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Abstract. Iterative Laplacian Score (IterativeLS), an extension of
Laplacian score (LS) for unsupervised feature selection, iteratively
updates the nearest neighborhood graph for evaluating the importance of
a feature by its local preserving ability. However, LS and IterativeLS sep-
arately measure the importance of each feature and do not consider the
association of features. To remedy it, this paper proposes an enhanced
version of IterativeLS, called fast backward iterative Laplacian score
(FBILS). The goal of FBILS is to fast remove some unimportant features
by taking into account the association of features. The proposed FBILS
evaluates the feature importance according to the joint local preserving
ability that reflects the association of features. In addition, FBILS deletes
more than one feature in an iteration, which would speed up the process
of feature selection. Extensive experiments are conducted on UCI and
microarray gene datasets. Experimental results confirm that FBILS can
achieve a good performance.

Keywords: Unsupervised learning · Feature selection · Laplacian
score · Local preserving · Iteration algorithm

1 Introduction

With the development of technology and storage, the dimensionality of data
could be very high in many applications, such as image annotation [1], object
tracking [5] and image classification [15]. Usually, data may contain irrelevant
and redundant information, which would have a negative effect on learning algo-
rithms owing to the curse of dimensionality. As a technique of dimensionality
reduction, feature selection has attracted a lot of attention in pattern recognition,
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machine learning and data mining. Feature selection can eliminate irrelevant and
redundant features, which promotes the computational efficiency and keeps the
interpretation of reduced description [13,15].

According to the situations of data labels, feature selection methods can
be divided into three types: supervised, unsupervised and semi-supervised ones
[2]. Both supervised and semi-supervised methods for feature selection, to some
extent, depend on the label information to guide the feature evaluation by encod-
ing features’ discriminative information contained in labels [10]. For unsuper-
vised methods, feature importance is assessed by the ability to maintain specific
attributes of data, such as the variance value [4], and Laplacian score (LS) [9].
LS was proposed based on the spectral graph theory and uses a neighborhood
graph to determine optimal features. Zhu et al. [17] proposed an iterative Lapla-
cian score (IterativeLS), which progressively changes the neighborhood graph
by discarding the least important features in each iteration and assesses the
importance of the feature by its Laplacian score value. In each iteration, Itera-
tiveLS would reconstruct a neighborhood graph using the rest features. In doing
so, higher time complexity is required for IterativeLS. Moreover, both LS and
IterativeLS separately measure the importance of each feature and ignore the
association of features.

To enhance both LS and IterativeLS, this paper presents a fast backward
iterative Laplacian score (FBILS) method for unsupervised feature selection.
Inspired by IterativeLS, FBILS also adopts a recursive scheme to select features.
FBILS differs from IterativeLS in that it deletes more than one feature at each
iteration, greatly reducing the number of iterations. The criterion of evaluating
the feature importance in FBILS is to calculate the joint local preserving ability
of features, which is totally different from those in both LS and IterativeLS. In
summary, FBILS could speed up the process of iterative feature selection and
take into account the association of features. The validity and stability of FBILS
is confirmed by experimental results.

The remainder of this paper is organized as follows. In Sect. 2, we review
two unsupervised methods for feature selection. Section 3 proposes the FBILS
method and discusses its properties. In Sect. 4, we conduct experiments on UCI
and gene datasets to compare the proposed method with the existing unsuper-
vised methods. This paper is summarized in Sect. 5.

2 Related Methods

This section briefly reviews two unsupervised feature selection methods: LS and
IterativeLS, which are very related to our work.

Assume that there is a set of unlabeled data X = {x1, · · · ,xu}, where xi ∈
R

n, n is the number of features, and u is the number of samples. Let F =
{f1, · · · , fn} be the feature set with features fk, k = 1, · · · , n and X ∈ R

u×n be
the sample matrix with row sample vectors xi, i = 1, · · · , u.
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2.1 LS

He et al. [9] proposed LS based on manifold learning. The goal of LS is to select
features which can keep the local structure of the original data. That is to say
that LS concerns the local structure rather than the global structure of data.

