
9© Springer Nature Switzerland AG 2021 
J. Reichrath, S. Reichrath (eds.), Notch Signaling in Embryology and Cancer, Advances  
in Experimental Medicine and Biology 1287, https://doi.org/10.1007/978-3-030-55031-8_2

Transcription Factor RBPJ 
as a Molecular Switch 
in Regulating the Notch Response

Benedetto Daniele Giaimo, Ellen K. Gagliani, 
Rhett A. Kovall, and Tilman Borggrefe

Abstract

The Notch signal transduction cascade 
requires cell-to-cell contact and results in the 
proteolytic processing of the Notch receptor 
and subsequent assembly of a transcriptional 
coactivator complex containing the Notch 
intracellular domain (NICD) and transcription 
factor RBPJ. In the absence of a Notch signal, 
RBPJ remains at Notch target genes and 
dampens transcriptional output. Like in other 
signaling pathways, RBPJ is able to switch 
from activation to repression by associating 
with corepressor complexes containing sev-
eral chromatin-modifying enzymes. Here, we 
focus on the recent advances concerning 
RBPJ-corepressor functions, especially in 
regard to chromatin regulation. We put this 
into the context of one of the best-studied 
model systems for Notch, blood cell develop-
ment. Alterations in the RBPJ-corepressor 
functions can contribute to the development of 

leukemia, especially in the case of acute 
myeloid leukemia (AML). The versatile role 
of transcription factor RBPJ in regulating piv-
otal target genes like c-MYC and HES1 may 
contribute to the better understanding of the 
development of leukemia.
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Abbreviations

ADAM	 A disintegrin and 
metalloproteinase

AE	 AML1/ETO
AE9a	 AML1/ETO 9a
AEtr	 AML1/ETO truncated
AF9	 ALL1-fused gene from chromo-

some 9 protein
AMKL	 Acute megakaryoblastic leukemia
AML	 Acute myeloid leukemia
AML1	 Acute myeloid leukemia 1
ANKs	 Ankyrin repeats
B-ALL	 B-cell acute lymphoblastic 

leukemia
CARM1	 Coactivator-associated arginine 

methyltransferase 1
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CBF1	 C promoter-binding factor 1
CBFβ	 Core-binding factor β
CDK8	 Cyclin-dependent kinase 8
CKII	 Casein kinase II
CLL	 Chronic lymphocytic leukemia
CoA	 Coactivator
CoR	 Corepressor
CSL	 Homo sapiens CBF1, Drosophila 

melanogaster Suppressor of 
Hairless, and Caenorhabditis ele-
gans Lag-1

CtBP	 C-terminal-binding protein
CtIP	 CtBP-interacting protein
DDX5	 DEAD-box helicase 5
DLBCL	 Diffuse large B-cell lymphoma
DLL1	 DELTA-LIKE 1
DLL4	 DELTA-LIKE 4
dnMAML1	 dominant-negative MAML1
EBNA2	 Epstein-Barr virus nuclear antigen 

2
EGR2	 Early growth response 2
Ep300	 E1A-binding protein P300
Ep400	 E1A-binding protein P400
ESCs	 Embryonic stem cells
ETO	 Eight-twenty-one
FBXW7	 F-Box and WD repeat domain-

containing 7
FHL1C	 Four-and-a-half LIM domain pro-

tein 1C
FLT3	 FMS-like tyrosine kinase 3
GCN5	 General control of amino acid syn-

thesis protein 5-like 2
GoF	 Gain of function
GSI	 γ-secretase inhibitor
H2A.Zac	 H2A.Z acetylation
HAT	 Histone acetyltransferase
HD	 heterodimerization domain
HDACs	 Histone deacetylases
Hes1	 Hairy and Enhancer of Split 1
HPCs	 Hematopoietic progenitor cells
KAT	 lysine acetyltransferase
KAT2A	 lysine acetyltransferase 2A
KAT2B	 lysine acetyltransferase 2B
KAT3B	 lysine acetyltransferase 3B
KAT5	 lysine acetyltransferase 5
KBF2	 H-2 K binding factor-2
KDM1A	 lysine demethylase 1A
KDM5A	 lysine demethylase 5A

KDM7B	 lysine demethylase 7B
KMT2A	 lysine-specific methyltransferase 

2A
KMT2D	 lysine-specific methyltransferase 

2D
L3MBTL3	 lethal (3) malignant brain tumor-

like protein 3
LID	 Little imaginal discs
LoF	 Loss of function
LSD1	 lysine-specific demethylase 1
Lz	 Lozenge
MAL	 Megakaryocytic acute leukemia
MAM	 Mastermind
MAML	 Mastermind-like
MCL	 Mantle cell lymphomas
MINT	 MSX2-interacting protein
MKL1	 Megakaryoblastic leukemia 1
MLL	 Mixed-lineage leukemia
MS	 Mass spectrometry
MTG16	 Myeloid translocation gene on 

chromosome 16 protein
MTG8	 Myeloid translocation gene on 

8q22
MTGR1	 Myeloid translocation gene-

related protein 1
NACK	 Notch activation complex kinase
NCoR	 Nuclear receptor corepressor
NFAT	 Nuclear factor of activated T-cells
NF-κB1	 Nuclear factor kappa B subunit 1
NHR	 Nervy homology regions
NICD	 NOTCH intracellular domain
NICD1	 NOTCH1 intracellular domain 1
NK	 Natural killer
OTT	 One twenty-two
PCAF	 Ep300-CBP-associated factors
PEST	 Proline, glutamic acid, serine, and 

threonine
PHF8	 PHD finger protein 8
PRMT4	 Protein arginine methyltransferase 

4
PTMs	 Posttranslational modifications
RBM15	 RNA-binding motif protein 15
RBPID	 RBPJ-interacting domain
RBPJ	 Recombination signal-binding 

protein for immunoglobulin kappa 
J region

RBS	 RBPJ-binding sites
RHD	 Runt homology domain

B. D. Giaimo et al.



11

Runx	 Runt-related transcription factor
RUNX1	 Runt-related transcription factor 1
SHARP	 SMRT and HDACs-associated 

repressor protein
SMRT	 Silencing mediator for retinoid 

and thyroid receptor
SMZL	 Splenic marginal zone 

lymphomas
Spen	 split ends
SPOC	 Spen paralog and ortholog 

C-terminal
SPOCome	 SPOC interactome
SRA	 Steroid receptor coactivator
SuH	 Suppressor of Hairless
TAD	 Transactivation domain
T-ALL	 T-cell acute lymphoblastic 

