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Preface

The Transaction Processing Performance Council (TPC) is a non-profit organization
established in August 1988. Over the years, the TPC has had a significant impact on the
computing industry’s use of industry-standard benchmarks. Vendors use TPC bench-
marks to illustrate performance competitiveness for their existing products, and to
improve and monitor the performance of their products under development. Many
buyers use TPC benchmark results as points of comparison when purchasing new
computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement, and characterization of complex systems. The TPC remains committed
to developing new benchmark standards to keep pace with these rapid changes in
technology. One vehicle for achieving this objective is the TPC’s sponsorship of the
Technology Conference Series on Performance Evaluation and Benchmarking
(TPCTC) established in 2009. With this conference series, the TPC encourages
researchers and industry experts to present and debate novel ideas and methodologies
in performance evaluation, measurement, and characterization.

This book contains the proceedings of the 11th TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2019), held in conjunction with
the 44th International Conference on Very Large Data Bases (VLDB 2019) in Los
Angles, USA, during August 26–29, 2019.

The hard work and close cooperation of a number of people have contributed to the
success of this conference. We would like to thank the members of TPC and the
organizers of VLDB 2019 for their sponsorship; the members of the Program Com-
mittee and Publicity Committee for their support; and the authors and the participants
who are the primary reason for the success of this conference.

June 2020 Raghunath Nambiar
Meikel Poess
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Benchmarking Elastic Cloud Big Data
Services Under SLA Constraints

Nicolas Poggi1,2(B), Vı́ctor Cuevas-Vicentt́ın1, Josep Lluis Berral1,2,
Thomas Fenech1, Gonzalo Gómez1, Davide Brini1, Alejandro Montero1,

David Carrera1,2, Umar Farooq Minhas3, Jose A. Blakeley3,
Donald Kossmann3, Raghu Ramakrishnan3, and Clemens Szyperski3

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{nicolas.poggi,victor.cuevas,josep.berral,thomas.fenech,gonzalo.gomez,

davide.brini,alejandro.montero,david.carrera}@bsc.es
2 Universitat Poliècnica de Catlalunya (UPC - BarcelonaTech), Barcelona, Spain

3 Microsoft Corporation, Microsoft Research (MSR), Redmond, USA
{ufminhas,joseb,donaldk,raghu,clemens}@microsoft.com

Abstract. We introduce an extension for TPC benchmarks address-
ing the requirements of big data processing in cloud environments. We
characterize it as the Elasticity Test and evaluate under TPCx-BB (Big-
Bench). First, the Elasticity Test incorporates an approach to generate
real-world query submissions patterns with distinct data scale factors
based on major industrial cluster logs. Second, a new metric is intro-
duced based on Service Level Agreements (SLAs) that takes the quality
of service requirements of each query under consideration.

Experiments with Apache Hive and Spark on the cloud platforms of
three major vendors validate our approach by comparing to the cur-
rent TPCx-BB metric. Results show how systems who fail to meet SLAs
under concurrency due to queuing or degraded performance negatively
affect the new metric. On the other hand, elastic systems meet a higher
percentage of SLAs and thus are rewarded in the new metric. Such sys-
tems have the ability to scale up and down compute workers according
to the demands of a varying workload and can thus save dollar costs.

Keywords: Benchmarking · Big data · Databases · Cloud · SLA · QoS

1 Introduction

BigBench [1] was standardized by the Transaction Processing Performance Coun-
cil (TPC) as TPCx-BB. It is the first reference and implemented benchmark for
Big Data Analytics. BigBench addresses important aspects in Big Data such
as variety (considering structured and semi-structured data), volume (through
large and varying scale factors), and velocity (through a policy of interspersing
inserts, deletes, and updates with query streams).

N. Poggi—Contribution while at the BSC-MSR Centre, currently at Databricks Inc.

c© Springer Nature Switzerland AG 2020
R. Nambiar and M. Poess (Eds.): TPCTC 2019, LNCS 12257, pp. 1–18, 2020.
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However, BigBench does not fully address some of the aspects relevant to data
analytics services operating in cloud infrastructures. For instance, the benchmark
runs for a single database size tied to a scale factor, while in real-life, we can
expect queries processing varying amounts of data at the same time. Further-
more, in BigBench queries are run in n concurrent streams (where n is defined
by the user), while the sequence of queries to be executed for each particular
stream is specified in a placement table. Thus, the system load is constant in
terms of the number of queries under execution e.g., queries start only when the
previous from the stream has finished and do not queue in the system.

Such an approach is adequate to replicate a homogeneous workload with
aggregate performance considerations. It is inappropriate, however, when the
workload is expected to vary with time in response to real user demands, and
when users can have specific performance or isolation expectations for each query
i.e., for batch, interactive, and streaming queries. Moreover, elastic services such
of a database or query as-a-service (DBaaS or QaaS) provide the ability to scale
up or down compute resources to either process more rapidly or to save costs
i.e., in periods of low intensity. We address these problems by introducing a
new test, which we call the Elasticity Test and incorporating it into the existing
TPCx-BB benchmark. We test the approach in TPCx-BB here, while the test
could be applied directly to other TPC benchmarks, in particular, TPC-DS and
TPC-H.

Our extension is built from three main components. First, we design and
implement a workload generation approach that produces workloads that are
more representative of what we can expect in a highly dynamic environment
such as the cloud (Sect. 2). Second, we implement a driver capable of executing
such workloads. Third, we propose a new benchmark metric based on Service
Level Agreements (SLAs) (Sect. 3), which enables to measure the compliance
with the performance expectations of the user and thus the quality of service
(QoS) of the system under test.

In Sects. 4 and 5, we present and analyze the results of experiments that
use our extended TPCx-BB benchmark to evaluative Apache Hive and Spark
running on three major cloud platforms. Subsequently, we present related work
and the conclusions.

2 Workload Characterization and Generation

2.1 Analyzing Cloud Services Workloads

We present how we generate realistic workloads based on the analysis of data
obtained from a real-world production cluster, the Cosmos cluster [4] operated
at Microsoft. The dataset analyzed consists of about 350,000 job submissions
sampled from the period between January 2 to February 9, 2017.

Modeling the Arrival Rate. To implement a benchmark that reflects the
workloads that real-world Big Data computing infrastructures face, a funda-
mental aspect is to understand the arrival rates of jobs, i.e. the number of jobs
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that arrive for each unit of time, and to model it adequately. With this purpose
in mind, we analyzed the job submissions in the Cosmos sample dataset.

Identifiable trends in the arrival rate of jobs, such as peaks in usage during
working hours and a decline in activity on the weekends, led us to conclude
that the periodicity and variability of the job submission rate cannot be cap-
tured through a simple approach. For instance, if we were to define a single
cumulative distribution function (CDF), this CDF would conflate all of the data
irrespective of the particular patterns observed. Instead we need to adopt a more
sophisticated approach capable of temporal pattern recognition.

A technique capable of modeling temporal patterns in the arrival rate is
Hidden Markov Models (HMMs). A HMM enables us to take into account the
transition between busy and quiet periods. In practice, the arrival rate varies
continuously, but it can be modeled using a series of n discrete levels associated
with states. At a given point in time, the arrival rate is represented by a series of
parameters, describing the probability of being in each level (1 to n), along with
the probabilities of transitioning to each of the other levels. In our case, we found
that a model consisting of four levels was sufficient to capture the fluctuations
in activity over the period in the dataset.

Once the model has been trained with the reference data, it can be used to
produce a synthetic randomized sequence of job arrivals, which possesses similar
statistical characteristics to the reference data. The generated arrival sequence
can then be scaled in terms of the range of arrival rates and the period, which
makes the model a useful part of a realistic workload simulator. The output
model is expected to have periods of a high number of job submissions (peaks),
as well as periods of low (valleys) or even no submissions where the system might
be idle.

To validate the capability of the model to produce an arrival rate whose prop-
erties match those of the reference dataset, but adding variability and avoiding
being fully deterministic, we can generate synthetic sequences of job submis-
sions and then compare their distributions. Example synthetic distributions of
arrival rates are shown in Fig. 1. Kernel density estimation (KDE) is used to
approximate the distribution of each data series. These data series correspond
to the generated job arrival data with the original states and with newly gener-
ated states (a distinction explained below). KDE is a non-parametric technique
to estimate probability density functions that yields a result closely related to
histograms, hence it is an adequate technique to perform this comparison. The
lines are close to one another but not equal, indicating a close match between
the sequences generated and a degree of non-determinism.

The aforementioned HMM is encapsulated in a script that receives the fol-
lowing parameters: dataset, max jobs, minutes/hours, keep the original state
sequence. The dataset parameter corresponds in our experiments to the Cosmos
dataset. The max jobs parameter denotes the maximum number of jobs that
can be generated for each time unit, which in turn is defined to be in seconds
(or fractions of a second) by the third parameter. A sequence of states has to
be generated by the algorithm to produce the HMM, this same sequence can
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Fig. 1. Comparison between two arrival rate sequences generated by the model.

then be used to produce the output data, or alternatively, a new sequence can
be generated. This is specified by the last parameter that takes a boolean value.

Input Data Size. Another fundamental aspect of modeling a realistic workload
is the complexity of the submitted jobs. In this paper we address data complexity,
related to the size of the database; whereas query type or complexity, related to
the query expression, forms part of future work.

We investigated the presence of temporal and periodic effects on the size of
the job input data sizes, which can occur in particular cases. For example, we can
expect that some users will prefer to run numerous short jobs during business
hours followed by a few data-intensive jobs during the night shift. However, we
did not find evidence that such a pattern holds across all of the data. Therefore,
while the job arrival rate varies significantly, as stated earlier, the distribution of
the corresponding input data sizes is not subject to similar temporal patterns.
Consequently, we take an aggregate view of job input data sizes. For benchmark-
ing, the effects of our analysis are reflected only on the scale factors that the
BigBench queries are subject to.

We present the cumulative distribution function for the input data sizes of
the sampled Cosmos dataset in Fig. 2; it is a discrete CDF with the data sizes
axis expressed in log scale and with data points corresponding to the usual units
of measuring data. The size of the input data varies from a few bytes to up to
near a petabyte. Almost 60% of the jobs have less than 1 GB of data as input
and very few more than 10 TB. Recall that we are dealing with sampled data,
so such outliers may not be representative of the full dataset.

From the CDF we can generate random variates representing the input data
sizes of the jobs in the workload simulation. The generated input data sizes are
then matched to scale factors in the BigBench database. We consider only a few
representative scale factors in factors of 10 i.e., 1 GB, 100 GB, 1 TB, 10 TB.
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Fig. 2. CDF of the input data sizes of the jobs in the Cosmos sample dataset.

We next show how our model derived from the analysis of the Cosmos dataset
enables us to generate a workload suitable for our BigBench extension, experi-
mental results for this workload are presented in Sect. 4.

2.2 Workload Generation for Cloud Services

Our goal for the Elasticity Test is to create a realistic workload that can be
integrated with existing TPC metrics. We explain this integration to TPCx-BB
in Sect. 3, although the Elasticity Test can also be run in stand-alone manner.
With that goal in mind, we adapted the notion of streams employed in TPC
benchmarks, where for a given number of streams n, one instance of each query
appears in the stream. Thus, the number of streams defines the total number of
queries in the workload, namely, n times the number of different queries in the
benchmark.

Once the total number of queries in the workload is defined, these are assigned
randomly to time-slots (batches) whose size is determined by the HMM, subject
to a maximum n − 1 streams. Setting the maximum limit to n − 1 makes the
Elasticity Test compatible with the Throughput Test, as it is expected that n is a
user-defined threshold where the system is expected to complete all the queries.
Also, it prevents introducing a new parameter into the benchmark, simplifying
adoption. Repetition of queries is not allowed within a single batch but can
occur among different batches. The query batches can be viewed as the static
specification of the workload, which is then made dynamic during execution by
a batch interval, λbatch, optionally defined by the user and that determines the
time interval between the submissions of each batch of queries (defaults to 60 s.).
Having a smaller value of λbatch means that the driver will submit the batches
faster i.e., put more load on the System Under Test (SUT), while a larger value
results in longer waiting times between query batches. Having a lower interval
could produce lower test times to improve the final score if the system is able to
run the queries without SLA-penalties.

For the experiments, as we increase the data scale factor from 1 TB to 10 TB,
to compensate for the corresponding increase in system load, the number of
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streams is lowered. Specifically, we use: from n = 4 at 1 TB we lower the number
of streams to n = 2 at 10 TB. We also increase the batch interval λbatch, to
account for the higher time taken to complete queries for larger data sizes as the
systems failed to meet the SLAs with lower values.

At 1 TB, the above parameters result in the workload presented in Fig. 3
(left). The blue line on the chart (left axis) shows the total number of queries
that have been submitted to the system. The green impulses (right axis) show
the size of each batch of jobs, up to a maximum of 3 (always less than or equal
to n = 4). The sizes of the batches increase at around half of the timeline,
implying that a statically-provisioned system with sufficient capacity to handle
the maximum batch size is over-provisioned for the first part of the test, so the
total cost of the execution may be higher than that of an elastic system.
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Fig. 3. Workloads for the 1 TB (left) and 10 TB (right) scale factors.

For the workload in Fig. 3 (left) we consider only the 14 SQL queries from
BigBench, which means that the total number of queries is n · M = 56, reached
at the top right corner of the graph. We note that although in this workload
all of the queries that form part of a batch arrive at the same time, our driver
provides the option of evenly distributing the queries of every individual batch
across their corresponding batch interval. In that case, we would observe much
lower green lines (of height 1, in fact), but there would be a much higher number
of them in the chart.

Figure 3 (right) depicts the workload for the 10 TB scale factor. With the
number of streams being reduced to n = 2, the only possible batch sizes are 0,
1 and 2. The batch interval λbatch is 240 s and the total number of queries is 28.
Note that some batches have zero queries, representing the low-workload periods
that occur in systems like Cosmos.

For dynamic workloads as exemplified above, it is highly desirable to measure
not only the query execution times, but also how well these execution times meet
the user requirements, particularly when the system is subject to higher loads.
For this purpose, we introduce in the next section a SLA-aware performance
metric.
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3 New SLA-Aware Metric for Big Data Systems

A shortcoming of the current TPCx-BB specification is that the quality of service
(QoS) per query is not measured. This means that a system can achieve a high
score by completing parts of the execution quickly while neglecting others. In a
real-world business use case, workloads have deadlines and an expected QoS, so
a system operating at scale must be able to maintain a reasonable response time
for individual queries.

In this section, we present a new Elasticity Metric to be incorporated into
TPCx-BB, which assesses the ability of a system to deliver a consistent quality
of service at a per-query level. The metric is based on the concept of each query
having a completion deadline, i.e., a Service Level Agreement (SLA). We define a
per-query SLA, and to achieve the maximum score, the system must execute each
query within its SLA. The system is penalized for the number of queries that fail
to meet their SLA, and by how much time the deadline was missed. Recall that
in the Elasticity Test, we submit queries to the system according to fluctuating
batch arrivals, generated using the HMM model presented in Sect. 2.1, which
can produce a queuing effect where more queries are running concurrently than
in the previous Throughput Test.

We begin this section by giving a brief overview of the performance metric
used in TPCx-BB. We then describe how to calculate the score corresponding
to our proposed metric. Finally, we conclude this section by proposing a means
of integrating the Elasticity Test into the TPCx-BB.

Existing Performance Metric. We first revisit the existing formula used to
calculate the score in TPCx-BB. The overall Performance Metric is defined as

BBQpm@SF =
SF · 60 · M

TLD + 2
√

TPT · TTT

(1)

The three variables TLD, TPT and TTT are derived, as described below, from
the time taken to run the Load Test, Power Test, and Throughput Test, respec-
tively. SF is the scale factor and M is the total number of queries in the bench-
mark. The Performance Metric is designed to represent the number of queries
per minute that a system can execute, which decreases as the various test times
increase. The square root of TPT · TTT is the geometric mean of the two val-
ues, which is more suitable than the more commonly-used arithmetic mean, in
situations where values are associated with different scales.

