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v

Ageing is an inevitable part of life and may soon become a social, economic 
and health problem around the world. There is an ever-increasing proportion 
of individuals in the advanced age category, who have a higher risk of devel-
oping age-related disorders, such as type II diabetes mellitus, Alzheimer’s 
disease, cancer, cardiovascular disorders and sarcopenia or frailty. New thera-
peutic approaches are needed to decrease or slow the effects of these diseases. 
The application of -omic technologies such as genomics, transcriptomics, 
proteomics and metabolomics has significantly advanced our understanding 
of disease in multiple medical areas as these allow the analysis of multiple 
molecular networks simultaneously to provide a more integrated view of 
health and disease pathways, and can even be used to monitor new therapeu-
tic approaches. It is hoped that emerging data from these analyses will lead to 
the identification and development of novel drug targets to increase the 
human healthspan. In turn, this will lead to new therapeutic strategies and 
drug development projects by the pharmaceutical industry.

This book presents a series of reviews describing studies, which have 
resulted in identification of potential new drug targets for age-related disor-
ders. Much of this information has come from -omic comparisons of healthy 
and disease states or from testing the effects of potential new therapeutic 
approaches. The authors in this series come from the six habitable continents 
from countries such as Australia, Brazil, Canada, France, Germany, India, 
Iran, Iraq, South Africa, South Korea, Thailand, United Kingdom, United 
States of America, Ukraine, Uruguay and Vietnam. This highlights the grow-
ing interest in this topic throughout the world.

Chapter 1 presents an overview of new therapeutics and biomarkers 
directed towards increasing the human healthspan. Chapter 2 describes new 
methods targeting metabolism in the treatment of cancer. Chapter 3 reviews 
monoclonal antibody-based treatments in non-small cell lung cancer. Chapter 
4 describes the pathogenic metabolic signature in mitochondria that occurs in 
mitochondria. Chapter 5 covers the targeted treatment of fibromyalgia using 
coenzyme Q10 supplementation. Chapter 6 reviews the role of gut microbiota 
in the prevention and progression of multiple sclerosis. Chapter 7 summa-
rizes the therapeutic applications of long non-coding RNAs in head and neck 
cancer. Chapter 8 describes studies which have found genotoxic effects of 
selective serotonin reuptake inhibitors in the treatment of depression. Chapter 
9 covers the methods of circulating tumour cell isolation and detection, and 
the therapeutic strategies targeting these cells in different cancer types. 
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Chapter 10 describes the telomerase inhibitory effects of the natural com-
pound curcumin in relation to its anti-cancer activity. Chapter 11 summarizes 
numerous experimental and analytical data that support the health and lon-
gevity benefits of aspirin treatment by affecting pro-longevity pathways. 
Chapter 12 describes methods involved in the targeting of stem cells as a 
treatment in diseases marked by chronic inflammation. Chapter 13 talks 
about new therapeutic approaches in Alzheimer’s disease using nano-drug 
delivery systems. Chapter 14 describes the effects of age on stress outcomes 
in a large study of critical care nurses. Chapter 15 describes the use of viral 
vectors for delivery of gene-based therapeutics in neurodegenerative disor-
ders. Chapter 16 presents the targeting of adipose stem cells to increase lon-
gevity and the healthspan. Finally, Chapter 17 describes the use of proteomic 
methodologies in the identification of new drug targets in psychiatric and 
neurodegenerative disorders.

The book will be of high interest to researchers in the areas of ageing and 
chronic disease, as well as to clinical scientists, physicians and the major drug 
companies since it gives insights into the latest ideas and technologies 
enabling progress in the area of healthy ageing. It will provide important 
information on disease mechanisms related to the ageing process, as each 
chapter will be presented in the context of specific chronic diseases or differ-
ent therapeutic strategies.

Sao Paulo, Brazil Paul C. Guest 
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New Therapeutic Approaches 
and Biomarkers for Increased 
Healthspan

Paul C. Guest

Abstract

Healthcare costs have increased in developing 
countries over the last few decades, mostly 
due to the escalation in average life expec-
tancy and the concomitant increase in age- 
related disorders. To address this issue, 
widespread research is now being undertaken 
across the globe with the aim of finding a way 
of increasing healthy aging. A number of 
potential interventions have already shown 
promise, including lifestyle changes and the 
use of natural products or pharmaceuticals 
that may delay the onset of diseases associated 
with the aging process. In parallel, a number 
of potential biomarkers have already been 
identified that can be used for assessing risk of 
developing age-associated disorders and for 
monitoring response to therapeutic interven-
tions. This review describes the most recent 
advances towards the goal of achieving health-
ier aging with fewer disabilities that may lead 
to enhanced quality of life and reduced health-
care costs around the world.

Keywords

Life expectancy · Age-related diseases · 
Diabetes · Cancer · Frailty · 
Neurodegenerative conditions · Intervention · 
Lifestyle · Pharmaceuticals · Biomarkers

1.1  Introduction

After maturity is reached, a progressive decline 
in physiological functions occurs of all higher 
organisms over time. This aging process is a 
major risk factor for both healthspan and lifespan 
as it contributes to increased susceptibility to dis-
eases, such as cardiovascular disorders, diabetes, 
cancer, frailty, and neurodegenerative conditions. 
It follows that delaying the aging process would 
lead to longer healthier lives. The first stage 
towards this goal is the identification of the main 
environmental and genetic factors associated 
with aging and morbidity [1, 2]. The next phase 
would be the identification of biomarkers associ-
ated with aging and disease processes which, in 
turn, would lead to identification of drug targets, 
leading to novel therapeutic avenues of interven-
tion [3].

Currently, many countries of the world are now 
experiencing a change towards an increasing pro-
portion of aged individuals, due to increased life 
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expectancies from lifestyle adoptions and constant 
advancements in medicine. This can be seen easily 
by the change in shape of pyramid plots of various 
age groups from 0 to 100+ year- olds throughout 
the world from the years 1990 to 2020 and in pro-
jections to the year 2050 (Fig. 1.1) [4]. This shows 
a decreased proportion of individuals in the lower 
age groups to increased levels near the top of the 
pyramid. The highest proportions of centenarians 
(100+ year-olds), on a per capita basis, are local-
ized to the continents of North America and 
Europe, with Africa being startlingly low in com-
parison (Fig. 1.2a). On a country basis, the highest 
proportion of centenarians appears in Japan 
(Fig. 1.2b), which appears to be the fastest growing 
country in the world with respect to this population 
group. In fact, from 1990 to 2020, the population of 
Japanese centenarians increased by an incredible 
32-fold from 2397 to 78,636 individuals [4]. In all 
cases, the proportion of centenarians who are 
female exceeded that for males, consistent with the 
observation that females have an increased average 
lifespan compared to males [5–8].

At the time of writing (February 08, 2020), the 
longest-lived human was a French woman called 

Jeanne Calment who died on August 4, 1997, at the 
grand old age of 122 years and 164 days [9]. From 
the age of 109, Jeanne Calment was known to fol-
low a strict daily routine, consisting of an early rise 
(6:45 am), a long prayer, seated gymnastics (hand 
and leg flexions and extensions while wearing a ste-
reo headset), followed by a breakfast of coffee with 
milk and rusks. Besides having a robust appetite, 
she also consumed approximately 2 kg of chocolate 
per week with daily cigarettes and Port wine. The 
oldest person alive today is Kane Tanaka, who is 
118 years and 42 days old as of February 18, 2021 
[10]. Kane Tanaka still has a strong appetite, con-
sumes sweets, three cans of coffee each day, along 
with sodas and various nutritional drinks, and attri-
butes her very long life to faith in God.

Despite this information, the mystery of how 
these two women and other supercentenarians 
(110+ years-old) managed to live such long lives 
is not precisely known. Nevertheless, a number 
of studies have now been performed at the clini-
cal and preclinical levels which have begun to 
shed new light on this subject. This review 
describes some of the latest breakthroughs in this 
exciting field.

Percentage

6 4 2 0 2 4 6 4 2 0 2 4 6 4 2 0 2 4 6 
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Fig. 1.1 Pyramid plots of various age groups from 0 to 100+ years-olds in the World from 1990 to 2020, with projec-
tions to the year 2050
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1.2  Body Composition

1.2.1  Adiposity

Overweight and obesity are risk factors for early 
mortality, and the prevalence of these conditions 
is on the rise [11]. In 2016, the World Health 
Organization (WHO) estimated that more than 
1.9 billion adults were overweight [body mass 
index (BMI)  =  25–30  kg/m2] and 650 million 
were classified as obese (BMI > 30 kg/m2) [11]. 
A meta-analysis of 239 prospective studies of 
10,625,411 participants in Asia, Australia and 
New Zealand, Europe and North America found 
that all-cause mortality was lowest at normal 
body mass indices (18.5–25  kg/m2), slightly 
higher below this range, and increased progres-
sively in the overweight (25–30 kg/m2) and obe-
sity (>30  kg/m2) classes [12]. However, these 
findings appear to conflict with those of another 
study which examined the association between 
BMI as a continuous variable and all-cause mor-
tality in 4565 Geisinger Rural Aging Study par-
ticipants aged 74.0 ± 4.7 years over an average 

11-year follow-up period [13]. This study found a 
U-shaped association between mortality and 
BMI with a lower risk found for individuals who 
were either under-weight, overweight, or obese, 
compared to those with a normal-range BMI of 
18.5–25  kg/m2. Possible explanations for the 
findings of the second study include the possibil-
ity that excess fat could provide metabolic 
reserves during illness [14], lower fracture risk 
during falls [15], or surgeons may be more dili-
gent or take more care with overweight or obese 
individuals during surgery [16]. However, in the 
case of both studies, body composition measure-
ments, such as abdominal adiposity, waist:hip 
ratio, and muscle mass may be more appropriate 
measures than BMI [17, 18]. Another possible 
explanation is that the second study excluded 
deaths that occurred during the first two to five 
years of follow-up, and this could have removed 
data which might have affected the overall 
results.

The proposed U- or J-shaped survival curve in 
relation to BMI has been termed the obesity para-
dox. However, most of the studies which have 

Fig. 1.2 Proportions of centenarians (100+ years-olds) per capita in (a) continents and (b) selected countries of the 
world

1 Healthspan Biomarkers



4

supported the existence of this paradox only took 
BMI into account as the measure of obesity. BMI 
does not consider other potentially useful param-
eters such as body composition and cardiovascu-
lar fitness. Although BMI has been used widely 
as a predictor of health risk, waist circumference 
might be a better indicator given its closer link 
with harmful visceral fat [19]. Aging is associ-
ated with changes in body composition including 
an increase in adiposity and reduced muscle 
mass. Higher fat in the abdominal region is asso-
ciated with higher risk of age-related diseases 
[20–23]. A 5-year follow-up study of 58,609 
individuals in the age range of 65–74  years at 
baseline found that a large waist circumference 
was associated with increased mortality across 
all BMI categories, compared to those with a 
small waist in the ‘healthy’ (20–25 kg/m2) BMI 
category [24]. Thus, BMI may incorrectly clas-
sify individuals in terms of healthy or unhealthy 
bodyweights as it does not allow an assessment 
of adiposity. A study of 13,601 subjects aged 
20–79.9  years from the Third National Health 
and Nutrition Examination Survey used bioelec-
trical impedance analysis to estimate percentage 
of body fat compared to BMI readings [25]. The 
bioelectrical impedance analysis showed that 
excess body fat was present in 50% of males and 
62% of females using the WHO reference stan-
dard for obesity (>25%, males; >35%, females). 
However, 21% of the males and 31% of the 
females were classified as obese when BMI was 

used as the measurement. Thus, more than half of 
males and females with excess body fat were 
misclassified using the BMI system.

1.2.2  Muscle Mass

The composition of the body inevitably changes 
with aging, with a gradual loss of lean mass and 
a shift to increased fat mass [26]. A young person 
of 22-years-old consists of an average of 48% 
muscle and 19% fat, whereas the muscle mass is 
reduced to 25% and the fat increased to 35% in a 
78-year-old person (Fig. 1.3) [27]. A review from 
2012 found that the median loss in muscle mass 
over the entire lifespan was 0.37%/year in 
females and 0.47%/year for males [28]. The same 
study showed that this was increased to 0.64–
0.70%/year and 0.80–0.98%/year in 75+ year-old 
females and males, respectively. Furthermore, 
this atrophy can be worsened during periods of 
inactivity, as can occur with extended hospital 
bed rest [29–31]. This leads to a decline in 
strength and an increase in the risk for disabilities 
and age-related disease [32].

There is also a loss of weight in older adults 
which is most often due to a reduction of lean 
mass and this is associated with increased risk of 
mortality [33–35]. A computed tomography and 
dual x-ray absorptiometry analysis of 1803 men 
and women initially aged 70–79 years found that 
greater loss of thigh muscle relative to overall 

Fig. 1.3 Change in 
body composition with 
aging. NMFFM 
non-muscle fat-free mass
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weight change had a higher mortality risk com-
pared to persons with preservation of this muscle 
[36]. Another follow-up study analysed muscle 
quality of 511 people aged 50  years or older, 
using the ratio between knee-extension isokinetic 
strength and thigh muscle cross-sectional area 
[37]. The results showed that body composition, 
but not BMI, was associated with muscle quality 
decline. Therefore, the authors suggested that 
efforts to alter body composition in favour of 
decreased adiposity and increased lean mass 
would be sensible therapeutic approach. A more 
recent study published in 2019 employed mag-
netic resonance imaging (MRI) and dual-energy 
X-ray absorptiometry (DXA) to measure changes 
in thigh muscle in men and women aged an aver-
age of 71 years at baseline over a 5-year follow-
 up study [38]. The results showed an average 5% 
loss of muscle tissue in both males and females, 
and this was associated with higher baseline body 
fat in males only.

1.2.3  Therapeutic Approaches 
Targeting Body Composition

1.2.3.1  Resistance Exercise
Resistance exercise training has been used as an 
intervention tool to improve skeletal muscle 
cross-sectional area, strength and function, and 
thereby improve functional capacity and reduce 
disease risk in aged individuals [39, 40]. A 
10-week trial published in 1994 found that pro-
gressive resistance exercise training of 100 frail 
nursing home residents led to an increase in mus-
cle strength of approximately 113%, an increase 
in gait velocity of 12%, and increased 
 cross- sectional thigh area of 28% [41]. Two 
Brazilian studies on the effects of resistance 
training three times per week of females aged 60 
and over found that both short (30 min) and long 
(50 min) training sessions led to increased skele-
tal muscle mass compared to non-exercising con-
trols [42, 43]. However, only the 50-min session 
resulted in significantly increased strength and 
decreased fat mass. There have been many other 
studies conducted with mixed outcomes and 
cross- comparisons that have proven difficult due 

to study group heterogeneities, the different exer-
cise regimes used, and the varying outcome mea-
sures reported. In line with this, the International 
Sarcopenia Initiative has indicated that well- 
defined populations, standardized training meth-
ods, and common outcome measures are needed 
to allow more accurate comparisons across stud-
ies [44]. In addition, the duration of the exercise 
period should be for at least 3 months and super-
vised programmes should be initiated for elderly 
people residing in community care. A recent 
study of 25 people with a mean age of 57 years 
found that 1  year of heavy resistance training 
resulted in increased muscle strength and mass 
but had no effect on visceral fat mass [45]. It is 
possible that reductions in visceral fat require 
other approaches for people in this age group. 
Another recent study of aged males with sarcope-
nia found that a 28-week resistance training pro-
gramme, in combination with protein, vitamin D, 
and calcium supplementation, led to an improved 
sarcopenia Z-score, with increased skeletal mus-
cle mass and hand grip strength, compared to the 
inactive control group [46].

1.2.3.2  Dietary Methods
In the elderly, sarcopenia may result from 
increased muscle protein breakdown and/or 
decreased basal muscle protein synthesis [47]. A 
few studies have suggested that older adults on 
diets containing 0.8 g protein/kg/day or less may 
not be receiving sufficient amounts of this nutri-
ent [48, 49]. In support of this idea, a study of 
70–79 year-old community-dwelling older adults 
found that those individuals receiving 1.2 ± 0.4 g 
protein/kg per day lost or maintained a higher 
proportion of lean mass compared to those on 
0.8 ± 0.3 g protein/kg per day [50]. This finding 
was supported in a more recent systematic review 
[51]. Other investigations have found that distri-
bution of the protein intake throughout the day in 
approximately equal portions may also be impor-
tant factor in maintaining a favourable anabolic 
rate [52, 53]. In addition to protein, studies have 
found that diets enriched in n-3 long-chain poly-
unsaturated fatty acids (LCPUFAs) may improve 
muscle function, as shown by positive effects of 
these fats on measures of grip strength, knee- 

1 Healthspan Biomarkers
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extension strength, and muscle size [54]. Another 
study found that resistance training combined 
with an LCPUFA-rich diet favoured skeletal 
muscle hypertrophy in older females [55].

A systematic review of randomized control 
trials in elderly subjects found that vitamin D 
supplementation had a beneficial effect on lower 
leg muscle strength, body sway, and/or physical 
performance, although other studies reported no 
benefit [56]. However, a more recent meta-study 
found some evidence for additive effect of resis-
tance training and vitamin D supplementation on 
the improvement of muscle strength in older 
adults, compared to vitamin D supplementation 
alone [57]. In addition, another review found that 
vitamin D supplementation (800–1000  IU/day) 
can improve muscle function, particularly in 
cases where vitamin D levels are low [58].

1.2.3.3  Pharmaceuticals and Natural 
Compounds

Coffee drinking has become a contender for 
healthy aging with known benefits against disor-
ders such as cognitive impairment [59] and car-
diovascular disease [60]. In addition, coffee 
drinking has been shown to be associated with 
lowering all-cause mortality in population stud-
ies [61, 62]. A recent meta-study identified 40 
investigations of over 3.8 million subjects and 
found an inverse association between coffee con-
sumption and all-cause mortality, cardiovascular 
disease, and cancer, with consumption of 3.5, 
2.5, and 2 cups/day, respectively [63]. Any addi-
tional intake of coffee had no further effect on 
mortality and the effects were not modified by 
age, body weight, alcohol, smoking, or caffeine 
content. The active ingredients in coffee that 
appear to be associated with the protective effects 
are caffeine and certain polyphenol compounds 
which inhibit the mammalian target of rapamycin 
(mTOR) and reduce fat accumulation, respec-
tively [64].

Metformin is an anti-diabetic drug with anti- 
hyperglycemic effects that are produced by 
reduction of hepatic glucose production and 
increased insulin sensitivity in peripheral tissues 
such as liver, skeletal muscle, and adipose tissue 
[65]. A clinical study found an anti-aging effect 

in diabetic patients on metformin with 7% lower 
all-cause mortality compared to non-diabetic 
controls [66]. Previous studies have suggested 
that metformin may have positive effects on a 
number of targets implicated in the aging process 
such as inhibition of inflammation, promotion of 
autophagy, and reduction of reactive oxygen spe-
cies [67]. Furthermore, a 2-year double-blind 
clinical study of overweight patients with 
impaired glucose tolerance found that those indi-
viduals who received metformin had significant 
reductions in body weight and waist circumfer-
ence in comparison to a reduced progression to 
diabetes [68]. However, it should be stressed that 
the potential anti-aging and anti-obesity benefits 
of metformin still requires further scrutiny.

1.2.3.4  Combination Approaches
A meta-analysis of studies which investigated 
body composition, metabolic health, and physi-
cal performance in individuals with sarcopenic 
obesity found that aerobic exercise decreased 
body weight and fat mass, whereas resistance 
exercise decreased fat mass and increased grip 
strength [69]. The same study found that a com-
bination of aerobic and resistance exercise 
decreased fat mass and improved walking speed, 
although a low calorie diet provided no extra ben-
efits in the case of either exercise regime. Another 
recent review found that a high protein diet can 
increase weight loss and preserve lean body mass 
by decreasing the rate of muscle protein break-
down [70]. Furthermore, consumption of dairy- 
specific protein increases insulin sensitivity by 
stimulating insulin release, fat oxidation, and the 
rate of muscle protein synthesis in aged adults 
and such effects are enhanced when a resistance 
exercise program is incorporated into the regime. 
A meta-analysis on frailty indices in older adults 
revealed that the combination of protein supple-
mentation with multi-component exercise had 
significant positive effects on frailty status, and 
the resistance exercise led to an increase in lean 
mass, muscle strength, and physical mobility 
[71]. In contrast, another study found that a 
2 day/week resistance exercise programme com-
bined with a low-dose protein and micronutrient 
diet led to significant improvements in muscle 
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mass [72]. However the effects on physical per-
formance in the combined exercise/diet pro-
gramme were not significantly different compared 
to resistance training alone. Thus, further work 
on the types of exercise and protein/micronutri-
ent supplementation is required to establish 
which programmes will have the most benefit on 
body composition and on reducing the risk of 
age-related disorders.

1.3  Biomarkers

Since aging is a major risk factor for most age- 
related diseases, there arises a need for valid bio-
markers to aid in early identification and 
potentially guide therapeutic options. However, 
this is complicated by the heterogeneity found 
both within and across different human popula-
tions. Furthermore, no single biomarker has yet 
to be described that can be used to monitor the 
aging process. Therefore, it is expected that a 
biomarker algorithm will be required that repre-
sents the main physiological aspects of aging 
such as physical characteristics, body composi-
tion, and nutritional status, along with molecules 
and/or genetic polymorphisms representing met-
abolic, hormonal, and immune functions.

1.3.1  Physical Function and Body 
Composition

Physical performance assessments, such as hand-
grip strength, gait speed, timed up and go, and 
6-min walk tests have been used in a number of 
studies as biomarkers of frailty and the aging 
 process. Poor performance in some or all of these 
is associated with increased functional decline 
[73] or higher mortality rates [74, 75]. Poorer 
performance in some of these parameters has 
also been associated with higher risk of cardio-
vascular disease, dementia cognitive impairment, 
or disabilities [76]. As detailed above, decreased 
performance in such physical tests has been asso-
ciated with changes in body composition due to 
decreased muscle mass and increased body fat. 
Furthermore, studies which have analysed mus-

cle mass have reported that lower muscle mass is 
associated with increased occurrence of disabili-
ties and functional impairment [76–78]. 
Therefore, it is important to include techniques, 
such as magnetic resonance imaging (MRI) and 
computer tomography, for assessment of various 
aspects of body composition.

1.3.2  Circulating Molecular 
Biomarkers

A number of systematic reviews have provided 
strong support for the use of blood lipids as pre-
dictors of mortality and age-related diseases [76, 
79, 80]. Furthermore, high plasma levels of 
inflammation-related factors, such as interleukin 
(IL)-6 and tumour necrosis factor (TNF)-α, have 
been linked with lower handgrip strength and 
walking speed in aged adults [81], and C-reactive 
protein (CRP) and IL-6 have been linked with all- 
cause mortality [76]. Interestingly, studies of 
centenarians have shown lower levels of such 
inflammatory biomarkers compared with younger 
cohorts [82], with a concomitant increase in the 
levels of anti-inflammatory biomarkers like IL-10 
[76, 83].

A number of hormones and hormonal signal-
ling pathways are known to be perturbed in aging 
and age-related diseases. For example, impaired 
muscle strength and performance in aging has 
been linked to the perturbations of insulin signal-
ling in regulating muscle protein metabolism. For 
these reasons, measurements of insulin resistance 
in clinical settings could provide an additional 
biomarker related to increased risk of morbidities 
and mortality [84]. Other age-related changes in 
hormones include decreased circulating levels of 
growth hormone and insulin-like growth factor-1 
(IGF-1) as well as thyroid-stimulating hormone 
(TSH) and free thyroxine [85]. This also includes 
the sex hormones testosterone and estrogen in 
males and females, respectively [86, 87]. In addi-
tion, decreased levels of adiponectin occur with 
aging, and this has been linked with several 
adverse health outcomes [88]. This is consistent 
with the finding of another study which found 
higher levels of adiponectin in serum from long- 
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lived Greek (90+ years-old) individuals com-
pared with younger controls [89].

A number of vitamins are known to be altered 
with aging and the strongest evidence for this is a 
decrease in the levels of vitamin D, which has 
been linked with age-related disorders such as 
mild cognitive impairment and sarcopenia [90, 
91]. Finally, increased levels of cardiac troponin 
have been associated with myocardial damage, 
skeletal muscle aging, and may even have a role 
in cancer [92].

1.3.3  Genes

Recent studies have identified five genes with 
polymorphisms linked to longevity. These genes 
encode the forkhead box protein (FOXO), apoli-
poprotein E (APOE), the Klotho β-glucuronidase 
(KL), angiotensin-converting enzyme (ACE), and 
IL-6 (IL6). A meta-analysis identified five poly-
morphisms associated with cardiovascular health 
and exceptional longevity (85+ years), consisting 
of ACE rs4340, APOE ε2/3/4, FOXO3A 
rs2802292, KLOTHO KL-VS, and IL6 rs1800795 
[93].

1.3.3.1  FOXO
A recent study from Brazil found an association 
of FOXO3 (rs2802292) polymorphisms with lon-
gevity in 220 participants aged 85+ years, com-
pared to a control group of 234 individuals 
70–75 years-old [94]. The FOXO3 gene encodes 
a transcription factor which regulates the stress 
response, and the link to lifespan has been found 
in a number of studies [95, 96]. The FOXO 
 pathway has therefore been suggested as a poten-
tial target for age-related diseases [97].

1.3.3.2  APOE
A genome-wide association study (GWAS) of 
nonagenarians compared to younger individuals 
identified significant associations for APOE vari-
ants [98, 99]. This was seen by an absence of 
APOE4 and enrichment of the APOE2 allele in 
the nonagenarians. APOE isoforms have been 
implicated as risk factors for cardiovascular dis-
orders and Alzheimer disease, which have been 

attributed to effects on inflammation, oxidative 
stress, and lipid regulation [100].

1.3.3.3  KL
A recent study found that the KL rs9536314 poly-
morphism played a protective role in cancers and 
in determining human longevity [101]. The 
Klotho name comes from Clotho, one of three 
Fates of Greek mythology, who was associated 
with spinning the web of human life. Disruption 
of the KL gene in mice leads to a shorter lifespan 
and morbidities associated with age-related dis-
orders [102]. The Klotho protein appears to act as 
a hormone in regulation of oxidative stress and 
inflammation, via inhibition of IGF1/PI3K and 
TGF-β signalling pathways, and has been shown 
to be a potential novel cardiovascular protective 
factor [103].

1.3.3.4  ACE
ACE is a component of the renin-angiotensin 
system, involved in regulation of blood pressure 
and sodium homeostasis [104]. A genetic evalua-
tion study found that the DD genotype for ACE 
was significantly associated with Alzheimer’s 
disease, as determined using Mini-mental State 
Examination (MMSE) scores [105]. This associ-
ation was significantly stronger when the DD 
ACE allele was combined with the GG allele of 
TNF gene. Another study showed that the DD 
ACE genotype was associated with low muscle 
mass in elderly people in Jakarta [106]. Thus, 
ACE inhibitors are being tested in a number of 
disease areas [107]. The mechanism may involve 
the prevention of mitochondrial decline, as well 
as improvements in endothelial function and 
muscle metabolism [108].

1.3.3.5  IL-6
A recent study of a long-lived Chinese popula-
tion showed a significantly lower frequency of 
the C-allele of the IL6 rs1800796 locus compared 
to the control group, suggesting that this may be 
an unfavourable factor for longevity [109]. 
Furthermore, a meta-analysis of the PubMed, 
Embase, China National Knowledge 
Infrastructure, and Wanfang databases found that 
an IL6 polymorphism was associated with bone 
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mineral density and development of osteoporosis 
[110]. As IL-6 is known to stimulate inflamma-
tion and auto-immunity in diseases, such as type 
2 diabetes, atherosclerosis, cardiovascular disor-
ders, depression, Alzheimer’s disease, systemic 
lupus erythematosus, prostate cancer, and rheu-
matoid arthritis, there is considerable interest in 
development of anti-IL-6 therapeutics for many 
of these conditions [111, 112].

1.3.3.6  Genetic Networks
A recent study constructed a functional interac-
tion network leading to identification of 215 
polymorphisms related to longevity of long-lived 
smokers compared to younger smokers [113]. 
The long-lived smokers were chosen on the pos-
sibility that their long survival was due to an 
innate resistance to the effects of cigarette smok-
ing. The resulting network was used to generate a 
risk score that was significantly associated with a 
22% increase in probability of being aged 
90–99 years-old and a threefold increased prob-
ability of being over 100 years-old, as compared 
to being 52–79  years-old. This score was also 
linked with an 11% reduction in cancer preva-
lence. Pathways enriched in the network included 
PI3/AKT, insulin/IGF, and FOXO signalling, 
which have already been associated with aging 
and age-related diseases.

1.4  Conclusions and Future 
Perspectives

Research into increasing the healthspan is more 
critical than that of aiming to extend the lifespan. 
It is clear that healthy aging depends on a com-
plex interaction between genetic predisposition 
and lifestyle factors. The combination of genetic 
and other molecular biomarkers may be used to 
assess risk of developing age-related disorders, 
which may allow interventions to delay or slow 
the aging process. Maintaining a healthy body 
composition consisting of higher muscular mass 
and lower adiposity appears to be important. A 
number of lifestyle interventions may also be 
helpful in this regard with the most promising 
approaches being the incorporation of a diet con-

sisting of fewer calories and higher protein con-
tent and undertaking a combined resistance and 
aerobic exercise programme. There are also a 
number of natural products and pharmaceuticals 
undergoing testing which are mostly aimed at 
improving metabolism. Finally, several promis-
ing physiometric and molecular biomarkers have 
been identified which can be used to assess risk 
and pave the way for personalized approaches to 
maximize the chances of people achieving lon-
ger, healthier lives.
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Abstract

Several studies have exploited the metabolic 
hallmarks that distinguish between normal 
and cancer cells, aiming at identifying specific 
targets of anti-cancer drugs. It has become 
apparent that metabolic flexibility allows can-
cer cells to survive during high anabolic 
demand or the depletion of nutrients and oxy-
gen. Cancers can reprogram their metabolism 
to the microenvironments by increasing aero-
bic glycolysis to maximize ATP production, 
increasing glutaminolysis and anabolic path-
ways to support bioenergetic and biosynthetic 
demand during rapid proliferation. The 
increased key regulatory enzymes that support 
the relevant pathways allow us to design small 
molecules which can specifically block activi-
ties of these enzymes, preventing growth and 
metastasis of tumors. In this review, we dis-

cuss metabolic adaptation in cancers and high-
light the crucial metabolic enzymes involved, 
specifically those involved in aerobic glycoly-
sis, glutaminolysis, de novo fatty acid synthe-
sis, and bioenergetic pathways. Furthermore, 
we also review the success and the pitfalls of 
the current anti-cancer drugs which have been 
applied in pre-clinical and clinical studies.

Keywords

Cancer · Metabolism · Drug target · Enzymes 
· Bioenergetic

2.1  Introduction

Cancer is an abnormality of cells which lose the 
ability to regulate their growth. Due to the unlimited 
proliferation and acquired motility, cancer cells can 
further invade the surrounding or distant tissues, in 
a process known as metastasis, which is a major 
cause of death. Cancer cells are different from nor-
mal cells in several aspects. For example, they have 
the ability to sustain proliferative signaling, evade 
growth suppression, resist apoptosis, induce angio-
genesis, enable replicative immortality, invade other 
tissues and suppress immune recognition. Recently, 
metabolic reprogramming has been added as 
another important cancer hallmark [1, 2].
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The metabolic reprograming in cancers has 
recently attracted attention over the last decade 
since the discovery of Warburg’s effect, or aero-
bic glycolysis, which describes the phenomenon 
that cancers metabolize glucose to lactate, regard-
less of the presence of oxygen, because of a 
defect of mitochondria [3]. As a result of this 
phenomenon, pyruvate, the end product of gly-
colysis, is converted to lactate with little ATP 
production. Subsequent studies have shown that 
aerobic glycolysis provides several advantages 
for cancer cells [4, 5]. For example, glycolysis 
allows cancer cells to grow under conditions 
where the oxygen concentration fluctuates or 
during hypoxia [6, 7]. Glycolysis also provides 
ATP at a faster rate than oxidative phosphoryla-
tion [8]. Although glycolysis generates relatively 
little ATP per molecule of glucose, cancer cells 
can markedly increase glucose uptake and gly-
colysis such that ATP yield can meet their 
demands [9]. Regarding the increase of biomass, 
glycolysis provides several important biosyn-
thetic precursors required during rapid prolifera-
tion, such as nucleotides, amino acids, and lipids 
[10, 11]. Lastly, glycolysis minimizes the pro-
duction of reactive oxygen species (ROS) which 
are deleterious to cancer cells [12].

In addition to aerobic glycolysis, cancer cells 
also alter other metabolic pathways such as 
repurposing the tricarboxylic acid (TCA) cycle to 
support biosynthesis, increasing biosynthesis of 
lipids, amino acids and nucleotides to meet the 
high anabolic demand during rapid cell growth. 
Thus, targeting these metabolic pathways might 
be effective in the treatment of many cancers. 
Although several inhibitors targeting various 
metabolic pathways have been developed for 
decades, some have failed during the clinical tri-
als because of their side effects and low efficacy. 
In recent years, novel anti-cancer drugs with 
excellent efficacy that target both glycolytic and 
bioenergetics pathways have been reported. Here 
we highlight and discuss some key metabolic 
enzymes which receive much attention as attrac-
tive anti-cancer targets (Table  2.1). We also 
review the recent anti-cancer drugs which have 
been developed to target those key enzymes, 
including their inhibitory mechanisms and 

 anti- neoplasia action on cancer cells. The meta-
bolic pathways and enzymes comprising these 
anti- cancer drug targets are shown in Fig. 2.1.

2.2  Glycolysis

Glucose is the easiest nutrient for most living 
cells to use because of its structure. Cancer cells 
also prefer to use glucose to support their growth. 
Increased glycolytic rate and expression of gly-
colytic enzymes clearly indicates that cancer 
cells rely on this pathway to support their growth 
and survival. Because glycolysis is an earliest 
catabolic pathway of glucose, inhibition of this 
pathway can effectively inhibit downstream path-
ways, thus providing an effective therapeutic 
means to block cancer growth.

2.2.1  Hexokinase

Hexokinase (HK) is the first regulatory step of 
glycolysis. HK catalyzes the phosphorylation of 
glucose to form glucose-6-phosphate. Four 
tissue- specific isozymes of HK, HK1, HK2, 
HK3, and HK4, are found in mammals. Although 
these HK isozymes catalyze the same reaction, 
they have some different kinetic properties [13]. 
HK1, HK2, and HK3 have a relatively low Km 
(the substrate concentration at which the reaction 
rate is half maximal) for glucose, while HK4, 
also known as glucokinase, has a high Km for glu-
cose and is exclusively expressed in liver and 
pancreas [13]. HK1 is ubiquitously expressed in 
brain and kidney, while HK2 is expressed in skel-
etal and cardiac muscles. Since HK2 is aberrantly 
increased in several cancers such as hepatocellu-
lar carcinoma, pancreatic cancer, ovarian cancer, 
lung cancer, gastrointestinal cancer, breast can-
cer, and renal cancer [14–19], HK2 is regarded as 
a potential target for cancer therapy.

2-deoxyglucose (2-DG) is the substrate ana-
log of glucose in which the hydroxyl group of 
carbon 2 (C2) is replaced with a hydrogen. After 
entering into cancer cells, 2-DG can still be phos-
phorylated by HK2 to generate 2-deoxyglucose- 
6-phosphate (2-DG6P) but cannot be further 
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Table 2.1 Target metabolic enzymes for anti-cancer drug development

Target Drug Effect Development phase Reference
Glycolysis
Hexokinase 2-Deoxyglucose Inhibition In vitro: Breast cancer [25]

In vivo: Osteosarcoma, NSCLC [30]
Phase I/II trial: Glioblastoma [32]

3-Bromopyruvate Inhibition In vitro: Liver cancer, leukemia, 
nasopharyngeal carcinoma (NPC)

[34, 35, 39]

In vivo: Liver cancer [38]
Benserazide Inhibition In vitro/in vivo: Colon cancer [42]
Xanthohumol Inhibition In vitro: Colon cancer, NSCLC, 

breast cancer, cervical cancer, 
colorectal cancer

[44–50]

In vivo: Colorectal cancer [44]
Pyruvate kinase Shikonin Inhibition In vitro: Fibrosarcoma, leukemia, 

lung cancer, drug-sensitive and 
resistant cell lines, liver cancer, 
prostate cancer, Lewis lung 
carcinoma, melanoma, esophageal 
cancer, bladder cancer

[62, 64–68, 
70–72]

In vivo: Sarcoma, liver cancer, 
prostate cancer, leukemia, 
melanoma, esophageal

[64, 68, 70, 71]

Clinical trial: Lung cancer [69]
DASA-58 Activation In vitro: NSCLC [75]
TEPP-46 Activation In vivo: NSCLC [75]
Micheliolide Activation In vitro: Leukemia, pancreatic 

adenocarcinoma, neuroblastoma
[76]

In vivo: Leukemia xenograft 
zebrafish

[76]

Lactate 
dehydrogenase-A

Oxamate Inhibition In vitro: Nasopharyngeal cancer, 
gastric cancer, pituitary adenoma, 
Burkitt lymphoma

[79, 90–92]

In vivo:Nasopharyngeal 
cancer,pituitary adenoma

[90, 92]

FX11 Inhibition In vitro: Lymphoma, pancreatic 
cancer, prostate cancer, 
osteosarcoma, gallbladder cancer

[88, 93–95]

In vitro/in vivo: Lymphoma, 
osteosarcoma, gallbladder cancer

[88, 94, 95]

Galloflavin Inhibition In vitro:Liver cancer, breast 
cancer, Burkitt lymphoma, 
endometrial cancer

[98–101]

(continued)
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Table 2.1 (continued)

Target Drug Effect Development phase Reference
MCT-1 and 
MCT-4

AR-C155858 Inhibition In vitro: Pancreatic ductal 
adenocarcinoma, Ras-transformed 
fibroblasts, multiple myeloma, 
breast cancer

[113, 119–123]

In vivo: Ras-transformed 
fibroblasts, breast cancer

[119–123]

AZD3965 Inhibition In vitro: Breast cancer, small cell 
lung cancer, B-cell lymphoma and 
Burkitt lymphoma

[116, 124–126]

In vivo:Breast cancer, small cell 
lung cancer, B-cell lymphoma and 
Burkitt lymphoma

[116, 124–126]

Phase I trial: Several solid tumors [128]

α-Cyano-4-hydroxy 
cinnamate

Inhibition In vitro: Multiple myeloma, 
glioma, breast cancer

[120, 129, 130]

In vivo: Glioma, breast cancer, 
lung cancer, colorectal cancer

[129–131]

Syrosingopine Inhibition In vitro: Cervical cancer, breast 
cancer, leukemia

[133]

N,N 
dialkylcyanocinnamic 
acid

Inhibition In vitro: Colorectal 
adenocarcinoma, breast cancer

[134]

Lonidamine Inhibition In vitro: Melanoma [135]
In vivo: Melanoma [136]

Mitochondrial metabolism
Pyruvate 
dehydrogenase 
kinase

Dichloroacetate Inhibition In vitro:Prostate cancer, breast 
cancer, colorectal cancer, NSCLC, 
glioblastoma

[149–154]

In vivo:Breast cancer, colorectal 
cancer, NSCLC, glioblastoma

[150, 152–154]

Phase I trial: Glioblastoma [155]
CP-613 Inhibition In vitro:NSCLC, breast cancer, 

kidney cancer
[156]

In vivo: Pancreatic cancer, 
NSCLC

[156]

Phase I trial: Relapsed or 
refractory AML, metastatic 
pancreatic cancer

[158–160]

Phase II trial: Relapsed or 
refractory small cell lung cancer

[159]

Phase III trial: Metastatic 
pancreatic cancer

[161]

TCA cycle

(continued)
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Table 2.1 (continued)

Target Drug Effect Development phase Reference
Isocitrate 
dehydrogenase 1 
(IDH1)

BAY-1436032 Inhibition In vitro/in vivo: Glioblastoma, 
AML

[179, 180]

Phase I trial: AML, solid tumors (NCT03127735, 
NCT02746081)

IDH305 Inhibition In vivo: Melanoma [181]
Phase I trial: Advanced 
malignancies that harbor 
IDHR132 mutations

[182, 359]

Ivosidenib Inhibition In vitro: Chondrosarcoma [185]
Ex vivo: Primary human AML 
myeloblast

[184]

In vivo: Glioma [186]
Phase I trial: Relapsed or 
refractory AML

[360]

LY3410738 Inhibition In vitro/in vivo: AML [188]
Isocitrate 
dehydrogenase 2 
(IDH2)

AGI-6780 Inhibition In vitro: Human glioblastoma, 
erythroleukemia

[189–191]

Enasidenib Inhibition Ex vivo: AML [192, 193]
In vivo: AML [192]
Phase I/II trial: Hematologic 
neoplasms

[361]

Isocitrate 
dehydrogenase 1 
and 2 (IDH1 and 
IDH2)

AG-881 Inhibition Ex vivo/in vivo: Primary 
humanAML

[196]

Phase I trial: Gliomas [197]

Oxidative phosphorylation
Mitochondrial 
respiratory 
complex I

Metformin Inhibition In vitro: Osteosarcoma, liver 
cancer, breast cancer, AML, colon 
cancer, prostate cancer

[204, 206–212]

Ex vivo: AML [207]
In vivo: AML, colon cancer, 
prostate cancer

[207, 208, 211]

Clinical study: Colorectal cancer [215]
Phenformin Inhibition In vitro: Rectal cancer [218]

In vivo: Breast cancer [217]
Glutaminolysis

(continued)
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Table 2.1 (continued)

Target Drug Effect Development phase Reference
Glutaminase DON Inhibition In vitro: Human lymphoblast, 

neuroblastomas, sarcoma
[240, 245]

In vivo: Leukemia, murine 
mammary cancer, colon 
carcinoma, lung cancer, 
neuroblastomas, sarcoma

[243, 245]

Clinical trials: Metastatic breast 
cancer, bronchogenic carcinoma, 
gastrointestinal adenocarcinoma, 
lung cancer, colorectal cancer, 
sarcoma, advanced refractory 
tumors

[243–245]

Acivicin Inhibition In vitro: Leukemia, ovarian cancer [241, 243]
In vivo: Breast cancer, lung 
cancer

[241, 243]

Phase II trial: Glioma [243]
Phase I trial: Several solid tumors [362]

BPTES Inhibition In vitro: Glioblastoma, human 
lung fibroblast and immortalized 
human kidney epithelial cell 
expressing conditional version of 
MYC, lymphoma

[250–252, 363]

In vivo: Lymphoma [251, 252]
CB-839 Inhibition In vitro: Breast cancer, NSCLC, 

leukemia, ovarian cancer, 
myeloma

[254–258]

In vivo: Breast cancer, myeloma [254, 258]
Phase I/II trial: Several solid 
tumors

[259]

Brachyanthera A8 Inhibition In vitro: Breast cancer [260]
Physapubescink Inhibition In vitro/in vivo: Pancreatic cancer [261]

De novo fatty acid synthesis
ATP citrate lyase SB-204990 Inhibition In vitro: Liver cancer, NSCLC, 

prostate cancer, ovarian cancer
[276, 277]

In vivo: Prostate cancer, lung 
cancer, pancreatic ductal 
carcinoma

[277]

Cucurbitacin B (CuB) Inhibition In vitro: Breast cancer, pancreatic 
cancer, hepatocellular carcinoma, 
NSCLC, prostate cancer, HUVEC

[270, 280–282, 
284–287]

In vivo: Breast cancer, pancreatic 
cancer, chick chorioallantoic 
membrane

[282, 284, 287]

NDI-091143 Inhibition – [289]

(continued)
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metabolized by the downstream steps in glyco-
lytic pathway [20, 21]. Accumulation of 2-DG6P 
in the cells increases in organic phosphate trap-
ping, resulting in depletion of cellular energy and 
causes cell death [22–26]. In vitro studies have 
shown that 2-DG treatment inhibits cell growth, 
cell cycle progression and lactic acid production 
in osteosarcoma cell line 143b, especially under 
hypoxic conditions [27–29]. Similarly, 2-DG 
restrains growth and clonogenicity of breast can-
cer cells through induction of apoptosis [25]. 
Although 2-DG possesses inhibitory effects on 
tumor growth in vitro, this compound alone does 
not show a significant anti-neoplastic effect in 
animal models [30]. However, 2-DG in combina-
tion with adriamycin or paclitaxel shows a sig-
nificant inhibitory effect on growth of 
osteosarcoma or non-small cell lung cancer 
(NSCLC) in xenograft mouse models [30]. 
Further studies showed that long-term treatment 
with 2-DG can cause chemoresistance through 
the upregulation of the multidrug resistance 
P-glycoprotein (P-gp), which functions by out-
ward transport of 2-DG [31]. A clinical study 
showed that the combination of oral administra-

tion of 2-DG with radiotherapy is safe and could 
be used in glioblastoma patients [32]. 
Nevertheless, chronic administration of 2-DG 
has adverse side effects including reduced food 
intake and reduced weight gain, increased car-
diac vacuolization, and increased mortality in 
rats [33].

3-bromopyruvate (3-BrPA) is an alkylating 
agent and a potent HK2 inhibitor. 3-BrPA can 
inhibit HK2 activity and glycolysis in liver 
tumors and induce rat hepatoma cell death [34]. 
3-BrPA treatment depletes ATP production and 
kills human leukemia HL-60 cells through apop-
tosis [35]. Mechanistically, HK2 is physically 
associated with the voltage-dependent anion 
channel (VDAC) on the outer membrane of mito-
chondria. This interaction blocks the access of 
two pro-apoptotic proteins, BAD and BAX, to 
the mitochondria. However, under glucose depri-
vation conditions, HK2 dissociates from the outer 
membrane of mitochondria, enabling BAD and 
BAX to access the mitochondria resulting in dis-
ruption of mitochondrial membrane integrity and 
initiation of apoptosis [36]. 3-BrPA triggers can-
cer cell death by modifying a cysteine residue in 

Table 2.1 (continued)

Target Drug Effect Development phase Reference
Acetyl-CoA 
carboxylase

TOFA Inhibition In vitro: Colon cancer, lung 
cancer, prostate cancer, ovarian 
cancer, renal cell carcinoma, 
breast cancer

[301–305]

In vivo: Ovarian cancer [302]
Soraphen A Inhibition In vitro:Breast cancer, prostate 

cancer, liver cancer
[295, 310, 311]

In vivo: Breast cancer [295]
ND-630 Inhibition In vitro: Liver cancer [312]
ND-646 Inhibition In vitro/in vivo: NSCLC [294]
ND-654 Inhibition In vitro/in vivo: Liver cancer [317]

Fatty acid 
synthase

Cerulenin Inhibition In vitro: Breast cancer [330]
In vivo: Ovarian cancer [331]

C75 Inhibition In vitro: Breast cancer [336–339]
In vivo: Breast cancer [340]

Orlistat Inhibition In vitro: Prostate cancer, breast 
cancer, ovarian cancer, stomach 
cancer

[343, 345–348]

Fasnall Inhibition In vitro/in vivo: Breast cancer [350]
TVB-2604 Inhibition In vivo: Colon cancer [356]

Phase I trial: Solid tumors [357, 358, 364]

2 Targeting Cancer Metabolism
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Fig. 2.1 A schematic diagram showing metabolic path-
ways, including glycolysis, oxidative phosphorylation, 
pentose phosphate pathway, and glutaminolysis in prolif-
erating cells. The metabolic enzymes that are dysregu-
lated in cancer cells to support their biosynthetic and 
bioenergetic demand can be exploited as potential thera-
peutic targets are shown in blue. The current anti-cancer 
agents are shown in red boxes. GLUT1 glucose transporter 
1, G-6-P glucose-6-phosphate, PPP pentose phosphate 
pathway, R5P ribose-5-phosphate, F-6-P fructose-6- 
phosphate, F1,6-BP fructose-1, 6-bisphosphate, F2,6-BP 
fructose- 2, 6-bisphosphate, PFK1 phosphofructokinase 1, 
PFK2 phosphofructokinase 2, G3P glyceraldehyde- 3- 

phosphate, DHAP dihydroxyacetone phosphate, 3PG 
3-phosphoglycerate, PEP phosphoenolpyruvate, PDH 
pyruvate dehydrogenase, α-KG α-ketoglutarate, α-KGDH 
α-ketoglutarate dehydrogenase, SCS succinyl-CoA syn-
thetase, SDH succinate dehydrogenase, FH fumarase, 
MDH malate dehydrogenase, OAA oxaloacetate, PC pyru-
vate carboxylase, GDH glutamate dehydrogenase, Cyt c 
cytochrome c, ASCT2 alanine, serine, cysteine transporter 
2, HK2 hexokinase 2, PKM2 pyruvate kinase M2, LDHA 
lactate dehydrogenase A, MCT1/4 monocarboxylate 
transporter 1 or 4, PDK pyruvate dehydrogenase kinase, 
IDH isocitrate dehydrogenase, GLS glutaminase, ACLY 
ATP citrate lyase, ACC acetyl-CoA carboxylase, FASN 
fatty acid synthase
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the active site of HK2, resulting in the dissocia-
tion of HK2 from mitochondria, in a similar man-
ner to that of glucose depletion, and thus induces 
apoptosis [37]. Intra-arterial injection of 3-BrPA 
into the rabbit VX2 model of liver cancer selec-
tively inhibits tumor growth without any effect 
on the surrounding normal liver tissue and also 
suppresses the development of secondary meta-
static lung tumors [38]. Recently, 3-BrPA was 
shown to reduce ATP production and increase 
intracellular ROS levels, accompanied by inhibi-
tion of proliferation and induction of apoptosis in 
the nasopharyngeal carcinoma (NPC) cell lines, 
HNE1 and CNE-2Z.  In addition, 3-BrPA also 
exhibits an anti-tumor activity in mice bearing 
the CNE-2Z tumor [39]. Although 3-BrPA exhib-
its a potent cytotoxic effect against cancers both 
in vitro and in vivo, the clinical applications of 
3-BrPA in cancer treatment are still problematic. 
For example, 3-BrPA-can induce a burning sen-
sation in veins during intravenous infusion, a low 
diffusion rate to the tumor as well as inability to 
stay in the tumor mass due to enhanced permea-
bility and a retention effect caused by abnormal 
vascular structure surrounding tumors. 3-BrPA 
can also rapidly attach to the thiol groups of glu-
tathione and other proteins, reducing its efficacy 
to target cancer cells. However, formulating 
3-BrPA with liposomes may help to overcome 
these obstacles in clinical oncology [40].

Benserazide (Benz) has recently been reported 
as a potent HK2 inhibitor and was approved by 
the Food and Drug Administration (FDA). Benz 
has long been used as an adjuvant for the treat-
ment of Parkinson’s disease [41] but has recently 
been used as an anti-cancer drug. This drug is 
predicted to partially occupy the binding site for 
glucose but selectively inhibits HK2 activity with 
a mixed mechanism of action [42]. Benz exhibits 
the strongest binding affinity to HK2 compared 
to 2-DG and 3-BrPA, [42]. In vitro studies 
showed that Benz reduces glucose uptake, lactate 
production, and ATP concentrations, leading to 
the loss of mitochondrial membrane potential 
and subsequent apoptosis. Benz also inhibits 
tumor growth and induces apoptosis in colorectal 
cancer xenograft mice [42]. Although Benz 
shows a good inhibitory effect on growth of 

tumors in in vitro and in animal models, there 
have been no reports of clinical trials of Benz in 
cancer patients.

Xanthohumol (2′,4′,4-trihydroxy-6′-methoxy- 
3′-prenylchalcone) (Xn), a prenylated flavonoid 
compound derived from hop plant (Humulus 
lupulus) has been reported as an HK2 inhibitor 
[43, 44]. Xn shows anti-proliferative, pro- 
apoptotic, and cytotoxic activities against colon 
cancer [45], NSCLC [46], breast cancer [47, 48], 
and cervical cancer [49, 50].

2.2.2  Pyruvate Kinase

Pyruvate kinase (PK) catalyzes the final step of 
glycolysis by conversion of phosphoenolpyru-
vate (PEP) to pyruvate, concomitant with the pro-
duction of ATP.  Four isoenzymes of PK, PKL, 
PKR, PKM1, and PKM2 are found in humans 
[51]. These four different isozymes exhibit dif-
ferent tissue distributions and kinetic properties. 
PKL and PKR are produced by alternative splic-
ing of RNA from the same gene and are expressed 
in liver and erythrocytes, respectively. Similarly, 
PKM1 and PKM2 are produced by the same gene 
through an alternative splicing mechanism [52]. 
The tetramer form of PKM1 is the catalytically 
active form of the enzyme. PKM1 is expressed in 
muscle where it supports ATP production by cou-
pling glycolysis with oxidative phosphorylation. 
Unlike other isoforms of PK, the PKM2 isoform 
tends to form a monomer or dimer which has a 
low enzymatic activity. Therefore, the expression 
of monomeric or dimeric form of PKM2 reduces 
the overall glycolytic rate, which causes the accu-
mulation of glycolytic intermediates. The 
increased levels of these intermediates serve as 
biosynthetic precursors for nucleotides, lipids, 
and amino acids [52–56]. PKM2 is expressed in 
early embryonic tissues, proliferating cells and 
many cancers [53–55]. In addition, the mono-
meric/dimeric PKM2 has a non-enzymatic func-
tion by serving as a transcriptional co-activator 
and as a protein kinase that can modify the 
expression of oncogenes or tumor-suppressor 
genes [57–60]. Moreover, monomeric/dimeric 
PKM2 stimulates expression of cyclinD1 and 
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c-Myc, promoting cell cycle progression and 
metabolic reprogramming, respectively [58, 60]. 
Replacement of PKM2 with PKM1 can delay 
growth of human lung cancer xenografts in nude 
mice, confirming the role of PKM2 as a tumor- 
promoting isoform [53]. The overexpression and 
the roles of PKM2 in supporting biosynthesis in 
cancers suggest the exploitation of PKM2 as a 
therapeutic target for cancer treatment.

Shikonin, a naphthoquinone derived from the 
root of plant Lithospermum erythrorhizon, is one 
of the well-known PKM2 inhibitors [61]. 
Shikonin selectively inhibits PKM2 activity, but 
not that of other isoforms of PK, and can effec-
tively inhibit glycolysis in both drug-sensitive 
and resistant cancer cell lines [62]. Clinical stud-
ies have shown that Shikonin is a potential 
 anti- cancer agent in various malignancies [63–
69]. Shikonin has been shown to be safe and 
effective in treating late-stage lung cancer 
patients who fail to respond to operation, radio-
therapy, and chemotherapy [69]. Recent studies 
have shown that shikonin suppresses glycolysis, 
concomitant with inhibition of proliferation, and 
induction of apoptosis in Lewis lung carcinoma 
(LLC) and B16 melanoma cell lines. Moreover, 
shikonin inhibits B16 tumor cell growth in vivo 
[70]. This compound also decreases the expres-
sion of epidermal growth factor receptor (EGFR), 
phosphoinositide 3-kinase (PI3K), protein kinase 
B (AKT), hypoxia inducible factor (HIF)-1α and 
PKM2, and induces cell cycle arrest and apopto-
sis in esophageal cancer both in vitro and in vivo. 
On the other hand, overexpression of PKM2 
enhances the resistance of esophageal cancer 
cells to shikonin [71]. A recent study showed that 
shikonin treatment overcomes cisplatin resis-
tance and induces necroptosis in bladder cancer 
[72]. Because the monomeric or dimeric form of 
PKM2 can enter the nucleus and activate tran-
scription of some oncogenes, several attempts 
have been made to convert dimeric PKM2 to tet-
rameric PKM2 which cannot activate oncogenes. 
N′,N′-diarylsulfonamides (DASA-58) and thieno 
[3, 2-b] pyrrole [3, 2-d] pyridazinone (TEPP-46), 
the first two compounds that were reported to 
selectively enhance the formation of PKM2 tetra-
mer, reduce lactate production and inhibit growth 

of tumor xenografts in mice [73–75]. Other 
PKM2 activators including micheliolide (MCL) 
and 0089–0022 have also recently been reported 
to have anti-cancer activities [76, 77].

Although PKM2 has been an attractive thera-
peutic target for cancer treatment, inhibition of 
PKM2 activity may be a problem, because PKM2 
is also expressed in other normal tissues [78].

2.2.3  Lactate Dehydrogenase-A

Lactate dehydrogenase (LDH) catalyzes the 
reversible conversion of pyruvate to lactate, con-
comitant with NAD+ production [79]. LDH con-
sists of two isozymes, LDH-A and LDH-B. The 
native forms of both isozymes are tetramers, 
which are capable of catalyzing the same reac-
tion. However, LDH-A favors the conversion of 
pyruvate to lactate, while LDH-B favors the 
reverse direction of the reaction. Lactate is fur-
ther secreted from cells via monocarboxylic acid 
transporters (MCTs) to maintain intracellular pH 
of cancer cells. The secreted lactate creates a 
slightly acidic microenvironment which pro-
motes metastasis and suppresses immune cell 
function [80]. LDH-A is overexpressed in many 
cancers and supports aerobic glycolysis [81]. 
Overexpression of LDH-A is also associated with 
chemoresistance in many cancers [82–84], indi-
cating that it is essential for survival of these can-
cers under this condition. Inhibition of LDH-A 
expression reduces proliferation of many cancers 
such as esophageal squamous cell carcinoma 
[85], neuroblastoma [86], and KRAS-induced 
NSCLC in a mouse model [83]. Mechanistically, 
inhibition of LDH-A increases the level of cyto-
solic pyruvate, which subsequently enters mito-
chondria to drive the TCA cycle and oxidative 
phosphorylation. However, because of restricted 
amounts of oxygen supply in solid tumors, the 
oxidative phosphorylation is not completed, 
resulting in overproduction of ROS which has a 
toxic effect on cancer cells [87–89].

Oxamate is an isoelectronic inhibitory analog 
of pyruvate and a first-generation LDH-A inhibi-
tor. Oxamate inhibits LDH-A activity by compet-
ing with its substrate, resulting in an increased 
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concentration of pyruvate in mitochondria. 
Oxamate suppresses proliferation in association 
with cell cycle arrest, ROS production, and apop-
tosis in nasopharyngeal carcinoma cells [90], 
gastric cancer [91], and pituitary adenoma cell 
lines [92]. The inhibition of LDH-A expression 
also diminishes c-Myc-induced clonal transfor-
mation of human lymphoblastoid cells, and 
Burkitt lymphoma cells [79]. In addition to oxa-
mate, 3-hydroxyl-6-methyl-7-(phenylmethyl)-
4-propylnaphthalene-1-carboxylic acid (FX11) is 
another LDH-A inhibitor which competes with 
the binding of reduced nicotinamide adenine 
dinucleotide (NADH). FX11 has been shown to 
inhibit proliferation, invasion, and migration of 
PC-3 and DU145 prostate cancer cell lines [93], 
as well as osteosarcoma [94] and gallbladder 
 carcinoma [95] cell lines. FX11 also induces oxi-
dative stress and inhibits growth of human lym-
phoma and pancreatic cancer xenografts in mice 
[88]. Although, FX11 is an effective therapeutic, 
the highly reactive catechol portion of its mole-
cule could produce off-target effects on non- 
tumor cells [96, 97].

Galloflavin, (CAS 568-80-9), a small mole-
cule, inhibits LDH-A by direct binding without 
competing with substrate or cofactor binding 
[98]. This compound induces apoptosis and oxi-
dative stress, inhibiting the growth of many can-
cers [98–101].

Although LDHA inhibitors have been exten-
sively studied in several cancer cell lines and ani-
mal models, limited information regarding their 
efficacy and side effects in preclinical and clini-
cal studies is available [102].

2.2.4  Monocarboxylate 
Transporters (MCTs)

Monocarboxylic acid transporters (MCTs) are 
proton-linked membrane proteins which function 
in the transport of monocarboxylic acids mainly, 
lactate and pyruvate, but not limited to ketone bod-
ies. MCT-1, -2 and -4 are the main isoforms that 
carry lactate across the plasma membrane thereby 
maintaining intracellular pH [103]. There seems to 
be a functional redundancy between MCT-1 and 

MCT-4, by which both can transport lactate out of 
the cell. However, MCT-1 can also transport lac-
tate into the cell for the subsequent conversion to 
pyruvate before entering mitochondria for oxida-
tive phosphorylation. This difference between the 
two isoforms is further exemplified by the differ-
ential expression of these two MCTs in cancers 
with different metabolic phenotypes. MCT-4 is 
highly expressed in glycolytic or aerobic cancer 
cells which metabolize glucose to lactate. Under 
these circumstances, MCT-4 supports aerobic gly-
colysis by transporting lactate out of the cell so 
that the glycolytic pathway is not inhibited [102]. 
In contrast, oxidative tumors tend to produce ATP 
through oxidative phosphorylation using lactate as 
a nutrient source. Under these circumstances, the 
oxidative tumors express MCT-1, which can also 
transport extracellular lactate into the cell. Once 
inside the cell, lactate can be converted to pyruvate 
by LDH-B and used as a source of ATP production 
through oxidative phosphorylation [102]. 
Overexpression of MCT-1 and/or MCT-4 is asso-
ciated with poor prognosis in many cancers [104–
109], with metastasis in renal cancer and 
adenocarcinoma [110, 111]. Genetic suppression 
of MCT-1 or MCT-4 expression results in lactate 
accumulation accompanied by reduced prolifera-
tion, invasion, and migration in lung cancer [112]; 
pancreatic ductal adenocarcinoma [113]; oral 
squamous cell carcinoma [114]; and breast cancer 
[115, 116]. In a mouse model, suppression of 
MCT-1 and MCT-4 expression also inhibits the 
growth of human breast cancer xenografts [116, 
117].

Because both MCT-1 and MCT-4 support bio-
energetics of both glycolytic and hypoxic tumors, 
pharmacological inhibition of these two MCTs is 
a potential target of anti-cancer drugs. 
AR-C155858, a pyrrole pyrimidine derivative, 
specifically blocks MCT-1 activity and inhibits 
lactate export from the cells [118]. AR-C155858 
has been shown to inhibit the growth of KRAS- 
transformed fibroblasts [119], myelomas [120], 
pancreatic ductal adenocarcinomas [113], and 
breast cancer cell lines [121, 122]. However, a 
recent preclinical study showed that AR-C155858 
failed to reduce the growth of a murine breast 
cancer xenograft in nude mice [123].
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AZD3965 is a selective and potent inhibitor of 
MCT-1, with well-studied pharmacokinetics 
[103]. In xenograft mouse models, AZD3965 
treatment increases the intracellular concentra-
tion of lactate and inhibits growth of several 
tumors including small cell lung cancer [124], 
breast cancer [116], diffuse large B-cell lym-
phoma and Burkitt lymphoma [125]. The combi-
nation of AZD3965 with other anti-cancer drugs 
increases its efficacy against several cancers 
[126, 127]. AZD3965 is currently under phase I 
clinical trial in patients with advanced solid 
tumors such as prostate cancer, gastric cancer, 
and diffuse B-cell lymphoma [128]. While 
AZD3965 can effectively inhibit growth of 
MCT-1 over-expressing cancers, this drug does 
not work well with the cancers that overexpress 
both MCT-1 and MCT-4, because MCT-4 can 
counteract MCT-1 inhibition [124].

α-cyano-4-hydroxy cinnamate (αCHC) is 
another MCT-1 inhibitor which has been shown 
to inhibit growth and induce apoptosis in glioma 
cells [129], breast cancer [130], and myeloma 
cell lines [120]. αCHC can also inhibit the growth 
of lung carcinoma and human colorectal adeno-
carcinoma xenografts in mice [131]. There have 
been no further studies of this inhibitor in clinical 
studies.

As mentioned, the inhibition of MCT-1 alone 
is not sufficient to inhibit the growth of tumors 
that express both MCT-1 and MCT-4. For this 
reason, several efforts have been made to produce 
dual inhibitors for MCT-1 and MCT-4 such as 
Syrosingopine, Lonidamine (LND), and N, 
N-dialkylcyanocinnamic acid. Syrosingopine, an 
anti-hypertension drug, has recently been used to 
inhibit both MCT-1 and MCT-4 activities in sev-
eral pre-clinical studies [131–133]. Combined 
treatment of Syrosingopine with metformin 
improves its efficacy for inhibiting growth of cer-
vical, breast, and leukemic cancer cell lines 
[133]. N,N-dialkylcyanocinnamic acid has 
recently been reported as a dual MCT-1 and 
MCT-4 inhibitor. Inhibition of lactate export by 
this drug results in inhibition of glycolysis and 
oxidative phosphorylation in colorectal adeno-
carcinoma and triple negative breast cancer cell 
lines. It was also found to inhibit growth of 

colorectal and breast cancers in xenograft mouse 
models [134]. LND, a novel chemotherapy drug, 
has recently been reported to block MCT-1, -2, 
-4, and the mitochondrial pyruvate carrier, result-
ing in simultaneous inhibition of lactate efflux 
from the cell and pyruvate uptake into mitochon-
dria [110]. This drug can inhibit growth of DB-1 
melanoma in  vitro and in xenograft mice [135, 
136].

2.3  Mitochondrial Metabolism

Although aerobic glycolysis is a metabolic hall-
mark of many cancers, accumulating evidence 
has shown that some cancers such as breast can-
cer, Hodgkin lymphoma, diffuse large B-cell 
lymphoma and pancreatic ductal adenocarci-
noma, use oxidative phosphorylation to support 
ATP production. This metabolic phenotype is 
known as the oxidative cancer cell [137]. Recent 
studies also showed that cancer stem cells with 
high tumorigenic and metastatic potentials use 
oxidative phosphorylation to support their growth 
[138, 139]. The bioenergetic switch from glycol-
ysis to oxidative phosphorylation in this group of 
cancer makes mitochondrial metabolism an 
attractive target. Because mitochondria metabo-
lism starts from oxidation of pyruvate to acetyl- 
CoA followed by the TCA cycle and oxidative 
phosphorylation, all key enzymes along these 
pathways are potential targets of anti-neoplastic 
agents.

2.3.1  Pyruvate Dehydrogenase 
Kinase

Pyruvate dehydrogenase complex (PDH) cata-
lyzes the irreversible conversion of pyruvate to 
acetyl-CoA in the mitochondria. Since this reac-
tion connects glycolysis and the TCA cycle, inhi-
bition of this regulatory step results in the 
redirection of pyruvate to lactate or leads to ala-
nine production [140]. PDH activity is regulated 
by reversible phosphorylation catalyzed by the 
pyruvate dehydrogenase kinase (PDK). 
Phosphorylation of PDH by PDK inactivates 
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PDH activity while dephosphorylation by phos-
phatases reactivates it. In mammals, PDK1, 
PDK2, PDK3, and PDK4 can phosphorylate 
PDH [141]. In most cancers, glycolysis is partly 
driven through the inactivation of PDH by PDKs 
[142, 143], enabling them to maintain the glyco-
lytic phenotype. On the other hand, inactivation 
of PDK reverses the metabolic phenotype from 
glycolysis to oxidative phosphorylation. 
Increased entry of pyruvate into the TCA cycle 
caused by PDH activation can overwhelm TCA 
cycle activity and oxidative phosphorylation, 
resulting in an incomplete oxidation of reducing 
equivalents, leading to the overproduction of 
reactive oxygen species (ROS). In turn, increased 
ROS can create oxidative stress which can 
 damage cancer cells [144–146]. Therefore, inhi-
bition of PDK activity can be used to induce oxi-
dative stress in cancers. Dichloroacetate (DCA) 
is a first generation PDK inhibitor [147, 148] first 
reported to induce oxidative stress, leading to cell 
death in many cancers, including prostate cancer 
[149], breast cancer [150], and colorectal cancer 
[151, 152]. DCA treatment can inhibit growth 
and angiogenesis of NSCLC and breast cancer 
xenografts [153]. Studies in glioblastoma patients 
showed that DCA treatment can switch metabo-
lism of tumor cells from glycolysis to oxidative 
phosphorylation, accompanied by mild induction 
of apoptosis and reduction of angiogenesis sur-
rounding the glioblastoma [154]. DCA is cur-
rently undergoing phase I clinical testing in 
patients with recurrent glioblastoma [155].

CPI-613 (devimistat) is an inhibitor of 
PDK. Because CPI-613 has a structure similar to 
lipoic acid, a co-factor of PDH, CPI-631 is 
thought to interfere with phosphorylation inhibi-
tion by PDKs and disrupt mitochondrial metabo-
lism, leading to cell death [156]. Later studies 
also showed that CP-613 may also have an inhib-
itory effect on cancer growth by inhibiting the 
activity of α-ketoglutarate dehydrogenase which 
converts α-ketoglutarate to succinate [157]. CPI- 
613 is currently undergoing a phase I trial in 
patients with relapsed or refractory acute myeloid 
leukemia [158], as well as a phase II trial in 
patients with relapsed or refractory small cell 
lung carcinoma [159], and phase I and phase III 

trials in patients with metastatic pancreatic can-
cer [160, 161].

