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Abstract. Big data tends to concentrate on the data volume and vari-
ety which requires large cluster capabilities to process diverse and het-
erogeneous data. Currently, NoSQL/Hadoop-based cluster frameworks
are known to excel at handling this form of data by scaling across nodes
and distributed query processing. But for certain data sizes, relational
databases can also support these workloads. In this paper, we support
this claim over a popular relational database engine, Microsoft* SQL
Server* 2019 (pre-release candidate) using a big data benchmark, Big-
Bench. Our work in this paper is the industry first case study that runs
BigBench on a single node environment powered by IntelR© XeonTM pro-
cessor 8164 product family and enterprise-class IntelR© SSDs. We make
the following two contributions: (1) present response times of all 30 Big-
Bench queries when run sequentially to showcase the advanced analytics
and machine learning capabilities integrated within SQL Server 2019,
and (2) present results from data scalability experiments over two scale
factors (1 TB, 3 TB) to understand the impact of increase in data size
on query runtimes. We further characterize a subset of queries to under-
stand their resource consumption requirements (CPU/IO/memory) on
a single node system. We will conclude by correlating our initial engi-
neering study to similar research studies on cluster-based configurations
providing a further hint to the potential of relational databases to run
reasonably scaled big-data workloads.

Keywords: TPCx-BB · Microsoft* SQL Server* 2019 · Big data ·
BigBench · Machine learning · Natural language processing

1 Introduction

With the popularity of Big Data, organizations are continuously confronted with
the challenge of storing, processing and analyzing diverse, complex form of data
(structured, semi-structured, and un-structured) with relatively limited stor-
age and computation power of traditional tools and processes when compared
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to cluster-based configurations. There are currently two alternatives to handle
analysis over this form of data: (a) scale-up (adding CPU power, memory to
a single machine), (b) scale-out (adding more machines in the system creat-
ing a cluster). Several commercial and open-source systems have emerged over
the past several years as a scale-out solution to handle this data form [25–30].
Additionally, researchers from different communities including data management,
machine learning, systems and computer architecture are also continuously work-
ing towards proposing innovative approaches to manage big-data workloads [31–
35].

On one hand, having a variety of solutions is an advantage, for the flexibility
they offer big data users in making a choice for the solution that best fits their
needs; on the other hand, it also presents the challenge of assessing the func-
tionality and performance of different systems and having a comparative view
to even arrive at a decision. Benchmarking is a standard process embraced by
organizations and researchers for measuring and demonstrating performance of
their products. Additionally, it helps to identify the potential areas for perfor-
mance optimizations, drive engineering efforts, and through this process, provide
insights into the requirements for the next version of product/system under test.

Several big data benchmarks have been proposed recently out of which
BigBench is considered as the first end-to-end solution designed to evaluate
entire systems [5,6,10]. There exists another category of benchmarks called
microbenchmarks. They are designed to evaluate specific system components or
features of Big Data solutions For example, NNBench [8] tests the performance
of NameNode component in HDFS, Terasort [9] is another benchmark used to
evaluate performance of MapReduce framework by measuring the amount of
time it takes to sort one terabyte of randomly distributed data. Similarly, there
are several other active efforts in the benchmarking community that are mainly
targeted at evaluating specific components [5,6].

Han et al. [6] present a survey of open-source big data benchmarks. The
authors classify the surveyed benchmarks across four different dimensions: (1)
types of big data systems they serve (Hadoop-based, DMBSs/NOSQL data
stores, and specialized systems which require processing on particular data types
such as graphs, streaming data), (2) workload generation techniques, (3) input
data generation techniques, and (4) performance metrics. In another literature
study, Ivanov et al. [5] provide a summary of big data benchmarks discussing
their characteristics and pros and cons. Ghazal et al. [7] highlight three spe-
cific areas that make BigBench unique when compared to the other big data
benchmarks. Along with those three attributes (technology-agnostic, end-to-
end benchmark as opposed to a microbenchmark, coverage of the workload to
address variety aspect of big data), one other aspect that distinguishes BigBench
from other big data benchmarks is that it has been endorsed and adopted by
a standardized benchmark committee, TPC* (Transaction Processing Perfor-
mance Council).

