the noncentral F distributions with
parameters v1 = I – 1, v2 = (I – 1)(J – 1), and
noncentrality parameter k ¼ J

P
a2i =r

2.

a. For the corrosion experiment described
in Exercise 46, determine power when
a1 = 4, a2 = 0, a3 = a4 = −2, and
r = 4. Repeat for a1 = 6, a2 = 0,
a3 = a4 = −3, and r = 4.

b. By symmetry,what is the power for the test
ofH0B versusHaB in Example 11.13 when
b1 = .3, b2 = b3 = b4 = –.1, and r = .3?
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11.5 Two-Factor ANOVA with Replication

In Section 11.4, we analyzed data from a two-factor experiment in which there was one observation
for each of the IJ combinations of levels of the two factors (i.e., no replication). To obtain valid test
procedures in that situation, the lij’s were assumed to have an additive structure, meaning that the
difference in true average responses for any two levels of the factors is the same for each level of the
other factor. This was shown in Figure 11.4a, in which the lines connecting true average responses
are parallel.

Figure 11.4b depicted a set of true average responses that does not have additive structure. The
lines connecting these lij’s are not parallel, which means that the difference in true mean responses
for different levels of one factor does depend on the level of the other factor—what’s known as an
interaction. When Kij > 1 for at least one (i, j) pair, we can estimate the interaction effect and
formally test for whether interaction is present.

In specifying the appropriate model and deriving test procedures, we will focus on the case
Kij = K > 1, so the number of observations per “cell” (i.e., for each combination of levels) is constant.
That is, throughout this section we will assume a balanced study design.

A Two-Factor Model With Interaction
Again lij will denote the true mean response when factor A is at level i and factor B is at level j.
Expressions (11.7)–(11.9) show the development of a model equation that assumes additivity (i.e., no
interaction). To extend this model, first let

l ¼ 1
IJ

X
i

X
j

lij li� ¼
1
J

X
j

lij l�j ¼
1
I

X
i

lij ð11:10Þ

Thus l is the expected response averaged over all levels of both factors (the true grand mean), li� is
the expected response averaged over levels of factor B when factor A is held at level i, and similarly
for l�j. Now define three sets of parameters by

ai ¼ li� � l ¼ the effect of factor A at level i

bj ¼ l�j � l ¼ the effect of factor B at level j

cij ¼ lij � ðlþ ai þ bjÞ
ð11:11Þ

from which

lij ¼ lþ ai þ bj þ cij

The ai’s and bj’s are the same as those from Section 11.4. The ai’s are called the main effects for
factor A, and the bj’s are the main effects for factor B. The new parameters, the cij’s, measure the
difference between the true treatment means lij and the means assumed under the additive model
(11.8). The cij’s are referred to as the interaction parameters, and the model is additive if and only if
all cij’s = 0.
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Although there are I ai’s, J bj’s, and IJ cij’s in addition to l, the conditions
P

ai ¼ 0,
P

bj ¼ 0,P
j cij ¼ 0 for every i, and

P
i cij ¼ 0 for any j—all true by virtue of (11.10) and (11.11)—imply that

only IJ of these new parameters are independently determined: l, I – 1 of the ai’s, J – 1 of the bj’s,
and (I – 1)(J – 1) of the cij’s.

We now must use triple subscripts for both random variables and observed values: Xijk and xijk
denote the kth observation (replication) when factor A is at level i and factor B is at level j.

TWO-FACTOR ANOVA
GENERAL MODEL
EQUATION

Xijk ¼ lþ ai þ bj þ cij þ eijk

i ¼ 1; . . .; I; j ¼ 1; . . .; J; k ¼ 1; . . .;K
ð11:12Þ

where the eijk’s are independent and normally distributed, each with
mean 0 and variance r2.

Example 11.18 Three different varieties of tomato (Harvester, Ife No. 1, and Pusa Early Dwarf) and
four different plant densities (10, 20, 30, and 40 thousand plants per hectare) are being considered for
planting in a particular region. To see whether either variety or plant density affects yield, each
combination of variety and plant density is used in three different plots, resulting in the data on yields
in Table 11.10.

Here, I = 3, J = 4, and K = 3, for a total of IJK = 36 observations. If we identify factor A = variety
and B = density, then the observations across the first row of Table 11.10 are x111 = 10.5, x112 = 9.2,
x113 = 7.9, x121 = 12.8, and so on. Some of the parameters specified in the model equation (11.12)
include

l = true average yield of all tomato plants in this population
l1� = true average yield of all Harvester plants (i = 1) in this population
b2 = the effect of 20,000 plants/hectare density (j = 2) on average yield

To check the normality and constant variance assumptions, we can make plots similar to those of
Section 11.4. Define the predicted/fitted values to be the cell means, x̂ijk ¼ �xij�, so the residuals are
eijk ¼ xijk � x̂ijk ¼ xijk � �xij�. For example, the mean of the three observations in the top-left cell of
Table 11.10 is �x11� ¼ 10:5þ 9:2þ 7:9ð Þ=3 ¼ 9:2, and the residual for the very first observation is
e111 ¼ x111 � �x11� ¼ 10:5�9:2 ¼ 1:3. The normal probability plot of the 36 residuals is Figure 11.8a,
and the plot of the residuals against the fitted values is Figure 11.8b. The normal plot is sufficiently
straight that there should be no concern about the normality assumption. The plot of residuals against
predicted values has a fairly uniform vertical spread, so there is no cause for concern about the
constant variance assumption.

Table 11.10 Yield data for Example 11.18

Planting density

Variety 10,000 20,000 30,000 40,000

H 10.5 9.2 7.9 12.8 11.2 13.3 12.1 12.6 14.0 10.8 9.1 12.5
Ife 8.1 8.6 10.1 12.7 13.7 11.5 14.4 15.4 13.7 11.3 12.5 14.5
P 16.1 15.3 17.5 16.6 19.2 18.5 20.8 18.0 21.0 18.4 18.9 17.2
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Sums of Squares and Test Procedures
There are now three relevant pairs of hypotheses:

H0AB: cij ¼ 0 for all i; j versus HaAB: at least one cij 6¼ 0

H0A: a1 ¼ a2 ¼ � � � ¼ aI ¼ 0 versus HaA: at least one ai 6¼ 0

H0B: b1 ¼ b2 ¼ � � � ¼ bJ ¼ 0 versus HaB: at least one bj 6¼ 0

The no-interaction hypothesis H0AB is usually tested first. If H0AB is not rejected, then the other two
hypotheses can be tested to see whether the main effects are significant. But once H0AB is rejected, we
believe that the effect of factor A at any particular level depends on the level of B (and vice versa). It
then does not make sense to test H0A or H0B. In this case, an interaction plot similar to that of
Figure 11.4b is helpful in visualizing the way the factors interact.

To test the hypotheses of interest, we again define sums of squares and indicate their corre-
sponding degrees of freedom. Again, a dot in place of a subscript means that we have summed over
all values of that subscript, and a horizontal bar denotes averaging. So, for example, Xij� denotes the
mean of the K observations in the (i, j)th cell of the data table, while Xi�� represents the average of all
JK values in the ith row.
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Figure 11.8 Plots from Minitab to verify assumptions for Example 11.18 ■

SSA ¼
X
i

X
j

X
k

ðXi�� � X���Þ2 df ¼ I � 1

SSB ¼
X
i

X
j

X
k

ðX�j� � X���Þ2 df ¼ J � 1

SSAB ¼
X
i

X
j

X
k

ðXij� � Xi�� � X�j� þX���Þ2 df ¼ ðI � 1ÞðJ � 1Þ

SSE ¼
X
i

X
j

X
k

ðXijk � Xij�Þ2 df ¼ IJK � IJ

SST ¼
X
i

X
j

X
k

ðXijk � X���Þ2 df ¼ IJK � 1
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SSAB is called the interaction sum of squares. Mean squares are, as always,
defined by (sum of squares)/df.
The fundamental ANOVA identity is

SST ¼ SSAþ SSBþ SSABþ SSE

According to the fundamental identity, variation is partitioned into four pieces: unexplained
(SSE—which would be present whether or not any of the three null hypotheses was true) and three
pieces that may be explained by the truth or falsity of the three H0’s.

The expected mean squares suggest how each set of hypotheses should be tested using the
appropriate ratio of mean squares with MSE in the denominator:

EðMSEÞ ¼ r2

EðMSAÞ ¼ r2 þ JK

I � 1

XI
i¼1

a2i

EðMSBÞ ¼ r2 þ IK

J � 1

XJ
j¼1

b2j

EðMSABÞ ¼ r2 þ K

ðI � 1ÞðJ � 1Þ
XI
i¼1

XJ
j¼1

c2ij

Each of the three mean-square ratios can be shown to have an F distribution when the associated H0 is
true, which yields the following level a test procedures.

Hypotheses Test Statistic Value Rejection Region

H0A versus HaA fA ¼ MSA=MSE fA 	Fa;I�1;IJðK�1Þ
H0B versus HaB fA ¼ MSB=MSE fB 	Fa;J�1;IJðK�1Þ
H0AB versus HaAB fAB ¼ MSAB=MSE fAB 	Fa;ðI�1ÞðJ�1Þ;IJðK�1Þ

As before, the results of the analysis are summarized in an ANOVA table.

Example 11.19 (Example 11.18 continued) The cell, row, column, and grand means for the given
data are

10,000 20,000 30,000 40,000 �xi��
H 9.20 12.43 12.90 10.80 11.33
Ife 8.93 12.63 14.50 12.77 12.21
P 16.30 18.10 19.93 18.17 18.13

�x�j� 11.48 14.39 15.78 13.91 �x��� ¼ 13:89

Table 11.11 summarizes the resulting ANOVA computations.
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Since fAB = .84 < F.01,6,24 = 3.67, H0AB cannot be rejected at level .01, so we conclude that the
interaction effects are not significant. Now the presence or absence of main effects can be investi-
gated. Since fA = 103.02 	 F.01,2,24 = 5.61, H0A is rejected at level .01 in favor of the conclusion
that different varieties do affect the true average yields. Similarly, fB = 18.18 	 4.72 = F.01,3,24, so
we conclude that true average yield also depends on plant density.

Figure 11.9 shows the interaction plot. Notice the nearly parallel lines for the three tomato vari-
eties, in agreement with the F test showing no significant interaction. The yield for Pusa Early Dwarf
appears to be significantly above the yields for the other two varieties, and this is in accord with the
highly significant F for varieties. Furthermore, all three varieties show the same pattern in which yield
increases as the density goes up, but decreases beyond 30,000 per hectare. This suggests that planting
more seed will increase the yield, but eventually overcrowding causes the yield to drop.

Multiple Comparisons
When the no-interaction hypothesis H0AB is not rejected and at least one of the two main-effect null
hypotheses is rejected, Tukey’s method can be used to identify significant differences in levels. To
identify differences among the ai’s when H0A is rejected:

1. Obtain Qa,I,IJ(K–1); the second subscript I identifies the number of levels being compared and the
third subscript refers to the error df.

Table 11.11 ANOVA table for Example 11.19

Source of variation df Sum of squares Mean square f P-value

Varieties 2 327.60 163.80 fA = 103.02 <.0001
Density 3 86.69 28.90 fB = 18.18 <.0001
Interaction 6 8.03 1.34 fAB = .84 .551
Error 24 38.04 1.59
Total 35 460.36
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Figure 11.9 Interaction plot for the tomato yield data ■
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2. Compute d ¼ Q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=JK

p
; JK is the number of observations averaged to obtain each of the

�xi��’s to be compared in step 3.
3. Order the �xi��’s from smallest to largest and, as before, underscore all pairs that differ by less than

d. Pairs not underscored correspond to significantly different levels of factor A.

To identify different levels of factor B when H0B is rejected, replace the second subscript in Q by J,
replace JK by IK in d, and replace �xi�� by �x�j.

Example 11.20 (Example 11.19 continued) For factor A (varieties), I = 3, so with a = .01 and

IJ(K – 1) = 24, Q.01,3,24 = 4.55. Then d ¼ 4:55
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:59=12

p ¼ 1:66, so ordering and underscoring give

The Harvester and Ife varieties do not differ significantly from each other in effect on true average
yield, but both differ from the Pusa variety.

For factor B (density), J = 4 so Q.01,4,24 = 4.91 and d ¼ 4:91
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:59=9

p ¼ 2:06.

Thus with experimentwise error rate .01, only the lowest density differs significantly from all others.
Even with a = .05 (so that d = 1.64), densities 2 and 3 cannot be judged significantly different from
each other in their effect on yield. ■

Models with Mixed and Random Effects
In some situations, the levels of either factor may have been chosen from a large population of
possible levels, so that the effects contributed by the factor are random rather than fixed. As in
Section 11.4, if both factors contribute random effects, the model is referred to as a random effects
model, whereas if one factor is fixed and the other is random, a mixed effects model results. We will
now consider the analysis for a mixed effects model in which factor A (rows) is the fixed factor and
factor B (columns) is the random factor; the case in which both factors are random is dealt with in
Exercise 73. When either factor is random, interaction effects will also be random, and the mixed
effects model is

Xij ¼ lþ ai þBj þGij þ eijk
i ¼ 1; . . .; I; j ¼ 1; . . .; J; k ¼ 1; . . .;K

�x�1� �x�4� �x�2� �x�3�
11.48 13.91 14.39 15.78

�x1�� �x2�� �x3��
11.33 12.21 18.13
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Here l and the ai’s are constants with
P

ai ¼ 0 and the Bj’s, Gij’s, and eijk’s are independent,
normally distributed random variables with expected value 0 and variances r2B, r

2
G, and r2, respec-

tively.2 The three hypotheses of interest are

H0A: a1 ¼ � � � ¼ aI ¼ 0 versus HaA: at least one ai 6¼ 0

H0B: r2B ¼ 0 versus HaB: r
2
B [ 0

H0G: r2G ¼ 0 versus HaG: r
2
G [ 0

It is customary to test H0A and H0B only if the no-interaction hypothesis H0G cannot be rejected.
The relevant sums of squares and mean squares needed for the test procedures are defined and

computed exactly as in the fixed effects case. The expected mean squares for the mixed model are

EðMSEÞ ¼ r2

EðMSAÞ ¼ r2 þKr2G þ JK

I � 1

X
a2i

EðMSBÞ ¼ r2 þKr2G þ IKr2B
EðMSABÞ ¼ r2 þKr2G

Thus, to test the no-interaction hypothesis, the ratio fAB = MSAB/MSE is again appropriate, with
H0G rejected if fAB 	Fa;ðI�1ÞðJ�1Þ;IJðK�1Þ. However, for testing H0A versus HaA, the expected mean
squares suggest that although the numerator of the F ratio should still be MSA, the denominator
should be MSAB rather than MSE. MSAB is also the denominator of the F ratio for testing H0B.

For testing H0A versus HaA (factor A fixed, B random), the test statistic value is
fA = MSA/MSAB, and the rejection region is fA 	Fa;I�1;ðI�1ÞðJ�1Þ. The test of H0B

versus HaB utilizes fB = MSB/MSAB, and the rejection region is fB 	Fa;J�1;ðI�1ÞðJ�1Þ.

Example 11.21 A process engineer has identified two potential causes of electric motor vibration,
the material used for the motor casing (factor A) and the supply source of bearings used in the motor
(factor B). The accompanying data on the amount of vibration (microns) resulted from an experiment
in which motors with casings made of steel, aluminum, and plastic were constructed using bearings
supplied by five randomly selected sources.

Supply source

Material 1 2 3 4 5

Steel 13.1 13.2 16.3 15.8 13.7 14.3 15.7 15.8 13.5 12.5
Aluminum 15.0 14.8 15.7 16.4 13.9 14.3 13.7 14.2 13.4 13.8
Plastic 14.0 14.3 17.2 16.7 12.4 12.3 14.4 13.9 13.2 13.1

2This is referred to as an “unrestricted” model. An alternative “restricted” model requires that
P

i Gij ¼ 0, so the Gij’s
are no longer independent. Expected mean squares and F ratios appropriate for testing certain hypotheses depend on
the choice of model.
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Only the three casing materials used in the experiment are under consideration for use in pro-
duction, so factor A is fixed. However, the five supply sources were randomly selected from a much
larger population, so factor B is random. The relevant null hypotheses are

H0A: a1 ¼ a2 ¼ a3 ¼ 0 H0B: r
2
B ¼ 0 H0G: r

2
G ¼ 0

Minitab output appears in Figure 11.10. Notice that fA = 0.24 = 0.3523/1.4507 = MSA/MSAB, not
MSA/MSE as in a test with all fixed effects.

The included 0.000 P-value for interaction means that it is less than .0005 (the actual value is
.000018). To interpret the significant interaction we use the interaction plot, Figure 11.11, which has
both versions, one with source on the x-axis and one with material on the x-axis. Interaction is
evident, because the best material (the one with the least vibration) depends strongly on source. For
source 1 the best material is steel, for source 3 the best material is plastic, and for source 4 the best
material is aluminum. Because of this interaction, we ordinarily would not interpret the main effects,
but one cannot help noticing that there is strong dependence of vibration on source. Source 2 is bad
for all three materials and source 3 is pretty good for all three materials. When one-way ANOVA
analyses are done to compare the five sources for each of the three materials, all three show highly
significant differences. This is consistent with the P-value of 0.013 for supplier in Figure 11.10. We
can conclude that, although the interaction causes the best material to depend on the supply source,
the source also makes a difference of its own.

Factor Information
Factor Type Levels Values
Material Fixed 3 Aluminum, Plastic, Steel
Supplier Random 5 1, 2, 3, 4, 5

Analysis of Variance
Source DF SS MS F-Value P-Value
Material 2 0.7047 0.3523 0.24 0.790
Supplier 4 36.6747 9.1687 6.32 0.013
Material*Supplier 8 11.6053 1.4507 13.03 0.000
Error 15 1.6700 0.1113
Total 29 50.6547

Figure 11.10 Minitab output for the data of Example 11.21
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Final Comments on Two-Factor ANOVA
Power and sample size calculations for two-factor ANOVA are even more unwieldy than those for the
single-factor case—software is essential for such computations. The pwr2 package in R includes
graphical and computational tools for balanced two-way designs, and PROC GLMPOWER in SAS
has similar functionality.

When at least two of the Kij’s are unequal, the ANOVA computations are much more complex
than for the case Kij = K, and there are no nice formulas for the appropriate test statistics. Most
software packages analyze unbalanced data by using a broader framework called the general linear
model, which also encompasses the methods of Chapter 12. The references by Kutner et al., Miller,
Montgomery, or Ott and Longnecker in the bibliography can be consulted for more information.
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Figure 11.11 Minitab interaction plot for the data of Example 11.21 ■

Exercises: Section 11.5 (61–73)

61. In an experiment to assess the effects of
curing time (factor A) and type of mix (factor
B) on the compressive strength of hardened
cement cubes, three different curing times
were used in combination with four different
mixes, with three observations obtained for
each of the 12 curing time–mix combina-
tions. The resulting sums of squares were
computed to be SSA = 30,763.0, SSB =
34,185.6, SSE = 97,436.8, and SST =
205,966.6.

a. Construct an ANOVA table.
b. Test at level .05 the null hypothesisH0AB:

all cij’s = 0 (no interaction of factors)
against H0AB: at least one cij 6¼ 0.

c. Test at level .05 the null hypothesis H0A:
a1 = a2 = a3 = 0 (factor A main effects
are absent) against HaA: at least one
ai 6¼ 0.

d. Test H0B: b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0 ver-
sus HaB: at least one bj 6¼ 0 using a
level .05 test.

e. The values of the �xi��’s were �x1�� ¼
4010:88; �x2�� ¼ 4029:10; and �x3�� ¼ 3960:02.
Use Tukey’s procedure to investigate
significant differences among the three
curing times.

62. In an experiment described in the article
“The Impact of SMS Advertising on
Members of a Virtual Community”
(J. Advert. Res. 2008: 363–374), research-
ers worked with an online gaming forum to
send out messages advertising a deal on
Subway sandwiches. The message was
varied in two ways: the apparent
spokesperson (either Subway or “Nik,” a
made-up forum member) and the language
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used (full English or texting shorthand).
Forum members were randomly assigned to
receive one of the four possible messages
(spokesperson-language pairs); recipients
were later surveyed about their views on the
advertisement (attractiveness, credibility,
etc.). Assume the researchers obtainedK=12
survey responses for each message (which
approximates the actual study results).

a. Credibility ratings were translated into
normalized scores for each participant,
with positive values meaning the mes-
sage was more credible (zero neutral,
negative less credible). Mean normal-
ized credibility scores appear below.

Credibility Full English Texting shorthand

Subway .2729 .3465
Nik –.4076 –.1689

Construct an interaction plot, and
describe what you see.

b. With A = spokesperson and B = lan-
guage, sums of squares include SSA =
4.2905, SSB = 0.2926, SSAB = 0.0818,
and SSE = 36.5930. Perform a complete
two-factor ANOVA, testing each of the
three possible effects hypotheses at the
.05 level. Explain what you discover.

c. Researchers also the measured “pur-
chase intention” of each subject, with
higher numbers indicating a greater
likelihood of buying a Subway sand-
wich. Use the information below to
create an interaction plot and perform a
two-factor ANOVA as in parts (a)–(b).
Again, explain your findings.

Purchase intention Full English Texting shorthand

Subway 3.949 5.417
Nik 4.389 4.056

SSA ¼ 2:545 SSB ¼ 3:865
SSAB ¼ 9:731 SSE ¼ 112:409

63. The accompanying data resulted from an
experiment to investigate whether yield
from a chemical process depended either on
the formulation of a particular input or on
mixer speed.

Speed

60 70 80

Formulation

1
189.7 185.1 189.0
188.6 179.4 193.0
190.1 177.3 191.1

2
165.1 161.7 163.3
165.9 159.8 166.6
167.6 161.6 170.3

A statistical computer package gave
SS(Form) = 2253.44, SS(Speed) = 230.81,
SS(Form*Speed) = 18.58, and SSE =
71.87.

a. Does there appear to be interaction
between the factors?

b. Does yield appear to depend on either
formulation or speed?

c. Calculate estimates of the main effects.
d. Verify that the residuals are 0.23, −0.87,

0.63, 4.50, −1.20, −3.30, −2.03, 1.97,
0.07, −1.10, −0.30, 1.40, 0.67, −1.23,
0.57, −3.43, −0.13, 3.57.

e. Construct a normal plot from the resid-
uals given in part (d). Do the eijk’s
appear to be normally distributed?

f. Plot the residuals against the predicted
values (cellmeans) to see if the population
variance appears reasonably constant.

64. Artificial human joints are usually secured
with acrylic bone cement. The following
data on the force (in Newtons) required to
break an acrylic cement bond under differ-
ent temperatures and media is consistent
with the information in the article “Vali-
dation of Small-Punch Test as a Technique
for Characterizing the Mechanical Proper-
ties of Acrylic Bone Cement” (J. Engr.
Med. 2006: 11–21):
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Temp. (°C) Medium Breaking force data (N)

22 Dry 100.8, 141.9, 194.8,
118.4, 176.1, 213.1

37 Dry 302.1, 339.2, 288.8,
306.8, 305.2, 327.5

22 Wet 385.3, 368.3, 322.6,
307.4, 357.9, 321.4

37 Wet 363.5, 377.7, 327.7,
331.9, 338.1, 394.6

a. Identify the factors, levels, and treat-
ments in this experiment.

b. Create an interaction plot using the
breaking force data, and comment on
what you see.

c. Test for the presence of main and
interaction effects at the a = .05 level.
Are the results consistent with the
interaction plot?

65. Students Philip Hurst and Yuan Chao Jiang
investigated the accuracy of three different
brands of .22 caliber ammunition at two
different distances. The brands were Rem-
ington, Winchester, and Federal, and the
two designated distances were 25 and 50
yards. “Accuracy” was measured by dis-
tance from the bull’s-eye, in centimeters.
All bullets were shot from the same rifle,
and the order of the bullets was random-
ized. The accompanying table shows the
mean accuracy at each combination based
on K = 75 bullets.

Bullet brand

Fed. Rem. Win.

Firing
distance

25 3.027 3.360 3.280
50 5.440 5.413 5.560

a. Identify the factors, levels, and treat-
ments in this experiment.

b. Create an interaction plot for the accuracy
data, and comment on what you see.

c. From software, SS(Dist.) = 568.97,
SS(Brand) = 2.97, SS(Dist.*Brand) =
2.48, and SSE = 1041.49. Test for the

presence of main and interaction effects
for the accuracy data at the a = .05 level.
Are the results consistent with your
interaction plot?

66. In a study reported in the article “Can
‘Low-Fat’ Nutrition Labels Lead to Obe-
sity?” (J. Market. Res. 2006: 605–617),
students and parents attending a university
open house were offered one of two candy
bowls: one labeled “New Colors of Regular
M&M’s” or another labeled “New ‘Low-
Fat’ M&M’s.” (The latter product does not
really exist; the candies were just regular
M&M’s.) The researchers asked each per-
son to fill out a questionnaire (including
height and weight information) and recor-
ded how much candy s/he took. The two
factors of interest are A = how the candy
was labeled (regular, low-fat) and B = the
person’s weight status (defined as “normal
weight” for a body mass index below 25,
“overweight” otherwise). The response
variable used for the analysis was the
amount of calories in the M&M’s taken by
the subject.

a. The accompanying table shows the
average calorie consumption for each
“treatment.” Construct an interaction
plot, and describe what you discover.

Subject’s weight

Normal Overweight

Food
label

Regular 189 192
Low-fat 219 281

b. The article includes the following
F-values and P-values for the various
effects (error and total df do not follow
our formulas because the study design
was not balanced, but this does not
affect the interpretation of the results).
Are the results of the F tests consistent
with the interaction plot? Explain.
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Source of variation df F P-value

Food label 1 13.1 0.000
Weight 1 4.3 0.039
Interaction 1 3.9 0.049
Error 251
Total 254

67. A study was carried out to compare the
writing lifetimes of four premium brands of
pens. It was thought that the writing surface
might affect lifetime, so three different
surfaces were randomly selected. A writing
machine was used to ensure that conditions
were otherwise homogeneous (e.g., con-
stant pressure and a fixed angle). The
accompanying table shows the two life-
times (min) obtained for each brand–sur-
face combination.

Brand of pen

Writing surface

1 2 3

1 709, 659 713, 726 660, 645
2 668, 685 722, 740 692, 720
3 659, 685 666, 684 678, 750
4 698, 650 704, 666 686, 733

Carry out an appropriate ANOVA, and
state your conclusions.

68. A 2005 article in Issues in Accounting
Education described an experiment in
which students in an introductory account-
ing course were randomly assigned to one
of two computer-based learning
(CBL) methods: one based on problem-
solving and another using worked exam-
ples. Students in each group were also
classified according to prior accounting
knowledge (yes or no). A 15-point diag-
nostic exam was then administered to all
students; average scores for the four groups,
as well as a partial F table, appear below.

CBL method Prior accounting
knowledge?

Yes No

Problem-solving 10.45 7.59
Worked examples 10.17 8.32

Source of variation df F P-value

CBL Method 1 0.50 .291
Prior Knowledge 1 33.73 .000
Interaction 1 1.60 .105
Error 89
Total 92

a. Create an interaction plot, and comment
on what you see.

b. State the formal hypotheses being tested
in the ANOVA table (there are three
sets of hypotheses), and test each at the
a = .05 level. Assume the conditions
required for this inference procedure are
met.

c. Explain in practical terms what the tests
in part (b) say about the effects of dif-
ferent computer-based learning methods
and/or prior accounting knowl-
edge on accounting diagnostic exam
performance.

69. Several factors can impact the structural
soundness of 3D-printed objects, including
the “struts” that connect various pieces. The
following data appears in the article “Ana-
lyzing the Effects of Temperature, Nozzle-
Bed Distance, and Their Interactions on the
Width of Fused Deposition Modeled Struts
Using Statistical Techniques Toward Pre-
cision Scaffold Fabrication”(J. Manuf. Sci.
Engr. 2017). Response values are strut
widths, in microns.

Temp.

Nozzle-bed distance

0.2 mm 0.3 mm 0.4 mm

180 °C 845 850 885 600 605 625 495 495 525
200 °C 770 800 850 650 690 690 490 520 525
220 °C 900 910 995 630 645 655 510 545 560

Perform a complete two-factor ANOVA,
and report your findings.

70. The article “Is It Really Good to Talk?
Testing the Impact of Providing Concurrent
Verbal Protocols on Driving Performance”
(Ergonomics 2017: 770–779) reported an
experiment in which 20 drivers drove four
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laps on a fixed course. During two of the
laps, drivers remained silent; on the other
two, drivers were instructed to “think
aloud” about their driving as they pro-
ceeded along the course. Lap order was
randomized for each driver, and each dri-
ver’s average speed throughout the lap was
recorded.
With A = protocol (silent or thinking aloud)
and B = driver, sums of squares consistent
with information in the article include SSA
= 6.272, SSB = 343.975, SSAB = 46.733,
and SSE = 138.571. Protocol is a fixed
factor, while driver is a random factor.
Perform the appropriate two-factor
ANOVA (complete with ANOVA table),
testing each effect at the .05 significance
level. Explain what each F test tells you.

71. a. Show that E Xi�� � X���
� � ¼ ai, so that

Xi�� � X��� is an unbiased estimator for ai
in the fixed effects model.

b. With ĉij ¼ Xij� � Xi�� � X�j� þX���, show
that ĉij is an unbiased estimator for cij in
the fixed effects model.

72. Refer back to the previous exercise. Show
how a 100(1 – a)% t CI for ai � ai0 can be
obtained. Then compute a 95% interval for
a2 – a3 using the data from Example 11.18.
[Hint: With h = a2 – a3, the result of the

previous exercise indicates how to obtain ĥ.

Then compute VðĥÞ and rĥ and obtain an

estimate of rĥ by using
ffiffiffiffiffiffiffiffiffiffi
MSE

p
to estimate

r, which identifies the appropriate number
of df.]

73. When both factors are random in a two-way
ANOVA experiment with K replications
per combination of factor levels, the
expected mean squares are EðMSEÞ ¼ r2;
EðMSAÞ ¼ r2 þKr2G þ JKr2A, EðMSBÞ ¼
r2 þKr2G þ IKr2B, and EðMSABÞ ¼
r2 þKr2G.

a. What F ratio is appropriate for testing
H0G: r2G ¼ 0 versus HaG: r2G [ 0?

b. What F ratio is appropriate for testing
H0A: r2A ¼ 0 versus HaA: r2A [ 0? Test-
ing H0B: r2B ¼ 0 versus HaB: r2B [ 0?

Supplementary Exercises: (74–84)

74. Consider the following summary data on
the modulus of elasticity (
106 psi) for
lumber of three different grades (in close
agreement with values in the article
“Bending Strength and Stiffness of Second-
Growth Douglas-Fir Dimension Lumber”
(For. Prod. J. 1991: 35–43), except that the
sample sizes there were larger):

Grade J �xi� si

1 10 1.63 .27
2 10 1.56 .24
3 10 1.42 .26

Use this data and a significance level of .01
to test the null hypothesis of no difference
in mean modulus of elasticity for the three
grades.

75. The article “The Effects of a Pneumatic
Stool and a One-Legged Stool on Lower
Limb Joint Load and Muscular Activity
During Sitting and Rising” (Ergonomics
1993: 519–535) gives the accompanying
data on the effort required of a subject to
arise from four different types of stools
(Borg scale). Perform an analysis of vari-
ance using a = .05, and follow this with a
multiple comparisons analysis if
appropriate.

Subject

1 2 3 4 5 6 7 8 9 �xi�

Type of
stool

1 12 10 7 7 8 9 8 7 9 8.56
2 15 14 14 11 11 11 12 11 13 12.44
3 12 13 13 10 8 11 12 8 10 10.78
4 10 12 9 9 7 10 11 7 8 9.22
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76. The article “Antimicrobial Activities of
Essential Oil of Eight Plant Species from
Different Families Against Some Patho-
genic Microorganisms” (Res. J. Microbiol.
2016: 28–34) reported on an experiment in
which various concentrations of eight
essential oils were applied to active bacte-
rial cultures. The accompanying table
shows the inhibition percentage of E. coli
for each oil-concentration combination.

Oil Type

Concentration (lL/mL)

2 4 6 8 10

Ginger 60 72 80 92 99
Thyme 58 64 78 86 96
Coriander 57 63 81 89 99
Marjoram 17 34 49 51 67
Mustard 14 31 45 63 70
Chamomile 22 36 54 63 72
Licorice 10 14 23 28 33
Nigella 15 29 42 48 57

a. Perform a two-factor ANOVA, testing
both main effects at the .01 level.

b. Apply Tukey’s method to the eight
essential oils, and describe what you find.

77. An experiment was carried out to compare
flow rates for four different types of nozzle.
a. Sample sizes were 5, 6, 7, and 6,

respectively, and calculations gave
f = 3.68. State and test the relevant
hypotheses using a = .01.

b. Analysis of the data using a statistical
computer package yielded P-value =
.029. At level .01, what would you
conclude, and why?

78. The article “Towards Improving the Prop-
erties of Plaster Moulds and Castings”
(J. Engr. Manuf. 1991: 265–269) describes
several ANOVAs carried out to study
how the amount of carbon fiber and
sand additions affect various characteristics
of the molding process. Here we give data
on casting hardness and on wet-mold
strength.

Sand
addition
(%)

Carbon
fiber

addition
(%)

Casting
hardness

Wet-mold
strength

0 0 61.0 34.0
0 0 63.0 16.0

15 0 67.0 36.0
15 0 69.0 19.0
30 0 65.0 28.0
30 0 74.0 17.0
0 .25 69.0 49.0
0 .25 69.0 48.0

15 .25 69.0 43.0
15 .25 74.0 29.0
30 .25 74.0 31.0
30 .25 72.0 24.0
0 .50 67.0 55.0
0 .50 69.0 60.0

15 .50 69.0 45.0
15 .50 74.0 43.0
30 .50 74.0 22.0
30 .50 74.0 48.0

a. An ANOVA for wet-mold strength
gives SS(Sand) = 705, SS(Fiber) =
1278, SSE = 843, and SST = 3105.
Test for the presence of any effects
using a = .05.

b. Carry out an ANOVA on the casting
hardness observations using a = .05.

c. Construct an interaction plot with sand
percentage on the horizontal axis, and
discuss the results of part (b) in terms of
what the plot shows.

79. The article “The Effectiveness of Virtual
and Augmented Reality in Health Science
and Medical Anatomy” (Anatom. Sc. Educ.
2017: 549–559) describes an experiment in
which 59 health science students received
an identical, electronic 10-minute lesson on
skull anatomy (complete with 3D graphics
models) through one of three devices: a
virtual reality (VR) system, an augmented
reality (AR) system, or a 3D-capable tablet.
After the lesson, all students took a
20-question test on skull anatomy. The
accompanying table summarizes the stu-
dents’ exam scores.
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Lesson delivery n Mean SD

VR 20 12.9 4.3
AR 17 12.5 4.5
3D Tablet 22 13.3 4.2

Does the data suggest that there is a dif-
ference among the three lesson delivery
methods with respect to true mean exam
score? Use a = .05.

80. Numerous factors contribute to the smooth
running of an electric motor (“Increasing
Market Share Through Improved Product
and Process Design: An Experimental
Approach,” Qual. Engr. 1991: 361–369).
In particular, it is desirable to keep motor
noise and vibration to a minimum. To study
the effect that the brand of bearing has on
motor vibration, five different motor bear-
ing brands were examined by installing
each type of bearing on different random
samples of six motors. The amount of
motor vibration (measured in microns) was
recorded when each of the 30 motors was
running. The data for this study follows.
State and test the relevant hypotheses at
significance level .05, and then carry out a
multiple comparisons analysis if
appropriate.

Mean

Brand 1: 13.1 15.0 14.0 14.4 14.0 11.6 13.68
Brand 2: 16.3 15.7 17.2 14.9 14.4 17.2 15.95
Brand 3: 13.7 13.9 12.4 13.8 14.9 13.3 13.67
Brand 4: 15.7 13.7 14.4 16.0 13.9 14.7 14.73
Brand 5: 13.5 13.4 13.2 12.7 13.4 12.3 13.08

81. An article in the British scientific journal
Nature reported on an experiment in which
each of five groups consisting of six rats
was put on a diet with a different carbo-
hydrate. At the conclusion of the experi-
ment, the DNA content of the liver of each
rat was determined (mg/g liver), with the
following results:

Carbohydrate �xi�
Starch 2.58
Sucrose 2.63
Fructose 2.13

(continued)

Carbohydrate �xi�
Glucose 2.41
Maltose 2.49

a. Assuming also that SST = 3.62, is the
true average DNA content affected by
the type of carbohydrate in the diet?
Construct an ANOVA table and use a
.05 level of significance.

b. Construct a t CI for the contrast

h ¼ l1 � l2 þ l3 þ l4 þ l5ð Þ=4

which measures the difference between
the average DNA content for the starch
diet and the combined average for the
four other diets. Does the resulting
interval include zero?

c. What is b for the test when true average
DNA content is identical for three of the
diets and falls below this common value
by 1 standard deviation (r) for the other
two diets?

82. Four laboratories (1–4) are randomly
selected from a large population, and each
is asked to make three determinations of the
percentage of methyl alcohol in specimens
of a compound taken from a single batch.
Based on the accompanying data, are
differences among laboratories a source of
variation in the percentage of methyl alco-
hol? State and test the relevant hypotheses
using significance level .05.

1: 85.06 85.25 84.87
2: 84.99 84.28 84.88
3: 84.48 84.72 85.10
4: 84.10 84.55 84.05

83. The article “Effects of Pulmonary Rehabil-
itation on Exercise Capacity and Disease
Impact in Patients with Chronic Obstructive
Pulmonary Disease and Obesity” (Physio-
therapy 2018: 248–250) reports a study in
which 155 COPD sufferers completed an
eight-week pulmonary rehabilitation pro-
gram at St. James’ Hospital in Dublin,
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Ireland. Before and after the program,
subjects performed the Six-Minute Walk
Test (6MWT), which simply measures the
distance (in meters) patients can walk in six
minutes. The accompanying table summa-
rizes the increase in 6MWT distance for the
participants (i.e., post-rehab distance minus
pre-rehab distance), separated by their
weight category.

Weight category n Mean SD

Underweight/normal 53 61 80
Overweight 39 67 86
Obese 63 41 87

a. Does the data suggest that the pul-
monary rehab program is not equally
effective for COPD patients of all weight
categories? State and test the relevant
hypotheses at significance level .05.

b. Investigate differences between weight
categories with respect to mean increase
in 6MWT distance.

84. Recall from Section 11.2 that if c1; c2; . . .; cI
are numbers satisfying

P
ci ¼ 0

then h ¼P cili is called a contrast in the
li’s. Notice that with c1 = 1, c2 = −1,
c3 = ��� = cI = 0,

P
cili ¼ l1 � l2, which

implies that every pairwise difference
between li’s is a contrast (and so is, e.g.,
l1 – .5l2 – .5l3). A method attributed to
Scheffé gives simultaneous CIs with simul-
taneous confidence level 100(1 – a)% for all
possible contrasts (an infinite number of
them!). The interval for

P
cili is

X
ci�xi� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI � 1ÞFa;I�1;n�IMSE

X
c2i =Ji

q

Using the data from the previous exercise,
calculate the 95% confidence Scheffé
intervals for the contrasts l1 – l2, l1 – l3,
l2 – l3, and .5l1 + .5l2 – l3 (the last con-
trast compares obese patients to the average
of normal and overweight). Which contrasts
differ significantly from 0, and why?
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12Regression and Correlation

Introduction
The general objective of a regression analysis is to investigate the relationship between two (or more)
variables so that we can gain information about one of them through knowing values of the other(s).
Much of mathematics is devoted to studying variables that are deterministically related, meaning that
once we are told the value of x, the value of y is completely specified. For example, suppose we
decide to rent a van for a day and that the rental cost is $25.00 plus $.30 per mile driven. Letting
x = the number of miles driven and y = the rental charge, then y = 25 + .3x. If the van is driven 100
miles (x = 100), then y = 25 + .3(100) = $55. As another example, suppose the initial velocity of a
particle is v0 and it undergoes constant acceleration a. Then distance traveled ¼ y ¼ v0xþ 1

2ax
2, where

x = time.
There are many variables x and y that would appear to be related to each other, but not in a

deterministic fashion. A familiar example to many students is given by variables x = high school
grade point average (GPA) and y = college GPA. The value of y cannot be determined completely
from knowledge of x, as two different students could have the same x value but very different
y values. Yet there is a tendency for those students who have high (low) high school GPAs also to
have high (low) college GPAs. Knowledge of a student’s high school GPA should help us predict
how that person will do in college. Other examples of variables related in a nondeterministic fashion
include x = applied tensile force and y = amount of elongation in a metal strip, x = age of a child and
y = size of that child’s vocabulary, and x = size of an engine and y = fuel efficiency for an auto-
mobile equipped with that engine.

In this chapter, we generalize a deterministic linear relationship to obtain a probabilistic linear
model for relating two variables x and y. We then develop procedures for making inferences based on
data obtained from the model and obtain a quantitative measure (the correlation coefficient) of the
extent to which the two variables are related. Techniques for assessing the adequacy of any particular
regression model are then considered. Multiple regression analysis is introduced next as a way of
relating y to two or more variables—for example, relating fuel efficiency of an automobile to weight,
engine size, number of cylinders, and transmission type. The penultimate section of the chapter shows
how matrix algebra techniques can be used to facilitate a concise and elegant development of
regression procedures. The final section explains logistic regression, a method devised to predict a
categorical variable y (e.g., absence or presence of lung cancer) from one or more x variables (amount
of nicotine smoked/vaped per day, age, and so on).
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12.1 The Simple Linear Regression Model

The key idea in developing a probabilistic relationship between a response (or dependent) variable
y and an explanatory (or predictor or independent) variable x is to realize that once the value of
x has been fixed, there is still uncertainty in what the resulting y value will be. That is, for a fixed
value of x, we think of the response variable as being random. This random variable will be denoted
by Y and its observed value by y. For example, suppose an investigator plans a study to relate
y = yearly energy usage of an industrial building (1000’s of BTUs) to x = the shell area of the
building (ft2). If one of the buildings selected for the study has a shell area of 25,000 ft2, the resulting
energy usage might be 2,215,000 or 2,348,000 or any one of a number of other possibilities. Since we
don’t know a priori what the value of energy usage will be—because usage is determined partly by
factors other than shell area—usage is regarded as a random variable Y.

We typically relate the explanatory and response variables by an additive model equation:

Y ¼ ðsome particular deterministic function of xÞþ ða randomdeviation)

¼ f ðxÞþ e
ð12:1Þ

The symbol e represents a random deviation or random “error” (i.e., a random variable), which is
assumed to have mean value 0. This rv incorporates all variation in the response variable due to
factors other than x. Without the random deviation e, whenever x is fixed prior to making an
observation on the response variable, the resulting (x, y) point would fall exactly on the graph of y =
f(x), i.e., y would be entirely determined by x. The role of the random deviation e is to allow a
nondeterministic relationship. The assumption that e has mean value 0 implies that, at any fixed
x value, the mean (or expected) Y value is given by the function f(x). In other words, we regard f(x) in
(12.1) as the mean response for a given x value.

How should the deterministic part of the model equation be selected? Occasionally some sort of
theoretical argument will suggest an appropriate choice of f(x). However, in practice the specification
of f(x) is almost always made by obtaining sample data consisting of (x, y) pairs. A picture of the
resulting observations (x1, y1), (x2, y2), …, (xn, yn), called a scatterplot, is then constructed. In this
scatterplot each (xi, yi) is represented as a point in a two-dimensional coordinate system. The pattern
of points in the plot should suggest an appropriate f(x).

Example 12.1 Troops deployed in active conflict areas worldwide depend on their body armor for
protection. In conjunction with the US Army, the National Research Council developed the 2012
report “Testing of Body Armor Materials—Phase III.” In one test, specimens of UHMWPE body
armor were shot with a 7.62 mm round at different firing velocities. The accompanying data on
x = velocity (m/s) and y = penetration area (mm2, a proxy for amount of damage) appears in a graph
in the report.

i 11 12 13 14 15 16 17 18 19 20

xi 738 740 762 762 768 780 792 786 790 787

yi 78.6 87.9 92.6 83.0 79.0 75.3 83.4 100.7 106.6 112.8

i 1 2 3 4 5 6 7 8 9 10

xi 670 675 679 681 694 699 699 708 726 732

yi 66.4 64.5 63.6 72.9 79.1 76.7 65.5 68.0 57.8 72.4
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Thus (x1, y1) = (670, 66.4), (x2, y2) = (675, 64.5), and so on. A scatterplot is shown in Figure 12.1.
Here are some things to notice about the data and plot:

• Several observations have identical x values yet different y values (e.g., x6 = x7 = 699, but
y6 = 76.7 and y7 = 65.5). Thus x and y are not deterministically related.

• There is a strong tendency for y to increase as x increases. That is, higher firing velocities tend, not
surprisingly, to be associated with larger penetration areas—a positive relationship between the
variables.

• It appears that the value of y could be predicted from x by finding a line that “cuts through the
heart” of the points in the plot; in fact, the authors of the report superimposed such a line on their
plot. In other words, there is evidence of a substantial, though certainly not perfect, linear rela-
tionship between the two variables.

Notice that the axes in Figure 12.1 do not meet at (0, 0); rather, the lower-left corner is roughly at
(50, 660). In most data sets, the values of x and/or y differ considerably from zero, and it makes better
visual sense to adjust the axis boundaries to reflect the ranges of the variables.

Example 12.2 As demand for renewable energy such as solar and wind power increases, companies
are spending more research money to develop more efficient methods for producing such energy. The
scatterplot in Figure 12.2 shows the efficiency of a solar cell (y, measured as a percentage of the
theoretical maximum efficiency) and the “sheet resistance” of the cell (x, measured in ohms) for a
random sample of 132 prototype solar cells manufactured by a certain energy company. (Data
provided by John Coleman; efficiency in the 8–15% range may seem low, but these were typical
values in the solar energy industry at the time the data was collected.)
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Figure 12.1 Scatterplot for the data from Example 12.1 ■
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As in the previous example, Figure 12.2 suggests a probabilistic relationship between the two
variables: it appears that two solar cells with the same sheet resistance will not necessarily have the
same efficiency. But the curvature in the scatterplot implies that a nonlinear relationship exists
between x and y. A quadratic function f(x) would be more appropriate here if we wished to apply the
model equation (12.1) to this scenario. ■

Throughout the next several sections, we will concentrate on situations for which a linear rela-
tionship, such as in Example 12.1, is reasonable. Quadratic and other more sophisticated models to
accommodate data such as Example 12.2 are considered in Section 12.8.

A Linear Probabilistic Model
For the deterministic linear relationship y = b0 + b1x, the slope coefficient b1 is the guaranteed
increase in y when x increases by one unit, and the intercept coefficient b0 is the value of y when
x = 0. When a scatterplot of bivariate data consisting of (xi, yi) pairs shows a reasonably substantial
linear pattern, it is natural to specify f(x) in the model equation (12.1) to be a linear function. Rather
than assuming that the response variable itself is a linear function of x, the model assumes that the
expected value of Y is a linear function of x. For each data point, the observed value of Y will deviate
by a random amount from its expected value.

THE SIMPLE LINEAR
REGRESSION MODEL

There are parameters b0, b1, and r such that for any fixed value of the
explanatory variable x, the response variable is related to x through the
model equation

Y ¼ b0 þ b1xþ e

Moreover, regardless of the fixed x value, the random variable e is
assumed to follow a N(0, r) distribution.

The term “simple” here refers to the use of a single explanatory variable; in Section 12.7, we will
consider models with multiple x variables. The n observed pairs (x1, y1), (x2, y2), …, (xn, yn) are
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Figure 12.2 Scatterplot for the data from Example 12.2
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regarded as having been generated independently of one another from the model equation: first fix
x = x1 and observe Y1 = b0 + b1x1 + e1, then fix x = x2 and observe Y2 = b0 + b1x2 + e2, and so on.
Assuming that the ei’s are independent of each other implies that the Yi’s are also.

Figure 12.3 gives an illustration of data resulting from the simple linear regression model.

The first two model parameters b0 and b1 are the coefficients of the population (or true) re-
gression line f(x) = b0 + b1x. The slope parameter b1 is now interpreted as the change in the
expectation of Y associated with a one-unit increase in x. As an example, if x = size of a house (sq. ft.),
y = amount of natural gas used (therms) during a specified period, and b1 = .017, then the change in
expected gas usage associated with a one-sq-ft increase in house size is .017 therms. The standard
deviation parameter r controls the inherent amount of variability in the data. When r is very close
to 0, virtually all of the (xi, yi) pairs in the sample should correspond to points quite close to the
population regression line. But if r is relatively large, a number of points in the scatterplot are likely
to fall far from the line. Roughly speaking, the magnitude of r is the size of a “typical” deviation from
the population line.

The following notation will help clarify implications of the model relationship. Let x� denote a
particular value of the explanatory variable x, and

lY jx� ¼ EðY jx�Þ ¼ the expected i:e:; meanð Þvalue of Y when x ¼ x�

r2Y jx� ¼ VðY jx�Þ ¼ the variance of Y when x ¼ x�

For example, if x = applied stress (kg/mm2) and y = time to fracture (h), then lY j20 denotes the
expected time to fracture when applied stress is 20 kg/mm2. If we conceptualize an entire population
of (x, y) pairs resulting from applying stress to specimens, then lY j20 is the average of all values of the
response variable for which x = 20. The variance r2Y j20 describes the spread in the distribution of all

y values for which applied stress is 20.
When the value x = x� is fixed, the only randomness on the right-hand side of the model equation

is from the random deviation e. Recalling that the mean value of a numerical constant is itself and that
adding a constant does not affect variance, we have that

lY jx� ¼ Eðb0 þ b1x
� þ eÞ ¼ b0 þ b1x

� þEðeÞ ¼ b0 þ b1x
�

r2Y jx� ¼ Vðb0 þ b1x
� þ eÞ ¼ VðeÞ ¼ r2
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Figure 12.3 Points corresponding to observations from the simple linear regression model
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The first sequence of equalities says that the mean value of Y when x = x� is the height of the
population regression line above the value x�. That is, the population regression line is the line of
mean Y values—the mean response is a linear function of the explanatory variable. The second
sequence of equalities tells us that the amount of variability in the distribution of Y is the same at
every x value—this “constant variance” assumption is part of the simple linear regression model.

The constant variance property implies that points should spread out about the population
regression line to the same extent throughout the range of x values in the sample, rather than fanning
out more as x increases or as x decreases. If x = age of a preschool child and Y = the child’s vocabulary
size, data suggests that mean vocabulary size increases linearly with age. However, there is more
variability in vocabulary size for four-year-olds than for two-year-olds, so there is not constant vari-
ation in Y about the population line, and the simple linear regression model is therefore not appropriate.
In Section 12.6, we will briefly discuss possible remedies to this assumption violation.

Finally, the sum of a constant and a normally distributed variable is itself normally distributed, and
the addition of the constant affects only the mean value and not the standard deviation. So for any
fixed value x�, Y (= b0 + b1x� + e) has a normal distribution. The foregoing properties are summa-
rized in Figure 12.4.

Example 12.3 Suppose the relationship between applied stress x and time to fracture y is described by
the simple linear regression model with b0 = 65, b1 = −1.2, and r = 8. Then there is a 1.2-h decrease in
average (or expected) fracture time associated with an increase of 1 kg/mm2 in applied stress. For any
fixed value of x� of stress, time to fracture is normally distributed with mean value 65 − 1.2x� and
standard deviation 8. Roughly speaking, in the population consisting of all (x, y) points, themagnitude of
a typical deviation from the true regression line is about 8.

For x = 20, Y has mean value lY|20 = 65 − 1.2(20) = 41, so

PðY [ 50when x ¼ 20Þ ¼ P Z[
50� 41

8

� �
¼ 1� Uð1:13Þ ¼ :1292
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Figure 12.4 (a) Distribution of e, (b) distribution of Y for different values of x
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When applied stress is 25, lY|25 = 35, so the probability that time to fracture exceeds 50 is

PðY [ 50when x ¼ 25Þ ¼ P Z[
50� 35

8

� �
¼ 1� Uð1:88Þ ¼ :0301

These probabilities are illustrated as the shaded areas in Figure 12.5.

Suppose that Y1 denotes an observation on time to fracture made with x = 25 and Y2 denotes an
independent observation made with x = 24. Then the difference Y1 − Y2 is normally distributed with
mean value E(Y1 − Y2) = b1 = −1.2, variance V(Y1 − Y2) = r2 + r2 = 128, and standard deviationffiffiffiffiffiffiffiffi
128

p ¼ 11:314. The probability that Y1 exceeds Y2 is

PðY1 � Y2 [ 0Þ ¼ P Z[
0� ð�1:2Þ
11:314

� �
¼ PðZ[ :11Þ ¼ :4562

That is, even though we expect Y to decrease when x increases by one unit, the probability is fairly
high (but less than .5) that the observed Y at x + 1 will be larger than the observed Y at x. ■

Our discussion thus far has presumed that the explanatory variable is under the control of the
investigator, so that only the response variable Y is random. This will not always be the case: if we
take a random sample of college students and record the height and weight of each, neither variable is
preselected, so both x and y could be considered random. Methods and conclusions of the next several
sections can be applied both when the values of the explanatory variable are fixed in advance and
when they are random, but because the derivations and interpretations are more straightforward in the
former case, we will continue to work explicitly with it. For more commentary, see the excellent book
by Michael Kutner et al. listed in the bibliography.

x
20

35

41

50

25

True regression line

E(Y|x) = 65 – 1.2x 

P(Y > 50 when x = 25) = .0301

P(Y > 50 when x = 20) = .1292y

Figure 12.5 Probabilities based on the simple linear regression model
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Exercises: Section 12.1 (1–12)

1. Obesity is associated with higher foot load
that can potentially increase pain and dis-
comfort, but little research has been done
on this relationship in children and its
possible effects. A graph in the article
“Childhood Obesity is Associated with
Altered Plantar Pressure Distribution Dur-
ing Running” (Gait and Posture 2018:
202–205) gave the accompanying data on
x = body mass index (kg/m2) and y = peak
foot pressure (kPa) while running for a
sample of 42 children.

a. Construct stem-and-leaf displays of
both BMI and peak foot pressure, and
comment on interesting features.

b. Is the value of peak foot pressure
completely and uniquely determined by
BMI? Explain your reasoning.

c. Construct a scatterplot of the data.
Does it appear that peak foot pressure
could be predicted by a child’s body
mass index? Explain your reasoning.

2. Verapamil is used to treat certain heart
conditions, including high blood pressure
and arrhythmia. Studies continue on the
factors that affect the drug’s absorption into
the body. The article “The Effect of Non-
ionic Surfactant Brij 35 on Solubility and
Acid-Base Equilibria of Verapamil”
(J. Chem. Engr. Data 2017: 1776–1781)
includes the following data on x = pH and
y = Verapamil solubility (10−5 mol/L) at
25 °C for one such study.

a. Construct a scatterplot of solubility
versus pH, and describe what you see.
Does it appear that a linear model
would be appropriate here?

b. Hydrogen ion concentration [H+] is
related to pH by pH = –log10([H

+]).
Use this to calculate the hydrogen ion
concentrations for each observation,
then make a scatterplot of solubility
versus [H+]. Does it appear that a linear
model would fit this data well?

c. Would a linear function fit the data in
part (b) perfectly? That is, is it rea-
sonable to assume a completely deter-
ministic relationship here? Explain
your reasoning.

3. Bivariate data often arises from the use of
two different techniques to measure the
same quantity. As an example, the accom-
panying observations on x = hydrogen
concentration (ppm) using a gas chro-
matography method and y = concentration
using a new sensor method were read from
a graph in the article “A New Method to
Measure the Diffusible Hydrogen Content
in Steel Weldments Using a Polymer
Electrolyte-Based Hydrogen Sensor”
(Welding Res., July 1997: 251s–256s).

Construct a scatterplot. Does there appear
to be a very strong relationship between the
two types of concentration measurements?
Do the two methods appear to be measuring
roughly the same quantity? Explain your
reasoning.

4. A study to assess the capability of subsur-
face flow wetland systems to remove bio-
chemical oxygen demand (BOD, a measure
of organic matter in sewage) and various
other chemical constituents resulted in the
accompanying data on x = BOD mass
loading (kg/ha/d) and y = BOD mass
removal (kg/ha/d) (“Subsurface Flow

x 12.8 13.0 13.0 13.5 13.8 13.8 14.2 14.4 14.5

y 340 346 641 572 360 334 366 538 360

x 14.6 14.6 14.8 14.9 15.0 15.0 15.0 15.5 15.6

y 417 627 609 552 414 575 578 546 314

x 15.9 16.6 16.9 17.0 17.1 17.1 17.5 17.6 18.6

y 466 572 494 454 305 368 494 322 494

x 18.7 18.7 20.0 20.1 20.5 20.6 21.0 21.1 21.2

y 589 305 664 368 362 474 486 351 382

x 21.6 22.4 23.1 24.2 24.7 26.5

y 491 893 741 850 815 376

x 47 62 65 70 70 78 95 100 114 118

y 38 62 53 67 84 79 93 106 117 116

x 124 127 140 140 140 150 152 164 198 221

y 127 114 134 139 142 170 149 154 200 215

pH 8.12 8.32 8.41 8.62 8.70 8.84 8.88 9.09

sol. 53.4 32.3 22.2 14.6 13.9 8.76 5.06 5.57
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Wetlands—A Performance Evaluation,”
Water Environ. Res. 1995: 244–247).

a. Construct boxplots of both mass load-
ing and mass removal, and comment on
any interesting features.

b. Construct a scatterplot of the data, and
comment on any interesting features.

5. The article “Objective Measurement of the
Stretchability of Mozzarella Cheese”
(J. Texture Stud. 1992: 185–194) reported
on an experiment to investigate how the
behavior of mozzarella cheese varied with
temperature. Consider the accompanying
data on x = temperature and y = elongation
(%) at failure of the cheese. [Note: The
researchers were Italian and used real
mozzarella cheese, not the poor cousin
widely available in the USA.]

a. Construct a scatterplot in which the
axes intersect at (0, 0). Mark 0, 20, 40,
60, 80, and 100 on the horizontal axis
and 0, 50, 100, 150, 200, and 250 on
the vertical axis.

b. Construct a scatterplot in which the
axes intersect at (55, 100), as was done
in the cited article. Does this plot seem
preferable to the one in part (a)?
Explain your reasoning.

c. What do the plots of parts (a) and
(b) suggest about the nature of the
relationship between the two variables?

6. One factor in the development of tennis
elbow, a malady that strikes fear in the
hearts of all serious tennis players, is the
impact-induced vibration of the racket-and-
arm system at ball contact. It is well known
that the likelihood of getting tennis elbow
depends on various properties of the racket

used. Consider the scatterplot of x = racket
resonance frequency (Hz) and y = sum of
peak-to-peak acceleration (a characteristic
of arm vibration, in m/s/s) for n = 23 dif-
ferent rackets (“Transfer of Tennis Racket
Vibrations into the Human Forearm,” Med.
Sci. Sports Exercise 1992: 1134–1140).
Discuss interesting features of the data and
scatterplot.

7. Data from the EPA’s Fuel Efficiency Guide
suggests an approximate linear relationship
between y = highway fuel efficiency
(mpg) and x = weight (lbs) for midsize
cars. Suppose the equation of the true
regression line is f(x) = 70 − .0085x.

a. What is the expected value of highway
fuel efficiency when weight = 2500
lbs?

b. By how much can we expect highway
fuel efficiency to change when weight
increases by 1 lb?

c. Answer part (b) for an increase of 500
lbs.

d. Answer part (b) for a decrease of 500
lbs.

8. Referring to the previous exercise, suppose
that the random deviation e is normally
distributed with standard deviation 4.6 mpg.

a. What is the probability that the
observed value of highway fuel effi-
ciency will exceed 30 mpg when the
car’s weight is 4000 lbs?

b. Repeat part (a) with 5000 in place of
4000.

x 59 63 68 72 74 78 83

y 118 182 247 208 197 135 132

x 3 8 10 11 13 16 27

y 4 7 8 8 10 11 16

x 30 35 37 38 44 103 142

y 26 21 9 31 30 75 90

x
100

y

38

36

34

32

30

28

26

22

24

180 190120110 130 140 160150 170
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c. Consider making two independent
observations on highway fuel efficiency,
the first for a car weighing 4000 lbs and
the second for x = 5000. What is the
probability that the first observation will
exceed the second by more than 5 mpg?

d. Let Y1 and Y2 denote observations on
highway fuel efficiency when x = x1
and x = x2, respectively. By how much
would x2 have to exceed x1 in order that
P(Y1 > Y2) = .95?

9. The flow rate y (m3/min) in a device used
for air-quality measurement depends on the
pressure drop x (in. of water) across the
device’s filter. Suppose that for x values
between 5 and 20, the two variables are
related according to the simple linear
regression model with true regression line
E(Y|x) = −.12 + .095x.
a. What is the expected change in flow

rate associated with a 1-in. increase in
pressure drop? Explain.

b. What change in flow rate can be
expected when pressure drop decreases
by 5 in.?

c. What is the expected flow rate for a
pressure drop of 10 in.? A drop of 15
in.?

d. Suppose r = .025 and consider a
pressure drop of 10 in. What is the
probability that the observed value of
flow rate will exceed .835? That
observed flow rate will exceed .840?

e. What is the probability that an obser-
vation on flow rate when pressure drop
is 10 in. will exceed an observation on
flow rate made when pressure drop is
11 in.?

10. Suppose the expected cost of a production
run is related to the size of the run by the
equation E(Y|x) = 4000 + 10x. Let Y de-
note an observation on the cost of a run.
Assuming that the variables size and cost
are related according to the simple linear
regression model, could it be the case that

P(Y > 5500 when x = 100) = .05 and
P(Y > 6500 when x = 200) = .10? Explain.

11. Suppose that in a certain chemical process
the reaction time y (hr) is related to the
temperature (°F) in the chamber in which
the reaction takes place according to the
simple linear regression model with equa-
tion E(Y|x) = 5.00 −.01x and r = .075.

a. What is the expected change in reaction
time for a 1 °F increase in temperature?
For a 10 °F increase in temperature?

b. What is the expected reaction time
when temperature is 200 °F? When
temperature is 250 °F?

c. Suppose five observations are made
independently on reaction time, each
one for a temperature of 250 °F. What
is the probability that all five times are
between 2.4 and 2.6 h?

d. What is the probability that two inde-
pendently observed reaction times for
temperatures 1° apart are such that the
time at the higher temperature exceeds
the time at the lower temperature?

12. The article “On the Theoretical Velocity
Distribution and Flow Resistance in Natural
Channels” (J. Hydrol. 2017: 777–785)
suggests a quadratic relationship between
x = flow depth (m) and y = water surface
slope at certain points along the Tiber River
in Italy. Suppose the variables are related
by Equation (12.1) with f ðxÞ ¼ �0:6x2 þ
5xþ 1 (similar to the equation suggested in
the article).
a. What is the expected water surface

slope when the flow depth is 2.0 m?
2.5 m? 3.0 m?

b. Does the expected water surface slope
change by a fixed amount for each 1-m
increase in flow depth? Explain.

c. Determine a flow depth for which the
expected surface slope is the same as
the expectation for x = 2.0 m obtained
in part (a). [Note: Your answer should
be something other than 2.0.]
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d. For what depth is expected water sur-
face slope maximized?

e. Assume the rv e in Equation (12.1) has
a standard normal distribution; this is
consistent with information in the

article. At a flow depth of 3.0 m,
what’s the probability the water surface
slope Y is greater than 10? Less than 6?

12.2 Estimating Model Parameters

We will assume in this and the next several sections that the variables x and y are related according to
the simple linear regression model. The values of the parameters b0, b1, and r will almost never be
known to an investigator. Instead, sample data consisting of n observed pairs (x1, y1), …, (xn, yn) will
be available, from which the model parameters and the true regression line itself can be estimated.
These observations are assumed to have been obtained independently of each other.

According to the model, the observed points will be distributed about the true regression line
f ðxÞ ¼ b0 þ b1x in a random manner. Figure 12.6 shows a scatterplot of observed pairs along with
two candidates for the estimated regression line, y ¼ a0 þ a1x and y ¼ b0 þ b1x. Intuitively, the line
y ¼ a0 þ a1x is not a reasonable estimate of the true line because, if y ¼ a0 þ a1x were the true line,
the observed points would almost surely have been closer to this line. The line y ¼ b0 þ b1x is a more
plausible estimate because the observed points are scattered rather closely about this line.

Figure 12.6 and the foregoing discussion suggest that our estimate of b0 þ b1x should be a line that
provides, in some sense, a “best fit” to the observed data points. This is what motivates the principle
of least squares, which can be traced back to the mathematicians Gauss and Legendre around the
year 1800. According to this principle, a line provides a good fit to the data if the vertical distances or
deviations from the observed points to the line (see Figure 12.7) are small. The proposed measure of
the goodness-of-fit is the sum of the squares of these deviations; the best-fit line is then the one having
the smallest possible sum of squared deviations.

x

y

y = a0 + a1x

y = b0 + b1x

Figure 12.6 Two different estimates of the true regression line: one good and one bad
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PRINCIPLE OF LEAST
SQUARES

The vertical deviation of the point (xi, yi) from a line y ¼ b0 þ b1x is

height of point � height of line ¼ yi � ðb0 þ b1xiÞ

The sum of squared vertical deviations from the points (x1, y1), …,
(xn, yn) to the line is then

gðb0; b1Þ ¼
Xn
i¼1

½yi � ðb0 þ b1xiÞ�2

The point estimates of b0 and b1, denoted by b̂0 and b̂1 and called the
least squares estimates, are those values that minimize gðb0; b1Þ. The
estimated regression line or least squares regression line (LSRL) is

then the line whose equation is y ¼ b̂0 þ b̂1x.

The minimizing values of b0 and b1 are found by taking partial derivatives of gðb0; b1Þ with respect to
both b0 and b1, equating them both to zero, and solving the equations

@gðb0; b1Þ
@b0

¼
X

2ðyi � b0 � b1xiÞð�1Þ ¼ 0

@gðb0; b1Þ
@b1

¼
X

2ðyi � b0 � b1xiÞð�xiÞ ¼ 0

Cancellation of the factor 2 and re-arrangement gives the following system of equations, called the
normal equations:

nb0 þ
X

xi
� �

b1 ¼
X

yiX
xi

� �
b0 þ

X
x2i

� �
b1 ¼

X
xiyi

 y = b
0
 + b

1
x

 y

T
im

e 
to

 f
ra

ct
u
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 (
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Figure 12.7 Deviations of observed data from line y = b0 + b1x
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The normal equations are linear in the two unknowns b0 and b1. Provided that at least two of the xi’s
are different, the least squares estimates are the unique solution to this linear system.

PROPOSITION The least squares estimate of the slope coefficient b1 of the true regression line is

b1 ¼ b̂1 ¼
P ðxi � xÞðyi � yÞP ðxi � xÞ2 ð12:2Þ

The least squares estimate of the intercept b0 of the true regression line is

b0 ¼ b̂0 ¼
P

yi � b̂1
P

xi
n

¼ y� b̂1x ð12:3Þ

Moreover, under the normality assumption of the simple linear regression model,

b̂0 and b̂1 are also the maximum likelihood estimates (see Exercise 23).

Because they will feature prominently here and in subsequent sections, we define the following
notation for certain sums:

Sxy ¼
Xn
i¼1

ðxi � xÞðyi � yÞ Sxx ¼
Xn
i¼1

ðxi � xÞ2 Syy ¼
Xn
i¼1

ðyi � yÞ2

The Sxx formula was presented in Chapter 1 in connection with the sample variance: s2x ¼ Sxx=ðn� 1Þ
and similarly for y. The least squares estimates of the regression coefficients can then be written as

b̂1 ¼
Sxy
Sxx

and b̂0 ¼ y� b̂1x

We emphasize that before b̂1 and b̂0 are computed, a scatterplot should be examined to see whether a
linear probabilistic model is plausible. If the points do not tend to cluster about a straight line with
roughly the same degree of spread for all x (e.g., Figure 12.2), then other models should be investigated.

Example 12.4 As brick-and-mortar shops decline and online retailers like Amazon and Wayfair
ascend, demand for warehouse storage space has steadily increased. Despite effectively being empty
shells, warehouses still require professional appraisal. The following data on x = truss height (ft),
which determines how high stored goods can be stacked, and y = sale price ($) per square foot
appeared in the article “Challenges in Appraising ‘Simple’ Warehouse Properties” (The Appraisal J.
2001: 174–178).

Warehouse 1 2 3 4 5 6 7 8 9 10

x 12 14 14 15 15 16 18 22 22 24
y 35.53 37.82 36.90 40.00 38.00 37.50 41.00 48.50 47.00 47.50

Warehouse 11 12 13 14 15 16 17 18 19
x 24 26 26 27 28 30 30 33 36
y 46.20 50.35 49.13 48.07 50.90 54.78 54.32 57.17 57.45
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From the sample data,

x ¼ 1
19

X
xi ¼ 22:737 ft; y ¼ 1

19

X
yi ¼ 46:217 $=ft2

Sxx ¼
X

ðxi � 22:737Þ2 ¼ 913:684 Syy ¼
X

ðyi � 46:217Þ2 ¼ 924:436

Sxy ¼
X

ðxi � 22:737Þðyi � 46:217Þ ¼ 901:944

b̂1 ¼
Sxy
Sxx

¼ 901:944
913:684

¼ 0:987

b̂0 ¼ y� b̂1x ¼ 46:217� 0:987ð22:737Þ ¼ 23:8

The equation of the LSRL is y = 23.8 + .987x. We estimate that the change in expected sale price
associated with a 1-ft increase in truss height is .987, or about 99 cents per square foot. The intercept
of 23.8, while important for correctly summarizing the data, does not have a direct interpretation—
after all, it doesn’t make sense for a warehouse to have a truss height of x = 0 feet (how would you
store anything?). Figure 12.8, generated by the statistical software package R, shows that the least
squares line provides an excellent summary of the relationship between the two variables.

The LSRL can immediately be used for two different purposes. For a fixed x value x�, b̂0 þ b̂1x
�

(the height of the line above x�) gives both (1) a point estimate of the mean value of Y when x = x�

and (2) a point prediction of the Y value that will result from a single new observation made at x = x�.
The least squares line should not be used to make a prediction for an x value much beyond the

range of the data, such as x = 5 or x = 45 in Example 12.4. The danger of extrapolation is that the
fitted relationship (a line here) may not be valid for such x values.

Example 12.5 (Example 12.4 continued) A point estimate for the true average price for all ware-
houses with 25-ft truss height is

Figure 12.8 A scatterplot of the data in Example 12.4 with the LSRL superimposed, from R ■

716 12 Regression and Correlation



l̂Y j25 ¼ b̂0 þ b̂1ð25Þ ¼ 23:8þ :987ð25Þ ¼ $48:48=ft2

This also represents a point prediction for the price of a single warehouse with 25-ft truss height.
Notice that although no sample observations had x = 25, this value lies in the “middle” of the set of
x values (see Figure 12.8). This is an example of interpolation: using the LSRL for x values that
were unseen but are consistent with the sample data.

A point estimate for the true average price for all warehouses with 50-ft truss height is

l̂Y j50 ¼ b̂0 þ b̂1ð50Þ ¼ 23:8þ :987ð50Þ ¼ $73:15=ft2

However, because this calculation involves an extrapolation—the value x = 50 is well outside the
bounds of the available data—we have much less faith that this estimated cost is accurate. ■

Residuals and Estimating r

The parameter r determines the amount of variability inherent in the regression model. A large value
of r will lead to observed (xi, yi)’s that are typically quite spread out about the true regression line,
whereas when r is small the observed points will tend to fall very close to the true line (see
Figure 12.9). An estimate of r will be used in confidence interval formulas and hypothesis-testing
procedures presented in the next two sections. Because the equation of the true line is unknown, the
estimate is based on the extent to which the sample observations deviate from the estimated line.

DEFINITION The fitted (or predicted) values ŷ1; . . .; ŷn are obtained by successively substituting
the x values x1, …, xn into the equation of the LSRL: the ith fitted value is

ŷi ¼ b̂0 þ b̂1xi ¼ yþ b̂1ðxi � xÞ

The residuals e1; . . .; en are the vertical deviations from the LSRL: the ith residual is

ei ¼ yi � ŷi ¼ yi � ðb̂0 þ b̂1xiÞ ¼ ðyi � yÞ � b̂1ðxi � xÞ ð12:4Þ

y  Elongation

x  Tensile force

y  Product sales

x  Advertising expenditure

0 1x

0 1x

ba

Figure 12.9 Typical sample for r: (a) small; (b) large
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In words, the predicted value ŷi is the value of y that we would predict or expect when using the
estimated regression line with x ¼ xi; ŷi is the height of the estimated regression line above xi. The
residual ei is the difference between the observed yi and the predicted ŷi.

Assuming that the line in Figure 12.7 is the least squares line, the residuals are identified by the
vertical line segments from the observed points to the line. In fact, the principle of least squares is
equivalent to determining the line for which the sum of squared residuals is minimized. If the
residuals are all small in magnitude, then much of the variability in observed y values appears to be
due to the linear relationship between x and y, whereas many large residuals suggest quite a bit of
inherent variability in y relative to the amount due to the linear relation. The residuals from the LSRL
always satisfy

P
ei ¼ 0 and so �e ¼ 0 (see Exercise 24; in practice, the sum may deviate a bit from

zero due to rounding).
The ith residual ei may also be regarded as a proxy for the unobservable “true” error ei for the ith

observation:

true error: ei ¼ yi � ðb0 þ b1xiÞ
estimated error: ei ¼ êi ¼ yi � ðb̂0 þ b̂1xiÞ

The sum of squared residuals is used here to estimate the standard deviation r of the ei’s in the same
way that the sum of squares Sxx was previously used to estimate a population sd.

DEFINITION The error sum of squares (or residual sum of squares), denoted by SSE, is

SSE ¼
X

ðei � �eÞ2 ¼
X

e2i ¼
X

ðyi � ŷiÞ2

and the least squares estimate of r2 is

r̂2 ¼ s2e ¼
SSE
n� 2

¼
P ðyi � ŷiÞ2

n� 2

The estimate se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE=ðn� 2Þp

of r is called the residual standard deviation.

The divisor n − 2 in se is the number of degrees of freedom (df) associated with the estimate (or,
equivalently, with the error sum of squares). This is because to obtain se, the two parameters b0 and b1
must first be estimated, which results in a loss of 2 df (just as l had to be estimated in one-sample
problems, resulting in an estimated variance based on n − 1 df). Equivalently, the normal equations
impose two constraints; as a result, if n – 2 of the residuals are known, then the remaining two are
completely determined (so only n – 2 are freely determined; see Exercise 24).

Replacing each yi in the formula for se by the rv Yi gives the estimator Se. It can be shown that S2e is
an unbiased estimator for r2, although the estimator Se is biased for r. (The mle of r2 based on the
normal model has divisor n rather than n − 2, so it is biased.)

The interpretation of se here is similar to that of r given earlier. Roughly speaking, se is the size of
a “typical” or “representative” deviation from the least squares line.
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Example 12.6 Japan’s high population density has resulted in a multitude of resource usage
problems. One especially serious difficulty concerns waste removal. The article “Innovative Sludge
Handling Through Pelletization Thickening” (Water Res. 1999: 3245–3252) reported the develop-
ment of a new compression machine for processing sewage sludge. An important part of the
investigation involved relating the moisture content of compressed pellets (y, in %) to the machine’s
filtration rate (x, in kg-DS/m/h). The following data was read from a graph in the paper:

Relevant summary quantities are x ¼ 140:895, y ¼ 78:74, Sxx ¼ 18;921:8295, and Sxy ¼ 776:434,
from which

b̂1 ¼
776:434

18;921:8295
¼ :04103377 � :041

b̂0 ¼ 78:74� ð:04103377Þð140:895Þ ¼ 72:958547 � 72:96

The equation of the least squares line is y ¼ 72:96þ :041x. For numerical accuracy, the fitted values
are calculated from ŷi ¼ 72:958547þ :04103377xi:

ŷ1 ¼ 72:958547þ :04103377 125:3ð Þ � 78:100; e1 ¼ y1 � ŷ1 � �:200; etc:

A positive residual corresponds to a point in the scatterplot that lies above the graph of the least
squares line, whereas a negative residual results from a point lying below the line. All predicted
values (fits) and residuals appear in the accompanying table.

x 125.3 98.2 201.4 147.3 145.9 124.7 112.2 120.2 161.2 178.9

y 77.9 76.8 81.5 79.8 78.2 78.3 77.5 77.0 80.1 80.2

x 159.5 145.8 75.1 151.4 144.2 125.0 198.8 132.5 159.6 110.7

y 79.9 79.0 76.7 78.2 79.5 78.1 81.5 77.0 79.0 78.6

Obs. (i) Filtrate (xi) Moist. Con. (yi) Fit (ŷi) Residual (ei)

1 125.3 77.9 78.100 −0.200
2 98.2 76.8 76.988 −0.188
3 201.4 81.5 81.223 0.277
4 147.3 79.8 79.003 0.797
5 145.9 78.2 78.945 −0.745
6 124.7 78.3 78.075 0.225
7 112.2 77.5 77.563 −0.063
8 120.2 77.0 77.891 −0.891
9 161.2 80.1 79.573 0.527
10 178.9 80.2 80.299 −0.099
11 159.5 79.9 79.503 0.397
12 145.8 79.0 78.941 0.059
13 75.1 76.7 76.040 0.660
14 151.4 78.2 79.171 −0.971
15 144.2 79.5 78.876 −0.624
16 125.0 78.1 78.088 0.012
17 198.8 81.5 81.116 0.384
18 132.5 77.0 78.396 −1.396
19 159.6 79.0 79.508 −0.508
20 110.7 78.6 77.501 1.099
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It can be verified that, rounding error notwithstanding, the residuals (the last column) sum to 0.
The corresponding residual sum of squares is

SSE ¼ ð�:200Þ2 þð�:188Þ2 þ � � � þ ð1:099Þ2 ¼ 7:968

The estimate of r2 is then r̂2 ¼ s2e ¼ 7:968=ð20� 2Þ ¼ :4427, and the residual standard deviation is

r̂ ¼ se ¼
ffiffiffiffiffiffiffiffiffiffiffi
:4427

p ¼ :665. Roughly speaking, .665 is the typical difference between the actual
moisture concentration of a specimen and its predicted moisture concentration based on the LSRL. ■

Computation of SSE from the defining formula involves much tedious arithmetic, because both the
predicted values and residuals must first be calculated. Use of the following formula does not require
these quantities (again see Exercise 24), though

P
yi and

P
y2i are needed.

SSE ¼ Syy � S2xy=Sxx

The Coefficient of Determination
Figure 12.10 shows three different scatterplots of bivariate data. In all three plots, the heights of the
different points vary substantially, indicating that there is much variability in observed y values. The
points in the first plot all fall exactly on a straight line. In this case, all (100%) of the sample variation
in y can be attributed to the fact that x and y are linearly related in combination with variation in x. The
points in Figure 12.10b do not fall exactly on a line, but compared to overall y variability, the
deviations from the least squares line are small. It is reasonable to conclude in this case that much of
the observed y variation can be attributed to the approximate linear relationship between the variables
postulated by the simple linear regression model. When the scatterplot looks like that of
Figure 12.10c, there is substantial variation about the least squares line relative to overall y variation,
so the simple linear regression model fails to explain much of the variation in y by relating y to x.

The error sum of squares SSE can be interpreted as a measure of how much variation in y is left
unexplained by the model—that is, how much cannot be attributed to a linear relationship. In
Figure 12.10a, SSE = 0 and there is no unexplained variation, whereas unexplained variation is small
for the data of Figure 12.10b and much larger in Figure 12.10c. A quantitative measure of the total
amount of variation in the observed y values is given by the total sum of squares

x

y

x

y

x

y

a b c

Figure 12.10 Explaining y variation: (a) all variation explained; (b) most variation explained;
(c) little variation explained
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SST ¼
X

ðyi � yÞ2 ¼ Syy

Figure 12.11 illustrates the difference between these two sums of squares. The (x, y) points in the two
scatterplots are identical. While SSE measures the deviation of the y values from the LSRL (a
“model” that uses x as a predictor), SST measures the deviation of the y values from the horizontal
line y ¼ y (essentially ignoring the presence of x). Since the least squares line is by definition the line
having the smallest sum of squared vertical deviations, SSE can’t be any larger than SST, and usually
it is much smaller.

Dividing SSE by SST gives the proportion of total variation that is not explained by the
approximate linear relationship. Subtracting this ratio from 1 results in the proportion of total vari-
ation that is explained by the relationship.

DEFINITION The coefficient of determination, denoted by R2, is given by

R2 ¼ 1� SSE
SST

R2 is interpreted as the proportion of observed y variation that can be explained by
the simple linear regression model (i.e., attributed to an approximate linear rela-
tionship between y and x).

The closer R2 is to 1, the more successful the simple linear regression model is in explaining
y variation. Multiplying R2 by 100 gives the percentage of total variation explained by the rela-
tionship; software often reports R2 this way.

Said differently, R2 is the proportion by which the error sum of squares is reduced by the
regression line compared to the horizontal line. For example, if SST = 20 and SSE = 2, then
R2 ¼ 1� ð2=20Þ = .9, so the regression reduces the error sum of squares by 90%.

Although it is common to have R2 values of .9 or more in engineering and the physical sciences,
R2 is likely to be much smaller in social sciences such as psychology and sociology, where values far
less than .5 are common but still considered important.

Least squares line

y

x

y

x

y

Horizontal line at height y

a b

Figure 12.11 Sums of squares illustrated: (a) SSE = sum of squared deviations about the least squares line;
(b) SST = sum of squared deviations about the horizontal line y ¼ �y
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Example 12.7 (Example 12.5 continued) The scatterplot of the truss height-sale price data in
Figure 12.8 indicates a fairly high R2 value. Previous computations showed that SST = Syy =
924.436, Sxy = 901.944, and Sxx = 913.684. Using the computational shortcut,

SSE ¼ 924:436� ð901:944Þ2=913:684 ¼ 34:081

The coefficient of determination is then

R2 ¼ 1� 34:081
924:436

¼ 1� :037 ¼ :963

That is, 96.3% of the observed variation in warehouse price is attributable to (can be explained by) the
approximate linear relationship between price and truss height, a fairly impressive result. The R2 can
also be interpreted by saying that the error sum of squares using the regression line is 96.3% less than
the error sum of squares using a horizontal line (i.e., ignoring truss height).

Figure 12.12 shows partial Minitab output for the warehouse data; the package will also provide
the predicted values and residuals upon request, as well as other information. The formats used by
other packages differ slightly from that of Minitab, but the information content is very similar.
Quantities in Figure 12.12 such as the standard deviations, t ratios, and the details of the ANOVA
table are discussed in Section 12.3.

For regression there is an analysis of variance identity like the fundamental identity (11.1) in
Chapter 11. Add and subtract ŷi in the total sum of squares:

SST ¼
X

ðyi � yÞ2 ¼
X

½ðyi � ŷiÞþ ðŷi � yÞ�2 ¼
X

ðyi � ŷiÞ2 þ
X

ðŷi � yÞ2

The regression equation is 
Sales Price = 23.8 + 0.987 Truss Height 
 
Predictor        Coef     SE Coef      T      P 

Constant       23.772← 0�̂    1.113  21.35  0.000 

Truss Height  0.98715← 1�̂  0.04684  21.07  0.000 

 
S = 1.41590←se    R-Sq = 96.3%←100R2     R-Sq(adj) = 96.1% 
 
Analysis of Variance 
 
Source          DF       SS            MS        F       P 
Regression       1   890.36        890.36   444.11   0.000 
Residual Error  17    34.08←SSE      2.00 
Total           18   924.44←SST 

Figure 12.12 Minitab output for the regression of Example 12.7 ■
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Notice that the middle (cross-product) term is missing on the right; see Exercise 24 for the justification.

Of the two sums on the right, the first is SSE ¼P ðyi � ŷiÞ2 and the second is something new, the

regression sum of squares, SSR ¼P ðŷi � yÞ2. The analysis of variance identity for regression is

SST ¼ SSEþ SSR ð12:5Þ

The coefficient of determination can now be written in a slightly different way:

R2 ¼ 1� SSE
SST

¼ SST� SSE
SST

¼ SSR
SST

The ANOVA table in Figure 12.12 shows that SSR = 890.36, from which R2 = 890.36/924.44
= .936 as before. Hence we interpret the regression sum of squares SSR as the amount of total
variation explained by the model, so that R2 is the ratio of explained variation to total variation.

Exercises: Section 12.2 (13–30)

13. Exercise 4 gave data on x = BOD mass
loading and y = BOD mass removal.
Values of relevant summary quantities are

n ¼ 14
P

xi ¼ 517
P

yi ¼ 346
Sxy ¼ 13;048 Sxx ¼ 20;003 Syy ¼ 8903

a. Obtain the equation of the least squares
line.

b. Predict the value of BOD mass removal
for a single observation made when
BOD mass loading is 35, and calculate
the value of the corresponding residual.

c. Calculate SSE and then a point estimate
of r.

d. What proportion of observed variation
in removal can be explained by the
approximate linear relationship
between the two variables?

e. The last two x values, 103 and 142, are
much larger than the others. How are
the equation of the least squares line
and the value of R2 affected by deletion
of the two corresponding observations
from the sample? Adjust the given
values of the summary quantities, and
use the fact that the new value of SSE
is 311.79.

14. The accompanying data on x = current
density (mA/cm2) and y = rate of deposi-
tion (mm/min) appeared in the article
“Plating of 60/40 Tin/Lead Solder for Head

Termination Metallurgy” (Plating and
Surface Finishing, Jan. 1997: 38–40). Do
you agree with the claim by the article’s
author that “a linear relationship was
obtained from the tin–lead rate of deposi-
tion as a function of current density”?
Explain your reasoning.

15. The efficiency ratio for a steel specimen
immersed in a phosphating tank is the
weight of the phosphate coating divided by
the metal loss (both in mg/ft2). The article
“Statistical Process Control of a Phosphate
Coating Line” (Wire J. Internat., May 1997:
78–81) gave the accompanying data on tank
temperature (x) and efficiency ratio (y).

a. Determine the equation of the esti-
mated regression line.

Temp. 170 172 173 174 174 175 176

Ratio .84 1.31 1.42 1.03 1.07 1.08 1.04

Temp. 177 180 180 180 180 180 181

Ratio 1.80 1.45 1.60 1.61 2.13 2.15 .84

Temp. 181 182 182 182 182 184 184

Ratio 1.43 .90 1.81 1.94 2.68 1.49 2.52

Temp. 185 186 188

Ratio 3.00 1.87 3.08

x 20 40 60 80

y .24 1.20 1.71 2.22
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b. Calculate a point estimate for true
average efficiency ratio when tank
temperature is 182.

c. Calculate the values of the residuals
from the least squares line for the four
observations for which temperature is
182. Why do they not all have the same
sign?

d. What proportion of the observed vari-
ation in efficiency ratio can be attrib-
uted to the simple linear regression
relationship between the two variables?

16. The scientist Francis Galton, an early
developer of regression methodology, used
“midparent height,” the average of the
father’s and mother’s heights, in order to
predict children’s heights. Here are the
heights of 11 female students along with
their midparent heights in inches:

a. Construct a scatterplot of daughter’s
height against the midparent height and
comment on the strength of the
relationship.

b. Is the daughter’s height completely and
uniquely determined by the midparent
height? Explain.

c. Use the accompanying Minitab output
to obtain the equation of the least
squares line for predicting daughter
height from midparent height, and then
predict the height of a daughter whose
midparent height is 70 in. Would you
feel comfortable using the least squares
line to predict daughter height when
midparent height is 74 in.? Explain.

Analysis of Variance

d. What are the values of SSE, SST, and the
coefficient of determination? How well
does the midparent height account for the
variation in daughter height?

17. The article “Characterization of Highway
Runoff in Austin, Texas, Area” (J. Environ.
Engr. 1998: 131–137) gave a scatterplot,
along with the least squares line, of
x = rainfall volume (m3) and y = runoff
volume (m3) for a particular location. The
accompanying values were read from the
plot.

a. Does a scatterplot of the data support
the use of the simple linear regression
model?

b. Calculate point estimates of the slope
and intercept of the population regres-
sion line.

c. Calculate a point estimate of the true
average runoff volume when rainfall
volume is 50.

d. Calculate a point estimate of the stan-
dard deviation r.

e. What proportion of the observed
variation in runoff volume can be
attributed to the simple linear regression
relationship between runoff and rainfall?

18. A regression of y = calcium content (g/L)
on x = dissolved material (mg/cm2) was
reported in the article “Use of Fly Ash or
Silica Fume to Increase the Resistance of
Concrete to Feed Acids” (Mag. Concrete
Res. 1997: 337–344). The equation of the
estimated regression line was y = 3.678 +
.144x, with R2 = .860, based on n = 23.

Midparent 66.0 65.5 71.5 68.0 70.0 65.5

Daughter 64.0 63.0 69.0 69.0 69.0 65.0

Midparent 67.0 70.5 69.5 64.5 67.5

Daughter 63.0 68.5 69.0 64.0 67.0

Predictor Coef SE Coef T P

Constant 1.65 13.36 0.12 0.904

midparent 0.9555 0.1971 4.85 0.001

S = 1.45061 R-Sq = 72.3% R-Sq(adj) = 69.2%

Source DF SS MS F P
Regression 1 49.471 49.471 23.51 0.001
Residual 9 18.938 2.104
Error
Total 10 68.409

x 5 12 14 17 23 30 40 47

y 4 10 13 15 15 25 27 46

x 55 67 72 81 96 112 127

y 38 46 53 70 82 99 100
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a. Interpret the estimated slope .144 and
the coefficient of determination .860.

b. Calculate a point estimate of the true
average calcium content when the
amount of dissolved material is
50 mg/cm2.

c. The value of total sum of squares was
SST = 320.398. Calculate an estimate
of the error standard deviation r in the
simple linear regression model.

19. The cetane number is a critical property in
specifying the ignition quality of a fuel
used in a diesel engine. Determination of
this number for a biodiesel fuel is expen-
sive and time-consuming. The article
“Relating the Cetane Number of Biodiesel
Fuels to Their Fatty Acid Composition: A
Critical Study” (J. Automobile Engr. 2009:
565–583) included the following data on
x = iodine value (g) and y = cetane number
for a sample of 14 biofuels. The iodine
value is the amount of iodine necessary to
saturate a sample of 100 g of oil. The
article’s authors fit the simple linear
regression model to this data, so let’s fol-
low their lead.

a. Obtain the equation of the least squares
line, and then calculate a point predic-
tion of the cetane number that would
result from a single observation with an
iodine value of 100.

b. Calculate and interpret the coefficient
of determination.

c. Calculate and interpret a point estimate
of the model standard deviation r.

20. A number of studies have shown lichens
(certain plants composed of an alga and a
fungus) to be excellent bioindicators of air
pollution. The article “The Epiphytic
Lichen Hypogymnia physodes as a

Biomonitor of Atmospheric Nitrogen and
Sulphur Deposition in Norway” (Environ.
Monit. Assess. 1993: 27–47) gives the fol-
lowing data (read from a graph) on
x = NO�

3 wet deposition (gN/m2) and
y = lichen N (% dry weight):

The author used simple linear regression to
analyze the data. Use the accompanying
Minitab output to answer the following
questions:

a. What are the least squares estimates of
b0 and b1?

b. Predict lichen N for an NO�
3 deposition

value of .5.
c. What is the estimate of r?
d. What is the value of total variation, and

how much of it can be explained by the
model relationship?

21. Visual and musculoskeletal problems
associated with the use of visual display
terminals (VDTs) have become rather
common in recent years. Some researchers
have focused on vertical gaze direction as a
source of eye strain and irritation. This
direction is known to be closely related to
ocular surface area (OSA), so a method of
measuring OSA is needed. The accompa-
nying representative data on y = OSA
(cm2) and x = width of the palprebal fissure
(i.e., the horizontal width of the eye

x 132.0 129.0 120.0 113.2 105.0 92.0 84.0

y 46.0 48.0 51.0 52.1 54.0 52.0 59.0

x 83.2 88.4 59.0 80.0 81.5 71.0 69.2

y 58.7 61.6 64.0 61.4 54.6 58.8 58.0

x .05 .10 .11 .12 .31 .37 .42

y .48 .55 .48 .50 .58 .52 1.02

x .58 .68 .68 .73 .85 .92

y .86 .86 1.00 .88 1.04 1.70

Analysis of Variance

Source DF SS MS F P
Regression 1 1.0427 0.4106 27.94 0.000
Error 11 0.4106 0.0373
Total 11 1.4533

The regression equation is

lichen N = 0.365 + 0.967 No3depo

Predictor Coef Stdev t ratio P
Constant 0.36510 0.09904 3.69 0.004
No3depo 0.9668 0.1829 5.29 0.000
S = 0.1932 R-sq = 71.7% R-sq (adj) = 69.2%
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opening, in cm) is from the article “Anal-
ysis of Ocular Surface Area for Comfort-
able VDT Workstation Layout”
(Ergonomics 1996: 877–884).

a. Construct a scatterplot of this data.
Describe what you find.

b. Calculate the equation of the LSRL.
c. Interpret the slope of the LSRL.
d. What OSA would you predict for a

subject whose palprebal fissure width is
1.25 cm?

e. What would be the estimate of expec-
ted OSA for people with palprebal fis-
sure width of 1.25 cm?

22. For many years, rubber powder has been
used in asphalt cement to improve perfor-
mance. The article “Experimental Study of
Recycled Rubber-Filled High-Strength
Concrete” (Mag. Concrete Res. 2009:
549–556) included a regression of y = axial
strength (MPa) on x = cube strength
(MPa) based on the following sample data:

a. Verify that a scatterplot supports the
assumption that the two variables are
related via the simple linear regression
model.

b. Obtain the equation of the least squares
line, and interpret its slope.

c. Calculate and interpret the coefficient
of determination.

d. Calculate and interpret an estimate of
the error standard deviation r in the
simple linear regression model.

e. The largest x value in the sample
considerably exceeds the other x val-
ues. What is the effect on the equation
of the least squares line of deleting
the corresponding observation?

23. Show that under the assumptions of the
simple linear regression model, the mles of
b0 and b1 are identical to the least squares
estimates. [Hints: (1) The pdf of Yi is nor-
mal with mean li = b0 + b1xi and variance
r2; the likelihood function is the product of
the n pdfs. (2) You don’t need to differen-
tiate the likelihood function; instead, find
the correspondence between that function
and the least squares expression gðb0; b1Þ.]

24. a. Show that the residuals e1; . . .; en satisfy
both

P
ei ¼ 0 and

P ðxi � xÞei ¼ 0.
[Hint: Use the last expression for ei in
(12.4), along with the fact that for any
numbers a1; . . .; an,

P ðai � �aÞ ¼ 0.]

b. Show that ŷi � y ¼ b̂1ðxi � xÞ.
c. Use (a) and (b) to derive the analysis of

variance identity for regression, Equa-
tion (12.5), by showing that the cross-
product term is 0.

d. Use (b) and Equation (12.5) to verify
the computational formula for SSE.