2.3.2  TCA Cycle

The TCA cycle is not only a central hub for oxi-
dation of glucose, fatty acids, and amino acids it 
also functions as a biosynthetic hub in which its 
intermediates are used as biosynthetic precursors 
of non-essential amino acids, fatty acids, and 
nucleotides. In cancers, glutaminolysis is an 
important biochemical reaction that provides car-
bon skeletons into the TCA cycle, sustaining the 
levels of TCA cycle intermediates upon their 
removal for biosynthesis. Isocitrate dehydroge-
nase (IDH) catalyzes the oxidative decarboxyl-
ation of isocitrate to α-ketoglutarate (α-KG). 
IDH1 is located in the cytoplasm while IDH2 is 
located in mitochondria [162]. Mutation of argi-
nine 132 to histidine in IDH1 (R132H) [163, 
164] or mutations of arginine 140 or arginine 172 
to histidine in IDH2 (R140H or R172H) [165, 
166] alters their activity such that the mutant 
enzymes further convert α-KG to 
2- hydroxyglutarate (2-HG) [167, 168]. The 
abnormal accumulation of 2-HG competitively 
inhibits α-KG-dependent dioxygenase, contribut-
ing to malignant transformation [169, 170]. Many 
tumors such as glioblastoma [163, 171], chon-
drosarcoma [172], osteosarcoma [173], myeloid 
leukemia [174], intrahepatic cholangiocarcinoma 
[175], breast cancer [176], and prostate cancer 
[177] appear to carry IDH1/IDH2 mutations 
[178]. Due to the strong effect of IDH1 and IDH2 
mutations on tumorigenesis, IDH1 and IDH2 
inhibitors have been developed to block the pro-
duction of 2-HG by the mutant enzymes.

BAY-1436032 is an allosteric inhibitor of 
IDH1, which binds to the IDH1 mutant enzyme 
and interrupts dimer formation, inhibiting its 
activity [179]. BAY-1436032 lowers 2-HG pro-
duction and reduces proliferation in glioma bear-
ing an IDH1 mutation [179]. A similar result was 
also observed in acute myeloid leukemia (AML) 
bearing an IDH1 mutation, in which treatment of 
AML with this drug improved differentiation of 
myeloid progenitors to normal leukocytes both in 
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cell culture and in xenografted models [180]. 
BAY-1436032 is currently undergoing phase 
I clinical trials for AML, glioma, and intrahepatic 
cholangiocarcinoma (ClinicalTrials.gov 
NCT03127735, NCT02746081).

IDH305, a pyrimidin-5-yl-oxazolidine-2-one 
compound, is an allosteric inhibitor of mutant 
IDH1, with excellent capability of passing 
through the blood–brain barrier [181]. Pre- 
clinical studies showed that IDH305 lowers 
2-HG levels in a patient-derived IDH1 mutant 
xenograft tumor model [181]. IDH305 is cur-
rently under phase I clinical trials, and the pre-
liminary clinical data have already shown that 
IDH305 has a favorable safety profile and prom-
ising anti-tumor activity in AML harboring IDH1 
mutations [182]. Further studies regarding the 
safety, tolerability, and anti-tumor activity as a 
single agent and in combination with others are 
on-going [182].

Ivosidenib (AG-120) (Tibsovo) is a highly 
selective inhibitor for mutant IDH1s without an 
inhibitory effect on IDH2. This drug inhibits the 
activity of the mutant enzyme by competing with 
cofactor binding [183]. In vivo pharmacokinetic 
studies have shown that this drug is rapidly 
absorbed, with low plasma clearance and a mod-
est level of brain penetration [184]. Ivosidenib 
was found to markedly reduce the level of 2-HG 
and inhibit growth of primary human AML 
myeloblasts, human chondrosarcoma cell lines, 
and IDH1-R132H glioma xenografts [184–186]. 
Currently, Ivosidenib has been approved by the 
FDA for the treatment of adults with relapsed or 
refractory AML with IDH1 mutations in phase 
I clinical trials [187].

LY3410738, a new potent inhibitor of mutant 
IDH1 forms, was developed using a structure- 
based drug design approach. LY3410738 reacts 
with cysteine 269 in the allosteric binding pocket 
and rapidly inactivates the mutant IDH1 enzyme. 
LY3410738 can pass through the blood–brain 
barrier and exhibits prolonged pharmacokinetics. 
This drug can inhibit 2-HG production in glioma 
both in vitro and in vivo. Moreover, LY3410738 
is more potent than AG-120 or Ivosidenib for 
inducing differentiation of myeloid progenitors 
to produce normal hematopoietic cells in patient- 

derived primary AML cells harboring IDH1 
mutations [188].

AGI-6780, a urea sulfonamide compound, is 
the first small molecule selective inhibitor of 
IDH2 mutants [188]. It binds at the IDH2 dimer 
interface of the enzyme and also competes with 
binding of NADPH, resulting in inactivation of 
the enzyme [188–190]. AGI-6780 can suppress 
the production of 2-HG in human glioblastoma 
U87 and TF-1 cells harboring the IDH2-R140Q 
mutation, concomitant with restoration of normal 
differentiation of hematopoietic cells [189, 191]. 
Furthermore, 2-HG-induces DNA and histone 
hypermethylation in TF-1 erythroleukemia cells 
with the IDH2-R140Q mutation can be reversed 
by treatment with AGI-6780 [191]. Although 
AGI-6780 possesses an excellent inhibitory 
effect on normal differentiation of the hemato-
poietic cell lineage, further investigation of AGI- 
6780 on AML has been restrained due to the 
emergence of Enasidenib which is more potent 
than this drug.

Enasidenib is a selective inhibitor of IDH2. 
This drug preferentially binds to the IDH2 
R172H mutant enzyme and lowers 2-HG produc-
tion [184]. Both pre-clinical and clinical studies 
have shown that this drug lowers the levels of 
2-HG in acute amyloid leukemia, in parallel with 
a high rate of differentiation of myeloid progeni-
tors to normal leukocytes [192, 193]. Similar to 
Ivosidenib, Enasidenib was approved by the FDA 
for patients with relapsed or refractory AML 
bearing mutations of the IDH2 gene [194]. 
Enasidenib is currently undergoing phase II clini-
cal testing.

AG-881 (Vorasidenib) is a triazine class com-
pound, which is the first pan-inhibitor of both 
IDH1 and IDH2 mutant enzymes. AG-881 allo-
sterically inhibits the activities of both mutant 
forms of IDH1 and IDH2 by binding to the allo-
steric pocket at the dimer interface. However, 
binding of this compound to mutant IDH-1 is 
much faster than to mutant IDH2 [195]. AG-881 
also lowers the production of 2-HG in tumors 
bearing either IDH1 or IDH2 mutations, concom-
itant with improved differentiation of myeloid 
progenitors to normal hematopoietic cells [196]. 
A pharmacokinetic study showed that AG-881 
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exhibits the rapid oral absorption, low total body 
plasma clearance properties, and excellent brain 
penetration, supporting the clinical development 
of this compound [196]. AG-881 is currently 
being investigated in phase I  clinical trial for 
safety, pharmacokinetics, and pharmacodynam-
ics in glioma patients carrying mutations of IDH1 
and/or IDH2 [197].

2.3.3  Oxidative Phosphorylation

As an anti-diabetic drug with glucose lowering 
effects, metformin has recently attracted atten-
tion as an anti-cancer drug. Metformin inhibits 
complex I of the respiratory chain, resulting in 
inhibition of ATP synthesis [198, 199]. This inhi-
bition results in an increased ratio of AMP:ATP 
which, in turn, activates AMP-activated protein 
kinase (AMPK) [200, 201]. AMPK then activates 
phosphorylation of the transcription co-activator 
of gluconeogenic enzyme genes [201–203]. In 
cancers, metformin also depletes ATP synthesis 
through the same mechanism as reported in dia-
betic patients, resulting in cancer cell death [204, 
205]. Further studies also showed that AMPK 
activation not only decreases protein synthesis 
through the inhibition of the mammalian target of 
rapamycin (mTOR) signaling pathway [206, 
207] but it also activates the p53 tumor- suppressor 
gene [208, 209] and induces cell cycle arrest 
[210]. In addition, metformin diminishes TCA 
cycle activity, affecting cataplerosis and nucleo-
tide synthesis [211, 212]. Metformin also reduces 
the risk of cancer in diabetic patients [213–215]. 
Owing to the uptake of metformin requiring the 
organic cation transporter 1 (OCT1) which is 
highly abundant on plasma membrane of hepato-
cytes, the transport of metformin into other cell 
types, such as cancer cells, is limited [216]. This 
has resulted in the use of another biguanide drug, 
phenformin, as a potential alternative anti-cancer 
drug. Phenformin, a more hydrophobic drug, can 
therefore penetrate through the plasma mem-
brane of cancer cells better than metformin. 
Although this drug can cause lactic acidosis in 
diabetic patients, phenformin has been reported 
to have excellent anti-neoplastic effects in both 

cell culture and xenograft mouse models [217, 
218]. The use of metformin as an anti-tumor drug 
in breast, prostate, esophageal, and uterus can-
cers is currently undergoing clinical trials [219].

2.4  Glutaminolysis

For decades, several studies have shown that glu-
tamine, the most abundant amino acid in blood 
and muscle, is highly consumed in most cancers 
[220–224]. Glutaminolysis is the oxidative 
deamination of glutamine to glutamate by gluta-
minase (GLS) before subsequent conversion to 
α-ketoglutarate by glutamate dehydrogenase, 
enabling carbon skeletons of glutamine to enter 
the TCA cycle to support cataplerosis [11, 223, 
225]. Moreover, glutamine is used to synthesize 
glutathione for maintaining cellular redox 
homeostasis [226] and is also an important mod-
ulator of mTOR [227, 228] and endoplasmic 
reticulum (ER) stress signaling pathways [229]. 
Most cancers are highly addicted to glutamine 
because the removal of glutamine dramatically 
reduces cell growth or induces cell death [230–
234]. This information indicates that glutaminol-
ysis is one of attractive targets for anti-cancer 
drugs.

2.4.1  Glutaminase (GLS)

Multiple lines of evidence show that GLS is over-
expressed in many cancers, indicating that this 
pathway is essential for their growth and survival. 
In humans, there are two different isoforms of 
GLS, namely GLS1 and GLS2. GLS1 is mainly 
expressed in proliferating cells, while GLS2 is 
expressed in quiescent cells. During oncogenic 
transformation, there is a genetic switch from 
GLS2 to GLS1 expression in many cancers [235, 
236]. Overexpression of GLS1 in cancer is also 
associated with poor prognosis and inhibition of 
GLS1 activity can inhibit cancer growth [237–
239]. 6-diazo-5-oxo-L-norleucine (DON) and 
acivicin, the first generation of GLS inhibitors 
have been reported [240, 241]. These two com-
pounds are L-glutamine analogs were isolated 
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from Streptomyces bacteria. They inhibit gluta-
mine metabolism by irreversibly interacting with 
serine 286 in the GLS active site [242]. Although 
they are potent GLS inhibitors and can inhibit 
growth of several cancers [243–245], they pro-
duce severe off-target side effects by inhibition of 
enzymes such as NAD synthase [243, 246].

Bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol- 
2-yl) ethyl sulfide (BPTES) is a more selective 
inhibitor of GLS1 [247]. BPTES has been identi-
fied as a non-competitive allosteric inhibitor of 
GLS1. Binding of this compound at the allosteric 
pocket results in a dramatic conformational 
change that blocks the activation by phosphate 
[248] without off-target effects [249]. As a result 
of inhibition of TCA cycle input from glutamine, 
BPTES treatment lowers the levels of glutamate, 
fumarate, and malate, while increasing the level 
of glycolytic intermediates. Similarly, BPTES 
treatment was also found to diminish glutamate 
and other TCA cycle intermediates, concomitant 
with increased apoptosis in MYC-overexpressing 
cancers [250]. BPTES was reported to inhibit 
growth of P493 lymphoma xenograft in mice 
[251]. In addition, BPTES treatment prolongs the 
survival of mice bearing MYC-overexpressing 
cancer without toxic side effects [252]. However, 
BPTES is not used as anti-cancer drug because of 
its poor solubility and low bioavailability [253].

CB-839 is a BPTES derivative with an 
improved solubility [249, 254]. Inhibition of 
GLS by CB-839 diminishes glutaminolysis, con-
comitant with growth inhibition of triple negative 
breast cancer [254], NSCLC [255], leukemia 
[256], and ovarian cancer [257]. Inhibition of 
GLS1 by CB839 in ovarian cancer reduces phos-
phorylation of signal transducer and activator of 
transcription 3 (STAT3), making this cancer more 
sensitive to PI3K/Akt/mTOR inhibition [257]. 
CB-839 has also been used in combination with 
paclitaxel or pomalidomide to increase its effi-
cacy in the tumor xenograft model [254, 258]. At 
present, CB-839 is the most effective small- 
molecule GLS1 inhibitor in phase I of clinical tri-
als [259]. In addition to CB-839, the nor-oleanane 
triterpenoid compound, brachyantheraoside A8, 
has been reported as another GLS1 inhibitor 
[260]. Brachyantheraoside A8 has been shown to 

decrease migration and invasion and induced 
apoptosis in breast cancer [260]. Physapubescin 
K, a natural product from Physalis pubescens, 
has recently been reported to inhibit GLS1. This 
compound can inhibit growth of pancreatic can-
cer cell growth in vitro and in vivo [261]. 
Furthermore, physapubescin K also exhibits the 
synergistic inhibition of tumor growth with 
benserazide and erlotinib [261]. Although these 
new natural GLS1 inhibitors display potent anti- 
cancer activity, the molecular mechanism of inhi-
bition of these small molecules and their side 
effects have not been elucidated. The long-term 
paradigm of glutaminase being a target of anti- 
cancer has recently been challenged by the study 
in the KRAS-driven NSCLC in which the rate of 
glutaminolysis was negligible when transplanted 
in nude mice [262, 263]. Furthermore, CB-839 
also fails to block growth of NSCLC transplanted 
in nude mice [263] while it inhibits growth of this 
cancer in vitro, indicating that glutamine may not 
be required for in vivo growth.

2.5  De Novo Fatty Acid Synthesis

De novo lipogenesis (DNL) is the biosynthesis of 
fatty acids from glucose. This pathway combines 
glycolysis and long chain acyl-CoA synthesis 
[264] and is an important pathway for cancers 
because fatty acids are essential structural com-
ponents of the plasma membrane. Numerous 
studies showed that rate of DNL is very high in 
many cancers [265–267]. Increased DNL in can-
cers is accompanied by increased activity or 
expression of several key lipogenic enzymes such 
as ATP-citrate lyase (ACLY), acetyl-CoA car-
boxylase (ACC), and fatty acid synthase (FASN).

2.5.1  ATP-Citrate Lyase

ACLY is the first key enzyme that links glycoly-
sis and long chain acyl-CoA synthesis. The cyto-
solic ACLY catalyzes the cleavage of citrate to 
oxaloacetate and acetyl-CoA.  Oxaloacetate is 
reconverted to malate before re-entry into mito-
chondria, while acetyl-CoA is used as a precursor 
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for long chain fatty acids and cholesterol synthe-
sis (See Fig. 2.1) [268]. ACLY expression is ele-
vated in stomach, prostate, liver, breast, kidney, 
and NSCLCs [269–274]. Recent studies showed 
that ACLY supports colon cancer metastasis by 
promoting the activity of CTNNB1, a key regula-
tor of epithelial-mesenchymal transition [275]. 
Suppression of ACLY expression in breast, kid-
ney, and NSCLCs markedly inhibits proliferation 
and induces apoptosis [272–274]. It also inhibits 
metastasis of colorectal cancer both in vitro and 
in vivo [275]. Among the ACLY inhibitors, 
SB-204990, cucurbitacin B (CuB), and NDI- 
091143 are the most potent inhibitors of DNL. 
SB-204990, a cell-penetrant γ-lactone prodrug of 
SB-201076, can inhibit both cholesterol and fatty 
acid synthesis in HepG2 cells [276]. Furthermore, 
this compound also inhibits proliferation and sur-
vival of highly glycolytic tumors [277]. Although 
SB-204990 shows an excellent anti-neoplastic 
activity in pancreatic ductal xenografts in a 
mouse model [277], there has been no clinical 
study of this compound in patients.

Cucurbitacins (CUs) are natural products iso-
lated from cucumber, melon, squash, and pump-
kins. These compounds contain a tetracyclic 
cucurbitane nucleus skeleton, namely, 9β-methyl- 
19-norlanosta-5-enea, which is traditionally 
divided arbitrarily into 12 categories, incorporat-
ing CUs A-T [278, 279]. Among several groups 
of CUs, CuB exerts anti-cancer activity by inhib-
iting proliferation and apoptosis in several human 
cancers including breast cancer [280–282], pan-
creatic cancer [283, 284], hepatocellular carci-
noma [285], lung cancer [286], and prostate 
cancer [270]. CuB inhibits ACLY activity by 
reducing its expression and inhibits its phosphor-
ylation [270]. In vivo studies showed that treat-
ment with CuB can suppress growth in Panc-1 
pancreatic [283], PC3 prostate [270], and H1299 
NSCLC xenografts in nude mice [286]. The com-
bination of CuB and gemcitabine improves the 
anti-proliferative effect in human breast cancer 
[282] and pancreatic cancer [284] xenografts in 
nude mice. Furthermore, CuB can inhibit tumor 
angiogenesis by suppressing human umbilical 
vascular endothelial cell proliferation, migration, 
and capillary-like structure formation, and induce 

apoptosis in vitro [287]. CuB has low oral bio-
availability, but it could be distributed broadly 
into several organs such as lung, spleen, and kid-
ney, with a high volume of distribution and tissue 
to plasma ratio [288]. Nevertheless, further clini-
cal study of CuB is necessary to confirm their 
therapeutic effect in cancer patients.

NDI-091143 is the most recently identified 
ACLY inhibitor [289]. This compound shows an 
excellent potency and selectivity toward 
ACLY. NDI-091143 allosterically binds to ACLY 
and disrupts binding of citrate [289]. Although, 
there has been no report on the efficacy of NDI- 
091143 on cancer treatment, this compound or its 
analogs might have potential uses as anti-cancer 
agents due to their appealing allosteric inhibition 
mechanism to human ACLY activity [289].

2.5.2  Acetyl-CoA Carboxylase

ACC catalyzes the carboxylation of acetyl-CoA 
to produce malonyl-CoA, an acetyl-group donor 
for de  novo fatty acid biosynthesis [290]. In 
humans, ACC1 and ACC2 are encoded by two 
separate genes. Although, these two isoforms 
catalyze the same chemical reaction, their meta-
bolic roles are distinct. ACC1 is a cytosolic 
enzyme that is expressed exclusively in lipogenic 
tissues such as liver and adipose tissue where it 
catalyzes the first committed step in the biosyn-
thesis of long chain fatty acids [291]. On the 
other hand, ACC2 is expressed in oxidative tis-
sues, that is, heart and skeletal where it controls 
oxidation of fatty acids through carnitine palmi-
toyltransferase I activity [292]. ACC1 is overex-
pressed in multiple human cancers, such as 
breast, liver, and NSCLC to support DNL [271, 
293, 294]. Suppression of ACC1 expression or 
inhibition of ACC1 activity decreases phospho-
lipid composition in the plasma membrane, 
reducing its integrity and receptor dimerization 
[295]. This combined effect in turn inhibits 
growth and progression of many cancers [294–
296]. Several ACC1 inhibitors have been identi-
fied and studied. The most well-characterized 
ACC1 inhibitors are TOFA (5-(tetradecyloxy)-
2-furoic acid), soraphenA, ND-646 and ND-654.
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TOFA is a representative of fatty acyl-CoA 
mimetics that were first used for treatment of 
hyperlipidemia [297]. TOFA is further metabo-
lized to 5-tetradecyloxy-2-foryl-CoA (TOFyl- 
CoA) which allosterically inhibits ACC1 by 
binding to the carboxyltransferase domain of the 
enzyme, preventing binding of acetyl-CoA [298]. 
This inhibitor can reduce fatty acid synthesis, tri-
glyceride secretion and apolipoprotein B secre-
tion in cultured hepatocytes [298, 299]. It reduces 
fatty acid, cholesterol, and triglyceride synthesis, 
increases fatty acid oxidation and decreases very 
low density lipoprotein (VLDL) production in rat 
livers perfused with TOFA ex vivo [300]. In can-
cers, TOFA blocks fatty acid synthesis, 
 concomitant with inhibition of proliferation and 
induces apoptosis in several cancer cell lines 
such as HCT-8 and HCT-15 colon cancer [301], 
LNCaP prostate cancer [302], COC1 and COC1/
DDP ovarian cancer [303], NCI-H460 lung can-
cer [301] and ACHN, and 786-O renal cell carci-
noma [304]. TOFA also induces cell cycle arrest 
in ovarian cancer [303] and renal carcinoma 
[304]. In addition, it can inhibit growth of human 
ovarian tumors in xenograft mice [303]. TOFA 
treatment also reduces lipid droplet content and 
proliferation in breast cancer BT474, MCF-7, 
and T47D cell lines. However, the efficacy of 
TOFA in reducing lipid droplets and inhibiting 
proliferation were not observed in MDA-MB-231 
cells [305].

Soraphen A is a macrocyclic polyketide natu-
ral product isolated from the myxobacterium 
strain Sorangium  cellulosum [306]. This com-
pound contains an unsaturated 18-membered lac-
tone ring, an extracyclic phenyl ring, two 
hydroxyl groups, three methyl groups, and three 
methoxy groups [307, 308]. It was originally 
used as an anti-fungal agent in agriculture [307, 
308]. Soraphen A inhibits ACC1 activity by bind-
ing at the dimer interface of biotin carboxylase 
domain which, in turn, perturbs oligomerization 
of the biotin carboxylase domain and inactivates 
ACC1 activity [309]. Soraphen A treatment 
reduces fatty acid synthesis, inhibits prolifera-
tion, and induces cell death in LNCaP and 
PC-3 M prostate cancer [310] and HepG2 [311] 

cell lines. Soraphen A affects composition, turn-
over, and activation of phospholipid membranes 
of SKBR3 breast cancer and Huh7 hepatocellular 
carcinoma cell lines, resulting in inhibition of 
their proliferation [295]. Soraphen A also inhibits 
the dissemination of breast cancer and hepatocel-
lular carcinoma xenografts in a mouse model 
[295].

ND-630 was identified as an isozyme- 
nonselective, allosteric ACC inhibitor by 
structure- based drug design [312]. ND-630 binds 
to ACC1  in close vicinity to the AMPK phos-
phorylation site [313]. Binding of ND-630 at this 
position disrupts dimerization of ACC1 and 
inhibits enzymatic activity. Treatment with 
ND-630 diminishes fatty acid synthesis while 
stimulating fatty acid oxidation in human hepato-
cellular carcinoma HepG2 cells [312]. Presently, 
ND-630 is undergoing phase II clinical trials as a 
drug for non-alcoholic steatohepatitis, although 
the efficacy of ND-630 as anti-cancer agent has 
not been examined [314–316].

ND-646, another ACC1 inhibitor, inactivates 
ACC1 by interacting with several residues in 
the dimer interface of the BC domain, in a simi-
lar manner as that of ND-630. ND-646 inhibits 
fatty acid synthesis, proliferation, and induces 
apoptosis in a NSCLC cell line and inhibits 
growth of NSCLC xenografts in nude mice 
[294]. Recently, ND-654 has been reported as a 
new ACC1 inhibitor. Similar to ND-630 and 
ND-646, ND-654 binds to ACC1, interferes 
with dimer formation and inactivates enzymatic 
activity. However, unlike ND-646 which shows 
broad tissue absorption, ND-654 has been mod-
ified to increase hepatic uptake absorption for 
effective treatment of hepatocellular carci-
noma. ND-630 inhibits human ACC1 with an 
IC50 of 3 nM and inhibits human ACC2 with an 
IC50 of 8  nM [317]. Treatment with ND-654 
also inhibits fatty acid synthesis and prolifera-
tion in HepG2 cells. Finally, ND-654 treatment 
alone or in combination with sorafenib was 
found to reduce fatty acid synthesis, inhibit 
proliferation, and increase survival in a diethy-
mitrosamine-induced hepatocellular carcinoma 
model in rats [317].
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2.5.3  Fatty Acid Synthase

FASN catalyzes the condensation of two carbon 
units from malonyl-CoA to the growing chain of 
acyl-CoA.  Similar to other lipogenic enzymes, 
FASN is overexpressed in most human carcino-
mas [318–322]. Elevated FASN expression has 
also been found to be correlated with poor prog-
nosis in breast cancer [323], prostate cancer [324, 
325], and NSCLC [326, 327], clearly demon-
strating its importance in supporting the growth 
and survival of these cancers. Several first- 
generation FASN inhibitors such as cerulenin, 
C75, and orlistat compounds have been reported 
to inhibit growth of several cancers.

Cerulenin, an antibiotic derived from the 
fungus Cephalosporum  caerulens, is a non- 
competitive inhibitor of FASN [328]. Cerulenin 
inhibits FASN activity by forming a covalent 
bond with a cysteine residue in the active site of 
the β-ketoacyl-synthase domain of the enzyme 
[328, 329]. Cerulenin inhibits proliferation and 
induces apoptosis in breast cancer cells in vitro 
[330]. Moreover, cerulenin delays tumor pro-
gression in a xenograft model [331]. However, 
the use of cerulenin still has some limitations, 
because the reactive epoxy group in its struc-
ture can react with other proteins and may 
affect cholesterol synthesis or proteolysis [332, 
333].

C75 is the first synthetic FASN inhibitor that 
was developed to resolve the chemical instability 
of the reactive epoxide present in cerulenin [334]. 
C75 inhibits FASN activity by targeting the 
β-ketoacyl-synthase domain, in the same manner 
as cerulenin, and also inactivates the enoyl reduc-
tase and the thioesterase domains of the enzyme 
[335]. C75 treatment selectively inhibits tumor 
growth by inducing apoptosis in both cultured 
cancer cells and in xenograft mouse models 
[336–339]. Furthermore, long-term administra-
tion of C75 significantly delays breast cancer 
development in mouse models [340]. However, 
the use of cerulenin and C75 as anti-cancer drugs 
still has some problems due to side effects of 
weight loss and anorexia [341, 342].

Orlistat, an FDA-approved pancreatic and 
gastric lipase inhibitor, was originally developed 
as an anti-obesity drug. Orlistat inhibits FASN 
activity by forming a covalent adduct with the 
active site serine residue in the thioesterase 
domain of this enzyme [343, 344]. Orlistat inhib-
its proliferation and induces apoptosis in PC3- 
prostate cancer [343], breast cancer [345, 346], 
ovarian cancer [347], and stomach cancer [348] 
in  vitro. Although orlitstat shows an excellent 
effect on the inhibition of cancer growth, it has 
poor solubility and low oral bioavailability [349].

Fasnall, a thiophenopyrimidine scaffold, has 
recently been discovered through a chemopro-
teomic platform fluorescence-linked enzyme 
chemoproteomic strategy. It has been reported as 
a potent and selective inhibitor with an IC50 of 
3.71 μM [350]. Interestingly, Fasnall has potent 
anti-proliferative and pro-apoptotic activity 
against various breast cancer cell lines without 
any effect on normal cells [350]. Because 
malonyl- CoA produced by FASN is an inhibitor 
of fatty acid oxidation, inhibition of FASN by 
Fasnall reduces the level of malonyl-CoA, raising 
the concentration of palmitate. Increased cellular 
palmitate then reacts with serine to form cerami-
des, which potentially disrupts the integrity of the 
plasma membrane of cancer cells [351] and 
induces apoptosis [352–354]. An in vivo study 
showed that Fasnall reduces growth of virally 
induced and triple negative-breast cancer xeno-
grafts in mice with prolonged survival times 
[350]. Taken together, the potent anti-neoplastic 
activity of Fasnall suggests its further use in clini-
cal studies.

TVB-2640 is an orally active, reversible 
FASN inhibitor. It inhibits the β-ketoacyl reduc-
tase (KR) activity of FASN [355]. TVB-2640 
inhibits growth of human colon adenocarcinoma 
COLO-205 xenografts in rat, accompanied by 
reduction of Akt phosphorylation [356]. TVB- 
2640 is currently being investigated in phase 
I clinical trials with patients with NSCLC, ovar-
ian cancer and breast cancer. This drug shows a 
good efficacy when combined with paclitaxel 
[357, 358].
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2.6  Conclusion and Future 
Perspectives

Metabolic reprograming allows cancer cells to 
selectively alter their cellular metabolism to suit 
their needs during rapid proliferation. This allows 
us to design small molecules that inhibit the dis-
tinct metabolic pathways in cancer but do not 
affect normal cells. Even though specific targets 
have been identified, several drugs still possess 
limitations such as specificity, solubility, bio-
availability, and adverse side effect while some 
fail during clinical trials. Currently, only a few 
anti-cancer drugs such as those that target gluta-
minase, MCTs, IDH1/2 and FAS are in clinical 
trials. The search for more inhibitors with excep-
tional specificity and more potency is challeng-
ing. However, with the application of high 
throughput technologies including transcrip-
tomics, proteomics, and metabolomics, it should 
become feasible to investigate the specificity and 
efficacy of anti-cancer drugs at the cellular and 
organismal levels. Using the same systems biol-
ogy tools, identification of specific responses to 
the drugs in individual patients is currently shift-
ing the paradigm of future health care from can-
cer treatment to preventive and personalized 
medicine.
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Abstract

Non-small cell lung cancer (NSCLC) is one 
of the most common types of lung cancer 
worldwide. It metastasizes rapidly and has a 
poor prognosis. The first-line treatment for 
most patients is a combination of chemo-
therapy and radiation. In many subjects, 
using targeted treatments alongside chemo-
radiation has shown a better outcome in 
terms of progression and quality of life for 

patients. These targeted treatments include 
small biological inhibiting molecules and 
monoclonal antibodies. In this review, we 
have assessed studies focused upon the 
treatment of non-small cell lung cancer. 
Some therapies are approved, such as 
bevacizumab and atezolizumab, while some 
are still in clinical trials, such as ficlatuzumab 
and ipilimumab, and others have been 
rejected due to inadequate disease control, 
such as figitumumab.
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3.1  Introduction

Lung cancers are the most common cancers 
worldwide and the leading cause of cancer- 
related deaths globally. They are divided into 
three groups based on the microscopic appear-
ance of the tumor cells: non-small cell lung can-
cers (NSCLCs), small cell lung cancers (SCLCs), 
and bronchial adenomas [1, 2]. NSCLCs are the 
most common, comprising more than 80% of 
lung cancers and have three distinct subtypes: 
squamous cell carcinoma (epidermoid); adeno-
carcinoma; and large cell (undifferentiated) car-
cinoma [1, 3].

Treatment of NSCLC consists of surgery, 
radiation, chemotherapy, targeted treatments, and 
immunotherapy, either alone or in combination. 
The most common drugs of choice for chemo-
therapy regimens include cisplatin, carboplatin, 
docetaxel, gemcitabine, paclitaxel, vinorelbine, 
and pemetrexed. Unlike chemotherapy drugs, tar-
geted agents are specifically designed to attack 
cancer cells, causing less damage to normal cells, 
and are thus being used alone or in combination 
with chemotherapeutic agents. The common tar-
geting agents used in NSCLC treatment are bio-
logical inhibitors or monoclonal antibodies that 
are aimed at different receptors and ligands, such 
as epidermal growth factor receptor (EGFR), vas-
cular endothelial growth factor (VEGF), pro-
grammed cell death ligand 1 (PD-L1), type 1 
insulin-like growth factor receptor (IGF-1R), 
receptor activator of nuclear factor kappa-B 
ligand (RANKL), hepatocyte growth factor 
(HGF), and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4). Monoclonal antibodies 
against each target are shown in Table 3.1, and 
some of the approved drugs that have indications 
in other types of cancer are shown in Table 3.2. In 
Table  3.3, the common adverse effects of each 
agent are mentioned [1–6].

3.2  Targeted Therapies and their 
Approved Antibodies

3.2.1  Epidermal Growth Factor 
Receptor (EGFR)

One of the potential targets in NSCLC is the 
epidermal growth factor receptors (EGFRs). 
They are widely expressed on the cell surface (up 
to 85%) of lung cancer patients and affect cell 
cycle progression, apoptosis, angiogenesis, 
tumor cell motility, and metastasis [7, 8]. The 
EGFR group is divided into four tyrosine kinase 
receptor subtypes: EGFR, HER2, HER3, and 
HER4 [9]. The most important ligands that bind 
to these receptors are epidermal growth factor 
(EGF) and transforming growth factor α (TGFα). 
Therapeutic agents directed at these receptors 
include monoclonal antibodies, vaccines against 

Table 3.1 MABs and biological inhibitors in NSCLC

Class of drug Generic name Brand name
TKI Erlotinib Tarceva®

Gefitinib Iressa®

Crizotinib Xalkori®

Afatinib Gilotrif®

PARP Veliparib –
Olaparib Lynparza®

PI3K Buparlisib –
Alpelisib –

EGFR Cetuximab Erbitux®

Nimotuzumab TheraCIM®

Matuzumab –
Necitumumab Portrazza®

Panitumumab Vectibix®

VEGF EGFR Bevacizumab Avastin®

VEGFR Ramucirumab Cyramza®

PD-1 Pembrolizumab Keytruda®

Nivolumab Opdivo®

PD-L1 Atezolizumab Tecentriq®

Durvalumab Imfinzi®

Avelumab Bavencio®

IGF-1R Figitumumab –
RANKL Denosumab Prolia®, Xgeva®

HGF Ficlatuzumab –
Rilotumumab –

CTLA-4 Ipilimumab Yervoy®

Tremelimumab –
TR-2 (DR5) Conatumumab –
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EGF, ligand- toxin conjugates, and tyrosine 
kinase inhibitors (TKIs). The most common of 
these are monoclonal antibodies such as 
cetuximab, nimotuzumab, panitumumab, 
matuzumab, necitumumab, and TKIs, such as 
erlotinib, gefitinib, crizotinib, and afatinib [7, 9–
12]. Studies have shown that patients with EGFR 
mutations show a better response to targeting 
agents than to chemotherapy. The mutations are 
categorized into three classes, being identified 
only by direct sequencing of polymerase chain 
reaction analyses of the EGFR gene. It should be 
noted that mutations are more common in women 
and non-smokers [8, 13]. How therapeutic agents 
bind to EGFR is shown in Fig. 3.1.

3.2.1.1  Cetuximab
Cetuximab is a chimeric IgG1 antibody directed 
against EGFR. It works by blocking the binding 
of EGF and TGFα to the receptor. Studies have 
addressed the efficacy of cetuximab alone or in 

combination with other drugs or radiation ther-
apy for the treatment of NSCLC [11]. However, 
the data from multiple clinical trials indicates 
that cetuximab does not benefit overall survival. 
It was therefore removed from the American 
Society of Clinical Oncology (ASCO) and the 
National Comprehensive Cancer Network 
(NCCN) guidelines in 2016 [14, 15]. It should be 
noted that cetuximab is still used in head and 
neck cancers, as well as in metastatic colorectal 
cancer, and the most common adverse effects of 
this agent are acne-like rash, diarrhea, and rare 
infusion reactions [7, 10–12, 16, 17].

3.2.1.2  Nimotuzumab
Nimotuzumab is a humanized anti-EGFR IgG1 
monoclonal antibody that has approval for the 
treatment of advanced head and neck tumors, 
glioma, and esophageal cancer [18]. There have 
been several clinical studies addressing the effect 
of nimotuzumab in combination with radiother-

Table 3.2 Approved monoclonal antibodies for lung cancer and their indications

Drug Indications
Bevacizumab Colorectal cancer

Lung cancer
Kidney cancer
Cervical cancer
Ovarian cancer

Ramucirumab Metastatic NSCLC
Gastric cancer
Colorectal cancer

Pembrolizumab Advanced non-small cell lung cancer
Advanced melanoma
Head and neck squamous cell cancer
Classical Hodgkin’s disease
Lymphoma
Microsatellite instability-high cancer
Advanced urothelial bladder cancer
Advanced gastric cancer
Advanced cervical cancer
Primary mediastinal B-cell lymphoma

Nivolumab Advanced non-small cell lung cancer
Melanoma
Advanced kidney cancer
Head and neck squamous cell cancer
Advanced bladder cancer
Advanced liver cancer
Colorectal cancer (MSI-H/dMMR)
Classical Hodgkin lymphoma

Atezolizumab Patients with previously treated metastatic non-small cell lung cancer
Certain patients with advanced urothelial carcinoma
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apy or TKIs against NSCLC which have had 
promising results. Nimotuzumab is mostly used 
when there is tolerance against TKIs. With the 
low dose and high efficacy of this drug, it appears 
to be a promising monoclonal antibody (MAB) 
for the treatment of EGFR-associated NSCLCs. 
It should be noted that unlike other anti-EGFR 
MABs, nimotuzumab rarely binds to EGFR 
expressed in normal tissue. The most common 

adverse effects of nimotuzumab include skin 
rashes, pruritus, and diarrhea [19–26].

3.2.1.3  Matuzumab
Matuzumab is a humanized IgG1 monoclonal 
antibody directed against EGFR. Matuzumab has 
been assessed in a number of clinical studies, 
confirming both its patient tolerance and antitu-
mor activity. These trials have included phase 1 
and 2 for use of matuzumabin combination with 
paclitaxel or pemetrexed. The side effects include 
cutaneous and gastrointestinal events (e.g., rash, 
diarrhea) which are common among anti-EGFR 
antibody therapies [27–29].

3.2.1.4  Necitumumab
Necitumumab is a fully human IgG1 anti-EGFR 
monoclonal antibody. Several clinical trials 
have investigated necitumumab as a therapeutic 
agent for NSCLC patients with encouraging 
results [30, 31]. The SQUIRE phase 3 clinical 
trial compared the use of necitumumab along-
side gemcitabine and cisplatin against gem-
citabine and cisplatin alone in stage 4 previously 
untreated NSCLC patients and the results 
showed an improvement in overall survival in 
patients on the necitumumab regimen [30, 32–
36]. Due to its success in the SQUIRE clinical 
trial, a phase 2 clinical trial comparing the use 
of necitumumab with paclitaxel and carboplatin 
as an alternative chemotherapy choice, com-
pared to paclitaxel and carboplatin alone, was 
undertaken. The results of this trial support the 
use of necitumumab alongside chemotherapeu-
tic agents for NSCLC patients [37]. Although 
promising results have been shown in previous 
clinical trials, by contrast, the phase 3 INSPIRE 
clinical trial, in which necitumumab was used 
alongside pemetrexed and cisplatin versus 
pemetrexed and cisplatin alone in stage 4 previ-
ously untreated NSCLC patients, no advantage 
of addition of necitumumab on survival of 
NSCLC patients was seen [38]. The overall 
adverse effects of necitumumab are similar to 
this group of antibodies and include acneiform 
rash, skin dryness, fissures, and hypomagnese-
mia [31, 35].

Table 3.3 Common side effects of MABs used in 
NSCLC

Drug name Common side effects
Cetuximab Acne-like rash, diarrhea, and rare 

infusion reactions
Nimotuzumab Skin rash, pruritus, and diarrhea
Matuzumab Skin and gastrointestinal events 

(e.g., rash, diarrhea)
Necitumumab Acneform rash, skin dryness, 

fissures, and hypomagnesemia
Panitumumab Skin toxicity including dry skin and 

acne, diarrhea, deep vein 
thrombosis, paronychia and 
stomatitis

Bevacizumab Hemorrhage, hyper-tension, 
proteinuria, and headache

Ramucirumab Febrile neutropenia and pneumonia
Pembrolizumab Fatigue, pyrexia, and diarrhea
Nivolumab Pruritus, diarrhea, and nausea
Atezolizumab Fatigue, nausea, decreased appetite, 

asthenia, pneumonia, and increased 
aspartate aminotransferase

Durvalumab Cough, fatigue, upper respiratory 
tract infections, and rash

Avelumab Treatment-related pneumonitis and 
immune-related events

Figitumumab Hyperglycemia, rash, diarrhea, 
decreased appetite, and asthenia

Denosumab Osteonecrosis of the jaws
Ficlatuzumab Diarrhea, acnei-form dermatitis, and 

paronychia
Rilotumumab Anemia, lymphopenia, diarrhea and 

acnei-form rash
Ipilimumab Skin and gastrointestinal events 

(e.g., rash, pruritus, and diarrhea)
Tremelimumab Diarrhea, nausea, anorexia, colitis, 

vomiting, dyspnea, asthenia, and dry 
skin

Conatumumab Increased amylase and lipase, 
peripheral neuropathy, diarrhea, 
vomiting, and headaches
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3.2.1.5  Panitumumab
Panitumumab is a fully human IgG2 monoclonal 
antibody which targets EGFR and is used as a 
therapeutic agent either alone or in combination 
for various types of cancers [39, 40]. A phase 2 
clinical trial with the addition of panitumumab 
to paclitaxel and carboplatin showed that there 
was no improvement in overall survival and 
time to progression in NSCLC patients, despite 
acceptable toxicity [41]. Another phase 2 
clinical trial (CHAMP) showed that the use of 
panitumumab alongside pemetrexed and 
cisplatin resulted in increased toxicity and 
lowered the quality of life of NSCLC patients 
[42]. Another phase 2 clinical trial showed that 
the use of panitumumab alongside carboplatin 
and paclitaxel had no advantage compared to 
carboplatin and paclitaxel alone [43]. A similar 
phase 2 trial compared panitumumab with 
carboplatin and pemetrexed to carboplatin and 
pemetrexed alone, with the same result [44]. 
Only one phase 3 clinical trial showed efficacy 
from adding panitumumab to erlotinib and 
bevacizumab as a second-line treatment for 
NSCLC [45]. The adverse effects of this agent 
include skin toxicity, including dry skin and 
acne, diarrhea, deep vein thrombosis, 
paronychia, and stomatitis [41, 45, 46].

3.2.2  Vascular Endothelial Growth 
Factor (VEGF)

VEDF receptors are a group of three tyrosine 
kinase receptors that are highly expressed on 
tumor cells and have an important role in cancer 
angiogenesis. VEGF includes eight ligands that 
induce angiogenesis by signaling through the 
tyrosine kinase receptors [47, 48]. Monoclonal 
antibodies against VEGF prevent the prolifera-
tion of vascular tumor cells by inhibiting the 
physiological pathway of angiogenesis. The only 
monoclonal antibody approved for inhibiting 
vasculature growth via VEGF in NSCLC is beva-
cizumab [48–50]. How these agents bind to the 
VEGFR is illustrated in Fig. 3.2.

3.2.2.1  Bevacizumab
Bevacizumab is a recombinant humanized anti- 
IgG1 antibody against VEGF, approved by the 
Food and Drug Administration (FDA) in 2006 as 
a first-line treatment for non-squamous NSCLC 
in combination with carboplatin and paclitaxel, 
carboplatin and pemetrexed, or cisplatin and 
pemetrexed. VEGF is the major regulator of 
angiogenesis in normal and malignant tissues. It 
should be noted that a history of hemoptysis is a 
contraindication for use of this drug, and it is not 
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recommended for patients with squamous cell 
cancer. Bevacizumab can also be used as a single 
agent for maintenance therapy. The most serious 
adverse effect which can also be fatal is hemor-
rhage, which can be pulmonary or gastrointesti-
nal related. Other common side effects include 
hypertension, proteinuria, and headache 
[51–54].

3.2.2.2  Ramucirumab
Ramucirumab is an FDA approved human IgG1 
antibody directed against VEGF receptor 2. It is 
administered intravenously with a 10 mg/kg dose 
before docetaxel for patients with metastatic 
NSCLC. The most common adverse effects are 
febrile neutropenia and pneumonia. In 2014, at 
the conclusion of the REVEL clinical trial, it was 
also approved for gastric and colorectal cancers 
[55–57].

3.2.3  PD-1 and PD Ligands 1 and 2 
(PD-L1 and L2)

One of the potential checkpoints for therapeutic 
targets directed against tumor cells are pro-
grammed cell death ligand 1 (PD-L1, also known 
as CD274) and 2 (PD-L2), that are present on 
tumor cells with their receptor on T-cells. PD-L1 
and PD-L2 bind to the programmed cell death 1 

receptor on T-cells, causing a downregulation of 
apoptotic molecules, and thus increasing the sur-
vival of tumor tissue. Pembrolizumab and 
nivolumab are antibodies that bind to PD-1 on 
T-cells, and atezolizumab, durvalumab, and ave-
lumab are antibodies that bind to PD-L1, and 
these agents are used to treat NSCLC [2, 58–60]. 
The use of anti-PD-1 is more effective against 
tumors that express both PD ligands [61–63]. The 
interactions of PD-L and PD-L1 and their associ-
ated drugs are illustrated in Fig. 3.3.

3.2.3.1  Pembrolizumab
Pembrolizumab is a humanized IgG4 monoclonal 
antibody directed against PD-1 for use in 
advanced NSCLC. Based on guidelines from the 
NCCN for NSCLC, the FDA has approved the 
use of pembrolizumab as a first-line treatment for 
patients with more than 50% expression of 
PD-L1 and for patients with metastatic non- 
squamous NSCLC, combined with carboplatin 
and pemetrexed. Pembrolizumab is used in 
patients with negative or unknown test results for 
EGFR mutations and anaplastic lymphoma 
kinase (ALK) rearrangements. High-dose IV cor-
ticosteroids should be administered for patients 
with immune-mediated adverse events. The rec-
ommended dose of pembrolizumab is 200  mg 
administered as an intravenous infusion over 
30  min every 3  weeks. Based on the 
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KEYNOTE-024 trial, pembrolizumab showed a 
longer progression-free period with less adverse 
effects than with combined platinum-based che-
motherapy agents. The common adverse effects 
of pembrolizumab include fatigue, pyrexia, and 
diarrhea [64–67].

3.2.3.2  Nivolumab
Nivolumab is a human IgG4 monoclonal antibody 
directed against PD-1receptors on T-cells and is 
used for the treatment of various cancers, 
including metastatic NSCLC.  The safety of 
nivolumab as a second-line treatment in meta-
static NSCLC was evaluated by the 
CHECKMATE-017 and CHECKMATE-057 
clinical trials. The recommended dose of 
nivolumab is 240 mg every 2 weeks or 480 mg 
every 4  weeks, administered as an intravenous 
infusion over 30  min. The most common side 
effects are pruritus, diarrhea, and nausea [68]. 
Nivolumab can be used for the treatment of both 
squamous and non-squamous NSCLC [59, 67, 
69–71].

3.2.3.3  Atezolizumab
Atezolizumab, a humanized monoclonal IgG1 
antibody, is the first FDA-approved antibody 
directed against PD-L1, with approval granted in 
2016. The Fc region of atezolizumab is modified 
so it eliminates antibody-dependent cell cytotox-
icity (ADCC) or complement-dependent cyto-
toxicity (CDC) [67, 72]. It is used as a second-line 
therapy in patients with metastatic NSCLC who 
have disease progression during or after platinum- 
based chemotherapy [61]. Several clinical trials 

(BIRCH, POLAR, OAK) have demonstrated that 
adding atezolizumab to the chemotherapy regi-
men of cancer patients improves their overall sur-
vival. However, side effects are common and 
include fatigue, nausea, decreased appetite, 
asthenia, pneumonia, and increased aspartate 
aminotransferase [61, 67]. Unlike pembroli-
zumab, the use of atezolizumab is independent of 
the percentage of PD-L1 expression [73, 74]. The 
recommended clinical dose for atezolizumab is 
1200 mg every 3 weeks, and it has a half-life of 
27 days [75].

3.2.3.4  Durvalumab
Durvalumab is an approved human IgG1 
monoclonal antibody for urothelial carcinoma 
and stage 3 NSCLC that binds to PD-L1. The 
recommended dosing for treatment of stage 3 
NSCLC is 10  mg/kg every 2  weeks. The most 
common adverse effects are cough, fatigue, upper 
respiratory tract infections, and rash. Following 
the PACIFIC clinical trial, which established the 
safety and efficacy of durvalumab, it gained 
approval in 2017 [72, 76–80].

3.2.3.5  Avelumab
Avelumab is a fully human IgG1 monoclonal 
antibody that binds to PD-L1 and blocks its bind-
ing to PD-L and CD80 [58]. According to a phase 
1 clinical study (JAVELIN), avelumab demon-
strated acceptable safety and efficacy in patients 
with recurrent NSCLC who were previously 
treated with platinum-based therapies. Its side 
effects include treatment-related pneumonitis 
and immune-related adverse events [81, 82].
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3.2.4  IGF-1R

IGF receptors are a group of three tyrosine 
kinase receptors consisting of IGF-1R, IGF-2R, 
and the insulin receptor (INSR) that play a role 
in cell growth and proliferation. IGF-1, IGF-2, 
and insulin- like binding proteins are the ligands 
for these receptors [83, 84]. These ligands and 
their receptors are over expressed in malignant 
tumors, resulting in proliferation, metastasis, 
and drug resistance [84, 85]. The interaction of 
the IGF-1 receptor with its ligand is illustrated 
in Fig. 3.4.

3.2.4.1  Figitumumab
Figitumumab is a human IgG2 monoclonal 
antibody that inhibits IGF-1R.  IGF receptors 
play important roles in cell growth and devel-
opment. IGF-1R is expressed on the majority of 
lung cancer cell lines, and thus affects cancer 
progression. Blocking this receptor aids the 
inhibitory effect of chemotherapy agents. 
Figitumumab was added as a first-line therapy 
to carboplatin plus paclitaxel and showed good 
results in phase 2 clinical trials but failed to 
increase overall survival in NSCLC patients in 
phase 3 clinical trials due to adverse events 
such as hyperglycemia, rash, diarrhea, 
decreased appetite, and asthenia. Thus, further 
development of figitumumab was discontinued 
[86–88].

3.2.5  RANKL

Skeletal lesions and bone metastases are common 
in NSCLC patients, causing extreme pain and 
impacting the patient’s quality of life. 
Bisphosphonates and denosumab are both rec-
ommended for treatment. The RANKL present 
on osteoblasts binds to the RANK receptor on 
osteoclasts, inducing bone resorption through 
signal transduction [89–91]. This interaction is 
illustrated in Fig. 3.5.

3.2.5.1  Denosumab
Denosumab is a novel, fully human IgG2 
monoclonal antibody specific to RANKL present 
on osteoblasts, which causes inactivation of bone 
resorption by osteoclasts [92]. Several clinical 
trials have evaluated the efficacy of denosumab 
compared to bisphosphonates, although data to 
date show no difference between them [93–96]. 
Even though there have been reports of osteone-
crosis of the jaw when using this agent, it is rec-
ommended that 120  mg denosumab be 
administered subcutaneously every month for 
treatment of metastatic bone disease [90, 97].

3.2.6  HGF

HGF, or scatter factor, is a cellular growth factor 
that activates tyrosine kinase signaling after 
binding to mesenchymal epithelial transition 
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Fig. 3.4 IGF-1 receptor 
and ligand and the 
effects of figitumumab
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factor (c-MET) or the HGF receptor (HGFR). 
MET is expressed in epithelial cells and its acti-
vation can lead to resistance to EGF receptor 
inhibitors [98–100]. A schematic illustrating the 
interaction between MET and HGF is shown in 
Fig. 3.6.

3.2.6.1  Ficlatuzumab
Ficlatuzumab (AV299) is a humanized IgG1 
monoclonal antibody that binds to HGF, thus 
inhibiting signaling of the c-MET receptor. 
Studies show that combination therapy with 
ficlatuzumab and cetuximab or erlotinibcan 
have a good patient outcome, but combination 
therapy with ficlatuzumab and gefitinib offers 
no benefit over gefitinib alone. The most com-
mon adverse events of ficlatuzumab include 
diarrhea, acneiform dermatitis, and paronychia 
[101, 102].

3.2.6.2  Rilotumumab
Rilotumumab (AMG 102) is a fully human IgG2 
monoclonal antibody directed against human 
HGF. A clinical trial studied the effect of adding 

rilotumumab to erlotinib in patients with previ-
ously treated NSCLC [98]. Despite side effects 
such as anemia, lymphopenia, diarrhea, and 
acneiform rash, the safety profile as well as the 
disease control rate were determined to be 
acceptable.

3.2.7  CTLA-4

CTLA-4, also known as CD152, is an immune 
modulator which downregulates and inhibits 
immune responses, specifically those of T-cells. 
The homolog of CTLA-4 is CD28, which stim-
ulates response. Both receptors act when bound 
with CD80 (B7–1) and CD86 (B7–2) on anti-
gen presenting cells (APCs). CTLA-4 is nor-
mally expressed on regulatory T-cell 
lymphocytes, but in cancers and immune dis-
eases, it is also expressed on normal T-cells 
resulting in a downregulation of the immune 
response [103–105]. A schematic illustrating 
the interaction between CTLA-4 and CD80/
CD86 is shown in Fig. 3.7.
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3.2.7.1  Ipilimumab
Ipilimumab is a fully human IgG1 monoclonal 
antibody that inhibits the attachment of CTLA-4 to 
its ligands (CD80 and CD86). Clinical studies 
comparing the use of ipilimumab alongside 
paclitaxel and carboplatin versus paclitaxel and 
carboplatin alone showed that adding ipilimumab to 
the treatment regimen improves progression- free 
survival. The most common adverse effects involve 
the skin and gastrointestinal tract (e.g., rash, 
pruritus, and diarrhea) [106, 107]. Ipilimumab is an 
approved agent for patients with metastatic 
melanoma [107, 108]. Different clinical trials 
(CHECKMATE 032 and CHECKMATE 012) have 
shown promising results for the use of ipilimumab 
alongside nivolumab for patients with both SCLC 
and NSCLC who have previously been treated with 
platinum-based therapies [68, 109]. Ipilimumab is 
also suggested alongside carboplatin and etoposide 
as first-line treatment for extensive-stage SCLC, but 
results to date have been inconclusive [108, 110].

3.2.7.2  Tremelimumab
Tremelimumab is a fully human IgG2 
monoclonal antibody and inhibitor of CTLA-4. 

A phase 1 clinical trial carried out between 
2013 and 2015 showed manageable tolerance 
for durvalumab (20 mg/kg every 4 weeks) plus 
tremelimumab (1 mg/kg), thereby dictating the 
doses for current phase 3 clinical trials [78, 
111]. The ARCTIC phase 3 clinical trial is cur-
rently on-going for studies of durvalumab with 
or without tremelimumab for previously treated 
NSCLC patients [77]. The most common 
observed adverse effects are diarrhea, nausea, 
anorexia, colitis, vomiting, dyspnea, asthenia, 
and dry skin [111].

3.2.8  Tumor Necrosis  
Factor- Related Apoptosis-
Inducing Ligand  
(TRAIL) Receptor 2  
(TR-2) or Death Receptor 5 
(DR5)

TR-2 or DR5 causes cell apoptosis when in 
contact with TRAIL, a protein that functions as a 
ligand [112, 113]. The interaction of TRAIL with 
DR5 is illustrated in Fig. 3.8.
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3.2.8.1  Conatumumab
Conatumumab is a fully human IgG1 monoclonal 
antibody directed against the extracellular 
domain of death receptor 5, imitating the activity 
of TRAIL and thus inducing cell apoptosis. A 
randomized clinical trial was undertaken to study 
the effect of adding conatumumab to paclitaxel 
and carboplatin as a first-line treatment in 
NSCLC. Even though the treatment was  tolerated, 
despite side effects such as increased amylase 
and lipase, peripheral neuropathy, diarrhea, vom-
iting and headaches, no significant improvement 
in outcome was observed [113, 114].

3.3  Conclusions

Treatment of NSCLC is still a challenging area 
for caregivers, due to specific patient and tumor 
characteristics that are associated with this dis-
ease. However, pharmaceutical companies 
worldwide have shown interest in developing tar-
geted therapies to improve patient survival. 
Studies have shown that the use of monoclonal 
antibodies for cancer treatment has improved the 
overall survival of cancer patients, due to direct 
targeting of the tumor cells. Some therapies have 
been approved by drug administrations but most 
are still in clinical trial and research phases. 
Despite having shown significant clinical effects, 
extensive studies are still needed to determine 
safety, efficacy, and when their use is warranted, 
especially in terms of specific genetic alterations 
and long-term adverse effects.
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Abstract

Mitochondrial bioenergetics is vital for the 
proper functioning of cellular compartments. 
Impairments in mitochondrial DNA encoding 
the respiratory chain complexes and other 
assisting proteins, accumulation of intracellu-
lar reactive oxygen species, an imbalance in 
cellular calcium transport, or the presence of 
organic pollutants, high fat-ketogenic diets or 
toxins, and advancing age can result in com-
plex disorders, including cancer, metabolic 
disease, and neurodegenerative disorders. 
Such manifestations are distinctly exhibited in 
several age-related neurodegenerative dis-
eases, such as in Parkinson’s disease (PD). 
Defects in complex I along with perturbed sig-
naling pathways is a common manifestation of 
PD. Impaired oxidative phosphorylation could 
increase the susceptibility to PD.  Therefore, 
unraveling the mechanisms of mitochondrial 
complexes in clinical scenarios will assist in 
developing potential early biomarkers and 
standard tests for energy failure diagnosis and 
assist to pave a new path for targeted therapeu-
tics against PD.

Keywords

Mitochondria · Complex I · Mitochondrial 
DNA · Genomic DNA · OxPhos · Parkinson’s 
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4.1  Introduction

Mitochondria are the chief energy production 
sites in eukaryotic cells and play a critical role in 
cell growth, differentiation, cellular signaling, 
apoptosis, and cell cycle control. They are double 
layered organelles, located in the cytoplasm of 
the cells and are among the largest cell organ-
elles. The interaction between outer membrane 
proteins, such as hexokinase and the voltage- 
dependent anion channel (VDAC 1), and the 
inner membrane proteins including the adenine 
nucleotide translocator, connect both membranes 
together. Each membrane is a phospholipid 
bilayer with embedded proteins. The outer mem-
brane is smooth, while the inner membrane has 
many inverted folds called cristae, which increase 
the surface area and form working spaces for 
mitochondrial reactions. The inner membrane is 
selectively permeable to certain molecules, such 
as pyruvic acid and adenosine triphosphate (ATP) 
[1]. The mitochondrial process of oxidative phos-
phorylation (OxPhos) aids in metabolizing car-
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bohydrates and fatty acids. It acts as a link 
between cellular bioenergetics (glycolysis) and 
the mitochondrial Kreb’s cycle and electron 
transport chain (ETC) (Fig. 4.1). The ETC is con-
sidered as the synonym of OxPhos as this pro-
duces the maximum energy (32 ATP/glucose 
molecule), compared to the other two processes 
[2, 3].

The ETC is multi-protein complex encompass-
ing electron donors to an electron acceptor (oxy-
gen) in the redox reaction and releases energy in 
the form of ATP. The four protein complexes in the 
ETC are known as complex I, II, III, and IV. Several 
steps are involved in the transfer of the redox 
energy through nicotinamide adenine dinucleotide 
(NADH) and flavin adenine dinucleotide (FADH) 
to oxygen. The non- integral protein of ETC is the 
cytochrome C (CYC) situated on the inner mito-
chondrial membrane. Coenzyme Q helps in the 
energy transfer from complex I to III bypassing 
complex II. Complex I consists of NADH succi-
nate dehydrogenase complex that pumps four 
hydrogen ions across the membrane into the inter-
membrane space, thereby creating a hydrogen ion 

gradient. Complex II consists of FADH2 and does 
not pump protons to the intermembrane space but 
participates indirectly in ETC by donating elec-
trons. Ubiquinone, being the first electron acceptor 
for both complex I and II, transfers them to com-
plex III and enhances the proton gradient. The 
electrons are then delivered to CYC, which trans-
ports them to complex IV. Complex IV consists of 
proteins and enzymes that finally accepts the elec-
trons and reduces oxygen by accepting two pro-
tons from the surrounding medium to generate 
water. Due to the pumping of protons by the com-
plexes, ATP synthesis occurs at complex V by the 
electrochemical gradient through the transfer of an 
inorganic phosphate to adenosine diphosphate 
(ADP) [3, 4].

The whole process involved in oxidation of 
high energy compounds (NADH, FADH2) along 
with the transfer of inorganic phosphates to ADP 
via the proton gradient is called OxPhos. During 
OxPhos, a cascade of biochemical reactions takes 
place that leads to the production of huge amount 
of reactive oxygen species (ROS), such as reac-
tive hydroxyl, nitrogen, oxygen, and hydrogen 

Fig. 4.1 Figure showing the link between the three most 
important modes of energy production pathways: glycoly-
sis, tricarboxylic acid (TCA) cycle, and electron transport 
chain (ETC). The oxidative phosphorylation system acts 

as the pivotal connection between cellular bioenergetics 
(glycolysis) and the mitochondrial TCA cycle, yielding 
maximum number of ATP molecules (32/34)
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species during the whole process [4, 5]. ROS can 
indiscriminately react with a wide variety of 
organic substrates causing peroxidation of lipids, 
cross-linking and modification of proteins and 
mutations in DNA, and can cause significant 
alterations in the structure and function of cell 
organelles [4–7]. Substantial ROS generation in 
the mitochondria due to OxPhos can lead to the 
onset and progression of neurodegenerative dis-
eases such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease 
(HD), and amyotrophic lateral sclerosis (ALS) 
because of the excessive demand of energy by the 
neurons that need to be persistently metabolically 
active. Such diseases can manifest in a wide vari-
ety of clinical symptoms and vary in their patho-
physiology, with some causing memory and 
cognitive impairments and others affecting a per-
son’s ability to move, speak, or breathe [5–9]. PD 
is one such neurodegenerative disorder that has 
deep links with perturbed OxPhos. Disturbances 
in OxPhos could increase susceptibility to PD 
through incremental increases in oxidative stress, 
mutation-induced failures in the ETC, transfer of 
limited energy to the neurons, and deposition of 
fats leading to plaque accumulation.

Here, we review the mechanisms of the mito-
chondrial complexes in clinical scenarios with 
the aim of providing insights into the develop-
ment of potential early biomarkers and standard 
tests for energy failure diagnosis and to pave a 
new path for targeted therapeutics against PD.

4.2  Impaired Mitochondrial 
Metabolism Etiologies

Some of the major causes of aberrant mitochon-
drial metabolism are attributed to ROS and gene 
mutations. Several studies have reported certain 
“large scale deletions or point mutations” in the 
mitochondrial DNA (mtDNA) that severely 
affect mitochondrial energy metabolism by 
hampering the OxPhos process [9]. Hence, the 
gradual deterioration of mitochondrial ETC will 
lead to the production of less ATP, thereby 
affecting vital cellular processes, in favor of 
more catabolic pathways, such as autophagy 
and lysosomal degradation, resulting in the 
accumulation of waste products in the cell 
(Fig.  4.2). The etiologies of the mitochondrial 
dysfunction can be conferred by intrinsic or 
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extrinsic factors, some of which are summarized 
below.

4.2.1  Mutations in the OxPhos 
System

The integrity of OxPhos system is imperative for 
optimal cellular energy production. However, the 
functional assembly of OxPhos is a complex pro-
cess. The main factors causing mitochondrial 
impaired mechanism include mutations. MtDNA 
and nuclear DNA (nDNA) encode several sub-
units of complex I, II, III, IV, and V. Complex I 
[NADH dehydrogenase chain 1 (ND)-1–6 and 
ND-4 L], complex III (CYB), complex IV [CYB 
oxidase (COI-III)], and complex V (ATP 6 and 
ATP 8) comprise the 13 mtDNA-encoded sub-
units [10]. If there happens to be any abnormali-
ties in any of the genes, this may cause 
mitochondrial dysfunction, which might eventu-
ally lead to a condition such as Parkinsonism 
[11]. A small change, deletion, or duplication in 
either of the genes will affect the other. For exam-
ple, mutations in polymerase gamma (POLG) is 
one of the most common nDNA mutations that 
influences the regulation of mtDNA [12]. A study 
revealed that an increase in the number of mtDNA 
deletion or rearrangements in substantia nigra 
pars compacta (SNpc) are observed in PD 
patients. One study found 47% more protein car-
bonyl modifications on catalytic subunits in corti-
cal mitochondria isolated from PD brain tissues, 
indicating an increased burden of oxidative dam-
age [13]. MtDNA haplotype analysis revealed 
that certain haplogroups reduced the risk of 
PD.  Maternally inherited mutations in mtDNA 
were detected in one family with PD. Using sin-
gle molecular polymerase chain reaction (PCR) 
of individual pigmented neurons of the substantia 
nigra in aged people and PD patients, somatic 
deletions in mtDNA were found to be increased 
to high levels [11, 14]. MtDNA can also undergo 
single base deletion, and duplication, as well as 
tandem duplication and depletion, thereby 
decreasing the amount of mitochondria in the cell 
which, in turn, could lead to mitochondrial dys-
function. Such defects in the mtDNA or nDNA 

genes of enzymes can eventually decrease the 
ATP:ADP ratio [15]. Adult OxPhos diseases can 
be inherited as autosomal recessive and dominant 
traits with a milder phenotype and include 
mtDNA deletions. Mutations in LRRK 2 
(leucine- rich repeat kinase 2) are the most com-
mon cause for development of PD.  The five 
enzyme complexes of OxPhos are synthesized 
from 13 polypeptides encoded by the mtDNA 
and 50 polypeptides encoded by the 
nDNA. Complex I defects are the most common 
of the respiratory chain defects and are frequently 
exhibited as a result of impaired assembly of the 
enzyme. Such defects are seen to induce the fatal 
neurodegenerative disorder Leigh Syndrome 
(LS) with or without cardiomyopathy. Complex 
III exhibits frequent mutations in CYB and 
BCS1L genes, which leads to excessive ROS pro-
duction that can damage DNA and tissues [15, 
16]. These mutations can further impair the for-
mation of the complex III enzyme, thereby reduc-
ing its activity. Several gene defects have been 
reported in complex IV, which are inherited as an 
autosomal recessive deficiency and exhibited in 
critical diseases like LS, fatal infantile CYC oxi-
dase deficiency, and late-onset neurodegenerative 
disease. In addition, ATP6 gene mutations in 
complex V have been manifested in neuropathy, 
ataxia, and LS [15].

4.2.2  Defects in Complex 1 and PD 
Prognosis: A Pathognomic 
Signature

It is now well-known that the activity of complex 
I is reduced in the substantia nigra of PD patients 
[16, 17]. A recent study showed that a PD-specific 
complex 1 deficiency was also found in the fron-
tal cortex. A number of catalytic subunits of com-
plex I were seen with increased levels of protein 
carbonyls in the Parkinsonian brain, resulting in 
excessive oxidative damage of complex I sub-
units that could lead to complex disassembly and 
dysfunction [18]. The authors suggested that spo-
radic PD is a result of the decrease in complex I 
activity. However, it appears that the substantia 
nigra is more vulnerable to impairments of com-
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plex I activity than the  other brain regions and 
peripheral organs, possibly due to the increased 
levels of ROS generated within dopamine neu-
rons as a result of dopamine metabolism and iron 
content [19, 20]. In a mouse model, the mito-
chondrial mass was found to be lower in dopami-
nergic neurons of the SNpc compared to 
dopaminergic neurons located in the adjacent 
ventral tegmental area (VTA) [19]. Similar stud-
ies have shown that humans also have a low mito-
chondrial mass in SNpc dopamine neurons, with 
complex I inhibition and selective degeneration 
in PD [20]. Increased burdens of oxidative stress 
can be reproduced by the incubation of control 
brain mitochondria with NADH in the presence 
of rotenone and administration of exogenous oxi-
dants. Decrease in the antioxidant capacity also 
leads to acute reduction of cellular and mitochon-
drial glutathione levels that results in decreased 
mitochondrial complex I dysfunction through a 
nitric oxide-mediated mechanism [1]. In addi-
tion, the succinate dehydrogenase complex flavo-
protein subunit A (SDHA) gene present in 
complex II exhibits missense mutations that 
cause ataxia, myopathy, and optic atrophy. 
Mutations in mt-CYB and BCS1L genes of com-
plex III can also lead to the overproduction of 
ROS that can damage the mtDNA of neurons 
[20].

