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Abstract. A key advantage of cable-driven parallel robots, compared
to other robot types, is their large workspace. Despite this fact, experi-
ments in previous works have shown that cable-driven parallel robots
often cannot fully realize their theoretically estimated workspace in
practice.

To remedy this shortcoming, a new inverse kinematic code is devel-
oped which considers the previously neglected effects of both cable sag-
ging and pulleys. For a realistic exemplary robot, the new kinematic code
yields a 19.5% larger wrench-feasible workspace volume for the catenary-
pulley model than previous codes. This result shows that the effects of
cable sagging and pulleys should be considered in the kinematic codes,
especially for large cable-driven parallel robots.
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Wrench-feasible workspace · Cable sagging · Pulley model

1 Introduction

Many works in the field of cable-driven parallel robots (CDPR) study their
workspace as its large size distinguishes them from other types of robots [8,11].
The kinematic codes used to control CDPR are commonly based on the standard
geometric model [8, section 3.2], which assumes that their cables are straight
lines and neglects the effects of their weight and pulleys. Research by Kraus [4,
p. 91] and Riehl et al. [10] shows that in practice these simplifications decrease
the workspace volume and positioning accuracy of CDPR. To improve these
qualities, Kozak et al. [3] apply the catenary model to the cables of CDPR and
Goutfarde et al. [1] analyze its combination with a pulley model. Merlet [5]
presents an algorithm for finding all solutions of the inverse kinematic problem
for the catenary model.

To apply these models on a CDPR in practice, this work introduces a new
inverse kinematic code for redundantly constrained CDPR based on a combined
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catenary-pulley model. This code computes feasible and continuous cable lengths
that can be used by a future CDPR controller.

The structure of this work is as follows: Sect. 2 introduces the necessary
definitions and assumptions. The catenary-pulley model is derived in Sect. 3.

Based on this model, Sect. 4 develops a new inverse kinematic code. Section 5
evaluates the new code for an exemplary CDPR and compares it to a state-of-
the-art one. Finally, Sect. 6 provides the conclusion and outlook.

2 Definitions and Assumptions

A CDPR consists of m ∈ N cables which are used to manipulate the pose
(r,R) ∈ SE3 of its platform. Each cable i ∈ {1, ...,m} originates from a winch
at a fixed point ai and is wound around a pulley of radius r, with a panning
axis ei. The weight of the cable segment on the pulley is neglected. It is assumed
that the pulley is statically balanced around its panning axis ei and that there
is no friction in this axis or between the cable and the pulley. The other end
of each cable i is connected to the platform at the distal endpoint bi in the
platform coordinate frame Kp. Its location r + Rbi in the world coordinate
frame K0 depends on the platform’s position r ∈ R

3 and orientation R ∈ SO3.
The suspended cable between the pulley and the platform is modeled according
to Irvine’s catenary model [2] with the parameters: weight force density µg,
Young’s modulus E, and cross-section area A.

Figure 1 illustrates the catenary-pulley model for a cable of a CDPR. All
symbols and force vectors associated with this model are highlighted in blue
and, for better readability, the cable’s index i is omitted from them.
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Fig. 1. Illustration of the catenary-pulley model for cable i
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An unstretched cable length l0 is considered feasible for a given platform
pose (r,R) if the resulting cable force ‖Fc‖ in the first section of the cable, at
the pulley, lies within the feasible interval ‖Fc‖ ∈ [fmin, fmax]. This condition is
imposed on the cable’s force near the winch Fc instead of at the platform Fp,
since in practice the maximal cable force fmax of a CDPR is usually constrained
by its winches or motors and not the cables themselves.

3 The Catenary-Pulley Model

The catenary-pulley model determines the location of the distal endpoint
di (Fc, l0) of a cable i, which is attached to the platform, in K0 as a func-
tion of its force Fc and unstretched cable length l0. Two sections of the cable
are distinguished, which contain the unstretched cable lengths lI0 and lII0 with
l0 = lI0 + lII0 .