25. A regression analysis is carried out with
y = temperature, expressed in °C. How do

the resulting values of b̂0 and b̂1 relate to
those obtained if y is re-expressed in °F?
Justify your assertion. [Hint: ðnew yiÞ ¼
1:8yi þ 32:]

26. Show that b1 and b0 of Expressions (12.2)
and (12.3) satisfy the normal equations.

27. Show that the “point of averages” ðx; yÞ lies
on the estimated regression line.

28. Suppose an investigator has data on the
amount of shelf space x devoted to display
of a particular product and sales revenue
y for that product. The investigator may
wish to fit a model for which the true

x .40 .42 .48 .51 .57 .60 .70 .75

y 1.02 1.21 .88 .98 1.52 1.83 1.50 1.80

x .75 .78 .84 .95 .99 1.03 1.12

y 1.74 1.63 2.00 2.80 2.48 2.47 3.05

x 1.15 1.20 1.25 1.25 1.28 1.30 1.34 1.37

y 3.18 3.76 3.68 3.82 3.21 4.27 3.12 3.99

x 1.40 1.43 1.46 1.49 1.55 1.58 1.60

y 3.75 4.10 4.18 3.77 4.34 4.21 4.92

x 112.3 97.0 92.7 86.0 102.0

y 75.0 71.0 57.7 48.7 74.3

x 99.2 95.8 103.5 89.0 86.7

y 73.3 68.0 59.3 57.8 48.5
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regression line passes through (0, 0). The
appropriate model is Y = b1x + e. Assume
that ðx1; y1Þ; . . .; ðxn; ynÞ are observed pairs
generated from this model, and derive the
least squares estimator of b1. [Hint: Write
the sum of squared deviations as a function
of b1, a trial value, and use calculus to find
the minimizing value of b1.]

29. a. Consider the data in Exercise 20. Sup-
pose that instead of the least squares
line that passes through the points
ðx1; y1Þ; . . .; ðxn; ynÞ, we wish the least
squares line that passes through
ðx1 � x; y1Þ; . . .; ðxn � x; ynÞ. Construct
a scatterplot of the (xi, yi) points and
then of the ðxi � x; yiÞ points. Use the
plots to explain intuitively how the two
least squares lines are related.

b. Suppose that instead of the model
Yi ¼ b0 þ b1xi þ ei i ¼ 1; . . .; nð Þ, we
wish to fit a model of the form
Yi ¼ b�0 þ b�1ðxi � xÞþ ei i ¼ 1; . . .; nð Þ.
What are the least squares estimators of

b�0 and b�1, and how do they relate to b̂0
and b̂1?

30. Consider the following three data sets, in
which the variables of interest are
x = commuting distance and y = commut-
ing time. Based on a scatterplot and the
values of se and R2, in which situation
would simple linear regression be most
(least) effective, and why?

1 2 3

x y x y x y

15 42 5 16 5 8
16 35 10 32 10 16
17 45 15 44 15 22
18 42 20 45 20 23
19 49 25 63 25 31
20 46 50 115 50 60

Sxx 17.50 1270.8333 1270.8333
Sxy 29.50 2722.5 1431.6667

b̂1 1.685714 2.142295 1.126557

b̂0 13.666672 7.868852 3.196729

SST 114.83 5897.5 1627.33
SSE 65.10 65.10 14.48

12.3 Inferences About the Regression Coefficient b1

In virtually all of our inferential work thus far, the notion of sampling variability has been pervasive.
In particular, properties of sampling distributions of various statistics (X, P̂, and so on) have been the
basis for developing confidence interval formulas and hypothesis-testing methods. The key idea is
that the value of virtually any quantity calculated from sample data (i.e., any statistic) is going to vary
from one sample to another.

Example 12.8 Reconsider the data on x = truss height and y = sale price per square foot from
n = 19 warehouses in Example 12.4 of the previous section. Suppose the simple linear regression
model applies here, with parameter values b1 = 1, b0 = 25, and r = 1.4 (consistent with the estimates

computed previously). To understand the sampling variability of the statistics b̂0 and b̂1, we per-
formed the following simulation 250 times in R:

• Generate random errors e1; . . .; e19 from a normal distribution with mean 0 and standard deviation
r = 1.4.

• Using the 19 xi’s from the original data set, generate response values according to the model
equation:
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yi ¼ b0 þ b1xi þ ei ¼ 25þ 1xi þ ei i ¼ 1; 2; . . .; 19

• Perform least squares regression on the simulated (xi, yi) pairs to obtain the estimated slope and
intercept.

Figure 12.13 shows histograms of the b̂0 and b̂1 values resulting from this simulation. There is
clearly variation in values of the estimated slope and estimated intercept. The equation of the LSRL
thus also varies from one sample to the next. Note, though, that the estimates are centered close to the
true values, an indication of unbiasedness.

The slope b1 of the population regression line is the true change in the mean of the response
variable Y associated with a one-unit increase in the explanatory variable x. The slope of the least

squares line, b̂1, gives a point estimate of b1. In the same way that a confidence interval for l and
procedures for testing hypotheses about l were based on properties of the sampling distribution of X,

inferences about b1 are based on the sampling distribution of b̂1.
The values of the xi’s are assumed to be chosen before the study is performed, so only the Yi’s are

random. The estimators for b0 and b1 are obtained by replacing yi with Yi in (12.2) and (12.3):

b̂1 ¼
P ðxi � xÞðYi � YÞP ðxi � xÞ2 ¼

P ðxi � xÞðYi � YÞ
Sxx

; b̂0 ¼ Y �b̂1x

Similarly, the estimator for r results from replacing each yi in the formula for se by the rv Yi:

r̂ ¼ Se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðYi � ŶiÞ2

n� 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðYi � ½b̂0 þ b̂1xi�Þ2
n� 2

s

The denominator of b̂1, Sxx ¼
P ðxi � xÞ2, depends only on the xi’s and not on the Yi’s, so it is a

constant. Then, because
P ðxi � xÞY� � ¼ Y

P ðxi � xÞ ¼ Y � 0 ¼ 0, the slope estimator can be
re-written as
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Figure 12.13 Histograms approximating the sampling distributions of b̂0 and b̂1 ■
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b̂1 ¼
P ðxi � xÞYi

Sxx
¼
X

ciYi where ci ¼ ðxi � xÞ=Sxx

That is, the estimator b̂1 is a linear function of the independent rvs Y1, Y2, …, Yn, each of which is
normally distributed. Invoking properties of a linear function of random variables discussed in
Section 5.3 leads to the following results (Exercise 40).

PROPERTIES OF THE
ESTIMATED SLOPE

1. 1. The mean value of b̂1 is Eðb̂1Þ ¼ lb̂1 ¼ b1, so b̂1 is an unbiased

estimator of b1 (i.e., the distribution of b̂1 is always centered at the
true value of b1).

2. The variance and standard deviation of b̂1 are

Vðb̂1Þ ¼ r2
b̂1

¼ r2

Sxx
rb̂1 ¼

rffiffiffiffiffiffi
Sxx

p

Replacing r by its estimate se gives an estimate for rb̂1 :

r̂b̂1 ¼ sb̂1 ¼
seffiffiffiffiffiffi
Sxx

p ¼ se
sx

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

3. The estimator b̂1 has a normal distribution, because it is a linear
function of independent normal rvs.

Properties 1 and 3 manifest themselves in the b̂1 histogram of Figure 12.13. According to Property 2,

the standard deviation of b̂1 equals the standard deviation r of the random error term—or, equiva-
lently, of any Yi—divided by sx

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
. Because the sample standard deviation sx is a measure of how

spread out the xi’s are about x, we conclude that making observations at xi values that are quite spread

out results in a more precise estimator of the slope parameter (smaller variance of b̂1), whereas values
of xi all close to each other imply a highly variable estimator. Of course, if the xi’s are spread out too
far, a linear model may not be appropriate throughout the range of observation. Finally, the presence
of n in the denominator of sb̂1 implies that the estimated slope varies less for larger samples than for

smaller ones. We have seen this feature previously in other statistics such as X and P̂: as sample size
n increases, the distribution of the statistic “collapses onto” the true value of the corresponding
parameter.

Many inferential procedures discussed previously were based on standardizing an estimator by
first subtracting its mean value and then dividing by its estimated standard deviation. In particular, test
procedures and a CI for the mean l of a normal population utilized the fact that the standardized
variable ðX � lÞ=ðS= ffiffiffi

n
p Þ has a t distribution with n − 1 df. A similar result here provides the key to

further inferences concerning b1.
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THEOREM The assumptions of the simple linear regression model imply that the standardized
variable

T ¼ b̂1 � b1
Sb̂1

¼ b̂1 � b1
Se=

ffiffiffiffiffiffi
Sxx

p

has a t distribution with n − 2 df.

The T ratio can be written as

T ¼ b̂1 � b1
Se=

ffiffiffiffiffiffi
Sxx

p ¼
b̂1 � b1
r=

ffiffiffiffiffiffi
Sxx

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2ÞS2e=r2

ðn� 2Þ

s

The theorem is a consequence of the following facts: (1) ðb̂1 � b1Þ=ðr=
ffiffiffiffiffiffi
Sxx

p Þ� N 0; 1ð Þ,
(2) ðn� 2ÞS2e=r2 � v2n�2, and (3) b̂1 is independent of Se. That is, T is a standard normal rv divided by
the square root of an independent chi-squared rv over its df, and so has the specified t distribution.

A Confidence Interval for b1
As in the derivation of previous CIs, we begin with a probability statement:

P �ta=2;n�2\
b̂1 � b1
Sb̂1

\ta=2;n�2

 !
¼ 1� a

Manipulation of the inequalities inside the parentheses to isolate b1 and substitution of estimates in
place of the estimators gives the following CI formula.

A 100(1 − a)% CI for the slope b1 of the true regression line has endpoints

b̂1 � ta=2;n�2 � sb̂1 ¼ b̂1 � ta=2;n�2 � seffiffiffiffiffiffi
Sxx

p ¼ b̂1 � ta=2;n�2 � se
sx

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

This interval has the same general form as did many of our previous intervals. It is centered at the
point estimate of the parameter, and the amount it extends out to each side of the estimate depends on
the desired confidence level (through the t critical value) and on the amount of variability in the

estimator b̂1 (through sb̂1 , which will tend to be small when there is little variability in the distribution

of b̂1 and large otherwise).

Example 12.9 The scatterplot in Figure 12.14 shows the size (x, in square feet) and monthly rent (y,
in dollars) for a random sample of n = 77 two-bedroom apartments in Omaha, NE (courtesy of www.
zillow.com/omaha-ne/rentals). The plot suggests, not surprisingly, that rent generally increases with
apartment size, and that for any fixed apartment size there is variability in monthly rents.
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Summary quantities include

x ¼ 1023:5 sx ¼ 161:9 Sxx ¼ 1;991;569

y ¼ 1006:6 sy ¼ 113:3 Syy ¼ 975;840

Sxy ¼ 1;042;971

from which b̂1 ¼ :5237, b̂0 ¼ 470:6, SST = Syy = 975,840, SSE = 429,642, and R2 = .5597.
Roughly 56% of the observed variation in monthly rent can be attributed to the simple linear
regression model relationship between rent and apartment size. The remaining 44% of rent variation
is due to other apartment features, such as neighborhood, nicer appliances, or dedicated parking. Error
df is n – 2 = 77 − 2 = 75, giving s2e = 429,642/75 = 5728.56 and se = 75.69.

The estimated standard deviation of b̂1 is

sb̂1 ¼
seffiffiffiffiffiffi
Sxx

p ¼ 75:69ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1;991;569

p ¼ :0536

The t critical value for a confidence level of 95% is t.025,75 = 1.992, so a 95% CI for b1 is

:5237� 1:992ð:0536Þ ¼ ð:4169; :6305Þ

With a high degree of confidence, we estimate that a one square foot increase in an apartment’s size is
associated with an increase between $.4169 and $.6305 in the expected monthly rent. This applies to
the population of all two-bedroom apartments in Omaha. Multiplying by 100 gives $41.69 to $63.05
as the increase in expected rent associated with a 100 ft2 size increase.

Looking at the R output of Figure 12.15, we find the value of sb̂1 under coefficients as the second

number in the standard error column, while the value of se is displayed as residual standard error.

There is also an estimated standard error for the statistic b̂0. For all of the statistics, compare the
values in the R output with the values calculated above.

Size (sq.ft.)

700 900

700

800 1000 1100 1200 1300 1400 1500

800

900

1000

1100

Rent ($)

1200

1300

Figure 12.14 Scatterplot of the data from Example 12.8
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Hypothesis-Testing Procedures
As before, the null hypothesis in a test about b1 will be an equality statement. The null value of b1
claimed true by the null hypothesis will be denoted by b10 (read “beta one naught,” not “beta ten”).
The test statistic results from replacing b1 in the standardized variable T by the null value b10—that is,

from standardizing b̂1 under the assumption that H0 is true. The test statistic thus has a t distribution
with n − 2 df when H0 is true, so the type I error probability is controlled at the desired level a by
using an appropriate t critical value.

The most commonly encountered pair of hypotheses about b1 is H0: b1 = 0 versus Ha: b1 6¼ 0, in

which case the test statistic value is the t ratio b̂1=sb̂1 . When this null hypothesis is true,

EðY jxÞ ¼ b0 þ 0x ¼ b0, independent of x, so knowledge of x gives no information about the value of
the response variable. A test of these two hypotheses is often referred to as the model utility test in
simple linear regression.

Unless n is quite small, H0 will be rejected and the utility of the model confirmed precisely when
R2 is reasonably large. The simple linear regression model should not be used for further inferences,
such as estimates of mean value or predictions of future values (the topics of Section 12.4), unless the
model utility test results in rejection of H0 for a suitably small a.

Call: 
lm(formula = Rent ~ Size, data = Omaha) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  
-144.314  -52.306    1.658   40.635  189.477  

 
Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 470.62001   55.56499   8.470 1.52e-12 *** 

Size          0.52369    0.05363   9.765 5.30e-15 *** 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 75.69 on 75 degrees of freedom 
Multiple R-squared:  0.5597, Adjusted R-squared:  0.5539  

F-statistic: 95.35 on 1 and 75 DF,  p-value: 5.302e-15 

Figure 12.15 R output for the data of Example 12.9 ■
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Example 12.10 How is the perceived risk of an investment related to its expected return? Intuitively
it would seem as though riskier investments would be associated with higher expected returns. The
article “Affect in a Behavioral Asset-Pricing Model” (Fin. Anal. J., March/April 2008: 20–29)
reported on an experiment in which each member of a group of investors rated the risk of a com-
pany’s stock on a 10-point scale ranging from low to high, and members of a different group rated the
future return of the stock on the same scale. This was done for a total of 210 companies, and for each
one both a risk score x and an expected return score y resulted from averaging responses from the
individual raters. The following data is from a subset of ten of these companies (listed for conve-
nience in increasing order of risk):

The scatterplot of the data for these ten companies in Figure 12.16 shows a weak (R2 � .18) but also
surprising negative relationship between the two variables. Let’s carry out the model utility test at
significance level a = .05 (the scatterplot does not bode well for the model, but stay tuned for the rest
of the story).

The parameter of interest is b1 = true change in expected return score associated with a one-point
increase in risk score. The null hypothesis H0: b1 = 0 will be rejected in favor of Ha: b1 6¼ 0 if the
observed test statistic t satisfies either t	 ta=2;n�2 ¼ t:025;8 ¼ 2:306 or t 
 −2.306. Partial Excel
output (software not favorably regarded in the statistical community) for this example appears in

Figure 12.17. In the output, b̂1 = –.4913 and sb̂1 = .3614, so the test statistic is

t ¼ �:4913� 0
:3614

� �1:36 ðalso on outputÞ

Risk score
4.0 5.04.5

5.0

Expected return score

5.5

6.0

6.0

7.0

7.5

8.0

5.5 6.56.0 7.57.0

Figure 12.16 Scatterplot for the data in Example 12.10

x 4.3 4.6 5.2 5.3 5.5 5.7 6.1 6.3 6.8 7.5

y 7.7 5.2 7.9 5.8 7.2 7.0 5.3 6.8 6.6 4.7
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Since −1.36 does not fall in the rejection region, H0 is not rejected at the .05 level. Equivalently, the
two-sided P-value is double the area under the t8 curve to the left of −1.36, which Excel reports as
roughly .211; since .211 > .05, again H0 is not rejected.

Excel also provides a 95% confidence interval of (−1.3246, 0.3420) for b1. This is consistent with
the results of the hypothesis test: since the value 0 lies in the interval, we have no reason to reject the
claim H0: b1 = 0.

Is there truly no relationship, or have we committed a type II error here? With just n = 10
observations, it is quite possible we failed to detect a relationship because hypothesis tests do not have
much power when the sample size is small. In fact, the authors of the original study examined 210

companies on these same two variables, resulting in an estimated slope of b̂1 = −0.4 (similar to our
sample) but with an estimated standard error of roughly .0556. The resulting test statistic value is
t = −7.2 at 208 df, which is highly statistically significant. The authors concluded, based on their
larger sample, that risk is a useful predictor of future return—although, contrary to intuition, the
association between the two appears to be negative. Even though the relationship was statistically
significant, note that—even in the full sample—risk only accounted for R2 = .185 = 18.5% of the
variation in future returns. As in the case of previous test procedures, a large-sample size can result in
rejection of H0 even though the data suggests that the departure from H0 is of little practical sig-
nificance. ■

Regression and ANOVA

The splitting of the total sum of squares SST = Syy =
P ðyi � yÞ2 into a part SSE which measures

unexplained variation and a part SSR which measures variation explained by the linear relationship is
strongly reminiscent of one-way ANOVA. In fact, H0: b1 = 0 can alternatively be tested against
Ha: b1 6¼ 0 by constructing an ANOVA table (Table 12.1) and rejecting H0 if f 	 Fa,1,n−2.

SUMMARY OUTPUT

df SS MS F Significance

Regression 2.0714 1.8485 0.2110
Residual 1.1206

Total

1 2.0714
8 8.9646

9 11.0360

Coefficients Standard Error  t Stat P-value Lower 95% Upper 95%

Intercep t 9.2353 4.4029 0.0023 4.3983 14.0722

Risk -0.491

2.0975

3 0.3614 -1.3596 0.2110 -1.3246 0.3420

Figure 12.17 Partial Excel output for Example 12.10

Table 12.1 ANOVA table for simple linear regression

Source of variation df Sum of squares Mean square F ratio

Regression 1 SSR MSR = SSR/1 f = MSR/MSE
Error n − 2 SSE MSE = SSE/(n – 2)
Total n − 1 SST
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The square root of the mean squared error (MSE) is se, the residual standard deviation. The F test
gives exactly the same result as the model utility t test because t2 = f and t2a=2;n�2 ¼ Fa;1;n�2. Virtually

all computer packages that have regression options include such an ANOVA table in the output. For
example, Figure 12.17 shows ANOVA output for the data of Example 12.10. The ANOVA table at
the top of the output has f = 1.8485 with a P-value of .211 for the model utility test. The table of
parameter estimates gives t = −1.3596, again with P = .211, and t2 = (−1.3596)2 = 1.8485 = f. Note
that this F test is only for H0: b1 = 0 versus Ha: b1 6¼ 0; if the alternative hypothesis is one-sided
(> or <) or if the null value b10 is not 0, then the t test must be used.

Exercises: Section 12.3 (31–42)

31. Reconsider the situation described in
Example 12.1, in which x = firing velocity
of a 7.62-mm round and y = body armor
penetration area. Suppose the simple linear
regression model is valid for x between 650
and 800 m/s, and that b1 = .25 and
r = 10 mm. Consider an experiment in
which n = 7, and the x values at which
observations are made are x1 = 650,
x2 = 675, x3 = 700, x4 = 725, x5 = 750,
x6 = 775, and x7 = 800.
a. Calculate rb̂1 , the standard deviation of

b̂1.
b. What is the probability that the esti-

mated slope based on such observa-
tions will be between .15 and .35?

c. Suppose it is also possible to make a
single observation at each of the n = 11
values 675, 685, 695, 705, …, 775. If a
major objective is to estimate b1 as
precisely as possible, would the
experiment with n = 11 be preferable
to the one with n = 7?

32. Exercise 16 of Section 12.2 included
Minitab output for a regression of daugh-
ter’s height on the midparent height.

a. Use the output to calculate a confidence
interval with a confidence level of 95%
for the slope b1 of the population
regression line, and interpret the
resulting interval.

b. Suppose it had previously been
believed that when midparent height
increased by 1 in., the associated true
average change in the daughter’s height
would be at least 1 in. Does the sample

data contradict this belief? State and
test the relevant hypotheses.

33. Exercise 17 of Section 12.2 gave data on
x = rainfall volume and y = runoff volume
(both in m3). Use the accompanying Mini-
tab output to decide whether there is a
useful linear relationship between rainfall
and runoff, and then calculate a confidence
interval for the true average change in
runoff volume associated with a 1-m3

increase in rainfall volume.

The regression equation is

runoff = − 1.13 + 0.827 rainfall

34. The invasive diatom species D. Geminata
has the potential to inflict substantial eco-
logical and economic damage in rivers. The
article “Substrate Characteristics Affect
Colonization by the Bloom-Forming Dia-
tom Didymosphenia Geminata” (Aquat.
Ecol. 2010: 33–40) described an investi-
gation of colonization behavior. One aspect
of particular interest was whether y =
colony density was related to x = rock
surface area. The article contained a scat-
terplot and summary of a regression anal-
ysis. Here is representative data:

x 50 71 55 50 33 58 79

y 152 1929 48 22 2 5 35

x 26 69 44 37 70 20 45 49

y 7 269 38 171 13 43 185 25

Predictor Coef Stdev t ratio P
Constant −1.128 2.368 −0.48 0.642
Rainfall 0.82697 0.03652 22.64 0.000
s = 5.240 R-sq = 97.5% R-sq(adj) = 97.3%
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a. Fit the simple linear regression model to
this data, and then calculate and inter-
pret the coefficient of determination.

b. Carryout a test of hypotheses todetermine
whether there is a useful linear relation-
ship between density and rock area.

c. The second observation has a very
extreme y value (in the full data set
consisting of 72 observations, there
were two of these). This observation
may have had a substantial impact on
the fit of the model and subsequent
conclusions. Eliminate it and redo parts
(a) and (b). What do you conclude?

35. How does lateral acceleration—side forces
experienced in turns that are largely under
driver control—affect nausea as perceived
by bus passengers? The article “Motion
Sickness in Public Road Transport: The
Effect of Driver, Route, and Vehicle”
(Ergonomics 1999: 1646–1664) reported
data on x = motion sickness dose (calcu-
lated in accordance with a British standard
for evaluating similar motion at sea) and
y = reported nausea (%). Relevant sum-
mary quantities are

n ¼ 17;
X

xi ¼ 222:1;
X

yi ¼ 193:0;

Sxx ¼ 155:02; Syy ¼ 783:88; Sxy ¼ 238:11

Values of dose in the sample ranged from
6.0 to 17.6.
a. Assuming that the simple linear

regression model is valid for relating
these two variables (this is supported
by the raw data), calculate and interpret
an estimate of the slope parameter that
conveys information about the preci-
sion and reliability of estimation.

b. Does it appear that there is a useful
linear relationship between these two
variables? Answer the question by
employing the P-value approach.

c. Would it be sensible to use the simple
linear regression model as a basis for
predicting % nausea when dose = 5.0?
Explain your reasoning.

36. Mist (airborne droplets or aerosols) is
generated when metal-removing fluids are
used in machining operations to cool and
lubricate the tool and workpiece. Mist
generation is a concern to OSHA, which
has substantially lowered the workplace
standard. The article “Variables Affecting
Mist Generation from Metal Removal Flu-
ids” (Lubricat. Engr. 2002: 10–17) gave
the accompanying data on x = fluid flow
velocity for a 5% soluble oil (cm/s) and
y = the extent of mist droplets having
diameters smaller than 10 lm (mg/m3):

a. The investigators performed a simple
linear regression analysis to relate the
two variables. Does a scatterplot of the
data support this strategy?

b. What proportion of observed variation
in mist can be attributed to the simple
linear regression relationship between
velocity and mist?

c. The investigators were particularly
interested in the impact on mist of
increasing velocity from 100 to 1000 (a
factor of 10 corresponding to the dif-
ference between the smallest and lar-
gest x values in the sample). When
x increases in this way, is there sub-
stantial evidence that the true average
increase in y is less than .6?

d. Estimate the true average change in
mist associated with a 1 cm/s increase
in velocity, and do so in a way that
conveys information about precision
and reliability.

x 89 177 189 354 362 442 965

y .40 .60 .48 .66 .61 .69 .99
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37. Refer to the data on x = iodine value and
y = cetane number given in Exercise 19.
a. Does the simple linear regression model

specify a useful relationship between
the two variables? Use the appropriate
test procedure to obtain information
about the P-value and then reach a
conclusion at significance level .01.

b. Compute a 95% CI for the expected
change in cetane number associated
with a 10 g increase in iodine value.

38. Carry out the model utility test using the
ANOVA approach for the filtration rate–
moisture content data of Example 12.6.
Verify that it gives a result equivalent to
that of the t test.

39. Use the rules of expected value to show that

b̂0 is an unbiased estimator for b0 (making

use of the fact that b̂1 is unbiased for b1).

40. a. Verify that Eðb̂1Þ ¼ b1 by using the rules
of expected value from Chapter 5.

b. Use the rules of variance from Chapter 5

to verify the expression for Vðb̂1Þ given
in this section.

41. Verify that if each xi is multiplied by a
positive constant c and each yi is multiplied
by another positive constant d, the t statistic
for testing H0: b1 = 0 versus Ha: b1 6¼ 0 is

unchanged in value. [Note: The value of b̂1

will change, which shows that the magni-

tude of b̂1 is not by itself indicative of
model utility.]

42. The power for the t test for H0: b1 = b10
can be computed in the same manner as it
was computed for the t tests of Chapter 9,
using the noncentral t distribution. If the
alternative value of b1 is denoted by b01, the
required noncentrality parameter is

d ¼ b01 � b10
r=

ffiffiffiffiffiffi
Sxx

p

and power is calculated based on n − 2 df.
An article in the Journal of Public Health
Engineering reports the results of a regres-
sion analysis based on n = 15 observations
in which x = filter application temperature
(°C) and y = % efficiency of BOD removal.
(BOD stands for biochemical oxygen
demand, and it is a measure of organic
matter in sewage.) Calculated quantities
include Sxx = 324.4, se = 3.725, and

b̂1 ¼ 1:7035. Consider testing at signifi-
cance level .01 the hypothesis H0: b1 = 1,
which states that the expected increase in %
BOD removal is 1 when filter application
temperature increases by 1 °C, against the
alternative Ha: b1 > 1. Determine power
when b01 ¼ 2; r ¼ 4.

12.4 Inferences for the (Mean) Response

Throughout this section we will let Ŷ denote the statistic

Ŷ ¼ b̂0 þ b̂1x
�

with observed value ŷ, where x� denotes a specified value of the explanatory variable x. Once the

estimates b̂0 and b̂1 have been calculated, ŷ can be regarded either as a point estimate of lY jx� (the
expected or true average value of Y when x = x�) or as a prediction of the Y value that will result from
a single new observation made when x = x�. The point estimate or prediction by itself gives no
information concerning how precisely lY jx� has been estimated or Y has been predicted. This can be
remedied by developing a CI for lY jx� and a prediction interval (PI) for a single future Y value.
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Before we obtain sample data, both b̂0 and b̂1 are subject to sampling variability—that is, they are
both statistics whose values will vary from sample to sample. This variability was shown in
Figure 12.13 at the beginning of Section 12.3. Suppose, for example, that b0 = 50 and b1 = 2. Then a

first sample of (x, y) pairs might give b̂0 ¼ 52:35 and b̂1 ¼ 1:895, a second sample might result in

b̂0 ¼ 46:52 and b̂1 ¼ 2:056, and so on. It follows that Ŷ itself varies in value from sample to sample.
If the intercept and slope of the population line are the aforementioned values 50 and 2, respectively,
and x� = 10, then this statistic is trying to estimate the value lY j10 = 50 + 2(10) = 70. The estimate
from a first sample might be ŷ = 52.35 + 1.895(10) = 71.30, from a second sample might be
ŷ = 46.52 + 2.056(10) = 67.08, etc. In the same way that a confidence interval for b1 was based on

properties of the sampling distribution of b̂1, a confidence interval for a mean y value in regression is
based on properties of the sampling distribution of the statistic Ŷ.

Substitution of the expressions for b̂0 and b̂1 into Ŷ, followed by some algebraic manipulation,
leads to the representation of Ŷ as a linear function of the Yi’s:

Ŷ ¼ b̂0 þ b̂1x
� ¼ � � � ¼

Xn
i¼1

1
n
þ ðx� � xÞðxi � xÞ

Sxx

	 

Yi ¼

Xn
i¼1

diYi

where di ¼ ð1=nÞþ ðx� � xÞðxi � xÞ=Sxx

The coefficients d1, d2, …, dn in this linear function involve the xi’s and x�, all of which are fixed.
Application of the rules of Section 5.3 to this linear function gives the following properties.
(Exercise 52 requests a derivation of Property 2.)

SAMPLING
DISTRIBUTION OF Ŷ

Let Ŷ ¼ b̂0 þ b̂1x
�, where x� is some fixed value of x. Then

1. The mean value of Ŷ is

EðŶÞ ¼ Eðb̂0 þ b̂1x
�Þ ¼ b0 þ b1x

� ¼ lY jx�

Thus b̂0 þ b̂1x
� is an unbiased estimator for b0 + b1x� (i.e., for

lY jx� ).

2. The variance of Ŷ is

VðŶÞ ¼ r2
Ŷ
¼ r2 � 1

n
þ ðx� � xÞ2

Sxx

" #

and the standard deviation rŶ is the square root of this expression. The

estimated standard deviation of Ŷ , denoted by sŶ or sb̂0 þ b̂1x�
, results

from replacing r by its estimate se:

sŶ ¼ sb̂0 þ b̂1x�
¼ se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ ðx� � xÞ2

Sxx

s

. 3. Ŷ has a normal distribution, because it is a linear function of the Yi’s
which are normally distributed and independent.
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The variance of Ŷ is smallest when x� ¼ x and increases as x� moves away from x in either direction.
Thus the estimator of lY jx� is more precise when x� is near the center of the xi’s than when it is far
from the x values where observations have been made. This implies that both the CI and PI are
narrower for an x� near x than for an x� far from x. Most statistical computer packages provide both Ŷ
and sŶ for any specified x� upon request.

Inferences Concerning the Mean Response
Just as inferential procedures for b1 were based on the t variable obtained by standardizing,

a t variable obtained by standardizing Ŷ ¼ b̂0 þ b̂1x
� leads to a CI and test procedures here.

THEOREM The variable

T ¼ Ŷ � lY jx�
SŶ

¼ b̂0 þ b̂1x
� � ðb0 þ b1x

�Þ
Sb̂0 þ b̂1x�

ð12:6Þ

has a t distribution with n − 2 df.

As was the case for b1 in the previous section, a probability statement involving this standardized
variable can be manipulated to yield a confidence interval for lY jx� .

A 100(1 − a)% CI for μY|x*, the mean/expected value of Y when x = x�, has endpoints

ŷ� ta=2;n�2 � sŶ ¼ ðb̂0 þ b̂1x
�Þ � ta=2;n�2 � se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ ðx� � xÞ2

Sxx

s
ð12:7Þ

This CI is centered at the point estimate for lY jx� and extends out to each side by an amount that
depends on the confidence level and on the extent of variability in the estimator on which the point
estimate is based.

Example 12.11 Refer back to the Omaha apartment data of Example 12.9, where the response
variable was monthly rent and the predictor was square footage. Let’s now calculate a confidence
interval, using a 95% confidence level, for the mean rent for all 1200 ft.2 two-bedroom apartments in
Omaha—that is, a confidence interval for lY|1200 = b0 + b1(1200). The interval is centered at

ŷ ¼ b̂0 þ b̂1ð1200Þ ¼ 470:6þ :5237ð1200Þ ¼ $1099:04

The estimated standard deviation of the statistic Ŷ at x = x� = 1200 is

sŶ ¼ se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ ðx� � xÞ2

Sxx

s
¼ 75:69

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
77

þ ð1200� 1023:5Þ2
1;991;569

s
¼ 12:807

The 75 df t critical value for a 95% confidence level is 1.992, from which we determine the desired
interval to be
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1099:04� 1:992ð12:807Þ ¼ ð1073:54; 1124:57Þ

At the 95% confidence level, we estimate that the average monthly rent of all 1200 square foot, two-
bedroom apartments in Omaha is between $1073.54 and $1124.57. Remember that if we re-
calculated this interval for sample after sample, in the long run about 95% of the calculated intervals
would include b0 + b1(1200). We hope that this true mean value lies in the single interval that we
have calculated.

For the population of all two-bedroom apartments in Omaha of size 1050 square feet, similar
calculations result in ŷ = 1020.50, sŶ = 8.742, and 95% CI = (1003.08, 1037.91). Notice that not
only is the expected rent lower for 1050 ft.2 apartments than for 1200 ft.2 apartments (no surprise
there), but the estimated standard error is also smaller. That’s because x� = 1050 is closer to the
sample mean of x = 1023.5 square feet than is x� = 1200.

Figure 12.18 shows a JMP scatterplot with the LSRL and curves corresponding to the confidence
limits for each different x value.

In some situations, a CI is desired not just for a single x value but for two or more x values, and we
must proceed with caution in interpreting the confidence levels of our intervals. For example, in
Example 12.11 two 95% CIs were constructed, one for lY|1200 and another for lY|1050. The joint or
simultaneous confidence level—the long-run proportion of time under repeated sampling that both
CIs would contain their respective parameters—is less than 95%. While it is difficult to determine the
exact simultaneous confidence level, Bonferroni’s inequality (Chapter 8, Exercise 91) established that
if two 100(1 − a)% CI’s are computed, then the joint confidence level of the resulting pair of
intervals is at least 100(1 – 2a)%. Thus, in Example 12.11 we are at least 90% confident (because
a = .05 and 1 – 2a = 1 – .10 = .90) that the two statements 1073.54 < lY|1200 < 1124.57 and
1003.08 < lY|1050 < 1037.91 are both true.

Figure 12.18 JMP scatterplot with confidence limits for the data of Example 12.11 ■
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More generally, a set of m intervals each with confidence level 100(1 − a)% is guaranteed to have
simultaneous confidence of at least 100(1 − ma)%. This relationship can be reversed to achieve a
desired joint confidence level: replacing a with a/m, if individual 100(1 – a/m)% CIs are constructed
for each of m parameters, the resulting simultaneous confidence level is at least 100(1 – a)%. For
example, if we desired intervals for both lY|1200 and lY|1050 with (at least) 95% joint confidence, then
each individual CI should be calculated using the t critical value corresponding to confidence
coefficient 1 – a/m = 1 – .05/2 = .975.

Tests of hypotheses about lY jx� are based on the test statistic T obtained by replacing lY jx� with the
null value l0 in the numerator of (12.6). For example, the assertion H0: lY j1200 = $1100 in Example
12.11 says that the mean rent for all 1200 ft.2 apartments in the population is $1100 per month. The
test statistic value is then t ¼ ðŷ� 1100Þ=sŶ , and the test is upper-, lower-, or two-tailed according to
the inequality in Ha.

A Prediction Interval for a Future Value of Y
Analogous to the CI (12.7) for lY jx� , one frequently wishes to obtain an interval of plausible values
for the value of Y associated with a single future observation when the explanatory variable has value
x�. In Example 12.11, a CI was computed for the true mean rent of all apartments of a certain size, but
an individual renter will be more interested in knowing a realistic range of rent values for a single
such apartment.

A CI estimates a parameter, or population characteristic, whose value is fixed but unknown to us.
In contrast, a future value of Y is not a parameter but instead a random variable; for this reason we
refer to an interval of plausible values for a future Y as a prediction interval (PI) rather than a
confidence interval. (Section 8.2 presented a method for constructing a one-sample t prediction
interval for a single future value of a variable.)

When estimating lY jx� , the estimation error, Ŷ – lY jx� , is the difference between a random variable

and a fixed but unknown quantity. In contrast, the prediction error is Ŷ � Y ¼ Ŷ � ðb0 þ b1x
� þ eÞ, a

difference between two random variables. With the additional random e term, there is more uncer-
tainty in prediction than in estimation. As a consequence, a PI will be wider than a CI for the same x�

value. Because the future value Y is independent of the observed Yi’s that determine Ŷ,

VðŶ � YÞ ¼ variance of prediction error

¼ VðŶÞþVðYÞ independence

¼ VðŶÞþVðeÞ because b0 þ b1x
� is a constant

¼ r2 � 1
n
þ ðx� � xÞ2

Sxx

" #
þ r2

¼ r2 � 1þ 1
n
þ ðx� � xÞ2

Sxx

" #

Furthermore, because EðYÞ ¼ b0 þ b1x
� and EðŶÞ ¼ b0 þ b1x

�, the expected value of the prediction
error is EðŶ � YÞ ¼ 0. It can then be shown that the standardized variable

T ¼ Y � Ŷ

Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðx� � �xÞ2

Sxx

s

12.4 Inferences for the (Mean) Response 741

http://dx.doi.org/10.1007/978-3-030-55156-8_8


has a t distribution with n − 2 df. Substituting this expression for T into the probability statement
P(−ta/2,n−2 < T < ta/2,n−2) = 1 − a and manipulating to isolate Y between the two inequalities yields
the following interval.

A 100(1 − a)% PI for a future Y observation to be made when x = x� has endpoints

ŷ� ta=2;n�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2e þ s2

Ŷ

q
¼ ðb̂0 þ b̂1x

�Þ � ta=2;n�2 � se
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðx� � xÞ2

Sxx

s
ð12:8Þ

The interpretation of the prediction level 100(1 − a)% is identical to that of previous confidence
levels—if (12.8) is used repeatedly, in the long run the resulting intervals will actually contain the
observed future y values 100(1 − a)% of the time. Notice that the 1 underneath the square root
symbol makes the PI (12.8) wider than the CI (12.7), although the intervals are both centered at ŷ.
Also, as n ! 1 the width of the CI approaches 0, whereas the width of the PI approaches 2za/2r
(because even with perfect knowledge of b0 and b1, there will still be uncertainty in prediction).

Example 12.12 (Example 12.11 continued) Let’s calculate a 95% prediction interval for the
monthly rent of a single 1200 square foot, two-bedroom apartment in Omaha. Relevant quantities
from Example 12.11 are

ŷ ¼ 1099:04 sŶ ¼ 12:807 se ¼ 75:69 t:025;75 ¼ 1:992

The prediction interval is then

1099:04� 1:992
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75:692 þ 10:292

p
¼ 1099:04� 1:992 76:386ð Þ ¼ 946:13; 1251:97ð Þ

Plausible values for the monthly rent of a 1200 ft.2 apartment are, at the 95% prediction level,
between $946.13 and $1251.97. The 95% confidence interval for the mean rent of all such apartments
was (1073.54, 1124.57). The prediction interval is much wider than this because of the extra 75.692

under the square root. Since apartments of the same size will vary in rent—the estimated sd of rents
for apartments of any fixed size is se = $75.69—there is necessarily much greater uncertainty in the
cost of a single apartment than in the average cost of all such apartments. ■

The Bonferroni technique can be employed as in the case of confidence intervals. If a PI with
prediction level 100(1 – a/m)% is calculated at each of m different x� values, the simultaneous or joint
prediction level for all m intervals will be at least 100(1 − a)%.

Exercises: Section 12.4 (43–52)

43. Global warming is a major issue, and CO2

emissions are an important part of the dis-
cussion. The article “Effects of Atmo-
spheric CO2 Enrichment on Biomass
Accumulation and Distribution in Eldarica
Pine Trees” (J. Exp. Bot. 1994: 345–349)

describes the results of growing pine trees
with increasing levels of CO2 in the air.
Here are the observations with x = atmo-
spheric concentration of CO2 (parts per
million) and y = mass in kilograms after
11 months of the experiment.
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Software calculates se = .534; ŷ ¼ 2:723
and sŶ ¼ :190 when x = 600; and ŷ ¼
3:992 and sŶ ¼ :256 when x = 750.

a. Explain why sŶ is larger when x = 750
than when x = 600.

b. Calculate a confidence interval with a
confidence level of 95% for the true
average mass of all trees grown with a
CO2 concentration of 600 parts per
million.

c. Calculate a prediction interval with a
prediction level of 95% for the mass of a
tree grown with a CO2 concentration of
600 parts per million.

d. If a 95% CI is calculated for the true
average mass when CO2 concentration
is 750, what will be the simultaneous
confidence level for both this interval
and the interval calculated in part (b)?

44. Reconsider the filtration rate–moisture
content data introduced in Example 12.6.
a. Compute a 90% CI for b0 + 125b1,

true average moisture content when the
filtration rate is 125.

b. Predict the value of moisture content
for a single experimental run in which
the filtration rate is 125 using a 90%
prediction level. How does this interval
compare to the interval of part (a)?
Why is this the case?

c. How would the intervals of parts
(a) and (b) compare to a CI and PI
when filtration rate is 115? Answer
without actually calculating these new
intervals.

d. Interpret both H0: b0 + 125b1 = 80 and
Ha: b0 + 125b1 < 80, and then carry
out a test at significance level .01.

45. Astringency is the quality in a wine that
makes the wine drinker’s mouth feel
slightly rough, dry, and puckery. The paper
“Analysis of Tannins in Red Wine Using

Multiple Methods: Correlation with Per-
ceived Astringency” (Amer. J. Enol. Vitic.
2006: 481–485) reported on an investiga-
tion to assess the relationship between
perceived astringency and tannin concen-
tration using various analytic methods.
Here is data provided by the authors on
x = tannin concentration by protein pre-
cipitation and y = perceived astringency as
determined by a panel of tasters.

Relevant summary quantities are as
follows:

X
xi ¼ 19:404;

X
yi ¼ �:549; Sxx ¼ 1:48193150;

Syy ¼ 11:82637622; Sxy ¼ 3:83071088

a. Fit the simple linear regression model
to this data. Then determine the pro-
portion of observed variation in astrin-
gency that can be attributed to the
model relationship between astringency
and tannin concentration.

b. Calculate and interpret a confidence
interval for the slope of the true
regression line.

c. Estimate true average astringency when
tannin concentration is .6, and do so in
a way that conveys information about
reliability and precision.

d. Predict astringency for a single wine
sample whose tannin concentration is .6,
and do so in a way that conveys infor-
mation about reliability and precision.

e. Is there compelling evidence for con-
cluding that true average astringency is

x 0.718 0.808 0.924 1.000 0.667 0.529 0.514 0.559

y 0.428 0.480 0.493 0.978 0.318 0.298 −0.224 0.198

x 0.766 0.470 0.726 0.762 0.666 0.562 0.378 0.779

y 0.326 −0.336 0.765 0.190 0.066 −0.221 −0.898 0.836

x 0.674 0.858 0.406 0.927 0.311 0.319 0.518 0.687

y 0.126 0.305 −0.577 0.779 −0.707 −0.610 −0.648 −0.145

x 0.907 0.638 0.234 0.781 0.326 0.433 0.319 0.238

y 1.007 −0.090 −1.132 0.538 −1.098 −0.581 −0.862 −0.551

x 408 408 554 554 680 680 812 812

y 1.1 1.3 1.6 2.5 3.0 4.3 4.2 4.7
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positive when tannin concentration is
.7? State and test the appropriate
hypotheses.

46. The simple linear regression model pro-
vides a very good fit to the data on rainfall
and runoff volume given in Exercise 17 of
Section 12.2. The equation of the least
squares line is ŷ ¼ �1:128þ :82697x,
R2 = .975, and se = 5.24.
a. Use the fact that sŶ ¼ 1:44 when rain-

fall volume is 40 m3 to predict runoff in
a way that conveys information about
reliability and precision. Does the
resulting interval suggest that precise
information about the value of runoff
for this future observation is available?
Explain your reasoning.

b. Calculate a PI for runoff when rainfall
is 50 using the same prediction level as
in part (a). What can be said about the
simultaneous prediction level for the
two intervals you have calculated?

47. A simple linear regression is performed on
y = salary ($1000s) and x = years of
experience for actuaries. You are told that a
95% CI for the mean salary of actuaries
with five years of experience, based on a
sample of n = 10 observations, is (92.1,
117.7). Calculate a CI with confidence level
99% for the mean salary of actuaries with
five years of experience.

48. Refer to Exercise 19 in which x = iodine
value in grams and y = cetane number for a
sample of 14 biofuels.
a. Software gives sŶ = .802 when x = 80

and sŶ = 1.074 when x = 120. Explain
why one is much larger than the other.

b. Calculate a 95% CI for expected cetane
number when the iodine value is 80 g.

c. Calculate a 95% PI for the cetane
number of a single biofuel with iodine
value 120 g.

49. The article “Optimization of HVAC Con-
trol to Improve Comfort and Energy Per-
formance in a School” (Energy Engr. 2008:
6–22) gives an analysis of the electrical and

gas costs for a high school in Austin, Texas
after a new heating and air conditioning
(HVAC) system was installed. The
accompanying data on x = average outside
air temperature (°F) and y = electricity
consumption (kWh) for a sample of
n = 20 months was read from a graph in
the article.

Summary quantities include x = 68.65, Sxx =
2692.55, y = 10645, Syy = 60,089,500,

Sxy = 303,515, b̂0 = 2906, b̂1 = 112.7.

a. Does the simple linear regression
model specify a useful relationship
between outside temperature and elec-
tricity consumption?

b. Estimate the true change in expected
energy consumption associated with a
1 °F increase in outside temperature
using a 95% confidence interval, and
interpret the interval.

c. Calculate a 95% CI for lY|70, the true
average monthly energy consumption
when temperature = 70 °F.

d. Calculate a 95% PI for a single future
observation on energy consumption to
be made when temperature = 70 °F.

e. Would the 95% CI and PI when tem-
perature = 85 °F be wider or narrower
than the corresponding intervals of
parts (c) and (d)? Answer without
actually computing the intervals.

f. Would you recommend calculating a
95% PI for an outside temperature of
95 °F? Explain.

x 48 53 56 58 58
y 8200 7600 8000 10000 10400

x 59 59 60 68 69

y 10200 11000 9500 9800 8500

x 69 70 73 75 79

y 11100 11800 12000 12200 11100

x 80 80 84 87 88

y 11400 13600 10000 14000 12500
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g. Calculate simultaneous CI’s for true
average monthly energy consumption
when outside temperature is 60, 70, and
80 °F, respectively. Your simultaneous
confidence level should be at least 97%.

50. Consider the following four intervals based
on the data of the previous exercise:
• A 95% CI for energy consumption when

temp = 60
• A 95% PI for energy consumption when

temp = 60
• A 95% CI for energy consumption when

temp = 72
• A 95% PI for energy consumption when

temp = 72
Without computing any of these intervals,
what can be said about their widths relative
to each other?

51. Many parts of the USA are experiencing
increased erosion along waterways due to
increased flow from global climate change.
The report “Evaluation and Assessment of
Environmentally Sensitive Stream Bank
Protection Measures” (Transp. Resour.

Board 2016) gives the following data on
x = shear stress (lb/ft2) and y = erosion
depth (ft) for six experimental test trays at
Colorado State University, built to re-create
real stream conditions.

a. Construct a scatterplot. Does the simple
linear regression model appear to be
plausible?

b. Carry out a test of model utility.

c. Estimate true average erosion depth
when shear stress is 1.75 lb/ft2 by
giving an interval of plausible values.

d. Estimate erosion depth along a single
stream where water flow creates a shear
stress of 1.75 lb/ft2 by giving an inter-
val of plausible values.

52. Verify that Vðb̂0 þ b̂1xÞ is indeed given by
the expression in the text. [Hint:
VðP diYiÞ ¼

P
d2i � VðYiÞ.]

12.5 Correlation

In many situations, the objective in studying the joint behavior of two variables is simply to see
whether they are related, rather than to use one to predict the value of the other. In this section, we
first develop the sample correlation coefficient r as a measure of how strongly related two variables
x and y are in a sample, and then we relate r to the correlation coefficient q defined in Chapter 5.

The Sample Correlation Coefficient r
Given n pairs of observations ðx1; y1Þ; . . .; ðxn; ynÞ, it is natural to speak of x and y having a positive
relationship if large x’s are paired with large y’s and small x’s with small y’s. Similarly, if large x’s are
paired with small y’s and vice versa, then a negative relationship between the variables is implied.
Consider standardizing each x value in the sample, i.e., replacing each xi with ðxi � xÞ=sx. Now do the
same thing with the yi’s to obtain the standardized y values ðyi � yÞ=sy. Our proposed measure of the
direction and strength of the relationship between the x’s and y’s involves the sum of the products of
these standardized values.

x 0.75 1.50 1.70 1.61 2.43 3.24

y .01 .06 .10 .03 .13 .24

12.4 Inferences for the (Mean) Response 745

http://dx.doi.org/10.1007/978-3-030-55156-8_5


DEFINITION The sample correlation coefficient for the n pairs ðx1; y1Þ; . . .; ðxn; ynÞ is

r ¼ 1
n� 1

Xn
i¼1

xi � x

sx

� �
yi � y

sy

� �
¼ Sxy

ðn� 1Þsxsy ¼
Sxyffiffiffiffiffiffi

Sxx
p ffiffiffiffiffiffi

Syy
p ð12:9Þ

The denominator of Expression (12.9) is clearly positive, so the sign of r (+ or –) is determined by the
numerator Sxy. If the relationship between x and y is strongly positive, an xi above the mean x will tend
to be paired with a yi above the mean y, so that ðxi � xÞðyi � yÞ[ 0, and this same product will also
be positive whenever both xi and yi are below their respective means (a negative times a negative
equals a positive). Thus a positive relationship implies that Sxy will be positive. An analogous
argument shows that when the relationship is negative, Sxy will be negative, since most of the
products ðxi � xÞðyi � yÞ will be negative. This is illustrated in Figure 12.19.

The most important properties of r are as listed below.

PROPERTIES OF r 1. The value of r does not depend on which of the two variables is labeled
x and which is labeled y.

2. The value of r is independent of the units in which x and y are mea-
sured. In particular, r itself is unitless.

3. The square of the sample correlation coefficient gives the value of the
coefficient of determination that would result from fitting the simple
linear regression model—in symbols, r2 = R2.

4. −1 
 r 
 1.

5. r = ±1 if and only if all (xi, yi) pairs lie on a straight line.

Proof Property 1 should be evident. Property 2 is a direct result of standardizing the two variables;
Exercise 64 asks for a formal verification. To prove Property 3, recall that R2 can be expressed as the

x x

y

y

a b

Figure 12.19 (a) Scatterplot with r and Sxy positive; (b) scatterplot with r and Sxy negative [+ means
ðxi � �xÞðyi � �yÞ[ 0, and − means ðxi � �xÞðyi � �yÞ\0]
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ratio SSR/SST, where SSR ¼P ðŷi � yÞ2 and SST ¼ Syy ¼
P ðyi � yÞ2. It is easily shown (see

Exercise 24(b)) that ŷi � y ¼ b̂1ðxi � xÞ, and therefore

SSR ¼
X

ðŷi � yÞ2 ¼ b̂21
X

ðxi � xÞ2 ¼ Sxy
Sxx

� �2
�Sxx ¼

S2xy
Sxx

)

R2 ¼ SSR
SST

¼ S2xy=Sxx
Syy

¼ Sxyffiffiffiffiffiffi
Sxx

p ffiffiffiffiffiffi
Syy

p
 !2

¼ r2

Because r2 = R2 = SSR/SST = (SST – SSE)/SST, and the numerator cannot be bigger than the
denominator, r must be between −1 and 1. Furthermore, because the ratio can be 1 if and only if
SSE = 0, we conclude that r2 = 1 (i.e., r = ±1) if and only if all the points fall on a straight line. ■

Property 1 stands in marked contrast to what happens in regression analysis, where virtually all
quantities of interest (the estimated slope, estimated y-intercept, se, etc.) depend on which of the two
variables is treated as the response variable. However, Property 3 shows that the proportion of
variation in the response variable explained by fitting the simple linear regression model does not
depend on which variable plays this role.

Property 2 is equivalent to saying that r is unchanged if each xi is replaced by cxi and if each yi is
replaced by dyi (where c and d are positive, giving a change in the scale of measurement), as well as if
each xi is replaced by xi − a and yi by yi − b (which changes the location of zero on the measurement
axis). This implies, for example, that r is the same whether temperature is measured in °F or °C.

Property 4 tells us that the maximum value of r, corresponding to the largest possible degree of
positive relationship, is r = 1, whereas the most negative relationship is identified with r = −1.
According to Property 5, the largest positive and largest negative correlations are achieved only when
all points lie along a straight line. Any other configuration of points, even if the configuration suggests
a deterministic relationship between variables, will yield an r value less than 1 in absolute magnitude.
Thus, r measures the degree of linear relationship among variables. A value of r near 0 is not
necessarily evidence of a lack of a strong relationship, but only the absence of a linear relation, so that
such a value of r must be interpreted with caution. Figure 12.20 illustrates several configurations of
points associated with different values of r.

r near +1 r near –1 

r near 0, no
apparent relationship

r near 0, nonlinear
relationship

Figure 12.20 Data plots for different values of r
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Example 12.13 The article “A Cross-National Relationship Between Sugar Consumption and Major
Depression?” (Depression and Anxiety 2002: 118–120) reported the following data on x = daily
sugar consumption (calories per capita) and y = annual rate of major depression (cases per 100
people) for a sample of six countries.

With n = 6, x = 340.8, sx = 110.6, y = 4.267, and sy = 1.338,

r ¼ 1
6� 1

300� 340:8
110:6

� �
3:0� 4:267

1:338

� �
þ � � � þ 150� 340:8

110:6

� �
2:3� 4:267

1:338

� �	 

¼ :944

Equivalently, Sxx = 61,120.83, Syy = 8.953, Sxy = 698.667, and r = Sxy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx � Syy

p
= .944. Since the

correlation coefficient is positive and close to 1, the data indicates a strong, positive relationship
between sugar consumption and depression rate, at least for these six countries. A scatterplot of this
data (not shown) also supports the notion of a strong, positive association. Note that if sugar con-
sumption was converted into grams per capita (a gram of sugar has about 4 calories, so x0i = xi/4), the
summary values for the x data would change but r would remain .944.

Does this study show that increased sugar consumption causes depression? Would forcing people
in these countries to eat less sugar reduce the depression rate? Not necessarily: the high r value
establishes a strong association between the two variables, but (as discussed in earlier chapters)
association does not imply causation. Other factors not explored by the investigators may explain
why nations with greater sugar consumption report higher depression rates. It should also be noted
that aggregating data—here, looking at data on the national rather than individual level—tends to
inflate the correlation coefficient by averaging out individual variation that would weaken the
apparent relationship between the two variables. ■

Correlation and the Regression Effect
The correlation coefficient can be used to obtain an alternative expression for the equation of the least
squares regression line:

y ¼ b̂0 þ b̂1x ¼ yþ r � sy
sx
ðx� xÞ

(Exercise 66 requests a derivation of this result.) This expression for the regression line can be
interpreted as follows. Suppose r > 0. For an x that lies one standard deviation (sx units) above the
mean x of the xi’s, the predicted y value is yþ r � sy, r standard deviations above the mean on the

Country Sugar consumption Depression rate

USA 300 3.0
Canada 390 5.2
France 350 4.4
Germany 375 5.0
New Zealand 480 5.7
South Korea 150 2.3
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y scale. If r is negative, the LSRL predicts that the y value when x is one sd above average will be
r sd’s below average. Critically, since the magnitude of r is typically strictly less than 1, our model
predicts that, on a standardized scale, the response variable will be closer to its mean than the
explanatory variable is to its mean.

The term regression analysis was first used by Francis Galton in the late nineteenth century in
connection with his work on the relationship between father’s height x and son’s height y. After
collecting a number of pairs (xi, yi), Galton used the principle of least squares to obtain the equation of
the LSRL with the objective of using it to predict son’s height from father’s height. In using the
derived line, Galton found that if a father was above average in height, his son was also expected to
be above average in height, but not by as much as the father. Similarly, the son of a shorter-than-
average father was expected to be shorter than average, but not by as much as the father. Thus the
predicted height of a son was “pulled back in” toward the mean; because regression can be defined as
moving backward, Galton adopted the terminology regression line. This phenomenon of being pulled
back in toward the mean has been observed in many other situations (e.g., a player’s batting averages
from year to year in baseball) and is called the regression effect or regression to the mean. See also
Section 5.5 for a discussion of this topic in the context of the bivariate normal distribution.

Because of the regression effect, care must be exercised in experiments that involve selecting
individuals based on below-average scores. For example, if students are selected because of below-
average performance on a test and they are then given special instruction, the regression effect
predicts improvement even if the instruction is useless. A similar warning applies in studies of
underperforming businesses or hospital patients.

The Population Correlation Coefficient q and Inferences About Correlation
The correlation coefficient r is a measure of how strongly related x and y are in the observed sample.
We can think of the pairs (xi, yi) as having been drawn from a bivariate population of pairs, with
(Xi, Yi) having some joint probability distribution f(x, y). In Chapter 5, we defined the correlation
coefficient q(X, Y) by

q ¼ qðX; YÞ ¼ E
X � lX
rX

� �
Y � lY
rY

� �	 

¼ E½ðX � lXÞðY � lYÞ�

rXrY

If we think of f(x, y) as describing the distribution of pairs of values within the entire population, q
becomes a measure of how strongly related x and y are in that population. Properties of q analogous to
those for r were given in Chapter 5.

The population correlation coefficient q is a parameter or population characteristic, just as lX, lY,
rX, and rY are, and we can use the sample correlation coefficient to make various inferences about q.
In particular, r is a point estimate for q, and the corresponding estimator is

q̂ ¼ R ¼ 1
n� 1

Xn
i¼1

Xi � X

sX

� �
Xi � Y

sY

� �
¼

P ðXi � XÞðYi � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðXi � XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðYi � YÞ2

q

Many of the intervals and test procedures presented in Chapters 8–10 were based on an assumption of
population normality. To test hypotheses about q, we must make an analogous assumption about the
distribution of pairs of (x, y) values in the population. We are now assuming that both X and Y are
random, with joint distribution given by the bivariate normal pdf introduced in Section 5.5.

If X = x, recall from Section 5.5 that the conditional distribution of Y is normal with mean
lY jx ¼ l2 þðqr2=r1Þðx� l1Þ and variance ð1� q2Þr22. This is exactly the model used in simple
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linear regression with b0 ¼ l2 � ql1r2=r1; b1 ¼ qr2=r1, and r2 ¼ ð1� q2Þr22 independent of
x. The implication is that if the observed pairs (xi, yi) are actually drawn from a bivariate normal
distribution, then the simple linear regression model is an appropriate way of studying the behavior
of Y for fixed x. If q = 0, then lY jx = l2 independent of x; in fact, when q = 0 the joint pdf f(x, y) can
be factored into a part involving x only and a part involving y only, which implies that X and Y are
independent random variables.

Example 12.14 As discussed in Section 5.5, contours of the bivariate normal distribution are
elliptical, and this suggests that a scatterplot of observed (x, y) pairs from such a joint distribution
should have a roughly elliptical shape. The article “Methods of Estimation of Visceral Fat: Advan-
tages of Ultrasonography” (Obesity Res. 2003: 1488–1494) includes the scatterplot in Figure 12.21
for x = visceral fat (cm2) measured by ultrasound (US) versus y = visceral fat by computerized
tomography (CT) for a sample of n = 100 obese women. CT is considered the most accurate tech-
nique for body fat measurement but is costly, time-consuming, and involves exposure to ionizing
radiation; the US method is noninvasive and less expensive.

The pattern in the scatterplot in Figure 12.21 seems consistent with an assumption of bivariate
normality. If we let q denote the true population correlation coefficient between CT and US mea-
surements, then a point estimate of q is q̂ = r = .71, a value given in the article. Of course we would
want fat measurements from the two methods to be very highly correlated before regarding one as an
adequate substitute for the other. By that standard, r = .71 is not all that impressive, but the inves-
tigators reported that a test of H0: q = 0 (to be introduced shortly) gives P-value < .001. ■

Assuming that the pairs are drawn from a bivariate normal distribution allows us to test hypotheses
about q and to construct a CI. There is no completely satisfactory way to check the plausibility of the
bivariate normality assumption. A partial check involves constructing two separate normal probability
plots, one for the sample xi’s and another for the sample yi’s, since bivariate normality implies that the
marginal distributions of both X and Y are normal. If either probability plot deviates substantially from
a straight-line pattern, the following inferential procedures should not be used when the sample size
n is small. Also, as in Example 12.14, the scatterplot should show a roughly elliptical shape.

100
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0

250

300

200

150

350

0 2 4 6 8 10 12

Fat by CT

Fat by US

Figure 12.21 Scatterplot for Example 12.14
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TESTING FOR THE
ABSENCE OF
CORRELATION

When H0: q = 0 is true, the test statistic

T ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

has a t distribution with n − 2 df (see Exercise 63).

A P-value based on n − 2 df can be calculated as described previously.

Example 12.15 Neurotoxic effects of manganese are well known and are usually caused by high
occupational exposure over long periods of time. In the fields of occupational hygiene and envi-
ronmental hygiene, the relationship between lipid peroxidation, which is responsible for deterioration
of foods and damage to live tissue, and occupational exposure had not been previously reported. The
article “Lipid Peroxidation in Workers Exposed to Manganese” (Scand. J. Work Environ. Health
1996: 381–386) gave data on x = manganese concentration in blood (ppb) and y = concentration
(lmol/L) of malondialdehyde, which is a stable product of lipid peroxidation, both for a sample of 22
workers exposed to manganese and for a control sample of 45 individuals. The value of r for the
control sample was .29, from which

t ¼ ð:29Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :292

p � 2:0

The corresponding P-value for a two-tailed t test based on 43 df is roughly .052 (the cited article
reported only that the P-value > .05). We would not want to reject the assertion that q = 0 at either
significance level .01 or .05. For the sample of exposed workers, r = .83 and t = 6.7, clear evidence
that there is a positive relationship in the entire population of exposed workers from which the sample
was selected. Although in general correlation does not necessarily imply causation, it is plausible here
that higher levels of manganese cause higher levels of peroxidation. ■

Because q measures the extent to which there is a linear relationship between the two variables in
the population, the null hypothesis H0: q = 0 states that there is no such population relationship. In

Section 12.3, we used the t ratio b̂1=sb̂1 to test for a linear relationship between the two variables in

the context of regression analysis. It turns out that the two test procedures are completely equivalent

because r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
¼ b̂1=sb̂1 (Exercise 63).

Other Inferences Concerning q

The procedure for testing H0: q = q0 when q0 6¼ 0 is not equivalent to any procedure from regression
analysis. The test statistic is based on a transformation of R called the Fisher transformation.

Alternative Hypothesis Rejection Region for Level a Test
Ha: q > 0 t 	 ta,n�2

Ha: q < 0 t 
 −ta,n�2

Ha: q 6¼ 0 either t 	 ta/2,n�2 or t 
 �ta/2,n�2
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PROPOSITION When (X1, Y1), …, (Xn, Yn) is a sample from a bivariate normal distribution,
the rv

V ¼ 1
2
ln

1þR

1� R

� �

has approximately a normal distribution with mean and variance

lV ¼ 1
2
ln

1þ q
1� q

� �
r2V ¼ 1

n� 3

The rationale for the transformation is to obtain a function of R that has a variance independent of q;
this would not be the case with R itself. The approximation will not be valid if n is quite small.

The test statistic for testing H0: ρ = ρ is

1
ln[(1 ) / (1 )]

2

1/ 3

V
Z

n

− + –
=

−

Ha: ρ > ρ z ≥ zα

Ha: ρ < ρ z ≤ –zα

Ha: ρ ≠ ρ either z ≥ zα/2 or z ≤ –zα/2

A P-value can be calculated in the same manner as for previous z tests.

Alternative Hypothesis Rejection Region for Level α Test

0

0

0

0

0 0

Example 12.16 As far back as Leonardo da Vinci, it was known that height and wingspan (mea-
sured fingertip to fingertip between outstretched hands) are closely related. For these measurements
(in inches) from 16 students in a statistics class notice how close the two values are.

The scatterplot in Figure 12.22 shows an approximately linear shape, and the point cloud is
roughly elliptical. Also, the normal plots for the individual variables are roughly linear, so the
bivariate normal distribution can reasonably be assumed.

Student 1 2 3 4 5 6 7 8

Height 63.0 63.0 65.0 64.0 68.0 69.0 71.0 68.0
Wingspan 62.0 62.0 64.0 64.5 67.0 69.0 70.0 72.0

Student 9 10 11 12 13 14 15 16
Height 68.0 72.0 73.0 73.5 70.0 70.0 72.0 74.0
Wingspan 70.0 72.0 73.0 75.0 71.0 70.0 76.0 76.5
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The correlation is computed to be .9422. Can it be concluded that true correlation between
wingspan and height exceeds .8? To carry out a test of H0: q = .8 versus Ha: q > .8, we Fisher
transform .9422 and .8:

v ¼ 1
2
ln

1þ :9422
1� :9422

� �
¼ 1:757 lV ¼ 1

2
ln

1þ :8
1� :8

� �
¼ 1:099

The z test statistic is z ¼ 1:757� 1:099ð Þ=ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 3

p Þ ¼ 2:37. Since 2.37 	 z.01 = 2.33, at level
.01 we can reject H0: q = .8 in favor of Ha: q > .8 and conclude that wingspan is highly correlated
with height. ■

To obtain a CI for q, we first derive an interval for lV ¼ 1
2 ln½ð1þ qÞ=ð1� qÞ�. Standardizing V,

writing a probability statement, and manipulating the resulting inequalities yields

v� za=2 � rV ¼ 1
2
ln

1þ r

1� r

� �
� za=2ffiffiffiffiffiffiffiffiffiffiffi

n� 3
p ð12:10Þ

as the endpoints of a 100(1 − a)% interval for lV. This interval can then be manipulated to yield a CI
for q.

A 100(1 − a)% confidence interval for q is

e2c1 � 1
e2c1 þ 1

;
e2c2 � 1
e2c2 þ 1

� �

where c1 and c2 are the left and right endpoints, respectively, in Expression (12.10).

Example 12.17 (Example 12.16 continued) The sample correlation coefficient between wingspan
and height was r = .9422, giving m = 1.757. With n = 16, a 95% confidence interval for lV is
1:757� 1:96=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 3

p ¼ 1:213; 2:301ð Þ ¼ c1; c2ð Þ.
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Wingspan

Height

Figure 12.22 Wingspan plotted against height
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The 95% interval for q is

e2 1:213ð Þ � 1

e2 1:213ð Þ þ 1
;
e2 2:301ð Þ � 1

e2 2:301ð Þ þ 1

� �
¼ ð:838; :980Þ

Notice that this interval excludes .8, and that our hypothesis test in Example 12.16 would have
rejected H0: q = .8 in favor of the alternative Ha: q > .8 at the .025 level. ■

Absent the assumption of bivariate normality, a bootstrap procedure can be used to obtain a CI for
q or test hypotheses.

In Chapter 5, we cautioned that a large value of the correlation coefficient (near 1 or −1) implies
only association and not causation. This applies to both q and r. It is easy to find strong but weird
correlations in which neither variable is casually related to the other. For example, since Prohibition
ended in the 1930s, beer consumption and church attendance have correlated very highly. Of course,
the reason is that both variables have increased in accord with population growth.

Exercises: Section 12.5 (53–66)

53. The article “Behavioural Effects of Mobile
Telephone Use During Simulated Driving”
(Ergonomics 1995: 2536–2562) reported
that for a sample of 20 experimental sub-
jects, the sample correlation coefficient for
x = age and y = time since the subject had
acquired a driving license (yr) was .97.
Why do you think the value of r is so close
to 1? (The article’s authors gave an
explanation.)

54. The Turbine Oil Oxidation Test (TOST)
and the Rotating Bomb Oxidation Test
(RBOT) are two different procedures for
evaluating the oxidation stability of steam
turbine oils. The article “Dependence of
Oxidation Stability of Steam Turbine Oil
on Base Oil Composition” (J. Soc. Tribol-
ogists Lubricat. Engrs., Oct. 1997: 19–24)
reported the accompanying observations on
x = TOST time (hr) and y = RBOT time
(min) for 12 oil specimens.

a. Calculate and interpret the value of the
sample correlation coefficient (as did
the article’s authors).

b. How would the value of r be affected if
we had let x = RBOT time and y =
TOST time?

c. How would the value of r be affected if
RBOT time was expressed in hours?

d. Construct a scatterplot and normal
probability plots and comment.

e. Carry out a test of hypotheses to decide
whether RBOT time and TOST time
are linearly related.

55. The authors of the paper “Objective Effects
of a Six Months’ Endurance and Strength
Training Program in Outpatients with
Congestive Heart Failure” (Med. Sci. Sports
Exerc. 1999: 1102–1107) presented a cor-
relation analysis to investigate the rela-
tionship between maximal lactate level
x and muscular endurance y. The accom-
panying data was read from a plot in the
paper.

x 400 750 770 800 850 1025 1200

y 3.80 4.00 4.90 5.20 4.00 3.50 6.30

x 1250 1300 1400 1475 1480 1505 2200

y 6.88 7.55 4.95 7.80 4.45 6.60 8.90

Sxx ¼ 36:9839; Syy ¼ 2;628;930:357;

Sxy ¼ 7377:704

TOST 4200 3600 3750 3675 4050 2770

RBOT 370 340 375 310 350 200

TOST 4870 4500 3450 2700 3750 3300

RBOT 400 375 285 225 345 285
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A scatterplot shows a linear pattern.

a. Test to see whether there is a positive
correlation between maximal lactate
level and muscular endurance in the
population from which this data was
selected.

b. If a regression analysis was to be car-
ried out to predict endurance from
lactate level, what proportion of
observed variation in endurance could
be attributed to the approximate linear
relationship? Answer the analogous
question if regression is used to predict
lactate level from endurance—and
answer both questions without doing
any regression calculations.

56. Torsion during hip external rotation and
extension may explain why acetabular
labral tears occur in professional athletes.
The article “Hip Rotational Velocities
During the Full Golf Swing” (J. Sport Sci.
Med. 2009: 296–299) reported on an
investigation in which lead hip internal
peak rotational velocity (x) and trailing hip
peak external rotational velocity (y) were
determined for a sample of 15 golfers. Data
provided by the article’s authors was used
to calculate the following summary
quantities:

Sxx ¼ 64;732:83; Syy ¼ 130;566:96;

Sxy ¼ 44;185:87

Separate normal probability plots showed
very substantial linear patterns.
a. Calculate a point estimate for the pop-

ulation correlation coefficient.
b. If the simple linear regression model

was fit to the data, what proportion of
variation in external velocity could be
attributed to the model relationship?
What would happen to this proportion
if the roles of x and y were reversed?
Explain.

c. Carry out a test at significance level .01
to decide whether there is a linear

relationship between the two velocities
in the sampled population; your con-
clusion should be based on a P-value.

d. Would the conclusion of (c) have
changed if you had tested appropriate
hypotheses to decide whether there is a
positive linear association in the popu-
lation? What if a significance level of
.05 rather than .01 had been used?

57. Hydrogen content is conjectured to be an
important factor in porosity of aluminum
alloy castings. The article “The Reduced
Pressure Test as a Measuring Tool in the
Evaluation of Porosity/Hydrogen Content
in A1–7 Wt Pct Si-10 Vol Pct SiC(p) Metal
Matrix Composite” (Metallurg. Trans.
1993: 1857–1868) gives the accompanying
data on x = content and y = gas porosity
for one particular measurement technique.

x .18 .20 .21 .21 .21 .22 .23

y .46 .70 .41 .45 .55 .44 .24

x .23 .24 .24 .25 .28 .30 .37

y .47 .22 .80 .88 .70 .72 .75

Minitab gives the following output in
response to a correlation command:
Correlation of Hydrcon and
Porosity = 0.449
a. Test at level .05 to see whether the

population correlation coefficient dif-
fers from 0.

b. If a simple linear regression analysis
had been carried out, what percentage
of observed variation in porosity could
be attributed to the model relationship?

58. The wicking properties of certain fabrics
were investigated in the article “Thermal
and Water Vapor Transport Properties of
Selected Lofty Nonwoven Products” (Tex-
tile Res. J. 2017: 1413–1424). Use the
accompanying data and a .01 significance
level to determine whether there is a sig-
nificant correlation between thickness
x (mm) and water vapor resistance
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y (m2Pa/W). Is the result of the test sur-
prising in light of the value of r?

x 20 20 30 30 40 40

y 60 56 65 70 96 78

59. The body armor report introduced in
Example 12.1 also reported studies in
which two different methods were used to
measure the same body armor deformations
from bullet impact. The goal of these
studies was to assess the extent to which
two different measurement instruments
agree. Eighty-three backface deformations
(mm) were measured using a digital caliper
(x) and a laser arm (y), resulting in a sample
correlation coefficient of r = .878.
a. Compute a 90% CI for the true corre-

lation coefficient q.
b. Test H0: q = .8 versus Ha: q > .8 at

level .05.
c. In a regression analysis of y on x, what

proportion of variation in laser arm
measurements could be explained by
variation in digital caliper
measurements?

d. If you decide to perform a regression
analysis with digital caliper measure-
ment as the response variable, what
proportion of its variation is explain-
able by variation in laser arm
measurement?

60. It is time-consuming and costly to have
trucks stop in order to be weighed on a
static scale. The Minnesota Department of
Transportation considered using a scale that
would weigh trucks while they were mov-
ing. Here is data for a sample of trucks that
were weighed in motion and also on a static
scale (1000s of lbs).

a. Determine the sample correlation
coefficient r.

b. Test H0: q = .85 versus Ha: q > .85 at
level .05.

c. How successful do you think the sim-
ple linear regression model would be in
predicting static weight from in-motion
weight? Explain.

61. A sample of n = 500 (x, y) pairs was col-
lected and a test of H0: q = 0 versus
Ha: q 6¼ 0 was carried out. The resulting
P-value was computed to be .00032.
a. What conclusion would be appropriate

at level of significance .001?
b. Does this small P-value indicate that

there is a very strong relationship
between x and y (a value of q that
differs considerably from 0)? Explain.

c. Now suppose a sample of n = 10,000
(x, y) pairs resulted in r = .022. Test
H0: q = 0 versus Ha: q 6¼ 0 at level .05.
Is the result statistically significant?
Comment on the practical significance
of your analysis.

62. Let x be number of hours per week of
studying and y be grade point average.
Suppose we have one sample of (x, y) pairs
for females and another for males. Then we
might like to test the hypothesis
H0: q1 − q2 = 0 against the alternative that
the two population correlation coefficients
are different.
a. Use properties of the transformed vari-

able V = .5ln[(1 + R)/(1 − R)] to pro-
pose an appropriate test statistic and
rejection region (letR1 andR2 denote the
two-sample correlation coefficients).

b. The paper “Relational Bonds and Cus-
tomer’s Trust and Commitment: A Study
on the Moderating Effects of Web Site
Usage” (Serv. Ind. J. 2003: 103–124)
reported that n1 = 261, r1 = .59,
n2 = 557, r2 = .50,where thefirst sample
consisted of corporate website users and
the second of nonusers; here r is the
correlation between an assessment of the

Truck 1 2 3 4 5
In-motion 26.0 29.9 39.5 25.1 31.6
Static 27.9 29.1 38.0 27.0 30.3

Truck 6 7 8 9 10
In-motion 36.2 25.1 31.0 35.6 40.2
Static 34.5 27.8 29.6 33.1 35.5
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strength of economic bonds and perfor-
mance. Carry out the test for this data (as
did the authors of the cited paper).

63. Verify that the t ratio for testing H0: b1 = 0
in Section 12.3 is identical to t for testing
H0: q = 0.

64. Verify Property 2 of the correlation coeffi-
cient: the value of r is independent of the
units in which x and y are measured; that is,
if x0i ¼ axi þ c and y0i ¼ byi þ d, a > 0,
b > 0, then r for the ðx0i; y0iÞ pairs is the
same as r for the (xi, yi) pairs.

65. Consider a time series—that is, a sequence
of observations X1, X2,… on some response
variable (e.g., concentration of a pollutant)
over time—with observed values x1, x2, …,
xn over n time periods. Then the lag 1
autocorrelation coefficient, which assess the
strength of relationship between series
values one time unit apart, is defined as

r1 ¼
Pn�1

i¼1 ðxi � xÞðxiþ 1 � xÞPn
i¼1 ðxi � xÞ2

Autocorrelation coefficients r2, r3, … for
lags 2, 3, … are defined analogously.

a. Calculate the values of r1, r2, and r3 for
the temperature data from Chapter 1
Exercise 95.

b. Consider the pairs (x1, x2), (x2, x3), …,
(xn−1, xn). What is the difference between
the formula for the sample correlation
coefficient r applied to these pairs
and the formula for r1? What if n, the
length of the series, is large? What

about r2 compared to r for the n − 2
pairs (x1, x3), (x2, x4), …, (xn�2, xn)?

c. Analogous to the population correlation
coefficient q, let qi (i = 1, 2, 3, …)
denote the theoretical or long-run
autocorrelation coefficients at the vari-
ous lags. If all these q’s are zero, there
is no (linear) relationship between
observations in the series at any lag. In
this case, if n is large, each Ri has
approximately a normal distribution
with mean 0 and standard deviation
1=

ffiffiffi
n

p
and different Ri’s are almost

independent. Therefore H0: qi = 0 can
be rejected at a significance level of
approximately .05 if either ri 	 2=

ffiffiffi
n

p
or ri 
 � 2=

ffiffiffi
n

p
. If n = 100 and

r1 = .16, r2 = −.09, r3 = −.15, is there
evidence of theoretical autocorrelation
at any of the first three lags?

d. If you are testing the null hypothesis in
(c) for more than one lag, why might
you want to increase the cutoff constant
2 in the rejection region? [Hint: What
about the probability of committing at
least one type I error?]

66. Let sx and sy denote the sample standard
deviations of the observed x’s and y’s,
respectively.
a. Show that Sxx ¼ ðn� 1Þs2x and simi-

larly for the y’s.

b. Show that an alternative expression for

the estimated regression line b̂0 þ b̂1x is

y ¼ yþ r � sy
sx
ðx� xÞ

12.6 Investigating Model Adequacy: Residual Analysis

In the last several sections we have taken for granted that our data is consistent with the simple linear
regression model, which makes certain assumptions about the “true error” term e. Table 12.2
summarizes these model assumptions.

Since we do not observe the true errors in practice, our assessment of the plausibility of these
assumptions is made based on the observed residuals e1; . . .; en. Certain graphs of the residuals, some
of which appeared in the context of ANOVA in Chapter 11, will allow us to validate the regression
assumptions. Moreover, these graphs may reveal other unusual or noteworthy features of the data.
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Residuals and Standardized Residuals

Suppose the simple linear regression model is correct, and let ŷi ¼ b̂0 þ b̂1xi be the predicted y value

of the ith observation. Then the ith residual is ei ¼ yi � ŷi ¼ yi � ðb̂0 þ b̂1xiÞ. To derive properties of
the residuals, let Yi � Ŷi represent the ith residual as a random variable (i.e., before observations are
actually made). Then

EðYi � ŶiÞ ¼ E Yið Þ � Eðb̂0 þ b̂1xiÞ ¼ b0 þ b1xi � ðb0 þ b1xiÞ ¼ 0

It can also be shown (Exercise 74) that

VðYi � ŶiÞ ¼ r2 1� 1
n
� ðxi � xÞ2

Sxx

" #
ð12:11Þ

Notice that the further xi is from x, the smaller the variance will be. This is because the least squares
line is “pulled toward” observations whose x values are extreme relative to the other x values.
Replacing r by se and taking the square root of Equation (12.11) gives the estimated standard
deviation of the ith residual.

Let’s now standardize each residual by subtracting the mean value (zero) and then dividing by the
estimated standard deviation.

DEFINITION The standardized residuals are

e�i ¼
ei � 0
sei

¼ yi � ŷi

se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

n
� ðxi � xÞ2

Sxx

s i ¼ 1; . . .; n

If, for example, a particular standardized residual is 1.5, then the residual itself is 1.5 standard
deviations larger than what would be expected from fitting the correct model. Though the standard
deviations of the residuals differ from one another, if n is reasonably large the bracketed term in
(12.11) will be approximately 1, so some sources use e�i � ei=se as the standardized residual.
Computation of the e�i ’s can be tedious, but the most widely used statistical computer packages
automatically provide these values and can construct various plots involving them.

Table 12.2 Assumptions of the simple linear regression model

Assumption In terms of Y In terms of e

Linearity E(Y|x) is a linear function of x. For any fixed x, E(e) = 0.
Normality For any fixed x, the Y distribution

is normal.
For any fixed x, the rv e is normally
distributed.

Constant variance The variance of Y at any fixed x value is
independent of x.

V(e) = r2, independent of x.

Independence Yi’s for different observations are
independent.

ei’s for different observations are
independent.
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Example 12.18 Does stress really accelerate aging? A study described in the article “Accelerated
Telomere Shortening in Response to Life Stress” (Proc. Nat. Acad. Sci. 2004: 17312–17315) inves-
tigated the relationship between x = perceived stress level (on a quantitative scale) and y = telomere
length, a biological measure of cell longevity (smaller telomere lengths indicate shorter lifespan at the
cellular level). Figure 12.23 shows a scatterplot of (x, y) pairs for 38 subjects; the plot suggests a
negative, weak-to-moderate (r = –.32) association between stress level and telomere length.

The accompanying table displays the data, residuals, and standardized residuals obtained from
software. The estimated standard deviations of the residuals are slightly different, e.g., for the first two
observations, se1 � .156 while se2 � .157.

xi yi ei e�i xi yi ei e�i
14 1.30 0.068 0.439 7 1.35 0.065 0.431
17 1.32 0.111 0.710 11 1.00 −0.255 −1.649
14 1.08 −0.152 −0.971 15 1.24 0.016 0.103
27 1.02 −0.112 −0.729 5 1.25 −0.050 −0.341
22 1.24 0.070 0.446 21 1.26 0.082 0.524
12 1.18 −0.067 −0.431 24 1.50 0.345 2.218
22 1.18 0.010 0.062 21 1.24 0.062 0.396
24 1.12 −0.035 −0.224 6 1.50 0.207 1.387
25 0.94 −0.207 −1.337 20 1.30 0.114 0.729
18 1.46 0.259 1.650 22 1.22 0.050 0.318
28 1.22 0.096 0.627 26 0.84 −0.300 −1.941
21 1.30 0.122 0.779 10 1.30 0.038 0.246
19 0.84 −0.353 −2.250 18 1.12 −0.081 −0.515
23 1.18 0.017 0.112 17 1.12 −0.089 −0.564
15 1.22 −0.004 −0.025 20 1.22 0.034 0.220
15 0.92 −0.304 −1.943 13 1.10 −0.139 −0.895
27 1.12 −0.012 −0.078 33 0.94 −0.146 −0.994
17 1.40 0.191 1.220 20 1.32 0.134 0.857
6 1.32 0.027 0.182 29 1.30 0.183 1.209

■

Perceived stress level

5

0.9

Telomere length
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Figure 12.23 Scatterplot of data in Example 12.18
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Diagnostic Plots for Checking Assumptions
The basic plots that many statisticians recommend for an assessment of model validity are the
following:

1. e�i (or ei) on the vertical axis and xi on the horizontal axis—i.e., a plot of the ðxi; e�i Þ or ðxi; eiÞ pairs
2. e�i (or ei) on the vertical axis and ŷi on the horizontal axis—i.e., a plot of the ðŷi; e�i Þ or ðŷi; eiÞ pairs
3. A normal probability plot of the e�i ’s (or ei’s)

Plots 1 and 2 are called residual plots (against the explanatory variable and the fitted values,
respectively). These two plots generally look quite similar, since ŷ is simply a linear function of x; the
advantage of plot 2 is that we may also use it for assumption diagnostics in multiple regression, as
we’ll see in Section 12.7. Diagnostic plots 2 and 3 were both utilized in Chapter 11 for validating
ANOVA assumptions.

A residual plot can be used to validate two assumptions for simple linear regression: linearity and
constant variance. Ideally, residuals should be randomly distributed about a horizontal line passing
through 0. Figure 12.24 shows two prototype scatterplots and the corresponding residual plots.
Figure 12.24a shows a scatterplot for which a straight line, at least initially, may appear a good fit.
However, the associated residual plot exhibits strong curvature, suggesting the relationship between
x and (the mean of) y is not actually linear. Figure 12.24b shows nonconstant variance: as x increases,
so does the spread of the residuals about the mean line. (It is certainly possible to have a residual plot
indicating both nonlinearity and nonconstant variance.)
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Figure 12.24 Scatterplots and residual plots: (a) violation of the linearity assumption;
(b) violation of the constant variance assumption
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The assumption of normally distributed errors is, naturally, checked by a normal probability plot of
the residuals or standardized residuals. As before, approximate normality of the residuals becomes
less important as n increases for most of our inferential procedures in regression. For example, the
t test in Section 12.3 is still valid for large n even if the residuals are clearly nonnormal. The
exception to this is a prediction interval (PI) for a future y value presented in Section 12.4.

Example 12.19 (Example 12.18 continued) Figure 12.25 presents a residual-versus-fit plot
(e�i vs. ŷi) and a normal probability plot of the e�i ’s for the stress–telomere data. The lack of a pattern
in Figure 12.25a, e.g., lack of curvature, validates the linearity assumption, while the relatively equal
vertical spread throughout the graph indicates the constant variance assumption is reasonable here.
The points in Figure 12.25b plot are quite straight, suggesting that the standardized residuals—and,
by extension, the true errors ei—might reasonably come from a normally distributed population.
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Figure 12.25 Plots for the data from Example 12.19
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What about the final assumption, independence? Provided that the observations were obtained
through random sampling (or, in the case of an experiment, treatments were randomly assigned to
subjects), it is reasonable to treat the response values as independent. In Example 12.18, the 38
subjects were volunteers, but there is no reason to think their stress levels or telomere lengths are
related. (The lack of random sampling does, however, call into question the extent to which the
study’s results can be generalized to a larger population of individuals.) ■

Other Diagnostic Tools
Besides violations of the inference requirements for simple linear regression, bivariate data will
sometimes present other difficulties:

1. The selected model fits the data well except for a few discrepant or outlying data values, which
may have greatly influenced the choice of the best-fit function.

2. When the observations (xi, yi) appear in time order (i.e., the subscript i is actually a time index),
the errors exhibit dependence over time.

3. One or more relevant explanatory variables have been omitted from the model.

Figure 12.26 presents plots corresponding to these three scenarios. Some unusual observations can
be detected by a residual plot, particularly those with large standardized residuals (see Figure 12.26a).
However, detection of all types of unusual observations can be difficult, especially in a multiple
regression setting. A more complete analysis of unusual observations for both simple and multiple
regression is presented in Section 12.9.

Figure 12.26b shows a plot of the standardized residuals against time order; this is only appro-
priate when the data is collected sequentially (in successive time periods) rather than randomly. The
line segments connecting successive points emphasize the sequential nature of the observations.
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Figure 12.26 Plots that indicate abnormality in data: (a) a discrepant observation; (b) dependence in errors;
(c) an omitted explanatory variable
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Observe that the residuals have a perfect alternating pattern: the first residual is above the mean line,
the next one is below, the next above, and so on. This is an example of autocorrelation: a time-
dependent pattern in the residuals. The methods of this chapter should be applied with great caution to
modeling sequential observations—known as time series data—since the independence assumption is
generally not met for this type of data.

Figure 12.26c shows a plot of the e�i ’s against an explanatory variable other than x. The presence
of a pattern suggests that this other explanatory variable should be added to the model, resulting in a
multiple regression model. In Example 12.18, we might find that the residuals from the regression of
y = telomere length on x1 = stress level are linearly related to the values of x2 = subject’s age. If so, it
makes sense to use both x1 and x2 to predict y (the topic of Section 12.7).

Remedies for Assumption Violations
We now briefly indicate what remedies are available for some of the difficulties encountered in this
section. Several of these are discussed in greater detail in subsequent sections of the book. For a more
comprehensive discussion, one or more of the bibliographic references on regression analysis should
be consulted.

If the relationship between x and y appears nonlinear (e.g., as indicated in the residual plot of
Figure 12.24a), then a model other than Y = b0 + b1x + e may be fit. This can be achieved by
transformation of the x and/or y variable, or by inclusion of higher-order polynomial terms (see
Section 12.8).

Transformations of the y variable can also be used to remedy nonconstant variance. For instance, if
the spread of the residuals grows with x as in the residual plot of Figure 12.24b, the transformation
y0 ¼ lnðyÞ is often applied. Another popular approach to addressing nonconstant variance is the
method of weighted least squares. The basic idea of weighted least squares is to find coefficients b0
and b1 to minimize the expression

gwðb0; b1Þ ¼
X

wi½yi � ðb0 þ b1xiÞ�2

where the wi’s are “weights” determined by the variance structure of the errors. For example, if the
standard deviation of Y is proportional to x (for x > 0)—that is, V(Y) = kx2—then it can be shown that
the weights wi ¼ 1=x2i yield minimum-variance estimators of b0 and b1. The books by Kutner et al.
and by Chatterjee and Hadi explain weighted least squares in detail (see the bibliography). Weighted
least squares are used quite frequently by econometricians (economists who use statistical methods)
to estimate parameters.

Generally speaking, violations of the normality assumption cannot be fixed, though such a
problem may naturally be resolved while addressing linearity and constant variance issues. Again, if
the sample size is reasonably large then normality is not as important, except for prediction intervals.
If a small data set has the feature that only the normality assumption is violated, consult your friendly
neighborhood statistician for information on computer-intensive methods (e.g., bootstrapping).

When plots or other evidence suggest that the data set contains outliers or points having large
influence on the resulting fit, one possible approach is to omit these outlying points and re-compute
the estimated regression equation. This would certainly be correct if it was found that the outliers
resulted from errors in recording data values or experimental errors. If no assignable cause can be
found for the outliers, it is still desirable to report the estimated equation both with and without
outliers. Another approach is to retain possible outliers but to use an estimation principle that puts
relatively less weight on outlying values than does the principle of least squares. One such principle is
minimize absolute deviations (MAD), which selects b0 and b1 to minimize

P
yi � b0 þ b1xið Þj j.

Unlike the least squares estimates, there are no nice formulas for the MAD estimates; their values
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must be found by using an iterative computational procedure. Such procedures are also used when it
is suspected that the ei’s have a distribution that is not normal but instead has “heavy tails” (making it
much more likely than for the normal distribution that discrepant values will enter the sample); robust
regression procedures are those that produce reliable estimates for a wide variety of underlying error
distributions. Least squares estimators are not robust, in the same way that the sample mean X is not a
robust estimator for l.

Exercises: Section 12.6 (67–76)

67. The x values and standardized residuals for
the temperature-energy use data of Exercise 49
(Section 12.4) are displayed in the accom-
panying table. Construct a standardized
residual plot and comment on its
appearance.

68. Suppose the variables x = commuting dis-
tance and y = commuting time are related
according to the simple linear regression
model with r = 10.

a. If n = 5 observations are made at the
x values x1 = 5, x2 = 10, x3 = 15,
x4 = 20, and x5 = 25, calculate the
(true) standard deviations of the five
corresponding residuals.

b. Repeat part (a) for x1 = 5, x2 = 10,
x3 = 15, x4 = 20, and x5 = 50.

c. What do the results of parts (a) and
(b) imply about the deviation of the
estimated line from the observation
made at the largest sampled x value?

69. Nickel-based alloys are especially difficult
to machine due to characteristics including
high hardness and low thermal conductiv-
ity. The article “Multi-response Optimiza-
tion Using ANOVA and Desirability
Function Analysis: A Case Study in End
Milling of Inconel Alloy” (ARPN J. Engr.

Appl. Sci. 2014: 457–463) reports the fol-
lowing data on x = cutting velocity
(m/min) and y = material removal rate
(mm2/min) from one experiment.

x 25 25 25 50 50

y 258.48 268.80 270.18 338.58 343.86

x 50 75 75 75

y 354.24 414.36 424.80 451.80

a. The LSRL for this data is
y = 182.7 + 3.29x. Calculate and plot
the residuals against x and then com-
ment on the appropriateness of the
simple linear regression model.

b. Use se = 11.759 to calculate the stan-
dardized residuals from a simple linear
regression. Construct a standardized
residual plot and comment. Also con-
struct a normal probability plot and
comment.

70. As the air temperature drops, river water
becomes supercooled and ice crystals form.
Such ice can significantly affect the
hydraulics of a river. The article “Labora-
tory Study of Anchor Ice Growth” (J. Cold
Regions Engr. 2001: 60–66) described an
experiment in which ice thickness
(mm) was studied as a function of elapsed
time (hr) under specified conditions. The
following data was read from a graph in the
article: n = 33; x = .17, .33, .50, .67, …,
5.50; y = .50, 1.25, 1.50, 2.75, 3.50, 4.75,
5.75, 5.60, 7.00, 8.00, 8.25, 9.50, 10.50,
11.00, 10.75, 12.50, 12.25, 13.25, 15.50,
15.00, 15.25, 16.25, 17.25, 18.00, 18.25,
18.15, 20.25, 19.50, 20.00, 20.50, 20.60,
20.50, 19.80.

x 69 70 73 75 79

e� 0.356 0.858 0.743 0.724 −0.622

x 80 80 84 87 88

e� −0.460 1.471 −2.133 1.181 −0.302

x 48 53 56 58 58

e� −0.110 −1.153 −1.077 0.486 0.836

x 59 59 60 68 69

e� 0.560 1.258 −0.148 −0.660 −1.869
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a. The R2 value resulting from a least
squares fit is .977. Given the high R2,
does it seem appropriate to assume an
approximate linear relationship?

b. The residuals, listed in the same order
as the x values, are

−1.03 −0.92 −1.35 −0.78 −0.68 −0.11 0.21
−0.59 0.13 0.45 0.06 0.62 0.94 0.80
−0.14 0.93 0.04 0.36 1.92 0.78 0.35
0.67 1.02 1.09 0.66 −0.09 1.33 −0.10

−0.24 −0.43 −1.01 −1.75 −3.14

Plot the residuals against x, and reconsider
the question in (a). What does the plot
suggest?

71. The accompanying data on x = true density
(kg/mm3) and y = moisture content (% d.
b.) was read from a plot in the article
“Physical Properties of Cumin Seed”
(J. Agric. Engr. Res. 1996: 93–98).

x 7.0 9.3 13.2 16.3 19.1 22.0

y 1046 1065 1094 1117 1130 1135

The equation of the least squares line is
y = 1008.14 + 6.19268x (this differs very
slightly from the equation given in the
article); se = 7.265 and R2 = .968.

a. Carry out a test of model utility and
comment.

b. Compute the values of the residuals
and plot the residuals against x. Does
the plot suggest that a linear regression
function is inappropriate?

c. Compute the values of the standardized
residuals and plot them against x. Are
there any unusually large (positive or
negative) standardized residuals? Does
this plot give the same message as the
plot of part (b) regarding the appropri-
ateness of a linear regression function?

72. Continuous recording of heart rate can be
used to obtain information about the level
of exercise intensity or physical strain
during sports participation, work, or other
daily activities. The article “The Relation-
ship Between Heart Rate and Oxygen

Uptake During Non-Steady State Exercise”
(Ergonomics 2000: 1578–1592) reported
on a study to investigate using heart rate
response (x, as a percentage of the maxi-
mum rate) to predict oxygen uptake (y, as a
percentage of maximum uptake) during
exercise. The accompanying data was read
from a graph in the paper.

HR 43.5 44.0 44.0 44.5 44.0 45.0 48.0 49.0

VO2 22.0 21.0 22.0 21.5 25.5 24.5 30.0 28.0

HR 49.5 51.0 54.5 57.5 57.7 61.0 63.0 72.0

VO2 32.0 29.0 38.5 30.5 57.0 40.0 58.0 72.0

Use a statistical software package to per-
form a simple linear regression analysis.
Considering the list of potential difficulties
in this section, see which of them apply to
this data set.

73. Example 12.6 presented the residuals from
a simple linear regression of moisture
content y on filtration rate x.

a. Plot the residuals against x. Does the
resulting plot suggest that a straight-line
regression function is a reasonable choice
of model? Explain your reasoning.

b. Using se = .665, compute the values of
the standardized residuals. Is e�i � ei=se
for i = 1,…, n, or are the e�i ’s not close
to being proportional to the ei’s?

c. Plot the standardized residuals against
x. Does the plot differ significantly in
general appearance from the plot of
part (a)?

74. Express the ith residual Yi � Ŷi (where

Ŷi ¼ b̂0 þ b̂1xi) in the form
P

cjYj, a linear
function of the Yj’s. Then use rules of
variance to verify that VðYi � ŶiÞ is given
by Expression (12.11).