*Other names and brands may be claimed as property of others
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In the database world, TPC is the organization that is responsible for defin-
ing, publishing, auditing, and maintaining database benchmarks. TPCx-BB*
was originally created in 2016 to showcase Hadoop style big-data analytics clus-
ter Scale Out scenarios. It is based on a scientific proposal, BigBench, which
was later adopted by TPC as an industry-standard benchmark [42]. The mostly
read query mix and data consistency guidelines make it very friendly to scale-
out Hadoop style implementations. It is unique compared to other influential
database benchmarks defined by TPC in two ways. First, the other benchmarks
such as TPC-H*, TPC-DS* are pure SQL benchmarks while TPCx-BB includes
additional processing paradigms (machine learning and natural language pro-
cessing) and data formats (unstructured and semi-structured) which emulates
the text of user product reviews and web clickstream logs for an e-commerce site.
BigBench uses this data for a number of machine learning and natural language
processing queries to mine the reviews for interesting artifacts, data classifica-
tion and clustering. Second, TPCxBB is an express benchmark which means
that it not only comes with a specification document listing functional require-
ments, but also offers a ready to use executable kit that can be quickly deployed
and used for benchmarking [24]. The original implementation of BigBench uses
Hadoop and Hive [15].

Since its adoption by TPC, several organizations have published results of
their studies using this benchmark to demonstrate competitiveness of their prod-
ucts in the big data market [10–13,19]. However, all of these contributions
address a cluster-based configuration with data processing split across multi-
ple nodes. The original TPCx-BB implementation provided on the TPC site
also uses Hadoop-based framework and processing engine, Hive that requires a
cluster setup. Rabl et al. [43] provide a proof of concept of running 30 BigBench
queries on a Teradata Aster Database which executes queries using SQL-MR
(Map Reduce) interface. The tests were conducted on a 8 node cluster.

Certain database use cases such as those emulated by TPCx-BB/BigBench
with limited data sharing dependencies are amenable to scale-out and achieve
performance benefits by parallelizing over a cluster of [typically cheaper] servers
working together to process “large” to “enormous” databases. This is in contrast
to traditional OLAP benchmarks like TPC-H which feature more data sharing
dependencies and showcase the scale up potential of a single [typically more
expensive] server being able efficiently process “medium” to “large” databases.
The definition of “medium”, “large”, and “enormous” datasets is quite sub-
jective and changes over time leaving a fair amount of overlap between use
cases designed for scale-out via Hadoop type design and scale-up via traditional
database design. With the advancements in hardware technologies and how the
database performance is heavily influenced by the underlying resources available
to it, we investigate the potential of running BigBench on a single node platform
as opposed to a cluster-based configuration.

We present our preliminary results from running BigBench on a system pow-
ered by Intel technologies and a relational database engine, Microsoft* SQL
Server* 2019 (pre-release). The goal is to demonstrate advanced analytics capa-
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bilities and performance of SQL Server* 2019 and reinforce the position that
scale-up remains an option for an important subset of database sizes. We make
the following two contributions:

1. We present the results of running all 30 BigBench queries over a relational
database engine and a single node configuration powered by Intel technologies.
It serves to illustrate the functional capabilities of Microsoft* SQL Server*
engine for processing queries that go beyond pure relational, SQL paradigm.

2. We present our preliminary results from experiments designed to understand
the impact of increase in input dataset size on query runtime. We analyze
the results across 1 TB and 3 TB. We further analyze the runtime behavior
of a subset of queries over 3 TB to understand their resource consumption
requirements (CPU/IO/memory) on a single node system.

It is important to note that we do not reference any official TPCx-BB bench-
mark metrics and our results only include query execution times since official
metrics reporting is only permitted in TPC-audited results.

The remainder of this paper is organized as follows. Section 2 covers the
necessary background concepts including Microsoft* SQL Server* 2019 advanced
features that make it amenable to big data workloads such as BigBench and an
overview of BigBench data model and queries. We discuss our single node based
experimental setup in Sect. 3 with our results in Sect. 4. Section 5 presents the
work related to big data benchmarking and compares our initial results with
existing academic studies that have all been over cluster-based environment.
Finally, Sect. 6 summarizes the paper with ideas for future work.

2 Background Concepts

In this section, we first present concepts that are important to understand the
terms referenced later in the paper. These include (1) Microsoft SQL Server
2019 Extensibility Framework which enables execution of machine learning and
natural language processing algorithms from within SQL Server, and (2) an
overview of TPCxBB data model and queries.