For the given X, LS first constructs the neighborhood graph that can be
represented by a weight matrix S:

Sij =

{
exp

{−γ‖xi − xj‖2
}

, if (xi ∈ KNN(xj) ∨ xj ∈ KNN(xi))
0, otherwise

(1)

where γ > 0 is a constant to be tuned, and KNN(xi) denotes the set of K
nearest neighbors of xi.

LS measures the importance of feature fk by calculating its Laplacian score:

JLS(fk) =

∑u
i=1

∑u
j=1(xik − xjk)2Sij∑u

i=1(xik − μk)2Dii
(2)

where xik denotes the kth feature of the ith sample, μk = 1
u

∑u
i=1 xik is the mean

of all samples on feature fk, and D is a diagonal matrix with Dii =
∑

j Sij .
The smaller the score JLS(fk) is, the more important the kth feature is for

keeping the local structure of data. The computational complexity of construct-
ing S is O(nu2), and the computational complexity of calculating scores for n
features is O(nu2). Hence, the overall computational complexity of LS is O(nu2).

2.2 IterativeLS

IterativeLS was presented by introducing the iterative idea into LS [17]. Exper-
imental results in [17] indicated that IterativeLS outperforms LS on both clas-
sification and clustering tasks.

The key idea of IterativeLS is to gradually improve the neighborhood graph
based on the remaining features. In each iteration, IterativeLS discards the least
relevant feature with the greatest score among the remaining features. Similar
to LS, IterativeLS evaluates the importance of a feature by its Laplacian score
that is calculated according to (2).

Assume that A is the remaining feature subset in the current iteration. Let
|A| = n′. In the current iteration, the computational complexity of constructing
S is O(n′u2), and computational complexity of calculating scores for n′ features
is O(n′u2). Note that n′ < n. Hence, the overall computational complexity of
IterativeLS is O(n2u2) for n iterations.

3 Fast Backward Iterative Laplacian Score

This section presents the novel method for unsupervised feature selection:
FBILS, which is an extension of LS. Both LS and IterativeLS measure the impor-
tance of features separately using the ability to maintain the local structure that
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is measured by the Laplacian score. Similar to both LS and IterativeLS, FBILS
also considers maintaining the local structure. However, FBILS measures the
importance of feature fk by considering its joint local preserving ability. Similar
to IterativeLS, FBILS adopts a recursive scheme. The difference is that Itera-
tiveLS discards the least relevant feature with the greatest Laplacian score in
each iteration, and FBILS uses a new criterion to remove more than one feature
in each iteration. Therefore, FBILS greatly reduces the running time with less
iterations.

3.1 Criterion

FBILS iteratively removes features according to a novel criterion, the joint local
preserving ability. We first discuss how to measure the joint Laplacian score for
feature subsets before we introduce the criterion to measure the importance of
feature fk.

Both LS and IterativeLS calculate the Laplacian score of only single feature.
Because we want to consider the association between features, we have to cal-
culate the Laplacian score of feature subsets, or joint Laplacian score that is
defined as follows.

Definition 1. Given the weight matrix S, the centered sample matrix X̃A and
its corresponding feature subset A, the joint Laplacian score of A is defined as

J(A) =
trace

(
X̃T

ALX̃A

)
trace

(
X̃T

ADX̃A

) (3)

where trace(·) is the sum of the diagonal elements of a matrix, L = D−S is the
Laplacian matrix, and D is a diagonal matrix with Dii =

∑
j Sij.

According to Definition 1, we need to construct the weight matrix S to rep-
resent the neighborhood graph. For the given subset of data XA that is a part
of X and consists of features in A, we need to make it centered, which results
in a new set with zero mean. Given these conditions, we can calculate the joint
Laplacian score of A by (3). A smaller joint Laplacian score of A means that the
local structure can be maintained better by using this feature subset, or A is
more important. On the basis of Definition 1, we can describe the novel criterion
as follows.

Definition 2. Given the feature set F , a feature subset A ⊆ F , and any feature
fk ∈ A, the joint local preserving ability of fk under A is defined as

L(fk|A) = J (A − {fk}) − J(A) (4)

where A − {fk} denotes that feature fk is removed from A, and J(A − {fk})
and J(A) are the joint Laplacian scores of feature subsets (A − {fk}) and A,
respectively.
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Definition 2 implies that the joint local preserving ability of feature fk is
related to two joint Laplacian scores. One is J(A) that is the same for all fk ∈ A.
The other is J(A − {fk}), the joint Laplacian score of the candidate subset
A − {fk}. We discuss two cases: L(fk|A) > 0 and L(fk|A) ≤ 0.