The Load Test measures the time taken to prepare the data for the bench-
mark. The details of this test vary, depending on the SUT, but the total time
TLoad is multiplied by a constant factor of 0.1 to reduce the weight of this score,
i.e.,

TLD = 0.1 · TLoad (2)
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The Power Test measures the raw performance of the system, running the
full suite of queries serially. It is calculated as follows

TPT = M · M

√
√
√
√

M∏

i=1

ti (3)

where ti is the time taken to execute query i, measured in seconds.
The Throughput Test measures the ability of the system to execute multiple

streams in parallel, defined as

TTT =
1
n

· TTput (4)

where n is the total number of streams, chosen by the user, and TTput is the
elapsed time between the start of the Throughput Test and the completion of
all streams, measured in seconds.

New Performance Metric. Complementing the existing TLD, TPT and TTT ,
we introduce a new performance metric, TET , which is defined as

TET = λbatch · ΔSLA · ρSLA · Tel (5)

Each of the terms is described below. In all cases, n refers to the maximum
level of concurrency during the test. By default, the value of n used in the
Elasticity Test will be the same as the total number of streams used in the
Throughput Test. The number of streams is used to reduce the number of user-
defined parameters in the new test, also due to n usually corresponding to the
maximum concurrency of the SUT and scale factor intended by the user. Again,
M is the number of queries in the benchmark.

– λbatch is the time interval between job batch submissions. This is the only
additional optional parameter for the user. Defaults to 60 s.

– ΔSLA is the SLA distance, which is the average failure ratio of queries that
do not complete within their SLA, and is defined as

ΔSLA =
1

n · M
· max

(

1,

n·M∑

i=1

max

(

0,
ti − SLAQ(i)

SLAQ(i)

))

(6)

where ti is the time taken to run query i from the schedule and SLAQ(i) is the
SLA for query i. The inner max ensures that queries which complete within
their SLA do not contribute to the sum. The outer max means that when all
queries pass their SLA, ΔSLA = 1.

– ρSLA is the SLA factor, which is defined as

ρSLA =
1

n · M
· max

(

1,
Nfail

0.25

)

(7)
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where Nfail is the number of queries that fail to meet their SLA. ρSLA < 1
when under 25% of the queries fail their SLAs, which reduces (improves) the
value of the metric TET . Conversely, failing more than 25% of the queries
results in ρSLA > 1, which has a negative impact on TET . As in the definition
of ΔSLA, a max is applied to prevent ρSLA from reaching zero, limiting the
minimum value to 1/(n · M).

– Tel is the total elapsed time of the Elasticity Test.

The score from the Elasticity Test is incorporated into the existing TPCx-BB
formula as follows

BB + +Qpm@SF =
SF · 60 · M

TLD + 3
√

TPT · TTT · TET

(8)

That is, the geometric mean is extended to include the score from the Elas-
ticity Test. Since the range of scores in the Power Test, the Throughput Test,
and the Elasticity Test are all different, scores obtained using this new metric
cannot be compared directly with older results. However, it is possible to calcu-
late the new metric using the existing Load Test, Power Test and Throughput
Test results, provided that the Elasticity Test is run with the same number of
streams n. The next section presents experiments in which we apply this new
metric.

4 Experimental Evaluation

We now present the results of executing the workloads derived from our model
based on the analysis of the Cosmos dataset and evaluated by our SLA-based
metric. As discussed in Sect. 3, the computation of our benchmark score requires,
in addition to the Elasticity Test metrics, also the metrics of the current Big-
Bench tests; namely for the Data Loading, the Power, and the Throughput tests.
We present the results of our experiments in regards to each of these next. Due
to failures and scalability problems of the non-SQL queries, all the presented
experiments were limited to the 14 SQL-only queries.

The SUTs considered are Apache Hive and Apache Spark running on three
major cloud providers. We avoid identifying the particular providers and refer
to them only through pseudonyms: ProvA, ProvB, and ProvC. On the three
providers, Hive was either version 2.2 or 2.3 and Spark with 2.1 or 2.2.

We considered 1 TB and 10 TB scale factors, although not all configurations
for the latter. In some cases, failures at a particular test prevent us from pre-
senting the corresponding test scores and also to compute the global metrics.
The configurations of the different SUTs were defined in such a way that they
include 32 worker nodes, with 16 virtual cores (512-vcpus in total), and 64 GB
of RAM each (2 TB total).
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4.1 Data Loading Test

We present the measured loading times for the 1 TB scale factor in Fig. 4 (left).
Hive outperforms Spark in ProvA and ProvB, but the opposite is true for ProvC.
Also, ProvB and ProvC achieve lower loading times than ProvA. We note that
for Hive and Spark the data were stored using the ORC columnar storage format.
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Fig. 4. Data loading times for the 1 TB (left) and 10 TB (right) scale factors.

The second scale factor that we considered is 10 TB, which involved only
some of the SUTs and whose results are illustrated in Fig. 4 (right). The data
loaded is used for both Hive and Spark. The lowest load time overall corresponds
to Hive on ProvB, followed by Spark on ProvC, whose value is close to the results
of ProvA.

4.2 Elasticity Test

An extension of the TPCx-BB driver was required to execute the Elasticity Test.
The structure of the driver we implemented enables the execution of queries by
independent threads and at various data sizes within the same run. Additionally,
it facilitates incorporating new data engines, since the functionality to interoper-
ate with a given engine is encapsulated in a wrapper that adopts a standardized
interface.

We now present the experiments that we carried out with the workloads
described in Sect. 2.2 and limiting the TPCx-BB query set to the SQL queries
only. For each run, we produce a chart that shows for the individual queries in
the Elasticity Test, which of them satisfied their corresponding SLA and which
ones violated it. In turn, the SLAs were defined by averaging the running times
of a given query at the Power Test (thus, in isolation) for each system and adding
a 25% percent margin. We present next results for the 1 TB and 10 TB scale
factors.

For the 1 TB scale factor, we limit the number of query streams to 4, resulting
in a total of 56 queries (14× 4). The time interval between each batch of queries
was set to 120 s. In relation to execution times and SLA satisfaction, Fig. 5



Benchmarking Elastic Cloud Big Data Services 11

shows the behavior of the different SUTs. Hive on ProvA reflects a relatively
poor performance by a significant proportion of SLA violations. Concretely, the
result for ProvA Hive is 71% SLA violations. The results are slightly worse for
Hive on ProvB, for which 80% of the SLAs are violated. In both cases, the fact
that execution times increase as the test progresses indicates that a significant
backlog of queries is built as shown in Hive charts at 1 TB in Fig. 5.

In contrast, in the Spark results no SLAs were violated on any of the plat-
forms. Furthermore, through the execution significant slack is left after the query
is completed, as indicated by the gray areas in the charts. Similar execution times
at the beginning and end of the test also indicate that a query backlog is not
formed.

The largest data sizes considered in our experiments correspond to the 10 TB
scale factor. Taking the smaller 1 TB scale factor as its precedent, the number
of streams is now reduced from 4 to 2, resulting in a total of 28 (14 ∗ 2) queries.
The time between batches is doubled from 120 to 240 s as the cluster are not
scaled with the increased data size. The workload generated for these experi-
ments has the peculiarity that some batches have zero queries to be submitted,
as depicted in Fig. 6.

The experiments for only two of the SUTs considered completed successfully:
Hive and Spark on ProvA; the result charts for these systems are presented in
Fig. 6, respectively. Spark violated the SLAs of only 3 queries, which represent
11% of the total in this experiment. Furthermore, these violations were not severe
in terms of the additional time required to complete the queries, consequently,
the SLA distance value for the run is low at 0.04. Hive missed the SLAs for 39%
of the queries, 11 out of the 28 queries, to be exact. The SLA distance is 0.28
for Hive, due to many queries requiring significant time to complete.

4.3 Power Test

We now present the summarized results of the TPCx-BB Power Test for the 1
TB, and 10 TB scale factors. Recall that the Power Test involves the consecutive
execution of each of the queries in the specified list, in their sequential order.
Thus, there is no concurrency, making this test useful to determine how efficient
a system is to evaluate a particular query.

Figure 7 (left) presents the results for the 1 TB scale factor. A noteworthy
observation is that the performance of Spark surpasses that of Hive for ProvB
and ProvC, while ProvA exhibits the opposite result. The best performance
corresponds to Spark on ProvB, while Hive on ProvC shows the poorest perfor-
mance.

The results for the 10 TB scale factor are illustrated in Fig. 7 (right). The best
results correspond again to Spark but his time for ProvA. Hive on ProvA obtains
the second-best results. Hive on ProvB shows a slightly poorer performance than
Hive on ProvA. Finally, Spark on ProvC shows the poorest performance.
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(a) ProvA Hive 1 TB (b) ProvB Hive 1TB

(c) ProvA Spark 1 TB (d) ProvB Spark 1 TB

Fig. 5. Elasticity Test results at 1 TB of Hive and Spark of 56 total queries. Queries
in red have missed the SLA.
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4.4 Throughput Test

We next present the results of the TPCx-BB Throughput Test. This test con-
sists of issuing queries through a series of streams. The queries of a particular
stream have to be completed serially, and according to an order established
in the benchmark. Thus, in contrast with the Elasticity Test, the number of
streams bounds the overall concurrency. Again, the 1TB and 10TB scale factors
were used in these experiments, which were also limited to the 14 SQL queries.
In the following charts, the times given correspond to the metric discussed in
Sect. 3. Essentially, this metric is calculated by taking the time to complete the
Throughput Test and dividing it by the number of streams.

The results for the 1 TB scale factor Throughput Test are presented in Fig. 8
(left). The test used four query streams at this scale factor. Spark showed ade-
quate performance, clearly surpassing Hive for all providers. Particularly, the
results Spark obtains with ProvB and ProvC represent the best among the SUTs;
Spark with ProvA shows a completion time that is not much larger.

We present the results for the 10 TB scale factor in Fig. 8 (right), which
consisted of two query streams. Spark shows again the best performance, with
ProvB beating ProvA. In the case of Hive, the system relying on ProvA shows a
better performance than that on ProvB, but both lag behind the Spark systems.

Based on the results of these tests, in the next section, we derive full bench-
mark metrics and also examine the corresponding costs.

(a) ProvA Hive 10 TB (b) ProvA Spark 10 TB

Fig. 6. Elasticity Test results at 10 TB for ProvA Hive and Spark of 28 total queries.
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Fig. 7. Power Test times for the 1 TB (left) and 10 TB (right) scale factors.

5 Results Analysis

In this section, we present the final performance scores for each system. We
compare the result of the original TPCx-BB metric with the score obtained
using the Elasticity Test introduced in Sect. 3. As in the TPCx-BB specification,
we also consider the Price/Performance Metric, which is obtained by dividing the
total cost of executing the benchmark by the performance metric. However, we
present results based only of relative costs, since as stated earlier the providers
are not identified and additionally, costs have exhibited a downward trend that
makes the exact amounts less relevant.

5.1 BBQ++ Metric

In Fig. 9 (left) we present the results obtained using our new BB++Qpm metric
at 1 TB, alongside with the original BBQpm score. We emphasize that the two
values are not directly comparable and that the purpose of presenting them side
by side is to see how the differences between systems and potentially the rankings
change as a result of introducing the Elasticity Test. We can see that Spark on
all providers achieves significantly higher scores than Hive at this scale factor,
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Fig. 8. Throughput Test times for the 1 TB (left) and 10 TB (right) scale factors.
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once elasticity is considered. Furthermore, for Hive we witness an enormous drop
in performance for the new metric.
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Fig. 9. BB++Qpm and BBQpm scores for the 1 TB (left) and 10 TB (right) scale
factors.

In Fig. 9 (right) we show the results at 10 TB. Hive struggled to meet the
SLAs at this data scale. On the other hand, Spark on ProvA obtained a much
better score because of its score in the Elasticity Test.

5.2 Costs

Fig. 10. Total BigBench times and relative costs at 1 TB.
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For our cost analysis, the benchmark execution is broken down into separate
parts, the times of the individual tests of the benchmark are then added up to
obtain the total time, then a total cost is calculated as a function of the total
time. The cost calculation depends on the characteristics of each system. Since,
as stated earlier, we present only relative costs, a cost of $100 represents the
maximum actual cost among the SUTs.

At the 1 TB scale factor, we obtain the costs presented in Fig. 10. The costs
of Spark are lower than those of Hive, with the ProvB and ProvC systems having
the lowest costs overall. We also observe that the Elasticity Test plays the most
significant role in determining the total execution time for most systems, with
Hive on ProvB being the exception.

At the 10 TB scale factor, we were able to generate complete results only for
Hive and Spark on ProvA. Due to space limitations, we omit a full time and cost
breakdown and report only the total relative costs. For Hive the total relative
cost was (as defined) $100, whereas it was $79 for Spark. Thus Spark turned out
to be about 21% cheaper than Hive.

5.3 Price/Performance Score
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Fig. 11. Relative price/performance.

In Fig. 11, we show the relative price/performance, computed as the total relative
cost of the benchmark execution in dollars, divided by the BB++Qpm perfor-
mance metric. Where available, results are shown at each of the scale factors
that were tested. On this chart, lower is better.

We observe that there is a significant range in the price/performance at 1 TB.
There is a large difference between Hive (worse) and Spark (better) on ProvA.
Overall at 1 TB, Spark dominates, achieving very low price/performance on all
providers. ProvA with Spark provides the best price/performance at 10 TB, the
difference with respect to Hive on ProvA is significant but not as large as for the
1 TB scale factor.



Benchmarking Elastic Cloud Big Data Services 17

6 Related Work

A methodology to measure the elasticity of cloud services under varying work-
loads is presented in [2], we adopt similar techniques but also integrate our
approach into a full benchmark. SLAs have been applied in many contexts.
For instance, their specification (through step-wise functions) and associated
optimization problems are addressed for Service Oriented Architectures in [5].
Those and other alternative methods to define SLAs could be incorporated into
our approach. Similar to our work, TPC-DS V2 is presented in [3], where the
authors extend TPC-DS to consider data integration and multiple user aspects.

7 Conclusions

The Elasticity Test takes into consideration dynamic workloads and QoS aspects
that are crucial in cloud environments i.e., fluctuating query submissions and
multiple scale factors. We evaluate this extension by experiments on the cloud
platforms of three major vendors and at two different scale factors, using two
popular open-source big data processing systems. The analysis of the results
of these experiments yields information of practical interest and validates our
approach.

In particular, experiments show how certain configurations of the systems
and platforms fail to meet SLAs under concurrency, scoring differently than the
current TPCx-BB metric and reflecting poor resource isolation or scheduling. In
contrast to the Throughput Test, which waits until a query finishes per concur-
rent stream to issue the next, our Elasticity Test summits queries following a
more realistic pattern. This fact creates either high-intensity periods or queues,
as well as low-intensity or even no new query arrivals. In this way testing more
system components i.e., the scheduler and workload manager. Modern elastic
services such of database or query as-a-service (DBaaS or QaaS) which can scale
up a down compute nodes can benefit by saving in costs in low insensitive peri-
ods while adding more resources to prevent missing query SLAs. We believe an
extension such as the Elasticity Test can complement current data TPC bench-
marks to evaluate cloud analytical services.
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Abstract. We propose the algorithms for performing multiway joins
using a new type of coarse grain reconfigurable hardware accelerator –
“Plasticine” – that, compared with other accelerators, emphasizes high
compute capability and high on-chip communication bandwidth. Joining
three or more relations in a single step, i.e. multiway join, is efficient when
the join of any two relations yields too large an intermediate relation. We
show at least 130x speedup for a sequence of binary hash joins execution
on Plasticine over CPU. We further show that in some realistic cases,
a Plasticine-like accelerator can make 3-way joins more efficient than a
cascade of binary hash joins on the same hardware, by a factor of up to
45X.

1 Motivation

Database joins involving more than two relations are at the core of many modern
analytics applications. Examples 1 and 2 demonstrate two scenarios that require
different types of joins involving three relations.

Example 1 (Linear 3-way join). Consider queries involving the Facebook
“friends” relation F . One possible query asks for a count of the “friends of
friends of friends” for each of the Facebook subscribers, perhaps to find people
with a lot of influence over others. There are approximately two billion Face-
book users, each with an average of 300 friends, so F has approximately 6×1011

tuples. Joining F with itself will result in a relation with approximately 1.8×1014

tuples.1 However, the output relation only involves 2 billion tuples, or 1/90000th
as much data.2 Thus, a three-way join of three copies of F might be more effi-
1 Technically, there will be duplicates, because if x is a friend of a friend of y, then there

will usually be more than one friend that is common to x and y. But eliminating
duplicates is itself an expensive operation. We assume duplicates are not eliminated.

