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Abstract. Given the problem that currently distributed graph embedding models
have not yet been effectivelymodeled of substructure similarity, biased-graph2vec,
a graph embeddingmodel based on structural characteristics of rooted subgraphs is
proposed in this paper. This model, based on the distributed representation model
of the graph, has modified its original random walk process and converted it to a
randomwalk with weight bias based on structural similarity. The appropriate con-
text is generated for all substructures. Based on preserving the tag features of the
nodes and edges in the substructure, the representation of the substructure in the
feature space depends more on the structural similarity itself. Biased-graph2vec
calculates the graph representations with unsupervised algorithm and could build
themodel for both graphs and substructures via universalmodels, leaving complex
feature engineering behind and has functional mobility. Meanwhile, this method
models similar information among substructures, solving the problem that typical
random walk strategies could not capture similarities of substructures with long
distance. The experiments of graph classification are carried out on six open bench-
mark datasets. The comparison among our method, the graph kernel method, and
the baseline method without considering the structural similarity of long-distance
ions is made. Experiments show that the method this paper proposed has varying
degrees inordinately improved the accuracy of classification tasks.

Keywords: Graph data · Network embedding · Graph embedding · Structural
similarity · Graph classification

1 Introduction

Graph data is a data form widely exist in the field of biochemistry, social network &
network security, in which tasks like the prediction of biochemical characteristics [1],
community detection [2], malicious code detection [3], etc. often share a tight link
with graph classifications and clusters. There is a need to put the original graph into
representation as an eigenvector of fixed length to facilitate the application of mature
classification and clustering algorithms in machine learning. Graph embedding, there-
fore, is the method that via studies upon how to maintain enough characteristics of the
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graph while fitting it into the characteristic space, making the original graph being pre-
sented in vectors as integrated as possible, and eigenvectors after representation could
lead to a better outcome in the following tasks of graph-processing.

The work related to the graph representation can be broadly divided into two
categories:

(1) Graph Kernel Method. The Graph kernel method is a widely used method to
measure the similarities between different graph structures. For ordinary kernel meth-
ods, the primary thought is to map a low-dimension vector x to a higher dimension that
reproduces kernel Hilbert space using a nonlinear mapping function ∅. This way, nonlin-
ear tasks that are relatively hard to calculate in lower dimensions can be solved in higher
dimension Hilbert feature space through linear algorithms. Early Graph embedding
methods mainly include the graph kernel methods [4–6] and dimensionality-reducing
methods (multidimensional scaling (MDS) [7], IsoMap [8], locally linear embedding
– LLE [9]).

Though graph kernel methods stand their crucial role in multiple graph-related tasks
and are now still widely used, the method has its restrictions: 1) The high-dimensional
feature representation obtained by the graph kernel method has some information redun-
dancy, which leads to the high cost of calculation and memory. 2) This method needs a
predefined kernel function, which relies on feature engineering to get practical features.
As a result, making the model insufficient mobility. 3) In the graph kernel method, we
generally regard substructures as atomic structures, ignoring the structural similarities
among substructures.

(2) Graph Embedding Method. Graph embedding could be regarded as a unique
form of network embedding in particular circumstances. Graph embedding learning and
network embedding learning both aim to learn the low dimension vector presentations in
the feature space. However, there is some difference between graph embedding learning
and network embedding learning. Network embedding learning faces networks with rich
node properties information like social networks. Graph embedding learning, simulta-
neously, faces network with rich graph-structural data like biochemical structures and
code flows, which do not contain much information of node properties but contain rich
information like node labels, edge labels, and weights. DeepWalk [10] is the first article
to apply the word vector model, word2vec, and random walk to the field of network
embedding. Later embedding models like LINE [11], node2vec [12], etc. are based on
the representation learning model in the framework of the random walk. As word vector
models widely used, new research based on distributed word vector models has come
out in graph embedding field, e.g., subgraph2vec [3], graph2vec [13], GE-FSG [14], etc.
These methods share similarities in their general frames. They decompose the graphs
into their atom substructures by considering the graph as the document, considering the
atom substructures as words in the document. The graph-embedding models can use the
word vector model to learn the low dimension embeddings of each graph.