– When L(fk|A) ≤ 0, J(A − {fk}) is smaller than or equal to J(A). In other
words, the joint Laplacian score does not change or becomes small when
feature fk is removed from A. Note that LS-like algorithms prefer features
with small Laplacian scores. In this case, we much prefer the feature subset
A − {fk} to the one A. That is, fk is less important.

– When L(fk|A) > 0, J(A−{fk}) is greater than J(A). In this case, it is unwise
to remove feature fk from A.

In summary, the greater the value L(fk|A) is, the stronger the joint local
preserving ability of fk under A is. Thus, what we need to do is to remove
these features with a weak joint local preserving ability. We could follow the
way of IterativeLS, or deleting the weakest feature in each iteration. However,
it is time-consuming if just one bad feature is removed in an iteration.

One goal of FBILS is to speed up the iterative procedure, which can be
implemented by using the following deletion rule:

∀fk ∈ A, fk is delected from A, if L(fk|A) ≤ 0 (5)

The deletion rule allows us to remove all possible bad features from the cur-
rent feature subset in one time. The feasibility and reasonability of this rule is
discussed later in Subsect. 3.3.

3.2 Algorithm Description

The detail algorithm description of FBILS is shown in Algorithm 1. Quite sim-
ply, FBILS requires constructing a neighborhood graph and calculating joint
Laplacian scores of feature subsets in each iteration, which is repeated until all
features are ranked.

The inputs of FBILS include the given dataset and the parameter K that is
required for the neighborhood graph. In the first step, the subset of remaining
features A is initialized to be a complete set, or the whole feature set. Ā is the
ordered set and Ā = ∅. Step 3 computes the weight matrix SA using the dataset
XA in the current iteration. Step 4 computes the joint Laplacian score of the
feature subset A by (3). Steps 5–8 get the joint local preserving ability for all
features in A. Step 10 finds out the unimportant features in A with L(fk|A) ≤ 0
and forms a temporary feature subset B. If B is empty, then FBILS would come
to an end. In this case, features in A would be ranked according to the value
of L(fk|A). If B is non-empty, then features in B would be ranked according to
their joint local preserving ability. Then the ranked features are inserted in the
list Ā. Note that the smaller the value L(fk|A) is, the later is the insertion of
the corresponding feature fk in the list. If B is non-empty, features in B should
be removed from A. Repeat Steps 3–18 until A is empty.
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Finally, Algorithm 1 greturns the ranking of all features. Assume that the
number of features required by a given task is provided in advance, say r. There
are two ways to get r features using FBILS. One way is that we can only pick
up the r top features in Ā after we perform Algorithm 1. The other way is to
change the termination condition in Step 2 as |A| > r and return the remaining
feature subset A instead of Ā. In Step 20, if |A| < r, we would get the r − |A|
top features in Ā and put them into A.

3.3 Properties Analysis

This part concerns about the properties of FBILS. We give a lemma and a
theorem, and do not prove them for limitation of space.

Lemma 1. For a non-empty feature subset A, its joint Laplacian score is posi-
tive, or

J(A) ≥ 0. (6)

Lemma 1 indicates that the joint Laplacian score of feature subsets are
greater than zero. The following theorem is related to our deletion rule (5).

Algorithm 1. Fast Backward Iterative Laplacian Score (FBILS)
Require: Dataset X with u samples and n features, and neighborhood parameter K;
Ensure: The ordered set of features;
1: Initialize A = {f1, · · · , fn} and the ordered set Ā = ∅;
2: while A �= ∅ do
3: Calculate the weight matrix SA by (1) using XA with u samples and |A| features;
4: Compute the joint Laplacian score of A, J(A) by (3);
5: for each fk ∈ A do
6: Compute the joint Laplacian score of A − {fk}, J(A − {fk}) by (3);
7: Compute L(fk|A) by (4);
8: end for
9: Let a temporary feature subset B = ∅;

10: Find all features with L(fk|A) ≤ 0 and add them to B, or B = {fk ∈
A | L(fk|A) <= 0};