leukemia
TFs	 transcription factors
Tip60	 HIV-1 Tat-interactive protein, 

60 kDa
UTR	 Untranslated region
WT	 Wild type
ZnF	 Zinc fingers

�Introduction

Notch signaling is an evolutionary highly con-
served pathway that plays a pivotal role in many 
cellular and developmental processes including 
T-cell development (Vijayaraghavan and Osborne 
2018) and angiogenesis (Pitulescu et  al. 2017; 
Tetzlaff and Fischer 2018). Although Notch was 
originally described as a neurogenic gene in 
Drosophila melanogaster, the first analysis of 
Drosophila embryos made it clear that Notch sig-
nals are pleiotropic, affecting many tissues. After 
the cloning and sequencing of the Notch gene in 
the 1980s, it became clear that Notch is a 
single-pass transmembrane receptor. 
Subsequently, the NOTCH1 gene was described 
to be a hotspot for chromosomal translocations in 
human T-cell acute lymphoblastic leukemia 
(T-ALL) (Ellisen et al. 1991). By now, we know 
that NOTCH1 mutations are found not only in 
human T-ALL (Weng et  al. 2004) but also in 
other forms of human leukemia, for example, 

chronic lymphocytic leukemia (CLL) (Puente 
et al. 2011) as well as many other cancer types 
(Giaimo and Borggrefe 2018).

At the molecular level, Notch signal transduc-
tion bears some unique features not seen in other 
pathways like TGFβ, Wnt, or Hedgehog signal-
ing [also reviewed in Borggrefe et al. 2016]. For 
example, the Notch pathway does not involve any 
second messengers. Notch signaling occurs 
through direct interactions between the Notch 
receptor and its ligand exposed on neighboring 
cells (Fig. 2.1). Upon ligand binding, the extra-
cellular protease cleavage site of the receptor is 
exposed and cleaved by ADAM (a disintegrin 
and metalloproteinase) proteases. Subsequently, 
a second cleavage of the receptor is mediated by 
a γ-secretase-containing complex leading to the 
release of the Notch intracellular domain (NICD), 
which is itself a transcriptional coactivator 
(Fig. 2.1). The NICD migrates into the nucleus 
and functions as a transcriptional coactivator 
together with RBPJ and mastermind (MAM) 
[reviewed in Oswald and Kovall 2018]. The tran-
scription factor RBPJ is a central molecular 
switch in the Notch pathway and mediates either 
transcriptional repression or activation of Notch 
target genes (Fig. 2.1).

�Transcription Factor RBPJ 
in Balancing Notch Target Gene 
Expression

Historically, RBPJ was discovered thirty years 
ago and was originally named RBPJκ [recombi-
nation signal binding protein for immunoglobu-
lin kappa J region, (Hamaguchi et al. 1989)]. It 
also has different names, such as CBF1 (C pro-
moter binding factor 1) or KBF2 [H-2K binding 
factor-2, (Brou et  al. 1994)] and belongs to the 
CSL (Homo sapiens CBF1, Drosophila melano-
gaster Suppressor of Hairless and Caenorhabditis 
elegans Lag-1) protein family. The DNA binding 
sequence was identified as 5′-CGTGGGAA-3′ 
(Tun et al. 1994) and recent studies investigated 
the genome-wide distribution of RBPJ in several 
different tissues (Dieguez-Hurtado et  al. 2019; 
Petrovic et al. 2019; Wang et al. 2011; Xie et al. 
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2016; Zhao et al. 2011). RBPJ shares some struc-
tural similarities with Rel Homology Domain 
proteins such as NF-κB1 (nuclear factor kappa B 
subunit 1) and NFAT [nuclear factor of activated 
T-cells, (Kovall and Hendrickson 2004)]. It is the 
centerpiece of transcriptional regulation in Notch 
signaling, acting as a molecular hub for interac-
tions of either corepressor or coactivators. In the 
absence of a Notch signal, RBPJ interacts with 
the cofactor SHARP recruiting histone 
deacetylase-containing corepressor complexes. 
In the presence of a Notch signal, a ternary com-
plex containing RBPJ, NICD and MAM-like 
(MAML) is assembled and expression of Notch 
target genes is induced (Fig.  2.1). The RBPJ/

NICD/MAML-containing coactivator complex 
also recruits lysine acetyltransferases (KATs) 
such as KAT3B/Ep300 (lysine acetyltransferase 
3B/E1A binding protein P300), KAT2B/PCAF 
(lysine acetyltransferase 2B/Ep300-CBP-
associated factors) and KAT2A/GCN5 [lysine 
acetyltransferase 2A/ general control of amino 
acid synthesis protein 5-like 2, (Kurooka and 
Honjo 2000; Oswald et al. 2001)]. Interestingly, 
RBPJ was initially described as a repressor of 
transcription and its role as a molecular switch 
was further underscored by the finding that 
repression and activation via RBPJ involves the 
recruitment of distinct protein complexes 
[reviewed in (Borggrefe and Oswald 2009]. From 

Fig. 2.1  The Notch signaling cascade. In absence of 
Notch signaling, the DNA-binding protein RBPJ is bound 
at the RBPJ-binding sites (RBS) where it recruits core-
pressors (CoR) preventing the expression of Notch target 
genes. The binding of ligands to Notch receptors induces 
a conformational change that allows their proteolytic 
cleavage by ADAM proteases producing an intermediate 
product known as NotchΔE. Subsequently, a γ-secretase-
containing complex catalyzes a second cleavage of the 
Notch receptor releasing the Notch intracellular domain 

(NICD). The free NICD moves into the nucleus where it 
interacts with RBPJ and forms a trimeric complex together 
with Mastermind-like (MAML). This trimeric complex 
recruits additional coactivators (CoA) finally promoting 
expression of Notch target genes. Finally, proteasome-
dependent degradation of the NICD terminates the signal, 
and the RBPJ-associated corepressor complex is reas-
sembled at the RBS inducing repression of Notch target 
genes. Green and red balls indicate positive and negative 
histone marks, respectively

B. D. Giaimo et al.
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these studies a model emerged (Fig. 2.1) stating 
that presence of NICD converts the RBPJ-
corepressor to the RBPJ-NICD-coactivator com-
plex (Borggrefe and Oswald 2009; Bray 2006).

In the recent years, the RBPJ interactome has 
been extensively studied [(Borggrefe and Liefke 

2012; Guruharsha et  al. 2014; Ho et  al. 2018; 
Yatim et  al. 2012) and Table  2.1] in order to 
understand at the molecular level how gene 
repression and activation are regulated. As part of 
the corepressor complex, RBPJ can directly inter-
act with corepressor SHARP [SMRT (silencing 

Table 2.1  List of well-defined interactors of the main components of the Notch signaling pathway: L3MBTL3, NICD, 
RBPJ, and SHARP

Interactor Reference(s) Structure
L3MBTL3 interactors
KDM1A/LSD1 Xu et al. 2017 n.d.

NICD interactors
CARM1/PRMT4 Hein et al. 2015 n.d.