Microsoft SQL Server Extensibility Framework. Using machine learning
libraries to build prediction and forecasting models and perform statistical oper-
ations is a common scenario these days and R and Python are the two most
popular languages used for machine learning. However, there are two inherent
challenges while processing data using R/Python libraries: (1) complete data
needs to be loaded in memory before any computation can be performed, (2)
data needs to be available/moved to the server where R/Python runtimes are
installed. Microsoft alleviates these issues for the data resident in SQL Server
by introducing external, machine learning execution engines (R/Python) and
libraries as a part of SQL Server offering. This feature is called machine learning
extensibility framework and gives user the ability to execute code in an external
runtime engine without leaving SQL Server environment.
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Fig. 1. Architecture Diagram for Microsoft* SQL Server* Third Party (Java) Exten-
sibility Framework [38]

Starting with SQL Server* 2016, Microsoft introduced extensibility frame-
work as an add-on to the core database engine thus allowing execution of machine
learning algorithms implemented in R from within SQL Server*. Microsoft’s
implementations of machine learning algorithms (RevoScaleR library) allows
processing of datasets that may not completely fit in memory [39]. BigBench
includes five machine learning queries (5, 20, 25, 26, 28) covering clustering, logis-
tic regression, and classification. SQL Server* 2019 added support for yet another
external runtime engine, Java, to the extensibility framework that now allows
the user to run pre-compiled Java code fully integrated within core database
query execution [40]. BigBench workload includes four queries (10, 18, 19, 27)
which require the use of open-source java libraries. Having built-in support for
java extensions and machine learning algorithms within SQL Server allows effi-
cient execution and use of those libraries for benchmarking SQL Server database
system using the bigbench workload.

Figure 1 shows the architecture for extensibility framework (specifically
Java). Machine learning algorithms in R or Python also uses similar frame-
work with a few differences explained as follows. There are essentially three
major components that are involved in execution of R, Python, or Java code
from within SQL Server. These include Launchpad, external runtime process,
and SqlSatellite. The data exchange between SQL Server and external runtime
is managed by SqlSatellite. A call to an external runtime process from SQL
Server is initiated using a built-in stored procedure sp execute external script
provided by SQL Server. It initiates Launchpad which is a service that comes
in packaged within SQL Server when we choose to include Machine Learning
services with it. The launchpad service further starts a launcher dll which is
either RLauncher.dll, PythonLauncher.dll, commonlauncher.dll depending on
the external runtime user wishes to invoke. Microsoft allows only trusted launch-
ers which are either published or certified by Microsoft. This constraint serves
two purposes. First, the trusted launchers are guaranteed to meet performance
and resource management requirements established by SQL Server. Second, the
policy ensures security of the data residing in SQL Server. Although the exter-
nal runtime executes in a separate process from SQL Server, but it is a part
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of the SQL server framework which facilitates data access and operations on
the server. In case of external code based on Java, commonlauncher.dll initiates
and manages a process ExtHost which performs two functions: (1) uses sqlsatel-
lite for communication and providing data/scripts to the extension code from
SQL Server, (2) hosts another module, Language Extension which loads and
communicates with JVM/Java-based user code.

A query in SQL Server that uses this extensibility framework and parallel
execution mode may result in a large number of concurrent external processes
being provisioned to facilitate parallelism and satisfy the query plan. We present
two BigBench queries in appendix to highlight SQL Server* capabilities around
both machine learning and natural language processing queries.

BigBench Workload. BigBench is the scientific research proposal which was
later adopted by TPC to define an end-to-end, express benchmark, TPCx-BB.
It is end-to-end because it is designed to evaluate performance of complete sys-
tem as opposed to specific components or features of system under test. The
benchmark models a fictitious retailer company selling products to customers
via both physical and online stores. Twenty queries out of thirty in the workload
address big data uses cases defined in McKinsey report [16] and the remaining
ten queries are based on another decision-support benchmark defined by TPC,
known as TPC-DS [10,14].

In our experiments, we demonstrate results of 30 BigBench queries when
run sequentially with a single query running at any given point in time. This
portion of the benchmark is called “power run”. We capture data across two scale
factors: 1000 and 3000 ( 1 TB and 3 TB). We collect each query’s start, end,
and execution times, and data on the resource utilization for the complete run of
thirty queries using Microsoft Windows Performance Tool, perfmon [17]. These
two datasets (perfmon and query runtime information) when analyzed together
allows us to identify performance of each query over the complete duration of
the run.

