
Feature Selection Using Sparse Twin
Support Vector Machine with
Correntropy-Induced Loss

Xiaohan Zheng1 , Li Zhang1,2(B) , and Leilei Yan1

1 School of Computer Science and Technology, Joint International Research
Laboratory of Machine Learning and Neuromorphic Computing,

Soochow University, Jiangsu 215006, Suzhou, China
{20184227056,20184227032}@stu.suda.edu.cn, zhangliml@suda.edu.cn

2 Provincial Key Laboratory for Computer Information Processing Technology,
Soochow University, Jiangsu 215006, Suzhou, China

Abstract. Twin support vector machine (TSVM) has been widely
applied to classification problems. But TSVM is sensitive to outliers
and is not efficient enough to realize feature selection. To overcome the
shortcomings of TSVM, we propose a novel sparse twin support vector
machine with the correntropy-induced loss (C-STSVM), which is inspired
by the robustness of the correntropy-induced loss and the sparsity of the
�1-norm regularization. The objective function of C-STSVM includes the
correntropy-induced loss that replaces the hinge loss, and the �1-norm
regularization that can make the decision model sparse to realize fea-
ture selection. Experiments on real-world datasets with label noise and
noise features demonstrate the effectiveness of C-STSVM in classification
accuracy and confirm the above conclusion further.

Keywords: Twin support vector machine · Feature selection ·
Sparsity · Correntropy-induced loss

1 Introduction

Recently, feature selection has been a hot area of research to address the curse of
dimensionality. Feature selection refers to select an optimal subset of original fea-
tures, which retains valuable features and eliminates redundant features [14]. This
procedure can reduce the complexity of processing data and improve the prediction
performance [2]. Many methods about feature selection have been proposed, which
can be broadly classified into three types: filter, wrapper, and embedded methods
[6,17,29]. In this paper, we focus on feature selection using support vector machine
(SVM) that is the most representative one of embedded methods.
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SVM, based on the principle of structural risk minimization and the theory of
VC dimension, has been used to solve classification and regression problems and
has a broad variety of application in real-word tasks [1,3,13,16,19,24,27]. For a
binary classification problems, SVM aims at seeking a separating hyperplane to
maximize the margin between positive and negative samples, which has excellent
generalization performance [10]. Unfortunately, SVM has a high-computational
complexity because it needs to solve an entire quadratic programming problem
(QPP).

Lately, twin support vector machine (TSVM) has been proposed inspired by
the idea of SVM [15]. Compared to SVM, TSVM attempts to find two hyper-
planes by solving a pair of smaller QPPs for a binary classification task. Thus,
TSVM works faster than SVM in theory and becomes a popular classifier. Many
variants of TSVM have been proposed, such as twin bounded support vector
machine (TBSVM) [20], least squares twin support vector machine (LSTSVM)
[18], v-projection twin support vector machien (v-PTSVM) [9], locality preserv-
ing projection least squares twin support vector machine (LPPLSTSVM) [8], and
new fuzzy twin support vector machine (NFTSVM) [7]. However, these methods
do not have sparse representative models or cannot implement feature selection.

In order to improve the feature selection ability or the sparseness perfor-
mance of TSVM-like methods, many scholars have proposed same improved
methods. For example, �p-norm least square twin support vector machine (�p-
LSTSVM) was proposed by Zhang et al. [30], which can realize feature selection
by introducing an adaptive learning procedure with the �p-norm (0 < p < 1).
Sparse non-parallel support vector machine (SNSVM) was proposed in [23]. By
replacing the hinge loss with both the ε-insensitive quadratic loss and the soft
margin quadratic loss, SNSVM has better sparseness performance than TSVM.
Tanveer [22] proposed a new linear programming twin support vector machines
(NLPTSVM) that uses the �1-norm regularization, distance and loss term, which
causes the robustness and sparsity of NLPTSVM.

In real applications, data often contains noises or outliers, which would have
a negative effect on the generalization performance of the learned model. To
remedy it, Xu et al. [26] proposed a novel twin support vector machine (Pin-
TSVM) inspired by the pinball loss. Pin-TSVM has favorable noise insensitivity,
but it does not consider the sparseness of model. That is to say, the feature
selection performance of Pin-TSVM is poor.