4.2.3  Intracellular ROS

Because electron flow through the ETC is an 
inefficient process, wherein only 0.4–4% of the 
oxygen is reduced, this leads to production of 
“primary” ROS, like the superoxide anion. When 
the superoxide anion has accumulated to exces-
sive amounts in the cells, this gradually leads to 
the generation of “secondary” ROS, such as 
highly reactive hydroxyl radicals that can  damage 
DNA components (purines and pyrimidines, the 
deoxyribose backbone) and induce mutations. 
The imbalance between ROS production and cel-
lular antioxidant activity leads to oxidative stress. 
ROS can affect mitochondrial DNA by causing 
modulations in ATP production [21, 22]. ROS 
requires high energy, large numbers of mitochon-

dria, and high presence of fatty acids. Thus, they 
can damage the susceptible neurons. ROS also 
stimulates aging and causes cell damage in the 
body. Oxidative stress is the imbalance between 
the generation of ROS (free radicals) and antioxi-
dant defenses. Complexes I and III are consid-
ered as the major sites involved in the production 
of superoxide and other ROS [20–24]. This oxi-
dative stress can lead to mitochondrial dysfunc-
tion that will ultimately lead to the reduction in 
ATP, calcium influx, and increased permeability 
of mitochondrial permeability pore, eventually 
resulting in apoptosis as exhibited in PD [21, 22]. 
From this, it can be seen that oxidative stress can 
cause dopaminergic neurotoxicity. Studies have 
shown that induction of oxidative stress can not 
only cause deleterious changes in mitochondrial 
function but can also induce an innate immune 
response, resulting in a diminution in cellular 
antioxidant defenses [16, 20–28]. In addition, a 
number of environmental factors have been found 
to cause overproduction of ROS that can damage 
DNA components and induce mutations [16, 27–
32]. In this regard, ROS generation in the neuro-
nal cells can have a significant negative impact. 
Because the brain is metabolically highly active, 
it is more susceptible to oxidative stress-related 
injuries than most other tissues. Hence, the 
increased ROS production and decreased produc-
tion of antioxidant enzymes can further lead to 
brain cell death and neurodegeneration as found 
in PD.

4.2.4  Impaired Calcium Balance

Calcium acts as a second messenger in signal 
transduction. The transport of calcium ions across 
biological membranes is vital for the proper 
functioning of enzymes and processes. 
Perturbations in this process have been associ-
ated with irregularities in membrane permeabil-
ity that can lead to increased respiratory rates and 
altered balance between oxygen consumption 
and OxPhos [33]. Mitochondrial swelling occurs 
due to increased influx of calcium ions because 
of improper mitochondrial cristae unfolding, 
caused by the opening of the mitochondrial per-
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meability transition pore (MPTP). This can result 
in physiological responses leading to the loss of 
mitochondrial membrane potential and abnor-
malities in cellular calcium homeostasis, elevated 
oxidative stress, and reduced ATP. Consumption 
of calcium-rich food enhances MPTP opening 
leading to the increased entry of calcium ions 
into the mitochondria, thereby causing swelling. 
Thus, calcium deregulation is known to impair 
mitochondrial function that can lead to MPTP 
opening and apoptosis [26, 34]. This process has 
been implicated in the progression of PD and 
other neurodegenerative disease [35]. In addition, 
the mitochondria-associated endoplasmic reticu-
lum (ER) membrane (MAM) is the membrane 
that joins the mitochondria with the ER and is 
responsible for calcium transport for signal trans-
duction pathways. The excessive efflux of Ca2+ 
from the ER is regulated by mitochondria. If the 
efflux is beyond the limit, then Ca2+ is transported 
and binds with protein kinase C (PKC) and acti-
vates the transcription factor, thereby leading to 
apoptosis and disassembly of the mitochondrial 
complexes [33, 34]. However, if the influx of cal-
cium ion in the mitochondrial matrix decreases, 
this may affect the proton ion gradient of the 
ETC, thereby affecting ATP synthesis by lower-
ing the rate. Eventually, such dysregulated Ca2+ 
transport across the mitochondrial membranes 
will lead to the generation of excessive ROS, 
lower ATP production, and disassemble the mito-
chondrial complexes, leading to apoptosis. Such 
phenomena have been consistently observed in 
PD cases [35].

4.2.5  Mitochondrial ETC Inhibitors 
and Environmental Toxicants

Several drugs and toxins impart “off-target” 
effects to mitochondrial metabolism. In  particular, 
they can inhibit and uncouple the ETC, generate 
and exacerbate ROS production, and alter mito-
chondrial protein synthesis [36]. One of the sig-
nature mitochondrial toxins is the broad- spectrum 
pesticide, rotenone. Rotenone interrupts the 
OxPhos system by inhibiting the NADH dehy-
drogenase enzyme, thereby blocking the electron 

transport in mitochondria, mainly by inhibiting 
electron transfer from Fe-S centers in complex I 
to ubiquinone, creating a cloud of electrons 
within the mitochondrial matrix. This ultimately 
prevents oxygen availability for cellular respira-
tion. The cellular oxygen will be finally reduced 
to free radical form, generating ROS that will 
eventually hamper mitochondrial DNA and func-
tion. An example of this is adriamycin (doxorubi-
cin), a chemotherapeutic used as an antineoplastic 
drug that acts by intercalation within DNA bases 
and inhibition of topoisomerase II and induces 
irreversible and amplified cardiomyopathy in the 
mitochondria. This drug easily enters the mito-
chondria due to its lipophilic nature and interacts 
with cardiolipin, a signature mitochondrial inner 
membrane lipid [36–39], and acts as an uncou-
pler of OxPhos, leading to ROS generation and 
decreased ATP production.

Environmental toxicants including both 
organic and inorganic compounds have also been 
implicated in mitochondrial toxicity. For exam-
ple, paraquat acts like a mito-inhibitor by modu-
lating the redox cycling in a similar manner as 
adriamycin [40]. Also, cyanide and carbon mon-
oxide act as inhibitors of complex IV [33] and 
halt the aerobic cellular respiration abruptly. 
Situations in which there is a simultaneous occur-
rence of folate deficiency with either cyanide or 
methanol exposure have resulted in mitochon-
drial toxicity-mediated optic neuropathy in 
approximately 50,000 people [38–42], suggest-
ing the impact of such toxicants via an environ-
ment–environment interaction mechanism. The 
implications of the mitochondrial effects posed 
by these toxicants/chemicals have also been 
exhibited in several clinical syndromes and 
pathologies associated with mitochondrial abnor-
malities. For example, the mitochondrial defects 
posed by rotenone, paraquat, and manganese are 
all associated with PD and other age-related neu-
rodegenerative diseases [38, 39, 42, 43].

4.2.6  Increased Fat Diet Uptake

Hepatocyte fatty acid oxidation and ketone body 
production can be induced by high fat diets. In 
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such diets, the nutrient supply and cellular ener-
getic needs enhance the function of mitochon-
dria. Such diets can lead to obesity, which is a 
major cause of impaired mitochondrial metabo-
lism and behavior [44]. A fat-rich diet decreases 
FADH2-associated cellular respiration and 
increases proton leak, thereby compromising 
mitochondrial energetic efficiency in addition to 
an elevation in ROS production. Due to improper 
mitochondrial energetic cristae unfolding, there 
is an increased influx of calcium ions that 
enhances mitochondrial swelling. As a result, the 
MPTP opens, which can induce increased oxida-
tive stress, decreased ATP production, and abnor-
malities in cellular calcium homeostasis, as well 
as other effects [45]. The dysregulation of cal-
cium can lead to impaired mitochondrial function 
that can result in MPTP opening and apoptosis. 
This finding has led to the suggestion that the 
increased mitochondrial swelling could be a 
major cause for MPTP opening in neurodegen-
erative diseases, such as PD. Several models of 
PD have been generated and shown to have 
enhanced oxidative stress upon intake of a fat- 
rich diet [44, 46, 47]. Such an inadequate mater-
nal nutrition can increase maternal and fetal 
oxidative stress through the increased production 
of ROS [48].

4.3  PD and Perturbed 
Mitochondrial Metabolism

The brain consumes more than 30% of the total 
energy generated by an organism because it 
needs to maintain synaptic homeostasis. 
Therefore, neurons require the most energy 
among all cell types in the body and harbor huge 
numbers of mitochondria to support proper func-
tion. In line with this, several studies have 
 demonstrated that mitochondrial diseases fre-
quently manifest along with neuromuscular 
abnormalities [6, 49–51]. A gradual fall in ATP 
production due to impaired mitochondrial metab-
olism with advancing age is currently a typical 
hallmark of neurodegenerative disease, such as in 
case of PD.

PD is an age-related neurodegenerative dis-
ease marked by locomotory disturbances exhibit-
ing rigidity, bradykinesia, and resting tremor, 
with an average incidence of around 25 per 
100,000 people that increases sharply with age 
after age 60 [52]. The etiology of PD is marked 
by the damage to dopaminergic receptors in the 
substantia nigra region of the brain. The most 
notable cause of such damage is the accumula-
tion of ROS (Fig. 4.3) that are produced consider-
ably in the glial cells and mitochondria of the 
neurons (mainly highly pigmented neurons), 
referred to as the “hot spots” of brain ROS gen-
eration [53]. Mitochondrial profiling of PD 
patients has demonstrated defects in the mito-
chondrial OxPhos system in platelets, muscle, 
and substantia nigra, thereby suggesting that 
mitochondrial function assessment should be an 
early predictor of the progression of PD. In addi-
tion, interactions between the intermediates of 
the quinol cycle with hydrogen peroxide to form 
hydroxyl radicals might also lead to the develop-
ment of PD. In various studies around the world, 
it has been found that oxidative stress and com-
plex I inactivity causes the OxPhos impairment 
and increased risk of PD. Mainly, the inhibitors 
and pesticides are considered to be the causative 
agent of the failure of complex I. Recent studies 
have also found that complex I defects in the 
ETC of the mitochondria severely affect neurons, 
leading to the development of PD by over pro-
duction of ROS [54, 55]. Mutations in the phos-
phatase and tenson homologue (PTEN)-induced 
putative kinase 1 (PINK1) gene responsible for 
the regulation of osmotic pressure and mitochon-
drial membrane potential causes irregularities in 
the management of cellular oxidative stress and 
causes a huge production of ROS in the neurons. 
This gene mutation is considered as one of the 
genetic hallmarks of PD. The PTEN gene muta-
tion also induces impairment of the alpha synu-
clein protein, which directly interrupts 
mitochondrial complex I activity, thereby leading 
to decreased ATP production and mitochondrial 
dysfunction. In addition, exogenous agents like 
environmental pesticides could be related to PD 
development, such as the effect seen with 
MPTP. Classical PD cases (5–10%) result from 
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monogenetic mutations, although the remaining 
cases have no known etiology. When MPTP 
enters astrocytes, it converts into 1-methyl 4 
 phenylpyridinium (MPP+) that enters into the 
dopamenergic neurons in the SNpc and causes 
damage. MPP+ gets selectively absorbed by the 
pigmented dopaminergic neurons, thereby sup-
pressing complex I, increasing ROS formation 
and oxidative stress-induced neuronal death. 
Similarly, rotenone that acts as a complex I inhib-
itor has been used to create PD animal models. 
An analysis of the association between pesticide 
exposure and in PD in 436 cases and 854 controls 
found an increased risk of PD after long-term 
exposure to pesticides. The calculated combined 
adjusted odds ratio (OR) was 1.94 (1.49–2.53) 
and similar ORs were observed in studies con-
ducted in the United States, Asia, Europe, and 
Canada. It was also observed that the risk of PD 
increased with longer exposure times, with an 
adjusted OR of 5.81 (1.99–16.97) for ≥10 years 
of exposure [56]. Subsequently, another study 
reviewed 31 case-control studies published up to 
2003 and found that about half of them reported 
significant associations between pesticide expo-
sure and PD risk [57]. An epidemiological study 
from 2000 to 2011 found that seven out of the 
eight prospective studies provided evidence of an 
association between pesticide exposure and PD, 

reporting risk estimates of twofold or higher. 
Among 23 case studies, 13 studies found an 
increased risk of PD [58, 59]. In support of the 
epidemiological evidence, increased levels of 
some pesticides have been quantified in post- 
mortem brains from PD patients. High concentra-
tions of pesticides including dieldrin, lindane, 
and p-p-DDE have been observed in PD cases 
compared with controls [60, 61]. Furthermore, 
complex IV inhibitors like carbon monoxide 
have also been implicated in the suppression of 
the activity of motor neurons in PD-related cases 
[62]. Mitochondrial profiling of PD patients has 
demonstrated defects in the mitochondrial 
OxPhos in the platelets [63], muscle [64], and 
substantia nigra [65], thereby suggesting that 
mitochondrial function assessment should be an 
early predictor of PD.  In addition, interactions 
between the intermediates of the quinol cycle 
with hydrogen peroxide to form hydroxyl radi-
cals that act as ROS might also lead to the devel-
opment of PD. Complex I impairment may also 
cause accumulation of alpha synuclein, which 
results in increased oxidative stress damage and 
dysfunction of this complex [66]. Conversely, a 
key regulator of energy metabolism, peroxisome 
proliferator-activated receptor-γ coactivator 
(PGC-1) plays a role in neuroprotection [67]. 
This has been suggested by studies which showed 

Fig. 4.3 Figure showing the implication of “ROS” in inducing perturbed mitochondrial metabolism leading to dopa-
minergic neuron damage and eventually Parkinson’s disease
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that its inhibition decreases the activity of com-
plex I.

As suggested above, the most important agent 
for oxidative damage is the accumulation of ROS 
[68–71] that are produced at high levels in glial 
cells and mitochondria of the neurons (mainly 
the highly pigmented neurons), and these are 
referred to as the “hot spots” of brain ROS gen-
eration. In line with this, annonaceous aceto-
genins [72, 73], one of the most powerful 
lipophilic complex I inhibitors [74, 75], was 
found to cause neuronal cell death [76] and 
induce redistribution of tau protein [77] (a feature 
of Parkinsonism) in primary cultures of striated 
neurons [73].

4.4  Conclusions and Future 
Perspectives

Considering the fact that mitochondrial OxPhos 
plays an imperative role in shaping the clinical 
outcome of a neurodegenerative disorder, answer-
ing questions pertaining to the role of perturbed 
energy metabolism in PD will be crucial for 
developing early diagnostics and prompt thera-
peutics for improving the clinical manifestations. 
Some questions that could be posed for discus-
sion are: (1) what are the different mitochondrial 
proteins that mediate the advent and progression 
of PD; (2) what are the mitochondrial energy cas-
cades involved in PD; (3) how do the energy 
metabolism regulation work in PD; (4) what are 
the specific biomarkers for the early detection of 
PD; (5) how does perturbed redox biology aid in 
the progression of PD; and (6) how can natural 
dietary compounds aid in ameliorating pertubed 
mitochondrial energy metabolism in PD? 
Presently, there is a scarcity of therapeutics for 
the specific management of neurodegenerative 
diseases. This has enhanced the quest to identify 
compounds aimed at improving mitochondrial 
energy metabolism in clinical medicine, with 
particular reference to neurodegenerative dis-
eases, such as PD. Hence, human clinical trials 
focused on evaluating the therapeutic potential of 
non-specific energy-boosting compounds in clin-
ical scenarios are welcomed and are currently 

being pursued [78]. Naturally occurring com-
pounds, such as plant-based products, mush-
rooms, organic supplements, and probiotics 
having antioxidant properties are currently being 
investigated as ways of improving mitochondrial 
function and energy deficit. Among these, oral 
creatine and creatine analogs, or amino acid 
derivatives and peptides derived from biological 
sources have shown interesting outcomes. Some 
studies have demonstrated low-to-medium posi-
tive therapeutic potential of organic creatine for 
improving energy metabolism in HD and PD 
[78, 79]. However, little or no information is cur-
rently available on the role of several other simi-
lar compounds on mitochondrial uptake and 
bioenergetic behavior in clinical interventions. 
Therefore, more studies focusing on the role of 
mitochondrial energy metabolism in PD and 
other neurodegenerative disease are warranted, 
particularly in the direction of developing early 
diagnostic biomarkers and generating alternative, 
effective therapeutics.
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Abstract

Fibromyalgia is a common chronic pain 
condition of unknown aetiology, although 
mitochondrial dysfunction, oxidative stress, 
and inflammation have been implicated in the 
pathophysiology of this disorder. Treatment 
generally involves physiotherapy, anticonvul-
sants, and antidepressant therapy; however, 
the symptomatic relief conferred by these 
treatments can be very variable, and there is a 
need for additional therapeutic strategies. One 
such treatment which is gaining a lot of inter-
est is the use of coenzyme Q10 (CoQ10) sup-
plementation. The therapeutic efficacy 
associated with CoQ10 supplementation is 
thought to arise from the ability of supplemen-
tation to restore an underlying deficit in 
CoQ10 status which has been associated with 
fibromyalgia together with the ability of 
CoQ10 to improve mitochondrial activity, 
restore cellular antioxidant capacity, and ame-
liorate inflammation. This chapter outlines the 
evidence supporting the therapeutic utility of 
CoQ10 in the treatment of fibromyalgia.

Keywords

Fibromyalgia · Mitochondrial dysfunction · 
Oxidative stress · Coenzyme Q10 · CoQ10 · 
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5.1  Introduction

Fibromyalgia is a chronic disabling disorder, 
affecting up to 5% of the U.K. population. In 
addition to the cardinal symptoms of muscle pain 
and fatigue, fibromyalgia patients also suffer 
from a wide range of co-morbidities, including 
headache, anxiety/depression, sleep deprivation, 
memory and concentration disturbances, as well 
as digestive dysfunction [1]. The reason people 
develop fibromyalgia is not fully understood and 
conventional prescribed drug treatments may be 
of limited effectiveness. Treatment has pro-
gressed from inappropriate use of non-steroidal 
anti-inflammatory drugs (NSAID) and opioid 
type pain relieving drugs, through the use of anti-
convulsants, such as pregablin and gabapentin, 
and antidepressants such as amitriptyline, to non- 
pharmacological treatments such as cognitive 
behavioural therapy or specific exercise regimes 
[1]. However, the symptomatic relief conferred 
by these various treatments can be very variable, 
and there is a need for additional therapeutic 

I. P. Hargreaves (*) 
School of Pharmacy and Biomolecular Sciences, 
Liverpool John Moores, Liverpool, UK
e-mail: I.P.Hargreaves@ljmu.ac.uk 

D. Mantle 
Pharma Nord (UK) Ltd., Newcastle, UK

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55035-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-55035-6_5#DOI
mailto:I.P.Hargreaves@ljmu.ac.uk


78

strategies, including those based on nutritional 
supplementation. Therefore, the aim of this 
chapter will be to provide information on nutri-
tional treatment strategies targeted to pain relief 
in fibromyalgia, focussing upon coenzyme Q10 
(CoQ10) supplementation and the evidence 
supporting its therapeutic utility in the treatment 
of this disorder.

5.2  Pathogenesis 
of Fibromyalgia

The pathological mechanisms underlying fibro-
myalgia are thought to involve mitochondrial 
dysfunction, oxidative stress, and dysregulation 
of the inflammatory response [2]. However, there 
is a growing consensus that the oxidative stress 
and inflammation associated with fibromyalgia 
originate from the mitochondrial dysfunction [3, 
4]. Evidence of oxidative stress in fibromyalgia 
has been indicated by increased levels of the lipid 
peroxidation production, malondialdehyde in 
blood mononuclear cells (BMC), and plasma of 
patients with this condition in conjunction with 
decreased activity of the antioxidant enzyme, 
catalyse [5]. Furthermore, an increase in mito-
chondrial reactive oxygen species (ROS) genera-
tion was reported in the BMC of patients with 
fibromyalgia in a study conducted by Cordero 
et al. in 2013 [6]. Indices of the dysregulation of 
inflammation in fibromyalgia have been denoted 
by increased serum/plasma levels of the pro- 
inflammatory cytokines, tumour necrosis factor 
alpha (TNF-α) [7], interleukin (IL)-8 and IL-1Ra 
[8] and IL-1B and IL-18 [4]. Decreased levels of 
ATP [5, 7, 9], a decreased mitochondrial DNA 
content relative to that of nuclear DNA [5, 9] 
together with a diminution in the status of the 
mitochondrial respiratory chain (MRC) carrier, 
CoQ10 [3, 5, 7] and a decreased mitochondrial 
membrane potential have all been reported in the 
BMC of patients with fibromyalgia strongly sup-
porting evidence of mitochondrial dysfunction in 
this disorder.

Within the confines of this chapter, it would 
not be possible to outline all of the mecha-
nisms that have been proposed to account for the 

oxidative stress, inflammatory response, and 
mitochondrial dysfunction reported in fibromyal-
gia. However, a paradigm will be offered based 
on the results of studies from the current litera-
ture to account for these pathological anomalies 
in fibromyalgia.

Mitochondrial dysfunction appears to be one 
of the primary events initiating both ROS 
generation and inflammation in fibromyalgia 
[7, 10]. The cause of the MRC impairment with 
deficiencies in the activities of the MRC enzymes, 
complex I,II, III, and IV (Fig.  5.1) together 
reduced expression in the protein levels of com-
plexes I and III as well as a diminution in the 
expression of the electron carrier cytochrome c 
[4]. It has been suggested that the MRC impair-
ment may be related to the downregulation of 
genes encoding for the regulatory proteins, 
peroxisome proliferator- activated receptor 
gamma coactivator 1-alpha (PGC-1α), tran-
scription factor A, mitochondrial (TFAM), and 
nuclear respiratory factor 1 (NRF1) that has 
been reported in fibromyalgia and which would 
be expected to impair mitochondrial biogenesis 
[4]. An impairment in mitochondrial biogenesis 
may account for the decrease in both mitochon-
drial DNA copy number and the activity of the 
mitochondrial marker enzyme, citrate synthase, 
in BMC isolated from patients with fibromyal-
gia [5, 9]. However, the deficit in CoQ10 status 
which has been widely reported in fibromyalgia 
may also be an important causative factor for 
the mitochondrial dysfunction determined in 
this order. A deficit in cellular CoQ10 status has 
been associated with multiple MRC enzyme 
deficiencies, decreased mitochondrial mem-
brane potential, and a concomitant reduction in 
ATP levels [11] which have all been docu-
mented in fibromyalgia [12].

In addition to its role as an electron carrier in 
the MRC, CoQ10 also serves as a potent lipid 
soluble antioxidant [13] and, accordingly, a defi-
ciency in cellular CoQ10 status has been associ-
ated with an increase in mitochondrial ROS 
generation which has also been reported in the 
BMC of fibromyalgia patients [4, 11]. This 
increase in ROS generation together with the 
accumulation of the products of mitochondrial 
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DNA oxidation have been reported to be potent 
activators of the NACHT, LRR, and PYD 
domains-containing protein 3 (NLRP3) inflam-
masome, a cytosolic oligomeric protein complex 
present in the cells of the immune system which 
regulates the innate immune response [14].

In vitro and in vivo studies using BMC isolated 
from fibromyalgia patients have reported 
increased gene expression of the NLRP3 protein, 
a component of the inflammasome, as well as 
caspase-1, an inflammatory response initiator, 
together with increased serum and cell culture 
levels of the inflammatory cytokines, IL-1β and 
IL-18  in association with a deficit in cellular 
CoQ10 status [4]. Pharmacologically induced 
CoQ10 deficiency in BMC from healthy volun-
teers has also been reported to cause an increase 
in the synthesis of the pro-inflammatory cytokine, 
TNF-α, accompanied by an increase in mito-
chondrial ROS production [7]. As well as pro-
moting the inflammatory response by generating 
ROS and oxidized mitochondrial DNA prod-
ucts, a CoQ10 deficiency may also remove the 
inhibitory effect of this molecule on inflamma-
some activation [7]. A high positive correlation 
has been reported between serum IL-1β and 
IL-18 levels and the pain scores in fibromyalgia 
patients indicating the importance of inflamma-
tion in the pathophysiology of this disorder [4]. 
Furthermore, inflammatory cytokines have been 
reported to induce fatigue, fever, sleep, and 

myalgia, which are symptoms reported in 
fibromyalgia [8].

The putative mechanisms that have been 
implicated in the generation of oxidative stress 
and inflammation in fibromyalgia are outlined in 
Fig.  5.2. Although there is some evidence to 
indicate that a deficiency in cellular CoQ10 
status may be an important triggering event in 
the mitochondrial dysfunction, oxidative stress 
and inflammation associated with fibromyalgia, 
the actual factors responsible for this deficiency, 
have yet to be elucidated.

Overall, Fibromyalgia is thought to result 
from a self-reinforcing, increasingly destructive 
process of impaired energy production, free 
radical damage, and inflammation.

5.3  Fibromyalgia and Aging

Fibromyalgia is a disorder that can occur at any 
age in both men and women. However, fibromyal-
gia is considered by some medical practitioners as 
a condition primarily affecting middle aged 
women. Thus, fibromyalgia in older patients is 
understudied, and because of the likelihood of 
other age-related problems, diagnosis of fibromy-
algia in the elderly may be overlooked. Only six 
clinical studies relating specifically to fibromyal-
gia in the elderly have been published in the 
medical literature over the past 30 years. In 1988, 
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Fig. 5.1 Diagram of the mitochondrial respiratory chain (MRC) showing the enzyme complexes I–V and the electron 
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Yunus et al. first reported that fibromyalgia in the 
elderly was often unrecognised and treated with 
inappropriate medications such as steroids [15]. 
The most recent study by Jacobsen et al. (2015) 
found that more than 80% of older (55–95-years- 
old) patients with fibromyalgia were subject to 
pain, lack of mobility, and sleep disruption result-
ing from under-treatment [16]. In addition, 
many of these patients were using ineffective and 
potentially harmful opioid- or steroid-type 
medications.

Two non-pharmacological interventions 
known to benefit fibromyalgia are exercise and 
nutrition [17, 18]. Exercise is an important part of 
the treatment in fibromyalgia, and it also helps to 
keep the bodyweight down, which reduces the 
stresses on the joints. However, older individuals 
may find taking part in such exercise regimes 
challenging. With regard to nutrition, supplemen-
tation may benefit the primary symptoms or co- 
morbidities associated with fibromyalgia. 
Fibromyalgia patients are at increased risk of 

disorders such as diabetes, thyroid dysfunction, 
cardiovascular disease, and osteoporosis. In view 
of its MRC electron carrier and antioxidant functions, 
supplementation with CoQ10 may benefit the 
cardinal symptoms of muscle pain and fatigue, as 
well as headache and migraine which have been 
associated with cellular energy failure and oxida-
tive stress [5, 13]. In addition, nutritional supple-
mentation may benefit co- morbidities, such as 
gastrointestinal dysfunction (probiotics), osteo-
porosis (calcium, vitamin D3, vitamin K2), sleep 
problems (melatonin), and thyroid dysfunction 
(selenium) [19].

5.4  Nutritional Supplementation 
and Aging

Nutritional supplementation may be of particular 
importance in the elderly. The body requires a 
range of nutrients to maintain normal functioning. 
Some of these, such as CoQ10 and glucosamine, 
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Fig. 5.2 Putative mechanism of oxidative stress and inflammation generation in fibromyalgia. COQ10 coenzyme Q10, 
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are manufactured wholly or mainly within the 
body, while many (such as vitamins) must be 
derived from the normal diet. As people age, their 
bodies become less efficient at manufacturing 
nutrients, such as CoQ10, or in absorbing dietary 
nutrients from the digestive tract. As an example, 
optimum production of CoQ10 occurs around 
25  years of age, production then gradually 
declines with increasing age, such that produc-
tion at age 65 is approximately half that of 25. 
Thus, supplementation with CoQ10 in older indi-
viduals with fibromyalgia addresses two issues, a 
deficiency known to occur in fibromyalgia and a 
deficiency known to result from the normal aging 
process [20].

Similarly, the elderly are at risk of the poten-
tial deficiency in a wide range of other essential 
nutrients, and a study by Borg et  al. in 2015 
identified deficiencies of vitamin D3, vitamins 
B1, B2, and B12, calcium, magnesium, and sele-
nium as being of particular public health concern 
[21]. Selenium is a trace element essential for the 
activity of 25 selenoproteins involved in the regu-
lation of the inflammatory response and cellular 
antioxidant capacity, and therefore a deficiency 
in this trace element may lead to a weakening of 
the immune system and a compromised antioxi-
dant capacity which are both integral to the 
pathophysiology of fibromyalgia [22]. As noted 
above, many of these nutrients have been found 
to be depleted in fibromyalgia, with a corre-
sponding benefit on symptoms following supple-
mentation. Again, supplementation addresses 
two issues: (1) deficiency due to fibromyalgia 
and (2) deficiency due to aging [19, 23].

5.5  CoQ10

CoQ10 is a lipid soluble molecule consisting of a 
benzoquinone nucleus derived from tyrosine and 
an isoprenoid side chain which is synthesised in 
all the cells of the body apart from red blood 
cells, as the presence of mitochondria are required 
for its synthesis [13]. As previously mentioned, 
the major function of CoQ10 is that of an elec-
tron carrier in the MRC where it transports elec-
trons derived from complex I and complex III to 

complex III enabling a continuous passage of 
electrons within the MRC, a prerequisite for 
oxidative phosphorylation and cellular ATP gen-
eration (Fig. 5.1) [13]. CoQ10 also serves as an 
important lipid soluble antioxidant molecule pro-
tecting cellular membranes and circulatory lipo-
proteins against free-radical-induced oxidative 
damage [13, 24]. The antioxidant function of 
CoQ10 is attributed to its fully reduced ubiquinol 
form, in addition to acting as an antioxidant in its 
own right, and it is also involved in the regenera-
tion of other antioxidants, such as α-tocopherol 
(the active antioxidant form of vitamin E) and 
vitamin C [25]. One of the principle enzymes 
involved in reducing CoQ10 to its ubiquinol form 
is the selenium-containing enzyme thioredoxin 
reductase. Therefore, a deficit in selenium status 
may compromise cellular antioxidant capacity 
[26]. Furthermore, selenium also serves as a 
prosphetic group for the antioxidant enzyme glu-
tathione peroxidase [22]. In addition to its role as 
an electron carrier and antioxidant, CoQ10 has 
also been shown to directly affect the expression 
of a number of genes, including some of those 
involved in inflammation [24]. It has been 
suggested that CoQ10 is able to elicit an anti- 
inflammatory response by both its antioxidant 
function as well as by controlling the gene 
expression of the nuclear transcription factor, 
NFF-kappaB1 which has a key role in regulating 
the immune response to infection [27].

An adequate supply of CoQ10 is essential for 
normal functioning of mitochondria. Although 
some CoQ10 is obtained from the normal diet 
(approximately 5  mg/day), most of the daily 
CoQ10 requirement (estimated at 500  mg) is 
synthesised within the body [24]. As noted 
above, as people age, the capacity of the body to 
synthesise its own CoQ10 decreases. Optimal 
production occurs around the mid-20s, with a 
continual decline in tissue levels thereafter [20]. 
In addition to the normal aging process, CoQ10 
levels have also been shown to be depleted in a 
variety of disorders, including fibromyalgia, as 
well as by statin-type drugs. Dietary supple-
mentation with CoQ10 therefore provides a 
mechanism to maintain adequate levels within 
the body [13, 24].
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5.6  Clinical Studies on CoQ10 
Supplementation 
in Fibromyalgia

Fibromyalgia patients have been shown to have 
depleted tissue levels of CoQ10 (up to 40–50% of 
normal), together with increased levels of mito-
chondrial dysfunction, oxidative stress, and 
inflammation, both in adult [7, 9] and juvenile 
[28] patients. A recent Norwegian clinical study 
has highlighted the link between fibromyalgia 
and inflammation [29]. The study comprised 150 
women aged 18–60, divided equally into three 
groups: (1) fibromyalgia patients; (2) chronic 
fatigue syndrome patients; and (3) healthy con-
trols. Blood samples from the study were taken 
from all participants and analysed for levels of 
high-sensitivity C-reactive protein (hsCRP), a 
sensitive biochemical marker of inflammation.

Both the fibromyalgia and chronic fatigue 
syndrome patients had significantly increased 
mean levels of hsCRP (1.3 mg/L and 0.94 mg/L, 
respectively), compared to the levels in healthy 
controls (0.60 mg/L). The results from this study 
are noteworthy since inflammation is a well- 
known cause of pain and fatigue [30].

A number of clinical studies have been under-
taken to investigate the effect of CoQ10 supplemen-
tation on fibromyalgia symptoms. The rationale for 
using CoQ10  in the treatment of fibromyalgia is 
multifaceted. This includes replenishing the under-
lying CoQ10 deficiency associated with the disor-
der, increasing electron flow in the MRC, enhancing 
cellular antioxidant capacity, and modulating the 
inflammatory response.

Cordero et al. correlated headache symptoms 
with reduced CoQ10 levels and increased oxida-
tive stress [5]. Following CoQ10 supplementa-
tion (300  mg/day for 3  months), there was a 
significant decrease in oxidative stress as indi-
cated by an increase in the activity of antioxidant 
enzyme, catalase, and a significant decrease in 
level of the lipid oxidation product, malondi-
aldehyde, in the BMC of fibromyalgia patients. 
These effects were accompanied by significant 
improvement in headache symptoms in the fibro-
myalgia patients. Similarly, a randomised, dou-
ble-blind, placebo-controlled clinical study in 20 
fibromyalgia patients found that supplementation 

with CoQ10 (Pharma Nord Bio-Quinone, 
300  mg/day for 40  days) significantly reduced 
(by more than 50%) pain and fatigue [4]. There 
was a corresponding improvement in mitochon-
drial energy generation as indicated by BMC 
ATP levels and reduced oxidative stress and 
inflammation, as assessed by the circulatory lev-
els of the inflammatory cytokines, IL-1b and 
IL-18. In the latter study, psychopathological 
symptoms (including depression) were signifi-
cantly improved following CoQ10 supplementa-
tion compared to placebo, and this improvement 
was linked to the effect of CoQ10 supplementa-
tion in reducing oxidative stress and inflamma-
tion and increasing levels of the neurotransmitter, 
serotonin [31, 32].

Several studies have reported abnormal blood 
lipid profiles in patients with fibromyalgia. In a 
study of 80 women with fibromyalgia, Gurer 
et al. reported increased blood levels of total and 
LDL-cholesterol compared to normal control 
subjects [33]. In a study carried out in Spain at 
Seville University, Cordero et  al. evaluated the 
blood lipid profiles of 180 patients with fibromy-
algia [34]. Approximately two-thirds of these 
patients had increased levels of total cholesterol 
and low density lipoprotein (LDL)-cholesterol, 
which correlated with the severity of their fibro-
myalgia symptoms assessed using the 
Fibromyalgia Impact Questionnaire (FIQ) and 
Visual Analogue Scales (VAS) of pain. These 
increases in cholesterol may result in part from 
genetic factors as well as from lack of exercise 
and increased body mass index (BMI). The lack 
of physical activity and increased total/ LDL- 
cholesterol blood levels may explain the increased 
risk of cardiovascular disease in fibromyalgia 
patients noted by Acosta-Manzano et al. [35].

Various studies have demonstrated that coen-
zyme Q10 can help to control cholesterol levels 
in the blood. First, CoQ10 can reduce cholesterol 
levels by directly inhibiting the genes responsible 
for the biosynthesis of LDL-cholesterol. Second, 
CoQ10 is circulated in the blood using LDL- 
cholesterol as a carrier. At the same time, the 
antioxidant action of CoQ10 helps to prevent the 
LDL-cholesterol from being oxidatively dam-
aged by free radicals, thereby reducing the risk of 
atherosclerosis. Third, in addition to inhibiting 
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cholesterol synthesis, statin drugs also inhibit the 
body’s production of CoQ10, which is generated 
via the same biochemical pathway [24, 36]. 
Supplementation with CoQ10 can reduce statin- 
associated adverse effects, such as muscle pain or 
the increased risk of diabetes. Randomised con-
trolled clinical trials have shown supplemental 
CoQ10, both alone or in combination with other 
supplements, can significantly reduce total blood 
or LDL-cholesterol levels in hypercholesterolae-
mic subjects. Thus, studies by Schmelzer et al. in 
2011 [37], using 150 mg CoQ10/day for 2 weeks, 
and by Mohseni et al. in 2014 [38], using 200 mg 
CoQ10 for 12 weeks, reported significant reduc-
tions of approximately 15% in LDL cholesterol 
levels following CoQ10 supplementation.

A study by Miyamae et  al. in 2013 also 
reported that ubiquinol treatment (100  mg/day 
for 12 weeks) of patients with juvenile fibromyal-
gia resulted in decreased circulatory levels of free 
cholesterol and cholesterol esters, indicating that 
ubiquinol supplementation improved cholesterol 
metabolism and chronic fatigue scores, as mea-
sured by the Chalder Fatigue Scale [28].

The beneficial effects of CoQ10 as an adjunct 
therapy to the commonly used anticonvulsant, 
pregabalin (commonly used to reduce the pain 
sensation in fibromyalgia), was recently demon-
strated in a study by Sawaddiruk et  al. [39]. In 
this randomised placebo-controlled clinical 
study, 11 fibromylagia patients were randomly 
allocated to pregabalin alone or to pregabalin 
with CoQ10. The results of the study indicated 
that although pregbalin treatment alone reduced 
pain and anxiety in the patients, pregbalin com-
bined with CoQ10 treatment reduced pain, anxi-
ety, as well as mitochondrial oxidative stress in 
BMC and inflammation in the fibromyalgia 
patients, compared to baseline.

5.7  Safety and Bioavailability 
of CoQ10

CoQ10 is generally well-tolerated, with no serious adverse 
effects reported in long-term use [40]. In rare cases, 
individuals may experience mild gastrointestinal 
disturbance. There are no known toxic effects, and 
CoQ10 cannot be overdosed. The safety of CoQ10 

has been confirmed in more than 200 randomised 
controlled trials, covering a wide range of disorders. 
Several case studies have suggested that CoQ10 may 
interfere with the action of warfarin, although a ran-
domised controlled clinical trial showed that 
CoQ10 supplementation at 100  mg/day had no 
effect on the clinical action of this anticoagulant 
medication [41].

Bioavailability is defined as the proportion of 
an ingested substance that reaches the blood cir-
culation. Because of its relatively large molecular 
size and lipid solubility, the bioavailability of 
CoQ10 is intrinsically low. CoQ10 is absorbed 
from the intestinal tract via the same mechanism 
as other lipid soluble nutrients. This occurs via a 
lipid carrier through mucosal cells initially into 
the lymph, and thence into the bloodstream. 
Thus, absorption is optimised when CoQ10 is 
dissolved in a carrier oil (preferably soya or palm 
oil). When supplemental CoQ10 is first produced 
(via a yeast fermentation process), it is obtained 
in the form of crystals which cannot be absorbed 
from the digestive tract. It is essential that these 
crystals are dispersed into single CoQ10 mole-
cules (and remain dispersed during the product 
shelf-life) to enable optimum bioavailability. 
Adding CoQ10 crystals to a carrier oil without 
such dispersal, a cost-saving technique used by 
some manufacturers, is inadequate. Disparity in 
the findings of clinical trials supplementing 
CoQ10 undoubtedly result from inadequate 
bioavailability and insufficient dosage or treat-
ment duration.

5.8  Conclusions

In view of the ability of CoQ10 supplementation 
to restore an underlying CoQ10 deficiency in 
fibromyalgia patients together with its ability to 
improve MRC activity, restore cellular antioxi-
dant capacity and ameliorate inflammation, all of 
which are factors associated with the pathophysi-
ology of fibromyalgia, CoQ10 therapy should be 
considered as an appropriate adjunct treatment 
for this chronic pain disorder as shown in Fig. 5.3. 
However, larger controlled clinical trials are still 
required to provide further data of the effective-
ness of CoQ10 in the treatment of fibromyalgia.
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Abstract

Gut microbiota has essential roles in the pre-
vention and progression of multiple sclerosis 
(MS). The association between the gut micro-

biota and the central nervous system (CNS) or 
immune system response of MS patients has 
been documented in many studies. The com-
position of the gut microbiota could lead to 
sensitization or resistance against promotion 
and development of MS disease. Probiotics 
are the major part of gut microflorapopulation 
and could be substituted with tolerogenic pro-
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biotics that protect the CNS against autoim-
mune responses. Tolerogenic probiotics with 
anti-inflammatory and immuno-modulatory 
properties have effects on intestinal flora and 
can reestablish regulatory mucosal and sys-
temic immune responses. Probiotics are able 
to prevent and restore excessive activation of 
inflammatory responses, especially autoreac-
tive T cells and inflammatory cytokines. 
Tolerogenic probiotics, through induction of 
regulatory T cells and increase of anti- 
inflammatory cytokines, play a crucial role in 
controlling inflammation and maintaining tol-
erance and hemostasis. Therefore, probiotics 
can be considered as a preventive or therapeu-
tic tool in MS. In the present review, we focus 
on the immunoregulatory effects of tolero-
genic probiotics on the severity of disease, as 
well as Th1, Th2, and Treg populations in dif-
ferent experimental and human studies of MS.

Keywords

Tolerogenic probiotics · Lactobacillus · 
Bifidobacterium · Multiple sclerosis · 
Experimental autoimmune encephalomyelitis

6.1  Introduction

Multiple sclerosis (MS) is a complex autoim-
mune disorder of the central nervous system 
(CNS) characterized by generation of autoanti-

bodies and autoreactive T cells against myelin 
proteins leading to focal inflammation, axonal 
degeneration and damage, or dysfunction of neu-
rons and oligodendrocytes, followed by progres-
sive, long-term physical and/or mental disability 
[1, 2]. Around 2.5 million people are currently 
diagnosed with MS worldwide [3]. In recent 
years, MS mortality has increased, rising from 
12,000 in 1990 to 20,000 in 2012 [4]. The median 
life expectancy is approximately 5–10  years 
lower for MS patients compared with an age- 
matched general population [5].

Similar to many other autoimmune diseases, 
women are much more susceptible to MS with a 
female to male ratio of 2:1 to 3:1, although men 
with MS tend to have more severe clinical out-
comes and poorer recovery after the initial dis-
ease relapse [6]. Since all regions of CNS can be 
affected, MS patients can exhibit diverse mani-
festations varying greatly case by case and over 
the course of disease, representing a challenge to 
clinicians [7]. The signs and symptoms tend to 
debut between the ages of 20 and 40 years [8]. 
Patients complain frequently about gait instabil-
ity, sensory disturbances, fatigue, weakness, 
spasticity, loss of balance, tremor, vision prob-
lems and depression, as well as bladder and 
bowel dysfunctions that seriously reduce the 
quality of their lives [7, 9, 10].

Although neither the primary cause nor the 
pathogenesis of MS is known definitively, the 
interplay between environmental factors and 
genetic factors has been demonstrated to contrib-
ute to the dysregulation of immune tolerance, 
involving an orchestrated attack of the innate and 
adaptive immune system towards components of 
the brain or spinal cord [11]. It has been reported 
that, during the disease course in both patients 
and animal model of MS, experimental autoim-
mune encephalomyelitis (EAE), immune regula-
tory defects in synergy with increased migration 
of autoagressive myelin antigen specific CD4+ 
effector T cell promote a key process in the 
pathogenesis of the disease [12]. The presence of 
plaques are the pathologic hallmark of MS, which 
consists of a defined hypocellular area and axonal 
oligodendrocyte damage accompanied by vari-
able gliosis and inflammation, relative preserva-
tion of axons, formation of an astrocytic scar and 
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cell death, as well as the presence of inflamma-
tory cells (mostly lymphocytes) infiltrating into 
the CNS [13, 14].

EAE is a T-cell-mediated model of autoim-
mune demyelination of the CNS, which widely 
serves an experimental model for MS in order to 
provide insights into the possible cellular and 
molecular factors involved in the pathogenesis 
[15]. It is well established that the EAE model 
can be developed in susceptible sensitized ani-
mals through immunization by different myelin- 
derived proteins emulsified in complete Freund’s 
adjuvant (CFA) such as myelin oligodendrocyte 
glycoprotein (MOG), proteolipid protein (PLP) 
or myelin basic protein (MBP), or by adoptive 
transfer of autoreactive T cells to naive animals 
[15, 16]. A growing number of studies using MS 
animal models have led to the suggestion that B 
cells have no critical role in the induction of EAE 
[17] but play a critical role in controlling the 
onset and severity of the EAE immunopathogen-
esis [18]. The autoimmune etiology of MS and 
EAE has been shown to involve breakdown of the 
blood–brain barrier (BBB) and autoimmune 
response as a result of dysregulated innate and 
adaptive immune pathways, resulting in myelin 
loss, varying degrees of axonal pathology, and 
progressive neurological dysfunction that causes 
clinical manifestations of these diseases [19, 20].

Based on the clinical disease pattern, MS 
pathology is commonly classified into four major 
clinical subtypes characterized by increasing 
severity, including relapsing-remitting (RR), 
secondary- progressive (SP), primary-progressive 
(PP), and progressive-relapsing (PR). 
Interestingly, subtypes of MS have dissimilar 
underlying neuropathologies, suggesting that MS 
may represent a heterogeneous group of autoim-
munity disorders [21]. RR is the most common 
subtype of MS and accounts for 85% to 90% of 
cases, which is characterized by relapses usually 
followed by periods of recovery or remission 
[22]. PPMS is estimated to represent about 
10–15% of patients with MS, in which clinical 
disability progression occurs continuously with 
no distinct period of remission or remissions. 
This subtype of MS has been most commonly 
diagnosed in older subjects compared to relaps-

ing onset MS, with no gender predominance [23–
25]. Within a span of 10–15  years in disease 
onset, up to 60% of patients with RRMS will sub-
sequently go on to develop SPMS, which is fol-
lowed by a phase of uninterrupted disease 
progression (Table 6.1) [21, 26].

6.2  MS and the Immune System

Despite extensive efforts aimed at defining MS 
immunopathology, the precise mechanisms that 
initiate immune responses to auto-antigens or 
derived peptides remain debatable [27]. MS is 
known as an autoimmune disorder, in which the 
host immune system fails to distinguish the self- 
peptides from foreign ones, leading to an aggres-
sive immune response against the myelin sheath 
surrounding axon terminals, and consequently to 
myelin destruction and loss of oligodendrocytes 
and axons [28, 29]. Under normal conditions, the 
CNS is considered as an immune-privileged site 
that accessibility of T cells and other immune 
cells is restricted by the endothelial BBB and 
 epithelial blood-cerebrospinal fluid barrier 

Table 6.1 Common four major clinical forms of MS 
(based on pathology)

Type Disease course
Relapsing/
remitting 
multiple 
sclerosis 
(RRMS)

The most common subtype of MS 
and characterized by acute 
neurological deficits or worsening of 
relapses generally followed by 
periods of incomplete or complete 
recovery

Secondary 
progressive 
multiple 
sclerosis 
(SPMS)

Second most common type of MS, 
characterized by initial relapses, 
followed by progressive neurological 
decrease without any remission

Primary 
progressive 
multiple 
sclerosis 
(PPMS)

Accounts for approximate 10–15% 
of patients with MS. characterized 
by steady functional decline from 
the onset of the disease independent 
of relapses (inflammation)

Progressive 
relapsing 
multiple 
sclerosis 
(PRMS)

The lowest common type of MS 
types, characterized by progressive 
disability from the onset of 
symptoms, with later superimposed 
acute attacks. PRMS and PPMS 
cannot be distinguish during early 
stages, until the relapses occur
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(BCSFB) [30, 31]. Environmental factors in 
genetically susceptible subjects are thought to 
play an important role in disruption of BBB-
mediated immune surveillance, whereby acti-
vated cells readily pass through the inflamed 
barrier [27].

In the initiation of CNS inflammation, under 
certain conditions autoantigens or microbial anti-
gens are presented by professional antigen- 
presenting cells (APCs) to T cells in lymphoid 
tissues that can provoke peripheral activation of 
proinflammatory lymphocytes [32]. After activa-
tion in periphery, myelin-specific T cells are 
capable of transmigration across the BBB into 
the CNS which is regulated by adhesion of integ-
rins on the leukocyte surface and endothelial 
cells then be reactivated by APCs presenting self- 
antigens in the brain [33]. After reactivation in 
the CNS, autoreactive T cells trigger an inflam-
matory cascade which consequently activates 
macrophages and microglial cells [34]. In turn, 
macrophages and microglia secrete chemokines 
that contribute to the recruitment of additional T 
cells, DCs, and macrophages followed by oligo-
dendrocyte death, demyelination, and ultimately 
neuronal loss [33–35]. It is important to point out 
that antibodies and B cells can also have the 
capacity to migrate across the CNS followed by 
demyelination and inflammation by complement- 
mediated cytotoxicity [20, 36]. With a key role in 
recruitment of adaptive immune cells to the CNS, 
astrocytes and microglial cells, as the main innate 
immune cells of MS lesions, critically contribute 
to the demyelination and neurodegeneration pro-
cess of MS through functional changes associ-
ated with their activation [9, 37, 38]. Additionally, 
astrocytes as the most abundant cell population in 
the CNS are able to modulate CNS inflammatory 
responses by secreting cytokines and chemokines 
at multiple levels [39]. These insights emphasize 
the importance of the innate immune response as 
strong mediators of MS pathogenesis.

6.2.1  Th1 and Th17 in MS

Recent evidence has revealed that pro- 
inflammatory T cells, such as Th1 and Th17 sub-

types, are crucial immunological participants in 
the neural-immune mechanisms underlying MS/
EAE with distinct clinical signs and pathological 
features [40]. There have been extensive studies 
in favor of both Th1 and Th17 cells that imply 
complementary roles in the pathogenesis of EAE 
by inducing an inflammatory milieu resulting in 
demyelination within the brain and spinal cord, 
with axonal damage [40]. Th17 cells are charac-
terized by the production of proinflammatory 
cytokines, such as interleukin (IL)-22, IL-21, 
IL-17A-F and IL-23, which have been recog-
nized as key contributors to MS by increasing 
inflammation in myelin sites [38]. Another Th 
lineage, the autoreactive Th1 type lymphocytes 
that generate IFN-γ and TNF-α, have been shown 
to increase MS by developing inflammation or by 
exerting toxic or pro-apoptotic effects on oligo-
dendrocytes. However, it should be noted that 
production of IFN-γ and IL-17 are the indicator 
cytokines of Th1 and Th17 cells, respectively 
[41, 42]. There is accumulating evidence demon-
strating an increased frequency of IFN-γ -pro-
ducing Th1 and IL-17-producing Th17 cells 
during EAE/MS relapse [42–44] which has been 
shown to be closely related to infiltrating mono-
cytes and macrophages into the CNS following 
increases in the permeability of the BBB.  This 
has been further supported by other studies that 
have shown high levels of inflammatory media-
tors secreted by infiltrating Th17 cells that could 
drive disruption of BBB tight junctions, demye-
lination, and hamper nerve conduction [45, 46]. 
Additional studies have revealed that impairment 
of all of the factors involved in Th17 cell devel-
opment or deficiency consistently either attenu-
ate or abrogate EAE [47]. On the other hand, 
TNF-α and IFN-γ have all been shown to exert 
direct myelinotoxic properties and elevated 
amounts of these cytokines coincide with disease 
activity [48].

6.2.2  Th9 and Th22 in MS

Two additional subsets of effector T cells Th9 
and Th22 have been recognized, and the capacity 
of these T-cell subsets to induce EAE is currently 
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being investigated. Multiple lines of evidence 
have recently pointed to a role of Th9 and Th22 in 
the immunopathogenesis of MS [38, 49]. The fre-
quencies of Th22 and the related cytokine IL-22 
have been detected to be increased in the blood 
and CSF of patients with MS, especially during 
the active phases of the disease. In addition, it is 
important to note that IL-22 concentrations, the 
signature cytokines of Th22, were found to be 
increased during a relapse phase of MS, suggest-
ing a role in the immunopathogenesis [49]. The 
role of Th9 in EAE was further supported by 
studies which showed that Th9 cells induce EAE 
and inflammation and IL-9 knockout mice are 
protected from developing EAE, indicating that 
Th9 cells may provoke the inflammatory process 
[38]. However, the accurate role of these subsets 
in EAE and MS is not clearly understood and has 
been the subject of on-going investigations.

6.2.3  CD8+ T Cells and B Cells in MS

Supported by the EAE animal model, growing 
evidence points to the pathogenic involvement 
of CD8+T cells in the pathophysiology of MS, 
although it has traditionally regarded to be a 
CD4+-mediated autoimmune disease [50]. 
Recent neuropathological studies have con-
vincingly demonstrated that, within the T cell 
population, CD8+ T-cells are the most predomi-
nant T-cells in CNS lesions [51], where their 
numbers strongly correlate with the extent of 
acute axonal damage [50]. CD8+ T cells are 
believed to mediate pathogenic processes in 
numerous cells types by direct cytotoxicity or 
production of pro-inflammatory mediators 
including IL-17, IFN-γ, and TNF-α [51, 52]. 
Besides the involvement of T cells in MS patho-
genesis, limited attention has been directed to 
another important immune cell type, i.e., B 
cells. B cells and humoral immunity contribute 
to initiation, progression, and subsequent tissue 
damage in the autoimmune pathogenesis of MS 
by different mechanisms such as abnormal pro-
duction of antibodies, co-stimulating T cells to 
produce and release inflammatory factors, and 
by secretion of inflammatory cytokines, such as 

IL-6, TNF-α, and IL-12 [53]. Studies have also 
demonstrated accumulation of B cells and 
plasma cells in the brains and CSF of patients 
with MS [54].

6.2.4  T Regulatory (Treg) and Th2 
Cells in MS

Along with the upregulation of proinflammatory 
mediators following induction of EAE, immuno-
suppressive activity of Tregs has been reported to 
be impaired in MS [55]. Tregs play an important 
role in maintaining immune homeostasis, the pre-
vention of autoimmunity, and suppressing delete-
rious inflammatory responses [56]. Treg is a 
unique CD4+ T-cell subset defined by expression 
of transcription factor Foxp3 and secretion of the 
suppressive cytokines TGF-β, IL-10, and IL-35 
along with a protective role in MS by modulation 
of inflammation [57]. The mechanism by which 
Tregs have been implicated in immunosuppres-
sive functions on various effector cells, especially 
pathogenic autoreactive T cells, is directly 
through production of the above-mentioned sup-
pressive cytokines or in a contact-dependent 
fashion or indirectly via inhibiting maturation of 
APCs [19]. Another important anti-inflammatory 
CD4+ T-subset that has been proposed to possess 
a protective function in the disease is Th2. 
Alteration of Th2-related is recognized as a pri-
mary contributing factor to an inflammatory 
demyelinating disease [2]. Th2 cells are a source 
of anti-inflammatory cytokines such as IL-4, 
IL-10, and TGF-β and are also supposed to be 
involved in the attenuation of neuro- inflammatory 
processes by down-regulating various aspects of 
the Th1 inflammatory response [58]. There is 
abundant evidence that upregulation of Th2- 
derived cytokines can reduce the severity of 
inflammatory demyelinating diseases, such as 
MS, and is associated with the recovery from dis-
ease [2, 59]. Additionally, IL-4−/−and 
IL-10−/−mice have been demonstrated to have 
increased susceptibility to EAE [2].

To summarize, switching immune cells from 
an anti-inflammatory to a pro-inflammatory state, 
in particular with an increased ratio of Th17/Treg 
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and Th1/Th2, which causes a high inflammatory 
state in the CNS, may precede the clinical and 
laboratory symptoms of the disease activity 
(Fig. 6.1).

6.3  Risk Factors of MS

As mentioned above, MS is a complex disease in 
which both genetic and environmental factors 
contribute to its etiology and clinical course [60]. 
In most autoimmune/inflammatory disorders, the 
human leukocyte antigen region has the strongest 
genetic associations with MS [61]. Evidence for 
the importance of genetics comes from epidemi-
ologic studies that show first-degree relatives 
have 20–40 times greater chance of developing 
MS in comparison to the general population [62]. 

Second- and third-degree relatives also have a 
clearly elevated risk of MS incidence [63]. 
Furthermore, twin studies from several popula-
tions have consistently indicated that dizygotic 
twins (~5% concordance) display a significantly 
lower clinical concordance rate than monozy-
gotic twins (~30% concordance), supporting a 
high heritability [63]. The risk of developing MS 
increases from typically seven- to 26-fold in par-
ents, from 12- to 38-fold in siblings, and from 6- 
to 25-fold in children of MS patients [64]. 
However, the hypothesis that genetic predisposi-
tion alone is not sufficient for promoting MS has 
been drawn from twin studies showing that 
monozygotic twins (100% genetic similarity) 
have an approximately 25–30% lifetime risk of 
developing MS when one of them has been diag-
nosed, suggesting the influence of both genetic 
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susceptibility and environmental triggers in the 
evolution of MS [10, 65].

One of the most intriguing aspects of MS is 
that lifestyle and environmental factors may have 
a strong influence on progression and course. A 
large number of environmental risk factors 
including smoking and sedentary lifestyle [66], 
physical activity [67], obesity [68], indigenous 
geography, and migration patterns, exposure to 
infectious agents [68], and sleep restriction [69] 
have been identified to play an important role in 
the prevention and management of this 
condition.

Environmental contributions are further sup-
ported by analysis of the ratio of hormone levels 
in MS patients. It was found that sex hormone 
have potential association with course and sus-
ceptibility to MS [70, 71]. Of note, it was pro-
posed that the incidence of MS may be decreased 
with migration from low risk to high risk coun-
tries before 15  years of age [72]. This latitude 
gradient in MS has been suggested to be driven 
by environmental rather than genetic factors, 
especially exposure to sunlight and decreased 
levels of vitamin D [69, 73].

In addition to these environmental risk factors, 
the dietary habits and the gut microbiota have 
been frequently recognized to be associated with 
an increased risk of MS [74]. Epidemiological 
studies have reported that diets rich in low- calorie 
meals based on vegetables, whole cereals, 
legumes, fruit, and fish pose beneficial effects in 
the prevention and alleviation of MS [75] through 
inhibiting production of proinflammatory mole-
cules and restoring or maintaining a diverse sym-
biotic gut microbiota [76]. Conversely, eating 
high-salt diets, animal fat, hypercaloric diets, red 
meat, saturated animal fat, sugar-sweetened 
drinks, and fried food has been shown to be asso-
ciated with increased risk of the disease by ele-
vating proinflammatory pathways and subsequent 
promotion of a dysbiosis gut microbiota state 
[75, 76]. It is noteworthy that influence of the 
many MS risk factors may be related to the gut 
microbiota dysbiosis [10]. A bidirectional con-
nection between the gut microbiota and CNS dis-
ease supports the concept that dysbiosis of the 
gastrointestinal microbiota can also influence the 

clinical manifestations and inflammatory mark-
ers in MS/EAE [10]. Current evidence from dif-
ferent clinical studies has revealed striking 
variations in the composition of the intestinal 
microbiome in MS patients compared to that in 
healthy controls [77]. It has also been indicated 
that more than 70% of MS patients suffer from at 
least one gastrointestinal tract disease [78]. The 
overall evidence indicates that a comprehensive 
program of lifestyle modification can appear as a 
non-invasive and viable approach for preventing 
and controlling MS and possibly other neurologi-
cal conditions.

6.4  Therapeutics Approaches 
for MS

During the past decade, there have been consider-
able efforts to develop efficient therapeutic 
approaches for MS [79]. Owing to the growing 
evidence from both animal and human studies 
suggesting pathophysiology of autoimmunity 
and immune-mediated mechanisms involved in 
the disease, research focuses on developing a 
promising therapy to modulate or suppress 
inflammatory responses [80]. Despite tremen-
dous scientific efforts, the available preventive 
disease-modifying therapies (DMTs) have failed 
to treat MS completely and are aimed at slowing 
the progression of the disease, protection of func-
tional capability, reducing individual symptoms 
and delaying or preventing progressive MS onset. 
Of these, the interferons and glatiramer acetate 
are the best treatments currently in use, and these 
appear to work by decreasing immune-mediated 
inflammation [3, 4, 81]. On the other hand, these 
drugs are only effective against the RRMS sub-
type and exhibit some drawbacks, such as incon-
venient methods of administration, significant 
side effects, and low adherence rates. Therefore, 
more efficient preventive treatment strategies 
need to be developed [82, 83].

Currently, the ability of probiotics to impact 
on many aspects of physiological and pathologi-
cal processes of the host has opened up new ther-
apeutic prospects for the treatment of CNS 
inflammation [84]. The most common types of 
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microorganisms used as probiotics are 
Lactobacillus (L) and Bifidobacterium (B) [85]. 
A number of health improving properties have 
been attributed to the consumption of some pro-
biotic strains, which leads to protection of the 
function of the gastrointestinal epithelial barrier, 
increased adhesion to intestinal mucosa, interfer-
ence with the ability of pathogens to colonize, 
competitive exclusion of pathogenic microorgan-
isms, and enhancement of antimicrobial peptide 
production and immunomodulatory functions 
[86, 87]. Treatment using probiotic therapy has 
been found to exhibit broader spectrum of action 
mechanisms to achieve immune modulation 
compared to conventional immunosuppressant 
drugs [88]. In contrast to immunosuppressant 
drugs, adverse reactions upon long-term treat-
ment of probiotics have been rare [88]. 
Surprisingly, treatment with some probiotics 
could have profound effects on CNS functions, 
conferring the potential therapeutic effect of pro-
biotics on neurodegenerative diseases [87, 89].

Probiotic-based therapies have been shown 
to have immune-modulating effects as prophy-
lactic agents or dietary supplements to reverse 
immunological disturbances which, in turn, 
modulate the progression of EAE and probably 
MS.  The immunomodulatory and beneficial 
effect of probiotic treatments has often been 
suggested to be related to inhibition of Th1/
Th17 responses while increasing the immuno-
regulatory responses of Treg cells [9, 88, 90]. 
Another potential mechanism behind the effi-
cacy of probiotic administration has also been 
attributed to decreasing the production of 
pathogenic cytokines (IL17, IFNγ, TNFα, and 
IL-12) and increasing anti- inflammatory cyto-
kines (IL-4, IL-10, and TGFβ) [88, 91]. More 
importantly, another underlying molecular 
mechanism through which probiotic adminis-
tration may modulate CNS function is through 
mitigating neurotoxin-induced oxidative dys-
functions and neurotoxicity [92]. Histological 
analysis of the CNS showed that probiotic 
administration decreased recruitment of inflam-
matory cells into the spinal cord and subse-
quently suppressed clinical paralysis in EAE 

mice [91]. All of these results point to the use of 
dietary supplemented with probiotics as an 
alternative approach to conventional therapy in 
MS patients. However, there is a necessity for 
further studies to fully quantify their clinical 
efficacy in this disease.

6.4.1  Probiotics and Autoimmune 
Diseases

Probiotics are live microorganisms that colonize 
different sites of the mucosal gut barrier. The 
beneficial effects of non-photogenic probiotics 
have been shown in many studies [93]. Probiotics 
can help in keeping the integrity of intestinal bar-
rier [94], modulation of immune responses [95], 
and better absorption of foods [96]. These live 
microorganisms can produce antimicrobial com-
pounds with anti-pathogenic effects and maintain 
the balance of the microbial population in the 
intestine [97]. The important roles of probiotics 
are modulation of immune responses in different 
diseases. Probiotics increase the strength of 
immune response in diseases such as cancer and 
infection but tolerogenic probiotics regulate the 
immune response and help in keeping tolerance 
in inflammatory and autoimmune diseases [98]. 
In fact, tolerogenic probiotics could directly and 
indirectly affect all autoimmune responses, 
through the generation of tolerance mechanisms 
and inhibitory cytokines. Research in this area 
has shown the effects of tolerogenic probiotics in 
autoimmune conditions such as systemic lupus 
erythematosus (SLE) through increase of inhibi-
tory cytokines, decrease of inflammatory cyto-
kines, and production of modulatory DCs [99, 
100]. Administration of L. delbrueckii and L. 
rhamnosus probiotics were found to generate 
tolerogenic DCs and Treg in in vitro and amelio-
ration of symptoms in a pristane-induced lupus 
mouse model [100–102]. These beneficial immu-
nomodulation effects also changed the feature of 
immune response to tolerance in irritable bowel 
disease (IBD) [103], rheumatoid arthritis [104], 
and allergy [105]. Multiple sclerosis is one of the 
most injurious autoimmune diseases that has 
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been found to be linked with dysregulated 
immune responses and imbalance of gut micro-
biota [106]. It seems that the use of probiotic 
strains can maintain and restore the microbial 
balance with reduction of inflammatory responses 
in MS patients. All studies on dysbiosis in 
patients and animal models with MS have con-
firmed the homeostatic role of gut–brain axis in 
the host [107]. The present literature review was 
intended to evaluate the regulatory effects and the 
therapeutic impacts of probiotic strains on 
immune system responses in MS patients.

6.4.2  Cross-Talk of Multiple 
Sclerosis and Microbiota

Several cross-sectional studies have demon-
strated that an altered gut microbiota composi-
tion is associated with some types of neurological 
and autoimmune diseases, such as type 1 diabe-
tes, rheumatoid arthritis, Parkinson’s disease, 
MS, and EAE, [108, 109]. Owing to the intimate 
relationship between commensal microbes and 
the immune system, it is not surprising that an 
aberrant gut microbiome plays a crucial role in 
dysregulation of immune responses and immuno-
logical tolerance and subsequently triggers and/
or exacerbates the spontaneous development of 
EAE [110]. Much evidence has accumulated to 
show the importance of the microbiota in regula-
tion of the development and/or function of differ-
ent types of immune cells, especially with respect 
to the balance between potentially pro- 
inflammatory cells, Th1 and Th17 cells, and anti- 
inflammatory T cells, Th2, and Tregs, which 
represent a potential role of dysbiosis in autoim-
mune and inflammatory diseases [111, 112]. A 
key mechanism by which commensal microbiota 
affects the homeostasis of immune cell popula-
tions in lamina propria involves stimulation of 
innate immunity by microbial “pattern recogni-
tion receptors” [112]. Various microorganisms 
have been found which have been implicated in 
the development and/or maintenance of the gut 
immune system in MS.  Some microorganisms 

seem to facilitate beneficial immune responses 
while others promote harmful ones [10]. In the 
case of human autoimmune diseases, a compari-
son between individuals afflicted with MS and 
healthy controls showed that MS patient micro-
biota populations were different compared in gut 
microbiota, which could mean that this is a risk 
factor in disease exacerbation [10, 109]. 
Supportive of this postulate, the dysbiosis found 
in patients suffering with RRMS can be a result 
of either increased levels of Mycoplana, 
Pseudomonas, Blautia, Haemophilus and Dorea 
genera, or decreased levels of Parabacteroides, 
Adlercreutzia, and Prevotella [113]. Furthermore, 
by comparing the sample patients and healthy 
controls, a decrease has been found in 
Bacteroides, Prevotella, Anaerostipes, 
Faecalibacterium, and Clostridia XIVa and IV 
clusters were observed [10], as well as an increase 
in the proportions of Actinobacteria, 
Bifidobacterium Akkermansiamuciniphila, 
Mycoplasma, Acinetobactercalcoaceticus in the 
gut microbiota of MS patients [10, 109, 114, 
115]. Notably, a shorter time to relapse was asso-
ciated with absence of Fusobacteria, as well as 
with the presence of the Archaea Euryarchaeota 
and an increased abundance trend of Firmicutes 
and Euryarchaeotawere [116]. Collectively, a 
rise in incidence and prevalence rate of MS in 
developed countries has been attributed to altered 
profiles of the intestinal bacterial flora.

Another mechanism suggested through which 
the gut microbiota can play a central role in MS 
is the bidirectional microbiota–gut–brain axis 
that transfers signals between the gastrointestinal 
system and the CNS. It is known that a dysregu-
lated microbiota homeostasis is associated with 
several CNS developmental problems, confirm-
ing the effect of the gut commensal microbiota 
composition and the development and function of 
the CNS [110, 117]. In addition, human studies 
have pointed out that an increase of intestinal 
barrier and BBB permeability, caused by bacte-
rial dysbiosis, can initiate an immune- 
inflammatory response in MS [10, 28]. This was 
supported by a result which showed that the 
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absence of microbiota might induce disruption of 
BBB tight connections and thus elevate BBB per-
meability [118]. Interestingly, a number of 
 relevant processes are constantly controlled by 
gut microbiota such as the maturation and func-
tion of microglia [119], the limitation of astro-
cyte pathogenicity, stimulation of microglia, and 
expression of myelin genes [10].

6.4.3  Modulatory Effects 
of Tolerogenic Probiotics 
on CNS

The CNS is a privileged site, which must be pro-
tected from immune responses and immune cells. 
Therefore, any strategy or treatment that can help 
this security is crucial. Probiotics are able to pro-
tect the CNS barrier by different indirect mecha-
nisms. One study showed that a mixture of three 
probiotic Lactobacilli on EAE mice decreased 
inflammation in the CNS following reduced 
autoreactive T cell responses. Also, clinical 
scores were significantly reduced after 20 days of 
probiotics therapy [90]. Treatment of female 
C57BL/6 EAE mice with two tolerogenic lacto-
bacillus strains showed reduction in clinical 
scores, delays in the time of disease onset, and 
infiltration of mononuclear cells into the CNS 
[120]. A study on the EAE rat model colonized 
with Bifidobacteriumanimalis showed that the 
severity of EAE was delayed [121]. Oral admin-
istration of P. acidilactici R037, as a prophylactic 
or treatment, could suppress severity of disease in 
the EAE model [122]. In addition, prevention in 
the development of experimental autoimmune 
encephalomyelitis was observed in C57BL/6 
mice after administration of a lipopolysaccharide 
(LPS)-free Hsp65 producing recombinant 
Lactococcuslactis strain was found to reduce 
infiltration of inflammatory cells and injury signs 
in the CNS [123]. In another study, it was shown 
that in MS patients and healthy people, the gut 
microbiota is different which could potentially 
affect the disease course. In fact, distinct micro-
bial flora in RRMS patients compared to healthy 

people altered the disease course and susceptibil-
ity to MS [124]. It has been shown that TGF-α as 
inhibitory and VEGF-β as promoting factors of 
inflammation and cell damage are significantly 
associated with gut microbiota, and any change 
or breakdown in this flora population leads to 
excessive inflammation and progression of dis-
ease [125]. Some studies showed that the gut 
microbiota could regulate the integrity of the 
BBB, and breakdown in normal gut microbiota 
of germ-free mice caused the elevated permeabil-
ity [126]. Furthermore, a change in gut microbi-
ota by antibiotic therapy in EAE mice showed 
that the altered population of flora led to 
decreased severity and progression of MS [127].