3 Experimental Setup

In this section, we describe the system setup that we used for running our exper-
iments.
Hardware: We use a single node system running Windows Server 2016 Datacenter
with a pre-release candidate of Microsoft SQL Server 2019 (CTP 2.4) installed
as the database engine. The system is equipped with a 4-socket Intel R© XeonTM

Platinum 8164 processor (2 GHz), each with 26 physical cores (total 104 cores),
3 TB main memory (48 DIMMs of 64 GB each, Frequency: 2400 MHz), and
up to 40 TB of storage powered by Intel R© SSDs. We believe that the current
setup can be further tuned and there is potential for additional performance
gains even with the current experiments. This paper focuses on presenting our
initial results with the goal of showcasing the potential of scale-up configurations
for big data workloads.
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Our storage configuration is as follows. We have two storage bays with each
bay populated with 24 Intel R© SSD drives. The configuration is shown in Table 1.
For each bay, we created RAID0 across 7 × 800 GB Intel R© SSD drives for storing
database files (10 TB total storage for database data files) and followed same
configuration for tempdb drives (10 TB total storage for tempdb files). TempDB
is configured and placed on separate drives from the database files (mdf) to
isolate any the impact of any spills that may occur during query execution and
RAID0 ensures good performance. At query runtime, data is read in parallel
from the two data drives. Logical drives for storing raw data (flat files)were
created using 6 × 800 GB Intel R© SSD drives resulting in 4.36 TB storage on
each storage bay. The remaining 4 SSDs of 1.5TB each were used to storage
backup files. Lastly, for SQL log files, we included a single 800 GB Intel R© SSD.

Table 1. Storage configuration details per storage bay

File type SSD details # of files per file type

Datafiles/Tempdb files/Flat files/Log IntelR© SSD DC S3700 (800 GB) 7/7/6/1

Backup files IntelR© SSD DC S3500 (1.6 TB) 4

Software. We enabled following two features for SQL Server: lock pages in mem-
ory and large pages (-T834 flag). Using large pages allows SQL Server to allocate
allowed memory capacity at the time of startup and leverage CPU support for
large virtual memory pages. The amount of memory allocated by SQL Server is
equal to the minimum of ’max server memory’ and physical memory available
on the system. We set the max server memory to 2.4 TB for our experiments
leaving 6̃00 GB for other processes running on the system and execution of
machine learning services from within SQL Server [41]. This practice improves
query runtime since any memory required by a SQL query at runtime is not
dynamically allocated from OS and initialized at the time of execution, but is
readily available for use.

In terms of the available memory for query execution, we configured memory
grant % in resource governor settings in SQL Server, setting it to 75% [22]. This
ensures that each individual query can get maximum of 75% of the available
memory to SQL Server instance.

4 Results

In this section, we present our results from running TPCxBB workload over two
different scale factors: 1000, 3000. The experiments were conducted using the
schema and query implementations that were specifically developed to run Big-
Bench on SQL Server. Since the original implementation of BigBench supports
Hive on MapReduce, queries had to be translated to enable running them on a
relational engine, SQL Server in our case. We first present our data scalability
experiments to understand the trends in query response times with increase in
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dataset size. Next, we discuss hardware resource utilization for a subset of queries
which stresses different categories of resources. The methodology we followed for
collecting data for each scale factor is a restart of SQL server in order to clear the
buffer pool, followed by running all 30 queries sequentially in ascending order.
Table 2 shows contribution of each query group (Pure SQL, ML, NLP) to the
total runtime for 30 queries.

Table 2. Query runtimes %
per query group vs. scale
factor (ML and NLP queries
scale better than SQL)

Group 1TB 3TB
NLP 63.89 41.90
ML 6.16 3.08
SQL 29.95 55.02

In terms of the total elapsed time for the com-
plete run, 1 TB took 11,712 s (1̃95 min) while it
took 44,376 s(7̃39 min) with a 3 TB scale factor.
Baru et al. [10] present results from running Big-
Bench on a 6-node Cloudera cluster (20 cores and
128 GB main memory per node) with Hive/MapRe-
duce framework. The 30 queries run in sequential
order on their configuration took more than 1200
min. They also conducted similar study on a larger
cluster with 544 nodes (12 cores and 48 GB main
memory per node) and it took more than 200 min
to run all 30 queries. Our experiments were run on a
single node with lesser number of cores compared to
each of these cluster setups, yet finishes in less time. One of the reasons for this
performance gain can be attributed to the foundational schema-based nature
of relational databases. In Hadoop based systems, data is directly loaded onto
HDFS in raw format without assigning any particular structure to it. While this
often results in faster data load times, eventually the cost manifests at the query
runtime since the data needs to be parsed to be able to pull only the required
information.