Cyclin C/CDK8 Fryer et al. 2004 n.d.

DDX5 Jung et al. 2013; Lin et al. 2013 n.d.

Ep400/Tip60 complex Giaimo et al. 2018 n.d.

KAT2A/GCN5 Kurooka and Honjo 2000 n.d.

KAT2B/PCAF Kurooka and Honjo 2000 n.d.

KAT3B/Ep300 Oswald et al. 2001 n.d.

MAML Wu et al. 2000 Nam et al. 2006; Wilson and Kovall 2006

NACK Jin et al. 2017; Weaver et al. 2014 n.d.

SRA Jung et al. 2013 n.d.
RBPJ interactors
EBNA2 Grossman et al. 1994; Henkel et al. 

1994; Ling et al. 1993; Waltzer et al. 
1994; Zimber-Strobl et al. 1994

n.d.

Ep400/Tip60 complex Giaimo et al. 2018 n.d.

Ikaros Geimer Le Lay et al. 2014 n.d.

KDM5A/LID Liefke et al. 2010 n.d.

KDM7B/PHF8 Yatim et al. 2012 n.d.

KyoT2/FHL1C Taniguchi et al. 1998 Collins et al. 2014

KyoT3/FHL1B Liang et al. 2008 n.d.

L3MBTL3 Xu et al. 2017 n.d.
NICD Fortini and Artavanis-Tsakonas 1994 Nam et al. 2006; Wilson and Kovall 2006

RBM15/OTT Ma et al. 2007 n.d.

SHARP Oswald et al. 2002 Yuan et al. 2019
RITA Wacker et al. 2011 Tabaja et al. 2017

RTA Liang et al. 2002 n.d.
SHARP interactors
AML1/ETO Salat et al. 2008; Thiel et al. 2017 n.d.

CtIP/CtBP Oswald et al. 2005 n.d.
KMT2D Oswald et al. 2016 n.d.
MTG8/ETO Salat et al. 2008 n.d.
MTG16 Engel et al. 2010 n.d.
MTGR1 Engel et al. 2010 n.d.
NCoR Oswald et al. 2016 n.d.
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mediator for retinoid and thyroid receptor) and 
HDACs (histone deacetylases)-associated repres-
sor protein], also known as mouse MINT (MSX2-
interacting protein) or Spen [split ends (Oswald 
et al. 2002)]. Recently, we determined the binding 
surfaces of the RBPJ/SHARP interaction at 
atomic resolution using X-ray crystallography 
[Fig. 2.2 (Yuan et al. 2019)]. Based on the RBPJ/
SHARP structure, we could design a dominant-
negative form of SHARP in a Notch-OFF state 
(Giaimo et al. 2017a; Xu et al. 2017; Yuan et al. 
2019). When overexpressing the wild-type (WT) 
form of the RBPJ-interacting domain (RBPID) of 
SHARP, derepression of Notch target genes was 
observed; however, this was not the case when, 
based on the crystal structure, we mutated two 
amino acids within this domain (Yuan et al. 2019). 
Previous studies linked the repressive activity of 
SHARP to HDACs (Oswald et al. 2002; Oswald 
et  al. 2016), and, in line with these studies, we 
observed increased histone acetylation upon over-
expression of the WT but not the mutant RBPID 

(Yuan et  al. 2019). Importantly, RBPJ depletion 
leads to derepression of Notch target genes in the 
same setting. This phenotype is efficiently res-
cued by a WT RBPJ but not a mutant in which the 
residues required for its interaction with SHARP 
are mutated (Yuan et al. 2019).

SHARP is a protein of more than 400  kDa 
characterized by a highly conserved SPOC (Spen 
paralog and ortholog C-terminal) domain which 
has a strong transcriptional repressive activity 
that depends on CtIP/CtBP (CtBP-interacting 
protein/C-terminal-binding protein) (Oswald 
et al. 2005). To better dissect the mechanism of 
the RBPJ/SHARP-mediated transcriptional 
repression, we have recently characterized, by 
mass spectrometry (MS), the SPOC interactome 
(SPOCome) (Oswald et al. 2016). This approach 
identified the HDACs-containing NCoR (nuclear 
receptor corepressor) complex, explaining how 
HDACs are recruited to RBPJ-bound enhancer 
sites; however, it also identified the KMT2D 
(lysine-specific methyltransferase 2D) complex 

Fig. 2.2  Overview on the known crystal structures of 
RBPJ-associated complexes. (a) The structure of the 
Caenorhabditis elegans RBPJ/NICD/MAML ternary 
activation complex (PDBID: 2FO1). RBPJ, shown in cyan 
with a transparent white surface, consists of three major 
domains. The N-terminal domain (NTD) makes direct 
contacts primarily with MAML (red) and DNA (blue). 
The beta-trefoil domain (BTD) interacts with DNA and 
NICD (yellow). The C-terminal domain (CTD) interacts 
with MAML and NICD. (b) The structure of the Mus mus-
culus RBPJ/SHARP repressor complex (PDBID: 6DKS). 
Like NICD, SHARP (orange) also binds the CTD and 

BTD of RBPJ. (c) Top: Structural representation of mul-
tiple corepressors that bind the BTD of RBPJ similarly. 
NICD (yellow) PDBID, 3 V79; SHARP (orange) PDBID, 
6DKS; KyoT2/FHL1C (pink) PDBID, 4J2X; and RITA 
(light green) PDBID, 5EG6. Bottom: Multiple sequence 
alignments of coregulators that bind the BTD of 
RBPJ. Boxed in red is the highly conserved hydrophobic 
tetrapeptide seen in all four mammalian Notch isoforms 
as well as some corepressors. The blue boxes represent 
other highly conserved hydrophobic residues seen in mul-
tiple corepressors

B. D. Giaimo et al.
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Fig. 2.3  Intermediate states involved in the transcrip-
tional regulation of Notch target genes. The different 
RBPJ-associated corepressor complexes (SHARP, 
L3MBLT3, and KyoT2) are recruited at the same RBPJ-
binding sites (RBS) in a well-defined temporal order and/
or tissue-specific manner to promote repression of Notch 
target genes. Of note, SHARP can interact with the 

HDAC-containing NCoR corepressor complex when it is 
phosphorylated on two serine residues. NCoR recruitment 
moves the balance toward repression alternatively; NCoR 
interacts with the KMT2D-containing complex moving 
the balance toward gene activation. L3MBTL3 bridges the 
histone demethylase KDM1A/LSD1 (indicated as 
KDM1A) to RBPJ at RBS

(Oswald et  al. 2016). This finding was quite 
unexpected as the KMT2D complex is involved 
in transcriptional activation in contrast to the 
repressive activity of the SPOC domain of 
SHARP. Previous structural studies of SMRT, the 
ortholog of NCoR, in complex with the SPOC 
domain of SHARP unveiled that this interaction 
depends on the phosphorylation of highly con-
served serine residues of SMRT by casein kinase 
II (CKII) (Mikami et  al. 2013; Mikami et  al. 
2014). Of note, NCoR is also phosphorylated on 
serine residues at its C-terminus (Yoo et al. 2012, 
2013), and we found that NCoR phosphorylation 
is required for its interaction with the SPOC 
domain and dependent on CKII [(Oswald et al. 
2016) and Fig. 2.3]. KMT2D and NCoR are in 
competition for binding to SPOC, and phospho-
NCoR displaces KMT2D leading to transcrip-
tional repression [(Oswald et  al. 2016) and 
Fig. 2.3]. These data support the hypothesis that 

SHARP, integrating different stimuli, acts as a 
poising factor for Notch target genes, balancing 
repressive and activating histone marks [(Giaimo 
et al. 2017b; Oswald et al. 2016) and Fig. 2.3].