In this paper, we propose a novel sparse twin support vector machine with the
correntropy-induced loss, called C-STSVM. The correntropy-induced loss func-
tion is a smooth, nonconvex and bounded loss, which was designed for both clas-
sification and regression tasks in [21]. For a classification task, the correntropy-
induced loss measures the similarity between the prediction value and the true
value from the perspective of correntropy. In addition, we know that the �1-norm
regularization can induce a sparse model from [28] and [31]. C-STSVM is to min-
imize three terms: the distance term, the correntropy-induced loss term and the
�1-norm regularization term. In doing so, we expect that C-STSVM have the
ability to perform feature selection and the robustness to outliers. To find the
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solution to C-STSVM in the primal space, we design an alternating iterative
method with the help of the half-quadratic (HQ) optimization. Experimental
results verify the validity of the these theories.

The paper is organized as follows. Section 2 dwells on the proposed C-STSVM,
including the introduction of the correntropy-induced loss and the description
of the optimization problems and the solutions of C-STSVM. Section 3 discusses
experimental results. The last section contains the conclusions.

2 Sparse Twin Support Vector Machine
with Correntropy-Induced Loss

In this paper, we consider a binary classification problem and define a normal
training set X = {(x1, y1), · · · , (xn1 , y1), (xn1+1, y2), · · · , (xn1+n2 , y2)} where
y1 = 1 and y2 = −1 are the positive and negative labels, respectively.
Let X1 = [x1, · · · ,xn1 ]

T ∈ R
n1×m be the positive sample matrix, X2 =

[xn1+1, · · · ,xn1+n2 ] ∈ R
n2×m be the negative sample matrix, e1 and e2 be vec-

tors of all ones with appropriate size.

2.1 Correntropy-Induced Loss

For any sample (xi, yi) in the given training set X, the predicted value of xi is
defined as f(xi). A loss function can be used to measure the difference between
the predicted value f(xi) and the true value yi. Different loss functions would
result in various learners.

Here, we introduce the correntropy-induced loss function. Correntropy is a
nonlinear measure of the similarity between two random variables. Inspired by
that, Singh [21] presented the correntropy-induced loss function that is to max-
imize the similarity between the predicted values and the true values for classi-
fication tasks. The correntropy-induced loss function has the form:

LC(yif(xi)) = β

[
1 − exp

(
− (1 − yif(xi))2

2σ2

)]
(1)

where β = [1 − exp(− 1
2σ2 )]−1 and σ > 0 is the parameter. Note that LC(0) = 1

when yif(xi) = 0.
As an mean square error in reproducing kernel Hilbert space, the correntropy-

induced loss can further approximate a transition from like the �2-norm to like
the �0-norm. The curve of the correntropy-induced loss is shown in Fig. 1. We
can see that the correntropy-induced loss is smooth, non-convex and bounded.
For its boundedness, the correntropy-induced loss is robust to outliers.

2.2 Optimization Problems

Similar to TSVM [15], the aim of C-STSBM is to seek two optimal hyperplanes:
positive and negative ones, where the positive hyperplane is closer to the positive
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Fig. 1. Curve of correntropy-induced loss with σ = 0.5.

samples and as far as possible from the negative samples, and the same goes
for the negative hyperplane. The two optimal hyperplanes are defined by the
following discrimination functions:

{
f1(x) = xTw1 + b1

f2(x) = xTw2 + b2
(2)

where w1 and w2 are the weight vectors for positive and negative classes, respec-
tively, b1 and b2 are the thresholds for two classes, respectively. To represent these
weight vectors and thresholds, we construct four non-negative vectors and four
non-negative variables, which is β∗