In another study conducted in Frankfurt Big Data Lab [18], researchers used
BigBench on a 4 node cluster with a total of 30 cores/60 threads and 128 GB
total memory and using Hive/MapReduce as the execution framework. Absolute
runtimes of all 30 queries were reported showing how a single query (query 4) by
itself took more than 900 min. While our results can not be directly compared
to the 4-node cluster setup because of the difference in hardware configurations,
it still points to the potential of scale up configurations to run reasonably sized
big data workloads.

The other important point to note in Table 2 is how SQL queries dominate the
overall query runtime with increase in scale factor. We elaborate on this behavior
in the discussion around scalability experiments for specific query groups.

Data Scalability for ML Queries. While Table 2 presents a high-level pic-
ture, next we focus on specific queries and organize our results per query group.
Figure 2 shows the scaling behavior of all 30 queries over scale factors: 1000
and 3000. In this section, we focus on five machine learning queries (5, 20, 25,
26, 28). These queries cover clustering (20, 25, 26), regression and classifica-
tion (5, 28). All the five queries scale well (up to 2x) with overall 3x increase
in data size. While additional data from higher scale factors such as 10 and
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30 TB are required to validate the trend further, the current performance we
are observing can be attributed to following two areas within SQL Server: (1)
the distributed and parallel computation of machine learning algorithms based
on Microsoft implementations of these algorithms (RevoScaleR library) and the
data exchange model used between SQL Server and Machine Learning engine.
(2) multi-threaded execution of SQL queries which read and join data from the
database tables to prepare input data for ML algorithms used later in the query.

Data Scalability for NLP Queries. In this section, we focus on the scaling
behavior of natural language processing queries (10, 18, 19, 27) over scale factors:
1000 and 3000 in Fig. 2. Except query 18, rest three queries all scale linearly
or even better with increase in scale factor. This seems to be an artifact of the
amount of data that is actually passed to the java extensions framework for
running the underlying pre-compiled Java code for negative sentiment analysis
required in this query. Query 18 uses a set of SQL operators including joins,
scans, and filters to prepare the data for sentiment analysis using Java and
that input data shows 6× increase (4,013,405 vs. 24,634,495 rows) between
scale factors 1000 and 3000. In this context, the query did scale well (4̃× for
6̃× increase in data size). In our current set of experiments for NLP queries,
we restricted parallelism and used lesser number of cores than available on the
system and we plan to investigate this further to seek further optimizations.

Fig. 2. Scalability of BigBench queries with increase in scale factor

Data Scalability for Pure SQL Queries. Having discussed NLP and ML
queries, we now discuss scalability trends for SQL queries. Queries 3, 4, 8, 12,
and 30 appear as the worst scaling queries among the 21 SQL queries. For query
8, even though the runtime increased by 6× from 1 TB to 3 TB, the absolute
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runtimes are relatively small (11.89 s for 1 TB and 77.87 s for 3 TB). Similarly
query 12 takes 4× time to finish with 3x increase in data size. But again,
the absolute run times are quite short (4.95/22.27 s). We will elaborate on the
remaining three queries (3, 4, 30) and query 2 which seems to be scaling well.
Figure 5 offers an insight into query characteristics for 3, 4 and 30.

Query 3 shows a 7× increase in runtime with only 3x increase in data size.
This query reads data from one of the largest tables, web clickstreams. On ana-
lyzing resource utilization pattern from performance monitor, the query consis-
tently shows high CPU utilization ( 95%) over both scale factors with minimal
disk activity. This points to the fact that running it on a system with even
higher number of cores would potentially yield performance gains unless it is
busy waiting, i.e. spinning. We plan to investigate this behavior further.

Query 4 is memory bound with spills to tempdb at both 1 TB and 3 TB
scale factors. The memory grant information from query plans also shows the
memory pressure observed during this query. The maximum available memory
for any query based on our current settings is 1.3 TB where as query 4 desires
7 TB memory for 1 TB scale factor and it needs 22 TB for 3 TB. The CPU
utilization for this query decreased from 37% on average on 1 TB to 21% on
3 TB, and Figures 3 and 4 show the reason behind this drop in utilization. It
is either during the time period where query was writing to Tempdb or during
a phase where there is no Tempdb activity but utilization is still low. This is
coming from few single-threaded operations including stream aggregate. The
high memory capacity requirement highlighted here captures the characteristic
of the query as opposed to bottlenecks in underlying hardware or SQL Server
processing model.