75. Consider the following classic four (x,
y) data sets; the first three have the same
x values, so these values are listed only
once (Frank Anscombe, “Graphs in
Statistical Analysis,” Amer. Statist. 1973:
17–21):
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For each of these four data sets, the values
of x, y, Sxx, Syy, and Sxy are virtually
identical, so all quantities computed from
these five will be essentially identical for
the four sets—the equation of the least
squares line (y = 3 + .5x), SSE, se, R2,
t intervals, t statistics, and so on. The
summaries provide no way of distinguish-
ing among the four data sets. Based on a
scatterplot and a residual plot for each set,
comment on the appropriateness or inap-
propriateness of fitting a straight-line
model; include in your comments any
specific suggestions for how a “straight-
line analysis” might be modified or
qualified.

76. If there is at least one x value at which more
than one observation has been made, the
lack of fit test is a formal procedure for
testing
H0: lY|x = b0 + b1x for some values b0, b1
(the true regression function is linear)
versus
Ha: H0 is not true (the true regression
function is not linear)
Suppose observations are made at c levels
x1, x2,…, xc. Let Yi1; Yi2; . . .; Yini denote the
ni observations when x = xi (i = 1, …, c).
With n ¼P ni, SSE has n − 2 df. We
break SSE into two pieces, SSPE
(pure error) and SSLF (lack of fit), as
follows:

SSPE ¼
X
i

X
j

ðYij � Yi�Þ2

SSLF ¼ SSE� SSPE

The ni observations at xi contribute ni − 1
df to SSPE, so the number of degrees of
freedom for SSPE is

P
i ðni � 1Þ = n – c,

and the degrees of freedom for SSLF is
n − 2 − (n − c) = c − 2. Let MSPE =
SSPE/(n − c), MSLF = SSLF/(c − 2).
Then it can be shown that whereas
E(MSPE) = r2 whether or not H0 is true,
E(MSLF) = r2 if H0 is true and
E(MSLF) > r2 if H0 is false.
Test statistic: F ¼ MSLF=MSPE
Rejection region: f 	Fa;c�2;n�c

The following data comes from the article
“Single Cell Isolation Process with Laser
Induced Forward Transfer” (J. Bio. Engr.
2017), with x = laser pulse energy (lJ),
w = titanium thickness (nm) and
y = number of viable cells resulting from
a new cell-isolation technique.

x 5 5 5 5 5 5 5 5 5

w 80 40 120 80 40 120 80 40 120

y 24 21 16 25 22 14 24 22 14

x 9 9 9 9 9 9 9 9 9

w 80 40 120 80 40 120 80 40 120

y 18 35 24 16 37 25 19 37 24

x 13 13 13 13 13 13 13 13 13

w 80 40 120 80 40 120 80 40 120

y 31 47 42 29 46 38 33 38 40

a. Construct a scatterplot of y vs x. Does
it appear that x and the mean of y are
linearly related?

b. Carry out the lack of fit test on the
(x, y) data at significance level .05.

c. Repeat parts (a) and (b) for y vs w.

1–3 1 2 3 4 4

x y y y x y

10.0 8.04 9.14 7.46 8.0 6.58
8.0 6.95 8.14 6.77 8.0 5.76

13.0 7.58 8.74 12.74 8.0 7.71
9.0 8.81 8.77 7.11 8.0 8.84

11.0 8.33 9.26 7.81 8.0 8.47
14.0 9.96 8.10 8.84 8.0 7.04
6.0 7.24 6.13 6.08 8.0 5.25
4.0 4.26 3.10 5.39 19.0 12.50

12.0 10.84 9.13 8.15 8.0 5.56
7.0 4.82 7.26 6.42 8.0 7.91
5.0 5.68 4.74 5.73 8.0 6.89
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12.7 Multiple Regression Analysis

In multiple regression, the objective is to build a probabilistic model that relates a response variable
y to more than one explanatory or predictor variable. Let k represent the number of predictor variables
(k 	 2) and denote these predictors by x1, x2,…, xk. For example, in attempting to predict the selling
price of a house, we might have k = 4 with x1 = size (ft2), x2 = age (years), x3 = number of bed-
rooms, and x4 = number of bathrooms.

THE MULTIPLE
LINEAR REGRESSION
MODEL

There are parameters b0, b1, …, bk and r such that for any fixed values
of the explanatory variables x1; . . .; xk, the response variable Y is related
to the xj’s through the model equation

Y ¼ b0 þ b1x1 þ � � � þ bkxk þ e ð12:12Þ

where the random variable e is assumed to follow a N(0, r) distribution.
It is also assumed that the ei’s (and thus the Yi’s) associated with
different observations are independent of one another.

As before, e is the random error term (or random deviation) in the model, and the assumptions for
statistical inference may be stated in terms of e. Equation (12.12) says that the true (or population)
regression function, b0 þ b1x1 þ � � � þ bkxk, gives the expected value of Y as a function of x1,…, xk.
The bj’s are the true (or population) regression coefficients.

Interpret the regression coefficients carefully! Performing multiple regression on k explanatory
variables is not the same thing as creating k separate, simple linear regression models. For example,
b1 (the coefficient on the predictor x1) cannot be interpreted in multiple regression without reference
to the other predictor variables in the model. Here’s a correct interpretation:

b1 ¼ the change in the average value of y associated with a one-unit increase in x1;

adjusting for the effects of the other explanatory variables

As an example, for the four predictors of home price mentioned above, b1 is interpreted as the change
in expected selling price when size increases by 1 ft2, adjusting for the effects of age, number of
bedrooms, and number of bathrooms. The other coefficients are interpreted similarly.

Some statisticians refer to b1 as describing the effect of x1 on y “after removing the effects of” the
other predictors or “in the presence of” the other predictors; either of these interpretations is
acceptable. You may hear b1 defined as the change in the mean of y associated with a one-unit
increase in x1 “while holding the other variables fixed.” This is correct only if it is possible to increase
the value of one predictor while the values of all others remain constant.

Estimating Parameters
The data in simple linear regression consists of n pairs (x1, y1), …, (xn, yn). Suppose that a multiple
regression model contains two explanatory variables, x1 and x2. Then each observation will consist of
three numbers (a triple): a value of x1, a value of x2, and a value of y. More generally, with k predictor
variables, each observation will consist of k + 1 numbers (a “k + 1 tuple”). The values of the
predictors in the individual observations are denoted using double-subscripting:
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xij ¼ the value of the jth predictor xj in the ith observation

i ¼ 1; . . .; n; j ¼ 1; . . .; kð Þ

Thus the first subscript is the observation number and the second subscript is the predictor number.
For example, x83 is the value of the third predictor in the eighth observation (to avoid confusion, a
comma can be inserted between the two subscripts, e.g. x12,3). The first observation in our data set is
then (x11, x12, …, x1k, y1), the second is (x21, x22, …, x2k, y2), and so on.

Consider candidates b0; b1; . . .; bk for estimates of the bj’s and the corresponding candidate
regression function b0 þ b1x1 þ � � � þ bkxk. Substituting the predictor values for any individual
observation into this candidate function gives a prediction for the y value that would be observed, and
subtracting this prediction from the actual observed y value gives the prediction error. As in Sec-
tion 12.2, the principle of least squares says we should square these prediction errors, sum, and then

take as the least squares estimates b̂0; b̂1; . . .; b̂k the values of the bj’s that minimize the sum of
squared prediction errors. To carry out this procedure, define the criterion function (sum of squared
prediction errors) by

gðb0; b1; . . .; bkÞ ¼
Xn
i¼1

yi � b0 þ b1xi1 þ . . .þ bkxikð Þ½ �2;

then take the partial derivative of g(�) with respect to each bj (j = 0, 1, …, k) and equate these k + 1
partial derivatives to 0. The result is a system of k + 1 equations, the normal equations, in the k + 1
unknowns (the bj’s):

nb0 þ
P

xi1ð Þb1 þ
P

xi2ð Þb2 þ � � � þ P
xikð Þbk ¼

P
yiP

xi1ð Þb0 þ
P

x2i1
� �

b1 þ
P

xi1xi2ð Þb2 þ � � � þ P
xi1xikð Þbk ¼

P
xi1yi

..

.P
xikð Þb0 þ

P
xi1xikð Þb1 þ � � � þ P

xi;k�1xik
� �

bk�1 þ
P

x2ik
� �

bk ¼
P

xikyi

ð12:13Þ

Notice that the normal equations are linear in the unknowns (because the criterion function is
quadratic). We will assume that the system has a unique solution, the least squares estimates

b̂0; b̂1; . . .; b̂k. The result is an estimated regression function

y ¼ b̂0 þ b̂1x1 þ � � � þ b̂kxk

Section 12.9 uses matrix algebra to deal with the system of equations and develop inferential pro-
cedures for multiple regression. For the moment, though, we shall take advantage of the fact that all of
the commonly used statistical software packages are programmed to solve the equations and provide
the results needed for inference.

Sometimes interest in the individual regression coefficients is the main reason for a regression
analysis. The article “Autoregressive Modeling of Baseball Performance and Salary Data” (Proc. of
the Statistical Graphics Section, Amer. Stat. Assoc. 1988, 132–137) describes a multiple regression of
runs scored as a function of singles, doubles, triples, home runs, and walks (combined with hit-by-
pitcher). The estimated regression equation is
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runs ¼ �2:49þ :47 singlesþ :76 doublesþ 1:14 triplesþ 1:54 home runsþ :39 walks

This is very similar to the popular slugging percentage statistic, which gives weight 1 to singles, 2 to
doubles, 3 to triples, and 4 to home runs. However, the slugging percentage gives no weight to walks,
whereas the estimated regression function puts weight .39 on walks, more than 80% of the weight it
assigns to singles. The importance of walks is well known among statisticians who follow baseball,
and it is interesting that there are now some statistically savvy people in major league baseball
management who are emphasizing walks in choosing players.

Example 12.20 Fuel efficiency of an automobile is determined to a large extent by various intrinsic
characteristics of the vehicle. Consider the following multivariate data set consisting of n = 38
observations on x1 = weight (1000s of pounds), x2 = engine displacement (i.e., engine size, in3),
x3 = number of cylinders, and y = fuel efficiency, measured in gallons per 100 miles:

x1 x2 x3 y x1 x2 x3 y

4.360 350 8 5.92 3.830 318 8 5.49
4.054 351 8 6.45 2.585 140 4 3.77
3.605 267 8 5.21 2.910 171 6 4.57
3.940 360 8 5.41 1.975 86 4 2.93
2.155 98 4 3.33 1.915 98 4 2.85
2.560 134 4 3.64 2.670 121 4 3.65
2.300 119 4 3.68 1.990 89 4 3.17
2.230 105 4 3.24 2.135 98 4 3.39
2.830 131 5 4.93 2.670 151 4 3.52
3.140 163 6 5.88 2.595 173 6 3.47
2.795 121 4 4.63 2.700 173 6 3.73
3.410 163 6 6.17 2.556 151 4 2.99
3.380 231 6 4.85 2.200 105 4 2.92
3.070 200 6 4.81 2.020 85 4 3.14
3.620 225 6 5.38 2.130 91 4 2.68
3.410 258 6 5.52 2.190 97 4 3.28
3.840 305 8 5.88 2.815 146 6 4.55
3.725 302 8 5.68 2.600 121 4 4.65
3.955 351 8 6.06 1.925 89 4 3.13

We’ve chosen to use this representation of fuel efficiency (similar to European measurement),
rather than the traditional American “miles per gallon” version, because the former is linearly related
to our predictors while the latter is not. One consequence is that lower y values are better, in the sense
that they indicate vehicles with better fuel efficiency.

Our goal is to predict fuel efficiency (y) from the predictor variables x1, x2, and x3 (so k = 3).
Figure 12.27 shows R output from a request to fit a linear function to the fuel efficiency data. The
least squares coefficients appear in the estimate column of the coefficients block:

b̂0 ¼ �1:64351 b̂1 ¼ 2:33584 b̂2 ¼ �0:01065 b̂3 ¼ 0:21774

Thus the estimated regression equation is

y ¼ �1:64351þ 2:33584x1 � 0:01065x2 þ 0:21774x3

Consider an automobile that weighs 3000 lbs, has a displacement of 175 in3, and is equipped with a
six-cylinder engine. A prediction for the resulting fuel efficiency is obtained by substituting the values
of the predictors into the fitted equation:
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ŷ ¼ �1:64351þ 2:33584ð3Þ � 0:01065ð175Þþ 0:21774ð6Þ ¼ 4:8067

Such an automobile is predicted to use 4.8 gallons over 100 miles. This is also a point estimate of the
mean fuel efficiency of all vehicles with these specifications (x1 = 3, x2 = 175, x3 = 6).

The intercept b̂0 = −1.64351 has no contextual meaning here, since you can’t really have a

vehicle with no weight and no engine. The coefficient b̂1 = 2.33584 on x1 indicates that, after
adjusting for both engine displacement (x2) and number of cylinders (x3), a 1000-lb increase in weight
is associated with an estimated increase of about 2.34 gallons per 100 miles, on average. Equiva-
lently, a 100-lb weight increase is predicted to increase average fuel consumption by 0.234 gallons
per 100 miles, accounting for engine size (i.e., displacement and number of cylinders).

Consider fitting the simple linear model to just y and x3. The resulting LSRL is

y ¼ 1:057þ 0:6067 x3;

suggesting that a one-cylinder increase is associated with about a 0.6 gallon increase in average fuel
consumption per 100 miles. This is our estimate of the relationship between x3 and y ignoring the
effects of any other explanatory variables; notice that it differs substantially from the previous
estimate of 0.21774, which adjusted for both the vehicle’s weight and its engine displacement. (Since
these cars have 4, 6, or 8 cylinders, it’s perhaps more appropriate to double these coefficients as an
indication of the effect of a two-cylinder increase.) ■

Descriptive Measures of Fit
The predicted (or fitted) value ŷi results from substituting the values of the predictors from the ith
observation into the estimated equation:

ŷi ¼ b̂0 þ b̂1xi1 þ � � � þ b̂kxik

Call:
lm(formula = Fuel.Eff ~ Weight + Disp + Cyl, data = df)

Residuals:

Min 1Q Median 3Q Max
-0.63515 -0.30801 0.00029 0.23637 0.63957

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.64351 0.48512 -3.388 0.001795 **

Weight 2.33584 0.28810 8.108 1.87e-09 ***
Disp -0.01065 0.00269 -3.959 0.000364 ***

Cyl 0.21774 0.11566 1.883 0.068342 .
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.3749 on 34 degrees of freedom
Multiple R-squared: 0.9034, Adjusted R-squared: 0.8948

F-statistic: 105.9 on 3 and 34 DF, p-value: < 2.2e-16

Figure 12.27 Multiple regression output for Example 12.20
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The corresponding residual is ei = yi – ŷi. As in simple linear regression, the closer the residuals are to
zero, the better the job our estimated regression function is doing in predicting the y values in our
sample. For the fuel efficiency data, the values of the three predictors in the first observation are
x11 = 4.360, x12 = 350, and x13 = 8, so

ŷ1 ¼ �1:64351þ 2:33584ð4:360Þ � 0:01065ð350Þþ 0:21774ð8Þ ¼ 6:555
e1 ¼ y1 � ŷ1 ¼ 5:92� 6:555 ¼ �0:635

Residuals are sometimes important not just for judging the quality of a regression. Several enter-
prising students developed a multiple regression model using age, size in square feet, etc. to predict
the price of four-unit apartment buildings. They found that one building had a large negative residual,
meaning that the price was much lower than predicted. As it turned out, the reason was that the owner
had “cash-flow” problems and needed to sell quickly.

In simple linear regression, after fitting a straight line to bivariate data and obtaining the residuals,
we calculated sums of squares and used them to obtain two assessments of how well the line
summarized the relationship: the residual standard deviation and the coefficient of determination.
Let’s now follow the same path in multiple regression:

SSE ¼
X

e2i ¼
X

ðyi � ŷiÞ2 SSR ¼
X

ðŷi � yÞ2 SST ¼
X

ðyi � yÞ2

These are the same expressions introduced in Section 12.2, and again it can be shown that SST =
SSE + SSR. The interpretation is that the total variation in the values of the response variable is the
sum of explained variation (SSR) and unexplained variation (SSE).

Each sum of squares has an associated number of degrees of freedom (df). In particular,

df for SSE ¼ n� ðkþ 1Þ

This is because the k + 1 coefficients b0; b1; . . .; bk must be estimated before SSE can be obtained,
entailing a reduction of k + 1 df for SSE. Notice that for the case of simple linear regression, k = 1
and df for SSE = n − (1 + 1) = n � 2 as before.

DEFINITION The standard deviation about the estimated multiple regression function
(or simply the residual standard deviation) is

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE
n� ðkþ 1Þ

s

The coefficient of (multiple) determination, denoted by R2, is given by

R2 ¼ 1� SSE
SST

¼ SSR
SST

Roughly speaking, se is the size of a typical deviation from the fitted equation. The residual standard
deviation is also our point estimate of the model parameter r, i.e., r̂ ¼ se. R

2 is the proportion of
variation in observed y values that can be explained by (i.e., attributed to) the multiple regression
model. Software often reports 100R2, the percent of explained variation. The closer R2 is to 1, the
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larger the proportion of observed y variation that is being explained. (In fact, the positive square root
of R2, called the multiple correlation coefficient, turns out to be the sample correlation coefficient
between the observed yi’s and the predicted ŷi’s—another measure of the quality of the fit of the
estimated regression function.)

Unfortunately, there is a potential problem with R2 in multiple regression: its value can be inflated
by including predictors in the model that are relatively unimportant or even frivolous. For example,
suppose we plan to obtain a sample of 20 recently sold houses in order to relate sale price to various
characteristics of a house. Natural predictors include interior size, lot size, age, number of bedrooms,
and distance to the nearest school. Suppose we also include in the model the diameter of the doorknob
on the door of the master bedroom, the height of the toilet bowl in the master bath, and so on until we
have 19 predictors. Then unless we are extremely unlucky in our choice of predictors, the value of R2

will be 1 (because 20 coefficients are perfectly estimated from 20 observations)! Rather than seeking a
model that has the highest possible R2 value, which can be achieved just by “packing” our model with
predictors, what is desired is a relatively simple model based on just a few important predictors whose
R2 value is high.

It is therefore desirable to adjust R2 to take account of the fact that its value may be quite high just
because many predictors were used relative to the amount of data. The adjusted coefficient of
multiple determination or adjusted R2 is defined by

R2
a ¼ 1�MSE

MST
¼ 1� SSE=½n� ðkþ 1Þ�

SST=ðn� 1Þ ¼ 1� n� 1
n� ðkþ 1Þ

SSE
SST

The ratio multiplying SSE/SST in adjusted R2 exceeds 1 (the denominator is smaller than the
numerator), so adjusted R2 is smaller than R2 itself, and in fact will be much smaller when k is large
relative to n. A value of R2

a much smaller than R2 is a warning flag that the chosen model has too
many predictors relative to the amount of data.

Example 12.21 (Example 12.20 continued) Figure 12.27 shows that se � 0.3749, R2 = 90.34%,
and R2

a = 89.48% for the fuel efficiency data. Fuel efficiency predictions based on the estimated
regression equation are typically off by about 0.375 gal/100 mi (positive or negative) from vehicles’
actual fuel efficiency. The model explains about 90% of the observed variation in fuel efficiency. ■

A Model Utility Test
In multiple regression, is there a single indicator that can be used to judge whether a particular model
(equivalently, a particular set of predictors x1, …, xk) will be useful? The value of R2 certainly
communicates a preliminary message, but this value is sometimes deceptive because it can be greatly
inflated by using a large number of predictors (large k) relative to the sample size n (this is the
rationale behind adjusting R2).

The model utility test in simple linear regression involved the null hypothesis H0: b1 = 0,
according to which there is no useful relation between y and the single predictor x. Here we consider
the assertion that b1 = 0, b2 = 0, …, bk = 0, which says that there is no useful relationship between
y and any of the k predictors. If at least one of these bj’s is not 0, the corresponding predictor(s) is
(are) useful. The test is based on the F statistic derived from the regression ANOVA table (see
Sections 10.5 and 11.1 for more about F tests). A prototype multiple regression ANOVA table
appears in Table 12.3.
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MODEL UTILITY
TEST IN MULTIPLE
REGRESSION

Null hypothesis: H0: b1 = 0, b2 = 0, …, bk = 0
Alternative hypothesis: Ha: at least one bj 6¼ 0

Test statistic value: f ¼ SSR=k
SSE=½n� ðkþ 1Þ� ¼

MSR
MSE

ð12:14Þ

When H0 is true, the test statistic has an F distribution with k numerator
df and n – (k + 1) denominator df.

Rejection Region for a Level a Test P-value
f 	Fa;k;n�ðkþ 1Þ area to the right of f under the

Fk;n�ðkþ 1Þ curve

To understand why the test statistic value (12.14) should be compared to this particular F distribution,
divide the fundamental ANOVA identity by r2:

SST
r2

¼ SSE
r2

þ SSR
r2

WhenH0 is true, the observations Y1; . . .; Yn all have the same mean l = b0 and common variance r2. It
follows from a proposition in Section 6.4 that SST=r2 � v2n�1. It can also be shown that
(1) SSE=r2 � v2n�ðkþ 1Þ and (2) SSE and SSR are independent. Together, (1) and (2) imply—again, see

Section 6.4—that SSR=r2 has a chi-squared distribution, with df = (n – 1) – (n – (k + 1)) = k. Finally,
by definition theF distribution is the ratio of two independent chi-squared rvs divided by their respective
dfs. Applying this to SSR=r2 and SSE=r2 leads to the F ratio

SSR=r2

k
SSE=r2

n� ðkþ 1Þ
¼ SSR=k

SSE=½n� ðkþ 1Þ� ¼
MSR
MSE

�Fk;n�ðkþ 1Þ

The test statistic is identical in structure to the ANOVA F statistic from Chapter 11: the numerator
measures the variation explained by the proposed model, while the denominator measures the
unexplained variation. The larger the value of F, the stronger the evidence that a statistically
significant relationship exists between y and the predictors. In fact, the model utility test statistic value
can be re-written as

Table 12.3 ANOVA table for multiple regression

Source of variation df Sum of squares Mean square f

Regression k SSR MSR = SSR/k MSR/MSE
Error n – (k + 1) SSE MSE = SSE/[n – (k + 1)]
Total n – 1 SST
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f ¼ R2

1� R2
� n� ðkþ 1Þ

k

so the test statistic is proportional to R2/(1 – R2), the ratio of the explained to unexplained variation. If
the proportion of explained variation is high relative to unexplained, we would naturally want to
reject H0 and confirm the utility of the model. However, the factor [n − (k + 1)]/k decreases as
k increases, and if k is large relative to n, it will reduce f considerably.

Because the model utility test considers all of the explanatory variables simultaneously, it is
sometimes called a global F test.

Example 12.22 What impacts the salary offers made to faculty in management and information
science (MIS)? The accompanying table shows part of the data available on a sample of 167 MIS
faculty, which includes the following variables (based on publicly available data provided by
Prof. Dennis Galletta, University of Pittsburgh):

y = salary offer, in thousands of dollars
x1 = year the salary offer was made, coded as years after 2000 (so 2009 is coded as 9)
x2 = previous experience, in years
x3 = teaching load, converted into the number of three-credit semester courses per year.

The model utility test hypotheses are

H0: b1 ¼ b2 ¼ b3 ¼ 0
Ha: at least one of these three bj’s is not 0

Figure 12.28 shows output from the JMP statistical package. The values of se (Root Mean Square
Error), R2, and adjusted R2 certainly suggest a useful model. The value of the model utility F ratio is

f ¼ SSR=k
SSE=½n� ðkþ 1Þ� ¼

20064:099=3
21418:105=163

¼ 6688:03
131:40

¼ 50:8985

This value also appears in the F ratio column of the ANOVA table in Figure 12.28. Since
f = 50.8985 	 F.01,3,163 � 3.9, H0 should be rejected at significance level .01. In fact, the ANOVA
table in the JMP output shows that P-value < .0001. The null hypothesis should therefore be rejected
at any reasonable significance level. We conclude that there is a useful linear relationship between
y and at least one of the three predictors in the model. Note this does not mean that all three
predictors are necessarily useful; we will say more about this shortly.

Observation Salary (y) Year (x1) Experience (x2) Teaching load (x3)

1 90.0 3 5 3
2 91.5 3 12 4
3 105.0 4 7 4
4 79.2 6 3 5
5 95.0 9 0.5 6

..

. ..
. ..

. ..
. ..

.
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Inferences about Individual Regression Coefficients
When the assumptions for the multiple linear regression model are met, we may also construct CIs
and perform hypothesis tests for the individual population regression coefficients b1; . . .; bk.
Inferences concerning a single coefficient bj are based on the standardized variable

T ¼ b̂j � bj
Sb̂j

which, assuming the model is correct, has a t distribution with n − (k + 1) df. A matrix formula for
sb̂j is given in Section 12.9, and the result is part of the output from all standard regression computer

packages. A CI for bj allows us to estimate with confidence the effect of the predictor xj on the
response variable, while adjusting for the effects of the other explanatory variables in the model.

By far the most commonly tested hypotheses about an individual bj are H0: bj = 0 versus

Ha: bj 6¼ 0, in which case the test statistic value implifies to t ¼ b̂j=sb̂j . This null hypothesis states

that, with the other explanatory variables in the model, the variable xj does not provide any additional
useful information about y. This is referred to as a variable utility test. It is sometimes the case that a
predictor variable will be judged useful for predicting y under the simple linear regression model
using xj alone but not in the multiple regression setting (i.e., in the presence of other predictors). This
usually indicates that the other variables do a better job predicting y, and that the additional

Figure 12.28 Multiple regression output from JMP for the data of Example 12.22 ■

12.7 Multiple Regression Analysis 775



information in xj is effectively “redundant.” Occasionally, the opposite will happen: a predictor that
isn’t very useful by itself proves statistically significant in the presence of some other variables.

Next, let x� ¼ ðx�1; . . .; x�kÞ denote a particular value of x ¼ ðx1; . . .; xkÞ. Then the point estimate of

lY jx� , the expected value of Y when x ¼ x�, is ŷ ¼ b̂0 þ b̂1x
�
1 þ � � � þ b̂kx

�
k . The estimated standard

deviation sŶ of the corresponding estimator is a complicated expression involving the sample xij’s, but
a matrix formula is given in Section 12.9. The better statistical software packages will calculate it on
request. Inferences about lY jx� are based on standardizing its estimator to obtain a t variable having
n − (k + 1) df.

1. A 100(1 − a)% CI for bj, the coefficient of xj in the model equation (12.12), is

b̂j � ta=2;n�ðkþ 1Þ � sb̂j

2. A test for H0: bj = bj0 uses the test statistic value t ¼ ðb̂j � bj0Þ=sb̂j based on n − (k + 1)

df. The test is upper-, lower-, or two-tailed according to whether Ha contains the inequal-
ity > , < , or 6¼ .

3. A 100(1 − a)% CI for lY jx� is

ŷ� ta=2;n�ðkþ 1Þ � sŶ

4. A 100(1 − a)% PI for a future y value is

ŷ� ta=2;n�ðkþ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2e þ s2

Ŷ

q

Simultaneous intervals for which the joint confidence or prediction level is controlled can be obtained
by applying the Bonferroni technique discussed in Section 12.4.

Example 12.23 (Example 12.22 continued) The JMP output in Figure 12.28 includes variable
utility tests and 95% confidence intervals for the coefficients. The results of testing H0: b2 = 0 versus
Ha: b2 6¼ 0 (x2 = years of experience) are

b̂2 ¼ :2068; sb̂2 ¼ :2321; t ¼ :2068=:2321 ¼ 0:89; P-value ¼ :3742

so H0 is not rejected here. Adjusting for the year a salary offer was made and the position’s teaching
load, years of prior experience does not provide additional useful information about MIS faculty
members’ salary offers. The other two variables are useful (P-value < .0001 for each). A 95% CI for
b3 is

b̂3 � t:025;167�ð3þ 1Þsb̂3 ¼ �6:58� 1:975ð:5642Þ ¼ ð�7:694;�5:466Þ;

which agrees with the interval given in Figure 12.28. Thus after adjusting for offer year and prior
experience, a one-course increase in teaching load is associated with a decrease in expected salary
offer between $5466 and $7694. (If that seems counterintuitive, bear in mind that elite institutions can
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offer both higher salaries and lighter teaching loads, while the opposite is true at a typical state
university.)

The predicted salary offer in 2015 (x1 = 15) for a newly minted PhD (x2 = 0, no experience) and a
five-course annual teaching load (x3 = 5) is

ŷ ¼ 115:558þ 2:18534ð15Þþ :2068ð0Þ � 6:580ð5Þ ¼ 115:437

(that is, $115,437). The estimated standard deviation for this predicted value can be obtained from
software: sŶ ¼ 4:929. So a 95% confidence interval for the mean offer under these settings is

ŷ� t:025;163sŶ ¼ 115:437� 1:975ð4:929Þ ¼ ð105:704; 125:171Þ

which can also be obtained from software. A 95% prediction interval for a single future salary offer
under these settings is

ŷ� t:025;163 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2e þ s2

Ŷ

q
¼ 115:437� 1:975

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:4632 þ 4:9292

p
¼ ð90:798; 140:076Þ

Of course, the PI is much wider than the corresponding CI.
Since x2 (years of prior experience) was deemed not useful, the model could also be re-fit without

that variable, resulting in somewhat different estimated regression coefficients and, consequently,
slightly different intervals above. ■

Assessing Model Adequacy
The model assumptions of linearity, normality, constant variance, and independence are essentially
the same for simple and multiple regression. Scatterplots of y versus each of the explanatory variables
can give a preliminary sense of whether linearity is plausible, but the residual plots detailed in
Section 12.6 are preferred. The standardized residuals in multiple regression result from dividing each
residual ei by its estimated standard deviation; a matrix formula for the standard deviation of ei is
given in Section 12.9. We recommend a normal probability plot of the standardized residuals as a
basis for validating the normality assumption. Plots of the standardized residuals versus each pre-
dictor and/or versus ŷ should show no discernible pattern. If the linearity and/or constant variance
conditions appear violated, transformation of the response variable (possibly in tandem with trans-
forming some xj’s) may be required. The book by Kutner et al. discusses transformations as well as
other diagnostic plots.

Example 12.24 (Example 12.23 continued) Figure 12.29 shows a normal probability plot of the
standardized residuals, as well as a plot of the standardized residuals versus the fitted values ŷi, for the
MIS salary data. The probability plot is sufficiently straight that there is no reason to doubt the
assumption of normally distributed errors. The residual-vs-fit plot shows no pattern, validating the
linearity and constant variance assumptions.

Plots of the standardized residuals against the explanatory variables x1, x2, and x3 (not shown) also
exhibit no discernable pattern.
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Figure 12.29 Residual plots for the MIS salary data ■

Exercises: Section 12.7 (77–87)

77. Let y = weekly sales at a fast-food outlet
(in dollars), x1 = number of competing
outlets within a 1-mile radius, and
x2 = population within a 1-mile radius (in
thousands of people). Suppose that the true
regression model is

Y ¼ 10000� 1400x1 þ 2100x2 þ e

a. Determine expected sales when the number
of competing outlets is 2 and there are 8000
people within a 1-mile radius.

b. Determine expected sales for an outlet that
has three competing outlets and 5000
people within a 1-mile radius.

c. Interpret b1 and b2.
d. Interpret b0. In what context does this value

make sense?
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78. Cardiorespiratory fitness is widely recog-
nized as a major component of overall
physical well-being. Direct measurement of
maximal oxygen uptake (VO2max) is the
single best measure of such fitness, but
direct measurement is time-consuming and
expensive. It is therefore desirable to have a
prediction equation for VO2max in terms of
easily obtained quantities. Consider the
variables

y ¼ VO2max L=minð Þ x1 ¼ weight kgð Þ
x2 ¼ age yrð Þ
x3 ¼ time necessary towalk 1mile minð Þ
x4 ¼ heart rate at the end of thewalk beats=minð Þ

Here is one possible model, for male
students, consistent with the information
given in the article “Validation of the
Rockport Fitness Walking Test in College
Males and Females” (Res. Q. Exerc. Sport
1994: 152–158):

Y ¼ 5:0þ :01x1 � :05x2 � :13x3 � :01x4 þ e

r ¼ :4

a. Interpret b1 and b3.
b. What is the expected value of VO2max

when weight is 76 kg, age is 20 year,
walk time is 12 min, and heart rate is
140 beats/min?

c. What is the probability that VO2max
will be between 1.00 and 2.60 for a
single observation made when the values
of the predictors are as stated in part (b)?

79. Athletic footwear is a multibillion-dollar
industry, and manufacturers need to
understand which features are most impor-
tant to customers. The article “Overall
Preference of Running Shoes Can Be Pre-
dicted by Suitable Perception Factors Using
a Multiple Regression Model” (Human
Factors 2017: 432–441) reports a survey of

100 young male runners in Beijing and
Singapore. Each participant was asked to
assess the Li Ning Hyper Arc (a running
shoe) on five features: y = overall prefer-
ence, x1 = fit, x2 = cushioning, x3 = arch
support and x4 = stability. All measure-
ments were made on a 0–15 visual analog
scale, with 0 = dislike extremely and
15 = like extremely.

a. The estimated regression equation
reported in the article is
y = –.66 + .35x1 + .34x2 + .09x3 + .32x4.
Interpret the coefficient on x2. [Note:
The units are simply “points.”]

b. Estimate the true mean rating from
runners whose ratings on fit, cushion-
ing, arch support, and stability are 9.0,
8.7, 8.9, and 9.2, respectively. (These
were the average ratings across all 100
participants.) What would be more
informative than this point estimate?

c. The authors report R2 = .777 for this
four-variable model. Perform a model
utility test at the .01 significance level.
Can we conclude that all four predic-
tors provide useful information?

d. The article also reports variable utility
test statistic values for each predictor;
in order, they are t = 6.23, 4.92, 1.35,
and 5.51. Perform all four variable
utility tests at a simultaneous .01 level.
Are all four predictors considered
useful?

80. Roads in Egypt are notoriously haphazard,
often lacking proper engineering consider-
ation. The article “Effect of Speed Hump
Characteristics on Pavement Condition”
(J. Traffic Transp. Engr. 2017: 103–110)
reports a study by two Egyptian civil
engineering faculty of 52 speed bumps on a
major road in upper Egypt. They measured
each speed bump’s height (x1), width (x2),

12.7 Multiple Regression Analysis 779



and distance (x3) from the preceding speed
bump (all in meters). They also evaluated
each bump using a pavement condition
index (PCI), a 0–100 scale with 100 the
best condition.

a. With y = PCI, the estimated regression
equation reported in the article is y =
59.05 – 243.668x1 + 11.675x2 + .012x3.
Interpret the coefficient on x1. [Hint:
Does a one-meter increase make sense?]

b. Estimate the pavement condition index
of a speed bump 0.13 m tall, 2.5 m
wide, and 666.7 m from the preceding
speed bump.

c. The authors report R2 = .770 for this
three-variable model. Interpret this
value, and then carry out the model
utility test at the .05 significance level.

81. The accompanying data on sale price
(thousands of dollars), size (thousands of
sq. ft.), and land-to-building ratio for 10
large industrial properties appeared in the
paper “Using Multiple Regression Analysis
in Real Estate Appraisal” (Appraisal J.
2001: 424–430).

a. Use software to create an estimated
multiple regression equation for pre-
dicting the sale price of a property from
its size and land-to-building ratio.

b. Interpret the estimated regression
coefficients in this example.

c. Based on the data, what is the predicted
sale price for a 500,000 ft.2 industrial
property with a land-to-building ratio
of 4.0?

82. There has been a shift recently away from
using harsh chemicals to dye textiles in
favor of natural plant extracts. The article
“Ecofriendly Dyeing of Silk with Extract of
Yerba Mate” (Textile Res. J. 2017: 829–
837) describes an experiment to study the
effects of dye concentration (mg/L), tem-
perature (°C), and pH on dye adsorption
(mg of dye per gram of fabric). [The article
also included pictures of the resulting color
from each treatment combination; dye
adsorption is a proxy for color here.]

Conc. Temp. pH Adsorption

10 70 3.0 250
20 70 3.0 520
10 90 3.0 387
20 90 3.0 593
10 70 4.0 157
20 70 4.0 377
10 90 4.0 225
20 90 4.0 451
15 80 3.5 353
15 80 3.5 382
15 80 3.5 373

a. Obtain the estimated regression equa-
tion for this data. Then, interpret the
coefficient on temperature.

b. Calculate a point estimate for mean dye
adsorption when concentration =
15 mg/L, temperature = 80 °C, and
pH = 3.5 (i.e., the settings of the last
three experimental runs).

c. The model utility test results in a test
statistic value of f = 44.02. What can
be concluded at the a = .01 level?

d. Calculate and interpret a 95% CI for the
settings specified in part (b).

e. Calculate and interpret a 95% PI for the
settings specified in part (b).

f. Perform variable utility tests on each of
the predictors. Can each one be judged
useful provided that the other two are
included in the model?

Price Size L/B ratio Price Size L/B ratio

10600 2167 2.011 8000 2867 2.279
2625 752 3.543 10000 1698 3.123

10500 2423 3.632 6670 1046 4.771
1850 225 4.653 5825 1109 7.569

20000 3918 1.712 4517 405 17.190

780 12 Regression and Correlation



83. Carbon nanotubes (CNTs) are used for
everything from structural reinforcement to
communication antennas. The article “Fast
Mechanochemical Synthesis of Carbon
Nanotube-Polyanaline Hybrid Materials”
(J. Mater. Res. 2018: 1486–1495) reported
the following data on y = electrical con-
ductivity (S/cm), x1 = multi-walled CNT
weight (mg), x2 = CNx weight (mg), and
x3 = water volume (ml) from one
experiment.

y x1 x2 x3

1.337 0.0 20.1 2
4.439 20.2 0.0 2
4.512 40.6 20.5 2
4.153 20.3 40.4 2
1.727 20.1 20.1 7
2.415 0.0 40.4 7
3.008 20.3 20.1 7
3.869 20.3 20.3 7
2.140 40.9 40.4 7
2.025 20.4 20.2 7
3.407 40.4 0.0 7
2.545 20.4 20.1 7
4.426 20.3 0.0 12
2.863 40.4 20.3 12
2.096 0.0 20.4 12
2.006 20.8 40.6 12

a. Obtain and interpret R2 and se for the
model with predictors x1, x2, and x3.

b. Test for model utility using a = .05.
c. Does the data support the manufactur-

ing goal of (relatively) consistent elec-
trical conductivity across differing
values of the experimental factors?
Explain.

84. Electric vehicles have greatly increased in
popularity recently, but their short battery
life (with a few exceptions) continues to be
of concern. The article “Design of Robust
Battery Capacity Model for Electric Vehi-
cle by Incorporation of Uncertainties” (Int.
J. Energy Res. 2017: 1436–1451) includes
the following data on temperature (°C),
discharge rate, and battery capacity (A-h,
ampere-hours) for a certain type of lithium-
ion battery.

Temp Disch.
rate

Capacity Temp Disch.
rate

Capacity

0 0.50 0.96001 0 1.25 1.06506
0 1.75 0.85001 20 1.25 1.34459
0 3.00 0.89001 25 1.25 1.45473

25 0.50 1.38001 30 1.25 1.32355
40 1.75 1.05396 40 1.25 1.54713
40 3.00 0.96337 50 1.25 1.47159
20 0.50 1.27100 0 1.50 0.85171
20 1.75 1.24897 20 1.50 1.20890
20 3.00 1.20751 25 1.50 1.29703
25 3.00 1.32001 30 1.50 1.16097
50 3.00 1.39139 40 1.50 1.32047
40 0.50 1.00208 50 1.50 1.36305
50 0.50 1.44001 30 1.25 1.32355
25 1.75 1.30001 40 1.25 1.54713
30 1.75 0.82697 50 1.25 1.47159
50 1.75 1.42713 0 1.50 0.85171
0 1.00 1.08485 20 1.50 1.20890

20 1.00 1.40556 25 1.50 1.29703
25 1.00 1.47986 30 1.50 1.16097
30 1.00 0.91734 40 1.50 1.32047
40 1.00 1.18187 50 1.50 1.36305
50 1.00 1.53058

a. Determine the estimated regression
equation based on this data (y= capacity).

b. Calculate a point estimate for the
expected capacity of a lithium-ion bat-
tery of this type when operated at 30 °C
with discharge rate 1.00 (meaning the
battery should drain in 1 h).

c. Perform a model utility test at the .05
significance level.

d. Calculate a 95% CI for expected
capacity at the settings in part (b).

e. Calculate a 95% PI for the capacity of a
single such battery at the settings in
part (b).

f. Perform variable utility tests on both
predictors at a simultaneous .05 sig-
nificance level. Are both temperature
and discharge rate useful predictors of
capacity?

85. Steel microfibers are an alternative to con-
ventional rebar reinforcement of concrete
structures. The article “Measurement of
Average Tensile Force for Individual Steel
Fiber Using New Direct Tension Test”
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(J. Test. Eval. 2016: 2403–2413) proposes
a new evaluation method for concrete
specimens infused with twisted steel micro
rebar (TSMR) fibers, which were loaded
until a crack occurred. The accompanying
data on y = load until cracking (lb),
x1 = diameter at break (in), x2 = number of
TSMR fibers per in2, and x3 = concrete
compressive strength (psi) appears in the
article.

y x1 x2 x3 y x1 x2 x3

213 2.778 1.2 7020 688 2.735 3.4 6130
706 2.725 3.3 7020 180 2.705 2.6 6130
440 2.683 3.4 7020 1046 2.755 7.7 6130
984 2.835 8.2 5680 272 2.734 3.2 6880
155 2.779 2.3 5680 1168 2.725 7.4 7270
251 2.712 2.3 5680 821 2.750 6.1 7270
311 2.712 1.6 7960 418 2.740 4.4 7270
989 2.686 6.0 7960 1102 2.708 9.2 7390
326 2.821 4.0 7960 56 2.860 1.6 2950
479 2.810 2.7 7090 91 3.002 1.3 2950
324 2.845 1.9 7090 97 2.749 1.9 2950
404 2.755 3.0 7090

a. Determine the estimated regression
equation for this data.

b. Perform variable utility tests on each of
the three explanatory variables. Can
each one be judged useful given that
the other two are included in the
model?

c. Calculate R2 and adjusted R2 for this
three-predictor model.

d. Perform a multiple regression of y on
just x2 and x3. Determine both R2 and
adjusted R2 for this reduced model.
How do they compare to the values in
part (c)? Explain.

86. An investigation of a die casting process
resulted in the accompanying data on
x1 = furnace temperature, x2 = die close
time, and y = temperature difference on the
die surface (“A Multiple-Objective
Decision-Making Approach for Assessing
Simultaneous Improvement in Die Life and
Casting Quality in a Die Casting Process,”
Qual. Engr. 1994: 371–383).

Minitab output from fitting the multiple
regression model with predictors x1 and x2
is given here.

a. Carry out the model utility test.
b. Calculate and interpret a 95% confi-

dence interval for b2, the population
regression coefficient of x2.

c. When x1 = 1300 and x2 = 7, the esti-
mated standard deviation of Ŷ is
sŶ ¼ :353. Calculate a 95% confidence
interval for true average temperature
difference when furnace temperature is
1300 and die close time is 7.

d. Calculate a 95% prediction interval for
the temperature difference resulting
from a single experimental run with a
furnace temperature of 1300 and a die
close time of 7.

e. Use appropriate diagnostic plots to see
if there is any reason to question the
regression model assumptions.

87. The article “Analysis of the Modeling
Methodologies for Predicting the Strength
of Air-Jet Spun Yarns” (Textile Res.

x1 1250 1300 1350 1250 1300

x2 6 7 6 7 6

y 80 95 101 85 92

x1 1250 1300 1350 1350

x2 8 8 7 8

y 87 96 106 108

Analysis of variance

Source DF SS MS F P
Regression 2 715.50 357.75 319.31 0.000
Error 6 6.72 1.12
Total 8 722.22

The regression equation is
tempdiff = −200 + 0.210 furntemp

+ 3.00 clostime

Predictor Coef St dev t ratio p
Constant −199.56 11.64 −17.14 0.000
furntemp 0.210000 0.008642 24.30 0.000
clostime 3.0000 0.4321 6.94 0.000
s = 1.058 R-sq = 99.1% R-sq(adj) = 98.8%
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J. 1997: 39–44) reported on a study carried
out to relate yarn tenacity (y, in g/tex) to
yarn count (x1, in tex), percentage polyester
(x2), first nozzle pressure (x3, in kg/cm2),
and second nozzle pressure (x4, in kg/cm2).
The estimate of the constant term in the
corresponding multiple regression equation
was 6.121. The estimated coefficients for
the four predictors were −.082, .113, .256,
and −.219, respectively, and the coefficient
of multiple determination was .946.
Assume that n = 25.

a. State and test the appropriate hypothe-
ses to decide whether the fitted model

specifies a useful linear relationship
between the response variable and at
least one of the four model predictors.

b. Calculate the value of adjusted R2 and
comment.

c. Calculate a 99% confidence interval for
true mean yarn tenacity when yarn
count is 16.5, yarn contains 50%
polyester, first nozzle pressure is 3, and
second nozzle pressure is 5 if the esti-
mated standard deviation of predicted
tenacity under these circumstances is
.350.

12.8 Quadratic, Interaction, and Indicator Terms

The fit of a multiple regression model can often be improved by creating new predictors from the
original explanatory variables. In this section we discuss the two primary examples: quadratic terms
and interaction terms. We also explain how to incorporate categorical predictor variables into the
multiple regression model through the use of indicator variables.

Polynomial Regression
Let’s return for a moment to the case of bivariate data consisting of n (x, y) pairs. Suppose that a
scatterplot shows a parabolic rather than linear shape. Then it is natural to specify a quadratic
regression model:

Y ¼ b0 þ b1xþ b2x
2 þ e

The corresponding population regression function f ðxÞ ¼ b0 þ b1xþ b2x
2 gives the mean or

expected value of Y for any particular x.

What does this have to do with multiple regression? Re-write the quadratic model equation as
follows:

Y ¼ b0 þ b1x1 þ b2x2 þ e where x1 ¼ x and x2 ¼ x2

Now this looks exactly like a multiple regression equation with two predictors. Although we interpret
this model as a quadratic function of x, the multiple linear regression model (12.12) only requires that
the response be a linear function of the bj’s and e. Nothing precludes one predictor being a math-
ematical function of another one. So, from a modeling perspective, quadratic regression is a special
case of multiple regression. Thus any software package capable of carrying out a multiple regression
analysis can fit the quadratic regression model. The same is true of cubic regression and even higher-
order polynomial models, although in practice very rarely are such higher-order predictors needed.

The coefficient b1 on the linear predictor x1 cannot be interpreted as the change in expected
Y when x1 increases by one unit while x2 is held fixed. This is because it is impossible to increase
x without also increasing x2. A similar comment applies to b2. More generally, the interpretation of
regression coefficients requires extra care when some predictor variables are mathematical functions
of others.
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Example 12.25 Reconsider the solar cell data of Example 12.2. Figure 12.2 clearly shows a
parabolic relationship between x = sheet resistance and y = cell efficiency. To calculate the “least
squares parabola” for this data, software fits a multiple regression model with two predictors:
x1 = x and x2 = x2. The first few rows of data for this scenario are as follows:

y x1 = x x2 = x2

13.91 43.58 1898.78
13.50 50.94 2594.63
13.59 60.03 3603.60
13.86 66.82 4464.91

..

. ..
. ..

.

(Inmost software packages, it is not necessary to calculate x2 for each observation; rather, the user can
merely instruct the software to fit a quadratic model.) The coefficients that minimize the residual sum of

squares are b̂0 = 4.008, b̂1 = .3617, and b̂2 = –.003344, so the estimated regression equation is

y ¼ 4:008þ :3617x1 � :003344x2 ¼ 4:008þ :3617x� :003344x2

Figure 12.30 shows this parabola superimposed on a scatterplot of the original (x, y) data. Notice that
the negative coefficient on x2 matches the concave-downward contour of the data.

The estimated equation can now be used to make estimates and predictions at any particular
x value. For example, the predicted efficiency at x = 60 ohms is determined by substituting x1 =
x = 60 and x2 = x2 = 602 = 3600:

y ¼ 4:008þ :3617ð60Þ � :003344ð60Þ2 ¼ 13:67 percent

Using software, a 95% CI for the mean efficiency of all 60-ohm solar panels is (13.50, 13.84), while a
95% PI for the efficiency of a single future 60-ohm panel is (12.32, 15.03). As always, the prediction
interval is substantially wider than the confidence interval. ■
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Figure 12.30 Scatterplot for Example 12.25 with a best-fit parabola
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Models with Interaction
Suppose that an industrial chemist is interested in the relationship between product yield (y) from a
certain reaction and two explanatory variables, x1 = reaction temperature and x2 = pressure at which
the reaction is carried out. The chemist initially proposes the relationship

Y ¼ 1200þ 15x1 � 35x2 þ e

for temperature values between 80 and 100 in combination with pressure values ranging from 50 to
70. The population regression function 1200 + 15x1 − 35x2 gives the mean y value for any particular
values of the predictors. Consider this mean y value for three different particular temperatures:

x1 ¼ 90: mean y value ¼ 1200þ 15 90ð Þ � 35x2 ¼ 2550� 35x2
x1 ¼ 95: mean y value ¼ 2625� 35x2
x1 ¼ 100: mean y value ¼ 2700� 35x2

Graphs of these three mean y value functions are shown in Figure 12.31a. Each graph is a straight
line, and the three lines are parallel, each with a slope of −35. Thus irrespective of the fixed value of
temperature, the change in mean yield associated with a one-unit increase in pressure is −35.

In reality, when pressure increases the decline in average yield should be more rapid for a high
temperature than for a low temperature, so the chemist has reason to doubt the appropriateness of the
proposed model. Rather than the lines being parallel, the line for a temperature of 100 should be
steeper than the line for a temperature of 95, and that line in turn should be steeper than the line for
x1 = 90. A model that has this property includes, in addition to x1 and x2, a third predictor variable,
x3 ¼ x1 � x2. One such model is

Y ¼ �4500þ 75x1 þ 60x2 � x1x2 þ e

for which the population regression function is −4500 + 75x1 + 60x2 − x1x2. This gives

Mean y value Mean y value

x2 x2

2550 − 35x
2  (x

1  = 90) 

2625 − 35x
2  (x

1  = 95) 

2700 − 35x
2  (x

1  = 100) 

3000 − 40x
2  (x

1  = 100) 

2625 − 35x2  (x
1  = 95) 

2250 − 30x2  (x
1  = 90) 

ba

Figure 12.31 Graphs of the mean y value for two different models: (a) 1200 + 15x1−35x2;
(b) −4500 + 75x1 + 60x2 − x1x2
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mean y value when temperature is 100ð Þ ¼ �4500þ 75ð Þ 100ð Þþ 60x2 � 100x2
¼ 3000� 40x2

mean value when temperature is 95ð Þ ¼ 2625� 35x2
mean value when temperature is 90ð Þ ¼ 2250� 30x2

These are graphed in Figure 12.31b. Now each different value of x1 yields a line with a different
slope, so the change in expected yield associated with a l-unit increase in x2 depends on the value of
x1. When this is the case, the two predictor variables are said to interact.

DEFINITION If the effect on y of one explanatory variable x1 depends on the value of a second
explanatory variable x2, then x1 and x2 have an interaction effect on the (mean)
response.

We can model this interaction by including as an additional predictor x3 = x1x2,
the product of the two explanatory variables, known as an interaction term.

The general equation for a multiple regression model based on two explanatory variables x1 and x2
and also including an interaction term is

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ e where x3 ¼ x1x2

When an interaction effect is present, this model will usually give a much better fit to the data than
would the no-interaction model. Failure to consider a model with interaction too often leads an
investigator to conclude incorrectly that the relationship between y and a set of explanatory variables
is not very substantial.

In applied work, quadratic predictors x21 and x22 are often also included, to model a potentially
curved relationship. This leads to the complete second-order model

Y ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 þ b4x
2
1 þ b5x

2
2 þ e

This model replaces the straight lines of Figure 12.31 with parabolas (each one is the graph of the
population regression function as x2 varies when x1 has a particular value).

Example 12.26 The need to devise environmentally friendly remedies for heavy-metal contami-
nated sites has become a global issue of serious concern. The article “Polyaspartate Extraction of
Cadmium Ions from Contaminated Soil” (J. Hazard. Mater. 2018: 58–68) describes one possible
cleanup method. Researchers varied five experimental factors: x1 = polyaspartate (PA) concentration
(mM), x2 = PA-to-soil ratio, x3 = initial cadmium (Cd) concentration in soil, x4 = pH, and
x5 = extraction time (hours). One of the response variables of interest was y = residual Cd concen-
tration, based on a total of n = 47 experimental runs.

Consider fitting a “first-order” model using all five predictors. Results from software include

y ¼ �38:7� :174x1 � 1:308x2 þ :242x3 þ 10:26x4 þ 2:328x5
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se ¼ 33:124ðdf ¼ 41Þ;R2 ¼ 71:25%;R2
a ¼ 67:74%

Variable utility tests indicate that all predictors except x1 are useful; it’s possible that x1 is redundant
with x2. At the other extreme, a complete second-order model here involves 20 predictor variables:

the original xj’s (five), their squares (another five), and all
5

2

 !
¼ 10 possible interaction terms: x1x2,

x1x3, …, x4x5. Summary quantities from fitting this enormous model include se = 24.878 (df = 26),
R2 = 89.72%, and R2

a = 81.80%. The reduced standard deviation and greatly increased adjusted R2

both suggest that at least some of the 15 second-order terms are useful, and so it was wise to
incorporate these additional terms.

By considering the relative importance of the terms based on P-values, the researchers reduced
their model to “just” 12 terms: all first-order terms, two of the quadratic terms, and five of the ten
interactions. Based on the resulting estimated regression equation (shown in the article, but not here)
researchers were able to determine the values of x1; . . .; x5 that minimize residual Cd concentration.
(Optimization is one of the added benefits of quadratic terms. For example, in Figure 12.30, we can
see there is an x value for which solar cell efficiency is maximized. A linear model has no such local
maxima or minima.)

It’s worth noting that while x1 was not considered useful in the first-order model, several second-
order terms involving x1 were significant. When fitting second-order models, it is recommended to fit
the complete model first and delete useless terms rather than building up from the simpler first-order
model; using the latter approach, important quadratic and interaction effects can be missed. ■

One issue that arises with fitting a model with an abundance of terms, as in Example 12.26, is the
potential to commit many type I errors when performing variable utility t tests on every predictor.
Exercise 94 presents a method called the partial F test for determining whether a group of predictors
can all be deleted while controlling the overall type I error rate.

Models with Categorical Predictors
Thus far we have explicitly considered the inclusion of only quantitative (numerical) predictor
variables in a multiple regression model. Using simple numerical coding, categorical variables such
as sex, type of college (private or state), or type of wood (pine, oak, or walnut) can also be incor-
porated into a model. Let’s first focus on the case of a dichotomous variable, one with just two
possible categories—alive or dead, US or foreign manufacture, and so on. With any such variable, we
associate an indicator (or dummy) variable whose possible values 0 and 1 indicate which category
is relevant for any particular observation.

Example 12.27 Is it possible to predict graduation rates from freshman test scores? Based on the
median SAT score of entering freshmen at a university, can we predict the percentage of those
freshmen who will get a degree there within six years? To investigate, let y = six-year graduation
rate, x2 = median freshman SAT score, and x1 = a variable defined to indicate private or public status:

x1 ¼ 1 if the university is private
0 if the university is public
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The corresponding multiple regression model is

Y ¼ b0 þ b1x1 þ b2x2 þ e

The mean graduation rate depends on whether the university is public or private:

mean graduation rate ¼ b0 þ b2x2 when x1 ¼ 0 publicð Þ
mean graduation rate ¼ b0 þ b1 þ b2x2 when x1 ¼ 1 privateð Þ

Thus there are two parallel lines with vertical separation b1, as shown in Figure 12.32a. The coef-
ficient b1 is the difference in mean graduation rates between private and public universities, after
adjusting for median SAT score. If b1 > 0 then, on average, for a given SAT, private universities will
have a higher graduation rate.

A second possibility is a model with an interaction term:

Y ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 þ e

Now the mean graduation rates for the two types of university are

mean graduation rate ¼ b0 þ b2x2 when x1 ¼ 0 publicð Þ
mean graduation rate ¼ b0 þ b1 þðb2 þ b3Þx2 when x1 ¼ 1 privateð Þ

Here we have two lines, where b1 is the difference in intercepts and b3 is the difference in slopes, as
shown in Figure 12.32b. Unless b3 = 0, the lines will not be parallel and there will be interaction
effect, meaning that the separation between public and private graduation rates depends on SAT.

To make inferences, we obtained a random sample of 20 Master’s level universities from the 2017
data file available on www.collegeresults.org.

Mean y Mean y

Private

Public Private

Public

x2 x2

β 0

β 1

β 2
x 2

(x 1

1)

β 0

β 2
x 2

(x 1

0)

β 0

β 1

(β
2

β 3
) x

2
(x 1

1)
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β 2

x 2
(x 1
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Figure 12.32 Regression functions for models with one indicator variable (x1) and one quantitative variable (x2):
(a) no interaction; (b) interaction
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University Grad rate Median SAT Sector

Appalachian State University 73.4 1140 Public
Brenau University 49.4 973 Private
Campbellsville University 34.1 1008 Private
Delta State University 39.6 1028 Public
DeSales University 70.1 1072 Private
Lasell College 54.1 966 Private
Marshall University 49.3 1010 Public
Medaille College 43.9 906 Private
Mount Saint Joseph University 60.7 1011 Private
Mount Saint Mary College 53.8 991 Private
Muskingum University 48.2 1009 Private
Pacific University 64.4 1122 Private
Simpson University 56.7 985 Private
SUNY Oneonta 70.9 1082 Public
Texas A&M University-Texarkana 29.7 1016 Public
Truman State University 74.9 1224 Public
University of Redlands 77.0 1101 Private
University of Southern Indiana 39.6 1005 Public
University of Tennessee-Chattanooga 45.2 1088 Public
Western State Colorado University 41.0 1026 Public

First of all, does the interaction predictor provide useful information over and abovewhat is contained
in x1 and x2? To answer this question, we should test the hypothesis H0: b3 = 0 versus Ha: b3 6¼ 0 first.
If H0 is not rejected (meaning interaction is not informative) then we can use the parallel lines model to
see if there is a separation (b1) between lines. Of course, it does not make sense to estimate the difference
between lines if the difference depends on x2, which is the case when there is interaction.

Figure 12.33 shows R output for these two tests. The coefficient for interaction has a P-value of
roughly .42, so there is no reason to reject the null hypothesis H0: b3 = 0. Since we fail to reject the
“no-interaction” hypothesis, we drop the interaction term and re-run the analysis. The estimated
regression equation specified by R is

y ¼ �124:56039þ 13:33553x1 þ 0:16474x2

The t ratio values and P-values indicate that both H0: b1 = 0 and H0: b2 = 0 should be rejected at the
.05 significance level. The coefficient on x1 indicates that a private university is estimated to have a
graduation rate about 13 percentage points higher than a state university with the same median SAT.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -152.37773 49.18039 -3.098 0.006904 **
SectorPrivate 70.06920 69.28401 1.011 0.326908
Median.SAT 0.19077 0.04592 4.154 0.000746 ***
SectorPrivate:Median.SAT -0.05457 0.06649 -0.821 0.423857

Testing without interaction

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -124.56039 35.29279 -3.529 0.002575 **
SectorPrivate 13.33553 4.64033 2.874 0.010530 *
Median.SAT 0.16474 0.03289 5.009 0.000108 ***

Figure 12.33 R output for an interaction model and a “parallel lines” model
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At the same time, the coefficient on x2 shows that, after adjusting for a university’s sector (private or
public), a 100-point increase in median SAT score is associated with roughly a 16.5 percentage point
increase in the school’s six-year graduation rate. ■

You might think that the way to handle a three-category variable is to define a single numerical
predictor with coded values such as 0, 1, and 2 corresponding to the three categories. This is
incorrect: doing so imposes an ordering on the categories that is not necessarily implied by the
context, and it forces the difference in mean response between the 0 and 1 categories to equal the
difference for categories 1 and 2 (because 1 – 0 = 2 – 1 and the model is linear in its predictors). The
correct way to incorporate three categories is to define two different indicator variables. Suppose, for
example, that y = score on a posttest taken after instruction, x1 = score on an ability pretest taken
before instruction, and that there are three methods of instruction in a mathematics unit: (1) with
symbols, (2) without symbols, and (3) a hybrid method. Then let

x2 ¼ 1 instruction method 1
0 otherwise


x3 ¼ 1 instruction method 2

0 otherwise



For an individual taught with method 1, x2 = 1 and x3 = 0, whereas for an individual taught with
method 2, x2 = 0 and x3 = 1. For an individual taught with method 3, x2 = x3 = 0, and it is not
possible that x2 = x3 = 1 because an individual cannot be taught simultaneously by both methods 1
and 2. The no-interaction model would have only the predictors x1, x2, and x3. The following
interaction model allows the change in mean posttest score associated with a one-point increase in
pretest to depend on the method of instruction:

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x1x2 þ b5x1x3 þ e

Construction of a picture like Figure 12.32 with a graph for each of the three possible (x2, x3) pairs
gives three nonparallel lines (unless b4 = b5 = 0).

More generally, incorporating a categorical variable with c possible categories into a multiple
regression model requires the use of c − 1 indicator variables (e.g., five methods of instruction would
necessitate using four indicator variables). Thus even one categorical variable can add many pre-
dictors to a model.

Indicator variables can be used for categorical variables without any other predictors in the model.
For example, consider Example 11.3, which compared the maximum power of five different ther-
moelectric modules. Using a regression with four indicator variables (to represent the five categories)
produces the exact same ANOVA table presented in Example 11.3. In particular, the “treatment sum
of squares” SSTr in Chapter 11 and the “regression sum of squares” SSR of this chapter are identical,
as are SSE, SST, and hence the results of the F test. In a sense, analysis of variance is a special case
of multiple regression, with the only predictor variables being indicators for various categories.

Analysis that involves both quantitative and categorical predictors, as in Example 12.27, is
sometimes called analysis of covariance, and the quantitative variable(s) are called covariates. This
terminology is typically applied when the effect of the categorical predictor is of primary interest,
while the inclusion of the quantitative variables serves to reduce the amount of unexplained variation
in the model.
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Exercises: Section 12.8 (88–98)

88. The article “Selling Prices/Sq. Ft. of Office
Buildings in Downtown Chicago – How
Much Is It Worth to Be an Old but Class-A
Building?” (J. Real Estate Res. 2010: 1–22)
considered a regression model to relate
y = ln($/ft2) to 16 predictors, including age,
age squared, number of stories, occupancy
rate, and indicator variables for whether it is
a class-A building, whether a building has a
restaurant and whether it has conference
rooms. The model was fit to data resulting
from 203 sales.

a. The coefficient of multiple determina-
tion was .711. What is the value of the
adjusted coefficient of multiple deter-
mination? Does it suggest that the rel-
atively high R2 value was the result of
including too many predictors in the
model relative to the amount of data
available?

b. Using the R2 value from (a), carry out a
test of hypotheses to see whether there
is a useful linear relationship between
the response variable and at least one of
the predictors.

c. The estimated coefficient of the indi-
cator variable for whether or not a
building was class-A was .364. Inter-
pret this estimated coefficient, first in
terms of y and then in terms of $/ft2.

d. The t ratio for the estimated coefficient
of (c) was 5.49. What does this tell you?

89. Cerium dioxide (also called ceria) is used in
many applications, including pollution
control and wastewater treatment. The
article “Mechanical Properties of Gelcast
Cerium Dioxide from 23 to 1500 °C”
(J. Engr. Mater. Technol. 2017) reports an
experiment to determine the relationship
between y = elastic modulus (GPa) and
x = temperature for ceria specimens under
certain conditions. A scatterplot in the
article suggests a quadratic relationship.

a. The article reports the estimated equation
y = −1.92 � 10−5x2 – .0191x + 89.0.
Over what temperature range does
elastic modulus increase with temper-
ature, and for what temperature range
does it decrease?

b. Predict the elastic modulus of a ceria
specimen at 800 °C.

c. The coefficient of determination is
reported as R2 = .948. Use the fact that
the data consisted of n = 28 observa-
tions to perform a model utility test at
the .01 level.

d. Information consistent with the article
suggests that at x = 800, sŶ = 2.9 GPa.
Use this to calculate a 95% CI for
lY j800.

e. The residual standard deviation for the
quadratic model is roughly se = 2.37
GPa. Use this to calculate a 95% PI at
x = 800, and interpret this interval.

90. Many studies have researched how traffic
load affects road asphalt, but fewer have
examined the effect of extreme cold weather.
The article “Effects of Large Freeze-Thaw
Cycles on Stiffness and Tensile Strength of
Asphalt Concrete” (J. Cold Regions Engr.
2016) reports the following data on
y = indirect tensile strength (MPa) and
x = temperature (°C) for six asphalt speci-
mens in one particular experiment.

x −35 −20 −10 0 10 22

y 3.01 3.56 3.47 2.72 2.15 1.20

a. Verify that a scatterplot of the data is
consistent with the choice of a quad-
ratic regression model.

b. Determine the estimated quadratic
regression equation.

c. Calculate a point prediction for the
indirect tensile strength of this asphalt
type at 0 °C.
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d. What proportion of the observed varia-
tion in tensile strength can be attributed
to the quadratic regression relationship?

e. Obtain a 95% CI for lY j0, the true
expected tensile strength of this asphalt
type at 0 °C.

f. Obtain and interpret a 95% PI at x = 0.

91. Ethyl vanillin is used in food, cosmetics,
and pharmaceuticals for its vanilla-like
scent. The article “Determination and Cor-
relation of Ethyl Vanillin Solubility in
Different Binary Solvents at Temperatures
from 273.15 to 313.15 K” (J. Chem. Engr.
Data 2017: 1788–1796) reported an
experiment to determine y = ethyl vanillin
solubility (mole fraction) as a function of
x1 = initial mole fraction of the chemical
propan-2-one in the solvent mixture and
x2 = temperature (°K). The experiment was
run at seven x1 and nine x2 values. The
accompanying table shows the response, y,
at each combination. [Note: 273.15 °K
corresponds to 0 °C.]

a. Create scatterplots of y versus x1 and
y versus x2. Does it appear the predic-
tors are linearly related to y, or would
quadratic terms be appropriate?

b. Would a scatterplot of x1 versus x2
indicate whether an interaction term
might be suitable? Why or why not?

c. Perform a regression using the com-
plete second-order model. Based on a
residual analysis, does it appear that the
model assumptions are satisfied?

d. Test various hypotheses to determine
which term(s) should be retained in the
model.

92. In the construction industry, a “project labor
agreement” (PLA) between clients and
contractors stipulates that all bidders on a
project will use union labor and abide by
union rules. The article “Do Project Labor
Agreements Raise Construction Costs?”
(CS-BIGS 2007: 71–79) investigated con-
struction costs for 126 schools in Mas-
sachusetts over an eight-year period. Among
the variables considered were y = project
cost, in dollars per square foot; x1 = project
size, in 1000s of ft2; x2 = 1 for new con-
struction and 0 for remodel; and x3 = 1 if a
PLA was in effect and 0 otherwise.

a. What would it mean in this context to
say that x1 and x3 have an interaction
effect?

b. What would it mean in this context to
say that x2 and x3 have an interaction
effect?

c. No second-order terms are statistically
significant here, and the estimated
regression equation for the first-order
model is y = 138.69 – .1236x1 +
17.89x2 + 18.83x3. Interpret the coeffi-
cient on x1. Does the sign make sense?

d. Interpret the coefficient on x3.

e. The estimated standard error of b̂3 is
4.96. Test the hypotheses H0: b3 = 0
vs. Ha: b3 > 0 at the .01 significance
level. Does the data indicate that PLAs
tend to raise construction costs?

93. A regression analysis carried out to relate
y = repair time for a water filtration system
(hr) to x1 = elapsed time since the previous
service (months) and x2 = type of repair (1
if electrical and 0 if mechanical) yielded the
following model based on n = 12 obser-
vations: y = .950 + .400x1 + 1.250x2. In
addition, SST = 12.72, SSE = 2.09, and
sb̂2 ¼ :312.

a. Does there appear to be a useful linear
relationship between repair time and
the two model predictors? Carry out a
test of the appropriate hypotheses using
a significance level of .05.

x1 = .4 .5 .6 .7 .8 .9 1.0
x2 =
273.15 10.6 13.4 16.8 18.5 19.5 19.8 19.9
278.15 12.8 16.2 19.2 21.0 21.4 21.5 21.6
283.15 13.7 18.8 20.9 23.1 23.4 23.5 23.7
288.15 17.3 20.7 23.8 26.4 26.7 26.9 27.1
293.15 20.5 25.2 26.9 29.1 29.6 29.8 30.0
298.15 23.7 27.2 29.8 31.2 32.1 32.4 33.0
303.15 27.4 31.6 33.4 35.0 36.2 36.2 36.9
308.15 34.3 36.9 38.7 40.7 41.0 41.3 41.6
313.15 38.5 42.1 43.4 45.3 45.5 45.7 45.9
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b. Given that elapsed time since the last
service remains in the model, does type
of repair provide useful information
about repair time? State and test the
appropriate hypotheses using a signifi-
cance level of .01.

c. Calculate and interpret a 95% CI for b2.
d. The estimated standard deviation of a

prediction for repair time when elapsed
time is six months and the repair is
electrical is .192. Predict repair time
under these circumstances by calculat-
ing a 99% prediction interval. Does the
interval suggest that the estimated
model will give an accurate prediction?
Why or why not?

94. Sometimes an investigator wishes to decide
whether a group of m predictors (m > 1)
can simultaneously be eliminated from the
model. The null hypothesis says that all b’s
associated with these m predictors are 0,
which is interpreted to mean that as long as
the other k − m predictors are retained in
the model, the m predictors under consid-
eration collectively provide no useful
information about y. The test is carried out
by first fitting the “full” model with all
k predictors to obtain SSE(full) and then
fitting the “reduced” model consisting just
of the k − m predictors not being consid-
ered for deletion to obtain SSE(red). The
test statistic is

F ¼ ½SSEðredÞ � SSEðfullÞ�=m
SSEðfullÞ=½n� ðkþ 1Þ�

The test is upper-tailed and based on
m numerator df and n − (k + 1) denomi-
nator df. This procedure is called the par-
tial F test.
Refer back to Example 12.26. The follow-
ing are the SSEs and numbers of predictors
for the first-order, complete second-order,
and the researchers’ final model.

Model Predictors SSE
First-order 5 44,985
Complete second-order 20 16,092
Final 12 17,794

a. Use the partial F test to compare the
first-order and complete second-order
models. Is there evidence that at least
some of the second-order terms should
be retained?

b. Use the partial F test to compare the
final model to the complete second-
order model. Do you agree with the
researchers’ decision to eliminate the
“other” eight predictors?

95. Utilization of sucrose as a carbon source for
the production of chemicals is uneconomi-
cal. Beet molasses is a readily available and
low-priced substitute. The article “Opti-
mization of the Production of b-Carotene
from Molasses by Blakeslea trispora”
(J. Chem. Tech. Biotech. 2002: 933–943)
carried out a multiple regression analysis to
relate the response variable y = amount of
b-carotene (g/dm3) to the three predictors:
amount of linoleic acid, amount of kero-
sene, and amount of antioxidant (all g/dm3).

Obs. Linoleic Kerosene Antiox. Betacarotene

1 30.00 30.00 10.00 0.7000
2 30.00 30.00 10.00 0.6300
3 30.00 30.00 18.41 0.0130
4 40.00 40.00 5.00 0.0490
5 30.00 30.00 10.00 0.7000
6 13.18 30.00 10.00 0.1000
7 20.00 40.00 5.00 0.0400
8 20.00 40.00 15.00 0.0065
9 40.00 20.00 5.00 0.2020

10 30.00 30.00 10.00 0.6300
11 30.00 30.00 1.59 0.0400
12 40.00 20.00 15.00 0.1320
13 40.00 40.00 15.00 0.1500
14 30.00 30.00 10.00 0.7000
15 30.00 46.82 10.00 0.3460
16 30.00 30.00 10.00 0.6300
17 30.00 13.18 10.00 0.3970
18 20.00 20.00 5.00 0.2690
19 20.00 20.00 15.00 0.0054
20 46.82 30.00 10.00 0.0640
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a. Fitting the complete second-order
model in the three predictors resulted
in R2 = .987 and adjusted R2 = .974,
whereas fitting the first-order model
gave R2 = .016. What would you con-
clude about the two models?

b. For x1 = x2 = 30, x3 = 10, a statistical
software package reported that
ŷ ¼ :66573, sŶ ¼ :01785, and se =
.044 based on the complete second-
order model. Predict the amount of
b-carotene that would result from a
single experimental run with the des-
ignated values of the explanatory
variables, and do so in a way that
conveys information about precision
and reliability.

96. Snowpacks contain a wide spectrum of
pollutants that may represent environmental
hazards. The article “Atmospheric PAH
Deposition: Deposition Velocities and
Washout Ratios” (J. Environ. Engr. 2002:
186–195) focused on the deposition of
polyaromatic hydrocarbons. The authors
proposed a multiple regression model for
relating deposition over a specified time
period (y, in lg/m2) to two rather compli-
cated predictors x1 (lg-s/m3) and x2
(lg/m2) defined in terms of PAH air con-
centrations for various species, total time,
and total amount of precipitation. Here is
data on the species fluoranthene and
corresponding Minitab output:

Formulate questions and perform appropriate
analyses. Construct the appropriate residual
plots, including plots against the predictors.
Based on these plots, justify adding a quadratic
predictor, and fit the model with this additional
predictor. Does this predictor provide addi-
tional useful information over and above what
x1 and x2 contribute, and does it help the
appearance of the diagnostic plots? Also, the
data includes a clear outlier. Re-run the
regression without the outlier and determine
whether quadratic terms are appropriate.

97. The following data set has ratings from
ratebeer.com along with values of IBU
(international bittering units, a measure of
bitterness) and ABV (alcohol by volume)
for 25 beers. Notice which beers have the
lowest ratings and which are highest.

x1 x2 y

92017 .0026900 278.78
51830 .0030000 124.53
17236 .0000196 22.65
15776 .0000360 28.68
33462 .0004960 32.66

243500 .0038900 604.70
67793 .0011200 27.69
23471 .0006400 14.18
13948 .0004850 20.64
8824 .0003660 20.60
7699 .0002290 16.61

15791 .0014100 15.08
10239 .0004100 18.05
43835 .0000960 99.71
49793 .0000896 58.97
40656 .0026000 172.58
50774 .0009530 44.25

Beer IBU ABV Rating

Amstel Light 18 3.5 1.93
Anchor Liberty Ale 54 5.9 3.60
Anchor Steam 33 4.9 3.31
Bud Light 7 4.2 1.15
Budweiser 11 5 1.38
Coors 14 5 1.63
DAB Dark 32 5 2.73
Dogfish 60 min IPA 60 6 3.76
Great Divide Titan IPA 65 6.8 3.81
Great Divide Hercules Double IPA 85 9.1 4.05
Guinness Extra Stout 60 5 3.38
Harp Lager 21 4.3 2.85
Heineken 23 5 2.13
Heineken Premium Light 11 3.2 1.62
Michelob Ultra 4 4.2 1.01
Newcastle Brown Ale 18 4.7 3.05
Pilsner Urquell 35 4.4 3.28
Redhook ESB 29 5.77 3.06
Rogue Imperial Stout 88 11.6 3.98
Samuel Adams Boston Lager 31 4.9 3.19
Shiner Light 13 4.03 2.57
Sierra Nevada Pale Ale 37 5.6 3.61
Sierra Nevada Porter 40 5.6 3.60
Terrapin All-Amer. Imperial Pilsner 75 7.5 3.46
Three Floyds Alpha King 66 6 4.04

The regression equation is

flth dep = −33.5 + 0.00205 x1 + 29836 x2

Predictor Coef SE Coef T P
Constant −33.46 14.90 −2.25 0.041
x1 0.0020548 0.0002945 6.98 0.000
x2 29836 13654 2.19 0.046
S = 44.28 R-Sq = 92.3% R-Sq(adj) = 91.2%

Analysis of variance

Source DF SS MS F P
Regression 2 330,989 165,495 84.39 0.000
Residual
error

14 27,454 1961

Total 16 35,8443
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a. Find the correlations (and the corre-
sponding P-values) among Rating,
IBU, and ABV.

b. Regress rating on IBU and ABV.
Notice that although both predictors
have strongly significant correlations
with Rating, they do not both have
significant regression coefficients. How
do you explain this?

c. Plot the residuals from the regression of
(b) to check the assumptions. Also plot
rating against each of the two predic-
tors. Which of the assumptions is
clearly not satisfied?

d. Regress rating on IBU and ABV with
the square of IBU as a third predictor.
Again check assumptions.

e. How effective is the regression in (d)?
Interpret the coefficients with regard to
statistical significance and sign. In par-
ticular, discuss the relationship to IBU.

f. Summarize your conclusions.

98. The article “Promoting Healthy Choices:
Information versus Convenience” (Amer.
Econ. J.: Appl. Econ. 2010: 164–178)
reported on a field experiment at a fast-food
sandwich chain to see whether calorie
information provided to patrons would
affect calorie intake. One aspect of the

study involved fitting a multiple regression
model with seven predictors to data con-
sisting of 342 observations. Predictors in
the model included age and indicator vari-
ables for sex, whether or not a daily calorie
recommendation was provided, and whe-
ther or not calorie information about choi-
ces was provided. The reported value of the
F ratio for testing model utility was 3.64.

a. At significance level .01, does the
model appear to specify a useful linear
relationship between calorie intake and
at least one of the predictors?

b. What can be said about the P-value for
the model utility F test?

c. What proportion of the observed vari-
ation in calorie intake can be attributed
to the model relationship? Does this
seem very impressive? Why is the P-
value as small as it is?

d. The estimated coefficient for the indicator
variable calorie information provided
was −71.73, with an estimated standard
error of 25.29. Interpret the coefficient.
After adjusting for the effects of other
predictors, does it appear that true average
calorie intake depends on whether or not
calorie information is provided? Carry
out a test of appropriate hypotheses.

12.9 Regression with Matrices

Throughout this chapter we have explored linear models with both one and several predictors. It
should perhaps not be surprising that such models can be imbedded in the language of linear algebra,
i.e., in matrix form. In this section, we re-write the model equation and least squares estimates in terms
of certain matrices and then derive matrix-based formulas for several of the quantities mentioned in
earlier sections. (The focus here will be on multiple regression, since simple linear regression is just
the special case where k = 1.) In fact, all software packages that perform regression analysis rely on
these matrix representations for computation.

The Model Equation in Matrix Form
In Section 12.7 we used the following additive model equation to relate a response variable y to
explanatory variables x1, …, xk:

Y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk þ e;
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where e * N(0, r) and the ei’s for different observations are independent of one another. Suppose
there are n observations, each consisting of a y value and values of the k predictors (so each
observation consists of k + 1 numbers). Then the n equations for the various observations can be
expressed compactly using matrix notation:

Y1 ¼ b0 þ b1x11 þ b2x12 þ � � � þ bkx1k þ e1
..
.

Yn ¼ b0 þ b1xn1 þ b2xn2 þ � � � þ bkxnk þ en

)
Y1
..
.

Yn

2
64

3
75 ¼

1 x11 � � � x1k
..
. ..

. ..
.

1 xn1 � � � xnk

2
64

3
75

b0
b1
..
.

bk

2
6664

3
7775þ

e1
..
.

en

2
64

3
75

ð12:15Þ

The dimensions of the four matrices in (12.15), from left to right, are n � 1, n � (k + 1),
(k + 1) � 1, and n � 1. If we denote these four matrices by Y, X, b, and e, then the multiple linear
regression model is equivalent to

Y ¼ Xbþ e

Wewill use y to denote the n � 1 column vector of observed y values: y = ½y1; . . .; yn�0, where ′ denotes
matrix transpose. The vector y (or Y) is called the response vector, while the matrix X is known as the
designmatrix. The designmatrix consists of one row for each observation (n rows total) and one column
for each predictor, along with a leading column of 1’s to accommodate the constant term.

Parameter Estimation in Matrix Form
We now estimate b0, b1, …, bk using the principle of least squares. Let uk k denote the (Euclidean)

length of a column vector u, i.e., uk k2¼P u2i ¼ u0u. Then our goal is to find b0, b1,…, bk to minimize

gðb0; b1; . . .; bkÞ ¼
Xn
i¼1

½yi � ðb0 þ b1xi1 þ b2xi2 þ � � � þ bkxikÞ�2 ¼ y� Xbk k2;

where b is the column vector with entries b0, b1, …, bk. One solution method was outlined in
Section 12.7: if we set the partial derivatives of g with respect to b0, b1, …, bk equal to zero, the result
is the normal equations in Expression (12.13). In matrix form, (12.13) becomes

Pn
i¼1

1
Pn
i¼1

xi1 � � � Pn
i¼1

xik

Pn
i¼1

xi1
Pn
i¼1

xi1xi1 � � � Pn
i¼1

xi1xik

..

.

Pn
i¼1

xik
Pn
i¼1

xikxi1 . . .
Pn
i¼1

xikxik

2
6666666664

3
7777777775

b0
b1
..
.

bk

2
6664

3
7775 ¼

Pn
i¼1

yi

Pn
i¼1

xi1yi

..

.

Pn
i¼1

xikyi

2
6666666664

3
7777777775

The matrix on the left is X′X and the one on the far right is X′y. The normal equations then become
X′Xb = X′y. We will assume throughout this section that X′X has an inverse, so the vector of
estimated coefficients is given by
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b̂ ¼ b ¼ ðX0XÞ�1X0y ð12:16Þ

All statistical software packages use the matrix version of the normal equations to calculate the

estimated regression coefficients. (At the end of this section, we present an alternative derivation of b̂
that relies on linear algebra rather than partial derivatives from calculus.)

Example 12.28 For illustrative purposes, suppose we wish to predict horsepower using engine size
(liters) and fuel type (premium or regular) based on a sample of n = 6 cars.

Horsepower Engine size Fuel type

132 2.0 Regular
167 2.0 Premium
170 2.5 Regular
204 2.5 Premium
230 3.0 Regular
260 3.0 Premium

Define variables y = horsepower, x1 = engine size, and x2 = 1 for premium fuel and 0 for regular
(an indicator variable). Then the response vector and design matrix here are

y ¼

132
167
170
204
230
260

2
6666664

3
7777775

X ¼

1 2:0 0
1 2:0 1
1 2:5 0
1 2:5 1
1 3:0 0
1 3:0 1

2
6666664

3
7777775

) X0X ¼
6 15 3
15 38:5 7:5
3 7:5 3

2
4

3
5 and X0y ¼

1163
3003
631

2
4

3
5

Notice that X′X is symmetric (and will be in all cases—do you see why?). The least squares estimates
of the regression coefficients are

b̂ ¼ ðX0XÞ�1X0y ¼
79=12 �5=2 �1=3
�5=2 1 0
�1=3 0 2=3

2
4

3
5 1163

3003
631

2
4

3
5 ¼

�61:417
95:5
33

2
4

3
5

Figure 12.34 shows R output from multiple regression using this (toy) data set. Notice that estimated

regression coefficients exactly match our vector b̂.

Residuals:
1      2      3      4      5      6 

2.417  4.417 -7.333 -6.333  4.917  1.917 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -61.417     17.966  -3.419 0.041887 *  
x1            95.500      7.002  13.639 0.000853 ***
x2            33.000      5.717   5.772 0.010337 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.002 on 3 degrees of freedom
Multiple R-squared:  0.9865,    Adjusted R-squared:  0.9775 
F-statistic: 109.7 on 2 and 3 DF,  p-value: 0.001567

Figure 12.34 R output for Example 12.28 ■
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Residuals, ANOVA, F, and R2

The estimated regression coefficients can be used to obtain the predicted values and the residuals.

Recall that the ith predicted value is ŷi ¼ b̂0 þ b̂1xi1 þ b̂2xi2 þ � � � þ b̂kxik. The vector of predicted
values, ŷ, is

ŷ ¼
ŷ1
..
.

ŷn

2
64

3
75 ¼

b̂0 þ b̂1x11 þ � � � þ b̂kx1k
..
.

b̂0 þ b̂1xn1 þ � � � þ b̂kxnk

2
64

3
75¼ Xb̂ ¼ XðX0XÞ�1X0y

If we define a matrix H ¼ XðX0XÞ�1X0, this relationship can be re-written as ŷ = Hy. The matrix H is
amusingly called the hat matrix because it “puts a hat” on the vector y.

The residual for the ith observation is defined by ei ¼ yi � ŷi, and so the residual vector is

e ¼ y� ŷ ¼ y�Hy ¼ ðI�HÞy;

where I denotes the n � n identity matrix. Now the sums of squares encountered throughout this
chapter can also be written in matrix form (more precisely, as squared lengths of particular vectors).
Let �y denote an n � 1 column vector whose every entry is the sample mean y value, y. Then

SSE ¼
X

e2i ¼ ek k2¼ y� ŷk k2

SSR ¼
X

ðŷi � yÞ2 ¼ ŷ� �yk k2

SST ¼
X

ðyi � yÞ2 ¼ y� �yk k2

from which, as before, s2e = MSE = SSE/[n − (k + 1)] and R2 = SSR/SST. The fundamental
ANOVA identity SST = SSR + SSE can be obtained as follows:

SST ¼ y� �yk k2¼ ðy� �yÞ0ðy� �yÞ ¼ ½ðy� ŷÞþ ðŷ� �yÞ�0½ðy� ŷÞþ ðŷ� �yÞ�
¼ y� ŷk k2 þ ŷ� �yk k2¼ SSEþ SSR

The cross-terms in the matrix product are zero because of the normal equations (see Exercise 104).
Equivalently, the middle two terms drop out because the vectors ŷ� �y and e ¼ y� ŷ are orthogonal.

The model utility test of H0: b1 ¼ � � � ¼ bk ¼ 0 uses the same F ratio as before:

f ¼ MSR
MSE

¼ SSR=k
SSE=½n� ðkþ 1Þ� ¼

ŷ� yk k2=k
ek k2=½n� ðkþ 1Þ�

Example 12.29 (Example 12.28 continued) The predicted values and residuals are easily obtained:

ŷ ¼ Xb̂ ¼

1 2:0 0
1 2:0 1
1 2:5 0
1 2:5 1
1 3:0 0
1 3:0 1

2
6666664

3
7777775

�61:417
95:50
33

2
4

3
5 ¼

129:583
162:583
177:333
210:333
225:083
258:083

2
6666664

3
7777775

e ¼ y� ŷ ¼

132
167
170
204
230
260

2
6666664

3
7777775
�

129:583
162:583
177:333
210:333
225:083
258:083

2
6666664

3
7777775
¼

2:417
4:417

�7:333
�6:333
4:917
1:917

2
6666664

3
7777775
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From these, SSE = ek k2¼ 2:4172 þ � � � þ 1:9172 = 147.083, MSE = SSE/[n – (k + 1)] =

147.083/[6 − (2 + 1)] = 49.028, and se =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49:028

p
= 7.002. The total sum of squares is SST ¼

y� �yk k2¼ P ðyi � 193:83Þ2 ¼ 10;900:83, and the regression sum of squares can be obtained most
easily by subtraction: SSR = SST − SSE = 10,900.83 − 147.083 = 10,753.75. The coefficient of
multiple determination is R2 = SSR/SST = .9865. Finally, the model utility test statistic value is
f = MSR/MSE = (10,753.75/2)/49.028 = 109.67, a massive F ratio that decisively rejects H0 at any
reasonable significance level. Notice that many of these quantities appear in the lower half of the R
output in Figure 12.34. ■

Inference About Individual Parameters
In order to develop hypothesis tests and confidence intervals for the regression coefficients, the

expected values and standard deviations of the estimators b̂0; b̂1; . . .; b̂k are needed.

DEFINITION Let U1; . . .;Um be rvs and U denote the m � 1 column vector ½U1; . . .;Um�0. Then
the mean vector of U is the m � 1 column vector l = E(U) whose ith entry is
li = E(Ui). The covariance matrix of U is the m � m matrix whose (i, j)th entry
is the covariance of Ui and Uj. That is,

CovðUÞ ¼
CovðU1;U1Þ CovðU1;U2Þ � � � CovðU1;UmÞ
CovðU2;U1Þ CovðU2;U2Þ � � � CovðU2;UmÞ

..

. . .
.

CovðUm;U1Þ CovðUm;U2Þ � � � CovðUm;UmÞ

2
6664

3
7775

If we define the expected value of a matrix of rvs by the element-wise expectations of
its entries, then it follows from the definition CovðUi;UjÞ ¼ E½ðUi � liÞðUj � ljÞ�
that

CovðUÞ ¼ E½ðU� lÞðU� lÞ0� ð12:17Þ

The diagonal entries of the covariance matrix are the variances of the rvs: CovðUi;UiÞ ¼ VðUiÞ. Also,
the covariance matrix is symmetric, since CovðUi;UjÞ ¼ CovðUj;UiÞ.

For example, suppose U1 and U2 are rvs with means 10 and −4, standard deviations 2.5 and 2.3,
and covariance −1.1. Then the mean vector and covariance matrix of U = [U1, U2]′ are

EðUÞ ¼ EðU1Þ
EðU2Þ
	 


¼ 10
�4

	 

and CovðUÞ ¼ VðU1Þ CovðU1;U2Þ

CovðU2;U1Þ VðU2Þ
	 


¼ 2:52 �1:1
�1:1 2:32

	 


Now consider the vector of random errors e ¼ ½e1; . . .; en�0. The linear regression model assumes that
the ei’s are independent (so covariance = 0 for each pair) with mean 0 and common variance r2.
Under these assumptions, the mean vector of e is 0 (an n � 1 vector of 0’s), while the covariance
matrix of e is r2I (an n � n matrix with r2 along the main diagonal and 0’s everywhere else) . It then
follows from the model equation Y = Xb + e that the (random) response vector Y satisfies
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EðYÞ ¼ Xbþ 0 ¼ Xb and CovðYÞ ¼ CovðeÞ ¼ r2I

To determine the sampling distribution of b̂, we will require the following proposition.

PROPOSITION Let U be a random vector. If A is a matrix with constant entries and V = AU,
then E(V) = AE(U) and Cov(V) = ACov(U)A′.

Proof By the linearity of the expectation operator, E(V) = E(AU) = AE(U) = Al. Then, using
(12.17),

CovðVÞ ¼ E½ðV� EðVÞÞðV� EðVÞÞ0� Equation ð12:17Þ
¼ E½ðAU� AlÞðAU� AlÞ0� ¼ E½AðU� lÞðAðU� lÞÞ0�
¼ E½AðU� lÞðU� lÞ0A0�
¼ AE½ðU� lÞðU� lÞ0�A0 linearity of expectation

¼ ACov(UÞA0
■

Let’s apply this proposition to find the mean vector and covariance matrix of b̂. As an estimator,

b̂ ¼ ðX0XÞ�1X0Y, so let A ¼ ðX0XÞ�1X0 and U = Y. By linearity of expectation (the first part of the
proposition),

Eðb̂Þ ¼ ðX0XÞ�1X0EðYÞ ¼ ðX0XÞ�1X0Xb ¼ b

That is, b̂ is an unbiased estimator of b (for each j, b̂j is unbiased for estimating bj).

Next, the transpose of A is A0 ¼ ½ðX0XÞ�1X0�0 ¼ XðX0XÞ�1; this relies on the fact that X0X is

symmetric, so ðX0XÞ�1 is symmetric as well. Applying the second part of the proposition and the
earlier observation that Cov(Y) = r2I,

Covðb̂Þ ¼ ACovðYÞA0 ¼ ðX0XÞ�1X0½r2I�XðX0XÞ�1

¼ r2ðX0XÞ�1X0XðX0XÞ�1 ¼ r2ðX0XÞ�1

So, the variance of the regression coefficient b̂j is the jth diagonal entry of the matrix r2ðX0XÞ�1.
Exercise 101 asks you to demonstrate that this matrix formula matches the variance formulas pre-
sented earlier in the chapter for simple linear regression. Since r is unknown, it must be estimated

from the data, and the estimated covariance matrix of b̂ is s2eðX0XÞ�1.

Example 12.30 (Example 12.29 continued) For the engine horsepower scenario we previously

found the matrix ðX0XÞ�1 and the residual standard deviation se = 7.002. The estimated covariance

matrix of b̂ is

7:0022
79=12 �5=2 �1=3
�5=2 1 0
�1=3 0 2=3

2
4

3
5 ¼

322:766 �122:569 �16:343
�122:569 49:028 0:0
�16:343 0:0 32:685

2
4

3
5
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The estimated standard deviations of the three coefficients are sb̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
322:766

p ¼ 17:966,

sb̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49:028

p ¼ 7:002, and sb̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32:685

p ¼ 5:717. Notice that these exactly match the standard

errors given in the R output of Figure 12.34. These estimated standard errors form the basis for the
variable utility tests and CIs for the bj’s presented in Section 12.7.

The covariance matrix also indicates that Covðb̂0; b̂1Þ � �122:569, meaning the estimates for the
y-intercept and the slope on engine size are negatively correlated. In other words, if for a particular

sample the estimated slope b̂1 is greater than its expectation (the true coefficient b1), then typically

the value of b̂0 will be less than b0. This makes sense for (x, y) values in the first quadrant: rotating
from the true line y = b0 + b1x, if sample data results in a slope estimate that is too high (so the line is
overly steep), the y-intercept estimate will naturally be too low. ■

What about the standard error of Ŷ ¼ b̂0 þ b̂1x
�
1 þ � � � þ b̂kx

�
k , our point estimate of the mean

response lY jx� at a specified set of x values? The point estimate may be written as Ŷ = x�b̂, where

x� is the row vector x� ¼ ½1; x�1; . . .; x�k �. Here, x� is constant but b̂ (a vector of estimators) has
sampling variability. Applying the earlier proposition,

VðŶÞ ¼ Vðx�b̂Þ ¼ x�Vðb̂Þ½x��0 ¼ x�r2ðX0XÞ�1½x��0 ¼ r2x�ðX0XÞ�1½x��0 )
s2
Ŷ
¼ s2e � x�ðX0XÞ�1½x��0

(It’s easy to verify here that the expression for s2
Ŷ
is a 1 � 1 matrix and, as such, may be treated as a

scalar.) The square root of this expression gives the estimated standard error of Ŷ, which is required
for confidence and prediction intervals.

The Hat Matrix, Leverage, and Outlier Detection
The foregoing proposition can also be used to find estimated standard deviations for the residuals.

Recall that the n � n hat matrix is defined by H ¼ XðX0XÞ�1X0.With the help of the matrix rules
(AB)′ = B′A′ and (A−1)′ = (A′)−1, we find that H is symmetric, i.e., H′ = H:

H0 ¼ XðX0XÞ�1X0
h i0

¼ X0ð Þ0½ðX0XÞ�1�0X0 ¼ X½ðX0XÞ0��1X0 ¼ XðX0XÞ�1X0 ¼ H

Next, recall that the vector of predicted values is given by Ŷ = HY; here, we’re treating the response
vector Y as random, which implies that Ŷ is also a random vector. Thus

CovðŶÞ ¼ HCovðYÞH0 ¼ XðX0XÞ�1X0½r2I�XðX0XÞ�1X0

¼ r2XðX0XÞ�1X0 ¼ r2H
ð12:18Þ

A similar calculation shows that the covariance matrix of the residuals is

CovðY� ŶÞ ¼ r2ðI�HÞ ð12:19Þ

The variances of Ŷi and ei are the diagonal entries of the matrices in (12.18) and (12.19), respectively.
Of course, the value of r2 is generally unknown, so the estimate s2e = MSE is used instead. If we let
hii denote the ith diagonal entry of H, then (12.18) and (12.19) imply that the (estimated) standard
deviations of Ŷi and ei are
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sŶi ¼ se �
ffiffiffiffiffi
hii

p
and sei ¼ se �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii

p
For the case of simple linear regression, it can be shown that these expressions match the standard
error formulas given previously (Exercise 110).