+, β+, β∗
−, β−, γ∗

+, γ+, γ∗
− and γ−, and let

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1 = β∗
+ − β+ with β∗

+ ≥ 0 and β+ ≥ 0
w2 = β∗

− − β− with β∗
− ≥ 0 and β− ≥ 0

b1 = γ∗
+ − γ+ with γ∗

+ ≥ 0 and γ+ ≥ 0
b2 = γ∗

− − γ− with γ∗
− ≥ 0 and γ− ≥ 0

(3)

Then, (2) can be rewritten as
{

f1(x) = xT (β∗
+ − β+) + (γ∗

+ − γ+)
f2(x) = xT (β∗

− − β−) + (γ∗
− − γ−)

(4)

C-STSVM can be described as the following pair of QPPs:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minβ∗
+,β+,γ∗

+,γ+

1
2‖X1(β∗

+ − β+) + (γ∗
+ − γ+)‖22

+C1

(‖β∗
+‖1 + ‖β+‖1 + γ∗

+ + γ+
)

+ C2
n2

∑n2
i=1 LC(−f1(x2i))

minβ∗
−,β−,γ∗

−,γ−
1
2‖X2(β∗T

− − βT
−) + (γ∗

− − γ−)‖22
+C3

(‖β∗
−‖1 + ‖β−‖1 + γ∗

− + γ−
)

+ C4
n1

∑n1
i=1 LC(f2(x1i))

(5)
where Ci > 0, i = 1, 2, 3, 4 are parameters chosen a priori and || · ||i, i = 1, 2 is
the �i-norm. The first term of the first QPP in (5) is to minimize the distance
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between the outputs of positive samples and the hyperplane f1(x) = 0. The
second term is the �1-norm regularization term that can reduce a sparseness
solution of C-STSVM. The third term is to minimize the sum of correntropy-
induced loss function, which makes the negative samples as far as from the
positive hyperplane. Note that QPPs in (5) are similar to each other in form.
Thus, for the second QPP in (5), we have a similar explanation.

We denote the first two terms of QPPs in (5) by
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H1(β∗
+,β+, γ∗

+, γ+)

=
1
2
||X1(β∗

+ − β+) + e1(γ∗
+ − γ+)||22 + C1

(‖β∗
+‖1 + ‖β+‖1 + γ∗

+ + γ+
)

H2(β∗
−,β−, γ∗

−, γ−)

=
1
2
‖X2(β∗T

− − βT
−) + (γ∗

− − γ−)‖22 + C3

(‖β∗
−‖1 + ‖β−‖1 + γ∗

− + γ−
)

(6)
The third term in the first QPP of (5) can be expressed as:

C2

n2

n2∑

i=1

Lc(−f1(x2i)) =
C2

n2

n2∑

i=1

[
1− exp

(
−

(
1 + (β∗

+ − β+)Tx2i + (γ∗
+ − γ+)

)2

2σ2

)]
(7)

Let

L1(β∗
+,β+, γ∗

+, γ+) =
C2

n2

n2∑
i=1

exp

(
−

(
1 + (β∗

+ − β+)Tx2i + (γ∗
+ − γ+)

)2
2σ2

)

Then minimizing (7) is identical to maximizing L1(β∗
+,β+, γ∗

+, γ+).
Thus, we can represent the first QPP in (5) as

max
β∗

+,β+,γ∗
+,γ+

− H1(β∗
+,β+, γ∗

+, γ+) + L1(β∗
+,β+, γ∗

+, γ+) (8)

Similarly, the second QPP in (5) can be rewritten as follows:

max
β∗

−,β−,γ∗
−,γ−

− H2(β∗
−,β−, γ∗

−, γ−) + L2(β∗
−,β−, γ∗

−, γ−) (9)

where

L2(β∗
−,β−, γ∗

−, γ−) =
C4

n1

n1∑
i=1

exp

(
−

(
1 − (β∗

− − β−)Tx1i − (γ∗
− − γ−)

)2
2σ2

)
.

2.3 Solutions

In this subsection, we turn the optimization problems (8) and (9) into two HQ
optimization ones and use the alternating iterative method to find their solutions.