Query 30 shows similar resource utilization behavior as query 4. There is a
drop in CPU utilization because of the increased I/O activity with Tempdb at
3 TB.

Fig. 3. CPU Utilization for query 4 on 3 TB scale factor (Low average utilization: 21%)
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Fig. 4. TempDB write activity over 3 TB for query 4 - Disk Write Bytes/sec (overlaps
with few areas of low CPU utilization from Figure 3)

While queries 3, 4, and 30 offer scope for further tuning for performance opti-
mizations, there are also queries which showed positive scaling behavior (queries
2, 11, 15, 22). Queries 11, 15, 22 do not show much variation in their run times
with the increase in data size. The runtime for query 2 is increased by 2.5× (101
vs. 259 s) while the input datasize went up three times. Analyzing the resource
consumption for this query, we observe that the CPU utilization increased from
21% on average on 1 TB to 34% on average on 3 TB, highlighting the perfor-
mance benefit gained from a system with high number of cores. However, there
is also disk activity coming from spills to Tempdb (16 GB on 1 TB vs. 82 GB
on 3 TB) that is impacting query runtime. But overall, query 2 does scale well.

This concludes our discussion on query behavior and performance over two
different scale factors. While most of the queries scale well, we do identify few
queries (3, 4, 30) that may have additional opportunities for optimization. In
addition, running experiments over higher scale factor such as 10 TB might help
in highlighting those areas as well.

5 Related Work

Given that BigBench is designed for evaluating big data systems, our survey
of existing contributions is directed along the following dimensions: (1) identify
related studies conducted on big data systems and which benchmarks did they
employ for benchmarking, (2) identify studies focused on BigBench, and (3)
performance studies focused on single node SQL Server and the benchmarks
that were employed for those studies.

For the first case, there exists several contributions that focus on evalu-
ating and comparing various SQL-on-Hadoop systems and many of them use
either TPC-H, TPC-DS inspired benchmarks [1–3,36], or microbenchmarks as
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Fig. 5. Processor/Disk Characteristics of worst scaling SQL queries - 3, 4, 30

described in Sect. 1 [5,6,8,9]. Floratou et al. [1] study the performance differ-
ences of two SQL engines - Hive and Impala against data stored in Hadoop
using TPC-H and TPC-DS based workloads. Chen et al. [3] present a perfor-
mance evaluation of five SQL-on-Hadoop solutions using a subset of TPC-DS
queries. Similarly, Poggi et al. [2] present results of a performance study charac-
terizing SQL-on-Hadoop solutions provided by four major cloud providers using
TPC-H.

All of these contributions study big data systems but none of them uses
BigBench which includes a broader set of processing paradigms (machine learn-
ing, natural language processing) and variety of data formats including semi-
structured (web-clickstreams) and unstructured data (product reviews) data.
Also, BigBench has support for up to petabyte scale databases while TPC-H or
TPC-DS are limited to 100 TB. The current publications of TPC-H/DS concen-
trate primarily on 10 TB databases while for BigBench we have a result with
30 TB of data as well [19,37].

Next, we summarize few research studies that have used BigBench over dif-
ferent frameworks to evaluate performance of hardware and software components
of their systems. In a recent study in 2017, Poggi et al. [11] complemented their
prior work by looking at BigBench to characterize Spark and Hive performance
across different PaaS (Platform-as-a-Service) offerings. There have been few stud-
ies and official submissions at TPC that employ BigBench to analyze and compare
performance of Big Data offerings [18,19]. But all of these evaluations are over
cluster-based environments. We are not aware of any studies that have explored
BigBench on a single node configuration and a relational database engine such
as Microsoft* SQL Server*. Wang et al. [12] share results on running BigBench
on a 9-node Cloudera cluster. Their experiments are designed to understand the
impact of core and disk scaling and tuning CPU frequency on query response time.
While we are yet to do similar studies, our preliminary results show how queries
2, 4, and 30 are impacted by disk bandwith since we observe spills to Tempdb for
each of these queries (primarily queries 4 and 30). Cao et al. [13] present results
over a cluster-based configuration (two cluster setups - 9 node, 60 node) running
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BigBench for Hive over MapReduce. Complete run of 30 queries on their 9-node
cluster (total of 216 cores and 2.2 TB memory) takes 34,076 s while 3 TB run on
our system takes 44,376 s. Now, we do observe optimization opportunities which
if implemented can improve the total runtime and the core count on the cluster
setup is almost double of what we have on our system. The paper does not show
individual query times which would have enabled us to compare each query’s per-
formance. CPU intensive queries siuch as query 3 would significantly benefit from
higher number of cores. Baru et al. [10] looked at 1 TB scale factor over a 6-node
cluster configuration with a total of 120 cores and 768 GB main memory but their
total runtime is still much higher than our system. Authors have mentioned that
it is raw, out-of-the-box performance and the runtimes could potentially improve
with tuning. The study done by Ivanov et al. [18] presents detailed analysis and
results on running BigBench over a 4-node cluster using Hive and Spark frame-
works and across multiple scale factors. Given that the configuration had a total
of 128 GB memory for the 1 TB BigBench scale factor, it is not practical to com-
pare their runtimes with our results. The authors also present resource utilization
of a subset of queries and it would be worthwhile to study it and identify if there
are any insights that can be gained about the core characteristics of the workload
from it.