The first section is wound on the pulley between the points ai and c, as
shown in Fig. 1. The force vector Fc defines the direction in which the cable
tangentially leaves the pulley at the point c and its norm ‖Fc‖ represents the
force in the cable at this point. The plane in which the pulley lies is spanned by
its panning axis ei and the orthogonalized direction e⊥

c = Fc−〈Fc,ei〉ei

‖Fc−〈Fc,ei〉ei‖ of the

cable force Fc.
Using these axes, the location of c can be expressed in K0 as

c = ai + re⊥
c +

r

‖Fc‖
(〈
Fc, e⊥

c

〉
ei − 〈Fc, ei〉 e⊥

c

)
. (1)

The wrapping angle β of the cable around the pulley from ai to c is given by

β = atan2
(〈
Fc, e⊥

c

〉
, 〈Fc, ei〉

)
. (2)

Due to the assumption of no friction between the pulley and the cable, the force
‖Fc‖ in the cable on the pulley is constant. The unstretched cable lengths of the
first lI0 and second lII0 cable sections are calculated as

lI0 =
βr

1 + ‖Fc‖
EA

and lII0 = l0 − lI0 . (3)

The vertical component of the cable force vector at the platform Fp = Fc +
μglII0 ez accounts for the weight μglII0 of the cable in the second section, i.e. the
catenary.

The horizontal cable force components are denoted as Fx,y =
[〈Fc, ex〉 〈Fc, ey〉 0

]T. Hereby, ex, ey and ez denote the axes of K0. Finally,
the location of the distal endpoint di (Fc, l0) can be calculated in K0, using
Irvine’s catenary model [2], as

di (Fc, l0) = c +
lII0

2EA
(Fp + Fc)

+
1
μg

(
log

(‖Fp‖ + 〈Fp, ez〉
‖Fc‖ + 〈Fc, ez〉

)
Fx,y +

(‖Fp‖ − ‖Fc‖
)
ez

)
.

(4)



426 M. Fabritius and A. Pott

With this expression, the loop closure equation of the catenary-pulley model
for cable i is formulated as

di (Fc, l0) − (r + Rbi) = 0 ∈ R
3 . (5)

The new inverse kinematic code, which is introduced in the next section, requires
this equation system to be solved for a feasible unstretched cable length l0 and
direction (θ, ϕ) of the cable force Fc, while its norm ‖Fc‖ is fixed. For this
purpose, the cable force is expressed in spherical coordinates Fc =

[‖Fc‖ θ ϕ
]T.

Equation (5) can then be solved for (l0, θ, ϕ) using numerical methods like
Newton-Raphson. Once a solution is found, it is necessary to calculate how the
cable forces at the pulley Fc and the platform Fp change when the unstretched
cable length l0 is modified by the winch. These relationships are captured by
the partial derivatives ∂Fp

∂l0
and ∂Fc

∂l0
. They are derived by taking the derivative

d
dl0

of the loop closure equation with the constrain that the platform pose (r,R)
remains constant:

0 =
d

dl0
(di (Fc, l0) − (r + Rbi)) =

d
dl0

di (Fc, l0) . (6)

This can be reformulated in terms of partial derivatives of di (Fc, l0)

0 =
d

dl0
di (Fc, l0) =

∂di (Fc, l0)
∂Fc

∂Fc

∂l0
+

∂di (Fc, l0)
∂lII0

∂lII0
∂l0

. (7)

With the relationship ∂lII0
∂l0

= 1 obtained from Eq. (3), the partial derivatives of
the cable forces can be expressed as

∂Fc

∂l0
= −

(
∂di (Fc, l0)

∂Fc

)−1
∂di (Fc, l0)

∂lII0
and

∂Fp

∂l0
=

∂Fc

∂l0
+ μgez . (8)

In the following section, these expressions are used to linearize the catenary-
pulley model.