2 There is a technical difficulty with answering this query using parallel processing:
we must take the union of large, overlapping sets, each produced at one processor.
We cannot avoid this union if we are to get an exact count of the number of friends
of friends of friends. However, we can get an asymptotically correct approximation
to the size of the union using a very small amount of data to represent each set. One
method to do so is the algorithm of Flajolet-Martin [7,16].
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cient, if we can limit the cost of the input data replication as we execute the
three-way join.

Example 2 (Cyclic 3-way join). Consider the problem of finding triangles in rela-
tion F . That is, we are looking for triples of people who are mutual friends. The
density of triangles in a community might be used to estimate its maturity or
its cohesiveness. There will be many fewer triangles than there are tuples in
the join of F with itself, so the output relation will be much smaller than the
intermediate binary joins.

Afrati and Ullman [3] showed that in some cases, a multiway join can be more
efficient than a cascade of binary joins, when implemented using MapReduce.
But multiway joins are superior only when the intermediate products (joins of
any two relations) are large compared to the required replication of the input
data at parallel workers, and the output is relatively small; that is the case in
each of the Examples 1 and 2. The limitation on the efficiency of any parallel
algorithm for multiway joins is the degree to which data must be replicated at
different processors and the available computing capacity. The performance ben-
efits of multiway joins over cascaded binary joins could be perceived on hardware
architectures facilitating cheap data replication.

Spatially reconfigurable architectures [24], such as Coarse-grained recon-
figurable architecture (CGRA), have gained traction in recent years as high-
throughput, low-latency, and energy-efficient accelerators. With static configu-
ration and explicitly managed scratchpads, reconfigurable accelerators dramat-
ically reduce energy and performance overhead introduced by dynamic instruc-
tion scheduling and cache hierarchy in CPUs and GPUs. In contrast to field-
programmable gate arrays (FPGAs), CGRAs are reconfigurable at word or
higher-level as opposed to bit-level. The decrease in flexibility in CGRA reduces
routing overhead and improves clock frequency, compute density, and energy-
efficiency compared to FPGAs.

Plasticine [20] is a recently proposed tile-based CGRA accelerator. As shown
in Fig. 1, Plasticine has a checkerboard layout of compute and memory units
connected with high bandwidth on-chip network. Plasticine-like architectures
offer several advantages to enable efficient multiway join acceleration. First, it
has peak 12.3 FLOPS throughput designed for compute-intensive applications,
like multiway join. Second, the high-bandwidth static network can efficiently
broadcast data to multiple destinations, which makes replication very efficient.

1.1 Contributions

In this paper, we study algorithms to efficiently perform multiway joins on
Plasticine-like accelerator. We show an advantage of such accelerators over CPU-
based implementation on a sequence of binary hash joins, and additional perfor-
mance improvement with 3-way joins over cascaded binary joins. Although we
describe the algorithms with Plasticine as a potential target, the algorithms can
also be mapped onto other reconfigurable hardware like FPGAs by overlaying
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Fig. 1. Plasticine-like coarse grain reconfigurable hardware accelerator.

Plasticine structure on top of the substrate architecture. The contributions of
the paper are summarized below.

– Algorithms and efficient implementations for both linear and cyclic 3-way join
operations for Plasticine-like accelerators. These algorithms are significantly
different from the algorithms of [3] for the MapReduce implementation of the
same joins.

– Analysis of the cost of running these algorithms in terms of the number of
tuples that are read onto an accelerator chip.

– Performance comparison of a sequence of binary hash-join implementation
on a Plasticine-like accelerator to state-of-the-art CPU hash-join on Post-
gres [21].

– Evaluation of the 3-way join algorithms compared to the cascaded binary
hash-join implementation on the same accelerator.

1.2 Simplifying Assumptions

In our analyses, we shall assume a uniform distribution of join-key values. This
assumption is unrealistic because there is typically skew, where some values
appear more frequently than others. Small amounts of skew can be handled
by leaving some components of the accelerator chip to handle “overflow” of
other components. However, large amounts of skew require a modification to the
algorithms along the lines of [19], which we do not cover in detail due to space
limitation.

The rest of this paper is organized as follows: Sect. 2 presents some back-
ground and related work. Sections 3 discuss the challenges for multiway join
algorithm implementation on Plasticine-like accelerator. Sections 4 and 5 present
our algorithms for linear and cyclic multiway joins respectively. Section 6 com-
pare the performance results of a sequence of binary hash joins on Plasticine-like
accelerator and CPU. Further, we also compare the performance of the acceler-
ated multiway join algorithms to an accelerated sequence of binary join approach
on Plasticine-like accelerator. Finally the paper concludes with the future work
in Sect. 7.
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2 Background and Related Work

This section provides a brief background and reviews relevant related work on
multiway join algorithms, hash-join acceleration, and spatially reconfigurable
architectures.

2.1 Multiway Joins

Efficient join algorithms are usually based on hashing [4]. Parallelism can be
exploited by the parallel processing of a tree of several binary joins [17], an
approach that is unsuitable for joins generating large intermediate relations, as
is the case for our two introductory examples. The focus of such approaches
has been to find optimal plans for parallel execution of binary joins. Henderson
et al. [12] presented a performance comparison of different types of multiway-join
structures to two-way (binary) join algorithm.

A leapfrog approach [23] has been used to join multiple relations simulta-
neously by parallel scanning of the relations that are sorted on the join key.
Aberger et al. [2] have accelerated the performance of leapfrog triejoin using
SIMD set intersections on CPU-based systems. The algorithm is sequential on
the number of join keys and requires the relations to be preprocessed into trie
data structures.

2.2 Hash-Join Acceleration

A hash-join algorithm on large relations involves three key operations - parti-
tioning of relations, hashing of the smaller relation into a memory (build phase)
followed by the probing of the second relation in the memory. Kara et al. [14]
present an efficient algorithm for partitioning relations using FPGA-based accel-
erator. Onur et al. [15] use on-chip accelerator for hash index lookup (probing)
to process multiple keys in parallel on a set of programmable ‘walker’ units for
hashing. Robert et al. [10,11] use FPGA for parallelizing hashing and collision
resolution in the building phase. Huang et al. [13] have explored the use of open
coherent accelerator processor interface (OpenCAPI)-attached FPGA to acceler-
ate 3-way multiway joins where the intermediate join of two relations is pipelined
with a partition phase and join with the third relation.

2.3 Spatially Reconfigurable Architectures

Spatially reconfigurable architectures are composed of reconfigurable compute
and memory blocks that are connected to each other using a programmable
interconnect. Such architectures are a promising compute substrate to perform
hardware acceleration, as they avoid the overheads in conventional processor
pipelines, while retaining the flexibility. Recent work has shown that some spa-
tially reconfigurable architectures achieve superior performance and energy effi-
ciency benefits over fine-grained alternatives such as FPGAs and conventional
CPUs [20].
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Several spatially reconfigurable architectures have been proposed in the past
for various domains. Architectures such as Dyser [9] and Garp [5] are tightly
coupled with a general purpose CPU. Others such as Piperench [8], Tartan [18],
and Plasticine [20] are more hierarchical with coarser-grained building blocks.
Plasticine-like accelerator is not limited to databases alone but can efficiently
accelerate multiway joins. Q100 [26] and Linqits [6] are accelerators specific to
databases.

3 Accelerating Multiway Joins

We present algorithms for accelerating both linear (R(AB) �� S(BC) �� T (CD))
and cyclic (R(AB) �� S(BC) �� T (CA)) multiway joins on a Plasticine-like
accelerator using hashing. There may be other attributes of relations R, S, and
T . These may be assumed to be carried along as we join tuples, but do not affect
the algorithms. Also, A, B, C, and D can each represent several columns of the
relations and by symmetry, assume that |R| ≤ |T |.

A naive approach to map the Afrati et al. [3] algorithm on Plasticine-like
architecture will be bottlenecked by DRAM bandwidth and limited by the size
of on-chip memory. The proposed multiway hash-join algorithms exploit the
pipeline and parallelism benefits in a Plasticine-like architecture to improve the
performance while eliminating the limitations mentioned above.

We partition one or more relations using hash functions, one for each of the
columns used for joining, such that the size of potentially matching partitions of
the three relations is less than or equal to the size of on-chip memory. The loading
of a partition of a relation from DRAM to on-chip memory is pipelined with the
processing of the previously loaded partition(s) on the accelerator. Further, to
squeeze more processing within the given on-chip memory budget, at least one
of the relations is streamed, unlike batch processing in Afrati et al. [3].

3.1 Notations

In what follows, we use |R| to represent the number of records of a relation R.
A relation R(AB)’s tuple is represented as r(a, b) and the column B’s values
is accessed as r.b. We use the name of hash functions–h, g, f , G, and H (or
hbkt, gbkt, fbkt, Gbkt, and Hbkt) in certain equations to stand for the number of
buckets produced by those functions. U is the number of distributed memory
and compute units, and we assume there is an equal number of each. M is the
total on-chip memory capacity.

4 Linear 3-Way Join

For the linear, three-way join R(AB) �� S(BC) �� T (CD), we partition the
relations at two levels in a particular way, using hash functions as shown in Fig. 2.
The relations are partitioned using robust hash functions [25] on the columns
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involved in the join, which, given our no-skew assumption, assures uniform sizes
for all partitions. We can first configure the accelerator to perform the needed
partitioning. Since all hash-join algorithms require a similar partitioning, we
shall not go into details regarding the implementation of this step.

Fig. 2. Partitioning of Relation R and S. Relation R is partitioned using radix hashing
on the first digit, H(B), to create subpartitions R1, R2, and R3. Each Ri is further
partitioned using radix hashing, h(B), on the second digit of B. S is partitioned using
radix hashing similar to R, on both the B and C columns.

The relations R and T are similar, each having one join column, while relation
S has two columns to join with relations R and T . The relative sizes of the
three relations affect our choice of algorithm. The largest relation should be
streamed to the accelerator to optimize the on-chip memory budget. When S
is largest, relations R and T must either be small enough to fit on the on-chip
memory (discussed in detail as a “star” 3-way join in Sect. 6) or they should
be partitioned, based on the values of attributes B or C, respectively, each of
them having L sub-partitions. Then each pair of sub-partitions is loaded on to
the accelerator iteratively and matched with the corresponding one of the L2

partition of the streamed relation S. In the case of larger R and T relations,
one of them is streamed and the other one is partitioned as discussed in detail
below.

4.1 Joining Relations on Plasticine-Like Accelerator

Consider the case where S is no larger than R or T . For the first level partitioning
of the relations R and S on attribute B, we choose a number of partitions for
the hash function H(B) so that a single partition of R (that is, the set of tuples
of R whose B-value hashes to that partition) will fit comfortably in one pattern
memory unit (PMU) of the Plasticine. The second level of partitioning serves two
purposes and involves two hash functions. First, we use hash function h(B) to
divide a single partition of R and S into U buckets each, one bucket per PMU.
We use hash function g(C) to divide C into a very large number of buckets.
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Algorithm 1: Pseudo-code for R(AB) �� S(BC) �� T (CD)
Data: Relations R(A,B), S(B,C) and T(C, D). Memory grid, MemGrid[], on

accelerator. Column B values hashed using H() and h(), and Column C
hashed using g(). #Rpart denotes the number of partitions of relation R

Result: Tuples from R, S and T joined on common values of B and C.
1 Ti ← Partition T(C,D) using hash function g(C) [#Tpart];
2 Sij ← Partition S(B,C) using hash function H(B) and g(C) (Sij partitions are

ordered first on H(B) and then on g(C) within each Si partition, [#Sipart]) ;
3 Ri ← Partition R(A,B)using hash function H(B) [#Rpart];
4 for Each partition Ri=H(B) of R till #Rpart do
5 for All records of Ri do
6 hb ← h(ri.b);
7 MemGrid[hb] ← ri(∗, b);

8 end
9 for Each partition Si=H(B) of S till #Spart do

10 for Each partition Sij=g(C) till #Sipart do
11 for All records of Sij do
12 hb ← h(sij .b);
13 MemGrid[hb] ← sij(b, c);

14 end
15 MemGrid[∗] ← tj(c, ∗) [broadcast or send to all Memory units

where Sij was sent];
16 Join tuple from Ri, Sij and Tj ;
17 Discard tuples from Sij and Tj ;

18 end

19 end
20 Discard tuples of Ri

21 end

Each partition of S is further partitioned into sub-partitions that correspond to
a single value of g(C). Each g(C) bucket of S’s partition may be organized by
increasing values of h(B) as shown in Fig. 2. Likewise, the entire relation T is
divided into buckets based on the value of g(C).

We shall describe what happens when we join a single partition of R, that
is, the set of tuples of R whose B-values have a fixed value H(B) = i, with the
corresponding partition of S (the set of tuples of S whose B-values also have
H(B) = i. Call these partitions Ri and Si, respectively.

1. Bring the entire partition of R onto the chip, storing each tuple r(a, b) in the
PMU for h(b).

2. For each bucket of g(C), bring each tuple s(b, c) from that bucket from Si

onto the chip and store it in the PMU for h(b).
3. Once the bucket from Si has been read onto the chip, read the corresponding

bucket of T – t(c, d) with the same hash value g(C) – onto the chip. Since
tuple t(c, d) can join with tuple r(a, b) and s(b, c) having any value of B, we
must route each t(c, d) tuple to every PMU.
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4. Once the buckets with a given value g(C) have arrived, PCUs joins the three
tiny relations at each PMU using optimized cascaded binary joins. Recall we
assume the result of this join is small because some aggregation of the result
is done, as discussed in Example 1. Thus, the amount of memory needed to
compute the join at a single memory is small.3

The formal representation of the algorithm is presented in Algorithm 1.

4.2 Analysis of the Linear 3-Way Join

Each tuple of R and S is read onto an accelerator chip exactly once. However,
tuples of T are read many times – once for each partition of R. The number
of partitions produced by the hash function H(B) is such that one partition of
R fits onto the entire on-chip memory with capacity M . Thus, the number of
partitions into which R is partitioned is |R|

M . Therefore, the number of reads for
tuples of T is |R||T |

M . This function is symmetric in R and T , so it seems not to
matter whether R is the smaller or larger of the two relations. However, we also
have to read R once, so we would prefer that R be the smaller of R and T . That
is, the total number of tuples read is |R| + |S| + |R||T |

M .
Thus, the number of tuples read onto the chip is greater than the sizes of

the three relations being joined. However, using a cascade of two-way joins may
also involve an intermediate relation whose size is much bigger than the sizes of
the input relations. Thus, while we cannot be certain that the three-way join is
more efficient than the conventional pair of two-way joins, it is at least possible
that the algorithm proposed will be more efficient.