11: if B = ∅ then
12: Rank features in A according to the descending order of L(fk|A), fk ∈ A;
13: Insert the ranked features into the head of the list Ā;
14: break;
15: else
16: Rank features in B according to the descending order of L(fk|A), fk ∈ B;
17: Insert the ranked features into the head of the ordered set Ā;
18: Update the set A by removing these features in B, or A = A − B;
19: end if
20: end while
21: return The ordered set Ā.
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Theorem 1. Let A be the feature subset. For fk ∈ A, given the joint Laplacian
score J(A), the joint local preserving ability L(fk|A) and the Laplacian score
JLS(fk), the following relationships hold true:

– If L(fk|A) > 0, then JLS(fk) < J(A);
– If L(fk|A) ≤ 0, then JLS(fk) ≥ J(A).

Theorem 1 implies the relationship between the Laplacian score of feature
fk and the joint Laplacian score of the feature subset A containing fk when
L(fk|A) ≤ 0 or L(fk|A) > 0. When L(fk|A) ≤ 0, the Laplacian score of fk
is greater than or equal to the joint Laplacian score of A. The deletion rule
states that those features with L(fk|A) ≤ 0 would be removed from the current
feature subset. In other words, we would delete all fk ∈ A with JLS(fk) ≥ J(A),
where J(A) is taken as a threshold to make us select more than one feature in
one iteration. According to the view of both LS and IterationLS, the greater
JLS(fk) is, the less important feature fk is. Thus, our deletion rule is reasonable
because it consists with the view.

Now, we analyze the computational complexity of FBILS. Without loss in
generality, let A be the remaining feature subset in the current iteration. Let
|A| = n′. Similar to IterativeLS, the computational complexity of constructing
SA is O(n′u2). If we directly compute joint Laplacian scores, which has a com-
putational complexity of O(n′2u2), FBILS would be slow. Fortunately, we could
speed up this procedure. According to the proof of Theorem 1, the calculation
of J(A−{fk}) can be reduced. For limitations of space, we do not discuss it any
more. Thus, the computational complexity of computing joint Laplacian scores
is reduced to be O(n′u2). Then the overall time complexity of FBILS is between
O(nu2) and O(n2u2), which is related to the iteration number. Assume that the
iteration number is T , then the complexity is O(Tnu2).

4 Experimental Analysis

In order to verify the feasibility and effectiveness of FBILS, simulation experi-
ments were carried out on several UCI datasets [7] and microarray gene expres-
sion datasets [11]. We compared FBILS with both LS and IterativeLS and used
the nearest neighbor classifier to measure the discriminant ability of selected
features.

All experiments were performed in MATLAB 2015b and run in a hardware
environment with an Intel Core i5 CPU at 2.60 GHz and with 8 GB RAM.

4.1 UCI Dataset

We considered 8 UCI datasets here and compared FBILS with Variance, LS
and IterativeLS algorithms. The related information of 8 UCI datasets, includ-
ing Australian, Glass, Heart, Ionosphere, Segment, soybeanLarge, Vehicle and
Wdbc, is shown in Table 1. For these UCI datasets, the original features were
normalized to the interval [0, 1]. To validate the ability to select features, we
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added n noise features to the original data before normalization, where n is the
number of features. In the ranked feature list, we only considered the first n
features. We thought that a good method for feature selection should rank these
noise features towards the end of the list.

In order to obtain more convincing comparison results and eliminate acciden-
tal errors, we used 10-fold cross-validation. That is to say, the original dataset
was randomly divided into ten equal-sized subsets. Then 9 subsets were used as
the training set and the rest one was used as the test set. The 10 subsets were
used as test sets in turn, and then the average of 10 times was calculated as
the final result of classification. In addition, all compared algorithms require the
parameter K for constructing the neighborhood graph. Let it vary in the set
{1, 2, · · · , 9}.

Table 2 shows the highest average accuracy with the corresponding standard
deviation and optimal feature number of all compared algorithms, where the best
values among compared methods are in bold. We can see that FBILS is superior
to Variance, LS and IterativeLS on all datasets. For example, FBILS achieves the
accuracy 92.00% on the SoybeanLarge dataset, followed by IterativeLS 90.80%.
In a nutshell, FBILS can effectively rank features and make good ones at the top
of feature list. Table 3 shows the running time and iteration numbers of FBILS
and IterativeLS on the UCI datasets. Owing to the small number of features in
UCI datasets, the time required for LS and variance is very small. Thus, we did
not list them here. It can be clearly seen that the number of iterations of FBILS
is much smaller than IterativeLS, and the running time of FBILS is also less.