6.4.4  Modulatory Effects 
of Tolerogenic Probiotics 
on Treg Cells

One of the most important strategies for control-
ling and treating autoimmune diseases with 
increased uncontrolled immune responses 
focuses on increasing Treg cells and related anti- 
inflammatory cytokines to restore homeostasis of 
immune responses. Tolerogenic probiotics could 
affect immune cells through unknown mecha-
nism and increase the shift towards Treg cells. In 
vitro and in vivo studies showed that tolerogenic 
bacteria could reduce inflammation and control 
the Th1, Th17/Treg axis. An in vivo study in EAE 
mice showed that the mixture of three probiotic 
Lactobacilli (L. plantarum DSM 15312, L. para-
casei DSM 13434, and DSM 15313) could induce 
CD4+CD25+Foxp3+ Treg cells in mesenteric 
lymph nodes (MLN), as well as TGF-β1 in serum, 
and IL-10  in MLN, spleen and blood [90]. The 
colonization of EAE mice with Bacteroidesfragilis 
decreased the symptoms in mice through induc-
tion of Foxp3+ Treg cell differentiation [128]. 
Lactobacillus plantarum A7 and Bifidobacterium 
animalis PTCC 1631 strain, as tolerogenic micro-
biota, have been shown to increase anti- 
inflammatory cytokines, such as IL-10 and 
TGF-β, along with reduction of T cell prolifera-
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tion in spleen and lymph nodes of a C57BL/6 
EAE female mouse model separately and in com-
bined treatment [120].

Colonization of mice by 
Pediococcusacidilactici R037 provided a signifi-
cant elevation in the number of CD4+ T cells in 
both spleen and MLN.  Administration of R037 
showed that it had beneficial effects on EAE 
through induction of FOXP3-IL10-producing 
Tr1 cells [122]. In an in vivo study, consumption 
of Hsp65-producing Lactococcuslactis by 
C57BL/6 mice showed significant elevation in 
the number of CD4+ FOXP3+ natural-Treg and 
inducible-Treg (also CD4+ LAP+ Treg) in spinal 
cord, spleen, and MLN. The study showed that 
CD4+ LAP+ Treg cells play an effective role in 
controlling the EAE [123]. Anti-inflammatory 
responses were also observed following cell cul-
ture of lymph node and spleen cells through 
increased IL-10 and reduced IL-17 production 
[123]. In an EAE mouse model, colonization of 
germ-free mice by gut microbiota from MS 
patient was shown to reestablish MS susceptibil-
ity through reduction in function and proportion 
of Treg cells and also decreased IL-10 levels 
[129, 130]. Oral administration of purified poly-
saccharide A derived from B. fragilis could 
decrease inflammation in EAE mice and may 
serve as a preventive and therapeutic tool by 
induction of Treg and IL10-producing cells 
[131]. Prevotella  histicola use in a transgenic 
mouse model could reduce the severity of disease 
through elevation of the number of tolerogenic 
cells, such as Treg (CD4+FoxP3+), DCs, and mac-
rophages [132]. In a human study, MS patients 
fed a probiotic cocktail (Bifidobacterium, 
Lactobacillus, and Streptococcus) daily for 
2  months showed a significant reduction in the 
number of inflammatory monocytes and 
decreased CD80 and HLA-DR expression on 
classical monocytes and DCs, when compared 
with control group. In the control group, the 
administration of the probiotic cocktail showed 
reduced expression of HLA.DQA1 and HLA.
DPB1 as MS risk alleles [132].

6.4.5  Modulatory Effects 
of Tolerogenic Probiotics 
on Th1 and Th17

Th1 and Th17 cells are involved in the pathogen-
esis of MS, with the immunopathology occur-
ring through this inflammatory axis. Therefore, 
many approaches have targeted reduction of the 
inflammation of this autoimmune branch, and 
probiotics are able to decrease the inflammatory 
activity of Th1 and Th17 cells. In an in  vitro 
study, the influence of segmented filamentous 
bacterium (SFB) on Th17 cell differentiation 
demonstrated that colonization of mice with a 
single commensal microbe induced Th17 cells 
and production of both IL-22 and IL-17  in the 
intestinal lamina propria. This suggested that 
the microbiota of MS patients has a pro-inflam-
matory effect [133]. The suppressive effects of 
L. plantarum DSM 15312, L. paracasei DSM 
13434, and DSM 15313 were observed in an 
EAE mouse model, which could attenuate the 
pro-inflammatory cytokine profile of the Th1 
and Th17 pathway [90]. This probiotic mixture 
reduced IL17, TNF-α and IFN-γ as a pro-inflam-
matory cytokines and induced the secretion of 
anti-inflammatory cytokines such as TGF-β1, 
IL10, and IL4 in EAE mice [90]. A reduction of 
some pro-inflammatory cytokines (IL17, IFN-γ, 
and IL6 along with T cell proliferation) was 
observed in EAE mice administered two-lacto-
bacillus strains, especially when these were 
given as a mixture [120]. A study on the changes 
in intestinal microbial population showed that 
antibiotics could reduce Lactobacillusmurinus 
and Bacteroides fragilis and increase Bacteroides 
thetaiotaomicron, which led to suppression of 
EAE development by reducing iNKT cells, Th17 
cells, and inflammatory cytokines, such as IFN-
γ, TNF-α, IL-6, and IL-17 [134]. Probiotic 
administration could induce peripheral anti-
inflammatory responses through decreased 
CD80 expression on monocytes, as well as 
decreased frequency of inflammatory mono-
cytes, and HLA-DR expression on DCs [135]. P. 
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histicola could modulate the severity of inflam-
matory cytokines from the Th1 and Th17 path-
way in EAE mice by effects on systemic immune 
responses [132]. In an in  vivo study, antibiotic 
therapy in EAE mice altered the intestinal flora, 
which was associated with reduction of inflam-
matory cytokines such as IL17, IFN-γ, IL6, mac-
rophage inflammatory protein (MIP) and 
monocyte chemoattractant protein (MCP), and 
increased IL-10 levels, as well as alleviation of 
the disease severity [136]. Administration of 
Helveticus in EAE mice  significantly reduced 
pathogenic Th17 cells in the spinal cord. In addi-
tion, in a prophylactic mode of therapy, this 
Lactobacillus could reduce the ratio of Th17/
CD4+ T cells in inguinal lymph nodes before the 
onset of disease. Also, administration of 
Lactobacillushelveticus reduced production of 
IL-6 cytokines in in  vitro therefore indirectly 
affected Th17 linage development [137]. 
Combination usage of Bifidobacteriumanimalis 
and Lactobacillusplantarum in a mouse model 
ameliorated severity of disease and clinical 
scores through inhibition in the development of 
Th1 and Th17 linage cells, via an increase in the 
frequency of CD4+CD25+Foxp3+-T cells (Treg) 
in spleen and lymph nodes [120]. In MS, differ-
ent inflammatory responses of T cells are respon-
sible in the outcome and progression of the 
disease, but the roles of autoreactive B cells and 
autoantibodies are important in control of the 
time of onset and the disease severity. Induction 
of the Th2 linage could lead to secretion of cyto-
kines that contribute to the expansion of autoan-
tibody production and, however, could modulate 
the Th1/Th2 axis inversely. It was found that the 
effect of tryptophan on gut microbiota could 
reduce differentiation of Th2 and modulate 
immune responses [138]. Also, the effect of 
Lactobacillus casei in an autoimmune and aller-
gic mouse model revealed that probiotic admin-
istration could prevent inflammation and 
modulate Th2 responses, and thereby decrease 
production of IgE and autoantibodies [139]. 
However, the effect of probiotics on modulation 
of Th2 immune responses in MS disease requires 
further study.

6.5  Concluding Remarks

MS is a complicated autoimmune disease 
with neuro-pathological and immuno-patho-
logical responses that persistently destroy 
myelin, as an auto-antigen, in the spinal cord 
and CNS.  Tissue damage in MS patients 
occurs mainly due to excessive activated T 
cell responses, especially Th1, Th17, and 
dysregulated Treg cells, and release of their 
related pro-inflammatory and inflammatory 
cytokines, such as IFN-ϒ, TNF-α, IL-6, 
IL-17, and low levels of IL-10 and TGF-β. 
Various studies have shown the role of probi-
otics on diverse aspects of innate and 
acquired immune cells. Tolerogenic probi-
otic restores the balance of gut–brain axis 
and the Th1/17–Treg axis through different 
known and unknown mechanisms. In fact, 
tolerogenic probiotics alter innate immune 
cells (especially DCs) and shift the direction 
of the response towards tolerance. Also, 
these probiotics could change the microbiota 
population, prevent the differentiation and 
expansion of autoreactive T cells (Th1 and 
Th17), and reduce the levels of IFN-ϒ, TNF-
α, and IL-17. However, tolerogenic probiot-
ics could help to maintain tolerance and 
hemostasis of immune response through 
restoring the Treg/Th1/Th17 balance. 
Increased numbers of CD4+, CD25+, FOXP3+ 
regulatory T cells and elevated level of IL-10 
and TGF-β were found to be associated with 
tolerogenic roles of probiotics, through 
decreased inflammatory cytokines and T cell 
branch expansion, leading to prevention of 
over- activated autoreactive T Cells in the 
CNS (Table 6.2). Due to the ease of use and 
the good safety and regulatory properties, 
tolerogenic probiotics can be used as a com-
plimentary drug in suffering MS patients. 
However, these categories of probiotics must 
be studied in combination with cohort stud-
ies for more effective evaluation.
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Table 6.2 Results of different tolerogenic probiotics effects on modulation of immune responses in human and animal 
model

Probiotics strain
In vivo/in 
vitro model

Probiotic effect on Description
RefCNS Th1 Th17 Treg

L. plantarum DSM 
15312, L. paracasei 
DSM 13434 and DSM 
15313

EAE mice * * * * – Reduction of CNS inflammation and 
clinical score
– Indication of CD4 + CD25 + Foxp3+ 
regulatory T cells (Tregs), IL10 and 
TGF-β1
– Decrease of Th1 and Th17 pro- 
inflammatory cytokine profile (IL17, 
TNF-α, and IFN-γ)

[123]

L. plantarum A7 and 
B.animalisPTCC 
1631

EAE mice * * * * – Reduction in clinical score and 
infiltration of mononuclear cells into 
the CNS
– Delay in the time of disease onset
– Reduction of T cell proliferation
– Decrease of IL17, IFN-γ, and IL6
– Increase of IL10 and TGF-β

[124]

Bifidobacterium 
animalis

EAE mice * – Delay in severity of EAE [125]

P. Acidilactici R037 EAE mice * * – Suppression of disease severity
– Induction of FOXP3- IL10 – 
Producing Tr1 cells

[126]

Recombinant 
Lactococcus lactis

EAE mice * * * – Reduction of inflammatory cells 
infiltration and injury signs in the CNS
– Increase of n-Treg, i-Treg, and CD4+ 
LAP+ Treg
– Increase of IL10 and decease of IL17

[127]

Gut microbiota MS patients, 
EAE mice

* Change in disease course and 
susceptibility to MS

[128, 
131]

Gut microbiota MS patients * – Effect on TGF-α as inhibitory and 
VEGF-β as promoting factors of 
inflammation and cell damage in MS 
disease

[129]

Gut microbiota Germ-free 
mice

* – Regulation of blood-brain barrier 
(BBB) integrity

[130]

Bacteroides fragilis EAE mice * – Induce differentiation of Foxp3+ Treg 
cell

[132]

MS patients gut 
microbiota

EAE mice * – Reestablish MS susceptibility
– Decrease of IL10 and Treg

[133, 
134]

B. fragilis EAE mice * – Induction of Treg and IL10-producing 
cells

[135]

Prevotella histicola Transgenic 
mice

* – Increase the frequency of Treg 
(CD4 + FoxP3+) and tolerogenic cell 
(DC and macrophage)

[136]

Bifidobacterium, 
Lactobacillus, and 
Streptococcus

MS patients, 
healthy 
control

* * – In patients: Decrease the frequency of 
inflammatory monocytes, decrease of 
CD80 and HLA-DR expression on 
classical monocytes and DC
– In healthy individual: Decrease 
expression of HLA-DQA1 and HLA.
DPB1(MS risk allele)

[136]

(continued)
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Multifaceted Roles of Long Non- 
coding RNAs in Head and Neck 
Cancer

Leslie Duncan, Chloe Shay, and Yong Teng

Abstract

The majority of RNA transcripts are non- 
coding RNA (ncRNA) transcripts with lengths 
exceeding 200 nucleotides that are not trans-
lated into protein. Unlike microRNAs (miR-
NAs), long ncRNAs (lncRNAs) are not 
confined to a single mechanism of action but 
have a large and diverse role in biological pro-
cesses as they can function as transcription 
regulators, decoys, scaffolds, and enhancer 
RNAs. Currently, many lncRNA molecules 
are under investigation for their role in tumori-
genesis, metastasis, and prognosis in different 
types of cancer. This review not only summa-

rizes the characteristics and functions of 
lncRNAs but also discusses the therapeutic 
implications and applications of lncRNAs 
with roles associated with head and neck can-
cer. Our aim is to pinpoint the potential way to 
perturb specific lncRNAs for future therapeu-
tic use.
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7.1  Introduction

The human body is a large and complex system 
that needs a precise set of directions to function 
properly. The genetic code that manages the body 
comes from DNA, and the process to make and 
replicate DNA is intense and complicated, and 
made up of many molecular stages. A key mole-
cule used in this process is RNA, of which there 
are many different types. The three main types of 
RNA are messenger (mRNA), transfer (tRNA), 
and ribosomal RNA (rRNA). In a process known 
as transcription, DNA is transcribed into 
mRNA.  The mRNA is then translated using 
tRNAs to make amino acid sequences known as 
peptide chains. Some genes, however, do not 
code for proteins. These genes result in a tran-
script known as a non-coding RNA (ncRNA). 
The ncRNAs are broken into two classes known 
as small ncRNAs (sncRNAs) and long ncRNAs 
(lncRNAs). Further subdivision of sncRNAs 
results in more classes of ncRNAs with one of the 
main types being the microRNAs (miRNAs). If 
the RNA is made up of 20–25 nucleotides, it is 
considered as miRNA. If the RNA is made up of 
200 nucleotides or more, it is considered as a 
lncRNA [1–5]. In research, miRNAs are cur-
rently under intensive study as they are important 
regulators of the stability and expression of 

 intracellular mRNAs. With many researchers 
examining miRNAs for possible therapeutic 
treatments for cancer, this has sparked research 
on lncRNAs. The function of lncRNAs is not 
fully understood, but these molecules are known 
to play a major role in inhibition and activation of 
many genes. Because previous research has 
exemplified the importance of ncRNAs, the 
lncRNA class is currently being studied in con-
nection with human diseases, especially cancer.

7.2  Structure and Characteristics 
of lncRNAs

Generally, lncRNA is made up of 200 nucleotides 
or more and does not encode proteins. More than 
98% of the genes transcribed are non-coding [1, 
6–11]. While the exact function is unknown, evi-
dence has shown the importance of lncRNA in 
splicing, imprinting, transcription, translation, 
cell cycle regulation, and apoptosis. These 
lncRNA are also suggested to play a part in can-
cer and other human diseases [12–14]. 
Structurally, an lncRNA molecule consists of a 3′ 
polyadenylated tail and a 5′ cap [1, 7]. Due to the 
abundance of lncRNA transcripts, a classification 
system has been created. Based on the location 
and context of the genome, the effect on DNA 
sequences, the mechanism of functioning, and 
the target mechanism, lncRNAs can be catego-
rized [1–4, 15]. There are two classifications for 
the location of the gene called intergenic and 
intronic. Intergenic refers to an lncRNA that is 
between two coding regions. Intronic refers to an 
lncRNA that is transcribed from introns only. 
Similar to the location, the context also subdi-
vides lncRNA into two categories known as sense 
and antisense. Sense lncRNAs are transcribed 
from the sense strand of protein encoding genes 
and contain exons. These may overlap with part 
or all of the protein encoding genes. Conversely, 
antisense lncRNA is transcribed from the anti-
sense strand of protein encoding genes. It has 
been discovered that lncRNAs are involved in 
transcriptional regulation, and therefore they are 
also classified based on how they interact with 
DNA, known as cis- and trans-lncRNAs. The cis- 
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lncRNAs help regulate expression of genes that 
are close by. The trans-lncRNAs help regulate 
expression of genes that are further away. The 
mechanism of functioning for the lncRNA tran-
scripts falls into three groups including transcrip-
tional regulation, post-transcriptional regulation, 
and other forms of regulation [1, 16]. Both tran-
scriptional and post- transcriptional regulation 
can be further subdivided based on how the regu-
lation is occurring. The third classification for the 
mechanism of functioning is made up of 
unknowns. There are no subgroups, because 
there is not enough available information to clas-
sify these lncRNAs other than via the mecha-
nisms of functioning. The last group of 
classification is target mechanisms, and there are 
four types known as signal, decoy, guide, and 
scaffold. Signal targeting mechanisms refer to 
specific expression based on cell type. Decoy 
mechanisms bind and move different protein 
 targets as their only function. Proteins that are 
bound and directed to specific target regions are 
under control of guided target mechanisms. 
Lastly, proteins that are gathered are done so 
through scaffold target mechanisms which serve 
as a central platform. Further details regarding 
these classifications discussed above are given in 
Table 7.1. It is important to note that these clas-
sifications exist only through current knowledge 
of the subject and are expected to change as more 
information is gathered [17].

7.3  lncRNAs Associated 
with Tumorigenesis 
and Development of Head 
and Neck Cancer (HNC)

With 98.5% of the human genome consisting of 
ncRNA, of which tens of thousands are of the 
lncRNA subtype, there are a multitude of studies 
being conducted on their potential roles. The 
new found discovery of lncRNA in the initiation 
and progression [18–22] of HNC has led to the 
idea of using them as a new treatment that may 
provide a better prognosis for patients. Due to 
the abundance of lncRNAs, there are numerous 
lncRNAs that are known to function in head and 

neck tumorigenesis, with more being discov-
ered. There are many types of cancers that fall 
into the HNC category [23, 24]. The most preva-
lent subset of these is head and neck squamous 
cell carcinoma (HNSCC). This includes cancers 
found in the lining of the upper digestive tract 
including the throat, nose, and mouth regions. 
These cancers have been found to have a correla-
tion with multiple lncRNAs including HOX 
transcript antisense RNA (HOTAIR), H19 
imprinted maternally expressed transcript (H19), 
and HNSCC glycolysis-associated 1 (HNGA1) 
[25, 26]. HOTAIR was seen to be expressed at 
very high levels in HNSCC when compared to 
normal tissues [27–29]. It was discovered that a 
reduction in the HOTAIR levels leads to cell 
death and slow tumor development. H19 is also 
seen to be expressed highly in HNSCC and leads 
to a higher invasive capacity as well as a higher 
rate of tumor recurrence. HNGA1 is involved in 

Table 7.1 Categorization and functions of lncRNAs

Category Sub-category Functions
Location and 
context of the 
genome

Intergenic 
lncRNA

Transcribed 
between coding 
regions

Intronic lncRNA
Sense lncRNA
Antisense 
lncRNA

Transcribed from 
introns
Transcribed from 
sense strand
Transcribed from 
antisense strand

The effect on 
DNA 
sequences

Cis lncRNA Regulates genes 
close

Trans lncRNA Regulates genes 
far

The 
mechanism of 
functioning

Transcriptional 
lncRNA
Post- 
transcriptional 
lncRNA
Other lncRNA

The target 
mechanism

Signal lncRNA
Decoy lncRNA
Guide lncRNA
Scaffold 
lncRNA

Regulates 
transcription in 
response to 
stimuli
Binds and moves 
targets
Directs proteins 
to targets
Serves as central 
platform
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the process of glycolysis and increases cancer 
cell proliferation. Regulation of these three 
lncRNAs may offer a treatment for HNSCC via 
knockdown of the genes. It has been shown that 
knockdown of all three of these lncRNAs 
resulted in poor proliferation, migration, and 
invasion of HNSCC cells [18, 30–32]. Thyroid 
cancer has associated lncRNAs as well, partially 
overlapping with those of HNSCC. For example, 
HOTAIR has also been seen to function in thy-
roid cancer along with BRAF-activated ncRNA 
(BANCR) and non-protein coding RNA, associ-
ated with MAP kinase pathway and growth 
arrest (NAMA). BANCR has been shown to be 
upregulated in thyroid cancer cells in compari-
son with healthy tissue, and apoptosis was found 
to be induced by the reduction of BANCR 
expression, although there was no effect of this 
on cell migration [18]. Other evidence shows 
conflicting data suggesting unknown factors 
may be involved in the regulation of BANCR 
expression in thyroid cancer. NAMA, closely 
related to BANCR, has been found to be down-
regulated in thyroid cancer. In addition, NAMA 
expression was found to be stimulated by 
reduced BRAF expression, inactivation of the 
MAP pathway, or DNA damage. These changes 
lead to activation of the proto- oncogene serine/
threonine-protein kinase/mitogen-activated pro-
tein kinase kinase (MEK)/extracellular signal-
regulated kinase (ERK) signaling pathway 
known to regulate cell growth and differentiation 
[18]. Therefore, the activation of this pathway is 
a potential target for future treatment of thyroid 
cancer, and further research in this area should 
help to confirm this.

7.4  lncRNAs Associated 
with Invasion and Metastasis 
of HNC

Metastasis is partially responsible for the relapse 
and poor prognosis [1] of HNC. Recently the dis-
covery of the role of lncRNAs in mediating 
metastasis has led to possible future advances for 
treatment of HNC. Multiple lncRNAs have been 
studied specifically for their effects on metastasis 

in HNC including metastasis associated lung ade-
nocarcinoma transcript 1 (MALAT1), HOTAIR, 
and NF-κB interacting lncRNA (NKILA) [33–
36]. It has also been suggested that the lncRNAs 
could function by working in tandem with their 
corresponding mRNAs [1]. To understand how 
lncRNAs aid in the process of metastasis, the 
mechanisms underlying metastasis must first be 
understood. Epithelial mesenchymal transitions 
(EMT) are important for cancer cells to metasta-
size [37–43]. In this process, epithelial cells tran-
sition to resemble the mesenchymal phenotype. 
This allows the cancer cells to migrate, prolifer-
ate, and differentiate into specific tissues and 
organs since mesenchymal cells do not have a 
specialized function [41–48]. By traveling 
through the lymph nodes and bloodstream, these 
cells choose the best environment for prolifera-
tion based on the ability to obtain the best nutri-
tion. MALAT1 has been studied for its role in 
metastasis based on its ability to aid HNC cells to 
undergo EMT and invade other tissues [1, 49]. It 
was seen that when MALAT1 was inhibited, the 
EMT of HNC cells was altered. One possibility 
for this change is thought to be the inactivation of 
β-catenin and NF-κB pathways. These pathways 
are regulators of EMT, so as they are inhibited, a 
chain reaction effect is seen in the modification of 
EMT [1, 33, 36, 49]. In this case, it was also seen 
that two EMT markers, N-cadherin and vimentin, 
in MALAT1 were knocked down in HNC cells [1, 
33, 36, 49]. Several studies have provided evi-
dence that the knockdown of MALAT1 in HNC 
could impair migration of the cancer. HOTAIR is 
another lncRNA that is being studied in its effects 
of cancer metastasis [1, 35, 50, 51]. Studies have 
shown several ways by which HOTAIR influences 
HNC metastasis. Recently it has been indicated 
that HOTAIR functions in EMT by decreasing 
E-cadherin levels. Other studies have shown that a 
knockdown in HOTAIR decreased the invasive-
ness of HNC significantly. Aside from other regu-
lation responsibilities, HOTAIR has also been 
suggested to work in a regulatory loop progress-
ing metastasis in correspondence with the RNA- 
binding protein Hu antigen R (HuR) [52]. HuR is 
an RNA binding protein that works to stabilize 
mRNA to better regulate gene expression. Unlike 
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MALAT1 and HOTAIR, NKILA suppresses 
metastasis. In addition, NKILA is being studied 
for its negative regulation of HNC and its function 
as a poor prognosis indicator [1]. It has been seen 
that the levels of NKILA are lower in HNC then 
in unaffected cells and normal tissue. The knock-
down of NKILA actually resulted in the increased 
metastasis of HNC, confirming the negative cor-
relation. These three lncRNAs are not alone in 
their regulation of metastasis. They are aided by 
multiple other lncRNAs shown in Table 7.2.

7.5  lncRNAs Associated 
with Treatment Resistance 
in HNC

While new therapies are being discovered as pos-
sible targets for HNC patients, there is also the 
concern of maintaining oral function [53]. In 
order to protect the functionality of patients, 
numerous therapies have been used in combina-
tion including chemotherapy and radiotherapy. 
The drugs frequently used in both chemotherapy 
and radiotherapy are known as antineoplastic 
drugs, which act to inhibit or stop the develop-

ment of tumors. Combination therapies can lead 
to what is known as multiple drug resistance 
(MDR) leading to the resistance to non- 
structurally related drugs as well. Factors that 
have been linked to resistance include the ATP- 
binding cassette transporter (ABC) and cancer 
stem cells (CSCs). A gene known as ABCB1, or 
MDR1, produces P-glycoprotein (P-gp) which is 
known to be an ABC transporter associated with 
MDR. P-gp has been known to provide resistance 
in HNC.  In one experiment, cell lines were 
treated with a drug known as doxorubicin. After 
treatment with this drug for 3 months, the cells 
were seen to be resistant. The overexpression of 
P-gp has been suggested to increase resistance 
more than 100 times greater than in normal cells 
[53–56]. While the process causing the expres-
sion of P-gp is unknown, recently it was demon-
strated that P-gp is transferred between cells via 
micro-vesicles. However, this occurrence has yet 
to be seen specifically in HNC. Cancer stem cells 
aid tumors to maintain growth and recur in 
patients through renewing and preserving them-
selves. CSCs are recognized in HNSCC by the 
increased expression of the cell surface adhesion 
receptor, CD44. The ability of the cancer stem 
cells to alter their phenotype shows the relation-
ship to EMT. It is seen that molecules important 
in the process of EMT are associated with poor 
prognosis. It has been theorized that the relation-
ship between EMT and CSCs are a critical cause 
for the resistance to antineoplastic treatments.

7.6  Prognostic Role of lncRNAs 
in HNC

Some lncRNAs have been found to be associated 
with the prognosis of HNC. By analyzing a group 
of HNC patients and creating a model to identify 
specific lncRNAs, it has been suggested that five 
individual lncRNAs can be used to predict prog-
nosis of HNSCC patients postoperatively [54]. 
This model also accounted for the co-expression 
of genes and lncRNAs, to serve as a final confir-
mation of prognosis. A risk score was calculated 
and this showed that as the mortality risk increased 
so did the risk score. Conversely, as the risk score 

Table 7.2 Known lncRNAs involved in HNC metastasis

lncRNA HNC subtypes
HOTAIR NPC, OSCC, LSCC
H19 NPC, LSCC
MALAT1 NPC
ANRIL NPC
ROR NPC
AFAP1-AS1 NPC
LET NPC
LINC0086 NPC
LOC401317 NPC
PTENP1 OSCC
UCA1 OSCC
FOXCUT OSCC
FTH1P3 OSCC
TUG1 OSCC
NEAT1 LSCC
PVT1 LSCC
LOC157273 LSCC

HNC head and neck cancer, NPC nasopharyngeal carci-
noma, OSCC oral squamous cell carcinoma, LSCC laryn-
geal squamous cell carcinoma
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increased the expression of the five lncRNAs 
being studied decreased. The lncRNAs identified 
to be an indicator of prognosis are RP11-
180M15.7, RP11-197N18.2, AC021188.4, RP11-
474D1.3, and RP11-347C18.5. Not only are these 
lncRNAs closely associated with HNSCC but 
they are also involved in many cellular pathways 
associated with cancer proliferation.

Other studies showed similar results with 
more lncRNAs having prognostic value. For 
example, poor survival was seen in patients with 
over-expression of RP11-366H4.1, HOTTIP, 
RP11-865I6.2, and RP11-275N1.1 [55]. These 
lncRNAs differ from those previously mentioned, 
in that their over-expression correlates with a 
poor prognosis. While miRNAs have been stud-
ied in the past, they have not been studied in com-
bination with lncRNAs. A risk score was 
developed for the performance of lncRNA, 
miRNA, and mRNA. Patients with a high risk 
score were also seen to have a worse survival 
than those with a low risk score. Success in pre-
dicting lncRNA, miRNA, and mRNA interac-
tions may reveal much needed new information 
on HNSCC [55].

7.7  Conclusions

HNC is characterized by a poor prognosis due to 
the late-stage diagnosis and the aggressive nature 
of this form of cancer [57]. Improvements have 
been made in medical techniques, although about 
50% of HNC diagnoses are still advanced cases. 
The treatments including surgical procedures, 
chemotherapy, and radiotherapy have all signifi-
cantly improved as well. However, the 5-year 
survival rate of patients with advanced HNC does 
not reflect the most recent advances in detection 
and treatment. Increasing studies have demon-
strated that lncRNAs play key roles in tumori-
genesis and tumor progression, leading to 
abnormal signaling transduction, immune escape, 
and cellular metabolic rewiring. By better under-
standing lncRNAs and applying novel technolo-
gies (e.g., a new generation of gene-editing tools 
and effective tumor-seeking drug delivery sys-
tems) to target cancer-associated lncRNAs, there 

may be more hope for treatment of HNC patients. 
Currently, the research is still in its early stages 
and has large barriers to overcome, although 
great promise has been shown in using lncRNAs 
as both compelling indicators and targets for 
HNC.
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Abstract

Depression is a mental disorder and a major 
public health concern affecting millions of 
people worldwide. It is a common disorder 
that has been associated with several medical 
comorbidities often linked with aging, such as 
dementia, type II diabetes, cardiovascular and 
cerebrovascular diseases, as well as metabolic 

syndrome. There are a variety of medications 
available for depression treatment. Selective 
serotonin reuptake inhibitors (SSRIs) are one of 
the antidepressant drug classes that are most 
widely used to treat depressive disorders and 
depressive symptoms in other diseases. Due to 
many contradictory findings on the adverse 
effects and toxicities of SSRIs (especially 
genotoxicities), we reviewed the genotoxic 
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effects of these drugs. Based on the guidelines 
proposed in the PRISMA statement, we per-
formed a systematic review by searching 
international electronic databases including 
PubMed, Scopus, Embase, and Web of 
Science to find the published documents on 
SSRIs and their genotoxic effects from 
January 1990 to November 2019. After the 
removal of 203 duplicate articles, 385 articles 
were screened and 167 articles met the inclu-
sion criteria and qualified for evaluation of 
their full texts. After this, 26 articles were 
appropriate for final review. This revealed that 
the proportion of genotoxicities was highest 
for citalopram and fluoxetine, with a smaller 
proportion for sertraline. Limited documenta-
tions showed genotoxic and partial genotoxic 
effects for paroxetine and escitalopram, 
respectively. Although a number of studies 
have found genotoxic effects of SSRIs, there 
are also some factors including doses, dura-
tion of exposure, model of experiments, and 
the type of technique assay that may affect the 
results.

Keywords

Antidepressants · SSRIs · DNA damage · 
Genotoxicity

8.1  Introduction

Depression, as a heterogeneous disorder, usually 
appears late in life and often co-occurs with seri-
ous comorbid medical conditions especially 
those seen more typically with advanced age 
such as cardiovascular and cerebrovascular dis-
eases, type II diabetes, stroke, osteoporosis, and 
neurodegenerative diseases [1]. Selective sero-
tonin reuptake inhibitors (SSRIs) are a class of 
antidepressant drugs, introduced in the late 1980s 
and prescribed in the treatment and management 
of different forms of psychiatric disorders [2]. 
The five SSRIs, including citalopram, fluvox-
amine, fluoxetine, paroxetine, and sertraline, are 
currently marketed in many countries around the 

world. SSRIs increase the level of serotonin in the 
brain by inhibiting the uptake of this neurotrans-
mitter into nerve terminals which relieves depres-
sion symptoms [3, 4]. The favorable safety 
profiles of these drugs support their widespread 
and long-term use [5]. Among the several adverse 
effects of SSRIs, genotoxic and carcinogenic 
reactions are among the most severe. Interactions 
between toxic agents and DNA can lead to gene 
mutation, recombination, chromosomal damage, 
or aneuploidy which, if not properly repaired, 
may cause different diseases including cancer, 
malignancies, cardiovascular diseases, and aging 
[6, 7], as well as alterations in heritable traits and 
impaired reproductive capacity [8].

For these reasons, it is vital to carefully evalu-
ate the genotoxic risk of SSRI antidepressants [9, 
10]. Some experimental studies on bacteria, 
molds, and mammalian cells have been con-
ducted to evaluate substance-induced genetic 
damage and their interactions with DNA at low 
concentrations [11]. Due to widespread applica-
tion of SSRIs and their controversial effects on 
genetic material, we designed this review to fur-
ther assess the DNA toxicity of these compounds. 
To our knowledge, this is the first systematic 
review on this topic. Due to extensive consump-
tion of these medications worldwide, the results 
of this review should receive widespread 
interest.

8.2  Methods

This review was conducted based on previous 
published articles on genotoxic effects of SSRIs 
according to the Preferred Reporting Items for 
Systematic Reviews and Meta-analyses 
(PRISMA) guidelines [12].

8.2.1  Literature Search Strategy

Data for this systematic review were obtained 
through a comprehensive literature search of 
publications in the electronic databases consisting 
of PubMed, Scopus, Embase, and Web of 
Science from January 1990 until November 2019. 
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The keywords for our database search included 
“SSRI” and “genotoxicity” or “DNA damage.”

8.2.2  Inclusion and Exclusion 
Criteria

All articles were evaluated by two independent 
investigators. Only studies written in English 
were reviewed. At first, the titles and abstracts 
were screened, and this was followed by full-
text screening. The inclusion criteria were all 
published original articles with the abovemen-
tioned keywords, sufficient information, and 
studies with full-text articles. Additionally, 
studies with poor quality or without consistent, 
non-related articles, review articles, case 
reports, editorials, conference papers, letters to 
the editor, and non- related abstracts were 
excluded (Fig. 8.1).

8.2.3  Data Extraction

For a systematic review of literature, critical 
information including authors’ names, models of 
experiments, technique assays, drug names, and 
outcomes were independently extracted from 
each study.

8.3  Results

8.3.1  Literature Search

The detailed explanation process of study 
selection is illustrated in Fig. 8.1. Initially, the 
searching of the above databases between 1990 
and 2019 retrieved 755 records and 203 dupli-
cate articles were removed. After screening all 
articles, 167 articles met the inclusion criteria 
and qualified for full-text evaluation. 
Subsequently, studies with missing data or 
those with inconsistent inclusion criteria were 
excluded. Finally, 26 of these articles were 
considered appropriate and reviewed in detail. 
A summary of the main characteristics of the 

qualified studies included in this review is 
given in Table 8.1.

8.3.2  Citalopram

In a study performed by Franco and colleagues, 
the possible genotoxic effects of citalopram in 
Aspergillus nidulans were examined. The results 
showed that nontoxic concentrations of citalo-
pram (50, 75 and 100 μmol /L) could induce a 
recombinogenic effect in A. nidulans [13]. In the 
treated group, the homozygotization index (HI) 
rates were higher than 2.0 and significantly dif-
ferent compared to control ones. The authors 
claimed that the recombinogenic potential of 
citalopram may be related to the recombinational 
repair. In mice given 12 or 24 mg/kg of citalo-
pram orally for 7  days, significant DNA strand 
breaking and micronuclei formation were 
observed. Moreover, the fluorescence in situ 
hybridization (FISH) analysis showed aneugenic 
and clastogenic effects on somatic cells [14]. 
Gürbüzel et  al. employed the somatic mutation 
and recombination test (SMART) to observe the 
genotoxicity of citalopram and sertraline in two 
Drosophila melanogaster strains. SMART is a 
sensitive in vivo assay based on the loss of het-
erozygosity, which may happen through different 
mechanisms such as mitotic recombination. 
Although citalopram showed a genotoxic effect 
in Drosophila, sertraline did not show such an 
effect [15]. Attia and Bakheet tested the  genotoxic 
effects of citalopram at multiple doses (6, 12, and 
24  mg/kg/day, the recommended human doses) 
on germ cells of male mice. Their finding of 
increased sperm DNA strand breaks and the 
frequency of aberrant primary spermatocytes at 
the 12 and the 24 mg/kg/day dose suggested that 
citalopram is genotoxic after long-term treatment 
in germ cells of mice [9]. In addition, in 2017 
Ilgin et al. showed a significant increase (44.8%) 
in sperm DNA damage in citalopram- 
administrated rats by using the single-cell gel 
electrophoresis comet assay® [16]. Magni and 
coworkers assessed the genotoxicity of two anti-
depressants frequently found in the aquatic 
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 environment (fluoxetine and citalopram) on 
Dreissena polymorpha using single-cell gel elec-
trophoresis assay, DNA diffusion assay, and 
micronucleus (MN) testing. In this study, poly-
morpha specimens were exposed to fluoxetine 

and citalopram alone and in combination at the 
environmental concentration of 500  ng/L for 
14 days. The obtained results revealed that fluox-
etine, citalopram, and their combination did not 
cause evident damage to this organism [17].

Electronic search through 
PubMed, EMBASE, Scopus, Web of sciences,

Back references & known author search
1990 to 2019

N = 755

552 Studies Screened

Duplicates removed 
(N = 203)

Excluded (N = 114)
-Not repor�ng SSRIs or Genotoxic (N = 64)
- Not related or without full text (N = 50)

167 full text assessed

53 studies reviewed 

26 studies quan�ta�vely

Title and abstract screening (N = 183)
Conference abstracts without available full text
(N = 7)
Review ar�cle (N = 188)
Le�er to editor and else (N = 7)

Fig. 8.1 Diagram showing the study selection protocol

M. Ahmadimanesh et al.



119

Table 8.1 Details of included studies

Drugs names Authors’ names Models Technique assay Outcomes
Citalopram Franco et al. (2010) [49] Aspergillus nidulans Mitotic 

recombination
Genotoxic

Gürbüzel et al. (2012) [50] Drosophila 
melanogaster

Somatic mutation and 
recombination

Genotoxic (somatic 
mutagen)

Magni et al. (2016) [17] Dreissena polymorpha Comet assay Genotoxic
Attia et al. (2013) [14] In vivo Comet assay Genotoxic
Attia et al. (2013) [9] In vivo (germ 

cell-sperm)
Comet assay Genotoxic

Ilgin et al. (2017) [16] Human (sperm) Comet assay Genotoxic
Ahmadimanesh et al. 
(2019) [51]

Human Comet assay Non-genotoxic

Escitalopram Cobanoglu et al. (2018) 
[18]

In vitro SCE/comet assay/
micronucleus

Potentially 
genotoxic

Fluoxetine Jin et al. (2018) [52] E.coli Ames Mutagen
Maranho et al. (2015) [53] Ampelisca brevicornis Alkaline precipitation 

assay
Genotoxic

Magni et al. (2016) [17] Dreissena polymorpha Comet assay Genotoxic
Maranho et al. (2014) [54] Polychaete Hediste 

diversicolor
DNA damage strand Genotoxic

Cortez et al. (2019) [55] Perna perna Comet assay Genotoxic
Ofoegbu et al. (2019) [23] Schmidtea 

mediterranea
Comet assay Genotoxic

Slamon et al. (2001) [19] In vitro Comet assay Genotoxic
Lacaze et al. (2015) [28] In vitro Comet assay Genotoxic
Wieczerzak et al. (2018) 
[56]

In vitro Comet assay Genotoxic

Djordjevic et al. (2011) 
[27]

In vivo DNA fragment assay Genotoxic

Alzahrani et al. (2012) 
[20]

In vivo SCE (bone marrow 
cells)

Genotoxic

Dusman et al. (2014) [21] In vivo/plant Chromosome 
aberration

Non genotoxic or 
mutagen

Elmorsy et al. (2017) [32] In vivo Comet assay Genotoxic
Safarinejad. (2008) [26] Human (sperm) SCSA Genotoxic

Paroxetine Lacaze et al. (2015) [28] In vitro Comet assay Genotoxic
Tanrikut et al. (2010) [25] Human

(sperm)
Tunel assay Genotoxic

Sertraline Davies et al. (1998) [57] In vivo/In vitro Ames Non-genotoxic
Gürbüzel et al. (2012) [50] Drosophila 

melanogaster
Somatic mutation and 
recombination

Non-genotoxic

Elmorsy et al. (2017) [32] In vivo Comet assay Genotoxic
Battal et al. (2013) [58] In vivo Micronucleus/comet 

assay
Non- genotoxic

Atli et al. (2017) [59] Human (sperm) Comet assay Genotoxic
Bozkurt et al. (2004) [60] Human CA/SCE/HFC Genotoxic
Ahmadimanesh et al 
(2019) [51]

Human Comet assay Non- genotoxic
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8.3.3  Escitalopram

Escitalopram, a member of selective serotonin 
reuptake inhibitors, increases significantly the 
SCE at 5 and 10 mg/mL. No statistically significant 
increase was reported by authors regarding DNA 
damage or MN formation [18].

8.3.4  Fluoxetine

Slamon et al. assessed the effects of acute expo-
sure of fluoxetine on DNA damage in C6 glioma 
cells using an alkaline comet assay. They showed 
that the comet tail moment values increased in 
C6 cells with increasing concentrations of anti-
depressant drugs. Exposure to fluoxetine at 1 μM 
or 5 μM for 24 h showed the most DNA damage 
[19]. Alzahrani et  al. assessed the effects of 
fluoxetine on genotoxic damage in somatic and 
germ cells. Sister chromatid exchanges (SCEs) 
and sperm abnormalities in mice were evaluated. 
The results indicated that oral administration of 
fluoxetine at 2.6, 7.8, and 13.0 mg/kg concentra-
tions for 35 days increased the times of SCE and 
enhanced sperm abnormalities. Moreover, a 
dose-dependent reduction in sperm count and 
motility was observed. As a result, fluoxetine 
showed an in vivo genotoxic effect [20]. Using 
two model systems consisting of Allium cepa L. 
root meristem cells and Wistar rat bone marrow 
cells, Düsman et al. studied the cytotoxicity and 
mutagenicity of fluoxetine hydrochloride. They 
showed fluoxetine with or without concomitant 
vitamin A or C treatment was only cytotoxic to 
A. cepa cells. Wistar rats treated intraperitone-
ally or by oral gavage demonstrated no cytotoxic 
or mutagenic potential of the drug [21]. For the 
first time, the genotoxicity of fluoxetine in vary-
ing environmental conditions on the human ade-
nocarcinoma cancer HT29 cell line was 
examined by Wieczerzak and colleagues. They 
found that environmental conditions such as low 
pH led to a synergistic increase in the DNA dam-
age caused by fluoxetine [22]. The genotoxic 
effects of fluoxetine in the planarian Schmidtea 
mediterranea were tested by Ofoegbua et  al., 
with the results confirming that fluoxetine caused 

DNA damage [23]. A recent study used an alka-
line precipitation assay to examine the cytogeno-
toxic effects of fluoxetine in the tropical brown 
mussel P. perna. The authors concluded that 
fluoxetine causes DNA damage in P. perna mus-
sels [24]. In another study, semen parameters of 
74 fertile men diagnosed with depression and 
taking SSRIs were compared with those of 
healthy volunteers. In addition, physical exami-
nations were performed on all participants. 
Lower sperm counts, lower motility, more abnor-
mal sperm morphology, as well as more DNA 
damage were found in men taking SSRIs. 
Another study revealed abnormal DNA frag-
mentation in sperm in a significant proportion of 
human patients caused by paroxetine [25]. 
Safarinejad used a sperm chromatin structure 
technique and observed impairment in all semen 
parameters and enhanced sperm DNA damage in 
patients who were already receiving citalopram, 
escitalopram, fluoxetine, paroxetine, and sertra-
line for more than 6  months [26]. Djordjevic 
et  al. reported augmented apoptotic signaling 
and DNA fragmentation in male rats after treat-
ment with fluoxetine for 21  days. The authors 
investigated the possibility that DNA fragmenta-
tion under fluoxetine treatment may be due to a 
greater decrease in Bcl-2 expression than an 
increase in Bax [27]. In either case, this would 
lead to a shift in the balance toward increased 
apoptosis.

8.3.5  Fluvoxamine

No document is available for the genotoxic effect 
of fluvoxamine.

8.3.6  Paroxetine

Lacaze et al., using the comet assay, studied the 
effects of fluoxetine and paroxetine on blue 
mussel (Mytilus edulis) hemocytes. It was 
found that paroxetine and fluoxetine (at a dose 
of 15 and 10  mg/L, respectively) led to DNA 
damage genotoxicity, immunotoxicity, and 
cytotoxicity [28].
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8.3.7  Sertraline

In 1998 Davies and Kluwe evaluated the toxic 
effects of sertraline in rats, mice, rabbits, and 
dogs using an extensive battery of tests for chro-
mosomal aberrations (CAs), sister chromatid 
exchanges (SCEs), and frequency of SCEs 
(HFC). While genotoxic assays were negative in 
treated rats compared with non-treated controls, 
the number of benign liver tumors was slightly 
enhanced in sertraline-treated male mice. 
Consequently, the results of these studies sup-
ported the use of sertraline in humans with a low 
risk [29]. Bozkurt and colleagues studied the 
genotoxic effect of sertraline and did not detect a 
statistically significant alteration between SCE 
and CA frequency tests and the levels of HFC in 
studied peripheral lymphocytes of sertraline- 
treated (50 mg daily for 10 months to 1 year) and 
non-treated patient groups [30]. Battle et  al. 
assessed the genotoxic potential of sertraline in 
peripheral blood lymphocytes (PBLs) using the 
alkaline comet assay and cytokinesis-block 
micronucleus (CBMN) assay. Male Wistar albino 
rats were exposed to sertraline at different doses 
(10, 40, and 80 mg/kg) under acute and chronic 
conditions. The results showed no significant dif-
ference between the sertraline-treated group and 
the control group. However, acute versus chronic 
administration of sertraline showed more DNA 
damage. Moreover, chronic and high-dose acute 
administration of sertraline to the rats revealed 
increased MN frequency in CBMN assay. 
Consequently, based on the findings using the 
CBMN assay, chronic administration of sertra-
line might affect some mechanisms of cell divi-
sion [31]. Elmorsy and coworkers assessed the 
effects of fluoxetine and sertraline in a concentra-
tion range of 0.1–100 μM on primary endothelial 
cells of the blood-brain barrier in rats. Analysis 
of the data from the comet assays revealed that 
both drugs were genotoxic [32]. In another study, 
Atli and colleagues using the sperm comet assay 
clarified that consumption of sertraline (5, 10, 
and 20 mg/kg/day for 28 days) increased abnor-
mal sperm morphology and DNA damage in 
male rats [33].

8.4  Discussion

Oxidative stress is considered as one of the main 
psychopathological mechanisms of depression 
[34–36]. This form of stress results from changes 
in the oxidant/antioxidant balance, which cause 
telomere instability, cell cycle arrest, and apopto-
sis. It has been documented that DNA or RNA 
damage resulting from oxidative stress is one of 
the earliest events in depression [37–40]. 
However, the results of some studies have led to 
the idea that antidepressants could have antioxi-
dant properties through the suppression of medi-
ators involved in oxidation reactions [41]. Also, 
Czarny et  al. suggested that SSRIs have anti- 
inflammatory properties [42]. In agreement with 
these findings, Battal and coworkers revealed that 
sertraline treatment did not cause DNA damage 
and dose adjustment was important in the preven-
tion of malignancy prognosis [31]. However, 
Lindqvist et  al. suggested that upregulation of 
oxidative stress markers is associated with either 
no response or a poor response to antidepressant 
treatment. Since elevated levels of oxidative 
markers are correlated with increased DNA dam-
age, treatment with SSRIs could possibly be 
associated with DNA damage or genotoxicity 
[43]. These effects are more prominent when 
these drugs are administered in pregnancy or for 
an extended period of time, since they are occa-
sionally prescribed for more than 6 months or the 
therapeutic regimen is frequently repeated [44, 
45]. Cardiovascular and sexual dysfunction, 
hyponatremia, mammary cancer and pheochro-
mocytoma, as well as DNA damage are possible 
side effects of these drugs [46]. The present sur-
vey has been performed to evaluate the genotoxic 
potential of SSRI drugs. In the current review, we 
have provided comprehensive data to demon-
strate a clearer outline of genotoxic-carcinogenic 
side effects of SSRIs. The list of experimental 
analyses on genotoxicity of SSRIs that were eval-
uated in this research are the bacterial mutation, 
alkaline comet, the SCE, HFC, CA, sperm chro-
matin structure, SMART, sperm DNA integrity, 
Comet-FISH studies, MN, CBMN, single-cell 
gel electrophoresis, and sperm DNA 8-hydroxy- 
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20-deoxyguanosine (8-OHdG) assays. Among 
those assays described in the following section, 
the most commonly used method for evaluation 
of genotoxicity of SSRIs is the comet assay.

The main mechanism involved in the genotox-
icity induced by SSRI may be linked to instabil-
ity in the oxidant/antioxidant balance. Increased 
reactive oxygen species (ROS) production and 
oxidative metabolism of lipids, decreasing anti-
oxidant enzyme levels, and generation of antide-
pressant radicals are the most likely responsible 
factors in the genotoxic properties of SSRIs [16, 
28, 47, 48]. According to the literature, the pro-
portion of genotoxicity induced by citalopram 
and fluoxetine was 85.7% and 92.86%, respec-
tively, while the proportion for sertraline was 
42.8%. There have been only a small number of 
studies on paroxetine and escitalopram that 
revealed the genotoxic and semi-genotoxic 
effects of these drugs, respectively. Hence, more 
comprehensive studies on these medications are 
still needed. Since these studies are rarely per-
formed on human subjects, an accurate genotoxic 
effect of these drugs is unclear. Additionally, the 
data available on sertraline-induced DNA dam-
age is also controversial.

8.5  Conclusions

To the best of our knowledge, the current study is 
the first systematic review to examine the geno-
toxic effect of SSRI antidepressants. This study is 
of valuable interest since SSRI antidepressants 
are widely consumed. Due to limited data on 
human subjects or clinical trials and no available 
data on some SSRIs, the precise genotoxic effects 
of these medications are still equivocal. Although 
many studies investigated the genotoxic effects 
of SSRIs (fluoxetine and citalopram especially), 
many factors including doses, duration of expo-
sure, model of experiments, and the type of tech-
nique assay might have affected the results.
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Abstract

Circulating tumor cells (CTCs) are malignant 
cells separate from primary tumors, which can 
migrate through the peripheral blood, colonize 
other tissues, and lead to the formation of 
metastases. The first description of CTCs 
dates back to 1869 when Thomas Ashworth 
recognized malignant cells similar to the ones 
of the primary tumor in the blood vessels of an 
autopsied patient with metastatic cancer. 
Currently, CTCs have been identified in vari-
ous types of cancer and have been recognized 
for their clinical value in the prediction of 
prognosis, diagnosis of minimal residual dis-
eases, assessment of tumor sensitivity to anti-
cancer drugs, and personalization of therapies. 

However, research about these topics has sev-
eral limitations, principally the rarity of CTCs 
in bloodstream and their heterogeneous char-
acteristics, which makes detection and isola-
tion difficult. As a result of these limitations, 
current studies are focused on improvement of 
isolation and characterization techniques to 
achieve better sensitivity in clinical applica-
tions. This review covers the methods of CTC 
isolation and detection and current research 
progression on CTC in different cancer types. 
The clinical applications, limitations, and per-
spectives of CTCs are also discussed.
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9.1  Introduction

Mechanisms of cancer progression and spreading 
have been a focus of surgeons and researchers for 
more than 100 years. These investigations have 
formed the basis that made possible the recent 
insights gained in these processes. Circulating 
tumor cells (CTCs) are malignant cells that dis-
seminate from the primary tumor, circulate in the 
peripheral blood, and have the potential of colo-
nizing other tissues, eventually leading to metas-
tasis. Metastasis is the principal cause of 
cancer-related death, and it is accepted that it 
occurs when the microenvironment shows appro-
priate conditions for implantation and growth of 
CTCs in secondary sites, forming tumors in dis-
tant organs [1].

CTCs have been isolated from patients with 
various types of cancer and are recognized to be 
useful in increasing our understanding of tumor 
progression and metastasis, besides prognosis, 
monitoring of recurrences, therapeutic responses, 
and drug resistance mechanisms. Although clini-
cal applications are limited by poor detection of 
CTCs using current isolation processes, fre-
quently caused by the heterogeneous immuno-
phenotypic features of CTCs, promising steps are 
being taken in the use of CTCs for personalized 
anticancer therapies [2].

9.2  Historical Background

The first morphological description of CTCs 
dates back to 1869 when the Australian physician 
Thomas Ashworth recognized malignant cells 
similar to the ones of the primary tumor in the 
blood vessels of an autopsied patient with meta-
static cancer [3]. Later, the American surgeon 
William Halsted extended this theory to the lym-
phatic system and incorporated it into his prac-
tice by performing resections of axillary lymph 
nodes in breast cancer surgeries [4].

In 1889, the British surgeon Stephen Paget 
proposed the “seed and soil” theory of metastasis 
in which he compared selected tumoral cells with 
a seed that dislocates via the bloodstream and 
reaches specific distant organs that form the soils 

for sowing [5]. Paget examined more than 900 
autopsy records of patients with several types of 
cancer. He observed discrepancies between the 
relative blood supply and the frequency of metas-
tases in certain organs, and he also found that vis-
ceral and bone metastasis did not occur randomly, 
but followed distinct patterns. This discarded the 
belief of that time that metastasis was an outcome 
of fortuity, and he concluded that certain tumor 
cells (the “seeds”) have specific affinity for the 
environment of certain organs (the “soil”), and 
metastases arise only when the seed and soil are 
compatible. Paget’s observations still hold true 
today.

During the twentieth century, James Ewing 
suggested that mechanical factors prompted met-
astatic dissemination as a result of the anatomical 
disposition of the vascular system [6]. 
Subsequently, Weiss observed some differences 
between regional metastasis and organ distant 
metastases, as the clinical data were reviewed on 
site prevalence of metastases of diverse human 
malignancies [7]. The regional involvement 
could be related to anatomical or mechanical fac-
tors, such as the efferent venous circulation or 
lymphatic drainage to regional lymph nodes. In 
contrast, metastases to distant organs of several 
types of cancers were more site specific [8].

In 1980, Ian Hart and Isaiah Fidler supported 
the “seed and soil” hypothesis to explain the non-
random pattern of cancer metastasis, when they 
documented the selective nature of metastasis in 
an assay of experimental metastasis of B16 mela-
noma in syngeneic mice [9]. The results showed 
that despite some occurrence of mechanical 
arrest of tumor cells in the capillary niche of dis-
tant organs, subsequent proliferation and growth 
into metastatic lesions were defined by specific 
organ cells (Fig. 9.1).

9.3  Detection Methods

The first methods for detection of CTCs in 
peripheral blood of patients with cancer were 
reported in the twentieth century, using filtration 
and sedimentation techniques. Using a filtration 
approach, Salgado et al. showed that tumor cells 
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were commonly present in peripheral blood and 
in blood drained from tumor sites at surgery [10]. 
The protocol consisted of collecting blood sam-
ples in a syringe containing heparin followed by 
centrifugation. After this, the cells were incu-
bated with a hemolyzing agent (streptolysin O) to 
destroy red blood cells and some white blood 
cells and then filtered through a Millipore filter. 
Finally, the cells were fixed and stained by the 
Papanicolaou technique. On the other hand, 
Alexander and Spriggs used a method to concen-
trate white cells by sedimentation followed by 
searching for the tumor cells [11]. In this tech-
nique, patient blood was mixed with a solution of 
dextran and heparin to sediment the erythrocytes 
and the fluid centrifuged for 10  min and then 
spread on slides to allow May-Grunwald-Giemsa 
staining. After this, the slides were examined 
under the microscope to detect unusual cells.

Today, almost a century later since the report 
of CTCs by Ashworth [3], numerous specific and 
sensitive technologies have emerged to detect 
CTCs in the bloodstream. However, the current 
methods used are an improvement over the first 
methods described. Detection techniques can be 
classified into two main groups according to the 
CTC properties based on biological or physical 
properties (Fig. 9.2).

9.3.1  Biological Properties

9.3.1.1  Density Gradient 
Centrifugation

The low density of CTCs (<1.077 g/mL) allows 
them to be distinguished from erythrocytes, leu-
kocytes, and platelets. Centrifugation of blood 
samples allows separation in the pellet with nor-
mal blood cells and CTCs gathering at the inter-
phase on differential step density gradients. 
Additional analyses can be performed in these 
CTCs by integrated cell culture (ICC) and poly-
merase chain reaction (PCR) [12].

9.3.1.2  Filtration
In 2000, Vona et al. [13] presented a new tech-
nique called “isolation by size of epithelial tumor 
cells (ISET)” in order to detect and count CTCs 
in peripheral blood samples of patients with car-
cinomas. In addition, this technique allows the 
immunocytological and molecular characteriza-
tion of the cellular population. The method con-
sists of diluting peripheral blood with a mixture 
of substances (saponin, paraformaldehyde, ethyl-
enediamine tetraacetic acid (EDTA), and bovine 
serum albumin) to be subsequently filtered by 
gentle aspiration under vacuum, using a module 
of filtration and a calibrated polycarbonate mem-

Fig. 9.1 Timeline of the historical discovery of CTCs
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brane with 8-μm-diameter cylindrical pores. 
Soon after, the isolated cells can be stained with 
hematoxylin and eosin (H&E) or May-Grunwald- 
Giemsa and studied by immunostaining, laser 
microdissection, and/or fluorescence in situ 
hybridization (FISH).

9.3.2  Physical Properties

The first immunomagnetic separation of CTCs 
was developed by Racila et al. [14]. At present, it 
is the most used technique due to its effectiveness 
for both detection and isolation. Also, it is the 
only method approved by the Food and Drug 
Administration (FDA) for this purpose. The 
assay combines immunomagnetic enrichment 
with flow cytometry and immunohistochemistry, 
using magnetic beads labeled with antibodies 
against specific target cell antigens, which can be 
used to identify the cells via a magnetic field. For 
the immunomagnetic separation phase, two 
approaches are available, although both selection 
procedures can be combined [15].

9.3.2.1  Negative Selection
This approach involves depletion of leukocytes 
using anti-CD45-labeled magnetic beads, with 
the CTCs being the non-selected cells.

9.3.2.2  Positive Selection
In this approach, the isolation of CTCs is achieved 
using magnetic beads labeled with antibodies 
against CTC surface proteins such as epithelial 
cell adhesion molecule (EpCAM), epithelial spe-
cific antigen (HEA), and anti-cytokeratin 
peptides.

In order to obtain more accurate results, modi-
fications to this technique have been described by 
several authors; an example is the microchip 
technology developed by Nagrath et  al. in the 
USA [16]. This method has the advantages of 
high-throughput processing, low shear, and effi-
cient isolation with no requirement of pre- 
labeling or processing of the samples [17]. This 
technology consists of the interaction of target 
CTCs with antibody (EpCAM)-coated micro-
posts under precisely controlled laminar flow 
conditions [16]. Additionally, Deng et al. showed 

Fig. 9.2 Summary of detection methods of CTCs
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that the use of anti-cytokeratin antibodies in com-
bination with the anti-EpCAM antibodies 
enhances assay sensitivity significantly [18].

9.4  Research of Circulating 
Tumor Cells in Several Types 
of Cancers

Research in cancer is focused in the development 
of therapeutic targets and early identification of 
metastases to reduce mortality rates [19] In this 
case, the identification of CTCs was a big scien-
tific breakthrough that has been studied in several 
types of cancer [2]. The principal studies per-
formed are summarized in Table 9.1.

9.4.1  Breast Cancer

The first clinical study using the CellSearch 
System to identify and determine the prognostic 
significance of CTCs was performed in women 
with metastatic breast cancer (MBC). Patients 
(n = 117) were separated in two groups according 

to the number of CTCs before the 
 chemotherapeutic treatment: (1) fewer than 5 
CTCs/7.5 mL of whole blood and (2) higher than 
5 CTCs/7.5  mL of whole blood. The results 
showed that the number of CTCs in patients with 
MBC is an independent survival predictor, due to 
subjects with higher counts of CTCs having 
shorter progression- free survival and overall sur-
vival rates than the patients with fewer CTCs 
[20].

9.4.2  Colorectal Cancer

Colorectal malignant neoplasms are the second 
cause of cancer-related deaths. Development of 
chemotherapeutic agents for specific targets has 
been investigated with the identification of CTCs 
[21]. Cohen et al. used EpCAM isolated magneti-
cally to characterize CTCs from patients with 
metastatic colorectal cancer and later analyzed 
their prognostic significance [22]. The authors 
classified the patients into two groups based on 
CTC levels (≤3 CTCs /7.5 mL of blood and >3 
CTCs/7.5 mL of blood) and showed that patients 

Table 9.1 Principal studies of CTCs in several types of cancer

Reference Type of cancer
Method of CTC 
detection

n
Groupsa Main conclusion

[22] Metastatic, 
colorectal

CellSearch 
system

n = 109
≤3 CTCs 
/7.5 mL
>3 
CTCs/7.5 mL

Patients with less CTCs had shorter free and 
overall survival

[23] Resectable lung 
cancer

ISET method n = 208 The number of CTCs was an independent 
prognostic factor for overall survival

[24] Metastatic, prostate CellSearch 
system

n = 231
>5 
CTC/7.5 mL
<5 
CTC/7.5 mL

CTC count was the best predictor of 
prognosis; patients with more CTCs had 
shorter overall survival rates

[25] Melanoma n = 87 CTCs were identified in 29% of patients with 
primary melanoma and 62.5% with 
metastatic melanoma patients

[26] Metastatic sarcoma ISET method n = 11 All patients showed CTCs
[27] Locally advanced 

head and neck 
cancer

ISET method n = 83
<6.5 CTC/mL
≥6.5 CTC/
mL

CTCs were identified in 94% of patients and 
higher counts were strongly correlated with 
survival and response to treatment

CTCs circulating tumor cells, ISET isolation by size of epithelial tumor cells
aSome studies have categorized patients into high and low CTC count
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with more than 3 CTCs had shorter median 
progression- free survival and overall survival, 
than those patients with lower CTC counts.

9.4.3  Lung Cancer

In 2011, the American Association for Cancer 
Research published a study that identified CTCs 
in approximately half of patients with resectable 
lung cancer (n = 208). This used the ISET method 
associated with cytologic analyses and correlated 
the presence and number of CTCs with clinico-
pathological features and survival. Patients show-
ing 50 or more CTCs in blood had worse overall 
and disease-free-survival (DSF), independently 
of clinical stage, and presented higher risk of 
recurrence and cancer-related death. The number 
of CTCs was a significant and independent prog-
nostic factor of overall survival, and it was pro-
posed as a new prognostic biomarker [23].

9.4.4  Prostate Cancer

The relationship between CTCs and survival in 
patients affected by prostate cancer was studied 
initially by De Bono et al. in 2008 [24]. The pro-
spective research employed the CellSearch 
System to detect and count CTCs in blood sam-
ples of subjects with progressive disease in dif-
ferent stages: (1) before treatment, (2) at the start 
of a new line of chemotherapy, and (3) monthly 
thereafter. The assay patients were categorized 
into either unfavorable or favorable groups 
according to the number of CTCs: >5 
CTCs/7.5 mL or <5 CTCs/7.5 mL, respectively. 
The analysis showed that the CTC count was an 
accurate predictor of prognosis, given that 
patients with unfavorable counts before and after 
treatment had shorter overall survival rates than 
those with favorable counts.

9.4.5  Melanoma

In 2010, the first study of CTC identification was 
published concerning 87 patients with cutaneous 

melanoma by ISET method, followed by CTC 
characterization by immunohistochemistry 
(S-100, melanosome (HMB45), MART-1/
Melan-A) and reverse transcription polymerase 
chain reaction (RT-PCR). The methodology 
included a control group of healthy volunteers 
with melanocytic nevi and non-melanoma skin 
lesions. CTCs were identified in 29% of patients 
with primary melanoma and in 62.5% of meta-
static melanoma patients, while in the control 
group CTCs were not detected [25].

9.4.6  Sarcomas

Recently Chinen et  al. performed for the first 
time the isolation, identification, and character-
ization of CTCs in sarcoma patients [26]. The 
study included blood samples from 11 patients 
with high-grade and metastatic sarcoma isolated 
by ISET. CTCs were identified in all of the cases 
by cytomorphology and characterized by double 
immunostaining with vimentin or pan- cytokeratin 
and CD45 antibodies. The number of CTCs iden-
tified varied from 2 to 48/8 mL of blood, with the 
highest number of cells found in the case of an 
epithelioid sarcoma and the lowest in an osteo-
blastic osteosarcoma. The ISET technique was 
limited to study epithelial malignancies, and thus 
this research showed the sensitivity of this 
method applied to sarcomas, a group of neo-
plasms with frequent metastasis and poor 
prognosis.

9.4.7  Head and Neck Cancer

A prospective study evaluating 83 patients 
affected by head and neck cancer demonstrated 
the prognostic role of CTCs in this malignancy 
through the ISET method. The study evaluated 
blood samples of patients diagnosed with non- 
metastatic locally advanced head and neck squa-
mous cell carcinoma, treated with curative 
surgical resection plus adjuvant radiotherapy, or 
by a non-surgical strategy (radiotherapy and/or 
chemotherapy). Patients were sorted according to 
the count of CTCs at baseline (<6.5/mL versus 
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≥6.5/mL). CTCs were detected in 94% of the 
patients (n = 78) and significantly correlated with 
prognosis and response to treatment. The 2-year 
overall survival was 85.6% versus 22.9% (HR, 
0.18; 95%CI, 0.06–0.49; P < 0.0001), revealing 
the prognostic potential of CTCs in head and 
neck cancer [27].

9.5  Clinical Applications 
and Limitations

Cancer-related death is usually provoked by dis-
semination, resulting in regional and distant 
metastases that could develop years after the 
removal of the primary tumor, despite the fact 
that tumor spread may not be evident at the time 
of the primary diagnosis. For example, many 
patients affected by breast cancer with negative 
axillary lymph nodes develop local or distant 
metastases. This could be explained by the pres-
ence of CTCs, which would represent the hema-
togenous phase of metastasis [28, 29].

Imaging has been the gold standard for dis-
ease monitoring in cancer. Combined with these 
traditional methods, CTC quantification must 
represent an alternative approach that could 
reveal micrometastases earlier than is currently 
possible, thereby improving the monitoring of 
disease status [30]. In this regard, Bud et al. com-
pared CTC quantification to traditional radio-
logic assessment and suggested that CTC 
calculation is a reproducible tool that could be 
used earlier in the course of disease compared to 
imaging evaluation [31]. It has been proposed 
that CTCs play a crucial role for developing 
metastases. For this reason, monitoring CTCs 
may provide valuable information for treatment 
and, in the future, could be used as a real-time 
“liquid biopsy” [32, 33].

Until now, most of the studies of CTCs and 
prognosis using the CellSearch System (https://
www.cellsearchctc.com/) for quantification have 
applied a cutoff value ≥5 CTCs/7.5 mL for cate-
gorization, as proposed by Cristofanilli et  al. 
[20]. Prognostic correlations have been observed 
such that those few patients with very high levels 
of CTCs had a markedly short survival time. In 

one-third of MBC patients, CTCs were not 
detected, which constitutes a positive prognostic 
factor relative to patients with ≥1 CTCs/7.5 mL 
at baseline and during treatment [34]. In MBC, 
the prognostic properties of CTCs were shown to 
be robust during therapy by Hayes and colleagues 
[35].

Further than quantification, the evaluation of 
CTCs represents an accessible source of molecu-
lar information about the tumor, through the pres-
ence of treatment-relevant biomarkers (e.g., 
multidrug resistance proteins) [36].

Despite promising findings of several studies, 
CTC assessment still has not provided informa-
tion on specific staging of disease, or in the guid-
ing of adjuvant treatment. Pesta et  al. proposed 
that analysis of the CTCs should provide infor-
mation useful for the management of cancer 
patients, fulfilling the objectives of predictive, 
preventive, and personalized medicine (PPPM) 
[30]. However, the diagnostic value of CTC anal-
ysis is still not sufficient for clinical use. A three- 
step method to study CTCs was proposed to 
achieve specific uses for clinical practice. The 
first step is monitoring of treatment efficacy of 
cancer patients. The second one is to characterize 
the captured CTCs at the molecular level for the 
targeted treatment. The third stage is the culture 
of CTCs for use in a chemosensitivity assay. 
These steps would allow researchers to recognize 
and respond to changes in the phenotype of can-
cer cells during disease progression and intro-
duce PPPM assisted by CTC analysis, into 
clinical practice.