The SPOC domain of SHARP directly inter-
acts with ETO [eight-twenty-one, also known as 
MTG8 (myeloid translocation gene on 8q22)] 
which acts as a corepressor of Notch target genes 
by meaning of deacetylation (Salat et al. 2008). 
ETO is a member of the MTG family of core-
pressors of transcription which includes also 
MTGR1 (myeloid translocation gene-related 
protein 1) and MTG16 (myeloid translocation 
gene on chromosome 16 protein). Both MTGR1 
and MTG16 interact with RBPJ; however, only 
MTG16 is displaced from RBPJ by the NOTCH1 
intracellular domain 1 (NICD1) (Engel et  al. 
2010). In conclusion, the SPOC domain of 
SHARP is able to interact with several different 
proteins. It remains to be investigated how the 
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varying interaction partners are recruited to 
enhancers. Our favorite working hypothesis is 
that posttranslational modifications (PTMs) such 
as phosphorylation determine specificity in terms 
of composition and strengths of recruitment of 
corepressors. In that regard, it is appealing that 
the highly conserved SPOC domain interacts 
with double-phosphorylated peptide (Oswald 
et al. 2016). This might be also the case for other 
SPOC-interaction partners. Interestingly, RBM15 
[RNA-binding motif protein 15, also known as 
OTT (one twenty-two)], another SPOC domain-
containing protein, was shown to modulate the 
Notch signaling pathway in a cell-type-specific 
fashion (Ma et al. 2007), marking the importance 
of the SPOC domain-containing proteins in the 
regulation of the Notch signaling pathway.

Another direct interactor of RBPJ is KyoT2 
[also known as FHL1C (four-and-a-half LIM 
domain protein 1C) in human] which, competing 
with the NICD1, represses transcription of target 
genes (Collins et al. 2014; Taniguchi et al. 1998). 
The structure of RBPJ in complex with KyoT2/
FHL1C reveals a good overlap with the 
RBPJ/SHARP and RBPJ/Notch binding surfaces 
[Fig. 2.2 (Collins et al. 2014; Yuan et al. 2019)]. 
One more isoform, KyoT3/FHL1B, is also able 
to interact with RBPJ and to promote gene repres-
sion (Liang et al. 2008), but this is not the case 
for the isoform KyoT1/FHL1A (Taniguchi et al. 
1998). It remains to elucidate whether the repres-
sive mechanism of KyoT2/FHL1C and KyoT3/
FHL1B is exclusively based on their competition 
with the NICD or whether it depends on other 
cofactors, for example, a link between KyoT2/
FHL1C and Polycomb has been proposed (Quin 
et  al., PMID, 14999091, and Quin et  al., 
15,710,417).

As part of the corepressor complex, RBPJ 
recruits histone demethylase activities such as 
KDM5A/LID [lysine demethylase 5A/little ima-
ginal discs (Di Stefano et al. 2011; Liefke et al. 
2010; Moshkin et al. 2009)] and KDM1A/LSD1 
[lysine demethylase 1A/lysine-specific demeth-
ylase 1 (Di Stefano et  al. 2011; Mulligan et  al. 
2011; Xu et  al. 2017; Yatim et  al. 2012)]. 
KDM5A/LID directly interacts with RBPJ and 
demethylates H3K4me3 at RBPJ-bound enhancer 

sites promoting repression of Notch target genes 
(Liefke et al. 2010), while KDM1A/LSD1 indi-
rectly interacts with RBPJ via L3MBTL3 [lethal 
(3) malignant brain tumor-like protein 3] (Xu 
et al. 2017). We identified L3MBTL3 in a screen 
for RBPJ interactors and observed that the 
L3MBTL3-RBPJ interaction is conserved in 
Drosophila melanogaster and Caenorhabditis 
elegans (Xu et al. 2017). Notably, L3MBTL3 and 
NICD1 bind to the same binding surface on 
RBPJ: While NICD1 displaces L3MBTL3 from 
RBPJ, the latter does not outcompete NICD1 for 
binding to RBPJ (Xu et  al. 2017). The recruit-
ment of KDM1A/LSD1 via L3MBTL3 is 
required to modulate H3K4 methylation states at 
RBPJ-bound enhancers promoting repression of 
target genes (Xu et  al. 2017). In line with that, 
pharmacological inhibition of KDM1A/LSD1 
leads to upregulation of Notch target genes 
(Augert et al. 2019); however it must be marked 
that, at least in lung cancer cells, KDM1A/LSD1 
may indirectly regulate the Notch signaling path-
way via a direct regulation of the expression of 
NOTCH1 (Augert et al. 2019). A previous study 
linked KDM1A/LSD1 to repression of Notch tar-
get genes, but the authors also observed that 
KDM1A/LSD1 associates with the NOTCH1 
coactivator complex to modulate H3K9 methyla-
tion states and finally promoting expression of 
Notch target genes (Yatim et al. 2012). Altogether, 
these data suggest that KDM1A/LSD1 acts as 
both an activator and a repressor of the Notch-
dependent gene expression program. Finally, the 
demethylase KDM7B/PHF8 (lysine demethylase 
7B/PHD finger protein 8) is also part of the 
NOTCH1 coactivator complex and supports 
expression of Notch targets by modulating 
H3K27 methylation states (Yatim et al. 2012).

Based on the available structural and biophys-
ical data, SHARP, KyoT2/FHL1C, and 
L3MBTL3 interact in a mutually exclusive fash-
ion with RBPJ: Different intermediate complexes 
may be dynamically recruited at the same 
enhancer in a defined temporal order or in a 
tissue-specific manner to modulate the chromatin 
structure leading to gene repression (Fig.  2.3). 
Since the RBPJ-associated cofactors interactions 
are strong and the DNA-binding affinity of RBPJ 

B. D. Giaimo et al.
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is relatively weak, it can be assumed that the dif-
ferent RBPJ complexes are constantly exchang-
ing, explaining how the different cofactors are 
recruited at a defined enhancer.