We first define two auxiliary variables v = [v1, · · · , vn2 ]
T and v′ =

[v′
1, · · · , v′

n1
]T , where vi < 0 and v′

i < 0, and then construct two convex functions{
G1(v) = C2

n2

∑n2
i=1 g(vi) = C2

n2

∑n2
i=1(−vilog(−vi) + vi)

G2(v′) = C4
n1

∑n1
i=1 g(v′

i) = C4
n1

∑n1
i=1(−v′

ilog(−v′
i) + v′

i)
(10)
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Because each g(vi), i = 1, · · · , n2 and g(v′
i), i = 1, · · · , n1 is independent of

others, we analyze each g(vi) and g(v′
i) separately.

Based on [4,5], we can derive the conjugate function g∗(ui) and g∗(u′
i) of

g(vi) and g(v′
i) respectively:

{
g∗(ui) = supvi<0{uivi − g(vi)}
g∗(ui) = supv′

i<0{u′
iv

′
i − g(v′

i)}
(11)

where vi and v′
i are the optimization variables of the right hand of (11)

respectively, and the supremums can be achieved at vi = −exp(−ui) and
v′

i = −exp(−u′
i) respectively. Substituting vi = −exp(−ui) and v′

i = −exp(−u′
i)

into (11), we have {
g∗(ui) = exp(−ui)
g∗(u′

i) = exp(−u′
i)

(12)

Hence, we have the conjugate function G∗
1(u) and G∗

2(u
′) of G1(v) and G2(v′)

respectively, their forms as
{

G∗
1(u) = C2

n2

∑n2
i=1 exp(−ui) = C2

n2

∑n2
i=1 supvi<0{uivi − g(vi)}

G∗
2(u

′) = C4
n1

∑n1
i=1 exp(−u′

i) = C4
n1

∑n1
i=1 supv′

i<0{u′
iv

′
i − g(v′

i)}
(13)

where sup{·} represents the upper bounded of a variable.

Let ui = (1+(β∗
+−β+)T x2i+(γ∗

+−γ+))2
2σ2 , u′

i = (1−(β∗
−−β−)T x1i−(γ∗

+−γ+))2
2σ2 , (13)

can be described as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G∗
1(u) =

C2
n2

∑n2
i=1 exp

⎛

⎝−
(

1+(β ∗
+−β +)T x2i+(γ∗

+−γ+)
)2

2σ2

⎞

⎠ = supv<0

{
C2
n2

∑n2
i=1 h(vi|β ∗

+, β +, γ∗
+, γ+)

}

G∗
2(u′) =

C4
n1

∑n1
i=1 exp

⎛

⎝−
(

1−(β ∗−−β −)T x1i−(γ∗
+−γ+)

)2

2σ2

⎞

⎠ = sup
v′<0

{
C4
n1

∑n1
i=1 h(v′

i|β ∗
−, β −, γ∗

−, γ−)
}

(14)

where h(vi|β∗
+,β+, γ∗

+, γ+) =
(

vi
(1+(β∗

+−β+)T x2i+(γ∗
+−γ+))2

2σ2 − g(vi)
)

, i =

1, · · · , n2 and h(v′
i|β∗

−,β−, γ∗
−, γ−) =

(
v′

i
(1−(β∗

−−β−)T x1i−(γ∗
+−γ+))2

2σ2 − g(v′
i)

)
,

i = 1, · · · , n1.
Obviously, we have
⎧⎨
⎩

L1(β∗
+,β+, γ∗

+, γ+) = supv<0

{
C2
n2

∑n2
i=1 h(vi|β∗

+,β+, γ∗
+, γ+)