While the clinical relevance of sequential 
CTC counts during treatment for use as an early 
response evaluation marker has been clearly 
demonstrated, the value of CTC characterization 
to guide treatment decisions in the clinic remains 
to be investigated [33].

There are three main limitations for CTC iso-
lation. The first, and probably the most signifi-
cant, is the rarity of CTCs in the bloodstream, 
since approximately ~1–100 CTCs per 109 blood 
cells are detected in cancer patients, and a signifi-
cant quantity of normal hematological cells, such 
as erythrocytes and leukocytes, have to be elimi-
nated to obtain pure CTCs. Secondly, there is an 
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apparent absence of CTCs in some patients. 
Finally, there are morphological and genetic het-
erogeneities of CTCs, even when they are dis-
seminated from the same primary tumor. This 
latter property may make the isolation of CTCs 
difficult and the utility could be limited as the 
testing of drug response using such cells may dif-
fer from that of the primary tumor [2, 37–39].

It has been proposed that these limitations 
may be linked [40]. Studies have found that the 
lack or small number of CTCs in peripheral blood 
may actually be an issue of detection. It is known 
that most of the time, tumor cells require 
epithelial- to-mesenchymal transition (EMT) for 
major invasion and subsequent dissemination. 
When EMT occurs, CTCs suffer phenotypic 
changes, such as loss of expression of epithelial 
markers, and they acquire more mesenchymal- 
like phenotypes, which enables them to invade 
and survive in blood vessels and to invade other 
organs [41, 42].

Considering that CTCs are rare in peripheral 
blood and that CTCs with EMT may lose expres-
sion of EpCAM, this would result in the missing 
of EpCAM-negative CTCs in detection proce-
dures based on use of the EpCAM antibody. In 
some cases, this could mean missing all of the 
CTCs in patients. This is an important limitation 
of the more extended and accepted technologies 
of CTC detection that are based in the presence 
of EpCAM in tumoral cells [2, 43, 44].

Following this hypothesis of EpCAM expres-
sion heterogeneity in CTCs, Hyun et  al. [45] 
developed a model of EMT-induced MCF-7 
breast cancer cells in order to study the physical 
and molecular characters of these cells. They 
showed that EMT-induced breast cancer cells 
have low levels of EpCAM expression. By 
RT-PCR and Western blotting, they observed that 
EpCAM mRNA was substantially reduced in 
MCF-7 cells, which indicates that EMT induc-
tion may result in decreased EpCAM expression 
levels. Also, they used a novel EpCAM- 
independent isolation system that demonstrated 
efficient isolation of CTCs regardless of hetero-
geneous EpCAM expression in breast cancer 
patient blood samples. This approach is called 
parallel multi-orifice flow fractionation 

(p-MOFF), which is a chip for high-throughput 
size-based CTC separation and was developed by 
the same research group in 2013 [46].

Hamilton et al. studied cell lines of primary, 
metastatic, and CTCs of small cell lung carci-
noma (SCLC) and treated these in  vitro with 
topotecan and epirubicin [37]. This showed that 
the CTC cell lines presented considerably more 
chemosensitivity than permanent SCLC cell 
lines, which suggests that response to second-line 
chemotherapy in SCLC patients may overesti-
mate the effect on resident SCLC lesions and 
metastases. Chemosensitivity of CTCs compared 
to primary and metastatic tumors has been 
recently studied since, in some malignancies like 
SCLC, a decline in the CTC count during or after 
treatment could not reflect the response to che-
motherapy of the permanent cells (from primary 
and metastatic tumors). Consequently, the detec-
tion of CTCs may facilitate a paradigm shift from 
treatment, based only on primary tumor features 
to a treatment that considers the molecular char-
acteristics of CTCs [2]. Development of new 
technologies that overcome limitations of the 
more traditional techniques of CTC isolation will 
increase the understanding of CTC biology and 
association with prognosis and treatments, which 
is crucial in developing clinical applications. The 
principal clinical applications of circulating 
tumor cells are summarized in Table 9.2.

9.6  Conclusion

Evidence shows that CTCs have an important 
clinical value in early diagnosis of metastasis, as 
a predictor of prognosis, for monitoring of treat-
ment and development of targeted treatment 
approaches. However, there are several chal-
lenges ahead, principally the rarity of CTCs in 

Table 9.2 Main clinical applications of detection and 
study of CTCs

• Monitoring disease status
• Detection of micrometastases
• Prognosis factor
• Pharmacological studies (e.g., drug resistance)
• Planning of personalized treatments

M. M. Galvis et al.



133

bloodstream, their heterogeneous characteristics, 
and cell loss during isolation techniques. These 
factors make difficult the validation of a specific 
application of CTCs to improve survival rates in 
patients. Additional studies are needed to clarify 
the knowledge and to achieve better isolation 
techniques to pave the way for successful clinical 
applications in cancer patients.
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Telomerase: A Target 
for Therapeutic Effects 
of Curcumin in Cancer
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Tannaz Jamialahmadi, and Amirhossein Sahebkar

Abstract

Telomerases are attractive targets for develop-
ment of new anticancer agents. Most tumors 
express the enzyme telomerase that maintains 
telomere length and thus ensures indefinite 
cell proliferation, a hallmark of cancer. 
Curcumin has been shown to be effective 
against several types of malignancies and has 

also been shown to have inhibitory effects on 
telomerase activity. Hence, the aim of this 
chapter is to review the available investiga-
tions of curcumin on telomerase activity. 
Based on the findings obtained from the dif-
ferent studies here, we conclude that the 
telomerase inhibitory effects of curcumin are 
integral to its anticancer activity, and thus cur-
cumin may be useful therapeutically in the 
cancer field.

Keywords
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10.1  Introduction

Proliferative capacity is one of the distinguishing 
differences between tumor and normal cells. 
Normal cells exhibit a limited lifespan and show 
replicative senescence, while immortality is a 
common characteristic of tumor cells [1]. 
Reactivation and upregulation of telomerase has 
been observed in almost 90% of the cancers, and 
this enzyme is responsible for tumor cell immor-
talization. Telomeres are the nucleoprotein com-
plexes that are found at the ends of eukaryotic 
chromosomes. These structures protect the ends 
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of chromosomes from exonucleolytic degrada-
tion and end-to-end fusions, thereby contributing 
to genomic stability [2]. The human telomerase 
enzyme is a DNA polymerase consisting of two 
subunits known as telomerase reverse transcrip-
tase (hTERT, the catalytic subunit encoded by the 
TERT gene, located on chromosome 5p15.33) 
and telomerase RNA component (hTERC or 
hTR, encoded by the TERC gene positioned on 
chromosomal region 3q26) [2, 3]. This ribonu-
cleoprotein complex is responsible for progres-
sive synthesis of the telomeric DNA repeats. In 
addition, proteins like pontin, reptin, ribonucleo-
protein complex subunit 1 (Gar1), H/ACA ribo-
nucleoprotein complex subunit 2 (Nhp2), and 
telomerase Cajal body protein 1 are also associ-
ated with the telomerase core complex and neces-
sary for proper telomerase assembly and 
recruitment to chromosomes [2].

Throughout history, plants and their constitu-
ents have been used in health management [4, 5]. 
Several studies in animal models, as well as clini-
cal trials in humans, have reported pharmacologi-
cal effects of medicinal plants, including 
antibacterial, antifungal, anticancer, antiviral, 
analgesia, and anti-inflammatory activities [6–9]. 
Over the past three decades, public interest in 
natural therapies has surged [10–13]. Notably, 
the high cost and side effects of many modern 
pharmaceuticals have encouraged the use of 
more affordable traditional medicines with 
potentially fewer side effects [8, 10, 14]. 
Telomerase inhibitors can be subdivided into 
those compounds that directly block the enzy-
matic activity of telomerase and those that down-
regulate the expression of the hTERT catalytic 
subunit [15].

Curcumin is a low-molecular-weight, lipo-
philic, bright yellow polyphenol, extracted from 
the rhizomes of Curcuma longa (turmeric), a 
member of the Zingiberaceae family. This plant 
is a perennial rhizomatous herb that is native to 
tropical Southern Asia but is now widely culti-
vated in both tropical and subtropical regions 
throughout the world [16]. Curcuma longa has 
been shown to possess a variety of pharmacologi-
cal activities in both traditional and modern med-
icine. Curcumin is extensively used in Asian 

kitchens as well as for medicinal purposes. Vogel 
and Pelletier discovered curcumin in 1815 [17–
20]. In 1910, Milobedzka and colleagues identi-
fied the chemical structure of curcumin as 
diferuloylmethane or 1,6-heptadiene-3,5-dione- 
1,7-bis (4-hydroxy-3-methoxyphenyl)-(1E,6E) 
(Fig. 10.1) [20, 21].

Curcumin possesses a wide array of pharma-
cological effects, with known anti-oxidant, anti- 
inflammatory, antimicrobial, immunoregulatory, 
epigenetic-modifying, anti-tumor, antiangiogenic 
and antimetastatic, chemo-sensitizing, analgesic, 
hepatoprotective, and anti-thrombotic properties 
[22–29]. Many of the pharmacological activities 
and experimental findings on the therapeutic 
effects of curcumin and curcuminoids have also 
been confirmed in clinical trials, although the 
need for further well-designed clinical studies 
has also been emphasized [30, 31].

In this review, we discuss the available studies 
relating to the telomerase inhibitory effects of 
curcumin. The efficacy of curcumin in targeting 
telomerase in different cancerous cells is also 
summarized in Table 10.1.

10.2  In Vitro Studies 
on Telomerase Inhibition

Several studies have documented the anticancer 
activity of curcumin in vitro. The capacity of cur-
cumin on the regulation of telomerase activity 
and induction of apoptosis was investigated in the 
human leukemia cell line K-562. Induction of 
apoptosis by curcumin is initiated by the release 
of cytochrome c from mitochondria into the cyto-
sol and is evidenced by an increase in DNA con-
tent in the sub-G1 region. Apoptosis was mediated 
by the activation of caspases 3 and 8, Bcl-2 
downregulation, and Bax upregulation. Curcumin 
suppressed telomerase activity in a dose- and 
time-dependent manner, the inhibition being due 
to suppression of translocation of hTERT from 
the cytosol to the nucleus. Interestingly, the inhi-
bition of telomerase activity by curcumin showed 
a positive correlation with several parameters of 
apoptosis [32]. In corroboration with these 
results, Hsin et  al. found that reactive oxygen 
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species (ROS) contribute to the curcumin- 
mediated telomerase activity inhibition and that 
Sp1 reduction contributes to hTERT downregula-
tion by curcumin-induced ROS [33].

In a study conducted to investigate the potential 
of curcumin as an anticancer agent in different cell 
lines, the effects of curcumin were studied on cell 
growth and telomerase activity in three human 
cancer cell lines, Bel7402, HL60, and SGC7901. 
At concentrations of 1–32 μM, curcumin exhibited 
concentration-dependent antiproliferative effects 
on these cell lines in vitro. Anti-tumor effects were 
observed when curcumin (50–200  mg/kg) was 
orally administered to nude mice transplanted with 
the cancer cells. Exposure to 1 μM concentrations 
of curcumin led to apoptosis of cells as detected by 
acridine orange/ethidium bromide staining as well 
as flow cytometric analysis. Quantification of the 
polymerase chain reaction (PCR) products showed 
that suppression of telomerase activity in extracts 
of the cells treated with 1 μM of curcumin occurred 
in a time-dependent manner [34]. Ramachandran 
et  al. also reported an inhibition of telomerase 
activity in MCF-7 breast cancer cells, due to 
downregulation of hTERT and mRNA expression 
of the viral oncogene c-myc [35]. Telomerase 
activity in MCF-7 cells was 6.9-fold higher than of 
the levels in human mammary epithelial cells, and 

a concentration-dependent decrease in telomerase 
activity following treatment with curcumin was 
observed. The authors suggested that the inhibi-
tion of telomerase activity in MCF-7 cells may 
have been due to downregulation of hTERT 
expression. Increasing concentrations of curcumin 
caused a steady reduction in the level of hTERT 
mRNA in MCF-7 cells, whereas there was no 
effect on hTERT and c-myc mRNA levels [35].

Khaw and Hande investigated the antiprolif-
erative activity, DNA damage induction, and 
telomere-telomerase regulation in human glio-
blastoma and medulloblastoma cell lines follow-
ing administration of curcumin. Curcumin 
treatment decreased cell viability in a dose- 
dependent manner in both brain tumor cell lines. 
The telomerase-positive cell lines showed higher 
sensitivity to curcumin in comparison to normal 
human fibroblasts. Curcumin LC50 concentra-
tions were higher for normal cells (90  μM) in 
comparison to the telomerase-positive cancer cell 
lines (30–50 μM), and normal human fibroblasts 
exhibited greater DNA damage in comparison to 
the cancer cell lines. In addition, telomerase- 
positive cell lines displayed significant inhibition 
of telomerase activity following treatment with 
curcumin. A long period of treatment with cur-
cumin also resulted in significant telomere short-

Fig. 10.1 Inhibitory 
effect of curcumin on 
telomerase
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ening in cancer cell lines. Finally, curcumin 
reduced the upregulated signaling pathways in 
cancer cell lines [36].

A study by Khaw et al. showed that curcumin 
induced a significant increase in cell death and 
DNA damage in brain tumor cells. Curcumin 
treatment also resulted in significant telomere 

shortening in brain tumor cells which was consis-
tent with a decrease in hTERT levels [37].

As telomerase is essential for the continued 
proliferation of primary and transformed cells, 
the activation of telomerase could be a definitive 
step in human carcinogenesis [38]. Crucially, the 
interaction of the molecular chaperone complex 

Table 10.1 The efficacy of curcumin in cancerous cells targeting telomerase

Curcumin type and dosage Cancer cell type Main findings References
Curcumin-loaded 
NIPAAm-MAA 
nanoparticles 
(10–70 μmol/L)

Calu-6 lung cancer cell line  –  Downregulation of telomerase 
gene expression

 – Inhibition of cell growth
 –  Increment in the mRNA levels 

of pinX1 gene

[46]

Nanocapsulated curcumin 
(0–150 μM)

SW480 colorectal cancer cell line  –  Reduction of hTERT gene 
expression

[48]

Curcumin (0–100 μM) Human leukemia cell line K-562  –  Suppression of telomerase 
activity

 – Induction of apoptosis

[32]

Curcumin (1-32 μM) Human cancer cell lines Bel7402, 
HL60, and SGC7901

 –  Suppression of telomerase 
activity

 – Antiproliferative effect

[34]

β-Cyclodextrin -curcumin 
complex (5, 10 and 15 μM)

T47D breast cancer cell line  –  Inhibition of telomerase 
expression

 – Induction of apoptosis

[50]

Curcumin (0–100 μM) Human glioblastoma (A172, 
KNS60, and U251) and 
medulloblastoma cell line 
(ONS76)

 – Reduction of cell viability
 –  Inhibition of telomerase activity
 –  Significant telomere shortening

[37]

Curcumin (0–100 mM) Human glioblastoma multiforme 
cells A172
and medulloblastoma cells 
ONS76

 –  Increased cell death and DNA 
damage

 – Telomere shortening activity
 – Reduction in hTERT levels

[38]

Curcumin (3.5 μM) P388D1 mouse lymphoma cells  –  Over expression of TNF-α and 
IL-1β

 –  Inhibition of the antiapoptotic 
Bcl-2 and human catalytic 
subunit hTERT

[56]

PAMAM encapsulating 
curcumin (0.5–60 μM)

T47D breast cancer cell line  – Antiproliferative effect
 –  Inhibition of telomerase activity

[41]

Curcumin (0, 1, 10, 50 μM) Human leukemia cell HL-60  – Induction of apoptosis
 –  Inhibition of telomerase activity

[43]

Curcumin (5–100 μM) T47D breast cancer cell line  – Antiproliferative effect
 –  Inhibition of hTERT gene 

expression

[45]

Curcumin-loaded 
NIPAAm-MAA 
nanoparticles
(10–70 μmol/L)

Calu-6 lung cancer cell line  –  Elevation of PinX1 gene 
expression

 –  Downregulation of the 
telomerase gene

[58]

Curcumin (0–100 mM) Mammary epithelial (MCF-10A) 
and breast cancer (MCF-7) cells

 –  Downregulation of hTERT 
expression

[36]

β-Cyclodextrin-curcumin 
(5–100 μM)

T47D breast cancer cells  –  Inhibition of telomerase 
expression

[52]
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Hsp90–p23 with the rate-limiting catalytic sub-
unit of telomerase, hTERT, is critical for regula-
tion of the nuclear localization of telomerase, and 
downregulation of hTERT by curcumin involves 
dissociating the binding of hTERT with p23 [39].

A study was undertaken to examine the capac-
ity of curcumin to regulate telomerase activity in 
curcumin-induced apoptosis in P388D1 mouse 
lymphoma cells. Induction of apoptosis and 
telomerase activity by curcumin in the P388D1 
lymphoma cells was confirmed by enumeration 
of apoptotic cells, measuring the percentage of 
DNA fragmentation and quantifying mRNA 
expression by PCR. The culture supernatant from 
curcumin-treated P388D1 lymphoma cells con-
tained a higher level of nitric oxide. Furthermore, 
treatment of the cells with curcumin resulted in 
overexpression of tumor necrosis factor alpha 
(TNF-α) and interleukin-1 beta (IL-1β) and inhi-
bition of the antiapoptotic Bcl-2 and hTERT 
when compared to untreated cells [40].

Polyamidoamine (PAMAM) encapsulation of 
curcumin increased its antiproliferative effect in 
a T47D cancer cell line. The authors suggested 
that curcumin exerts an effect on T47D cancer 
cells through inhibition of telomerase activity 
and, consequently, cancer cell proliferation was 
inhibited [1]. The polyamidoaminoid structure of 
PAMAM is biocompatible and enhanced cur-
cumin uptake, thereby augmenting the cytotoxic-
ity of the treatment [41].

In HL-60 cells treated with curcumin, apopto-
sis was induced as evidenced by the release of 
cytochrome c from mitochondria to the cytosol 
and an increase in the DNA content in the sub-G1 
region, as observed in fluorescence-activated cell 
sorting (FACS) analysis. Upregulation of Bax 
and downregulation of Bcl-2 was followed by 
activation of caspases 3 and 8 and degradation of 
poly(ADP-ribose) polymerase (PARP), thereby 
mediating the apoptosis. Curcumin also inhibited 
telomerase activity in a concentration-dependent 
manner, suggesting that the telomerase inhibition 
by curcumin may be interpreted as an important 
event that leads to apoptosis [42]. In an elegant 
study, conducted by Pongsavee et al., a 744ins20 – 
ter240 BRCA1 frameshift mutation was found to 
drive oxidative stress. This mutation produced a 

DNA repair defect, and curcumin treatment could 
inhibit telomerase function and thereby reduce 
cancer cell growth [43].

Curcumin and silibinin exerted cytotoxic 
effects on T47D cells and inhibited telomerase 
gene expression in time- and dose-dependent 
manners. The mixture of curcumin and silibinin 
exhibited a relatively greater inhibitory effect on 
the growth of T47D cells and hTERT gene 
expression when compared with the effects of 
either agent alone [44].

Curcumin-loaded N-isopropylacrylamide- 
methacrylic acid (NIPAAm-MAA) nanoparticles 
inhibited the growth of the Calu-6 lung cancer 
cell line in both a time- and dose-dependent man-
ner, as determined by the 3-(4,5-dimethylthiazol- 
2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
assay for measurement of cell metabolic activity. 
In addition, quantitative (Q)-PCR results demon-
strated that the expression of the telomerase gene 
was downregulated as the concentration of 
curcumin- loaded NIPAAm-MAA nanoparticles 
increased. In parallel, a trend toward increasing 
mRNA levels of the PIN2 (TERF1)-interacting 
telomerase inhibitor 1 (PINX1) gene was appar-
ent [45]. It was demonstrated that the NIPAAm- 
MAA nanoparticles could release the drug in a 
slightly acidic environment, such as occurs in 
inflammatory tissues, solid tumors, and intracel-
lular endosomal compartments [46].

The results of the MTT assay showed that in 
the SW480 colorectal cancer cell line, nanocap-
sulated curcumin and chrysin (in comparison to 
free forms of these compounds) had a highly syn-
ergistic toxicity effect. Q-PCR analysis showed a 
significant reduction in hTERT gene expression 
in SW480 cells treated with nano-curcumin and 
nano-chrysin in comparison to the expression 
levels seen in untreated cells [47]. Of note, the 
telomerase gene has been shown to be overex-
pressed in cancer cells and is related to hTERT, 
and high expression has been reported in many 
colorectal cancer cell lines [47, 48].

The β-cyclodextrin-curcumin complex exerted 
a cytotoxic effect on the T47D breast cancer cell 
line, mediated by inhibition of telomerase expres-
sion and induction of apoptosis due to enhanced 
curcumin intake into the cells [49]. This is consis-
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tent with reports showing that β-cyclodextrin 
enhances curcumin delivery via increasing its 
uptake into cells [50].

In the above-mentioned study by Pongsavee 
et al., the 744ins20 – ter240 BRCA1 frameshift 
mutation was found to produce oxidative stress 
and a DNA repair defect, and curcumin treatment 
led to inhibition of telomerase function and 
thereby reduced cancer cell growth [43].

Kazemi-Lomedasht et  al. showed that 
β-cyclodextrin-curcumin resulted in higher cell 
toxicity in T47D breast cancer cells than did free 
curcumin. In breast cancer cells treated with 
cyclodextrin-curcumin, the level of telomerase 
gene expression was reduced as compared with 
that of cells treated with free curcumin [51]. Of 
note, the β-cyclodextrin-curcumin inclusion 
complex led to improvement in curcumin stabil-
ity and solubility [52].

10.3  In Vivo Studies

Telomerase was found to be highly expressed in 
dimethylhydrazine dihydrochloride (DMH)-
induced colorectal cancer in rats, and its high 
activity was associated with increased TERT 
expression. Telomerase activity was found to be 
absent, or present at lower levels, in normal tis-
sue. PCR, Q-PCR, Western blot, and immuno-
fluorescence analysis showed that CDK4, CDK2, 
cyclin D1, and cyclin E were highly expressed in 
the DMH treatment group. Following the admin-
istration of diclofenac and curcumin, telomerase 
activity was downregulated, and the expression 
of TERT, CDK4, CDK2, cyclin D1, and cyclin E 
was diminished. Inhibition of telomerase activity 
by diclofenac and curcumin was associated with 
upregulation of the tumor suppressor proteins 
p51, Rb, and p21, which are known to lead to cell 
cycle arrest and induction of apoptosis in colorec-
tal cancer [53].

One study suggested that when curcumin is 
used in combination with cyclophosphamide or 
paclitaxel, it may have potentiated the anti-tumor 
effects of these drugs by inhibiting tumor mark-

ers like protein kinase C (PKC), telomerase, 
nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-kB), and histone deacety-
lase (HDAC) both in in vitro and in in vivo mod-
els of breast cancer [54].

The expression of tissue inhibitor of metal-
loproteinase (TIMP)-1 and TIMP-2 genes was 
 significantly increased in the C57/B16 mouse 
model of melanoma following treatment with 
curcumin and chrysin, with the greatest effect 
being observed in the combination groups and 
the greatest observed increase being in the 
nano groups. Curcumin and chrysin treatment 
significantly decreased the expression of 
TERT, and mice in nano-treated groups showed 
a higher decrease in TERT levels compared to 
the mice in control treatment groups. 
Furthermore, the expression of matrix metal-
loproteinase (MMP)-2, MMP-9, and TERT 
genes was significantly reduced in the treat-
ment groups [55].

10.4  Conclusions

Many studies have shown that curcumin pos-
sesses antiproliferative and anti-carcinogenic 
properties. Curcumin is therefore proving to be a 
promising anticancer agent. Moreover, telomer-
ase activity has become a major target in anti-
cancer research. Telomerase is the critical 
enzyme in overcoming growth limitations due to 
telomere dysfunction. The studies presented in 
the present review suggest that curcumin is a 
telomerase inhibitor, in addition to initiating 
apoptosis and promoting killing of cancerous 
cells, and is a good candidate for cancer therapy. 
Further investigations of these effects, with par-
ticular emphasis on in  vivo experiments, are 
needed to verify the potential use of curcumin 
and related compounds in cancer treatment and 
prevention.
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Abstract

Aging is a biological process with effects at 
the molecular, cellular, tissue, organ, system, 
and organismal levels and is characterized by 
decline in physical function and higher risks 
of age-related diseases. The use of anti-aging 

drugs for disease prevention has become a 
high priority for science and is a new biomedi-
cine trend. Geroprotectors are compounds 
which slow aging and increase lifespan of the 
organism in question. The common painkiller 
aspirin, a member of the non-steroidal anti- 
inflammatory drug (NSAID) family, is one of 
the potential geroprotective agents. Aspirin is 
often used in treatment of mild to moderate 
pain. It has anti-inflammatory and anti-pyretic 
properties and acts as an inhibitor of cycloox-
ygenase which results in inhibition of prosta-
glandin. Acetylsalicylic acid as an active 
compound of aspirin also inhibits platelet 
aggregation and is used in the prevention of 
arterial and venous thrombosis. Aspirin has 
shown life-extending effects in numerous 
model organisms. This chapter reviews the 
evidence for clinical efficacy of aspirin includ-
ing cardiovascular disease prevention, anti- 
cancer effects, and improvement of cognitive 
function. However, there are some limitations 
of these therapies, including the risk of exces-
sive bleeding. We have also summarized 
numerous experimental and analytical data 
that support health and longevity benefits of 
aspirin treatment by affecting pro-longevity 
pathways.
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11.1  Introduction

Aging is a process of complex changes in an 
organism over the time with constant increasing 
of risks related to the development of patholo-
gies. The slowdown of age-related diseases 
extends the lifespan and this might be determined 
at the developmental stage [1] and specific nutri-
ent and nutrient-sensing pathways [2, 3]. Lifespan 
and age-associated pathologies can be pharmaco-
logically treated with supplements and pharma-
ceuticals of artificial or natural origins [4–7]. 
Modern geriatric medicine and geroscience are 
mainly focused on the supplements and pharma-
ceuticals, which allow delaying the onset of all 
age-associated chronic disorders. Aspirin (acetyl-
salicylic acid, ASA) is a non-selective inhibitor 
of cyclooxygenase (COX), the first synthesized 
representative of the family of non-steroidal anti- 
inflammatory drugs (NSAIDs). Initially discov-
ered as an anti-pyretic, analgesic, and 
anti-inflammatory drug, aspirin has later proven 
to have pleiotropic effects, both dependent and 
independent on its COX-inhibitor properties. 
Aspirin-like substances derived from salicylate- 
rich plants have been used for pain and fever 
relief for many centuries. Various species of wil-
low (Salix spp.) were first mentioned in ancient 
medicinal texts, like the Ebers Papyrus (1550 BC) 
[8], and the active compound of willow bark was 
identified in 1832 by French chemist Charles 
Gerhardt, who attempted to neutralize salicylic 
acid by buffering it with sodium (sodium salicy-
late) and acetylchloride to create acetylsalicylic 
acid. Aspirin was patented on February 27, 1900, 
by Felix Hoffmann from the Bayer Company. As 
an anti-platelet agent, aspirin is the most pre-
scribed agent for the prevention and treatment of 
thrombosis. Moreover, it may act as a calorie 
restriction mimetic and increase cellular stress 
responses. Despite its high overall safety profile 

and a massive body of evidence supporting clini-
cal benefits of aspirin use, substantial risk of side 
effects, including gastrointestinal bleeding, exists 
for regular low-dose prescriptions.

11.2  Mechanisms of Action

In 1971 Vane proposed the mechanism of action 
of the aspirin-like drugs [9]. Anti-inflammatory 
and anti-platelet properties of aspirin are related 
to biosynthesis of prostaglandins (PGs). PGs and 
their derivatives thromboxanes (TXs) play 
homeostatic functions, such as in inflammatory 
responses [10]. PGs are synthesized from arachi-
donic acid via oxidation of fatty acids of mem-
brane lipids. Phospholipases (PLAs) catalyze 
release of arachidonic acid from the plasma 
membrane. Arachidonic acid is further metabo-
lized by cyclooxygenase (COX) to PGH2. 
Synthesis of PGs depends mainly on the activity 
of COX, which possesses both COX and peroxi-
dase activity and has two isoforms COX1 and 
COX2 [11]. COX1 and COX2 are encoded by 
two different genes, although these enzymes 
share high similarity in amino-acid sequence 
[12]. COX1 and COX2 have the same enzymatic 
function participating in biosynthesis of PGH2. 
PGH2 is further transformed into PGE2, PGI2, 
PGD2, PGF2α, and TXA2 as a result of the 
inflammatory enzymatic cascade in the tissues 
(Fig.  11.1) [13]. Tissue-specific prostaglandins 
are involved in mediating physiological pro-
cesses, including vasodilation or vasoconstric-
tion, ovulation, bone metabolism, suppression of 
gastric acid secretion, inflammatory immune 
response, regulation of chemotaxis, and endo-
crine regulation.

The COX enzyme is a target of NSAIDs includ-
ing aspirin. NSAIDs inhibit the COX- specific 
active site of the enzyme but have no effect on the 
peroxidase active site [14]. NSAIDs block the 
binding of arachidonic acid to the COX enzymes. 
It was demonstrated that aspirin irreversibly inhib-
its COX by acetylation of serine (Ser) residues, 
namely Ser-530 of COX1 and Ser- 516 of COX2 
(Fig.  11.1). COX1 is expressed in platelets, and 
acetylation of COX1 by aspirin leads to inhibition 
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of TXA2 synthesis. TXA2 acts as a vasoconstric-
tor and potent platelet activator; therefore, aspirin 
reduces platelet activation and aggregation reduc-
ing the risk of thrombosis [15]. COX1 is constitu-
tively expressed in the endoplasmic reticulum of 
most cells [16]. COX2 is an inducible form, which 
is upregulated in response to pro-inflammatory 
stimuli. COX2 is rapidly expressed in several cell 
types in response to cytokines, growth factors, and 
pro-inflammatory molecules [17]. Aspirin totally 
blocks COX1 activity, while COX2 acetylated by 
aspirin can still convert arachidonic acid to 
15-R-hydroxyeicosatetraenoic acid (15-R-HETE) 
[11]. Decreased production of prostaglandins and 
TXA2 under aspirin treatment is the basis of both 
the therapeutic effects and toxicities.

11.3  Lifespan Extension in Model 
Organisms

Aging is the physiological process that is charac-
terized by loss of normal organ function caused 
by damage accumulation in cells and tissues [18]. 

Longevity can be modulated by alterations in 
age-related genes. Moreover, lifespan might be 
extended using some drugs. Discovering chemi-
cals that can delay aging and extend lifespan is 
one of the most promising ways to improve the 
quality of life in older age. Today, many of the 
lifespan- and healthspan-extending drugs are 
effective at relatively low concentrations from 5 
to 200 mg/kg of body weight [19]. However, it is 
important to know that every compound may 
possess some side effects. Furthermore, many 
drugs may extend lifespan by the so-called hor-
metic effect: the conditions in which relatively 
toxic substances may have beneficial effects.

There is a continuous need of optimal model 
systems to discover potential anti-aging 
approaches and evaluate the effects on healths-
pan. Ideally, a model system should maximally 
replicate the aging processes in humans, with 
high conservation of the relevant genes and sig-
naling pathways. More often, researchers use 
simple model organisms such as nematodes, fruit 
flies, and rodents. Most studies aimed at investi-
gating anti-aging drugs have been performed by 

Fig. 11.1 Mechanism of action of aspirin. Aspirin blocks COX1 and COX2 by acetylation of serine residues. Acetylated 
COX is unable to synthesize PGG2 and subsequently its tissue-specific derivatives
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using invertebrate models, which are considered 
as useful for investigating human diseases and 
have been widely exploited for discovering 
potential anti-aging agents [20–22]. Pathways 
controlling lifespan and aging are partially con-
served in a wide range of species, from yeast to 
humans [18, 23]. Previously, we have summa-
rized the beneficial lifespan-extending effect of 
metformin as potential geroprotector for various 
animal models [7]. In this chapter, we have col-
lected and summarized data obtained in inverte-
brate and rodent models regarding the anti-aging 
potential of aspirin.

11.3.1  Caenorhabditis elegans

Aspirin has been found to have many beneficial 
effects on physiological traits and is often used to 
treat pain and inflammation. Aspirin treatment 
extended the nematode lifespan and improved 
stress resistance [24, 25]. The data also suggested 
that aspirin may act in a dietary restriction-like 
manner [25]. Furthermore, it reduces the levels of 
reactive oxygen species (ROS) and activates 
expression of genes related to the main antioxi-
dant enzymes including catalase, superoxide dis-
mutase, and glutathione-S-transferase [24]. 
Recently, it was demonstrated that aspirin 
increases metabolism and regulates germline sig-
naling to activate downstream DAF-12 and DAF- 
16 to extend lifespan [26]. Aspirin as a salicylic 
derivative extends the lifespan of C. elegans by 
activating autophagy and the mitochondrial 
unfolded protein response [27].

Conclusively, drugs and compounds of varied 
groups and origins have been shown to extend the 
lifespan of worms by affecting different path-
ways and mechanisms. However, there is a need 
to confirm the effects of these treatments in other 
organisms.

11.3.2  Drosophila melanogaster

Invertebrate model systems, including Drosophila 
melanogaster, are essential for better understand-
ing of the genetic pathways that control aging. 

Furthermore, the fruit fly has proved to be valu-
able in testing chemical compounds that influ-
ence longevity. Drosophila possesses complex 
behavioral phenotypes and several good models 
of human age-related diseases are available. 
Furthermore, Drosophila experiments can be 
conducted in demographic cages, which allow 
researchers to investigate the effects of bio- 
demographic on lifespan.

Aspirin has been found to suppress the aging 
process via interfering with oxidant production 
and cytokine response processes and by blocking 
glycooxidation reactions [28]. Prolonged 
Drosophila lifespan and improved healthspan 
have been observed under aspirin administration 
[29]. The lifespan of D. melanogaster females 
was longer and the duration of metamorphosis 
was prolonged in the experimental groups treated 
with acetylsalicylic acid, the active agent in aspi-
rin, and acetaldehyde [30]. A recent study discov-
ered the lifespan-extending effect of a set of 
NSAIDs, including aspirin [31]. These NSAIDs 
delay the age-dependent decline of locomotor 
activity and increase stress resistance. The effect 
of the lifespan increase was associated with 
decreased fecundity. Depending on the concen-
tration, NSAIDs have demonstrated both anti- 
and pro-oxidant properties in Drosophila tissues 
[31]. The molecular mechanism of aspirin in this 
area is still unknown, but it influences the metab-
olism of amino acids, carbohydrates, and urea.

11.3.3  Rodents

The mouse has developed into the major mam-
malian model system for the research of com-
pounds with potential lifespan-extending effects. 
The mouse possesses genetic and physiological 
similarities to humans, and its genome can be 
easily manipulated and analyzed. Furthermore, 
multiple tools, mutants, and inbred strains are 
available to simulate age-related diseases in the 
mouse with a high translational potential.

The National Institute on Aging Interventions 
Testing Program (ITP) tested the impact of some 
agents, which can potentially extend lifespan, 
including aspirin [32]. It was demonstrated that 
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aspirin administration led to increased lifespan of 
male but not female mice [32]. The detailed 
mechanism of the lifespan-extending effect in 
mice is still poorly understood. However, it is 
known that aspirin triggers protective autophagy 
in mice and acts as a calorie restriction mimetic 
[33].

In addition to mice, rats have been extensively 
used in studies related to aging. Although a study 
found no direct impact of aspirin supplementa-
tion on rat survival, it did normalize blood pres-
sure in rats with a hypertension phenotype [34].

11.4  Health Benefits of Aspirin: 
Evidence from Clinical Trials

Aspirin was originally developed as an analgesic 
and anti-pyretic drug, although it is now predom-
inantly used for primary and secondary cardio-
vascular prevention. However, many of its 
pleiotropic health effects regarding age-related 
diseases are still not completely understood [35]. 
Aspirin might be one of the most appropriate 
agents as an anti-aging drug due to low costs and 
simplicity of treatment and through its well- 
investigated multifaceted properties regarding 
cardiovascular disease (CVD) and cancer.

11.4.1  Aspirin and CVD Prevention 
in Elderly

CVDs represent an important health burden for 
modern society and are the leading cause of death 
in the older population [36]. In the USA, it has 
been reported that the percentage of people who 
have CVD among those aged 60–79  years is 
approximately 72% and reaches at least 80% in 
those aged more than 80 years [37, 38]. Because 
of these numbers and the increase in prevalence 
of other critical factors such as obesity and diabe-
tes in the aging population, the number of deaths 
due to CVD in the future might dramatically 
increase [36, 37, 39].

A convincing body of evidence suggests that 
aspirin provides a beneficial reduction of CVD 
mortality and new CVD events [40]. Low-dose 

aspirin is currently routinely prescribed accord-
ing to multiple evidence-based guidelines for 
management of acute vascular events and revas-
cularization procedures as well as for secondary 
CVD prevention. Currently, nearly 20% of adults 
in the USA report taking aspirin daily, or every 
other day, with this number increasing to nearly 
50% in those aged 65 years and older [41]. At low 
doses, aspirin is also widely used to prevent 
pregnancy- related vascular disorders, such as 
preeclampsia and intrauterine growth restriction 
[42].

The anti-platelet effect of aspirin is a result of 
acetylation of COX1 with subsequent inhibition 
of TXA2 production. Growing evidence suggests 
that aspirin-mediated acetylation might confer 
additional non-COX-dependent benefits in pre-
vention of thrombosis, as well as anti- 
inflammatory and anti-tumor effects [43, 44].

Anti-platelet effect of ASA allows reduction 
of the risk of death from ischemic stroke and vas-
cular complications for a wide range of patients, 
both in primary or secondary prevention settings 
[45, 46]. Stroke is a leading cause of mortality 
and disability worldwide [47]. Recently, two 
large randomized trials found a significant 
decrease of 7 recurrent ischemic strokes per 1000 
patients and a nominally significant reduction of 
4 deaths without further stroke per 1000 patients 
treated with aspirin [48, 49]. Overall, there was a 
net decrease of 9 per 1000 treated in the risk of 
further stroke or death in hospital indicating a 
benefit for acute initiation of aspirin after isch-
emic stroke [50].

In elderly patients with coronary heart disease 
(CHD), angina pectoris represents the most com-
mon cardiovascular disease. Studies have shown 
that the prevalence of angina rises with increas-
ing age, with a mean age of onset of 62.3 years 
[51]. ASA is the preferred drug for CHD [52] and 
it can effectively inhibit vasoconstriction and 
platelet aggregation by preventing and control-
ling thrombosis in affected people [53, 54].

Along with angina pectoris, peripheral arte-
rial disease (PAD) is another common disorder 
associated with a high risk of cardiovascular 
mortality [55]. The major risk factors for PAD are 
similar to those for coronary and cerebrovascular 
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disease [56]. The benefit of aspirin as a secondary 
prevention therapy in patients with atherosclero-
sis has been demonstrated in patients with prior 
ischemic stroke or acute myocardial infarction 
[57].

Clinical decision about prescription of low- 
dose ASA in primary prevention in elderly peo-
ple remains complicated and requires careful 
individual evaluation of the risk-benefit ratio. A 
recent meta-analysis of nine trials of aspirin for 
the primary prevention of CVD demonstrated a 
significant reduction in the risk of myocardial 
infarction, ischemic stroke, and all-cause mortal-
ity in subjects allocated to long-term aspirin use. 
At the same time aspirin increased the risk of 
hemorrhagic complications, such as hemorrhagic 
stroke, major bleedings, and gastrointestinal 
bleeding. N. Raju et al. showed that this preven-
tion strategy always requires evaluation of the 
balance between the potential benefit and harm 
of long-term ASA prescription [58]. High risk of 
bleeding, especially intracerebral hemorrhage, 
remains the major concern for different patient 
cohorts despite potential favorable cardiovascu-
lar outcomes and reduction of all-cause mortality. 
Selection of the correct dose and form of aspirin 
(coated or buffered), careful consideration of 
comorbidities and co-medications, and the pos-
sible twice-a-day dosing in patients with 
increased platelet turnover are among the vari-
ables that need to be taken into account for safe 
and effective prescription of aspirin [59, 60].

Implementing pharmacological strategies to 
decrease cardiovascular risks remains challeng-
ing for older patients because of the presence of 
declining physiological status compared to the 
younger population [36]. As reported in several 
papers, the presence of diabetes and obesity can 
have a strong negative effect on elderly people 
with CVDs because it can impair daily activity 
and reduce overall quality of life [37, 39].

11.4.2  Anti-Cancer Effects of Aspirin

A large body of evidence confirms that aspirin 
can improve overall survival in patients with 
diagnosed cancer, reducing the risk of cardiovas-

cular events and, in some cases, influencing 
cancer- related survival and slowing down the rate 
of metastasis. A meta-analysis, involving 23 ran-
domized controlled trials on low-dose aspirin and 
non-vascular deaths, reported a significant reduc-
tion in cancer deaths after 4  years of aspirin 
intake [61]. The results of meta-analyses have 
suggested that aspirin has possible protective 
effects toward breast [62, 63], prostate [64, 65], 
pancreatic [66], and gastric cancer [64, 67].

A recent cohort study performed by Loomans- 
Kropp et al. [39] on a total of 146,152 individuals 
aged 65 years and older found that aspirin use 3 
or more times per week was associated with 
decreased risk of mortality from all causes (HR, 
0.81; 95% CI, 0.80–0.83; P < 0.001), any cancer 
(HR, 0.85; 95% CI, 0.81–0.88; P < 0.001), gas-
trointestinal cancer (HR, 0.75; 95% CI, 0.66–
0.84; P  <  0.001), and colorectal cancer (HR, 
0.71; 95% CI, 0.61–0.84; P < 0.001) [39].

Protective effects of low-dose ASA against 
certain cancer types seem to be variable depend-
ing on the population and cancer type. A meta- 
analysis by Hochmuth et  al. demonstrated that 
aspirin can have a protective effect against non- 
small cell lung cancer [68].

Meta-analyses of trials regarding the potential 
survival benefits of aspirin in patients with diag-
nosed cancer often show conflicting results due 
to variability in research methodologies and the 
high degree of heterogeneity of the available 
studies [69, 70]. A meta-analysis of observational 
studies reported little or no effect of aspirin on 
breast cancer survival [63]. Another meta- 
analysis showed a reduction in breast cancer- 
specific mortality, all-cause mortality, and 
metastasis among aspirin and NSAID users [71]. 
However, a recent single retrospective analysis of 
1113 women diagnosed with operable breast can-
cer between 1995 and 2015 showed that ASA use 
did not appear to alter breast cancer-related sur-
vival before their breast cancer diagnosis [70]. 
Another recently published paper showed that 
aspirin use was not strongly associated with mor-
tality following breast cancer [72]. These results 
are in disagreement with a study claiming that 
improvement in breast cancer survival in aspirin- 
allocated women were observed only if treatment 
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was initiated after the cancer diagnosis, while 
pre-diagnosis treatment did not demonstrate clear 
benefits [73].

Aspirin intake was inversely related with pros-
tate cancer-specific mortality, according to a 
meta-analysis by Liu et  al. [65]. A systematic 
review and meta-analysis showed reduced mor-
tality in colon cancer patients receiving aspirin as 
an adjuvant treatment [74]. It reduced mortality 
especially in cases of tumors expressing PIK3CA 
(p110α catalytic subunit of PI3K). Possible ben-
efits were also demonstrated for patients with 
breast and prostate cancer.

In a more recent study, effects of aspirin on 
men with prostatic cancer (PC) were studied 
[75]. Daily aspirin use was inversely associated 
with prostate cancer mortality [HR, 0.59; 95% 
CI, 0.36–0.96] and case fatality (HR, 0.45; 95% 
CI, 0.22–0.94) in both populations without dis-
tinctions. Another study in men between 40 and 
75 years of age concluded that regular aspirin use 
was associated with a lower risk of lethal PC and 
its post-diagnostic use was associated with better 
survival [76]. They used a proportional hazards 
regression to examine the association between 
current, past, or no regular use of aspirin (at least 
twice a week) in relation to lethal (metastatic or 
fatal) prostatic cancer and found that regular 
aspirin use was associated with a lower risk of 
lethal prostate cancer (HR, 0.80; 95% CI, 0.66–
0.96). Moreover, post-diagnostic use of aspirin 
was associated with a lower risk of lethal PC 
(HR, 0.80; 95% CI, 0.64–1.00) and overall mor-
tality (HR, 0.79; 95% CI, 0.69–0.90) [76].

Across epidemiological studies, the most sig-
nificant reductions in risk have been observed in 
gastrointestinal cancer and particularly in case of 
colorectal cancer [77, 78]. Evidence of chemo-
prevention even inspired the US Preventive 
Services Task Force to recommend low-dose 
aspirin for primary prevention of CVD and 
colorectal cancer in adults aged 50 to 59 years, 
having greater than a 10% 10-year risk of CVD 
and no increased risk of bleeding [79]. Moreover, 
in the same study, an individualized treatment 
approach of low-dose aspirin use for the preven-
tion of CVD and colorectal cancer in individuals 
aged 60 to 69  years was recommended [80]. 

Although the evidence for aspirin use among 
individuals 70  years and older remains insuffi-
cient [80], a new analysis found that older adults 
(> 65 years) who regularly took aspirin had a sig-
nificant reduction in mortality from all causes of 
cancer compared with individuals who did not 
take aspirin [39].

A meta-analysis by Ye et al. showed that low- 
dose (75–325 mg daily), regular (2–7 times per 
week), long-term (more than 5  years) aspirin 
intake leads to significant reduction in colorectal 
cancer risk [81]. Evidence from studies, investi-
gating CVD primary and secondary prevention, 
suggested that ASA administration reduces inci-
dence of colorectal cancer and related mortality 
10  years after treatment initiation [82]. Aspirin 
provides survival benefits for patients diagnosed 
with colorectal cancers, but only if administered 
after the diagnosis. Meta-analyses demonstrate 
that aspirin is beneficial as a post-diagnosis treat-
ment especially in colorectal tumors over- 
expressing COX2 and PIK3CA and reduces 
overall mortality in PIK3CA mutated cancers by 
29% [83, 84].

Emillson et  al. performed a network meta- 
analysis to explore low-dose aspirin as an alter-
native to traditional colorectal cancer screening 
methods (flexible sigmoidoscopy or fecal occult 
blood test) in reduction of colorectal cancer inci-
dence and mortality [85]. Low-dose aspirin 
seemed to be as effective as the screening tools in 
colorectal cancer prevention, with effects more 
visible for malignancies localized in proximal 
colon [85].

Aspirin could be used for colorectal cancer 
prevention in especially vulnerable populations 
with high genetic risk of cancer, such as Lynch 
syndrome. This hereditary condition was 
addressed in the CAPP2 (Cancer Prevention 
Programme) randomized trial of 861 participants. 
Patients with Lynch syndrome received 600 mg/
day of aspirin or placebo for up to 4  years. 
Allocation to aspirin resulted in a significant 
decrease of almost 60% in cancer incidence [86]. 
Also, aspirin effectively reduced risk of colorec-
tal cancer among MMR gene mutation carriers in 
the Colon Cancer Family Registry [87]. 
According to the results of a meta-analysis of 15 
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randomized controlled trials, low-dose aspirin 
can also be used for secondary chemoprevention 
in patients with previous diagnosis of colorectal 
neoplasia [88].

However, not all studies reached same conclu-
sions about post-diagnostic aspirin use and mor-
tality in colorectal cancer. A study carried out on 
a large Scottish population-based cohort of 
patients with a diagnosis of colorectal cancer did 
not find any evidence of a reduction in cancer- 
specific mortality in aspirin users [89]. Also, in a 
clinical trial conducted by the Japanese Primary 
Prevention Project (JPPP) among patients aged 
60 to 85 years and presenting with hypertension, 
dyslipidemia, or diabetes mellitus, low dose of 
aspirin failed to reduce colorectal cancer inci-
dence or mortality. Surprisingly, this study found 
that the cancer incidence was significantly higher 
in the aspirin group than in the no-aspirin group 
and failed to show preventive effects of aspirin on 
cancer incidence or mortality during the average 
study period of 5  years [90]. Several studies 
(ASCOLT, ASPIRIN, US Aspirin for Breast 
Cancer (ABC) trial, PIK3CA-based trials, and 
the Add-Aspirin trial) aimed at exploring the 
potential role of aspirin as an adjuvant therapeu-
tic agent for colorectal, breast, gastro- esophageal, 
and prostate cancer are now ongoing. The results 
of these trials should provide valuable insights 
about efficacy and safety of aspirin as a treatment 
in cancer.

Patients with certain types of myeloprolifera-
tive neoplasms, like polycythemia vera or essen-
tial thrombocythemia, might be at high risk of 
thrombotic events due to high rate of platelet 
turnover and rapid emergence of new platelets 
with unacetylated COX enzymes. Such patients 
might require tailored, more frequent dosing for 
efficient prevention of cardiovascular events 
[91, 92].

Data regarding the anti-cancer effect of aspi-
rin in older adults has been conflicting and uncer-
tain. A multicenter double-blind randomized 
controlled trial allocated elderly patients, without 
prior CVD, cognitive deficit, or established dis-
ability, to ASA 100 mg/day or placebo and found 
an increased rate of all-cause mortality in the 
aspirin group (5.9% vs. 5.2%, P  <  0.05). This 

was attributed to the increased risk of cancer in 
the aspirin-allocated individuals (3.1% vs. 2.3%, 
P  <  0.05) [93]. Researchers hypothesize that 
aspirin might make cancer symptomatic via 
increased risk of bleeding that is especially pro-
nounced in elderly individuals [91]. A recent 
meta-analysis combining data from 13 
 randomized controlled trials and a total of 
164,225 participants found no significant differ-
ence in cancer incidence between ASA-allocated 
patients and patients receiving placebo [94].

Anti-cancer effects of ASA are multimodal 
including COX1 and COX2 inhibition and anti- 
inflammatory properties, along with mechanisms 
not related directly to COX inhibition. Rectal 
mucosal COX2 inhibition is considered crucial in 
prevention of colorectal neoplasia [79]. Possible 
targets and pathways implicated in the anti- 
carcinogenous properties of aspirin include inhi-
bition of IκB kinase β, preventing activation of 
NF-κB, and inhibition of extracellular-signal- 
regulated kinase (ERK) and Wnt/β-catenin sig-
naling [95]. Aspirin can also act as a 5′ 
AMP-activated protein kinase (AMPK)-activator, 
inhibiting downstream activity of the mammalian 
target of rapamycin complex 1 (mTORC1) [96].

11.4.3  Anti-inflammatory Properties 
of Aspirin

The anti-inflammatory properties of ASA occur 
by direct COX-inhibition-mediated mecha-
nisms and indirect modulation of NF-κB path-
way, along with inhibition of interleukin (IL)-6 
pathways [43]. Limited evidence exists about 
the role of aspirin in prevention of sepsis, a 
life- threatening condition that often affects the 
elderly. A meta-analysis with propensity 
matching showed 7–12% mortality risk reduc-
tion in sepsis patients taking aspirin prior to 
sepsis onset [97]. Another randomized con-
trolled trial investigating effects of ASA in 
sepsis patients showed that it was able to 
induce pro-inflammatory effects in septic 
monocytes, signifying that patients suffering 
from sepsis-induced immune deficiency might 
benefit from aspirin treatment [98].
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Inhibition of NF-κB by aspirin might play a 
significant role in bone health. Inhibition of 
NF-κB signaling and reduction in the expression 
of receptor activator of NF-κB ligand can sup-
press the formation of osteoclasts and potentially 
prevent bone loss [99]. A recent meta-analysis of 
observational trials suggests that aspirin use is 
associated with 17% lower risk of bone fractures 
and has a modest positive effect on bone mineral 
density [100].

11.4.4  Aspirin and Cognitive 
Function

Anti-platelet effects of aspirin are potentially 
beneficial for neuroprotection via reduction of 
neuroinflammation and small vascular lesions. 
The impact of ASA on white matter lesions 
(WMLs) was evaluated in patients from the 
Women’s Health Initiative Memory Study of 
Magnetic Resonance Imaging (MRI). There was 
no significant difference between the MRI vol-
umes of WMLs among aspirin users and non- 
users [101]. In patients with Alzheimer’s disease, 
aspirin did not provide any additional therapeutic 
benefit and conversely increased risk of intracra-
nial bleeding, putting patients at risk of additional 
cognitive loss [102]. A recent meta-analysis by 
Veronese et al. polling data from 36,196 patients 
did not confirm a protective effect of aspirin 
against cognitive decline in older age [103]. Low- 
dose aspirin was neither associated with signifi-
cantly better global cognition nor delayed the 
onset of dementia or cognitive impairment. The 
results of ASPREE (ASPirin in Reducing Events 
in the Elderly) trial, assessing role of aspirin in 
maintenance of disability-free and dementia-free 
life in a healthy population of elderly people, did 
not show favorable effects of aspirin if adminis-
tered at an earlier age or continued for a longer 
period of time [93]. In particular, the study 
showed that primary end points of death, demen-
tia, or physical disability occurred in 921 partici-
pants in the aspirin group (21.5 events per 1000 
person-years) and in 914 individuals in the pla-
cebo group (21.2 events per 1000 person-years). 
The between-group difference was not signifi-
cant (HR, 1.01; 95% CI, 0.92–1.11; P = 0.79).

11.5  Adverse Effects of Aspirin

Despite a promising portfolio of pleiotropic 
effects, long-term use of aspirin is associated 
with certain risks. The aim of this section is to 
give an update about the critical use of aspirin in 
association with the appearance of adverse effects 
in vulnerable populations of patients including 
the elderly, patients with comorbidities, and those 
taking multiple medications. Several conditions 
associated with aspirin hypersensitivity including 
Reye’s syndrome and aspirin-exacerbated respi-
ratory disease are rare and difficult to diagnose 
and manage at the clinical level [104]. Aspirin 
poisoning is another overlooked problem, and 
this is associated with substantial morbidity and 
mortality. In the USA, about 20,000 patients per 
year are admitted with salicylate poisoning [105].

11.5.1  Aspirin and Risk of Bleedings

Data from both observational studies and ran-
domized controlled trials are important to assess 
risks associated with administration of low-dose 
aspirin and to identify the primary factors associ-
ated with their reported outcomes [106]. Evidence 
shows that the risk for gastrointestinal bleeding 
with and without aspirin use increases with age 
[107, 108]. NSAID therapy combined with aspi-
rin approximately quadruples the risk for serious 
gastrointestinal bleeding compared to the risk 
with aspirin alone [60, 109].

A recent review of randomized controlled 
trials and observational studies investigating 
the bleeding risk with aspirin therapy identified 
age and Helicobacter pylori infection as factors 
that may increase the risk of gastrointestinal 
bleeding [110]. The incidence of major bleed-
ing events and the absolute risk of bleeding in 
individuals receiving low-dose aspirin increased 
with age [111]. These results are in agreement 
with a meta-analysis of randomized trials by 
the Antithrombotic Treatment Trialists’ (ATT) 
collaboration that identified age as an important 
predictor of the risk of bleeding associated with 
low-dose aspirin, with an approximate doubling 
of the absolute risk of bleeding with low-dose 
aspirin for every 10-year increase in age [112]. 
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Moreover, in elderly people, higher doses of 
aspirin do not appear to confer additional ben-
efits but increase toxicities [108]. Overall, the 
rates of gastrointestinal complications increase 
steeply beyond the age of 70 years and fatality 
rates show a similar trend [113]. Since a limited 
number of elderly persons have been included 
in previous primary prevention trials, the risk-
benefit balance of aspirin on increased risk of 
bleeding and CVDs in this age group is still 
uncertain [114, 115]. A confirmation that in 
elderly populations the risk of CVD and 
increased risk of bleeding are higher than in 
younger populations [116] comes from a meta-
analysis review published by McNeill et  al. 
[93]. In their primary analysis of the “Aspirin in 
Reducing Events in the Elderly” (ASPREE) 
trial, they investigated the use of aspirin in 
older people without history of CVD to see 
whether or not the health benefits outweighed 
the risks. They first showed that daily use of 
low-dose aspirin did not prolong disability 
free-survival among the elderly and, secondly, 
it did not prevent the effect of aspirin on CVDs 
and bleeding. Indeed, there was no significant 
difference between groups in the rate of disabil-
ity-free survival (HR, 1.01; 95% CI, 0.92–1.11), 
but when they analyzed the effects on CVDs, 
aspirin increased the risk of major hemorrhage 
[117]. They found 8.6 events per 1000 people 
per year in the aspirin group versus 6.2 per 
1000 in the placebo group (HR, 1.38; 95% CI, 
1.18–1.62). Researchers concluded that for 
elderly people without known CVD, regular 
low-dose aspirin does not only prolong 
disability- free survival or reduce the risk of 
CVD but puts them at higher risk of having a 
major hemorrhage and higher mortality from 
other causes [118]. In conclusion, the use of 
low-dose aspirin as a primary prevention strat-
egy in older adults resulted in a significantly 
higher risk of major hemorrhage and did not 
result in a significantly lower risk of CVD than 
placebo [117].

11.5.2  Low-Dose Aspirin 
on Intracranial Hemorrhage 
(ICH) and Cerebral 
Microbleeds

Hemorrhagic stroke, although rare, is one of the 
most serious and potentially fatal aspirin side 
effects. Estimates suggest a relative increase of 
32–36% in hemorrhagic strokes in aspirin users 
from a baseline rate of 0.03% per year [107]. A 
meta-analysis of a randomized clinical trial of a 
group with a dose of aspirin of 270 mg per day 
calculated an average absolute risk increase in 
ICH of 12 events per 10,000 persons [119]. In 
subjects with ICH who had been taking regularly 
moderate doses of aspirin immediately before the 
onset of stroke, one study observed poor short- 
term outcomes and increased mortality, probably 
attributable to rapid enlargement of intracerebral 
hematomas [120]. The study showed that a 
3-month mortality of the 208 identified subjects 
with ICH was 33% with a risk factor for death at 
the onset of ICH of 2.5 (relative risks [RR], 2.5; 
95% CI, 1.3–4.6; P = 0.004) [120]. In compari-
son, the estimated absolute risk reduction in 
myocardial infarction was 137 events per 10,000 
persons and 39 events per 10,000 persons in isch-
emic stroke [119].

In agreement with previous results, Garcia- 
Rodriguez et al. reported increased ICH risks in 
patients taking daily aspirin [121]. They showed 
that the overall risk of ICH was increased by 
approximately 40% with long-term low-dose 
aspirin, which is similar to the estimates from 
randomized trials, although not consistently 
reported in all studies [117]. Interestingly, they 
also found that in low-dose aspirin users, the 
absolute risk of bleeding, but not the RR for 
bleeding compared with non-users, increased 
with age [60].

Aspirin has been linked to an increased risk of 
cerebral microbleeds in the form of dark hole 
patches in an MRI study [122]. This study was 
conducted in a population-based sample of 1062 
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persons from a non-dementia longitudinal cohort, 
with an age range of 60 years and older. Compared 
with placebo, cerebral microbleeds were more 
prevalent among users of platelet aggregation 
inhibitors (adjusted odds ratio [OR], 1.71; 95% 
CI, 1.21–2.41) while lobar microbleeds were 
more prevalent among aspirin users (adjusted OR 
compared with non-users, 2.70; 95% CI, 1.45–
5.04) [121].

11.5.3  Adverse Effects of Aspirin 
in Elderly Patients Having 
Surgical Procedures

Elderly patients have the highest postoperative 
mortality and morbidity rate in the adult surgical 
population. The use of low-dose aspirin before 
surgeries can cause prolonged bleeding after 
operations for up to 10  days [123]. However, 
clinical decisions to stop aspirin therapy before 
surgery are challenging and considered a key risk 
factor in patients with coronary stents [124, 125]. 
Patients might face either the risk of cardiovascu-
lar thromboembolic complications in case of 
therapy cessation or the risk of hemorrhagic sur-
gical complication in case of the therapy continu-
ation [126–128].

To make these decisions even more difficult, 
mixed results have been found in studies of 
elderly patients undergoing surgical procedures 
after use of aspirin. In high-risk patients aged 
over 70 years, a controlled trial showed that low- 
dose aspirin reduced the risk of major cardiac 
events without increasing bleeding complications 
[129].

Conversely, a study of 6499 people undergo-
ing elective surgery found that 30 patients 
required reoperations to control bleeding [124]. 
Among these patients, 20 had diffuse bleeding 
while 10 had bleeding from a specific site. 
Diffuse bleeding was associated with the preop-
erative use of aspirin alone or in combination 
with other NSAIDs in 19 of the 20 patients with 
diffuse bleeding.

The adverse effects of aspirin in patients hav-
ing surgical procedures were also reviewed in 
two meta-analyses by Kwok and Loke [130]. The 

hemorrhagic adverse effects of aspirin therapy in 
patients were first evaluated during surgical 
revascularization of coronary artery disease [131] 
and then with use of aspirin in cutaneous surgery. 
Meta-analysis results showed that bleeding was 
increased in groups treated with aspirin (RR, 
2.32; 95% CI, 1.31–4.08; P < 0.01). The authors 
concluded that patients who receive aspirin 
within 7 days of surgery were at higher risk of 
blood loss [129].

Regarding the risk of postoperative bleeding 
and complications in dermatological surgery 
when aspirin was in use, studies also reported 
mixed results [132–134]. A meta-analysis of 4 
prospective studies and 2 retrospective studies 
with a total of 1373 patients reported that aspirin 
or NSAIDs were associated with increased risk 
of moderate to severe complications compared to 
controls (OR, 2.0; 95% CI, 0.97–4.13; P = 0.06) 
and this risk was greater with warfarin than aspi-
rin [132–134].

11.5.4  Aspirin and Potential Drug–
Drug Interactions

Aspirin can interact with other medications, 
potentially altering their effects or increasing the 
risk of adverse events [135–137]. A total of 315 
drugs are known to interact with aspirin but the 
most common of these are other NSAIDs, such 
as diclofenac, ibuprofen, indomethacin, and 
naproxen. Co-administration of these medica-
tions with aspirin leads to increased risk of gas-
trointestinal bleeding [137].

Aspirin competes for cytochrome P450 
metabolism with other agents metabolized via 
this system. Methotrexate, an immunosuppres-
sant and anti-proliferative agent, is widely used 
in chronic autoimmune diseases and cancer 
[137–139]. Aspirin acting on cytochrome P450 
can reduce hepatic clearance of methotrexate, 
resulting in high circulating plasma levels of 
methotrexate and potential toxicity [137, 138].

The combination of selective serotonin re- 
uptake inhibitors (SSRIs) and aspirin has been 
associated with increased risk of bleeding [137, 
140]. Yuet et al. advised that patients on SSRIs 
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are 40% more likely to develop severe gastroin-
testinal bleeding, especially if they are taking 
NSAIDs such as aspirin [141]. Another study 
showed that SSRIs interact with other NSAIDs 
such as ibuprofen and naproxen, as well as vita-
min K antagonist anticoagulants such as warfarin 
and the anti-platelet medication clopidogrel 
[142]. If aspirin is taken with warfarin, it can 
reduce the anticoagulant effects of the latter and 
increase the risk of bleeding [137, 141, 142].

11.6  Conclusions and Future 
Directions

Aspirin remains a cornerstone of primary cardio-
vascular prevention in high-risk individuals and 
as anti-platelet treatment of acute vascular events 
and secondary prevention of CVDs. Apart from 
thrombosis prevention, beneficial effects of aspi-
rin may include reduction of all-cause mortality, 
risks of cancer, and bone fractures. As a classical 
non-selective COX inhibitor, aspirin exerts anti- 
inflammatory, analgesic, and anti-pyretic effects. 
Inhibition of COX in platelets reduces aggrega-
tive properties of platelets and thereby prevents 
vascular thrombosis. Apart from COX-mediated 
effects, aspirin possesses the properties of a calo-
rie restriction mimetic, which has been widely 
studied in model organisms. In model animals, 
aspirin significantly extended lifespan in C. ele-
gans, fruit fly, and mice. Anti-cancer effects of 
aspirin are mediated through inhibition of IκB 
kinase β, ERK, and reduction of NF-κB and Wnt/
β-catenin signaling. Aspirin also acts as AMPK 
activator, contributing to inhibition of mTORC1 
signaling. A few ongoing trials are currently in 
progress to evaluate the potential role of aspirin 
as an adjuvant treatment for colorectal, breast, 
gastro-esophageal, and prostate cancer.

All these effects should be carefully weighed 
with substantial risk of bleedings, caused by the 
non-selective COX-inhibitory activity of aspirin. 
Patients of older age, particularly smokers and 
patients with poorly controlled blood pressure, 
are at high risk of major extracranial bleedings 
and hemorrhagic stroke. The majority of clinical 
recommendations for primary prevention do not 
include routine prescription of aspirin to patients 

older than 70 years and to patients of any age with 
high bleeding risk. Factors, substantially increas-
ing the bleeding risk and precluding the use of 
aspirin, include previous history of gastrointesti-
nal bleeding or peptic ulcer disease,  bleeding 
from other sites, thrombocytopenia, coagulopa-
thy, and chronic kidney disease. Combination of 
aspirin with other NSAIDs and corticosteroids 
also contributes to increased risk of hemorrhagic 
complications, while concurrent use of proton-
pump inhibitors and statins may provide a protec-
tive effect. Given both these potential positive and 
negative effects of aspirin therapeutics, further 
research is required to assess both the risks and 
benefits in specific disease cases and guided by 
individualized medicine principles.
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Abstract

Mesenchymal stem cell (MSC) dysfunction is 
a serious complication in ageing and age- 
related inflammatory diseases such as type 2 
diabetes mellitus. Inflammation and oxidative 
stress-induced cellular senescence alter the 
immunomodulatory ability of MSCs and ham-
per their pro-regenerative function, which in 
turn leads to an increase in disease severity, 
maladaptive tissue damage and the develop-

ment of comorbidities. Targeting stem/pro-
genitor cells to restore their function and/or 
protect them against impairment could thus 
improve healing outcomes and significantly 
enhance the quality of life for diabetic patients. 
This review discusses the dysregulation of 
MSCs’ immunomodulatory capacity in the 
context of diabetes mellitus and focuses on 
intervention strategies aimed at MSC rejuve-
nation. Research pertaining to the potential 
therapeutic use of either pharmacological 
agents (NFкB antagonists), natural products 
(phytomedicine) or biological agents (exo-
somes, probiotics) to improve MSC function 
is discussed and an overview of the most per-
tinent methodological considerations given. 
Based on in  vitro studies, numerous anti- 
inflammatory agents, antioxidants and biolog-
ical agents show tremendous potential to 
revitalise MSCs. An integrated systems 
approach and a thorough understanding of 
complete disease pathology are however 
required to identify feasible candidates for 
in vivo targeting of MSCs.
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12.1  Introduction

Ageing is often associated with the clinical onset 
of a plethora of different chronic diseases, such 
as cardiovascular disease, neurodegenerative dis-
ease, cancer and type 2 diabetes mellitus (DM). 
Although unique in terms of disease-specific trig-
gers, the progression of these conditions is sig-
nificantly exacerbated by chronic systemic 
inflammation and oxidative stress-induced cellu-
lar dysfunction [1, 2]. These two underlying con-
ditions are prominent in both normal ageing and 
the accelerated ageing commonly reported to 
result from chronic psychological stress and/or 
metabolic dysregulation [3, 4].

Given the multi-faceted nature of many 
ageing- associated chronic diseases and the com-
plexity involved in their management, addressing 
the common characteristic of inflammation may 
contribute significantly towards treatment—
either preventatively or therapeutically—for 
many of these diseases. Considering the inherent 
nature of mesenchymal stem cells (MSCs) to 
respond to their environment and to counter dys-
regulation in order to restore homeostasis [5], an 
assessment of the feasibility to target MSCs in 
the treatment of age-related chronic inflamma-
tory disorders is warranted. Although a large 
body of evidence exists in support of anti- 
inflammatory or antioxidant supplementation, 
especially in the phytomedicine sphere, signifi-
cant limitations, such as poor transfer of pre- 
clinical results into human models [6–8] and risk 
of toxicity [9], are slowing the progress towards a 
generally applicable anti-inflammatory strategy.

In this review, we will focus on DM as chronic 
inflammatory disease and discuss the most rele-
vant stem cell pathology in the context of 
DM-associated inflammation. We will provide an 
overview of methodological considerations and 
discuss research pertaining to therapeutic strate-
gies targeting MSCs.