4 An Inverse Kinematic Code for the Catenary-Pulley
Model

Inverse kinematic codes for CDPR compute feasible cable lengths l0 for a given
platform pose (r,R) and external wrench wext. The inverse kinematic code devel-
oped in this section is based on the definition of feasible cable lengths from
Sect. 2.

It is aimed at redundantly constrained CDPR and inspired by Pott’s force
distribution method [7], which uses the least squares solution of the wrench
equilibrium equation for the standard geometric model [8, Eq. 5.9 on p. 167] of
CDPR as a starting point to calculate feasible cable forces. In contrast to the
setting of the standard geometric model, the wrench equilibrium equation for the
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catenary-pulley model is nonlinear in the cable forces. Therefore, this kinematic
code linearizes the cable wrench wi of each cable i around the unstretched cable
lengths li0, that are obtained by solving the catenary-pulley model as described
in Sect. 3 for the fixed cable force norm ‖Fc‖ = 1

2 (fmin + fmax) in the middle
of the feasible interval [fmin, fmax]. The resulting wrench equilibrium equation
is linear in the additional cable length parameters Δli0:

0 = wp + wext +
m∑

i=1

wi +
m∑

i=1

∂wi

∂l0
Δli0 . (9)

Hereby, wext and wp denote the wrenches on the platform due to external influ-
ences and the platform mass mp, respectively. The wrench of each cable i and
its derivative are given by

wi = −
[

Fp

Rbi × Fp

]
and

∂wi

∂l0
= −

[
∂Fp
∂l0

Rbi × ∂Fp
∂l0

]

. (10)

The vectors Fp and ∂Fp
∂l0

are calculated from the solution of the catenary-
pulley model as described in Sect. 3. The parameters Δli0 are determined as the
least squares solution of Eq. (9).

Similarly, as in [7], the cable lengths li0 + Δli0 are further modified to comply
with the force limits fmin and fmax. It is checked whether for all cables i ∈
{1, ...,m}, the cable force at the pulley lies within the feasible interval

∥
∥
∥
∥Fc +

∂Fc

∂l0
Δli0

∥
∥
∥
∥ ∈ [fmin, fmax] . (11)

If this is not true for all cables i ∈ {1, ...,m}, the cable j whose force is the
furthest outside of the feasible interval is selected. Its force is reset to the limit
which it previously violated, e.g. fmax, by recalculating Δlj0 as a root of the
quadratic equation

f2
max =

∥
∥
∥
∥Fc +

∂Fc

∂l0
Δlj0

∥
∥
∥
∥

2

=
∥
∥
∥
∥

∂Fc

∂l0

∥
∥
∥
∥

2 (
Δlj0

)2

+ 2
〈
Fc,

∂Fc

∂l0

〉
Δlj0 + ‖Fc‖2 .

(12)

Since the cable force previously violated the force limit, this quadratic equation
must have two distinct, real roots. Regardless of which limit was violated, Δlj0 is
set to be the larger or smaller root of Eq. (12) depending on whether the sign of〈
Fc,

∂Fc

∂l0

〉
is positive or negative. Based on this new value of Δlj0, the wrench wj

in Eq. (9) is updated according to Eq. (10) with the new cable force at platform
Fp + ∂Fp

∂l0
Δlj0. The term containing Δlj0 is subsequently removed from Eq. (9) as

the length and force of cable j are now fixed. A new least squares solution for
the remaining parameters Δli0 with i ∈ {1, ...,m} \ {j} is calculated.

This procedure of updating wj for the cable j that violates the condition from
Eq. (11) the most, removing the corresponding term Δlj0 from Eq. (9) and com-
puting a new least squares solution of the wrench equilibrium for the remaining
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cable parameters Δli0, is repeated until either Eq. (11) is satisfied for all cables,
or the solution for the remaining six parameters Δli0 is infeasible.