On our third survey dimension identifying contributions which have looked
at benchmarking single node SQL Server*, the evaluations have been based on
TPC-H or TPC-DS [4,20,21,37]. Our work is the first attempt to measure and
demonstrate performance of Microsoft* SQL Server* 2019 (pre release) on the
Intel R© XeonTM processor 8164 product family using BigBench as the workload.

6 Conclusions and Future Work

This paper presents our experiences and initial experiments using BigBench on a
single node configuration powered by Intel technologies and a relational database
system, Microsoft* SQL Server*. Our initial results on 1 and 3 TB data sizes
demonstrate advanced capabilities of Microsoft SQL Server 2019 (pre-release
candidate) to handle heterogeneous and volume aspects of big data and how
even a single-node, relational database configuration can scale up to big data
workloads.

Given that this paper is an early study, there exists several avenues for future
research. Firstly, collecting and analyzing performance over higher scale factors
which are even more representative of the data volume aspect in big data is
an ongoing study. Secondly, profiling the benchmark to assess sensitivities of
BigBench queries to the number of cores, core frequency, memory, and storage
in a single node environment is another promising direction. There are similar
studies done over cluster-based environments. Combined with the existing stud-
ies on cluster-based configurations, these results can be used by practitioners
to compare the query resource requirements and processing methodology in a
single vs. multi-node configuration, and thus understand the impact of these dif-
ferent architectures on the performance of big data workloads. Also, it would be
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important to identify optimal platform configuration settings since the current
configuration may have been overconfigured for the scale factors considered in
this study. Another interesting direction would be to expand analysis to address
multiple concurrent streams. Richins et al. [23] have done a comprehensive anal-
ysis using BigBench on a cluster-based configuration. The authors have identified
thread level parallelism as a major bottleneck. It would be worthwhile to investi-
gate if similar behaviour shows up on single-node setup as well and drive further
analysis based on the results.
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Appendix

In this section we present two BigBench queries (10, 20) to highlight SQL Server
capabilities towards implementing queries that use machine learning algorithms
and third-party libraries such as Java. Query 10 is a sentiment analysis query
that uses java libraries and query 20 employs a k-means clustering algorithm in
machine learning. While we used SQL Server* CTP 2.4 version for our experi-
ments, the code shown here is based on the latest CTP 3.0 version to highlight
the latest feature implementations supported by Microsoft at the time of writing
of this paper [40].

Query 10 - Using Java based libraries and user code

/*

Query description

For all products, extract sentences from its product reviews that

contain positive or negative sentiment and display for each item the

sentiment polarity of the extracted sentences (POS OR NEG) and the

sentence and word in sentence leading to this classification*/

CREATE OR ALTER PROCEDURE [dbo].[query10] @param1 nvarchar(20), @param2

nvarchar(15) , @param3 bigint, @param4 nvarchar(50), @param5

nvarchar(20), @query nvarchar(400)

AS

BEGIN

-- Saving query results in a table

drop table if exists Q10Results;

Create table Q10Results
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(

itemid bigint

,sentence varchar(4000)

,sentiment varchar(3)

,token varchar(20)

)

--The method invoked in the Java code is always the "execute" method

EXEC sp_execute_external_script

@language = N’Java’

, @script = N’Query10.SentimentAnalysis’

, @input_data_1 = @query

, @params = N’@tablename nvarchar(20), @serverInstanceName nvarchar(15)

, @port bigint, @modelsParentFolder nvarchar(50), @databaseName

nvarchar(20)’

, @tablename = @param1

, @serverInstanceName = @param2

, @port= @param3

, @modelsParentFolder= @param4

, @databaseName= @param5

with result sets ((itemsk bigint, sentence varchar(4000), sentiment

varchar(3), word varchar(20)));