However, the graph embedding model fundamentally differs from the word embed-
ding model. In the word vector model, it is not easy to capture the similarities between
words in the very beginning. The similarity can only be obtained via the model’s embed-
ding results. If there are two certain randomwords marked asw1,w2, the model will not
be able tomeasure their similarity without information of their context properly. In graph
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embedding learning, the structural similarity between substructures is easy to measure.
For example, given two substructures g1, g2, even if there is no information about their
context, the model can still capture their similarity by measuring characteristics such
as edges, nodes, degrees, graph-kernels, and more. Existing graph embedding models
leave this similarity information behind.

Subgraph (substructure), as a significant characteristic of graphs and networks,
obtains a higher level of abstraction information than characteristics like nodes, edges,
degrees, etc. Many recent kinds of research regard subgraphs as the atom substructures
of graphs and learn their representation via distributed learning models. However, those
graph embedding models ignore the similarities between subgraphs that exist in the very
beginning. This paper proposes biased-graph2vec, which is based on structural charac-
teristics of rooted subgraphs. The model learns the vector representation of both graphs
and rooted subgraphs in the same vector space. The classified task has been tested in six
base data sets, and the result shows the accuracy of graph classifications, compare to the
baseline method, which has been varying degrees improved.

2 Problem Definition

Given a graph set Γ , graphs in Γ represented as {G1,G2, . . .}. The goal of graph
embedding is to learn d -dimensional representation in the characteristic vector space
of each graph G in Γ . In the learning process, it is vital that characteristic vectors
reserve corresponding characteristics of labels and edges in substructures and context
of the substructures. Moreover, the dimensionality d should be properly set to keep the
memory and calculation cost of the representation matrix Φ ∈ R|Γ |×d low enough.

Graphs in the graph set Γ are defined asG = (N ,E, λ), in whichN stands for the set
of nodes, E ⊆ (N × N ) represents the edge set. For that data used in graph embedding
usually has relatively complete labels of edges and nodes, therefore in such a system,
we define those graphs with label information as labeled graphs while those without
defined as non-labeled graphs. In labeled graphs, there exist functions λ : N → �,
mapping each node to a corresponding character in the alphabet �, in the same way, we
define the edge-mapping function η : E → ε.

For two given graphs, G = (N ,E, λ) and Gsg = (
Nsg,Esg, λsg

)
, Gsg is the sub-

graph of G if and only if there exits an injective function μ : Nsg → N , which makes
(μ(n1), μ(n2)) ∈ E if and only if (n1, n2) ∈ Esg .

3 Graph Embedding Model Based on Structural Characteristics
of Rooted Graphs

According to descriptions in [15], the context of substructures only shows local char-
acteristics of substructures. Therefore, if two substructures resemble each other but are
far from each other in the context, it is almost impossible for existing distributed graph
models to produce valid learning results. In a graph-related calculation, there is usually
enough label information of nodes and edges, but apart from that, the similarities between
substructures also mean they have similar characteristics. For example, in a malicious
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code detection task, the function call of code segment A is different frommalicious code
segment B, but they share a similar process of execution. Therefore code segment A is
highly suspectable, which means the representation of A in feature space resembles B
more than a random one. In the existing graph distributed representation model, A and
B as independent atomic structures possess different labels and contexts, making the
final results of representation differ a lot from each other. Currently, existing distributed
graph embedding models are incapable of capturing structural similarities between dis-
tanced structures like these. As in Sect. 3, by bringing the substructure’s similarity into
consideration, this paper proposed biased-Graph2vec to solve the problem.

3.1 The Frame of Biased-Graph2vec

The d-dimensional subgraph of the node n in graph g is defined as a subgraph containing
every single node that could be reached from node n in d hops and edges between these
nodes.

The core of the model is to use the similarities information among substructures to
create a hierarchical structure from where random walks are performed. This paper uses
graph sets in experiments, to learn a graph’s embedding the process is the same.