Example 3. Consider again the problem of getting an approximate count of
the friends of friends of friends of each Facebook user, as was introduced in
Example 1. We estimated the number of tuples in the friends relation F as
6 × 1011. This value is thus the sizes of each of R, S, and T . If we take the
three-way join, then the number of tuples read onto an accelerator chip is
6 × 1011 + 6 × 1011 + 3.6 × 1023/M . In comparison, if we use two two-way joins,
then we need to output first the join of F with itself, which involves producing
about 1.8 × 1014 tuples, and then reading these tuples back in again when we
join their relation with the third relation. The three-way join will involve reading
fewer tuples if 6×1011 +6×1011 +3.6×1023/M < 3.6×1014. That relationship
will hold if M > 1.003 × 109. That number is far more than can be expected on

3 For just one example, if R, S, and T are each the friends relation F , and we are
using the Flajolet-Martin algorithm to estimate the number of friends of friends of
friends for each individual A in the relation R, then the amount of data that needs
to be maintained in memory would be on the order of 100 bytes for each tuple in the
partition Ri, and thus would not be more than proportional to the size of the data
that was read into the memory from outside. In fact, although we do not want to
get into the details of the Flajolet-Martin algorithm [16], if we are willing to assume
that everyone has at least some small number of friends of friends of friends, e.g., at
least 256, then we can reduce the needed space per tuple to almost nothing.
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a single chip with today’s technologies, even assuming that a tuple is only eight
bytes (two 4-byte integers representing a pair of user ID’s). However, for some-
what smaller databases, e.g., the 300 million Twitter users and their followers,
the on-chip memory requirements are feasible, in that case, the chip needs to
hold approximately 150 million tuples.4

5 Cyclic 3-Way Join

Consider the cyclic three-way join R(AB) �� S(BC) �� T (CA). The cyclic join is
symmetric in all three relations. We shall therefore assume that R is the smallest
of the three, for reasons we shall see shortly. Similar to the linear three-way join,
we shall partition R such that it’s one partition fits conveniently into on-chip
memory. However, in this case, since both A and B are shared by other relations,
we will partition R using hash functions H(A) and G(B) into H, and G buckets,
respectively. The correct values of H and G are to be determined by considering
the relative sizes of the three relations. However, we do know that |R|

HG = M .
In addition to partitioning R into HG pieces, each of size M , we use H(A)

to partition T into H pieces, each of size |T |
H , and we use G(B) to partition S

into G pieces, each of size |S|
G . The partitioning scheme is depicted in Fig. 3.
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Fig. 3. Partitioning of Relation R, S and T . Relation R is partitioned using radix
hashing on the first digit of column A and B using H(A), G(B) respectively. Each
Ri is further partitioned using radix hashing, h(A), g(B), on the second digit of A, B.
Similarly, S and T are partitioned using radix hashing on B and A columns respectively.
Column C is hashed using f(C).

As before, we are assuming that there is no significant skew in the distribu-
tion of values in any column, and we also are assuming a sufficient number of
different values that hashing will divide the relations approximately evenly. In
what follows, we shall only describe the join of a single partition from each of R,
S, and T . These three partitions are determined by buckets of H and G. That is,
for a fixed value of H(A) = i and a fixed value of G(B) = j, we join those tuples

4 In fact, as a general rule, we can observe that the minimum memory size M needed
for any social-network graph is very close to half the number of nodes in the graph,
regardless of the average degree of the graph (number of friends per user) and size
of the relation.
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r(a, b) of R such that H(a) = i and G(b) = j with the tuples s(b, c) of S such
that G(b) = j and the tuples t(c, a) of T such that H(a) = i. In what follows, we
shall refer to these partitions as R′, S′, and T ′, respectively. Each set of three
partitions is handled the same way, either sequentially on one accelerator chip
or in parallel on more than one such chip.

5.1 Joining Relations on Plasticine-Like Accelerator

Now, let us focus on joining R′, S′, and T ′. Assuming the chip has U memories
arranged in a square

√
U on a side, we shall use lower-level hash functions h(A),

g(B), and f(C). Hash functions h and g each map to
√

U buckets, while f maps
to a very large number of buckets – a sufficient number of buckets so that S′

and T ′ can be partitioned on the basis of their C-values into pieces that are
sufficiently small that we can neglect the memory space needed to store one
piece from one of these two relations.

Begin the join by bringing onto the chip all the tuples r′(a, b) of R′. Each of
these tuples is routed to only one of the U PMUs – the PMU in row h(a) and
column g(b). Then we bring onto the chip each of the tuples s′(b, c) of S′ that
have f(c) = k. These tuples are each stored in every PMU in the column g(b).
Thus, this tuple will meet at one of these memories, all the tuples of R′ that
share the same hash value g(B). Finally, we pipe in the tuples t′(c, a) of T ′ that
have f(c) = k. Each of these tuples is read into each of the memories in row
h(a), where it is joined with the possibly matching tuples r′(a, b) and s′(b, c).
Any matches are sent to the output of the chip.

5.2 Analysis of Cyclic Three-Way Join

Notice first that every top-level partition of R is read onto the chip only once.
However, a top-level partition of S is read onto chip H times, once for each
bucket of H(A). Also, every top-level partition of T is read G times, once for
each bucket of G(B). The total number of tuples read onto an accelerator chip
is thus |R| + H|S| + G|T |. Recall also that GH = |R|

M , so previous function can
be expressed as |R| + H|S| + |R||T |

MH . To minimize this function, set its derivative

with respect to H to 0, which gives us H =
√

|R||T |
M |S| . For this value of H, the cost

function becomes |R| + 2
√

|R||S||T |
M . Notice that the second term is independent

of the relative sizes of the three relations, but the first term, |R|, tells us that
the total number of tuples read is minimized when we pick R to be the smallest
of the three relations.

Example 4. Suppose each of the three relations is the Facebook friends relation
F ; that is, |R| = |S| = |T | = 6×1011. Then the total number of tuples read onto
the chip is 6 × 1011(1 +

√
6 × 1011/M). If we assume as in Example 3 that the

binary join of F with itself has about 0.8×1014 tuples, we can conclude that the
total number of tuples read by the three-way join of F with itself is less than
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the number of tuples produced in the intermediate product of two copies of a

cascade of two-way joins as long as 6 × 1011(1 +
√

6×1011

U ) < 1.8 × 1014. This
condition is satisfied for M as small as seven million tuples.

6 Performance Evaluation

In this section, we evaluate the algorithms proposed in the Sects. 4, on Plasticine-
like accelerator using a performance model. First, we show the advantage of
accelerating a sequence of binary join operators by comparing its execution time
on Postgres database on CPU to our simulation on the accelerator. Next, we show
additional performance improvement of 3-way join (an instance of multiway join)
over a cascade of two binary hash joins on the acccelerator.

We consider two categories of multiway joins in this evaluation: self-join5 of
a big relation of size N , where N does not fit on-chip; and star-join6 of two small
relations (R and T ) each of size K with a large relation, S, of size N , where
N >> K and 2K <= M . The self join algorithm described in Sect. 4 is a generic
algorithm for any linear join, whereas the algorithm used for star join is a variant
of the generic algorithm that specialize for better locality when the dimension
relations fit on the on-chip memory.

For a given set of relations, we observe that the proposed algorithms execu-
tion time on the accelerator is sensitive to the number of buckets and DRAM
bandwidth. We first evaluate the selection of hyperparameters of the algorithms,
i.e. bucket size for the cascaded binary and 3-way joins. With best bucket sizes,
we compare the performance advantage of 3-way join over a cascade of binary
joins for different selectivity of join columns and DRAM-bandwidths. For all
experiments, we do not materialize the final output of the join in memory (refer
Example 1). Instead, we assume the final results will be aggregated on the fly.
Therefore, in our study, we only materialize the intermediate result of the first
binary join, and the final output is immediately aggregated (e.g. perform count
operation on the number of friends of friends relation).

6.1 Target Systems

The CPU system, used for performance evaluation of cascaded binary join, is
Intel Xeon Processor E7-8890 v3 with 143 processors and 1 TB of DDR4 RAM
with 1 TB/s memory bandwidth. For performance evalutaion on hardware accel-
erator, we use performance model for the Plasticine-like architecture. It has
DDR3 DRAM technology with 49 GB/s read and write bandwidth, Number of
PMUs(PCUs), U = 64 and a peak of 12.3 TFLOPS compute throughput with
16 MB on-chip scratchpad.
5 Self 3-way join is joining of a relation with two instances of itself e.g. Friends of

friends.
6 Star 3-way join is joining of a large fact relation with two small dimension relations

e.g. TPCH [1] benchmark having join of lineitem fact relation with order and supplier
dimension relations.
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6.2 Accelerator’s Performance Model

The performance model is built by simulating the logic of the proposed algorithm
on the hardware specification of the accelerator given in Sect. 6.1. We observed
that the performance advantage of the proposed 3-way join over cascaded binary
join depends on the number of records in the joining relations and the selectivity
of the join column - lower selectivity (i.e. higher duplicates) favors multiway
join. The performance model needs two inputs for simulation - the number of
records of R, S and T and the maximum distinct values over all joining columns
(represented as d).

The performance model accounts for how an application is spatially paral-
lelized and data is streamed across compute and memory units of the accelerator.
The model does considers DRAM-contention while loading multiple data streams
concurrently on the chip. For higher DRAM bandwidth utilization and to hide
the DRAM latency, we overlap execution of the algorithm with prefetching of the
data. This requires to split the on-chip memory into two buffers (double buffer-
ing) to store both the current and prefetched data. The performance model uses
only half of the on-chip memory to include this optimization.

For cascaded binary join, once the intermediate result does not fit in DRAM,
the performance model simulates the flushing of the intermediate data to the
underlying persistent storage with much lower bandwidth (around 700 MB/s
from the latest SSD technology). Appendix A explains the performance model
in detail.

6.3 Performance Analysis of Cascaded Binary Join

A cascaded binary-join is a sequence of two binary joins- the first join is
R(AB) �� S(BC) which outputs intermediate relation I(ABC) and second join
is I(ABC) �� T (CD). For uniform distribution, the intermediate size for a cas-
caded binary join is |I| = |R �� S| ≤ |R||S|

d [22].
Both the joins are executed on the accelerator similar to the 3-way join dis-

cussed in Sect. 4. The first join R(AB) �� S(BC) involves loading and matching
of partitions of R and S using H(B), h(B) on the chip. The intermediate relation
I is stored back to DRAM. The second join I(A,B,C) �� T (C,D) is identical
except the output results are no longer materialized in DRAM. For the sec-
ond join, we also load partitions of relation T on-chip while streaming previous
join intermediate result, since |R �� S| >> |T |. The bucket sizes of the second
level hash functions for both the joins are fixed to the number of PMUs, i.e.
h = g = U .

Figure 4 (a) shows the breakup of the execution time of a cascaded binary
self join of three relations with a varying number of buckets i.e. Hbkt. The orange
region shows time spent in partitioning the relations for both the joins, which
is dominated by the second join due to large size of the intermediate relation.
Clearly, the first join is bounded by DRAM-bandwidth, varying Hbkt has no
impact on the performance. Fig. 4 (b) shows variation of the execution time of
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Fig. 4. Performance Evaluation of 3-way join vs. cascaded binary joins. (a,b) 2-way self
linear join execution time with breakup. Red, green, and yellow region indicate execu-
tion time for the first join, the second join, and partitioning time for both. Marker indi-
cates performance bottleneck in computation (comp), streaming in R �� S relation in
second join (stream RS), or storing R �� S in first join (store RS). (c) Speedup on Plas-
ticine over CPU for cascaded binary self joins. (d) 3-way linear self join performance.
Marker indicates bottleneck of performance in computation (comp) or streaming in T
relation (stream T). (e) Speedup of 3 vs. binary join on linear self join with DDR3 and
SSD bandwidth at 49GB/s and 700 MB/s. The vertical dashed lines indicate when
intermediate results do not fit in DRAM for binary join. The horizontal dashed line
indicates speedup of 1. (f) Speedup of Self linear 3-way join vs. cascaded binary join
with different off-chip memory bandwidth. (g) Performance of Star 3-way join with
varying d and hbkt. (h,i) Speedup of 3-way join vs.cascaded binary joins with d and K
at different off-chip memory bandwidth. (Color figure online)

the second join varying Gbkt. The second join is compute-bound at small Gbkt,
as the total amount of data loaded is |R �� S|+|T |, whereas the total comparison
is |R��S||T |

d .
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Comparison with Postgres. We compare the performance of cascaded binary
join on CPU to that on the accelerator using configuration given in Sect. 6.1. For
CPU-based implementation, we follow a COUNT aggregation immediately after the
cascaded binary joins, which prevents materializing the final output in memory.
Postgres is configured to use a maximum of 130 threads. At runtime, we observe
only 5 threads are used at 100% for our problem size.

Figure 4 (c) shows the speedup of binary self join on the accelerator over the
CPU with varying sizes of the relations and distinct values in joining columns
(d). Although the CPU has much higher memory bandwidth, our experiments
show >130x speedups from the accelerator. We observe a limited improvement
or even worse when parallelizing a single join on CPU compared to the single-
threaded execution. The parallel execution can be bottlenecked by communi-
cation on shared last-level cache and overhead from full system database like
Postgres. On the other hand, the total amount of parallelism on the accelerator
is the product of the number of PCUs with SIMD computation (a vector of size
16) within each PCU, which is 64 × 16 = 1024. Furthermore, the static on-chip
network provides 384 GB/s bandwidth between the nearest neighbor CUs. The
high compute density and on-chip memory and network bandwidth shift the
performance bottleneck to DRAM for streaming in the intermediate relation on
Plasticine. Fig. 4 (c) shows that smaller percentage of unique values, d% are
associated with increasing speedup (up to 200x) due to the large-sized interme-
diate relation in the cascaded binary join, which also increases the computation
and communication in the second cascaded binary join.

6.4 Performance Analysis of Linear Self Join

We consider R(AB) �� S(BC) �� T (CD), where R, S, T are copies of the friend-
friend relations with N records and d distinct users (column values).

Hyper-parameter Selection. We shall discuss the evaluation of hyperparam-
eter selection of algorithm described in Sect. 4. Figure 4 (d) plots the execution
time of 3-way join varying with Hbkt and gbkt (hbkt = number of PMUs). It
shows that the algorithm achieve higher speedup for larger size partition of R
partition (i.e. small Hbkt) while exploiting DRAM prefetching. For small gbkt,
the algorithm is compute-bound for joining buckets from three relations within
PMUs (3-level nested loop). As gbkt increases, the compute complexity reduces
with smaller of size T buckets and the performance bottleneck shifts to DRAM
bandwidth for streaming in T records. For large values of gbkt, the Sij bucket
within each PMU becomes very small (i.e. |S|

Hhg ), resulting in very poor DRAM
performance for loading Sij . Although some PCU might have empty Sij bucket,
the algorithm has to wait for completion from other PCUs with non-empty Sij

buckets because all PCUs shares the streamed T records. This synchronization
and poor DRAM performance on Sij bucket eventually increases execution time
dramatically when gbkt becomes too large.
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3-Way Join vs. Cascaded Binary Joins. Figure 4 (e) and (f) shows the
speedup of 3-way join over cascaded binary joins with varying average friends
per person (f = N

d ), and DRAM bandwidth on the accelerator. When relation
size (N) is small, 3-way join achieves up to 15x performance advantage over
binary-join because the latter is heavily IO-bound compared to compute-bound
3-way join, and the accelerator favors compute bound operations. However, the
speedup decreases with increase in relation size, N . Because the compute com-
plexity of 3-way join increases quadratically with N , whereas, size of intermediate
relation of the cascaded binary joins increases quadratically with N . When the
intermediate relation fails to fits in DRAM, the off-chip bandwidth drops from
49 GB/s to 700 MB/s, which is shown as a step increase in the speedup of 3-way
over the binary join in Fig. 4 (e) and (f). With more friends per person, the per-
formance cliff happens at smaller relation size. (f) shows that the advantage of
3-way join is more significant when intermediate result fit as binary-join will be
more DRAM-bandwidth bounded for smaller DRAM; and less significant when
the intermediate result does not fit, at which point, binary-join will be SSD
bandwidth-bounded, whereas 3-way join can still benefit from higher DRAM
bandwidth.

6.5 Performance Analysis of Linear Star 3-Way Join

Now we consider a special case of linear join where R and T relations are small
enough to fit on-chip7. Now we only need one level of hash functions on both
columns B and C, naming h(B) and g(C). The only difference between cascaded
binary joins and 3-way join is that binary join only performs one hash function
at a time, which allow h = g = U . For 3-way join, we map a (h(b), g(c)) hash
value pair to each PMU, which restricts number of buckets to hg = U . For both
3-way and cascaded binary joins, we first load R and T on-chip, compute hash
functions on the fly, and distribute the records to PMUs with corresponding
assigned hash values (in binary join) or hash value pairs (in 3-way join). Next,
we stream S, compute hash values and distribute to the corresponding PMUs,
where the inner join is performed.

Figure 4 (g) shows the execution time of the 3-way join with varying hbkt

(Note, hbkt must be dividable by U to achieve the maximum hg). Figure 4 (h)
and (i) shows the speedup of 3-way join over a cascade of binary star join. We
can see that with increasing DRAM-bandwidth, the advantage of 3-way join
eventually disappears since storing and loading intermediate results in binary
join becomes free, when they fit on the chip. 3-way join can also be slower than
binary join for larger number of buckets (ie. less computation), where number
of buckets is hg = U2 for binary and hg = U for 3-way join8).