Thehatmatrix is also important as ameasureof the influenceof individual observations.Because ŷ ¼ Hy,
ŷi ¼ hi1y1 þ � � � þ hiiyi þ � � � þ hinyn, and therefore the ith diagonal element ofHmeasures the impact
of the ith observation yi on its own predicted value ŷi. The hii’s are sometimes called the leverages to
indicate their impact on the regression. An observation with very high leverage will tend to pull the
regression toward it, and its residual will tend to be small. Notice, though, that H depends only on the
values of the predictors (through the designmatrixX), so leveragemeasures only one aspect of influence.

Example 12.31 Students in a statistics class measured their height, foot length, and wingspan
(measured fingertip to fingertip with hands outstretched) in inches. The accompanying table shows
the measurements for 16 students; we encountered this data previously in Example 12.16. The last
column has the leverages for the regression of wingspan on height and foot length.

Student Height (x1) Foot (x2) Wingspan (y) Leverage

1 63.0 9.0 62.0 0.239860
2 63.0 9.0 62.0 0.239860
3 65.0 9.0 64.0 0.228236
4 64.0 9.5 64.5 0.223625
5 68.0 9.5 67.0 0.196418
6 69.0 10.0 69.0 0.083676
7 71.0 10.0 70.0 0.262182
8 68.0 10.0 72.0 0.067207
9 68.0 10.5 70.0 0.187088

10 72.0 10.5 72.0 0.151959
11 73.0 11.0 73.0 0.143279
12 73.5 11.0 75.0 0.168719
13 70.0 11.0 71.0 0.245380
14 70.0 11.0 70.0 0.245380
15 72.0 11.0 76.0 0.128790
16 74.0 11.2 76.5 0.188340

Figure 12.35 shows a plot of x1 = height against x2 = foot length, along with the leverage for each
point. Notice that the points at the extreme right and left of the plot have high leverage, and the points

Foot length (x
2
)

9.0 10.09.5

64

62

Height (x
1
)

66

0.23

0.20

0.08

0.26

0.15

0.25

0.13

0.14

0.190.17

0.07 0.19

10.5 11.0 11.5

68

70

72

74

0.22

0.24

Figure 12.35 Plot of height and foot length showing leverage
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near the center have low leverage. However, it is interesting that the point with highest leverage is not
at the extremes of height or foot length. This is student number 7, with a 10-in. foot and height of 71
in., and the high leverage comes from the height being extreme relative to foot length. Indeed, when
there are several predictors, high leverage often occurs when values of one predictor are extreme
relative to the values of other predictors. For example, if height and weight are predictors, then an
overweight or underweight subject would likely have high leverage. ■

Together, standardized residuals and leverages can be used to identify unusual observations in a
regression setting. This is particularly helpful in multiple regression, where outliers are more difficult
to detect with the naked eye (e.g., student 7 in Example 12.31). By convention, the ith observation is
said to have a large residual if | e�i | > 2 and a very large residual if | e�i | > 3, since these indicate that
yi is more than two (resp., three) standard deviations away from the value predicted by the estimated
regression function.

As for the leverage values, it can be shown that

0
 hii 
 1 and
Xn
i¼1

hii ¼ kþ 1

where k is the number of predictor variables in the regression model. (In fact, it isn’t difficult to show
directly that

P
hii ¼ 2 for simple regression, i.e., k = 1.) This implies that the mean of the leverage

values is (k + 1)/n, since there are n leverage values total (one for each observation). By convention,
the ith observation is said to possess high leverage if hii > 2(k + 1)/n and very high leverage if
hii > 3(k + 1)/n.

More sophisticated tools for outlier detection in regression are also available. If the “influence” of
an observation is defined in terms of the effect on the predicted values when the observation is
omitted, then an influential observation is one that has both large leverage and a large residual.
A popular measure that combines leverage and residual is Cook’s distance; consult the book by
Kutner et al. for more information. Many statistical software packages will provide the standardized
residual, leverage, and Cook’s distance for all n observations upon request; some will also flag
observations with unusually high values (e.g., according to the criteria above).

Another Perspective on Least Squares
We previously used multivariate calculus—in particular, the normal equations (12.13)—to determine
the least squares estimates of the regression coefficients. The matrix representation of regression
allows an alternative derivation of these estimates that relies instead on linear algebra.

Let 1, x1, …, xk denote the k + 1 columns of the design matrix X. The principle of least squares
says we should determine coefficients b0; b1; . . .; bk that minimize

X
ðyi � ½b0 þ b1xi1 þ � � � þ bkxik�Þ2 ¼ y� ½b01þ b1x1 þ � � � þ bkxk�k k2

The expression in brackets is a (generic) linear combination of the vectors 1, x1, …, xk. Since �k k2
denotes Euclidean distance, we know from linear algebra that such a distance is minimized by finding
the projection of y onto the vector space (i.e., the closest vector to y in the space) spanned by 1, x1,
…, xk. Call this projection vector p. Since p lies in span{1, x1, …, xk} it must have the form
p ¼ b01þ b1x1 þ � � � þ bkxk = Xb; our goal now is to find an explicit formula for the coefficients.
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Use the property that if p is the projection of y onto span{1, x1, …, xk}, then the vector y – p must
be orthogonal to that space. That is, the vector y – p must be perpendicular to each of 1, x1, …, xk,
meaning that 10p ¼ 0 and x0jp ¼ 0 for j = 1, …, k. In matrix form, these k + 1 requirements can be
written as X0ðy� pÞ ¼ 0.

Put it all together: with p = Xb and X0ðy� pÞ ¼ 0,

X0ðy� pÞ ¼ 0 ) X0ðy� XbÞ ¼ 0 ) X0y ¼ X0Xb ) b ¼ ðX0XÞ�1X0y;

matching the previous formula (12.16). Incidentally, the projection vector itself is p = Xb = Hy = ŷ
(the vector of fitted values), and the vector orthogonal to the space is y – p = y – ŷ = e (the vector of
residuals).

Exercises: Section 12.9 (99–110)

99. Consider fitting the model Y ¼ b0 þ b1x1
þ b2x2 þ e to the following data:

x1 x2 y

−1 −1 1
−1 1 1
1 −1 0
1 1 4

a. Determine X and y, and express the
normal equations in terms of matrices.

b. Determine the b̂ vector, which contains
the estimates for the three coefficients
in the model.

c. Determine ŷ and e. Then calculate SSE,
and use this to get the estimated vari-
ance MSE.

d. Use MSE and ðX0XÞ�1 to construct a
95% confidence interval for b1.

e. Carry out a t test for the hypothesis
H0: b1 = 0 against a two-tailed alter-
native, and interpret the result.

f. Form the analysis of variance table, and
carry out the F test for the hypothesis
H0: b1 = b2 = 0. Find R2 and interpret.

100. Consider the model Y ¼ b0 þ b1x1 þ e for
the following data:

a. Determine the X and y matrices and
express the normal equations in terms
of matrices.

b. Determine the b̂ vector, which contains
the estimates for the two coefficients in
the model.

c. Determine ŷ and e.
d. Calculate SSE (by summing the

squared residuals) and then the esti-
mated variance MSE.

e. Use MSE and ðX0XÞ�1 to construct a
95% confidence interval for b1.

f. Carry out a t test of H0: b1 = 0 against
a two-sided alternative.

g. Carry out theF test ofH0:b1 = 0.How is
this related to part (f)?

101. Consider the simple linear regression model
Y ¼ b0 þ b1xþ e, so k = 1 and X consists
of a column of 1’s and a column of the
values x1, …, xn of x.

a. Determine X′X and (X′X)−1 using the
matrix inverse formula

a b
c d

	 
�1

¼ 1
ad � bc

d �b
�c a

	 


b. Determine X′y, then calculate the

coefficient vector b̂. Compare your
answers to the formulas given in Sec-
tion 12.2. [Hint: Sxy ¼

P
xiyi�n � x � y,

and similarly for Sxx.]

x1 y x1 y

−.5 1 .5 8
−.5 2 .5 9
−.5 2 .5 7
−.5 3 .5 8
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c. Use (X′X)−1 to obtain expressions for
the variances of the coefficients, and
check your answers against the results
given in Sections 12.3 and 12.4. [Note:

b̂0 is the predicted value corresponding

to x� = 0, so the variance of b̂0 appears
implicitly in Section 12.4.]

102. Suppose we have bivariate data (x1, y1), …,
(xn, yn). Consider the centered model
yi ¼ b0 þ b1ðxi � xÞþ ei for i = 1, …, n.

a. Show that

X0X ¼ n 0
0 Sxx

	 


b. Determine (X′X)−1 and the coefficient

vector b̂.
c. Determine the estimated standard errors

of the regression coefficients.
d. Compare this exercise to the previous

one. Why is it more efficient to have
xi1 ¼ xi � x rather than xi1 ¼ xi in the
design matrix?

103. Consider the model Yi ¼ b0 þ ei (so k = 0).
Estimate b0 from Equation (12.16). Find a
simple expression for sb̂0 and then the 95%

confidence interval for b0. [Note: Your
result should be equivalent to the one-
sample t confidence interval in Section 8.3.]

104. a. Show that the normal equations are
equivalent to X0e ¼ 0. [Hint: Use the
matrix representation of the normal
equations in this section and substitute

the formula for b ¼ b̂.]
b. Use part (a) to prove the ANOVA

identity SST = SSE + SSR by show-
ing that ðŷ� �yÞ0e ¼ 0. [Hint: Part
(a) also implies that each row of X0 is
orthogonal to e; in particular, the first
column of X, a column of n 1’s, satis-
fies 1′e = 0.]

105. Suppose that we have Y1,…, Ym * N(l1, r),
Ym+1, …, Ym+n * N(l2, r), and all
m + n observations are independent. These
are the assumptions of the pooled

t procedure in Section 10.2. Let k = 1,
x11 = .5, …, xm1 = .5, xm+1,1 = −.5, …,
xm+n,1 = −.5. For convenience in inverting
X′X assume m = n.

a. Obtain b̂0 and b̂1 from Equa-
tion (12.16). [Hint: Let y1 be the mean
of the first m observations and y2 be the
mean of the next n observations.]

b. Find simple expressions for ŷ, SSE, se,
and sb̂1 .

c. Use parts (a) and (b) to find a simple
expression for the 95% CI for b1. Show
that your formula is equivalent to

b̂1 � t:025;mþ n�2se

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

þ 1
n

r

¼ y1 � y2 � t:025;mþ n�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

þ 1
n

r
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 ðyi � y1Þ2 þ
Pmþ n

i¼mþ 1 ðyi � y2Þ2
mþ n� 2

s

which is the pooled variance confi-
dence interval discussed in Section 9.2.

d. Let m = 3 and n = 3, with y1 = 117,
y2 = 119, y3 = 127, y4 = 129,
y5 = 138, y6 = 139. These are the pri-
ces in thousands for three houses in
Brookwood and then three houses in
Pleasant Hills. Apply parts (a), (b), and
(c) to this data set.

106. The constant term b0 is not always needed
in the regression equation. For example,
many physical principles imply that the
response variable should be 0 when the
explanatory variables are 0, so the constant
term is not needed. Then it is preferable to
omit b0 and use the model
Y ¼ b1x1 þ b2x2 þ � � � þ bkxk þ e. Here we
focus on the special case k = 1.

a. Differentiate the appropriate sum of
squares to derive the one normal
equation for estimating b1.

b. Express your normal equation in matrix
form, where X consists of a single
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column with the values of the predictor
variable.

c. Apply part (b) to the data of Example
12.28, using hp for y and just engine
size in X.

d. Explain why deletion of the constant
term might be appropriate for the data
set in part (c).

e. By fitting a regression model with a
constant term added to the model of
part (c), test the hypothesis that the
constant is not needed.

107. a. Prove that the hat matrix H satisfies
H2 = H.

b. Prove Equation (12.19). [Hint: Look at
the derivation of Equation (12.18).]

108. Use Eqs. (12.18) and (12.19) to show that
each of the leverages is between 0 and 1,
and therefore the variances of the predicted
values and residuals are between 0 and r2.

109. The measurements here are similar to those
in Example 12.31, except that here the
students did the measuring at home, and the
results suffered in accuracy.

a. Regress wingspan on the other two
variables. Carry out the test of model
utility and the tests for the two individual
regression coefficients of the predictors.

b. Obtain the diagonal elements of the hat
matrix (leverages). Identify the point
with the highest leverage. What is
unusual about the point? Given the
instructor’s assertion that there were no
students in the class less than five feet
tall, would you say that there was an
error? Give another reason that this
student’s measurements seem wrong.

c. For the other points with high lever-
ages, what distinguishes them from the
points with ordinary leverage values?

d. Examining the residuals, find another
student whose data might be wrong.

e. Discuss the elimination of questionable
points in order to obtain valid regres-
sion results.

110. Refer back to the centered simple regres-
sion model in Exercise 102.

a. Show that the leverage hii, the ith
diagonal entry of the hat matrix H, is
given by

hii ¼ 1
n
þ ðxi � xÞ2

Sxx

b. Show that the sum of the leverages in
simple regression is 2.

c. Use part (a) and the discussion of H in
this section to confirm the following
formulas from Sections 12.4 and 12.6:

VðŶiÞ ¼ r2 � 1
n
þ ðxi � xÞ2

Sxx

" #

VðYi � ŶiÞ ¼ r2 � 1� 1
n
� ðxi � xÞ2

Sxx

" #

12.10 Logistic Regression

All of the regression models thus far have assumed a quantitative response variable y. (Section 12.8
discussed how to incorporate a categorical explanatory variable using one or more indicators, but
y was still numerical.) In this final section, we describe procedures for modeling the relationship

Wingspan Foot Height

74 13.0 75
56 8.5 66
65 10.0 69
66 9.5 66
62 9.0 54
69 11.0 72
75 12.0 75
66 9.0 63
66 9.0 66
63 8.5 63
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between a categorical response variable and one or more predictors. For example, university
administrators may wish to predict whether a student will graduate (a yes-or-no variable) as a function
of high school GPA, SAT scores, and number of extracurricular activities. Medical researchers
frequently construct models to determine the effect of treatment dosage and other factors (age, weight,
and so on) on whether or not someone contracts a certain disease.

The Simple Logistic Regression Model
The simple linear regression model is appropriate for relating a quantitative response variable y to a
quantitative predictor x. But suppose we have a dichotomous categorical response variable, whose
“values” are success and failure. We can encode this with a Bernoulli rv Y, with possible values 1 and
0 corresponding to success and failure. As in previous chapters, let p = P(S) = P(Y = 1) and
1 – p = P(F) = P(Y = 0). Frequently, the value of p will depend on the value of some quantitative
variable x. For example, the probability that a car needs warranty service should depend on the
car’s mileage, or the probability of avoiding an infection might depend on the dosage in an inocu-
lation. Instead of using just the symbol p for the success probability, we now use p(x) to empha-
size the dependence of this probability on the value of x. The simple linear regression equation
Y = b0 + b1x + e is no longer appropriate, for taking the mean value on each side of that equation
would give

lY jx ¼ 1 � pðxÞþ 0 � 1� pðxÞ½ � ¼ pðxÞ ¼ b0 þ b1x

Whereas p(x) is a probability and therefore must be between 0 and 1, b0 + b1x need not be in this
range.

Instead of letting the mean value of y be a linear function of x, we now consider a model in which
the mean response p(x) is a particular nonlinear function of x. A function that has been found quite
useful in many applications is the logit function

pðxÞ ¼ eb0 þb1x

1þ eb0 þ b1x
ð12:20Þ

It is easy to see that the logit function is bounded between 0 and 1, so 0 < p(x) < 1 as desired. Fig-
ure 12.36 shows a graph of p(x) for particular values of b0 and b1 with b1 > 0. As x increases, the
probability of success increases. For b1 < 0, the success probability would be a decreasing function of x.

10 20 30 40 50 60 70 80

0

.5

1.0

x

p(x)

Figure 12.36 A graph of a logit function
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Logistic regression means assuming that p(x) is related to x by the logit function. Straightforward
algebra shows that

pðxÞ
1� pðxÞ ¼ eb0 þb1x

The expression on the left-hand side is called the odds. If, for example p(60) = 3/4 = .75, then
pð60Þ=ð1� pð60ÞÞ ¼ :75=ð1� :75Þ ¼ 3 and when x = 60 a success is three times as likely as a
failure. This is described by saying that the odds are 3 to 1 because the success probability is three
times the failure probability. Taking natural logs of both sides, we see that the logarithm of the odds is
a linear function of the predictor:

ln
pðxÞ

1� pðxÞ
� �

¼ b0 þ b1x

In particular, the slope parameter b1 is the change in the log-odds associated with a one-unit increase
in x. This implies that the odds itself changes by the multiplicative factor eb1 when x increases by one
unit. The quantity eb1 is called the odds ratio, because it represents the ratio of the odds of success
when the predictor variable equals x + 1 to the odds of success when the predictor variable equals x.

Example 12.32 It seems reasonable that the size of a cancerous tumor should be related to the
likelihood that the cancer will spread (metastasize) to another site. The article “Molecular Detection
of p16 Promoter Methylation in the Serum of Patients with Esophageal Squamous Cell Carcinoma”
(Cancer Res. 2001: 3135–3138) investigated the spread of esophageal cancer to the lymph nodes.
With x = size of a tumor (cm) and Y = 1 if the cancer does spread, consider the logistic regression
model with b1 = .5 and b0 = −2 (values suggested by data in the article). Then

pðxÞ ¼ e�2þ :5x

1þ e�2þ :5x

from which p(2) = .27 and p(8) = .88 (tumor sizes for patients in the study ranged from 1.7 to 9.0 cm).
Because e�2þ :5ð6:77Þ � 4, the odds for a 6.77 cm tumor are 4, so that it is four times as likely as not that
a tumor of this size will spread to the lymph nodes. Finally, for every 1-cm increase in tumor size, the
odds of metastasis increase by a multiplicative factor of e:5 � 1:65, or 65%. Be careful here: the
probability of metastasis is not increasing by 65%, but rather the odds; under the logistic regression
model, the probability of an outcome does not increase linearly with x (see Figure 12.36). ■

Fitting the Simple Logistic Regression Model
Fitting the logit model (12.20) to sample data requires that the parameters b0 and b1 be estimated.
Rather than apply the principle of least squares from linear regression, the standard way to estimate
logistic regression parameters is by the method of maximum likelihood. Suppose, for example, that
n = 5 and that the observations made at x2, x4, and x5 are successes whereas the other two obser-
vations are failures. Then the likelihood function is

Lðb0; b1Þ ¼ PðY1 ¼ 0; Y2 ¼ 1; Y3 ¼ 0;Y4 ¼ 1; Y5 ¼ 1Þ
¼ 1� p x1ð Þ½ � p x2ð Þ½ � 1� p x3ð Þ½ � p x4ð Þ½ � p x5ð Þ½ �

¼ 1
1þ eb0 þb1x1

	 

eb0 þb1x2

1þ eb0 þb1x2

	 

1

1þ eb0 þb1x3

	 

eb0 þb1x4

1þ eb0 þb1x4

	 

eb0 þb1x5

1þ eb0 þ b1x5
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Unfortunately it is not at all straightforward to maximize this likelihood, and there are no nice

formulas for the mles b̂0 and b̂1. The maximization process must be carried out using iterative
numerical methods. The details are involved, but fortunately the most popular statistical software
packages will do this on request and provide both quantitative and graphical indications of how well
the model fits.

In particular, the mle b̂1 is typically provided along with its estimated standard deviation sb̂1 . For

large n, the mle has approximately a normal distribution and the standardized variable ðb̂1 � b1Þ=Sb̂1
has approximately a standard normal distribution. This allows for calculation of a confidence interval
for b1 as well as for testing H0: b1 = 0, according to which the value of x has no impact on the
likelihood of success.

Example 12.33 The following data resulted from a study commissioned by a large management
consulting company to investigate the relationship between amount of job experience (x, in months)
for a junior consultant and the likelihood of the consultant being able to perform a certain complex
task. The value y = 1 indicates the consultant completed the task (success), whereas y = 0 corre-
sponds to failure.

Figure 12.37 shows Minitab output for a logistic regression analysis. The estimates of the

parameters b0 and b1 are b̂0 = −3.21107 and b̂1 = 0.177717, respectively. The resulting estimated
logistic regression function, denoted p̂ðxÞ, is

p̂ðxÞ ¼ eb̂0 þ b̂1x

1þ eb̂0 þ b̂1x
¼ e�3:211þ 0:1777x

1þ e�3:211þ 0:1777x

The graph of p̂ðxÞ is the curve shown in Figure 12.38; notice that the (estimated) probability of
success increases as x increases. Remember that the logit curve is modeling the mean y value for each
x value; we do not anticipate that it will intersect the points in the scatterplot.

x 4 5 6 6 7 8 9 10 11 11 13 13 14 15 18

y 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1

x 18 19 20 20 21 21 22 23 25 26 27 28 29 30 32

y 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1

Logistic Regression Table 

Binary Logistic Regression: Success versus Months

                                              Odds     95% CI
Predictor      Coef    SE Coef      Z      P  Ratio  Lower  Upper
Constant   -3.21107    1.23540  -2.60  0.009
Months     0.177717  0.0657308   2.70  0.007   1.19   1.05   1.36 

Figure 12.37 Logistic regression output from Minitab
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We may use p̂ðxÞ to estimate the likelihood of a junior consultant completing the complex task,
based upon her/his duration of job experience. For example,

p̂ð12Þ ¼ e�3:211þ 0:1777ð12Þ

1þ e�3:211þ 0:1777ð12Þ ¼ :254 and p̂ð24Þ ¼ e�3:211þ 0:1777ð24Þ

1þ e�3:211þ 0:1777ð24Þ ¼ :742

So, it is estimated that a consultant with just one year (12 months) of experience has about a .25
chance of successfully completing the task, compared to a probability of over .74 for someone with
two years’ experience.

The Minitab output includes sb̂1 under SE Coef. For the “utility test” of H0: b1 = 0 versus

Ha: b1 6¼ 0, the test statistic value and two–tailed P-value are

z ¼ b̂1 � 0
sb̂1

¼ :177717� 0
:0657308

¼ 2:70 P-value ¼ 2PðZ	 2:70Þ ¼ 2½1� Uð2:70Þ� ¼ :007

The null hypothesis is rejected at the .05 or .01 level, and we conclude that months of experience is a
useful predictor of a junior consultant’s ability to complete the task.

The estimated odds ratio is eb̂1 = e0.1777 = 1.19. A 95% CI for b1 is given by

b̂1 � z:025sb̂1 ¼ :177717� 1:96ð:0657308Þ ¼ ð:04888; :30655Þ

from which a 95% CI for the true odds ratio, eb1 , is ðe:04888; e:30655Þ = (1.05, 1.36). The estimated
odds ratio and the CI all appear in the output. With a high degree of confidence, for each additional
month of experience, the odds that a consultant can successfully complete the task increase by a
multiplicative factor of between 1.05 and 1.36, i.e., increase by 5–36%. ■

Months
0

0.0

P(Success)

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

Figure 12.38 Scatterplot with the fitted logistic regression function for Example 12.33
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Some software packages report the value of the chi-squared statistic z2 rather than z itself, along
with the corresponding P-value for a two-tailed test.

Example 12.34 Here is data on launch temperature (°F) and the incidence of failure for O-rings in
23 space shuttle launches prior to the Challenger disaster of January 28, 1986.

Temperature Failure Temperature Failure Temperature Failure

53 Y 68 N 75 N
57 Y 69 N 75 Y
58 Y 70 N 76 N
63 Y 70 N 76 N
66 N 70 Y 78 N
67 N 70 Y 79 N
67 N 72 N 81 N
67 N 73 N

Figure 12.39 shows JMP output from a logistic regression analysis. We have chosen to let p
denote the probability of an O-ring failure, since this is really the event of interest. Failures tended to
occur at lower temperatures and successes at higher temperatures, so the graph of p̂ðxÞ decreases as
temperature (x) increases.

The estimate of b1 is b̂1 ¼ �:2322, and the estimated standard deviation of b̂1 is sb̂1 ¼ :1082. The

value of z for testing H0: b1 = 0, which asserts that temperature does not affect the likelihood of

O-ring failure, is z = b̂1=sb̂1 ¼ �:2322=:1082 ¼ �2:15. The P-value is 2P(Z 
 −2.15) =

2(.0158) = .032. JMP reports the value of a chi-squared statistic computed as (−2.15)
2 � 4.60 (there

is a slight disparity due to rounding in the z value). Either way, the P-value indicates that H0 should
be rejected at the .05 level and, hence, that temperature at launch time has a statistically significant
effect on the likelihood of an O-ring failure. Specifically, for each 1 °F increase in launch temper-

ature, we estimate that the odds of failure are multiplied by a factor of eb̂1 ¼ e�:2322 � :79, i.e., the
odds are estimated to decrease by 21%.

fa
ilu

re

0.00

0.25

0.50

0.75

1.00

50 55 60 65 70 75 80 85
temp

0

1

Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept 15.0422911 7.378391 4.16 0.0415
temp –0.2321537 0.1082329 4.60 0.0320

Figure 12.39 Logistic regression output from JMP

12.10 Logistic Regression 811



The launch temperature for the Challenger mission was only 31 °F. Because this value is much
smaller than any temperature in the sample, it is dangerous to extrapolate the estimated relation-
ship. Nevertheless, it appears that for a temperature this small, O-ring failure is almost a sure thing.
The logistic regression gives the estimated probability at x = 31 as

p̂ð31Þ ¼ eb0 þb1ð31Þ

1þ eb0 þ b1ð31Þ ¼
e15:0423�:23215ð31Þ

1þ e15:0423�:23215ð31Þ ¼ :99961

and the odds associated with this probability are .99961/(1 −.99961) � 2563. Thus, if the logistic
regression can be extrapolated down to 31°F, the probability of failure is .99961, the probability of
success is .00039, and the predicted odds are 2563 to 1 against avoiding an O-ring failure. ■

Multiple Logistic Regression
Multiple logistic regression, a natural extension of simple logistic regression, postulates a model for
relating a categorical response variable to more than one explanatory variable. The explanatory
variables themselves may be true quantitative predictors or indicator variables coding categorical
predictors. We continue to restrict attention to a binary response, such as yes/no or happy/sad, which
may be coded as 1 or 0 (with 1 indicating the event of interest, i.e., a “success”).

With predictors x1, …, xk in the model, let pðx1; . . .; xkÞ denote the true probability of the event of
interest occurring and assume the following multiple logit function applies:

pðx1; . . .; xkÞ ¼ eb0 þb1x1 þ ��� þ bkxk

1þ eb0 þb1x1 þ ��� þbkxk
ð12:21Þ

The multiple logit function (12.21) is the obvious extension of the simple logit function (12.20) to
accommodate more than one explanatory variable. As in simple logistic regression, this logit function
can be re-written in terms of the natural log of the odds of the event of interest:

ln
pðx1; . . .; xkÞ

1� pðx1; . . .; xkÞ
� �

¼ b0 þ b1x1 þ � � � þ bkxk

Written this way, the coefficient bj (j = 1, …, k) is interpreted as the change in the log-odds of the
event of interest associated with a one-unit increase in xj, after adjusting for the effects of all the other
predictors in the model. Equivalently, ebj is the multiplicative change in odds associated with a one-
unit increase in xj after accounting for the other k – 1 predictors, i.e., ebj is the odds ratio associated
with xj.

Inference procedures in multiple logistic regression are similar to those outlined for simple logistic

regression. In particular, the point estimators b̂0; b̂1; . . .; b̂k for the unknown bj’s are based upon the
principle of maximum likelihood, and each estimator has approximately a normal sampling distri-
bution provided the sample size n is reasonably large. Several statistical software packages will
provide point estimates and estimated standard errors for the coefficients, allowing for variable utility
hypothesis tests as well as confidence intervals.

Example 12.35 The authors of the article “Building Social Capital in Forest Communities: Anal-
ysis of New Mexico’s Collaborative Forest Restoration Program” (Natural Resour. J., Fall 2007:
867–915) analyzed the factors that helped determine which proposals were funded by the
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Collaborative Forest Restoration Program (CFRP, a federally funded grant program). Data was
available on 219 proposals made in New Mexico between 2001 and 2006. The response variable of
interest is

y ¼ 1 if the grant proposal was funded
0 if the grant proposal was not funded



We will consider just a few of the predictor variables the authors used in their analysis: x1 = amount
of funding requested by the project (in $1000), x2 = percent of county residents living below the
poverty threshold, and x3 = 1 if the proposed treatment of private lands was cited by the review panel
as a weakness of the project (x3 = 0 otherwise).

Parameter estimates from software are b̂0 ¼ �1:216, b̂1 ¼ :00156, b̂2 ¼ :0327, and b̂3 ¼ �2:002.
Consider a proposal requesting $360,000 (x1 = 360) that was not criticized for its proposed treatment
of private lands (x3 = 0) in a county with a 16.6% poverty rate (x2 = 16.6); this exactly matches one
of the proposals. Then the estimated log-odds of the project being funded are

�1:216þ :00156ð360Þþ :0327ð16:6Þ � 2:002ð0Þ ¼ �:11158

and the estimated probability of being funded is

p̂ð360; 16:6; 0Þ ¼ e�:11158

1þ e�:11158
¼ :4721

(For the record, that particular proposal was funded!)
Funding request amount had little practical impact on whether a project was funded: adjusting for

poverty rate and private land use consideration, a $1000 (one-unit) increase in requested funding
actually increased the estimated odds of acceptance by e:00156 = 1.0016, i.e., by .16%. In contrast,
criticism for private land treatment was a veritable death-knell: removing the effects of the other two
variables, odds of acceptance when x3 = 1 are e�2:002 = .1351 times the acceptance odds when
x3 = 0. In other words, if a proposal was criticized in this way, the odds of acceptance were reduced
by more than 86%. ■

A model utility test of H0: b1 ¼ � � � ¼ bk ¼ 0 versus Ha: not all b’s are zero is based on the
likelihood ratio test statistic K presented in Section 9.5; most statistical software packages will
include the test statistic value and P-value when multiple logistic regression is performed. (The test is
based on the large-sample approximation mentioned at the end of Section 9.5, whereby −2ln(K) has
approximately a chi-squared distribution with k df.)

The logit functions in (12.20) and (12.21) are not the only choices for modeling the probability of
success. Two other popular options are the probit and complimentary log–log functions, both of
which are implemented in many software packages. The relative suitability of these functions to
fitting a particular data set can be assessed using various automated “goodness-of-fit” procedures,
including the deviance test and the Hosmer-Lemeshow test. Consult the text by Kutner et al. listed in
the bibliography for more information.
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Exercises: Section 12.10 (111–120)

111. A major electronics retailer sensibly
believes that customers are more likely to
redeem an emailed coupon if it’s worth
more money. With x = coupon discount
amount ($), and Y = 1 if a customer
redeems the coupon, consider a logistic
regression model with b0 = −3.75 and
b1 = 0.1.

a. Calculate and interpret both p(10) and
p(50).

b. Calculate the odds that a $10 coupon is
redeemed, then repeat for $50.

c. Interpret b1 in this context.
d. According to this model, for what dis-

count amount is there a 50–50 chance
the coupon will be redeemed?

112. In Example 12.32, the probability of cancer
metastasizing was given by the logistic
regression model with b0 = −2 and
b1 = 0.5.

a. Tabulate values of x, p(x), the odds
pðxÞ= 1� pðxÞ½ �, and the log-odds for
x = 2, 3, 4, …, 9. (In the cited article,
tumor sizes ranged from 1.7 to 9.0 cm.)

b. Explain what happens to the odds when
x is increased by 1. Your explanation
should involve the .5 that appears in the
formula for p(x).

c. Support your answer to (b) alge-
braically, starting from the formula for
p(x).

d. For what value of x are the odds 1? 5?
10?

113. Adolescents are getting less sleep that ever
before, and this can have serious behavioral
repercussions. The article “Dose-Dependent
Associations Between Sleep Duration and
Unsafe Behaviors Among US High-School
Students” (JAMA Pediatr. 2018: 1187–
1189) reported a large-scale study of
American teenagers. The investigators fit a
simple logistic regression model with the
response variable y = 1 if a teenager had
driven drunk in the last 30 days (and 0
otherwise), and x = typical number of hours

of sleep per night. Information in the article

suggests b̂1 = –.1998 and sb̂1 = .0986.

a. Test whether sleep has an effect on the
likelihood of driving drunk among
American teenagers, at the .05 signifi-
cance level.

b. Calculate a 95% confidence interval for
eb1 .

c. Interpret the confidence interval from
part (b) in terms of a one-hour decrease
in sleep.

114. The pharmaceutical industry has increas-
ingly developed “nanoformulations” for
drug delivery, but quality control at such a
small scale is tricky. The article “Quality by
Design Approach Using Multiple Linear
and Logistic Regression Modeling Enables
Microemulsion Scale Up” (Molecules
2019) describes one study to determine
how x = oil concentration (g/100 mL)
affects whether a development run meets a
certain critical quality attribute (CQA) with
respect to polydispersity. Here, y = 1 if the
CQA was achieved and = 0 if not.

x 6.0 6.0 2.0 4.0 6.0 2.0 2.0 4.0 2.0 6.0

y 0 0 1 1 0 1 1 1 1 0

x 2.0 2.0 6.0 2.0 4.0 6.0 2.0 6.0 2.0 2.0

y 1 1 0 1 0 0 1 0 1 1

x 4.5 2.0 2.0 6.0 2.0 2.0 2.0 4.5 4.0 2.0

y 0 1 1 0 1 1 1 1 0 1

Software reports coefficients b̂0 = 11.13

and b̂1 = −2.68 with estimated standard
errors 5.96 and 1.42, respectively.

a. Write out the estimated logit function,
and use it to estimate p(2), p(4), and
p(6).

b. Does the data provide convincing sta-
tistical evidence that oil concentration
affects the chance of meeting this par-
ticular CQA? Test at the .05 signifi-
cance level.
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c. Construct a 95% CI for b1, then use this
to give an interval estimate for eb1 .
Interpret the latter interval.

d. What does eb0 represent in this context?
Does that interpretation seem appro-
priate here? Why or why not?

115. Kyphosis, or severe forward flexion of the
spine, may persist despite corrective spinal
surgery. A study carried out to determine
risk factors for kyphosis reported the fol-
lowing ages (months) for 40 subjects at the
time of the operation; the first 18 subjects
did have kyphosis and the remaining 22 did
not.

Kyphosis 12 15 42 52 59 73
82 91 96 105 114 120
121 128 130 139 139 157

No kyphosis 1 1 2 8 11 18
22 31 37 61 72 81
97 112 118 127 131 140
151 159 177 206

a. Use software to fit a logistic regression
model to this data.

b. Interpret the coefficient b̂1. [Hint: It
might be more sensible to work in

terms of eb̂1 .]
c. Test whether age has a statistically

significant impact on the presence of
kyphosis.

116. Exercise 16 of Chapter 1 presented data on
the noise level (dBA) for 77 individuals
working at a particular office. In fact, each
person was also asked whether the noise
level in the office was acceptable or not.

Acceptable 55.3 55.3 55.3 55.9 55.9 55.9 55.9 56.1
56.1 56.1 56.1 56.1 56.1 56.8 56.8 57.0
57.0 57.0 57.8 57.8 57.8 57.9 57.9 57.9
58.8 58.8 58.8 59.8 59.8 59.8 62.2 62.2
65.3 65.3 65.3 65.3 68.7 69.0 73.0 73.0

Unacceptable 63.8 63.8 63.8 63.9 63.9 63.9 64.7 64.7
64.7 65.1 65.1 65.1 67.4 67.4 67.4 67.4
68.7 68.7 68.7 70.4 70.4 71.2 71.2 73.1
73.1 74.6 74.6 74.6 74.6 79.3 79.3 79.3
79.3 79.3 83.0 83.0 83.0

a. Use software to fit a logistic regression
model to this data.

b. Interpret the coefficient b̂1. [Hint: It
might be more sensible to work in

terms of eb̂1 .]
c. Construct and interpret a 95% confi-

dence interval for eb1 .

117. The article “Consumer Attitudes Toward
Genetic Modification and Other Possible
Production Attributes for Chicken” (J. Food
Distr. Res. 2005: 1–11) reported a survey of
498 randomly selected consumers concern-
ing their views on genetically modified
(GM) food. The researchers’ goal was to
model the response variable Y = 1 if a con-
sumer wants GM chicken products labeled
(and 0 otherwise) as a function of x1 = con-
sumer’s age (yr), x2 = income ($1000s), sex
(x3 = 1 if female), and whether there are
children in the consumer’s household
(x4 = 1 if yes). Estimated model parameter

values are b̂0 ¼ :8247, b̂1 ¼ :0073,

b̂2 ¼ :0041, b̂3 ¼ :9910, and b̂4 ¼ :0224.

a. Estimate the likelihood that a consumer
wants GM chicken products labeled if
that person is a 35-year-old female with
$65,000 annual income and no
children.

b. Repeat part (a) for a 35-year-old male
(keep other features the same).

c. Interpret the coefficient on age.
d. Interpret the coefficient on the sex

indicator variable.

118. Road trauma is the leading cause of death
and injury among young people in Aus-
tralia. The article “The Journey from Traffic
Offender to Severe Road Trauma Victim:
Destiny or Preventive Opportunity?” (PLoS
ONE, April 22, 2015) reported a study to
determine factors that might help predict
future serious accidents. The article inclu-
ded estimated odds ratios and 95% CIs for
true odds ratios for several variables. The
response variable here has value y = 1 if a
subject was in an accident leading to
intensive care admission or death, and 0
otherwise.
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a. Which of these four explanatory vari-
ables were associated with a decreased
likelihood of later severe road trauma?
How can you tell?

b. Which of these four explanatory variables
were not statistically significant predic-
tors in this model? How can you tell?

c. Interpret the 95% CI provided for eb4 .

119. Whale-watching is big business in Alaska,
particularly around salmon release sites
where whales tend to congregate. The
article “Humpback Whales Feed on
Hatchery-Released Juvenile Salmon” (Roy.
Soc. Open Sci. 2017) reported a study to
determine what factors help predict the
likelihood of spotting a humpback whale
when visiting one of these sites. The fol-
lowing data on x1 = days after final salmon
release, x2 = duration of visit (min), and
whether a whale was sighted are from a
recent year at Little Port Walter.

x1 x2 Whale? x1 x2 Whale?

2 15 Y 7 15 N
1 15 N 7 15 N
1 15 N 8 15 N
2 15 N 8 15 N
3 15 N 9 15 N
3 15 N 9 15 N
4 15 N 10 15 N
5 30 N 12 15 N
5 15 N 12 15 N
6 15 N 13 15 N
6 15 N 13 35 Y

(The full study investigated five sites across
several years before, during, and after sal-
mon release.)

a. Use software to fit a multiple logistic
regression model to this data, and
confirm that the estimated log-odds
function is −5.68 − .096x1 + .210x2.

b. What does the negative sign for the
coefficient �.096 signify? What does
the positive sign for the coefficient .210

signify? [Hint: The latter should not be
surprising.]

c. Estimate the probability of spotting a
humpback whale during a 30-minute
tour one week (i.e., seven days) after
the final salmon release.

d. The estimated standard errors of the
coefficients are sb̂1 = .253 and

sb̂2 = .120. Perform variable utility

tests at the .1 significance level.
e. Interpret both e�:096 and e:210 in this

context.

120. The article “Developing Coal Pillar Stabil-
ity Chart Using Logistic Regression”
(J. Rock Mech. Mining Sci. 2013: 55–60)
includes the following data on x1 = height–
width ratio, x2 = strength–stress ratio, and
y = 1 (stable) or 0 (not stable) for 29 pillars
used to stabilize current and former mines
in India.

x1 1.80 1.65 2.70 3.67 1.41 1.76 2.10 2.10

x2 2.40 2.54 0.84 1.68 2.41 1.93 1.77 1.50

y 1 1 1 1 1 1 1 1

x1 4.57 3.59 8.33 2.86 2.58 2.90 3.89 0.80

x2 2.43 5.55 2.58 2.00 3.68 1.13 2.49 1.37

y 1 1 1 1 1 1 1 0

x1 0.60 1.30 0.83 0.57 1.44 2.08 1.50 1.38

x2 1.27 0.87 0.97 0.94 1.00 0.78 1.03 0.82

y 0 0 0 0 0 0 0 0

x1 0.94 1.58 1.67 3.00 2.21

x2 1.30 0.83 1.05 1.19 0.86

y 0 0 0 0 0

a. Fit a multiple logistic regression model
to this data, and report the estimated
logit equation.

b. Perform the two variable utility tests
H0: b1 = 0 and H0: b2 = 0, each at the
.1 significance level.

c. Calculate the predicted probability of
stability for pillar 8 (x1 = 2.10,
x2 = 1.50).

d. Calculate the predicted probability of
stability for pillar 28 (x1 = 3.00,
x2 = 1.19).

Est. OR OR 95% CI

x1 = age/10 1.02 (1.01, 1.03)
x2 = 1 if male, 0 if female 1.18 (0.98, 1.42)
x3 = years with a driver’s license 0.99 (0.98, 0.99)
x4 = number of prior traffic offenses 1.10 (1.08, 1.11)
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Supplementary Exercises: (121–138)

121. In anticipation of future floods, insurance
companies must quantify the relationship
between water depth and the amount of
flood damage that will occur. The Federal
Insurance Administration provided the fol-
lowing information on x = depth of flooding
(in feet above first-floor level) and y = flood
damage (as a percentage of structural value)
for homes with no basements.

Flood
level (x)

Flood
damage (y)

Flood
level (x)

Flood
damage (y)

0 7 8 44
1 10 9 45
2 14 10 46
3 26 11 47
4 28 12 48
5 29 13 49
6 41 14 50
7 43

a. Create a scatterplot of the data, and
briefly describe what you see.

b. Does a straight-line relationship seem
appropriate for this data? Why or why
not?

122. The article “Exhaust Emissions from Four-
Stroke Lawn Mower Engines” (J. Air
Water Manage. Assoc. 1997: 945–952)
reported data from a study in which both a
baseline gasoline mixture and a reformu-
lated gasoline were used. Consider the
following observations on age (year) and
NOx emissions (g/kWh):

Engine 1 2 3 4 5
Age 0 0 2 11 7
Baseline 1.72 4.38 4.06 1.26 5.31
Reformulated 1.88 5.93 5.54 2.67 6.53

Engine 6 7 8 9 10
Age 16 9 0 12 4
Baseline .57 3.37 3.44 .74 1.24
Reformulated .74 4.94 4.89 .69 1.42

a. Construct a scatterplot of baseline vs.
reformulated NOx emissions. Comment
on what you find.

b. Construct scatterplots of NOx emissions
versus age. What appears to be the
nature of the relationship between these
two variables?

123. The presence of hard alloy carbides in high
chromium white iron alloys results in
excellent abrasion resistance, making them
suitable for materials handling in the min-
ing and materials processing industries. The
accompanying data on x = retained
austenite content (%) and y = abrasive wear
loss (mm3) in pin wear tests with garnet as
the abrasive was read from a plot in the
article “Microstructure-Property Relation-
ships in High Chromium White Iron
Alloys” (Internat. Mater. Rev. 1996:
59–82). Refer to the accompanying SAS
output.

x 4.6 17.0 17.4 18.0 18.5 22.4 26.5 30.0 34.0

y .66 .92 1.45 1.03 .70 .73 1.20 .80 .91

x 38.8 48.2 63.5 65.8 73.9 77.2 79.8 84.0

y 1.19 1.15 1.12 1.37 1.45 1.50 1.36 1.29

a. What proportion of observed variation
in wear loss can be attributed to the
simple linear regression model
relationship?

b. What is the value of the sample corre-
lation coefficient?

c. Test the utility of the simple linear
regression model using a = .01.

d. Estimate the true average wear loss
when content is 50% and do so in a way
that conveys information about relia-
bility and precision.

e. What value of wear loss would you
predict when content is 30%, and what
is the value of the corresponding
residual?
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Analysis of variance

Source DF Sum of squares Mean square F Value Prob > F
Model 1 0.63690 0.63690 15.444 0.0013
Error 15 0.61860 0.04124
C Total 16 1.25551

Root MSE 0.20308 R-square 0.5073
Dep Mean 1.10765 Adj R-sq 0.4744
C.V. 18.33410

Parameter estimates

Variable DF Parameter estimate Standard error T for H0: Parameter = 0 Prob > |T|
INTERCEP 1 0.787218 0.09525879 8.264 0.0001
AUSTCONT 1 0.007570 0.00192626 3.930 0.0013

124. An investigation was carried out to study
the relationship between speed (ft/s) and
stride rate (number of steps taken/s) among
female marathon runners. Resulting sum-
mary quantities included n = 11,

P
(speed)

= 205.4,
P

(speed)2 = 3880.08,
P

(rate) =
35.16,

P
(rate)2 = 112.681, andP

(speed)(rate) = 660.130.

a. Calculate the equation of the least
squares line that you would use to pre-
dict stride rate from speed. [Hint: x ¼P

xi=n and similarly for y; Sxy ¼P
xiyi � ðP xiÞð

P
yiÞ=n and similarly

for Sxx and Syy.]
b. Calculate the equation of the least

squares line that you would use to pre-
dict speed from stride rate.

c. Calculate the coefficient of determina-
tion for the regression of stride rate on
speed of part (a) and for the regression
of speed on stride rate of part (b). How
are these related?

d. How is the product of the two slope
estimates related to the value calculated
in (c)?

125. Suppose that x and y are positive vari-
ables and that a sample of n pairs results in
r � 1. If the sample correlation coefficient is
computed for the (x, y2) pairs, will the
resulting value also be approximately 1?
Explain.

126. In Section 12.4, we presented a formula for

the variance Vðb̂0 þ b̂1x
�Þ and a CI for

b0 þ b1x
�. Taking x� = 0 gives r2

b̂0
and a CI

for b0. Use the data of Example 12.18 to
calculate the estimated standard deviation

of b̂0 and a 95% CI for the y-intercept of the
true regression line.

127. In biofiltration of wastewater, air dis-
charged from a treatment facility is passed
through a damp porous membrane that
causes contaminants to dissolve in water
and be transformed into harmless products.
The accompanying data on x = inlet tem-
perature (°C) and y = removal efficiency
(%) was the basis for a scatterplot that
appeared in the article “Treatment of Mixed
Hydrogen Sulfide and Organic Vapors in a
Rock Medium Biofilter” (Water Environ.
Res. 2001: 426–435).

Obs Temp Removal % Obs Temp Removal %

1 7.68 98.09 17 8.55 98.27
2 6.51 98.25 18 7.57 98.00
3 6.43 97.82 19 6.94 98.09
4 5.48 97.82 20 8.32 98.25
5 6.57 97.82 21 10.50 98.41
6 10.22 97.93 22 16.02 98.51
7 15.69 98.38 23 17.83 98.71
8 16.77 98.89 24 17.03 98.79
9 17.13 98.96 25 16.18 98.87

10 17.63 98.90 26 16.26 98.76
11 16.72 98.68 27 14.44 98.58
12 15.45 98.69 28 12.78 98.73
13 12.06 98.51 29 12.25 98.45
14 11.44 98.09 30 11.69 98.37
15 10.17 98.25 31 11.34 98.36
16 9.64 98.36 32 10.97 98.45

Calculated summary quantities are
P

xi ¼
384:26,

P
yi ¼ 3149:04, Sxx = 485.00, Sxy =

36.71, and Syy = 3.50.

a. Does a scatterplot of the data suggest
appropriateness of the simple linear
regression model?

b. Fit the simple linear regression model,
obtain a point prediction of removal
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efficiency when temperature = 10.50,
and calculate the value of the corre-
sponding residual.

c. Roughly what is the size of a typical
deviation of points in the scatterplot
from the least squares line?

d. What proportion of observed variation
in removal efficiency can be attributed
to the model relationship?

e. Estimate the slope coefficient in a way
that conveys information about relia-
bility and precision, and interpret your
estimate.

f. Personal communication with the
authors of the article revealed that one
additional observation was not included
in their scatterplot: (6.53, 96.55). What
impact does this additional observation
have on the equation of the least squares
line and the values of s and R2?

128. Normal hatchery processes in aquaculture
inevitably produce stress in fish, which may
negatively impact growth, reproduction,
flesh quality, and susceptibility to disease.
Such stress manifests itself in elevated and
sustained corticosteroid levels. The article
“Evaluation of Simple Instruments for the
Measurement of Blood Glucose and Lac-
tate, and Plasma Protein as Stress Indicators
in Fish” (J. World Aquacult. Soc. 1999:
276–284) described an experiment in which
fish were subjected to a stress protocol and
then removed and tested at various times
after the protocol had been applied. The
accompanying data on x = time (min) and
y = blood glucose level (mmol/L) was read
from a plot.

x 2 2 5 7 12 13 17 18 23 24 26 28

y 4.0 3.6 3.7 4.0 3.8 4.0 5.1 3.9 4.4 4.3 4.3 4.4

x 29 30 34 36 40 41 44 56 56 57 60 60

y 5.8 4.3 5.5 5.6 5.1 5.7 6.1 5.1 5.9 6.8 4.9 5.7

Use the methods developed in this chapter
to analyze the data, and write a brief report
summarizing your conclusions (assume that

the investigators are particularly interested
in glucose level 30 min after stress).

129. The article “Evaluating the BOD POD for
Assessing Body Fat in Collegiate Football
Players” (Med. Sci. Sports Exerc. 1999:
1350–1356) reports on a new air displace-
ment device for measuring body fat. The
customary procedure utilizes the hydro-
static weighing device, which measures the
percentage of body fat by means of water
displacement. Here is representative data
read from a graph in the paper.

a. Use various methods to decide whether it
is plausible that the two techniques mea-
sure on average the same amount of fat.

b. Use the data to develop a way of pre-
dicting an HW measurement from a
BODPODmeasurement, and investigate
the effectiveness of such predictions.

130. Reconsider the situation of Exercise 123, in
which x = retained austenite content using a
garnet abrasive and y = abrasive wear loss
were related via the simple linear regression
model Y = b0 + b1x + e. Suppose that for a
second type of abrasive, these variables are
also related via the simple linear regression
model Y = c0 + c1x + e and that V(e) = r2 for
both types of abrasive. If the data set con-
sists of n1 observations on the first abrasive
and n2 on the second and if SSE1 and
SSE2 denote the two error sums of squares,
then a pooled estimate of r2 is
r̂2 ¼ SSE1 þ SSE2ð Þ= n1 þ n2 � 4ð Þ. Let

SSx1 and SSx2 denote
P ðxi � xÞ2 for the

data on the first and second abrasives,
respectively. A test of H0: b1 − c1 = 0
(equal slopes) is based on the statistic

BOD 2.5 4.0 4.1 6.2 7.1 7.0

HW 8.0 6.2 9.2 6.4 8.6 12.2

BOD 8.3 9.2 9.3 12.0 12.2

HW 7.2 12.0 14.9 12.1 15.3

BOD 12.6 14.2 14.4 15.1 15.2

HW 14.8 14.3 16.3 17.9 19.5

BOD 16.3 17.1 17.9 17.9

HW 17.5 14.3 18.3 16.2
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T ¼ b̂1 � ĉ1

r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

SSx1
þ 1

SSx2

r

When H0 is true, T has a t distribution with
n1 + n2 − 4 df. Suppose the 15 observa-
tions using the alternative abrasive give
SSx2 = 7152.5578, ĉ1 ¼ :006845, and SSE2

= .51350. Using this along with the data of
Exercise 123, carry out a test at level .05 to
see whether expected change in wear loss
associated with a 1% increase in austenite
content is identical for the two types of
abrasive.

131. Show that the ANOVA version of the
model utility test discussed in Section 12.3
(with test statistic F = MSR/MSE) is in fact
a likelihood ratio test for H0: b1 = 0 versus
Ha: b1 6¼ 0. [Hint: We have already pointed
out that the least squares estimates of b0
and b1 are the mle’s. What is the mle of b0
when H0 is true? Now determine the mle of
r2 both in X (when b1 is not necessarily 0)
and in X0 (when H0 is true).]

132. Show that the t ratio version of the model
utility test is equivalent to the ANOVA
F statistic version of the test. Equivalent
here means that rejecting H0: b1 = 0 when
either t 	 ta/2,n−2 or t 
 −ta/2,n−2 is the
same as rejecting H0 when f 	 Fa,1,n−2.

133. When a scatterplot of bivariate data shows a
pattern resembling an exponentially
increasing or decreasing curve, the follow-
ing multiplicative exponential model is
often used: Y ¼ aebx � e.
a. What does this multiplicative model

imply about the relationship between
Y′ = ln(Y) and x? [Hint: take logs on both
sides of the model equation and let b0 =
ln(a), b1 = b, e′ = ln(e), and suppose that e
has a lognormal distribution.]

b. The accompanying data resulted from
an investigation of how road pulse
duration (y, in ms, a measure of struc-
tural stress) varied with asphalt depth (x,
in mm) in a simulation of large trucks

driving 40 mph (“Comparative Study of
Asphalt Pavement Responses
Under FWD and Moving Vehicular
Loading,” J. Transp. Engr. 2016).

Fit the simple linear regression model
to this data, and check model adequacy
using the residuals.

c. Is a scatterplot of the data consistent
with the exponential regression model?
Fit this model by first carrying out a
simple linear regression analysis using
ln(y) as the response variable and x as
the explanatory variable. How good a fit
is the simple linear regression model
to the “transformed” data (i.e., the
(x, ln(y)) pairs)? What are point esti-
mates of the parameters a and b?

d. Obtain a 95% prediction interval for
pulse duration when asphalt thickness is
250 mm. [Hint: first obtain a PI for
ln(y) based on the simple linear regres-
sion carried out in (c).]

134. No tortilla chip aficionado likes soggy
chips, so it is important to identify charac-
teristics of the production process that
produce chips with an appealing texture.
The following data on x = frying time
(s) and y = moisture content (%) appeared
in the article “Thermal and Physical Prop-
erties of Tortilla Chips as a Function of
Frying Time” (J. Food Process. Preserv.
1995: 175–189).

a. Construct a scatterplot of the data and
comment.

b. Construct a scatterplot of the pairs
(ln(x), ln(y)) (i.e., transform both x and
y by logs) and comment.

c. Consider the multiplicative power
model Y = axbe. What does this model

x 5 10 15 20 25 30 45 60

y 16.3 9.7 8.1 4.2 3.4 2.9 1.9 1.3

x 40 40 190 190 267 267 420 420

y 25 36 53 55 78 91 168 201
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imply about the relationship between
y′ = ln(y) and x′ = ln(x) (assuming that e
has a lognormal distribution)?

d. Obtain a prediction interval for moisture
content when frying time is 25 s. [Hint:
first carry out a simple linear regression
of y′ on x′ and calculate an appropriate
prediction interval.]

135. Forest growth and decline phenomena
throughout the world have attracted con-
siderable public and scientific interest. The
article “Relationships Among Crown Con-
dition, Growth, and Stand Nutrition in
Seven Northern Vermont Sugarbushes”
(Canad. J. Forest Res. 1995: 386–397)
included a scatterplot of y = mean crown
dieback (%), one indicator of growth
retardation, and x = soil pH (higher pH
corresponds to less acidic soil), from which
the following observations were taken:

x 3.3 3.4 3.4 3.5 3.6 3.6 3.7 3.7 3.8 3.8

y 7.3 10.8 13.1 10.4 5.8 9.3 12.4 14.9 11.2 8.0

x 3.9 4.0 4.1 4.2 4.3 4.4 4.5 5.0 5.1

y 6.6 10.0 9.2 12.4 2.3 4.3 3.0 1.6 1.0

a. Construct a scatterplot of the data. What
model is suggested by the plot?

b. Use a statistical software package to fit
the model suggested in (a) and test its
utility.

c. Use the software package to obtain a
prediction interval for crown dieback
when soil pH is 4.0, and also a confi-
dence interval for expected crown die-
back in situations where the soil pH is
4.0. How do these two intervals com-
pare to each other? Is this result con-
sistent with what you learned in simple
linear regression? Explain.

d. Use the software package to obtain a PI
and CI when x = 3.4. How do these
intervals compare to the corresponding
intervals obtained in (c)? Is this result

consistent with what you learned in
simple linear regression? Explain.

136. The article “Validation of the Rockport
Fitness Walking Test in College Males and
Females” (Res. Q. Exerc. Sport 1994: 152–
158) recommended the following estimated
regression equation for relating y =
VO2max (L/min, a measure of cardiores-
piratory fitness) to the predictors x1 = gen-
der (female = 0, male = 1), x2 = weight (lb),
x3 = 1-mile walk time (min), and x4 = heart
rate at the end of the walk (beats/min):

y ¼ 3:5959þ :65661x1 þ :0096x2
� :0996x3 � :0080x4

a. How would you interpret the estimated
coefficient −.0996?

b. How would you interpret the estimated
coefficient .6566?

c. Suppose that an observation made on a
male whose weight was 170 lb, walk
time was 11 min, and heart rate was 140
beats/min resulted in VO2max = 3.15.
What would you have predicted for
VO2max in this situation, and what is
the value of the corresponding residual?

d. Using SSE = 30.1033 and SST =
102.3922, what proportion of observed
variation in VO2max can be attributed
to the model relationship?

e. Assuming a sample size of n = 20, carry
out a test of hypotheses to decide whe-
ther the chosen model specifies a useful
relationship between VO2max and at
least one of the predictors.

137. Investigators carried out a study to see how
various characteristics of concrete are
influenced by x1 = % limestone powder and
x2 = water–cement ratio, resulting in the
accompanying data (“Durability of Con-
crete with Addition of Limestone Powder,”
Mag. Concr. Res. 1996: 131–137).
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x1 x2 28-day comp str. (MPa) Adsorbability (%)

21 .65 33.55 8.42
21 .55 47.55 6.26
7 .65 35.00 6.74
7 .55 35.90 6.59

28 .60 40.90 7.28
0 .60 39.10 6.90

14 .70 31.55 10.80
14 .50 48.00 5.63
14 .60 42.30 7.43

a. Consider first compressive strength as
the dependent variable y. Fit a first-order
model, and determine R2

a .
b. Determine the adjusted R2 value for a

model including the interaction term and
also for the complete second-ordermodel.
Of the threemodels in parts (a)–(b),which
seems preferable?

c. Use the “best” model from part (b) to
predict compressive strength when %
limestone = 14 and water–cement ratio
= .60.

d. Repeat parts (a)–(b) with adsorbability
as the response variable. That is, fit
three models: the first-order model, one
with first-order terms plus an interac-
tion, and the complete second-order
model.

138. A sample of n = 20 companies was selec-
ted, and the values of y = stock price and
k = 15 predictor variables (such as quarterly
dividend, previous year’s earnings, and
debt ratio) were determined. When the
multiple regression model using these 15
predictors was fit to the data, R2 = .90
resulted.

a. Does the model appear to specify a
useful relationship between y and the
predictor variables? Carry out a test
using significance level .05. [Hint: The
F critical value for 15 numerator and 4
denominator df is 5.86.]

b. Based on the result of part (a), does a
high R2 value by itself imply that a
model is useful? Under what circum-
stances might you be suspicious of a
model with a high R2 value?

c. With n and k as given previously, how
large would R2 have to be for the model
to be judged useful at the .05 level of
significance?

822 12 Regression and Correlation



13Chi-Squared Tests

Introduction
In the simplest type of situation considered in this chapter, each observation in a sample is classified
as belonging to one of a finite number of categories—for example, blood type could be one of the
four categories O, A, B, or AB. With pi denoting the probability that any particular observation
belongs in category i, we wish to test a null hypothesis that completely specifies the values of all the
pi’s (such as H0: p1 = .45, p2 = .35, p3 = .15, p4 = .05). Other times, the null hypothesis specifies that
the pi’s depend on some smaller number of parameters without specifying the values of these
parameters; the values of any unspecified parameters must then be estimated from the sample data. In
either case, the test statistic will be a measure of the discrepancy between the observed numbers in the
categories and the expected numbers when H0 is true. This method, called a chi-squared test and
presented in Section 13.1, can also be applied to test the null hypothesis that the sample comes from a
particular probability distribution.

Chi-squared tests for two different situations are presented in Section 13.2. In the first, the null
hypothesis states that the pi’s are the same for several different populations. The second type of
situation involves taking a sample from a single population and cross-classifying each individual with
respect to two different categorical factors (such as religious preference and political party registra-
tion). The null hypothesis in this situation is that the two factors are independent within the
population.

13.1 Goodness-of-Fit Tests

Recall that a binomial experiment consists of n independent trials in which each trial can result in one
of two possible outcomes, S (for success) and F (for failure). The probability of success is assumed to
be constant from trial to trial, and n is fixed at the outset of the experiment. A multinomial
experiment generalizes the binomial experiment by allowing each trial to result in one of k possible
outcomes, where k � 2. For example, suppose a store accepts three different types of credit cards:
Visa, MasterCard, and American Express. A multinomial experiment would result from observing the
type of credit card used—Visa, MC, or Amex—by each of 50 randomly selected customers who pay
with a credit card.
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DEFINITION A multinomial experiment satisfies the following conditions:

1. The experiment consists of a sequence of n trials, where n is fixed in advance of the
experiment.

2. Each trial can result in one of the same k possible outcomes (also called categories).
3. The trials are independent, so that the outcome on any particular trial does not

influence the outcome on any other trial.
4. The probability that a trial results in category i is pi, which remains constant from

trial to trial.
The parameters p1, …, pk must of course satisfy pi � 0 and

P
pi ¼ 1.

If the experiment consists of selecting n individuals or objects from a population and categorizing
each one, then pi is interpreted as the proportion of the population falling in the ith category; such an
experiment will be approximately multinomial provided that n is much smaller than the population
size. In the aforementioned example, k = 3 (number of categories = number of credit cards accepted),
n = 50 (number of trials = number of customers), and pi denotes the proportion of all credit card
purchases made with type i (1 = Visa, 2 = MC, 3 = Amex).

The null hypothesis of interest at this point will specify the value of each pi. For example, suppose
the store manager believes 50% of all credit card customers use Visa, 30% MasterCard, and the
remaining 20% American Express. This belief can be expressed as the assertion

H0: p1 ¼ :5; p2 ¼ :3; p3 ¼ :2

The alternative hypothesis will state that H0 is not true—i.e., that at least one of the pi’s has a value
different from that asserted by H0 (in which case at least two must be different, since they sum to 1).
The symbol pi0 will represent the value of pi claimed by the null hypothesis. In the example just
given, p10 = .5, p20 = .3, and p30 = .2. (The symbol p10 is read “p one naught” and not “p ten.”)

Before the multinomial experiment is performed, the number of trials that will result in the ith
category (i = 1, 2, …, or k) is a random variable—just as the number of successes and the number of
failures in a binomial experiment are random variables. This random variable will be denoted by Ni

and its observed value by ni. Since each trial results in exactly one of the k categories,
P

Ni ¼ n, and
the same is true of the ni’s. As an example, an experiment with n = 50 and k = 3 might yield N1 = 22,
N2 = 13, and N3 = 15. The Ni’s (or ni’s) are called the observed counts.

When the null hypothesis H0 : p1 ¼ p10; . . .; pk ¼ pk0 is true, the expected number of trials
resulting in category i is

E Nið Þ ¼ total number of trialsÞ ðhypothesized probability of category ið Þ ¼ npi0

These are the expected counts under H0. For the case H0: p1 = .5, p2 = .3, p3 = .2 and n = 50,
E(N1) = 25, E(N2) = 15, and E(N3) = 10 when H0 is true. The expected counts, like the observed
counts, sum to n. It is customary to display both sets of counts, with the expected counts under H0 in
parentheses below the observed counts. The counts in the credit card situation under discussion would
be displayed in tabular format as

Credit card Visa MC Amex

Observed count 22 13 15
Expected count (25) (15) (10)
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A test procedure requires assessing the discrepancy between the observed and expected counts,
with H0 being rejected when the discrepancy is sufficiently large. The test statistic, originally pro-
posed by Karl Pearson around 1900, is

X
all categories

ðobserved count� expected countÞ2
expected count

¼
Xk
i¼1

ðNi � npi0Þ2
npi0

ð13:1Þ

The numerator of each term in the sum is the squared difference between observed and expected
counts. The more these differ within any particular category, the larger will be the contribution to the
overall sum. The reason for including the denominator term will be explained shortly. Since the
observed counts (the Ni’s) are random variables, their values depend on the specific sample collected,
and the test statistic (13.1) will vary in value from sample to sample. Larger values of the test statistic
indicate a greater discrepancy between the observed and expected counts, making us more apt to
reject H0. The approximate sampling distribution of (13.1) is given in the following theorem.

PEARSON’S
CHI-SQUARED
THEOREM

When H0: p1 ¼ p10; . . .; pk ¼ pk0 is true, the statistic

v2 ¼
Xk
i¼1

ðNi � npi0Þ2
npi0

has approximately a chi-squared distribution with k – 1 df. This approximation
is reasonable provided that npi0 � 5 for every i (i = 1, 2, …, k).

The chi-squared distribution was introduced in Chapter 6 and used in Chapter 8 to obtain a confi-
dence interval for the variance of a normal population. Recall that the chi-squared distribution has a
single parameter m, called the number of degrees of freedom (df) of the distribution. Analogous to the
critical value ta;m for the t distribution, v2a; m is the value such that a of the area under the v2 curve with

m df lies to the right of v2a; m (see Figure 13.1). Selected values of v2a; m are given in Appendix Table A.5.
Notice that, unlike a z or t curve, the chi-squared distribution is positively skewed and only takes on
nonnegative values.

0

Shaded area

2
,

v curve
2

Figure 13.1 A critical value for a chi-squared distribution
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The fact that df = k – 1 in the preceding theorem is a consequence of the restriction
P

Ni ¼ n:
although there are k observed counts, once any k – 1 are known, the remaining one is uniquely
determined. That is, there are only k – 1 “freely determined” cell counts, and thus k – 1 df.

CHI-SQUARED
GOODNESS-OF-FIT
TEST

Null hypothesis: H0: p1 = p10, . . ., pk = pk0
Alternative hypothesis: Ha: at least one pi does not equal pi0
Test statistic value:

v2 ¼Pk
i¼1

ðni � npi0Þ2
npi0

Rejection Region for Level a Test P-value Calculation

v2 � v2a;k�1 area under v2k�1 curve to the right
of the calculated v2

The term “goodness-of-fit” refers to the idea that we wish to see how well the observed counts of a
categorical variable “fit” a set of hypothesized population proportions. Appendix Table A.5 provides
upper-tail critical values at five a levels for each different m. Because this is not sufficiently granular
for accurate P-value information, we have also included Appendix Table A.10, analogous to
Table A.7, that facilitates making more precise P-value statements.

Example 13.1 If we focus on two different characteristics of an organism, each controlled by a
single gene, and cross a pure strain having genotype AABB with a pure strain having genotype aabb
(capital letters denoting dominant alleles and small letters recessive alleles), the resulting genotype
will be AaBb. If these first-generation organisms are then crossed among themselves (a dihybrid
cross), there will be four phenotypes depending on whether a dominant allele of either type is present.
Mendel’s laws of inheritance imply that these four phenotypes should have probabilities 9/16, 3/16,
3/16, and 1/16 of arising in any given dihybrid cross.

The article “Inheritance of Fruit Attributes in Chili Pepper” (Indian J. Hort. 2019: 86–93) reports
the phenotype counts resulting from a dihybrid cross of two chili pepper varietals popular in India
(WBC-Sel-5 and GVC-101). There are k = 4 categories corresponding to the four possible fruit-
bearing phenotypes, with the null hypothesis being

H0: p1 ¼ 9
16

; p2 ¼ 3
16

; p3 ¼ 3
16

; p4 ¼ 1
16

Since the total sample size was n = 63, the expected cell counts are 63(9/16) = 35.44, 63(3/16)
= 11.81, 11.81, and 63(1/16) = 3.94. Observed and expected counts are given in Table 13.1.
(Although one expected count is slightly less than 5, Pearson’s chi-squared theorem should still apply
reasonably well to this scenario.)

The contribution to the v2 test statistic value from the first cell is

Table 13.1 Observed and expected cell counts for Example 13.1

i = 1
Single, drooping

i = 2
Single, erect

i = 3
Cluster, drooping

i = 4
Cluster, erect

32 8 16 7
(35.44) (11.81) (11.81) (3.94)
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ðn1 � np10Þ2
np10

¼ ð32� 35:44Þ2
35:44

¼ :333

Cells 2, 3, and 4 contribute 1.230, 1.484, and 2.382, respectively, so v2 = .333 + 1.230 +
1.484 + 2.382 = 5.43. The expected value of v2 under H0 is roughly m ¼ k � 1 ¼ 3 and the standard
deviation is approximately

ffiffiffiffiffi
2m

p ¼ 2:5. So our test statistic value is only about one standard deviation
larger than what we’d expect if the null hypothesis was true, seemingly not highly contradictory to
H0.

More formally, a test with significance level .10 at 3 df requires v2:10;3, the number in the 3 df row
and .10 column of Appendix Table A.5. This critical value is 6.251. Since 5.43 < 6.251, H0 cannot be
rejected even at this rather large level of significance. (The m = 3 column of Appendix Table A.10
confirms that P-value > .10; software provides a P-value of .143.) The data is reasonably consistent
with Mendel’s laws. ■

Why not simply use
P ðNi � npi0Þ2 as the test statistic, rather than the more complicated statistic

(13.1)? Suppose, for example, that np10 = 100 and np20 = 10. Then if n1 = 95 and n2 = 5, the two
categories contribute the same squared deviations to

P
(ni – npi0)

2. Yet n1 is only 5% less than what
would be expected when H0 is true, whereas n2 is 50% less. To take relative magnitudes of the
deviations into account, we divide each squared deviation by the corresponding expected count and
then combine.

v2 for Completely Specified Probability Distributions
Frequently researchers wish to determine whether observed data is consistent with a particular
probability distribution. When the distribution and all of its parameters are completely specified,
Pearson’s chi-squared test can be applied to this scenario. Later in this section, we examine the case
when the parameters must be estimated from the available data.

Example 13.2 In a famous genetics article (“The Progeny in Generations F12 to F17 of a Cross
Between a Yellow-Wrinkled and a Green-Round Seeded Pea,” J. Genet. 1923: 255–331), the early
statistician G. U. Yule analyzed data resulting from crossing garden peas. The dominant alleles in the
experiment were Y = yellow color and R = round shape, resulting in the double dominant YR. Yule
examined 269 four-seed pods resulting from a dihybrid cross and counted the number of YR seeds in
each pod.

Let X denote the number of YR’s in a randomly selected peapod, so possible X values are 0, 1, 2,
3, 4. Based on the discussion in Example 13.1, the Mendelian laws are operative and genotypes of
individual seeds within a pod are independent of one another. Thus X has a Binð4; 9

16Þ distribution. If
for i = 1, 2, 3, 4, 5 we define pi = P(X = i – 1), then we wish to test H0: p1 = p10, …, p5 = p50, where

pi0 ¼ Pði� 1 YR›s among 4 seeds when H0 is trueÞ

¼ 4

i� 1

� �
9
16

� �i�1

1� 9
16

� �4�ði�1Þ
i ¼ 1; 2; 3; 4; 5

Substituting into this binomial pmf gives hypothesized probabilities .0366, .1884, .3634, .3115, and
.1001. Yule’s data and the expected cell counts npi0 = 269pi0 are in Table 13.2.

13.1 Goodness-of-Fit Tests 827



The test statistic value is

v2 ¼ ð16� 9:86Þ2
9:86

þ � � � þ ð26� 26:93Þ2
26:93

¼ 3:823þ � � � þ :032 ¼ 4:582

Since 4:582\v2:01;k�1 ¼ v2:01;4 ¼ 13:277, H0 is not rejected at level .01. In fact, software provides a
P-value of .333, so H0 should not be rejected at any reasonable significance level. ■

The v2 test can also be used to test whether a sample comes from a specific underlying continuous
distribution. Let X denote the variable being sampled and suppose the hypothesized pdf of X is f0(x).
As in the construction of a frequency distribution in Chapter 1, subdivide the measurement scale of
X into k disjoint intervals (–1, a1), [a1, a2), …, [ak–1, 1). The cell probabilities for i = 2, …, k – 1
specified by H0 are then

pi0 ¼ Pðai�1 �X\ aiÞ ¼
Zai
ai�1

f0ðxÞdx

and similarly for the two extreme intervals. The intervals should be chosen so that npi0 � 5 for i = 1,
…, k; often they are selected so that the pi0’s are equal. Once the pi0’s are calculated, the underlying
distribution is, in a sense, irrelevant—the chi-squared test will determine whether data is consistent
with any probability distribution that places probability pi0 on the ith specified interval.

Example 13.3 To see whether time of birth is uniformly distributed throughout a 24-hour day, we can
divide a day into one-hour periods starting at midnight (k = 24 intervals). The null hypothesis states
that f(x) is the uniform pdf on the interval [0, 24], so that pi0 = 1/24 for all i. A random sample of
1000 births from the CDC’s 2018 Natality Public Use File resulted in cell counts of 34 (midnight to
12:59 a.m.), 28, 37, 29, 31, 28, 32, 38, 73, 50, 43, 52, 58, 58, 46, 43, 51, 35, 46, 32, 53, 31, 35, and 37
(11:00 p.m. to 11:59 p.m.). Each expected “cell count” is 1000 � 1/24 = 41.67, and the resulting value
of v2 is 74.432. Since v2:01;23 ¼ 41:637, the computed value is highly significant, and the null
hypothesis is resoundingly rejected. In particular, babies were far more likely to be born in the
8:00 a.m.–8:59 a.m. window (observed count = 73) that in any other hour of the day. ■

Example 13.4 The developers of a new online tax program want it to satisfy three criteria: (1) actual
time to complete a tax return is normally distributed; (2) the mean completion time is 90 min; (3) 90%
of all users will finish their tax returns within 120 min (2 h). A pilot test of the program will utilize
120 volunteers, resulting in 120 completion time observations. This data will be used to test whether
the performance criteria are met, using a chi-squared test with k = 8 intervals.

Calculating normal probabilities requires both l and r. The target value l = 90 min is given; the
90th percentile of a normal distribution is l + 1.28r, and the criterion l + 1.28r = 120 min implies
r = 23.44 min. To divide the standard normal scale into eight equally likely intervals, we look for

Table 13.2 Observed and expected cell counts for Example 13.2

i = 1 i = 2 i = 3 i = 4 i = 5
X = 0 X = 1 X = 2 X = 3 X = 4
16 45 100 82 26

(9.86) (50.68) (97.75) (83.78) (26.93)
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the .125 quantile, .25 quantile, etc., in the z table. From Table A.3 these values, which form the
boundary points of our intervals, have z-scores equal to

�1:15 �:675 �:32 0 :32 :675 1:15

For l = 90 and r = 23.44, these boundary points become

63:04 74:18 82:50 90:00 97:50 105:82 116:96

(Completion times obviously cannot be negative. The area to the left of x = 0 under this curve is
negligible, so this issue is not of concern here.) If we define pi = the probability a randomly selected
completion time falls in the ith interval defined by the above boundary points, then the goal is to test
H0: p1 ¼ :125; . . .; p8 ¼ :125.

Suppose the observed counts are as shown in the accompanying table; the expected count for each
interval is npi0 = (120)(.125) = 15.

Lower endpoint of interval 0 63.04 74.18 82.50 90.00 97.50 105.82 116.96

Observed count 21 17 12 16 10 15 19 10
Expected count (15) (15) (15) (15) (15) (15) (15) (15)

The resulting test statistic value is

v2 ¼ ð21� 15Þ2
15

þ � � � þ ð10� 15Þ2
15

¼ 7:73

The corresponding P-value (using Table A.10 at df = 8 – 1 = 7) exceeds .100; statistical software
gives P-value = .357. Thus we have no reason to reject H0; the 120 observations are consistent with a
N(90, 23.44) population distribution, as desired. ■

Goodness-of-Fit Tests for Composite Hypotheses
The goodness-of-fit test based on Pearson’s chi-squared theorem involves a simple null hypothesis, in
the sense that each pi0 is a specified number, so that the expected cell counts when H0 is true are
completely determined. But in some situations, H0 states only that the pi’s are functions of other
parameters h1, …, hm without specifying the values of these hj’s.

For example, a population may be in equilibrium with respect to proportions of the three genotypes
AA, Aa, and aa. With p1, p2, and p3 denoting these proportions (probabilities), one may wish to test

H0 : p1 ¼ h2; p2 ¼ 2hð1� hÞ; p3 ¼ ð1� hÞ2, where h represents the proportion of gene A in the
population. This hypothesis is composite because knowing that H0 is true does not uniquely deter-
mine the cell probabilities and expected cell counts, but only their general form. More generally, the
null hypothesis now states that each pi is a function of a small number of parameters h = (h1, …, hm)
with the hj’s otherwise unspecified:

H0: p1 ¼ p1ðhÞ; . . .; pk ¼ pkðhÞ
Ha: the hypothesis H0 is not true

ð13:2Þ
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In the genotype example,m = 1 (there is only one h), p1(h) = h2, p2(h) = 2h(1 – h), and p3(h) = (1 – h)2.
To carry out a v2 test, the unknown h’s must first be estimated.

In the case k = 2, there is really only a single rv, N1 (since N1 + N2 = n), which has a binomial
distribution. The joint probability that N1 = n1 and N2 = n2 is then

PðN1 ¼ n1;N2 ¼ n2Þ ¼ n
n1

� �
pn11 p

n2
2 / pn11 p

n2
2

where p1 + p2 = 1 and n1 + n2 = n. For general k, the joint distribution of N1, …, Nk is the multi-
nomial distribution (Section 5.1) with

PðN1 ¼ n1; . . .;Nk ¼ nkÞ / pn11 p
n2
2 � � � � � pnkk

which, when H0 is true, becomes

PðN1 ¼ n1; . . .;Nk ¼ nkÞ / ½p1ðhÞ�n1 � � � � � ½pkðhÞ�nk ð13:3Þ

METHOD
OF MULTINOMIAL
ESTIMATION

Let n1, n2, …, nk denote the observed values of N1, …, Nk. Then

ĥ1; . . .; ĥm are those values of the hj’s that maximize Expression (13.3),
that is, the maximum likelihood estimates with respect to the multinomial
model.

Example 13.5 In humans there is a blood group, the MN group, that is composed of individuals
having one of three blood types: M, MN, or N. Type is determined by two alleles, and there is no
dominance, so the three possible genotypes give rise to three phenotypes. A population consisting of
individuals in the MN group is in equilibrium if

PðMÞ ¼ p1 ¼ h2 PðMNÞ ¼ p2 ¼ 2hð1� hÞ PðNÞ ¼ p3 ¼ ð1� hÞ2

for some h. Suppose a sample from such a population yielded the results shown in Table 13.3.

Then Expression (13.3) becomes

½p1ðhÞ�n1 ½p2ðhÞ�n2 ½p3ðhÞ�n3 ¼ ½h2�n1 ½2hð1� hÞ�n2 ½ð1� hÞ2�n3
¼ 2n2 � h2n1 þ n2 � ð1� hÞn2 þ 2n3

Maximizing this with respect to h (or, equivalently, maximizing the natural logarithm of this quantity,
which is easier to differentiate) yields

Table 13.3 Observed counts for Example 13.5

Type M MN M
Observed count 125 225 150 n = 500
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ĥ ¼ 2n1 þ n2
½ð2n1 þ n2Þþ ðn2 þ 2n3Þ� ¼

2n1 þ n2
2n

With n1 = 125 and n2 = 225, ĥ ¼ 475=1000 ¼ :475. ■

Once h = (h1, …, hm) has been estimated by ĥ ¼ ðĥ1; . . .; ĥmÞ, the estimated expected cell count

for the ith category is np̂i ¼ npiðĥÞ. These are now used in place of the npi0’s in Expression (13.1) to
specify a v2 statistic. The following theorem was proved by R. A. Fisher in 1924 as a generalization
of Pearson’s chi-squared test.

FISHER’S
CHI-SQUARED
THEOREM

Under general “regularity” conditions on h1, …, hm and the pi(h)’s, if h1, …,
hm are estimated by maximizing the multinomial expression (13.3), the rv

v2 ¼
Xk
i¼1

ðNi � nP̂iÞ2
nP̂i

¼
Xk
i¼1

½Ni � npiðĥÞ�2
npiðĥÞ

has approximately a chi-squared distribution with k – 1 – m df when H0 of
(13.2) is true. An approximately level a test of H0 versus Ha is then to reject H0

if v2 � v2a;k�1�m.

In practice, the test can be used if npiðĥÞ� 5 for every i.

Notice that the number of degrees of freedom is reduced by the number of hj’s estimated.

Example 13.6 (Example 13.5 continued) With ĥ ¼ :475 and n = 500, the estimated expected cell
counts are

np̂1 ¼ np1ðĥÞ ¼ n � ĥ2 ¼ 500 � ð:475Þ2 ¼ 112:81

np̂2 ¼ np2ðĥÞ ¼ n � 2ĥð1� ĥÞ ¼ 500 � 2ð:475Þð:525Þ ¼ 249:38

np̂3 ¼ np3ðĥÞ ¼ n � ð1� ĥÞ2 ¼ 500 � ð:525Þ2 ¼ 137:81

Notice that these estimated expected counts sum to n = 500. Then

v2 ¼ ð125� 112:81Þ2
112:81

þ ð225� 249:38Þ2
249:38

þ ð150� 137:81Þ2
137:81

¼ 4:78

Since v2:05;k�1�m ¼ v2:05;3�1�1 ¼ v2:05;1 ¼ 3:843 and 4.78 � 3.843, H0 is rejected at the .05 signifi-
cance level (software provides P-value = .029). Therefore, the data does not conform to the proposed
equilibrium model. Even using the h estimate that “fits” the data best, the expected counts under the
null model are too discordant with the observed counts. ■

Example 13.7 Consider a series of games between two teams, I and II, that terminates as soon as
one team has won four games (with no possibility of a tie)—this is the “best of seven” format used for
many professional league play-offs. A simple probability model for such a series assumes that
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outcomes of successive games are independent and that the probability of team I winning any
particular game is a constant h. We arbitrarily designate team I the better team, so that h � .5. Any
particular series can terminate after 4, 5, 6, or 7 games. Let p1(h), p2(h), p3(h), p4(h) denote the
probability of termination in 4, 5, 6, and 7 games, respectively. Then

p1ðhÞ ¼ PðI wins in 4 gamesÞþPðII wins in 4 gamesÞ
¼ h4 þ 1� hð Þ4

p2ðhÞ ¼ PðI wins 3 of the first 4 and the fifthÞ
þPðI loses 3 of the first 4 and the fifthÞ

¼ 4

3

� �
h3ð1� hÞ � hþ 4

1

� �
hð1� hÞ3 � ð1� hÞ

¼ 4h 1� hð Þ h3 þ 1� hð Þ3
h i

p3ðhÞ ¼ 10h2ð1� hÞ2½h2 þð1� hÞ2�
p4ðhÞ ¼ 20h3ð1� hÞ3

The Mathematics Magazine article “Seven-Game Series in Sports” by Groeneveld and Meeden tested
the fit of this model to results of National Hockey League playoffs during the period 1943–1967,
when league membership was stable. The data appears in Table 13.4.

The estimated expected cell counts are 83piðĥÞ, where ĥ is the value of h that maximizes the
multinomial expression

h4 þ 1� hð Þ4
n o15

� 4h 1� hð Þ h3 þ 1� hð Þ3
h in o26

� 10h2 1� hð Þ2 h2 þ 1� hð Þ2
h in o24

� 20h3 1� hð Þ3
n o18

ð13:4Þ

Standard calculus methods fail to yield a nice formula for the maximizing value ĥ, so it must be

computed using numerical methods. The result is ĥ ¼ :654, from which piðĥÞ and the estimated
expected cell counts in Table 13.4 were computed. The resulting test statistic value is v2 = .360,
much lower than the critical value v2:10;k�1�m ¼ v2:10;4�1�1 ¼ v2:10;2 ¼ 4:605. There is thus no reason to
reject the simple model as applied to NHL playoff series, at least for that early era.

The cited article also considered World Series data for the period 1903–1973. For the preceding
model, v2 = 5.97 � 4.605, so the model does not seem appropriate. The suggested reason for this is
that for this simple model it can be shown that

Pðseries lasts exactly six games j series lasts at least six gamesÞ � :5; ð13:5Þ

whereas of the 38 best-of-seven series that actually lasted at least six games, only 13 lasted exactly
six. The following alternative model is then introduced:

Table 13.4 Observed and expected counts for the simple model

i = 1 i = 2 i = 3 i = 4
4 games 5 games 6 games 7 games

15 26 24 18 n = 83
(16.351) (24.153) (23.240) (19.256)
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p1ðh1; h2Þ ¼ h41 þð1� h1Þ4 p3ðh1; h2Þ ¼ 10h21 1� h1ð Þ2h2
p2ðh1; h2Þ ¼ 4h1ð1� h1Þ½h31 þð1� h1Þ3� p4ðh1; h2Þ ¼ 10h21ð1� h1Þ2ð1� h2Þ

The first two pi’s are identical to the simple model, while h2 is the conditional probability of (13.5),

which can now be any number between zero and one. The values of ĥ1 and ĥ2 that maximize the

multinomial expression analogous to (13.4) are determined numerically as ĥ1 ¼ :614 and ĥ2 ¼ :342.
A summary appears in Table 13.5, and v2 = .384. Two parameters are estimated, so df = k – 1 – m =
4 – 1 – 2 = 1 and :384\v2:10;1 ¼ 2:706, indicating a good fit of the data to this new model.

■

One of the regularity conditions on the hj’s in Fisher’s theorem is that they be functionally
independent of one another. That is, no single hj can be determined from the values of other hj’s, so
that m is the number of functionally independent parameters estimated. A general rule for degrees of
freedom in a chi-squared test is the following.

GENERAL v2

DF RULE v2df ¼ number of freely
determined cell counts

� �
� number of independent

parameters estimated

� �

This rule will be used in connection with several different chi-squared tests in the next section.

v2 for Probability Distributions with Parameter Values Unspecified
In Examples 13.2–13.4, we considered goodness-of-fit tests to assess whether quantitative data was
consistent with a particular distribution, such as Binð4; 9

16Þ or N(90, 23.44). Pearson’s chi-squared
theorem could be applied because all model parameters were completely specified. But quite often
researchers wish to determine whether their data conforms to any member of a particular family—any
Poisson distribution, any Weibull distribution, etc. To use the v2 test to see whether the distribution is
Poisson, for example, the parameter l must be estimated. In addition, because there are actually an
infinite number of possible values of a Poisson variable, these values must be grouped so that there
are a finite number of cells.

Example 13.8 Table 13.6 presents count data on X = the number of egg pouches produced by B.
alexandrina snails that were subjected to both parasitic infection and drought stress (meant to simulate
the effects of climate change), as reported in the article “One Stimulus, Two Responses: Host and
Parasite Life-History Variation in Response to Environmental Stress” (Evolution 2016: 2640–2646).

Table 13.5 Observed and expected counts for the more complex model

4 games 5 games 6 games 7 games

12 16 13 25
(10.85) (18.08) (12.68) (24.39)

Table 13.6 Observed counts for Example 13.8

Cell i = 1 i = 2 i = 3 i = 4 i = 5
No. of egg pouches 0 1 2 3 � 4

Observed count 44 2 5 1 9

13.1 Goodness-of-Fit Tests 833



Denoting the sample values by x1, …, x61, 44 of the xi’s were 0, two were 1, and so on. The nine
observed counts in the last cell were 4, 5, 6, 6, 7, 11, 13, 15, and 17, but these have been collapsed
into a single “� 4” category in order to ensure that all expected counts will be at least 5.

The authors considered fitting a Poisson distribution to the data; let l denote the Poisson
parameter. The estimate of l required for Fisher’s v2 procedure is obtained by maximizing the
multinomial expression (13.3). The cell probabilities are

piðlÞ ¼ PðX ¼ i� 1Þ ¼ e�lli�1

ði� 1Þ! i ¼ 1; 2; 3; 4

p5ðlÞ ¼ PðX ¼ 4Þ ¼ 1�
X3
x¼0

e�llx

x!

so the right-hand side of (13.3) becomes

e�ll0

0!

� �44
e�ll1

1!

� �2
e�ll2

2!

� �5
e�ll3

3!

� �1
1�

X3
x¼0

e�llx

x!

" #9
ð13:6Þ

There is no nice formula for the maximizing value of l in Expression (13.6), so it must be obtained
numerically. ■

While maximizing Expression (13.6) with respect to l is challenging, there is an alternative way to
estimate l: apply the method of maximum likelihood from Chapter 7 to the full sample X1; . . .;Xn.
Because parameter estimates are usually much more difficult to compute from the multinomial
likelihood function (13.3) than from the full-sample likelihood, they are often computed using this
latter method. Using Fisher’s critical value v2a;k�1�m then results in an approximate level a test.

Example 13.9 (Example 13.8 continued) The likelihood of the observed sample x1, …, x61 under a
Poisson(l) model is

LðlÞ ¼ pðx1; lÞ � � � pðx61; lÞ ¼ e�llx1

x1!
� � � � � e

�llx61

x61!
¼ e�61llRxi

x1! � � � � � x61! ¼
e�61ll99

x1! � � � � � x61!

The value of l for which this is maximized—i.e., the maximum likelihood estimate of l—is
l̂ ¼P xi=n ¼ 99=61 ¼ 1:623. Using l̂ ¼ 1:623, the estimated expected cell counts are computed
from npiðl̂Þ, where n = 61. For example,

np1ðl̂Þ ¼ 61 � e
�1:623ð1:623Þ0

0!
¼ ð61Þð:1973Þ ¼ 12:036

Similarly, np2ðl̂Þ ¼ 19:534, np3ðl̂Þ ¼ 15:852, and np4ðl̂Þ ¼ 8:576, from which the last count is
np5ðl̂Þ ¼ 61� ½12:036þ � � � þ 8:576� ¼ 5:002. Notice that, as planned, all of the estimated
expected cell counts are � 5, as required for the accuracy of chi-squared tests. Then
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v2 ¼ ð44� 12:036Þ2
12:036

þ � � � þ ð9� 5:002Þ2
5:002

¼ 117:938

Since m = 1 and k = 5, at level .05 we need v2:05;5�1�1 ¼ v2:05;3 ¼ 7:815. Because 117.938 > 7.815,
we strongly reject H0 at the .05 significance level (in fact, with such a ridiculously large test statistic
value, H0 is rejected at any reasonable a).

The largest contributor to the v2 statistic here is the number of 0’s in the sample: 44 were observed,
but under a Poisson model only 12.036 are expected. This excess of zeros often occurs with “count”
data, and statisticians have developed zero-inflated versions of the Poisson and other distributions to
accommodate this reality. ■

When model parameters are estimated using full-sample maximum likelihood, it is known that the
true level a critical value falls between v2a;k�1�m and v2a;k�1. So, applying Fisher’s chi-squared method
to situations such as Example 13.9 will occasionally lead to incorrectly rejecting H0, though in
practice this is uncommon. Sometimes even the maximum likelihood estimates based on the full
sample are quite difficult to compute. This is the case, for example, for the two-parameter generalized
negative binomial distribution (Exercise 17). In such situations, method-of-moments estimates are
often used and the resulting v2 value compared to v2a;k�1�m, although it is not known to what extent
the use of moments estimators affects the true critical value.

In theory, the chi-squared test can also be used to test whether a sample comes from a specified
family of continuous distributions, such as the exponential family or the normal family. However,
when the parameter values are not specified, the goodness-of-fit test is rarely used for this purpose.
Instead, practitioners use one or more of the test procedures mentioned in connection with probability
plots in Section 4.6, such as the Shapiro–Wilk or Anderson–Darling test. For example, the Shapiro–
Wilk procedure tests the hypotheses

H0: the population from which the sample was drawn is normal
Ha:H0 is not true

A P-value is calculated based on a test statistic similar to the correlation coefficient associated with
the points in a normal probability plot. These procedures are generally considered superior to the chi-
squared tests of this section for continuous families; in particular, they do not rely on creating
arbitrary class intervals.

More on the Goodness-of-Fit Test
When one or more expected counts are less than 5, the chi-squared distribution does not necessarily
accurately approximate the sampling distribution of the test statistic (13.1). This can occur either
because the sample size n is small or because one of the hypothesized proportions pi0 is small. If a
larger sample is not available, a common practice is to sensibly “merge” some of the categories with
small expected counts, so that the expected count for the merged category is larger. This might occur,
for example, if we examined the political party affiliation of a sample of graduate students, catego-
rized as Republican, Democrat, Libertarian, Green, Peace and Freedom, and Independent. The counts
for the nonmajor parties might be quite small, in which case we could combine them to form, say,
three categories: Republican, Democrat, and Other. The downside of this technique is that infor-
mation has been discarded—two students belonging to different political parties (e.g., Libertarian and
Green) are no longer distinguishable.
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Although the chi-squared test was developed to handle situations in which k > 2, it can also be
used when k = 2. The null hypothesis in this case can be stated as H0: p1 = p10, since the relations
p2 = 1 – p1 and p20 = 1 – p10 make the inclusion of p2 = p20 in H0 redundant. The alternative
hypothesis is Ha: p1 6¼ p10. These hypotheses can also be tested using a two-tailed one-proportion
z test with test statistic

Z ¼ ðN1=nÞ � p10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p10ð1� p10Þ

n

r ¼ P̂1 � p10ffiffiffiffiffiffiffiffiffiffiffiffi
p10p20

n

r

In fact, the two test procedures are completely equivalent. This is because it can be shown that
Z2 = v2 (see Exercise 12) and z2a=2 ¼ v2a;1, so that v2 � v2a;1 if and only if jZj � za=2.

1 In other words,

the two-tailed z test from Chapter 9 rejects H0 if and only if the chi-squared goodness-of-fit test does.
However, if the alternative hypothesis is either Ha: p1 > p10 or Ha: p1 < p10, the chi-squared test
cannot be used. One must then revert to an upper- or lower-tailed z test.

As is the case with all test procedures, one must be careful not to confuse statistical significance
with practical significance. A computed v2 that leads to the rejection of H0 may be a result of a very
large sample size rather than any practical differences between the hypothesized pi0’s and true pi’s.
Thus if p10 ¼ p20 ¼ p30 ¼ 1

3, but the true pi’s have values .330, .340, and .330, a large value of v2 is
sure to arise with a sufficiently large n. Before rejecting H0, the p̂i’s should be examined to see
whether they suggest a model different from that of H0 from a practical point of view.

Exercises: Section 13.1 (1–18)

1. What conclusion would be appropriate for
an upper-tailed chi-squared test in each of
the following situations?
a. a = .05, df = 4, v2 = 12.25
b. a = .01, df = 3, v2 = 8.54
c. a = .10, df = 2, v2 = 4.36
d. a = .01, k = 6, v2 = 10.20

2. Say as much as you can about the P-value
for an upper-tailed chi-squared test in each
of the following situations:
a. v2 = 7.5, df = 2
b. v2 = 13.0, df = 6
c. v2 = 18.0, df = 9
d. v2 = 21.3, k = 5
e. v2 = 5.0, k = 4

3. A statistics department at a large university
maintains a tutoring center for students in its
introductory service courses. The center has
been staffed with the expectation that 40% of
its clientswould be from thebusiness statistics

course, 30% from engineering statistics, 20%
from the statistics course for social science
students, and the other 10% from the course
for agriculture students. A random sample of
n = 120 clients revealed 52, 38, 21, and 9
from the four courses. Does this data suggest
that the percentages on which staffing was
based are not correct? State and test the
relevant hypotheses using a = .05.

4. It is hypothesized that when homing
pigeons are disoriented in a certain manner,
they will exhibit no preference for any
direction of flight after takeoff (so that the
direction X should be uniformly distributed
on the interval from 0° to 360°). To test
this, 120 pigeons were disoriented, let
loose, and the direction of flight of each
was recorded; the resulting data follows.
Use the chi-squared test at level .10 to see
whether the data supports the hypothesis.