The biased-graph2vec mainly consists of two parts. The first part is to traverse all
nodes to produce substructures related to every node, construct a 2-layer structure to
capture similarity information among substructures, then use the biased random walk
algorithm to perform a random walk in the two-layer graph structure to obtain con-
texts containing structural characteristics of the subgraphs. The second part is just like
other graph embedding models, to fit all substructures into the word embedding model
doc2vec. Treat substructures as a word in the word embedding model, the graph as the
word sequence and substructures of the graph as words. Doc2vec model is applied to
acquire the representation of the graph and substructures in the feature space of a lower
dimension.

According to the specific task, the selection subgraphs is flexible choosing from
subgraphs like frequent subgraph, rooted subgraph, ego graph, etc. Biased-graph2vec, in
this paper, selects rooted subgraphs as its substructures. Advantages of rooted subgraphs
over the other options are as followed:

(1) The computation cost is much less than the frequent subgraph mining algorithm.
(2) Rooted subgraphs, compared with other characteristics like nodes and edges, pos-

sess a higher level of abstraction, possibly containingmore informationon thegraph.
Once applied to the word vector model, for it is generated from node traversal, dif-
ferent rooted subgraphs share a similar order of magnitudes. The more valuable
information the subgraph contains, the better the graph representation will be.

(3) The nonlinear substructure could better acquire the graph’s characteristics in normal
tasks than linear substructures. Weisfeiler-Lehan (WL) kernel [6] algorithm, for
example, is the kind of algorithm based on characteristics of rooted graphs that
appears to be more effective in both experiments and applications than other linear
graph-kernel algorithms like randomwalk kernel algorithm and shortest path kernel
algorithm.
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The processing procedure of biased-graph2vec is shown in the Fig. 1. First, generate
the set of rooted subgraphs, then calculate the structural similarities among substructures,
build amodel of the biased randomwalk from structural similarities, and themodel of the
document is built based on that model, finally output the low dimension representations
vectors of substructures and graphs.

Fig. 1. A processing procedure of biased-graph2vec

3.2 Rooted Subgraphs Generation

Graph set denoted as D = {d1, d2, . . . , dN }, generate rooted subgraph sg(h)
v for every

node v ∈ di of every single graph di ∈ D, h denotes the depth of currently rooted
subgraph. After h iterations, the result set contains all the root subgraphs of nodes v less
than or equal to h-order neighbor nodes. The procedure of generating rooted subgraph
refers to the labeling process of the Weisfeiler-Leman (WL) kernel [6] algorithm, the
WL relabeling process, which is shown in Algorithm 1. The input of the algorithm is
current node v, graph to be extracted G, hyper-parameter h depth of extraction. The
process of extracting rooted subgraphs is recursive, in which h controls the of recursive
depth the extraction, meaning that in the end, the rooted graph set of node v contains
rooted graphs ordered from 0 to h (when h equals 0 the function returns to the current
node). The larger h is, themore rooted subgraphs are extracted, and themore information
about adjacent structures are contained, the more subsequent computations cost will be.
The rooted subgraph generation algorithm is shown in Fig. 2.

3.3 Context Generation

After recursion of all nodes of each graph in graph setD, the set of all rooted subgraphs in
the graph set is generated and denoted asGsg . Also, the neighboring rooted graphs of the
targeted subgraph are obtained in the subgraph generating process. For example, if h is 3,
the subgraph sg(1)

v has the context of sg(0)
v , sg(1)

v , sg(2)
v that represent local information of

sg(1)
v . According to WL relabeling process, it is able to represent every rooted subgraph

in the form of unambiguous unique strings, which make up the vocabulary of rooted
subgraphs, Vocabsg .

The context obtained above only represents the local feature of the rooted subgraph.
To capture the similarity between subgraphs far away and expand the range of the random
walk, the context generating process should meet the requirements below:
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Algorithm 1: GetWLSubgraph( )
Input

Output rooted subgraph set of the current node with extraction depth 

1: function )
2:        
3:        if then
4:            
5:        else
6:            
7:            
8:            )
9:        end if
10:      return 
11: end function

Fig. 2. Process of GetWLSubgraph algorithm

For rooted subgraphs sg1, sg2 ∈ Gsg , representations in feature space are corre-
spondingly marked as e(sg1), e(sg2). The distance of e(sg1), e(sg2) embedding in
vector space should reflect not only the local context’s similarity but also the structure
similarity of sg1, sg2 themselves.