7 With plasticine, this means the dimensions relations are on the order of millions of
records.

8 Total amount of comparison in cascaded binary join roughly equals to |R||S|
h

+
|R��S||T |

g
= |R||S|

h
+ |R||S||T |

dg
.
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7 Conclusions

Multiway join involves joining of multiple relations simultaneously instead of
traditional cascaded binary joins of relations. In this paper, we have presented
algorithms for efficient implementation of linear and cyclic multiway joins using
coarse grain configurable accelerator such as Plasticine, which is designed for
compute-intensive applications and high on-chip network communication. The
algorithms have been discussed with their cost analysis in the context of three
relations (i.e. 3-way join).

The performance of linear 3-way joins algorithms are compared to the cas-
caded binary joins using performance model of the Plasticine-like accelerator. We
have shown 130x to 200x improvements for traditional cascaded binary joins on
the accelerator over CPU systems. We have concluded that 3-way join can pro-
vide higher speedup over cascaded binary joins in a DRAM bandwidth-limited
system or with relations having low distinct column values (d) (which results
in large size intermediate relation). In fact, the effective off-chip bandwidth will
dramatically reduce when the intermediate size does not fit in DRAM, in which
case binary join will provide a substantial improvement over 3-way join. We have
shown that a Self 3-way join (e.g, friends of friend query) is 45X better than a
traditional two cascaded binary joins for as large as 200 million records with
700 thousand distinct users. A data-warehouse Star 3-way join query is shown
to have 11X better than that of cascaded binary joins.

In future work, we would like to explore additional levels of hashing beyond
two levels, and exploring new algorithms, such as set value join [2], within on-
chip join to speedup multi-way join. We plan to extend the algorithms for skewed
data distribution in relations and analyze the improvements in the performance
and power of the algorithms on Plasticine accelerator.

A Performance Model of Plasticine

In this section, we provide more details on the analytical performance model
used for algorithm performance estimation on Plasticine-like accelerator. The
performance model analyzes the loop structures of each algorithm, takes into
account how applications are spatially parallelized and pipelined on hardware
resource, and provides a cycle-level runtime estimation given data characteristics
and architectural parameters as inputs. Figure 6 shows the loop structures of
3-way and cascaded binary self and star join algorithms on the accelerator. To
avoid confusion, we use 〈hash〉2 and 〈hash〉3 for hash functions of binary and
3-way joins- they do not need to be the same.

In Fig. 5 (a), the circles indicate one-level of loop nest, and the hierarchy
indicates the nest levels between loops. #par[P] in Fig. 5 (b) suggests a loop
parallelized by P. #pipeline in Fig. 5 (c) indicates overlapping execution of the
inner loops across iterations of the outer loop, e.g. B can work on the second
iteration of A while C is working on the first iteration of A. The pipeline construct
is commonly used when a tile of data is reused multiple times on-chip, in which
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we can overlap prefetching of future tiles with execution of the current tile.
In contrary, #streaming in Fig. 5 (d) indicates fine-grain pipelining between
producer and consumer loops, where the consumer loop only scans the data
once without any reuse. In such case, C can execute as soon as B produces the
first chunk of data, without waiting for B to finish on one entire iteration of A.

On Plasticine-like acelerator, an example of the streaming construct is
streaming data from DRAM directly to PCUs without storing to PMUs. To
compute execution time (or run time), we need the throughput (thrpt) and
latency (lat) of which B and C produces/consumes data chunks. For DRAM,
throughput and latency can be derived from DRAM bandwidth and response
time, respectively. For loops executed on Plasticine, throughput is the amount
of allocated parallelism between (U) and within PCUs (L). We used U = 64
PCUs and SIMD vector width L = 16 in our evaluation. The latency is the sum
of network latency (we used the worst diagonal latency on a 16 × 8 chip, which
is 24 cycles) and pipeline latency of the PCU (6 cycles). The overall runtime of
the outer loop is bounded by the stage with minimum throughput.

Finally, for data-dependent execution in Fig. 5 (d), we compute runtime by
associating a probability to each branch. For example, in Fig. 6 (a), the branch
on SC == TC indicates comparisons on S records with streamed T records.
Only matches records will be compared with R records. The probability of this
branch is the expected size of S �� T , which is |S||T |

d , over the total number of
comparisons performed between S and T records. The number of comparison is
the product of loop iterations enclosing the branch, which is H3h3g3

|T |
g3

|S|
H3g3h3

=
|S||T |

g3
. This gives the probability of g3

d on the branch hit.

Fig. 5. Runtime model for different loop schedule.
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Fig. 6. Loop structure of (a, b) 3-way and cascaded binary self join and (c, d) 3-way
and cascaded binary star join. Data reorganization is not shown. Only one of the join
in cascaded binary join is shown in (b) and (d).

Using a similar approach, we can derive probabilities of all data-dependent
branches. The runtime of each algorithm in Fig. 6 is recursively evaluated at
each loop level using equations shown in Fig. 5. The exact model is open-source
and can be found at https://github.com/yaqiz01/multijoin plasticine.git.
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Abstract. MLPerf has emerged as a frontrunner in benchmarkingAI performance
by having support of main players in the industry. At the same time, official scores
uncover challenges for measuring distributed AI performance: a 2/3 throughput
loss at a large scale and longer number of epochs needed to reach the required accu-
racy. Furthermore, no distributed scored have been submitted for Tensorflow, the
most popular AI framework. Our work investigates these issues and suggests ways
for overcoming challenges facing benchmarking at scale. Focusing on Tensorflow,
wee show how efficient distributed scores can be obtained with appropriate soft-
ware and hardware choices. Results for various Lenovo servers and Nvidia GPUs
(V100 and T4) are also presented. Finally, we examine the utility of MLPerf for
evaluating scale-up hardware and propose augmenting the main MLPerf score
by an additional score that takes into account computational efficiency. Several
options for the score are explored and analyzed in detail.

Keywords: MLPerf · Tensorflow · Deep Learning · GPU · Distributed
computing · Performance

1 Introduction

MLPerf benchmark suite [1] is a frontrunner to become a standard AI performance
evaluation tool. Forty-one companies are currently listed as supporters with eight aca-
demic institutions also contributing to the effort. The latest iteration, v0.5, was released
in December 2018. Results for this version have been submitted by Google, Intel, and
Nvidia for seven AI benchmark categories.

Prior to MLPerf most of the performance data was published in terms of throughput,
such as images per second in case of Deep Learning (DL) training using image-based
datasets. While throughput provides a measure of computational efficiency, it does not
make a connection to the ultimate goal of DL training – generating an accurate model.
MLPerf addresses this issue by making the accuracy the main goal and only specifying
the basic training parameters such as network type (ResNet-50 v1) and dataset (Ima-
geNet) while leaving the rest of the parameters up to submitters. The measured quantity
is time-to-train, an easy-to-understand metric that can be used for comparison across
different hardware types. Overall, MLPerf is an elegant solution to a problem that is
complex in both hardware and software.

AI workloads, especially those involving Deep Learning, are known to be compu-
tationally intensive. For this reason, they often rely on accelerators such as GPUs or
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those made specially AI such as Google’s TPUs. AI-centric hardware usually contains
several accelerators to speed up calculations and clusters of several suchmachines can be
employed to further decrease computational time. Thus, AI frameworks need to be able
to handle both scale up (intra-node parallelization) and scale out (inter node paralleliza-
tion) parallelizations. The current state is that scale up is much easier to use – usually
a single switch when launching an application, while scale out is a much more com-
plex involving parallel launching the framework (over MPI or directly) and specifying
several additional switches. Additionally, fast interconnect also needs to be present for
efficient parallelization. This asymmetry has led to hardware vendors favoring scale up
and creating machines integrating large numbers of accelerators such as 8 or 16 GPU
servers. However, for maximum performance and lowest possible times, as prescribed
by MLPerf, scale out is still needed.

Importantly, there are costs to MLPerf score’s simplicity. One is that the scores do
not carry information about computational efficiency and it is difficult to determine
how well is the hardware utilized. Second, given that vendors can use different AI
frameworks, which can differ considerably in AI primitives implementations, the scores
are not reliable characteristics of hardware platforms. Finally, large scale distributed runs
need more epochs to reach the desired accuracy than smaller scale ones and thusMLPerf
is not a strong scaling benchmark, as one might assume. This variation in computational
size of the problem is not reflected in MLPerf score. (The reason for this is that in the
commonly used parallelization approach - data parallelization with parameter servers -
computing units are running independently and only synchronize after they process their
assigned batches of data. With more computing units, the synchronization becomes less
frequent per epoch and consequently, large scale distributed runs can exhibit convergence
problems and need more epochs to reach the accuracy target).

In this work, we focus on analyzing MLPerf Deep Learning benchmarks in dis-
tributed computational environment. We analyze published scores, perform our own
experiments and use our insights to propose additional metrics to augment MLPerf’s
main score.

2 Related Work

While performance evaluation of AI workloads has been an active area of research,
benchmark development has been a more recent trend. DeepBench [2] from Baidu
Research was one of the early projects and targeted low-level operations such as matrix
multiplications and convolutions that are key parts of deep learning algorithms. The
goal of DeepBench was to characterize hardware designs best suited for these low-
level operations, including communication tasks. DAWNBench [3] is another project
lead by Stanford University that aims to evaluate end-to-end deep learning including
training and inference stages. MLPerf [1], the topic of this paper, expanded the scope
by defining more metrics for a benchmark run to collect and report. A survey of such
recent benchmarking initiatives and evaluation of associated requirements from metrics
and system parameters is given in Ref [4].
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3 Distributed MLPerf Analysis

Here we limit ourselves to only one category – Image Classification. This is a popular
AI workload that has received most MLPerf entries and thus provides a wealth of data
for analysis.

Furthermore, we only consider the runs on GPUs, as these are most practical for this
problem. This leaves us with entries listed in Table 1, where we have done the following
changes to the official MLPerf data:

1. Column 6: Speedup over reference time was converted to the time it takes to train.
This is easier to understand than the speedup relative to a baseline.

2. Column 8: Number of epochs was added. This data is not listed in the spreadsheet
on the MLPerf website, but can be extracted from log files for submitted runs.

3. Column 9: Estimated computational throughput, in terms of Images/second/GPU.
This metric is not part of MLPerf submissions, but we estimate it as follows:

Number_of _epochs ∗ Number_of _Imagenet_Images

Time_to_train[seconds] ∗ Total_GPUs

where the Number_of_Imagenet_Images is 1,281,167. This metric is very important
because it provides an easy way to compare computational efficiency across all
published data.

Table 1. MLPerf entries for GPU-based ımage classification.

MLPerf
index

Submitter Nodes GPU/node Total
GPUs

Time-to-train
[min]

Software Epochs Images/sec/GPU

5 Google 1 8 8 138 TF 60 1162

12 Nvidia 1 8 8 135 MXNet 62 1229

20 Nvidia 1 16 16 70 MXNet 63 1201

18 Nvidia 1 16 16 74 MXNet 63 1138

17 Nvidia 80 8 640 6.2 MXNet 81 436

25 Nvidia 32 16 512 7.4 MXNet 81 456

The data in the Table 1 encompass both single node and distributed runs. The com-
parison between 8 GPU runs submitted by Google and Nvidia shows that there is only
a small performance difference between Tensorflow and MxNet in single node runs on
the same type of GPU. Similarly, scale-up results within a single node are consistent
between all entries where number of epoch is close to 60 and throughput per GPU is
around 1200 images/s.

The situation is different for scale-out runs. While times require to train are impres-
sive compared to the single node runs (6 or 7 min compared to 1 or 2 h), the compu-
tational throughput decreases dramatically by about two thirds from 1,200 images/s to
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400 images/s. This makes these runs highly inefficient and GPUs are idle most of the
time. The source of this inefficiency cannot be identified from the published data, but
we assume that it is due to parameter server communication cost – this communication
is global (All-to-All) and thus increases dramatically with the number of training nodes.
It should be emphasized that this metric is not listed in MLPerf results and thus this in

Another important thing to note is that distributed runs required more epochs: ~80
compared to ~60 for single node runs. Digging into the log files shows that the accuracy
goal, 74.9%, becomes hard to reach at this scale: In the run #17, an accuracy of 73.4
was reached at epoch 61 after which accuracy improvement slowed down and it took
additional 20 epochs to reach the criterion. The same effect is observed in run 25, where
accuracy of 73.5 is reached after 61 epochs and after that accuracy almost levels off.
This shows that the choice of accuracy criterion is very important and that even small
changes can have dramatic effect on benchmark results.

4 Distributed Tensorflow in MLPerf

4.1 General Considerations

Tensorflow [5] is currently the most popular DL tool and even provides a popular and
easy-to-use benchmarking script that can perform MLPerf Image Classification. Sur-
prisingly, this combination was only used for one entry – a single node 8 GPU run by
Google. Note that Google has submitted distributed Tensorflow scores, but those ran on
TPUs and utilized a different training script based on ResNet50 model rather than the
high performance benchmarking script.

4.2 Generating Unofficial MLPerf Scores Using Distributed Tensorflow

At last year’s TPC conference, we have presented distributed benchmarking using Ten-
sorflow and the high performance benchmarking script [6]. After MLPerf v0.5 results
were published, we have tried to use it to obtain internal MLPerf scores for Lenovo
machines. However, we ran into two types of difficulties: First, most of the MLPerf spe-
cific features added to the benchmarking script were coded for single node runs only and
throw an error when used in distributed runs. These options include logic for stopping
the run when a required accuracy is reached as well as code to skip frequent accuracy
testing that is the default behavior and only do so towards the end of the run. While these
issues can be worked around, the other difficulty we ran into prevented us from get-
ting MLPerf scores altogether: Distributed runs could not reach the requested accuracy
maxing out just below 70%. In addition, accuracies were very oscillatory after about 50
epochs. This is in contrast to single node runs where accuracy increases monotonically
until the criterion is reached. The low accuracies in distributed runs have been noticed
by other users and has been reported as issues on script’s GitHub page [7]. There is no
current resolution to these and maintainers’ response was that the script is currently only
targeting single node performance. With that, we have given up on obtaining MLPerf
scores.

However, next Tensorflow release, 1.13, significantly improved distributed training
accuracy and while oscillatory behavior continued, we were able to reach the required
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threshold. However, other issues remained; specifically the benchmarking script was
not terminating after meeting the threshold and accuracy tests were perform after each
step wasting computational time. However, because theseMLPerf runs were for internal
purposes only we decided to work around these by (i) running calculation longer and
then pro-rate computation time relative to the point where the criterion was first reached
and (ii) accepting the performance hit of extra accuracy checks.

Our MLPerf Image Classification benchmarks were run on up to 4 Lenovo SR670
servers each equipped with 4 Nvidia 32 GB V100 GPU cards. Each server contained 2
IntelXeonGold 6142CPUs (16physical cores) and384GBofmemory. Intel’sOmniPath
was used as the fast speed interconnect for the distributed runs. On the software side,
CentOS 7.6with Cuda 10.0was usedwith Tensorflow1.13.1 being run from a singularity
container.

During the runs, we noticed the following factors that are crucial for high
performance:

1. XLA (Accelerated Linear Algebra), a new option enabled in official 1.12 builds,
provides about 50% throughput boost and is crucial for good performance in both
single node and distributed runs

2. XLA is experimental and one of downsides is that is cannot be used together with
a parameter_server parallelization options, which we used in our previous works
[6, 8]. However, distributed_replicated parallelization works and provides similar
performance.

3. As observed previously [6], a high-speed network, about 100 GB speed, is necessary
for good distributed performance.

4. Parallelization efficiency can be increased substantially by running multiple param-
eter servers on a single server. One parameter server per V100 GPU provides best
performance at the scale investigated at this work.

The results are summarized in Table 2. Please note that while we have followed all
the requirements for MLPerf, these data have not been submitted and/or validated by
MLPerf and thus cannot be considered official MLPerf results.

Table 2. MLPerf-like scores for distributed runs performed in this work on Lenovo SR 670
equipped with V100 GPUs.