1The fact that z2a=2 ¼ v2a;1 is a consequence of the relationship between the standard normal distribution and the chi-
squared distribution with 1 df: if Z * N(0, 1), then by definition Z2 has a chi-squared distribution with m = 1. See
Section 6.3.
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Direction 0–<45° 45–<90° 90–<135°
Frequency 12 16 17

Direction 135–<180° 180–<225° 225–<270°
Frequency 15 13 20

Direction 270–<315° 315–<360°
Frequency 17 10

5. An information retrieval system has ten stor-
age locations. Information has been stored
with the expectation that the long-run pro-
portion of requests for location i is given by
the expression pi ¼ ð5:5� ji� 5:5jÞ=30.
A sample of 200 retrieval requests gave the
following frequencies for locations 1–10,
respectively: 4, 15, 23, 25, 38, 31, 32, 14, 10,
and 8. Use a chi-squared test at significance
level .10 to decide whether the data is con-
sistent with the a priori proportions (use the
P-value approach).

6. The article “Racial Stereotypes in Chil-
dren’s Television Commercials” (J. Adver.
Res. 2008) reported the following fre-
quencies with which characters of different
ethnicities appeared in recorded commer-
cials aired on Philadelphia television
stations.

Ethnicity African–American Asian Caucasian Hispanic

Frequency 57 11 330 6

Census data at the time reported the popu-
lation proportions for these four ethnic
groups was .177, .032, .734, and .057,
respectively. Does the data suggest that the
true proportions in commercials are differ-
ent from the census proportions? Carry out
a test of appropriate hypotheses using a
significance level of .01.

7. A retail bookstore manager is re-evaluating
weekday staffing by looking at recent sales.
The accompanying table summarizes a
sample of 92 recent weekday sales.

Weekday Monday Tuesday Wednesday Thursday Friday

Number
of sales

22 13 16 17 24

Assuming these sales are representative of
all weekday sales at the bookstore, does the

data indicate that such sales are not evenly
distributed throughout the week?

8. Benford’s Law, introduced in Chapter 3
Exercise 19, postulates that the lead digits
(1, 2, …, 9) in a large data set should fol-
low the rule

P lead digit is dð Þ ¼ log10
dþ 1
d

� �

(So, for example, the proportion of
numbers with a leading 1 is predicted to
be log10(2) � .3, and the probabilities
decrease as d increases.) The author of
the article “Benford’s Law Applies to
Online Social Networks” (PLoS One
2015) used Twitter’s API to randomly
sample 78,226 Twitter users and record
the number of followers each person has.
The lead digits of those counts are
summarized below.

Lead
digit 1 2 3 4 5 6 7 8 9

Fre-
quency

26,286 14,395 9923 7246 5737 4641 3834 3348 2816

Does the data indicate that the lead digits of
the variable “number of Twitter followers”
indeed conforms to Benford’s Law? Test at
the .05 significance level.

9. The response time of a computer system to
a request for a certain type of information is
hypothesized to have an exponential dis-
tribution with parameter k = 1 [so if
X = response time, the pdf of X under H0 is
f0(x) = e–x for x > 0].
a. If you had observed X1, X2, …, Xn and

wanted to use the chi-squared test with
five class intervals having equal proba-
bility under H0, what would be the
resulting class intervals?

b. Carry out the chi-squared test using the
following data resulting from a random
sample of 40 response times:

.10 .99 1.14 1.26 3.24 .12 .26 .80

.79 1.16 1.76 .41 .59 .27 2.22 .66

.71 2.21 .68 .43 .11 .46 .69 .38

.91 .55 .81 2.51 2.77 .16 1.11 .02
2.13 .19 1.21 1.13 2.93 2.14 .34 .44

13.1 Goodness-of-Fit Tests 837

http://dx.doi.org/10.1007/978-3-030-55156-8_3
http://dx.doi.org/10.1007/978-3-030-55156-8_3


10. a. Show that another expression for the chi-
squared statistic (13.1) is

v2 ¼
Xk
i¼1

N2
i

npi0
� n

Why is it more efficient to compute v2

using this formula?
b. When the null hypothesis is H0: p1 ¼

� � � ¼ pk ¼ 1=k (i.e., pi0 = 1/k for all i),
how does the formula of part (a) sim-
plify? Use the simplified expression to
calculate v2 for the pigeon/direction data
in Exercise 4.

11. a. Having obtained a random sample from
a population, you wish to use a chi-
squared test to decide whether the pop-
ulation distribution is standard normal.
If you base the test on six class intervals
having equal probability under H0, what
should the class intervals be?

b. If you wish to use a chi-squared test to
test H0: the population distribution is
normal with l = .5, r = .002 and the
test is to be based on six equiprobable
(under H0) class intervals, what should
these intervals be?

c. Use the chi-squared test with the inter-
vals of part (b) to decide, based on the
following 45 bolt diameters, whether
bolt diameter is a normally distributed
variable with l = .5 in., r = .002 in.

.4974 .4976 .4991 .5014 .5008 .4993

.4994 .5010 .4997 .4993 .5013 .5000

.5017 .4984 .4967 .5028 .4975 .5013

.4972 .5047 .5069 .4977 .4961 .4987

.4990 .4974 .5008 .5000 .4967 .4977

.4992 .5007 .4975 .4998 .5000 .5008

.5021 .4959 .5015 .5012 .5056 .4991

.5006 .4987 .4968

12. Let p1 denote the proportion of successes in
a particular population. The test statistic
value in Chapter 9 for testing H0: p1 = p10
was z ¼ ðp̂1 � p10Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p10p20=n

p
, where

p20 = 1 – p10. Show that for the case k = 2,
Pearson’s chi-squared statistic value

satisfies v2 = z2. [Hint: First show that
(n1 – np10)

2 = (n2 – np20)
2.]

13. Consider a large population of families in
which each family has exactly three chil-
dren. If the sexes of the three children in
any family are independent of one another,
the number of male children in a randomly
selected family will have a binomial dis-
tribution based on three trials.

a. Suppose a random sample of 160 fami-
lies yields the following results. Test the
relevant hypotheses by proceeding as in
Example 13.5.

Number of Male Children 0 1 2 3

Frequency 14 66 64 16

b. Suppose a random sample of families
resulted in observed frequencies of 15,
20, 12, and 3, respectively. Would the
chi-squared test be based on the same
number of degrees of freedom as the test
in part (a)? Explain.

14. A certain type of flashlight is sold with the
four batteries included. A random sample
of 150 flashlights is obtained, and the
number of defective batteries in each is
determined, resulting in the following data:

Number defective 0 1 2 3 4

Frequency 26 51 47 16 10

Let X be the number of defective batteries in
a randomly selected flashlight. Test the null
hypothesis that the distribution of X is
Bin(4, h). That is, with pi = P(i defectives),
test

H0: pi ¼ 4
i

� �
hið1� hÞ4�i

i ¼ 0; 1; 2; 3; 4

[Hint: To obtain the mle of h, write the
multinomial likelihood (the function to be
maximized) as hu(1 – h)v, where the
exponents u and v are linear functions of
the cell counts. Then take the natural log,
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differentiate with respect to h, equate the

result to 0, and solve for ĥ.]
15. An article in Annals of Mathematical

Statistics reports the following data on the
number of borers (i.e., insects that bore into
wood) in each of 120 groups of borers.
Does the Poisson pmf provide a plausible
model for the distribution of the number of
borers in a group? [Hint: Add the fre-
quencies for 7, 8, …, 12 to establish a
single category “� 7.”]

Number of
Borers 0 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 24 16 16 18 15 9 6 5 3 4 3 0 1

16. Modeling the proliferation of E. coli in
farm animals is critical to a safe food sup-
ply. The article “Ecological and Genetic
Determinants of Plasmid Distribution in
E. coli” (Environ. Biol. 2016: 4230–4239)
describes a study of bacterial replication in
grazing cattle with low frequencies of
antibiotic-resistant genes. The following
data is provided on X = number of repli-
cons for 527 bacterial isolates:

No. of replicons 0 1 2 3 4

Frequency 139 184 154 34 16

a. The article’s authors examined whether
X follows a Poisson distribution. Use the
data to determine the maximum likeli-
hood estimate of the parameter l.

b. Perform a v2 test at the .05 significance
level by treating the last category as
“� 4” so that the hypothesized proba-
bilities sum to 1. [Hint: Refer back to
Example 13.9.]

17. The following data on X = number of cor-
rosion defects per segment is consistent
with data on one of the pipelines described
in the article “The Negative Binomial
Distribution as a Model for External Cor-
rosion Defect Counts in Buried Pipelines”
(Corr. Sci. 2015: 114–131):

x 0 1 2 3 4 5 6 7 8
Freq. 17 15 17 19 9 5 4 5 3

x 9 10 11 12 13 14 15 16 17
Freq. 0 3 0 1 1 2 1 0 1

The authors propose a generalized negative
binomial model for X, which has
pmf nbðx; r; pÞ ¼ kðr; xÞ � prð1� pÞx for
x = 0, 1, 2, …, where k(r, 0) = 1 and

kðr; xÞ ¼ rðrþ 1Þ � � � ðrþ x� 1Þ
x!

for x� 1

Based on these n = 103 randomly selected
segments, the authors estimate the negative
binomial parameters to be r̂ ¼ 1:272 and
p̂ ¼ :258. Test the hypothesis that the data
is consistent with a generalized negative
binomial distribution at the .10 significance
level. [Suggestion: To ensure that all
expected counts are � 5, define “cells”
by x = 0, 1, …, 6, 7–8, and � 9.]

18. Each headlight on an automobile undergo-
ing an annual vehicle inspection can be
focused either too high (H), too low (L), or
properly (N). Checking the two headlights
simultaneously (and not distinguishing
between left and right) results in the six
possible outcomes HH, LL, NN, HL, HN,
and LN. If the probabilities (population
proportions) for the single headlight focus
direction are P(H) = h1, P(L) = h2, and
P(N) = 1 – h1 – h2 and the two headlights
are focused independently of each other,
the probabilities of the six outcomes for a
randomly selected car are the following:

p1 ¼ h21 p2 ¼ h22 p3 ¼ ð1� h1 � h2Þ2
p4 ¼ 2h1h2 p5 ¼ 2h1ð1� h1 � h2Þ
p6 ¼ 2h2ð1� h1 � h2Þ

Use the accompanying data to test the null
hypothesis

H0: p1 ¼ p1ðh1; h2Þ; . . .; p6 ¼ p6ðh1; h2Þ

where the pi(h1, h2)’s are given previously.
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Outcome HH LL NN HL HN LN
Frequency 49 26 14 20 53 38

[Hint: Write the multinomial likelihood as a
function of h1 and h2, take the natural log,
then obtain @=@h1 and @=@h2, equate them

to 0, and solve for ĥ1; ĥ2.]

13.2 Two-Way Contingency Tables

In the previous section, we discussed inferential methods for a single categorical variable (e.g.,
genotype), as well as for a quantitative variable whose values have been partitioned into disjoint
categories. We now study problems involving two categorical variables. There are two commonly
encountered situations in which such data arises:

1. There are I populations of interest, and each population is divided into the same J categories.
A sample is taken from the ith population (i = 1, …, I), and the number of individuals in each of
the J categories is recorded. For example, customers of each of I = 3 department store chains
might have available the same J = 5 payment categories: cash, check, credit card, debit card, and
Apple Pay.

2. There is a single population of interest, with each individual in the population categorized with
respect to two different factors. There are I categories associated with the first factor and J cate-
gories associated with the second factor. A single sample is taken, and individuals are “cross-
classified” by the two factors. As an example, customers making a department store purchase
might be classified according to both the department in which the purchase was made (with I = 6
departments) and according to method of payment (with the same J = 5 methods as above).

In both cases (1) and (2), the data can be summarized by reporting the counts for each combi-
nation: (store chain, payment method) for (1) and (department, payment method) for (2). Let Nij

denote the number of individuals in the sample(s) falling in the (i, j)th category. A table displaying the
nij’s (observed counts) is called a two-way contingency table; a prototype is shown in Table 13.7.

In situations of the first type, we want to investigate whether the proportions in the different
categories (columns) are the same for all populations (rows). The null hypothesis states that the
I populations are homogeneous with respect to these J categories. In the second situation, we

Table 13.7 A two-way contingency table

1 2 …

…
… …

…

…

j … J
1 n1l n12 … n1j … n1J
2 n2l

i ni l … nij …

I nI l … nIJ
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investigate whether the categories of the two factors occur independently of one another in the
population. It turns out, interestingly, that the two methods of analysis are actually identical (same
calculations, test statistic formula, and null sampling distribution)—it doesn’t matter if our two-way
table is the result of stratified sampling (the first case) or simple random sampling (the second case).

Testing for Homogeneity
The test of homogeneity generalizes the two-proportion z test of Chapter 9 to the comparison of two
or more populations with respect to two or more categories. We assume that each individual in every
one of the I populations belongs in exactly one of J categories. A sample of ni individuals is taken
from the ith population. Let n ¼P ni, the total sample size, and

Nij ¼ the number of individuals in the ith sample who fall into category j

N�j ¼
XI
i¼1

Nij ¼
the total number of individuals among

the n sampled who fall into category j

As before, upper-case letters denote rvs and lower-case letters the observed values. The nij’s are
recorded in a contingency table with I rows and J columns (Table 13.7). The sum of the nij’s in the ith
row is ni, whereas the sum of the entries in the jth column is n�j.

Let

pij ¼ the proportion of the individuals in
population i who fall into category j

Thus, for population 1, the J proportions are p11, p12, …, p1J (which sum to 1) and similarly for the
other populations. The null hypothesis of homogeneity states that the proportion of individuals in
category j is the same for each population and that this is true for every category; that is, for every j,
p1j = p2j = ��� = pIj.

When H0 is true, we can use p1, p2, …, pJ to denote the population proportions in the J different
categories; these proportions are common to all I populations. The expected number of individuals
in the ith sample who fall in the jth category when H0 is true is then E(Nij) = ni � pj. To estimate
E(Nij), we must first estimate pj, the proportion in category j. Among the total sample of n indi-
viduals, N�j fall into category j, so we use P̂j ¼ N�j=n as the estimator (this is the maximum

likelihood estimator of pj). Substitution of P̂j for pj in ni � pj yields a simple formula for estimated
expected counts under H0:

Êij ¼ estimator of the expected count in cell ði; jÞ

¼ ni � N�j
n

¼ ðith row totalÞðjth column totalÞ
n

ð13:7Þ

The test statistic will have the same form (13.1) as in previous chi-squared tests. The number of
degrees of freedom comes from the general v2 df rule of the previous section. In each row of
Table 13.7 there are J – 1 freely determined cell counts (each sample size ni is fixed), so there are a
total of I(J – 1) freely determined cells. Parameters p1, …, pJ are estimated, but because

P
pj ¼ 1,

only J – 1 of these are independently determined. Thus df = I(J – 1) – (J – 1) = (I – 1)(J – 1).
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CHI-SQUARED
TEST OF
HOMOGENEITY

Null hypothesis: H0: p1j ¼ p2j ¼ � � � ¼ pIj j ¼ 1; 2; . . .; J
Alternative hypothesis: Ha: H0 is not true
Test statistic value:

v2 ¼
X

all cells

ðobserved � estimated expectedÞ2
estimated expected

¼
XI
i¼1

XJ
j¼1

ðnij � êijÞ2
êij

Rejection region: v2 � v2a;ðI�1ÞðJ�1Þ
P-value: area under the v2ðI�1ÞðJ�1Þ curve to the right of v2

Estimated expected counts are calculated using Expression (13.7). The test
can safely be applied as long as all estimated expected counts are � 5.

Example 13.10 A company packages a particular product in cans of three different sizes, each one
using a different production line. Most cans conform to specifications, but a quality control engineer
has identified the following reasons for nonconformance: (1) blemish on can; (2) crack in can;
(3) improper pull tab location; (4) pull tab missing; (5) other. A sample of nonconforming units is
selected from each of the three lines, and each unit is categorized according to reason for noncon-
formity, resulting in the following contingency table data:

Reason for Nonconformity

Blemish Crack Location Missing Other ni

Production line

1 34 65 17 21 13 150

2 23 52 25 19 6 125

3 32 28 16 14 10 100

Total 89 145 58 54 29 375

Does the data suggest that the proportions falling in various nonconformance categories are not the
same for the three lines? The parameters of interest are various proportions, and the relevant
hypotheses are

H0: the production lines are homogeneous with respect to the five nonconformance categories; that is,
p1j = p2j = p3j for j = 1, …, 5

Ha: the production lines are not homogeneous with respect to the categories

The estimated expected frequencies (assuming homogeneity) must now be calculated using (13.7).
Consider the first nonconformance category for the first production line. When the lines are homo-
geneous, the estimated expected number among the 150 selected units that are blemished is

ê11 ¼ ðfirst row totalÞðfirst column totalÞ
total of sample sizes

¼ ð150Þð89Þ
375

¼ 35:60
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The contribution of the cell in the upper-left corner to v2 is then

ðobserved � estimated expectedÞ2
estimated expected

¼ ð34� 35:60Þ2
35:60

¼ :072

The other contributions are calculated in a similar manner. Figure 13.2 shows Minitab output for the
chi-squared test. The observed count is the top number in each cell, and directly below it is the
estimated expected count. The contribution of each cell to v2 appears below the counts, and the test
statistic value is v2 = 14.159. All estimated expected counts are at least 5, so merging categories is
unnecessary. The test is based on (3 – 1)(5 – 1) = 8 df. Appendix Table A.10 shows that the values
that capture upper-tail areas of .08 and .075 under the 8 df curve are 14.06 and 14.26, respectively.
Thus the P-value is between .075 and .08; Minitab gives P-value = .079. The null hypothesis of
homogeneity should not be rejected at the usual significance levels of .05 or .01, but it would be
rejected for the higher a of .10.

It’s worth exploring the specific differences (i.e., lack of homogeneity) indicated by the v2 test.
The segmented bar chart in Figure 13.3 displays the distribution of nonconformances for each of
the three production lines. Line 2 appears to have a higher proportion of improper pull tab locations
than the other two lines, while Line 3 has a disproportionately large number of cans with
blemishes.

Figure 13.2 Minitab output for the chi-squared test of Example 13.10
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When I = 2 and J = 2 (two populations and two categories), data in a two-way table may also be
analyzed using the two-proportion z procedure of Chapter 9; we associate j = 1 with “success” and
j = 2 with “failure.” In this case, the chi-squared test of homogeneity is equivalent to the z test of
H0: p1 = p2 versus Ha: p1 6¼ p2: the test statistic values are related by (z)2 = v2, and the P-values will
be identical. The two-proportion z test allows us to consider one-sided alternatives (p1 > p2 and
p1 < p2), while the chi-squared test does not. The benefit of the chi-squared test of homogeneity is
that we may compare more than two populations and/or consider a response variable with more than
two categories, as we did in Example 13.10.

Testing for Independence
We focus now on the relationship between two different factors in a single population. The number of
categories of the first factor will be denoted by I and the number of categories of the second factor by
J. Each individual in the population is assumed to belong in exactly one of the I categories associated
with the first factor and exactly one of the J categories associated with the second factor. For example,
the population of interest might consist of all individuals who regularly watch the national news on
television, with the first factor being preferred network (ABC, CBS, NBC, PBS, CNN, Fox News, or
MSNBC, so I = 7) and the second factor political views (liberal, moderate, conservative, giving
J = 3).

For a sample of n individuals taken from the population, let Nij denote the number among the n who
fall into the (i, j)th category pair. The observed nij’s can be displayed in a two-way contingency table
like Table 13.7. In the case of homogeneity for I populations, the row totals were fixed in advance, and
only the J column totals were random. Now only the total sample size is fixed, and both the Ni�’s
(row totals) and N�j’s (column totals) are random variables. To state the hypotheses of interest, let

pij ¼ the proportion of individuals in the population who
belong in category i of factor 1 and category j of factor 2

¼ Pða randomly selected individual falls in both category
i of factor 1 and category j of factor 2Þ
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Figure 13.3 Segmented bar chart for Example 13.10 ■
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Then

pi� ¼
XJ
j¼1

pij ¼ Pða randomly selected individual falls in category i of factor 1Þ

p�j ¼
XI
i¼1

pij ¼ Pða randomly selected individual falls in category j of factor 2Þ

The null hypothesis of independence says that an individual’s category with respect to factor 1 is
independent of the category with respect to factor 2. Recall that two events A and B are independent if
PðA\BÞ ¼ PðAÞ � PðBÞ; using the above notation, this becomes pij ¼ pi� � p�j for every pair (i, j).

The expected count in cell (i, j) is n � pij, so when H0 is true, E(Nij) = n � pi� � p�j. To obtain a chi-
squared statistic, we must therefore estimate the pi�’s (i = 1, …, I) and p�j’s (j = 1, …, J). The
maximum likelihood estimators are

P̂i� ¼ Ni�
n

¼ sample proportion for category i of factor 1 and

P̂�j ¼ N�j
n

¼ sample proportion for category j of factor 2

This gives estimated expected cell counts identical to those in the case of homogeneity:

Êij ¼ n � P̂i� � P̂�j ¼ n � Ni�
n

� N�j
n

¼ Ni� � N�j
n

¼ ðith row totalÞðjth column totalÞ
n

ð13:8Þ

Thus the test statistic is also identical to that used in testing for homogeneity. Perhaps surprisingly, so is
the number of degrees of freedom! This is because the number of freely determined cell counts is
IJ – 1, since only the total n is fixed in advance. There are I estimated pi�’s, but only I – 1 are
independently estimated since

P
pi� ¼ 1, and similarly J – 1 p�i’s are independently estimated, so

I + J – 2 parameters are independently estimated. The df rule now yields df = (IJ – 1) – (I + J – 2) =
IJ – I – J + 1 = (I – 1)(J – 1), identical to the df for the test of homogeneity.

CHI-SQUARED
TEST OF
INDEPENDENCE

Null hypothesis: H0: pij ¼ pi� � p�j i ¼ 1; . . .; I; j ¼ 1; . . .; J
Alternative hypothesis: Ha: H0 is not true
Test statistic value:

v2 ¼
X

all cells

ðobserved � estimated expectedÞ2
estimated expected

¼
XI
i¼1

XJ
j¼1

ðnij � êijÞ2
êij

Rejection region: v2 � v2a;ðI�1ÞðJ�1Þ
P-value: area under the v2ðI�1ÞðJ�1Þ curve to the right of v2

Estimated expected counts are calculated using Expression (13.8). The test
can safely be applied as long as all estimated expected counts are � 5.
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Example 13.11 Do faculty perceive lack of diversity as a problem at their universities? Each
individual in a survey of 1312 accounting faculty members across the USA was asked, “Do you think
educational institutions need to improve diversity among their faculty?” (Issues Account. Educ.
2007). Respondents were then classified into three categories: Caucasian men, Caucasian women, and
minorities. Observed and estimated expected counts (in parentheses) are given in Table 13.8. The
estimated expected counts were calculated using Expression (13.8).

All but one estimated expected count is � 5; the value ê33 ¼ 4:77 is close enough to 5 that a v2

analysis will still be accurate. In words, the hypotheses being tested for the population of all
accounting faculty members in the USA are

H0: diversity attitude and race/sex classification are independent
Ha: diversity attitude and race/sex classification are not independent

From Table 13.8, the test statistic value is

v2 ¼ ð355� 411:70Þ2
411:70

þ � � � þ ð6� 4:77Þ2
4:77

¼ 45:065

and because 45:065� v2:01;ð3�1Þð3�1Þ ¼ v2:01;4 ¼ 13:277, the hypothesis of independence is rejected at

the .01 significance level. (The P-value is 0 to several decimal places.) The data suggests that a
faculty member’s attitude toward diversity is not independent of race/sex.

A segmented bar chart (Figure 13.4), along with the observed and expected counts, allows us to
explore further. We see that Caucasian males were much more likely than expected to say diversity

Table 13.8 Observed and estimated expected counts for Example 13.11

White Men White Women Minority

“Do you think…?”
Yes 355 (411.70) 279 (249.91) 158 (130.39)

No 310 (255.23) 129 (154.93) 52 (80.84)

No response 17 (15.07) 6 (9.15) 6 (4.77)

MinorityWhite womenWhite men
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Figure 13.4 Segmented bar chart for Example 13.11
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doesn’t need to be improved (observed No’s = 310, expected No’s = 255.23), while minority faculty
said “Yes” to the question of diversity improvement more often than expected if H0 were true
(observed Yes’s = 158, expected = 130.39). Caucasian women’s responses were somewhere in-
between. ■

Ordinal Factors and Logistic Regression
Sometimes a factor has ordinal categories, meaning that there is a natural ordering. For example,
there is a natural ordering to freshman, sophomore, junior, senior. In such situations we can use a
method that often has greater power to detect relationships by adapting the logistic regression model
of Chapter 12.

Consider the case in which the first (row) factor is ordinal and the other (column) factor has two
categories. Denote by X the level of the ordinal factor, which will be the predictor in the model. Let
Y designate the column, so Y will be the response variable in the model. It is convenient for purposes
of logistic regression to label the two columns as Y = 0 (failure, j = 1) and Y = 1 (success, j = 2),
corresponding to the usual notation for Bernoulli trials. In terms of logistic regression, p(x) is the
probability of success given that X = x:

pðxÞ ¼ PðY ¼ 1jX ¼ xÞ ¼ Pðj ¼ 2ji ¼ xÞ ¼ px2
px1 þ px2

Then the logistic model of Chapter 12 says that there exist parameters b0, b1 satisfying

eb0 þb1x ¼ pðxÞ
1� pðxÞ ¼

px2
px1

In terms of the odds of success in a row (estimated by the ratio of the two counts), the model says that
the odds change proportionally (by the fixed multiple eb1 , the odds ratio) from row to row. For
example, suppose a test is given in grades 1, 2, 3, and 4 with successes and failures as follows:

Grade Failed Passed Estimated odds

1 45 45 1
2 30 60 2
3 18 72 4
4 10 80 8

Here the model fits perfectly, with odds ratio eb1 ¼ 2, so b1 = ln(2) and b0 = −ln(2). If a table with
I rows and 2 columns has roughly a common odds ratio from row to row, then the logistic model
should be a good fit if the rows are labeled with consecutive integers.

We focus on b1 because the relationship between the two variables hinges on this parameter. The
hypothesis of no relationship is equivalent to H0: b1 = 0, which is usually tested against a two-tailed
alternative.

Example 13.12 Is there a relationship between TV watching and physical fitness? For an answer we
refer to the article “Television Viewing and Physical Fitness in Adults” (Res. Quart. Exerc. Sport
1990: 315–320). Subjects were asked about their TV viewing habits and were classified as physically
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fit if they scored in the excellent or very good category on a step test. Table 13.9 shows the results in
the form of a 4 � 2 table.

The rows need to be given specific numeric values for computational purposes, and it is conve-
nient to make these just 1, 2, 3, 4, because consecutive integers correspond to the assumption of a
common odds ratio from row to row. (The columns may need to be labeled as 0 and 1 for input to
software.) The logistic regression results from R are shown in Figure 13.5, where the estimated

coefficient b̂1 is given as –.2907, for an odds ratio of e–.2907 � .75. This means that, for each increase
in TV watching category, the odds of being fit decline to about 3/4 of the previous value.

The P-value of .0206 associated with the z test of H0: b1 = 0 indicates that we should reject H0 at
the .05 level and can conclude that there is a relationship between TV watching and fitness. Of course,
the existence of a relationship does not imply anything about one causing the other, because this was
an observational study and not a randomized comparative experiment.

A chi-squared test of the same data, which treats both variables as unordered and does not exploit
the ordinal nature of the TV viewing variable, yields v2 = 6.161 with 3 df, P-value = .104. So with
this test we would not conclude that there is a relationship, even at the 10% level. There is an
advantage in using logistic regression for this kind of data. ■

The analysis of two ordinal variables, each with more than two levels, can also be handled with
logistic regression, but it requires a procedure called ordinal logistic regression that allows an ordinal
response variable. When one factor is ordinal and the other is not, the analysis can be done with
multinomial (also called nominal or polytomous) logistic regression, which allows a nonordinal
response variable.

Models and methods for analyzing data in which each individual is categorized with respect to
three or more factors (multidimensional contingency tables) are discussed in several of the references
in the bibliography.

Table 13.9 TV versus fitness results

TV Time Unfit Fit

i = 1 0 h 147 35

i = 2 1–2 h 629 101

i = 3 3–4 h 222 28

i = 4 5+ h 34 4

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -1.2132     0.2675  -4.535 5.75e-06 ***
TV -0.2907     0.1256  -2.315   0.0206 *  

Figure 13.5 Logistic regression output (from R) for TV versus fitness
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Exercises: Section 13.2 (19–31)

19. Reconsider the tax holiday data of Exercise
60(b) in Chapter 10. Use a v2 statistic to
test the hypothesis of equal population
proportions. The v2 statistic should be the
square of the z statistic in that exercise.
How are the P-values related?

20. Should illegal downloading of intellectual
property (music, images, etc.) be punished?
This question was asked of 501 teenagers in
a study published by KRC Research (Jan-
uary, 2008). The teenagers were also asked
whether they were familiar with the laws
against illegal downloading.

Familiar
with the law?

Yes No

Should illegal downloads
be punished?

Yes 209 140
No 46 106

Are familiarity with the law and attitude
toward illegal downloading independent
factors within the teenage population? Test
at the 5% significance level. If these factors
are not independent, describe the nature of
the association.

21. Brushing your teeth helps prevent cavities,
doesn’t it? Consider the following data
from a survey and subsequent dental exam
of Italian 12-year-olds (“Influence of
Occlusal Disorders, Food Intake and Oral
Hygiene Habits on Dental Caries on Ado-
lescents,” Dentistry 2016).

Brushing Freq. Cavities No cavities

Never 11 7
Once a day 24 21
2 times a day 99 77
3 times a day 107 117
4 times a day 42 30

a. Test whether brushing frequency and
the presence/absence of cavities are
independent in the population of Italian
12-year-olds at the .05 significance
level.

b. Discuss the results of part (a): what are
some possible explanations for this
potentially surprising finding?

22. The authors of the article cited in the previ-
ous exercise also considered the relationship
between children’s dental health and their
parents’ education level. In the accompa-
nying table, fathers’ education levels are
translated from the Italian educational sys-
tem into the rough US equivalent.

Father’s Education Cavities No cavities

<High school 51 22
High school 88 56
Some college 76 55
Higher ed. degree 40 40

Does the data indicate that parental educa-
tion is related to the prevalence of cavities
in children? State the appropriate null and
alternative hypotheses, compute the value
of v2, and obtain information about the
P-value. How would you then answer the
question posed?

23. Do vacation habits vary by sex? The 2006
Expedia Vacation Deprivation Survey
interviewed 968 Canadian adults (Ipsos
Insight May 18, 2006). The accompanying
table shows each person cross-classified by
sex and the number of vacation days the
person “usually [takes] each year.”

Number of vacation days

Sex None 1–5 6–10 11–15 16–20 20–25 >25

Female 42 25 79 94 70 58 79
Male 51 21 67 111 71 82 118

Is there evidence at the a = .05 significance
level to conclude that the distribution of the
number of vacation days taken is different
for the two sexes?

24. How universal is the notion of “green light
good, red light bad”? The article “Effects of
Personal Experiences on the Interpretation
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of the Meaning of Colours Used in the
Displays and Controls in Electric Control
Panels” (Ergonomics 2015: 1974–1982)
reports the results of a survey of 144 people
with occupations related to electrical
equipment and 206 people in unrelated
fields. Each person was asked to identify
the correct meaning of colored panel lights;
the accompanying data shows answers for
the color red.

Red Light Meaning?

Occupation
Emergency
situation

Normal
situation

Other/
unknown

Elec. Equip. 86 40 18
Other 185 5 16

Does the data indicate a difference in how
those with electrical equipment experience
and those without understanding the
meaning of a red panel light? Test at the .01
significance level. Discuss your findings.

25. The article “Student-Faculty Interaction in
Research Universities” (Res. High. Educ.
2009: 437–459) reported that 20.4% of
3168 students from lower-class families
said they frequently talked with faculty
outside class about course material. The
corresponding percentages for the 16,774
middle-class students and 8188 upper-class
students were 18.6% and 20.2%, respec-
tively. Does this data suggest that social
class of a student is independent of whether
or not he/she frequently talked with faculty
outside class about course material?
a. Carry out an appropriate test of

hypotheses. [Hint: Think about how
to lay out the data as a two-way table
first.]

b. In light of the sample sizes used in this
study, why is the result in (a) not sur-
prising?

26. Show that the chi-squared statistic for the
test of independence can be written in the
form

v2 ¼
XI
i¼1

XJ
j¼1

N2
ij

Êij

 !
� n

Why is this formula more efficient compu-
tationally than the defining formula for v2?

27. Suppose a random sample of students were
categorized with respect to political views
(liberal, moderate, conservative), marijuana
usage (never, rarely, frequently), and reli-
gious affiliation (Christian, Jewish, Muslim,
and other). The data could be displayed in
four different two-way tables, one corre-
sponding to each category of the third
factor. With pijk = P(political category i,
marijuana category j, and religious category
k), the null hypothesis of independence
of all three factors states that pijk ¼
pi�� � p�j� � p��k. Let nijk denote the observed
frequency in cell (i, j, k). Show how to
estimate the expected cell counts assuming
that H0 is true (êijk ¼ np̂ijk, so the p̂ijk’s
must be determined). Then use the general
df rule to determine the number of degrees
of freedom for the chi-squared statistic.

28. Suppose that in a particular state consisting
of four distinct regions, a random sample of
nk voters is obtained from the kth region for
k = 1, 2, 3, 4. Each voter is then classified
according to which candidate (1, 2, or 3)
he/she prefers and according to voter reg-
istration (1 = Dem., 2 = Rep., 3 = Other).
Let pijk denote the proportion of voters in
region k who belong in candidate category
i and registration category j. The null
hypothesis of homogeneous regions is
H0: pij1 = pij2 = pij3 = pij4 for all i, j (i.e.,
the proportion within each candidate/
registration combination is the same for
all four regions). Assuming that H0 is true,
determine p̂ijk and êijk as functions of the
observed nijk’s, and use the general df rule
to obtain the number of degrees of freedom
for the chi-squared test.

29. Consider the accompanying 2 � 3 table
displaying the sample proportions that fell
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in various combinations of categories (e.g.,
13% of those in the sample were in the first
category of both factors).

1 2 3

1 .13 .19 .28
2 .07 .11 .22

a. Suppose the sample consisted of n = 100
people. Perform the chi-squared test for
independence with significance level .10.

b. Repeat part (a) assuming that the sample
size was n = 1000.

c. What is the smallest sample size n for
which these observed proportions would
result in rejection of the independence
hypothesis at the .10 level?

30. Use logistic regression to test the relation-
ship between cavities and father’s educa-
tion in Exercise 22. Compare the P-value
with what was found in Exercise 22.
(Remember that v21 ¼ z2.) Explain why you
expected the logistic regression to give a
smaller P-value.

31. A random sample of 100 faculty at a uni-
versity gives the results shown below for
professorial rank versus sex.

Rank Male Female

Professor 25 9
Assoc Prof 20 8
Asst Prof 18 20

a. Test for a relationship at the 5% level
using a chi-squared statistic.

b. Test for a relationship at the 5% level
using logistic regression.

c. Compare the P-values in parts (a) and
(b). Is this in accord with your expec-
tations? Explain.

d. Interpret your results. Assuming that
today’s assistant professors are tomor-
row’s associate professors and profes-
sors, do you see implications for the
future?

Supplementary Exercises: (32–43)

32. The report “Majoring in Money: How
American College Students Manage Their
Finances” (Sallie Mae 2016) includes the
following data on whether students in dif-
ferent age groups have at least one credit
card. Data was based on a survey of ran-
domly selected US college students.

Age n Credit card(s)?

18–20 348 43%
21–22 258 63%
23–24 187 71%

Does the data provide convincing evidence
that, among US college students, credit card
ownership rate varies by age group? Test at
the a = .01 significance level. [Hint: Think
about how to lay out a contingency table.]

33. The report cited in the previous exercise also
asked students with credit cards how much
they pay off each month.

Male Female

Full balance 146 131
Minimum payment 17 21
Other 52 78

Perform a v2 test, and report your results at
the .05 significance level. Be clear about what
hypotheses you’re testing!

34. The article “Psychiatric and Alcoholic
Admissions Do Not Occur Disproportionately
Close to Patients’ Birthdays” (Psych. Rep.
1992: 944–946) focuses on the existence of
any relationship between date of patient
admission for treatment of alcoholism and
patient’s birthday. Assuming a 365-day year
(i.e., excluding leap year), in the absence of
any relation, a patient’s admission date is
equally likely to be any one of the 365 pos-
sible days. The investigators established four
different admission categories: (1) within

13.2 Two-Way Contingency Tables 851



7 days of birthday, (2) between 8 and 30 days,
inclusive, from the birthday, (3) between 31
and 90 days, inclusive, from the birthday, and
(4) more than 90 days from the birthday.
A sample of 200 patients gave observed fre-
quencies of 11, 24, 69, and 96 for categories 1,
2, 3, and 4, respectively. State and test the
relevant hypotheses using a significance level
of .01.

35. A Gallup survey (August 9, 2019) asked
adults who consume alcoholic beverages for
their favorite type. The following table shows
responses separated by the region where each
respondent lives:

Liquor Wine Beer

East 63 84 105
Midwest 86 73 156
South 197 174 186
West 106 120 131

Does the data suggest that adult beverage
preferences vary by region? Test at the .05
significance level. Discuss your findings.

36. Qualifications of male and female head and
assistant college athletic coaches were com-
pared in the article “Sex Bias and the Validity
of Believed Differences Between Male and
Female Interscholastic Athletic Coaches”
(Res. Q. Exerc. Sport 1990: 259–267). Each
person in random samples of 2225 male
coaches and 1141 female coaches was clas-
sified according to number of years of
coaching experience to obtain the accompa-
nying two-way table. Is there enough evi-
dence to conclude that the proportions falling
into the experience categories are different for
men and women? Use a = .01.

Years of Experience

Sex 1–3 4–6 7–9 10–12 13+

Male 202 369 482 361 811
Female 230 251 238 164 258

37. The authors of the article “Predicting Pro-
fessional Sports Game Outcomes from
Intermediate Game Scores” (Chance 1992:
18–22) used a chi-squared test to determine

whether there was any merit to the idea that
basketball games are not settled until the last
quarter, whereas baseball games are over by
the seventh inning. They also considered
football and hockey. Data was collected for
189 basketball games, 92 baseball games, 80
hockey games, and 93 football games. The
games analyzed were sampled randomly
from all games played during the 1990 sea-
son for baseball and football and for the
1990–1991 season for basketball and hockey.
For each game, the late-game leader was
determined, and then it was noted whether
the late-game leader actually ended up win-
ning the game. The resulting data is sum-
marized in the accompanying table.

Sport Late-Game Leader
Wins

Late-Game Leader
Loses

Basketball 150 39
Baseball 86 6
Hockey 65 15
Football 72 21

The authors state, “Late-game leader is
defined as the team that is ahead after three
quarters in basketball and football, two peri-
ods in hockey, and seven innings in baseball.
The chi-square value on three degrees of
freedom is 10.52 (P < .015).”
a. State the relevant hypotheses and reach a

conclusion using a = .05.
b. Do you think that your conclusion in part

(a) can be attributed to a single sport being
an anomaly?

38. A study in the Journal of Marketing
Research investigated the relationship
between facility conditions at gas stations
and aggressiveness in the pricing of gasoline.
The accompanying data is based on a random
sample of n = 441 stations.

Observed pricing policy

Aggressive Neutral Nonaggressive

Condition Substandard 24 15 17
Standard 52 73 80
Modern 58 86 36
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a. Does the data suggest that an association
exists between these two variables? Test
at the a = .01 level.

b. If a statistically significant association
exists, describe that association carefully
and in context.

39. The Associated Press (Dec. 7, 2005)
reported on an international survey about
the treatment of terrorist suspects. Random
samples of 1000 adults from each of several
nations were asked, “Do you feel the use of
torture against suspected terrorists to obtain
information about terrorists activities is
justified?” Data consistent with the article
appears in the accompanying table.

Country

Okay to torture terror suspects?

Never Rarely Sometimes Often Not sure

Italy 600 140 140 90 30
France 400 250 200 120 30
South Korea 100 330 470 60 40
Spain 540 160 140 70 90
USA 360 230 270 110 30

Does the data suggest that attitudes toward
the treatment of terrorist suspects differed
between these five nations in 2005? State
and test the relevant hypotheses at the
� = .01 level. Comment on any specific
trends.

40. The likelihood ratio test of Chapter 9 pro-
vides an alternative to Pearson’s chi-
squared statistic. Let Lðp1; . . .; pkÞ ¼
C � pn11 � � � pnkk denote the multinomial like-
lihood function (C will be irrelevant in what
follows). The likelihood ratio test statistic is

K ¼ Lðp10; . . .; pk0Þ
Lðp̂1; . . .; p̂kÞ ;

where P̂i ¼ Ni=n, the sample proportion of
observations in the ith category (the mle for
pi). The key result required for the test is
that for large n, �2lnðKÞ has approximately
a v2k�1 distribution.

a. Using the information provided, sim-
plify the test statistic �2lnðKÞ as much
as possible.

b. If a roulette wheel is working properly,
spins should land on the colors black,
red, and green in proportions 18/38,
18/38, and 2/38, respectively. Suppose
that 190 spins resulted in 96 black, 76
red, and 18 green. Use the likelihood
ratio test to determine whether the
sample data is compatible with the the-
oretical probabilities.

c. Use Pearson’s chi-squared goodness-of-
fit test for the data in part (b). How do
the results of the two tests compare?

41. The NCAA basketball tournament begins
with 64 teams that are apportioned into four
regional tournaments, each involving 16
teams. The 16 teams in each region are then
ranked (seeded) from 1 to 16. During the
12-year period from 1991 to 2002, the top-
ranked team won its regional tournament
22 times, the second-ranked team won 10
times, the third-ranked team won 5 times,
and the remaining 11 regional tournaments
were won by teams ranked lower than 3.
Let Pij denote the probability that the team
ranked i in its region is victorious in its
game against the team ranked j. Once the
Pij’s are available, it is possible to compute
the probability that any particular seed wins
its regional tournament (a complicated
calculation because the number of out-
comes in the sample space is quite large).
The paper “Probability Models for the
NCAA Regional Basketball Tournaments”
(Amer. Statist. 1991: 35–38) proposed
several different models for the Pij’s.
a. One model postulated Pij = .5 – k(i – j)

with k ¼ 1
32 (from which P16;1 ¼ 1

32,

P16;2 ¼ 2
32, etc.). Based on this, P(seed

#1 wins) = .27477, P(seed #2 wins) =
.20834, and P(seed #3 wins) = .15429.
Does this model appear to provide a
good fit to the data?
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b. A more sophisticated model has Pij =
.5 + .2813625(zi – zj), where the z’s are
measures of relative strengths related to
standard normal percentiles [percentiles
for successive highly seeded teams are
closer together than is the case for teams
seeded lower, and .2813625 ensures that
the range of probabilities is the same as
for the model in part (a)]. The resulting
probabilities of seeds 1, 2, or 3 winning
their regional tournaments are .45883,
.18813, and .11032, respectively. Assess
the fit of this model.

42. Have you ever wondered whether soccer
players suffer adverse effects from hitting
“headers”? The authors of the article “No
Evidence of Impaired Neurocognitive Per-
formance in Collegiate Soccer Players”
(Amer. J. Sports Med. 2002: 157–162) inves-
tigated this issue from several perspectives.
a. The paper reported that 45 of the 91

soccer players in their sample had suf-
fered at least one concussion, 28 of 96
nonsoccer athletes had suffered at least
one concussion, and only 8 of 53 stu-
dent controls had suffered at least one
concussion. Analyze this data and draw
appropriate conclusions.

b. For the soccer players, the sample cor-
relation coefficient calculated from the
values of x = soccer exposure (total
number of competitive seasons played
prior to enrollment in the study) and
y = score on an immediate memory
recall test was r = –.220. Interpret this
result.

c. Here is summary information on scores
on a controlled oral word association test
for the soccer and nonsoccer athletes:

n1 ¼ 26;�x1 ¼ 37:50; s1 ¼ 9:13;

n2 ¼ 56;�x2 ¼ 39:63; s2 ¼ 10:19

Analyze this data and draw appropriate
conclusions.

d. Considering the number of prior
nonsoccer concussions, the values of
mean ± SD for the three groups were
soccer players, .30 ± .67; nonsoccer
athletes, .49 ± .87; and student con-
trols, .19 ± .48. Analyze this data and
draw appropriate conclusions.

43. Do the successive digits in the decimal
expansion of p behave as though they were
selected from a random number table (or
came from a computer’s random number
generator)?
a. Let p0 denote the long-run proportion of

digits in the expansion that equal 0, and
define p1, …, p9 analogously. What
hypotheses about these proportions
should be tested, and what is df for the
chi-squared test?

b. H0 of part (a) would not be rejected for
the nonrandom sequence 012 … 901 …
901…. Consider nonoverlapping groups
of two digits, and let pij denote the long-
run proportion of groups for which the
first digit is i and the second digit is
j. What hypotheses about these propor-
tions should be tested, and what is df for
the chi-squared test?

c. Consider nonoverlapping groups of 5
digits. Could a chi-squared test of
appropriate hypotheses about the pijklm’s
be based on the first 100,000 digits?
Explain.

d. The paper “Are the Digits of p an
Independent and Identically Distributed
Sequence?” (Amer. Statist. 2000: 12–
16) considered the first 1,254,540 dig-
its of p, and reported the following
P-values for group sizes of 1, …, 5
digits: .572, .078, .529, .691, .298. What
would you conclude?
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14Nonparametric Methods

Introduction
In this chapter we consider some inferential methods that are different in important ways from those
considered earlier. Recall that many of the confidence intervals and test procedures developed in
Chapters 8, 9, 10, 11 and 12 were based on some sort of a normality assumption. As long as such an
assumption is at least approximately satisfied, the actual confidence and significance levels will be at
least approximately equal to the “nominal” levels, those prescribed by the experimenter through the
choice of particular t or F critical values. However, if there is a substantial violation of the normality
assumption, the actual levels may differ considerably from the nominal levels (e.g., the use of t.025 in a
confidence interval formula may actually result in a confidence level of only 88% rather than the
nominal 95%, more than doubling the error rate). Here we develop nonparametric or distribution-free
procedures that are valid for a wide variety of underlying distributions rather than being tied to
normality. We have actually already introduced several such methods: the bootstrap intervals and
permutation tests are valid without restrictive assumptions on the underlying distribution(s).

Section 14.1 details inference procedures for population quantiles—the population median, 90th
percentile, and so on—that apply to any continuous distribution. In Section 14.2, we present alter-
natives to the one-sample t procedures that do not require population normality (although they do
make some less-restrictive distributional assumptions). The most popular nonparametric methods are
so-called rank-based tests, wherein the original raw data is replaced by their ranks (1 for the smallest
observation, 2 for the next smallest, etc.). Sections 14.3 and 14.4 describe rank-based alternatives to
two-sample t procedures, one-way ANOVA, and randomized block ANOVA.

14.1 Exact Inference for Population Quantiles

The inferential methods presented so far in this book—including t tests and the analysis of variance—
have largely focused on one or more population means. However, in some situations other summary
measures are more relevant. For example, house prices in any particular city or region are famously
right-skewed: a small number of very large, expensive homes inflates the mean cost. Realtors or
buyers looking to quantify the “typical” house price in an area might be better served to estimate the
population median price, rather than the mean price. Or, an internet service provider may plan to
charge an extra fee to the 5% of customers with the heaviest data usage, meaning that the population
95th percentile is of interest to the company.
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As in Chapter 4, we will use the notation gp to denote the (100p)th percentile (aka the pth quantile)
of a probability distribution, i.e., the value that separates the lowest (100p)% of values from the rest.
So, for instance, a population upper quartile (75th percentile) will be denoted by g:75. The population
median, g:5, will be more frequently denoted by ~l as in earlier sections. Here, we first develop a
general confidence interval method for gp. Then, we present a hypothesis testing procedure for ~l
which may be applied to the analysis of both one-sample and paired data.

A CI for a Population Quantile
Inferences on population quantiles depend, perhaps not surprisingly, on the quantiles of the sample
data. To that end, let X1; . . .;Xn represent a random sample from some continuous population dis-
tribution of interest. The order statistics Y1; . . .; Yn as defined in Chapter 5 are

Y1 ¼ the smallest among X1;X2; . . .;Xn ði:e:; the sample minimumÞ
Y2 ¼ the second smallest among X1;X2; . . .;Xn

..

.

Yn ¼ the largest among X1;X2; . . .;Xn ðthe sample maximumÞ

Because the population distribution is assumed continuous, with probability one there will be no ties
among the Xi’s and, hence, Y1\Y2\ � � �\Yn. Note, though, that no other assumptions (such as
normality) are made about the population—the methods presented here apply to a broad range of
distributions. Confidence intervals for population quantiles rely on the following proposition.

PROPOSITION Let X1; . . .;Xn be a random sample from a continuous distribution with pth
quantile gp (0 < p < 1) and let Y1; . . .; Yn represent the corresponding order
statistics. Then for any two integers r and s satisfying 1 � r < s � n,

PðYr � gp � YsÞ ¼
Xs�1

k¼r

n

k

 !
pkð1� pÞn�k ð14:1Þ

Proof For any integer k between 1 and n − 1, gp will fall between the consecutive order statistics Yk
and Yk+1 if and only if exactly k of the Xi’s are � gp. Now consider Xi a success if Xi � gp and a
failure otherwise. Since the Xi’s are independent, the number of successes among them (n indepen-
dent trials) is a binomial rv with parameters n and P(success) = PðXi � gpÞ ¼ p. Hence

PðYk � gp � Ykþ 1Þ ¼ Pðexactly k of the Xi’ s are� gpÞ ¼
n

k

 !
pkð1� pÞn�k

Therefore, for integers r < s,

PðYr � gp � YsÞ ¼ PðfYr � gp � Yrþ 1g[ fYrþ 1 � gp � Yrþ 2g[ � � � [ fYs�1 � gp � YsgÞ

¼ PðYr � gp � Yrþ 1Þþ � � � þPðYs�1 � gp � YsÞ ¼
Xs�1

k¼r

n

k

 !
pkð1� pÞn�k �
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Suppose now that a confidence interval for gp is desired. The preceding proposition indicates that if
the interval ðyr; ysÞ is used, then the associated confidence level is the binomial probability on the
right-hand side of Expression (14.1). Due to the discrete nature of this probability, it will not be
possible to achieve every confidence level. In practice, r and s are selected so that the confidence level
from (14.1) is as close as possible to, but no lower than, the desired level.

Example 14.1 Let’s determine a 90% confidence interval for the population upper quartile g:75 based
on a sample of size n = 20 from any continuous population distribution. Logically, the interval should
straddle the sample 75th percentile, which is very roughly the .75(20) = 15th ordered observation. The
required indices r and s can then by determine by trial and error using (14.1). For instance,

PðY12 � g:75 � Y18Þ ¼
X18�1

k¼12

20

k

 !
ð:75Þkð:25Þ20�k ¼ :8678

Hence the interval (y12, y18) is slightly too “narrow,” in the sense that the associated confidence level
is just shy of 90%. However, a similar calculation shows PðY12 � g:75 � Y19Þ ¼ :9348[ :90, and this
is as close as we can get to .90 without going under. So, the suggested CI is (y12, y19).

With 93.48% confidence, the parameter g:75 lies between y12 and y19, the 12th-smallest and 19th-
smallest (i.e., second largest) ordered values from a sample of size n = 20. Again, this interval is valid
for any (continuous) population; the Xi’s may come from a normal, Weibull, or any other continuous
distribution. ■

Expression (14.1) can be modified slightly to obtain one-sided bounds for the pth quantile. If an
upper confidence bound is desired, delete Yr from the left-hand side of (14.1) and substitute r = 0 into
the binomial calculation on the right-hand side. Similarly, eliminating Ys and substituting s – 1 = n in
the binomial calculation results in a lower confidence bound.

Determining the indices r and s to achieve a desired confidence level can clearly be tedious. Notice
that if the desired (two-sided) confidence level is 100(1 − a)%, then on the right-hand side of (14.1)
r and s − 1 are effectively the a/2 and 1 − a/2 quantiles of the Bin(n, p) distribution. Using the normal
approximation to the binomial from Chapter 4 with a continuity correction, r and s can then be
approximated by

r � :5 � l� za=2r
ðs� 1Þþ :5 � lþ za=2r

) r � ðnpþ :5Þ � za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

s � ðnpþ :5Þþ za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

In Example 14.1, even though the normal approximation is of questionable accuracy (n is fairly
small), the preceding expressions give r � 12.3 and s � 18.7, which round to the correct integers
found in the example.

Hypothesis Testing for a Population Median
A binomial calculation similar to the one presented in Expression (14.1) can also be used to calculate
the P-value for a hypothesis test concerning a population quantile. Here we focus on the population
median, because this is the most common quantile of interest, but the ideas can easily be generalized
to any other percentile. Consider the null hypothesis H0: ~l ¼ ~l0, where ~l0 is the null value of the
population median. If H0 is true, we expect roughly half of the sample observations to fall below ~l0
and the other half above it. A test procedure is based on counting how many of the xi’s exceed ~l0.
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Example 14.2 Example 1.17 presented n = 57 observations on total nitrogen (TN) load (kg/day)
from a particular location in Chesapeake Bay. The data is extremely right-skewed (see Figure 1.17).
The sample median of these 57 observations is ~x ¼ 92:2. Let’s test the hypothesis that the population
median TN load exceeds 60 kg/day.

With ~l = truemedian TN load in this part of Chesapeake Bay, the null and alternative hypotheses are

H0: ~l ¼ 60

Ha: ~l[ 60

Of the 57 TN values in the sample, 36 exceed 60 kg/day and the other 21 are below this value. If H0

is true, we’d expect 28.5 measurements on either side of 60, so the data appears to somewhat
contradict the null hypothesis.

To compute a P-value, let’s determine the probability that 36 or more of the observations in a
sample of size 57 would exceed 60 kg/day, if that is truly the population median. If H0 is true, the
number of Xi’s that exceed 60 has a binomial distribution with n = 57 and p = .5, since by definition
PðXi [ ~lÞ ¼ PðXi\~lÞ ¼ :5. Reflecting the upper-tailed alternative hypothesis, the P-value is

P-value ¼ P 36 or more Xi’s exceed 60; when ~l ¼ 60ð Þ

¼
X57
k¼36

57

k

 !
:5ð Þk 1� :5ð Þ57�k¼ :031

With this low P-value, H0 is rejected (in particular, .031 � .05). At the .05 significance level, we
have evidence that the true median TN load at this location exceeds 60 kg/day.

The preceding test can also be reframed by defining a new parameter. Let p = P(Xi > 60), the
probability that a random TN observation will exceed 60. If H0 is true, then 60 is the population
median and p = .5. However, if Ha is true, then 60 kg/day is less than the actual median ~l, and so
more than half of the X distribution exceeds 60. That is, Ha is equivalent to the assertion that p > .5.
To test the modified hypotheses

H0: p ¼ :5

Ha: p[ :5

we can use either of the one-proportion procedures presented in Section 9.3. The P-value for the
exact binomial test from the end of that section is identical to the calculation above; alternatively,
since n is fairly large, the one-proportion z test would also be appropriate. ■

The hypothesis test illustrated in Example 14.2 is called a (one-sample) sign test. Why a “sign”
test? One way to think about the binomial count is to look at the quantities ðX1 � ~l0Þ; . . .; ðXn � ~l0Þ:
each has a positive sign (i.e., is > 0) when Xi [ ~l0 and a negative sign when Xi\~l0. In Example
14.2, the data was equivalent to 36 positive signs and 21 negative signs, and the test statistic value
was the number of positive signs.

The one-sample sign test is often applied to paired data. Consider a study with two settings, A and
B (e.g., A = after physical therapy and B = before). If we let Xi and Yi denote the ith individual’s
response (e.g., range of motion) in settings A and B, respectively, we know from previous discussions
to examine the within-subject differences Di ¼ Xi � Yi. A “positive sign,” meaning Di > 0, indicates
that the ith subject got a higher response under setting A than with setting B. We can test for a
treatment effect in favor of setting A—for example, that physical therapy increases range of motion—
by examining the hypotheses
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H0: ~lD ¼ 0

Ha: ~lD [ 0

Equivalently, if we define p = P(Xi > Yi) = P(Di > 0), then we may test H0: p = .5 versus Ha: p > .5
as at the end of Example 14.2.

Example 14.3 Do technological improvements “slow down” as a product spends more time on the
market? The 2017 MIT paper “Exploring the Relationship Between Technological Improvement and
Innovation Diffusion: An Empirical Test” attempts to answer this question by quantifying the
improvement rate (%/year) of 18 items, from washing machines to laptops, during both the early stage
and late stage of each item’s market presence. The data is summarized below.

Early stage Late stage Difference Early stage Late stage Difference

12.96 12.65 −0.31 15.49 18.80 +3.31
5.50 3.52 −1.98 34.30 25.73 −8.57
5.50 5.00 −0.50 32.15 32.80 +0.65
3.90 3.10 −0.80 16.62 15.84 −0.78
3.52 2.93 −0.59 32.37 36.33 +3.96
3.90 3.10 −0.80 24.25 27.15 +2.90

10.53 14.41 +3.88 3.87 3.92 +0.05
38.18 31.79 −6.39 180.84 84.51 −96.33
31.79 36.33 +4.54 26.80 47.52 +20.72

With D = difference in improvement rate (late stage minus early stage), the authors tested the
hypotheses H0: ~lD ¼ 0 versus Ha: ~lD\0; the alternative hypothesis aligns with the prevailing theory
of a late-stage slowdown. Eight of the 18 differences are positive, and the lower-tailed P-value is the
chance of observing eight or fewer positive differences if the true median difference is zero (so
positive and negative are each equally likely):

P-value ¼ PðK � 8 when K�Binð18; :5ÞÞ ¼ Bð8; 18; :50Þ ¼ :408

The very large P-value, consistent with the close split (8 vs. 10) between negative and positive
differences, suggest that H0 should not be rejected. The data does not lend credence to the slowdown
theory of technological improvement. ■

Exercises: Section 14.1 (1–10)

1. Example 1.4 presented data on the starting
salaries of n = 38 civil engineering gradu-
ates. Use this data to construct a 95%
confidence interval for the population lower
quartile (25th percentile) of civil engineer-
ing starting salaries.

2. The following Houston, TX house prices
($1000’s) were extracted from zillow.com
in August 2019:

162 165 167 188 189 194 200 233 236 247
248 257 258 286 290 307 330 345 377 389
459 460 513 569 1399

Treating these 25 houses as a random
sample of all available homes in Houston,
calculate a 90% upper confidence bound for
the true median home price in that city.

3. Based on a random sample of 40 observa-
tions from any continuous population,
construct a confidence interval formula for
the population median that has confidence
level (at least) 95%.

4. Let g:3 denote the 30th percentile of a
population. Find the smallest sample size
n for which PðY1 � g:3 � YnÞ is at least .99.

14.1 Exact Inference for Population Quantiles 859

http://dx.doi.org/10.1007/978-3-030-55156-8_1


In other words, determine the smallest
sample size for which the span of the
sample, min to max, is a 99% CI for g:3.

5. Refer back to Exercise 2. The median home
value in the state of Texas in August 2019
was $197,000. Use the data in Exercise 2 to
test the hypothesis that the true median
home price in Houston exceeds this value,
at the .05 significance level.

6. The following data on grip strength (N) for
42 individuals was read from a graph in the
article “Investigation of Grip Force, Normal
Force, Contact Area, Hand Size, and Han-
dle Size for Cylindrical Handles” (Human
Factors 2008: 734–744):

16 18 20 26 33 41 54 56 66
68 87 91 95 98 106 109 111 118

127 131 135 145 147 149 151 168 172
183 189 190 200 210 220 229 230
233 238 244 259 294 329 403

a. What does the data suggest about the
population distribution of grip strength?
Why might the median be a more
appropriate measure of “typical” grip
strength than the mean?

b. Test the hypothesis that the population
median grip strength is less than
170 N at the .05 significance level.

7. Child development specialists widely
believe that diverse recreational activities
can improve the social and emotional con-
duct of children. The article “Influence of
Physical Activity on the Social and Emo-
tional Behavior of Children Aged 2–5
Years” (Cuban J. of Gen. Integr. Med.
2016) reported a study of 25 young chil-
dren diagnosed with social and emotional
behavior problems. The children partici-
pated in a physical activity regimen for one
year, and each child was measured for
negative social behavior indicators (tan-
trums, crying, etc.) both before and after the
regimen. Lower scores indicate improve-
ment; the children’s changes in score (post
minus pre) are summarized below.

Score change < 0 Score change = 0 Score change > 0
17 1 7

Use the sign test to determine whether the
data indicates a statistically significant
improvement in scores at the a = .05 level.
[Hint: Delete the one 0 observation and
work with the other 24 differences; this is a
common way to address “ties” in pre- and
post-intervention scores.]

8. Consider the following scene: an actor
watches a man in a gorilla suit hide behind
haystack A. The actor leaves the area, and
the “gorilla” moves to behind haystack B,
after which the actor re-enters. A video of
this scene was shown to 22 (real) apes, and
eye-tracking software was used to track
which haystack they stared at more after the
actor re-entered. “False belief” theory says
that the viewer will look at haystack A
more, matching the actor’s mistaken belief
that the gorilla is still there, despite the
viewer knowing better. In the study, 17 of
the apes spent more time looking at hay-
stack A (“Great Apes Anticipate That Other
Individuals Will Act According to False
Beliefs,” Science, 7 October 2016).
a. Use a sign test to determine whether the

true median looking-time difference
(A − B) supports the false belief theory
in primates.

b. Since the data is paired (time looking at
each of two haystacks for the 22 apes),
the paired t procedure of Chapter 10
might also be applicable. What infor-
mation would that test require, and what
assumptions must be met?

9. The article “Hitting a High Note on Math
Tests: Remembered Success Influences
Test Preferences” (J. of Exptl. Psych. 2016:
17–38) reported a study in which 130 par-
ticipants were administered two math tests
(in random order): a shorter, more difficult
exam and a longer, easier one. Participants
were then asked to estimate how much time
they had spent on each exam. Let ~lD denote
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the true median difference in time estimates
(short test minus long test). Test the
hypotheses H0: ~lD ¼ 0 versus Ha: ~lD [ 0,
with Ha supporting the psychological con-
tention that people perceive easier tasks to
be quicker, using a sign test based on the
fact that 109 participants gave positive
differences and 21 gave negative differ-
ences. (In fact, test-takers required 3.2 min
longer, on average, to complete the
lengthier exam.)

10. Consider the following data on resting
energy expenditure (REE, in calories per
day) for eight subjects both while on an
intermittent fasting regimen and while on a
standard diet (“Intermittent Fasting Does
Not Affect Whole-Body Glucose, Lipid, or

Protein Metabolism,” Amer. J. of Clinical
Nutr. 2009: 1244–1251):

Diet

Subject

1 2 3 4 5

I.F. 1753.7 1604.4 1576.5 1279.7 1754.2
Standard 1755.0 1691.1 1697.1 1477.7 1785.2

Diet 6 7 8

I.F. 1695.5 1700.1 1717.0
Standard 1669.7 1901.3 1735.3

Let ~lD = true median difference in REE (IF
minus standard diet). Test the hypotheses
H0: ~lD ¼ 0 versus Ha: ~lD\0 at the .05
significance level using the sign test.

14.2 One-Sample Rank-Based Inference

The previous section introduced the sign test for assessing the plausibility of H0: ~l ¼ ~l0, where ~l
denotes a population median. The basis of the test was to consider the quantities X1 � ~l0,…, Xn � ~l0
and count how many of those differences are positive. Thus the original sample is reduced to a
collection of n “signs” (+ or −). If H0 is true, there should be roughly equal numbers of +’s and −’s,
and the test statistic measures the degree of discrepancy from that 50–50 balance. The sign test is
applicable to any continuous population distribution.

Here, we consider a test procedure that is more powerful than the sign test but requires an additional
distributional assumption. Suppose a research chemist replicated a particular experiment a total of 10
times and obtained the following values of reaction temperature (°C), ordered from smallest to largest:

−.76 −.19 −.05 .57 1.30 2.02 2.17 2.46 2.68 3.02

The distribution of reaction temperature is of course continuous. Suppose the investigator is
willing to assume that this distribution is symmetric, in which case the two halves of the distribution
on either side of ~l are mirror images of each other. (Provided that the mean l exists for this
symmetric distribution, ~l ¼ l and they are both the point of symmetry.) The assumption of symmetry
may at first seem quite bold, but remember that we have frequently assumed a normal distribution for
inference procedures. Since a normal distribution is symmetric, the assumption of symmetry without
any additional distributional specification is actually a weaker assumption than normality.

Let’s now consider testing the specific null hypothesis that ~l ¼ 0. Symmetry implies that a
temperature of any particular magnitude, say 1.50, is no more likely to be positive (+1.50) than to be
negative (−1.50). A glance at the data above casts doubt on this hypothesis; for example, the sample
median is 1.66, which is far larger in magnitude than any of the three negative observations.

Figure 14.1 shows graphs of two symmetric pdfs, one for which H0 is true and the other for which
the median of the distribution considerably exceeds 0. In the first case we expect the magnitudes of
the negative observations in the sample to be comparable to those of the positive sample observations.
However, in the second case observations of large absolute magnitude will tend to be positive rather
than negative.

Subject
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A Rank-Based Test Statistic
For the sample of ten reaction temperatures, let’s for the moment disregard the signs of the obser-
vations and rank their magnitudes (i.e., absolute values) from 1 to 10, with the smallest getting rank 1,
the second smallest rank 2, and so on. Then apply the original sign of each observation to the
corresponding rank, so some signed ranks will be negative (e.g., −3) whereas others will be positive
(e.g., +8).

Absolute value .05 .19 .57 .76 1.30 2.02 2.17 2.46 2.68 3.02
Rank 1 2 3 4 5 6 7 8 9 10
Signed rank −1 −2 3 –4 5 6 7 8 9 10

The test statistic for the procedure developed in this section will be Sþ= the sum of the positively
signed ranks. For the given data, the observed value of Sþ is

sþ ¼ sum of the positive ranks ¼ 3þ 5þ 6þ 7þ 8þ 9þ 10 ¼ 48

When the median of the distribution is much greater than 0, most of the observations with large
absolute magnitudes should be positive, resulting in positively signed ranks and a large value of sþ .
On the other hand, if the median is 0, magnitudes of positively signed observations should be
intermingled with those of negatively signed observations, in which case sþ will not be very large.
(As noted before, this characterization depends on the underlying distribution being symmetric.) Thus
we should reject H0: ~l ¼ 0 in favor of Ha: ~l[ 0 when sþ is “quite large”—the rejection region
should have the form sþ � c.

The critical value c should be chosen so that the test has a desired significance level (type I error
probability), such as .05 or .01. This necessitates finding the distribution of the test statistic Sþ when
the null hypothesis is true. Let’s consider n = 5, in which case there are 25 = 32 ways of applying
signs to the five ranks 1, 2, 3, 4, and 5 (each rank could have a − sign or a + sign). The key is that
when H0 is true, any collection of five signed ranks has the same chance as does any other collection.
That is, the smallest observation in absolute magnitude is equally likely to be positive or negative, the
same is true of the second smallest observation in absolute magnitude, and so on. Thus the collection
−1, 2, 3, −4, 5 of signed ranks is just as likely as the collection 1, 2, 3, 4, −5, and just as likely as any
one of the other 30 possibilities.

Table 14.1 lists the 32 possible signed-rank sequences when n = 5 along with the value sþ for
each sequence. This immediately gives the “null distribution” of Sþ . For example, Table 14.1 shows
that three of the 32 possible sequences have sþ ¼ 8, so P Sþ ¼ 8whenH0 is trueð Þ ¼ 3=32. This null
distribution appears in Table 14.2 and Figure 14.2. Notice that it is symmetric about 7.5; more
generally, Sþ ¼ 8 is symmetrically distributed over the possible values 0; 1; 2; . . .; n nþ 1ð Þ=2 when
H0 is true. This symmetry will be important in relating the rejection region of lower-tailed and two-
tailed tests to that of an upper-tailed test.

μ

a b

0 0

Figure 14.1 Distributions for which (a) ~l ¼ 0; (b) ~l � 0
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Table 14.1 Possible signed-rank sequences for n = 5

Sequence sþ Sequence sþ
−1 −2 −3 −4 −5 0 −1 +2 −3 −4 +5 7
+1 −2 −3 −4 −5 1 −1 −2 +3 −4 +5 8
−1 +2 −3 −4 −5 2 +1 +2 −3 −4 +5 8
−1 −2 +3 −4 −5 3 +1 −2 +3 −4 +5 9
+1 +2 −3 −4 −5 3 −1 +2 +3 −4 +5 10
+1 −2 +3 −4 −5 4 +1 +2 +3 −4 +5 11
−1 −2 −3 +4 −5 4 −1 +2 +3 +4 −5 9
+1 −2 −3 +4 −5 5 +1 +2 +3 +4 −5 10
−1 +2 −3 +4 −5 6 −1 −2 −3 +4 +5 9
−1 −2 +3 +4 −5 7 +1 −2 −3 +4 +5 10
+1 +2 −3 +4 −5 7 −1 +2 −3 +4 +5 11
+1 −2 +3 +4 −5 8 −1 −2 +3 +4 +5 12
−1 +2 +3 −4 −5 5 +1 +2 −3 +4 +5 12
+1 +2 +3 −4 −5 6 +1 −2 +3 +4 +5 13
−1 −2 −3 −4 +5 5 −1 +2 +3 +4 +5 14
+1 −2 −3 −4 +5 6 +1 +2 +3 +4 +5 15

Table 14.2 Null distribution of Sþ when n = 5

sþ 0 1 2 3 4 5 6 7

pðsþ Þ 1/32 1/32 1/32 2/32 2/32 3/32 3/32 3/32

sþ 8 9 10 11 12 13 14 15

pðsþ Þ 3/32 3/32 3/32 2/32 2/32 1/32 1/32 1/32

0.00

Probability

s+
0 5 10 15

0.02

0.04

0.06

0.08

0.10

Figure 14.2 Null distribution of Sþ when n = 5

For n = 10 there are 210 = 1024 possible signed-rank sequences, so a listing would involve much
effort. Each sequence, though, would have probability 1/1024 when H0 is true, from which the
distribution of Sþ when H0 is true can be obtained.

We are now in a position to determine a rejection region for testing H0: ~l ¼ 0 versus Ha: ~l[ 0
that has a suitably small significance level a. For the case n = 5, consider the rejection region
R ¼ fsþ : sþ � 13g ¼ 13; 14; 15f g. Then
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a ¼ P reject H0 whenH0 is trueð Þ
¼ PðSþ ¼ 13; 14; or 15 when H0 is trueÞ
¼ 1=32þ 1=32þ 1=32 ¼ 3=32

¼ :094

so that R = {13, 14, 15} specifies a test with approximate level .1. For the rejection region {14, 15},
a = 2/32 = .063. For the sample x1 ¼ :58; x2 ¼ 2:50; x3 ¼ �:21; x4 ¼ 1:23; x5 ¼ :97, the signed-
rank sequence is −1, +2, +3, +4, +5, so sþ = 14 and at level .063 (or anything higher) H0 would be
rejected.

The Wilcoxon Signed-Rank Test
Because the underlying distribution is assumed symmetric, l ¼ ~l, so we will state the hypotheses of
interest in terms of l rather than ~l.1 When the hypothesized value of l is l0, the absolute differences
x1 � l0j j; . . .; xn � l0j j must be ranked from smallest to largest.

WILCOXON SIGNED-RANK
TEST

Null hypothesis: H0: l ¼ l0
Test statistic value: sþ = the sum of the ranks associated with

positive (xi − l0)’s

Alternative Hypothesis Rejection Region for Level a Test
Ha: l[ l0 sþ � c1
Ha: l\l0 sþ � nðnþ 1Þ=2� c1
Ha: l 6¼ l0 either sþ � c or sþ � nðnþ 1Þ=2� c

where the critical values c1 and c obtained from Appendix Table A.11
satisfy PðSþ � c1Þ � a and PðSþ � cÞ � a=2 when H0 is true.

Example 14.4 A producer of breakfast cereals wants to verify that a filler machine is operating
correctly. The machine is supposed to fill one-pound boxes with 460 g, on average. This is a little
above the 453.6 g needed for one pound. When the contents are weighed, it is found that 15 boxes
yield the following measurements:

454.4 470.8 447.5 453.2 462.6 445.0 455.9 458.2
461.6 457.3 452.0 464.3 459.2 453.5 465.8

Does the data provide convincing statistical evidence that the true mean weight differs from 460 g?
Let’s use the seven-step hypothesis testing procedure outlined earlier in the book.

1. Parameter: l = the true average weight of all such cereal boxes
2. Hypotheses: H0: l = 460 versus Ha: l 6¼ 460
3. It is believed that deviations of any magnitude from 460 g are just as likely to be positive as negative

(in accord with the symmetry assumption), but the distribution may not be normal. Therefore, the
Wilcoxon signed-rank test will be used to see if the filler machine is calibrated correctly.

1If the tails of the distribution are “too heavy,” as is the case with the Cauchy distribution, then l will not exist. In such
cases, the Wilcoxon test will still be valid for tests concerning ~l.
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4. The test statistic will be sþ = the sum of the ranks associated with positive (xi − 460)’s
5. From Appendix Table A.11, PðSþ � 95Þ ¼ PðSþ � 25Þ ¼ :024 when H0 is true, so the two-tailed

test with approximate level .05 rejects H0 when either sþ � 95 or sþ � 25 [the exact a is
2(.024) = .048].

6. Subtracting 460 from each measurement gives

−5.6 10.8 −12.5 −6.8 2.6 −15.0 −4.1 −1.8
1.6 −2.7 −8.0 4.3 −.8 −6.5 5.8

The ranks are obtained by ordering these from smallest to largest without regard to sign.

Absolute
magnitude

.8 1.6 1.8 2.6 2.7 4.1 4.3 5.6 5.8 6.5 6.8 8.0 10.8 12.5 15.0

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sign − + − + − − + − + − − − + − −

Thus sþ ¼ 2þ 4þ 7þ 9þ 13 ¼ 35.
7. Since PðSþ � 30Þ is not in the rejection region, it cannot be concluded at level .05 that l differs

from 460. Even at level .094 (approximately .1), H0 cannot be rejected, since sþPðSþ � 30Þ=
PðSþ � 90Þ= .047 implies that sþ values between 30 and 90 are not significant at that level. The
P-value for this test thus exceeds .1. ■

Although a theoretical implication of the continuity of the underlying distribution is that ties will not
occur, in practice they often do because of the discreteness of measuring instruments. If there are
several data values with the same absolute magnitude, then they are typically assigned the average of
the ranks they would receive if they differed very slightly from one another. For example, if in Example
14.4 x8 = 458.2 were instead 458.4, then two different values of (xi − 460) would have absolute
magnitude 1.6. The ranks to be averaged would be 2 and 3, so each would be assigned rank 2.5.

Large-Sample Distribution of S+
Figure 14.2 displays the null distribution of S+ for n = 5, a symmetric distribution centered at 7.5. It is
straightforward to show (see Exercise 18) that when H0 is true,

EðSþ Þ ¼ nðnþ 1Þ
4

VðSþ Þ ¼ nðnþ 1Þð2nþ 1Þ
24

Moreover, when n is not small (say, n > 20), Lyapunov’s central limit theorem (Chapter 6, Exercise
68) implies that Sþ has an approximately normal distribution. Appendix Table A.11 only presents
critical values for the Wilcoxon signed-rank test for n � 20; beyond that, the test may be performed
using the “large-sample” test statistic

Z ¼ Sþ � nðnþ 1Þ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ=24p

which has approximately a standard normal distribution when H0 is true.

The Wilcoxon Test for Paired Data
When the data consisted of pairs ðX1; Y1Þ; . . .; ðXn; YnÞ and the differences D1 ¼ X1 � Y1; . . .;Dn ¼
Xn � Yn were normally distributed, in Chapter 10 we used a paired t test for hypotheses about the
expected difference lD. If normality is not assumed, hypotheses about lD can be tested by using the
Wilcoxon signed-rank test on the Di’s provided that the distribution of the differences is continuous
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and symmetric. The null hypothesis is H0: lD ¼ D0 for some null value D0 (most frequently 0), and
the test statistic Sþ is the sum of the ranks associated with the positive (Di − D0)’s.

Example 14.5 Poor sleep including insomnia is common among veterans, particularly those with
PTSD. The article “Cognitive Behavioral Therapy for Insomnia and Imagery Rehearsal in Combat
Veterans with Comorbid Posttraumatic Stress: A Case Series” (Mil. Behav. Health 2016: 58–64)
reports on a pilot study involving 11 combat veterans diagnosed with both insomnia and PTSD. Each
participant attended eight weekly individual therapy sessions with lessons including sleep education,
relaxation training, and nightmare re-scripting. Total nightly sleep time (min) was recorded for each
veteran both before the 8-week intervention and after. In the accompanying table, differences rep-
resent (sleep time after therapy) minus (sleep time before therapy).

Subject 1 2 3 4 5 6 7 8 9 10 11

Before 255 261 257 275 191 528 298 247 314 340 315
After 330 323 312 308 251 559 261 296 387 386 387
Difference 75 62 55 33 60 31 −37 49 73 46 72
Signed rank 11 8 6 2 7 1 −3 5 10 4 9

The relevant hypotheses are H0: lD = 0 versus Ha: lD > 0. Appendix Table A.11 shows that for a
test with significance level approximately .01, the null hypothesis should be rejected if sþ � 59. The
test statistic value is 11þ 8þ � � � þ 9 ¼ 63, the sum of every rank except 3, which falls in the
rejection region. We therefore reject H0 at significance level .01 in favor of the conclusion that the
therapy regimen increases sleep time, on average, for this population. Figure 14.3 shows R output for
this test, including the test statistic value (as V) and also the corresponding P-value, which is
PðSþ hx2265; hx2009; 63whenH0istrueÞ.

Efficiency of the Sign Test and Signed-Rank Test
When the underlying distribution being sampled is normal, any one of three procedures—the t test,
the signed-rank test, or the sign test—can be used to test a hypothesis about l (the point of sym-
metry). The t test is the best test in this case because among all level a tests it is the one having the
greatest power (smallest type II error probabilities). On the other hand, neither the t test nor the
signed-rank test should be applied to data from a clearly skewed distribution, for two reasons. First,
lack of normality (resp., symmetry) violates the requirements for the validity of the t test (resp.,
signed-rank test). Second, both of these latter test procedures concern the mean l, and for a heavily
skewed population the mean is arguably of less interest than the median ~l.

Test procedure Population assumption Parameter of interest Power (assuming normality)

Sign test Continuous ~l Least powerful
Signed-rank test Symmetric l ¼ ~l
One-sample t test Normal l ¼ ~l Most powerful

Wilcoxon signed rank test

data: After and Before
V = 63, p-value = 0.002441
alternative hypothesis: true location shift is greater than 0 

Figure 14.3 R output for Example 14.5 ■
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Let us now specifically compare Wilcoxon’s signed-rank test to the t test. Two questions will be
addressed:

1. When the underlying distribution is normal, the “home ground” of the t test, how much is lost by
using the signed-rank test?

2. When the underlying distribution is not normal, how much improvement can be achieved by using
the signed-rank test?

Unfortunately, there are no simple answers to the two questions. The difficulty is that power for the
Wilcoxon test is very difficult to determine for every possible distribution, and the same can be said
for the t test when the distribution is not normal. Even if power were easily obtained, any measure of
efficiency would clearly depend on which underlying distribution was assumed.

A number of different efficiency measures have been proposed by statisticians; one that many
statisticians regard as credible is called asymptotic relative efficiency (ARE). The ARE of one test
with respect to another is essentially the limiting ratio of sample sizes necessary to obtain identical
error probabilities for the two tests. Thus if the ARE of one test with respect to a second equals .5,
then when sample sizes are large, twice as large a sample size will be required of the first test to
perform as well as the second test. Although the ARE does not characterize test performance for small
sample sizes, the following results can be shown to hold:

1. When the underlying distribution is normal, the ARE of the Wilcoxon test with respect to the t test
is approximately .95.

2. For any distribution, the ARE will be at least .86 and for many distributions will be much greater
than 1.

We can summarize these results by saying that, in large-sample situations, the Wilcoxon test is
never very much less efficient than the t test and may be much more efficient if the underlying
distribution is far from normal. Although the issue is far from resolved in the case of sample sizes
obtained in most practical problems, studies have shown that the Wilcoxon test performs reasonably
and is thus a viable alternative to the t test. In contrast, the sign test has ARE less than .64 with respect
to the t test when the underlying distribution is normal. (But, again, the sign test is arguably the only
appropriate test for heavily skewed populations.)

The Wilcoxon Signed-Rank Interval
In Section 9.6, we discussed the “duality principle” that links hypothesis tests and confidence
intervals. Suppose we have a level a test procedure for testing H0: h ¼ h0 versus Ha: h 6¼ h0 based on
sample data x1; . . .; xn. If we let A denote the set of all h0 values for which H0 is not rejected, then A is
a 100(1 − a)% CI for h.2

The two-tailed Wilcoxon signed-rank test rejects H0 if sþ is either � c or � n(n + 1)/2 − c,
where c is obtained from Appendix Table A.11 once the desired significance level a is specified. For
fixed x1, …, xn, the 100(1 − a)% signed-rank interval will consist of all l0 for which H0: l ¼ l0 is
not rejected at level a. To identify this interval, it is convenient to express the test statistic Sþ in
another form.

2There are pathological examples in which the set A is not an interval of h values, but instead the complement of an
interval or something even stranger. To be more precise, we should really replace the notion of a CI with that of a
confidence set. In the cases of interest here, the set A does turn out to be an interval.
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PROPOSITION Sþ = the number of pairwise averages ðXi þXjÞ=2 with i � j
that are � l0

(These pairwise averages are known as Walsh averages.)

That is, if we average each xj in the list with each xi to its left, including (xj + xj)/2 = xj, and count the
number of these averages that are � l0, sþ results. In moving from left to right in the list of sample
values,we are simply averaging every pair of observations in the sample—again, including (xj + xj)/2—
exactly once, so the order in which the observations are listed before averaging is not important. The
equivalence of the two methods for computing sþ is not difficult to verify. The number of pairwise

averages is n

2

 !
þ n ¼ n nþ 1ð Þ=2. If either too many or too few of these pairwise averages are � l0,

H0 is rejected.

Example 14.6 The following observations are values of cerebral metabolic rate for rhesus monkeys:
x1 = 4.51, x2 = 4.59, x3 = 4.90, x4 = 4.93, x5 = 6.80, x6 = 5.08, x7 = 5.67. The 28 pairwise averages
are, in increasing order,

4.51 4.55 4.59 4.705 4.72 4.745 4.76 4.795 4.835 4.90
4.915 4.93 4.99 5.005 5.08 5.09 5.13 5.285 5.30 5.375
5.655 5.67 5.695 5.85 5.865 5.94 6.235 6.80

The first few and the last few of these are pictured on a measurement axis in Figure 14.4.

Because of the discreteness of the distribution of Sþ , a = .05 cannot be obtained exactly. The
rejection region {0, 1, 2, 26, 27, 28} has a = .046, which is as close as possible to .05, so the level is
approximately .05. Thus if the number of pairwise averages � l0 is between 3 and 25, inclusive, H0

is not rejected. As displayed in Figure 14.4, the approximate 95% CI for l is (4.59, 5.94); the
endpoints are the 3rd-lowest and 3rd-highest (3rd and 26th ordered) Walsh averages. ■

In general, once the pairwise averages are ordered from smallest to largest, the endpoints of the
Wilcoxon interval are two of the “extreme” averages. To express this precisely, let the smallest
pairwise average be denoted by �xð1Þ, the next smallest by �xð2Þ; . . .; and the largest by �xðnðnþ 1Þ=2Þ.

At level .0469, H0 is
not rejected for µ0 in here

s  27
s  26

s  0

s  1

s  28

4.8 5.5 5.75 64.5 4.6 4.7

s  2

 3 s  25

Figure 14.4 Plot of the data for Example 14.6
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PROPOSITION If the level a Wilcoxon signed-rank test for H0: l ¼ l0 versus Ha: l 6¼ l0 is
to reject H0 if either sþ � c or sþ � n(n + 1)/2 − c, then a 100(1 − a)%
CI for l is

ð�xðnðnþ 1Þ=2�cþ 1Þ;�xðcÞÞ ð14:2Þ

In words, the interval extends from the kth smallest pairwise average to the kth largest average, where
k ¼ nðnþ 1Þ=2� cþ 1. Appendix Table A.12 gives the values of c that correspond to the usual con-
fidence levels for n = 5, 6,…, 25. In R, thewilcox.test function applied to a vectorx containing the
sample data will return this signed-rank interval if the user includes the option conf.int = T.

Example 14.7 (Example 14.6 continued) For n = 7, an 89.1% interval (approximately 90%) is
obtained by using c = 24, since the rejection region {0, 1, 2, 3, 4, 24, 25, 26, 27, 28} has a = .109.
The interval is ð�xð28�24þ 1Þ;�xð24ÞÞ ¼ ð�xð5Þ;�xð24ÞÞ ¼ 4:72; 5:85ð Þ, which extends from the fifth smallest
to the fifth largest pairwise average. ■

The derivation of the signed-rank interval depended on having a single sample from a continuous
symmetric distribution with mean (median) l. When the data is paired, the interval constructed from
the Walsh averages of the differences d1, d2, …, dn is a CI for the mean (median) difference lD.

For n > 20, the large-sample approximation to the Wilcoxon test based on standardizing Sþ gives
an approximation to c in (14.2). The result for a 100(1 − a)% interval is

c � nðnþ 1Þ
4

þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ

24

r

The efficiency of the Wilcoxon interval relative to the t interval is roughly the same as that for the
Wilcoxon test relative to the t test. In particular, for large samples when the underlying population is
normal, the Wilcoxon interval will tend to be slightly longer than the t interval, but if the population is
quite nonnormal (e.g., symmetric but with heavy tails), then the Wilcoxon interval will tend to be
much shorter than the t interval.

Exercises: Section 14.2 (11–24)

11. Reconsider the situation described in
Exercise 34(a) of Section 9.2, and use the
Wilcoxon test with a = .05 to test the
specified hypotheses.

12. Use the Wilcoxon test to analyze the data
given in Example 9.12.

13. The following pH measurements at a pro-
posed water intake site appear in the 2011
report “Sacramento River Water Quality
Assessment for the Davis-Woodland Water
Supply Project”:

7.20 7.24 7.31 7.38 7.45 7.60 7.86

Use the Wilcoxon signed-rank test to deter-
mine whether the true mean pH level at this
site exceeds 7.3 with significance level .05.

14. A random sample of 15 automobile
mechanics certified to work on a certain
type of car was selected, and the time (in
minutes) necessary for each one to diag-
nose a particular problem was determined,
resulting in the following data:

30.6 30.1 15.6 26.7 27.1 25.4 35.0 30.8
31.9 53.2 12.5 23.2 8.8 24.9 30.2

Use the Wilcoxon test at significance level
.10 to decide whether the data suggests that
true average diagnostic time is less than
30 min.

15. Both a gravimetric and a spectrophotomet-
ric method are under consideration for
determining phosphate content of a
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particular material. Twelve samples of the
material are obtained, each is split in half,
and a determination is made on each half
using one of the two methods, resulting in
the following data:

Sample 1 2 3 4
Grav. 54.7 58.5 66.8 46.1
Spec. 55.0 55.7 62.9 45.5

Sample 5 6 7 8
Grav. 52.3 74.3 92.5 40.2
Spec. 51.1 75.4 89.6 38.4

Sample 9 10 11 12
Grav. 87.3 74.8 63.2 68.5
Spec. 86.8 72.5 62.3 66.0

Use the Wilcoxon test to decide whether
one technique gives on average a different
value than the other technique for this type
of material.

16. Fifty-three participants performed a series of
tests in which a small “zap”was delivered to
one compass point, selected at random, on a
joystick in their hand. In one setting, subjects
were told to move the joystick in the same
direction of the zap; in another setting, they
were told to move the joystick in the direc-
tion opposite to the zap. A series of trials was
performed under each setting, and the num-
ber of correct moves under both settings was
recorded. (“An Experimental Setup to Test
Dual-Joystick Directional Responses to
Vibrotactile Stimuli,” IEEE Trans. on Hap-
tics 2018.)

a. The authors performed a Wilcoxon
signed-rank test on the paired differences
(number correct in same direction minus
number correct in opposite direction,
which is discrete but won't greatly
impact the analysis). The resulting test
statistic value was sþ = 695. Test
H0: lD = 0 versus Ha: lD 6¼ 0 at the .10
significance level using the large-sample
version of the test.

b. The same article also explored whether
participants would make more correct
moves if the “zaps” were instead deliv-
ered by a glove they wore while grasp-
ing the joystick. Again for n = 53
subjects, the difference (number correct

with joystick minus number correct with
glove) was computed, and the signed-
rank test statistic value was sþ = 136.
Perform a two-sided large-sample test,
and interpret your findings.

17. The article “Punishers Benefit from Third-
Party Punishment in Fish” (Science, 8 Jan
2010: 171) describes an experiment meant to
simulate behavior of cleaner fish, so named
because they eat parasites off of “client” fish
but will sometimes take a bite of the client’s
mucus instead. (Cleaner fish prefer the mucus
over the parasites.) Eight female cleaner fish
were provided bits of prawn (preferred food)
and fish-flake (less preferred), then a male
cleaner fish chased them away. One minute
later, the process was repeated.

a. The following data on the amount of
prawn eaten by each female in the two
rounds is consistent with information in
the article. Use Wilcoxon’s signed-rank
test to determine whether female fish eat
less of their preferred food, on average,
after having been chased by a male.

Female 1 2 3 4 5 6 7 8

1st trial .207 .215 .103 .182 .282 .228 .152 .293
2nd trial .164 .033 .092 .003 .115 .250 .056 .247

b. The researchers recorded the same
information on the male cleaner fish (the
chasers), resulting in a signed-rank test
statistic value of sþ = 28. Does this
provide evidence that males increase
their average preferred food consump-
tion the second time around?

18. The signed-rank statistic can be represented as
Sþ ¼ 1 � U1 þ 2 � U2 þ � � � þ n � Un where
Ui = 1 if the sign of the (xi − l0) with the ith
largest absolute magnitude is positive (in
which case i is included in Sþ ) andUi = 0 if
this value is negative (i = 1, 2, 3, …, n).
Furthermore, when H0 is true, the Ui’s are
independent Bernoulli rvs with p = .5.

a. Use this representation to obtain the
mean and variance of Sþ when H0 is
true. [Hint: The sum of the first n posi-
tive integers is nðnþ 1Þ=2, and the sum
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of the squares of the first n positive
integers is nðnþ 1Þð2nþ 1Þ=6.]

b. A particular type of steel beam has been
designed to have a compressive strength
(lb/in2) of at least 50,000. An experi-
menter obtained a random sample of 25
beams and determined the strength of
each one, resulting in the following data
(expressed as deviations from 50,000):

−10 −27 36 −55 73 −77 −81
90 −95 −99 113 −127 −129 136

−150 −155 −159 165 −178 −183 −192
−199 −212 −217 −229

Carry out a test using a significance level
of approximately .01 to see if there is
strong evidence that the design condition
has been violated.

19. Reconsider the calorie-burning data in
Exercise 10 from Section 14.1.

a. Utilize the Wilcoxon signed-rank pro-
cedure to test H0: lD = 0 versus
Ha: lD < 0 for the population of REE
differences (IF minus standard diet).
What assumption is required here that
was not necessary for the sign test?

b. Now apply the paired t test to the
hypotheses in part (a). What extra
assumptions are required?

c. Compare the results of the three tests
(sign, signed-rank, and paired t) and
discuss what you find.

20. Suppose that observations X1, X2,…, Xn are
made on a process at times 1, 2, …, n. On
the basis of this data, we wish to test
H0: the Xi’s constitute an independent and
identically distributed sequence
versus
Ha: Xi+1 tends to be larger than Xi for i = 1,
…, n (an increasing trend)

Suppose the Xi’s are ranked from 1 to
n. Then when Ha is true, larger ranks tend
to occur later in the sequence, whereas if H0

is true, large and small ranks tend to be
mixed together. Let Ri be the rank of Xi and

consider the test statistic D ¼Pn
i¼1 ðRi � iÞ2.

Then small values of D give support to
Ha (e.g., the smallest value is 0 for
R1 ¼ 1; R2 ¼ 2; . . .;Rn ¼ n), so H0 should
be rejected in favor of Ha if d � c. When
H0 is true, any sequence of ranks has
probability 1/n!. Use this to find c for which
the test has a level as close to .10 as pos-
sible in the case n = 4. [Hint: List the 4!
rank sequences, compute d for each one,
and then obtain the null distribution of
D. See the Lehmann book in the bibliog-
raphy for more information.]

21. Obtain the 99% signed-rank interval for true
average pH using the data in Exercise 13.

22. Obtain a 95% signed-rank interval for true
average diagnostic time using the data in
Exercise 14. [Hint:Try to compute only those
pairwise averages having relatively small or
large values, rather than all 120 averages.]

23. Obtain a CI for lD of Exercise 17 using the
data given there; your confidence level
should be roughly 95%.

24. The following observations are copper
contents (%) for a sample of Bidri artifacts
(a type of ancient Indian metal handicraft)
at the Victoria and Albert Museum in
London (“Enigmas of Bidri,” Surface Engr.
2005: 333–339): 2.4, 2.7, 5.3, and 10.1.
What confidence levels are achievable for
this sample size using the signed-rank
interval? Select an appropriate confidence
level and compute the interval.

14.3 Two-Sample Rank-Based Inference

When at least one of the sample sizes in a two-sample problem is small, the t test requires the
assumption of normality (at least approximately). There are situations, though, in which an investi-
gator would want to use a test that is valid even if the underlying distributions are quite nonnormal.
We now describe such a test, called the Wilcoxon rank-sum test. An alternative name for the
procedure is the Mann–Whitney test, although the Mann–Whitney test statistic is sometimes
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expressed slightly differently from that of the Wilcoxon test. The Wilcoxon test procedure is
“distribution-free” because it will have the desired level of significance for a very large collection of
underlying distributions rather than just the normal distribution.

ASSUMPTIONS X1, …, Xm and Y1, …, Yn are two independent random samples from con-
tinuous distributions with means l1 and l2, respectively. The X and Y dis-
tributions have the same shape and spread, the only possible difference
between the two being in the values of l1 and l2.

When H0: l1 � l2 ¼ D0 is true, the X distribution is shifted by the amount D0 to the right of the
Y distribution; i.e., fXðxÞ ¼ fYðx� D0Þ. When H0 is false, the shift is by an amount other than D0;
note, though, that we still assume the two distributions only differ by a shift in means. This
assumption can be difficult to verify in practice, but the Wilcoxon rank-sum test is nonetheless a
popular approach to comparisons based on small samples.

A Rank-Based Test Statistic
Let’s first test H0: l1 � l2 ¼ 0; then the X’s and Y’s are identically distributed when H0 is true.
Consider the case n1 = 3, n2 = 4. Denote the observations by x1, x2, and x3 (the first sample) and y1,
y2, y3, and y4 (the second sample). If l1 is actually much larger than l2, then most of the observed x’s
will be larger than the observed y’s. However, if H0 is true, then the values from the two samples
should be intermingled. The test statistic will quantify how much intermingling there is in the two
samples.

To begin, pool the x’s and y’s into a single combined sample of size m + n = 7 and rank these
observations from smallest to largest, with the smallest receiving rank 1 and the largest, rank 7. If
most of the large ranks (or most of the small ranks) were associated with x observations, we would
begin to doubt H0. This suggests the test statistic

W ¼ the sum of the ranks in the combined sample associated with X observations ð14:3Þ

For the values of m and n under consideration, the smallest possible value of W is 1 + 2 + 3 = 6 (if
all three x’s are smaller than all four y’s), and the largest possible value is 5 + 6 + 7 = 18 (if all three
x’s are larger than all four y’s).