END

GO

--Now execute the above stored procedure and provide the input

parameters and an input query

EXECUTE [dbo].[query10] N’Q10Results’, N’SQL2019CTP3’, 11212,

N’C:\NLPSQLCTP25’, N’TPCxBB_1GB_2019’, N’SELECT pr_item_sk,

pr_review_content FROM product_reviews option(maxdop 20)’

GO

END

Query 20 - Using machine learning k-means algorithm

DROP PROCEDURE IF EXISTS [q20_create_customer_return_clusters]

GO

CREATE PROCEDURE [dbo].[q20_create_customer_return_clusters]

AS

/*

This procedure uses R to classify customers into different groups based

on their purchase & return history.

Query description

Customer segmentation for return analysis: Customers are separated along

the following dimensions: return frequency, return order ratio

(total number of orders partially or fully returned versus the total

number of orders), return item ratio (total number of items returned

versus the number of items purchased), return amount ration (total

monetary amount of items returned versus the amount purchased),
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return order ratio. Consider the store returns during a given year

for the computation. */

BEGIN

DECLARE @model_generation_duration float

, @predict_duration float

, @instance_name nvarchar(100) = @@SERVERNAME

, @database_name nvarchar(128) = DB_NAME()

-- Input query to geenerate the purchase history & return metrics

, @input_query nvarchar(max) = N’

SELECT

ss_customer_sk AS customer,

ROUND(COALESCE(returns_count / NULLIF(1.0*orders_count, 0), 0), 7) AS

orderRatio,

ROUND(COALESCE(returns_items / NULLIF(1.0*orders_items, 0), 0), 7) AS

itemsRatio,

ROUND(COALESCE(returns_money / NULLIF(1.0*orders_money, 0), 0), 7) AS

monetaryRatio,

COALESCE(returns_count, 0) AS frequency

FROM

(

SELECT

ss_customer_sk,

-- return order ratio

COUNT_BIG(DISTINCT ss_ticket_number) AS orders_count,

-- return ss_item_sk ratio

COUNT_BIG(ss_item_sk) AS orders_items,

-- return monetary amount ratio

SUM( ss_net_paid ) AS orders_money

FROM store_sales s

GROUP BY ss_customer_sk

) orders

LEFT OUTER JOIN

(

SELECT

sr_customer_sk,

-- return order ratio

COUNT_BIG(DISTINCT sr_ticket_number) as returns_count,

-- return ss_item_sk ratio

COUNT_BIG(sr_item_sk) as returns_items,

-- return monetary amount ratio

SUM( sr_return_amt ) AS returns_money

FROM store_returns

GROUP BY sr_customer_sk

) returned ON ss_customer_sk=sr_customer_sk

’

EXECUTE sp_execute_external_script

@language = N’R’
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, @script = N’

# Define the connection string

connStr <- paste("Driver=SQL Server;Server=", instance_name,

";Database=", database_name, ";Trusted_Connection=true;", sep="");

cc <- RxInSqlServer(connectionString=connStr)

rxSetComputeContext(cc)

customer_returns <- RxSqlServerData(sqlQuery = input_query, colClasses =

c(customer = "numeric", orderRatio = "numeric",

itemsRatio = "numeric", monetaryRatio =

"numeric", frequency =

"numeric"),connectionString =

connStr);

# Output table to hold the customer group mappings

return_cluster = RxSqlServerData(table = "customer_return_clusters",

connectionString = connStr);

# set.seed for random number generator for predictability

set.seed(10);

# generate clusters using rxKmeans and output key / cluster to a table

model_generation_duration <- system.time(clust <- rxKmeans( ~ orderRatio

+ itemsRatio + monetaryRatio + frequency, customer_returns,

numClusters = 10

, outFile = return_cluster, outColName = "cluster",

extraVarsToWrite = c("customer"), overwrite =

TRUE))[3];

’

, @input_data_1 = N’’

, @params = N’@instance_name nvarchar(100), @database_name

nvarchar(128),@input_query nvarchar(max),

@model_generation_duration float OUTPUT’

, @instance_name = @instance_name

, @database_name = @database_name

, @input_query=@input_query

, @model_generation_duration = @model_generation_duration OUTPUT;

PRINT CONCAT(N’Model generation time: ’, @model_generation_duration,

’ seconds.’);

END

GO

exec [dbo].[q20_create_customer_return_clusters]
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