Nodes GPUs/node Total GPU Time-to-train [minutes] Epochs Images/sec/GPU

1 1 1 1118 61 1165

1 4 4 283 61 1151

2 4 8 185 72 1039

4 4 16 98 75 1021

The results show:

1. Scale-up parallelization efficiency is very high, about 95%.
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2. Distributed Tensorflow runs require more epochs to reach desired accuracy as
discussed above.

3. Networking overhead causes about 10% performance loss in distributed runs
4. Time-to-train and throughput do not scale efficiently when going from 1 node to 2,

but going from 2 to 4 is highly efficient. This can be interpreted as distributed DL
training having a one-time cost associated with it.

We have also run this benchmark on SR670 equipped with 8 T4 GPU cards instead
of V100. The results for 1 node are shown in Table 3. As seen in the previous case,
Tensorflow scale up is highly efficient.

Table 3. MLPerf-like scores for single node runs on Lenovo SR670 servers equipped with 8 T4
GPUs.

Nodes GPUs/node Total GPU Time-to-train [minutes] Epochs Images/sec/GPU

1 1 1 3610 61 360

1 4 4 912 61 357

1 8 8 470 61 346

5 Towards Improving MLPerf

As argued in Introduction, MLPerf scores do not provide information about computa-
tional efficiency.Oneway to remedy this is having additionalmetrics submitted alongside
main MLPerf scores. This would enable IT decision makers to evaluate performance,
efficiency, and other factors when making purchasing decisions.

Possible additional metrics include:

1. Throughput per GPU (or other compute unit)
2. Throughput per Watt
3. Total energy consumed during training

These quantities are evaluated in Table 4 for all the runs discussed in this work. To
estimate energy consumption, we assume that GPUs draw their listed power during the
entire run. Per Nvidia specification, the following power ratings were used: 300 W for
SXM2 V100 (Nvidia runs), 250 W for PCIe V100 (this work), and 70 W for T4 (this
work).

As intended, the additional metrics complement the main MLPerf score and provide
a more complete picture of AI workloads. Throughput per compute device provides a
measure of computational intensity and, as discussed previously, it exposes inefficiency
of large scale runs.

Throughput per Watt, provides a measure of energy efficiency of the run. Another
way to measure this is to use total power used during the run. The latter option is, in
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Table 4. Additional metrics proposed in this work to measure computational efficiency.

MLPerf
Run

GPU type
and count

Time-to-train
[minutes]

Throughput/GPU Throughput/Watt Estimated total
energy [kWatt
Hour]

Nvidia
#12

8 × V100 135 1229 4.1 5.4

Nvidia
#20

16 × V100 70 1201 4.0 5.6

Nvidia
#17

640 × V100 6.2 436 1.45 19.8

Nvidia
#25

512 × V100 7.4 456 1.52 18.9

This work
unofficial

4 × V100 283 1151 4.6 4.76

This work
unofficial

16 × V100 98 1021 4.1 6.53

This work
unofficial

8 × T4 470 346 4.9 4.7

our opinion, preferable because it fits best with MLPerf’s simple and elegant design
and provides an easy-to-understand information. The benchmark readers would have
a direct information about how much power is being used to accomplish AI tasks and
computational system builders would have an incentive to optimize their design for
overall power efficiency.

However, there are practical difficultieswith obtaining accurate energy consumptions
during these runs. Values used in this work have been estimated from listed power
consumptions, but those are only reached under full loads. For example, in the highly
distributed runs #17 and #25, throughput decreases by 2/3 indicating that GPUs are
waiting for data, which likely means that the power consumption is reduced during that
time. Therefore, our energy estimates for those runs are almost certainly overestimates.

An accurate energy usage measurement can be complicated and impractical, but
even estimated values are useful and thus we propose to handle the power consumption
for MLPerf entries the following way:

1. Use estimated power consumption of computing units when no power consumption
measurement was made. Label the data “Estimated”.

2. When electricity consumption was measured in some way, publish the submitted
value with a link to the power measurement protocol submitted by users. Note that
there are many possibilities such as Use Nvidia’s software tools, out-of-band moni-
toring, or using power meters at power supplies. Any of these would be acceptable
and encouraged because they improve over using listed power consumption data.
Over time, the submissions and protocols can be re-evaluated to see if submitters
gravitate towards a particular protocol.
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An additional possibility is to use a cost-based metric. This is an attractive option,
which is being used byDawnBench. The downside is that due to different pricingmodels,
cloud-based and on-prem hardware would have separate scores that cannot be compared
interchangeably. Potential inclusion of this metric requires additional discussion in the
community.

Overall, at this time we cannot make a clear recommendation for a single metrics
to use. Energy-based ones would improve situation but can be difficult to accurately
measure. Cost-based ones would not be universal. Throughput, the simplest possible
measure, carries useful information but cannot compare across different hardware. One
solution may be multiple additional metrics along the score. More discussion in the
community is needed to settle this issue.

6 Conclusions and Future Works

Need for a comprehensive and yet usable benchmark is growing. MLPerf suite of bench-
marks has offered a way to meet this need. Its scores are easy-to-understand and cover
multitudes of AI workloads. However, the scores provide no information about com-
putational efficiency and we find that the best results are actually highly inefficient.
We propose to augment the MLPerf score with two additional metrics: throughput per
compute unit and total power needed to accomplish individual MLPerf objectives.

This work has focused on Deep Learning part of MLPerf. Our future plan is to
continue thiswork to characterize the proposedmetrics for additional use cases including
different neural networks and datasets. We will also evaluate the performance on a wider
variety of hardware systems and software frameworks.
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Abstract. The digital revolution, rapidly decreasing storage cost, and
remarkable results achieved by state of the art machine learning (ML)
methods are driving widespread adoption of ML approaches. While
notable recent efforts to benchmark ML methods for canonical tasks
exist, none of them address the challenges arising with the increasing
pervasiveness of end-to-end ML deployments. The challenges involved in
successfully applying ML methods in diverse enterprise settings extend
far beyond efficient model training.

In this paper, we present our work in benchmarking advanced data
analytics systems and lay the foundation towards an industry stan-
dard machine learning benchmark. Unlike previous approaches, we aim
to cover the complete end-to-end ML pipeline for diverse, industry-
relevant application domains rather than evaluating only training per-
formance. To this end, we present reference implementations of complete
ML pipelines including corresponding metrics and run rules, and evalu-
ate them at different scales in terms of hardware, software, and problem
size.

1 Introduction

Enterprises apply machine learning (ML) to automate increasing amounts of
decision making. This trend, fueled by advancements in hardware and software,
c© Springer Nature Switzerland AG 2020
R. Nambiar and M. Poess (Eds.): TPCTC 2019, LNCS 12257, pp. 47–63, 2020.
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has spurred huge interest in both academia and industry [36]. Today, the market
for ML technology and services is growing and this trend will even increase in
the coming years [13]. This has lead to the development of a huge variety of
ML tools and systems, which are providing ML functionality at different levels
of abstraction and in different deployment infrastructures. Examples include
recently popularized deep learning systems such as TensorFlow [2], PyTorch [25],
and MXNet [10], which greatly benefit from specialized hardware such as GPUs;
well established Python-based libraries such as scikit-learn [26]; and solutions on
the Java Virtual Machine such as SparkML [23] and Mahout Samsara [33], which
are based on general-purpose data flow systems and integrate well with common
cloud infrastructures. Additionally, there are many specialized cloud ML services,
which typically address only certain verticals such as machine translation, object
detection, or forecasting.

This diversity makes it increasingly difficult for users to choose between
the options for real-world use cases and has led to one-dimensional methods
of comparison, which either measure the best accuracy achievable or the speed
of the model training in isolation. While both metrics are important, they do
not address the fundamental challenges of ML in practice. In practice, one has to
not only train ML models, but execute end-to-end ML pipelines, which include
multiple phases such as data integration, data cleaning, feature extraction, as
well as model serving. Many of these phases have hyperparameters (e.g., the
vector dimensionality if feature hashing is used), which need to be tuned anal-
ogously to model hyperparameters. All hyperparameters of an ML pipeline will
impact both accuracy and speed of a model, and successfully deploying an ML
system requires to trade-off the two. The artificial restriction on only measuring
model training has led to a narrow focus on a few well researched data sets, such
as Netflix [5], MNIST [20], or ImageNet [19]. While these data sets are highly
relevant to the specific tasks at hand, they are not necessarily representative
for end-to-end real-world ML pipelines “in the wild”, which often include data
integration, data cleaning, and feature extraction as the most tedious tasks.

We discuss some of the neglected challenges in these tedious tasks in the fol-
lowing: The input data may dramatically vary in size across the pipeline, it could
reside in relational tables that need to be joined, and numerical representations
may be sparse or dense. The emphasis of workloads may vary between explo-
ration and continuous improvement of model quality and model serving. Further-
more, the requirements encountered in industrial settings extend beyond model
accuracy as solutions have to scale, be reasonably easy to maintain and adapt,
and experimentation has to adhere to strict budgets. These notable differences
between real-world requirements and offline evaluations on static, pre-processed
data sets also led Netflix to discard the wining solutions the Netflix Prize con-
test, as “the additional accuracy gains [...] measured did not seem to justify the
engineering effort needed to bring them into a production environment.” [3]. An
industry standard benchmark for advanced analytics should reflect these trade-
offs and requirements. It should cover complex end-to-end ML pipelines and
include a broad range of use cases beyond well established data sets.



ADABench 49

In this paper, we outline ADABench, an end-to-end ML benchmark address-
ing these challenges. Unlike previous benchmarks [1,5,19], we cover the complete
ML lifecycle, from data preparation all the way to inference. The benchmark is
built to cover real business requirements and includes different scale ranges,
which are mapped to problem sizes typically found in industry. As a basis, we
use an up-to-date market potential analysis [13], which we intend to convert
into 16 use cases, out of which we present six in this paper. These use cases
are designed to cover various dimensions of analytics in the retail business verti-
cal. Our benchmark model draws from industry standards as specified from the
Transaction Processing Performance Council1 (TPC) and the Standard Perfor-
mance Evaluation Corporation2 (SPEC). Our core contributions are:

– We propose a novel end-to-end ML benchmark that covers different business
scale factors, and industry relevant metrics (Sect. 2).

– We specify the first four out of 16 planned use cases that cover a wide range
of industry-relevant ML applications (Sect. 2.1).

– We detail our reference implementations of the proposed use cases, and report
first performance evaluations for different scale factors (Sect. 3).

In the following, we will give an overview of the implemented use cases, out-
line the benchmark specification, and present first results running our use cases
along several dimensions of scalability, namely software (Python-environment vs.
Spark-environment), hardware (single-node vs. scale-up cluster), and size (MBs
vs. GBs).

2 Machine Learning Benchmark

ADABench covers the complete end-to-end pipeline of ML workloads as
described by Polyzotis et al. [28], which contains several additional steps besides
model training, such as data integration, data cleaning, feature extraction, and
model serving. From a business perspective, it is relevant to consider that people
conducting advanced data analytics usually spend most of their time in tasks
like data preparation [15]. Given this widely agreed-on fact, an ML benchmark
should also consider these phases. In general, each of the phases can be a one-
time action, as in a single prediction; an iterative process, e.g., a daily forecast;
or a continuous process, as in an online recommendation scenario. In the follow-
ing, we describe the first four use cases in detail and give details about the core
aspects of the benchmark specification.

2.1 Use Cases

To account for the diversity of real-world scenarios, the ADABench workload
is comprised of multiple ML use cases, each covering a whole pipeline. Our use
1 http://www.tpc.org.
2 http://www.spec.org.

http://www.tpc.org
http://www.spec.org
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cases are derived from retail business applications and analysis tasks common in
online businesses according to their market potential identified by McKinsey [13].
We select the first two cases out of the two highest impact business problem
areas: customer service management and predictive maintenance. The second
two use cases cover prediction and hyper-personalization in form of customer
segmentation. The final benchmark aims to not only provide a specification
and a data generator but also reference implementations for each use case. The
current version includes two such reference implementations for each use case:
(a) an implementation based on Apache Spark [39], and (b) an implementation
based on Python libraries such as scikit-learn [26] and pandas [22]. We adapt
the Parallel Data Generation Framework (PDGF) for data generation [31].

Use Case 1: ‘Trip-Type Classification’. The first use case (UC1) is a classifi-
cation task that falls into the category of customer service management. The goal
is to identify the type of shopping a customer wants to do, i.e., if a customer is on
a large weekly grocery trip, wants to buy ingredients for a dinner, or is shopping
for clothing. Based on the classification, the shopping experience of customers
can be improved. UC1 is inspired by a Kaggle competition3. However, the data
set and implementation are completely independent. The use case employs struc-
tured data from a transaction database as input. These transactions include the
amount of items bought or returned, the department from which they originate,
a line number, the day of the week, an order ID to distinguish different sessions,
and a trip type. The task is to train a classifier to predict the trip type based on
the transactional data. Our reference implementation is based on XGBoost [9]
for model training, and pandas/scikit-learn and Apache Spark for general data
handling and pre-processing. The pipeline first loads the data into memory and
filters all samples that contain NULL values. Then the features are extracted.
There are three types of features: (a) aggregates, i.e., sum and absolute sum of
items bought or returned per order, (b) a one-hot encoding of the weekday of the
order, and (c) a pivotization of the different departments occurring in the order,
i.e., sum of items bought or returned per department per order. The basic task
is to unstack the data, such that a single order is expressed as a single vector
instead of a set of records. After pre-processing, XGBoost is trained using soft-
prob as objective function. The key performance metric for training and serving
is throughput while a threshold on the weighted F1-measure has to be met.

Use Case 2: ‘Predictive Maintenance’. The second use case (UC2) is a
classification task in the category of predictive maintenance. It is inspired by an
approach to predict failures published by Chigurupati et al. [11]. The goal is to
predict hardware failures in advance based on sensor data measured in periodical
time intervals. The key idea is to separate the log data into categories depending
on the timely distance to failure. A proxy for this generic use case is to predict
imminent hard-drive failures based on daily S.M.A.R.T.4 measurements [35]. We
provide semi-structured data from log files as input. As part of the preprocessing

3 https://www.kaggle.com/c/walmart-recruiting-trip-type-classification.
4 Self-Monitoring, Analysis and Reporting Technology.

https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
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stage, this data needs to be parsed and filtered to be further used for training or
serving. The main challenge is a highly imbalanced data set, i.e., non-failures are
much more common than failures. The characteristics and distributions of the
synthetic data set are inspired by hard drive statistics published by Backblaze5.
The data set contains log entries with a time stamp, an ID (model and serial
number), a series of S.M.A.R.T. attribute values, and a binary label indicating
whether a complete failure occurred. Analogous to the first use case, the reference
implementations for this use case are also based on pandas, scikit-learn, and
Spark. The main tasks of the preprocessing stage are (a) labeling of the training
samples and (b) up-sampling of the minority (failure) class. For that, we split
the training samples into failures, log entries that occurred on the day or one
day before the actual failure, and non-failures, log entries that occurred two
or more days before a failure or log entries of disks that never failed anyway.
Then the samples of the failure class are sampled with replacement until there
are equal amounts of samples for each class, the up-sampled data set is used to
train a support vector machine (SVM). Since imminent failures are predicted to
enable pro-active measures (such as replacing faulty drives before they crash),
the key quality metric here is a low false positive rate at a high true positive
rate. We measure this using area under the receiver operating curve (AUC). The
key performance metric is throughput again in this case.

Use Case 3: ‘Sales Prediction’. The third use case (UC3) is a regression task
in the category of forecasting. The aim is to predict store and/or department
sales from historical sales data, i.e., weekly sales numbers from previous years are
used to find seasonal and regional patterns and forecast future sales. Based on
these predictions stores can optimize their expenditure for sales promotion and
personnel planning. UC3 is borrowing the idea from a Kaggle competition6 but
the data generation and implementation are independently built. The data con-
sists of sales numbers aggregated by stores, departments, and weeks over several
years. Every store has sales data for every department over every week of the
years. Sales peaks are sampled from a normal distribution. Sales curves between
departments follow a similar seasonal pattern. No other additional information,
e.g., product group or amount of sale, is provided. Our data is generated and
then exported into a CSV file. As in the other use cases our reference imple-
mentation uses pandas, scikit-learn, and Spark. In the first step of our pipeline,
the sales numbers are loaded from that CSV. A preprocessing step is not neces-
sary in this use case, since we already generate aggregated data. In the training
phase, we build a seasonal model for each store and each department using a
Holt-Winters exponential smoothing approach. This model is then used to pre-
dict forecasts for all stores and departments and exported into a CSV file. The
key performance metric is processing time of each step, we measure the mean
squared error as a quality metric.