As an example, suppose x1 = –3.10, x2 = 1.67, x3 = 2.01, y1 = 5.27, y2 = 1.89, y3 = 3.86, and
y4 = .19. Then the pooled ordered sample is –3.10, .19, 1.67, 1.89, 2.01, 3.86, and 5.27. The X ranks
for this sample are 1 (for –3.10), 3 (for 1.67), and 5 (for 2.01), giving w = 1 + 3 + 5 = 9.

The test procedure based on the statistic (14.3) requires knowledge of the null distribution of
W. When H0 is true, all seven observations come from the same population. This means that under
H0, any possible triple of ranks associated with the three x’s—such as (1, 4, 5), (3, 5, 6), or (5, 6, 7)—
has the same probability as any other possible rank triple. Since there are 7

3

� � ¼ 35 possible rank

triples, under H0 each rank triple has probability 1=35. From a list of all 35 rank triples and the
W value associated with each, the null distribution ofW can immediately be determined. For example,
there are four rank triples for which W = 11—(1, 3, 7), (1, 4, 6), (2, 3, 6), and (2, 4, 5)—so
PðW ¼ 11Þ ¼ 4=35. The complete sampling distribution appears in Table 14.3 and Figure 14.5.

Table 14.3 Probability distribution of W when H0 is true (n1 = 3, n2 = 4)

w 6 7 8 9 10 11 12 13 14 15 16 17 18

p(w) 1/35 1/35 2/35 3/35 4/35 4/35 5/35 4/35 4/35 3/35 2/35 1/35 1/35
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Suppose we wished to test H0: l1 − l2 = 0 against Ha: l1 – l2 < 0 based on the example data
given previously, for which the observed value of W was 9. Then the P-value associated with the test
is the chance of observing a W-value of 9 or lower, assuming H0 is true. Using Table 14.3,

P-value ¼ P W � 9 when H0 is trueð Þ ¼ PðW ¼ 6; 7; 8; 9Þ ¼ 7
35

¼ :2

We would thus not reject H0 at any reasonable significance level.
Constructing the null sampling distribution of W manually can be tedious, since there are generally

mþ n
n

� �
possible arrangements of ranks to consider. Software will provide w and the associated

P-value quickly, though various packages perform the P-value calculation slightly differently.

The Wilcoxon Rank-Sum Test
The null hypothesis H0: l1 � l2 ¼ D0 is handled by subtracting D0 from each Xi and using the
(Xi − D0)’s as the Xi’s were previously used. The smallest possible value of the statistic W is
1þ 2þ � � � þm ¼ mðmþ 1Þ=2, which occurs when the (Xi − D0)’s are all to the left of the Y sample.
The largest possible value of W occurs when the (Xi − D0)’s lie entirely to the right
of the Y’s; in this case, W ¼ ðnþ 1Þþ � � � þ ðmþ nÞ ¼ ðsum of first mþ n integersÞ�
ðsum of first n integersÞ, which gives mðmþ 2nþ 1Þ=2. As with the special case m = 3, n = 4, the
null distribution of W is symmetric about the value that is halfway between the smallest and largest
values; this middle value is m(m + n + 1)/2. Because of this symmetry, probabilities involving lower-
tail critical values can be obtained from corresponding upper-tail values.

0.00

Probability

w
6 10 14 18

0.05

0.10

0.15

8 12 16

Figure 14.5 Sampling distribution of W when H0 is true (n1 = 3, n2 = 4)
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WILCOXON RANK-SUM
TEST

Null hypothesis: H0: l1 � l2 ¼ D0

Test statistic value: w ¼
Xm
i¼1

ri;

where ri = rank of ðxi � D0Þ in the combined sample
of m + n ðx� D0Þ’s and y’s
Alternative Hypothesis Rejection Region for Level a Test
Ha: l1 � l2 [ D0 w� c1
Ha: l1 � l2\D0 w�mðmþ nþ 1Þ � c1
Ha: l1 � l2 6¼ D0 either w� c or w�mðmþ nþ 1Þ � c

where P(W � c1 when H0 is true) � a, P(W � c when H0 is true) � a/2

Because W has a discrete probability distribution, there will not usually exist a critical value corre-
sponding exactly to one of the usual significance levels. Appendix Table A.13 gives upper-tail critical
values for probabilities closest to .05, .025, .01, and .005, from which level .05 or .01 one- and two-
tailed tests can be obtained. The table gives information only for 3 � m � n � 8. To use the table,
the X and Y samples should be labeled so that m � n. Ties are handled as suggested for the signed-
rank test in the previous section.

Example 14.8 The urinary fluoride concentration (parts per million) was measured both for a sample
of livestock grazing in an area previously exposed to fluoride pollution and for a similar sample
grazing in an unpolluted region:

Polluted 21.3 [11] 18.7 [7] 23.0 [12] 17.1 [3] 16.8 [2] 20.9 [10] 19.7 [8]
Unpolluted 14.2 [1] 18.3 [5] 17.2 [4] 18.4 [6] 20.0 [9]

The values in brackets indicate the rank of each observation in the combined sample of 12 values.
Does the data indicate strongly that the true average fluoride concentration for livestock grazing in the
polluted region is larger than for the unpolluted region? Let’s use the Wilcoxon rank-sum test at level
a = .01.

1. The sample sizes here are 7 and 5. To obtain m � n, label the unpolluted observations as the x’s
(x1 = 14.2, …, x5 = 20.0) and the polluted observations as the y’s. Thus the parameters are

l1 = the true average fluoride concentration without pollution
l2 = the true average concentration with pollution

2. The hypotheses are

H0: l1 � l2 ¼ 0
Ha: l1 � l2\ 0 (pollution is associated with an increase in concentration)

3. In order to perform the Wilcoxon rank-sum test, we will assume that the fluoride concentration
distributions for these two livestock populations have the same shape and spread, but possibly
differ in mean.

4. The test statistic value is w ¼P5
i¼1 ri, where ri = the rank of xi among all 12 observations.

5. From Appendix Table A.13 with m = 5 and n = 7, P(W � 47 when H0 is true) � .01. The
critical value for the lower-tailed test is therefore m(m + n + 1) − 47 = 5(13) − 47 = 18; H0 will
now be rejected if w � 18.
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6. The computed W is w ¼ r1 þ r2 þ � � � þ r5 ¼ 1þ 5þ 4þ 6þ 9 ¼ 25.
7. Since 25 is not � 18, H0 is not rejected at (approximately) level .01. The data does not provide

convincing statistical evidence at the .01 significance level that average fluoride concentration is
higher among livestock grazing in the polluted region. ■

Alternative Versions of the Rank-Sum Test
Appendix Table A.13 allows us to perform the Wilcoxon rank-sum test provided that m and n are
both � 8. For larger sample sizes, a central limit theorem for nonindependent variables can be used to
show that W has an approximately normal distribution. (The genesis of a bell-shaped curve can even
be seen in Figure 14.5 where m = 3 and n = 4.) When H0 is true, the mean and variance of W (see
Exercise 32) are

EðWÞ ¼ mðmþ nþ 1Þ
2

VðWÞ ¼ mnðmþ nþ 1Þ
12

These suggest that when m > 8 and n > 8 the rank-sum test may be performed using the test
statistic

Z ¼ W � mðmþ nþ 1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðmþ nþ 1Þ=12p

which has approximately a standard normal distribution when H0 is true.
Some statistical software packages, including R, use an alternative formulation called the Mann–

Whitney U test. Consider all possible pairs ðXi; YjÞ, of which there are mn. Define a test statistic U by

U ¼ the number of Xi; Yj
� �

pairs for which Xi � Yj [D0 ð14:4Þ

It can be shown (Exercise 34) that the test statistics U and W are related by U ¼ W � mðmþ 1Þ=2.
The mean and variance of U can thus be obtained from the corresponding expressions for W, and the
normal approximation to W applies equally to U.

Finally, when using the normal approximation, some slightly tedious algebra can be used to re-
arrange the standardized version of W so that it looks similar to the two-sample z test statistic:

Z ¼ W � EðWÞffiffiffiffiffiffiffiffiffiffiffiffi
VðWÞp ¼ � � � ¼

�R1 � �R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m
þ r2

n

r ;

where �R1 and �R2 denote the average ranks for the two samples, and r2 ¼ ðmþ nÞðmþ nþ 1Þ=12.
Efficiency of the Wilcoxon Rank-Sum Test
When the distributions being sampled are both normal with r1 = r2 and therefore have the same
shapes and spreads, either the pooled t test or the Wilcoxon test can be used. (The two-sample t test
assumes normality but not equal standard deviations, so assumptions underlying its use are more
restrictive in one sense and less in another than those for Wilcoxon’s test.) In this situation, the pooled
t test is best among all possible tests in the sense of maximizing power for any fixed a. However, an
investigator can never be absolutely certain that underlying assumptions are satisfied. It is therefore
relevant to ask (1) how much is lost by using Wilcoxon’s test rather than the pooled t test when the
distributions are normal with equal variances and (2) how W compares to T in nonnormal situations.

The notion of asymptotic relative efficiency was discussed in the previous section in connection
with the one-sample t test and Wilcoxon signed-rank test. The results for the two-sample tests are the
same as those for the one-sample tests. When normality and equal variances both hold, the rank-sum
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test is approximately 95% as efficient as the pooled t test in large samples. That is, the t test will give
the same error probabilities as the Wilcoxon test using slightly smaller sample sizes. On the other
hand, the Wilcoxon test will always be at least 86% as efficient as the pooled t test and may be much
more efficient if the underlying distributions are very nonnormal, especially with heavy tails. The
comparison of the Wilcoxon test with the two-sample (unpooled) t test is less clear-cut. The t test is
not known to be the best test in any sense, so it seems safe to conclude that as long as the population
distributions have similar shapes and spreads, the behavior of the Wilcoxon test should compare quite
favorably to the two-sample t test.

Lastly, we note that power calculations for the Wilcoxon test are quite difficult. This is because the
distribution of W when H0 is false depends not only on l1 − l2 but also on the shape of the two
distributions. For most underlying distributions, the nonnull distribution of W is virtually intractable.
This is why statisticians developed asymptotic relative efficiency as a means of comparing tests. With
the capabilities of modern-day computer software, another approach to power calculations is to carry
out a simulation experiment.

The Wilcoxon Rank-Sum Interval
Similar to the signed-rank interval of Section 14.2, aCI forl1 � l2 based on theWilcoxon rank-sum test
is obtained by determining, for fixed xi’s and yj’s, the set of all D0 values for which H0: l1 � l2 ¼ D0 is
not rejected. This is easiest to do if we use the Mann–Whitney U statistic (14.4), according to which H0

should be rejected if the number of (xi − yj)’s � D0 is either too small or too large.
This, in turn, suggests that we compute xi − yj for each i and j and order these mn differences from

smallest to largest. Then if the null value D0 is neither smaller than most of the differences nor larger
than most, H0: l1 � l2 ¼ D0 is not rejected. Varying D0 now shows that a CI for l1 − l2 will have as
its lower endpoint one of the ordered (xi − yj)’s, and similarly for the upper endpoint.

PROPOSITION Let x1, …, xm and y1, …, yn be the observed values in two independent
samples from continuous distributions that differ only in location (and not in
shape or spread). With dij = xi − yj and the ordered differences denoted by
dij(1), dij(2), …, dij(mn), the general form of a 100(1 − a)% CI for l1 − l2 is

ðdijðmn�cþ 1Þ; dijðcÞÞ ð14:5Þ

where c is the critical value for the two-tailed level a Wilcoxon rank-sum test.

Notice that the form of the Wilcoxon rank-sum interval (14.5) is very similar to the Wilcoxon signed-
rank interval (14.2); (14.2) uses pairwise averages from a single sample, whereas (14.5) uses pairwise
differences from two samples. Appendix Table A.14 gives values of c for selected values of m and
n. In R, the wilcox.test function applied to vectors x and y containing the sample data will
return this signed-rank interval if the user includes the option conf.int = T.

Example 14.9 The article “Some Mechanical Properties of Impregnated Bark Board” (Forest
Products J.) reports the following data on maximum crushing strength (psi) for a sample of epoxy-
impregnated bark board and for a sample of bark board impregnated with another polymer:

Epoxy (x’s) 10,860 11,120 11,340 12,130 14,380 13,070
Other (y’s) 4590 4850 6510 5640 6390

Let’s obtain a 95% CI for the true average difference in crushing strength between the epoxy-
impregnated board and the other type of board.
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From Appendix Table A.14, since the smaller sample size is 5 and the larger sample size is
6, c = 26 for a confidence level of approximately 95%, and mn – c + 1 = (5)(6) − 26 + 1 = 5.
All 30 dij’s appear in Table 14.4. The five smallest dij’s are dij(1) = 4350, 4470, 4610, 4730, and
dij(5) = 4830; and the five largest dij’s are (in descending order) 9790, 9530, 8740, 8480, and 8220.
Thus the CI is (dij(5), dij(26)) = (4830, 8220).

■
When m and n are both large, the aforementioned normal approximation can be used to derive a

large-sample approximation for the value c in interval (14.5). The result is

c � mn

2
þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðmþ nþ 1Þ

12

r

As with the signed-rank interval, the rank-sum interval (14.5) is quite efficient with respect to the
t interval; in large samples, (14.5) will tend to be only a bit longer than the t interval when the
underlying populations are normal and may be considerably shorter than the t interval if the
underlying populations have heavier tails than do normal populations. And once again, the actual
confidence level for the t interval may be quite different from the nominal level in the presence of
substantial nonnormality.

Table 14.4 Differences (dij) for the rank-sum interval in Example 14.9

yj
4590 4850 5640 6390 6510

xi

10,860 6270 6010 5220 4470 4350
11,120 6530 6270 5480 4730 4610
11,340 6750 6490 5700 4950 4830
12,130 7540 7280 6490 5740 5620
13,070 8480 8220 7430 6680 6560
14,380 9790 9530 8740 7990 7870

Exercises: Section 14.3 (25–36)

25. In an experiment to compare the bond
strength of two different adhesives, each
adhesive was used in five bondings of two
surfaces, and the force necessary to separate
the surfaces was determined for each
bonding. For adhesive 1, the resulting val-
ues were 229, 286, 245, 299, and 250,
whereas the adhesive 2 observations were
213, 179, 163, 247, and 225. Let li denote
the true average bond strength of adhesive
type i. Use the Wilcoxon rank-sum test at
level .05 to test H0: l1 ¼ l2 versus
Ha: l1 [ l2.

26. The accompanying data shows the alcohol
content (percent) for random samples of 7
German beers and 8 domestic beers. Does
the data suggest that German beers have a

different average alcohol content than those
brewed in the USA? Use the Wilcoxon
rank-sum test at a = .05.

German 5.00 4.90 3.80 4.82 4.80 5.44 6.60
Domestic 4.85 5.04 4.20 4.10 4.50 4.70 4.30 5.50

27. A modification has been made to one
assembly line for a particular automobile
chassis. Because the modification involves
extra cost, it will be implemented
throughout all lines only if sample data
strongly indicates that the modification has
decreased true average assembly time by
more than 1 h. Assuming that the assembly
time distributions differ only with respect to
location if at all, use the Wilcoxon rank-
sum test at level .05 on the accompanying
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data (also in hours) to test the appropriate
hypotheses.

Original process 8.6 5.1 4.5 5.4 6.3 6.6 5.7 8.5
Modified process 5.5 4.0 3.8 6.0 5.8 4.9 7.0 5.7

28. Can video games improve balance among
the elderly? The article “The Effect of Vir-
tual Reality Gaming on Dynamic Balance in
Older Adults” (Age and Ageing 2012: 549–
552) reported an experiment in which 34
senior citizens were randomly assigned to
one of two groups: (1) 16 who engaged in a
six-week exercise regimen using the Wii Fit
Balance Board (WBB) and (2) 18 who were
told not to vary their daily physical activity
during that interval. The accompanying data
on improvement in 8-foot-up-and-go time
(sec), a standard test of agility and balance,
is consistent with information in the article.
Test whether the true average improve-
ment is greater using the WBB than under
control conditions at the .05 significance
level.

WBB −1.9 −0.8 0.1 0.5 0.6 0.7 0.8 0.9
1.1 1.2 1.5 2.0 2.1 2.7 3.2 3.7

Control −2.6 −2.2 −2.1 −1.8 −1.4 −1.1 −0.7 −0.6
−0.3 −0.1 0.0 0.3 0.4 1.0 1.3 2.3
2.4 4.5

29. Reconsider the situation described in
Exercise 110 of Chapter 10 and the fol-
lowing Minitab output (the Greek letter eta
is used to denote a median).

Mann-Whitney Confidence Interval and
Test
good N = 8 Median = 0.540
poor N = 8 Median = 2.400
Point estimate for ETA1 − ETA2 is −1.155
95.9% CI for ETA1 − ETA2 is
(−3.160 − 0.409) W = 41.0
Test of ETA1 = ETA2 versus ETA1 < ETA2 is
significant at 0.0027

a. Verify that Minitab’s test statistic value
is correct.

b. Carry out an appropriate test of hypothe-
ses using a significance level of .01.

30. The article “Opioid Use and Storage Pat-
terns by Patients after Hospital Discharge

following Surgery” (PLoS ONE 2016)
reported a study of 30 women who just had
Caesarian sections. The women were clas-
sified into two groups: 14 with a high need
for pain medicine post-surgery and 16 with
a low need. The total oral morphine
equivalent prescribed at discharge was
determined for each woman, and the
resulting Wilcoxon rank-sum test statistic
was W = 249.5. (The .5 comes from ties in
the data, but that won’t affect the P-value
much.) Test the hypotheses H0: l1 = l2
versus Ha: l1 6¼ l2 at the .05 significance
level. Does it appear that physicians pre-
scribe opioids in proportion to patients’
pain-control needs?

31. The article “Mutational Landscape Deter-
mines Sensitivity to PD-1 Blockade in
Non-Small Cell Lung Cancer” (Science, 3
April 2015) described a study of 16 cancer
patients taking the drug Keytruda. For each
patient, the number of nonsynonymous
mutations per tumor was determined;
higher numbers indicate better drug effec-
tiveness. The data is separated into patients
that showed a durable clinical benefit
(partial or stable response last-
ing >6 months) and those with no durable
benefit. Use the methods of this section to
determine whether patients experiencing
durable clinical benefit tend to have a
higher average number of nonsynonymous
mutations than those with no durable ben-
efit (use a = .05).

Durable
benefit

170 228 300 302 315 490 774

No durable
benefit

11 28 46 115 148 161 180 300 625

32. The Wilcoxon rank-sum statistic can be
represented as W ¼ R1 þR2 þ � � � þRm,
where Ri is the rank of Xi − D0 among all
m + n such differences. When H0 is true,
each Ri is equally likely to be one of the
first m + n positive integers; that is, Ri has a
discrete uniform distribution on the values
1, 2, 3, …, m + n.
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a. Determine the mean value of each Ri

when H0 is true and then show that the
mean value of W is m(m + n + 1)/2.
[Hint: The sum of the first k positive
integers is k(k + 1)/2.]

b. The variance of each Ri is easily deter-
mined. However, the Ri’s are not inde-
pendent random variables because, for
example, if m = n = 10 and we are told
that R1 = 5, then R2 must be one of the
other 19 integers between 1 and 20.
However, if a and b are any two distinct
positive integers between 1 and
m + n inclusive, it follows that PðRi ¼
a and Rj ¼ bÞ ¼ 1=½ðmþ nÞðmþ n� 1Þ	
since two integers are being sampled
without replacement from among 1, 2,
…, m + n. Use this fact to show that
CovðRi;RjÞ ¼ �ðmþ nþ 1Þ=12, and
then show that the variance of W is
mnðmþ nþ 1Þ=12.

33. The article “Controlled Clinical Trial of
Canine Therapy Versus Usual Care to
Reduce Patient Anxiety in the Emergency
Department” (PLoS ONE 2019) reported on
an experiment in which 80 adult hospital
patients were randomly assigned to either
15 min with a certified therapy dog
(m = 40) or usual care (n = 40). Each
patient’s change in self-reported pain,
depression, and anxiety (pre-treatment
minus post treatment) was recorded. The
researchers employed a rank-sum test to

compare the two treatment groups on each
of these three outcomes; the resulting test
statistic values appear below.

Change in: Pain Depression Anxiety

w = 1475 1316 1171

Test the hypotheses H0: l1 − l2 = 0 against
Ha: l1 − l2 < 0 (1 = dog therapy treat-
ment, 2 = control) for each of the three
response variables at the .01 significance
level. What can be said about the chance of
committing at least one type I error among
the three tests?

34. Refer to Exercise 32. Sort the ranks of the
Xi’s, so that R1\R2\ � � �\Rm.

a. In terms of the R’s, how many of the Yj’s
are less than the smallest Xi? Less than
the second-smallest Xi?

b. When D0 ¼ 0, the Mann–Whitney test
statistic is U = the number of ðXi;YjÞ
pairs for which Xi [ Yj. Use part (a) to
express U as a sum, then show this sum
is equal to W � mðmþ 1Þ=2.

c. Use the mean and variance of W to
determine E(U) and V(U).

35. Obtain the 90% rank-sum CI for l1 − l2
using the data in Exercise 25.

36. Obtain a 95% CI for l1 − l2 using the data
in Exercise 27. Is your interval consistent
with the result of the hypothesis test in that
exercise?

14.4 Nonparametric ANOVA

The analysis of variance (ANOVA) procedures in Chapter 11 for comparing I population or treatment
means assumed that every population/treatment distribution is normal with the same standard devi-
ation, so that the only potential difference is their means l1; . . .; lI . Here we present methods for
testing equality of the li’s that apply to a broader class of population distributions.

The Kruskal–Wallis Test
The Kruskal–Wallis test extends the Wilcoxon rank-sum test of the previous section to the case of
three or more populations or treatments. The I population/treatment distributions under consideration
are assumed to be continuous, have the same shape and spread, but possibly different means. More
formally, with fi denoting the pdf of the ith distribution, we assume that f1ðx� l1Þ ¼ f2ðx� l2Þ ¼
� � � ¼ fIðx� lIÞ, so that the distributions differ by (at most) a shift. Following the notation of Chapter 11,
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let Ji = the ith sample size, n ¼P Ji = the total number of observations in the data set, and Xij = the
jth observation in the ith sample (j ¼ 1; . . .; Ji; i ¼ 1; . . .; I). As in the rank-sum test, we replace each
observation Xij with its rank, Rij, among all n observations. So, the smallest observation across all
samples receives rank 1, the next-smallest rank 2, and so on through n.

Example 14.10 Diabetes and its associated health issues among children are of ever-increasing
concern worldwide. The article “Clinical and Metabolic Characteristics among Mexican Children
with Different Types of Diabetes Mellitus” (PLoS ONE, Dec. 16, 2016) reported on an in-depth study
of children with one of four types of diabetes: (1) type 1 autoimmune, (2) type 2, (3) type 1 idiopathic
(the most common type in children), and (4) what the researchers called “type 1.5.” (The last category
describes children who exhibit characteristics consistent with both type 1 and type 2; the authors note
that the American Diabetes Association does not recognize such a category.)

To illustrate the Kruskal–Wallis method, presented here is a subset of the triglyceride measure-
ments (mmol/L) on these children, along with their associated ranks in brackets.

Diabetes group Triglyceride level (mmol/L)

1 1.06 [5] 1.94 [11] 1.07 [6]
2 1.30 [9] 2.08 [12] 2.15 [13]
3 1.08 [7] 0.45 [1] 0.85 [2] 1.13 [8] 2.28 [14] 0.87 [3]
4 1.39 [10] 0.89 [4]

In this example, I = 4 (four populations), J1 = J2 = 3, J3 = 6, J4 = 2, and n = 14. The first
observation is x11 = 1.06 with associated rank r11 = 5. ■

When H0: l1 ¼ � � � ¼ lI is true, the I population/treatment distributions are identical, and so the
Xij’s form a random sample from a single population distribution. It follows that each Rij is uniformly
distributed on the integers 1, 2, …, n, so that EðRijÞ ¼ ðnþ 1Þ=2 for every i and j when H0 is true. If
we let �Ri� denote the mean of the ranks in the ith sample, then

Eð�Ri�Þ ¼ 1
Ji

XJi
i¼1

EðRijÞ ¼ nþ 1
2

Moreover, regardless of whether H0 is true, the “grand mean” of all n ranks is (n + 1)/2, the average
of the first n positive integers.

Similar to the treatment sum of squares SSTr from one-way ANOVA, the Kruskal–Wallis test
statistic, denoted by H, quantifies “between-groups” variability by measuring how much the �Ri�’s
differ from the grand mean:

H ¼ 12
nðnþ 1Þ SSTr ¼

12
nðnþ 1Þ

XI
i¼1

XJi
j¼1

ð�Ri� � �R��Þ2 ¼ 12
nðnþ 1Þ

XI
i¼1

Ji �Ri� � nþ 1
2

� �2

ð14:6Þ

When the null hypothesis is true, each �Ri� will be close to its expected value (the grand mean),
whereas when H0 is false certain samples should have an overabundance of high ranks and others too
many low ranks, resulting in a larger value of H. Even for small Ji’s, the exact null distribution of H in
Expression (14.6) is unwieldy. Thankfully, when the sample sizes are not too small, the approximate
sampling distribution of H under the null hypothesis is known.
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KRUSKAL–WALLIS TEST Null hypothesis: H0: l1 ¼ � � � ¼ lI
Alternative hypothesis: not all li’s are equal

Test statistic value: h ¼ 12
nðnþ 1Þ

XI
i¼1

Ji �ri� � nþ 1
2

� �2

,

where �ri� denotes the average rank within the ith sample.
When H0 is true, H has approximately a chi-squared distribution

with I − 1 df. This approximation is reasonable provided that
all Ji � 5.

It should not be surprising that H has an approximate v2I�1 distribution. By the Central Limit The-
orem, the averages �Ri� should be approximately normal, and so H is similar to the sum of squares of
I standardized normal rvs. However, as in the distribution of sample variance S2, these rvs are not
independent—the sum of all ranks is fixed—and that one constraint costs one degree of freedom.

Example 14.11 (Example 14.10 continued) Though the sample sizes in our illustrative example are a
bit too small to meet the requirements of the Kruskal–Wallis test, we proceed with the rest of the test
procedure on this reduced data set. The rank averages are �r1� ¼ ð5þ 11þ 6Þ=3 ¼ 7:33, �r2� ¼ 11:33,
�r3� ¼ 5:83, and �r4� ¼ 7. The grand mean of all 14 ranks is (n + 1)/2 = 7.5, and the test statistic value is

h ¼ 12
14ð14þ 1Þ

X4
i¼1

Ji �ri� � 7:5ð Þ2 ¼ 12
210

½3ð7:33� 7:5Þ2 þ � � � þ 2ð7� 7:5Þ2	 ¼ 3:50

Comparing this to the critical value v2:05;4�1 ¼ 7:815, we would not reject H0 at the .05 significance

level. Equivalently, the P-value is P(H � 3.50 when H * v23) = .321, again indicating no reason to
reject H0.

Details of the Kruskal–Wallis test for the full sample appear below. The small test statistic of 5.78
and relatively large P-value of .123 indicate that the mean triglyceride levels for these four popu-
lations of diabetic children are not statistically significantly different.

Diabetes group Ji �ri�
1 25 64.0 h = 5.78
2 31 80.8 P-value = .123
3 63 62.0
4 17 76.6

n = 136 �r�� ¼ 68:5

■

Expression (14.6) is sometimes written in other forms. For example, with Wi denoting the sum of
the ranks for the ith sample (analogous to the Wilcoxon statistic W), it can be shown that

H ¼ 12
nðnþ 1Þ

XI
i¼1

1
Ji

Wi � Ji � nþ 1
2

� �2

¼ 12
nðnþ 1Þ

XI
i¼1

W2
i

Ji
� 3ðnþ 1Þ ð14:7Þ
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The quantity Jiðnþ 1Þ=2 in the middle expression of (14.7) is the expected rank sum for the ith
sample when H0 is true. The far-right expression in (14.7) is computationally quicker than (14.6).
Alternatively, some software packages report the Kruskal–Wallis statistic in the form H ¼P Z2

i ,
where

Zi ¼
�Ri� � ðnþ 1Þ=2

r=
ffiffiffiffi
Ji

p

and r2 ¼ nðnþ 1Þ=12.
In Chapter 11, we emphasized the need for two measures of variability, SSTr and SSE, with the

latter measuring the variability within each sample. Why is SSE not required here? The fundamental
ANOVA identity SST = SSTr + SSE still applies to the Rij’s, but because the ranks are just a re-
arrangement of the integers 1 through n, the total sum of squares SST depends only on n and not on
the raw data (Exercise 41). Thus, once we know n and SSTr, the other two sums of squares are
completely determined.

Nonparametric ANOVA for a Randomized Block Design
The Kruskal–Wallis test is applicable to data resulting from a completely randomized design (in-
dependent random samples from I population or treatment distributions). Suppose instead that we
have data from a randomized block experiment and wish to test the null hypothesis that the true
population/treatment means are equal (i.e., “no treatment effect”). To test H0: l1 ¼ � � � ¼ lI in this
situation, the observations within each block are ranked from 1 to I, and then the average rank �ri� is
computed for each of the I treatments.

Example 14.12 The article “Modeling Cycle Times in Production Planning Models for Wafer
Fabrication” (IEEE Trans. on Semiconductor Manuf. 2016: 153–167) reports on a study to compare
three different linear programming models used in the simulation of factory processes: allocated
cleaning function (ACF), fractional lead time (FLT), and simple rounding down (SRD). Simulations
were run under five different demand representations, and the profit from the (simulated) manufacture
of a particular product was determined.

In this study, there are I = 3 treatments being compared using J = 5 blocks. The profit data
presented in the article, along with the rank of each observation within its block and the rank average
for each treatment, appears below.

LP model
Demand representation (block)

�ri�1 2 3 4 5

ACF $44,379 [1] $69,465 [3] $18,317 [2] $69,981 [3] $32,354 [3] 2.4
FLT $47,825 [3] $43,354 [1] $17,512 [1] $48,707 [2] $30,993 [2] 1.8
SRD $47,446 [2] $53,393 [2] $27,554 [3] $45,435 [1] $25,662 [1] 1.8

■

Within each block, the average of the ranks 1, …, I is simply (I + 1)/2, and hence this is also the
grand mean. If the null hypothesis of “no treatment effect” is true, then all I! possible arrangements of
the ranks within each block are equally likely, so each rank Rij is uniformly distributed on {1, …, I}
and has expected value (I + 1)/2. The nonparametric method for analyzing this type of data, known as
the Friedman test (developed by the Nobel Prize-winning economist Milton Friedman) relies on the
following statistic:
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Fr ¼ 12
IðIþ 1Þ SSA ¼ 12

IðIþ 1Þ
XI
i¼1

XJ
j¼1

ð�Ri� � �R��Þ2 ¼ 12J
IðIþ 1Þ

XI
i¼1

�Ri� � Iþ 1
2

� �2

ð14:8Þ

As with the Kruskal–Wallis test, the Friedman test rejects H0 when the computed value of the test
statistic is too large (an upper-tailed test). For even small-to-moderate values of J (the number of
blocks), the test statistic Fr in (14.8) has approximately a chi-squared distribution with I − 1 df.

Example 14.13 (Example 14.12 continued) Applying Expression (14.8) to the profit data, the
observed value of the test statistic is

fr ¼ 12ð5Þ
3ð3þ 1Þ ð2:4� 2Þ2 þð1:8� 2Þ2 þð1:8� 2Þ2

h i
¼ 1:2

Since this is far less than the critical value v2:10;3�1 ¼ 4:605, the null hypothesis of equal mean profit
for all three linear programming models is certainly not rejected. ■

The Friedman test is used frequently to analyze “expert ranking” data (see, for example, Exercise
46). If each of J individuals ranks I items on some criterion, then the data is naturally of the type for
which the Friedman test was devised. Each ranker acts as a block, and the test seeks out significant
differences in the mean rank received by each of the I items.

As with the Kruskal–Wallis test, the total sum of squares for the Friedman test is fixed (in fact, it is
a simple function of I and J; see Exercise 47(b)). In randomized block ANOVA in Chapter 11, the
block sum of squares SSB gave an indication of whether blocking accounted for a significant amount
of the total variation in the response values. In the data of Example 14.12, the blocking variable of
demand representation clearly has an impact—for instance, the profits in the j = 3 block (middle
column) are far lower than in other blocks. Unfortunately, SSB for Friedman’s test is identically 0
(Exercise 47(a)), and so the effectiveness of blocking remains unquantified.

Exercises: Section 14.4 (37–48)

37. The article cited in Example 14.10 also
reported the fasting C-peptide levels (FCP,
nmol/L) for the children in the study.

Diabetes group Ji �ri

1 26 72.8
2 32 79.2
3 65 56.4
4 17 104.6

(Sample sizes are different here than in
Example 14.10 due to missing data in the
latter.) Use a Kruskal–Wallis test (as the
article’s authors did) to determine whether
true average FCP levels differ across these
four populations of diabetic children.

38. The article “Analyses of Phenotypic Dif-
ferentiations among South Georgian

Diving Petrel Populations Reveal an
Undescribed and Highly Endangered Spe-
cies from New Zealand” (PLoS ONE, June
27, 2018) reports the possible discovery of
a new species of P. georgicus, distinct
from the birds of the same name found in
the South Atlantic and South Indian
Oceans. The table below summarizes
information on the bill length (mm) of
birds sampled for the study; bill length
distributions are skewed, so a nonpara-
metric method is appropriate.

Bird origin Ji �ri�

S. Atlantic 22 121.0
S. Indian 38 109.3
New Zealand 126 83.9
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Test at the .01 significance level to see
whether the mean bird length differs across
these three geographic groups of P. georgi-
cus. [The researchers performed over a
dozen similar tests and found many features
in which the New Zealand petrels are
starkly different from the others.]

39. The following data on the fracture load
(kN) of Plexiglas at three different loading
point locations appeared in the article “Eval-
uating Fracture Behavior of Brittle Polymeric
Materials Using an IASCB Specimen” (J. of
Engr. Manuf. 2013: 133–140).

Distance Fracture load

31.2 mm 4.78 4.41 4.91 5.06
36.0 mm 3.47 3.85 3.77 3.63
42.0 mm 2.62 2.99 3.39 2.86

Use a rank-based method to determine
whether loading point distance affects true
mean fracture load, at the a = .01 level.

40. Dental composites used to fill cavities will
decay over time. The article “In vitro Aging
Behavior of Dental Composites Considering
the Influence of Filler Content, Storage
Media and Incubation Time” (PLoS ONE,
April 9, 2018) reported on a study tomeasure
the hardness (MPa) of a particular type of
resin after 14 days stored in artificial saliva,
lactic acid, citric acid, or 40% ethanol.

Saliva 542.18 508.31 473.44 514.33 488.41
Lactic 478.99 501.15 488.97 463.68 471.14
Citric 427.97 388.59 378.01 341.61 395.12
Ethanol 482.96 451.48 436.69 424.42 465.64
Saliva 477.46 501.71 513.65 471.46 421.90
Lactic 568.14 494.15 494.99 483.89 520.33
Citric 433.59 353.03 344.90 387.09 501.81
Ethanol 387.59 322.55 277.84 367.36 385.75

Use a Kruskal–Wallis test with significance
level .05 to determine whether true average
hardness differs by liquid medium.

41. Let SST denote the total sum of squares for
the Kruskal–Wallis test: SST ¼PP ðRij � �R��Þ2. Verify that SST =
n(n2 − 1)/12. [Hint: The Rij’s are a
re-arrangement of the integers 1 through

n. Use the formulas for the sum and sum of
squares of the first n positive integers.]

42. Show that the two formulas for the Krus-
kal–Wallis test statistic in Expression (14.7)
are identical and both equal the original
formula for H.

43. Many people suffer back or neck pain due
to bulging discs in the lumbar or cervical
spine, but the thoracic spine (the section in-
between) is less well-studied. The article
“Kinematic analysis of the space available
for cord and disc bulging of the thoracic
spine using kinematic magnetic resonance
imaging (kMRI)” (The Spine J. 2018:
1122–1127) describes a study using kMRI
to measure disc bulge (mm) in neutral,
flexion, and extension positions.

a. Suppose measurements were taken on
just 6 subjects. The following bulge
measurements at the T11–T12 disc
(bottom of the thoracic spine) are con-
sistent with information in the article:

Subject

Position 1 2 3 4 5 6

Neutral 1.28 0.88 0.69 1.52 0.83 2.58
Flexion 1.29 0.76 0.43 2.11 1.07 2.18
Extension 1.51 1.12 0.23 1.54 0.20 1.67

Convert these measurements into within-
block ranks, and use the Friedman test to
determine if the true average disc bulge
at T11–T12 varies by position.

b. The study actually involved 105 sub-
jects, each serving as her/his own block.
The sum of the ranks for the three posi-
tions were neutral = 219, flexion = 222,
extension = 189. Use these to perform
the Friedman test, and report your con-
clusion at the .05 significance level.

c. Similar measurements were also taken
on all 105 subjects at the T4–T5 disc
(top of the thoracic spine); rank sums
consistent with the article are 207, 221,
and 202. Repeat the test of part (b) for
the T4–T5 disc.
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44. Is that Yelp review real or fake? The article
“A Framework for Fake Review Detection
in Online Consumer Electronics Retailers”
(Information Processing and Management
2019: 1234–1244) tested five different
classification algorithms on a large corpus
of Yelp reviews from New York, Los
Angeles, Miami, and San Francisco whose
authenticity (real or fake) was known.
Since review styles differ greatly by city,
the researchers used city as a blocking
variable. The table below shows the F1
score, a standard measure of classification
accuracy, for each algorithm-city pairing.
(F1 scores range from 0 to 1, with higher
values implying better accuracy.)

Algorithm NYC LA Miami SF

Logistic regression .79 .73 .78 .77
Decision tree .81 .74 .81 .81
Random forest .82 .78 .80 .80
Gaussian Naïve Bayes .72 .69 .71 .69
AdaBoost .83 .79 .82 .82

Test the null hypothesis that the five algo-
rithms are equally accurate in classifying
real and fake Yelp reviews at the .10 sig-
nificance level.

45. Image segmentation is a key tool in com-
puter vision (i.e., helping computers “see”
the meaning in pictures). The article “Effi-
cient Quantum Inspired Meta-Heuristics for
Multi-Level True Colour Image Thresh-
olding” (Applied Soft Computing 2017:
472–513) reported a study to compare 10
image segmentation algorithms—six con-
ventional, four inspired by quantum com-
puting. Each algorithm was applied to 10
different images, from an elephant to Mono
Lake to the Mona Lisa; the images serve as
blocks in this study. Kapur’s method, an
entropy measure for image segmentation
tools, was applied to each (algorithm,
image) pair; lower numbers are better. The
article reports the following rank averages
for the 10 algorithms.

GA SA PSO
8.30 9.10 8.90
QIGAMLTCI QISAMLTCI QIPSOMLTCI
2.15 3.65 1.85
DE BSA CoDE
6.60 5.90 6.20
QIDEMLTCI
2.35

Does the data indicate that the 10 algorithms
are not equally effective at minimizing
Kapur’s entropy measure? Test at the .01
significance level. What do the rank aver-
ages suggest about quantum-inspired versus
conventional image segmentation methods?

46. Sustainability in corporate culture is typi-
cally described as having three dimensions:
economic, environmental, and social. The
article “Development of Indicators for the
Social Dimension of Sustainability in a
U.S. Business Context” (J. of Cleaner
Production 2019: 687–697) reported on the
development of a survey instrument for the
least-studied of these “three pillars,” social
sustainability. The researchers had 26
experts take the final version of the survey.
In each survey section, participants were
asked to rank a set of possible metrics from
most important to least important.

a. The four metrics listed below were cate-
gorized as “public actualization needs.”
Use the mean ranks to test at the .05 sig-
nificance level whether experts systemat-
ically prioritize some of thesemetrics over
otherswith respect to social sustainability.

Metric Mean
rank

Ratio of public contributions (e.g.,
donations) to market capitalization

1.80

% of public that says company is making the
world a better place

2.50

% of employees that contribute service for
the public good

2.85

Ratio of minority management to minority
workforce

2.85
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b. Repeat part (a) using the following survey
metrics for “public safety and security
needs.”

Metric Mean rank

% of employees receiving human rights
policy/procedure training

1.69

% of investment agreements that include
human rights clauses

2.04

% of company sales that support
human/environmental health/safety

2.27

47. a. In Chapter 11, the block sum of squares

was defined by SSB ¼ I
P

j ð�X�j � �X��Þ2.
Replacing X’s with R’s in this expres-
sion, explain why SSB = 0 for the
Friedman test.

b. The total sum of squares for ranks Rij

is SST ¼PP ðRij � �R��Þ2: Determine
SST for the Friedman test. [Hint: Your
answer should depend only on I and J.]

48. In the context of a randomized block
experiment, let Wi denote the sample rank
sum associated with the ith population/
treatment. Show that the Friedman’s test
statistic can be re-expressed as

Fr ¼ 12
IðIþ 1ÞJ

XI
i¼1

Wi � JðIþ 1Þ
2

� �2

¼ 12
IðIþ 1ÞJ

XI
i¼1

W2
i � 3ðIþ 1ÞJ

Supplementary Exercises: (49–58)

49. In a study described in the article
“Hyaluronan Impairs Vascular Function
and Drug Delivery in a Mouse Model of
Pancreatic Cancer” (Gut 2013: 112–120),
hyaluronan was depleted from mice using
either PEGPH20 or an equal dose of a
standard treatment. The vessel patency (%)
for each mouse was recorded.

PEGPH20 62 68 70 76
Standard 24 29 35 41

Use a rank-sum test (as did the article’s
authors) to determine if PEGPH20 yields
higher vessel patency than the standard
treatment at the .05 level. Would you also
reject the null hypothesis at the .01 level?
Comment on these results in light of the fact
that every PEGPH20 measurement is higher
than every standard-treatment measurement.

50. The article “Long Telomeres are Associ-
ated with Clonality in Wild Populations of
… C. tenuispina” (Heredity 2015: 437–
443) reported the following telomere mea-
surements for (1) a normal arm and (2) a
regenerating arm of 12 Mediterranean
starfish.

Normal 11.246 11.493 11.136 11.120 10.928 11.556
Regen. 11.142 11.047 11.004 11.506 11.067 10.875

Normal 11.313 11.164 10.878 12.680 11.937 11.172
Regen. 11.484 11.517 10.756 10.973 11.078 11.182

It is theorized that such measurements
should be smaller for regenerating arms,
because the above values are inversely rela-
ted to telomere length and longer telomeres
are associated with younger tissue. Use a
nonparametric test to see if the data supports
this theory at the .05 significance level.

51. Physicians use a variety of quantitative sen-
sory testing (QST) tools to assess pain in
patients, but there is concern about the con-
sistency of such tools. The article “Test-
Retest Reliability of [QST] in Knee
Osteoarthritis and Healthy Participants”
(Osteoarthritis and Cartilage 2011: 655–
658) describes a study in which participants’
responses to various stimuli were measured
and then re-measured one week later. For
example, pressure was applied to each sub-
ject’s knee, and the level (kPa) at which the
patient first experienced pain was recorded.

a. Pressure pain measurements were taken
twice on each of 50 patients with
osteoarthritis in the examined knee. The
Wilcoxon signed-rank test statistic value
computed from this paired data was
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sþ = 616. Use a two-sided, large-sample
test to assess the reliability of the sensory
test at the .10 significance level.

b. The same measurements were made of
50 healthy patients, and the resulting
test statistic value was sþ = 814. Carry
out the test indicated in part (a) using
this information. Does the pain pressure
test appear reliable for the population of
healthy patients?

52. Adding mileage information to roadside
amenity signs (“Motel 6 in 1.2 miles”) can
be helpful but might also increase accidents
as drivers strain to read the detailed infor-
mation at a distance. The article “Evalua-
tion of Adding Distance Information to
Freeway-Specific Service (Logo) Signs”
(Transp. Engr. 2011: 782–788) provides
the following information on number of
crashes per year before and after mileage
information was added to signs at six
locations in Virginia.

Location 1 2 3 4 5 6
Before 15 26 66 115 62 64
After 16 24 42 80 78 73

a. Use a one-sample sign test to determine
whether more accidents occur after
mileage information is added to road-
side amenity signs. Be sure to state the
hypotheses, and indicate what assump-
tions are required.

b. Use a signed-rank test to determine
whether more accidents tend to occur
after mileage information is added to
roadside amenity signs. What are the
hypotheses now, and what additional
assumptions are required?

53. The accompanying observations on axial
stiffness index resulted from a study of
metal-plate connected trusses in which five
different plate lengths—4 in., 6 in., 8 in., 10
in., and 12 in.—were used (“Modeling
Joints Made with Light-Gauge Metal Con-
nector Plates,” Forest Products J. 1979:
39–44).

Use the Kruskal–Wallis test to decide at
significance level .01 whether the true
average axial stiffness index depends
somehow on plate length.

54. The article “Production of Gaseous Nitro-
gen in Human Steady-State Conditions”
(J. Appl. Physiol. 1972: 155–159) reports
the following observations on the amount
of nitrogen expired (in liters) under four
dietary regimens: (1) fasting, (2) 23% pro-
tein, (3) 32% protein, and (4) 67% protein.
Use the Kruskal–Wallis test at level .05 to
test equality of the corresponding li’s.

1 4.079 4.859 3.540 5.047 3.298
4.679 2.870 4.648 3.847

2 4.368 5.668 3.752 5.848 3.802
4.844 3.578 5.393 4.374

3 4.169 5.709 4.416 5.666 4.123
5.059 4.403 4.496 4.688

4 4.928 5.608 4.940 5.291 4.674
5.038 4.905 5.208 4.806

55. The article “Physiological Effects During
Hypnotically Requested Emotions” (Psy-
chosomatic Med. 1963: 334–343) reports
the following data (xij) on skin potential in
millivolts when the emotions of fear, hap-
piness, depression, and calmness were
requested from each of eight subjects.

Blocks (subjects)

1 2 3 4

Fear 23.1 57.6 10.5 23.6
Happiness 22.7 53.2 9.7 19.6
Depression 22.5 53.7 10.8 21.1
Calmness 22.6 53.1 8.3 21.6

5 6 7 8

Fear 11.9 54.6 21.0 20.3
Happiness 13.8 47.1 13.6 23.6
Depression 13.7 39.2 13.7 16.3
Calmness 13.3 37.0 14.8 14.8

i = 1 (4 in.): 309.2 309.7 311.0 316.8
326.5 349.8 409.5

i = 2 (6 in.): 331.0 347.2 348.9 361.0
381.7 402.1 404.5

i = 3 (8 in.): 351.0 357.1 366.2 367.3
382.0 392.4 409.9

i = 4 (10 in.): 346.7 362.6 384.2 410.6
433.1 452.9 461.4

i = 5 (12 in.): 407.4 410.7 419.9 441.2
441.8 465.8 473.4
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Use Friedman’s test to decide whether
emotion has an effect on skin potential.

56. In an experiment to study the way in which
different anesthetics affect plasma epinephr-
ine concentration, ten dogs were selected,
and concentration was measured while they
were under the influence of the anesthetics
isoflurane, halothane, and cyclopropane
(“Sympathoadrenal and Hemodynamic
Effects of Isoflurane, Halothane, and Cyclo-
propane in Dogs,” Anesthesiology 1974:
465–470). Test at level .05 to see whether
there is an anesthetic effect on concentration.

Dog

1 2 3 4 5

Isoflurane .28 .51 1.00 .39 .29
Halothane .30 .39 .63 .38 .21
Cyclopropane 1.07 1.35 .69 .28 1.24

6 7 8 9 10

Isoflurane .36 .32 .69 .17 .33
Halothane .88 .39 .51 .32 .42
Cyclopropane 1.53 .49 .56 1.02 .30

57. Suppose we wish to test

H0: the X and Y distributions are identical
versus

Ha: the X distribution is less spread out
than the Y distribution

The accompanying figure pictures X and
Y distributions for which Ha is true. The
Wilcoxon rank-sum test is not appropriate
in this situation because when Ha is true as
pictured, the Y’s will tend to be at the
extreme ends of the combined sample (re-
sulting in small and large Y ranks), so the
sum of X ranks will result in a W value that
is neither large nor small.

Consider modifying the procedure for
assigning ranks as follows: After the com-
bined sample of m + n observations is

ordered, the smallest observation is given
rank 1, the largest observation is given rank
2, the second smallest is given rank 3, the
second largest is given rank 4, and so on.
Then if Ha is true as pictured, the X values
will tend to be in the middle of the sample
and thus receive large ranks. Let W′ denote
the sum of the X ranks and consider
rejecting H0 in favor of Ha when w′ � c.
When H0 is true, every possible set of
X ranks has the same probability, so W′ has
the same distribution as does W when H0 is
true. Thus c can be chosen from Appendix
Table A.13 to yield a level a test. The
accompanying data refers to medial muscle
thickness for arterioles from the lungs of
children who died from sudden infant death
syndrome (x’s) and a control group of
children (y’s). Carry out the test of H0

versus Ha at level .05.

SIDS 4.0 4.4 4.8 4.9
Control 3.7 4.1 4.3 5.1 5.6

[Note: Consult the Lehmann book in the
bibliography for more information on this
test, called the Siegel–Tukey test.]

58. The ranking procedure described in the
previous exercise is somewhat asymmetric,
because the smallest observation receives
rank 1 whereas the largest receives rank 2,
and so on. Suppose both the smallest and
the largest receive rank 1, the second
smallest and second largest receive rank 2,
and so on, and let W″ be the sum of the
X ranks. The null distribution of W″ is not
identical to the null distribution of W, so
different tables are needed. Consider the
case m = 3, n = 4. List all 35 possible
orderings of the three X values among the
seven observations (e.g., 1, 3, 7 or 4, 5, 6),
assign ranks in the manner described,
compute the value of W″ for each possi-
bility, and then tabulate the null distribution
of W″. For the test that rejects if w″ � c,
what value of c prescribes approximately a
level .10 test? [Note: This is the Ansari–
Bradley test; for additional information, see
the book by Hollander and Wolfe in the
bibliography.]

X distribution

Y distribution

“Ranks” : 51 3 6 4 2
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15Introduction to Bayesian Estimation

Introduction
In this final chapter, we briefly introduce the Bayesian approach to parameter estimation. The standard
frequentist view of inference is that the parameter of interest, h, has a fixed but unknown value.
Bayesians, however, regard h as a random variable having a prior probability distribution that
incorporates whatever is known about its value. Then to learn more about h, a sample from the
conditional distribution f(x|h) is obtained, and Bayes’ theorem is used to produce the posterior dis-
tribution of h given the data x1, …, xn. All Bayesian methods are based on this posterior distribution.

15.1 Prior and Posterior Distributions

Throughout this book, we have regarded parameters such as µ, r, p, and k as having an unknown but
single, fixed value. This is often referred to as the classical or frequentist approach to statistical
inference. However, there is a different paradigm, called subjective or Bayesian inference, in which an
unknown parameter is assigned a distribution of possible values, analogous to a probability distri-
bution. This distribution reflects all available information—past experience, intuition, common sense
—about the value of the parameter prior to observing the data. For this reason, it is called the prior
distribution of the parameter.

DEFINITION A prior distribution for a parameter h, denoted p(h), is a probability distribution on
the set of possible values for h. In particular, if the possible values of the parameter
h form an interval I, then p(h) is a pdf that must satisfy

Z
I
pðhÞ dh ¼ 1

Similarly, if h is potentially any value in a discrete set D, then p(h) is a pmf that
must satisfy

X
h2D

pðhÞ ¼ 1
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Example 15.1 Consider the parameter µ = the mean GPA of all students at your university. Since
GPAs are always between 0.0 and 4.0, µ must also lie in this interval. But common sense tells you
that µ is almost certainly not below 2.0, or very few people would graduate, and it would be likewise
surprising to find µ above 3.5. This “prior belief” can be expressed mathematically as a prior
distribution for µ on the interval I = [0, 4]. If our best guess a priori is that µ � 2.5, then our prior
distribution p(µ) should be centered around 2.5. The variability of the prior distribution we select
should reflect how sure we feel about our initial information.

If we feel very sure that µ is near 2.5, then we should select a prior distribution for µ that has less
variation around that value. On the other hand, if we are less certain, this can be reflected by a prior
distribution with much greater variability. Figure 15.1 illustrates these two cases; both of the pdfs
depicted are beta distributions with A = 0 and B = 4.

The Posterior Distribution of a Parameter

The key to Bayesian inference is having a mathematically rigorous way to combine the sample data
with prior belief. Suppose we observe values x1,…, xn from a distribution depending on the unknown
parameter h for which we have selected some prior distribution. Then a Bayesian statistician wants to
“update” her or his belief about the distribution of h, taking into account both prior belief and the
observed xi’s. Recall from Chapter 2 that Bayes’ theorem was used to obtain posterior probabilities of
partitioning events A1; . . .;Ak conditional on the occurrence of some other event B. The following
definition relies on the analogous result for random variables.

DEFINITION Suppose X1, …, Xn have joint pdf f(x1, …, xn; h) and the unknown parameter h has
been assigned a continuous prior distribution p(h). Then the posterior distribution
of h, given the observations X1 = x1, …, Xn = xn, is

narrower
prior

wider
prior

π(μ)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 1 2 3 4

μ

Figure 15.1 Two prior distributions for a parameter: a more diffuse prior (less certainty)
and a more concentrated prior (more certainty) ■
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pðhjx1; . . .; xnÞ ¼ pðhÞf ðx1; . . .; xn; hÞR1
�1 pðhÞf ðx1; . . .; xn; hÞ dh

ð15:1Þ

The integral in the denominator of (15.1) insures that the posterior distribution
is a valid probability density with respect to h.
If X1, …, Xn are discrete, the joint pdf is replaced by their joint pmf.

Notice that constructing the posterior distribution of a parameter requires a specific probability model
f(x1, …, xn; h) for the observed data. In Example 15.1, it would not be enough to simply observe the
GPAs of a random sample of n students; one must specify the underlying distribution, with mean µ,
from which those GPAs are drawn.

Example 15.2 Emissions of subatomic particles from a radiation source are often modeled as a
Poisson process. This implies that the time between successive emissions follows an exponential
distribution. In practice, the parameter k of this distribution is typically unknown. If researchers
believe a priori that the average time between emissions is about half a second, so k � 2, a prior
distribution with a mean around 2 might be selected for k. One example is the following gamma
distribution, which has mean (and variance) of 2:

pðkÞ ¼ ke�k k[ 0

Notice that the gamma distribution has support equal to 0;1, which is also the set of possible values
for the unknown parameter k.

The times X1,…, X5 between five particle emissions will be recorded; it is these variables that have
an exponential distribution with the unknown parameter k (equivalently, mean 1/k). Because the Xi’s
are also independent, their joint pdf is

f ðx1; . . .; x5; kÞ ¼ f ðx1; kÞ � � � � � f ðx5; kÞ ¼ ke�kx1 � � � � � ke�kx5 ¼ k5e�k
P

xi

Applying (15.1) with these two components, the posterior distribution of k given the observed data is

pðkjx1; . . .; x5Þ ¼ pðkÞf ðx1; . . .; x5; kÞR1
�1 pðkÞf ðx1; . . .; x5; kÞ dk

¼ ke�k � k5e�k
P

xiR1
0 ke�k � k5e�k

P
xidk

¼ k6e�k 1þ
P

xið ÞR1
0 k6e�k 1þ

P
xið Þ dk

Suppose the five observed interemission times are x1 = 0.66, x2 = 0.48, x3 = 0.44, x4 = 0.71,
x5 = 0.56. The sum of these five times is

P
xi ¼ 2:85, and so the posterior distribution simplifies to

pðkj0:66; . . .; 0:56Þ ¼ k6e�3:85kR1
0 k6e�3:85k dk

¼ 3:857

6!
k6e�3:85k k[ 0

The integral in the denominator was evaluated using the gamma integral formula (4.5) from Chapter 4;
as noted previously, the purpose of this integral is to guarantee that the posterior distribution of k is a
valid probability density. As a function of k, we recognize this as a gamma distribution with
parameters a = 7 and b = 1/3.85. The prior and posterior density curves of k appear in Figure 15.2.
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Example 15.3 A 2010 National Science Foundation study found that 488 out of 939 surveyed adults
incorrectly believe that antibiotics kill viruses (they only kill bacteria). Let h denote the proportion of
all U.S. adults that hold this mistaken view. Imagine that an NSF researcher, in advance of
administering the survey, believed (hoped?) the value of h was roughly 1 in 3, but he was very
uncertain about this belief. Since any proportion must lie between 0 and 1, the standard beta family of
distributions from Section 4.5 provides a natural source of priors for h. One such beta distribution,
with an expected value of 1/3, is the Beta(2, 4) model whose pdf is

pðhÞ ¼ 20hð1� hÞ3 0\h\1

The data mentioned at the beginning of the example can be considered either a random sample of size
939 from the Bernoulli distribution or, equivalently, a single observation from the binomial distri-
bution with n = 939. Let Y = the number of U.S. adults in a random sample of 939 that believe

antibiotics kill viruses. Then Y * Bin(939, h), and the pmf of Y is p(x; h) = 939
y

� �
hyð1� hÞ939�y.

Substituting the observed value y = 488, (15.1) gives the posterior distribution of h as

pðhjY ¼ 488Þ ¼ pðhÞpð488; hÞR 1
0 pðhÞpð488; hÞ dh

¼
20hð1� hÞ3 � 939

488

 !
h488ð1� hÞ451R 1

0 20hð1� hÞ3 � 939

488

 !
h488ð1� hÞ451dh

¼ h489ð1� hÞ454R 1
0 h

489ð1� hÞ454dh
¼ c � h489ð1� hÞ454 0\h\1

Recall that the constant c, which equals the reciprocal of the integral in the denominator, serves to
insure that the posterior distribution p(h|Y = 488) integrates to 1. Rather than evaluating the integral,
we can simply recognize the expression h489(1 − h)454 as a standard beta distribution, specifically
with parameters a = 490 and b = 455, that’s just missing the constant of integration in front.

posterior

Density

prior

0.6

0.5

0.4

0.3

0.2

0.1

0
0 2 4

λ
6 8 10

Figure 15.2 Prior and posterior distributions of k for Example 15.2 ■
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It follows that the posterior distribution of h given Y = 488 must be Beta(490, 455); if we require c, it
can be determined directly from the beta pdf.

This trick comes in handy quite often in Bayesian statistics: if we can recognize a posterior
distribution as being proportional to a particular probability distribution, then it must necessarily be
that distribution.

The prior and posterior density curves for h are displayed in Figure 15.3. While the prior distri-
bution is centered around 1/3 and exhibits a great deal of uncertainty (variability), the posterior
distribution of h is centered much closer to the sample proportion of incorrect answers,
488/939 � .52, with considerably less uncertainty.

Conjugate Priors
In the examples of this section, prior distributions were chosen partially by matching the mean of a
distribution to someone’s a priori “best guess” about the value of the parameter. We also mentioned at
the beginning of the section that the variance of the prior distribution often reflects the strength of that
belief. In practice, there is a third consideration for choosing a prior distribution: the ability to apply
(15.1) in a simple fashion. Ideally, we would like to choose a prior distribution from a family
(gamma, beta, etc.) such that the posterior distribution is from that same family. When this happens
we say that the prior distribution is conjugate to the data distribution.

In Example 15.2, the prior p(k) is the Gamma(2, 1) pdf; we determined, using (15.1), that the
posterior distribution was Gamma(7, 1/3.85). It can be shown in general (Exercise 6) that any gamma
distribution is conjugate to an exponential data distribution. Similarly, the prior and posterior dis-
tributions of h in Example 15.3 were Beta(2, 4) and Beta(490, 455), respectively. The following
proposition generalizes the result of Example 15.3.

PROPOSITION Let X1; . . .;Xn be a random sample from a Bernoulli distribution with unknown
parameter value p. (Equivalently, let Y ¼PXi be a single observation from a
Bin(n, p) distribution). If p is assigned a beta prior distribution with parameters a0
and b0, then the posterior distribution of p given the xi’s is the beta distribution
with parameters a ¼ a0 þ y and b ¼ b0 þ n� y.
That is, the beta distribution is a conjugate prior to the Bernoulli (or binomial)
data model.

θ|y)

0

θ
0.2 0.4 0.6 1

b

0.8

a
θ)

0

θ
0.2 0.4 0.6 10.8

Figure 15.3 Density curves for the parameter h in Example 15.3: (a) prior Beta(2, 4), (b) posterior Beta(490, 455) ■
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Proof The joint Bernoulli pmf of X1; . . .;Xn is

px1ð1� pÞ1�x1 � � � pxnð1� pÞ1�xn ¼ p
P

xið1� pÞn�
P

xi ¼ pyð1� pÞn�y

The prior distribution assigned to p is pðpÞ / pa0�1ð1� pÞb0�1. Apply (15.1):

pðpjx1; . . .; xnÞ / pa0�1ð1� pÞb0�1 � p
P

xið1� pÞn�
P

xi

¼ pa0�1þ
P

xið1� pÞb0�1þ n�
P

xi ¼ pa0 þ y�1ð1� pÞb0 þ n�y�1

As a function of p, we recognize this last expression as proportional to the beta pdf with parameters
a ¼ a0 þ y and b ¼ b0 þ n� y. ■

The values a0 and b0 in the foregoing proposition are called hyperparameters; they are the
parameters of the distribution assigned to the original parameter, p. In Example 15.2, the prior
distribution pðkÞ ¼ ke�k is the Gamma(2, 1) pdf, so the hyperparameters of that distribution are
a0 = 2 and b0 = 1.

Conjugate priors have been determined for several of the named data distributions, including
binomial, Poisson, gamma, and normal. For two-parameter families such as gamma and normal, it is
sometimes reasonable to assume one parameter has a known value and then assign a prior distribution
to the other. In some instances, a joint prior distribution for the two parameters can be found such that
the posterior distribution is tractable, but these are less common.

PROPOSITION Let X1; . . .;Xn be a random sample from a N(l, r) distribution with r known. If l
is assigned a normal prior distribution with hyperparameters l0 and r0, then the
posterior distribution of l is also normal, with posterior hyperparameters

r21 ¼
1

n

r2
þ 1

r20

l1 ¼
n�x

r2
þ l0

r20

� �
� r21

That is, the normal distribution is a conjugate prior for l in the normal data model
when r is assumed known.

Proof To determine the posterior distribution of l, apply (15.1):

pðljx1; . . .; xnÞ / pðlÞf ðx1; . . .; xn; lÞ ¼ 1ffiffiffiffiffiffi
2p

p
r0

e�ðl�l0Þ2=2r20 � 1ffiffiffiffiffiffi
2p

p
r
e�ðx1�lÞ2=2r2 � � � � � 1ffiffiffiffiffiffi

2p
p

r
e�ðxn�lÞ2=2r2

/ e�ð1=2Þ½ðx1�lÞ2=r2 þ ����� þ ðxn�lÞ2=r2 þðl�l0Þ2=r20�
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The trick here is to complete the square in the exponent, which yields

pðljx1; . . .; xnÞ / e�ðl�l1Þ2=2r21 þC;

where C does not involve l and

r21 ¼
1

n

r2
þ 1

r20

l1 ¼

P
xi

r2
þ l0

r20
n

r2
þ 1

r20

¼
n�x

r2
þ l0

r20
n

r2
þ 1

r20

With respect to l, the last expression for pðljx1; . . .; xnÞ is proportional to the normal pdf with
parameters l1 and r1. ■

To make sense of these messy parameter expressions we define the precision, denoted by s, as the
reciprocal of the variance (because a lower variance implies a more precise measurement), and the
weights then are the corresponding precisions. If we let s ¼ 1=r2, s0 ¼ 1=r20, and
sX ¼ 1=r2

X
¼ n=r2, then the posterior hyperparameters in the previous proposition can be restated as

l1 ¼
sX � �xþ s0 � l0

sX þ s0
and s1 ¼ s�X þ s0

The posterior mean l1 is a weighted average of the prior mean l0 and the data mean �x, and the
posterior precision is the sum of the prior precision plus the precision of the sample mean.

Exercises: Section 15.1 (1–10)

1. A certain type of novelty coin is manufac-
tured so that 80% of the coins are fair while
the rest have a .75 chance of landing heads.
Let h denote the probability of heads for a
novelty coin randomly selected from this
population.

a. Express the given information as a prior
distribution for the parameter h.

b. Five tosses of the randomly selected
coin result in the sequence HHHTH.
Use this data to determine the posterior
distribution of h.

2. Three assembly lines for the same product
have different nonconformance rates: p = .1
for Line A, p = .15 for Line B, and p = .2
for Line C. One of the three lines will be
selected at random (but you don’t know
which). Let X = the number of items
inspected from the selected line until a
nonconforming one is found.

a. What is the distribution of X, as a
function of the unknown p?

b. Express the given information as a prior
distribution for the parameter p. [Hint:
There are three possible values for p.
What should be their a priori
likelihoods?]

c. It is determined that the 8th item coming
off the randomly selected line is the first
nonconforming one. Use this informa-
tion to determine the posterior distribu-
tion of p.

3. The number of customers arriving during a
one-hour period at an ice cream shop is
modeled by a Poisson distribution with
unknown parameter µ. Based on past
experience, the owner believes that the
average number of customers in one hour is
about 15.

a. Assign a prior to µ from the gamma
family of distributions, such that the mean
of the prior is 15 and the standard devia-
tion is 5 (reflecting moderate uncertainty).
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b. The number of customers in ten ran-
domly selected one-hour intervals is
recorded:

16 9 11 13 17 17 8 15 14 16

Determine the posterior distribution of µ.

4. At children’s party, kids toss ping-pong
balls into the swimming pool hoping to
land inside a plastic ring (picture a small
hula hoop). Let p denote the probability of
successfully tossing a ball into the ring,
which we will assign a Beta(1, 3) prior
distribution. The variable X = number of
tosses required to get 5 balls in the ring (at
which point the child wins a prize) will be
observed for a sample of children.

a. What is a reasonable distribution for the
rv X? What are its parameters?

b. The number of tosses required by eight
kids was

12 8 14 12 12 6 8 27

Determine the posterior distribution of p.

5. Consider a random sample X1, X2, …, Xn

from the Poisson distribution with mean l.
If the prior distribution for l is a gamma
distribution with hyperparameters a0 and
b0, show that the posterior distribution is
also gamma distributed. What are its
hyperparameters?

6. Suppose you have a random sample X1, X2,
…, Xn from the exponential distribution
with parameter k. If a gamma distribution
with hyperparameters a0 and b0 is assigned
as the prior distribution for k, show that the
posterior distribution is also gamma dis-
tributed. What are its hyperparameters?

7. Let X1; . . .;Xn be a random sample from
a negative binomial distribution with
r known and p unknown. Assume a Beta
(a0, b0) prior distribution for p. Show that
the posterior distribution of p is also a beta
distribution, and identify the updated
hyperparameters.

8. Consider a random sample X1, X2, …, Xn

from the normal distribution with mean 0
and precision s (use s as a parameter
instead of r2 = 1/s). Assume a gamma-
distributed prior for s and show that the
posterior distribution of s is also gamma.
What are its parameters?

9. Wind speeds in a certain area are modeled
using a lognormal distribution, with
unknown first parameter l and known
second parameter r = 1. Suppose l is
assigned a normal prior distribution with
mean l0 and precision s0. Based on
observing a random sample of wind speeds
x1; . . .; xn in this area, determine the poste-
rior distribution of l.

10. Wait times for Uber rides as people exit a
certain sports arena are uniformly dis-
tributed on the interval [0, h] with h
unknown. Suppose the following Pareto
prior distribution is assigned to h:

pðhÞ ¼ 24; 000

h4
h� 20

Based on observing the wait times
x1; . . .; xn of n Uber customers, determine
the posterior distribution of h. [Hint: Some
care must be taken to address the bound-
aries h � 20 and xi � h.]

15.2 Bayesian Point and Interval Estimation

The previous section introduced the paradigm of Bayesian inference, wherein parameters are not just
regarded as unknown but as having a distribution of possible values prior to observing any data. Such
prior distributions are, by definition, valid probability distributions with respect to the parameter h. The
key to Bayesian inference is Equation (15.1), which applies Bayes’ theorem for random variables to h and
the sample X1; . . .;Xn. The result is an update to our belief about h, called the posterior distribution.

From a Bayesian perspective, the posterior distribution of h represents the most complete
expression of what can be inferred from the sample data. But the posterior distribution can give rise to
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point and interval estimates for the parameter h, although the interpretation of the latter differs from
that of our earlier confidence intervals.

Bayesian Point Estimators

Although specifying a single-value estimate of an unknown parameter conflicts somewhat with the
Bayesian philosophy, there are occasions when such an estimate is desired. The most common
Bayesian point estimator of a parameter h is the mean of its posterior distribution:

ĥ ¼ EðhjX1; . . .;XnÞ ð15:2Þ

Hereafter we shall refer to Expression (15.2) as the Bayes estimator of h. A Bayes estimate is
obtained by plugging in the observed values of the Xi’s, resulting in the numerical value

ĥ ¼ Eðhjx1; . . .; xnÞ.
Example 15.4 (Example 15.2 continued) The posterior distribution of the exponential parameter k
given the five observed interemission times was determined to be gamma with parameters a = 7 and
b = 1/3.85. Since the mean of a gamma distribution is ab, the Bayes estimate of k here is

k̂ ¼ Eðkj0:66; . . .; 0:56Þ ¼ ab ¼ 7ð1=3:85Þ ¼ 1:82

This isn’t too different from the researchers’ prior belief that k � 2.
If we retrace the steps that led to this posterior distribution, we find more generally that for data

model X1; . . .;Xn * exponential(k) and prior k * gamma(a0, b0), the posterior distribution of k is
the gamma pdf with a = a0 + n and 1=b ¼ 1=b0 þ

P
Xi. Therefore, the Bayes estimator for k in this

scenario is

k̂ ¼ EðkjX1; . . .;XnÞ ¼ ab ¼ a0 þ n

1=b0 þ
P

Xi
■

Although the mean of the posterior distribution is commonly used as a point estimate for a
parameter in Bayesian inference, that is not the only available choice. Some practitioners prefer to use
the mode of the posterior distribution rather than the mean; this choice is called the maximum a
posteriori (MAP) estimate of h. For small samples, the Bayes estimate (i.e., mean) and MAP
estimate can differ considerably. Typically, though, when n is large these estimates for the parameter
will be reasonably close. This makes sense intuitively, since as n increases any sensible estimator
should converge to the true, single value of the parameter (i.e., be consistent).

Example 15.5 (Example 15.3 continued) The posterior distribution of the parameter h = the proportion
of all U.S. adults that incorrectly believe antibiotics kill viruses was determined to have a Beta(490, 455)
distribution. Since the mean of a Beta(a, b) distribution is a=ðaþ bÞ, a point estimate of h is

ĥ ¼ Eðhjy ¼ 488Þ ¼ 490
490þ 455

¼ 490
945

¼ :5185

It can be shown that the mode of a beta distribution occurs at ða� 1Þ=ðaþ b� 2Þ provided that
a > 1 and b > 1. Hence the MAP estimate of h here is (490 – 1)/(490 + 455 – 2) = 489/943 = .5186.
Notice these are both quite close to the frequentist estimate y/n = 488/939 = .5197. ■
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Properties of Bayes Estimators

In most cases, the contribution of the observed values x1; . . .; xn in shaping the posterior distribution
of a parameter h increases as the sample size n increases. Equivalently, the choice of prior distribution
is less impactful for large samples, because the data “dominates” that original choice. It can be shown
that under very general conditions, as n ! 1
(1) the mean of the posterior distribution will converge to the true value of h, and
(2) the variance of the posterior distribution of h converges to zero.

The second property manifests itself in our two previous examples: the variability of the posterior
distribution of k based on n = 5 observations was still rather substantial, while the posterior distri-
bution of h based on a sample of size n = 939 was quite concentrated. In the language of Chapter 7,
these two properties imply that Bayes estimators are generally consistent.

Since traditional estimators such as bP and X converge to the true values of corresponding
parameters (e.g., p or µ) by the Law of Large Numbers, it follows that Bayesian and frequentist
estimates will typically be quite close when n is large. This is true both for the point estimates and the
interval estimates (Bayesian intervals will be introduced shortly). But when n is small—a common
occurrence in Bayesian methodology—parameter estimates based on the two methods can differ
drastically. This is especially true if the researcher’s prior belief is very far from what’s actually true
(e.g., believing a proportion is around 1/3 when it’s really greater than .5).

Example 15.6 Consider a Bernoulli(p) random sample X1; . . .;Xn or, equivalently, a single binomial
observation Y ¼PXi. If we assign a Beta(a0, b0) prior to p, a proposition from the previous section
establishes that the posterior distribution of p given that Y = y is Betaða0 þ y; b0 þ n� yÞ. Hence the
Bayes estimator of p is

p̂ ¼ EðpjX1; . . .;XnÞ ¼ EðpjYÞ ¼ ða0 þ YÞ
ða0 þ YÞþ ðb0 þ n� YÞ ¼

a0 þ Y

a0 þ b0 þ n

One way to think about the prior distribution here is that it “seeds” the sample with a0 successes and
b0 failures before data is obtained. The quantities a0 þ Y and b0 þ n� Y then represent the number of
successes and failures after sampling, and the Bayes estimator p̂ is the sample proportion of successes
from this perspective.

With a little algebra, we can re-express the Bayes estimator as

p̂ ¼ a0
a0 þ b0 þ n

þ Y

a0 þ b0 þ n
¼ a0 þ b0

a0 þ b0 þ n
� a0
a0 þ b0

þ n

a0 þ b0 þ n
� Y
n

ð15:3Þ

Expression (15.3) represents the Bayesian estimator p̂ as a weighted average of the prior expec-
tation of p, a0=ða0 þ b0Þ, and the sample proportion of successes Y=n ¼PXi=n.

By the Law of Large Numbers, the sample proportion of successes Y/n converges to the true value
of the Bernoulli parameter, which we will denote by p	. Taking the limit of (15.3) as n ! 1 yields

p̂ ! 0 � a0
a0 þ b0

þ 1 � p	 ¼ p	;

so that the Bayes estimator is indeed consistent. ■
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Bayesian Interval Estimation

The Bayes estimate ĥ provides a single-value “best guess” for the true value of the parameter h based
on its posterior distribution. An interval [a, b] having posterior probability .95 gives a 95% credible
interval, the Bayesian analogue of a 95% confidence interval (but the interpretation is different).
Typically one selects the middle 95% of the posterior distribution; i.e., the endpoints of a 95%
credible interval are ordinarily the .025 and .975 quantiles of the posterior distribution.

Example 15.7 (Example 15.4 continued) Given the observed values of X1, …, X5, we previously
found that the emission rate parameter k has a Gamma(7, 1/3.85) posterior distribution. A 95%
credible interval for k requires determining the .025 and .975 quantiles of the Gamma(7, 1/3.85)
model. Using statistical software, η.025 = 0.7310 and η.975 = 3.3921, so the 95% credible interval for
k is (0.7310, 3.3921). Under the Bayesian interpretation, having observed the five aforementioned
interemission times, there is a 95% posterior probability that k is between 0.7310 and 3.3921
emissions per second. Taking reciprocals, the mean time between emissions (i.e., 1/k) is estimated to
lie in the interval (1/3.3921, 1/0.7310) = (0.295, 1.368) seconds with posterior probability .95. ■

Example 15.8 (Example 15.5 continued) The posterior distribution of the parameter h = the pro-
portion of all U.S. adults that incorrectly believe antibiotics kill viruses was a Beta(490, 455) dis-
tribution. The .025 and .975 quantiles of this beta distribution are η.025 = .4866 and η.975 = .5503. So,
after observing the results of the NSF survey, there is a 95% posterior probability that h is between
.4866 and .5503.

For comparison, the one-proportion z interval based on y/n = 488/939 = .5197 is

:5197
 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:5197ð1� :5197Þ

939

r
¼ ð:4877; :5517Þ

Due to the large sample size, the two intervals are quite similar. ■

It must be emphasized that, even if the confidence interval is nearly the same as the credible
interval for a parameter, they have different interpretations. To interpret the Bayesian credible
interval, we say that there is a 95% probability that the parameter h is in the interval. However, for the
frequentist confidence interval such a probability statement does not make sense: as we discussed in
Section 8.1, neither the parameter h nor the endpoints of the interval are considered random under the
frequentist view. (Instead, the confidence level is the long-run capture frequency if the formula is used
repeatedly on different samples.)

Example 15.9 Consider the IQ scores of 18 first-grade boys, from the private speech data introduced
in Exercise 81 from Chapter 1:

113 108 140 113 115 146 136 107 108 119 132 127 118 108 103 103 122 111

IQ scores are generally found to be normally distributed, and because IQs have a standard
deviation of 15 nationwide, we can assume r = 15 is known and valid here. Let’s perform a Bayesian
analysis on the mean IQ l of all first-grade boys at the school.

For the normal prior distribution it is reasonable to use a mean of l0 = 110, a ballpark figure for
previous years in this school. It is harder to prescribe a standard deviation for the prior, but we will
use r0 = 7.5. (This is the standard deviation for the average of four independent observations if the
individual standard deviation is 15. As a result, the effect on the posterior mean will turn out to be the
same as if there were four additional observations with average 110.)
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The last proposition from Section 15.1 states that the posterior distribution of l is also normal and
specifies the posterior hyperparameters. Numerically, we have

1

r21
¼ 1

r2=n
þ 1

r20
¼ 1

152=18
þ 1

7:52
¼ :09778 ¼ 1

10:227
¼ 1

3:1982

l1 ¼
n�x

r2
þ l0

r20
n

r2
þ 1

r20

¼
18ð118:28Þ

152
þ 110

7:52
18
152

þ 1
7:52

¼ 116:77

The posterior distribution is normal with mean l1 = 116.77 and standard deviation r1 = 3.198.
The mean l1 is a weighted average of �x ¼ 118:28 and l0 = 110, so l1 is necessarily between them.
As n becomes large the weight given to l0 declines, and l1 will be closer to �x.

The 95% credible interval for l is the middle 95% of the N(116.77, 3.198) distribution, which
works out to be (110.502, 123.038). For comparison, the 95% confidence interval using �x ¼ 118:28
and r = 15 is �x
 1:96r=

ffiffiffi
n

p ¼ ð111:35; 125:21Þ. Notice that the one-sample z interval must be
wider: because the precisions add to give the posterior precision, the posterior precision is greater than
the prior precision and it is greater than the data precision. Therefore, it is guaranteed that the
posterior standard deviation r1 will be less than both r0 and r=

ffiffiffi
n

p
.

Both the credible interval and the confidence interval exclude 110, so we can be pretty sure that l
exceeds 110. Another way of looking at this is to calculate the posterior probability of l being less
than or equal to 110 (the Bayesian approach to hypothesis testing). Using l1 = 116.77 and
r1 = 3.198, we obtain the probability .0171, supporting the claim that l exceeds 110.

What should be done if there are no prior observations and there are no strong opinions about the
prior mean l0? In this case the prior standard deviation r0 can be taken as some number much larger
than r, such as r0 = 1000 in our example. The result is that the prior will have essentially no effect,
and the posterior distribution will be based on the data: l1 � �x ¼ 118:28 and r1 � r = 15. The 95%
credible interval will be virtually the same as the 95% confidence interval based on the 18 obser-
vations, (111.35, 125.21), but of course the interpretation is different. ■

Exercises: Section 15.2 (11–20)

11. Refer back to Exercise 3.

a. Calculate the Bayes estimate of the
Poisson mean parameter l.

b. Calculate and interpret a 95% credible
interval for l.

12. Refer back to Exercise 4.

a. Calculate the Bayes estimate of the
probability p.

b. Calculate and interpret a 95% credible
interval for p.

13. Laplace’s rule of succession says that if all
n Bernoulli trials have been successes, then
the probability of a success on the next trial is
(n + 1)/(n + 2). For the derivation, Laplace
used a Beta(1, 1) prior for the parameter p.

a. Show that, if a Beta(1, 1) prior is
assigned to p and there are n successes
in n trials, then the posterior mean of p is
(n + 1)/(n + 2).

b. Explain (a) in terms of total successes
and failures; that is, explain the result in
terms of two prior trials plus n later trials.

c. Laplace applied his rule of succession to
compute the probability that the sun will
rise tomorrow using 5000 years, or
n = 1,826,214 days of history in which
the sun rose every day. Is Laplace’s
method equivalent to including two prior
days when the sun rose once and failed
to rise once? Criticize the answer in
terms of total successes and failures.
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14. In a study of 70 restaurant bills, 40 of the
70 were paid using cash. Let p denote the
population proportion paying cash.

a. Assuming a beta prior distribution for
p with a0 = 2 and b0 = 2, obtain the
posterior distribution of p.

b. Repeat (a) with a0 and b0 positive and
close to 0.

c. Calculate a 95% credible interval for
p using (b). Is your interval compatible
with p = .5?

d. Calculate a 95% confidence interval for
p using Equation (5.3), and compare
with the result of (c).

e. Compare the interpretations of the cred-
ible interval and the confidence interval.

f. Based on the prior in (b), test the
hypothesis p � .5 by using the posterior
distribution to find P(p � .5).

15. For the scenario of Example 15.9, assume
the same normal prior distribution but
suppose that the data set is just one obser-
vation �x ¼ 118:28 with standard deviation
r=

ffiffiffi
n

p ¼ 15=
ffiffiffiffiffi
18

p ¼ 3:5355. Use Equa-
tion (15.1) to derive the posterior distribu-
tion, and compare your answer with the
result of Example 15.9.

16. Here are the IQ scores for the 15 first-grade
girls from the study mentioned in Example
15.9.

102 96 106 118 108 122 115 113
109 113 82 110 121 110 99

Assume that the data is a random sample
from a normal distribution with mean l and
r = 15, and assign to l the same N(110,
7.5) prior distribution used in Example 15.9.

a. Determine the posterior distribution of l.
b. Calculate and interpret a 95% credible

interval for l.
c. Add four observations with average 110

to the data and compute a 95% confi-
dence one-sample z interval for l using
the 19 observations. Compare with the
result of (b).

d. Change the prior so the prior precision is
very small but positive, and then re-
compute (a) and (b).

e. Calculate a 95% confidence one-sample
z interval for l using the 15 observations
and compare with the credible interval
of (d).

17. If a and b are large, then the beta distri-
bution can be approximated by the normal
distribution using the beta mean and vari-
ance given in Section 4.5. This is useful in
case beta distribution software is unavail-
able. Use the approximation to compute the
credible interval in Example 15.8.

18. Two political scientists wish to forecast the
proportion of votes that a certain U.S.
senator will earn in her upcoming reelection
contest. The first political scientist assigns a
Beta(3, 2) prior to p = the true support rate
for the senator, while the second assigns a
Beta(6, 6) prior.

a. Determine the expectations of both prior
distributions.

b. Which political scientist appears to feel
more sure about this prior belief? How
can you tell?

c. Determine both Bayes estimates in this
scenario, assuming that y out of n ran-
domly selected voters indicate they will
vote to reelect the senator.

d. For what survey size n are the two Bayes
estimates guaranteed to be within .005
of each other, no matter the value of y?

19. Consider a random sample X1; . . .;Xn from
a Poisson distribution with unknown mean
l, and assign to l a Gamma(a0, b0) prior
distribution.

a. What is the prior expectation of l?
b. Determine the Bayes estimator l̂.
c. Let l* denote the true value of l. Show

that l̂ is a consistent estimator of l*.
[Hint: Look back at Example 15.6.]