12.2  Mesenchymal Stem Cells

MSC dysfunction is a severe and often over-
looked complication of numerous chronic degen-
erative, metabolic and inflammatory disorders 

[10–12]. MSCs mainly reside in bone marrow 
and have very specific characteristics which 
researchers use as criteria for identification. 
These include the expression of cluster of differ-
entiation (CD) markers (CD90+, CD105+, CD73+, 
CD45−, CD34−, CD14−, CD11b−, CD79alpha−, 
CD19−, HLA-DR−), fibroblast-like morphology, 
multilineage differentiation capacity (osteogenic, 
adipogenic, chondrogenic) and ex  vivo plastic 
adherence [13]. Despite sharing these character-
istics, there can be various MSC subtypes with 
distinct functional preferences (immunomodula-
tory, growth promoting, pro-angiogenic, pro- 
regenerative) within a single population of cells 
residing in the same niche [14]. In addition to the 
bone marrow-resident MSCs, various stem/pro-
genitor cells with mesenchymal properties have 
also been identified in perivascular and avascular 
niches (skin, pancreas, heart, lungs, kidneys, adi-
pose tissue, muscle, cartilage, tendon, teeth) 
throughout the body [15]. Given the heteroge-
neous nature of MSCs, other than their tissue of 
origin, consistent distinction between various 
subtypes within a single population of cells 
remains challenging.

Under normal/healthy circumstances, MSCs 
play an important role in immune surveillance 
and the maintenance of tissue homeostasis [5]. 
Their self-renewal capacity and ability to mount 
a paracrine response upon injury (stimulation by 
microenvironmental cues) form part of the body’s 
innate repair system. The tissue of origin and 
subtype influence the multifunctional properties 
of these cells, with bone marrow MSCs having 
the greatest capacity for immunomodulation [16–
18]. Physico-chemical and structural changes 
within the niche microenvironment activate 
MSCs and trigger immunomodulatory and pro- 
regenerative paracrine signalling [19–21]. This is 
mediated through direct cell-to-cell contact 
(mitochondrial transfer), cytokine/chemokine/
growth factor secretion and/or microvesicle/exo-
some (containing lipids, miRNAs and RNA as 
cargo) release [22].

However, due to their longevity, MSCs (as 
other stem/progenitor cells) are vulnerable to the 
accumulation of cellular and DNA damage, lead-
ing to stem cell depletion and/or senescence [23–
25]. The evidence in support of allostatic stem 
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cell depletion with age is undeniable and this ulti-
mately results in failure of endogenous repair 
mechanisms [26, 27]. The age-related replicative 
senescence of MSCs mainly involves genomic 
instability and telomere attrition [11, 28–30]. 
Independent of chronological ageing, in  vitro 
studies suggest that persistent inflammation and 
oxidative stress (characteristic of chronic dis-
ease) can accelerate telomere shortening (without 
repeated cell cycles being a confounding factor) 
and cause cellular defects that lead to premature 
senescence [11, 30–32]. This has been confirmed 
in MSCs derived from DM animals, in which 
DNA damage, mitochondrial fragmentation and 
hyperactivation of the nuclear factor kappa B 
(NFкB) inflammatory signalling pathway are 
prominent [12]. These cellular defects alter 
MSCs’ immunomodulatory ability and hamper 
their pro-regenerative function, which in turn 
leads to an increase in disease severity and the 
development of comorbidities [12]. For example, 
Xu et al. demonstrated that intraperitoneal trans-
plantation of (radiation-induced) senescent 
adipose- tissue-derived MSCs into healthy young 
mice resulted in physical dysfunction and signifi-
cantly shortened the life-span and overall health 
of these animals [33], demonstrating the cardinal 
importance of MSC health. Furthermore, in line 
with an exacerbating effect of accelerated ageing, 
the authors further indicated that these negative 
effects of transplanted senescent cells were exac-
erbated in mice with underlying metabolic distur-
bances [33]. These effects were not related to 
tumour formation, and the study provided proof- 
of- concept evidence that oral administration of 
senolytic agents could alleviate some of the age- 
related diseases that developed in recipient ani-
mals, as evident in the selective elimination of 
senescent cells in tissue explants and a 65% 
reduction in mortality rate [33]. Targeting stem/
progenitor cells to restore their function and/or 
protect them against ageing-associated impair-
ment should thus be part of therapeutic strategies 
in inflammatory conditions with underlying met-
abolic disturbances, such as DM.

Currently, approximately 9.3% (463 million 
people) of the world’s population is estimated to 
have DM, of which up to 25% suffer from debili-

tating comorbidities such as retinopathy and non- 
healing ulcers [34, 35]. Rejuvenating MSCs in 
these patients could thus improve healing out-
comes and significantly enhance their quality of 
life. In order to design treatment strategies target-
ing MSCs, it is necessary to fully understand the 
dysregulatory effects of disease aetiology on 
stem cell function.

12.3  Dysregulation of MSCs’ 
Immunomodulatory 
Properties

Inflammation is the body’s first defence mecha-
nism against invading pathogens, and phagocytic 
inflammatory cells (neutrophils, macrophages) 
play an essential role in removing cellular debris 
to prepare injured tissues for repair/regeneration. 
Unresolved inflammation can however cause 
autoimmunity, accelerate ageing and hamper the 
progression of healing.

Depending on the activating signal, the func-
tional plasticity of MSCs allows them to take on 
either a pro-inflammatory (MSC1) or anti- 
inflammatory (MSC2) phenotype [5, 36]. Danger 
response signals such as Toll-like receptor 
(TLR)-4 ligands or bacterial lipopolysaccharides 
(LPS) that are usually present following an infec-
tion have been shown to induce a pro- 
inflammatory phenotype (MSC1) in MSCs under 
standard culture conditions [36]. Co-culture 
experiments further demonstrate that MSC1s 
release chemokines (macrophage inflammatory 
protein (MIP)-1α, MIP1β, regulated upon activa-
tion normal T cell expressed and presumably 
secreted (RANTES), chemokine C-X-C motif 
ligand (CXCL)-9 and CXCL10) to recruit 
immune cells (T-lymphocytes, neutrophils, mac-
rophages) or to induce T-cell effector responses 
through antigen presentation [5, 36, 37].

On the other hand, in the presence of an 
inflammatory microenvironment (high levels of 
tumour necrosis factor alpha (TNFα), interferon 
gamma (IFNγ) and interleukin (IL)6), MSCs take 
on an anti-inflammatory phenotype (MSC2) to 
protect tissues against maladaptive damage and 
promote regeneration. MSC2s have been shown 
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to suppress effector T-cell activation/proliferation 
through the release of soluble factors such as 
indolamine 2,3 dioxygenase (IDO), prostaglan-
din E2 (PGE2), nitric oxide (NO), transforming 
growth factor (TGFβ) and hepatocyte growth fac-
tor (HGF) or by modulating the function of regu-
latory T cells [5, 37, 38]. In addition to suppressing 
activation of Th1, Th2 and Th17 cells, MSCs also 
inhibit the release of IFN-γ and IL17 from these 
effector cells whilst promoting the release of 
anti-inflammatory IL10 from regulatory T cells 
[37]. MSC2s furthermore promote the resolution 
of inflammation by suppressing the respiratory 
burst of neutrophils [39–42] and by inducing a 
phenotype switch in macrophages from phago-
cytic (M1) towards pro-regenerative (M2) [43–
48]. Thus, in order to mediate repair, the 
sensitivity and responsiveness of MSCs to 
changes in their microenvironment is pivotal 
(Fig. 12.1a).

Indeed, the literature provides significant evi-
dence of maladaptive MSC regulation in the con-
text of ageing and metabolic dysregulation. Upon 
pro-inflammatory activation, these dysfunctional/
senescent MSCs deviate from their counter- 
responsive nature and amplify inflammatory sig-
nals instead of exerting anti-inflammatory 
immunosuppressive effects [12, 49, 50] 
(Fig. 12.1b). The repressive effect of MSCs spe-
cifically on neutrophils and macrophages is 
thought to be dependent on functional IL6 signal-
ling [46, 51, 52]. Phillips et al. [46] recently dem-
onstrated that in the presence of pro-inflammatory 
signals (IFN-γ and IL1β), MSCs released high 
levels of NO, IL6 and PGE2 that in turn upregu-
lated the expression of M2 macrophage-related 
genes, promoted IL10 release and suppressed 
TNFα secretion in macrophages. The authors fur-
ther demonstrated that co-culture of MSCs with 
IL6Rα-deficient macrophages was unable to 
repress the M1 macrophage phenotype in the 
presence of inflammatory cytokines, suggesting 
that IL6 signalling is an essential trigger of MSC- 
mediated M2 macrophage polarisation. This 
interpretation was supported by Yin et  al. [51], 
who indicated that in vitro blocking of IL6 sig-
nalling using siRNA abrogated allogeneic MSCs’ 
ability to suppress M1 macrophage activation in 

both in  vivo (T2DM mice with β-cell dysfunc-
tion) and in vitro co-culture (THP-1 cells) mod-
els [51]. It is thus not surprising that IL6 
deficiency and subsequent dysregulation of IL6/
signal transducer and activator of transcription 
(STAT)-3 signalling on molecular level in dys-
functional diabetic MSCs resulted in the skewing 
of the immunomodulatory properties of these 
cells [49]. Previous studies done by our group 
have demonstrated an increased pro- inflammatory 
gene expression (MIP1α, MIP1β, macrophage 
chemotactic protein (MCP)-5, CD40, IL23, 
IкBα) profile at baseline [49] and excessive 
TNFα release upon stimulation with wound fluid 
[50] in diabetic MSCs when compared to healthy 
control counterparts.

In addition to an altered secretome, diabetic 
MSCs also have an impaired proliferation capac-
ity [53, 54]. This is consistent with the literature 
indicating that senescence-associated low-grade 
inflammation (SALI) is a prominent characteris-
tic of cellular senescence and that the senescence- 
associated secretory phenotype (SASP) of stem 
cells impacts the biological processes of sur-
rounding tissues [31, 55]. In the context of 
chronic disease-associated accelerated ageing, 
the composition of the SASP will however also 
likely be dependent on the specific stem cell type 
affected and the disease-specific causes that had 
induced premature senescence in these cells. 
Preventative measures and strategies to rejuve-
nate senescent MSCs should thus take the under-
lying pathogenesis into account.

12.4  Methodological 
Considerations 
in the Interpretation 
of Intervention Strategy 
Outcomes

The most relevant studies that have investigated 
the efficacy of various therapeutic agents to either 
protect or rejuvenate MSCs in the context of DM 
are presented in Table 12.1. However, to be able 
to accurately interpret the outcome of these stud-
ies, the following methodological considerations 
should be noted.

M. van de Vyver et al.



167

To date very few randomised controlled trials 
have been performed that focus on the long-term 
beneficial effects of supplementation to prevent 
the development of comorbidities and micro- 
vascular complications in DM patients. The evi-
dence supporting the potential beneficial effects 
of supplements is mainly based on animal studies 
with various methods for inducing DM: high-fat 
diet (prediabetes), genetic mutation (ob/ob and 
db/db strains) and streptozotocin administration 
(type 1 DM)—each of which has its own advan-

tages and disadvantages. Nonetheless, these 
ex vivo studies demonstrate that preconditioning 
or pre-treatment of diabetic MSCs with various 
agents can be used to optimise/improve cellular 
function prior to their use in cell therapy 
(Table  12.1). Whilst several of these studies 
report positive data, their focus has been mainly 
on mechanisms of MSC rejuvenation. However, 
there is a paucity of information available on the 
effectiveness of supplements to prevent the func-
tional decline of MSCs over a prolonged period 

Fig. 12.1 Overview of immunomodulatory responses of 
(a) healthy MSCs under normal circumstances and (b) 
senescent MSCs in age-related type 2 diabetes mellitus. 
(a) Under normal circumstances, in the absence of pro- 
inflammatory cytokines, healthy MSCs respond to danger 
triggers such as TLR4 by taking on a pro-inflammatory 
phenotype (MSC1). These pro-inflammatory MSC1s pro-
mote inflammation by increasing leucocyte recruitment, 
T-lymphocyte activation and polarisation of macrophages 
to a pro-inflammatory/phagocytic phenotype (M1) (acti-
vating signal 1, blue arrows). As the microenvironment 
becomes more pro-inflammatory, the high levels of cyto-
kines trigger the MSC1s to switch to an anti-inflammatory 
phenotype (MSC2) to restore homeostasis. In the pres-
ence of a pro-inflammatory microenvironment (activating 
signal 2, green arrows), healthy MSCs take on an anti- 

inflammatory phenotype (MSC2) that suppress inflamma-
tion by downregulating leucocyte recruitment, inhibiting 
the respiratory burst of neutrophils and promoting polari-
sation of macrophages to an anti-inflammatory/pro- 
regenerative phenotype (M2). MSC2s also release various 
growth factors to promote regeneration. (b) Senescent 
diabetic MSCs are desensitised to pro-inflammatory sig-
nals (dysregulated feedback). Both activating signals 
(blue and green) induce MSCs to take on a pro- 
inflammatory phenotype (MSC1). The senescent MSCs 
furthermore have a senescence-associated secretory phe-
notype (SASP) and, together with the pathogenesis of dia-
betes (oxidative stress (ROS), advanced glycation end 
products (AGEs)) further amplify inflammation that ulti-
mately leads to maladaptive tissue damage (red arrows)
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and demonstrated using in vivo models. For the 
most part, the evidence supporting the protective 
effects of supplementation is based on in  vitro 
models with acute supraphysiological onslaughts 
using various MSC types, but without the pres-
ence of any underlying disease.

DM is a complex disorder, the pathogenesis of 
which involves the accumulation of advanced 
glycation end products (AGEs), generation of 
excessive reactive oxygen species (ROS) and per-
sistent inflammation. The combination of these 
leads to DNA damage, mitochondrial fragmenta-
tion, defects in cellular membrane repair and 
senescence in bone marrow MSCs [12, 56–58]. 
Intervention strategies (other than proper glycae-
mic control) should thus focus on counteracting 
all of these elements. It is however very difficult 
to simulate the DM microenvironment in culture 
to investigate the potential protective effects of 
therapeutic agents.

High-glucose (25 mM) culture conditions are 
often used to simulate hyperglycaemia and have 
been shown to effectively induce oxidative stress 
and pro-inflammatory signalling in various MSC 
cultures [59–61]. The responses of different MSC 
types to these conditions have been inconsistent 
and do not always represent the endogenous 
characteristics of diabetic MSCs. Adipose tissue- 
derived MSCs (also known as ADSCs) seem to 
retain their characteristics and stemness under 
high-glucose culture conditions [60, 62], whereas 
DM patient-derived ADSCs have impaired via-
bility, proliferation and an altered secretome 
[58]. Bone marrow-derived MSCs are however 
more sensitive to glucose toxicity. Despite an 
improved growth rate, a reduction in stemness, 
increased apoptosis/senescence and impaired 
multilineage differentiation capacity are evident 
in bone marrow and nucleus pulposus (vertebral 
disc)-derived MSCs in hyperglycaemic cultures 
[59, 63, 64]. In contrast, other studies show that 
despite limiting the osteogenic differentiation 
capacity, high-glucose culture conditions have a 
limited impact on proliferation and stemness of 
compact bone-derived MSCs [65]. It is thus 
important to note the MSCs’ tissue of origin 
when interpreting data, especially since the vari-
ous MSC subtypes have different propensities for 

immunomodulation. It is also noteworthy that 
these high-glucose culture models involve acute 
hyperglycaemia exposure in isolation, whilst fail-
ing to consider the dyslipidaemia that is promi-
nent in the metabolic dysfunctional DM patient.

The phytomedicine studies that do focus on 
metabolic dysregulation have mainly been on tar-
geting ADSCs for the purpose of developing anti- 
obesity treatments. In these studies, researchers 
aim to reduce the proliferation of ADSCs and 
limit adipogenic differentiation [8, 66–68]. This 
strategy is however not without risk, since inter-
fering with the body’s natural fat storage capacity 
can lead to ectopic lipid accumulation in a variety 
of tissues. The aim should rather be on prevent-
ing senescence and SASP (the excessive release 
of release of pro-inflammatory cytokines) to limit 
adipocyte hypertrophy and M1 macrophage 
accumulation in adipose tissue. Very few studies 
however focus on strategies to improve the 
immunomodulatory capacity of endogenous 
ADSCs.

The following sections will discuss the limited 
data available on the most promising potential 
intervention strategies targeting MSCs.

12.5  Interventions

12.5.1  Pharmacological Blocking 
of NFкB Signalling

Various in  vitro studies have demonstrated the 
potential benefit of different NFкB antagonists in 
the rejuvenation of diabetic MSCs by counteract-
ing the hyperactivation of the NFкB signalling 
pathway. Gu et al. [69] indicated that the prolif-
eration and colony-forming capacity of impaired 
bone marrow MSCs derived from non-obese dia-
betic mice could be restored by treating the cells 
with a NFкB p65 inhibitor to attenuate the aber-
rant activation of p65 and downstream p53/p21 
signalling. In the context of impaired bone heal-
ing in DM, inhibition of NFкB has been shown to 
restore the osteogenic differentiation potential of 
MSCs [70] and to reinstate their ability to resolve 
inflammation through TGFβ release and subse-
quent M2-macrophage polarisation (tamoxifen- 
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induced inhibition of NFкB) [71]. Given the 
important role of normal NFкB signalling in 
maintaining tissue homeostasis, permanent inhi-
bition thereof in vivo might cause serious adverse 
effects, as illustrated in a study by Zhang et al. 
[72]. The authors attempted to protect mice 
against age-associated metabolic dysregulation 
by blocking NFкB signalling in skeletal muscle 
(IкBα overexpression), and although it protected 
aged animals against insulin resistance, it was 
detrimental to muscle function. There was how-
ever no underlying pathology associated with 
excessive NFкB activation in these animals, and 
it is unclear if similar unwanted effects will be 
evident with tissue-specific NFкB inhibition in 
DM mice.

Given the risk of adverse effects, anti- 
inflammatory agents that suppress NFкB sig-
nalling—but do not completely block its 
activity—might be a safer and more feasible 
option. To date the most promising agents in 
this category seem to be potent antioxidants 
which also have anti-inflammatory properties. 
Numerous in vitro studies performed on MSCs 
have indicated the protective effects of antioxi-
dants such as N-acetylcysteine (NAC) and 
ascorbic acid-2-phosphate (AAP) against acute 
hydrogen peroxide-induced oxidative damage 
[56, 73, 74]. In support of these findings, our 
group demonstrated that a combination of 
NAC/AAP treatment can improve the ex  vivo 
viability of diabetic bone marrow-derived 
MSCs and the release of anti-inflammatory 
cytokines, although it could not restore the pro-
liferation capacity of severely impaired MSCs 
[50, 54]. This suggests that although these anti-
oxidants can partially rejuvenate diabetic 
MSCs, they hold more promise as protective 
agents (preventative supplements) against the 
functional decline of MSCs in patients to limit 
disease progression—a potential benefit which 
warrants further investigation. Similarly, there 
are numerous natural antioxidants and anti-
inflammatory agents in the phytomedicine 
sphere that hold therapeutic promise.

12.5.2  Natural Antioxidants and/or 
Anti-inflammatory Agents

Various natural products are commonly used as 
daily antioxidant supplements, some of which 
(such as the polyphenol anthocyanidins, resvera-
trol and phytocannabinoids) have been shown to 
modulate the functional properties of MSCs [75–
78]. Similarly, traditional Chinese phytomedi-
cines (specifically astragaloside IV—the active 
ingredient in the leguminous herb Astragalus 
membranaceus) have been reported to restore the 
proliferative capacity of DM patient-derived 
MSCs under hyperglycaemic culture conditions 
by decreasing TLR4 expression upstream of 
NFкB signalling [79]. Unfortunately, despite 
these positive results, very few of these products 
have been subjected to in-depth (or in  vivo) 
investigation to elucidate specific mechanisms of 
action involved, and even less information is 
available in the context of age-associated inflam-
matory conditions. A comprehensive review of 
each of these products is not within the scope of 
this review. Rather, we will discuss only one nat-
ural antioxidant (the polyphenol curcumin)—one 
of the very few which have been extensively 
reported on—to illustrate the potential benefits of 
natural antioxidants specifically on MSC 
function.

In the context of obesity-associated inflamma-
tion, curcumin was recently reported to inhibit 
adipogenic differentiation of human bone mar-
row MSCs via downregulation of peroxisome 
proliferator-activated receptor (PPAR)-γ signal-
ling [80]. PPAR-γ is known to direct differentia-
tion of cells towards pro-inflammatory 
phenotypes [81], suggesting that curcumin may 
facilitate a relatively more anti-inflammatory 
phenotype in MSCs. In line with this and being 
highly relevant given our discussion in the previ-
ous section, curcumin was also reported to block 
NFкB signalling in gastric cancer-derived MSCs 
[82]. These mechanistic studies are supported by 
demonstrated in vivo benefit. For example, very 
recently, enhanced diabetic wound healing was 
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reported after topical application of a bandage 
containing bone marrow MSCs, epidermal 
growth factor (EGF) and curcumin in a DM rat 
model [83]. This is in line with a recent review of 
human clinical studies in the context of curcumin 
supplementation, where it was concluded that 
curcumin may have beneficial action in the con-
text of obesity, metabolic syndrome, DM as well 
as other chronic inflammatory conditions [84]. 
Together, these studies suggest that at least some 
of the beneficial outcomes ascribed to curcumin 
may be via its facilitation of an anti-inflammatory 
phenotype in MSCs.

A limiting factor when it comes to translating 
these pre-clinical findings into human models 
may at least in part be due to the poor absorption 
and bioavailability of plant products such as cur-
cumin [85, 86]. However, with the advances 
being made in nanoscience and controlled drug 
delivery systems, these limitations may soon be 
overcome. A relatively recent study demonstrated 
superior MSC-dependent bone repair in DM rats 
when the repair scaffold was loaded with cur-
cumin, with even more enhanced repair when 
curcumin was delivered using PLGA micro-
spheres to optimise delivery. Most relevant to the 
current topic, curcumin delivered in this way was 
shown to exert protective effects on bone marrow 
MSCs under DM conditions via upregulation of 
the endogenous Kelch-like ECH-associated pro-
tein 1 (Keap1)/nuclear factor erythroid-2-related 
factor-2 (Nrf2)/heme oxygenase-1 (HO-1) anti-
oxidant signalling pathway and inhibition of 
ROS secretion by MSCs [87].

The importance of using suitable delivery sys-
tems when targeting stem cells with natural anti-
oxidants is clear from the literature. Several 
groups have however described a risk for pro- 
oxidant toxicity [9, 88–90] after treatment with 
high doses of antioxidants to account for low bio-
availability. In the context of stem cells specifi-
cally, the well-published antioxidant polyphenol 
resveratrol was recently shown to affect human 
bone marrow MSC differentiation at low concen-
trations by mimicking insulin activity in differen-
tiation media—however, high doses of resveratrol 
resulted in lipid accumulation in both osteogenic 
and adipogenic media [91]. Furthermore, undif-

ferentiated neuronal stem/progenitor cells were 
illustrated to have increased sensitivity to anti-
oxidant (ascorbic acid)-driven DNA damage than 
differentiated cells [92]. This suggests that the 
risk for pro-oxidant effect is also an important 
consideration at the level of MSCs. Taken 
together it is thus clear that although phytomedi-
cines hold tremendous promise as supplements, 
their use is not without risk, especially since there 
is limited data available on their mechanisms of 
action and long-term safety.

12.5.3  Biological Agents

12.5.3.1  Microvesicles and Exosomes
MSC-derived extracellular vesicles—which 
include both microvesicles (size: 100–1000 nm) 
and exosomes (size: 30–100 nm)—are thought to 
play a crucial role in the paracrine signalling of 
MSCs over long distances [93]. Although the 
study of exosomes in the context of regenerative 
medicine and immunomodulation is a relatively 
young research niche, a fair number of reports 
exist and have contributed to our understanding 
of how MSCs may remotely affect regenerative 
processes. To date the majority of research in this 
area has been focused on the potential use of allo-
geneic exosome preparations for transplantation 
purposes. The use of exosomes instead of intact 
allogeneic MSCs for therapeutic application 
holds numerous advantages such as high  stability, 
standardisation and ease of in  vivo delivery, as 
well as decreased risk of unanticipated effects.

In a recent review, Casado-Diaz et  al. [94] 
concluded that transplantation of MSC-derived 
exosomes resulted in faster and more optimal 
healing of diabetic and age-associated skin ulcers 
by modulating inflammation (most notably via 
suppression of IL1β and TNFα) and reducing 
scar formation (suppression of TGFβ) [94]. The 
cargoes within these extracellular vesicles are 
however crucial to ensure optimal target effects. 
In-depth sequencing studies are attempting to 
elucidate specific exosome constituents of impor-
tance whilst others focus on engineering exo-
some content for a greater therapeutic effect. For 
example, ADSC-derived exosomes containing 
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high concentrations of the circular RNA (cir-
cRNA), mmu_circ_0000250, were recently 
shown to promote wound healing in diabetic 
mice to a greater extent than exosomes with a low 
concentration of this specific circRNA.  The 
mechanisms of action were thought to be related 
to upregulation of sirtuin-1 expression and 
absorption of miR-128-3p to promote angiogen-
esis and suppress apoptosis [95, 96]. Similarly, 
injecting exosomes containing the long noncod-
ing RNA H19 (lncRNA H19) into diabetic foot 
ulcers in a mouse model limited inflammation via 
upregulation of the phosphatase and tensin homo-
log (PTEN) protein and, by doing so, promoted 
healing [97]. Of specific interest, Liu et al. [98] 
demonstrated that highly purified extracellular 
vesicles derived from human induced pluripotent 
stem cells (iPSCs) were able to alleviate the age-
ing phenotype of senescent MSCs by reducing 
intracellular ROS production through delivery of 
peroxiredoxin antioxidant enzymes. Together, 
these reports highlight the potential of exosome 
therapy in the context of age-related chronic 
inflammatory diseases.

The choice of stem/progenitor cells from 
which to prepare exosomes for therapeutic inter-
vention is however an important consideration 
since ageing- or disease-linked maladaptation can 
extend to the extracellular vesicles and alter their 
content. A comparison of bone marrow MSC-
exosome preparations derived from either healthy 
or type 1 DM rats indicated that diabetic MSC-
exosomes have an impaired ability to promote 
bone repair [99]. Similarly, pancreas- derived 
MSCs were implicated in the secretion of exo-
somes carrying the auto-immune antigen/trigger 
causing diabetes in non-obese diabetic (NOD) 
mice [100]. These exosomes could transfer the 
diabetogenic phenotype to healthy mice, which 
elucidates the caution that should be exercised in 
the choice or preparation of MSC-derived exo-
somes. On a more positive note, preconditioning 
of MSCs with LPS resulted in exosomes with a 
greater capacity to induce an anti- inflammatory 
macrophage phenotype (M2) and upregulated the 
expression of anti-inflammatory cytokines [101], 
confirming that exosome manipulation for thera-
peutic benefit may indeed be possible.

12.5.3.2  Probiotics: An Emerging 
Therapeutic Hope?

A very novel area of research with potential ther-
apeutic application is MSC-microbe interactions. 
It was recently shown that canine ADSCs assume 
a pro-inflammatory phenotype in response to 
direct contact (either cell surface binding or host 
cell invasion) with the pathogen Salmonella 
typhimurium as well as the commonly known 
probiotic Lactobacillus acidophilus [102]. More 
specifically, microbial exposure upregulated gene 
expression of inflammatory mediators, IL6, IL8 
and cyclooxygenase 2 (COX2) and increased 
secretion of IL6, IL8 and PGE2, without affect-
ing markers indicative of humoral immune acti-
vation (major histocompatibility complex 
(MHC)-II, CD80, CD86, CD1). The study fur-
ther demonstrated that chemotactic migration of 
ADSCs in a Matrigel-transwell system was 
inhibited by the pathogen, but not the probiotic. 
This chapter provided mechanistic evidence for 
the pro-inflammatory role of MSCs in situations 
where systemic inflammation is insufficient (as 
discussed and illustrated in this review), as well 
as qualifying the claim for “immune-boosting” 
effects often made for probiotics. The same study 
further reported that it was possible to tolerise the 
ADSCs by pre-exposure to these microbes, to 
result in a dampened inflammatory response to 
subsequent microbial exposure. Importantly, 
 neither the pathogen nor the probiotic resulted in 
either cell death, degeneration or compromised 
proliferation in the ADSCs [102]. In support of 
this study, other reports are emerging that provide 
indirect proof of the potential low-risk therapeu-
tic benefits of probiotics at the level of MSCs. 
Preconditioning of gingival MSCs with the 
Lactobacillus reuteri secretome (rich in the spe-
cific active reuterin) has been shown to improve 
their migration, proliferative and osteogenic dif-
ferentiation capacity, which in turn resulted in 
significantly faster wound healing (full thickness 
gingival wounds). A parallel in vitro experiment 
on these gingival MSCs revealed that the probi-
otic exerted its effect via activation of the phos-
phatidylinositol 3-kinase (PI3K)/Akt pathway to 
increase β-catenin-dependent upregulation of 
TGFβ and metalloprotease (MMP)-1 expression 
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[103]. The PI3K/Akt pathway is central to 
chronic inflammatory disease pathology, but the 
significance of these findings remains to be eval-
uated in suitable models of inflammatory 
pathology.

Similar to the findings above but more rele-
vant to DM, murine skin-derived precursor cells 
(SKPs) (which have the ability to differentiate 
into the mesenchymal lineages in  vivo) [104] 
were very recently reported to exhibit improved 
proliferation and self-renewal capacity after 
exposure to the secretome of the commensal lac-
tic acid bacterium Enterococcus faecium L-15 
[105]. Of interest to the topic of DM, the survival 
of this specific probiotic bacterium in the gut is 
disrupted via competitive inhibition by 
Enterococcus faecalis [106], which grows rela-
tively more abundantly as part of the gut dysbio-
sis characterising diabetes [107] and is commonly 
implicated in wound infection in diabetic foot 
ulcers [108, 109]. Current probiotic treatment in 
DM is however focused on the genera 
Lactobaccillus and Bifidobacteria, as E. faecium 
does not affect glucose metabolism (although it 
has positive effects on lipid profile) [110]. This 
relative unavailability of E. faecium in DM may, 
at least in part, contribute to the poorer MSC per-
formance seen in diabetic wound healing—and 
may be corrected with probiotic conditioning of 
diabetic MSCs. More research in this context is 
clearly warranted.

The studies discussed up to this point, although 
encouraging, have been limited to experimental 
models and, importantly, have been conducted in 
the absence of inflammatory or stem cell pathol-
ogy. To our knowledge, reports of direct benefits 
of probiotics on MSCs in the context of chronic 
inflammatory disease do not yet exist. However, 
in the context of tenofovir-associated osteoporo-
sis (mouse model), bone-derived MSC prolifera-
tion and osteogenic capacity were rescued after 
supplementation with the probiotic Lactobacillus 
rhamnosus GG [111], providing some support 
for successful translation of these data to condi-
tions of pathology.

12.6  Conclusion

From our search of the literature, it is clear that 
targeted stem cell therapy using either pharmaco-
logical agents, natural products or biological 
agents, at least in the context of chronic inflam-
matory disease, is still in its infancy. The above 
sections do however clearly suggest potential for 
the use of supplements and/or biologicals to tar-
get MSCs in the context of chronic inflammatory 
disease such as DM. It also highlights the impor-
tance of an integrated systems approach and thor-
ough understanding of complete disease 
pathology, in order to identify feasible candi-
dates. Finally, in terms of patient safety, recent 
advances in technology—such as MSC extracel-
lular vesicle isolation, or the synthesis and purifi-
cation of probiotic peptides via homologous 
expression systems [112]—will enable (low-risk) 
cell-free treatments specifically designed to 
address very specific targets on pathological 
MSCs.
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Abstract

Alzheimer’s disease (AD) is a neurodegenera-
tive disorder in which the death of brain cells 
causes memory loss and cognitive decline. 
Existing drugs only suppress symptoms or 
delay further deterioration but do not address 
the cause of the disease. In spite of screening 
numerous drug candidates against various 
molecular targets of AD, only a few candi-
dates, such as acetylcholinesterase inhibitors, 
are currently utilized as an effective clinical 
therapy. Currently, nano-based therapies can 
make a difference, providing new therapeutic 
options by helping drugs to cross the blood- 

brain barrier and enter the brain more effec-
tively. The main aim of this review was to 
highlight advances in research on the develop-
ment of nano-based therapeutics for improved 
treatment of AD.

Keywords
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13.1  Introduction

Alzheimer’s disease (AD) is a progressive neuro-
degenerative disease that involves loss of mem-
ory, thinking, and reasoning and several 
behavioral characteristics in elderly people. 
Approximately 47 million people suffer from 
dementia worldwide. This figure is anticipated to 
increase to more than 131 million by 2050 [1]. A 
complex of insoluble accumulations of beta amy-
loid protein (Aβ) plaques and tau neurofibrillary 
tangles in the brain suggests that these play a role 
in the pathology of AD [2–5]. However, the pre-
cise mechanism of how Aβ potentiates pathogen-
esis in AD is still not completely understood 
[6–9], while a vast number of studies on the 
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 presence of crosstalk between Aβ and many 
molecular signaling pathways have been done. 
Therefore, strategies for early detection as well 
as treatment of AD are among the most challeng-
ing and timely areas in modern medicine.

Currently, the most common strategies aim to 
treat AD through cholinesterase inhibitors and 
N-methyl-D-aspartate (NMDA) receptor antago-
nists. So far, memantine, donepezil, rivastigmine, 
and galantamine are the only drugs in use which 
have obtained Food and Drug Administration 
(FDA) approval for treatment of AD (Table 13.1). 
However, these drugs only have marginal effects 
on reducing disease symptoms or in delaying fur-
ther deterioration, as they do not target the under-
lying pathology [10].

In addition, the blood-brain barrier (BBB) is a 
formidable gatekeeper which prevents materials 
from the blood from entering the brain. However, 
the BBB is semi-permeable as it allows some 
materials to cross, but prevents others from tra-

versing it. The development of nanotechnology 
aims to overcome this problem through tethering 
of AD drugs to surface-modified nanoparticles 
(NPs). Nanomedical approaches provide new 
therapeutic options by helping drugs to enter the 
brain, thereby facilitating targeting of the direct 
cause of the disease. Crossing the brain- 
cerebrospinal fluid barrier requires specific tar-
geting ligands, which should be smaller and more 
stable than conventional approaches.

To cross the BBB and deliver a drug into the 
brain, various alternative strategies are required 
to effectively target Aβ production, aggrega-
tion, and clearance, as well as tau phosphoryla-
tion and assembly into neurofibrillary tangles 
[11, 12]. These include lipidic, polymeric, inor-
ganic, and other types of NPs. Nanoparticle 
development marks a crucial step in develop-
ment of nano- based drug delivery systems for 
direct targeting of pathological processes in the 
relevant tissues. In order to raise awareness for 

Table 13.1 FDA-approved drugs for AD treatment

Generic name Chemical structure
Brand 
name

Stage of AD 
approved Principally targeted

Memantine Namenda Moderate to 
severe

NMDA receptor antagonist

Rivastigmine Exelon Mild to 
moderate

Acetylcholinesterase and 
butyrylcholinesterase 
inhibitor

Galantamine Razadyne Mild to 
moderate

Donepezil Aricept All stages Selective 
acetylcholinesterase 
inhibitor

Memantine + 
donepezil

Namzaric Moderate to 
severe

Combined action

T. T. Nguyen et al.
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the potential of nanomedicine in combating 
AD, the current review highlights the most 
recent advances on production and testing of 
nano-based strategies for AD treatment 
(Fig. 13.1a).

13.2  Targeting the Amyloid 
Cascade

Aβ fibrillar formation and plaque clearance are 
considered to be the primary target in the treat-
ment of AD pathogenesis based on the amyloid 
cascade hypothesis. Due to high binding affinity 
toward the Aβ1–42 peptide (the “sticky” form of 
Aβ which leads to plaque formation), several 
lipid-based NPs have been developed as potential 
treatments. Gobbi et  al. developed a liposome 
functionalized with phosphatidic acid and cardio-
lipin to effectively target the Aβ1–42 form of Aβ 
with high affinity [13]. Intraperitoneal injection 
of this molecule resulted in decreased levels of 
Aβ in the brains of the APP/PS1 transgenic mice, 
a widely used model of AD [14]. Another study 
used curcumin-loaded nanospheres and found 

decreased Aβ load in the brains and an ameliora-
tion of the memory deficits in an AD mouse 
model [15]. Recently, a dopamine-melatonin 
nanocomposite (DM-NC) was developed that 
could be activated to release the melatonin cargo 
by a near-infrared and photothermal effect [16]. 
This led to inhibition of Aβ nucleation, self- 
seeding, and propagation as well as disruption of 
preformed Aβ fibers in neuroblastoma cells and 
in the brains of an AD mouse model. In addition, 
Karthivashan et al. reported on the development 
of NP-functionalized monoclonal antibodies that 
could target Aβ fibril formation [17]. Another 
study used an antibody-coated NP to effectively 
target cerebrovascular Aβ in the Tg2576 mouse 
model of AD [18]. In addition, several approaches 
using organic molecules to coat inorganic 
nanoparticles have been used to target Aβ cas-
cades in AD. Another study managed to enhance 
drug delivery across the BBB using a molecular 
Trojan horse such as a transferrin receptor-MAb 
[19], and lipoprotein bodies have also been devel-
oped which can deliver biomaterials to targeted 
sites within the brain for diseases such as AD 
[20].

Fig. 13.1 Current approach to the treatment of Alzheimer’s disease using nanocarriers
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13.3  Nanomaterials Against 
Amyloid Diseases

Amyloid fibrils have good affinity for nanoparti-
cles (NPs) through residue coordination. 
Therefore, drug-based NPs have an intrinsic pro-
pensity for binding to amyloid proteins. This 
effect is controlled by competitive protein- protein 
versus protein-NP interactions. If protein-NP 
interaction dominates, then Aβ fibrillation is 
either accelerated or inhibited [21, 22]. For 
example, gold (Au)-NPs are a typical nanomate-
rial that interacts with amyloid proteins based on 
the nature of their surface ligands. Citrate- and 
polyethylene glycol (PEG)-conjugated Au-NPs 
accelerated the fibrillation of Aβ, resulting from 
the conformational changes in pancreatic islet 
amyloid polypeptide (IAPP) induced by the 
Au-NPs, from random coils to α-helices and then 
to β-sheets [23]. However, when the size of PEG 
was increased to 3000 Da, the distance between 
the Au-NP surface and IAPP was increased, thus 
diminishing the acceleration effect [21]. 
Similarly, changing the concentration of NPs can 
induce different effects on amyloid fibrillization. 
Lago et  al. demonstrated that cationic polysty-
rene NPs accelerated the Aβ fibrillization at lower 
concentrations but inhibited the fibrillization at 
higher concentrations [24]. This effect was 
explained on the basis of a balance between 
fibrillization of free peptides in the solution ver-
sus surface-assisted nucleation and then fibril-
lization. In addition, curcumin-capped Au-NPs 
were found to inhibit Aβ fibrillization [25] and 
cadmium telluride (CdTe)-NPs interacted with 
Aβ via multiple binding sites to inhibit the pep-
tide fibrillization [26]. Another study showed that 
the hydrophobic surface of single-walled carbon 
nanotubes (CNTs) induced deposition of Aβ on 
their surface in a non-amyloid form [27].

In further studies of carbon-based nanomateri-
als, graphene quantum dots (GQDs) have been 
tested in amyloidosis due to their small size, 
hydrophobic nature, and strong binding with 
amyloid proteins [28]. Through a combination of 
hydrophobic interaction, H-bonding, salt bridg-
ing, and π-stacking, GQDs were found to inhibit 
Aβ formation in in vitro and in vivo models due 

to its conversion from α-helices and β-hairpins to 
random coils. A number of in vivo studies have 
tested nanomaterials in amyloid disease. These 
include polymeric NPs ligated with the lysine- 
leucine- valine-phenylalanine-phenylalanine 
(KLVFF) peptide that targeted Aβ and cleared the 
latter from the brain of an AD mouse model [29]. 
This amino acid sequence corresponds to the 
Aβ16-20 region which plays a critical role in 
generation of Aβ fibrils. In addition, 
 lipoprotein- based NPs crafted from apolipopro-
tein E3 demonstrated cross-talk ability with Aβ 
and bound and cleared Aβ monomers from trans-
genic AD mice [30]. All of these approaches 
faced the challenge of overcoming the complex-
ity of in vivo environments that could render NPs 
ineffective against amyloidosis. Another major 
challenge is the lack of suitable animal model 
systems with translational potential. Therapeutic 
modalities that show efficacy in mouse models 
have largely failed to show similar results in 
human clinical trials [31]. The pathology of amy-
loid diseases is related to aging and therefore 
involves multiple pathophysiological pathways. 
It remains a challenge to establish such transla-
tional animal models reflecting the variety of 
pathophysiological pathways involved in the 
onset and progression of amyloid-related dis-
eases [32]. NPs offer an opportunity to overcome 
such problems with their ability to transport bio-
active molecules across the BBB thereby reduc-
ing toxicity and improving therapeutic efficacy 
through targeting of the relevant tissues 
(Fig. 13.1b) [33, 34].

13.4  Nanotechnologies for AD 
Treatment

13.4.1  Targeting Androgen 
and Estrogen NPs

The gonadal steroids including estrogens and 
androgens play a critical role in central nervous 
system (CNS) development and function [35]. To 
decrease the risk of AD, estrogen treatment can 
promote the growth and survival of cholinergic 
neurons and significantly reduce cerebral amy-
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loid deposition [36]. Estradiol-encapsulated 
PLGA NPs have been used as an alternative 
approach to prevent AD syndrome [37, 38]. Also, 
an active anti-progesterone compound, mifepris-
tone (11β-[4-dimethylamino]phenyl-17β- 
hydroxy-17[propynyl]estra-4,9-dien-3-one), was 
found to slow down the progression of cognitive 
decline in AD patients because of its mechanism 
related to P-glycoprotein (P-gp) transporter- 
mediated efflux of Aβ [39]. In addition, encapsu-
lation of mifepristone within poly(ethylene 
glycol)-block-poly(lactide) (PEG-b-PLA) NPs 
enabled evaluation of the increase in drug bio-
availability after oral administration [40]. The 
use of nano-delivery systems offers a means of 
overcoming high-dosage requirements that are 
normally due to poor pharmacokinetics associ-
ated with the conventional drug delivery systems 
[41]. With advancements in technology, the car-
rier techniques offer additional functionalities 
such as specific molecular targeting enabling 
higher efficiencies. For these reasons, the use of 
NPs as drug delivery systems has been studied in 
different diseases [42].

Localized drug release has received consider-
able attention, due to the non-invasive character, 
reduction of side effects, and improved control 
over bio-distribution [43]. This has been achieved 
due to the smaller size of nanomaterials (typi-
cally ranging from one to several hundred nano-
meters) compared with other delivery systems, 
as well as appropriate charge and a higher 
surface- volume ratio [43, 44]. In the case of the 
neuronal system, the BBB is one of the major 
challenges due to its highly selective semiper-
meable border that separates the circulating 
blood from the brain and extracellular fluid in 
the CNS [45, 46]. With molecular weights less 
than 400 Da and sizes below 100 nm, the partic-
ulates lipophilic nature allows them to pass eas-
ily through the BBB through diffusion 
mechanisms [47]. In addition, the various nano-
technology-based approaches meet this demand 
by improving efficacy and sustained release of 
the entrapped drug. Such effects have now been 
demonstrated in many studies involving use of 
nanomaterials as drug delivery systems [38, 48–
61] (Table 13.2).

13.4.2  Polymeric Nanoparticles

Encapsulation of active compounds, such as per-
fumes, in polymeric microcapsules is the current 
method of choice for protection from aggressive 
environments and sustained release in consumer 
goods. Although polymeric shells provide robust 
encapsulation, they do present some drawbacks, 
like a poor deposition on targeted substrates and 
a release mechanism restricted to mechanical 
force [62, 63]. The lactic-co-glycolic acid 
(PLGA) form of NPs is an example of this for 
pharmaceutical applications [63]. In addition, a 
PLGA-block-PEG has been conjugated with tri-
phenylphosphonium (TPP) to form PLGA-b- 
PEG-TPP in targeting inflammation as an AD 
treatment [64, 65]. Biodegradable PLGA NPs 
have also been found to have neuroprotective 
effects in treatment of AD [66], and coenzyme 
Q10 (CoQ10)-loaded PLGA NPs have been 
employed to minimize the cytotoxicity of Aβ and 
rescued memory in an AD mouse model [67]. In 
addition, HDL-associated α-tocopherol treated 
with lipophilic compounds has been shown to be 
efficiently and selectively taken up in the brain in 
AD studies [68], and enhanced delivery of plasma 
apolipoprotein A-I via manipulation of HDL 
transcytosis has been developed as a treatment 
for brain disorders [69–71]. Also, specific ligands 
and antibodies have been conjugated into solid 
lipid NPs and demonstrated in both in vitro and 
in  vivo studies to reduce Aβ aggregation 
[72–76].

13.4.3  Inorganic Nanoparticles

Considering the rapidly aging population and the 
resulting increase in the incidence of dementia, 
there is an urgent need to address the risk pre-
sented by this disease. One way is through the 
use of NPs that can effectively deliver their thera-
peutic cargo directly to the brain. Once in the 
brain, NPs can have major effects, such as ame-
lioration of harmful reactive oxygen species 
(ROS) activity and reduction of Aβ aggregation 
behavior as occurs in AD pathophysiology [77]. 
Some biocompatible NPs have been developed 
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and suggested to have therapeutic potential, such 
as biopolymers, chitosan, gelatin, polymers, and 
metal-NPs [78]. Many novel agents for minimiz-
ing Aβ aggregation and delaying Aβ fibrillation 
have been developed as monomers [79], gold 
 carriers [80], a magnetic core [81], carbon-based 
NPs [60, 82, 83], and graphene oxide sheets [82]. 
For example, a report showed that graphene 
oxide (GO)/Au-NPs disrupted Aβ aggregation 
and cytotoxicity in vitro [84] and nano-metallo- 
supramolecular complexes were found to sup-
press Aβ-induced biosynthesis of heme and iron 
uptake in PC12 cells [85]. Quantum dots (QDs), 
which are colloidal fluorescent semiconductor 
nanocrystals with a diameter of 3–30 nm, have 
been used to treat AD by targeting mitochondrial 
dysfunction [86]. The inhibitor dihydrolipoic 
acid (DHLA) has been conjugated with QDs 
which inhibited Aβ1–42 fibrillation with rapid 
kinetics [87].

A novel approach using molybdenum disulfide 
(MoS2)-NPs was developed and applied to pre-
vent Aβ aggregation and destabilize Aβ fibrils 
in vivo [88]. In addition, ceric oxide (CeO2)-NPs 
have been considered as recyclable ROS scaven-
gers due to their shuttling capacity between Ce3+ 
and Ce4+ oxidation states [89, 90]. Therefore, 
these CeO2-NPs could be a potential therapeutic 
candidate for treating mitochondrial oxidative- 
stress- induced damage in AD. Another study used 
nasal application of titanium oxide (TiO2)-NPs as 
a model of neurotoxicity in mice and found 
decreased activities of glutathione peroxidase, 
catalase, and superoxide dismutase [91]. This lat-
ter system could be used as a model for the screen-
ing of compounds that can delay or ameliorate 
oxidative damage in the brain. Table 13.3 shows a 
number of potential NP-based delivery systems to 
treat various pathophysiological effects observed 
in Alzheimer’s disease [92–104].

Table 13.2 Representative NPs for Alzheimer’s disease studies

Nanoparticle 
form

Size 
(nm) Structure Properties AD targeted Example

Liposomal 10–
100

Spherical vesicles Biodegradability Aβ, cholinergic 
dysfunction

mApoE [48] H102 
[49]
XO4 [50]

Chitosan <70 Modified 
polysaccharides

Biocompatibility
Biodegradability

ACh Tacrine [51]
GH [52] Piperine 
[53]

Synthetic 
polymeric

100–
300

PLGA, PEG Solubility
Permeability

Aβ
Tau
Estrogen

Estradiol [38] 
RVG29 [54]
D-peptide [55] 
siRNA [56] 
shRNA [54]

Gold 1–100 Metal-NPs Low cytotoxicity Aβ
Tau
ACh

Tau-mab [57]

Magnetic <70 Metal-NPs Metal-ion chelators Aβ
Tau
ROS

TPP [58]

Carbon 
nanotubes

1–100 Allotropes of 
carbon

Advanced thermal 
conductivity and cell 
penetration

Aβ
ACh
ROS

Ach [59]

Carbon dots 1–10 Tunable 
zero-dimension

Photoluminescence 
Biocompatibility
Nontoxicity

Aβ
ACh

Transferrin [60]

Curcumin <100 Natural Polyphenolic antioxidant, 
ROS scavenger

Aβ
Tau

[61]
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13.4.4  Mitochondrial Targeting

Mitochondria are vital organelles involved in cell 
survival and maintenance, which play a central 
role in energy production and important pro-
cesses such as apoptosis [105]. Therefore, they 
have been recognized as a potential therapeutic 
target in multiple disorders, such as 
AD. Mitochondrial dysfunction has been shown 
to trigger AD pathology due to formation of Aβ 
plaques and neurofibrillary tangles [106]. The 
findings of other studies have suggested that 
mitochondrial dysfunction contributed to synap-
tic abnormalities and neuronal degeneration in 
AD [107, 108]. Additionally, mitochondrial dys-
function is known to be one of the earliest events 
in AD [108–110]. In addition, post-mortem brain 
studies have shown that Aβ accumulates in the 
mitochondria of AD patients [111–113].

Notably there are likely common mechanisms 
that link mitochondria and autophagy dysfunc-
tion in AD such as aging, immune dysfunction, 
and others [114–117]. Among common antioxi-
dants, the mitochondrial respiratory chain mole-
cule CoQ10 is known as a potential treatment 
against excessive ROS production and has been 
suggested as a potential treatment in AD in both 
in vitro and in vivo studies [118–120]. Although 
the molecule is relatively safe and well-tolerated, 
there have been no published clinical trials of 
CoQ10 in AD [119]. Studies have shown that the 
benzoquinone idebenone, which targets mito-
chondria, inhibited Aβ-induced neurotoxicity in 
both in  vitro and in  vivo studies [121, 122]. In 
addition, other antioxidants such as lipoic acid, 
vitamins C and E, and glutathione (GSH) have 
also been investigated in clinical studies of mild 
cognitive impairment and AD [123–125]. Thus 
far, lipoic acid has been shown to prevent the 
decline of cognitive processes in AD patients 
[126, 127].

Another possibility is to use lipophilic cations 
such as triphenylphosphonium (TPP) to target 
mitochondria directly [128] (Fig.  13.2). One 
study conjugated TEMPOL to the TPP cation to 
produce MitoTEMPOL.  This accumulated in 
energized mitochondria where it was reduced by 
direct reaction with mitochondrial ubiquinol. The 

authors described this as a way of using 
mitochondria- targeted compounds to modulate 
the mitochondrial CoQ10 pool in vivo [129].

13.5  Targets for Future Drugs

Aβ is the chief component of plaques, one hall-
mark of Alzheimer’s disease. We now have a 
detailed understanding of how this protein 
 fragment is cleaved from the amyloid precursor 
protein (APP) and how the toxic Aβ1-42 fragment 
is generated. Researchers have therefore 
attempted to develop new medications aimed at 
almost every point in the APP processing path-
way, including blocking activity of the process-
ing enzymes β- and γ-secretase, blockade of 
plaque formation, and use of antibodies against 
Aβ plaques to clear these from the brain [130].

Other treatments are aimed at preventing the 
tau protein from collapsing and twisting into tan-
gles that destroy neuronal signaling [131, 132]. 
AADvac1 is a vaccine that stimulates the body’s 
immune system to attack the toxic form of the tau 
protein [133]. Initial results have shown that 
98.2% of participants who were given the vac-
cine generated antibodies to the tau protein and 
there were no differences in adverse events 
between the treatment and control groups. 
Furthermore, several biomarkers known to be 
altered in AD showed trends [134], which sug-
gested that AADvac1 may slow disease progres-
sion. In line with this, AADvac1 treatment led to 
positive changes in some cognitive endpoints. 
Other new treatments target inflammation which 
appears to be a root cause of the disease [135].

13.6  Conclusion, Challenges, 
and Future Perspectives

Current pharmacologic research in AD focuses 
principally on the development of disease- 
modifying drugs that can slow or prevent AD 
progression [136]. Advances in the appropriate 
design and fabrication of NPs can effectively 
overcome conventional neurotherapeutic hurdles 
such as oral and gastric barriers, as well as that of 
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the BBB in the delivery of drug candidates to 
their intended site of action in biological systems. 
Alternatively, several studies have revealed that 
NPs can effectively cross the BBB and exert 
inhibitory effects. Other polymeric NPs have also 
been found to have enhanced targeting and effi-
cacy at specific pH values and temperatures 
[137]. This requires suitability of size, shape, and 
charge, as well as the correct surface properties 
of the appropriate biocompatible nanocarrier in 
targetting the appropriate site or mechanism of 
action.

Another potenital avenue involves the use of 
mitochondria-targeted therapeutic interventions 

that could be translated from in vitro and in vivo 
studies to human clinical trials. Potential treat-
ments in the future include the use of devices to 
infuse neurotrophic factors, such as growth fac-
tors, to ameliorate AD symptoms and disease 
progression. It is now clear that Aβ deposition, 
tau neurofibrillary tangles, and neuroinflamma-
tion are involved in the pathophysiology of AD 
and the generation of toxic forms of Aβ and tau 
oligomers appear to be precipitating steps in the 
disease process [138]. Therefore targeting target-
ing these forms of the molecules with 
NP-functionalized monoclonal antibodies might 
lead to greater success in clinical studies. Finally, 

Fig. 13.2 Targeting mitochondrial metabolism
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more studies are required on the pharmacokinetic 
and pharmaco-dynamic profiles of the released 
drugs prior to translation into clinical studies. 
Hence, an evaluation of the safety and efficacy of 
suitable NPs through human clinical trials should 
be performed to identify the most promising 
cost-effective AD therapeutics for future use. 
This work should provide the required systematic 
knowledge to develop optimal NPs targeting spe-
cific AD pathologies and pave the way to 
improved therapeutic options for individuals suf-
fering from this debilitating neurodegenerative 
disoder.
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Abstract

Recent events regarding the COVID-19 pan-
demic have demonstrated the importance of 
healthcare workers around the world and the 
stressful working conditions that are often 
associated with their profession. The severity 
of stress can be influenced by a number of fac-
tors such as age, seniority gender, family sta-
tus, and position in the wards. Thus, it is 
important to monitor signs of stress and other 
psychiatric symptoms in order to understand 
the mediating factors and guide appropriate 
interventions. Here, we describe a cross- 

sectional study of 17,414 nurses from 31 
Iranian cities carried out from 2011 to 2015, 
using a 22-item tool of work stressors. The 
tool examined interactive, managerial, and 
situational domains and the main objective 
was to identify the main background variables 
associated with the stress of nurses in critical 
care settings.
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14.1  Introduction

Nursing is a job with a high level of stress, espe-
cially in critical care units (CCUs), including 
intensive care units [1, 2]. Occupational stress in 
the healthcare area is associated with specific 
situations, such as problems with co-workers, 
conflicts, double shifts, pressure from superiors 
according to the individual’s perception, changes 
in occupation, and coping with emergency situa-
tions. Among the healthcare professionals, nurses 
often suffer from the consequences of occupa-
tional stress, showing problems such as dissatis-
faction with work, burnout syndrome, and 
absenteeism [2–4].

This situation has come more into the public 
eye with the COVID-19 outbreak, which has now 
spread to more than 200 countries and territories 
worldwide [5]. Healthcare workers who are 
directly involved in the diagnosis, treatment, and 
care of patients with this deadly virus are at high 
risk of both physical and mental harm. The wide-
spread media coverage and increasing number of 
cases and deaths, along with the overwhelming 
workload, inadequate supply of personal protec-
tive equipment, and current lack of effective 
treatments, can contribute to the mental health 
effects on these key workers. Previous studies on 
the severe acute respiratory syndrome (SARS) 
outbreak in 2002–2003 reported detrimental psy-
chological effects in healthcare workers on the 
front lines [6–10]. Similar effects on healthcare 
workers were reported during and in the after-
math of the Middle East respiratory syndrome 
(MERS) outbreak which began in 2012 [11–14].

One factor that can affect stress and anxiety 
levels is age. Epidemiologic surveys of the gen-
eral population have found that anxiety disorders 
occur more frequently in younger adults com-
pared with older individuals [15, 16]. Conversely, 
depression occurs more often in older adults 
compared to the younger population [17, 18]. 
Working in CCUs has also been positively asso-
ciated with greater stress levels. The crucial 
responsibilities of nurses in critical and intensive 
care include the operation of sophisticated tech-
nologies and fast decision-making, which can be 
affected by excessive workload, different man-

agement styles and skills, professional disagree-
ments, and the emotions involved in caring 
[19–22]. Such characteristics and conditions can 
lead to both emotional and mental stress for 
nurses working in CCUs, and this can lead to an 
inability to cope and cessation of work [1]. 
Therefore, it is important to develop and apply 
tools to aid in assessing the stress levels of CCU 
nurses.

To understand the stressors and the means of 
their resolution, several studies have been con-
ducted. Although different tools have been devel-
oped for this purpose, a major point that has been 
omitted in most of these is social and environ-
mental differences in different hospitals and dif-
ferent social and cultural environments [19–21]. 
An instrument to adequately measure stress and 
which incorporates these factors is of prime inter-
est in public health research.

In order to investigate the stressors of nurses 
in special sectors in Iran, we carried out a com-
prehensive study across Iran to assess the impact 
of culture, facilities, access to services, and types 
of patients in relation to nurses’ stress levels. We 
used a partial least square (PLS) approach for 
psychometric evaluation of a stress scale among 
17,414 nurses across 31 Iranian cities. Our main 
objective was to provide a system for assessing 
the mental health of nurses and other healthcare 
workers during the continuing COVID-19 crisis 
and future pandemics.

14.2  Methods

14.2.1  Design, Setting, 
and Procedures

The details on methodology of this study have 
been reported elsewhere [1]. Briefly, a cross- 
sectional study was conducted in 31 Iranian cities 
during the period between January 1, 2011, and 
December 1, 2015. A multistage cluster random 
sampling scheme was used to collect all data. In 
a second stage, ten hospitals were selected ran-
domly as clusters in each city. In the final stage, 5 
hospitals with more than 100 working nurses in 
CCUs were selected through a cluster random 
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sampling scheme. In 5 of the cities, the hospitals 
had fewer than 100 critical care nurses, in which 
case all 10 hospitals were selected. The partici-
pants who were (1) aged >18 years, (2) registered 
nurses, (3) working in the intensive care unit 
(ICU), and (4) willing to participate in the study 
were included and those who were not available 
to complete the questionnaire were excluded. 
The eligible and consenting nurses completed the 
two-part survey including the demographic and 
work stressor variables, which typically took 
place over 10–15 min.

14.2.2  Ethical Considerations

The study was approved by the institutional 
review board at Baqiyatallah University of 
Medical Sciences (Tehran, Iran). The ethical 
issues were reviewed and approved by ethical 
committee of each hospital. Since the research 
presented no more than minimal risk of harm to 
participants and involved no procedures for 
which written consent is normally required out-
side the research context, the principle of implied 
consent was adopted. This meant that by comple-
tion of the survey instrument, the participant 
demonstrated their willful consent to participate 
after the purpose of the study was explained to 
them. The participants were free to take part, to 
refuse, or to withdraw from the study at any time, 
and confidentiality of personal data was guaran-
teed to them. Although Iranian medical ethics 
laws (http://mehr.tums.ac.ir/Codes.aspx) do not 
specifically address this topic, it is in accordance 
with other international ethics codes and laws 
including the US Federal Code of Regulations 
(45 CFR 46.117c). All parts of the study were 
reviewed and reported according to the 
Strengthening the Reporting of Observational 
Studies in Epidemiology statement [23].

14.2.3  Sample Size

The sample size determination process was 
reported elsewhere [1, 22], considering 95% con-
fidence level and 90% power and taking into 

account the main outcome of relations between 
background variables and stress. A total of 17,414 
nurses took part in the study. This sample size 
was higher than the minimal requirement sample 
size to conduct PLS confirmatory factor analysis 
(PLS-CFA) that assumes ten times the largest 
number of structural paths directed at a particular 
construct in the structural model [24].

14.2.4  Measurements

The measurements used in this study consisted 
of demographic/background variables and work 
stressor items. In the first part, the demographic/
background variables involved age, gender, 
marital status, number of children, body mass 
index (BMI), education level, years of critical 
care nursing experience, shift schedule, fre-
quency of working holidays, and ratio of nurses 
to patients and hospital. A 22-item tool of work 
stressors was administered (Table  14.1) as 
reported previously [1, 22]. This list was 

Table 14.1 Stressful situations scale with 22 items

1. Dealing with patient’s pain and suffering
2. Family presence
3. Heavy workload
4. Relatives’ reaction
5. Time pressure
6. Communicating bad news
7. The necessity of having continual readiness for 
emergency procedures
8. Death & dying
9. Staff shortage
10. Non-nursing tasks
11. Patients’ reactions
12. Physician not available
13. Instability of patient’s clinical condition
14. Lack of resources
15. Working extra hours
16. Physicians’ demands
17. Decision-making
18. Unpleasant tasks
19. Shift rotation
20. Poor cooperation in dialysis, CCU, and ICU
21. Poor cooperation & communication in other depts.
22. Disproportionate between salary and job hardness

CCU critical care unit, ICU intensive care unit
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extracted in nursing working environments in 
CCU wards, categorized and prioritized qualita-
tively and quantitatively. The items were quanti-
tatively prioritized by three panels of experts 
with the output from each step used as the input 
for the next step, to arrive at a final list. A quali-
tative analysis consisted of unstructured inter-
views administered utilizing content analysis, 
and the categories of nursing job stressors were 
extracted. Finally, the items in the quantitative 
and qualitative parts were merged, and the scale 
was derived and validated in a 3-classic-round 
Delphi technique [25].

The expert panel consisted of five psychiatric 
nurses, one psychologist, one psychiatrist, five 
ICU nurses, five CCU nurses, five dialysis unit 
nurses, three intensivists, three cardiologists, 
three nephrologists, and five ICU administrators. 
After the sessions, the Kendall’s k agreement 
coefficient test was 0.89 which indicated a good 
agreement [26].

The final scale consisted of three subscales: 
(1) interactive and communicative (items 1, 2, 4, 
11, 20, and 21), (2) managerial and administra-
tive (items 3, 9, 10, 12, 14, 15, 16, 19, and 22), 
and (3) exclusive and situational (items 5, 6, 7, 8, 
13, 17, and 18). Items assessing work stressors 
were rated on a five-point Likert-type scale rang-
ing from “1: causes me no stress” to “5: causes 
me extreme stress.” The total score of the scale 
was calculated by sum over the items and the 
scores on subscales were calculated by sum over 
the items on that subscale. The total scores ranged 
from 22 to 110 with higher scores indicating 
higher stress.

The content validity of the scale was assessed 
both quantitatively and qualitatively by the expert 
panel. In the quantitative part, the content validity 
index (CVI) and content validity ratio (CVR) 
were calculated based on a designed form con-
sisting of questions relating to the relatedness, 
simplicity, and clarity using a four-point ranking 
scale. In the qualitative part, the experts had some 
recommendations on modification of some 
words, sentences, and/or structure of the items 
which were implemented and the scale was final-
ized accordingly.

Based on the results of a pilot study [1, 22], 
the threshold for significant stress was set at 67, 
with higher values being indicative of the high-
est stress levels. This cutoff was derived using 
both qualitative and quantitative assessments, 
with the latter conducted by receiver operating 
characteristic curve analysis (results not 
shown).

14.2.5  Statistical Analyses

Statistical analysis was conducted using STATA 
(ver.13) (StataCorp LLC, College Station, TX, 
USA) and SmartPLS (ver. 3.2.8) (https://www.
smartpls.com) software and P-values <0.05 were 
considered as significant in all analyses. 
Normality of the numeric variables was checked 
by the Kolmogorov-Smirnov test and data were 
expressed as mean (SD) and median (min-max) 
for the numeric normal and non-normal vari-
ables, respectively, and frequency (%) for cate-
gorical variables.

PLS-CFA was used to assess the construct 
validity of the scale, by PLS structural equation 
modeling (PLS-SEM). A second order PLS-CFA 
was fitted to the data. In the first step of the 
model, three subscales of interactive, managerial, 
and situational stress comprised the items, and, in 
the second step, the stress scale comprised the 
three subscales. PLS-SEM lacks a fitting index of 
the chi-square-based model to assess the theoreti-
cal model adjustment with collected data, unlike 
covariance-based SEM (CV-SEM), which 
depends on the predictive nature of PLS. 
Therefore, fitting the indices in this approach was 
associated with assessment of model adequacy in 
prediction of dependent variables [27]. To mod-
ify this and reaching an adequate model, all items 
with loadings less than 0.5 were removed from 
the model one at a time, and the indices assessed. 
This process continued until the model achieved 
a suitable reliability and validity.

To test the reliability of reflective measure-
ment model, we assessed three indices: 
Cronbach’s alpha, composite reliability or 
Dillon-Goldstein’s p, and communality. For 
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Cronbach’s alpha, values higher than 0.7 indi-
cated acceptable reliability, and alpha values 
between 0.6 and 0.7 were acceptable for 
exploratory models. Also, composite reliabil-
ity was utilized to evaluate internal reliability 
of constructs, wherein reliability was not cal-
culated absolutely but in regard to their corre-
lation with each other. Composite reliability 
values higher than 0.7 indicated suitable inter-
nal consistency of the measurement model and 
values lower than 0.6 showed lack of 
reliability.

The reflective measurement model was 
homogeneous if the absolute value of a loading 
factor corresponding with a construct in the 
model was at least 0.7, equal to a communality 
of 0.5 (0.7*0.7) [28]. To assess the validity of 
the reflective measurement model, we checked 
both convergent validity and discriminant 
validity. For convergent validity, average vari-
ance extracted (AVE) was used which indicates 
shared average variance between every con-
struct with its indices. This shows the correla-
tion of an index with itself with higher 
correlation reflecting a better fit. Discriminant 
validity measures the ability of the reflective 
measurement model for discrimination in the 
model [24]. AVE values higher than 0.5 showed 
acceptable convergent validity and discriminant 
validity was acceptable when the AVE for every 
construct was more than the shared variance 
between that construct and others (i.e., the 
square of the correlation coefficient between 
constructs) [29, 30].

Using goodness of fit (GOF) criteria, we 
assessed the general fit of the model. GOF is the 
square root of multiplying the “average coeffi-
cient of determination” by the “average commu-
nality index of construct” [31]. Wetzels et  al. 
introduced the values of 0.01, 0.25, and 0.36 for 
weak, middle, and strong GOF of a general 
model [32]. The R squared values indicate the 
coefficient of determination, with values of 0.19, 
0.33, and 0.67 indicating weak, middle, and good 
prediction ability [33].

Next, the relationship between total stress 
scores and the PLS-indicated components with 
background variables was modeled using gen-

eralized estimating equations (GEE). The 
model was built in a multivariate manner and 
included the explanatory variables of gender, 
education level, marital status, working shift, 
patient-to- nurse ratio, collaboration, supportive 
supervisor, working in holiday, ICU type, ICU 
system, age (years), clinical experience (years), 
BMI (kg/m2), children (number), and ICU beds 
(number). The compound symmetry covariance 
structure took into account the structure intro-
duced by the 31 cities. The categorical variables 
were entered in the model as indicators. 
Regression coefficients and their standard error 
were estimated.

14.3  Results

From 21,767 administered surveys, 17,414 
cases returned valid surveys with a confidence 
interval (CI)  =  79.5–80.5%. The surveys were 
completed in ICUs (n  =  370), coronary care 
units (n = 240), and dialysis units (n = 180) at 
180 educational and private hospitals. The 
details on demographic characteristics of the 
participants are provided elsewhere [1]. Briefly, 
the mean age of participants was 29  years 
(SD  =  5.4; range  =  21–43  years), 31% of the 
participants were male, and the ratios of patients 
to nurses were 3, 2, and 1 for 5.4%, 10.2%, and 
84.4%, respectively. The mean job experience 
of the participants was 16.5  years (SD  =  6.4; 
range = 4–27 years). The mean stress score was 
69.2 out of 100 points (SD = 3.2; range = 62–84). 
Approximately 71% (95% CI  =  70.3–71.7%) 
exceed the cutoff score of 67 for significant 
stress.

14.3.1  Content Validity

Based on the opinion of 36 experts in the field, an 
impact score  >  1.5, CVI values >0.75, and 
CVR > 0.42 confirmed face validity and content 
validity of the items in this instrument 
(Table 14.2). For the qualitative analysis, required 
modifications were made according to the inte-
grated experts’ opinions.
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14.3.2  Construct Validity

A second-order PLS-SEM was fitted. In the first 
step, three subscales of interactive, managerial, 
and situational stress comprised the items, and in 
the second step, the stress scale comprised the sub-
scales. The initial model (Fig. 14.1) was modified 
by iteratively removing each single item (with 
<0.5 lowest loadings). In the modified model 
(Fig. 14.2), the reliability and validity of the model 
and the adequacy were assessed. The model 
showed adequate fit (R2 = 0.77, 0.83, and 0.63 for 
interactive, managerial, and situational subscales) 
indicating middle to good predictive ability of the 
subscales. This suggested a generally suitable fit 
of the CFA-PLS model (GOF = 0.642 > 0.36). In 
addition, path coefficients relating items to the 
subscales and those relating subscales to the stress-
ful total scale were all significant (P < 0.05).