}
L2(β∗

−,β−, γ∗
−, γ−) = supv′<0

{
C4
n1

∑n1
i=1 h(v′

i|β∗
−,β−, γ∗

−, γ−)
} (15)

where the supremums of L1(β∗
+,β+, γ∗

+, γ+) and L2(β∗
−,β−, γ∗

−, γ−) are achieved
at ⎧⎪⎪⎨

⎪⎪⎩
vi = − exp

(
− (1+(β∗

+−β+)T x2i+(γ∗
+−γ+))2

2σ2

)
, i = 1, · · · , n2

v′
i = − exp

(
− (1−(β∗

−−β−)T x1i−(γ∗
−−γ−))2

2σ2

)
, i = 1, · · · , n1

(16)
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respectively. Thus, the optimization problems (8) and (9) with four variables can
be turned to a HQ optimization problem with five variables:{

maxβ ∗
+,β+,γ∗

+,γ+,v<0 − H1(β
∗
+, β+, γ∗

+, γ+) + C2
n2

∑n2
i=1 h(vi|β∗

+, β+, γ∗
+, γ+)

maxβ ∗
−,β−,γ∗

−,γ−,v′<0 − H2(β
∗
−, β−, γ∗

−, γ−) + C4
n1

∑n1
i=1 h(v′

i|β∗
−, β−, γ∗

−, γ−)

(17)
From (17), we use the alternating iterative method to solve the optimization

problem (17).
First, given (β∗

+,β+, γ∗
+, γ+) and (β∗

−,β−, γ∗
−, γ−) to optimize v and v′

respectively. So that, (17) can be reduced to two independent functions with
only respect to vi or v′

i:{
maxv<0

C2
n2

∑n2
i=1 h(vi|β∗

+,β+, γ∗
+, γ+)

maxv′<0
C4
n1

∑n1
i=1 h(vi|β∗

−,β−, γ∗
−, γ−)

(18)

Second, given v and v′ to optimize (β∗
+,β+, γ∗

+, γ+) and (β∗
−,β−, γ∗

−, γ−)
respectively. The optimization problems (17) can be rewritten as:⎧⎨
⎩ maxβ ∗

+,β+,γ∗
+,γ+

− H1(β
∗
+, β+, γ∗

+, γ+) + C2
n2

∑n2
i=1

vi(1+(β ∗
+−β+)T x2i+(γ∗

+−γ+))2

2σ2

maxβ ∗
−,β−,γ∗

−,γ− − H2(β
∗
−, β−, γ∗

−, γ−) + C4
n1

∑n1
i=1

v′
i(1−(β ∗

−−β−)T x1i+(γ∗
−−γ−))2

2σ2

(19)
To solve the optimization problem (19) easily, we rewrite it as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
β∗

+,β+,γ∗
+,γ+,ξ

H1(β∗
+,β+, γ∗

+, γ+) + C ′
2ξ

T Ωξ

s.t. − (X2(β∗
+ − β+) + (γ∗

+ − γ+)) = 1 − ξ

min
β∗

−,β−,γ∗
−,γ−,ξ′

H2(β∗
−,β−, γ∗

−, γ−) + C ′
4ξ

′T Ω′ξ′

s.t. (X1(β∗
− − β−) + (γ∗

− − γ−)) = 1 − ξ′

(20)

where ξ = [ξ1, · · · , ξn2 ]
T and ξ′ = [ξ′

1, · · · , ξ′
n1

]T are the slack variables, ξi =
1+(β∗

+−β+)Tx2i+(γ∗
+−γ+), i = 1, · · · , n2, ξ′

i = 1−(β∗
−−β−)Tx1i−(γ∗

−−γ−),
i = 1, · · · , n1, C ′

2 = C2/
(
2n2σ

2
)
, C ′

4 = C4/
(
2n1σ

2
)

and Ω = 1
n2

diag(−v) ∈
R

n2×n2 , Ω′ = 1
n1

diag(−v′) ∈ R
n1×n1 .