The activation of the Notch pathway leads to 
the release of the NICD from the cell membrane 
which, upon nuclear translocation, converts 
RBPJ from a repressor to an activator of tran-
scription via the recruitment of additional coact-
ivators (Fig.  2.1). One of the most important 
members of the coactivator complex is MAM 
which, together with RBPJ and NICD, forms a 
trimeric complex indispensable for activation of 
Notch target genes (Friedmann et  al. 2008; 
Fryer et  al. 2002; Kitagawa et  al. 2001; Nam 
et al. 2006; Wilson and Kovall 2006; Wu et al. 
2000, 2002). The human Mastermind family 
(Mastermind-like or MAML) consists of three 
members, all of them able to support Notch-
dependent transcription (Lin et  al. 2002). 
Probably, the most important function of 
MAML is to recruit the histone acetyltransfer-
ase (HAT) KAT3B/Ep300 to Notch target genes 
that supports gene expression via histone acety-
lation (Fryer et  al. 2002; Jung et  al. 2013; 
Oswald et al. 2001; Tottone et al. 2019; Wallberg 
et al. 2002). Additionally, KAT3B/Ep300 acety-
lates MAML leading to the recruitment of the 
coactivator NACK (Notch activation complex 
kinase) at Notch target genes (Jin et  al. 2017; 
Weaver et  al. 2014). MAML also recruits the 
cyclin C/CDK8 (Cyclin-dependent kinase 8) 
complex that phosphorylates the NICD leading 
to its proteasome-dependent degradation (Fryer 
et  al. 2004). Another component of the Notch 
coactivator complex is the RNA helicase DDX5 
(DEAD-box helicase 5) which, interacting with 
the long noncoding RNA SRA (steroid receptor 
coactivator), supports the recruitment of 
KAT3B/Ep300 and subsequent activation of 
Notch target genes (Jung et al. 2013; Lin et al. 
2013). Furthermore, CARM1/PRMT4 (coacti-
vator-associated arginine methyltransferase 1/
protein arginine methyltransferase 4) promotes 
the activation of Notch target genes by arginine 
methylation of the NICD1 itself (Hein et  al. 
2015).

Recently, we characterized the interactome of 
the cleaved, active NICD1  in mouse progenitor 
cells (Giaimo et al. 2018). Using this approach, 
we identified the Ep400-KAT5/Tip60 (E1A-
binding protein P400-lysine acetyltransferase 5/
HIV-1 Tat-interactive protein, 60 kDa) complex 
(hereafter referred to as Ep400/Tip60 complex) 
as an NICD1 interactor. This complex attracted 
our attention as its subunits Ep400 and KAT5/
Tip60 have been previously linked to deposition 
(Gevry et al. 2007) and acetylation (Kusch et al. 
2004) of the histone variant H2A.Z, respectively. 
H2A.Z has been linked to several processes 
including heterochromatin regulation, DNA 
repair, and gene transcription both in a positive 
and negative fashion (Giaimo et  al. 2019). We 
found that H2A.Z depletion leads to upregulation 
of Notch target genes, and this enhanced expres-
sion is associated with increased active marks, 
namely, H3K4me2 and H3K27ac, at Notch-
dependent enhancer elements. These data sug-
gest H2A.Z as a negative regulator of Notch 
target genes, and this conclusion is further sup-
ported by the observation that activation of Notch 
signaling leads to decreased H2A.Z occupancy at 
Notch-dependent enhancers (Giaimo et al. 2018). 
However, while H2A.Z occupancy negatively 
correlates with induction of Notch target genes, 
acetylation of H2A.Z (H2A.Zac) does it in a pos-
itive manner suggesting that H2A.Z is involved 
in both gene repression and activation and the 
difference between the two functions is obtained 
via its acetylation. Overexpression of H2A.Z 
leads to upregulation of Notch target gene Hairy 
and Enhancer of Split 1 (Hes1), while this upreg-
ulation is more modest when an acetylation-
defective H2A.Z mutant is overexpressed 
(Giaimo et  al. 2018). Our data further indicate 
that acetylation of H2A.Z is highly dynamic, 
which also reconciles previous contrasting results 
showing H2A.Z as a repressor or an activator of 
transcription (Gevry et  al. 2007, 2009; Giaimo 
et  al. 2019). We observed that Ep400 interacts 
with RBPJ and it is recruited to Notch-dependent 
enhancers in a Notch-dependent fashion (Giaimo 
et al. 2018). Furthermore, making use of a tether-
ing approach, we could show that Tip60 pro-
motes H2A.Zac supporting gene expression 
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(Giaimo et al. 2018). In summary, our data sug-
gest that in a Notch-OFF or poised state, the 
Ep400/Tip60 complex is recruited to Notch-
dependent enhancer sites via an unstable interac-
tion with RBPJ promoting loading of 
H2A.Z.  Upon Notch activation, the interaction 
between the Ep400/Tip60 complex and RBPJ is 
stabilized via additional interactions with the 
NICD1 protein promoting acetylation of H2A.Z 
and finally gene expression (Fig. 2.4).

The classical model for the regulation of 
Notch target genes suggests that RBPJ is persis-
tently bound to its cognate sequences promoting 
gene repression or activation based on the stimu-
lation of the NOTCH receptor. However, recent 
studies challenged this model and suggest that 
RBPJ is weakly bound to its enhancers in absence 
of stimulus, while its genomic occupancy signifi-
cantly increases upon activation of the Notch 
pathway and landing of the NICD at target 
enhancers (Fig. 2.5). Earlier studies in Drosophila 
melanogaster cell lines observed increased occu-
pancy of Su(H) (Suppressor of Hairless), the 
Drosophila homolog of RBPJ, upon induction of 
Notch signaling (Krejci and Bray 2007). 
Recently, single-molecule tracking in vivo stud-
ies allowed to define that Su(H) transiently binds 

the DNA in the OFF state (Gomez-Lamarca et al. 
2018). Upon Notch activation, the DNA binding 
of Su(H) significantly increases (Gomez-
Lamarca et al. 2018).