14.3.3  Reliability

For stability reliability, composite reliability, 
and internal consistency reliability, indices with 
values >0.7 confirmed the reliability of the 
instrument (Table 14.3). Cronbach’s alphas for 
all subscales were in the range of 0.63–0.79, 
indicating suitable internal consistency reliabil-
ity of the indices. For the total scale, the 
Cronbach’s alpha was 0.85, indicating a good 
level of internal consistency of the stress scale 
(Table 14.3). The values of composite reliability 
for all constructs were also >0.7, which indi-
cated suitable internal consistency of the con-
structs (Table 14.3).

14.3.4  Convergent Validity

The AVE value for all subscales was higher than 
0.5, indicating suitable convergent validity 
(Table 14.3).

14.3.5  Discriminate Validity (the 
Fornell-Larcker Criterion)

Application of the Fornell and Larcker method 
showed that the model had acceptable divergent 
validity as the values of the principle diameter 
(i.e., the correlation among the subscales by 
itself) were higher than the correlations between 
a variable and other variables (Table 14.4), indi-
cating the discriminate validity of the instrument 
[30].

14.3.6  Relationship Between Stress 
Components and Background 
Variables

The results of GEE on assessment of the rela-
tionship between total stress scores and PLS- 
indicated components with background 
variables are given in Table  14.5. The results 
were significantly higher for males, higher 
education levels, and separated or widowed 
individuals. Also the finding indicated signifi-
cantly higher interactive, managerial, and total 
stress in rotation working shift and signifi-
cantly lower scores of situational stress in rota-
tion working shifts. High-level collaboration 
was associated with significantly lower stress 
scores, and supportive supervisor was associ-
ated with significantly lower interactive and 
total stress scores. Working in holidays was 
associated with significantly higher managerial 
stress. Age, clinical experience years, and 
number of children had an inverse relationship 
with stress.

Table 14.2 Face and content validity of the instrument

Value
Face validity (impact score) 2.09–4.67
Content validity (CVR) 0.42–0.68
Content validity (CVI) 0.63–0.93
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Fig. 14.1 Outer loadings for initial second-order PLS-SEM for stress scale
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14.4  Discussion

This study has described the use of the working 
nurses stress scale in critical care units and con-

firmed its reliability and validity in Iran based 
on a PLS-SEM approach. This is the first time 
that such a tool has been developed with a suf-
ficiently large sample size across different hos-

Table 14.3 Stability, composite reliability, internal consistency reliability, and average variance extracted of the 
instrument

Reliability
Stability 
(test–retest)

Composite 
reliability

Internal consistency (Cronbach’s 
alpha)

Average variance 
extracted

Stressful 0.87 0.850 0.890 –
Interactive 0.81 0.793 0.632 0.567
Managerial 0.88 0.859 0.794 0.554
Situational 0.84 0.822 0.713 0.543

Fig. 14.2 Outer loadings for modified second-order PLS-SEM for stress scale. *All paths were significant (P < 0.05)
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pital units in Iran, in accordance with Iranian 
culture. The face and content validities of the 
scale were confirmed by the opinions of a panel 
of experts. The construct validity was also satis-
fied by the PLS method. The model had a good 
level of adequacy and high coefficient of deter-
mination values. All item-subscale and sub-
scale-scale relationships were statistically 
significant. The Fornell-Larcker criterion and 
AVE assessments indicated that the convergent 
validity and discriminant validity of the mea-
sure were satisfied. The test-retest reliability, 
internal consistency reliability, and composite 
reliability were also at satisfactory level for sub-
scales and whole scales.

It is important to mention that we used the PLS 
approach of SEM, and not a covariance- based 
method, since PLS has minimal requirements on 
measurement scales, sample sizes, and residual 
distributions. In addition, the PLS approach 
focuses on maximizing the variance of the depen-
dent variables explained by the independent vari-
ables and thereby avoids the problems of 
inadmissible solutions and factor indeterminacy 
associated with a covariance- based approach 
[34]. The algorithm involved in the PLS approach 
comprises a series of ordinary least squares equa-
tions and, therefore, identification is not a prob-
lem for recursive models. In addition, second-order 
PLS procedures were used in this study, which 
can be estimated by the standard PLS algorithm 
[24]. Finally, PLS is considered a better approach 
for clarifying complex relationships [34, 35]. PLS 
assumes consistency of the parameter estimates 
and this was satisfied in our study considering the 
large sample size. Standard errors need to be esti-
mated in PLS through resampling procedures 
such as jackknifing or bootstrapping, and p-values 
of coefficients can be estimated by the jackknife 

method resulting from a blindfolded resampling 
technique [36].

The application of the tool developed here 
revealed that age, gender, education, marital sta-
tus, working shift, system collaboration and sup-
port difference, working experience, and child 
number were significantly associated with stress 
levels of critical care nurses in Iranian hospitals, 
supporting the discriminant validity of the scales 
and subscales. Previous instruments designed for 
stress evaluation of nurses have been conducted in 
different countries, although these were limited 
with respect to the type of hospital ward and sam-
ple size. The most established and widely used 
tool designed for measuring the frequency and 
major sources of stress experienced by nurses on 
hospital units is the Nursing Stress Scale (NSS), 
which uses a 34-item, 4-point Likert scale [37].

The results of the current scale showed consis-
tency with previous studies [38], and the high 
Cronbach’s alpha (0.85) revealed a good level of 
internal consistency, confirming its reliability as 
an instrument for assessment of stress in Iranian 
nurses. The final version of this tool included 22 
items in 3 domains: interactive and communica-
tive (6 items), managerial and administrative (9 
items), and exclusive and situational (7 items) 
subscales. In previous studies, job stressors for 
nurses were categorized into six broad domains: 
(1) intrinsic job characteristics; (2) organizational 
roles; (3) work relationships; (4) career growth 
issues; (5) organizational factors including cli-
mate, structure, and culture; and (6) the home- 
work interface. All six of these components are 
included in three domains of the instrument 
developed in the present study. This resulted in 
the present instrument having fewer items than 
previous tools. We suggest that the use of lower 
numbers of items increases the willingness of 
participants to the tool.

The items of the first subscales (interactive and 
communicative) include dealing with patients’ 
pain and suffering, family presence, relatives 
reactions, patients’ reactions, poor cooperation in 
the intensive care unit, and poor cooperation and 
communication in other departments. These items 
are in line with other studies which found that 
poor relationships with individuals from other 

Table 14.4 Discriminate validity (Fornell-Larcker crite-
rion) of the instrument based on latent variable 
correlations

Interactive Managerial Situational
Interactive 0.760
Managerial 0.727 0.744
Situational 0.589 0.544 0.736
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professions may lead to lower levels of confi-
dence and higher stress levels and better relation-
ships with other professions [39]. In addition, 
exposures to pain, suffering, and traumatic life 
events that nurses experience on a daily basis can 
contribute to stress [40]. Similarly, another study 
showed that the least stressful subscale was inad-
equate preparation to deal with emotional needs 
of patients and families (feeling inadequately pre-
pared to help with the emotional needs of patients 
and their families), and factors of the intense emo-
tional support needed for patients and families are 
another burden of stress placed on nurses [41].

Studies have shown that an individual nurse 
may behave differently in their perception of 
stress. The results of the previous study [1] 
showed that age, marital status, working shift, 
and years of experience of nurses had significant 
associations with levels of stress. However, sex, 
education, and BMI showed no significant asso-
ciation with stress level. Similarly, Li et  al. 
showed that gender and education were not 
linked with stress but marital status did show a 
significant effect [42]. In addition, Chang et  al. 
concluded that education, marital status, and 
number of children did not have a significant 
association with the level of stress [43].

Similar to our findings about decision-making 
power in the subset of exclusive and situational 
subscale and physician dependency in the subset 
of managerial and administrative subscale, Kang 
et al. found that lack of autonomy and indepen-
dency in making decisions was frequently stress-
ful for staff nurses in clinical area [43]. The 
majority of staff nurses sometimes felt unable to 
make decisions and powerless to change unsatis-
factorily situations. Workload and staff shortage 
were two other aspects of the managerial and 
administrative subscale, similar to the findings of 
a tool developed to assess nurse stress in Saudi 
Arabia [44]. Another study showed that staff 
nurses did not always utilize their training and 
experience despite the fact that some felt inade-
quately trained or equipped for their job [45]. 
Transition programs specifically designed to 
bridge the gap between the academic and service 
setting and prepare nurses to utilize critical think-
ing skills in management of acutely ill patients are 

therefore likely to be important to ensure nurses 
have sufficient confidence to deal with the degree 
of autonomy they are required to demonstrate.

The strengths of this study were the use of 
multistage random sampling methods and the 
consideration of different nurse groups in differ-
ent wards and the large sample size across 31 cit-
ies in Iran. This resulted in a sample size 
significantly greater than the minimal require-
ment to conduct the PLS-CFA. There was a 
robust correlation between the level of stress and 
social and cultural status. The construct validity 
showed that stress scale items were grouped 
under three components which may provide 
greater incentive to participants in completion of 
the study compared with other studies on stress 
scale development that used components on the 
scale ranging from four to seven components 
[46–49]. This is supported by the finding that 
most of the above studies identified three major 
components linked with stress among nurses 
(lack of adequate staffing, dealing with difficult 
patients, and high workload). The large sample 
size of this investigation resulted in a higher 
response rate (about 80%) as compared to other 
studies (about 55.1 and 76.2%) [50, 51].

A potential limitation of the present tool 
relates to the fact that it was developed to assess 
stress of nurses in critical care units in Iran. Thus, 
it is not necessarily generalizable for assessment 
of nurses in healthcare institutions in other coun-
tries. Moreover, there are some aspects of the 
Iranian healthcare system that limit the generaliz-
ability of the findings. For example, most aca-
demic and tertiary care ICUs in the USA are 
closed systems and those in Iran are generally 
semi-closed or open units. We did not collect data 
on individual nurse’s psychiatric symptoms or 
diagnoses. We also did not collect data on work-
place violence or lateral hostilities.

14.5  Conclusion

The study demonstrated a valid and reliable scale 
to assess stress-related factors in the home and 
workplace for nurses. As the tool is short and 
simple to use, it is convenient for assessment of 
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nurses in critical care units. Further studies apply-
ing this developed tool are recommended to fur-
ther elucidate the dimensions of stress in Iranian 
nurses, with the overall aim of improving work-
ing conditions for these critical workers in health-
care. Finally, this approach should be translated 
for use in other countries and cultures affected by 
the current COVID-19 outbreak. As a second 
wave of COVID-19 or outbreaks of further 
viruses can occur, such a response becomes even 
more critical to protect our healthcare profession-
als working on the frontlines.
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Abstract

Age-related neurodegenerative diseases have 
detrimental consequences on health of many 
patients and result in mortality. The current 
treatment options are limited and usually fail 
to correct the underlying pathology. AAV- 
based gene therapies have proved to be safe 
based on the data available on clinical trials 
for several monogenic diseases. Therefore, 
such therapies can pave the way to treat neuro-
degenerative diseases likes Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS). Here, the 
advantages of AAV-based gene therapies are 
discussed with emphasis on efforts of devel-
oping novel capsids with superior therapeutic 
efficacy. Furthermore, the results of clinical 
trials on AD, PD, and ALS are summarized.
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15.1  Introduction

Neuronal networks are complex systems which 
require efficient communication between neuro-
nal cells to maintain vital activities of the body. 
Neurodegeneration is a process which involves 
accumulation of dysfunctional molecules, pro-
teins, and organelles, which progressively dam-
age neuronal cells and result in neuronal cell 
death [1]. Neurodegenerative diseases are com-
monly observed in the aged population with det-
rimental consequences on quality of life and 
higher risks of death. The limited regenerative 
potential of neurons makes neurodegenerative 
diseases difficult to treat. Many widely observed 
neurodegenerative diseases are caused by genetic 
mutations, but epigenetic events are also observed 
in Parkinson’s disease (reviewed by Pavlou et al. 
[2]) and have also been recently reported to occur 
in Alzheimer’s disease [3, 4].

Commonly observed neurodegenerative dis-
eases such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and amyotrophic lateral 
sclerosis (ALS) have common dysregulated pro-
cesses such as mitochondrial dysfunction and oxi-
dative stress [5]. In line with this, approaches 
ameliorating mitochondrial dysfunction have been 
shown to have beneficial effects in various animal 
models of neurodegenerative diseases [6–9]. 
Importantly, one of the commonly observed path-
ological features of neurodegenerative diseases is 
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the accumulation of misfolded protein aggregates, 
which have toxic effects and thereby cause neuro-
nal cell death [1]. In AD, the toxic accumulation of 
amyloid-β (Aβ) and tau has been observed [10]. 
On the other hand, α-synuclein aggregates mainly 
occur in PD but can also be observed in AD [11]. 
Huntington’s disease is a monogenic condition 
that occurs due to aggregation of the huntingtin 
protein via an expanded CAG repeat region [12]. 
These observations further suggest the possibility 
of targeting autophagy to reduce protein aggrega-
tion as a novel therapeutic avenue for neurodegen-
erative diseases [8, 13, 14].

Most of the drugs in common use for these 
disorders have limited efficacy due to low perme-
ability of the blood-brain barrier (BBB). A study 
published in 2019 by Cummings and colleagues 
reported 132 agents currently being investigated 
in clinical trials for the treatment of Alzheimer’s 
disease [15]. Unfortunately, many clinical trials 
for Alzheimer’s disease have failed at different 
stages of clinical development [16]. The current 
treatment options can reduce some of the symp-
toms experienced by the patient; however, many 
drugs do not target the underlying pathology and 
are therefore not curative. Although these drugs 
can have some beneficial effects for the everyday 
life of the patient, novel therapeutic strategies are 
needed. On the contrary, gene therapy has the 
potential to target and correct the underlying 
pathological mechanisms and ultimately treat the 
root cause of a disease. One promising avenue is 
the use of adeno-associated virus (AAV) vectors 
as a delivery system for the genes of interest. The 
current challenges include, but are not limited to, 
the correct choice of delivery route, optimization 
of the gene expression cassette, and efficient 
expression in the desired cell type or brain region 
[17]. Delivery routes widely performed at the 
moment include intraparenchymal, intrathecal, 
intracerebroventricular, subpial, and intravenous 
injection [18]. It is important to note that other 
central nervous system (CNS) delivery routes are 
also under development. A recent study showed 
safe delivery of the gene cargo to the cisterna 
magna region of the brain for treatment of Tay- 
Sachs disease [19].

This review aims to summarize the advances 
in the AAV-based gene therapy in the context of 
neurodegenerative diseases as a novel and prom-
ising therapeutic avenue. The advantages and the 
current challenges of AAV-based gene therapy 
are also explained. Following this, the recent 
progress in choosing the most optimal AAV sero-
type for CNS transduction and designing thera-
peutically superior viral capsids for better 
neuronal targeting is discussed. Finally, examples 
of novel therapeutic options that have been 
entered into clinical trials using AAV-based gene 
therapy for AD, PD, and ALS are summarized 
and compared.

15.2  AAV-Based Gene Therapy

Gene therapy serves as a promising option for a 
one-time permanent treatment for genetic dis-
eases. In short, gene therapy can be used to either 
silence the expression of a disease-causing gene, 
to modify a mutation (by gene editing), or simply 
to deliver an un-mutated copy of the mutated 
gene, simply known as gene replacement [20]. 
Viral vector-mediated gene therapy using differ-
ent types of viruses including lentivirus, adenovi-
rus, herpes simplex virus, vaccinia virus, and 
adeno-associated virus (AAV) can serve as vehi-
cles for this purposes [21].

Thanks to the advances in vector biology and 
genetic engineering, AAV-based gene therapies 
are currently more than an investigation tool and 
are used as treatment options in the clinic. To 
date, many patients with detrimental diseases 
have been injected with AAVs with no major 
adverse events observed, highlighting the safety 
aspects of these treatments [22]. In particular 
“gene replacement” strategies have shown high 
success rates in cases of monogenic diseases. 
Several clinical trials targeting diseases such as 
hemophilia A [23], hemophilia B [24–26], retinal 
disorders [27–29], and spinal muscular atrophy 
(SMA) [30] have proved AAVs as safe and effi-
cient therapeutic tools.

AAV is from the Parvoviridae family with a 
genome that contains four non-structural Rep 
proteins, three capsid proteins (VP1, VP2, and 
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VP3), and the assembly-activating protein (AAP) 
[31, 32]. AAVs have particular advantages mak-
ing them ideal for in vivo gene transfer such as 
having a low risk of insertional mutagenesis. 
Generation of recombinant AAVs by elimination 
of all open reading frames (ORFs) makes them 
replication-defective thereby rendering them safe 
to use. This further allows cargo sizes of approxi-
mately 4.7 kb. Efficient production of AAVs with 
high yield and purity is an important factor for 
gene therapy as this can have a significant impact 
on the transduction efficiency [33]. The most 
commonly used approach is the triple- transfection 
method which is based on co-transfection with 
three plasmids: (1) the transgene of interest 
flanked by inverted terminal repeats (ITRs), (2) 
rep and cap genes for packaging, and (3) adeno-
viral helper genes [34]. For more detailed infor-
mation on AAV production and purification, refer 
to Ayuso et al. [35].

The 4.7-kb cargo limit of AAVs is a limiting 
factor for delivery of large genes; therefore, alter-
native strategies such as production of oversized 
vectors and dual vectors are currently used to 
overcome this. Production of oversized AAVs 
can result in heterogeneous vector preparations 
and can affect transduction efficiency [36, 37]. 
On the other hand, dual-vector strategy is based 
on splitting the transgene into two (head and tail), 
and co-transfection therefore results in re- 
assembly of the full-length expression cassette 
[38]. The therapeutic potential of this strategy 
has been proven via gene delivery to the retina 
[39, 40] and in a mouse model of Stargardt dis-
ease [41]. Furthermore, the dual AAV approach 
has shown positive results in muscle diseases 
such as dysferlinopathy [42–44] and Duchenne 
muscular dystrophy [45].

Progress in investigational and clinical AAV- 
based research and therapy increased following 
the discovery and characterization of 13 AAV 
serotypes and over 100 AAV variants from differ-
ent species [46, 47]. The infectivity and specificity 
of these AAV serotypes depends heavily on cell 
type-specific receptors and co-receptors, although 
a universal multi-serotype receptor (AAVR) for 
AAV infection has been described [48]. Recently, 
GRP108, a member of the G protein- coupled 

receptor family, was characterized as a novel AAV 
entry factor conserved between mouse and humans 
[49]. Although this receptor was shown to affect 
the transduction of more than 20 divergent AAVs, 
the transduction of AAV5 was unaffected in a 
GRP108 knockout model [49].

The potential limitation of AAV-based gene 
therapy is not only limited to the size of the 
expression cassette, but transgene potency and 
vector genome persistence are other factors 
which can influence the outcome of the therapy 
[50]. Other than the vector genome and the 
expression cassette, another challenge can arise 
from the viral capsid. For example, a CD8+ T-cell 
response to AAV capsids in humans was demon-
strated by Mingozzi and colleagues which high-
lights that their modulation is important to 
achieve sustained AAV-mediated gene transfer 
[51]. Vector administration to seropositive 
patients and also to patients requiring re- 
administration usually limits the population size 
which can be treated by AAVs. Therefore, ongo-
ing efforts are aimed at modulating AAV immu-
nogenicity to allow vector re-administration 
using such approaches as tolerogenic rapamycin 
nanoparticles [52]. Furthermore, two recent stud-
ies described methodologies such as immunoad-
sorption and the use of AAV-specific 
plasmapheresis columns which can ultimately 
make vector re-administration possible [53, 54]. 
The importance of AAV immunogenicity for suc-
cessful gene transfer in humans is reviewed else-
where [55]. In the context of CNS gene delivery, 
achieving high specificity and efficacy is proba-
bly the current major challenge. Therefore capsid 
choice has vital importance for therapeutic effi-
cacy. For this purpose, the following section sum-
marizes the pre-clinical development of AAV 
capsids for gene delivery to the CNS.

15.3  Optimizing AAV Capsids 
for Efficient CNS 
Transduction

One of the advantages of AAV-based gene trans-
fer is the availability of different AAV serotypes 
with specific tissue tropism [56]. In this aspect, 
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AAV capsids with efficient CNS transduction can 
serve as valuable tools for the treatment of neuro-
degenerative diseases. Deeper investigations in 
AAV vector biology have resulted in advances in 
capsid discovery and engineering aiming for 
those with better tissue targeting and low geno-
toxicity and immunogenicity, created either by 
rational design or directed evolution [57]. Capsids 
with better therapeutic indices not only result in 
better delivery but can also reduce the optimal 
therapeutic dosage, thereby lowering potential 
immunogenicity as well as production costs 
(Fig.  15.1). Capsid-specific immune responses 
have been documented in both in pre-clinical and 
clinical trials. This includes the invaluable work 
of Nathwani and colleagues in this area for the 
treatment of hemophilia B [24, 25, 51, 58, 59].

Several AAV serotypes have been used to tar-
get and express the gene of interest in various cell 
types of the CNS. For example, AAV2, a widely 
used serotype in clinical trials, can target cerebral 
vascular endothelial cells [60]. In the last 
15–20  years, many comparative studies have 
been performed in order to search for optimal 

AAV vectors for CNS-targeted gene therapy in 
mice [61–63], cats [64], dogs [65], and macaques 
[66] as models. Foust and colleagues showed that 
AAV9 can target both neurons and astrocytes in 
mice [67]. Importantly, AAV9 has been shown to 
have wider CNS expression possibilities includ-
ing areas such as the substantia nigra, hippocam-
pus, cerebellum, motor cortex, and cervical 
spinal cord following neonatal intra- 
cerebroventricular injection [68]. Although 
AAV9 has many advantages, due to questions on 
translatability to non-human primates [69] and 
immune responses [70], innovative novel AAV 
serotypes have been developed with higher thera-
peutic efficacy and lower immunogenicity.

Interestingly, modifications have not only 
focused on AAV9 but also using AAV2 due to its 
proven clinical safety in clinical trials. Heparan 
sulfate proteoglycan (HSPG) receptors are 
responsible for entry of AAV2 although other 
capable receptors have been characterized 
recently. A modified version of AAV2 incapable 
of binding to HSPGs, AAV2-HBKO, was shown 
to have an enhanced transduction efficacy depend-

-rational design
-directed evolution

Known AAV 
serotypes

Novel AAV 
capsids

� Improved transduction efficiency
� Higher specificity
� Lower immunogenicity

Moving into clinical trials

-rational design
-directed evolution

� Improved transduction effff iciency
� Higher specificity
� Lower immunogenicity

Moving into clinical trials

Testing in animal models of
neurodegenerative diseases

Fig. 15.1 Development of novel AAV capsids with superior 
CNS transduction. Current attempts have focused on ratio-
nal design or directed evolution to develop capsids with bet-
ter specificity, improved transduction efficiency, and lower 
immunogenicity. The therapeutic potential of candidate cap-

sids can be tested on animal models of neurodegenerative 
diseases (e.g., Alzheimer’s disease and Parkinson’s disease). 
Novel capsids with superior therapeutic efficacy will poten-
tially be used in clinical trials for improved treatment of 
patients suffering with such neurodegenerative disorders
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ing on the route of administration [71]. 
Furthermore, Choudhury and colleagues created 
AAV-AS by inserting a poly-alanine peptide to 
the N-terminus of VP2 capsid protein which 
resulted in higher transduction in the spinal cord 
and cerebellum with particularly efficient target-
ing of striatal neurons in mice [72]. The same 
group also performed a single round of in  vivo 
selection to characterize novel capsids with supe-
rior CNS transduction properties. This led to iden-
tification of AAV-B1 as an efficient transducer in 
multiple areas of the CNS and also in muscle, 
β-cell, pulmonary alveoli, and retinal vasculature 
in mice [73]. Another study generated and charac-
terized AAV-S and AAV-F novel capsids with effi-
cient CNS transduction [74]. Importantly, AAV-F 
had a 65-fold higher expression in astrocytes and 
171-fold higher expression in neurons compared 
to the parental AAV9 vector [74].

One of the most important works in this field 
was performed using a cre-dependent evolution 
approach which led to generation of an AAV9 
capsid mutant, AAV-PHP.B, with enhanced CNS 
transduction efficiency [75]. In mice, AAV- 
PHP.B can pass the BBB and transduce CNS 
cells at 40-fold higher levels than AAV9 due to 
the presence of a 7-amino acid insertion in the 
VP1 capsid protein [75]. However, a comparative 
study between AAV9 and AAV-PHP.B showed 
that intravenous injection did not result in 
enhanced efficacy in marmoset brain [76]. A later 
study by Hordeaux and colleagues showed that 
the CNS transduction efficiency of AAV-PHP.B 
in mice is limited to the C57BL/6Jbackground 
[77]. It is important to note that there are reports 
suggesting AAV-PHP.B has differential expres-
sion distributions in mice and non-human pri-
mates [78]. Interestingly, Liguore and colleagues 
observed a broad cortical and spinal transduction 
in 1–2-year-old rhesus macaques after intrathecal 
administration, although intravascular adminis-
tration resulted in low transduction [78]. 
Regardless of these observations, it is worth not-
ing that AAV-PHP.B-GBA1 treatment of A53T 
a-synuclein Parkinsonism mouse model led to 
reduced synucleinopathy and recovered behav-

ior, highlighting the potential use of this vector 
for treatment of neurodegenerative diseases [79].

15.4  AAV-Based Gene Therapy 
for AD, PD, and ALS: 
Highlights from the Clinic

15.4.1  Alzheimer’s Disease (AD)

AD is one of the most commonly observed age- 
related neurodegenerative diseases characterized 
by progressive degeneration of neurons and syn-
apses in the cerebral cortex [80]. Although full 
mechanistic understanding is missing, neuroin-
flammation and mitochondrial defects are two 
factors which can contribute to disease pathology 
[9, 81]. There have been some successful attempts 
at reducing neuroinflammation in animal models 
of Alzheimer’s disease, although the results have 
thus far not been translated to the clinic [82]. 
Additionally, AAV-mediated expression of CD74 
showed beneficial effects by binding to the amy-
loid precursor protein, therefore inhibiting Aβ 
production [83].

One of the clinical trials (NCT00876863) 
aimed at stopping degeneration of the nucleus 
basalis region in the basal forebrain via delivery 
of nerve growth factor (NGF). Unfortunately, the 
stereotactically guided intracerebral injections of 
AAV2-NGF showed no effect highlighting the 
need of more accurate targeting [84]. A post- 
mortem analysis performed following this clini-
cal trial demonstrated a need for improved vector 
delivery in order to achieve the full potential of 
the AAV2-NGF treatment [85]. Another 
 therapeutic avenue which made progress in the 
clinic took advantage of the therapeutic potential 
of one of the apolipoprotein E (APOE) alleles, 
specifically APOE2. It has been reported that 
AAV- mediated delivery of APOE2  in a mouse 
model resulted in reduction in brain amyloid 
pathology [86]. Following this, the 
AAVrh.10hAPOE2-HA vector was tested using 
several delivery routes in non-human primates, 
and intracisternal delivery was shown to be the 
most optimal to deliver APOE2 to the CNS [87]. 
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This approach is currently being tested in the 
clinic (NCT03634007).

15.4.2  Parkinson’s Disease (PD)

Developing therapeutic drugs for the treatment of 
Parkinson’s disease has been challenging, and 
many attempts resulted in failure, which has 
shifted the trend toward drug repurposing [88]. 
Importantly, gene therapy-based clinical trials for 
the treatment of Parkinson’s disease showed 
promising results although there is room for 
improved therapeutic efficacy. The use of non- 
human primate models of Parkinson’s disease 
has been instrumental in the pre-clinical develop-
ment of gene therapy approaches for Parkinson’s 
disease and helped candidate therapies to move 
into the clinical testing stage [89]. The current 
approaches for the treatment of Parkinson’s dis-
ease can be classified into three groups: (i) 
enhancing dopamine synthesis, (ii) delivering 
trophic factors, and (iii) neuromodulation [90]. 
Below, some of the results obtained from clinical 
trials are summarized.

The most commonly used method for the 
enhancement of dopamine synthesis is the deliv-
ery of L-amino acid decarboxylase (AADC), an 
enzyme responsible for dopamine synthesis, 
using AAV2. Intra-putamen infusion of AAV2.
hAADC was shown to be well tolerated with 
some beneficial effects in two studies [91, 92]. 
Following these attempts, a new clinical trial 
(NCT03065192) is currently ongoing using real- 
time magnetic resonance imaging as a read-out, 
with an estimated completion date of end of 
2021. It is worth highlighting that a recent phase 
1 study which used varying doses of AADC1 in 
an AAV2 vector saw clinical improvements in 3 
cohorts of 15 patients [93]. Additionally, there 
are have been attempts to deliver multiple genes 
involved in dopamine synthesis, specifically 
AADC, tyrosine hydroxylase (TH), and GTP 
cyclohydrolase 1 (GCH1), using lentiviral vec-
tors to enable increased production of endoge-
nous dopamine. These approaches have been 
clinically evaluated primarily by Palfi and col-
leagues and followed by studies optimizing the 

expression cassette for better therapeutic efficacy 
[94–96].

For delivery of neurotrophic factors to enhance 
neuronal survival, glial cell line-derived neuro-
trophic factor (GDNF) and neurturin (NRTN, a 
homologue of GDNF) have been tested. Several 
early clinical trials using protein infusion showed 
positive effects; however, this showed limited 
efficacy, possibly due to limited tissue spread 
[97, 98]. However, delivery of growth factors by 
gene therapy may result in a more continuous 
supply of protein and better tissue spread. A cur-
rently clinical trial (NCT01621581) aims to test 
this idea by putaminal injections of an AAV2- 
GDNF vector. Delivery of NRTN via AAV sys-
tems has also been tested in clinical trials with 
some beneficial effects, although full recovery of 
the disease pathology was not observed 
[99–101].

Another approach involved the use of AAV2- 
mediated delivery of glutamic acid decarboxyl-
ase (GAD), which showed some clinical benefits 
[102, 103]. This treatment was aimed at neuro-
modulation by transformation of glutamatergic 
neurons to GABAergic neurons to increase the 
proportion of inhibitory neurons in subthalamic 
nucleus. Although more extensive trials are 
needed, the results of the above studies have 
shown that AAV-GAD treatment can have benefi-
cial effects for Parkinson’s disease patients. The 
following articles can be consulted for a more 
detailed analysis and discussion reporting the 
pre-clinical and clinical progress of gene therapy 
approaches for Parkinson’s disease [90, 104].

15.4.3  Amyotrophic Lateral Sclerosis 
(ALS)

ALS is the most common motor neuron disease 
which results in paralysis and premature death, 
with no current cure [105, 106]. However, there 
have been some pre-clinical studies which have 
shown progress, aimed at silencing and reducing 
the expression of superoxide dismutase 1 (SOD1) 
as a potential treatment. AAV9-mediated silencing 
of SOD1 by a short hairpin RNA (shRNA) 
approach was found to slow disease progression 
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and extend survival in a mouse model of inherited 
ALS [107], and these studies are ongoing [108]. 
Similarly, both AAV9 and AAV.rh10 have been 
used by different groups for testing the therapeutic 
efficacy of silencing SOD1 by using microRNA 
approaches [109–111]. Importantly, this latter 
approach has been shown to be safe and effica-
cious in cynomolgus macaques [112]. Biferi and 
colleagues reported an AAVrh10- based approach 
to deliver anti-sense sequences embedded in U7 
small nuclear RNA to successfully silence SOD1 
that increased survival in SOD1-G93A mice [113]. 
Silencing strategies for ALS are also in pre-clini-
cal development for targeting C9orf72 (a hexanu-
cleotide expansion in chromosome 9 which causes 
ALS) using RNAi- based gene therapy [114, 115]. 
There have also been attempts for increasing neu-
roprotection by AAV-mediated expression of neu-
rotrophic factors such as brain-derived growth 
factor (BDNF), glia-derived growth factor 
(GDNF), insulin-like growth factor 1 (IGF-1), and 
vascular endothelial growth factor (VEGF) [116].

Various AAV capsids such as AAV6, AAV9, 
and AAV.rh10 have been used in pre-clinical 
studies as potential ALS treatment approaches 
[117]. The work of Cappella and colleagues can 
be consulted for a more detailed report for sum-
marizing various aspects of this work [118].

15.5  Conclusions

Advances in genetic engineering have resulted in 
rapid progression in many areas of biomedical 
sciences, including gene therapy. To this end, 
AAVs have been used in pre-clinical studies of a 
variety of diseases with promising safety and 
efficacy profiles. This review has focused on the 
use of AAVs as promising therapeutic tools in 
age-related neurodegenerative diseases, for 
which current treatment options are limited and 
far from effective. To date, many pre-clinical 
studies using model organisms have shown ben-
eficial effects of AAV-mediated treatments in this 
area, and ongoing efforts in capsid engineering 
may result in development of vectors with 
improved therapeutic indices. Furthermore, 
recently completed and ongoing clinical trials 

may help the scientific and medsical communi-
ties in the design of new strategies for targeting 
the underlying pathologies of neurodegenerative 
diseases.
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Is Adipose Tissue the Fountain 
of Youth? The Impact of Adipose 
Stem Cell Aging on Metabolic 
Homeostasis, Longevity, and Cell- 
Based Therapies

Hanél Sadie-Van Gijsen

Abstract

Aging is driven by four interlinked processes: 
(1) low-grade sterile inflammation; (2) macro-
molecular and organelle dysfunction, includ-
ing DNA damage, telomere erosion, and 
mitochondrial dysfunction; (3) stem cell dys-
function; and (4) an accumulation of senes-
cent cells in tissues. Adipose tissue is not 
immune to the effects of time, and all four of 
these processes contribute to a decline of adi-
pose tissue function with advanced age. This 
decline is associated with an increase in meta-
bolic disorders. Conversely, optimally func-
tioning adipose tissue generates signals that 
promote longevity. As tissue-resident progeni-
tor cells that actively participate in adipose tis-
sue homeostasis and dysregulation, adipose 
stem cells (ASCs) have emerged as a key fea-
ture in the relationship between age and adi-
pose tissue function. This review will give a 
mechanistic overview of the myriad ways in 
which age affects ASC function and, con-
versely, how ASC function contribute to 

healthspan and lifespan. A central mediator in 
this relationship is the degree of resilience of 
ASCs to maintain stemness into advanced age 
and the consequent preservation of adipose 
tissue function, in particular subcutaneous fat. 
The last sections of this review will discuss 
therapeutic options that target senescent ASCs 
to extend healthspan and lifespan, as well as 
ASC-based therapies that can be used to treat 
age-related pathologies, and collectively, 
these therapeutic applications may transform 
the way we age.

Keywords

Adipose stem cells · Aging · Longevity · 
Senescence · Cell-based therapy

16.1  Introduction

Prolonged survival is a product of our “protected 
aging” in the absence of predation or exposure. 
As there was historically no evolutionary pres-
sure to survive beyond reproductive age, there 
was also no pressure to select for genetic mecha-
nisms that would preserve tissue homeostasis in 
advanced age [1]. As a result, aging is a major 
risk factor for a host of chronic diseases that 
affects organs and tissues throughout the body, 
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including diabetes, cardiovascular disease, osteo-
porosis, dementia, and physical frailty (reviewed 
in [2]). In young organisms, tissue-resident stem 
cells contribute to general tissue maintenance 
and repair after injury, but these stem cells dete-
riorate with age and lose their capacity to per-
form these functions, resulting in a gradual 
erosion of tissue function [1].

The four processes that drive biological aging 
are (1) low-grade sterile inflammation (in other 
words, inflammation not stimulated by patho-
gens); (2) macromolecular and organelle dys-
function, including DNA damage, telomere 
erosion, and mitochondrial dysfunction; (3) stem 
cell dysfunction; and (4) an accumulation of 
senescent cells (reviewed in [2]). These processes 
are intricately linked, and factors that target or 
promote one of these processes are likely to 
impact the others as well. All four of these pro-
cesses occur within adipose tissue, and collec-
tively they bring about age-related adipose tissue 
dysfunction through a multitude of molecular 
mechanisms and pathways, as will be discussed 
in this review.

Fat mass peaks around middle age and is sub-
sequently lost during advanced aging in humans 
and in animal models (reviewed in [3–5]). 
However, this often constitutes a loss of total fat 
mass, while the total percentage body fat remains 
constant or even increases, as a result of loss of 
lean muscle mass and the redistribution of fat 
mass to non-adipose sites such as muscle and 
liver [4, 5]. With age, there is also a redistribution 
of fat mass from subcutaneous (SAT) to abdomi-
nal visceral depots (VAT) [5, 6]. SAT is usually 
the biggest adipose depot in the body, with up to 
fourfold greater volume than VAT [7], although 
this may be impacted by gender and is obviously 
affected by visceral obesity. Increased VAT is 
associated with an adverse metabolic risk profile 
and predisposes individuals to developing meta-
bolic syndrome [8, 9], and therefore the age- 
related increase in VAT may form a crucial part of 
the mechanism underlying the well-documented 
age-associated increase in metabolic disorders 
(reviewed in [5, 10]). Correspondingly, increased 
VAT is associated with reduced lifespan, inde-
pendent of total body adiposity [11–13].

Apart from adipocytes, adipose tissue con-
tains a significant fraction of non-fat cells, col-
lectively called the stromal-vascular fraction 
(SVF). This fraction includes endothelial cells, 
fibroblasts, and macrophages but also contains 
the tissue-resident preadipocyte progenitors 
called adipose stem cells (ASCs) [14, 15]. ASCs 
are a subset of mesenchymal stromal cells 
(MSCs) and express typical MSC cell surface 
markers, such as CD73, CD90, and CD105, but 
not hematopoietic or endothelial markers 
(reviewed in [16]). ASCs from SAT and VAT 
(scASCs and vASCs, respectively) are funda-
mentally different and can be used in cell culture 
to study adipose depot-specific biological 
responses and molecular mechanisms [16]. 
Adipogenesis, the process whereby ASCs differ-
entiate into mature adipocytes, involves profound 
functional alterations in these cells, including 
morphological changes, intracellular lipid accu-
mulation, the acquiring of insulin sensitivity, and 
the production of secreted factors, including adi-
pokines (reviewed in [17]). Adipogenesis is under 
transcriptional control of master regulators such 
as C/EBPβ, C/EBPα, and PPARγ2 [18, 19].

A dominant function of adipose tissue is to 
incorporate cytotoxic free fatty acids into neutral 
triglycerides within intracellular lipid droplets. 
Nutrient availability varies widely, and adipose 
tissue, especially SAT, needs to respond to these 
variations by maintaining expandability. Fat mass 
expansion in response to nutrient excess can 
occur via either adipocyte hyperplasia (an 
increase in cell numbers) or adipocyte hypertro-
phy (an increase in cell size). However, adipocyte 
hypertrophy can have pathological consequences, 
including hypoxia and inflammation, while adi-
pocyte hyperplasia, which is driven by the dif-
ferentiation of ASCs into new adipocytes, is 
metabolically more favourable [16, 20].

Adipose tissue is at the nexus of various 
(patho)physiological processes, including aging, 
metabolic homeostasis, and inflammation. As 
will be discussed below, aging and adipose tissue 
actually exist within a reciprocal relationship: 
chronological aging affects adipose tissue func-
tion, and adipose tissue dysfunction in turn drives 
biological aging, loss of function, and reduced 
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lifespan, while optimal adipose tissue function is 
associated with longevity. This review will dis-
cuss the reciprocal relationship between aging 
and adipose tissue on a mechanistic level, paying 
particular attention to the role of ASCs in this 
relationship. ASCs not only serve as a reservoir 
of newly formed adipocytes but also actively 
contribute to the function and dysfunction of adi-
pose tissue [16], and it is therefore not surprising 
that ASCs have emerged as central mediators of 
the role of adipose tissue during aging and meta-
bolic disease. However, ASCs have also become 
extremely popular within the arena of regenera-
tive medicine and stem cell-based therapies, and 
therefore the final sections of this review will dis-
cuss the implications of aging and metabolic dys-
function on the applicability of ASCs for 
therapeutic purposes.

16.2  The Effects of Chronological 
Aging on ASC Biology 
and Function

Both the birth of new adipocytes from ASCs and 
the lipid turnover within these adipocytes dimin-
ish with age, even in relatively young adults (23–
38  years old), indicative of functional decline 
with age [21]. Adipocyte hypertrophy, a marker 
of impaired adipogenesis [16, 22], was also found 
to increase with age, independent of body mass 
index (BMI) [23]. Hypertrophied adipocytes pro-
mote a pro-inflammatory milieu within adipose 
tissue (reviewed in [16, 22]) and may therefore 
play a causal role in the age-associated increase 
in adipose tissue inflammation that will be dis-
cussed in detail below. However, due to the 
embedded and scattered nature of ASCs within 
adipose tissue, mechanistic studies focusing spe-
cifically on ASCs in vivo are virtually impossible 
with currently available technology. 
Consequently, the effects of physiological param-
eters such as aging on ASC biology and function 
are more effectively studied in an in vivo/ex vivo 
experimental set-up [24], where ASCs from dif-
ferent in  vivo backgrounds are isolated and 
manipulated in primary cell culture ex vivo. Such 
studies have provided a wealth of mechanistic 

information on the impact of aging on ASCs. 
Many studies have found that aging decreases the 
ex  vivo replicative capacity and adipogenic 
potential of rodent and human ASCs [3, 25–30], 
and the mechanisms involved will be discussed in 
more detail in the following sections. However, 
not all studies are in agreement, as discussed 
elsewhere [16]. A possible explanation for these 
discrepancies may lie in the unclear definitions 
and inconsistent application of age brackets 
referring to middle age and old age in humans 
and the corresponding age brackets in mouse and 
rat models. Specifically, many of the studies on 
“old” human ASCs discussed below examined 
cells from individuals younger than 60 years old, 
while many countries in the world have an aver-
age life expectancy of over 80 years of age [31]. 
As a result, our understanding of ASC (dys)func-
tion in truly advanced human age is limited, and 
most of the available mechanistic knowledge was 
derived from animal studies. The sections below 
will discuss findings in animal and human ASCs, 
detailing the effects of donor age on ex vivo ASC 
function on a molecular level.

16.2.1  Age-Induced ASC Senescence

16.2.1.1  Senescence Mechanisms: 
A Brief Overview

Senescence can be simplistically defined as irre-
versible cell cycle arrest, but actually involves 
complex molecular consequences for the cell 
itself and for the environment in which the cell 
resides. ASCs acquire features of senescence 
during aging, but whether senescence underpins 
all of the age-related dysfunctions of ASCs is not 
clear, as the relative contributions of the various 
senescence-associated pathways and mecha-
nisms have not been well described in aging 
ASCs. However, our limited understanding of 
senescence in ASCs has to be viewed within the 
context of established senescence mechanisms in 
other cells. Many excellent publications have 
given exhaustive mechanistic descriptions of 
senescence pathways [32–40], mostly from work 
performed in senescent fibroblasts, and it is not 
within the scope of this review to recount those 
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descriptions. The tumor-suppressive role of 
senescence will also not be discussed here. 
However, a few highlights and salient points on 
senescence in aging non-cancerous cells will be 
presented in the following paragraphs and in 
Fig. 16.1.

The ends of chromosomes are capped by 
repetitive DNA sequences called telomeres, but 
telomere repeats are lost during successive cell 
divisions due to incomplete replication by DNA 
polymerases. Critical telomere shortening results 
in chromosomal instability and loss of cell viabil-
ity. To compensate for telomere erosion and to 
extend cellular lifespan, new telomeres are added 
through the action of telomerase enzymes 
(reviewed in [41]). Beyond the embryonic stages, 
mammalian telomerase expression is restricted to 
proliferating cells such as progenitor cells and 
cancer cells [42]. The maintenance of telomere 
length may be essential to retain proliferative 
capacity, especially in adult stem cells [43], as 
shortened telomeres are regarded as a main trig-
ger of replicative senescence [41]. In non-adipose 

tissues, the tissue-resident stem cells have the 
longest telomeres, but these telomeres also 
shorten with age, suggesting that telomere short-
ening may contribute to stem cell dysfunction 
with age [44–46]. Correspondingly, human ASCs 
possess telomerase activity [47] but also exhibit 
telomere shortening with age [48].

Senescence is a state of replicative arrest 
which can be triggered by critical telomere short-
ening or other forms of DNA damage, or by other 
cellular stressors independent of DNA damage 
[33]. Telomere attrition can be accelerated by 
extrinsic factors such as reactive oxygen species 
(ROS) [49, 50], suggesting that telomere damage 
may be a trigger for the onset of premature senes-
cence in response to oxidative stress. Short/dam-
aged telomeres or DNA double-stranded breaks 
(DSBs) trigger a DNA damage response (DDR) 
(reviewed in [32, 33, 37]), activating ATM (ataxia 
telangiectasia mutated) protein kinase which 
blocks cell cycle progression through the phos-
phorylation and stabilization of the tumor sup-
pressor p53 and the subsequent transcriptional 

Cell cycle arrest

↑ p21                                           ↑ p16

↑ p38 MAPK signalling ↑ NF-κB signalling

Mitochondrial dysfunction                      SASP production
↑ ROS production

Cell stressors / ageTelomere shortening / DNA damage

DDR

↑ ROS           ATM activation

↑ phospho-p53

Released into the extracellular space
Paracrine spread of senescence

Calorie 
restriction

Fig. 16.1 A highly 
simplified overview of 
mechanisms and 
signalling pathways 
involved in cellular 
senescence. More 
detailed information on 
the individual signalling 
pathways and molecular 
connections can be 
found in Refs. [32–41, 
43, 49–59]
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upregulation of the cyclin-dependent kinase 
(CDK) inhibitor p21 (CIP1) [37, 51]. ATM can 
also be directly activated by ROS such as H2O2 in 
the absence of DNA damage [51], providing 
another mechanistic link between oxidative stress 
and senescence. Long-term activation of p21 pro-
motes mitochondrial dysfunction and increased 
ROS production through complex p38 MAPK- 
dependent signalling, resulting in a sustained 
DDR-ROS feedback loop and the establishment 
of deep irreversible senescence [34]. Elevated 
intracellular ROS is therefore both a cause and a 
consequence of senescence (reviewed in [40]). 
The diffusion of ROS molecules such as H2O2 
and nitric oxide (NO) across cell membranes can 
also induce oxidative DNA damage and senes-
cence in neighboring cells [52, 53].

Deep irreversible senescence is established 
over a number of days and is characterized by 
extensive chromatin remodelling and upregula-
tion of genes encoding for secreted factors such 
as chemokines, cytokines, growth factors, and 
proteases, especially matrix metalloproteases 
(MMPs). Combined, these factors constitute the 
pro-inflammatory senescence-associated secre-
tory phenotype (SASP) that disrupts tissue 
homeostasis [34, 37, 54]. The SASP is a key fea-
ture that distinguishes senescent cells from all 
other non-proliferating cells. Although the list of 
potential SASP factors is long, inflammatory fac-
tors such as interleukin-6 (IL-6), IL-8, monocyte 
chemoattractant protein-1 (MCP-1/CCL-2), and 
plasminogen activator inhibitor-1 (PAI-1) feature 
prominently in the SASP of several cell-types, 
while it is unclear whether tumor necrosis 
factor-α (TNF-α) should be considered a SASP 
factor [54]. Master regulators of SASP produc-
tion include NF-κB and p38 MAPK [35, 54, 55].

The cyclin-dependent kinase (CDK) inhibitor 
p16 (Ink4A) arrests cell cycle progression at G1 
[56], but p16 upregulation has to be sustained 
over days before it can induce senescence [57]. 
Expression of p16 can be upregulated by a vari-
ety of cellular stressors to trigger stress-induced 
premature senescence (SIPS) (reviewed in [58]), 
but p16 is also upregulated with age, which likely 
plays a crucial mechanistic role in the age-related 
decline of replicative potential of adult stem cells 

[33, 57]. Conversely, p16 upregulation in some 
tissues can be delayed by calorie restriction [59], 
which enhances longevity (see Sect. 16.3). p16 
does not appear to promote SASP production and 
may paradoxically inhibit SASP production 
through the blunting of NF-κB signalling [35].

It can therefore be concluded that the impact 
of senescent cells within tissues is twofold: (1) 
senescent progenitor cells are inherently dys-
functional and cannot participate in tissue repair 
and homeostasis, and (2) through the production 
and release of SASP factors and ROS, this dys-
function is spread through the tissue micro- 
environment, inducing senescence in neighboring 
progenitor cells and creating a tissue-level 
chronic inflammatory state that has additional 
deleterious effects on tissue function [37].

16.2.1.2  Markers of Senescence
A commonly used marker to identify individual 
senescent cells within tissues or among other 
cells in cell culture is staining for senescence- 
associated beta-galactosidase (SA-β-gal) activity, 
although increased β-gal staining is not always a 
conclusive indicator of senescence (reviewed in 
[33]). Most studies therefore measure a selection 
of senescence markers, such as upregulated p53, 
p21, and p16 (Fig. 16.1), or increased numbers of 
DNA damage foci that contain γ-phosphorylated 
forms of the histone H2AX (γH2AX) [60]. By 
utilizing these markers, it has been demonstrated 
that senescent cells accumulate within many tis-
sues with age and also specifically at sites of age- 
related pathology (reviewed in [33, 37]).

16.2.1.3  Characterization of Age- 
Associated Senescence 
in ASCs

Some comparisons between young and old 
human ASCs have demonstrated an age- 
associated loss of ex  vivo replicative potential 
and adipogenic potential with aging [28–30], 
although findings from several other studies are 
not in agreement, in particular with regard to the 
impact of age on adipogenic potential [61–66]. 
More recent studies [29, 30, 61–66] have also 
started to map the impact of age on the expres-
sion of senescence markers in human and rodent 
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ASCs. The results of these studies are summa-
rized in Table 16.1.

Most of the studies cited in Table 16.1 dem-
onstrated an age-associated increase in a variety 
of senescence markers (β-gal, p53, p21, and p16) 
in human and rodent ASCs, but these changes 
were not always associated with decreased adip-
ogenic potential. However, age-associated 
increases in intracellular ROS [63, 64, 66] and 
decreased superoxide dismutase (SOD) activity 
[62–64] were reported in several studies, sug-
gesting a failure of anti-oxidant defense mecha-

nisms with increasing age. Notably, scASCs 
from aged rats were also found to be more sensi-
tive to functional impairment by extracellular 
ROS than their younger counterparts [67], and 
the combined findings of these studies [62–64, 
66, 67] suggest an age-associated loss in the 
capability of ASCs to prevent or compensate for 
oxidative stress.

Genomic instability in adult stem cells may 
increase during aging, but this remains to be 
fully characterized [68]. In their comparison of 
orbital fat ASCs from young (17–25 years) and 

Table 16.1 Summary of findings on the effects of age on ex  vivo ASC function and expression of senescence 
markers

Species, depot Age groups Effects of age Reference
Human, SAT Young: 27 ± 1 y

Old: 71 ± 2 y
↓ Proliferation
↓ Adipogenesis
↑ TNFα release from SAT

[28]

Human (women 
only), orbital fat pad

Young: 20–38 y
Old: 50–67 y

↓ Adipocyte size
↓ Frequency of ASCs
↑ Population doubling time
↑ Senescent cells (β-gal staining, p53, p21)
↓ Adipogenesis, ↓PPARγ2

[29]

Human (women 
only), abdominal 
SAT

Young: 23.8 ± 0.4 y
Old: 57.6 ± 0.9 y

↓ Proliferation, ↓ plastic adherence
↓ Viability, ↑ apoptosis
↑ Senescence (p53, p21, p16)
↑ Pro- inflammatory gene expression
↓ Adipogenesis, ↓ PPARγ

[30]

Human, chest SAT Children: < 13 y
Young adult: < 30 y
Old: > 60y

↓ Frequency of ASCs
↑ Senescence (β-gal, p21)
↑ ROS production
↓ Migration potential
Delayed, but not impaired adipogenic response

[61]

Human, SAT Young: < 40 y
Old: > 50 y

↓ Frequency of ASCs
↑ Population doubling time
↑ Senescence (β-gal, p16, p21)
↓ SOD activity
= adipogenesis

[62]

Human, SAT Young: 20–29 y
Old (1): 50–60 y
Old (2): 60–69 y
Old (3): 70–79 y

↓ Replicative potential
↑ Population doubling time
Non-linear changes in senescence markers (p53, p21)
= β-gal staining
↑ Adipogenesis
↑ ROS production, ↓SOD activity

[63, 64]

Mouse (depot 
unclear)

Young: 6–7 mo
Old: 28–31 mo

↓ Proliferation
↑ Senescence (β-gal, p21)
↑ SASP production (IL-6, MCP-1)

[65]

Rat, SAT Young: 1 mo
Old: 24 mo

↑ Senescence (β-gal, p16)
↑ ROS production
↓ Adipogenesis

[66]

Abbreviations and symbols: β-gal β-galactosidase staining, mo month, ROS reactive oxygen species, SAT subcutaneous 
adipose tissue, SOD superoxide dismutase, TNFα tumor necrosis factor alpha, y year, ↑ increase, ↓ decrease; = no 
change
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older women (50–59  years), Zhang et  al. [68] 
reported that there was no difference in γH2AX 
levels, a marker of DNA DSBs, between the two 
groups and that DSB repair pathways were not 
impaired in older ASCs. However, the efficiency 
of the base excision repair (BER) pathway was 
reduced in old ASCs, which resulted in increased 
sensitivity to ROS damage [68]. In contrast to 
these findings, scASC cultures from old men 
(±71  years) exhibited increased levels of 
γH2AX, together with loss of the proliferation 
marker Ki67 and higher numbers of β-gal-
positive cells than that of younger men 
(±31  years) [69]. Cultures of perirenal ASCs 
from very old (30 months) rats also had higher 
numbers of senescent cells, higher γH2AX lev-
els, and decreased Ki67 expression [69]. 
Similarly, scASCs from elderly people with ath-
erosclerosis exhibited increased levels of 
γH2AX, compared to ASCs from younger coun-
terparts [70]. Combined, these studies show that 
age negatively impacts genomic integrity in 
ASCs, but that the nature of the DNA damage 
may be determined by the extent of aging and 
may possibly be influenced by the adipose tis-
sue depot.

Many studies investigating the mechanisms 
of cellular senescence have utilized senescent 
fibroblasts. However, fibroblasts are terminally 
differentiated and post-mitotic, and therefore 
cellular aging processes in these cells may be 
different from those in adult stem cells such as 
ASCs that maintain some degree of turnover 
[21, 71, 72]. Therefore, findings on senescence 
mechanisms in fibroblasts might not be appli-
cable to ASCs. Correspondingly, Shan et  al. 
[73] showed that aged human scASCs did not 
share a gene expression profile with senescent 
fibroblasts and other senescent cells and that 
the transcriptome of aging ASCs is more stable 
than in other senescent cells. Expression of 
genes promoting cell cycle progression and 
protein translation initiation was found to be 
maintained in old ASCs, but not in other senes-
cent cells, and this may form part of a mecha-
nism whereby ASCs could maintain their 
“stemness” and support adipose tissue function 
into old age.

16.2.2  Downregulation of the 
Adipogenic Gene Program

Even though a loss of adipogenic potential does 
not always occur with age in ASCs (Table 16.1), 
it has been shown in rat epididymal ASCs that 
age has considerable negative effects on the adip-
ogenic gene program [25–27], specifically the 
expression and activity of the C/EBP family of 
transcription factors that play an integral role in 
modulating adipogenesis [74]. These age-related 
changes culminate in impaired adipogenesis, as 
shown in Fig. 16.2. A major upstream mediator 
of changes in this pathway is CUG triplet repeat- 
binding protein-1 (CUGBP1), which was 
increased in rat ASCs with age and which has 
also been shown to increase the translation of 
p21  in senescent fibroblasts [75], and although 
this has not been demonstrated in ASCs, it pro-
vides a possible molecular connection between 
ASC senescence and the loss of adipogenic 
capacity during organismal aging.

16.2.3  Age, Senescence, 
and Inflammation in ASCs

Aging is associated with chronic low-grade sys-
temic inflammation (reviewed in [54]). Within 
adipose tissue, the production of pro- 
inflammatory factors such as IL-6 [76] and TNFα 
[28] also increases with age. ASCs themselves 
may be a major source of adipose tissue inflam-
matory mediators during aging, contributing to 
the local inflammatory state, but they are also 
profoundly affected by paracrine inflammation. 
The conditioned media from aged rat ASCs was 
found to contain higher levels of TNFα than that 
of young ASCs and inhibited adipogenesis in 
young ASCs, demonstrating the paracrine effects 
of ASC-secreted factors [27] and providing evi-
dence that pro-inflammatory ASCs could sup-
press adipogenesis in neighboring cells in vivo. 
In particular, TNFα inhibits adipogenesis through 
a variety of mechanisms [26, 77, 78], shown in 
Fig.  16.3, and pro-inflammatory macrophages 
within adipose tissue may also inhibit adipogen-
esis through their secretome [79].
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Very few studies have characterized the SASP 
of ASCs. High p21 expression in ASCs from 
aged mice was associated with an upregulation of 
several pro-inflammatory pathways and increased 
secretion of several pro-inflammatory SASP 
components, including IL-6, MCP-1/CCL-2, 
GROα (CXCL-1), and IL-15 [65]. Similarly, 
compared to their younger counterparts, ASCs 
from elderly people with atherosclerosis secreted 
higher levels of the pro-inflammatory SASP 
components IL-6, IL-8, MCP-1/CCL-2, and MIF 
(macrophage migration inhibitory factor) [70]. 
However, aside from these two studies, informa-
tion is lacking about age-related changes in the 
composition of the ASC secretome.

Independent of aging, inflammatory cytokines 
can also induce a SASP-like secretome in ASCs. 
TNFα treatment (but not IL-6 treatment) of undif-
ferentiated human scASCs induced the produc-

tion of a pro-inflammatory secretome containing 
factors such as TNFα itself, macrophage inflam-
matory protein (MIP-1α), and IL-1β, along with 
SASP components such as IL-6, IL-8, MCP-1/
CCL-2, and MMPs [77]. MCP-1/CCL-2 [80] and 
IL-6 [81] in adipose tissue promote macrophage 
infiltration, thereby fuelling adipose tissue 
inflammation (Fig.  16.3), and correspondingly, 
the conditioned medium from LPS-activated 
monocyte-derived macrophages and from adi-
pose tissue-derived macrophages was shown to 
upregulate the production of the pro- inflammatory 
SASP components IL-6, IL-8, and MCP-1/
CCL-2 by ASCs and to downregulate the secre-
tion of the anti-inflammatory adipokine adipo-
nectin [79].

Circulating lipopolysaccharide (LPS) levels 
may also increase with age, possibly due to 
changes in the intestinal epithelial barrier or the 

Adipogenic inducers                     Adipogenic inducers
plus low CUGBP1                          plus high CUGBP1

↑ C/EBPβ-LAP- C/EBPδ ↑ C/EBPβ-LIP, ↓ C/EBPδ

↑ C/EBPα

Adipogenesis

Young ASCs                    Aged/Inflamed ASCs

↑ CHOP

Fig. 16.2 Downregulation of adipogenesis by age or 
inflammation via changes in the signalling cascade involv-
ing C/EBP proteins. C/EBPα is a major pro-adipogenic 
factor, but while C/EBPα mRNA levels in undifferenti-
ated ASCs do not differ with age, the adipogenesis-related 
induction of C/EBPα expression is blunted with increased 
age. During optimal adipogenesis, C/EBPα expression is 
induced by the full-length C/EBPβ-LAP (C/EBPβ-liver 
activating protein) in cooperation with C/EBPδ [74]. 
However, in old rat ASCs, C/EBPβ protein expression 
during adipogenic induction shifts from the full-length 
LAP isoform to the truncated dominant-negative LIP 
(liver inhibitory protein) isoform. CUG triplet repeat- 

binding protein-1 (CUGBP1) is upregulated in rat ASCs 
with age, binds to C/EBPβ mRNA, and preferentially 
increases the translation of C/EBPβ-LIP over C/EBPβ- 
LAP.  Furthermore, expression of C/EBPδ, the heterodi-
meric partner of C/EBPβ-LAP, is downregulated in aged 
ASCs, while C/EBP homologous protein 10 (CHOP), an 
inhibitory heterodimeric partner of C/EBPα and C/EBPβ, 
is upregulated in rat ASCs with age. Collectively, these 
events impair the ability of C/EBPβ-C/EBPδ dimers to 
upregulate C/EBPα expression and stimulate adipogene-
sis [25, 26]. Decreased C/EBPα and increased C/EBPβ- 
LIP levels with age also occur in isolated rat adipocytes 
and adipose tissue [25]
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intestinal microbiota, resulting in low-grade 
endotoxemia [82]. In cultured mouse scASCs, 
LPS was shown to decrease adipogenesis and 
lipogenesis through the downregulation of 
PPARγ expression. LPS also induced senescence 
in these cells, characterized by increased p53 
phosphorylation, β-gal staining, and ROS pro-
duction, but telomere length was not affected. 
Furthermore, the expression of TNFα and several 
SASP components, including IL-1β, IL-6, 
MCP-1/CCL-2, and vascular endothelial growth 
factor-α (VEGFα), was increased by LPS [83]. 
Collectively, the studies mentioned in this section 
provide strong evidence for the negative impact 
of local and systemic inflammatory factors on 
ASC function in vivo and describe the complex 
interrelated feedback mechanisms between 
aging, inflammation, ASC senescence, and adi-
pose tissue dysfunction (Fig. 16.3).

16.2.4  The Role of ASCs in the Age- 
Related Loss of Lipid Storage 
Capacity in Adipose Tissue

The loss of total body fat mass with aging [3–5] 
suggests that the lipid storage capacity of adipose 
tissue deteriorates with age. Apart from the 
impaired storage capacity that would inevitably 
result from defective adipogenesis in  vivo, the 
lipid handling of individual adipocytes may also 
deteriorate with age. Guo et al. [84] demonstrated 
that aged ASCs were more susceptible to fatty 
acid-induced apoptosis than young ASCs. The 
fatty acid oleate upregulated the expression of 
PPARγ2 and C/EBPα in young ASCs, but not in 
old ASCs, indicating that young ASCs can launch 
an adipogenic response to exogenous lipid over-
load, resulting in increased lipid storage and 
reduced lipotoxicity, while this response may be 
impaired in old ASCs. β-Oxidation in ASCs was 
also reduced with age, due to mitochondrial dys-
function. These age-related alterations in lipid 

Aged/inflamed 
ASCs

TNFα TNFα

TNFα TNFα

↓ Adipogenesis
↓ PPARγ

↑ CUGBP1, ↓ C/EBPα
↑ Wnt10b

↓ IRS-1 signalling

↓ adiponectin macrophage
activation

↑ SASP production 
(IL-6, MCP-1)

↑ LPS (age)

Fig. 16.3 The interlinked nature of ASC aging, senes-
cence, and inflammation, with TNFα as a central media-
tor. Aged ASCs produce higher levels of TNFα, but TNFα 
can mimic chronological aging of ASCs on a transcrip-
tional level through the premature upregulation of age- 
associated C/EBP inhibitors such as CUGBP1 and CHOP 
in young ASCs, resulting in a blunted adipogenic response 
[26] (refer to Fig. 16.2). TNFα also inhibits adipogenesis 
in ASCs by increasing Wnt10b expression, thereby acti-
vating anti-adipogenic Wnt signalling [77]. Furthermore, 
TNFα causes insulin resistance through the alternative 
phosphorylation and resultant de-activation of insulin 
receptor substrate-1 (IRS1) and through the downregula-

tion of genes associated with insulin sensitivity and adipo-
cyte function such as adiponectin and GLUT4 (reviewed 
in [78]). Other pro-inflammatory factors can be produced 
by ASCs themselves or by macrophages (tissue-resident 
or infiltrating) [79], or may originate from the circulation, 
such as lipopolysaccharide (LPS) [82]. Regardless of the 
source, inflammation establishes a self-sustaining feed- 
forward loop of senescence and inflammation within adi-
pose tissue. Taken together, these findings present a 
mechanistic connection between age-related increased 
inflammation and loss of adipocyte differentiation and 
function in vivo
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handling may establish a cycle of lipotoxicity, 
with exogenous free fatty acids inducing preadi-
pocyte apoptosis, reduced adipogenesis, and fail-
ure to store fatty acids, resulting in increasingly 
elevated local levels of free fatty acids and aggra-
vated fat tissue dysfunction. Release of these 
fatty acids into the circulation may also cause 
ectopic lipid deposition and lipotoxicity in other 
tissues, such as muscle and pancreas [84].

In addition to the loss of total adipose tissue 
mass, a specific loss of SAT volume is often 
observed with age [5, 6] and may involve the 
accelerated replicative exhaustion of scASCs, 
relative to vASCs. Cultures of human scASCs 
were found to contain a higher proportion of rap-
idly dividing cells than omental ASCs (oASCs) 
[85], but human scASCs also have shorter telo-
meres than oASCs [86]. Combined, these two 
factors may result in scASCs losing their replica-
tive capacity and entering senescence before 
ASCs in other depots, resulting in loss of adipo-
genic potential specifically in SAT.

Adipose tissue inflammation may also con-
tribute to the loss of SAT with age. Caso et  al. 
[28] found that the loss of replicative and adipo-
genic capacity in scASCs from older humans was 
associated with increased TNFα release from the 
originating SAT.  In addition, the adipogenic 
potential of isolated scASCs was positively cor-
related with the SAT/VAT ratio of the donors 
[28], and taken together, these findings indicate 
that the age-associated loss of SAT may result 
from the suppression of adipogenesis in scASCs 
by increased local concentrations of inflamma-
tory mediators, via the mechanisms discussed 
above (Figs. 16.2 and 16.3).

The consequence of the age-related loss of 
SAT can also impact on the ability of the indi-
vidual to compensate for metabolic insults such 
as a high-fat diet (HFD). In mice, HFD was ini-
tially associated with increased energy expendi-
ture, but aged HFD mice exhibited lower energy 
expenditure and glucose intolerance. Older mice 
on HFD developed non-alcoholic fatty liver dis-
ease (NAFLD) to a far greater extent than 
younger HFD-fed mice, indicative of poor adi-
pose tissue storage capacity and lipid spill-over 

with age. While this study found that there was 
no age-specific increase in senescence markers in 
the SAT of lean animals, HFD induced senes-
cence in the SAT of aged mice [87]. These find-
ings support the idea that the SAT is an important 
site of metabolic compensation and that the loss 
of this function with age may underpin many 
age-related metabolic disturbances.

When considering the findings of the studies 
described in this section, it can therefore be con-
cluded that, consistent with the general features 
of senescent cells described above, senescent 
ASCs are dysfunctional in two main ways: (1) 
they have impaired capacity for adipogenesis and 
lipid storage, and (2) they secrete SASP factors 
that negatively impact the adipogenesis and lipid 
storage of neighboring ASCs and mature 
 adipocytes. Collectively, these two mechanisms 
drive adipose tissue dysfunction through the 
interrelated pathways of lipotoxicity, inflamma-
tion, and insulin resistance (reviewed in [20]).

16.3  Adipose Tissue as a Source 
of Longevity Signals

The mechanisms described in Sect. 16.2 under-
score the notion that aging has a profound impact 
on the biology and function of adipose tissue and 
ASCs. However, it has emerged that the reverse 
is also true, that adipose tissue can indeed play a 
major role in how we age, in terms of both 
healthspan and lifespan, suggesting that adipose 
tissue may generate systemic signals that can 
regulate organismal aging. This may take the 
form of physical signals, i.e., circulating factors 
that emanate from adipose tissue to impact the 
function of both adipose and non-adipose tis-
sues, thereby influencing the risk for age-related 
metabolic disorders and other diseases affecting 
mortality. Two factors appear to hold the key to 
the effects of adipose tissue on longevity: (1) the 
relative distribution of fat mass between SAT 
and VAT and (2) the modulation of adipose tis-
sue function by calorie restriction (CR). The 
interlinked nature of these two factors and the 
role of ASCs in regulating lifespan and healths-
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pan will be discussed below and are summarized 
in Fig. 16.4.

16.3.1  Adipose Depot-Specific 
Contributions to Lifespan 
Determination

While general obesity is in itself a risk factor for 
many diseases [88], increased VAT has specifi-
cally been linked to increased morbidity and 

mortality associated with insulin resistance, 
T2DM, and cardiovascular disease [89], likely 
due to the heightened pro-inflammatory nature of 
VAT, compared to SAT (reviewed in [13, 90]). In 
humans, the ratio of VAT to SAT increases with 
age (reviewed in [5]), but increased VAT reduces 
lifespan and increases mortality, independent of 
total body adiposity [11, 13]. VAT mass is posi-
tively associated with the circulating levels of 
several pro-inflammatory cytokines, including 
IL-6 and MCP-1/CCL-2 [91], and is also a major 

↓ GH 
signalling

longevity

CR

↓ ASC senescence

↑ Dicer, ↑ miR-125

↓ p16        ↓ p53

TNFα ↓ VAT

↓ IL-6
↓ MCP-1
↓ PAI-1

↑ adiponectin

CR

↑ PPARγ
target genes 

(VAT)

↑ SAT

CR

↓ Cdc42

ASCs?