Further, let α1 =
[
β∗T
+ , βT

+, γ∗
+, γ+

]T , α2 =
[
β∗T

− , βT
−, γ∗

−, γ−
]T ,

ζ1 =
[
C11T

m, C11T
m, C1, C1

]T , ζ2 =
[
C31T

m, C31T
m, C3, C3

]T , M1 =
[X2,−X2, 1,−1] , M2 = [−X1,X1,−1, 1] , and

Q1 =

⎡
⎢⎢⎣

XT
1 X1 −XT

1 X1 0.5XT
1 e1 −0.5XT

1 e1
−XT

1 X1 XT
1 X1 −0.5XT

1 e1 0.5XT
1 e1

0.5eT
1 X1 −0.5eT

1 X1 eT
1 e1 −eT

1 e1
−0.5eT

1 X1 0.5eT
1 X1 −eT

1 e1 eT
1 e1

⎤
⎥⎥⎦

Q2 =

⎡
⎢⎢⎣

XT
2 X2 −XT

2 X2 0.5XT
2 e2 −0.5XT

2 e2
−XT

2 X2 XT
2 X2 −0.5XT

2 e2 0.5XT
2 e2

0.5eT
2 X2 −0.5eT

2 X2 eT
2 e2 −eT

2 e2
−0.5eT

2 X2 0.5eT
2 X2 −eT

2 e2 eT
2 e2

⎤
⎥⎥⎦
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Then substitute the equality constraints into the objective function in (20), we
can derive that {

minα1
1
2αT

1 H1α1 + fT
1 α1

minα2
1
2αT

2 H2α2 + fT
2 α2

(21)

where H1 = 2λ′
1M1ΩM1 +Q1, H2 = (2λ′

2M
T
2 Ω′M2 +G), fT

1 = 2C ′
21

T ΩM1 +
ζT
1 , and fT

2 = 2C ′
41

T Ω′M2 + ζT
2 .

Once we have the values of α1 and α2, the hyperplanes f1(x) = 0 and f2(x) =
0 can be obtained. Hence, given a new sample x, its class i(i = 1, 2) is

class i =

{
+1, |f2(x)| − |f1(x)| > 0
−1, otherwise

(22)

3 Numerical Experiments

In this section, we carry out experiments to testify the validity of the novel
algorithm C-STSVM. We compare C-STSVM with the state-of-the-art meth-
ods, including SVM [10], TSVM [15], TBSVM [20], KCC [25], Pin-TSVM [26],
LSTSVM [18], �pLSTSVM [30], NLPTSVM [22] and SNSVM [23], where SVM,
TSVM, and TBSVM are three traditional algorithms, KCC is a linear classi-
fier with the correntropy-induced loss, Pin-TSVM and LSTSVM introduce the
pinball loss and the square loss into TSVM, respectively, and the others were
proposed for obtaining sparse models.

For all SVM-like methods, the linear kernel or the linear version is adopted.
All experiments are implemented in MATLAB R2016a on Windows 10 running
on a PC with a 3.0 GHz Intel Core and 8 GB of memory.

3.1 Data Description and Experimental Setting

We carry out experiments on nine UCI datasets [11]: Australian (690 samples and
14 features), Breast (288 samples and 9 features), German (1000 samples and 24
features), Heart (270 samples and 13 features), Pima (768 samples and 8 features),
Sonar (208 samples and 60 features), Tic tac toe (958 samples and 9 features),
Vote (435 samples and 16 features) and Wdbc (569 samples and 30 features).

The repeated double cross validation [12] was used to select parameters and
give the final average result. The five-fold cross validation method is used in twice.
First, each dataset is randomly divided into five parts, where one part is taken
as the test set at a time and the remaining four parts are used as the calibration
set. Next, each calibration set is randomly split into five parts, where we take four
parts as training set and the rest part as the validation set. In this process, we
train models on the training set using the regularization parameters in the range
of {2−3, · · · , 23} one by one, and apply the trained-model to the validation set to
select optimal parameters. Then we train a model on the calibration set using the
optimal parameters and apply the trained-model to the test set to obtain the result.

This process is repeated five times, and the average results of five trials are
reported. In addition, the parameter σ in both KCC and C-STSVM is fixed at
σ = 0.5 empirically.
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3.2 Robustness to Outliers

In order to demonstrate the robustness to outlier of C-STSVM clearly, we test
our method C-STSVM and the other comparison methods on the nine UCI
datasets with 0% and 10% label noise.