Table 1. Description of UCI datasets

No. Dataset #Sample #Attribute #Class

1 Australian 690 14 2

2 Glass 214 9 6

3 Heart 301 13 2

4 Ionosphere 351 34 2

5 Segment 2310 19 7

6 SoybeanLarge 250 35 14

7 Vehicle 846 18 4

8 Wdbc 569 30 2

4.2 Microarray Gene Datasets

In experiments, FBILS was applied to microarray gene datasets, including
Leukemia [8], Novartis [6], St. Jude Leukemia (SJ-Leukemia) [16], Lungcancer
[3] and the central nervous system (CNS) [12]. It is well-known that the number
of features is much greater than the number of samples in the gene datasets. The
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Table 2. Average accuracy and standard deviation of different methods on UCI
datasets

Dataset FBILS Variance LS IterativeLS

Australian 83.33± 5.57 (11) 81.91± 4.06 (10) 81.33± 4.48 (8) 81.77± 4.02(8)

Glass 62.32± 14.41 (7) 42.59± 11.26 (7) 60.74± 11.60 (4) 51.73± 11.41 (9)

Heart 78.52± 7.16 (12) 76.30± 9.59 (7) 77.78± 9.56 (15) 76.30± 9.11 (10)

Ionosphere 93.19± 3.26 (8) 91.46± 4.22 (8) 92.63± 6.62 (9) 92.06± 3.42 (11)

Segment 97.27± 1.08 (18) 97.27± 1.14 (12) 97.14± 1.14 (17) 96.84± 1.65 (12)

SoybeanLarge 92.00± 5.96 (28) 88.00± 5.96 (33) 90.40± 6.31 (31) 90.80± 4.24 (27)

Vehicle 73.50± 4.90 (17) 69.85± 4.57(12) 73.38± 2.27 (16) 73.16± 2.80(12)

Wdbc 96.47± 3.31 (30) 92.43± 1.51 (19) 96.30± 1.81 (29) 96.30± 2.06 (23)

*Numbers in parentheses are optimal feature numbers. The accuracy and standard devi-
ation was showed by percentage values.

Table 3. Running time (sec.) and iteration numbers of FBILS and IterativeLS on UCI
datasets

Dataset FBILS IterativeLS

Australian 0.494± 0.078 (2.9) 1.967 ± 0.027 (28)

Glass 0.068± 0.011 (3) 0.129 ± 0.009 (18)

Heart 0.097± 0.023 (3.3) 0.277 ± 0.018 (26)

Ionosphere 0.475± 0.025 (4.7) 1.556 ± 0.126 (68)

Segment 7.677± 0.316 (5.1) 34.501 ± 0.273 (38)

Soybeanlarge 0.331± 0.025 (7.9) 1.030 ± 0.037 (70)

Vehicle 1.233± 0.116 (5) 4.448 ± 0.071 (36)

Wdbc 1.000± 0.034 (6) 3.968 ± 0.461 (60)

*Numbers in parentheses are mean number of iterations.

Table 4. Description of microarray gene datasets

No. Dataset #Sample #Attribute #Class

1 Lungcancer 197 1000 4

2 Novartis 103 1000 4

2 SJ–Leukemia 248 985 6

3 Leukemia 38 999 3

4 CNS 42 989 5

gene expression datasets we used have been processed as described in [11]. Fur-
ther biological details about these datasets can be found in the referenced papers.
Most data were processed on the Human Genome U95 Affymetrix c©microarrays.
The leukemia dataset was from the previous-generation Human Genome HU6800
Affymetrix c©microarray. The relevant information of these datasets is sum-
maries in Table 4.
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Here, we also compared FBILS with the unsupervised methods: Variance, LS
and IterativeLS. In order to obtain convincing comparison results and eliminate
accidental errors, as in the previous section, we used cross-validation. Because the
number of samples in datasets is small, three-fold cross-validation was applied.
In each trail, we randomly selected 2/3 of the samples as the training set, and the
remaining 1/3 of samples as the test set. The experimental results were reported
on the well-defined test sets. According to the statement in [14], we can know
that we need 400 genes at most to complete the classification task of microarray
gene data. Therefore, we analyze on the first 400 top features.