↑ SAT mass

CR

Fig. 16.4 The multitude of mechanisms whereby calorie 
restriction (CR) and other signals may enhance longevity 
through the regulation of adipose tissue and ASC func-
tion. Mechanisms which have been directly demonstrated 
are shown with solid arrows, while putative or inferred 
mechanisms are shown with dashed arrows. CR reduces 
VAT mass [106, 107], and decreased VAT is associated 
with reduced circulating levels of IL-6 and MCP-1/CCL2 
[91]. Circulating IL-6 levels are positively associated with 
mortality [93, 94], and therefore a reduction in IL-6 levels 
may promote longevity. Dietary restriction (DR) in 
humans decreases circulating PAI-1 levels [108], which 
may prevent atherothrombosis [92] and promote longev-
ity. DR also increases circulating adiponectin levels [112]. 
Adiponectin is independently associated with longevity 
[97], but adiponectin also suppresses TNFα [101] and 
IL-6 [99] production, while both IL-6 [100] and TNFα 
[102] suppress adiponectin production. CR also down-
regulates other components of the TNFα signalling cas-
cade [109, 110]. It is not clear whether the effects of 
adiponectin on lifespan are mediated solely through the 

suppression of IL-6 and TNFα, or whether other mecha-
nisms are involved as well. CR was found to increase 
expression of PPARγ target genes in VAT [111], but a 
direct connection to extended lifespan was not demon-
strated. CR was also found to prevent the age-related 
downregulation of Dicer and miR-125 and the subsequent 
upregulation of p53  in ASCs, thereby reducing ASC 
senescence [116, 117], but a direct connection to lifespan 
was not demonstrated in these studies. CR delays the age- 
related upregulation of p16 in some tissues [59], but this 
has not been demonstrated for ASCs. However, clearance 
of p16-expressing cells is associated with extended lifes-
pan [123, 124]. Cdc42 activity increases with age and is 
associated with reduced lifespan and healthspan and 
increased ASC senescence [30, 66, 119], but it is not clear 
whether CR can reverse this. CR may also preserve SAT 
mass independent of effects on VAT [121], but this has not 
been directly demonstrated. Reduced GH signalling is 
associated with increased lifespan, preserved SAT mass, 
and decreased senescent cell burden in adipose tissue 
[113–115]
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source of PAI-1 [92]. Plasma IL-6 levels have 
emerged as a predictor of mortality [93, 94], 
while PAI-1 contributes to the pathogenesis of 
atherothrombosis [92]. Therefore, in addition to 
predisposing individuals to insulin resistance and 
diabetes, VAT also produces circulating factors 
that directly impacts mortality, although these 
may form part of converging pathophysiological 
mechanisms. By extension, removal of VAT or 
reduction of VAT-derived factors should then 
reduce mortality. Correspondingly, in rats, surgi-
cal removal of VAT enhanced lifespan [12] and 
also strongly downregulated the expression of 
TNFα in SAT [95, 96], which would reduce 
inflammation and SASP production and improve 
lipid storage capacity in SAT, as discussed above.

16.3.2  Circulating Factors 
and Longevity

One adipose-derived factor (adipokine) that may 
be pivotal in enhancing longevity is adiponectin. 
High circulating levels of adiponectin were found 
in individuals of extremely advanced age 
(>95  years old), independent of BMI [97], and 
was also associated with an increased SAT/VAT 
ratio [98]. A causal relationship between adipo-
nectin and longevity may reside in the ability of 
adiponectin to downregulate IL-6 production. In 
cultured porcine ASCs, adiponectin prevented 
the upregulation of IL-6 expression by inflamma-
tory mediators such as LPS [99]. Conversely, in 
cultured human scASCs, IL-6 treatment reduced 
adiponectin gene expression [100]. Given the 
positive association of IL-6 levels with mortality 
[93, 94] and the increase in IL-6 expression in 
adipose tissue with age [76], it may be hypothe-
sized that the balance between IL-6 and adipo-
nectin production could be a determining factor 
in lifespan, although this has not been conclu-
sively demonstrated in humans. In addition, 
Maeda et al. [101] showed that adiponectin sup-
presses TNFα expression in adipose tissue and 
reduces TNFα levels in circulation, which would 
reduce inflammation and inhibit SASP produc-
tion within adipose tissue (Fig. 16.3). Conversely, 
TNFα blocks the release of adiponectin from adi-

pose tissue [102]. These “balancing acts” may 
form part of a mechanism whereby adiponectin 
could preserve ASC and adipose tissue function 
into advanced age, or alternatively, whereby a 
reduction in lifespan could result from the nega-
tive impact of chronic inflammation on adiponec-
tin production (Fig. 16.4).

CR is the only documented non-genetic, non- 
surgical, and non-pharmacological (“life-style”) 
intervention to date that can delay the onset of 
many age-related disorders and extend lifespan 
across vertebrate and non-vertebrate species, 
although the evidence in humans is understand-
ably scant [88, 103]. In the laboratory, CR is 
achieved by restricting the calorie intake of the 
animals by 20–40% of that of ad libitum-fed 
counterparts. This reduction in food intake results 
in a substantial reprogramming of energy bal-
ance, body mass, and body composition, with a 
typical reduction in fat mass (reviewed in [13]). 
Nutrient signalling such as the mTOR pathway is 
also profoundly affected by CR [104, 105]. While 
it is controversial whether the reduction in fat 
mass actually contributes to the effects of CR on 
longevity [13, 103], CR affects the function of 
adipose tissue and ASCs on a molecular level, as 
will be discussed below (Fig.  16.4), and these 
adipose-specific effects have a broader impact on 
a systemic level. Findings from animal models 
suggest that CR may preferentially target VAT, 
which may account for at least some of the 
lifespan- extending effects of CR, due to the 
impact of VAT on lifespan as discussed above. In 
rats, CR over 18 months reduced total fat mass to 
33% but VAT mass to less than 20% of that of 
their ad libitum-fed counterparts [106], and CR 
in monkeys reduced VAT mass within 12 months 
[107]. In addition, the surgical removal of VAT in 
young rats achieved the same extension of lifes-
pan as CR [12]. Dietary restriction (DR, the 
human equivalent of CR) induced moderate 
weight loss and reduced circulating PAI-1 levels 
in elderly obese individuals [108], suggestive of 
direct effects on VAT function by DR.

The combination of VAT reduction and CR 
may promote insulin sensitivity and decrease the 
risk of developing age-related insulin resistance 
and T2DM (reviewed in [90]), but CR also has 
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dramatic effects on gene expression in adipose 
tissue that may directly contribute to preserving 
adipose tissue function. Long-term CR in mice 
upregulated the expression of numerous genes 
involved in metabolism, substrate utilization, and 
energy production in epididymal fat, while a 
large number of inflammatory genes were down-
regulated, in particular genes in the TNFα signal-
ling cascade [109, 110]. In rats, CR was found to 
have a far greater transcriptional effect in VAT, 
compared to the heart, with the majority of the 
transcriptional effects of CR in rat VAT serving to 
reverse age-associated changes. PPARγ target 
genes involved in adipogenesis were downregu-
lated in VAT with age, but not with CR, suggest-
ing that CR does not reduce fat mass by 
downregulating adipogenesis, but rather that it 
preserves adipogenic potential to reduce the risk 
of adipocyte hypertrophy and inflammation. CR 
also downregulated immune response genes and 
preserved the expression of cell cycle regulatory 
genes in VAT, which may delay the onset of 
senescence [111]. Moreover, DR increased the 
circulating adiponectin levels of both diabetic 
and non-diabetic subjects [112], suggesting a 
possible convergence of mechanisms involved in 
the lifespan-extending effects of CR and adipo-
nectin (Fig. 16.4).

Findings in genetic models of longevity have 
also demonstrated a role for ASCs in the relation-
ship between adipose tissue function and lifes-
pan. Decreased growth hormone (GH) activity is 
associated with increased lifespan in rodent mod-
els, while overexpression of GH has the opposite 
effect (reviewed in [113]). This is consistent with 
observations in humans that a low level of circu-
lating insulin-like growth factor-1 (IGF-1), which 
acts downstream of GH, is associated with lon-
gevity, especially in women [114]. Long-lived 
GH-deficient or GH-resistant mice are not sub-
ject to the age-associated loss of SAT mass 
observed in their wild-type littermates [113, 
115], and the adipogenic potential of scASCs is 
accordingly enhanced in GH receptor (GHR) KO 
mice [113]. GHR deficiency also results in a 
decreased senescent cell burden in various adi-
pose tissue depots. These findings indicate a role 
for GH in modulating ASC function as we age. 

However, as alterations in GH levels and signal-
ling affect circulating levels of IGF-1, insulin, 
and glucose [113], the mechanism involved is not 
clear at this stage.

16.3.3  Molecular Mediators 
of Longevity: Dicer and Cdc42

Mouse and human adipose tissue and ASCs were 
found to exhibit an age-related downregulation of 
miRNA processing machinery, in particular 
Dicer, a cytoplasmic enzyme involved in the late 
processing events of miRNAs. This was associ-
ated with decreased expression levels of several 
miRNA species, but a concomitant accumulation 
of miRNA precursors, consistent with impaired 
miRNA processing capacity. Cultured Dicer-KO 
mouse scASCs exhibited increased population 
doubling time and upregulation of senescence 
markers such as increased total p53 and phospho-
 p53, increased p21 expression, and higher num-
bers of β-gal-positive cells [116]. Loss of Dicer 
expression downregulated miR-125 expression, 
which allowed for the upregulation of its target 
gene, p53 [117], thereby driving senescence in 
ASCs. Mice with white adipose tissue-specific 
KO of Dicer had higher levels of phospho-p53 in 
adipose and other tissues, indicating that adipose 
Dicer KO had effects beyond adipose tissue that 
mimicked premature aging, although it is not 
clear how these effects were communicated at the 
systemic level. The downregulation of Dicer 
expression and subsequent deficiencies in 
miRNA processing was prevented with CR, pro-
viding another candidate mechanism whereby 
the effects of CR on adipose tissue and ASCs 
could promote longevity [116] (Fig. 16.4). It is 
noteworthy that CR has also been found to 
enhance the capacity of hepatocytes to repair oxi-
dative DNA damage [118], and although this has 
not been shown in ASCs, a similar mechanism 
may contribute to the CR-mediated delay in 
senescence in ASCs.

Comparisons between ASCs from young and 
old rats and humans also identified a role for 
Cdc42 (cell division control protein 42), a mem-
ber of the Rho GTPase family, in lifespan as well 
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as ASC senescence and dysfunction. Increased 
age was associated with increased levels of 
Cdc42-GTP, the active form of Cdc42, in both rat 
and human ASCs [30, 66]. In rat ASCs, this cor-
related with decreased replicative and adipogenic 
potential, increased expression of senescence 
markers, and increased ROS production, all of 
which was at least partially reversed by pharma-
cological inhibition of Cdc42-GTP by CASIN 
[66]. Similar to these findings in rat ASCs, phar-
macological inhibition of Cdc42-GTP with 
ML141 reversed the age-related decrease in pro-
liferation, viability, and plastic adherence, as well 
the enhanced pro-inflammatory gene expression 
profile and loss of adipogenic potential in aged 
human ASCs [30]. In mice, Cdc42 activity was 
also found to increase with aging in various tis-
sues, and constitutive activation of Cdc42 resulted 
in reduced lifespan, loss of SAT, and several age- 
associated impairments [119] (Fig. 16.4). These 
findings are consistent with the idea that longev-
ity is closely tied to the preservation of SAT and 
ASC function, and taken together, these studies 
imply a mechanism whereby Cdc42 activity may 
affect lifespan through the modulation of ASC 
function.

16.3.4  Calorie Restriction: Guardian 
of SAT Function?

The idea that a reduction in fat mass through 
methods such as CR is beneficial to lifespan has 
long been controversial [13, 103, 120]. The results 
of Stout et al. [113] and Wang et al. [119] suggest 
that preservation of fat mass, especially SAT, is 
associated with longevity, and given the various 
roles of SAT in maintaining metabolic homeosta-
sis into old age, as described above, such a mech-
anism would make intuitive sense. In support of 
this, Liao et al. [121] observed that among various 
strains of inbred mice, the reduction of fat mass 
with CR, compared to ad libitum feeding, was 
actually negatively correlated with lifespan, 
although the effects of CR on individual fat depots 
were not determined. However, given that SAT is 
the biggest adipose depot in the body, it may be 
reasonably assumed that when fat mass loss is 

reflected in body mass loss, the SAT mass is being 
reduced, possibly in parallel with reductions of 
other adipose depots. Taken together, the findings 
described in this section demonstrate that adipose 
tissue function plays a fundamental role in lon-
gevity, by regulating glucose and lipid metabo-
lism and by generating signals that modulate 
lifespan on a systemic level. In particular, the 
preservation of optimal adipose tissue and ASC 
function, in particular in SAT, forms an indispens-
able part of this mechanism. Given the informa-
tion in the paragraphs above, perhaps the 
controversy may then be addressed as follows: the 
key to longevity does not reside in the actual fat 
mass, but in the function of individual adipose 
depots. Ideally, SAT mass should be preserved 
into old age, for optimal lipid storage and preven-
tion of lipotoxicity, provided that the SAT does 
not become pro-inflammatory. Interventions that 
preferentially reduce VAT mass may be desirable, 
but even in the absence of a loss of VAT mass, a 
shift in the production of circulating factors 
toward a less inflammatory phenotype, in particu-
lar increased adiponectin production, may achieve 
the same goal. Crucially, the preservation of adip-
ogenic potential and delayed onset of senescence 
in ASCs provides adipose tissue-level resilience 
into old age and protects against adipose inflam-
mation that disrupts systemic metabolic regula-
tion and predisposes to age-related diseases.

16.4  Alleviating the Effects 
of Senescent ASCs In Vivo

16.4.1  Targeting Senescent ASC: 
Senolytics

Aging is a major risk factor for a host of chronic 
diseases, which often cluster within individuals, 
resulting in multi-morbidity [122]. The “gerosci-
ence hypothesis” posits that if the interrelated 
aging processes of sterile inflammation, progeni-
tor cell dysfunction, and increased burden of 
senescent cells can be targeted therapeutically, 
this can delay or prevent age-related diseases or 
disabilities as a group, rather than attempting to 
treat individual conditions. Consequently, if 
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senescent cells within adipose tissue mediate 
tissue- level and systemic metabolic dysregula-
tion to reduce healthspan and lifespan, then the 
clearance of such cells should restore metabolic 
homeostasis, relieve age-related disorders and 
frailty, and promote longevity (reviewed in [2]), 
and there is indeed promising evidence to support 
this idea. Clearance of p16-expressing cells via a 
drug-induced “suicide” transgene in wild-type 
and progeroid mice resulted in delayed initiation 
and progression of age-related pathologies and 
frailty, preserved fat mass including SAT, restored 
adipogenesis, reduced inflammation, and 
extended lifespan [123, 124]. Of specific impor-
tance here was the association between preserved 
SAT mass and increased lifespan, supporting the 
notion that longevity signals originate in the SAT, 
as described in Sect. 16.3.

Transgene strategies to reduce senescent cell 
burden are not currently a feasible treatment 
option in humans, but efforts in the past 5 years 
have identified pharmaceutical compounds that 
may serve the same purpose. Senescent cells 
remain viable and metabolically active, in particu-
lar with regard to the production of SASP factors, 
but they are also more stress-resistant than non-
senescent cells, with greater reliance on anti-
apoptotic and pro-survival pathways, and are 
therefore more difficult to clear from tissues. 
Senolytic drugs can trigger the selective clearance 
of senescent cells from in vitro cultures and from 
tissues in vivo by circumventing the resistance of 
senescent cells to apoptosis through targeting 
senescence cell anti-apoptotic pathways (SCAPs) 
(reviewed in [10, 125]). Dasatinib (D) and querce-
tin (Q) (both broad-spectrum kinase inhibitors) 
have been identified as senolytics with specific 
activity to induce apoptosis in culture- senescent 
ASCs, but not proliferating non- senescent ASCs 
[125]. In addition, a single dose of D + Q was suf-
ficient to reduce the number of senescent cells in 
the adipose tissue of aged mice within 5  days. 
However, senescent cells from  different tissue ori-
gins vary in their susceptibility to individual seno-
lytic drugs [125, 126], and therefore it may be 
advisable to devise tissue-targeted senolytic 
regimes for improved efficacy. Conversely, as 
senescent cells employ common SCAP pathways, 

many senolytics may have broad-spectrum effects 
and could alleviate a range of dysfunctions, albeit 
at varying degrees of efficacy.

Clinical trials of senolytics are only now 
starting to emerge, and therefore the long-term 
side effects and consequences of these agents are 
not yet known. As senolytics function to remove 
senescent cells from tissues, rather than continu-
ously occupying a single molecular target, they 
can be administered intermittently through 
short- course treatments [10]. Such treatment 
regimens may reduce off-target side effects such 
as delayed wound healing, where senescent cells 
play a crucial role [127], while the therapeutic 
effects would be long-lasting, depending on the 
rate of senescent cell re-accumulation. In addi-
tion, as senescent cells do not divide, they also 
cannot acquire mutations to induce drug resis-
tance [10]. Moreover, as many of the deleterious 
effects of senescent cells are mediated via the 
SASP, even partial clearance of senescent cells 
should have beneficial effects. However, the true 
endpoints of senolytic treatment in humans, such 
as increased lifespan and healthspan, occur over 
decades and are therefore impossible to measure 
in clinical trials [10]. Short-term surrogate mark-
ers therefore have to be utilized instead, but their 
validity and correlation with longer-term out-
comes will only be determined in the future. In a 
phase I pilot study [128], a 3-day course of 
D + Q was administered to patients with diabetes 
and chronic kidney disease, and the effects were 
assessed 11  days after cessation of treatment. 
Adipose tissue histology demonstrated a 
decrease in the number of senescent cells within 
adipose tissue, and ASC cultures exhibited 
enhanced growth rate over time, consistent with 
the prior removal of non-replicating senescent 
cells from the SVF. In addition, circulating lev-
els of several SASP components, such as inter-
leukins and MMPs, were reduced, supporting 
the systemic impact of senolytic treatment [128]. 
This study provided evidence that senolytic 
treatment does have measurable short-term 
effects in humans that would be consistent with 
a long-term improvement of healthspan and 
lifespan and therefore paves the way for future 
senolytic trial design.
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16.4.2  Targeting the SASP

An alternative strategy for mitigating the nega-
tive impact of senescent cells in adipose tissue 
may be to suppress the production of inflamma-
tory SASP components with conventional drug 
treatment. In support of such an approach, gluco-
corticoids such as corticosterone and cortisol 
have been found to reduce the production and 
secretion of several pro-inflammatory SASP 
components by senescent fibroblasts in culture 
[129], although similar effects have not been 
demonstrated in ASCs or adipocytes. The anti- 
diabetes drug metformin, which blocks NF-κB 
signalling in senescent fibroblasts in vitro [130], 
was unexpectedly found to extend the lifespan of 
diabetic patients beyond that of non-diabetic 
counterparts [131]. Correspondingly, in healthy 
aging mice, chronic metformin administration 
had insulin-sensitizing and anti-oxidant effects in 
the liver and improved healthspan and lifespan, 
although the contribution of adipose-specific 
effects of metformin was not determined [132]. 
Similar to metformin, the mTOR inhibitor 
rapamycin was also found to inhibit NF-κB sig-
nalling and SASP production in senescent fibro-
blasts [133] and extended the lifespan of aged 
mice [134]. However, as is the case for metfor-
min, the impact of rapamycin on senescence in 
ASCs and adipose cells has not been examined.

Ruxolitinib, an inhibitor of the Janus kinases 
(JAK)1/2 that form part of the JAK/STAT path-
way, shows promise as an adipose-specific 
SASP inhibitor. In culture-senescent human 
ASCs, different JAK inhibitors, including rux-
olitinib, were all found to downregulate the 
expression of various pro-inflammatory SASP 
components [69]. In aged mice, ruxolitinib 
administration decreased systemic and adipose 
tissue inflammation and reduced frailty, 
although the effect on lifespan was not reported 
[69]. In a related study, the same authors also 
found that ruxolitinib treatment of aged mice 
had several beneficial metabolic effects, includ-
ing preservation of SAT mass, enhanced adipo-
genesis, and lipid storage in fat [135]. These 
effects were attributed to a reduction in the 
expression of the ASC SASP factor activin A 

[135]. Notably, increased serum activin A has 
been associated with increased cardiometabolic 
risk factors in humans, providing more evidence 
of the systemic impact of SASP factors [136]. 
Importantly, several of the effects of ruxolitinib 
only occurred in old animals, suggesting a spe-
cific targeting of senescent cells, of which the 
burden in adipose and other tissues increases 
with old age [69, 135]. In addition, IL-6, of 
which the expression in adipose tissue and ASCs 
increases with age [65, 76], activates the JAK/
STAT pathway [137], which may also explain 
why inhibition of this pathway with ruxolitinib 
has specific effects in aged animals. Taken 
together, these findings indicate that ruxolitinib 
may enhance healthspan, if not lifespan, in aged 
organisms, by targeting adipose tissue and ASC 
inflammation. However, although ruxolitinib is 
FDA-approved for treating conditions such as 
myelofibrosis, it has considerable side effects in 
humans, including anemia and thrombocytope-
nia [138], and therefore further assessments 
need to be performed before this drug can be 
recommended for alleviating age-related meta-
bolic dysfunction in the clinical setting.

16.5  Implications of Age 
for the Use of ASCs in Cell- 
Based Therapy

Stem cell therapy, where stem cells are used to 
treat or prevent a disease, can be either autolo-
gous, where the patient’s own stem cells are 
used, or allogeneic, where cells from a geneti-
cally similar donor are used. Both of these strate-
gies have advantages and disadvantages: 
autologous therapy will circumvent immune 
rejection, but stem cells from individuals may be 
compromised due to age or disease. Conversely, 
allogeneic therapy allows for “off-the-shelf” 
products and the choice of stem cells with 
increased therapeutic fitness, but may fail due to 
immune rejection. MSCs, including ASCs, pos-
sess several features that make them ideal for 
either autologous or allogeneic stem cell therapy. 
ASCs are easily accessible and highly prolifera-
tive in culture, and large numbers of cells can 
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therefore be generated with ease. In addition, 
they can migrate and home into sites of tissue 
injury, and they are immunoprivileged in that 
they do no elicit an immune response and fur-
thermore generate an immunosuppressive envi-
ronment through the paracrine actions of secreted 
cytokines (reviewed in [139]). For these reasons, 
ASCs are becoming increasingly popular for use 
in therapeutic interventions in a variety of degen-
erative or inflammatory diseases (reviewed in 
[140]). However, given the fundamental changes 
in ASC biology that occur with organismal aging 
outlined above, including senescence, loss of 
replicative potential, and adoption of a pro-
inflammatory phenotype, it is vital to assess the 
impact of individual donor characteristics on the 
performance of ASCs in a therapeutic setting. 
Depending on the application, ASCs can be 
directly transplanted through injection or infu-
sion, but the therapeutic effects of ASCs are 
mostly derived from their secretome, rather than 
their repopulation of injured sites or their multi-
potency for differentiation (reviewed in [141]). 
Therefore, aside from the potential loss of fitness 
of aged ASCs and the resultant failure of the 
ASC-based treatment, it is also possible that 
aged dysfunctional ASCs may actively introduce 
harmful effects in the recipient organism through 
their pro-inflammatory secretome. However, the 
effects of in vivo aging on human ASC function 
ex  vivo vary quite considerably between indi-
viduals [142], suggesting that ASCs from indi-
vidual donors should ideally be evaluated on 
own merit to determine suitability in therapeutic 
applications.

16.5.1  Therapeutic Implications 
of Donor Age

16.5.1.1  Loss of Function (Passive 
Dysfunction)

Limited information is available on the effect of 
donor age on the capacity of ASCs to promote 
angiogenesis, which is an important feature of 
injury repair. Duscher et al. demonstrated a loss 
of vasculogenic potential for aged mouse ASCs 
using in vitro and in vivo assays [143]. Similarly, 

in a rat model of myocardial infarction (MI), 
transplanted ASCs from old rats exhibited 
impaired capacity for engraftment, angiogenesis, 
and structural repair, which was attributed to the 
increased sensitivity of aged ASCs to ROS dam-
age, in particular the dramatically elevated ROS 
levels in the MI micro-environment [67]. Of note, 
old ASCs performed better than old bone marrow 
stem cells (BMSCs) in animals undergoing surgi-
cal ventricular reconstruction, due to lower 
expression of several senescence markers and 
better angiogenic potential of old ASCs, com-
pared to old BMSCs [144]. Surprisingly, given 
the interest in ASCs for regenerative medicine, 
the impact of age on the pro-angiogenic effects of 
ASCs in the clinical setting has not been studied, 
and therefore the clinical relevance of these ani-
mal studies still remains to be determined.

Wang et al. [65] demonstrated that ASC cul-
tures from aged mice had a significantly higher 
proportion of cells expressing p21 than their 
young counterparts, and these cells also exhibited 
higher expression of pro-inflammatory SASP 
factors such as IL-6 and IL-8. Correspondingly, 
direct intraperitoneal transplantation of ASCs 
from young animals was able to reverse physical 
frailty in aged mice, whereas transplanted old 
ASCs could not, again indicating that senescent 
ASCs may result in failure of cell-based thera-
pies. In contrast, Dufrane et al. [145] found that 
donor age did not affect the success of ASCs for 
use in manufacturing a complex osteogenic graft 
for bone non-union injury, suggesting that the 
applicability of aged ASCs may depend on the 
specific therapeutic application.

16.5.1.2  Acquisition of Pathological 
Features (Active 
Dysfunction)

Due to their immunomodulatory properties, 
ASCs are considered for use in the treatment of 
chronic inflammatory disorders. However, ASCs 
from aged individuals with atherosclerosis were 
found to have a predominantly pro-inflamma-
tory secretome, with increased levels of IL-6, 
IL-8, and MCP-1/CCL-2 [70], rendering these 
cells useless for therapeutic purposes and creat-
ing the likelihood that these cells may actively 
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contribute to pathology. Accordingly, infusions 
of young ASCs into aged mice with bleomycin-
induced pulmonary fibrosis (a model for pro-
gressive idiopathic pulmonary fibrosis that 
occurs mainly in older humans) reduced fibro-
sis, inflammation, apoptosis, and oxidative 
stress in lung tissue, while aged ASCs could not 
reverse disease progression and actually exhib-
ited increased expression of MMP2, which is 
directly associated with disease severity [146]. 
These findings suggest not just a lack of thera-
peutic potential of old ASCs but also provide 
in  vivo evidence that old ASCs may actively 
contribute to pathology under certain 
conditions.

Pre-clinical investigations have also pro-
vided evidence that the immunomodulatory 
actions of injected ASCs may be utilized to 
treat a diverse range of conditions, including 
mucosal immunosenescence [147, 148], ovar-
ian aging [149], and diabetic osteoarthritis 
[150]. However, these treatments all rely on an 
optimal ASC secretome, and it is likely that 
such treatment strategies would fail if the 
administered ASCs are senescent and pro-
inflammatory and may even result in aggra-
vated pathology, although this has not been 
directly demonstrated. The menopausal status 
of female ASC donors may also influence the 
immunomodulatory capabilities of isolated 
ASCs [151]. Collectively, these findings high-
light the need for comprehensive evaluation of 
both the ASC donors and the isolated ASCs, 
especially when autologous application of 
ASCs is being considered in aged or metaboli-
cally compromised individuals.

16.5.1.3  Transplanted ASCs 
as a Treatment for Metabolic 
Syndrome?

Various consequences of the age-related loss of 
SAT on healthspan and lifespan were discussed 
in detail in the preceding paragraphs, but SAT 
function can also affect the ability of the individ-
ual to compensate for metabolic insults such as a 
high-fat diet (HFD). Taketani et al. [87] demon-
strated that HFD in aged mice induced glucose 
intolerance, NAFLD, and senescence in 

SAT. ASCs from aged HFD mice also displayed 
reduced expression of stemness markers and 
diminished capacity for differentiating into white 
and brown adipocytes. Injection of young ASCs 
into the SAT of aged HFD mice improved meta-
bolic parameters and resolved NAFLD, although 
this was not achieved when using ASCs from 
aged HFD mice. ASC transplant also reduced 
SAT inflammation, reflected in decreased expres-
sion of inflammatory markers such as MCP-1/
CCL2, TNFα, and PAI-1. Therefore, ASC trans-
plant restored the capacity of SAT to compensate 
for HFD-induced metabolic disturbances, which 
holds tremendous potential for the treatment of 
obesity, adipose tissue dysfunction, and meta-
bolic disorders that are otherwise not responsive 
to dietary or pharmacological interventions.

16.5.2  Ex Vivo Rejuvenation of ASCs

The accumulation of senescent ASCs within the 
adipose tissue may result in compromised fitness 
of isolated ASCs for use in autologous ASC- 
based therapies. In addition, harvested ASCs may 
have to be expanded in culture to achieve suffi-
cient cell numbers for therapeutic applications, 
but ASC cultures from aged individuals often 
exhibit prolonged population doubling times in 
culture [28–30, 62–64]. Unfortunately, the aged 
population also represents the biggest market for 
ASC-based therapies, due to the large numbers of 
chronic conditions in this group, coupled with 
increased prevalence of vasculopathies and 
impaired tissue repair, which may present a prob-
lem when autologous ASC therapy is being con-
sidered [141, 143]. However, potential strategies 
and products have been identified that may be 
used in ex vivo cell culture to rejuvenate senes-
cent ASCs isolated from aged individuals before 
these cells are applied in the therapeutic setting. 
These products include anti-oxidant and/or anti- 
inflammatory compounds such as zinc sulfate 
[152], L-carnitine [153, 154], and resveratrol 
[155]. Chaker et al. also reduced ASC senescence 
and restored ASC function through treatment 
with the Cdc42 inhibitor ML141 [30]. These 
studies support the principle that the ex vivo reju-
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venation of ASCs can be achieved, but were 
largely performed in ASCs from young or 
middle- aged subjects (<60 years old), and should 
ideally be repeated in ASCs from geriatric sub-
jects (>65  years old) to provide more evidence 
for the clinical potential of these compounds with 
regard to cell-based therapy in elderly patients. 
Rejuvenation strategies that have shown promise 
in rodent ASCs include curcumin [156], glutathi-
one, and melatonin [157]. It is also noteworthy 
that Alpinae oxyphyllae fructus (AOF) extract, 
used in traditional Chinese herbal medicine, pro-
moted an anti-inflammatory and pro-survival sec-
retome in cultured rat epiASCs [158]. Taken 
together, these findings open up the possibility 
that ASCs can be rejuvenated ex vivo, in terms of 
both replicative potential and secreted factors, to 
improve the applicability of these cells in the 
therapeutic setting.

Intriguingly, Son et  al. [159] demonstrated 
that intravenous administration of autologous 
ASCs in old rats improved several measures of 
biological aging, including improved serum lev-
els of anti-oxidant enzymes. Although the perfor-
mance of these cells was not compared to that of 
young ASCs, these aged ASCs were not treated 
with any rejuvenation agents before transplanta-
tion, suggesting that the 2 weeks (four passages) 
that these cells spent in ex vivo culture was suf-
ficient to rejuvenate them to the extent that they 
could subsequently stimulate functional improve-
ment in their original aged environment. In con-
trast, Wang et al. [65] found that intraperitoneal 
injection of old ASCs into aged mice resulted in 
increased frailty, compared to aged recipients of 
young ASCs. In this study, ASCs were only 
maintained in culture for one passage before 
transplantation, which may not have been suffi-
cient to achieve ex  vivo rejuvenation, possibly 
contributing to these contradicting outcomes. 
Alternatively, the site of administration (intrave-
nous vs. intraperitoneal) may also have affected 
the outcome of the ASC transplants. These find-
ings may have implications for ASC therapy in 
aged individuals, but need to be further explored 
in humans.

16.6  Concluding Remarks

From the findings reviewed here, it can be con-
cluded that the age-related changes in the func-
tional capacity of WAT are underpinned by the 
age-related changes in ASC biology. Aging ASCs 
lose their capacity to proliferate and differentiate 
into adipocytes, become senescent and inflamed, 
and “infect” surrounding cells with senescence 
and inflammation. These changes on a cellular 
level result in metabolic disturbances at an organ-
ismal level and reduce lifespan. In contrast, 
where these changes can be avoided through 
genetics or reversed with therapy, good health 
can be insured into advanced age.

However, much remains to be examined and 
elucidated with regard to the effects of age on 
ASC function. For instance, given the distinct 
roles of SAT and VAT in metabolic (dys)function 
as we age, it is surprising that no studies have 
directly compared the effects of aging on ASCs 
from different adipose tissue depots. Oxidative 
stress damage may become more pronounced in 
VAT than in SAT with age [6], and given the cen-
tral role for oxidative stress in driving senescence 
in other cell types [34, 38–40], this may possibly 
bring about depot-specific features of senescence 
in ASCs. Depot-specific effects of aging on telo-
mere length in ASCs have been shown [86], fur-
ther supporting the idea that aging may proceed 
differently in scASCs and vASCs. The SASP of 
aging ASCs has also not really been character-
ized, other than a few studies measuring individ-
ual candidate SASP components, but 
comprehensive proteomics analyses of the SASP 
may be more informative. Inter-species compari-
sons of ASC SASP are also lacking. This is an 
important issue to address, as fundamental differ-
ences in senescence mechanisms between mouse 
and human cells have been identified [37], and 
therefore experimental findings in animal models 
should be viewed with this caveat in mind.

The molecular mechanisms and signalling 
pathways governing senescence in ASCs have 
also not been studied in detail. Nutrient excess 
and the resultant chronic activation of mTOR sig-
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nalling promote senescence in other cell types 
and reduce lifespan (reviewed in [40, 105, 160]), 
but the role of mTOR signalling in age-related 
ASC senescence has not been studied, despite the 
importance of adipose tissue and ASCs as nutri-
ent sensors. The actions of major adipose tissue 
influencers such as IGF-1, insulin, and glucose 
all converge on mTOR signalling (reviewed in 
[113]), but these mechanisms remained to be elu-
cidated in ASCs. In other cell types, the regula-
tion of senescence by mTOR has been shown to 
occur within the context of a complicated rela-
tionship with p53 [36, 105, 161, 162], but knowl-
edge on the exact actions of p53 in ASCs is scant. 
Although several studies mentioned in this review 
describe an increase in p53 and p21 expression in 
aged ASCs, the p53-p21 pathway can be pro- or 
anti-senescent, depending on the nature and the 
level of the cellular stress [37, 40], and therefore 
more work is needed to understand the biological 
relevance of these molecular events.

Although there is clear evidence for the nega-
tive impact of chronological aging on ASCs, it is 
also important to note the resilience of aging 
ASCs, compared to other senescent cells, espe-
cially with regard to the preservation of cell cycle 
gene expression and protein translation function-
alities [73]. Numerous studies [29, 30, 48, 61, 62, 
66–68, 70, 146] have also shown that there are no 
differences in the expression of mesenchymal 
cell surface markers, such as CD90, CD73, and 
CD105, between young and old ASCs from 
rodent and human origin, indicating that the 
underlying stemness of ASCs do not decrease 
with age, even when senescent markers are 
upregulated. This feature of ASCs may serve to 
“soften the blows” of aging by avoiding a total 
loss of ASC function and may also form part of 
the mechanism that allows ASCs from aged 
 individuals to be rejuvenated ex  vivo, as was 
described in Sect. 16.5.2.

In the future, therapeutic approaches such as 
senolytics or ASC-based treatments may very 
well transform the way we age. A long list of age- 
related disorders for which ASC-based therapies 
could be developed was mentioned here, while 
the cosmetic applications of ASC-derived prod-
ucts in skin rejuvenation were not even discussed 

here. While it may feel intuitively “comfortable” 
to assume that ASCs from young individuals 
would perform better in therapeutic applications, 
there is some evidence to suggest that ASCs from 
older patients could also achieve successful out-
comes, or alternatively, could be supported by 
ex vivo rejuvenation before application, although 
this has to be evaluated for each individual. While 
the field of senolytic drug development is in its 
infancy [2, 10], such compounds hold real prom-
ise to reduce frailty and metabolic dysregulation 
as we age.

Then, to conclude, is adipose tissue the foun-
tain of youth? In the 1990s, recombinant human 
growth hormone supplementation was touted as 
the fountain of youth, essentially based on results 
from 1 study on 12 men [163], but this was of 
course later discredited [164]. In contrast, the 
present review demonstrates clearly, through the 
combined results of scores of studies, that main-
taining healthy functional adipose tissue over 
time is associated with improved healthspan and 
lifespan. Preservation of functional non-inflamed 
adipose tissue, especially SAT, protects against 
age-related metabolic dysregulation, and healthy 
adipose tissue is a source of circulating longev-
ity signals with demonstrable impact at distal 
sites. Optimally functioning ASCs form the 
foundation of healthy, resilient adipose tissue 
into advanced age. While much remains to be 
discovered, there is ample evidence to suggest 
that the key to a long and healthy life may reside 
within our ASCs.
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Abstract

Psychiatric and neurodegenerative disorders 
such as schizophrenia (SCZ), Parkinson’s dis-
ease (PD), and Alzheimer’s disease (AD) con-
tinue to grow around the world with a high 
impact on health, social, and economic out-
comes for the patient and society. Despite 
efforts, the etiology and pathophysiology of 
these disorders remain unclear. Omics tech-
nologies have contributed to the understand-
ing of the molecular mechanisms that underlie 
these complex disorders and have suggested 

novel potential targets for treatment and diag-
nostics. Here, we have highlighted the unique 
and common pathways shared between SCZ, 
PD, and AD and highlight the main proteomic 
findings over the last 5  years using in  vitro 
models, postmortem brain samples, and cere-
brospinal fluid (CSF) or blood of patients. 
These studies have identified possible thera-
peutic targets and disease biomarkers. Further 
studies including target validation, the use of 
large sample sizes, and the integration of 
omics findings with bioinformatics tools are 
required to provide a better comprehension of 
pharmacological targets.
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17.1  Introduction

Psychiatric and neurodegenerative disorders are a 
current health issue whose burden and prevalence 
is expected to increase with the ever-growing 
elderly population in the world [1, 2]. Canonical 
psychiatric and neurodegenerative diseases, such 
as schizophrenia (SCZ), Alzheimer’s (AD), and 
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Parkinson’s (PD) disease, present distinct clinical 
features, yet they seem to share the underlying 
feature of altered energy metabolism in the brain 
[3, 4], along with disruptions in emotional con-
trol. In neurodegenerative disorders specifically, 
progressive neuronal loss and disabilities occur 
in motor function. Sadly, despite it being over a 
century since these diseases were first described, 
their etiology remains largely unknown and 
disease- attenuating drugs are still much needed. 
Hope in tackling this unmet need has grown in 
the past decades with the progress of omics tech-
nologies, which allow for a high-throughput—
and, at times, a global assessment—of a set of 
biological molecules. In this way, they provide a 
deeper and more detailed understanding of 
human health and disease states at the molecular 
level.

Genomics, transcriptomics, proteomics, and 
metabolomics refer to the analysis and screening 
of biological samples at the DNA, RNA, protein, 
and metabolite levels, respectively. Further to 
these canonical omics technologies, additional 
layers of information can be gained from biologi-
cal samples through pharmacogenomics, epig-
enomics, phosphoproteomics, glycoproteomics, 
chemoproteomics, lipidomics, and several other 
omics approaches. In the context of psychiatric 
and neurodegenerative disorders, these technolo-
gies have had a pivotal effect in shifting us away 
from the old concept of “one gene, one disorder” 
toward the currently accepted view of a multifac-
torial origins nature. In addition, they have 
enabled a better understanding of central nervous 
system (CNS) disorders and identified numerous 
molecular targets [5, 6]. In line with the paradigm 
shift toward the multifactorial nature of CNS dis-
orders, omics technologies have demonstrated 
the necessity of targeting networks rather than 
single biological targets [7–9]. In general, CNS 
diseases are affected by multiple pathways and 
some pathways are shared among several dis-
eases [10]. This underlies the need of an inte-
grated approach for the identification of targets in 
the development of novel therapies.

In this review, we focus on the contribution of 
proteomics to the understanding of psychiatric 
and neurodegenerative disorders. We provide a 

brief overview of the main proteomics technolo-
gies and discuss how these have helped to prog-
ress our overall understanding of SCZ, PD, and 
AD. We will then discuss the role of proteomics 
in the identification of protein targets, delineating 
how the identification of single targets and 
 networks impacts the therapeutic landscape for 
these CNS disorders.

17.2  Overview of Proteomic 
Technologies

After completion of the human genome project 
nearly two decades ago, technical advances in 
DNA and RNA sequencing as well as in mass 
spectrometry technologies have ushered in a new 
period of scientific progress defined as the post- 
genomic era. In this new era, the main omics 
technologies such as genomics, transcriptomics, 
and proteomics and their subfields (e.g., epig-
enomics, pharmacogenomics, phosphopro-
teomics) have provided scientists with an 
unprecedented level of resolution in the assess-
ment of biological samples at the genomic, tran-
scriptional, and post-transcriptional levels. 
Today, omics technologies are at the core of our 
progress in understanding molecular mechanisms 
underlying complex diseases such as psychiatric 
and neurodegenerative disorders. These method-
ologies enable us to generate genome-wide data-
sets, to link genes to the transcriptome and to 
phenotypes, and to consider pathophysiological 
mechanisms. In addition, they have been pivotal 
in the identification of novel targets for drug 
development. Furthermore, omics data can be 
exploited to identify the mechanism of action of 
drugs and to predict their side effects.

In this section, we will focus on providing a 
brief overview of the main proteomics technolo-
gies, followed by its use in understanding SCZ, 
AD, and PD.

17.2.1  Proteomic Methods

Over the past two decades, mass spectrometry 
has been extensively employed in proteomics 
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approaches and has become increasingly relevant 
in translational studies [11, 12]. Proteomics 
based on mass spectrometry can be divided into 
four different approaches: bottom-up or shotgun, 
middle-down, top-down, and targeted pro-
teomics. Shotgun mass spectrometry is so far the 
most commonly used method for the analysis of 
biological samples and the understanding of 
complex physiopathological mechanisms, as 
well as in the identification of potential biomark-
ers and therapeutic targets [13, 14]. In shotgun 
proteomics, proteins extracted from a biological 
sample are cleaved with trypsin at arginine and 
lysine amino acid residues, generating large 
numbers of peptides. These peptides are then 
normally separated by liquid chromatography 
coupled to a mass spectrometer, thereby creating 
large numbers of spectra that can be used for 
quantitation and identification of the parent pro-
teins. Advances in software with the ability to 
automatically interpret data from middle-down 
and top-down proteomics and the creation of new 
data banks offer a favorable scenario for the 
expansion of proteomics studies using the shot-
gun approach. This method can also produce 
information about the protein structure and post- 
translational modifications, which are of great 
interest for researchers [15, 16].

In the field of mass spectrometry, an evolu-
tion in sensitivity, speed of ion acquisition, bet-
ter ion separation, and the possibility of 
combining different fragmentation methods have 
improved the reliability of the data generated. 
Moreover, spectra complexity produced by 
eluted peptides partially separated by liquid 
chromatography makes protein analysis from 
biological samples a challenging task, which 
could benefit from improvements not only in the 
mass spectrometer analyzers, instrument set-
tings, and software analysis but also in sample 
preparation methods. Currently, many new 
methods for sample preparation are being devel-
oped aiming to increase the sensitivity and num-
ber of proteins that can be identified and to 
remove impurities from the peptide mixture, 
which can increase the background noise on the 
mass spectrometry analysis and suppress ion 
intensity of low abundant peptides [17].

Shotgun proteomics can be an important tool 
in the study of multifactorial diseases such as 
psychiatric disorders and neurodegenerative dis-
eases, which have pathophysiological mecha-
nisms that have not been completely elucidated. 
For many of these diseases, there is no well- 
defined biomarker or therapeutic target, and thus 
this large-scale approach can identify thousands 
of proteins at once in a qualitative and quantita-
tive fashion. Mass spectrometry proteomics has 
proven to be more suitable for the elucidation of 
molecular mechanisms and the identification of 
targets than other proteomics methods, such as 
immunoprecipitation, antibody-dependent, or 
multiplex techniques, since no previous knowl-
edge is needed about the sample or the biological 
system being analyzed. Therefore, mass spec-
trometry proteomics removes the need of a previ-
ously known molecular target or a protein panel 
to achieve answers [18–20].

Several studies have applied shotgun pro-
teomics to investigate the dysregulation in multi-
ple metabolic pathways and molecular 
disturbances in psychiatric and neurodegenera-
tive disorders from postmortem brain tissue and 
body fluids. These investigations have revealed 
molecular mechanisms relevant in disease and 
health states by unraveling dysregulated path-
ways such as altered energy metabolism in the 
brain [3, 4]. There is still much progress to be 
done by taking advantage of new methods and 
technologies in mass spectrometry and introduc-
ing these to obtain new insights into complex 
disorders.

17.2.2  The Use of Proteomics 
in Target Identification

Target identification consists of identifying the 
direct biological target (e.g., protein or nucleic 
acid) of an existing or potential new drug. It is a 
critical step in the elucidation of biological pro-
cesses and mechanisms that affect health and dis-
ease states as well as in drug development and 
validation. In the context of drug discovery, tar-
gets have been traditionally identified on the 
basis of experimental evidence that a given gene, 
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RNA molecule, or protein is involved in a par-
ticular disease process, thus having the potential 
of producing a desired therapeutic effect if tar-
geted by a drug [21]. In the past decades, omics 
technologies have been widely used in target 
identification and drug development [22]. Since 
proteins are generally the ultimate effectors of 
biological processes, they have been the main 
focus in target identification. It is believed that 
only a fraction of the putative targets coded by 
the genome have been identified to date [23] and 
proteomics has been pivotal in this process 
through bottom-up and top-down approaches 
[13].

Target identification by proteomics begins 
with the construction of a suitable disease model 
in an animal or cell line, or the collection of bio-
logical samples (e.g., patient biopsies or post-
mortem tissue). Next, samples are subjected to 
proteolytic digestion and mass spectrometry 
analyses before the acquired data are finally pro-
cessed using computational tools. More recently, 
multi-omics approaches have been employed for 
target identification and drug discovery in com-
plex diseases through the integration of pro-
teomics data with pathways and network 
annotations commonly used for systems biology 
analysis [24–26]. Data available in public data-
bases are also a source of information for bioin-
formatics analyses in the quest for target 
identification. Data mining, reverse docking, and 
network biology have been used for the identifi-
cation of drug targets. Functional analysis is then 
performed and biomolecules are proposed as 
potential targets. The final step consists of phar-
macological target validation using in vitro and 
in vivo models.

17.3  Proteomics in Psychiatric 
and Neurodegenerative 
Disorders

Psychiatric and neurodegenerative disorders rep-
resent a heterogeneous group of mental ailments 
with unclarified etiology and pathophysiological 
mechanisms. Due to the lack of disease-specific 
biomarkers, diagnostics are still based mainly on 

clinical symptoms. The post-genomic era has 
brought hopes of a better understanding of patho-
physiological mechanisms and the identification 
of biomarkers and therapeutic targets. However, 
the proteins and associated pathways that have 
been identified so far are not specific for one psy-
chiatric or neurodegenerative disorder. Thus, the 
identification of molecular targets in complex 
diseases has increasingly focused on protein sets 
or pathway networks and less on single 
molecules.

Omic technologies have been effective in 
offering novel insight into the pathophysiology 
of disease states and in target identification [27]. 
Until recently, proteomics studies were focused 
on merely measuring the abundance of differen-
tially regulated proteins in whole cells and tissue 
samples, but increasing numbers of studies have 
turned their attention to measuring protein abun-
dance in subcellular compartments as well as 
to the identification of post-translational modifi-
cations and protein-protein interactions. Here, we 
will explore recent advances in proteomic-based 
target identification in SCZ, PD, and AD.

17.3.1  Schizophrenia

SCZ is a neuropsychiatric disorder that affects 
about 1% of the population worldwide. Its patho-
physiology is still poorly understood and the 
dawn of the post-genomic era has raised hopes 
for a better comprehension of disease mecha-
nisms and novel treatments. In the past decade, 
proteomics studies, in particular, have increas-
ingly appeared in the literature with novel insights 
about the pathology obtained directly from post-
mortem brain samples of patients [28].

To date, the proteomes of different brain 
regions have been analyzed confirming the com-
plexity of the disorder. Proteomics studies have 
identified alterations in energy metabolism of 
neurons and glial cells [29], oligodendrocyte 
function [30], neurogenesis and synaptogenesis 
[30, 31], and calcium homeostasis and the 
immune system [32]. For instance, findings of the 
involvement of glial cells in the pathophysiology 
of the disease [33] were later confirmed by the 
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analysis of the proteome and phosphoproteome 
of the corpus callosum [34, 35]. Among the dif-
ferentially regulated proteins identified are mem-
bers of the 14–3-3 family. These proteins play a 
regulatory role in neurodevelopmental processes 
and in protein-protein interactions in the brain 
and are, therefore, a potential target for a better 
understanding of disease processes and new ther-
apeutics. The phosphoproteome analysis of the 
corpus callosum was the first one reported in an 
analysis of postmortem brains, and it revealed the 
involvement of signaling pathways such as those 
involving ephrin B and ciliary neurotrophic fac-
tor. Moreover, a recent study from Martins-de- 
Souza’s group analyzed the cerebellum, the 
caudate nucleus, and the posterior cingulate cor-
tex of postmortem brains and revealed myelin- 
associated proteins to be differentially regulated 
in these three regions [36]. Together, these stud-
ies provide compelling biochemical evidence of 
the participation of glial cells in the pathology of 
schizophrenia and implicate pathways that can be 
further dissected to indentify potential targets. 
Other brain regions such as the dorsolateral pre-
frontal cortex (DLPFC) [37], the ventral caudate 
[38], and the hippocampus [39] have also been 
analyzed at the proteome level, and this revealed 
several proteins and pathways involved in the 
pathology of SCZ, including synaptic transmis-
sion processes and effects on GABAergic 
interneurons.

More recently, postmortem proteomics analy-
ses of subcellular compartments have started to 
emerge and have provided a more precise and 
detailed snapshot of the metabolic and biochemi-
cal processes implicated in SCZ.  Based on the 
widely accepted knowledge of altered dopami-
nergic and glutamatergic neurotransmission in 
the disorder, Velásquez et  al. [40] analyzed the 
synaptosome of postmortem brain samples and 
identified over 50 differentially regulated pro-
teins using two different quantitative shotgun- 
based methods. Beyond the identification of 
differentially regulated proteins, the authors per-
formed a network association analysis by investi-
gating the protein-protein interaction of the 
differentially regulated proteins and identified 
calmodulin (CaM) as a point of convergence in 

the network. Another study focusing on a subcel-
lular compartment analyzed the postsynaptic 
density in the anterior cingulate cortex in post-
mortem brains of SCZ patients vs. healthy con-
trols and identified 143 differentially regulated 
proteins [41]. These included several proteins 
involved in clathrin-mediated endocytosis as well 
as N-methyl-D-aspartate receptor (NMDA-R)-
interacting proteins. Moreover, pathway analysis 
of the differentially regulated proteins implicated 
processes involved in calcium signaling. Saia- 
Cereda et al. [42] compared the nuclear proteome 
of white vs. gray matter regions of the brain and 
found that heat-shock proteins and proteins 
belonging to the histone family were differen-
tially regulated in both regions. In contrast, 
changes in proteins associated with calcium/
calmodulin signaling were identified in white 
matter regions, confirming earlier findings, 
whereas proteins differentially regulated in the 
gray matter were closely associated with the spli-
ceosome. This study provided a more integrated 
view of the processes affected by SCZ in the 
brain as a whole. Gray and white matter regions 
are enriched for neurons and glial cells, respec-
tively, and most studies so far have focused 
largely on the neuronal elements of the brain.

It is undeniable that postmortem brain sam-
ples have provided significant information 
regarding molecules and pathways affected in 
SCZ. However, confounding factors exist when 
probing this kind of biological sample, such as 
postmortem molecule degradation, patient life-
styles, and use of and adherence to antipsychotic 
medication [43]. Furthermore, brain biopsies 
from patients are difficult to obtain and several 
studies suggest that alterations in the CNS might 
be reflected in the periphery [44]. In fact, analysis 
of the serum proteome of SCZ patients identified 
ankyrin repeat domain-containing protein 12 
(ANKRD12) as a potential disease biomarker. 
ANKRD12 is a putative histone deacetylase 
(HDAC) recruiter, which is in line with the obser-
vation of histone-associated proteins reported to 
be differentially expressed in gray and white mat-
ter regions of SCZ patients [42, 45]. In another 
study researchers analyzed the proteomes of lym-
phoblastoid cells obtained from patients by fluo-
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rescence two-dimensional differential gel 
electrophoresis (2D-DIGE) and identified 22 dif-
ferentially regulated proteins associated with the 
disease. They validated the findings using 
Western blot analysis for eight of these proteins 
using an independent second sample set, and 
multivariate logistic regression analysis was per-
formed to propose a four-marker protein panel 
for dysfunctional molecular pathways in SCZ 
[46]. The proposed panel is composed of proteins 
associated with antiviral response (MX1), nucle-
otide metabolism (GART), neurodevelopment 
(TBCB), and protein folding (HSPA4L) pro-
cesses, all of which have been previously linked 
with SCZ. Moreover, the panel underscores the 
multifactorial nature of the disorder and high-
lights the shift toward the identification and vali-
dation of protein sets rather than single molecules 
as predictive or therapeutic targets.

Serum was also used by Cooper et al. [47] to 
identify 77 proteins differentially regulated 
between first-onset drug-naïve patients and con-
trols. They then employed multiple-reaction mon-
itoring (MRM) proteomics to test whether any of 
these could be detected on blood swatches from 
newborns and observed increased levels of alpha-
2-antiplasmin, complement C4-A, and antithrom-
bin-III in babies who later developed SCZ. This 
proof-of-principle study demonstrated the feasi-
bility of using targeted proteomics for early target 
identification with possible implications for the 
development of preventive measures. MRM pro-
teomics has also been integrated with cognitive 
and anatomical data to validate biochemical tar-
gets. Knöchel et al. [48] demonstrated that altered 
apolipoprotein C levels are associated with cogni-
tive impairments and changes in hippocampal 
volume. In addition, a recent study using patient-
derived induced pluripotent stem cells from 
monozygotic twins discordant for SCZ identified 
sex-specific gene and protein expression signa-
tures which revealed different pathophysiological 
mechanisms between males and females [49]. 
These findings shed some light into sex-depen-
dent differences in the manifestation of the dis-
ease, such as the time of psychosis manifestation 
after puberty, and may indicate the necessity for 
sex-specific treatments.

17.3.2  Parkinson’s Disease

PD is characterized by progressive degeneration 
of the dopaminergic neurons in the substantia 
nigra leading to severe motor complications, 
affecting around 1–2% of the population over 
55 years old. It is the most common movement 
disorder and the second most common neurode-
generative disease of the human brain after AD 
with a higher incidence expected as people are 
living longer lives [50]. Nearly 200 years after it 
was first described, the ultimate cause of the dis-
ease still remains unknown. PD is a complex 
multifactorial disorder with variable contribu-
tions of environmental factors and genetic sus-
ceptibilities. Genetic predisposition accounts for 
10% of the cases but the other 90% are described 
as idiopathic (also known as sporadic), with age 
being one of the main risk factors [51]. There is 
strong evidence that suggests that aberrant 
α-synuclein deposition in the brain is the driving 
force in PD pathogenesis and α-synuclein, a 
hydrophilic protein abundant in presynaptic ter-
minals, is a major component of the Lewy bodies 
and Lewy neurites, which lead to neuronal loss 
[52]. In addition, aberrant mitochondrial function 
and increased oxidative stress have also been 
implicated in the pathogenesis of PD [53].

Poor access to fresh brain tissue and the cave-
ats of using postmortem samples have promoted 
the development of in vitro models, which have 
become increasingly robust in the past decade. 
Human iPSC-derived neurons are now well- 
established and have aided researchers in the elu-
cidation of the pathophysiology of PD and in 
target identification. In fact, in vitro analyses of 
patient-derived dopaminergic neurons from a 
group of young-onset PD patients revealed 
α-synuclein accumulation, a hallmark of PD [54]. 
These neurons were subjected to transcriptomics 
and proteomics analyses, which revealed a previ-
ously unknown genetic contribution in the devel-
opment of PD in this group. In addition, proteins 
associated with the lysosomal machinery were 
significantly downregulated relative to healthy 
controls. Treatment with a specific phorbol ester 
compound was able to normalize the disease sig-
nature through an increase in the abundance of 

A. S. L. M. Antunes et al.



257

lysosomal-membrane proteins and to promote a 
proteasome-mediated decrease of α-synuclein 
accumulation. This study is a clear example of 
how omics technologies can shed some light on 
the mechanistic aspects of PD and reveal poten-
tial therapeutic candidates. Transcriptome- and 
proteome-wide analyses have also allowed the 
identification and validation of mRNAs, which 
are amenable to small molecule targeting. Using 
a designed small molecule able to selectively 
bind to the 5′ untranslated region of SCNA, the 
gene coding for α-synuclein, Zhang et  al. [55] 
were able to block its translation, thus offering a 
promising approach to tackle α-synucleinopathy 
and opening an avenue for targeting other pro-
teins that, like α-synuclein, are not druggable at 
the peptide level. Proteomics studies have further 
aided the development of α-synucleinopathy tar-
geting as a therapeutic approach by revealing an 
enrichment of disaggregase members in Lewy 
bodies of PD [56]. Based on the proteomic iden-
tification of potential targets, Hsp110, a disaggre-
gase member shown to accelerate the rate-limiting 
step in the disassembly of fibril aggregates, was 
overexpressed in an α-synuclein model of PD 
and was found to reverse the proteomic signature 
of α-synuclein mutants and prevent α-synuclein 
templating and spreading in the brain [57]. In 
addition to target identification in the 
α-synucleinopathy component of PD, proteomics 
has provided mechanistic insight into its patho-
physiology. Using redox proteomics, Ludtmann 
et al. [58] analyzed the post-translational modifi-
cations of ATP-synthase of mitochondrial frac-
tions exposed to oligomeric α-synuclein and 
demonstrated that it was able to trigger an 
oligomer- dependent redox imbalance in one of 
the protein subunits. This led to mitochondrial 
swelling and ultimately to cell death, thus provid-
ing a potential mechanistic link between 
α-synuclein aggregation and the aberrant mito-
chondrial function in PD.

More recently, target genes and pathways 
were identified in an endogenous neural stem cell 
population in the human brain. Transcriptome 
and proteome profiling of CD271+ cells revealed 
differential regulation of genes and proteins 

involved in metabolism, cytoskeletal organiza-
tion, and transcriptional activity. Moreover, the 
transcriptomic and proteomic signature of this 
neural stem cell population suggests they may 
transit into a primed-quiescent state, thus  opening 
up new possibilities for the development of novel 
therapeutic strategies for the replacement of lost 
dopaminergic neurons from this endogenous 
neural stem cell pool [59].

Neuronal accumulation of α-synuclein aggre-
gates is a well-established hallmark of PD, 
although access to brain tissue for diagnostic pur-
poses is impracticable. In the search for accessi-
ble sources of biological samples for biomarkers 
and target identification in PD, the cerebrospinal 
fluid (CSF), blood, and even tear fluid have been 
explored. Posavi et  al. [60] analyzed the blood 
proteome of PD vs. healthy people using discov-
ery and replication cohorts and found bone sialo-
protein (BSP), osteomodulin (OMD), 
aminoacylase-1 (ACY1), and growth hormone 
receptor (GHR) to be consistently differentially 
regulated in PD patients. Moreover, lower GHR 
levels at baseline were associated with faster 
rates of cognitive decline. This study is one of the 
first ones to identify diagnostic and prognostic 
biomarkers for PD from an easily accessible bio-
logical sample. Tear fluid has also been exploited 
as a potential source of biomarker discovery, and 
studies have found effects on the immune 
response and lipid metabolism pathways in the 
disease [61].

Exosomes are products of cells which have 
gained increased attention for their role in neuro-
degenerative diseases [62]. In fact, the proteome 
analysis of blood-derived exosomes revealed a 
distinct protein profile that was progressively 
upregulated from mild to severe in PD patients 
[63]. Among the identified proteins was gelsolin, 
which has been previously shown to occur in 
Lewy bodies [64].

In addition, targeted MRM proteomics of CSF 
samples has been employed to assess proteins 
that are part of pathways involved in PD such as 
lysosomal, ubiquitin-proteasomal, and autoph-
agy pathways and identified significantly reduced 
levels of chromogranin B [65].
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17.3.3  Alzheimer’s Disease

AD is the most common neurodegenerative dis-
order in the world, accounting for 50–70% of 
dementia cases [66]. It is characterized by pro-
gressive loss of neurons leading to cognitive 
impairment and late dementia. AD pathogenesis 
consists of the development of intracellular neu-
rofibrillary tangles (NFTs) and the deposition of 
senile plaques [67]. NFTs arise from the collapse 
of the neuronal cytoskeleton due to Tau hyper-
phosphorylation [68], while senile plaques are 
formed by the accumulation of protein fragments 
(amyloid-β, Aβ) from the abnormal proteolytic 
processing of the amyloid precursor protein 
(APP) [69]. Both processes induce neuroinflam-
mation [70], axonal degeneration [71, 72], and 
disruption of synaptic integrity [73], thus leading 
to impairment of physiological neural connectiv-
ity. Both genetic and environmental factors have 
been described as AD risk factors, and these can 
be classified as two different disease forms: late- 
onset sporadic AD and early-onset familial AD 
[74]. A small proportion of cases has a clear 
genetic origin and demonstrates point mutations 
in the genes that code for APP, presenilin 1 (PS1), 
presenilin 2 (PS2), and the apolipoprotein E 
(APOE) ε4 allele [75–77]. The vast majority of 
patients suffer from the sporadic origin-type AD, 
which has age as the main risk factor and is asso-
ciated with a series of biochemical, molecular, 
and cellular abnormalities in the brain, including 
increased activation of genes and pathways of 
cell death signaling, chronic oxidative stress, and 
impaired insulin response [78, 79].

Similar to SCZ and PD, the underlying causes 
of AD are not completely understood. However, 
in contrast to the other diseases, a core panel of 
biomarkers has been already established for dis-
ease diagnosis, consisting of Aβ42, total tau 
(T-tau), and phospho tau (P-tau) [80]. Despite the 
establishment of a few key markers for AD diag-
nostics, the disorder is heterogeneous and pres-
ents multiple genotypes and phenotypes; thus the 
identification of additional targets and biomarker 
panels is needed for accurate patient stratification 
[81].

In the last decade, the existence of different 
Aβ peptides has been reported in the brain and 
CSF of AD patients [82, 83], while ApoE levels 
appear to be downregulated in plasma [84]. A 
recent multiplex proteomics analysis of plasma 
and CSF from elderly participants identified pro-
teins involved in the regulation of the inflamma-
tory response, apoptosis, endocytosis, leukocyte 
proliferation, and other processes believed to be 
downstream of Aβ and tau deposition. Among 
these were chemokines, interleukins, and other 
immune markers, thus revealing relatively unex-
plored candidate biomarkers and reinforcing the 
potential of targeting pathways beyond Aβ and 
tau in AD [85]. Involvement of glial cells in AD 
has been previously suggested by a proteomic 
study of postmortem brain samples [86]. 
Moreover, RNA-binding proteins appeared to be 
differentially regulated between symptomatic 
and asymptomatic AD patients, opening a new 
avenue for targeting cognitive decline in AD. A 
comprehensive label-free quantitative proteomics 
analysis of over 2000 brains and 400 CSF sam-
ples identified astrocyte and microglial metabo-
lism, mitochondrial function, synaptic function, 
and RNA-associated proteins as being altered in 
AD. Moreover, altered pathways associated with 
energy metabolism, more specifically certain lip-
ids, insulin, amino acids, and glucose, emerged 
as strongly associated with AD and cognitive 
decline [87, 88].

17.3.4  Shared and Distinct Molecular 
Pathways Between SCZ, PD, 
and AD

Knowing the molecular similarities and distinc-
tions among SCZ, PD, and AD may help to define 
the importance of certain biochemical pathways 
and molecular targets, which aid in the develop-
ment of new treatment strategies. Thus, we 
searched for proteins found to be associated with 
the three diseases detailed in this review at 
UniProt (http://uniprot.org) and analyzed these 
using the pathway analysis software Metascape 
[26]. The results are displayed in Fig. 17.1.
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Fig. 17.1 Cord diagram depicting (a) overlap of proteins 
and (b) biological processes in SCZ, PD, and AD. (c) 
Visualization of interactome networks formed by differ-
entially regulated proteins in SCZ (green), PD (blue), and 
AD (red). Tables depict the top three pathways according 

to the p-value. (d) Heatmap of the top enriched clusters 
using annotated curated databases for each disease. Gray 
represents a lack of significance and the color intensity 
represents -log10 (p)
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As might be expected, AD and PD should be 
more similar in terms of molecular pathways 
compared to SCZ, considering the neurodegen-
erative nature of the former illnesses. This is con-
firmed in Fig.  17.1a, which shows a greater 
overlap of proteins between AD and PD.  It is 
interesting to note that an enrichment of biologi-
cal processes is shared among the three diseases, 
indicating that SCZ is somehow close to PD and 
AD in ontology terms (Fig. 17.1b). While SCZ is 
not considered a classical neurodegenerative dis-
ease [89, 90], there might be some kind of degen-
eration, even if only at the white matter level [33, 
91, 92]. Alternatively, all three conditions are 
associated with disruptions in synaptic connec-
tivity, and some of the similarities might reflect 
this [93].

The shared molecular characteristics among 
the three disorders are also evident in Fig. 17.1c, 
where most of the affected pathways are common 
to the three diseases. Some of these commonly 
shared pathways can also be observed in 
Fig. 17.1d. On the other hand, certain molecular 
pathways are specifically affected in each dis-
ease. For example, mitochondrial pathways are 
more affected in PD, degenerative processes and 
cell death are more affected in AD, and neuro-
transmission is more specifically affected in SCZ 
(Fig. 17.1c, d).

Protein databanks and gene/proteins meta- 
analysis platforms are crucial in the elucidation 
of common and unique pathways as well as pro-
tein networks from targets identified in pro-
teomics studies. Furthermore, they can be 
explored for better disease classification and 
patient stratification by unraveling differences 
within the pathological spectrum of these hetero-
geneous diseases.

17.4  Conclusions

Omics technologies and their integration have 
led to significant progress in our comprehension 
of the pathophysiological mechanisms that 
underlie psychiatric and neurodegenerative dis-
eases and greatly facilitate therapeutic target and 
biomarker identification. While genomics and 

transcriptomics developed rapidly over the last 
two decades and made high-throughput screen-
ing of gene risk variants and transcript levels 
commonplace, proteomics assay platforms have 
not evolved at the same pace [93]. However, 
given that proteins are the main ultimate effec-
tors of biological processes and their modulation 
is pivotal in maintaining a healthy state, pro-
teomics is an essential technology for the identi-
fication of novel targets and biomarkers. 
Proteomics data such as subcellular localization, 
post- translational modifications, and protein-
protein interactions have only recently begun to 
be integrated with other omics data. Significant 
advances in proteomics have been achieved 
through improvements in mass spectrometry 
resolution, accuracy, and speed [94], and future 
developments in computational tools will allow 
better integration of different omic datasets and 
provide more robust identification of targets and 
biomarkers.

Despite the significant progress in target and 
biomarker identification in recent years, the lim-
ited number of subjects or samples analyzed in 
individual studies represents a caveat for the sta-
tistical power of the findings. Furthermore, 
despite the pathways and common features 
shared among different neurological disorders, 
they are heterogeneous in nature and therapeutic 
target identification could benefit from improved 
disease classification and patient stratification, 
prior to analysis [5].

Robust in  vitro disease models and easy-to- 
access biological samples have proven to be valu-
able tools in target identification. iPSC-derived 
neurons and brain organoids have been valuable 
in providing the omic signatures of neurological 
disorders. However, the neurodevelopmental 
component of disorders like schizophrenia could 
be further explored with these models. 
Nevertheless, the brain is still the primary site 
affected in psychiatric and neurodegenerative 
disorders. Thus, issues in postmortem brain anal-
yses such as transcript and protein stability, post- 
translational modifications, and protein-protein 
interaction stability, as well as the effect of con-
founding factors such as medication uptake by 
patients, should be monitored.
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