Table 1. Accuracy obtained on original UCI datasets

Table 1 shows the results for the original UCI datasets and the best classifica-
tion accuracy is highlighted in bold. It can be seen that C-TSVM has satisfying
results. The C-TSVM method obtains the highest classification accuracy on five
out of nine datasets, while SVM obtain the best classification accuracy on Heart
and Wdbc dataset, and �pLSTSVM and Pin-TSVM has the best performance on
Tic tac toe and Sonar dataset respectively. Then, we corrupt the label of each
calibration set. For each calibration set, the ratio of label noise is 10%. In this
case, the average accuracy and standard deviation are presented on Table 2. As
shown in Table 2, C-TSVM has the best performance on six out of nine datasets
in terms of classification accuracy. TSVM and Pin-TSVM has the best accuracy
on Australian and Sonar dataset respectively.

From the comparison between Table 1 and 2, we can state the following
points: (1) The accuracy of C-STSVM has a small change by increasing the
number of label noise and has the best classification accuracy on the most of
datasets; (2) The accuracy of Pin-TSVM on German and Pima dataset have
a substantial reduction by increasing the number of label noise; (3) SVM has
the best accuracy on two out of original nine datasets. However, as the number
of label noise increases, its classification advantage does not seem to be main-
tained. (4) The performances of TSVM, TBSVM, KCC, LSTSVM, �pLSTSVM,
NLPTSVM and SNSVM method are average. In summary, C-STSVM has the
better robustness and classification accuracy to outlier.

Table 2. Accuracy obtained on UCI datasets with 10% label noise
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3.3 The Ability of Feature Selection

We add 50 noise features to each UCI dataset to validate the ability of feature
selection of these methods, where the last 50 features are noise features and
the others are valid features. These noise features are drawn from the Gaus-
sian distribution with 0 mean and 0.01 variance. Table 3 summarizes the results
of numerical experiments. It is easy to see that the accuracy of C-STSVM is
significantly better than other methods on most of datasets. Pin-TSVM and
NLPTSVM algorithm has the best on Sonar and Wdbc dataset respectively, fol-
lowed by C-STSVM. Compare Table 1 and Table 3, we can find that the increase
in noise features does not negatively affect classification accuracy of C-STSVM,
and it still maintains better classification performance than other methods.

In order to clearly show the feature selection performance, we calculated the
ratio of sum of the absolute values of the w1 (w2) corresponding to the valid
features to the sum of the absolute values of total w1 (w2) and Table 4 shows the
results of some TSVM-like methods. In theory, the greater the contribution of a
feature to the classification result, the greater the weight value corresponding to
this feature. Hence, for a weight value obtained by training some algorithm, the
greater the proportion of weight values corresponding to the valid features, the
better the feature selection performance of this algorithm. In Table 4, the highest
proportion is shown in bold figures. Table 4 depicts NLPTSVM and C-STSVM
has the best feature selection performance on the most of datasets, followed
by Pin-TSVM. But the accuracy of C-STSVM is higher than NLPTSVM and
Pin-TSVM. The feature selection performance of TSVM, TBSVM, LSTSVM,
�pLSTSVM, and SNSVM are unsatisfactory. The results in Table 3 and Table 4

Table 3. Accuracy obtained on UCI datasets with 50 noise features

Table 4. The proportions of w1 and w2 corresponding to valid features
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undoubtedly prove that C-STSVM is significantly better than other compared
methods in feature selection performance and the classification accuracy.

4 Conclusion

This paper proposes a novel sparse twin support vector machine with the
correntropy-induced loss (C-STSVM). Because the correntropy-induced loss has
favorable robustness to outliers and the �1-norm regularization can induce a
sparse model, we expect that C-STSVM has a satisfactory robustness to out-
liers and a sparseness solution to implement feature selection. To validate the
robustness of C-STSVM, we carry out experiments on nine UCI datasets with
0% and 10% label noise. To validate the performance of C-STSVM to select
features, we conduct experiments on nine UCI datasets with 50 noise features.
Experiments results confirm that C-STSVM is significantly better than other
compared methods in robustness to outliers, feature selection performance, and
classification accuracy.

Since C-STSVM achieves a good performance in the binary classification
tasks, we plan to extend C-STSVM to regression estimation and multi-class
classification tasks in future.
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