20. Consider a random sample X1; . . .;Xn from
an exponential distribution with parameter
k, and assign to k a Gamma(a0, b0) prior
distribution.

a. What is the prior expectation of k?

b. Determine the Bayes estimator k̂.
c. Let k* denote the true value of k. Show

that k̂ is a consistent estimator of k*.
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Appendix

Table A.1 Cumulative binomial probabilities

Bðx; n; pÞ ¼ Px
y¼0

bðy; n; pÞ

p

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

a. n = 5

x 0 .951 .774 .590 .328 .237 .168 .078 .031 .010 .002 .001 .000 .000 .000 .000
1 .999 .977 .919 .737 .633 .528 .337 .188 .087 .031 .016 .007 .000 .000 .000
2 1.000 .999 .991 .942 .896 .837 .683 .500 .317 .163 .104 .058 .009 .001 .000
3 1.000 1.000 1.000 .993 .984 .969 .913 .812 .663 .472 .367 .263 .081 .023 .001
4 1.000 1.000 1.000 1.000 .999 .998 .990 .969 .922 .832 .763 .672 .410 .226 .049

b. n = 10

x 0 .904 .599 .349 .107 .056 .028 .006 .001 .000 .000 .000 .000 .000 .000 .000
1 .996 .914 .736 .376 .244 .149 .046 .011 .002 .000 .000 .000 .000 .000 .000
2 1.000 .988 .930 .678 .526 .383 .167 .055 .012 .002 .000 .000 .000 .000 .000
3 1.000 .999 .987 .879 .776 .650 .382 .172 .055 .011 .004 .001 .000 .000 .000
4 1.000 1.000 .998 .967 .922 .850 .633 .377 .166 .047 .020 .006 .000 .000 .000
5 1.000 1.000 1.000 .994 .980 .953 .834 .623 .367 .150 .078 .033 .002 .000 .000
6 1.000 1.000 1.000 .999 .996 .989 .945 .828 .618 .350 .224 .121 .013 .001 .000
7 1.000 1.000 1.000 1.000 1.000 .998 .988 .945 .833 .617 .474 .322 .070 .012 .000
8 1.000 1.000 1.000 1.000 1.000 1.000 .998 .989 .954 .851 .756 .624 .264 .086 .004
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .994 .972 .944 .893 .651 .401 .096

c. n = 15

x 0 .860 .463 .206 .035 .013 .005 .000 .000 .000 .000 .000 .000 .000 .000 .000
1 .990 .829 .549 .167 .080 .035 .005 .000 .000 .000 .000 .000 .000 .000 .000
2 1.000 .964 .816 .398 .236 .127 .027 .004 .000 .000 .000 .000 .000 .000 .000
3 1.000 .995 .944 .648 .461 .297 .091 .018 .002 .000 .000 .000 .000 .000 .000
4 1.000 .999 .987 .836 .686 .515 .217 .059 .009 .001 .000 .000 .000 .000 .000
5 1.000 1.000 .998 .939 .852 .722 .402 .151 .034 .004 .001 .000 .000 .000 .000
6 1.000 1.000 1.000 .982 .943 .869 .610 .304 .095 .015 .004 .001 .000 .000 .000
7 1.000 1.000 1.000 .996 .983 .950 .787 .500 .213 .050 .017 .004 .000 .000 .000
8 1.000 1.000 1.000 .999 .996 .985 .905 .696 .390 .131 .057 .018 .000 .000 .000
9 1.000 1.000 1.000 1.000 .999 .996 .966 .849 .597 .278 .148 .061 .002 .000 .000
10 1.000 1.000 1.000 1.000 1.000 .999 .991 .941 .783 .485 .314 .164 .013 .001 .000
11 1.000 1.000 1.000 1.000 1.000 1.000 .998 .982 .909 .703 .539 .352 .056 .005 .000
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .973 .873 .764 .602 .184 .036 .000
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .920 .833 .451 .171 .010
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .987 .965 .794 .537 .140
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Table A.1 (continued)

Bðx; n; pÞ ¼ Px
y¼0

bðy; n; pÞ

p

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

d. n = 20

x 0 .818 .358 .122 .012 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
1 .983 .736 .392 .069 .024 .008 .001 .000 .000 .000 .000 .000 .000 .000 .000
2 .999 .925 .677 .206 .091 .035 .004 .000 .000 .000 .000 .000 .000 .000 .000
3 1.000 .984 .867 .411 .225 .107 .016 .001 .000 .000 .000 .000 .000 .000 .000
4 1.000 .997 .957 .630 .415 .238 .051 .006 .000 .000 .000 .000 .000 .000 .000
5 1.000 1.000 .989 .804 .617 .416 .126 .021 .002 .000 .000 .000 .000 .000 .000
6 1.000 1.000 .998 .913 .786 .608 .250 .058 .006 .000 .000 .000 .000 .000 .000
7 1.000 1.000 1.000 .968 .898 .772 .416 .132 .021 .001 .000 .000 .000 .000 .000
8 1.000 1.000 1.000 .990 .959 .887 .596 .252 .057 .005 .001 .000 .000 .000 .000
9 1.000 1.000 1.000 .997 .986 .952 .755 .412 .128 .017 .004 .001 .000 .000 .000
10 1.000 1.000 1.000 .999 .996 .983 .872 .588 .245 .048 .014 .003 .000 .000 .000
11 1.000 1.000 1.000 1.000 .999 .995 .943 .748 .404 .113 .041 .010 .000 .000 .000
12 1.000 1.000 1.000 1.000 1.000 .999 .979 .868 .584 .228 .102 .032 .000 .000 .000
13 1.000 1.000 1.000 1.000 1.000 1.000 .994 .942 .750 .392 .214 .087 .002 .000 .000
14 1.000 1.000 1.000 1.000 1.000 1.000 .998 .979 .874 .584 .383 .196 .011 .000 .000
15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .994 .949 .762 .585 .370 .043 .003 .000
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .984 .893 .775 .589 .133 .016 .000
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .965 .909 .794 .323 .075 .001
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .992 .976 .931 .608 .264 .017
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .997 .988 .878 .642 .182

e. n = 25

x 0 .778 .277 .072 .004 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1 .974 .642 .271 .027 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .998 .873 .537 .098 .032 .009 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 1.000 .966 .764 .234 .096 .033 .002 .000 .000 .000 .000 .000 .000 .000 .000
4 1.000 .993 .902 .421 .214 .090 .009 .000 .000 .000 .000 .000 .000 .000 .000
5 1.000 .999 .967 .617 .378 .193 .029 .002 .000 .000 .000 .000 .000 .000 .000
6 1.000 1.000 .991 .780 .561 .341 .074 .007 .000 .000 .000 .000 .000 .000 .000
7 1.000 1.000 .998 .891 .727 .512 .154 .022 .001 .000 .000 .000 .000 .000 .000
8 1.000 1.000 1.000 .953 .851 .677 .274 .054 .004 .000 .000 .000 .000 .000 .000
9 1.000 1.000 1.000 .983 .929 .811 .425 .115 .013 .000 .000 .000 .000 .000 .000
10 1.000 1.000 1.000 .994 .970 .902 .586 .212 .034 .002 .000 .000 .000 .000 .000
11 1.000 1.000 1.000 .998 .980 .956 .732 .345 .078 .006 .001 .000 .000 .000 .000
12 1.000 1.000 1.000 1.000 .997 .983 .846 .500 .154 .017 .003 .000 .000 .000 .000
13 1.000 1.000 1.000 1.000 .999 .994 .922 .655 .268 .044 .020 .002 .000 .000 .000
14 1.000 1.000 1.000 1.000 1.000 .998 .966 .788 .414 .098 .030 .006 .000 .000 .000
15 1.000 1.000 1.000 1.000 1.000 1.000 .987 .885 .575 .189 .071 .017 .000 .000 .000
16 1.000 1.000 1.000 1.000 1.000 1.000 .996 .946 .726 .323 .149 .047 .000 .000 .000
17 1.000 1.000 1.000 1.000 1.000 1.000 .999 .978 .846 .488 .273 .109 .002 .000 .000
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .993 .926 .659 .439 .220 .009 .000 .000
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .971 .807 .622 .383 .033 .001 .000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .910 .786 .579 .098 .007 .000
21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .967 .904 .766 .236 .034 .000
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .968 .902 .463 .127 .002
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .993 .973 .729 .358 .026
24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .996 .928 .723 .222
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Table A.2 Cumulative Poisson probabilities

Pðx;lÞ ¼ Px
y¼0

e�lly

y!

l

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
x 0 .905 .819 .741 .670 .607 .549 .497 .449 .407 .368

1 .995 .982 .963 .938 .910 .878 .844 .809 .772 .736
2 1.000 .999 .996 .992 .986 .977 .966 .953 .937 .920
3 1.000 1.000 .999 .998 .997 .994 .991 .987 .981
4 1.000 1.000 1.000 .999 .999 .998 .996
5 1.000 1.000 1.000 .999
6 1.000

l

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 15.0 20.0
x 0 .135 .050 .018 .007 .002 .001 .000 .000 .000 .000 .000

l .406 .199 .092 .040 .017 .007 .003 .001 .000 .000 .000
2 .677 .423 .238 .125 .062 .030 .014 .006 .003 .000 .000
3 .857 .647 .433 .265 .151 .082 .042 .021 .010 .000 .000
4 .947 .815 .629 .440 .285 .173 .100 .055 .029 .001 .000
5 .983 .916 .785 .616 .446 .301 .191 .116 .067 .003 .000
6 .995 .966 .889 .762 .606 .450 .313 .207 .130 .008 .000
7 .999 .988 .949 .867 .744 .599 .453 .324 .220 .018 .001
8 1.000 .996 .979 .932 .847 .729 .593 .456 .333 .037 .002
9 .999 .992 .968 .916 .830 .717 .587 .458 .070 .005
10 1.000 .997 .986 .957 .901 .816 .706 .583 .118 .011
11 .999 .995 .980 .947 .888 .803 .697 .185 .021
12 1.000 .998 .991 .973 .936 .876 .792 .268 .039
13 .999 .996 .987 .966 .926 .864 .363 .066
14 1.000 .999 .994 .983 .959 .917 .466 .105
15 .999 .998 .992 .978 .951 .568 .157
16 1.000 .999 .996 .989 .973 .664 .221
17 1.000 .998 .995 .986 .749 .297
18 .999 .998 .993 .819 .381
19 1.000 .999 .997 .875 .470
20 1.000 .998 .917 .559
21 .999 .947 .644
22 1.000 .967 .721
23 .981 .787
24 .989 .843
25 .994 .888
26 .997 .922
27 .998 .948
28 .999 .966
29 1.000 .978
30 .987
31 .992
32 .995
33 .997
34 .999
35 .999
36 1.000
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Table A.3 Standard normal curve areas

0 z

Standard normal density curve

Shaded area = Φ(z)

Φ(z) = P(Z ≤ z)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
−3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
−3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
−3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
−3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
−2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
−1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
−0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3482
−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
−0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

(continued)
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UðzÞ ¼ PðZ � zÞ
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

Table A.3 (continued)
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Table A.4 The incomplete gamma function

Gðx; aÞ ¼ Rx
0

1
CðaÞ y

a�1e�ydy

x

a

1 2 3 4 5 6 7 8 9 10
1 .632 .264 .080 .019 .004 .001 .000 .000 .000 .000
2 .865 .594 .323 .143 .053 .017 .005 .001 .000 .000
3 .950 .801 .577 .353 .185 .084 .034 .012 .004 .001
4 .982 .908 .762 .567 .371 .215 .111 .051 .021 .008
5 .993 .960 .875 .735 .560 .384 .238 .133 .068 .032
6 .998 .983 .938 .849 .715 .554 .394 .256 .153 .084
7 .999 .993 .970 .918 .827 .699 .550 .401 .271 .170
8 1.000 .997 .986 .958 .900 .809 .687 .547 .407 .283
9 .999 .994 .979 .945 .884 .793 .676 .544 .413
10 1.000 .997 .990 .971 .933 .870 .780 .667 .542
11 .999 .995 .985 .962 .921 .857 .768 .659
12 1.000 .998 .992 .980 .954 .911 .845 .758
13 .999 .996 .989 .974 .946 .900 .834
14 1.000 .998 .994 .986 .968 .938 .891
15 .999 .997 .992 .982 .963 .930
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Table A.5 Critical values for chi-squared distributions

0

density curve

Shaded area = α

2
v

2
α,vχ

χ

v

a

.995 .99 .975 .95 .90 .10 .05 .025 .01 .005
1 0.000 0.000 0.001 0.004 0.016 2.706 3.843 5.025 6.637 7.882
2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.344 12.837
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.085 16.748
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.440 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.012 18.474 20.276
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.534 20.090 21.954
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.022 21.665 23.587
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.724 26.755
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.735 27.687 29.817
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.600 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.577 32.799
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.407 7.564 8.682 10.085 24.769 27.587 30.190 33.408 35.716
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.843 7.632 8.906 10.117 11.651 27.203 30.143 32.852 36.190 38.580
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.033 8.897 10.283 11.591 13.240 29.615 32.670 35.478 38.930 41.399
22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796
23 9.260 10.195 11.688 13.090 14.848 32.007 35.172 38.075 41.637 44.179
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558
25 10.519 11.523 13.120 14.611 16.473 34.381 37.652 40.646 44.313 46.925
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.807 12.878 14.573 16.151 18.114 36.741 40.113 43.194 46.962 49.642
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.120 14.256 16.047 17.708 19.768 39.087 42.557 45.772 49.586 52.333
30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
31 14.457 15.655 17.538 19.280 21.433 41.422 44.985 48.231 52.190 55.000
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328
33 15.814 17.073 19.046 20.866 23.110 43.745 47.400 50.724 54.774 57.646
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.191 18.508 20.569 22.465 24.796 46.059 49.802 53.203 57.340 60.272
36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.584 19.960 22.105 24.075 26.492 48.363 52.192 55.667 59.891 62.880
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181
39 19.994 21.425 23.654 25.695 28.196 50.660 54.572 58.119 62.426 65.473
40 20.706 22.164 24.433 26.509 29.050 51.805 55.758 59.342 63.691 66.766

For m > 40; v2a;v � v 1� 2
9m

þ za

ffiffiffiffiffi
2
9m

r !3
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Table A.6 Critical values for t distributions

0

Shaded area = α

t density curvev

tα,v

a

v .10 .05 .025 .01 .005 .001 .0005
1 3.078 6.314 12.706 31.821 63.657 318.31 636.62
2 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.767
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
32 1.309 1.694 2.037 2.449 2.738 3.365 3.622
34 1.307 1.691 2.032 2.441 2.728 3.348 3.601
36 1.306 1.688 2.028 2.434 2.719 3.333 3.582
38 1.304 1.686 2.024 2.429 2.712 3.319 3.566
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
50 1.299 1.676 2.009 2.403 2.678 3.262 3.496
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
1 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Table A.7 t curve tail areas

0

Area to the 
right of t

density curve

t

tv

t

v

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500
0.1 .468 .465 .463 .463 .462. .462 .462 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461
0.2 .437 .430 .427 .426 .425 .424 .424 .423 .423 .423 .423 .422 .422 .422 .422 .422 .422 .422
0.3 .407 .396 .392 .390 .388 .387 .386 .386 .386 .385 .385 .385 .384 .384 .384 .384 .384 .384
0.4 .379 .364 .358 .355 .353 .352 .351 .350 .349 .349 .348 .348 .348 .347 .347 .347 .347 .347
0.5 .352 .333 .326 .322 .319 .317 .316 .315 .315 .314 .313 .313 .313 .312 .312 .312 .312 .312
0.6 .328 .305 .295 .290 .287 .285 .284 .283 .282 .281 .280 .280 .279 .279 .279 .278 .278 .278
0.7 .306 .278 .267 .261 .258 .255 .253 .252 .251 .250 .249 .249 .248 .247 .247 .247 .247 .246
0.8 .285 .254 .241 .234 .230 .227 .225 .223 .222 .221 .220 .220 .219 .218 .218 .218 .217 .217
0.9 .267 .232 .217 .210 .205 .201 .199 .197 .196 .195 .194 .193 .192 .191 .191 .191 .190 .190
1.0 .250 .211 .196 .187 .182 .178 .175 .173 .172 .170 .169 .169 .168 .167 .167 .166 .166 .165
1.1 .235 .193 .176 .167 .162 .157 .154 .152 .150 .149 .147 .146 .146 .144 .144 .144 .143 .143
1.2 .221 .177 .158 .148 .142 .138 .135 .132 .130 .129 .128 .127 .126 .124 .124 .124 .123 .123
1.3 .209 .162 .142 .132 .125 .121 .117 .115 .113 .111 .110 .109 .108 .107 .107 .106 .105 .105
1.4 .197 .148 .128 .117 .110 .106 .102 .100 .098 .096 .095 .093 .092 .091 .091 .090 .090 .089
1.5 .187 .136 .115 .104 .097 .092 .089 .086 .084 .082 .081 .080 .079 .077 .077 .077 .076 .075
1.6 .178 .125 .104 .092 .085 .080 .077 .074 .072 .070 .069 .068 .067 .065 .065 .065 .064 .064
1.7 .169 .116 .094 .082 .075 .070 .065 .064 .062 .060 .059 .057 .056 .055 .055 .054 .054 .053
1.8 .161 .107 .085 .073 .066 .061 .057 .055 .053 .051 .050 .049 .048 .046 .046 .045 .045 .044
1.9 .154 .099 .077 .065 .058 .053 .050 .047 .045 .043 .042 .041 .040 .038 .038 .038 .037 .037
2.0 .148 .092 .070 .058 .051 .046 .043 .040 .038 .037 .035 .034 .033 .032 .032 .031 .031 .030
2.1 .141 .085 .063 .052 .045 .040 .037 .034 .033 .031 .030 .029 .028 .027 .027 .026 .025 .025
2.2 .136 .079 .058 .046 .040 .035 .032 .029 .028 .026 .025 .024 .023 .022 .022 .021 .021 .021
2.3 .131 .074 .052 .041 .035 .031 .027 .025 .023 .022 .021 .020 .019 .018 .018 .018 .017 .017
2.4 .126 .069 .048 .037 .031 .027 .024 .022 .020 .019 .018 .017 .016 .015 .015 .014 .014 .014
2.5 .121 .065 .044 .033 .027 .023 .020 .018 .017 .016 .015 .014 .013 .012 .012 .012 .011 .011
2.6 .117 .061 .040 .030 .024 .020 .018 .016 .014 .013 .012 .012 .011 .010 .010 .010 .009 .009
2.7 .113 .057 .037 .027 .021 .018 .015 .014 .012 .011 .010 .010 .009 .008 .008 .008 .008 .007
2.8 .109 .054 .034 .024 .019 .016 .013 .012 .010 .009 .009 .008 .008 .007 .007 .006 .006 .006
2.9 .106 .051 .031 .022 .017 .014 .011 .010 .009 .008 .007 .007 .006 .005 .005 .005 .005 .005
3.0 .102 .048 .029 .020 .015 .012 .010 .009 .007 .007 .006 .006 .005 .004 .004 .004 .004 .004
3.1 .099 .045 .027 .018 .013 .011 .009 .007 .006 .006 .005 .005 .004 .004 .004 .003 .003 .003
3.2 .096 .043 .025 .016 .012 .009 .008 .006 .005 .005 .004 .004 .003 .003 .003 .003 .003 .002
3.3 .094 .040 .023 .015 .011 .008 .007 .005 .005 .004 .004 .003 .003 .002 .002 .002 .002 .002
3.4 .091 .038 .021 .014 .010 .007 .006 .005 .004 .003 .003 .003 .002 .002 .002 .002 .002 .002
3.5 .089 .036 .020 .012 .009 .006 .005 .004 .003 .003 .002 .002 .002 .002 .002 .001 .001 .001
3.6 .086 .035 .018 .011 .008 .006 .004 .004 .003 .002 .002 .002 .002 .001 .001 .00l .001 .001
3.7 .084 .033 .017 .010 .007 .005 .004 .003 .002 .002 .002 .002 .001 .001 .001 .001 .001 .001
3.8 .082 .031 .016 .010 .006 .004 .003 .003 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001
3.9 .080 .030 .015 .009 .006 .004 .003 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001
4.0 .078 .029 .014 .008 .005 .004 .003 .002 .002 .001 .001 .001 .001 .001 .001 .001 .000 .000

(continued)
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Table A.7 (continued)

t

v

19 20 21 22 23 24 25 26 27 28 29 30 35 40 60 120 1 (=z)

0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500
0.1 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .460 .460 .460 .460 .460
0.2 .422 .422 .422 .422 .422 .422 .422 .422 .421 .421 .421 .421 .421 .421 .421 .421 .421
0.3 .384 .384 .384 .383 .383 .383 .383 .383 .383 .383 .383 .383 .383 .383 .383 .382 .382
0.4 .347 .347 .347 .347 .346 .346 .346 .346 .346 .346 .346 .346 .346 .346 .345 .345 .345
0.5 .311 .311 .311 .311 .311 .311 .311 .311 .311 .310 .310 .310 .310 .310 .309 .309 .309
0.6 .278 .278 .278 .277 .277 .277 .277 .277 .277 .277 .277 .277 .276 .276 .275 .275 .274
0.7 .246 .246 .246 .246 .245 .245 .245 .245 .245 .245 .245 .245 .244 .244 .243 .243 .242
0.8 .217 .217 .216 .216 .216 .216 .216 .215 .215 .215 .215 .215 .215 .214 .213 .213 .212
0.9 .190 .189 .189 .189 .189 .189 .188 .188 .188 .188 .188 .188 .187 .187 .186 .185 .184
1.0 .165 .165 .164 .164 .164 .164 .163 .163 .163 .163 .163 .163 .162 .162 .161 .160 .159
1.1 .143 .142 .142 .142 .141 .141 .141 .141 .141 .140 .140 .140 .139 .139 .138 .137 .136
1.2 .122 .122 .122 .121 .121 .121 .121 .120 .120 .120 .120 .120 .119 .119 .117 .116 .115
1.3 .105 .104 .104 .104 .103 .103 .103 .103 .102 .102 .102 .102 .101 .101 .099 .098 .097
1.4 .089 .089 .088 .088 .087 .087 .087 .087 .086 .086 .086 .086 .085 .085 .083 .082 .081
1.5 .075 .075 .074 .074 .074 .073 .073 .073 .073 .072 .072 .072 .071 .071 .069 .068 .067
1.6 .063 .063 .062 .062 .062 .061 .061 .061 .061 .060 .060 .060 .059 .059 .057 .056 .055
1.7 .053 .052 .052 .052 .051 .051 .051 .051 .050 .050 .050 .050 .049 .048 .047 .046 .045
1.8 .044 .043 .043 .043 .042 .042 .042 .042 .042 .041 .041 .041 .040 .040 .038 .037 .036
1.9 .036 .036 .036 .035 .035 .035 .035 .034 .034 .034 .034 .034 .033 .032 .031 .030 .029
2.0 .030 .030 .029 .029 .029 .028 .028 .028 .028 .028 .027 .027 .027 .026 .025 .024 .023
2.1 .025 .024 .024 .024 .023 .023 .023 .023 .023 .022 .022 .022 .022 .021 .020 .019 .018
2.2 .020 .020 .020 .019 .019 .019 .019 .018 .018 .018 .018 .018 .017 .017 .016 .015 .014
2.3 .016 .016 .016 .016 .015 .015 .015 .015 .015 .015 .014 .014 .014 .013 .012 .012 .011
2.4 .013 .013 .013 .013 .012 .012 .012 .012 .012 .012 .012 .011 .011 .011 .010 .009 .008
2.5 .011 .011 .010 .010 .010 .010 .010 .010 .009 .009 .009 .009 .009 .008 .008 .007 .006
2.6 .009 .009 .008 .008 .008 .008 .008 .008 .007 .007 .007 .007 .007 .007 .006 .005 .005
2.7 .007 .007 .007 .007 .006 .006 .006 .006 .006 .006 .006 .006 .005 .005 .004 .004 .003
2.8 .006 .006 .005 .005 .005 .005 .005 .005 .005 .005 .005 .004 .004 .004 .003 .003 .003
2.9 .005 .004 .004 .004 .004 .004 .004 .004 .004 .004 .004 .003 .003 .003 .003 .002 .002
3.0 .004 .004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .001
3.1 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001
3.2 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001
3.3 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000
3.4 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000
3.5 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000
3.6 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000
3.7 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
3.8 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3.9 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4.0 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
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Table A.8 Critical values for F distributions

v1 = numerator df

a 1 2 3 4 5 6 7 8 9

m2 =
denominator
df

1

.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86

.050 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54

.010 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5

.001 405284 500000 540379 562500 576405 585937 592873 598144 602284

2

.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38

.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39

.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39

3

.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35

.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86

4

.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94

.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66

.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47

5

.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32

.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

.001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24

6

.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96

.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98

.001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69

7

.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72

.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33

8

.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56

.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77

9

.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11

10

.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96

11

.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27

.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63

.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12

12

.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21

.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39

.001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48

(continued)
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Table A.8 (continued)

10 12 15 20 25 30 40 50 60 120 1000

60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79 63.06 63.30
241.88 243.91 245.95 248.01 249.26 250.10 251.14 251.77 252.20 253.25 254.19
6055.8 6106.3 6157.3 6208.7 6239.8 6260.6 6286.8 6302.5 6313.0 6339.4 6362.7

605621 610668 615764 620908 624017 626099 628712 630285 631337 633972 636301

9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.49
19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48 19.49 19.49
99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48 99.49 99.50
999.40 999.42 999.43 999.45 999.46 999.47 999.47 999.48 999.48 999.49 999.50

5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.15 5.14 5.13
8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.58 8.57 8.55 8.53
27.23 27.05 26.87 26.69 26.58 26.50 26.41 26.35 26.32 26.22 26.14
129.25 128.32 127.37 126.42 125.84 125.45 124.96 124.66 124.47 123.97 123.53

3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.76
5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.63
14.55 14.37 14.20 14.02 13.91 13.84 13.75 13.69 13.65 13.56 13.47
48.05 47.41 46.76 46.10 45.70 45.43 45.09 44.88 44.75 44.40 44.09

3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.12 3.11
4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.44 4.43 4.40 4.37
10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.20 9.11 9.03
26.92 26.42 25.91 25.39 25.08 24.87 24.60 24.44 24.33 24.06 23.82

2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.77 2.76 2.74 2.72
4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.75 3.74 3.70 3.67
7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.09 7.06 6.97 6.89
18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21 15.98 15.77

2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51 2.49 2.47
3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.32 3.30 3.27 3.23
6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82 5.74 5.66
14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.20 12.12 11.91 11.72

2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.30
3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01 2.97 2.93
5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.07 5.03 4.95 4.87
11.54 11.19 10.84 10.48 10.26 10.11 9.92 9.80 9.73 9.53 9.36

2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.22 2.21 2.18 2.16
3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.80 2.79 2.75 2.71
5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.52 4.48 4.40 4.32
9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.26 8.19 8.00 7.84

2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.12 2.11 2.08 2.06
2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.64 2.62 2.58 2.54
4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.12 4.08 4.00 3.92
8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.19 7.12 6.94 6.78

2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 1.98
2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.51 2.49 2.45 2.41
4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.81 3.78 3.69 3.61
7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.42 6.35 6.18 6.02

2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.97 1.96 1.93 1.91
2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.40 2.38 2.34 2.30
4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.57 3.54 3.45 3.37
7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.83 5.76 5.59 5.44

(continued)
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v1 = numerator df

a 1 2 3 4 5 6 7 8 9

m2 =
denominator
df

13

.100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16

.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19

.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98

14

.100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12

.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58

15

.100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09

.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26

16

.100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06

.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78

.001 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98

17

.100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03

.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

.010 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68

.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75

18

.100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00

.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56

19

.100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98

.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39

20

.100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24

21

.100 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95

.050 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

.010 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40

.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11

22

.100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93

.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35

.001 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99

23

.100 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92

.050 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

.010 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30

.001 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89

24

.100 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91

.050 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

.010 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80

(continued)
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v1 = numerator df

10 12 15 20 25 30 40 50 60 120 1000

2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.85
2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.31 2.30 2.25 2.21
4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.38 3.34 3.25 3.18
6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.37 5.30 5.14 4.99

2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.87 1.86 1.83 1.80
2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.24 2.22 2.18 2.14
3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.22 3.18 3.09 3.02
6.40 6.13 5.85 5.56 5.38 5.25 5.10 5.00 4.94 4.77 4.62

2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.83 1.82 1.79 1.76
2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.18 2.16 2.11 2.07
3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.08 3.05 2.96 2.88
6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.70 4.64 4.47 4.33

2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.79 1.78 1.75 1.72
2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.12 2.11 2.06 2.02
3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.97 2.93 2.84 2.76
5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.45 4.39 4.23 4.08

2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.76 1.75 1.72 1.69
2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.08 2.06 2.01 1.97
3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.87 2.83 2.75 2.66
5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.24 4.18 4.02 3.87

1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.74 1.72 1.69 1.66
2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.04 2.02 1.97 1.92
3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.78 2.75 2.66 2.58
5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.06 4.00 3.84 3.69

1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.70 1.67 1.64
2.38 2.31 2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.93 1.88
3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.71 2.67 2.58 2.50
5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.90 3.84 3.68 3.53

1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.69 1.68 1.64 1.61
2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.97 1.95 1.90 1.85
3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.64 2.61 2.52 2.43
5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.77 3.70 3.54 3.40

1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.67 1.66 1.62 1.59
2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.94 1.92 1.87 1.82
3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.58 2.55 2.46 2.37
4.95 4.70 4.44 4.17 4.00 3.88 3.74 3.64 3.58 3.42 3.28

1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.60 1.57
2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.91 1.89 1.84 1.79
3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.53 2.50 2.40 2.32
4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.54 3.48 3.32 3.17

1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.64 1.62 1.59 1.55
2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.88 1.86 1.81 1.76
3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.48 2.45 2.35 2.27
4.73 4.48 4.23 3.96 3.79 3.68 3.53 3.44 3.38 3.22 3.08

1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.57 1.54
2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.86 1.84 1.79 1.74
3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.44 2.40 2.31 2.22
4.64 4.39 4.14 3.87 3.71 3.59 3.45 3.36 3.29 3.14 2.99

(continued)
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Table A.8 (continued)

v1 = numerator df

a 1 2 3 4 5 6 7 8 9

m2 =
denominator
df

25

.100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89

.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71

26

.100 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88

.050 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

.010 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18

.001 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64

27

.100 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87

.050 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

.010 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15

.001 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57

28

.100 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87

.050 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

.010 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12

.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50

29

.100 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86

.050 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

.010 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09

.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45

30

.100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85

.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39

40

.100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79

.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

.001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02

50

.100 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76

.050 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07

.010 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78

.001 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82

60

.100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69

100

.100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69

.050 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97

.010 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59

.001 11.50 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44

200

.100 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66

.050 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93

.010 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50

.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26

1000

.100 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64

.050 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89

.010 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43

.001 10.89 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13

(continued)
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v1 = numerator df

10 12 15 20 25 30 40 50 60 120 1000

1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.61 1.59 1.56 1.52
2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82 1.77 1.72
3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.40 2.36 2.27 2.18
4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.28 3.22 3.06 2.91

1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.59 1.58 1.54 1.51
2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.82 1.80 1.75 1.70
3.09 2.96 2.81 2.66 2.57 2.50 2.42 2.36 2.33 2.23 2.14
4.48 4.24 3.99 3.72 3.56 3.44 3.30 3.21 3.15 2.99 2.84

1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.58 1.57 1.53 1.50
2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.81 1.79 1.73 1.68
3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.33 2.29 2.20 2.11
4.41 4.17 3.92 3.66 3.49 3.38 3.23 3.14 3.08 2.92 2.78

1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.57 1.56 1.52 1.48
2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.71 1.66
3.03 2.90 2.75 2.60 2.51 2.44 2.35 2.30 2.26 2.17 2.08
4.35 4.11 3.86 3.60 3.43 3.32 3.18 3.09 3.02 2.86 2.72

1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.56 1.55 1.51 1.47
2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.77 1.75 1.70 1.65
3.00 2.87 2.73 2.57 2.48 2.41 2.33 2.27 2.23 2.14 2.05
4.29 4.05 3.80 3.54 3.38 3.27 3.12 3.03 2.97 2.81 2.66

1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.55 1.54 1.50 1.46
2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.76 1.74 1.68 1.63
2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.25 2.21 2.11 2.02
4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.98 2.92 2.76 2.61

1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.42 1.38
2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.66 1.64 1.58 1.52
2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.06 2.02 1.92 1.82
3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.64 2.57 2.41 2.25

1.73 1.68 1.63 1.57 1.53 1.50 1.46 1.44 1.42 1.38 1.33
2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.60 1.58 1.51 1.45
2.70 2.56 2.42 2.27 2.17 2.10 2.01 1.95 1.91 1.80 1.70
3.67 3.44 3.20 2.95 2.79 2.68 2.53 2.44 2.38 2.21 2.05

1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.41 1.40 1.35 1.30
1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.56 1.53 1.47 1.40
2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.88 1.84 1.73 1.62
3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.32 2.25 2.08 1.92

1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.35 1.34 1.28 1.22
1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.48 1.45 1.38 1.30
2.50 2.37 2.22 2.07 1.97 1.89 1.80 1.74 1.69 1.57 1.45
3.30 3.07 2.84 2.59 2.43 2.32 2.17 2.08 2.01 1.83 1.64

1.63 1.58 1.52 1.46 1.41 1.38 1.34 1.31 1.29 1.23 1.16
1.88 1.80 1.72 1.62 1.56 1.52 1.46 1.41 1.39 1.30 1.21
2.41 2.27 2.13 1.97 1.87 1.79 1.69 1.63 1.58 1.45 1.30
3.12 2.90 2.67 2.42 2.26 2.15 2.00 1.90 1.83 1.64 1.43

1.61 1.55 1.49 1.43 1.38 1.35 1.30 1.27 1.25 1.18 1.08
1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.36 1.33 1.24 1.11
2.34 2.20 2.06 1.90 1.79 1.72 1.61 1.54 1.50 1.35 1.16
2.99 2.77 2.54 2.30 2.14 2.02 1.87 1.77 1.69 1.49 1.22
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Table A.9 Critical values for studentized range distributions

m

v a 2 3 4 5 6 7 8 9 10 11 12
5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32

.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70
6 .05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79

.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48
7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43

.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71
8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18

.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18
9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98

.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78
10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83

.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49
11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71

.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25
12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61

.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06
13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53

.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90
14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46

.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77
15 .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40

.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66
16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35

.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56
17 .05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31

.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48
18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27

.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41
19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23

.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34
20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20

.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28
24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10

.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11
30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00

.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93
40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90

.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76
60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81

.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60
120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71

.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44
1 .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62

.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29
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Table A.10 Chi-squared curve tail areas

Upper-tail area v = 1 v = 2 v = 3 v = 4 v = 5
>.100 <2.70 <4.60 <6.25 <7.77 <9.23
.100 2.70 4.60 6.25 7.77 9.23
.095 2.78 4.70 6.36 7.90 9.37
.090 2.87 4.81 6.49 8.04 9.52
.085 2.96 4.93 6.62 8.18 9.67
.080 3.06 5.05 6.75 8.33 9.83
.075 3.17 5.18 6.90 8.49 10.00
.070 3.28 5.31 7.06 8.66 10.19
.065 3.40 5.46 7.22 8.84 10.38
.060 3.53 5.62 7.40 9.04 10.59
.055 3.68 5.80 7.60 9.25 10.82
.050 3.84 5.99 7.81 9.48 11.07
.045 4.01 6.20 8.04 9.74 11.34
.040 4.21 6.43 8.31 10.02 11.64
.035 4.44 6.70 8.60 10.34 11.98
.030 4.70 7.01 8.94 10.71 12.37
.025 5.02 7.37 9.34 11.14 12.83
.020 5.41 7.82 9.83 11.66 13.38
.015 5.91 8.39 10.46 12.33 14.09
.010 6.63 9.21 11.34 13.27 15.08
.005 7.87 10.59 12.83 14.86 16.74
.001 10.82 13.81 16.26 18.46 20.51

<.001 >10.82 >13.81 >16.26 >18.46 >20.51
Upper-tail area v = 6 v = 7 v = 8 v = 9 v = 10
>.100 <10.64 <12.01 <13.36 <14.68 <15.98
.100 10.64 12.01 13.36 14.68 15.98
.095 10.79 12.17 13.52 14.85 16.16
.090 10.94 12.33 13.69 15.03 16.35
.085 11.11 12.50 13.87 15.22 16.54
.080 11.28 12.69 14.06 15.42 16.75
.075 11.46 12.88 14.26 15.63 16.97
.070 11.65 13.08 14.48 15.85 17.20
.065 11.86 13.30 14.71 16.09 17.44
.060 12.08 13.53 14.95 16.34 17.71
.055 12.33 13.79 15.22 16.62 17.99
.050 12.59 14.06 15.50 16.91 18.30
.045 12.87 14.36 15.82 17.24 18.64
.040 13.19 14.70 16.17 17.60 19.02
.035 13.55 15.07 16.56 18.01 19.44
.030 13.96 15.50 17.01 18.47 19.92
.025 14.44 16.01 17.53 19.02 20.48
.020 15.03 16.62 18.16 19.67 21.16
.015 15.77 17.39 18.97 20.51 22.02
.010 16.81 18.47 20.09 21.66 23.20
.005 18.54 20.27 21.95 23.58 25.18
.001 22.45 24.32 26.12 27.87 29.58

<.001 >22.45 >24.32 >26.12 >27.87 >29.58
(continued)
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Table A.10 (continued)

Upper-tail area v = 11 v = 12 v = 13 v = 14 v = 15
>.100 <17.27 <18.54 <19.81 <21.06 <22.30
.100 17.27 18.54 19.81 21.06 22.30
.095 17.45 18.74 20.00 21.26 22.51
.090 17.65 18.93 20.21 21.47 22.73
.085 17.85 19.14 20.42 21.69 22.95
.080 18.06 19.36 20.65 21.93 23.19
.075 18.29 19.60 20.89 22.17 23.45
.070 18.53 19.84 21.15 22.44 23.72
.065 18.78 20.11 21.42 22.71 24.00
.060 19.06 20.39 21.71 23.01 24.31
.055 19.35 20.69 22.02 23.33 24.63
.050 19.67 21.02 22.36 23.68 24.99
.045 20.02 21.38 22.73 24.06 25.38
.040 20.41 21.78 23.14 24.48 25.81
.035 20.84 22.23 23.60 24.95 26.29
.030 21.34 22.74 24.12 25.49 26.84
.025 21.92 23.33 24.73 26.11 27.48
.020 22.61 24.05 25.47 26.87 28.25
.015 23.50 24.96 26.40 27.82 29.23
.010 24.72 26.21 27.68 29.14 30.57
.005 26.75 28.29 29.81 31.31 32.80
.001 31.26 32.90 34.52 36.12 37.69

<.001 >31.26 >32.90 >34.52 >36.12 >37.69
Upper-tail area v = 16 v = 17 v = 18 v = 19 v = 20
>.100 <23.54 <24.77 <25.98 <27.20 <28.41
.100 23.54 24.76 25.98 27.20 28.41
.095 23.75 24.98 26.21 27.43 28.64
.090 23.97 25.21 26.44 27.66 28.88
.085 24.21 25.45 26.68 27.91 29.14
.080 24.45 25.70 26.94 28.18 29.40
.075 24.71 25.97 27.21 28.45 29.69
.070 24.99 26.25 27.50 28.75 29.99
.065 25.28 26.55 27.81 29.06 30.30
.060 25.59 26.87 28.13 29.39 30.64
.055 25.93 27.21 28.48 29.75 31.01
.050 26.29 27.58 28.86 30.14 31.41
.045 26.69 27.99 29.28 30.56 31.84
.040 27.13 28.44 29.74 31.03 32.32
.035 27.62 28.94 30.25 31.56 32.85
.030 28.19 29.52 30.84 32.15 33.46
.025 28.84 30.19 31.52 32.85 34.16
.020 29.63 30.99 32.34 33.68 35.01
.015 30.62 32.01 33.38 34.74 36.09
.010 32.00 33.40 34.80 36.19 37.56
.005 34.26 35.71 37.15 38.58 39.99
.001 39.25 40.78 42.31 43.81 45.31

<.001 >39.25 >40.78 >47.31 >43.81 >45.31
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Table A.11 Critical values for the Wilcoxon signed-ranked test

P0 Sþ � c1ð Þ ¼ P Sþ � c1 when H0ð is true)

n c1 P0(S+ � c1) n c1 P0(S+ � c1)
3 6 .125

14

78 .011
4 9 .125 79 .009

10 .062 81 .005
5 13 .094 73 .108

14 .062

15

74 .097
15 .031 79 .052

6 17 .109 84 .025
19 .047 89 .010
20 .031 92 .005
21 .016 83 .104

7 22 .109

16

84 .094
24 .055 89 .053
26 .023 90 .047
28 .008 95 .024

8 28 .098 100 .011
30 .055 101 .009
32 .027 104 .005
34 .012 93 .106
35 .008

17

94 .096
36 .004 100 .052

9 34 .102 106 .025
37 .049 112 .011
39 .027 113 .009
42 .010 116 .005
44 .004 104 .103

10 41 .097

18

105 .095
44 .053 112 .049
47 .024 118 .025
50 .010 125 .010
52 .005 129 .005

11 48 .103 116 .098
52 .051

19

124 .049
55 .027 131 .024
59 .009 138 .010
61 .005 143 .005

12 56 .102 128 .098
60 .055

20

136 .052
61 .046 137 .048
64 .026 144 .025
68 .010 152 .010
71 .005 157 .005

13 64 .108 140 .101
65 .095 150 .049
69 .055 158 .024
70 .047 167 .010
74 .024 172 .005
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Table A.12 Critical values for the Wilcoxon signed-rank interval

x n nþ1ð Þ=2ð Þ�cþ1; x cð Þ
� �

n Confidence level (%) c n Confidence level (%) c n Confidence level (%) c
5 93.8 15 13 99.0 81 20 99.1 173

87.5 14 95.2 74 95.2 158
6 96.9 21 90.6 70 90.3 150

93.7 20 14 99.1 93 21 99.0 188
90.6 19 95.1 84 95.0 172

7 98.4 28 89.6 79 89.7 163
95.3 26 15 99.0 104 22 99.0 204
89.1 24 95.2 95 95.0 187

8 99.2 36 90.5 90 90.2 178
94.5 32 16 99.1 117 23 99.0 221
89.1 30 94.9 106 95.2 203

9 99.2 44 89.5 100 90.2 193
94.5 39 17 99.1 130 24 99.0 239
90.2 37 94.9 118 95.1 219

10 99.0 52 90.2 112 89.9 208
95.1 47 18 99.0 143 25 99.0 257
89.5 44 95.2 131 95.2 236

11 99.0 61 90.1 124 89.9 224
94.6 55 19 99.1 158
89.8 52 95.1 144

12 99.1 71 90.4 137
94.8 64
90.8 61
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Table A.13 Critical values for the Wilcoxon rank-sum test

P0ðW � cÞ ¼ PðW � c when H0 is true)

m n c P0ðW � cÞ m n c P0ðW � cÞ
3 3 15 .05 40 .004

4 17 .057 6 40 .041
18 .029 41 .026

5 20 .036 43 .009
21 .018 44 .004

6 22 .048 7 43 .053
23 .024 45 .024
24 .012 47 .009

7 24 .058 48 .005
26 .017 8 47 .047
27 .008 49 .023

8 27 .042 51 .009
28 .024 52 .005
29 .012 6 6 50 .047
30 .006 52 .021

4 4 24 .057 54 .008
25 .029 55 .004
26 .014 7 54 .051

5 27 .056 56 .026
28 .032 58 .011
29 .016 60 .004
30 .008 8 58 .054

6 30 .057 61 .021
32 .019 63 .01
33 .010 65 .004
34 .005 7 7 66 .049

7 33 .055 68 .027
35 .021 71 .009
36 .012 72 .006
37 .006 8 71 .047

8 36 .055 73 .027
38 .024 76 .01
40 .008 78 .005
41 .004 8 8 84 .052

5 5 36 .048 87 .025
37 .028 90 .01
39 .008 92 .005
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Table A.14 Critical values for the Wilcoxon rank-sum interval

dijðmn�cþ1Þ; dijðcÞ
� �

Smaller sample size

Larger sample size 5 6 7 8

Confidence level (%) c Confidence level (%) c Confidence level (%) c Confidence level (%) c

5 99.2 25
94.4 22
90.5 21

6 99.1 29 99.1 34
94.8 26 95.9 31
91.8 25 90.7 29

7 99.0 33 99.2 39 98.9 44
95.2 30 94.9 35 94.7 40
89.4 28 89.9 33 90.3 38

8 98.9 37 99.2 44 99.1 50 99.0 56
95.5 34 95.7 40 94.6 45 95.0 51
90.7 32 89.2 37 90.6 43 89.5 48

9 98.8 41 99.2 49 99.2 56 98.9 62
95.8 38 95.0 44 94.5 50 95.4 57
88.8 35 91.2 42 90.9 48 90.7 54

10 99.2 46 98.9 53 99.0 61 99.1 69
94.5 41 94.4 48 94.5 55 94.5 62
90.1 39 90.7 46 89.1 52 89.9 59

11 99.1 50 99.0 58 98.9 66 99.1 75
94.8 45 95.2 53 95.6 61 94.9 68
91.0 43 90.2 50 89.6 57 90.9 65

12 99.1 54 99.0 63 99.0 72 99.0 81
95.2 49 94.7 57 95.5 66 95.3 74
89.6 46 89.8 54 90.0 62 90.2 70

Smaller sample size

Larger sample size 9 10 11 12

Confidence level (%) c Confidence level (%) c Confidence level (%) c Confidence level (%) c

9 98.9 69
95.0 63
90.6 60

10 99.0 76 99.1 84
94.7 69 94.8 76
90.5 66 89.5 72

11 99.0 83 99.0 91 98.9 99
95.4 76 94.9 83 95.3 91
90.5 72 90.1 79 89.9 86

12 99.1 90 99.1 99 99.1 108 99.0 116
95.1 82 95.0 90 94.9 98 94.8 106
90.5 78 90.7 86 89.6 93 89.9 101

Appendix 925



Answers to Odd-Numbered Exercises

Chapter 1

1. a. Houston Chronicle, Des Moines Regis-
ter, Chicago Tribune, Washington Post

b. Capital One, Campbell Soup, Merrill
Lynch, Pulitzer

c. Bill Jasper, Kay Reinke, Helen Ford,
David Menendez

d. 1.78, 2.44, 3.50, 3.04

3. a. In a sample of 100 phones, what are the
chances that more than 20 need service
while under warranty? What are the
chances than none need service while
still under warranty?

b. What proportion of all phones of this
brand and model will need service within
the warranty period?

5. a. Two variables (at least) were recorded:
skin color and hourly wages.

b. Skin color is categorical (with four cate-
gories), while hourlywages is quantitative
(units: $/h).

7. a: categorical b: quantitative

c: categorical d: categorical

e: categorical

9. a. No, the relevant conceptual population is
all scores of all students who participate
in the SI in conjunction with this partic-
ular statistics course.

b. The advantage to randomly assigning
students to the two groups is that the two

groups should then be fairly comparable
before the study. If the two groups per-
form differently in the class, we can
reasonably attribute this to the treatments
(SI and control). If it were left to students
to choose, stronger or more dedicated
students might gravitate toward SI, con-
founding the results.

c. If all students were put in the treatment
group there would be no results with
which to compare the treatments.

11. One could generate a simple random sample
of all single-family homes in the city or a
stratified random sample by taking a simple
random sample from each of the 10 district
neighborhoods. From each of the homes in
the sample the necessary variables would be
collected. This would be an enumerative
study because there exists a finite, identifiable
population of objects from which to sample.

13. a. There could be several explanations for
the variability of the measurements.
Among them could be measuring error,
(due to mechanical or technical changes
across measurements), recording error,
differences in weather conditions at time
of measurements, etc.

b. This could be called conceptual because
there is no sampling frame.

15. This display brings out the gap in the data:
There are no scores in the high 70s.
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17. a.

b. Arguably, a representative crack depth
might be around 9–10 lm.

c. This is somewhat subjective, but the
display appears quite spread out.

d. No, the distribution is certainly not
symmetric. Rather, crack depths appear
to be strongly positively skewed.

e. Yes: All of the values 66.5, 76.1, and
81.1 lm appear to be high outliers.
(Using an outlier convention described
later in the chapter, even the values in the
50s would be considered outliers!)

19.

The American distribution is positively
skewed, but the French distribution is
fairly symmetric. Almost half of the
American movies are in the 90s, but the
French movies are more spread out.

21. a.

b. The number of batches with at most 5
nonconforming items is 7 + 12 + 13 + 14
+ 6 + 3 = 55, which is a proportion of
55/60 = .917. The proportion of batches
with (strictly) fewer than 5 noncon-
forming items is 52/60 = .867.
Notice that these proportions could also
have been computed by using the relative
frequencies: e.g., proportion of batches
with 5 or fewer nonconforming items =
1 – (.05 + .017 + .017) = .916; proportion
of batches with fewer than 5 noncon-
forming items = 1 –

(.05 + .05 + .017 + .017) = .866.
c. The center of the histogram is some-

where around 2 or 3 and it shows that
there is some positive skewness in the
data. The histogram also shows that there
is a lot of spread/variation in this data.

a. 589/1570 = .375.
b. 1 – (589 + 190 + 176 + 157 + 115)/1570

= .218.
c. (115 + 89 + 57 + 55 + 33 + 31)/1570 =

.242.

6L 034
6H 667899
7L 00122244
7H Stem = tens
8L 001111122344 Leaf = ones
8H 5557899
9L 03
9H 58

0 123333333444444
0 55555667788888999
1 0000001111224
1 5789 Stem: tens digit
2 0112 Leaf: ones digit
2 6
3 334
3 7
4 2
4 68
5 012
5
6
6 6
7
7 6
8 1

Value Freq. Rel. Freq.
(=Freq./60)

0 7 .117

1 12 .200

2 13 .217

3 14 .233

4 6 .100

5 3 .050

6 3 .050

7 1 .017

8 1 .017

Note Relative frequencies add to 1.001, not 1,
due to rounding.

American French
8 1

755543211000 9 00234566
9432 10 2356
6630 11 1369
850 12 223558
8 13 7

14
15 8

Stem:tens digit2 16
Leaf: ones digit

23.
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d. The herd size distribution in the
accompanying histogram is extremely
positively skewed.

25. a. From a histogram, the number of subdi-
visions having no cul-de-sacs (i.e., y = 0)
is 17/47 = .362, or 36.2%. The proportion
having at least one cul-de-sac (y � 1) is
(47 – 17)/47 = 30/47 = .638, or 63.8%.
Note that subtracting the number of cul-
de-sacs with y = 0 from the total, 47, is an
easy way to find the number of subdivi-
sions with y � 1.

b. From a histogram, the number of subdi-
visions with at most 5 intersections (i.e.,
z � 5) is 42/47 = .894, or 89.4%. The
proportion having fewer than 5 intersec-
tions (z < 5) is 39/47 = .830, or 83.0%.

27. a. The distribution of these by-state values
is slightly positively skewed with one
extremely high outlier (Washington DC,
54.6%) and two other potential outliers
(Massachusetts, 40.5% and West Virginia,
19.2%). The “typical” state percentage
appears to be between 25 and 30%.

b. No: Since the population sizes of the 50
states + DC are not equal, the mean of
these percentages would not equal the
overall percentage. (If we knew all 51
population sizes, we could take the
appropriate weighted average, effectively
re-constructing the total count of people
with 4-year degrees and dividing by the
total population size.)

29. b. The transformation substantially changes
the shape of the histogram. In particular,
while the original variable x = number of
defects was strongly positively skewed
with an outlier, log10(x) is reasonably
symmetrically distributed with no outlier.

31. a. 7% of 464 students is roughly (.07)(464)
= 32.48, or 32 students. [32/464 = .069,
which rounds to .07.]

b. 18% + 6% + 5% = 29%.
c. No. Without an upper bound on the last

category, we can’t even make a density
histogram of the data, because we don’t
know where the last rectangle should end.

33. a. The distribution is skewed to the right, or
positively skewed. There is a gap in the
histogram, and what appears to be an
outlier in the 500 −< 550 interval.

b. The distribution of the natural logs of the
original data is much more symmetric
than the original.

c. The proportion of lifetime observations in
this sample that are less than 100 is .18 +
.38= .56, and the proportion that are at least
200 is .04 + .04 + .02 + .02 + .02 = .14.

35. a. The variable here is helmet status, a
categorical variable. Its possible values
are no helmet, noncompliant helmet, and
compliant helmet.

b.

c. .09 + .48 = .57.

Class
interval

Frequency Relative
frequency

0 −< 50 9 0.18
50 −< 100 19 0.38
100 −< 150 11 0.22
150 −< 200 4 0.08
200 −< 250 2 0.04
250 −< 300 2 0.04
300 −< 350 1 0.02
350 −< 400 1 0.02
400 −< 450 0 0.00
450 −< 500 0 0.00
500 −< 550 1 0.02

50 1.00

Class interval Frequency Relative
frequency

2.25 −< 2.75 2 0.04
2.75 −< 3.25 2 0.04
3.25 −< 3.75 3 0.06
3.75 −< 4.25 8 0.16
4.25 −< 4.75 18 0.36
4.75 −< 5.25 10 0.20
5.25 −< 5.75 4 0.08
5.75 < 6.25 3 0.06

Category Frequency Relative
frequency

No helmet 731 .43
Noncompliant
helmet

153 .09

Compliant
helmet

816 .48

Total 1700 1.00
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39. a. The relative frequency distribution is as
follows. The relative frequency distribu-
tion is almost unimodal and exhibits a
large positive skew. The typical middle
value is somewhere between 400 and 450,
although the skewness makes it difficult to
pinpoint more exactly than this.

b. The proportion of the fire loads less than
600 is .193 + .183 + .251 + .148 = .775
(the cumulative proportion for 600). The
proportion of loads that are at least 1200
is .005 + .004 + .001 + .002 + .002 =
.014 (the opposite of the cumulative
proportion for 1200).

c. The proportion of loads between 600 and
1200 is 1 – .775 – .014 = .211.

41. a. �x ¼ ð5þ 2þ � � � þ 5þ 0Þ=10 = 3.5 yd.
b. The two middle values in order are 2 and

2, so ~x = 2 yards. Todd Gurley’s mean
rushing gain is artificially increased by
the one 16-yard gain, while the median
ignores this extreme value.

c. Deleting the 16-yard gain and the 1-yard
loss (–1) amounts to trimming 1/10
observations from each end. So, we’re
talking about the 10% trimmed mean, and
the average of the remaining 8 values is
�xtrð10Þ = 2.5 yards. As is typically the case,
the trimmed mean falls between the
median (2 yards) and themean (3.5 yards).

43. a. With the one very high outlier (Wall
Street Journal at over 2.2 million), we

anticipate that the mean will be higher
than the median.

b. �x ¼ 1
20ð2237601þ � � � þ 196286Þ = 403,456.

In order, the middle two values are
285,129 and 276,445, so ~x ¼ 1

2ð285129þ
276445Þ = 280,787. Sure enough, the
median circulation for the top 20 news-
papers is substantially less than the mean,
due to the one extremely high outlier.

45. Using software, ~x ¼ 92, �xtrð25Þ ¼ 95:07,
�xtrð10Þ ¼ 102:23, �x ¼ 119:3. The mean is
somewhat larger because of positive skew-
ness. Trimming results in a value between the
mean and median, and additional trimming
gives a value closer to the median.

47. a. The reported values are (in increasing
order) 110, 115, 120, 120, 125, 130, 130,
135, and 140. Thus the median of the
reported values is 125.

b. 127.6 is reported as 130, so the median is
now 130, a very substantial change.
When there is rounding or grouping, the
median can be highly sensitive to small
change.

49. The mean cannot be calculated, because we
need the exact value of the two 100+ obser-
vations.We can, however, computemedian =
ð57þ 79Þ=2 ¼ 68:0, 20% trimmed mean =
66.2, 30% trimmed mean = 67.5.

51. a. Manufacturer is a categorical variable.
b. Since Honda is the most frequent man-

ufacturer, arguably Honda is the most
representative “value” of this categorical
variable.

c. No. Any numerical coding of these six
categories artificially imposes an order
on the manufacturers. For instance,
sorting alphabetically and sorting by
popularity would result in different cod-
ings and thus different means and medi-
ans. Only the mode (i.e., part b) makes
sense as a representative value.

Class Rel.
Freq.

Class Rel.
Freq.

0 −< 150 .193 1050 −< 1200 .029
150 −< 300 .183 1200 −< 1350 .005
300 −< 450 .251 1350 −< 1500 .004
450 −< 600 .148 1500 −< 1650 .001
600 −< 750 .097 1650 −< 1800 .002
750 −< 900 .066 1800 −< 1950 .002
900 −< 1050 .019
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53. a. range = 49.3 – 23.5 = 25.8.
b. Rxi ¼ 310:3, �x ¼ 31:03, Sxx ¼ Rðxi � �xÞ2

¼ 443:801, Rx2i ¼ 10; 072:41, s2 ¼ Rðxi��xÞ2
n�1

¼ 443:801
9 ¼ 49:3112.

c. s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49:3112

p
= 7.022.

d. s2 ¼ Rx2�ðRxÞ2=n
n�1 ¼ 10;072:41�ð310:3Þ2=10

9

¼ 49:3112.

55. a. �x ¼ Rxi=n = 14438/5 = 2887.6. The
sorted values are: 2781 2856 2888 2900
3013, so the sample median is ~x = 2888.

b. Subtracting a constant from each obser-
vation shifts the data, but does not change
its sample variance. For example, by
subtracting 2700 from each observation
we get the values 81, 200, 313, 156, and
188, which are smaller (fewer digits) and
easier to work with by hand. The sum of
squares of this transformed data is
204210 and its sum is 938, so the com-
putational formula for the variance gives
s2 = [204210 – (938)2/5]/(5 – 1) = 7060.3.

57. s = 24.4. In general, the size of a typical
deviation from the sample mean (370.7 s) is
about 24.4 s. Some observations may deviate
from 370.7 by a little more than this, some by
less.

59. $1,961,160

61. –3.5. One sample for which these are the
deviations is 3.8, 4.4, 4.5, 4.8, and 0.

63. a. q1 = 149.5, q3 = 1175, iqr = 1175 – 149.5
= 1025.5

b. A high outlier is anything exceeding q3 +
1.5iqr = 1175 + 1.5(1025.5) = 2713.25,
and an extremely high outlier is anything
over q3 + 3iqr = 1175 + 3(1025.5) =
4251.5.

c. A boxplot shows a positively skewed
award distribution, with a median award
of $750 thousand and no apparently
outliers.

65. a. 27.82, 26, 27.38

b. From software, the quartiles are roughly
23 and 32, so iqr = 9. Mild outliers are
outside 23 – 1.5(9) = 9.5 and 32 + 1.5(9)
= 45.5. Extreme outliers are outside 23 –

3(9) = –4 and 32 + 3(9) = 59. Hence,
there is one low mild outlier and there are
three high mild outliers. Note: Depend-
ing on how the quartiles and iqr are
calculated, the observation 46 might or
might not be deemed an outlier.

67. The most noticeable feature of the compar-
ative boxplots is that machine 2’s sample
values have considerably more variation
than does machine 1’s sample values.
However, a typical value, as measured by
the median, seems to be about the same for
the two machines. The only outlier that
exists is from machine 1.

69. All of the Indian salaries are below the first
quartile of Yankee salaries. There is much
more variability in the Yankee salaries.
Neither team has any outliers.

71. Outliers occur in the 6 a.m. data. The dis-
tributions at the other times are fairly sym-
metric. Variability and the typical values in
the data increase a little at the 12 noon and
2 p.m. times. Clearly the 6 a.m. vehicles
warrant further investigation!

73. a.

b. ~x = 3.70 cm for males and 3.15 cm for
females.

c. Males’ aortic root diameters are greater,
on average, than females’ in this sample
(see the medians above). But the women
in the sample exhibited much more

Males Females
2 6 Stem: ones digit
2 Leaf: tenths digit

1 3 0011
3 22

5444 3 5
776 3
988 3 8
00 4

4 3
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variability in aortic root diameter than
did the men, including some potential
high and low outliers.

75. There are no outliers in the three data sets.
However, as a comparative boxplot shows,
the three data sets differ with respect to their
central values (the medians are different)
and the data for flow rate 160 is somewhat
less variable than the other data sets. Flow
rates 125 and 200 also exhibit a small
degree of positive skewness.

77. a. HC data: s = 9.59. CO data: s = 59.41.
Since the CO data are on a much larger
scale, it makes sense that their standard
deviation should be larger—standard
deviation reflects absolute scale.

b. The mean of the HC data is 96.8/4 =
24.2; the mean of the CO data is 735/4 =
183.75. Therefore, the coefficient of
variation of the HC data is 9.59/24.2 =
.3963, or 39.63%. The coefficient of
variation of the CO data is 59.41/183.75
= .3233, or 32.33%. Thus, even though
the CO data has a larger standard devi-
ation than does the HC data, it actually
exhibits less variability (in percentage
terms) around its average than does the
HC data.

79. 10.70; 10.60; 10.65

81. The IQ distribution for these 33 children is
reasonably symmetric, with a mean IQ score
of 113.7 and a standard deviation of 12.7.
The sample includes three outliers (using the
1.5iqr rule): a low outlier at 82 and two high
outliers at 140 and 146.

83. a. The typical radon level in houses where a
child had cancer seems somewhat higher
than in no-cancer households. Both dis-
tributions are positively skewed. Radon
levels of 55, 55, and 85 Bq/m3 are
potential high outliers among the no-
cancer households, while an extreme
outlier of 210 Bq/m3 was recorded in one
household with a childhood cancer.

Cancer No cancer
9987653 0 33566777889999

88876665553321111000 1 11111223477
73322110 2 11449999

9843 3 389
5 4
7 5 55

6
7 Stem : Tens digit

HI : 210 8 5 Leaf : Ones digit

b. s = 31.7 Bq/m3 for the cancer households
and 17.0 Bq/m3 for the no-cancer
households, suggesting greater variabil-
ity in the first group. This seemingly
contradicts the graph, where the radon
distribution on the left appears more
concentrated than the one on the right.

c. iqr = 11.0 for cancer households and
18.0 for non-cancer households. Now the
non-cancer households exhibit greater
variability in radon levels, which is more
consistent with our graph. The culprit
here is presumably the extreme value of
210, which greatly influences the stan-
dard deviation of the cancer group but
has no effect on the iqr of that sample.

85. The healthy individuals have higher recep-
tor binding measure on average than the
individuals with PTSD. There is also more
variation in the healthy individuals’ values.
The distribution of values for the healthy is
reasonably symmetric, while the distribution
for the PTSD individuals is negatively
skewed.

87. a. Mode = .93. It occurs four times in the
data set.

b. The modal category is the one with the
highest (relative) frequency.

89. The measures that are sensitive to outliers
are: the mean and the midrange. The mean is
sensitive because all values are used in
computing it. The midrange is sensitive
because it uses only the most extreme values
in its computation.The median, the trimmed
mean, and the midquarter are not sensitive to
outliers.The median is the most resistant to
outliers because it uses only the middle
value (or values) in its computation. The
trimmed mean is somewhat resistant to
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outliers. The larger the trimming percentage,
the more resistant the trimmed mean
becomes. The midquarter, which uses the
quartiles, is reasonably resistant to outliers
because both quartiles are resistant to out-
liers.

91. a: s2y ¼ s2x and sy ¼ sx b: s2z ¼ 1 and sz ¼ 1

93. b. .552, .102 c. 30 d. 19

95. a. There may be a tendency to a repeating
pattern.

b. The value .1 gives a much smoother
series.

c. The smoothed value depends on all pre-
vious values of the time series, but the
coefficient decreases with k.

d. As t gets large, the coefficient (1 − a)t−1

decreases to zero, so there is decreasing
sensitivity to the initial value.

Chapter 2

1. a. A \ B′
b. A [ B
c. (A \ B′)[ (B \ A′)

3. a. S = {1324, 1342, 1423, 1432, 2314,
2341, 2413, 2431, 3124, 3142, 4123,
4132, 3214, 3241, 4213, 4231}

b. A = {1324, 1342, 1423, 1432}
c. B = {2314, 2341, 2413, 2431, 3214,

3241, 4213, 4231}
d. A[B = {1324, 1342, 1423, 1432, 2314,

2341, 2413, 2431, 3214, 3241, 4213,
4231}
A\B = ∅
A′ = {2314, 2341, 2413, 2431, 3124,
3142, 4123, 4132, 3214, 3241, 4213,
4231}

5. a. A = {SSF, SFS, FSS}
b. B = {SSS, SSF, SFS, FSS}
c. C = {SSS, SSF, SFS}
d. C′ = {SFF, FSS, FSF, FFS, FFF}

A [ C = {SSS, SSF, SFS, FSS}
A \ C = {SSF, SFS}
B [ C = {SSS, SSF, SFS, FSS}
B \ C = {SSS SSF, SFS}

7. a. {111, 112, 113, 121, 122, 123, 131, 132,
133, 211, 212, 213, 221, 222, 223, 231,
232, 233, 311, 312, 313, 321, 322, 323,
331, 332, 333}

b. {111, 222, 333}
c. {123, 132, 213, 231, 312, 321}
d. {111, 113, 131, 133, 311, 313, 331, 333}

9. a. {BBBAAAA, BBABAAA, BBAABAA,
BBAAABA, BBAAAAB, BABBAAA,
BABABAA, BABAABA, BABAAAB,
BAABBAA, BAABABA, BAABAAB,
BAAABBA, BAAABAB, BAAAABB,
ABBBAAA, ABBABAA, ABBAABA,
ABBAAAB, ABABBAA, ABABABA,
ABABAAB, ABAABBA, ABAABAB,
ABAAABB, AABBBAA, AABBABA,
AABBAAB, AABABBA, AABABAB,
AABAABB, AAABBBA, AAABBAB,
AAABABB, AAAABBB}

b. {AAAABBB, AAABABB, AAABBAB,
AABAABB, AABABAB}

13. a. .07
b. .30
c. .57

15. a. They are awarded at least one of the first
two projects, .36.

b. They are awarded neither of the first two
projects, .64.

c. They are awarded at least one of the
projects, .53.

d. They are awarded none of the projects,
.47.

e. They are awarded only the third project,
.17.

f. Either they fail to get the first two or they
are awarded the third, .75.

17. a. .572
b. .879

19. a. SAS and SPSS are not the only
packages.

b. .7
c. .8
d. .2
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21. a. .8841
b. .0435

23. a. .10
b. .18, .19
c. .41
d. .59
e. .31
f. .69

25. a. 1/15
b. 6/15
c. 14/15
d. 8/15

27. a. .98
b. .02
c. .03
d. .24

29. a. 1/9
b. 8/9
c. 2/9

31. a. 20
b. 60
c. 10

33. a. 243
b. 3645, 10

35. .0679

37. a: 8008 b: 3300

c: 5236 d: :4121; :6538

39. .20

41. .0456

43. a: :0839 b: :2498 c: :1998

45. 1/15, 1/3, 2/3

49. a. .447, .5, .2
b. P(A|C) = .4, the fraction of ethnic group

C that has blood type A.
P(C|A) = .447, the fraction of those with
blood group A that are of ethnic group C.

c. .211

51. a. Of those with a Visa card, .5 is the
fraction who also have a Master Card.

b. Of those with a Visa card, .5 is the
fraction who do not have a Master Card.

c. Of those with Master Card, .625 is the
fraction who also have a Visa Card.

d. Of those with Master Card, .375 is the
fraction who do not have a Visa Card.

e. Of those with at least one of the two
cards, .769 is the fraction who have a
Visa card.

53. .217, .178

55. .436, .581

57. .0833

59. a: :102 b: 1

65. a: :067 b: :509

69. a: :765 b: :2353

71. .466, .288, .247

73. a. BB or Bb, with probability 1/2 each
b. 4/7 c. 2/3

75. a. Because of independence, the condi-
tional probability is the same as the
unconditional probability, .3.

b. .82
c. .146

79. .349, .651, (1 – p)n, 1 – (1 – p)n

81. .99999969, .2262

83. .9981

85. a: yes b: no

87. a. 2p – p2

b. 1 – (1 – p)n

c. (1 – p)3

d. .9 + .1(1 – p)3

e. .0137

89. .8588, .9897

91. 2p/(1 + p)

93. a. exact answer = .46 b. se � .005

95. .8159 (answers will vary)
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97. � .39, � .88 (answers will vary)

99. � .91 (answers will vary)

101. � .02 (answers will vary)

103. b. � .37 (answers will vary)
c. � 176,000,000 (answers will vary;
exact = 176,214,841)

105. a: � :20 b: � :56 answers will varyð Þ
107. a: � :5177 b: � :4914 answers will varyð Þ
109. � .2 (answers will vary)

111. b. p � 4 � P̂ðAÞ
113. a: 10;626 b: 255;024 c: 127;512

115. a. 1/3, .444
b. .15
c. .291

117. .45, .32

119. a. 1/120
b. 1/5
c. 1/5

121. .905

123. a: :904 b: :766

125. .008

127. .362, .348, .290

129. a. P(G|R1 < R2 < R3) = 2/3, so classify as
granite if R1 < R2 < R3.

b. P(G|R1 < R3 < R2) = .294, so classify as
basalt if R1 < R3 < R2.
P(G|R3 < R1 < R2) = 1/15, so classify as
basalt if R3 < R1 < R2.

c. .175
d. p > 14/17

131. a: 1=24 b: 15=24 c: 1�e�1

133. s = 1

137. a. P(B0|survive) = b0/[1 – (b1 + b2)cd]
P(B1|survive) = b1(1 – cd)/[1 – (b1 + b2)cd]
P(B2|survive)
= b2(1 – cd)/[1 – (b1 + b2)cd]

b. .712, .058, .231

Chapter 3

1.

3. M = the absolute value of the difference
between the outcomes with possible values
0, 1, 2, 3, 4, 5 or 6; W = 1 if the sum of the
two resulting numbers is even and W = 0
otherwise, a Bernoulli random variable.

5. No, X can be a Bernoulli random variable
where a success is an outcome in B, with
B a particular subset of the sample space.

7. a. Possible values are 0, 1, 2, …, 12;
discrete

b. With N = # on the list, values are 0, 1, 2,
…, N; discrete

c. Possible values are 1, 2, 3, 4, …; discrete
d. {x: 0 < x < 1} if we assume that a rat-

tlesnake can be arbitrarily short or long;
not discrete

e. With c = amount earned per book sold,
possible values are 0, c, 2c, 3c, …,
10,000c; discrete

f. {y: 0 < y < 14} since 0 is the smallest
possible pH and 14 is the largest possible
pH; not discrete

g. With m and M denoting the minimum
and maximum possible tensions, respec-
tively, possible values are {x: m < x <
M}; not discrete

h. Possible values are 3, 6, 9, 12, 15, …
i.e. 3(1), 3(2), 3(3), 3(4), …giving a first
element, etc.; discrete

9. a. X is a discrete random variable with
possible values {2, 4, 6, 8, …}

b. X is a discrete random variable with
possible values {2, 3, 4, 5, …}

11. a. .10
c. .45, .25

13. a. .70
b. .45
c. .55
d. .71
e. .65
f. .45

S : FFF SFF FSF FFS FSS SFS SSF SSS

X: 0 1 1 1 2 2 2 3
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15. a. (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5)
(3, 4) (3, 5) (4, 5)

b. p(0) = .3, p(1) = .6, p(2) = .1, p(x) = 0
otherwise

c. F(0) = .30, F(1) = .90, F(2) = 1. The cdf
is

F(x) =

0
:30
:90
1

8>><
>>:

x\0
0� x\1
1� x\2
2� x

17. a. .81
b. .162
c. The fifth battery must be an A, and one of

the first four must also be an A, so
p(5) = P(AUUUA or UAUUA or UUAUA
or UUUAA) = .00324

d. P(Y = y) = (y – 1)(.1)y−2(.9)2, y = 2, 3, 4,
5,…

19. b. p(1) = .301, p(2) = .176, p(3) = .125,
p(4) = .097, p(5) = .079, p(6) = .067, p(7)
= .058, p(8) = .051, p(9) = .046. Lower
digits (such as 1 and 2) are much more
likely to be the lead digit of a number
than higher digits (such as 8 and 9).

c. F(1) = .301, F(2) = .477, F(3) = .602,
F(4) = .699, F(5) = .778, F(6) = .845,
F(7) = .903, F(8) = .954, F(9) = 1. So,
F(x) = 0 for x < 1; F(x) = .301 for 1 �
x < 2; F(x) = .477 for 2 � x < 3; etc.

d. .602, .301

21. F(x) = 0, x < 0; .10, 0 � x < 1; .25, 1 � x <
2; .45, 2 � x < 3; .70, 3 � x < 4; .90, 4 �
x < 5; .96, 5 � x < 6; 1.00, 6 � x

23. a. p(1) = .30, p(3) = .10, p(4) = .05, p(6) =
.15, p(12) = .40

b. .30, .60

25. a. p(x) = (1/3)(2/3)x−1, x = 1, 2, 3, …
b. p(y) = (1/3)(2/3)y−2, y = 2, 3, 4, …
c. p(0) = 1/6, p(z) = (25/54)(4/9)z−1,

z = 1, 2, 3, 4, …

29. a. .60
b. $110

31. a. 16.38, 272.298, 3.9936
b. $458.46

c. $33.97
d. 13.66

33. Yes, because R(1/x2) is finite.

35. $700

37. Since $142.92 > $100, you expect to win
more if you gamble.

39. a. –$1/19, –$1/19
b. The expected return for a $1 wager on

roulette is the same nomatter how you bet.
c. $5.76, $2.76, $1.00
d. Low-risk/low-reward bets (such as a color)

have smaller standard deviation than high-
risk/high-reward bets (such as a single
number).

43. a. 32.5
b. 7.5
c. V(X) = E[X(X − 1)] + E(X) – [E(X)]2

45. a. 1/4, 1/9, 1/16, 1/25, 1/100
b. l = 2.64, r = 1.54, P(|X – l|� 2r) = .04

< .25, P(|X – l|� 3r) = 0 < 1/9
The actual probability can be far below
the Chebyshev bound, so the bound is
conservative.

c. 1/9, equal to the Chebyshev bound
d. p(–1) = .02, p(0) = .96, p(1) = .02

47. MX(t) = .5et/(1 − .5et), E(X) = 2, V(X) = 2

49. a. :01e9t þ :05e10t þ :16e11t þ :78e12t

b. 11.71, .3659

51. p(0) = .2, p(1) = .3, p(3) = .5, E(X) = 1.8,
V(X) = 1.56

55. a. 5, 4 b. 5, 4

57. p(y) = (.25)y−1(.75) for y = 1, 2, 3, ….

59. MY(t) = et
2=2, E(X) = 0, V(X) = 1

63. a: :124 b: :279 c: :635 d: :718

65. a: :873

b: :007

c: :716

d: :277

e: 1:25; 1:09
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67. a: :786 b: :169 c: :382

69. a: :403 b: :787 c: :774

71. .1478

73. .407, assuming batteries’ voltage levels are
independent

75. a. .0104 c. .00197 d. 1500, 260

77. a: :017 b: :811; :425 c: :006; :902; :586

79. For p = .9 the probability is higher for
B (.9963 versus .99 for A)
For p = .5 the probability is higher for A (.75
versus .6875 for B)

81. a. 20, 16 (binomial, n = 100, p = .2)
b. 70, 21

83. a: p ¼ 0 or 1 b: p ¼ :5

85. When p = .5, the true probability for k = 2 is
.0414, compared to the bound of .25.
When p = .5, the true probability for k = 3 is
.0026, compared to the bound of .1111.
When p = .75, the true probability for k = 2
is .0652, compared to the bound of .25.
When p = .75, the true probability for k = 3
is .0039, compared to the bound of .1111.

89. a: :932 b: :065 c: :068 d: :491 e: :251

91. a: :011 b: :441 c: :554; :459 d: :944

93. a: :219 b: :558

95. .857

97. a: :122; :808; :283 b: 12; 3:464 c: :530; :011

99. a: :099 b: :135 c: 2

101. a: 4 b: :215 c: 1:15 years

103. a: :221 b: 6; 800; 000 c: p x; 1608:5ð Þ
109. a: :114 b: :879 c: :121 d: use Bin 15; :1ð Þ

111. a: h x; 15; 10; 20ð Þ b: :0325 c: :6966

113. a. h(x; 10, 10, 20) b. .0325 c. h(x; n, n, 2n),
E(X) = n/2, V(X) = n2/[4(2n–1)]

115. a. nb(x; 2, .5) = (x+1).5x+2, x = 0, 1, 2, 3,…
b. 3/16
c. 11/16
d. 4, 2

117. 2 + 2 + 2 = 6

119. a: :2817 b:7513 c: :4912; :9123

121. a: 160; 21:9 b: :6756

125. mean � 0.5968, sd � 0.8548 (answers will
vary)

127. �.9090 (answers will vary)

129. a. mean � 13.5888, sd � 2.9381
b. � .1562 (answers will vary)

131. mean � 3.4152, variance � 5.97
(answers will vary)

133. b. 142 tickets

135. a. � .2291 b. � $8696 c. � $7811
d.� .2342, $7767, $7571 (answerswill vary)

137. b. � .9196 (answers will vary)

139. b. 3.114, .405, .636

141. a. b(x; 15, .75)
b. .6865 c. .313
d. 45/4, 45/16 e. .309

143. a. .013 b. 19 c. .266 d. Poisson(500)

145. a: p x; 2:5ð Þ b: :067 c: :109

147. 1.813, 3.05

149. p(2) = p2, p(3) = (1 − p)p2, p(4) =
(1 − p)p2, p(x) = [1 − p(2) − ⋯
− p(x − 3)](1 − p)p2, x = 5, 6, 7, … .
Alternatively, p(x) = (1 − p)p(x − 1) +
p(1 − p)p(x − 2), x = 5, 6, 7, … .99950841

151. a: 0029 b: 0767; :9702

153. a: :135 b: :00144 c:
P1
x¼0

½pðx; 2Þ�5

155. 3.590

157. a: No b: :0273
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159. b. .5l1 + .5l2
c. .5l1 + .5l2 + .25(l1 – l2)

2

d. p(x; l1, l2) = .6 p(x; l1) + .4 p(x; l2)

161. .5

165. X * b(x; 25, p), E(h(X)) = 500p + 750,
rh(X) = 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp

. Independence and
constant probability might not be valid
because of the effect that customers can
have on each other. Also, store employees
might affect customer decisions.

167. pð0Þ ¼ :07776; pð1Þ ¼ :10368; pð2Þ ¼ :19008;

pð3Þ ¼ :20736; pð4Þ ¼ :17280; pð5Þ ¼ :13824;

pð6Þ ¼ :06912; pð7Þ ¼ :03072; pð8Þ ¼ :01024

Chapter 4

1. a. .25 b. .5 c. 7/16

3. b. .5 c. 11/16 d. .6328

5. a. 3/8 b. 1/8 c. .2969 d. .5781

7. a. f(x) = :10 for 25 � x � 35 and = 0
otherwise

b. .2 c. .4 d. .2

9. a. .699 b. .301, .301 c. .166

11. a. 1/4 b. 3/16 c. 15/16 d.
ffiffiffi
2

p
e. f(x) = x/2

for 0 � x < 2, and f(x) = 0 otherwise

13. a. 3 b. 0 for x � 1, 1 – 1/x3 for x > 1
c. 1/8, .088

15. a. F(x) = 0 for x � 0, F(x) = x3/8 for
0 < x < 2, F(x) = 1 for x � 2

b. 1/64 c. .0137, .0137 d. 1.817

17. b. 90th percentile of Y = 1.8(90th percentile
of X) + 32 c. 100pth percentile of Y =
a(100pth percentile of X) + b for a > 0.

19. a. 35, 25 b. .865

21. a. .8182, .1113 b. .314

23. a. A + (B − A)p
b. (A + B)/2
c. (Bn+1

– An+1)/[(n+1)(B – A)]

25. 314.79

27. 248, 3.6

29. 1/4, 1/16

31. a. v/20, v/800 b. 100.2p versus 100p c. 80p2

33. MYðtÞ ¼ ðe5t � e�5tÞ=10t, Y * Unif[–5, 5]

35. a. MYðtÞ ¼ :04e10t=ð:04� tÞ for t < .04,
mean = 35, variance = 625

b. MðtÞ ¼ :04=ð:04� tÞ for t < .04, mean =
25, variance = 625

c. MYðtÞ ¼ :04=ð:04� tÞ; Y is a shifted
exponential rv

39. a. .4850 b. .3413 c. .4938 d. .9876 e. .9147
f. .9599 g. .9104 h. .0791 i. .0668 j. .9876

41. a. 1.34 b. –1.34 c. .674 d. –.674 e. –1.555

43. a. .9772 b. .5 c. .9104 d. .8413 e. .2417
f. .6826

45. a. .7977 b. .0004 c. The top 5% are the
values above .3987.

47. The second machine

49. a. .2514, *0 b. 39.985 ksi

51. .0510

53. a. .8664 b. .0124 c. .2718

55. a. .794 b. 5.88 c. 7.94 d. .265

57. a. U(1.72) – U(.55) b. U(.55) – [1 – U(1.72)];
No, due to symmetry.

59. a. .4584 b. 135.8 kph c. .9265 d. .3173
e. .6844

61. a. .7286 b. .8643, .8159

63. a. .9932 b. .9875 c. .8064

65. a. .0392 b. *1

69. a. .15872 actual .15866
b. .0013495 actual .0013499
c. .999936655 actual .999936658
d. .00000028669 actual .00000028665

71. a. 120 b. 1.329 c. .371 d. .735 e. 0

73. a. 5, 4 b. .715 c. .411

75. a. 1 b. 1 c. .982 d. .129
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77. a. .449, .699, .148 b. .050, .018

79. a. \Ai b. Exponential with k = .05
c. Exponential with parameter nk

81. a. Gamma, a = 3, b = 1/k b. .8165

85. a. .275, .599, .126 b. 20.418, 17.365
c. 15.84

89. a. .9295 b. .2974 c. 98.184

91. a. 7.53, 9.966 b. .7823, .1469
c. .6925; lognormal is not symmetric

93. a. 149.157, 223.595 b. .957 c. .0416
d. 148.41 e. 9.57 f. 125.90

95. a = b

97. b.C(a + b)C(m + b)/[C(a + b + m)C(b)],
b/(a + b)

99. Yes, since the pattern in the plot is quite
linear.

101. Yes

103. Yes, because the plot is reasonably straight

105. Form a new variable, the logarithms of a
TN value, and then construct a normal plot
for its values. Because of the linearity of
this plot, normality is plausible.

107. The pattern in the normal probability plot
is curved downward, consistent with a
right-skewed distribution. It is not plausi-
ble that shower flow rate has a normal
population distribution.

109. The plot deviates from linearity, especially
at the low end, where the smallest three
observations are too small relative to the
others. The plot works for any k because k
is a scale parameter.

111. fY(y) = 2/y3, y > 1

113. fY(y) = ye�y2=2, y > 0

115. fY(y) = 1/16, 0 < y < 16

117. fY(y) = 1/[p(1 + y2)]

119. Y = X2/16

121. fY(y) = 2ffiffiffiffi
2p

p e�y2=2 for y > 0

125. a. F(x) = x2/4, x ¼ 2
ffiffiffi
u

p
c. sample mean and sd = 1.331 and 0.471
(answers will vary), l = 4/3 and
r ¼ ffiffiffi

2
p

=3

129. b. sample mean = 15.9188, close to 16
(answers will vary)

131. $1480

133. b. F(x) = 1 – 16/(x + 4)2, x � 0; F(x) = 0,
x < 0 c. .247 d. 4 e. 16.67

135. a. .6563 b. 41.55 c. .3197

137. a. .0003 b. .0888

139. a. F(x) =1.5(1 – 1/x), 1 � x � 3; F(x) = 0,
x < 1; F(x) = 1, x > 3
b. .9, .4 c. 1.6479 d. .5333 e. .2662

141. a. 1.075, 1.075 b. .0614, .3331 c. 2.476

143. b. $95,600, .3300

145. b. F(x) = .5e2x, x � 0; F(x) = 1 – .5e−.2x,
x > 0 c. .5, .6648, .2555, .6703

147. a. k ¼ ða� 1Þ5a�1 for a > 1 b. F(x) = 0,
x � 5; F(x) = 1 – (5/x)a–1, x > 5
c. 5(a − 1)/(a − 2)

149. b. .4602, .3636 c. .5950 d. 140.178

151. a. Weibull b. .542

153. a. k b. axa–1/ba

c. FðxÞ ¼ 1� e�a x�x2= 2bð Þð Þ, 0 � x � b;
F(x) = 0, x < 0; F(x) = 1 – e−ab/2,

x[ b; f ðxÞ ¼ a 1� x=bð Þ e�a x�x2= 2bð Þð Þ,
0 � x � b; f(x) = 0, x < 0, f(x) = 0, x > b
This gives total probability less than 1, so
some probability is located at infinity (for
items that last forever).

157. F(q*) = .818
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Chapter 5

1. a. .20 b. .42 c. The probability of at least
one hose being in use at each pump is .70.

d. x 0 1 2
pXðxÞ :16 :34 :50

y 0 1 2
pYðyÞ :24 :38 :38

P(X � 1) = .50

e. dependent, .30 = P(X = 2 and Y = 2) 6¼
P(X = 2) P(Y = 2) = (.50)(.38)

3. a. .15 b. .40 c. .22=P(A) =P(|X1–X2|� 2)
d. .17, .46

5. a. .0305 b. .1829
c. probability = .1073, marginal evidence

7. a. .054 b. .00018

9. a. .030 b. .120 c. .10, .30 d. .38 e. yes,
p(x,y) = pX(x) � pY(y)

11. a. 3/380,000 b. .3024 c. .3593
d. 10kx2 + .05, 20 � x � 30 e. no

13. a. pðx; yÞ ¼ e�l1�l2lx1l
y
2=x!y!

b. e�l1�l2 1þ l1 þ l2½ �
c. e

�l1�l2

m! ðl1 þ l2Þm, Poisson with parameter
l1 þ l2

15. a. e−x−y, x � 0, y � 0 b. .3996 c. .5940
d. .3298

17. a. F(y) = 1 – 2e−2ky + e−3ky for y � 0,
F(y) = 0 for y < 0; f(y) =
4ke−2ky – 3ke−3ky for y � 0

b. 2/(3k)

19. a. .25 b. 1/p c. 2/p d. fX xð Þ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p .
pr2ð Þ for –r � x � r, fY yð Þ ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p .
pr2ð Þ for –r � y � r, no

21. 1/3

23. a. .11 b.

c. no d. 0.35, 0.32 e. 95.72

25. .15

27. L2

29. 1/4 h

31. –2/3

33. –.1082, –.0131

35. .238, .51

37. VðhðX; YÞÞ ¼ Eðh2ðX; YÞÞ � ½EðhðX; YÞÞ�2,
13.34

41. q = 1 when a > 0

43. a. 87,850, 4370.37 b. yes, no c. .0027

45. .0336, .2310

47. .0314

49. a. 45 min b. 68.33 c. –1, 13.67 d. –5,
68.33

51. a. 50, 10.308 b. .0075 c. 50 d. 111.5625
e. 131.25

53. a. .9616 b. .0623

55. a. .5, n(n + 1)/4 b. .25, n(n + 1)(2n + 1)/24

57. 10:52.76

61. a. Bin(10, 18/38) b. Bin(15, 18/38)
c. Bin(25, 18/38) f. no

65. c. Gamma(n, 1/k)

67. a. 2 c. 0, 2n, 1/(1 – t2)n d. 1/(1 – t2/2n)n

69. a: fXðxÞ ¼ 2x; 0\x\1
b: fY jXðyjxÞ ¼ 1=x; 0\y\x\1
c: :6
d: no; the domain is not a rectangle
e: EðY jX ¼ xÞ ¼ x=2 f: VðYjX ¼ xÞ ¼ x2=12

71. a: fXðxÞ ¼ 2e�2x; 0\x\1
b: fY jXðyjxÞ ¼ e�yþx; 0\x\y\1
c: PðY [ 2jx ¼ 1Þ ¼ 1=e

x 0 1 2 3

pX(x) .78 .12 .07 .03

y 0 1 2

pY(y) .77 .14 .09
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d: no; the domain is not rectangular
e: EðYjX ¼ xÞ ¼ xþ 1 f: VðYjX ¼ xÞ ¼ 1

73. a. x/2, x2/12 b. 1/x, 0 < y < x < 1 c. –ln(y),
0 < y < 1 d. 1/4, 7/144 e. 1/4, 7/144

75. a. pY|X(0|1) = 4/17, pY|X(1|1) = 10/17,
pY|X(2|1) = 3/17

b. pY|X(0|2) = .12, pY|X(1|2) = .28, pY|X(2|2)
= .60 c. .40

d. pX|Y(0|2) = 1/19, pX|Y(1|2) = 3/19,
pX|Y(2|2) = 15/19

77. a. x2/2, x4/12 b. 1/x2, 0 < y < x2 < 1
c. ð1= ffiffiffi

y
p Þ � 1, 0 < y < 1

79. a. p(1,1) = p(2,2) = p(3,3) = 1/9, p(2,1) =
p(3,1) = p(3,2) = 2/9

b. pX(1) = 1/9, pX(2) = 3/9, pX(3) = 5/9
c. pY|X(1|1) = 1, pY|X(1|2) = 2/3, pY|X(2|2) =

1/3, pY|X(1|3) = .4, pY|X(2|3) = .4,
pY|X(3|3) = .2

d. E(Y|X=1) = 1, E(Y|X=2) = 4/3, E(Y|X=3)
= 1.8, no

e. V(Y|X=1) = 0, V(Y|X=2) = 2/9, V(Y|X=3)
= .56

81. a. pX|Y(1|1) = .2, pX|Y(2|1) = .4, pX|Y(3|1) =
.4, pX|Y(2|2) = 1/3, pX|Y(3|2) = 2/3,
pX|Y(3|3) = 1

b. E(X|Y=1) = 2.2, E(X|Y=2) = 8/3,
E(X|Y=3) = 3

c. V(X|Y=1) = .56, V(X|Y=2) = 2/9,
V(X|Y=3) = 0

83. a. pX(x) = .1, x = 0, 1, 2, …, 9; pY|X(y|x) =
1/9, y = 0, 1, 2, …, 9, y 6¼ x;
pX,Y(x, y) = 1/90, x, y = 0, 1, 2,…, 9, y 6¼ x

b. E(Y|X=x) = 5 – x/9, x = 0, 1, 2, …, 9

85. a. .6x, .24x b. 60 c. 60

87. 176, 12.68

89. a. 1 + 4p, 4p(1 – p) b. 2598, 16,518,196
c. 2598(1 + 4p), ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16518196þ 93071200p� 26998416p2
p

d. 2598 and 4064, 7794 and 7504, 12,990
and 9088

91. a. normal, mean = 984, variance = 38,988
b. .1379 c. 1237

93. a. N(158, 8.72) b. N(170, 8.72) c. .4090

95. a. .8875x + 5.2125 b. 111.5775
c. 10.563 d. .0951

97. a. 2x – 10 b. 9 c. 3 d. .0228

99. a. .1410 b. .1165
With positive correlation, the deviations
from their means of X and Y are likely to
have the same sign.

101. a. 1
4p e

�ðy21þy22Þ=4 b. 1ffiffiffiffi
4p

p e�y21=4 c. Yes

103. a. f(y) = y(2 – y), 0 � y � 1
b. f(w) = 2(1 – w), 0 � w � 1

105. 4y3[ln(y3)]
2 for 0 < y3 < 1

109. a. g5(y) = 5x4/10
5, 25/3 b. 20/3 c. 5

d. 1.409

111. gY5jY1 y5j4ð Þ ¼ ½2=3�½ðy5 � 4Þ=6�3,
4 < y5 < 10; 8.8

113. 1/(n+1), 2/(n+1), 3/(n+1), …, n/(n+1)

115.
Cðnþ1ÞCðiþ1=hÞ
CðiÞCðnþ1þ1=hÞ,

Cðnþ1ÞCðiþ2=hÞ
CðiÞCðnþ1þ2=hÞ � Cðnþ1ÞCðiþ1=hÞ

CðiÞCðnþ1þ1=hÞ
h i2

117. a. .0238 b. $2025

121. a. nðn� 1Þ½FðynÞ � Fðy1Þ�n�2f ðy1Þf ðynÞ
for y1\yn

b. fWðwÞ ¼
R
nðn� 1Þ½Fðwþ w1Þ

�Fðw1Þ�n�2f ðw1Þf ðwþ w1Þdw1

c. nðn� 1Þwn�2ð1� wÞ for 0�w� 1

123. fTðtÞ ¼ e�t=2 � e�t for t > 0

125. a. 3/81,250
b. fXðxÞ ¼

R 30�x
20�x kxydy ¼ kð250x� 10x2Þ

0� x� 20R 30�x
0 kxydy ¼ kð450x� 30x2 þ 1

2x
3Þ:

20� x� 30
fY(y) = fX(y)
dependent

c. .3548 d. 25.969 e. −32.19, −.894
f. 7.651

127. 7/6

131. c. If p(0) = .3, p(1) = .5, p(2) = .2, then 1
is the smaller of the two roots, so
extinction is certain in this case with
l < 1. If p(0) = .2, p(1) = .5, p(2) = .3,
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then 2/3 is the smaller of the two roots,
so extinction is not certain with l > 1.

133. a. P((X, Y) 2 A) = F(b, d) – F(b, c) −
F(a, d) + F(a, b)

b. P((X, Y) 2 A) = F(10, 6) − F(10, 1) −
F(4, 6) + F(4, 1)
P((X, Y) 2 A) = F(b, d) − F(b, c − 1) −
F(a − 1, d) + F(a − 1, b − 1)

c. At each (x*, y*), F(x*, y*) is the sum of
the probabilities at points (x, y) such
that x � x* and y � y*

x

Fðx; yÞ 100 250

y

200 :50 1

100 :30 :50

0 :20 :25

d. F(x, y) = .6x2y + .4xy3, 0 � x � 1;
0 � y � 1; F(x, y) = 0, x � 0;
F(x, y) = 0, y � 0;
F(x, y) = .6x2 + .4x, 0 � x � 1, y > 1;
F(x, y) = .6y + .4y3, x > 1, 0 � y � 1;
F(x, y) = 1, x > 1, y > 1
P(.25 � x � .75, .25 � y � .75) =
.23125

e. F(x, y) = 6x2y2, x + y � 1, 0 � x � 1;
0 � y � 1, x � 0, y � 0
F(x, y) = 3x4 − 8x3 + 6x2 + 3y4 – 8y3 +
6y2 – 1, x + y > 1, x � 1, y � 1
F(x, y) = 0, x � 0; F(x, y) = 0, y � 0;
F(x, y) = 3x4 − 8x3 + 6x2, 0 � x � 1,
y > 1
F(x, y) = 3y4 – 8y3 + 6y2, 0 � y � 1,
x > 1
F(x, y) = 1, x > 1, y > 1

135. a. 2x, x b. 40 c. 100

137.
2

ð1� 1000tÞð2� 1000tÞ, 1500 hours

141. a. 2360, 73.7021 b. .9713

143. .8340

145. a. r2W
r2Wþr2E

b. .9999

147. 26, 1.64

Chapter 6

1. a.

EðXÞ ¼ 44:5 ¼ l

b.

EðS2Þ ¼ 212:25 ¼ r2

3.

5. a.

b. PðX� 2:5Þ = .85

c.

d. .24

7.

a. 12, .01
b. 12, .005
c. With less variability, the second sample

is more closely concentrated near 12.

13. a. No, the distribution is clearly not sym-
metric. A positively skewed distribution—
perhaps Weibull, lognormal, or gamma.

b. .0746
c. .00000092. No, 82 is not a reasonable

value for l.

�x 25 32.5 40 45 52.5 65

pð�xÞ .04 .20 .25 .12 .30 .09

x/n 0 .1 .2 .3 .4

p(x/n) 0.0000 0.0000 0.0001 0.0008 0.0055

.5 .6 .7 .8 .9 1.0

0.0264 0.0881 0.2013 0.3020 0.2684 0.1074

s2 0 112.5 312.5 800

p(s2) .38 .20 .30 .12

�x 1 1.5 2 2.5 3 3.5 4

pð�xÞ .16 .24 .25 .20 .10 .04 .01

r 0 1 2 3

p(r) .30 .40 .22 .08

�x pð�xÞ �x pð�xÞ �x pð�xÞ
0.0 0.000045 1.4 0.090079 2.8 0.052077
0.2 0.000454 1.6 0.112599 3.0 0.034718
0.4 0.002270 1.8 0.125110 3.2 0.021699
0.6 0.007567 2.0 0.125110 3.4 0.012764
0.8 0.018917 2.2 0.113736 3.6 0.007091
1.0 0.037833 2.4 0.094780 3.8 0.003732
1.2 0.063055 2.6 0.072908 4.0 0.001866

11.
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15. a. .8366 b. no

17. 43.29

19. a. .9772, .4772 b. 10

21. a. .9838 b. .8926 c. .9862 and .8934, both
quite close

27. 1=�X

29. Because v2m is the sum of m independent
random variables, each distributed as v21, the
Central Limit Theorem applies.

35. a. 3.2 b. 10.04, the square of (a)

39. a. 4.32

41. a. m2/(m2 − 2), m2 > 2
b. 2m22ðm1 þ m2 � 2Þ =½m1ðm2 � 2Þ2ðm2 � 4Þ�,

m2 > 4

49. a. The approximate value, .0228, is smaller
because of skewness in the chi-squared
distribution

b. This approximation gives the answer
.03237, agreeing with the software
answer to this number of decimals.

53. a. .9686 b. .90 c. .87174

55. .048

57. a. .9544 for all n b. .8839, .9234, .9347;
increases with n toward (a)

59. a. 2.6, 1.2 b. 390, 14.7 c. *1

61. .9686

63. .0722

65. a. .5774, .8165, .9045
b. 1.312, 4.303, 18.216

67. a. .049 b. .09

Chapter 7

1. a. 113.73, X b. 113, ~X
c. 12.74, S, an estimator for the population

standard deviation

d. The sample proportion of students
exceeding 100 in IQ is 30/33 = .91

e. .112, S/X

3. a. 1.3481, X b. .0846 c. 1.3481, X
d. 1.78, X + 1.282S e. .6736

5. ĥ1 ¼ NX, ĥ2 ¼ T � ND, ĥ3 ¼ T � X=Y ;
1,703,000, 1,591,300, 1;601;438:281

7. a. 120.6 b. 1,206,000, 10,000X c. .8
d. 120, ~X

9. a. X, 2.113 b.
ffiffiffiffiffiffiffiffi
l=n

p
, .119

11. b.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ=n1 þ p2ð1� p2Þ=n2

p
c. In part (b) replace p1 with X1/n1 and

replace p2 with X2/n2
d. −.245 e. .0411

13. c.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2=½ðn� 1Þ2ðn� 2Þx2

q
�

17. a. ĥ ¼PX2
i =ð2nÞ b. 74.505

19. 4/9

21. a. p̂ ¼ 2k̂� :30 ¼ :20

b. p̂ ¼ ð100k̂� 9Þ=70
25. a. .15 b. yes c. .4437

27. a. ĥ ¼ ð2�x� 1Þ=ð1� �xÞ = 3

b. ĥ ¼ ½�n=R lnðxiÞ� � 1 = 3.12

29. p̂ ¼ r=x ¼ :15 This is the number of suc-
cesses over the number of trials, the same as
the result in Exercise 25. It is not the same
as the estimate of Exercise 19.

31. a. ð2phÞ�n=2e�Rx2i =2h

b. � n
2 lnð2pÞ � n

2 lnðhÞ �
Rx2i
2h

c.
P

x2i =n
d. n=

P
x2i

33. a.
P

x2i =2n=74.505, the same as
Exercise 17

b.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ĥ lnð2Þ

q
=10.16
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35. k̂ ¼ � lnðp̂Þ=24 ¼ :0120

37. a. X b. ~X

39. No, statistician A does not have more
information.

41.
Qn

i¼1 xi;
Pn

i¼1 xi

43.
P

xi

45. (min{Xi}, max{Xi})

47. 2X(n − X)/[n(n − 1)]

49. X, by the Rao-Blackwell Theorem, because
X is sufficient for l

51. a. 1=p2ð1� pÞ
b. n=p2ð1� pÞ
c. p2ð1� pÞ=n

53. a. If we ignore the boundary, 1/h2 b. h2/n
c. Both are less than h2/n; Cramér-Rao does
not apply because the boundaries of the
uniform variable X include h itself

55. a. �x b. Nðl; r= ffiffiffi
n

p Þ c. Yes d. They agree

57. a. 2/r2 b. Yes

59. a. 1/p, ð1� pÞ=np2 b. ð1� pÞ=np2 c. Yes

61. k̂ ¼ 6=ð6t6 � t1 � � � � � t5Þ ¼
6=ðx1 þ 2x2 þ � � � þ 6x6Þ = .0436, where
x1 = t1, x2 = t2 – t1, …, x6 = t6 – t5

63. 2.912, 2.242

67. 5.93, 11.66

69. b. no, Eðr̂2Þ ¼ r2=2, so 2r̂2 is unbiased

73. .448, .4364

75. d(X) = (–1)X, d(200) = 1, d(199) = –1

77. b̂ ¼P xiyi
�P

x2i = 30.040, the estimated

minutes per item; r̂2 ¼ 1
n

Pðyi � b̂xiÞ2=
16.912; 25b̂ = 751

Chapter 8

1. a. 99.5% b. 85% c. 2.97 d. 1.15

3. a. A narrower interval has a lower proba-
bility b. No, l is not random

c. No, the interval refers to l, not individ-
ual observations

d. No, a probability of .95 does not guar-
antee 95 successes in 100 trials

5. a. (4.52, 5.18) b. (4.12, 5.00) c. 55 d. 94

7. Increase n by a factor of 4. Decrease the
width by a factor of 5.

9. a. �x� zar=
ffiffiffi
n

p
b. 4.418 c. 59.70

11. 950; .8724 (normal approximation),
.8731 (binomial)

13. a. 1.341 b. 1.753 c. 1.708 d. 1.684 e. 2.704

15. a. 2.228 b. 2.131 c. 2.947 d. 4.604 e. 2.492
f. 2.715

17. a. Yes b. (4.89, 5.79) c. (.5868, .6948) fl oz

19. a. (63.12, 66.66) b. No, data indicates the
population is not normal

21. a. (29.26, 40.78) b. (–3.61, 73.65); times are
normally distributed; no

23. a. (18.94, 24.86) b. narrower c. narrower
d. (12.09, 31.71)

25. a. Assuming normality, a 95% lower con-
fidence bound is 8.11. When the bound is
calculated from repeated independent
samples, roughly 95% of such bounds
should be below the population mean.

b. A 95% lower prediction bound is 7.03.
When the bound is calculated from
repeated independent samples, roughly
95% of such bounds should be below the
value of an independent observation.

27. a. 378.85 b. 413.14 c. (340.16, 401.22)

29. (–8228.0, 116,042.4); yes (note that negative
values in PI make its validity suspect)
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31. a. (169.36, 179.37)
b. (134.30, 214.43), which includes 152
c. The second interval is much wider,

because it allows for the variability of a
single observation.

d. The normal probability plot gives no
reason to doubt normality. This is espe-
cially important for part (b), but the large
sample size implies that normality is not
so critical for (a).

33. a. (18.413, 20.102) b. 18.852 c. data indi-
cates the population distribution is not
normal

35. (18.3, 19.7) days

37. 0.056; yes, though potentially not by much

39. 97

41. a. 80% b. 98% c. 75%

43. (.798, 845)

45. a. .504 b. Yes, since p > .504 > .5

47. .584

49. (.513, .615)

51. .441; yes

53. a. 381 b. 339

55. (.028, .167)

57. a. 22.307 b. 34.381 c. 44.313 d. 49.925
e. 11.523 f. 10.519

59. (0.4318, 1.4866), (.657, 1.219)

61. b. (2.34, 5.60) c. False

63. a. (7.91, 12.00) b. Yes
c. The accompanying R code assumes the

data has been read in as the vector x.

N=5000

xbar=rep(0,N)

for (i in 1:N){

resample = sample(x,length(x),

replace = T)

xbar[i]=mean(resample)

}

d. (7.905, 12.005) for one simulation;
bootstrap distribution is somewhat
skewed, so validity is questionable

e. (8.204, 12.091) for one simulation
f. Bootstrap percentile interval; population

and bootstrap distributions are both
skewed

65. a. (26.61, 32.94)
b. Because of outliers, weight gain does not

seem normally distributed. However,
with n = 68, the effects of the CLT might
be enough to validate use of t procedures
anyway.

d. (26.66, 32.90) for one simulation; yes,
because histogram is bell-shaped

e. (26.69, 32.88) for one simulation
f. All three are close, so one-sample

t should be considered valid

67. a. (38.46, 38.84)
b. Although a normal probability plot is not

perfectly straight, there is not enough
deviation to reject normality.

d. (38.47, 38.83) for one simulation; pos-
sibly invalid because bootstrap distribu-
tion is somewhat skewed

e. (38.51, 38.81) for one simulation
f. All three intervals are surprisingly

similar.
g. Yes: all CIs are well above normal body

temperature of 37°C

69. a. (170.75, 183.57)
b. Plot is reasonably linear, CI in part (a) is

legitimate.
d. (170.76, 183.46) for one simulation; very

similar to (a)
e. (171.04, 183.00) for one simulation
f. All three are valid, so use the shortest:

(171.04, 183.00). None of the CIs cap-
ture the true l value

71. 246

73. a. .614 b. 4727.8, no
c. Yes: .66(7700) = 5082 > 5000

75. a. (.163, .174) b. (.089, .326)
77. (.1295, .2986)
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79. a. At 95% confidence, average TV viewing
time for the population of all 0–11
months old children is between 0.8 and
1.0 hours per day. (Similar interpretation
for others.)

b. Samples with larger standard deviations
and/or smaller sample sizes will result in
wider intervals.

c. Yes: none of the intervals overlap

81. c. r2=Rx2i , r=
ffiffiffiffiffiffiffiffi
Rx2i

p
d. Spread out:

variance is inversely proportional to sum
of squares of x values

e. b̂� t:025;n�1s=
ffiffiffiffiffiffiffiffi
Rx2i

p
; (29.93, 30.15)

85. a. v2:95;2n=2RXi, .0098

b. expð�t � v2:05;2n=2RXiÞ = .058

87. a. ð�x� t:025;n�1;d � s=
ffiffiffi
n

p
;�x� t:975;n�1;d � s=

ffiffiffi
n

p Þ
b. (3.01, 4.46)

89. a. 1/2n b. n/2n c. (n+1)/2n, 1 − (n + 1)/2n−1,
(29.9, 39.3) with confidence level .9785

91. a. P(A1 \ A2) = .952 = .9025
b. P(A1 \ A2) � .90
c. P(A1 \ A2) � 1 − 2a;

P(A1 \ A2 \ ⋯ \ Ak)
� 1 − ka

Chapter 9

1. a. yes b. no c. no d. yes e. no f. yes

5. H0: r = .05 versus Ha: r < .05. Type I error:
Conclude that the standard deviation is less
than .05 mm when it is really equal to .05
mm. Type II error: Conclude that the stan-
dard deviation is .05 mm when it is really less
than .05.

7. A type I error here involves saying that the
plant is not in compliance when in fact it is.
A type II error occurs when we conclude that
the plant is in compliance when in fact it
isn’t. A government regulator might regard
the type II error as being more serious.

9. a. R1

b. Reject H0

c. A type I error involves saying that the
two companies are not equally favored
when they are. A type II error involves
saying that the two companies are
equally favored when they are not.

d. Bin(25, .5); .0433
e. bð:3Þ ¼ bð:7Þ ¼ :488;

bð:4Þ ¼ bð:6Þ ¼ :845;
power = .512 for .3 and .7, .155
for .4 and .6

11. a. H0: l = 10 versus Ha: l 6¼ 10
b. .01
c. .5319. .0078
d. c = 2.58
e. c = 1.96
f. �x =10.02, so do not reject H0

13. c. .0004, *0, P(type I error) � a = .01
when l < l0

15. a. .0301 b. .003 c. .004

17. Test H0: l = .5 versus Ha: l 6¼ .5

a. Do not reject H0 because t.025,12 = 2.179
> |1.6|

b. Do not reject H0 because t.025,12 = 2.179
> |−1.6|

c. Do not reject H0 because t.005,24 = 2.797
> |−2.6|

d. Reject H0 because t.005,24 = 2.797 <
|−3.9|

19. a. Do not reject H0 because |–2.27| < 2.576
b. .2266
c. 22

21. z = –2.14, so reject H0 at .05 level but not at
.01 level

23. Because t = 2.24 > 1.708 = t.05,25, reject
H0: l = 360. Yes, this suggests contradic-
tion of prior belief.

25. a. Because |–1.40| < 2.064, H0 is not
rejected at the .05 level.

b. 600 lies in the CI for l

27. a. no, t = −.02 b. .58 c. n = 20 total
observations
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29. Since 1.04 < 2.132, we do not reject H0 at
the .05 significance level.