Figure 1 gives the classification accuracy vs. feature number on five microar-
ray gene datasets. From Fig. 1, we can see that FBILS is obviously superior to
other three methods on CNS, Lungcancer and Novartis datasets. In addition,
FBILS can quickly achieve a better classification performance. We summarized
the highest accuracy of compared methods in Table 5 according to Fig. 1, where
bold numbers are the best results among compared methods. FBILS algorithm
achieves better accuracies on all five gene datasets. On the Leukemia datasets,
FBILS has the same accuracy as LS and IterativeLS. On the Lungcancer dataset,
the accuracy of FBILS is 1.5% higher than LS. Table 6 shows the running time
of the four methods on the gene dataset. The Variance and LS methods are
fast without iteration. Two iterative methods, FBILS and IterativeLS take more
time. However, it can be clearly seen that FBILS runs many times faster than
IterativeLS.

Table 5. Average accuracy and standard deviation comparison on five microarray gene
datasets

Dataset FBILS Variance LS IterativeLS

CNS 87.63± 5.09 (40) 85.07± 14.71 (83) 86.81± 8.96 (138) 87.42± 15.16 (187)

Leukemia 96.97± 5.25 (73) 93.94± 10.49 (144) 96.97± 5.25 (59) 96.97± 5.24 (358)

Lungcancer 96.44± 2.29 (142) 94.93± 5.90(208) 94.94± 3.16 (292) 94.40± 7.11 (286)

Novartis 100± 0.00 (37) 99.07± 0.78(359) 98.96± 2.24 (375) 99.05± 3.53 (199)

SJ-leukemia 99.20± 0.70 (326) 98.01± 1.81 (230) 98.01± 1.81 (217) 98.01± 1.81 (142)

*Numbers in parentheses are optimal feature numbers. The accuracy and standard deviation
was showed by percentage values.

Table 6. Running time (sec.) of different methods on five microarray gene datasets

Dataset FBILS Variance LS IterativeLS

CNS 0.083 ± 0.032 0.003 ± 0.006 0.030 ± 0.010 13.700 ± 0.430

Leukemia 0.073 ± 0.006 0.007 ± 0.012 0.033 ± 0.006 14.577 ± 0.520

Lungcancer 0.780 ± 0.144 0.003 ± 0.006 0.233 ± 0.006 122.940 ± 3.498

Novartis 0.243 ± 0.085 0.007 ± 0.012 0.100 ± 0.017 45.143 ± 0.326

SJ-leukemia 0.950 ± 0.128 0.007 ± 0.006 0.287 ± 0.006 154.700 ± 8.819



Fast Backward Iterative Laplacian Score for Unsupervised Feature Selection 419

1 41 81 121 161 201 241 281 321 361
Feature Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

FBILS

LS

IterativeLS

Variance

(a) CNS

1 41 81 121 161 201 241 281 321 361
Feature Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

FBILS

LS

IterativeLS

Variance

(b) Leukemia

1 41 81 121 161 201 241 281 321 361
Feature Number

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

FBILS

LS

IterativeLS

Variance

(c) Lungcancer

1 41 81 121 161 201 241 281 321 361
Feature Number

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

FBILS

LS

IterativeLS

Variance

(d) Novartis

1 41 81 121 161 201 241 281 321 361
Feature Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

FBILS

LS

IterativeLS

Varance

(e) SJ–Leukemia

Fig. 1. Accuracy vs. feature number on five gene datasets

5 Conclusion

This paper concentrates on unsupervised feature selection and proposes an algo-
rithm called FBILS. FBILS aims to speed up the iterative process and maintains
the local manifold structure. Different from existing LS-like methods, FBILS
evaluates the joint locality preserving ability of features instead of Laplacian
score, and picks up more than one features in one time. On eight UCI and five
microarray gene datasets, a series of experiments were conducted for evaluating
the proposed method. FBILS retains the highest classification accuracy on most
datasets. From the running time of the UCI and gene dataset, we know that
FBILS is much faster than of IterativeLS.
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