Structural Similarity Calculation. Depending on the specific situation, a standard
similarity measure can be used to measure structural similarity such as node similarity,
edge similarity, graph kernel, etc. Considering the calculation cost, for that the degree of
the node reveals a structural similarity to some degree, this section calculates the simi-
larities among each node’s degree sequence of rooted subgraphs to infer the structural
similarity of the rooted subgraphs.

For a given subgraph sg ∈ �sg , its ordered sequence of nodes’ degree is marked
as s

(
Vsg

)
, and Vsg stands for the node-set of subgraph sg. Due to the sequence length

could be inequality, this section applies the Dynamic Time Warping (DTW) method to
the calculation. In this method, all elements in two sequences will be correspondingly
lined up individually, making the sum of aligned sequences’ distance reduced to the
least. Let sequences A,B represent the sequences of degrees of nodes, this section uses
the formula below to calculate the distance between a ∈ A, b ∈ B:

d(a, b) = max(a, b)

min(a, b)
− 1 (1)

in which max(a, b) is the maximum of two node degrees and min(a, b) is the opposite.
Formula (1) makes the distance clear to zero when the sequences are identical and the
d in the formula becomes more sensitive towards the difference between a, b when a, b
are smaller.
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Calculation of structural similarities between two subgraphs sg1 and sg2 can be
converted to the issue of calculating the distance of degree sequence of nodes from
those two corresponding subgraphs. As defined in the DTW algorithm, the distance can
be turned into an optimization problem. The sequence distance obtained by the DTW
algorithm is the distance of structural similarity of rooted subgraphs sg1, sg2, which are
denoted as f (sg1, sg2).

Random Walk Process. Compared to structural similarities among rooted subgraphs,
the similarity between two nodes is not meaningful, so in context generation, biased-
graph2vec chooses a hyperparameter to avoid the calculation.

To generate enough context for single nodes and capture long distanced rooted
subgraph’s structural similarities, biased-graph2vec uses a two-layer network structure
where context is captured through a cross-layer randomwalk. The two-layer walk model
uses the similarity between the degree sequences of nodes to measure the structural sim-
ilarity of nodes, and controls the walk jump probability through the similarity. The
random walk process is shown in Fig. 3.

Fig. 3. The sketch map of the random walk process

The generated sequence of the random walk process acquired in Fig. 3 is denoted as
(n1, sg1, sg2, n2 . . .). The first layer contains all nodes from each graph in the graph set
G, while the second layer includes all rooted subgraphs. The structural similarities of
nodes are represented via the calculation of similarities of nodes’ rooted subgraphs. In
the random walk process, each node in the node layer and each rooted subgraph in the
subgraph layer will be start point and do the random walk process. The random walk
process is performed to generate a fixed-length sequence and repeat the process multiple
times. The number of walks performed from every start point and the length of each step
will be taken as hyper-parameters to control the scale of context generated. The random
walk process can be described in three conditions:

1. Jump from the node layer to rooted subgraph layer
The transition probability of skipping from node layer layern to rooted subgraph

layer layersg is 1. For node v of the node layer as the current node, the destination of
skipping will be chosen from all rooted graph sets that include node v. As defined in
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formula (2), the likelihood of skipping is inversely proportional to the sum of the node’s
degree sequence of the currently rooted subgraph. If the number of nodes in a subgraph
is smaller, or the degree of nodes is smaller, the structure of the root subgraph is simpler,
that is, the sum of the sequence elements of the sequence composed of the degree of each
node is smaller, then the probability of skipping to a rooted subgraph that contains node
v and relatively simple in structure is more significant and vice versa. The probability of
skipping from the node v of the node layer to rooted subgraph sg of the rooted subgraph
layer can be calculated from the formula:

playern→layersg (v, sg) = e−sum(s(Vsg))

M
(2)

The sum
(
s
(
Vsg

))
denotes the sum of the elements in the degree sequence of the

current node. The normalizing factor M is defined as:

M =
∑

sg′∈Γsg ,sg′ �=sg,v∈sg′
e
−sum

(
s
(
Vsg′

))