Similarly to Drosophila, activation of the 
Notch pathway leads to increased RBPJ occu-
pancy in mammalian cell lines (Castel et al. 2013; 
Wang et  al. 2014; Yashiro-Ohtani et  al. 2014); 
however, Castel and colleagues identified two 
different classes of RBPJ-binding sites: dynamic 
sites at which RBPJ is bound only upon Notch 
activation and static sites at which RBPJ is bound 
independently of the Notch activation (Castel 
et al. 2013). To note, NICD binding occurs exclu-
sively at the dynamic but not static sites, and fur-
thermore, Castel and colleagues observed that 
RBPJ depletion leads to derepression of few 
genes associated with static sites and about 50% 
of the genes associated with dynamic sites (Castel 
et al. 2013). However, this analysis uses different 
cell lines for ChIP-Seq (C2C12 cell lines) and 
gene expression analysis (quiescent satellite 
cells) (Castel et al. 2013). As a consequence, we 
do not know whether all the derepressed genes 
assumed to be associated with static or dynamic 
RBPJ sites are so. The DNA-binding strength of 
RBPJ does not seem to be regulated exclusively 

Fig. 2.4  Model for the regulation of Notch target gene 
by the Ep400/Tip60 complex and histone variant 
H2A.Z.  In the repressed (OFF) or poised state, RBPJ 
directly interacts with Ep400 leading to the recruitment 
of the Ep400/Tip60 complex. This interaction is unstable 
but sufficient to promote deposition of the histone variant 

H2A.Z. Upon activation of the Notch pathway (ON), the 
Notch intracellular domain (NICD) directly interacts 
with RBPJ and Ep400 leading to stabilization of the 
RBPJ-Ep400 interaction. In turn, this results in acetyla-
tion of H2A.Z (indicated with green balls) and finally 
gene activation
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by the NICD, for example, a recent study pro-
posed that HDAC1 and KDM5A/LID play a neg-
ative and positive role, respectively, in this 
process, at least in mitosis (Dreval et al. 2019). 
Similarly, the BRM complex promotes Su(H) 
binding in Drosophila (Pillidge and Bray 2019). 
The above findings implicate dynamic binding of 
RBPJ depending on dynamic coactivator 
binding.

Promoter specificity might also be achieved 
by the usage of mono- versus dimeric RBPJ-
bound enhancers. In fact, several RBPJ enhanc-
ers are characterized by two correctly spaced and 
oriented binding motifs at which a dimeric 
NICD1/RBPJ/MAML complex is recruited (Hass 
et  al. 2015; Nam et  al. 2007; Severson et  al. 
2017). The structure of the dimeric NICD1/
RBPJ/MAML complex has been solved (Arnett 
et al. 2010); however, we do not know the impact 
of PTMs of the NICD on the dimeric NICD1/
RBPJ/MAML complex formation (Borggrefe 
et al. 2016).

The DNA binding of RBPJ is also dependent 
on other transcription factors (TFs). This is, for 
example, marked by the loss of function (LoF) of 
Lozenge (Lz), the Drosophila homolog of Runx 

(Runt-related transcription) factors, which results 
in reduced SuH occupancy (Terriente-Felix et al. 
2013). Similarly, Lz overexpression leads to 
increased SuH occupancy and increased response 
to Notch activation (Skalska et al. 2015). In line 
with that, the Runx DNA-binding motif is found 
near the RBPJ-binding sites (Wang et al. 2011), 
and RBPJ and RUNX1 [(Runt-related transcrip-
tion factor 1) also known as AML1 (acute 
myeloid leukemia 1)] colocalize genome-wide 
(Wang et  al. 2014). In Drosophila, the basic 
helix-loop-helix (bHLH) TFs Twist and Dorsal 
prime RBPJ-dependent enhancers leading to syn-
chronized and sustained enhancer activity (Falo-
Sanjuan et al. 2019), marking the importance of 
tissue-specific TFs in the Notch response. 
Additionally, RBPJ colocalizes and interacts 
with the DNA-binding protein IKAROS which is 
required for repression of Notch target genes 
(Geimer Le Lay et al. 2014). However, the exact 
relationship between RBPJ and IKAROS is not 
clear, and we do not know whether their interac-
tion is required to support the DNA binding of 
RBPJ and vice versa. This can be addressed by 
performing depletion of IKAROS followed by 
ChIP versus RBPJ and the other way round.

Fig. 2.5  New model for regulation of Notch target genes. 
(a) The classic model for regulation of Notch target genes 
is based on the binding of RBPJ at its cognate RBPJ-
binding sites (RBS) in absence of Notch signaling. In this 
scenario, RBPJ recruits corepressors (CoR) preventing 
expression of target genes. (b) New data suggest that 

RBPJ transiently binds to the RBS in absence of Notch 
signaling promoting gene repression. Upon Notch activa-
tion, the cleaved Notch intracellular domain (NICD) inter-
acts with RBPJ leading to increased DNA binding of 
RBPJ at the RBS. This event leads finally to activation of 
Notch target genes
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�Notch Signaling in Hematopoiesis

The essential role for Notch signaling in inducing 
T-cell development has been extensively investi-
gated [reviewed in Vijayaraghavan and Osborne 
2018]. Inducible depletion of the Notch1 gene in 
bone marrow precursors results in a block of 
T-cell development associated with ectopic 
appearance of donor progenitor-derived B220+ 
immature B-cells in the thymus (Radtke et  al. 
1999; Wilson et  al. 2001). Accordingly, RBPJ 
conditional knockout mice are characterized by a 
block in T-cell development associated with 
appearance of B-cells in the thymus (Han et al. 
2002). Similar results were obtained by gain of 
function (GoF) of the Notch target gene Deltex1 
(Izon et  al. 2002) or by overexpression of a 
dominant-negative MAML1 (dnMAML1) 
(Maillard et al. 2004). These data suggest Notch 
signaling as the driver of the T-cell differentiation 
program, and in line with that, retroviral expres-
sion of the NICD in murine hematopoietic pre-
cursors, followed by transplantation into recipient 
mice, leads to an abnormal appearance of imma-
ture double-positive T-cells in the bone marrow 
and subsequent development of T-cell leukemia, 
while B-cell development is blocked (Pear et al. 
1996; Pui et  al. 1999). Furthermore, MTG16 
knockout results in defects in T-cell differentia-
tion both in mice and using MTG16−/− hemato-
poietic progenitors (Engel et al. 2010; Hunt et al. 
2011).

The critical role of Notch signaling in activat-
ing the T-cell lineage differentiation program is 
also marked by the observation that the engage-
ment of NOTCH receptors by DELTA-LIKE 1 
(DLL1) ligand expressed on the surface of OP9 
stromal cells leads to the differentiation of hema-
topoietic progenitor cells (HPCs) and embryonic 
stem cells (ESCs) into T-cells (Schmitt et  al. 
2004b; Schmitt and Zuniga-Pflucker 2002). The 
thymus represents a nonpermissive environment 
for the development of myeloid, natural killer 
(NK), and B-cells because the thymic epithelium 
offers the DLL1 and DLL4 ligands to the 
NOTCH1-expressing progenitor T-cells 
(Feyerabend et al. 2009; Schmitt et al. 2004a). Of 
note, Notch blocks the alternative differentiation 

pathways even if the cells are ectopically forced 
to express TFs required for differentiating versus 
other lineages (Franco et al. 2006; Laiosa et al. 
2006).