31. a. Because t = .50 < 1.89 = t.05,7 do not
reject H0.

b. .73

33. Because t = −1.24 > −1.40 = −t.10,8, we do
not have evidence to question the prior
belief.

37. a. 1� F ta;n�1; n� 1;
l0 � l0
r=

ffiffiffi
n

p
� �

b. F �ta=2;n�1; n� 1;
l0 � l0
r=

ffiffiffi
n

p
� �

þ 1� F ta=2;n�1; n� 1;
l0 � l0
r=

ffiffiffi
n

p
� �

39. Since |–2.469| � 1.96, reject H0.

41. a. Do not reject H0: p = .10 in favor of
Ha: p > .10 because 16 or more blistered
plateswould be required for rejection at the
.05 level. Because H0 is not rejected, there
could be a type II error.

b. bð:15Þ ¼ :4920 when n ¼ 100;
bð:15Þ ¼ :2743 when n ¼ 200

c. 362

43. a. Do not reject H0: p = .02 in favor of
Ha: p < .02 because z = −1.01 is not in
the rejection region at the .05 level.
There is no strong evidence suggesting
that the inventory be postponed.

b. bð:01Þ ¼ :195
c. 1� bð:05Þ � 0

45. a. Test H0: p = .05 versus Ha: p 6¼ .05. Since
z = 3.07 > 2.58, H0 is rejected. The
company’s premise is not correct.

b. bð:10Þ ¼ :033

47. Using n = 25, the probability of 5 or more
leaky faucets is .0980 if p = .10, and the
probability of 4 or fewer leaky faucets is
.0905 if p = .3. Thus, the rejection region is
5 or more, a = .0980, and b = .0905.

49. a. reject b. reject c. do not reject

d. reject e. do not reject

51. a. .0778 b. .1841 c. .0250 d. .0066
e. .5438

53. a. P = .0403 b. P = .0176 c. P = .1304
d. P = .6532 e. P =.0021 f. P = .00022

55. Based on the given data, there is no reason to
believe that pregnant women differ from oth-
ers in terms of serum receptor concentration.

57. a. Because the P-value is .166, no modifi-
cation is indicated.

b. .9974

59. Because t = −1.759 and the P-value = .082,
which is less than .10, reject H0: l = 3.0
against a two-tailed alternative at the 10%
level. However, the P-value exceeds .05, so
do not reject H0 at the 5% level. There is
just a weak indication that the percentage is
not equal to 3% (lower than 3%).

61. a. Test H0: l = 10 versus Ha: l < 10
b. Because the P-value is .017 < .05, reject

H0, suggesting that the pens do not meet
specifications.

c. Because the P-value is .045 > .01, do not
reject H0, suggesting there is no reason to
say the lifetime is inadequate.

d. Because the P-value is .0011, reject
H0. There is good evidence showing that
the pens do not meet specifications.

63. Do not reject H0 at .01 or .05, reject H0 at .10

65. b. 36.614 c. yes

67. a. Rxi > c b. yes

69. Yes, the test is UMP for the alternative
Ha: h > .5 since the tests for H0: h = .5 versus
Ha: h = p0 all have the same form for p0 > .5.

71. b. .0502 c. .04345, .05826, no d. .05114;
not most powerful

73. –2ln(K) = 3.041, P-value = .081

946 Answers to Odd-Numbered Exercises



75. a. .98, .85, .43, .004, .0000002
b. .40, .11, .0062, .0000003
c. Because the null hypothesis will be

rejected with high probability, even with
only slight departure from the null
hypothesis, it is not very useful to do a
.01 level test.

77. a. S2�r20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r40=ðn�1Þ

p
b. P-value = P(Z � –3.59) � .0002, so

reject H0.

79. a. 16.803
b. reject H0 because 15 is not > 16.803
c. no
d. reject H0 at .10, uncertain at .01

81. The following R code performs the boot-
strap simulation described in this section.

mu0 = 113; N = 5000

x = c(117.6,109.5,111.6,109.2,119.1,110.8)

w = x - mean(x) + mu0

wbar = rep(0,N) # allocating space for

bootstrap means

for (i in 1:N){

resample = sample(w,length(w),re-

place=T)

wbar[i] = mean(resample)

}

The P-value is estimated by the proportion
of these �w	

i values that are at or below the
observed �x value of 112.9667. In one run of
this code, that proportion was .5018, so do
not reject H0.

83. a. H0: the reformulated drug is no safer
than the original, recalled drug.
Ha: the reformulated drug is safer than
the recalled drug.

b. Type I error: The FDA rejects H0 and
concludes the new drug is safer, when in
fact it isn’t. Type II error: The FDA fails
to recognize that Ha is true, yet the new
drug is indeed safer.

c. Type I (arguably); lower a

85. Yes, only 25 required

87. t = 6.4, P-value � 0, reject H0

89. a. no
b. t = .44, P-value = .33, do not reject H0

91. Assuming normality, calculate t = 1.70,
which gives a two-tailed P-value of .102. Do
not reject the null hypothesis H0: l = 1.75.

93. The P-value for a lower tail test is .0014, so
it is reasonable to reject the idea that p = .75
and conclude that fewer than 75% of
mechanics can identify the problem.

95. Because the P-value is .013 > .01, do not
reject the null hypothesis at the .01 level.

97. a. For testing H0: l = l0 versus Ha: l > l0
at level a, reject H0 if 2Rxi/l0 > v2a;2n
For testing H0: l = l0 versus Ha: l < l0
at level a, reject H0 if 2Rxi/l0 < v21�a;2n

For testing H0: l = l0 versus Ha: l 6¼ l0
at level a, reject H0 if 2Rxi/l0 > v2a=2;2n
or if 2Rxi/l0 < v21�a=2;2n

b. Because Rxi = 737, the test statistic value
is 2Rxi/l0 = 19.65, which gives a P-value
of .52. There is no reason to reject the
null hypothesis.

99. a. yes

Chapter 10

1. a. −.4 b. .0724, .269
c. Although the CLT implies that the dis-

tribution will be approximately normal
when the sample sizes are each 100, the
distribution will not necessarily be
normal when the sample sizes are
each 10.

3. a. z = 4.84 � 1.96, reject H0

b. (1251, 2949)

5. a. Ha says that the average calorie output
for sufferers is more than 1 cal/cm2/min
below that for non-sufferers. Reject
H0 in favor of Ha because z = −2.90
< −2.33

b. .0019
c. .82, .18
d. 66
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7. a. We must assume here that the population
elapsed time distributions are both
normal.

b. z = 1.32 < 2.576, do not reject H0

9. 22, no

11. b. It decreases.

13. a. 17 b. 21 c. 18 d. 26

15. H0: l1 � l2 = 0 versus Ha: l1 � l2 < 0;
t = –15.83, reject H0

17. a. t = –18.64 � –1.686, strongly reject H0

b. t= 15.66 � 1.680, again strongly rejectH0

c. at most .10

19. a. ð219:6; 538:4Þ
b. t = 2.20, P-value = .014, reject H0

21. a. No, mean < sd so positively skewed; no
b. ($115, $375)

23. Because t = −3.35 < −3.30 = t.001,42, yes,
there is evidence that experts do hit harder.

25. b. No c. Because |t| = |−.38| < 2.23 = t.025,10,
no, there is no evidence of a difference.

27. Because the one-tailed P-value is .0004 <
.01, conclude at the .01 level that the dif-
ference is as stated. This could result in a
type I error.

29. Yes, because t = 2.08 with P-value = .046.

31. b. (127.6, 202.0) c. 131.75

33. Because t = 1.82 with P-value .046 < .05,
conclude at the .05 level that the difference
exceeds 1.

35. a. The slender distribution appears to have
a lower mean and lower variance.

b. With t = 1.88 and a P-value of .097, there
is no significant difference at the .05
level.

37. With t = 2.19 and a two-tailed P-value of
.031, there is a significant difference at the
.05 level but not the .01 level.

41. a. ð�x� �yÞ � ta=2;mþn�2 � sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=mþ 1=n

p
b. (–455, 45)
c. (–448, 38)

43. t = 3.88 � 3.365, so reject H0

45. a. (.000046, .000446); yes, because 0 does
not fall in the CI

b. t = 2.68, P-value = .01, reject H0

47. a. yes b. $10,524 c. |t| = |–1.21| < 1.729,
so do not reject H0; yes

49. a. two-sample t
b. t = 2.47 � 1.681, reject H0

c. paired t
d. t = –4.34 � –1.717, reject H0

51. b. (12.67, 25.16)

53. t = –2.2, P-value = .028, reject H0

57. a. Because |z| = |−4.84| > 1.96, conclude
that there is a difference. Rural residents
are more favorable to the increase.

b. .9967

59. (.016, .171)

61. a. (–.294, –.207)

63. H0: p1 � p2 = 0 versus Ha:p1 � p2 < 0,
z = –2.01, P-value = .022, reject H0

65. a. p1 = the proportion of all students who
would agree to be surveyed by Melissa,
p2 = the proportion of all students who
would agree to be surveyed by Kristine;
z = 3.00, P-value = .003, reject H0

b. No

67. 769

69. a. H0: p3 ¼ p2 versus Ha: p3 [ p2
b. p̂3 � p̂2 ¼ ðX3 � X2Þ=n
c. ðX3 � X2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þX3

p
d. z = 2.68, P-value = .0037, reject H0 at .01

but not at .001.

71. a. 3.69 b. 4.82 c. .207 d. .271
e. 4.30 f. .212 g. .95 h. .94
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73. f = 1.814 < F.10,9,7 = 2.72, so P-value > .10
> .01, do not reject H0

75. f = 4.38 < F.01,11,9 = 5.18, do not reject H0

77. (0.87, 2.41)

79. a. (.158, .735)
b. Bootstrap distribution of differences

looks quite normal.
c. (.171, .723) for one simulation
d. (.156, .740) for one simulation
e. All three intervals are quite similar.
f. Students on lifestyle floors appear to

have a higher mean GPA, somewhere
between *.16 higher and *.73 higher.

81. a. (0.593, 1.246); normal probability plots
show departures from normality, CI
might not be valid.

b. The R code below assumes two vectors,
L and N, contain the original data.

ratio = rep(0,5000)

for (i in 1:5000){

L.resamp = sample(L,length(L),

replace=T)

N.resamp = sample(N,length(N),

replace=T)

ratio[i] = sd(L.resamp)/sd(N.re-

samp)

}

CI = (0.568, 1.289) for one simulation

83. a. The bootstrap distribution of differences
of medians is definitely not normal.

b. (0.38, 10.44) for one simulation
c. (0.4706, 10.0294) for one simulation

85. a. t = 2.62, df = 17, P-value = .018, reject
H0 at the .05 level

b. In the R code below, the data is read is as
a data frame called df with two columns,
Time and Group. The first lists the times
for each rat, while the second has B and
C labels.

N = 5000

diff = rep(0,N)

for (i in 1:N){

resample = sample(df$Time, length

(df$Time), replace=T)

C.resamp = resample[df

$Group==''C'']

B.resamp = resample[df

$Group==''B'']

diff[i] = mean(C.resamp) - mean(B.

resamp)

}

P-value = 2(proportion of simulated dif-
ferences > 10.59 – 5.71) = .02 for one
simulation

c. Results of (a) and (b) are similar

87. a. f = 4.46; F.95,6,5 = 0.228 < 4.46 < F.05,6,5

= 4.95, so do not reject H0 at .10 level.
b. Use code similar toExercise 85, but change

the last line to calculate the ratio of
resampled variances. Observed ratio =
4.48, proportion of ratio values � 4.48
was .086 for one simulation, so P-value =
2(.086) = .172, andH0 is again not rejected.

89. a. Use the code from Exercise 85. Observed
difference = 3.47, proportion of simu-
lated differences � 3.47 was .019 for
one simulation, so P-value = 2(.019) =
.038. Reject H0 at the .05 level.

b. Results are similar; not surprising since
both methods are valid.

91. a. ($6.40, $11.85)
b. Use code provided in Chapter 8; boot-

strap distribution of �d is not normal.
c. ($6.44, $11.81) for one simulation
d. ($6.23, $11.51) for one simulation
e. (a) and (c) are similar, while (d) is shifted

to the left; (d) is most trustworthy
f. On average, books cost between $6.23

and $11.51 more with Amazon than at
the campus bookstore!

95. The difference is significant at the .05, .01,
and .001 levels.

99. b. No, given that the 95% CI includes 0, the
test at the .05 level does not reject
equality of means.

101. (−299.2, 1517.8)
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103. (1020.2, 1339.9) Because 0 is not in the
CI, we would reject equality of means at
the .01 level.

105. Because t = 2.61 and the one-tailed
P-value is .007, the difference is significant
at the .05 level using either a one-tailed or
a two-tailed test.

107. a. l1 = true mean AEDI score improve-
ment for all 2001 students; H0: l1 = 0
versus Ha: l1 > 0; t = 2.41, df = 36,
P-value = .011, reject H0.

b. Similarly, t = 2.19, P-value = .020,
reject H0.

c. H0: l1 – l2 = 0 versus H0: l1 – l2 < 0,
t = –0.23, P-value = .411, do not reject
H0. The data does not suggest an
“Enron effect.”

109. Because t = 7.50 and the one-tailed
P-value is .0000001, the difference is
highly significant, assuming normality.

111. The two-sample t test is inappropriate for
paired data. The paired t gives a mean
difference .3, t = 2.67, and the two-tailed
P-value is .045, so the means are signifi-
cantly different at the .05 level. We are
concluding tentatively that the label
understates the alcohol percentage.

113. Because the paired t = 3.88 and the two-
tailed P-value is .008, the difference is
significant at the .05 and .01 levels, but not
at the .001 level.

115. a. t = 11.86 > 2.33, reject H0 at .01 level.
b. t = 8.99, again clearly reject H0.
c. Yes, because students were randomly

assigned to experimental groups.

117. .902, .826, .029, .00000003

119. Because z = 4.25 and the one-tailed
P-value is .00001, the difference is highly
significant and companies do discriminate.

121. With Z ¼ ðX � YÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X=nþ Y=m

p
, the

result is z = −5.33, two-tailed P-value =
.0000001, so one should conclude that there
is a significant difference in parameters

Chapter 11

1. a. Reject H0: l1 = l2 = l3 = l4 = l5 in
favor of Ha: l1, l2, l3, l4, l5 not all the
same, because f = 5.57 > 2.69 = F.05,4,30.

b. Using Table A.8, .001 < P-value < .01.
(The P-value is .0018)

3. SSTr = 2304, SSE = 4200, f = 5.76 �
F.05,2,21 = 3.47, reject H0

5. a. SSTr = 9982.4, MSTr = 1109.16
b.

8.53 � F.01,9,30 = 3.07, so reject H0.

7.

P-value � .000, so reject H0.

9. a. SSTr = 270, MSTr = 90, SSE = 17446,
MSE = 167.75

b. f = 0.54 < F.05,3,104 � 2.69, so H0 is not
rejected at the .05 level.

11. b. H0: l1 = l2 = l3 = l4 = l5 vs Ha: not all
l’s are equal, f = [18797.5/4] / [251.5/15]
= 4699.38/16.77 = 280.28, strongly
reject H0.

15. Q:05;5;15 ¼ 4:37, and 4:37
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
272:8=4

p ¼
36:09

17.

19.

21. (6.401, 10.589)

Source df SS MS f

Brand 9 9982.4 1109.16 8.53
Error 30 3900.0 130.00
Total 39

Source df SS MS f

Type 3 127375 42458 25.09
Error 20 33839 1692
Total 23 161214

3 1 4 2 5

437.5 462.0 469.3 512.8 532.1

3 1 4 2 5
427.5 462.0 469.3 502.8 532.1

4 3 1 2
562.02 698.07 713.00 756.93
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23. a.

b. (–16.79, –0.73)

25. 422.16 < SSE < 431.88

27. SSTr = 465.5, SSE = 124.5, f = 17.12 �
F.05,3,14 = 3.34, so reject H0 at .05 level.

29. a. With large sample sizes, normality is less
important. 11.32/9.13 < 2 indicates equal
variances is plausible.

b. SSTr = 2445.7, SSE = 118,632.6, f =
20.92 � F.05,4,1015 = 2.38, so H0 is
rejected.

c. Q.05,5,1015 � 3.86, dij ¼ 3:86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
116:9
2

1
Ji
þ 1

Jj

� 	r

Graduate Freshman Sophomore Junior Senior

45.55 48.95 51.45 52.89 52.92

31. li = true mean impact of social media, as a
percentage of sales, for the ith category;
SSTr = 3804, SSE = 76973, f = 8.85 �
F.01,2,358 � 4.66, so H0 is rejected at the .01
significance level.

33. a. The distributions of the polyunsaturated
fat percentages for each of the four reg-
imens must be normal with equal
variances.

b. SSTr = 8.334, SSE = 77.79, f = 1.714 <
F.10,3,50 = 2.20, so P-value > .10 and H0

is not rejected.

35. li = true mean change in CMS under the ith
treatment; SSTr = 19.84, SSE = 16867.6,
f = 0.1129 < F.05,2,96 � 3.09, so H0 is not
rejected at the .05 level.

37. When H0 is true, all the ai’s are 0, and
E(MSTr) = r2. Otherwise, E(MSTr) > r2.

39. k = 10, F.05,3,14 = 3.344. From R, b =
pf(3.344,df1=3,df2=14,ncp=10)=
.372, and so power = 1 – b = 1 – .372 =
.628.

41. a. The sample standard deviations are very
different.

b. For the transformed data, �y:: = 2.46, SSTr
= 26.104, SSE = 7.748, f = 70.752, so H0

is clearly rejected.

c.

43. hðxÞ ¼ arcsinð ffiffiffiffiffiffiffi
x=n

p Þ
45. a. MSA ¼ 7:65, MSE ¼ 4:93, fA ¼ 1:55.

Since 1.55 < F.05,4,12 = 3.26, don’t reject
H0A.

b. MSB = 14.70, fB = 2.98 < F.05,2,12 =
3.49, don’t reject H0B.

47. a.

b. H0: a1 ¼ � � � ¼ a5 = 0 versus Ha: not all
a’s are 0. Since 9.67 � F.01,5,80 = 3.255,
we reject H0 at the .01 level.

c. I = 6, J = 17, MSE = 12342.3, Q.01,6,80 �
4.93, HSD = 4:93

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12342:3=17

p
= 132.8.

Wrist
acc.

Hip
acc. Pedometer

Wrist
+ LFE

Hip
+

LFE Hand tally
449 466 557 579 606 668

49. a.

b. The test statistic value and P-value for
H0A: a1 ¼ a2 ¼ a3 = 0 versus HaA: not
all a’s = 0 are f = 10.47 and P = .026.
Since .026 � .05, we reject H0A at the
.05 level and conclude that mean tem-
perature varies with spindle speed.

c. The test statistic and P-value for
H0B: b1 ¼ b2 ¼ b3 = 0 versusHaB: not all
b’s = 0 are f=1.40 andP= .346. Since .346
> .05, do not reject H0B at the .05 level;
conclude that feed rate has no statistically
significant effect on mean temperature.

SOO BSP CW SWE BMIPS ST BSF N GMIPS GS

117 122 127 129 141 142 144 147 148 175

Source df SS MS f

Method 5 596,748 119,349.6 9.67
Block 16 529,100 3306.9 0.27
Error 80 987,380 12342.3
Total 101 2,113,228

Source df SS MS f P-value

Spindle
speed

2 16106 8052.8 10.47 0.026

Feed rate 2 2156 1077.8 1.40 0.346
Error 4 3078 769.4
Total 8 21339

PW MK NW 50K FR
1.30 2.28 2.62 2.75 2.82
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51. c.

With f = 35.0 � F.01,2,106 � 4.81,
H0A: a1 ¼ a2 ¼ a3 = 0 is rejected at the
.01 level.

d. Yes

53.

According to the ANOVA table, neither
factor has a statistically significant effect at
the .10 level: both P-values are > .10.

55. With f = 8.69 > 6.01 = F.01,2,18, there are
significant differences among the three
treatment means.The normal plot of resid-
uals shows no reason to doubt normality,
and the plot of residuals against the fitted
values shows no reason to doubt constant
variance. There is no significant difference
between treatments B and C, but Treatment
A differs (it is lower) significantly from the
others at the .01 level.

57. Because f = 8.87 > 7.01 = F01,4,8, reject the
hypothesis that the variance for B is 0.

61. a.

Source df SS MS F
A 2 30763 15381.5 3.79
B 3 34185.6 11395.2 2.81
Interaction 6 43581.2 7263.5 1.79
Error 24 97436.8 4059.9
Total 35 205966.6

b. Because 1.79 < 2.51 = F.05,6,24, there is
no significant interaction.

c. Because 3.79 > 3.40 = F.05,2,24, there is a
significant difference among the A means
at the .05 level.

d. Because 2.81 < 3.01 = F..05,6,24, there is
no significant difference among the B
means at the .05 level.

e. Using d = 64.93,

3 1 2

3960:2 4010:88 4029:10

63. a. With f = 1.55 < 2.81 = F.10,2,12, there is
no significant interaction at the .10 level.

b. With f = 376.27 > 18.64 = F.001,2,12,
there is a significant difference between
the formulation means at the .001 level.
With f = 19.27 > 12.97 = F.001,1,12, there
is a significant difference among the
speed means at the .001 level.

c. Main effects Formulation: (1) 11.19,
(2) −11.19 Speed: (60) 1.99, (70) −5.03,
(80) 3.04

65. a. Factor #1 = firing distance, levels = 25 yd,
50 yd. Factor #2 = bullet brand, levels =
Federal, Remington, Winchester. Treat-
ments: (25, Fed), (25, Rem), (25, Win),
(50, Fed), (50, Rem), and (50, Win).

b. The interaction plot suggests a huge
distance effect. There appears to be very
little bullet manufacturer effect. The non-
parallel pattern suggests perhaps a slight
interaction effect.

c.

67. Source DF SS MS F
pen 3 1387.5 462.50 0.34
surface 2 2888.1 1444.04 1.07
Interaction 6 8100.3 1350.04 1.97
Error 12 8216.0 684.67
Total 23 20591.8

Source df SS MS f

Flavor 2 20,797 10,398.5 35.0
Block
(Subject)

53 135,833 2,562.9 8.6

Error 106 31,506 297.2
Total 161 188,136

Source df SS MS f P-value

Current 2 106.78 53.39 0.19 0.833
Voltage 2 56.05 28.03 0.10 0.907
Error 4 1115.75 278.94
Total 8 1278.58

Source df SS MS f P-value

Distance 1 568.97 568.969 242.56 0.000
Bullet 2 2.97 1.487 0.63 0.531
Distance
* bullet

2 2.48 1.242 0.53 0.589

Error 444 1041.49 2.346
Total 449 1615.92
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With f = 1.97 < 2.33 = F.10,6,12, there is no
significant interaction at the .10 level.
With f = .34 < 3.29 = F.10,3,6, there is no
significant difference among the pen means
at the .10 level.
With f = 1.07 < 3.46 = F.10,2,6, there is no
significant difference among the surface
means at the .10 level.

69.

The ANOVA table indicates a highly
statistically significant interaction effect
(f = 6.96, P-value = .001). The interaction
by itself indicates that both nozzle-bed dis-
tance and temperature play a significant role
in determining strut width. Apply Tukey’s
method here to the nine (distance, temper-
ature) pairs to identify honestly significant
differences.

73. a. MSAB/MSE b. MSA/MSAB,
MSB/MSAB

75.

Since 22.36 > F:05;3;24 ¼ 3:01, reject H0A.
There is an effect due to treatments. Next,
Q.05,4,24 = 3.90, so Tukey’s HSD is
3:90

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2106=9

p
= 1.43.

77. a. H0: l1 ¼ l2 ¼ l3 ¼ l4 vs. Ha: at least
two of the li’s are different; f = 3.68 <
F.01,3,20 = 4.94, thus fail to reject H0. The
means do not appear to differ.

b. We reject H0 when the P-value � a.
Since .029 > .01, we still fail to reject H0.

79. SSTr = 6.172, SSE = 1045.75, f =
3.086/18.674 = 0.165 < F.05,2,56 = 3.16, so
do not reject H0.

81. Source DF SS MS F

Diet 4 .929 .232 2.15

Error 25 2.690 .108

Total 29 3.619

Because f = 2.15 < 2.76 = F.05,4,25, there is
no significant difference among the diet
means at the .05 level.

b. (−.144, .474) Yes, the interval includes 0.
c. .53

83. a. SSTr = 19812.6, SSE = 1083126, f =
9906.3/7125.8 = 1.30 < F.05,2,152 = 3.06,
and H0 is not rejected.

b. Q.05,3,152 � 3.347 and dij ¼

3:347

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7125:8

2
1
Ji
þ 1

Jj

� 	r
for each pair. Then

d12 = 42.1, d13 = 37.2, and d23 = 40.7.
None of the sample means are nearly this
far apart, so Tukey’s method provides no
statistically significant differences. This is
consistent with the results in part (a).

Source df Adj SS Adj MS f P-value

Distance 2 562424 281212 360.70 0.000

Temperature 2 11757 5879 7.54 0.004

Distance
* Temperature

4 21715 5429 6.96 0.001

Error 18 14033 780

Total 26 609930

Source df SS MS f

Treatment 3 81.1944 27.0648 22.36
Block 8 66.5000 8.3125 6.87
Error 24 29.0556 1.2106
Total 35 176.7500

1 4 3 2
8.56 9.22 10.78 12.44

Distance*Temperature N Mean Grouping

0.2 220 3 935.000 A
0.2 180 3 860.000 A B
0.2 200 3 806.667 B
0.3 200 3 676.667 C
0.3 220 3 643.333 C
0.3 180 3 610.000 C D
0.4 220 3 538.333 D E
0.4 200 3 511.667 E
0.4 180 3 505.000 E
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Chapter 12

1. a. Both the BMI and peak foot pressure
distributions appear positively skewed
with some gaps and possible high
outliers.

b. No
c. The scatterplot suggests some positive

association between BMI and peak foot
pressure, but the relationship does not
appear to be very strong, and there are
many outliers from the overall pattern.

3. Yes.

5. b. Yes
c. The relationship of y to x is roughly

quadratic.

7. a. 48.75 mpg
b. –.0085 mpg
c. –4.25 mpg
d. 4.25 mpg

9. a. .095 m3/min b. −.475 m3/min
c. .83 m3/min, 1.305 m3/min
d. .4207, .3446 e. .0036

11. a. −.01 h, −.10 h b. 3.0 h, 2.5 h c. .3653
d. .4624

13. a. y = .63 + .652x
b. 23.46, -2.46

c. 392, 5.72
d. 95.6%
e. y = 2.29 + .564x, R2 = 68.8%

15. a. y = –14.6497 + .09092x
b. 1.8997
c. –.9977, –.0877, .0423, .7823
d. 42%

17. a. Yes
b. slope, .827; intercept, −1.13
c. 40.22
d. 5.24
e. 97.5%

19. a. y = 75.212 – .20939x, 54.274
b. 79.1%
c. 2.56

21. b. y = –0.398 + 3.080x
c. A 1-cm increase in palprebal fissure

width corresponds to an estimated 3.080
cm2 increase in average/expected OSA.

d. 3.452 cm2

e. 3.452 cm2

25. new slope = 1:8b̂1, new intercept =
1:8b̂0 þ 32

29. b̂	0 ¼ Y and b̂	1 ¼ b̂1

31. a. .0756
b. .813
c. The n = 7 sample is preferable (larger Sxx).

33. H0 : b1 ¼ 0 versus Ha: b1 6¼ 0, t = 22.64,
P-value � 0, so there is a useful linear rela-
tionship.
CI = (.748, .906)

35. a. b̂1 = 1.536, and a 95% CI is (.632, 2.440)
b. Yes, for the test of H0: b1 = 0 versus

Ha: b1 6¼ 0, we find t = 3.62, with
P-value .0025. At the .01 level conclude
that there is a useful linear relationship.

c. Because 5 is beyond the range of the
data, predicting at a dose of 5 might
involve too much extrapolation.

d. The observation does not seem to be
exerting undue influence.

37. a. Yes, for the test of H0: b1 = 0 versus
Ha: b1 6¼ 0, we find t = –6.73, with

Stem-and-leaf of BMI Stem-and-leaf of Foot
pressure

1 12 8 7 3 0012344
6 13 00588 16 3 566666678
13 14 2456689 18 4 11
19 15 000569 (8) 4 56789999
21 16 69 16 5 34
21 17 01156 14 5 577778
16 18 677 8 6 024
13 19 5 6 6
13 20 0156 4 7 4
9 21 0126 3 7
5 22 4 3 8 1
4 23 1 2 8 59
3 24 27
1 25
1 26 5
Leaf Unit = 0.1 Leaf Unit = 10
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P-value < 10−9. At the .01 level conclude
that there is a useful linear relationship.

b. (–2.77, –1.42)

43. a. 600 is closer to �x = 613.5 than is 750
b. (2.258, 3.188)
c. (1.336, 4.110)
d. at least 90%

45. a. y = –1.5846 + 2.58494x, 83.73%
b. (2.16, 3.01)
c. (–0.125, 0.058)
d. (–0.559, 0.491)
e. H0: lY|.7 = 0 versus Ha: lY|.7 6¼ 0; reject

H0 because 0 is not in the confidence
interval (0.125, 0.325) for lY|.7

47. (86.3, 123.5)

49. a. t = 4.88, P-value � 0, so reject H0. A
useful relationship exists.

b. (64.2, 161.3)
c. (10228, 11362)
d. (8215, 13379)
e. Wider, because 85 is farther from the

mean x-value of 68.65 than is 70.
f. No, extrapolation
g. (8707, 10633); (10020, 11574);

(10845, 13004)

51. a. Yes
b. t = 6.45, P-value = .003, reject H0. A

useful relationship exists.
c. (.05191, .11544)
d. (.00048, .16687)

55. a. For the test of H0: q = 0 versus Ha: q > 0,
we find r = .7482, t = 3.91, with P-value
< .05. At the .05 level conclude that there
is a positive correlation.

b. R2 = .56; it is the same no matter which
variable is the predictor.

57. a. t = 1.74 < 2.179, so do not reject
H0: q ¼ 0.

b. R2 = 20%

59. a. (.829, .914)
b. z = 2.412, P-value = .008, so reject

H0: q = 0

c. R2 = 77.1%
d. Still 77.1%

61. a. Reject the null hypothesis in favor of the
alternative.

b. No, with a large sample size a small r can
be significant.

c. Because t = 2.200 > 1.96 = t.025,9998 the
correlation is statistically (but not nec-
essarily practically) significant at the .05
level.

65. a. .184, −.238, −.426
b. The mean that is subtracted is not the

mean �x1;n�1 of x1, x2, …, xn-1, or the
mean �x2;n of x2, x3, …, xn. Also, the
denominator of r1 is notffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

1 ðxi � �x1;n�1Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

2 ðxi � �x2;nÞ2
q

.

However, if n is large then r1 is
approximately the same as the correla-
tion. A similar relationship applies to r2.

c. No
d. After performing one test at the .05 level,

doing more tests raises the probability of
at least one type I error to more than .05.

67. The plot suggests that the regression model
assumptions of linearity/model adequacy and
constant error variance are both plausible.

69. a. The plot does not show curvature, but
equal variance is not satisfied.

b. The standardized residual plot is similar
to (a). The normality plot suggests nor-
mality of the true errors is plausible.

71. a. For testing H0: b1 = 0 versus Ha: b1 6¼ 0,
t = 10.97, with P-value .0004. At the
.001 level conclude that there is a useful
linear relationship.

b. The residual plot shows curvature, so the
linear relationship of part (a) is
questionable.

c. There are no extreme standardized
residuals, and the plot of standardized
residuals is similar to the plot of ordinary
residuals.
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73. a. The plot indicates there are no outliers,
but there appears to be higher variance
for middle values of filtration rate.

b. ei=e	i ’s range between .57 and .65, which
are close to se.

c. Similar to the plot in (a).

75. The first data set seems appropriate for a
straight-line model. The second data set
shows a quadratic relationship, so the
straight-line relationship is inappropriate.
The third data set is linear except for an
outlier, and removal of the outlier will allow
a line to be fitted. The fourth data set has
only two values of x, so there is no way to
tell if the relationship is linear.

77. a. $24,000
b. $16,300

79. b. 9.193
c. f = 82.75, P-value � 0, so at least one of

the four predictors is useful, but not
necessarily all four.

d. Compare each to t:00125;95 = 3.106.
Predictors 1, 2, and 4 are useful.

81. a. y = –77 + 4.397x1 + 165x2 c. $2,781,500

83. a. R2 = 34.05%, se = 0.967
b. H0 : b1 ¼ b2 ¼ b3 ¼ 0 versus Ha: not all

three b’s are 0; f = 2.065 < 3.49, so do
not reject H0 at the .05 level

c. Yes

85. a. y = 148 – 133x1 + 128.5x2 + 0.0351x3
b. For x1: t = –0.26, P = .798. For x2:

t = 9.43, P < .0001. For x3: t = 1.42,
P = .171. Only x2 is a statistically sig-
nificant predictor of y.

c. R2 = 86.33%, R2
a = 84.17%

d. R2 = 86.28%, R2
a = 84.91%

87. a. f = 87.6, P-value � 0, strongly reject H0

b. R2
a = 93.5%

c. (9.095, 11.087)

89. a. Always decreases
b. 61.432 GPa
c. f = 227.88 > 5.568, so H0 is rejected.

d. (55.458, 67.406)
e. (53.717, 69.147)

91. a. Both plots exhibit curvature.
b. No
c. The plots suggest that all model

assumptions are satisfied.
d. All second-order terms should be

retained.

93. a. H0: b1 ¼ b2 ¼ 0 versus Ha: not both
b1 and b2 are 0, f = 22.91 � F.05,2,9 =
4.26, so reject H0. Yes, there is a useful
relationship.

b. H0: b2 ¼ 0 versus Ha: b2 6¼ 0, t = 4.01,
P-value < .005, reject H0. Yes.

c. (.5443, 1.9557)
d. (2.91, 6.29)

95. a. The quadratic terms are important in
providing a good fit to the data.

b. A 95% PI is (.560, .771).

97. a. rRI = .843 (P-value = .000), rRA = .621
(.001), rIA = .843 (.000)

b. Rating = 2.24 + 0.0419 IBU – 0.166ABV.
Because the predictors are highly corre-
lated, one is redundant.

c. Linearity is an issue.
e. The regression is quite effective, with R2

= 87.2%. The ABV coefficient is not
significant, so ABV is not needed. The
highly significant positive coefficient for
IBU and negative coefficient for its
square show that Rating increases with
IBU, but the rate of increase is lower at
higher IBU.

99. a. X ¼
1
1
1
1

�1
�1
1
1

�1
1
�1
1

2
664

3
775 y ¼

1
1
0
4

2
664
3
775;

4 0 0
0 4 0
0 0 4

2
4

3
5 b ¼

6
2
4

2
4
3
5

b. b ¼
1:5
:5
1

2
4

3
5
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c. ŷ ¼
0
2
1
3

2
664
3
775 y� ŷ ¼

1
�1
�1
1

2
664

3
775

SSE = 4, MSE = 4
d. (−12.2, 13.2)
e. For the test of H0: b1 = 0 versus

Ha: b1 6¼ 0, we find |t| = .5 < t.025,1 = 12.7,
so do not rejectH0 at the .05 level. The x1
term does not play a significant role.

f. Source DF SS MS F

Regression 2 5 2.5 0.625

Error 1 4 4.0

Total 3 9

With f = .625 < 199.5 = F.05,2,1, there is no
significant relationship at the .05 level.

101. a. X0X ¼ n Rxi
Rxi Rx2i


 �
,

ðX0XÞ�1 ¼ 1
nRx2i �ðRxiÞ2

Rx2i �Rxi
�Rxi n


 �

b. X0y ¼ Ryi
Rxiyi


 �
,

b̂ ¼ �y� ðSxy=SxxÞ�x
Sxy=Sxx


 �

103. b̂0 ¼ �y; se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðy� �yÞ2=ðn� 1Þ

q
;

�y� t:025;n�1s=
ffiffiffi
n

p

105. a. b̂0 ¼ 1
mþ n

Pmþ n
1 yi ¼ �y; b̂1 ¼ 1

m

Pm
1 yi�

1
n

Pmþ n
mþ 1 yi ¼�y1 � �y2

b. ŷ ¼ ½�y1. . .�y1�y2. . .�y2�0;
SSE =

Pm
1 ðyi � y1Þ2 þ

Pn
mþ 1 ðyi � y2Þ2;

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE=ðmþ n� 2Þp

;

sb̂1 ¼ se
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=mþ 1=n

p
d. b̂0 ¼ 128:166; b̂1 ¼ �14:333;

ŷ ¼ ½121; 121; 121; 135:33; 135:33; 135:33�0;
SSE = 116.666, se = 5.4,
95% CI for b1 (−26.58, −2.09)

109. a. With f = 12.04 > 9.55 = F.01,2,7, there is a
significant relationship at the .01 level.
To test H0: b1 = 0 versus Ha: b1 6¼ 0, we
find |t| = 2.96 > t.025,7 = 2.36, so reject

H0 at the .05 level. The foot term is
needed.
To test H0: b2 = 0 versus Ha: b2 6¼ 0, we
find |t| = 0.02 < t.025,7 = 2.36, so do not
reject H0 at the .05 level. The height
term is not needed.

b. The highest leverage is .88 for the fifth
point. The height for this student is
given as 54 inches, too low to be correct
for this group of students. Also this
value differs by 8" from the wingspan,
an extreme difference.

c. Point 1 has leverage .55, and this stu-
dent has height 75, foot length 13, both
quite high.
Point 2 has leverage .31, and this stu-
dent has height 66 and foot length 8.5,
at the low end.
Point 7 has leverage .31 and this stu-
dent has both height and foot length at
the high end.

d. Point 2 has themost extreme residual. This
student has a height of 66″ and awingspan
of 56″ differing by 10″, so the extremely
low wingspan is probably wrong.

e. For this data set it would make sense to
eliminate points 2 and 5 because they
seem to be wrong. However, outliers
are not always mistakes and one needs
to be careful about eliminating them.

111. a. p(10) = .060, p(50) = .777
b. odds(10) = .0639, odds(50) = 3.49
d. $37.50

113. a. H0: b1 = 0 versus H0: b1 6¼ 0,
z = –2.026, H0 is rejected at a = .05

b. (.675, .993)

115. a. b̂0 ¼ �:0573 and b̂1 ¼ :00430
c. H0: b1 = 0 versus H0: b1 6¼ 0, z = 0.74,
H0 is not rejected.

117. a. .912
b. .794

119. c. .484
d. z1 = –0.38, z2 = 1.75, so do not reject

H0: b1 = 0 but do reject H0: b2 = 0 in
favor of Ha: b2 6¼ 0.
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121. a. Flood damage increases with flood
level, but there are two “jumps” at 2–3
ft and 5–6 ft.

b. No

123. a. 50.73% b. .7122
c. To test H0: b1 = 0 versus Ha: b1 6¼ 0, we

have t = 3.93, with P-value .0013. At
the .01 level conclude that there is a
useful linear relationship.

d. (1.056, 1.275)
e. ŷ = 1.014, y − ŷ = −.214

125. No, if the relationship of y to x is linear,
then the relationship of y2 to x is quadratic.

127. a. Yes
b. ŷ = 98.293, y − ŷ = .117
c. se = .155
d. R2 = .794
e. 95% CI for b1: (.0613, .0901)
f. The new observation is an outlier, and

has a major impact:
The equation of the line changes from
y = 97.50 + .0757x to y = 97.28 + .1603x
se changes from .155 to .291
R2 changes from .794 to .616

129. a. The paired t procedure gives t = 3.54
with a two-tailed P-value of .002, so at
the .01 level we reject the hypothesis of
equal means.

b. The regression line is y = 4.79 + .743x,
and the test of H0: b1 = 0 vs Ha: b1 6¼ 0,
gives t = 7.41 with a P-value of
<.000001, so there is a significant
relationship. However, prediction is not
perfect, with R2 = .753, so one variable
accounts for only 75% if the variability
in the other.

133. a. linear
b. After fitting a line to the data, the

residuals show a lot of curvature.
c. Yes, ln(y) = 3.1564 + 0.004811x,

â= 23.486, b̂ = 0.004811
d. (54.42, 112.36)

135. a. A linear relationship is plausible.
b. y = 31.04 – 5.79x; model utility t =

–4.25, P-value � 0, so pH is a statisti-
cally useful predictor of mean crown
dieback.

c. PI = (1.42, 14.33), CI = (6.42, 9.32)
d. PI = (4.69, 18.00), CI = (9.18, 13.52)

137. a. y = 84.82 + .1643x1 – 79.67x2 and R2
a =

.654
b. R2

a = .831 with interaction, .7207 for
full second-order model. The model
with an interaction term but without
quadratic terms is preferred.

c. y = 6.22 + 5.779x1 + 51.33x2 –

9.357x1x2, 39.32 MPa
d. First-order: R2

a = 66.22%; with interac-
tion, R2

a = 68.27%; full second-order:
R2
a = 70.42%. These suggest that the

full second-order model is “best” for
predicting adsorbability.

Chapter 13

1. a. reject H0 b. do not reject H0

c. do not reject H0 d. do not reject H0

3. Do not reject H0 because v
2 = 1.57 < 7.815 =

v2:05;3.

5. Because v2 = 6.61 with P-value .68, do not
reject H0.

7. Do not reject H0 because v
2 = 4.41 < 7.779 =

v2:10;5�1.

9. a. [0, .223), [.223, .510), [.510, .916),
[.916, 1.609). [1.609, 1)

b. Because v2 = 1.25 with P-value >.10, do
not reject H0.

11. a. (−1, -.967), [−.967, −.431), [−.431, 0),
[0, .431), [.431, .967), [.967, 1)

b. (−1, .49806), [.49806, .49914), [.49914,
.50), [.50, .50086), [.50086, .50194),
[.50194, 1)

c. Because v2 = 5.53 with P-value >.10, do
not reject H0.
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13. a. With h = P(male), ĥ ¼ :504, v2 = 3.45,
df = 4 – 1 – 1 = 2. Do not reject H0

because v2 � v2:05;2 ¼ 5:992.
b. No, because the expected count for the

last category is too small.

15. l̂ = 3.167 which gives v2 = 103.9 with
P-value < .001, so reject the assumption of a
Poisson model.

17. The observed test statistic value is v2 =
6.668 < 10.645 (df = 9 – 1 – 2 = 6), so H0 is
not rejected at the .10 level.

19. v2 = 2.788 � z2; P-values are the same.
Reject H0 at the .10 level but not at the .05
level.

21. a. v2 = 4.504 < v2:05;4 = 9.488, so H0 is not
rejected.

23. v2 = 9.858 < v2:05;6 = 12.592, so H0 is not
rejected at the .05 level.

25. a. Reject H0 because v2 = 11.954 at 2 df
and P-value = .003.

b. Very large sample sizes make the test
capable of detecting even slight devia-
tions from H0.

27. êijk ¼ ni:: � n:j: � n::k=n2;
df = IJK – (I + J + K) + 2 = 28.

29. a. Because :6806\v2:10;2 ¼ 4:605, H0 is not
rejected.

b. Now v2 ¼ 6:806� 4:605, and H0 is
rejected.

c. 677

31. a. With v2 = 6.45 and P-value .040, reject
independence at the .05 level.

b. With z = −2.29 and P-value .022, reject
independence at the .05 level.

c. Because the logistic regression takes into
account the order in the professorial
ranks, it should be more sensitive, so it
should give a lower P-value.

d. There are few female professors but
many assistant professors, and the

assistant professors will be the professors
of the future.

33. v2 = 5.934, df = 2, P-value = .059. So, at the
.05 level, we (barely) fail to reject H0.

35. v2 = 29.775 � v2:05;ð4�1Þð3�1Þ = 12.592. So,

H0 is rejected at the .05 level.

37. a. H0: The population proportion of Late
Game Leader Wins is the same for all
four sports; Ha: The proportion of Late
Game Leader Wins is not the same for all
four sports. With v2 = 10.518 > 7.815 =
v2:05;3, reject the null hypothesis at the .05
level. Sports differ in terms of coming
from behind late in the game.

b. Yes (baseball)

39. v2 = 881.36, df = 16, P-value is effectively
zero. USA respondents were more amenable
to torture than the Europeans, while South
Korean respondents were vastly more likely
than anyone else to say it’s “sometimes”
okay to torture terror suspects.

41. a. No, v2 = 9.02 > 7.815 = v2:05;3.

b. With v2 = .157 < 6.251 = v2:10;3, there is
no reason to say the model does not fit.

43. a. H0 : p0 ¼ p1 ¼ � � � ¼ p9 ¼ :10 versus
Ha: at least one pi 6¼ .10, with df = 9.

b. H0: pij = .01 for i and j = 0, 1, 2, …, 9
versus Ha: at least one pij 6¼ .01, with df
= 99.

c. No, there must be more observations
than cells to do a valid chi-square test.

d. The results give no reason to reject
randomness.

Chapter 14

1. (y4, y15) = ($55,000, $61,000)

3. ðY14; Y27Þ
5. P-value = 1 – B(18; 25, .5) = .007, so reject

H0 at the .05 level.
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7. P-value = 1 – B(16; 24, .5) = .032, so reject
H0 at the .05 level.

9. Assuming distribution of differences is
symmetric, let p = the true proportion of
individuals who would perceive a longer
time for the shorter exam (positive differ-
ence) in this experiment. Hypotheses are
equivalent to H0: p = .5 versus Ha: p > .5.
P-value � 0, so H0 is strongly rejected.

11. s+ = 27, and since 27 is neither � 64 nor
� 14, we do not reject H0.

13. s+ = 22 < 24, so H0 is not rejected at the .05
level.

15. Test H0: lD = 0 versus H0: lD 6¼ 0. sþ ¼ 72
� 64, so H0 is rejected at level .05.

17. a. Test H0: lD = 0 versus Ha: lD < 0. s+ = 2
� 6, and so H0 is rejected at the .055
level.

b. Test H0: lD = 0 versus Ha: lD > 0.
Because s+ = 28 < 30, H0 cannot be
rejected at this level.

19. a. Assume that the population distribution
of differences is at least symmetric. With
s+ = 3 � 6, H0 is rejected. P-value =
.021.

b. Assume that the population distribution
of differences is normal. t = –2.54, df =
7, P-value = .019, so H0 is rejected.

c. The P-values were .035 (sign test), .021
(Wilcoxon signed-rank test), and .019
(paired t test). As is typical, the P-value
decreases with more powerful tests. But,
all three tests agree that H0 is rejected at
the .05 level, and the sign test has the
fewest assumptions.

21. (7.22, 7.73)

23. (–.1745, –.0110)

25. With w = 38, reject H0 at the .05 level
because the rejection region is {w � 36}.

27. Test H0: l1 − l2 = 1 versus Ha: l1 − l2 > 1.
After subtracting 1 from the original process
measurements, we get w = 65. Do not reject
H0 because w < 84.

29. b. Test H0: l1 − l2 = 0 vs Ha: l1 − l2 < 0.
With a P-value of .0027 we reject H0 at
the .01 level.

31. Test H0: l1 � l2 ¼ 0 vs Ha: l1 � l2 [ 0.
W has mean m(m + n + 1)/2 = 59.5
and variance mn(m + n + 1)/12 = 89.25.
z = 2.33, P-value = .01, so H0 is rejected at
the .05 level.

33. Pain: z = –1.40, P-value = .0808. Depres-
sion: z = –2.93, P-value = .0017. Anxiety:
z = –4.32, P-value < .0001. Fail to reject
first H0, reject last two. Chance of at least
one type I error is no more than .03.

35. (16, 87)

37. h = 21.43, df = 3, P-value < .0001, so H0 is
strongly rejected.

39. h = 9.85, df = 2, P-value = .007 < .01, so H0

is rejected.

43. a. Rank averages of the three positions/
rows are �r1� ¼ 12=6 ¼ 2;�r2� ¼ 13=6
¼ 2:1�6;�r3� ¼ 11=6 ¼ 1:8�3; Fr = 0.333,
df = 2, P-value � .85, so H0 is certainly
not rejected.

b. Fr = 6.34, df = 2, P-value = .042, so
reject H0 at the .05 level.

c. Fr = 1.85, df = 2, P-value = .40, so H0 is
not rejected.

45. H0: l1 ¼ � � � ¼ l10 versus Ha: not all li’s
are equal. Fr = 78.67, df = 9, P-value � 0,
so H0 is resoundingly rejected. The four
algorithms inspired by quantum computing
(Q’s in the name) have much lower rank
means, suggesting they are far better at
minimizing entropy.

49. Test H0: l1 � l2 ¼ 0 vs Ha: l1 � l2 [ 0.
Rank sum for first sample = 26,
P-value = .014. Reject H0 at .05 but not .01.
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51. mean = 637.5, variance = 10731.25

a. z = –0.21, P-value = .83. The data do not
contradict a claim the sensory test is
reliable.

b. z = 1.70, P-value = .09. Reject H0 at .10
level. This might indicate a lack of reli-
ability of the sensory test for the popu-
lation of healthy patients.

53. Test H0: l1 ¼ � � � ¼ l5 versus Ha: not all
li’s are equal. h = 20.21 � 13.277, so H0 is
rejected at the .01 level.

55. li = population mean skin potential (mV)
with the ith emotion (i = 1 for fear, etc.).
The hypotheses are H0: l1 ¼ � � � ¼ l4
versus Ha: not all li’s are equal. Fr = 6.45 <
v2:05;3 = 7.815, so we fail to reject H0 at the
.05 level.

57. Because w′ = 26 < 27, do not reject the null
hypothesis at the 5% level.

Chapter 15

1. a. p(.50) = .80 and p(.75) = .20
b. p(.50|HHHTH) = .6124 and

p(.75|HHHTH) = .3876

3. a. Gamma(9, 5/3)
b. Gamma(145, 5/53)

5. a1 = a0 + Rxi, b1 = 1/(n + 1/b0)

7. a1 ¼ a0 þ nr, b1 ¼ b0 þ Rxi � nr

9. Normal, l1 ¼
s0l0 þ R ln xi

s0 þ n
, s1 ¼ s0 þ n

11. a. 13.68
b. (11.54, 15.99)

15. Normal, mean = 116.77, variance = 10.227,
same as previous

17. (.485, .535)

19. a. a0b0 b.
a0 þ RXi

nþ 1=b0
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Index

A
Additive model, 674

for ANOVA, 674–676
for linear regression analysis, 712
for multiple regression analysis,

767
Additive model equation, 704
Adjusted coefficient of multiple

determination, 772
Adjusted R2, 772
Alternative hypothesis, 502
Analysis of covariance, 790
Analysis of variance (ANOVA), 639

additive model for, 674–676, 687
data transformation for, 667
definition of, 639
expected value in, 646, 662, 679,

687
fixed vs. random effects, 667
Friedman test, 888
fundamental identity of, 644,

653, 677, 690, 722
interaction model for, 687–695
Kruskal–Wallis test, 887
Levene test, 649–650
linear regression and, 746, 749,

764, 798, 805
mean in, 640, 642, 643
mixed effects model for, 682, 692
multiple comparisons in,

653–660, 666, 679–680, 691
noncentrality parameter for, 663,

671
notation for, 642, 707
power curves for, 663–664
randomized block experiments

and, 680–682
regression identity of, 722–723
sample sizes in, 663–664
single-factor, 640–672
two-factor, 672–695
type I error in, 645–646
type II error in, 662

Anderson-Darling test, 835

ANOVA table, 647
Approximate 100(1–a)% confidence

interval for p, 476
Ansari–Bradley test, 888
Association, causation and, 301,

754
Asymptotic normal distribution, 372,

436, 443, 445, 754
Asymptotic relative efficiency, 867,

876
Autocorrelation coefficient, 757
Average

definition of, 26
deviation, 33
pairwise, 446, 868–869, 876
rank, 887
weighted, (see Weighted

average)

B
Balanced study design, 642
Bar graph, 9, 18
Bartlett's test, 649
Bayes estimator, 897
Bayesian approach to inference, 855,

896–897
Bayes' Theorem, 80–83, 896–897
Bernoulli distribution, 118, 139, 150,

375, 441–443, 442, 898
Bernoulli random variable, 112

binomial random variable and,
146, 376

Cramer–Rao inequality for, 443
definition of, 112
expected value, 126
Fisher information on, 438–439,

442
Laplace's rule of succession and,

900
mean of, 127
mle for, 443
moment generating function for,

139, 140, 143

pmf of, 118
score function for, 440
in Wilcoxon's signed-rank

statistic, 314
Beta distribution, 244–245, 897
Beta functions, incomplete, 244
Bias, 400, 487
Bias-corrected and accelerated

interval, 490, 617
Bimodal histogram, 17
Binomial distribution

basics of, 144–151
Bayesian approach to, 897–900
multinomial distribution and, 286
normal distribution and,

223–224, 375
Poisson distribution and,

157–159
Binomial experiment, 144–147, 150,

158, 286, 375, 823
Binomial random variable X, 146

Bernoulli random variables and,
150, 375

cdf for, 148
definition of, 146
distribution of, 148
expected value of, 150, 151
in hypergeometric experiment,

167
in hypothesis testing, 504–505,

526–529
mean of, 150–151
moment generating function for,

151
multinomial distribution of, 286
in negative binomial experiment,

168
normal approximation of,

223–224, 375
pmf for, 148
and Poisson distribution,

157–159
standard deviation of, 150
unbiased estimation, 406, 434
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variance of, 150, 151
Binomial theorem, 151, 168–170
Bioequivalence tests, 637
Birth process, pure, 445
Bivariate, 2
Bivariate data, 2, 706, 710, 720, 777,

820
Bivariate normal distribution,

330–334, 550, 749–750
Blocking, 680–682
Bonferroni confidence intervals,

499, 740–742, 776
Bootstrap, 484
Bootstrap distribution, 485
Bootstrap procedure

for confidence intervals,
484–492, 617–619

for paired data, 622–624
Bootstrap P-value, 557
Bound on the error of estimation,

457
Box–Muller transformation, 342
Boxplot, 37–39

comparative, 39–42
Branching process, 352
Bootstrap sample, 485
Bootstrap standard error, 486
Bootstrap t confidence interval, 489

C
Categorical characteristic, 1
Categorical data

classification of, 18
graphs for, 18
in multiple regression analysis,

787–790
Pareto diagram, 25
sample proportion in, 18

Cauchy distribution
mean of, 384, 408
median of, 408
minimal sufficiency for, 432
reciprocal property, 274
standard normal distribution and,

342
uniform distribution and, 263
variance of sample mean for, 414

Causation, association and, 301, 754
cdf. See Cumulative distribution

function
Cell counts/frequencies, 824–826,

829–834, 840–847
Cell probabilities, 828, 829, 834
Censored experiments, 31, 409–410
Censoring, 409
Census, 1
Central Limit Theorem (CLT)

basics of, 371–377, 395–396

Law of Large Numbers and, 376
proof of, 395–396
sample proportion distribution

and, 224
Wilcoxon rank-sum test and, 877
Wilcoxon signed-rank test and,

864
Central t distribution, 383–384, 497
Chebyshev's inequality, 137, 156,

187, 228, 337, 380
Chi-squared critical value, 481
Chi-squared distribution

censored experiment and, 496
in confidence intervals, 457–458,

482
critical values for, 382, 458,

481–482, 550, 825, 834–835
definition of, 236
degrees of freedom for, 380, 381
exponential distribution and, 389
F distribution and, 385–386
gamma distribution and, 231,

388
in goodness-of-fit tests, 823–839
Rayleigh distribution and, 263
standard normal distribution and,

263, 391–392, 395
of sum of squares, 333, 643
t distribution and, 383, 385
in transformation, 259
Weibull distribution and, 274

Chi-squared random variable
in ANOVA, 645
cdf for, 380
expected value of, 313
in hypothesis testing, 565
in likelihood ratio tests, 549, 553
mean of, 388
moment generating function of,

380
pdf of, 381
standard normal random

variables and, 381–382
in Tukeyâ€™s procedure, 659
variance of, 390

Chi-squared test
degrees of freedom in, 825, 831,

833, 841, 845
for goodness of fit, 823–829
for homogeneity, 841–843
for independence, 844–846
P-value for, 836–837
for specified distribution,

828–829
z test and, 836

Classes, 14
Class intervals, 14–16, 346, 364,

835, 837
Coefficient of determination, 721

definition of, 720–722
F ratio and, 774
in multiple regression, 772
sample correlation coefficient

and, 746
Coefficient of (multiple)

determination, 771
Coefficient of skewness, 138, 144,

211
Coefficient of variation, 44, 272, 423
Cohort, 351
Combination, 70–72
Comparative boxplot, 42–43, 588,

589, 642
Complement of an event, 52, 59
Complete second-order model, 786
Composite, 542
Compound event, 51, 61
Concentration parameter, 895
Conceptual population, 6, 128, 359,

569
Conditional expectation, 320
Conditional density, 319
Conditional distribution, 317–327,

428, 435, 749, 833, 889
Conditional mean, 320–327
Conditional probability, 75–83,

87–88, 236–238, 428,
431–432

Conditional probability density
function, 317

Conditional probability mass
function, 317

Conditional variance, 320–322, 433
Confidence bound, 460–461, 464,

567, 575, 593
Confidence interval

adjustment of, 480
in ANOVA, 654, 659–660, 666,

678, 680, 692
based on t distribution, 470–473,

575–577, 592–594, 646,
659–661, 730–733

Bonferroni, 499, 740–742
bootstrap procedure for,

484–491, 622, 617–619, 624
for a contrast, 660
for a correlation coefficient, 753
vs. credibility interval, 899–903
definition of, 451
derivation of, 457
for difference of means,

579–580, 581–583, 592–595,
617–619, 632–633, 647–651,
666, 679, 693

for difference of proportions, 609
distribution-free, 855–860
for exponential distribution

parameter, 458
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in linear regression, 704–707,
739–741

for mean, 452–456, 458,
464–465, 484–488, 490–491

for median, 419–421
in multiple regression, 773, 822
one-sided, 460, 567, 593
for paired data, 593–595, 623
for ratio of variances, 615–616,

621
sample size and, 456
Scheffé method for, 702
sign, 860
for slope coefficient, 729
for standard deviation, 481–482
for variance, 481–482
width of, 453, 456–457, 467,

478, 490, 568
Wilcoxon rank-sum, 873–875
Wilcoxon signed-rank, 867–869

Confidence level
definition of, 451, 454–456
simultaneous, 654–659, 666,

672, 741
in Tukey's procedure, 654–659,

666, 679, 680
Confidence set, 867
Conjugate prior, 893
Consistent, 408
Consistency, 377, 424, 443–444
Consistent estimator, 377, 424,

443–444
Contingency tables, two-way,

840–848
Continuity correction, 223–224
Continuous random variable(s)

conditional pdf for, 318, 903
cumulative distribution function

of, 195–200
definition of, 114, 190
vs. discrete random variable, 192
expected value of, 203–204
joint pdf of (see Joint probability

density functions)
marginal pdf of, 281–283
mean of, 203, 204
moment generating of, 208–210
pdf of (see Probability density

function)
percentiles of, 198–200
standard deviation of, 205–207
transformation of, 258–262,

336–341
variance of, 205–207

Contrast, 660
Contrast of means, 659–660
Convenience samples, 6
Convergence

in distribution, 164, 258

in mean square, 377
in probability, 377

Convex function, 275
Convolution, 307
Correction factor, 167
Correlation coefficient, 299

autocorrelation coefficient and,
757

in bivariate normal distribution,
330–334, 749

confidence interval for, 753
covariance and, 298
Cramér–Rao inequality and,

441–442
definition of, 299, 746
estimator for, 749
Fisher transformation, 751
for independent random

variables, 299
in linear regression, 746, 750,

751
measurement error and, 355
paired data and, 596–597
sample (see Sample correlation

coefficient)
Covariance, 296

correlation coefficient and, 299
Cramér–Rao inequality and,

441–442
definition of, 296
of independent random variables,

300–301
of linear functions, 298
matrix format for, 799

Covariance matrix, 799
Covariate, 790
Cramér–Rao inequality, 441–442
Credibility interval, 899
Critical values

chi-squared, 381
F, 386
standard normal (z), 217
studentized range, 654
t, 384, 481
tolerance, 469
Wilcoxon rank-sum interval,

876, 925
Wilcoxon rank-sum test,

871–879, 888, 924
Wilcoxon signed-rank interval,

867, 923
Wilcoxon signed-rank test, 864,

865, 886
Cumulative distribution function,

119, 195
Cumulative distribution function for

a continuous random
variable, 195

for a discrete random variable,
119

joint, 352
of order statistics, 343, 344
pdf and, 194
percentiles and, 199
pmf and, 119, 121, 122
transformation and, 258

Cumulative frequency, 25
Cumulative relative frequency, 25

D
Danger of extrapolation, 716
Data, 1

bivariate, 2, 706, 720, 783
categorical (see Categorical data)
censoring of, 31, 409–410
characteristics of, 1
collection of, 5–7
definition of, 1
multivariate, 2, 19
qualitative, 18
univariate, 2

Deductive reasoning, 4
Degrees of freedom (df), 34

in ANOVA, 644–647, 676, 688
for chi-squared distribution,

380–382
in chi-squared tests, 825, 831,

833, 842
for F distribution, 385
in regression, 718, 771
sample variance and, 35
for Studentized range

distribution, 654
for t distribution, 383, 458, 575,

581
type II error and, 663

Delta method, 207
De Morgan’s laws, 55
Density, 16

conditional, 317–319
curve, 191
function (pdf), 191
joint, 279
marginal, 281
scale, 17

Density curve, 191
Density scale, 16
Dependence, 87–91, 283–288, 300,

319, 844
Dependent, 88, 284, 704
Dependent events, 87–91
Dependent variable, 704
Descriptive statistics, 1–39
Design matrix, 796
Deviations from the mean, 33
Dichotomous trials, 144
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Difference statistic, 411
Discrete, 113
Discrete random variable(s)

conditional pmf for, 317
cumulative distribution function

of, 119–122
definition of, 113
expected value of, 126
joint pmf of (see Joint probability

mass function)
marginal pmf of, 279
mean of, 127
moment generating of, 139
pmf of (see Probability mass

function)
standard deviation of, 132
transformation of, 261
variance of, 132

Disjoint events, 53
Dotplots, 11
Double-blind experiment, 605
Dummy variable, 787
Dunnett’s method, 660

E
Effect, 662
Efficiency, 442
Efficiency, asymptotic relative, 867,

876
Efficient estimator, 442
Empirical rule, 221
Erlang distribution, 238, 272
Error(s)

estimated standard, 400, 731, 801
estimation, 402
family vs. individual, 659
measurement, 213, 249, 406, 550
prediction, 468, 741, 768
rounding, 35
standard, 400, 801
type I, 504
type II, 504

Error Sum of Squares (SSE), 643,
718

Estimated regression function, 760,
768, 772

Estimated regression line, 713, 714
Estimated standard error, 99, 400,

731, 801
Estimator, 398, 582
Event(s), 51

complement of, 52
compound, 51, 61
definition of, 51
dependent, 87–91
disjoint, 53
exhaustive, 80
independent, 87–91

indicator function for, 430
intersection of, 52
mutually exclusive, 53
mutually independent, 90
simple, 51
union of, 52
Venn diagrams for, 53

Expected counts, 824
Expected mean squares

in ANOVA, 662, 666, 690, 704
F test and, 679, 682, 690, 693
in mixed effects model, 682, 692
in random effects model, 668,

682–683
in regression, 765

Expected or mean value, 203
Expected value, 127

conditional, 320
of a continuous random variable,

203
covariance and, 296
of a discrete random variable,

126
of a function, 129, 294
heavy-tailed distribution and,

129, 135
of jointly distributed random

variables, 294
Law of Large Numbers and, 376
of a linear combination, 303
of mean squares (see Expected

mean squares)
moment generating function and,

139, 208
moments and, 137
in order statistics, 342–343, 348
of sample mean, 346, 368
of sample standard deviation,

405, 446
of sample total, 368
of sample variance, 405

Experiment, 49
binomial, 144, 285, 823
definition of, 50
double-blind, 605
observational studies in, 571
paired data, 596
paired vs. independent samples,

603
randomized block, 680–682
randomized controlled, 571
repeated measures designs, 681
simulation, 363–366

Explanatory variable, 704
Exponential distribution, 234

censored experiments and, 409
chi-squared distribution and, 381
confidence interval for

parameter, 457

double, 550
estimators for parameter, 409,

416
goodness-of-fit test for, 835
mixed, 272
in pure birth process, 445
shifted, 427, 552
skew in, 346
standard gamma distribution and,

234
Weibull distribution and, 239

Exponential random variable(s)
Box–Muller transformation and,

342
cdf of, 235
expected value of, 234
independence of, 288
mean of, 234
in order statistics, 343, 347
pdf of, 234
transformation of, 258, 338, 340
variance of, 234

Exponential regression model, 820
Exponential smoothing, 48
Extreme outliers, 36–39
Extreme value distribution, 253

F
Factorial notation, 69
Factorization theorem, 429
Factors, 639
Failure rate function, 274
Family of probability distributions,

118, 250
F distribution

chi-squared distribution and, 385
definition of, 385
expected value of, 387
for model utility test, 735, 772,

799
noncentral, 663
pdf of, 386

Finite population correction factor,
167

First quartile, 36
Fisher information, 436
Fisher information I(h), 438
Fisher–Irwin test, 607
Fisher transformation, 751
Fitted (or predicted) values, 678,

688, 717, 719, 760, 770
Fixed effects, 667
Fixed effects model, 667, 682, 693
Fourth spread, 36, 357
Frequency, 12
Frequency distribution, 12
Friedman’s test, 882, 886, 888
F test

968 Index



in ANOVA, 647, 683, 690
Bartlett’s test and, 649
coefficient of determination and,

772
critical values for, 386, 612, 646
distribution and, 385, 612, 646
for equality of variances, 612,

621
expected mean squares and, 663,

679, 682, 690, 693
Levene test and, 649
power curves and, 509, 521
P-value for, 613, 614, 622, 647
in regression, 772
sample sizes for, 663
single-factor, 670
vs. t test, 664
two-factor, 682
type II error in, 663

G
Galton, 333–334, 724, 749
Galton–Watson branching process,

352
Gamma distribution, 231

chi-squared distribution and, 380
definition of, 231
density function for, 232
Erlang distribution and, 238
estimation of parameters, 416,

421, 424
exponential distribution and,

234–236
Poisson distribution and, 901
standard, 231
Weibull distribution and, 239

Gamma function, 231
incomplete, 233, 253
properties of, 231

Gamma random variables, 232
Geometric distribution, 169, 188
Geometric random variables, 169
Global F test, 774
Goodness-of-fit test

for composite hypotheses, 829
definition of, 823
for homogeneity, 841–843
for independence, 844–847
simple, 823

Gossett, 654
Grand mean, 642

H
Half-normal plot, 258
Hat matrix, 798
Histogram

bimodal, 17

class intervals in, 14–16
construction of, 2
density, 16, 17, 928
multimodal, 17
Pareto diagram, 25
for pmf, 117
symmetric, 17
unimodal, 17

Hodges–Lehmann estimator, 446
Homogeneity, 841–843
Honestly Significant Difference

(HSD), 656
Hyperexponential distribution, 272
Hypergeometric distribution,

165–167
and binomial distribution, 167

Hypergeometric random variable,
165–167

Hyperparameters, 894
Hypothesis

alternative, 502
composite, 829–836
definition of, 502
errors in testing of, 504–509
notation for, 501
null, 502
research, 502
simple, 542

Hypothetical population, 5

I
Ideal power function, 546
Inclusion-exclusion principle, 61
Inclusive inequalities, 152
Incomplete beta function, 244
Incomplete gamma function, 233,

253
Independence

chi-squared test for, 844
conditional distribution and, 319
correlation coefficient and, 300
covariance and, 299, 302
of events, 87–90
of jointly distributed random

variables, 283–284, 287
in linear combinations, 303–304
mutual, 90
pairwise, 92, 107
in simple random sample, 359

Independent, 88, 284, 287, 704
Independent and identically

distributed (iid), 359
Independent variable, 704
Indicator (or dummy) variable, 787
Indicator function, 430
Inductive reasoning, 4
Inferential statistics, 4–5
Inflection point, 213

Intensity function, 187
Interaction, 675, 687, 689–691,

692–695, 785–790
Interaction effect, 786
Interaction parameters, 687
Interaction plots, 675
Interaction sum of squares, 690
Interaction term, 786
Intercept, 250, 706, 715
Intercept coefficient, 706
Interpolation, 717
Interquartile range (iqr), 36
Intersection of events

definition of, 52
multiplication rule for probability

of, 78–80, 88
Invariance principle, 423
Inverse cdf method, 175

J
Jacobian, 337, 340
Jensen's inequality, 275
Joint cumulative distribution

function, 352
Jointly distributed random variables

bivariate normal distribution of,
330–334

conditional distribution of,
317–326

correlation coefficients for, 299
covariance between, 296
expected value of function of,

294
independence of, 283–284
linear combination of, 303–309
in order statistics, 346–348
pdf of, (see Joint probability

density functions)
pmf of (see Joint probability

mass functions)
transformation of, 336–341
variance of function of, 302, 305

Jointly sufficient statistics, 431
Joint marginal density function, 293
Joint pdf, 285
Joint pmf, 285
Joint probability density function,

279
Joint probability mass function,

277–279
Joint probability table, 278

K
k-out-of-n system, 153
Kruskal—Wallis test, 880–881
Kth central moment, 137
Kth moment, 137
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Kth moment about the mean, 137
Kth moment of the distribution, 416
Kth population moment, 416
Kth sample moment, 416
k-tuple, 67–68

L
Lag 1 autocorrelation coefficient,

757
Laplace distribution, 550
Laplace's rule of succession, 900
Largest extreme value distribution,

271
Law of Large Numbers, 376–377,

384–385, 443
Law of total probability, 80
Least squares estimates, 714, 731,

763, 768–769
Least Squares Regression Line

(LSRL), 714
Level a test, 508
Level of a factor, 639, 673, 682
Levels, 639
Levene test, 649–650
Leverages, 802
Likelihood function, 420, 543, 547
Likelihood ratio

chi-squared statistic for, 550
definition of, 543
mle and, 548
model utility test and, 820
in Neyman—Pearson theorem,

543
significance level and, 543, 544
sufficiency and, 447
tests, 548

Likelihood ratio test, 548
Likelihood ratio test statistic, 548
Limiting relative frequency, 57, 58
Linear combination, 303

distribution of, 310
expected value of, 303
independence in, 303
variance of, 304

Linear probabilistic model, 703, 715
Linear regression

additive model for, 704, 705, 767
ANOVA in, 734, 790
confidence intervals in, 730, 739
correlation coefficient in,

745–754
definition of, 706
degrees of freedom in, 718, 771,

798
least squares estimates in,

713–723, 764
likelihood ratio test in, 820
mles in, 718

model utility test in, 648, 772,
798

parameters in, 706, 713–723, 767
percentage of explained variation

in, 720–721
prediction interval in, 737, 741,

775
residuals in, 717, 758, 771
summary statistics in, 715
sums of squares in, 718–723, 771
t ratio in, 732, 751

Line graph, 116–117
Location parameter, 253
Logistic distribution, 349
Logistic regression model

contingency tables for, 847–848
definition of, 807–808
fit of, 808–809
mles in, 809
in multiple regression analysis,

790
Logit function, 807, 808
Log-likelihood function, 420
Lognormal distribution, 242–244,

376
Lognormal random variables,

242–243
Long-run (or limiting) relative

frequency, 58
Lower confidence bound, 460
Lower confidence bound for l, 464
Lower quartile, 36

M
Main effects for factor A, 687
Main effects for factor B, 687
Mann—Whitney test, 871–878
Marginal distribution, 279, 281, 317
Marginal probability density

functions, 281
Marginal probability mass functions,

279
Margin of error, 457
Matrices in regression analysis,

795–804
Maximum a posteriori (MAP), 897
Maximum likelihood estimator, 420

for Bernoulli parameter, 443
for binomial parameter, 443
Cramér—Rao inequality and,

442
data sufficiency for, 434
Fisher information and, 436
for geometric distribution

parameter, 631
in goodness-of-fit testing, 830
in homogeneity test, 841
in independence test, 844

in likelihood ratio tests, 547
in linear regression, 720, 726
in logistic regression, 808
sample size and, 424
score function and, 443

McNemar's test, 611, 636
Mean

conditional, 320–321
correction for the, 644
deviations from the, 33, 244,

650, 718, 830
of a function, 129, 294
vs. median, 28
moments about, 137
outliers and, 27, 28
population, 27
regression to the, 334, 749
sample, 26

Mean square
expected, 663, 679, 682, 683,

693
lack of fit, 766
pure error, 766

Mean square error
definition of, 403
of an estimator, 403
MVUE and, 407
sample size and, 406

Mean Square for Error (MSE), 403,
645

Mean Square for Treatments
(MSTr), 645

Mean-square value, 133
Mean value, 127
Mean vector, 799
Measurement error, 406
Median, 198

in boxplot, 37–38
of a distribution, 27–28
as estimator, 444
vs. mean, 28
outliers and, 27, 28
population, 28
sample, 26
statistic, 342

Memoryless property, 236
Mendel's law of inheritance, 826,

827
M-estimator, 425, 448
Method of Moments Estimators

(MMEs), 416
Midfourth, 47
Midrange, 399
Mild outlier, 38
Minimal sufficient statistic, 432, 434
Minimize absolute deviations

principle, 763
Minimum variance unbiased

estimator, 407
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Mixed effects model, 682
Mixed exponential distribution, 283
mle. See Maximum likelihood

estimate
Mode, 46

of a continuous distribution, 271
of a data set, 46
of a discrete distribution, 186

Model equation, 662
Model utility test, 732
Moment generating function, 139,

208
of a Bernoulli rv, 139
of a binomial rv, 151
of a chi-squared rv, 316
of a continuous rv, 208
definition of, 139, 208
of a discrete rv, 139
of an exponential rv, 258
of a gamma rv, 232
of a linear combination, 309
and moments, 141, 208
of a negative binomial rv, 169
of a normal rv, 221
of a Poisson rv, 160
of a sample mean, 395
uniqueness property of, 140, 208

Moments
definition of, 137
method of, 397, 416, 418, 424
and moment generating function,

208
Monotonic, 259
Multimodal histogram, 17
Multinomial distribution, 286
Multinomial experiment, 286, 823,

824
Multiple comparisons procedure,

653
Multiple logit function, 812
Multiple regression

additive model, 767, 795
categorical variables in, 787, 790
coefficient of multiple

determination, 772
confidence intervals in, 776
covariance matrices in, 799
degrees of freedom in, 771
diagnostic plots, 777
fitted values in, 769
F ratio in, 774
interaction in models for, 785,

788, 790
leverages in, 802, 803
model utility test in, 772
normal equations in, 768, 796
parameters for, 767
and polynomial regression, 783
prediction interval in, 776

principle of least squares in, 768,
796

residuals in, 775, 777
squared multiple correlation in,

721
sums of squares in, 771

Multiplication rule, 78, 79, 82, 88,
101

Multiplicative exponential
regression model, 820

Multiplicative power regression
model, 820

Multivariate, 2
Multivariate hypergeometric

distribution, 291
Mutually exclusive events, 53, 92
Mutually independent events, 90
MVUE. See Minimum variance

unbiased estimator

N
Negative binomial distribution,

168–170
Negative binomial random variable,

168
estimation of parameters, 417

Negatively skewed, 17
Newton’s binomial theorem, 169
Neyman factorization theorem, 429
Neyman-Pearson theorem, 543–545,

547
Noncentrality parameter, 497, 663,

671
Noncentral F distribution, 663
Noncentral t distribution, 497
Nonhomogeneous Poisson Process,

187
Nonparametric methods, 855–888
Nonstandard normal distribution,

218
Normal distribution, 213

asymptotic, 372, 436, 443
binomial distribution and,

223–224, 375
bivariate, 330–333, 389, 550,

754
confidence interval for mean of,

452–454, 456, 460, 463
continuity correction and,

223–224
density curves for, 213
and discrete random variables,

222, 223
of linear combination, 389
lognormal distribution and, 242,

376
nonstandard, 218
pdf for, 212

percentiles for, 215–217, 220,
221, 248

probability plot, 247
standard, 214
t distribution and, 383–386
z table, 214–216

Normal equations, 714, 768, 805
Normal probability plot, 247
Normal random variable, 214
Null distribution, 517, 862
Null hypothesis, 502
Null hypothesis of homogeneity, 841
Null hypothesis of independence,

845
Null set, 53, 56
Null value, 503, 512

O
Observational study, 571
Observed counts, 824
Odds, 808
Odds ratio, 808, 847–848
One-sample t CI, 464
One-sided confidence interval, 460
One-way ANOVA, 639
Operating characteristic curve, 154
Ordered categories, 847–848
Ordered pairs, 66–67
Order statistics, 342–347, 402,

431–432, 552, 856
sufficiency and, 431–432

Outliers, 37
in a boxplot, 37–39
extreme, 37
leverage and, 802
mean and, 27, 29, 490–491
median and, 27, 29, 37, 490, 491
mild, 37
in regression analysis, 763

P
Paired data

in before/after experiments, 594,
611

bootstrap procedure for, 622–624
confidence interval for, 592–594
definition of, 591
vs. independent samples, 597
in McNemar′s test, 611
permutation test for, 624
t test for, 594–596
in Wilcoxon signed-rank test,

864–866
Pairwise average, 868, 869, 876
Pairwise independence, 107
Parallel connection, 54, 90, 92, 93,

343, 344
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Parameter(s), 118
confidence interval for, 457, 458
estimator for a, 397–410
Fisher information on, 436–444
goodness-of-fit tests for,

827–829, 830–833
hypothesis testing for, 503, 526
location, 253, 432
maximum likelihood estimate of,

420–425, 434
moment estimators for, 416–418
MVUE of, 407–409, 424, 434,

442
noncentrality, 663
null value of, 503
of a probability distribution,

118–119
in regression, 706–707, 713–723,

741, 749, 767, 808
scale, 232, 240, 253–255, 431
shape, 254–255, 431–434
sufficient estimation of, 428

Parameter space, 547
Pareto diagram, 25
Pareto distribution, 201, 211, 262
Partial F test, 793
pdf. See Probability density function
Pearson’s chi-squared, 825
Percentiles

for continuous random variables,
198–200

in hypothesis testing, 534
in probability plots, 247–253
sample, 29, 248, 253
of standard normal distribution,

215–217, 247–253
Permutation, 68
Permutation test, 619–625
PERT analysis, 245
Pie chart, 18
Pivotal quantity, 457
Plot

probability, 247–256, 435, 577,
750, 777

scatter, 704–706, 720–721, 746,
750

pmf. See Probability mass function
Point estimate/estimator, 398

biased, 406–408
bias of, 403–406
bootstrap techniques for, 410,

484–492
bound on the error of estimation,

457
censoring and, 409–410
consistency, 424, 443–444
for correlation coefficient,

749–750

and Cramér–Rao inequality,
441–444

definition of, 27, 359, 398
efficiency of, 442
Fisher information on, 436–444
least squares, 714–718
maximum likelihood (mle),

418–425
of a mean, 27, 359, 398, 407
mean squared error of, 403
moments method, 416–418, 424
MVUE of, 407, 424, 434, 442
notation for, 397, 399
of a standard deviation and, 399,

405
standard error of, 410
of a variance, 399, 405

Point prediction, 468, 716
Poisson distribution, 156

Erlang distribution and, 238
expected value, 160, 164
exponential distribution and, 235
gamma distribution and, 896
goodness-of-fit tests for,

833–835
in hypothesis testing, 542–544
mode of, 186
moment generating function for,

160
parameter of, 160
and Poisson process, 160–161,

235
variance, 160, 164

Poisson process, 160–161
nonhomogeneous, 187

Polynomial regression model,
783–784

Pooled, 582
Pooled t procedures

and ANOVA, 549, 581–582, 664
vs. Wilcoxon rank-sum

procedures, 875
Population, 1
Population mean, 27
Population median, 28
Population (or true) regression line,

707
Population standard deviation, 34
Positively skewed, 17
Posterior distribution, 890
Posterior probability, 80–83, 899,

900
Power, 509
Power curves, 509, 663–664
Power function, 545
Power function of a test, 545–547,

663–664
Power model for regression, 820

Power of a test
Neyman–Pearson theorem and,

545–547
type II error and, 522, 544–548,

582
Precision, 400, 451, 456, 468, 478,

594, 682, 895
Predicted values, 678, 717, 770
Prediction interval, 469, 741

Bonferroni, 742
vs. confidence interval, 469,

741–742, 776
in linear regression, 738,

741–742
in multiple regression, 775
for normal distribution, 467–469

Prediction level, 469, 742, 776
Predictor, 704
Predictor variable, 704, 767,

783–786
Principle of least squares, 713–723,

763, 768, 777
Prior distribution, 889
Prior probability, 80, 889
Probability, 49

conditional, 75–83, 86–88, 236,
317–319, 428, 431–432

continuous random variables
and, 114, 189–262, 279–288,
317–319

counting techniques for, 66–72
definition of, 49
density function (see Probability

density function)
of equally likely outcomes,

61–62
histogram, 118, 190–191,

222–224, 361–362
inferential statistics and, 4, 9, 357
Law of Large Numbers and,

376–377, 384–385
law of total, 80
mass function (see Probability

mass function)
of null event, 56
plots, 247–256, 435, 569, 750,

760, 777
posterior/prior, 80–82, 889, 897,

900
properties of, 55–62
relative frequency and, 57–58,

363–364
sample space and, 49–53, 55–56,

62, 66, 109
and Venn diagrams, 53, 60, 76

Probability density function (pdf),
191

conditional, 318–320

972 Index



definition of, 191
joint, 277–348, 383, 420,

429–431, 434, 542, 547
marginal, 281–283, 339–340
vs. pmf, 192

Probability distribution, 116, 191
Bernoulli, 112, 116–119, 128,

139–140, 143, 150, 375, 441,
442, 443, 892

beta, 244–245
binomial, 144–151, 157–159,

223–224, 375, 417–418,
475–476, 503–507

bivariate normal, 330–334, 550,
752

Cauchy, 263, 274, 342
chi-squared, 261, 380–382, 408
conditional, 317–326
continuous, 114, 189–276
discrete, 111–188
exponential, 234–236, 239, 409
extreme value, 253–254
F, 385–386
family, 118, 250, 253–256, 646
gamma, 230–237, 253–254
geometric, 121–122, 129, 169,

261
hyperexponential, 272
hypergeometric, 165–167,

305–306
joint, 277–356, 749–750, 830
Laplace, 317, 550–551
of a linear combination,

303–311, 331
logistic, 349
lognormal, 242–244, 376
multinomial, 286, 823
negative binomial, 168–170
normal, 213–225, 242–253,

330–334, 368–376, 388, 828
parameter of a, 118–119
Pareto, 201, 211, 262
Poisson, 156–161, 235
Rayleigh, 200, 263, 414, 427
of a sample mean, 357–366,

368–377
standard normal, 214–217
of a statistic, 357–377
Studentized range, 654
symmetric, 17, 29, 138, 200,

203, 213
t, 383–385, 386, 536, 594
uniform, 192–193, 195
Weibull, 239–241

Probability generating function, 187
Probability histogram, 118
Probability mass function, 116

conditional, 317–318
definition of, 116–123

joint, 277–281
marginal, 279

Probability of the event, 55
Probability plot, 247
Product rules, 66–67
Proportion

population, 475, 526–529,
602–607

sample, 225, 375, 413, 602,
845

trimming, 29, 399, 406, 408–409
Pure birth process, 445
P-value, 532

for chi-squared test, 826–827
definition of, 532
for F tests, 613–615
for t tests, 536–539
type I error and, 534
for z tests, 534–536

Q
Quadratic regression model, 783
Qualitative data, 18
Quantile, 198, 225, 237, 365, 382,

387, 458, 490, 618, 829,
855–857, 899

Quantitative characteristic, 1
Quartiles, 36

R
Random effects, 667
Random effects model, 667–668,

682–683, 692–695
Random interval, 453–455
Random number generator, 6, 74,

95, 174, 265, 854
Randomized block experiment,

680–682
Randomized controlled experiment,

571
Randomized response technique,

415
Random sample, 343, 359
Random variable, 111, 112

continuous, 189–275
definition of, 112
discrete, 111–188
jointly distributed, 277–356
standardizing of, 218
types of, 113

Range, 32
definition of, 32
in order statistics, 342–345
population, 458
sample, 32, 342–345
Studentized, 654–655

Rank average, 886

Rao-Blackwell theorem, 433–434,
443, 444

Ratio statistic, 550
Rayleigh distribution, 263, 414, 427
Regression

coefficient, 727–735, 767–770,
795–797, 799–800

effect, 334, 749
function, 704, 760, 766, 771,

783, 788
line, 707–709, 713–723,

727–732
linear, 706–709, 713–723,

727–734, 737–742
logistic, 806–809
matrices for, 795–804
to the mean, 334
multiple, 767–776
multiplicative exponential model,

820
multiplicative power model for,

820
plots for, 760–764
polynomial, 783–784
quadratic, 783–784
through the origin, 448–496

Regression effect, 749
Regression sum of squares, 723
Regression to the mean, 749
Rejection region, 504

cutoff value for, 504–508
definition of, 504
lower-tailed, 505, 513–514
in Neyman–Pearson theorem,

543–547
two-tailed, 513
type I error and, 504
in union-intersection test, 637
upper-tailed, 506, 513–514

Relative frequency, 12–18, 57–58
Repeated-measures, 681
Repeated measures designs, 681
Replications, 57, 363–365, 455, 672
Resample, 485
Research hypothesis, 502
Residual plots, 678, 688, 760–763
Residuals

in ANOVA, 648, 677, 691, 717
definition of, 643
leverages and, 801–802
in linear regression, 717,

758–762
in multiple regression, 771
standard error, 757
standardizing of, 758, 777
variance of, 758, 801

Residual standard deviation, 718,
771

Residual sum of squares, 718
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Residual vector, 798
Response, 704
Response variable, 6, 704, 807
Response vector, 796
Robust estimator, 409
Ryan-Joiner test, 256

S
Sample, 1

convenience, 6
definition of, 1
outliers in, 37–38
simple random, 6, 359
size of (see Sample size)

stratified, 6
Sample coefficient of variation, 44
Sample correlation coefficient, 746

in linear regression, 745–746,
751

vs. population correlation
coefficient, 749, 751–754

properties of, 746–747
strength of relationship, 747

Sample mean, 26
definition of, 26
population mean and, 368–377
sampling distribution of,

368–377
Sample median, 27

definition of, 27
in order statistics, 342–343
vs. population median, 491

Sample moments, 416
Sample percentiles, 248
Sample proportion, 225
Sample size, 9

in ANOVA, 663–664
asymptotic relative efficiency

and, 867–875
Central Limit Theorem and,

375
confidence intervals and,

456–457, 458, 464
definition of, 9
in finite population correction

factor, 167
for F test, 663–664
for Levene test, 649–650
mle and, 424, 443
noncentrality parameter and,

663–664, 671
Poisson distribution and, 156
for population proportion,

475–478
probability plots and, 252
in simple random sample, 359
type I error and, 508, 516, 517,

570, 605

type II error and, 508, 516, 517,
527, 569, 582

variance and, 377
z test and, 515–517, 527–528

Sample space, 50
definition of, 49
determination, 457, 466–467,

516, 522, 528, 570–571, 605
probability of, 55–62
Venn diagrams for, 53

Sample standard deviation, 33
in bootstrap procedure, 487
confidence bounds and, 460
confidence intervals and, 464
definition of, 33
as estimator, 406, 446
expected value of, 405, 446
independence of, 389, 390
mle and, 423
population standard deviation

and, 359, 405, 446
sample mean and, 33, 389
sampling distribution of, 360,

361, 383, 406, 446
variance of, 561

Sample total, 368
Sample variance, 33

in ANOVA, 642
calculation of, 35
definition of, 33
distribution of, 359–362, 383
expected value of, 405
population variance and, 34,

388–389, 402
Sampling distribution, 359

bootstrap procedure and, 485,
617, 855

definition of, 357, 359
derivation of, 360–363
of intercept coefficient, 818
of mean, 360–362, 481–484
permutation tests and, 855
simulation experiments for,

363–366
of slope coefficient, 727–734

Scale parameter, 231, 239–240,
253–254, 431

Scatter plot, 704–705
Scheffe´ method, 702
Score function, 439–441
Segmented bar chart, 843
Series connection, 343–344
Set theory, 51–53
Shape parameters, 254–255, 432
Shapiro-Wilk test, 256
Siegel–Tukey test, 888
Signed-rank interval, 867
Signed ranks, 862
Significance

practical, 553–554, 836
statistical, 554, 571, 836

Significance level, 508
definition of, 508
joint distribution and, 552
likelihood ratio and, 542
observed, 533

Sign interval, 860
Sign test, 858, 860
Simple events, 51, 61, 66
Simple hypothesis, 542, 829
Simple random sample, 6

definition of, 6, 359
independence in, 359
sample size in, 359

Simulation experiment, 359,
363–366, 491, 538

Single-classification, 639
Single-factor, 639
Skewed data

coefficient of skewness, 138, 211
definition of, 17
in histograms, 17, 487
mean vs. median in, 28
measure of, 138
probability plot of, 253, 486–487

Skewness coefficient, 138
Slope, 706–707, 715, 728, 730, 808
Slope coefficient, 706

confidence interval for, 730
definition of, 706–707
hypothesis tests for, 732
least squares estimate of, 714
in logistic regression model, 808

Standard beta distribution, 244
Standard deviation, 132, 205

normal distribution and, 213
of point estimator, 400–402
population, 133, 205
of a random variable, 133, 205
sample, 32
z table and, 218

Standard error, 150, 400–402
Standard error of the mean, 369
Standard gamma distribution, 231
Standardized residuals, 758
Standardized variable, 218
Standard normal distribution, 214

Cauchy distribution and, 342
chi-squared distribution and, 381
critical values of, 217
definition of, 214
density curve properties for,

214–217
F distribution and, 385, 387
percentiles of, 215–217
t distribution and, 387, 391

Standard normal random variable,
214, 387
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Statistic, 359
Statistical hypothesis, 501
Stem-and-leaf display, 9–11
Step function, 121
Stratified samples, 6
Studentized range distribution, 654
Student t distribution, 383
Sufficient, 429
Sufficient statistic(s), 429, 430,

432–436, 443, 444, 446, 447
Summary statistics, 715, 719, 731,

755
Sum of squares

error, 643, 718, 722
interaction, 690
lack of fit, 766
pure error, 766
regression, 723, 797
total, 677, 734, 773
treatment, 644–648

Support, 116, 191
Symmetric, 17, 200
Symmetric distribution, 17, 138, 200

T
Taylor series, 207, 667
t confidence interval

heavy tails and, 867, 876, 869
in linear regression, 730, 738
in multiple regression, 776
one-sample, 463–465
paired, 594–596
pooled, 582
two-sample, 575, 596

t critical value, 463
t distribution

central, 497
chi-squared distribution and, 391,

579, 590
critical values of, 384, 463, 524,

536
definition of, 390
degrees of freedom in, 390, 475
density curve properties for, 384,

463
F distribution and, 663
noncentral, 497
standard normal distribution and,

383, 384, 464
Student, 383–385

Test of hypotheses, 502
Test statistic, 503, 504
Third quartile, 36
Time series, 48, 757
Tolerance interval, 469
Total sum of squares, 644, 720
Transformation, 167, 258–262,

336–341

Treatment, 640, 642–643, 672, 673
Treatment sum of squares SSTr, 643
Tree diagram, 67–68, 79, 82, 89
Trial, 144–147
Trimmed mean, 29

definition of
in order statistics, 342–343
outliers and, 29
as point estimator, 398
population mean and, 406, 409

Trimming proportion, 29, 409
True (or population) regression

coefficients, 767
True (or population) regression

function, 767
True regression line, 707–709, 713,

727–728
t test

vs. F test, 664
heavy tails and, 867, 876, 869
likelihood ratio and, 547, 548
in linear regression, 734
in multiple regression, 775–777,

822
one-sample, 463–465, 536,

547–549, 592, 875
paired, 592
pooled, 581–582, 664
P-value for, 536–537
two-sample, 575–578, 596, 664
type I error and, 517–519, 576
type II error and, 517–520, 582
vs. Wilcoxon rank-sum test, 875
vs. Wilcoxon signed-rank test,

866–867
Tukey's procedure, 654–659, 666,

679–680, 691
Two one-sided tests, 637
Two-proportion z interval, 606
Two-sample t confidence interval for

µ1 − µ2, 575
Two-sample t test, 575
Two-way contingency table, 840
Type I error, 504

definition of, 544
Neyman–Pearson theorem and,

543
power function of the test and,

545
P-value and, 532–533
sample size and, 516
significance level and, 508
vs. type II error, 508

Type II error, 504
definition of, 504
vs. type I error, 508

Type II error probability
in ANOVA, 663–665, 699
degrees of freedom and, 597

for F test, 663–665, 686
in linear regression, 736
Neyman–Pearson theorem and,

542–545
power of the test and, 546
sample size and, 515, 549–550,

554, 580, 582
in tests concerning means, 515
in tests concerning proportions,

527–528, 605–606
t test and, 582
vs. type I error probability, 508
in Wilcoxon rank-sum test, 875
in Wilcoxon signed-rank test,

866–867

U
Unbiased estimator, 400–410

minimum variance, 406–408
Unbiased tests, 547
Uncorrelated, 300
Uncorrelated random variables, 300,

304
Uniform distribution, 192

beta distribution and, 893
Box–Muller transformation and,

342
definition of, 192
discrete, 135
transformation and, 260–261

Uniformly most powerful
(UMP) level a test, 547

Uniformly most powerful test,
545–546

Unimodal histogram, 17–18
Union-intersection test, 637
Union of events, 51
Univariate data, 2
Upper confidence bound, 460
Upper confidence bound for l, 464
Upper quartile, 36

V
Variable(s), 2

covariate, 790
in a data set, 9
definition of, 1
dependent, 704
dummy, 787–789
explanatory, 704
independent, 704
indicator, 787–789
predictor, 704
random, 110
response, 704

Variable utility test, 775
Variance, 132, 205
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conditional, 319–321
confidence interval, 481–484
of a function, 134–135, 207–208,

355
of a linear function, 134–137,

305
population, 133, 205
precision and, 895
of a random variable, 132, 205
sample, 32–36

Variances, comparing two, 611–616
Venn diagram, 53, 60, 76, 77

W
Walsh averages, 868
Weibull distribution, 239

basics of, 239–243
chi-squared distribution and, 274
estimation of parameters, 422,

425–426

extreme value distribution and,
253

probability plot, 253–254
Weighted average, 127, 203, 323,

582, 895
Weighted least squares, 763
Weighted least squares estimates,

763
Wilcoxon rank-sum interval, 876
Wilcoxon rank-sum test, 871–875
Wilcoxon signed-rank interval, 869
Wilcoxon signed-rank test, 861–867

Z
z confidence interval

for a correlation coefficient, 753
for a difference between means,

581
for a difference between

proportions, 609

for a mean, 456
for a proportion, 475

z critical values, 217
z curve

area under, maximizing of, 552
rejection region and, 513
t curve and, 384

z test
chi-squared test and, 850
for a correlation coefficient, 753
for a difference between means,

565–581
for a difference between

proportions, 603
for a mean, 514, 519
for a Poisson parameter, 462, 561
for a proportion, 527
P-value for, 534
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