5 https://www.backblaze.com/b2/hard-drive-test-data.html.
6 https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting.

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
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Use Case 4: ‘Customer Segmentation’. The forth use case (UC4) is a clus-
tering task. Clustering is an unsupervised machine learning technique. In cus-
tomer segmentation, customers are divided into groups based on similar char-
acteristics. By segmenting users, campaigns can be more efficient, because they
can be directed to the correct target audiences. UC4 performs behavioral seg-
mentation, as the problem to be solved is finding clusters based on aggregate
features that group customers based on their spending and returning behavior.
The input in this use case consists of order and return transactions. We use
k-means clustering to calculate user clusters based on the data provided. The
patterns in the data are used to identify and group similar observations. First,
we load the data into memory and clean it (we remove unnecessary elements,
e.g., duplicates, transactions not assigned to a customer, or cancel orders without
counterpart). The features extracted after that are (a) return ratio, i.e., total
value of the returns divided by the total value of the orders and (b) number
of purchases per customer. The scaled feature vector and the number of clus-
ters are input for the k-means algorithm used in training. The key performance
metric for training and serving is throughput. The quality metric measures the
mean of the distances of the predicted clusters to the clusters of the reference
implementation.

Use Case 5: ‘Spam Detection’. The fifth use case (UC5) is a supervised
classification task in the category of discovering new trends/anomalies. Spam
detection means to find comments, reviews, or descriptions with spam content.
The input in this use case consists of reviews or comments in a retail business.
The problem to be solved is to identify those reviews that are spam. The anal-
ysis uses Naive Bayes. Naive Bayes methods are a set of supervised learning
algorithms based on Bayes’ theorem. The data loaded into memory for training
is text labeled as spam or ham, for serving unlabeled text. After cleaning (e.g.,
removing duplicates), the pipeline performs preprocessing to convert the text
into a numerical feature vector (like tokenization of the text, removing stop-
words, building n-grams, and computing the term frequency–inverse document
frequency). This feature vector is fed to the multinomial Naive Bayes algorithm.
The output after serving is an array of label predictions. The performance metric
is throughput, the time that is needed to run through all the steps of reading
the data, data transformation, training and serving. To evaluate the quality of
the classification, the quality metric is F1 Score, since it takes both precision
and recall of the classifications into consideration.

Use Case 6: ‘Product Recommendation’. Use Case 6 (UC6) is a recom-
mendation task in the category of personalization. The aim is to recommend
items to a user based on their and other users previous similar ratings, i.e.,
find next-to-buy recommendations. Proof of concept has been done with the
MovieLens dataset7 that consists of user-item-rating triplets for various movies.
Our data generation and implementation creates similar triplets. Each user is
given a main user category for which the bulk of product ratings are generated.

7 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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The rest is filled with ratings from other user categories. Ratings for products
in their main category have a normal distribution around a high mean, ratings
in the other categories have a normal distribution around a low mean. Our data
is generated and exported into a CSV file. We use pandas, scikit-learn, and
Spark for our reference implementation. The actual recommendation is done by
SurPRISE8 in Python and by the collaborative filtering module of Spark9. As
the first step of our pipeline the pre-generated ratings are loaded. In a prepro-
cessing step in Python we transform the pandas DataFrame in a dataset that
SurPRISE can utilize. The Spark implementation does not need a preprocessing
step. The training phase consists of a matrix factorization done with a singu-
lar value decomposition algorithm in python and an alternating least squares
algorithm in Spark. The resulting model is then used to predict the rating for
every user-item pair and lastly to return the top 10 recommendations for every
user. The key performance metric is throughput. As a quality metric we use
mean-squared-error and mean-absolute-error.

For the remaining 10 use cases (which are out of the scope of this paper), we
aim for diversity along several dimensions: the structure of the data (structured
vs. unstructured), type of data (numerical, audio, visual, textual, etc.), busi-
ness case (predictive maintenance, customer service management, etc.), and ML
methods and algorithms (classification, regression, recommendation, clustering,
deep neural networks, etc.).

2.2 Benchmark Details

Data Model, Scale Factor, and Execution. The ADABench data model is
structurally related to the BigBench data model [4,17]. Analogous to BigBench,
we design a data warehouse model, which is used as a source for many of the
ML use cases, especially for analyses related to customer management, sales,
and other transactions. Additionally, we add sources such as click logs, text, and
sensor readings. We further extended the data set to capture a broader variety
of data types and demand more preprocessing. Some of the extensions are taken
from the ideas presented in the proposal for BigBench 2.0 [30], i.e., diverse data
types (text, multi-media, graph) and different velocities of data (streaming vs.
batch).

ADABench incorporates different data set sizes that are used in industry and
academia. We identified five different classes that are reflected in five scale fac-
tors, XS - XL, which represent data problem sizes of 1 GB to 10 PB respectively,
shown in Table 1. These classes are related to the size of the operations found
in industry. The smallest class, XS, relates to a very small operation typically
done by a single individual at a single location. S represents an operation driven
by a small team at a single location with lightly distributed computing capa-
bilities. At Scale Factor M the use of a small cluster of commodity hardware is
necessary. To run an L scale, a rather large cluster is required and this kind of

8 http://surpriselib.com/.
9 https://spark.apache.org/docs/latest/ml-collaborative-filtering.html.

http://surpriselib.com/
https://spark.apache.org/docs/latest/ml-collaborative-filtering.html


54 T. Rabl et al.

Table 1. Data size and number of cores for each scale.

Scale Workload Problem
size (GB)

Total cores
approx.

Extra Small (XS) Small data science projects 100 4–8

Small (S) Traditional analytical tasks 101 8–32

Medium (M) Lower tier big data tasks 103 32–320

Large (L) Big data tasks 105 320–3200

Extra Large (XL) Internet company tasks 107 3200–32000

setup is typically found in global organizations handling large amounts of data
and transactions. Finally, we define the XL boundary, which is a quite rare scale
factor only seen at large Internet companies. Data in ADABench is synthetically
generated using tools such as PDGF [32]. The data generation process provides
three major functionalities. ❶ High data generation velocity that achieves the
described scale factors XS-XL in a reasonable time frame. ❷ Data generation
that incorporates characteristics and dependencies concerning the respective scale
factor. As a result, a higher data volume contains not more of the same informa-
tion but new, previously unseen characteristics. Hence the data becomes more
complex with an increasing scale factor. For this, we propose an approach that is
build on the assumption that rare occurrences become more common, in absolute
terms, the more data is generated. For instance in case of UC1 there might be
only three different classes at scale factor XS in the synthetic data set, whereas
there might be 40 at scale factor M. This approach can be generalized for sev-
eral supervised learning tasks, by ensuring that certain phenomena have a high
probability while others have a low probability. One artifact of this approach
is that the different classes become more imbalanced with increasing volume,
which in turn also makes the data more realistic. ❸ Introduction of errors into
the data to simulate a real-world production environment. These errors can be,
e.g., missing values, outliers, and wrong data types. While the first functional-
ity eases the utilization of the benchmark, the other two aim to close the gap
between laboratory grade experiments and real-world application fuzziness. For
UC 1 and UC 3 - UC 6 functionality two is highly important because large
scale data should contain previously unseen information. For UC 2 the third
functionality is of higher importance since the false positive rate is the critical
measurement and must be robust to erroneous input data.

In order to cover various business setups and challenge machine learning
deployments in different ways, we specify two general modes of execution:
Sequential execution and parallel execution of the use cases. During sequen-
tial execution, every use case has to be run exclusively from start to end, while
in the parallel execution mode, all use cases can be run in parallel. In both
setups, we allow for a pipelined execution of individual steps within a use case.
This is similar to the TPC’s benchmark execution model (e.g., TPC-DS [27] or
TPCx-BB [4]), with the distinction that we do allow for the parallel execution
of different use cases rather than the parallel execution of streams of all queries.
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Metrics. In ADABench, we define individual metrics for each use-case, which
are aggregated (via geometric mean) into one global metric summarizing the
entire benchmark. For each use case, we define individual metrics, which are a
combination of measurements of the stages in a use-case. We use the geometric
mean to weight the diverse use cases equally in the final metric and equally
encourage optimization on all stages. Driven by the industry-oriented scenario
we aim to cover with ADABench, we chose throughput in samples per second as
the main performance measure while defining thresholds for prediction quality
metrics such as accuracy or AUC and latency that have to be met. This is
similar to recent proposals like DAWNBench, which propose a time-to-accuracy
metric [14] and reflects industry requirements. Most use cases define a training
and a serving stage, which we measure separately (TPt and TPs)and summarize
in the total throughput for the use case TPi (see Eq. 1). The formula for the
total throughput is shown in Eq. 2.

TPi =
√

TPti ∗ TPsi (1)

TP = n
√

Πn
i=1TPi (2)

The final performance metric, ADASps@SF , is the throughput at a scale factor.
This means that systems can only be compared at the same scale factor. Besides
performance metrics, we also specify price performance and energy performance
metrics. These are defined according to TPC standards [37,38]. This means, the
price performance is defined as the total cost of the execution by a pay-as-you-go
model divided by ADASps@SF . Similarly, the energy performance is defined as
the total consumed energy per benchmark execution divided by ADASps@SF .

3 Evaluation

In this section, we present results of an experimental evaluation of the six use
cases UC1 to UC6 introduced in Sect. 2.1. While providing valuable insights
about system performance, the experiments also show how the benchmark oper-
ates with respect to metrics and measurements. We evaluate the reference imple-
mentations of both use cases with a focus on the first four scale factors discussed
in Sect. 2.2: XS, S, M, and L. We use two different compute clusters with nodes
of the following specs:

– Small node: 1 Intel Xeon CPU @ 2.10 GHz, 10 threads (virtualized) and
64 GB RAM

– Big node: 2 Intel Xeon CPUs @ 2.30 GHz, 72 threads and 768 GB RAM

As discussed in Sect. 2.1, we have two different reference implementations for
each use case: one based on pandas, scikit-learn, named Python and one based
on Apache Spark. The experiments are deployed on one node for Python and on
10 nodes for Apache Spark for both small and big node configurations. Fig. 1,
2, 3, 4, 5 and 6 show the results of these experiments for different scale factors.
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For each use case and scale factor, we generate three synthetic data sets: one for
training, one for serving, and one for scoring. We use the data sets for training
and serving for the throughput tests and the data set for scoring to measure
model quality. As discussed in Sect. 2.2, throughput in samples per second is the
main performance measure evaluated in the experiments. The trained models
have to adhere thresholds for model quality: For instance the F-Measure for
UC1 was above 0.8 and the AUC for UC2 was higher than 0.95. The other use
cases have similar quality thresholds.

We found that for the trip type classification (UC1), Spark had a higher
throughput during training, starting at a relatively low scale factor of 1 (see
Fig. 1, which approximately corresponds to 100,000 orders with an average of 10
line items per order, that is 1,000,000 line items in total. In case of the imple-
mentation based on pandas, scikit-learn, and XGBoost for UC1 approximately
half of the time is spent for pre-processing the data and the remaining half is
spent for the actual model training. Since the pre-processing includes joins and
pivotization, Spark is much better suited for this task and outperforms pandas
using more efficient join strategies. Another reason why Spark performs better
is XGBoost’s parallelization capabilities. Using Spark and hence all 10 nodes of
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the cluster also enables XGBoost to leverage the increased computational power,
i.e., distribute the training over all the nodes in the cluster. For the serving stage
of UC1, we observe similar results, yet the tipping point is at a much higher scale
factor. We conclude that serving an XGBoost model does not require much com-
putational power; hence as long as the data fits into memory, the Python based
implementation has higher throughput than Spark.

In contrast to UC1 where Spark outperforms a single node solution based
on pandas and XGBoost, we see that for UC2 the data size has to be increased
significantly before Spark outperforms the Python-based implementation (see
Fig. 2). We attribute this to the fact this use case is light on pre-processing.
Only when the data becomes too big to fit into memory a Spark cluster per-
forms better. For serving, we see the similar results as in UC1: a Spark cluster is
only reasonable for high volume and/or velocity. One interesting finding is that
the serving throughput of the Python implementation for UC2 decreases dras-
tically with an increasing model size, i.e., more training samples. This probably
is based on the fact that there are more support vectors and it can most likely
be compensated using a form of regularization.
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The experiments for UC3 (see Fig. 3) show a different characteristic. We can
see that the Holt-Winters implementation for Spark is performing better for the
training as well as for the serving stage. It can observed that with increasing scale
factor the serving throughput decreases for the Python-based implementation.
This is caused by memory pressure, which means that the more data is processed
the lower is the throughput. For UC4, the clustering use-case, illustrated in
Fig. 4, we see similar effects as for UC2. As long as the data can be handled in
memory on a single node the Python-based implementation is faster than the
Spark implementation. But the limit, in terms of throughput, is reached rather
fast and the Spark-based implementation is outperforming the Python-based
implementation between scale factor 100 and 1000, depending on the available
memory. Because the k-Means algorithm is highly parallelizable and the Spark
environment has access to ten times as many cores, we see a drastic increase of the
Spark implementation at bigger scale factors. Serving on the other hand does not
require a lot of compute resource and both implementation have not reached their
respective limits for scale factors up to 10000. In spam classification as in UC5
(see Fig. 5) neither implementation is reaching their throughput limit but for the
training the Spark-based implementation has much better scaling capabilities
than the Python-based one. The inverse is true for serving. The last use-case
UC6 is a recommendation use-case (see Fig. 6). It can be observed that with
a higher scale factor and hence a bigger user-item-rating matrix performance
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is suffering for the Python-based implementation during training and constant
during serving. Whereas the Spark-based implementation can make use of the
additional computational power and has not reached its throughput limit up to
scale factor L.

Since the main goal of this benchmark is to compare different ML systems for
complete pipelines, we introduce a combined benchmark metric: the ADABench
Metric – ADASps@SF – as defined in Sect. 2.2. This metric is given by the
geometric mean of all use case metrics, where each use case’s metric is the
geometric mean across the training and serving throughput. Using the geometric
mean weights the use cases and their phases equally and, therefore, is more stable
for diverse workloads. Figure 7 illustrates the ADABench Metric for our reference
implementation and test systems at the different scale factors.
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Fig. 7. ADABench Metric - combined metric of all stages and use case per systems
and scale factor (higher is better)

Given this metric, we see that a Spark-based implementation outperforms
the Python-based implementation at high scale factors, while the Python-based
implementation clearly dominates at smaller scale factors, with scale factor 100
being the tipping point.

In summary, we can see that our initial set of use cases already captures
a variety of performance characteristics. Some use cases rely heavily on pre-
processing the data before training a model, while others employ algorithms that
are computational more expensive. We can also see that our implementations
in Python and Spark behave differently in scaling. In general, Python is more
efficient for smaller scale factors, while Spark outperforms Python when data
sets do not fit in memory. It has to be noted that in all experiments, Spark has
10 times more hardware resources than Python.

4 Related Work

In this section, we give an overview on benchmarking in the ML space in the
past and previous approaches in benchmarking ML systems. We discuss popular
benchmarks, their focus and metrics, and identify strengths and weaknesses.
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In general, the current benchmarking landscape can be divided into three dis-
tinct types of benchmarks [18]: Component-level benchmarks test and compare
only a single component of a system or application. They could, for example, run
a specific operation of an application on different processors. Component bench-
marks are interesting to the developers of the component under study (CUS)
or to select the best instance of the CUS. We found that most of the cur-
rent component-level benchmarks are hardware benchmarks in essence, which
compare different hardware components in terms of training or inference perfor-
mance. A typical component-level benchmark is DeepBench [24]. System-level
benchmarks tests and compares complete ML systems. Typically, they cover set
of different use cases in their workload and the metrics measure performance
over a set of executions. Algorithmic competitions such as the Netflix Prize [5]
or the ImageNet competition [19] compare different algorithms or models on a
constrained problem. Recent work acknowledges that data preparation time is a
major bottleneck for many ML applications and discusses a repository of related
tasks to foster research in this area [34].