�Notch Signaling in Leukemia

Given the key role of Notch signaling in T-cell 
differentiation, it is not surprising to observe 
aberrant regulation of the Notch pathways in 
T-cell leukemias. Mutations of the NOTCH1 
gene have been identified in T-ALL patients and 
cell lines (Breit et al. 2006; Larson Gedman et al. 
2009; Mansour et al. 2006; Palomero et al. 2006; 
Weng et  al. 2004). These mutations lead to 
increased activation of the pathway, and they can 
be classified into two different groups based on 
the molecular mechanism: mutations that lead to 
ligand-independent activation of the pathway and 
mutations that increase the half-life of the NICD 
proteins. The former include translocations that 
fuse the NICD-encoding sequences to another 
gene or mutations that influence the cleavage of 
the receptor, for example, mutations of the het-
erodimerization domain (HD) (Larson Gedman 
et  al. 2009; Malecki et  al. 2006; Weng et  al. 
2004). The latter are mutations that result in 
C-terminal truncated NICD proteins lacking the 
PEST (proline, glutamic acid, serine, and threo-
nine) domain which is required for the turnover 
of the NICD proteins (Larson Gedman et  al. 
2009; Palomero et  al. 2006; Weng et  al. 2004). 
Mutations, although very rare, may also occur in 
the ankyrin repeats (ANKs) and in the transacti-
vation domain (TAD) of NOTCH1  in T-ALL 
(Zhu et al. 2006).

Importantly, hyperactivation of the Notch 
pathway can also be achieved compromising the 
activity of its negative regulators. In fact, muta-
tions of the NOTCH1 E3-ubiquitin-ligase F-Box 
and WD repeat domain-containing 7 (FBXW7)-
encoding gene have been identified in T-ALL 
(Larson Gedman et  al. 2009). Additionally, 
upregulation of positive regulators of the Notch 
pathway can also lead to hyperactivation of the 
pathway. In line with this, MAML2 is upregulated 
in B-cell-derived lymphomas (Kochert et  al. 
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2011) and was described fused to the lysine-
specific methyltransferase 2A (KMT2A) gene in 
T-ALL as result of a chromosomal inversion 
(Metzler et al. 2008). However, the Notch path-
way, via HES1, seems to have a tumor-suppressive 
function in B-cell acute lymphoblastic leukemia 
[B-ALL (Kannan et al. 2011)].

Recently, activating NOTCH mutations of the 
PEST domain have been identified also in CLL 
(Fabbri et  al. 2011; Puente et  al. 2011). 
Interestingly, mutations of the 3´-UTR (untrans-
lated region) of the NOTCH1 gene have also been 
identified in CLL leading to increased activation 
of the pathway (Puente et  al. 2015). Activating 
NOTCH1 mutations significantly correlates with 
Richter transformation and chemorefractory 
CLL, and they have been proposed as predictors 
of poor survival (Fabbri et al. 2011). In line with 
a role for Notch signaling in CLL, γ-secretase 
inhibitor (GSI) treatment of B-CLL cells reduces 
their survival by meaning of apoptosis (Rosati 
et  al. 2009). Similar conclusions were reached 
using antibodies directed against NOTCH recep-
tors, and furthermore the same study observed 
that Notch signaling is involved in drug resis-
tance (Nwabo Kamdje et  al. 2012). Of note, 
EGR2 (early growth response 2) mutations are 
frequently associated with NOTCH1 or FBXW7 
mutations in CLL patients (Young et  al. 2017). 
The observation that active Notch signaling is 
detectable also in CLL cases that lack NOTCH1 
mutations suggests that other mechanisms can be 
used to activate the pathway in this disease and 
imply Notch signaling as a more general deregu-
lated pathway associated with CLL (Fabbri et al. 
2017).

In mantle cell lymphomas (MCL), activating 
mutations of the NOTCH1 gene map to the HD- 
and PEST-encoding regions (Kridel et al. 2012), 
and recently a genome-wide study identified 
Notch targets and RBPJ-binding sites in MCL 
cell lines (Ryan et al. 2017). Similarly, truncating 
NOTCH2 mutations were detected in MCL and 
diffuse large B-cell lymphoma (DLBCL) with 
the latter also characterized by missense NOTCH2 
mutations (Bea et al. 2013) and NOTCH1 muta-
tions (Fabbri et  al. 2011). Activating NOTCH2 
and NOTCH1 mutations were also described in 

splenic marginal zone lymphomas (SMZL) as 
well as inactivating SHARP mutations and muta-
tions of other components of the Notch pathway 
(Rossi et al. 2012).

Mutations of the Notch pathway similar to the 
leukemia-associated ones have also been identi-
fied in solid tumors (Giaimo and Borggrefe 2018) 
marking the importance to develop new therapies 
aimed to target the Notch pathway.

Aberrant regulation of the Notch signaling 
pathway was also linked to the AML character-
ized by the t(8;21)(q22/q22) translocation that 
fuses the AML1 (also known as RUNX1) gene to 
the ETO gene. AML1 encodes for a hematopoi-
etic cell-specific TF which heterodimerizes with 
a non-DNA-binding protein called CBFβ [core-
binding factor β (Ogawa et al. 1993a, b)], and it is 
essential for definitive hematopoietic develop-
ment (Okada et  al. 1998; Okuda et  al. 1996; 
Wang et al. 1996). AML1 is characterized by an 
N-terminal Runt homology domain (RHD) which 
characterizes all members of the RUNX family 
(RUNX1, RUNX2, and RUNX3) and by a 
C-terminal TAD.  Both DNA binding and het-
erodimerization with CBFβ are mediated through 
the RHD, and the function of CBFβ is to increase 
the stability and the DNA-binding affinity of 
AML1 (Huang et al. 2001; Tahirov et al. 2001). 
On the other side, the ETO gene, highly expressed 
in the brain (Miyoshi et al. 1993) and in hemato-
poietic cells (Erickson et al. 1996), is the homo-
log of the Drosophila Nervy in four regions 
protein (Feinstein et al. 1995); in fact, it encodes 
for a non-DNA-binding protein characterized by 
four evolutionarily conserved functional domains 
called nervy homology regions (NHR): the 
NHR2 forms an amphipathic helix and it is 
important for homodimerization (Lutterbach 
et  al. 1998a) and heterodimerization with 
MTGR1 (Kitabayashi et  al. 1998); the NHR4 
contains two putative zinc fingers (ZnF) required 
for interactions with NCoR and SMRT which 
links ETO to HDACs (Gelmetti et  al. 1998; 
Lutterbach et  al. 1998b; Wang et  al. 1998). Of 
note, the function of NHR4 is strongly dependent 
on NHR2 (Zhang et al. 2001).