(3)

2. Jump from rooted subgraph layer to rooted subgraph layer
The structure of the rooted subgraph layer could be regarded as an undirected

weighted graph, in which weight represents the transition probability in the randomwalk
process. It is defined by structural similarities. In rooted subgraph layer, the transition
probability is defined as followed:

p(sg1, sg2) = e−f (sg1,sg2)

Z
(4)

Z is the normalizing factor defined as:

Z =
∑

sg∈Γsg ,sg �=sg1

e−f (sg1,sg) (5)

The more similarity sg1, sg2 share, the smaller the similarity distance f (sg1, sg2)
will be, and synchronously, the probability of jump probability p(sg1, sg2) grows.

3. Jump from rooted subgraph layer to node layer
The likelihood of skipping from rooted subgraph layer to the node layer is the hyper-

parameter q. The skipping destination is a random node from all nodes contained in the
current subgraph. For each node in the current subgraph, the probability is equal.

The context acquired from the random walk above and context from the process of
rooted subgraph generation are merged as the context of biased-graph2vec.

Model Construction Based on Rooted Subgraphs. Every rooted subgraph in the
rooted subgraph set is correspondingly fitted into word2vec as a word while graph
set D = {d1, d2, . . . , dN } as the document. Applying the word2vec model and rep-
resentation in a lower dimension of a graph and rooted subgraph in the same vector
space is obtained. For that, the vocabulary size of the rooted subgraph is often relatively
large. Applying negative sampling technology could effectively reduce the amount of
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calculation. Biased-graph2vec uses SGD (Stochastic Gradient Descent) to optimize the
parameters of the model.

The low dimension representation acquired could be applied to the following tasks.
Moreover, it is convenient to use the traditionalmachine learning algorithm. For example,
in graph classification tasks, we can directly feed the acquired vectors into classifying
algorithms like SVM. In graph clustering tasks, the vectors obtained can be used as the
input of clustering algorithms like K-means.

4 Experiments

4.1 Experimental Settings

Experimental Data. The six open benchmark data sets used in the experiment from
the field of biochemistry are Enzymes, Mutag, Nci1, Nci109, Proteins, and Ptc. Table 1
below shows the statistics of the data sets. The six data sets are all multi classification
data, and their classification standards range from different protein structures to whether
they cause cancer to experimental mice, including multiple classification standards in
structure and function. In this experiment, the graph representation ability of the model
is proved by the classification task experiment under different classification standards
on six datasets.

Table 1. Statistics of the graph sets

Data sets Enzymes Mutag Nci1 Nci109 Proteins Ptc

Number of samples 600 188 4110 4127 1113 344

Average degree 33.5 17.9 29.8 29.6 39.1 25.5

Graph label 7 2 2 2 2 2

Node label 44 7 37 38 3 19

The Enzyme contains proteinic structures from enzymes of 6 kinds, moreover, 100
protein structures per kind. Mutag contains 188 structures of compounds classified and
separately labeled according to their capability of inducing a certain kind of bacteria
mutation. Ptc contains 344 compound structures classified and labeled by the fact of
whether they are carcinogenic to mice. Protein has 1113 amino acids’ second-level
structures. Ncil andNcil109 contain compounds related to cancer cell researching,which
respectively have the sample numbers of 4110 and 4127.

Base Line Methods. The baseline methods apply the subgraph2vec, graph2vec algo-
rithms, and kernel method WL, which have been mentioned in content-related sections
of the paper.

Subgraph2vec [3] aims at the disadvantage that the substructure of the graph kernel
method is entirely independent. It takes graph’s substructures as words in the text while
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the graph as the document then applies a random walk and word embedding model
to learn the representation of subgraphs. The algorithm applies the labeling process of
the WL method to generate rooted subgraphs. Meanwhile, it modified the skip-gram
model of the word2vec algorithm to make its inputting parameters able to suit vectors
of indeterminate length.

Graph2vec [13] universally learns the representation of both graphs and substructures
in the same characteristic space. The algorithmhas two stages, first ofwhich is to generate
the rooted subgraphs, the second is to embed the vector of every rooted subgraph via
doc2vec. The difference between the algorithm and subgraph2vec is that the model used
in the second stage is different.