To reduce the error due to the linearization of the catenary-pulley model,
the steps, which are described until here, are repeated a second time for the
remaining parameters Δli0. Hereby the catenary-pulley model of each such cable
i is recalculated for the fixed cable force norm of either

∥
∥
∥Fc + ∂Fc

∂l0
Δli0

∥
∥
∥ or a limit

of the feasible interval [fmin, fmax] if it was violated.
If Eq. (11) is now satisfied for all cables, the inverse kinematic code has found

feasible cable lengths li0 + Δli0 for the pose (r,R) and external wrench wext.
Otherwise, it failed and considers the given pose unfeasible.

5 Comparison to a State-of-the-Art Inverse Kinematic
Code

In this section, the new inverse kinematic code is compared to a state-of-the-
art code in terms of the resulting workspaces and cable forces for an exemplary
CDPR.

The state-of-the-art inverse kinematic code is a combination of the force
distribution method from [7] and the pulley kinematics from [6].

The workspace of the CDPR is calculated by composing the new or the state-
of-the-art inverse kinematics with a forward kinematics of the catenary-pulley
model.

A platform pose (r,R) is within the workspace if, for the given external
wrench wext, the resulting cable forces are feasible according to the definition
from Sect. 2.

As part of this work, all kinematic codes and the following comparison are
implemented in WireX [9], an open source analysis and design software for
CDPR.

The exemplary CDPR consists of m = 8 cables described by the catenary-
pulley model with parameters resembling steel cables: μg = 6 N

m , EA = 7 ·
106 N, r = 0.25m. The geometry of the cable robot {ai,bi}m

i=1 is given by
all sign combinations of the vectors ai =

[±5.0m ±6.0m ±2.5m
]T and bi =

[±0.5m ±0.3m ∓0.4m
]T. The panning axes of the pulleys are ei =

[
1 0 0

]T

for i ∈ {1, 2, 5, 6} and ei =
[−1 0 0

]T for i ∈ {3, 4, 7, 8}. The cable force limits
are fmin = 1000N and fmax = 10000N. The external wrench wext is set to
be zero. The wrench induced by the platform’s weight force mpg = 8000N is
wp =

[
0 0 −mpg 0 0 0

]T, since its center of mass is at the origin of Kp.
The workspace of the new inverse kinematics code for this CDPR has a vol-

ume of 157.2m3 and fully contains the one of the state-of-the-art code, which has
a volume of 131.6m3. This 19.5% increase can be attributed to the consideration
of the nonlinear effects of cable sagging and pulleys.

Figure 2 shows a slice of the workspaces of the new (yellow) and the state-
of-the-art code (green) in the XY-plane.
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Fig. 2. Workspace comparison in the XY-plane

Along the black line, which starts at the center of the robot geometry and
lies within the plane, the cable forces of the new and the state-of-the-art code
are visualized in Fig. 3 in yellow and green, respectively.

Fig. 3. Evolution of cable forces along a straight line

It can be observed that the new inverse kinematic code produces continuous
cable lengths and forces. From the start until the 2.4m mark, its forces are
similar to those of the state-of-the-art code From that point on, one cable force
of the new code is set to the force limit fmax. At 3.2m, the forces of the state-
of-the-art code become unfeasible while the new code continues to find feasible
cable lengths until a distance of 4.6m from the center.
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The averaged computation time for one evaluation of the workspace criterion
is 5.7 · 10−3 s for the new code and 4.0 · 10−3 s for the state-of-the-art code, as
measured on a laptop with an Intel R© CoreTM i5-7440HQ CPU running at 2.80
GHz.

The new code is slower because it requires solving the nonlinear catenary-
pulley model for each cable as described in Sect. 3.

6 Conclusion and Outlook

This work presents a new inverse kinematic code for redundantly constrained
CDPR that considers the effects of cable sagging and pulleys. For an exemplary
CDPR, the new code yields continuous cable forces and a 19.5% larger workspace
volume than a state-of-the-art code. This shows that considering the catenary-
pulley model in the kinematic codes of CDPR can substantially increase the size
of their workspace.

Future research could prove that the new code is indeed continuous as
observed in this work. Furthermore, it should be implemented on a CDPR to
evaluate its performance in practice.
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