The t(8;21)(q22/q22) translocation fuses the 
DNA encoding the first N-terminal 177 residues 
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of AML1, which include the RHD, in frame with 
nearly all of ETO (Erickson et  al. 1992; Kozu 
et  al. 1993; Miyoshi et  al. 1993; Nisson et  al. 
1992). This translocation leads to deletion of the 
C-terminal activation domain of AML1, and the 
resulting AML1/ETO (AE) protein acts as a 
dominant-negative form of AML1, which binds 
to AML1-binding sites (Gardini et  al. 2008) 
repressing target genes (Frank et  al. 1995; Liu 
et  al. 2007). Of note, A/E expression requires 
additional mutations to induce leukemia in a 
murine in vivo model (Yuan et al. 2001), but this 
is not true for two different C-terminal truncated 
AE proteins [AML1/ETO 9a (AE9a) and AML1/
ETO truncated (AEtr)] which are potent inducers 
of leukemia in mice (Yan et al. 2009; Yan et al. 
2004; Yan et  al. 2006). Interestingly, AE9a is 
deleted of NHR3 and NHR4, arguing against the 
well-accepted model that AE acts exclusively as 
a repressor of AML1 target genes (Heibert et al. 
2001).

The first evidence about an aberrant regulation 
of the Notch signaling pathway in AML came out 
with the observation that overexpression of AE 
leads to upregulation of the Notch target gene 
Hes1 (Alcalay et al. 2003). The underlying mech-
anism was unveiled when ETO was identified as 
a component of the RBPJ/SHARP corepressor 
complex (Salat et al. 2008). In detail, ETO and, 
surprisingly, AE directly interact with SHARP, 
but while ETO is able to augment SHARP-
mediated repression, this is not the case for 
AE. Furthermore, knockdown of ETO or overex-
pression of AE resulted in activation of Notch 
target genes, suggesting that AE is able to dere-
press their expression, probably contributing to 
the oncogenic potential of AE in AML (Salat 
et al. 2008). In line with that, MTG16 which was 
also found fused to AML1 in cases of secondary 
AML cases (Gamou et  al. 1998) interacts with 
the RBPJ-associated corepressor complex, and 
this interaction is regulated in a Notch-dependent 
fashion (Engel et al. 2010).

The exact role of CBFβ in the transformation 
process driven by AE remained unclear for a long 
time as two different studies arrived to opposite 
conclusions (Kwok et al. 2009, 2010; Park et al. 
2009; Roudaia et al. 2009). Kwok and colleagues 

observed that the AE/CBFβ interaction is dis-
pensable for leukemic transformation when 
CBFβ-interacting deficient AE mutants were ret-
rovirally transduced into primary bone marrow 
cells (Kwok et  al. 2009, 2010). In contrast, the 
study from Roudaia and colleagues observed that 
this interaction is strongly required to induce leu-
kemia (Park et al. 2009; Roudaia et al. 2009) and 
in support of that, inhibitors of the AE/CBFβ 
interaction reduce cell proliferation of the ME-1 
cell line characterized by a chromosomal 
translocation that involves the CBFβ-encoding 
gene (Gorczynski et al. 2007).

Our recent study helped to clarify these con-
tradicting results. We designed CBFβ-interacting 
defective AE9a mutants, and upon retroviral 
transduction into HoxB4-immortalized hemato-
poietic progenitors, we observed that the AE/
CBFβ interaction is required to derepress Notch 
target genes but not to deregulate AML1 target 
genes (Thiel et  al. 2017). Furthermore, the AE/
CBFβ interaction is required for the colony-
forming potential of transduced progenitors and 
to induce leukemia into recipient mice, and it 
must be noted that mice receiving the CBFβ-
interacting defective AE9a mutant present only 
with myeloproliferative defects (Thiel et  al. 
2017). These data suggest that AE9a deregulate 
AML1 targets independently of CBFβ leading to 
a myeloproliferative disease; however, the AE9a/
CBFβ interaction is required to deregulate Notch 
target genes and induce leukemia.

While these data suggest that derepression of 
Notch signaling has an oncogenic role in AML, 
other studies observed the opposite in fact: Notch 
signaling has a tumor-suppressive role in AML 
cases that are not associated with the t(8;21) 
translocation (Kannan et  al. 2013; Lobry et  al. 
2013). In this case, the tumor-suppressive role of 
Notch signaling seems to be dependent on the 
repressive activity of HES1 (Kannan et al. 2013; 
Tian et al. 2015b). In line with that, HES1 expres-
sion correlates with a better prognosis in AML 
cases characterized by CBFβ alterations (Tian 
et al. 2015a), and pharmacological activation of 
Notch signaling has a tumor-suppressive function 
(Ye et al. 2016). In mouse models of MLL/AF9 
(mixed-lineage leukemia/ALL1-fused gene from 
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chromosome 9 protein)-induced AML, HES1 has 
a tumor-suppressive role by promoting repres-
sion of FLT3 [FMS-like tyrosine kinase 3 (Kato 
et  al. 2015; Lobry et  al. 2013)]. Interestingly, 
Lobry and colleagues observed that Notch activa-
tion, in an AE background, has a tumor-
suppressive role (Lobry et  al. 2013). The 
discrepancy observed between our study (Thiel 
et  al. 2017) and the study from Lobry and col-
leagues (Lobry et al. 2013) may be due to the dif-
ferent approaches used: while we only 
overexpressed AE9a leading to derepression, 
Lobry and colleagues overexpressed both AE and 
NICD2. In this way, the activation levels may 
bring the difference(s) between oncogenic and 
tumor-suppressive role for Notch signaling with 
a weak activation (derepression) having an onco-
genic role and a stronger activation (given by the 
AE and the NICD2 together) having a tumor-
suppressive role.

Of note, also the fusion protein OTT/MAL [one 
twenty-two/megakaryocytic acute leukemia, also 
known as RBM15/MKL1 (RNA-binding motif 
protein 15/megakaryoblastic leukemia 1)], which 
is the result of the t(1;22)(p13;q13) translocation, 
was proposed to disturb the repressive function of 
RBPJ in acute megakaryoblastic leukemia [AMKL 
(Mercher et al. 2009)].

�Conclusion and Outlook

The function of the transcription factor RBPJ not 
only in the presence but also in the absence of 
Notch activation is of major importance, since 
this affects chromatin regulation and hence target 
specificity. It would be highly desirable to have 
novel compounds that specifically disrupt the 
RBPJ-corepressor function in certain disease set-
tings like AML.  Similarly, compounds able to 
disrupt the activation function of RBPJ would be 
very helpful to avoid the serious off-target effects 
observed with γ-secretase inhibitors. In line with 
that, a recent study characterized a new RBPJ 
inhibitor that prevents both its repressive and 
activating function (Hurtado et  al. 2019). 
Chromatin regulation is to be expected at the cen-
ter of RBPJ-mediated repressive mechanisms.
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