Weisfeiler-Lehman (WL) kernel [6] designs graph kernel algorithm from character-
istics of the rooted subgraph. Compared with others, this is a better way to capture the
characteristics of the graph itself.

In the experiment, the dimension of the vectors is uniformly set to 256. The length of
the randomwalk sequence of biased-graph2vec and graph2vec is fixed to 10. The rooted
subgraphs generatedwith theWLmethod have amaxdepth of 2, and the hyper-parameter
of biased-graph2vec, q, is 0.3.

Evaluation Methodology. This section evaluates the effectiveness of the model with
classification tasks. We use the accuracy rate as an evaluation indicator, which is to
classify the nodes from their representations and evaluate the accuracy of the result.
Process of calculation is as followed:

The vector representation of each rooted subgraph and node is obtained by modeling
90% of the data while verifying the representation in the remaining 10%. This paper
applies SVM to classify the nodes of the remaining 10% to get accuracy. The formula
of calculation of the accuracy is:

acc = TP + TN

P + N
× 100% (6)

P is the number of positive examples, while the N means the number of negative cases.
Similarly, TP is the number of the positive examples that have been correctly classified
and TN is the number of negative examples in their supposed places.

Graph Classification. The experiment was repeated ten times because some of the data
sets were relatively small. In this paper, the average accuracy and standard deviation are
taken as the evaluation index of the classification effect.

The parameters in the experiment are chosen via the grid-search method. The length
of the random walk sequence is 15, and the walk has been performed five times. The
probability of skipping in biased-graph2vec, q, is 0.1, and the depth of acquiring rooted
subgraphs is 3.

Many results of the experiment are shown in Table 2.
In the multi-classification tasks, it is evident that the WL kernel method and the

subgraph2vec have a rather poor performance. Probably for that, the lack of a unified
model building of graphs and subgraphs leads to their vector representation emerging
in different vector spaces.
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Table 2. Accuracy of the experiment of graph classification

Data sets Ptc Proteins Nci109 Nci1 Mutag Enzymes

Biased-graph2vec 70.86 ± 2.40 77.17 ± 4.40 71.82 ± 1.35 72.02 ± 2.33 88.42 ± 6.25 77.50 ± 6.90

WL 58.78 ± 4.91 76.07 ± 1.16 69.93 ± 3.58 70.03 ± 1.35 67.11 ± 8.32 32.78 ± 8.34

Subgraph2vec 55.92 ± 9.01 75.18 ± 1.47 70.07 ± 3.21 71.14 ± 2.94 65.79 ± 8.89 44.00 ± 6.3

Graph2vec 68.10 ± 7.96 76.25 ± 4.75 67.19 ± 1.61 70.60 ± 1.60 86.47 ± 7.3 72.92 ± 4.52

In subgraph2vec, the output of the model is the representation of the substructure in
the feature space; a similarity matrix of substructures is needed to get the representation
of the graph at its final stage. Based on model doc2vec, biased-graph2vec uniformly
does the model construction of both substructures and graphs. In this multi-classification
experiment, doc2vec-based methods perform better.

In the experiment, biased-graph2vec ismore effective than the other baselinemethods
in six data sets. It proves that compared with graph kernel method and method, ignoring
the similarity among long distanced substructures, biased-graph2vec is more effective.

5 Summary

This paper proposed biased-graph2vec, the graph embedding model based on structural
characteristics of rooted subgraphs, improved based on the vulnerability that existing
projects have not done practical acquirement of the structural similarity of substructures.
By building a suitable walkingmodel for the substructures, biased randomwalks are per-
formed to generate a moderate context. After that, the low dimensional representations
of graphs and substructures are acquired via word embedding model. The experiment
of graph classification proves the effectiveness of the model.

Directions of future research:

(1) For that comparedwith other graph embeddingmodels, the biased-graph2vecmodel
adds an additional part, that is, context generation, which leads to more computing
work in the model. Next, we will further study how to reduce the computing cost.

(2) In the next step, we will also find out whether other effective fine-grained struc-
tures will not increase the calculation amount and can capture the similarity of
substructures more precisely.
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