BigDataBench [16] is a benchmark with 13 representative real-world data
sets and more than 40 workloads that can be characterized in five different
domains: search engines, social networks, e-commerce, multimedia processing
and bioinformatics. Moreover, the workloads have a varied data sources and cover
diverse applications scenarios, including search engines, e-commerce, relational
data queries, basic datastore operations (OLTP), and artificial intelligence (AI).
It also uses two types of metrics: user-perceivable metrics, which are simple and
easy to understand by non-expert users, and architectural metrics, which provide
details targeted for architecture research. It can be categorized as a system-level
benchmark. Unlike ADABench, BigDataBench does not include dedicated end-
to-end scenarios.

AdBench [6] is a proposal system-level end-to-end benchmark with workloads
that are representative of web and mobile advertising. The patterns exhibited by
workloads are often seen in workloads from other sectors, such as financial ser-
vices, retail, and healthcare. The benchmark combines workloads for ad-serving,
streaming analytics, streaming ingestion, ML for ad targeting, and other big
data analytics tasks. In addition, AdBench introduces a set of metrics to be
measured for each stage of the data pipeline and scale factors of the benchmark.
Unfortunately, there is no official implementation or complete specification of
AdBench available.

BigBench [12,17,29] was developed can be seen as a basis for ADABench.
Its strengths are that it is inspired by real-world use cases as well as its ease
to use. A major drawback as far as a ML-specific benchmarking is concerned is
its focus on traditional data analytics. BigBench only contains a small number
of machine learning-related queries and features no metrics to compare different
ML implementations.

DawnBench [14] as well as its industry-backed successor MLPerf [1] are
benchmarking deep learning systems in terms of training time. The main contri-
bution of DawnBench, and MLPerf consequently, is the novel time-to-accuracy
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metric. They are a hybrid between a system-level benchmark and an algorithmic
competition. Both consists of a set of different and well-studied ML challenges,
such as image classification, machine translation, sentiment analysis. There are
many more benchmarks or benchmark attempts that are leveraging already exist-
ing competitions or challenges, e.g., convnet-benchmarks10 or MLBench[21], but
to the best of our knowledge, ADABench is the only end-to-end ML benchmark
proposal.

Several studies have researched the performance characteristics of ML algo-
rithms and workloads on specific systems. In contrast to these, we study end-to-
end performance. However, we benefit from the insights of these studies and, for
example, provide single- and multi-node implementations as proposed by Boden
et al. [7,8].

5 Conclusion

In this paper, we present our vision towards an industry standard benchmark
for end-to-end machine learning. Our benchmark, ADABench, is comprised of
complete machine learning use cases, which include data preparation and pre-
processing, model training and tuning, as well as model serving. We use up-
to-date market research to identify most relevant scenarios, and create novel
machine learning pipelines for those. As an initial step, we have implemented
four use cases in a Python (pandas, scikit-learn) and a Spark environment. Our
evaluations show the different trade-offs in terms of performance based on data
size, choice of environment, and complexity. We are currently implementing fur-
ther use cases, also using deep neural networks. We will continue with the devel-
opment of our benchmark with the goal of a wide coverage of machine learning
technology and use cases along the dimensions identified by market research as
most relevant, and aim to establish this proposal as a standard.
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Abstract. Big data tends to concentrate on the data volume and vari-
ety which requires large cluster capabilities to process diverse and het-
erogeneous data. Currently, NoSQL/Hadoop-based cluster frameworks
are known to excel at handling this form of data by scaling across nodes
and distributed query processing. But for certain data sizes, relational
databases can also support these workloads. In this paper, we support
this claim over a popular relational database engine, Microsoft* SQL
Server* 2019 (pre-release candidate) using a big data benchmark, Big-
Bench. Our work in this paper is the industry first case study that runs
BigBench on a single node environment powered by IntelR© XeonTM pro-
cessor 8164 product family and enterprise-class IntelR© SSDs. We make
the following two contributions: (1) present response times of all 30 Big-
Bench queries when run sequentially to showcase the advanced analytics
and machine learning capabilities integrated within SQL Server 2019,
and (2) present results from data scalability experiments over two scale
factors (1 TB, 3 TB) to understand the impact of increase in data size
on query runtimes. We further characterize a subset of queries to under-
stand their resource consumption requirements (CPU/IO/memory) on
a single node system. We will conclude by correlating our initial engi-
neering study to similar research studies on cluster-based configurations
providing a further hint to the potential of relational databases to run
reasonably scaled big-data workloads.

Keywords: TPCx-BB · Microsoft* SQL Server* 2019 · Big data ·
BigBench · Machine learning · Natural language processing

1 Introduction

With the popularity of Big Data, organizations are continuously confronted with
the challenge of storing, processing and analyzing diverse, complex form of data
(structured, semi-structured, and un-structured) with relatively limited stor-
age and computation power of traditional tools and processes when compared
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to cluster-based configurations. There are currently two alternatives to handle
analysis over this form of data: (a) scale-up (adding CPU power, memory to
a single machine), (b) scale-out (adding more machines in the system creat-
ing a cluster). Several commercial and open-source systems have emerged over
the past several years as a scale-out solution to handle this data form [25–30].
Additionally, researchers from different communities including data management,
machine learning, systems and computer architecture are also continuously work-
ing towards proposing innovative approaches to manage big-data workloads [31–
35].

On one hand, having a variety of solutions is an advantage, for the flexibility
they offer big data users in making a choice for the solution that best fits their
needs; on the other hand, it also presents the challenge of assessing the func-
tionality and performance of different systems and having a comparative view
to even arrive at a decision. Benchmarking is a standard process embraced by
organizations and researchers for measuring and demonstrating performance of
their products. Additionally, it helps to identify the potential areas for perfor-
mance optimizations, drive engineering efforts, and through this process, provide
insights into the requirements for the next version of product/system under test.

Several big data benchmarks have been proposed recently out of which
BigBench is considered as the first end-to-end solution designed to evaluate
entire systems [5,6,10]. There exists another category of benchmarks called
microbenchmarks. They are designed to evaluate specific system components or
features of Big Data solutions For example, NNBench [8] tests the performance
of NameNode component in HDFS, Terasort [9] is another benchmark used to
evaluate performance of MapReduce framework by measuring the amount of
time it takes to sort one terabyte of randomly distributed data. Similarly, there
are several other active efforts in the benchmarking community that are mainly
targeted at evaluating specific components [5,6].

Han et al. [6] present a survey of open-source big data benchmarks. The
authors classify the surveyed benchmarks across four different dimensions: (1)
types of big data systems they serve (Hadoop-based, DMBSs/NOSQL data
stores, and specialized systems which require processing on particular data types
such as graphs, streaming data), (2) workload generation techniques, (3) input
data generation techniques, and (4) performance metrics. In another literature
study, Ivanov et al. [5] provide a summary of big data benchmarks discussing
their characteristics and pros and cons. Ghazal et al. [7] highlight three spe-
cific areas that make BigBench unique when compared to the other big data
benchmarks. Along with those three attributes (technology-agnostic, end-to-
end benchmark as opposed to a microbenchmark, coverage of the workload to
address variety aspect of big data), one other aspect that distinguishes BigBench
from other big data benchmarks is that it has been endorsed and adopted by
a standardized benchmark committee, TPC* (Transaction Processing Perfor-
mance Council).

*Other names and brands may be claimed as property of others
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In the database world, TPC is the organization that is responsible for defin-
ing, publishing, auditing, and maintaining database benchmarks. TPCx-BB*
was originally created in 2016 to showcase Hadoop style big-data analytics clus-
ter Scale Out scenarios. It is based on a scientific proposal, BigBench, which
was later adopted by TPC as an industry-standard benchmark [42]. The mostly
read query mix and data consistency guidelines make it very friendly to scale-
out Hadoop style implementations. It is unique compared to other influential
database benchmarks defined by TPC in two ways. First, the other benchmarks
such as TPC-H*, TPC-DS* are pure SQL benchmarks while TPCx-BB includes
additional processing paradigms (machine learning and natural language pro-
cessing) and data formats (unstructured and semi-structured) which emulates
the text of user product reviews and web clickstream logs for an e-commerce site.
BigBench uses this data for a number of machine learning and natural language
processing queries to mine the reviews for interesting artifacts, data classifica-
tion and clustering. Second, TPCxBB is an express benchmark which means
that it not only comes with a specification document listing functional require-
ments, but also offers a ready to use executable kit that can be quickly deployed
and used for benchmarking [24]. The original implementation of BigBench uses
Hadoop and Hive [15].

Since its adoption by TPC, several organizations have published results of
their studies using this benchmark to demonstrate competitiveness of their prod-
ucts in the big data market [10–13,19]. However, all of these contributions
address a cluster-based configuration with data processing split across multi-
ple nodes. The original TPCx-BB implementation provided on the TPC site
also uses Hadoop-based framework and processing engine, Hive that requires a
cluster setup. Rabl et al. [43] provide a proof of concept of running 30 BigBench
queries on a Teradata Aster Database which executes queries using SQL-MR
(Map Reduce) interface. The tests were conducted on a 8 node cluster.

Certain database use cases such as those emulated by TPCx-BB/BigBench
with limited data sharing dependencies are amenable to scale-out and achieve
performance benefits by parallelizing over a cluster of [typically cheaper] servers
working together to process “large” to “enormous” databases. This is in contrast
to traditional OLAP benchmarks like TPC-H which feature more data sharing
dependencies and showcase the scale up potential of a single [typically more
expensive] server being able efficiently process “medium” to “large” databases.
The definition of “medium”, “large”, and “enormous” datasets is quite sub-
jective and changes over time leaving a fair amount of overlap between use
cases designed for scale-out via Hadoop type design and scale-up via traditional
database design. With the advancements in hardware technologies and how the
database performance is heavily influenced by the underlying resources available
to it, we investigate the potential of running BigBench on a single node platform
as opposed to a cluster-based configuration.

We present our preliminary results from running BigBench on a system pow-
ered by Intel technologies and a relational database engine, Microsoft* SQL
Server* 2019 (pre-release). The goal is to demonstrate advanced analytics capa-
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bilities and performance of SQL Server* 2019 and reinforce the position that
scale-up remains an option for an important subset of database sizes. We make
the following two contributions:

1. We present the results of running all 30 BigBench queries over a relational
database engine and a single node configuration powered by Intel technologies.
It serves to illustrate the functional capabilities of Microsoft* SQL Server*
engine for processing queries that go beyond pure relational, SQL paradigm.

2. We present our preliminary results from experiments designed to understand
the impact of increase in input dataset size on query runtime. We analyze
the results across 1 TB and 3 TB. We further analyze the runtime behavior
of a subset of queries over 3 TB to understand their resource consumption
requirements (CPU/IO/memory) on a single node system.

It is important to note that we do not reference any official TPCx-BB bench-
mark metrics and our results only include query execution times since official
metrics reporting is only permitted in TPC-audited results.

The remainder of this paper is organized as follows. Section 2 covers the
necessary background concepts including Microsoft* SQL Server* 2019 advanced
features that make it amenable to big data workloads such as BigBench and an
overview of BigBench data model and queries. We discuss our single node based
experimental setup in Sect. 3 with our results in Sect. 4. Section 5 presents the
work related to big data benchmarking and compares our initial results with
existing academic studies that have all been over cluster-based environment.
Finally, Sect. 6 summarizes the paper with ideas for future work.

2 Background Concepts

In this section, we first present concepts that are important to understand the
terms referenced later in the paper. These include (1) Microsoft SQL Server
2019 Extensibility Framework which enables execution of machine learning and
natural language processing algorithms from within SQL Server, and (2) an
overview of TPCxBB data model and queries.

Microsoft SQL Server Extensibility Framework. Using machine learning
libraries to build prediction and forecasting models and perform statistical oper-
ations is a common scenario these days and R and Python are the two most
popular languages used for machine learning. However, there are two inherent
challenges while processing data using R/Python libraries: (1) complete data
needs to be loaded in memory before any computation can be performed, (2)
data needs to be available/moved to the server where R/Python runtimes are
installed. Microsoft alleviates these issues for the data resident in SQL Server
by introducing external, machine learning execution engines (R/Python) and
libraries as a part of SQL Server offering. This feature is called machine learning
extensibility framework and gives user the ability to execute code in an external
runtime engine without leaving SQL Server environment.
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Fig. 1. Architecture Diagram for Microsoft* SQL Server* Third Party (Java) Exten-
sibility Framework [38]

Starting with SQL Server* 2016, Microsoft introduced extensibility frame-
work as an add-on to the core database engine thus allowing execution of machine
learning algorithms implemented in R from within SQL Server*. Microsoft’s
implementations of machine learning algorithms (RevoScaleR library) allows
processing of datasets that may not completely fit in memory [39]. BigBench
includes five machine learning queries (5, 20, 25, 26, 28) covering clustering, logis-
tic regression, and classification. SQL Server* 2019 added support for yet another
external runtime engine, Java, to the extensibility framework that now allows
the user to run pre-compiled Java code fully integrated within core database
query execution [40]. BigBench workload includes four queries (10, 18, 19, 27)
which require the use of open-source java libraries. Having built-in support for
java extensions and machine learning algorithms within SQL Server allows effi-
cient execution and use of those libraries for benchmarking SQL Server database
system using the bigbench workload.

Figure 1 shows the architecture for extensibility framework (specifically
Java). Machine learning algorithms in R or Python also uses similar frame-
work with a few differences explained as follows. There are essentially three
major components that are involved in execution of R, Python, or Java code
from within SQL Server. These include Launchpad, external runtime process,
and SqlSatellite. The data exchange between SQL Server and external runtime
is managed by SqlSatellite. A call to an external runtime process from SQL
Server is initiated using a built-in stored procedure sp execute external script
provided by SQL Server. It initiates Launchpad which is a service that comes
in packaged within SQL Server when we choose to include Machine Learning
services with it. The launchpad service further starts a launcher dll which is
either RLauncher.dll, PythonLauncher.dll, commonlauncher.dll depending on
the external runtime user wishes to invoke. Microsoft allows only trusted launch-
ers which are either published or certified by Microsoft. This constraint serves
two purposes. First, the trusted launchers are guaranteed to meet performance
and resource management requirements established by SQL Server. Second, the
policy ensures security of the data residing in SQL Server. Although the exter-
nal runtime executes in a separate process from SQL Server, but it is a part
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of the SQL server framework which facilitates data access and operations on
the server. In case of external code based on Java, commonlauncher.dll initiates
and manages a process ExtHost which performs two functions: (1) uses sqlsatel-
lite for communication and providing data/scripts to the extension code from
SQL Server, (2) hosts another module, Language Extension which loads and
communicates with JVM/Java-based user code.

A query in SQL Server that uses this extensibility framework and parallel
execution mode may result in a large number of concurrent external processes
being provisioned to facilitate parallelism and satisfy the query plan. We present
two BigBench queries in appendix to highlight SQL Server* capabilities around
both machine learning and natural language processing queries.

BigBench Workload. BigBench is the scientific research proposal which was
later adopted by TPC to define an end-to-end, express benchmark, TPCx-BB.
It is end-to-end because it is designed to evaluate performance of complete sys-
tem as opposed to specific components or features of system under test. The
benchmark models a fictitious retailer company selling products to customers
via both physical and online stores. Twenty queries out of thirty in the workload
address big data uses cases defined in McKinsey report [16] and the remaining
ten queries are based on another decision-support benchmark defined by TPC,
known as TPC-DS [10,14].

In our experiments, we demonstrate results of 30 BigBench queries when
run sequentially with a single query running at any given point in time. This
portion of the benchmark is called “power run”. We capture data across two scale
factors: 1000 and 3000 ( 1 TB and 3 TB). We collect each query’s start, end,
and execution times, and data on the resource utilization for the complete run of
thirty queries using Microsoft Windows Performance Tool, perfmon [17]. These
two datasets (perfmon and query runtime information) when analyzed together
allows us to identify performance of each query over the complete duration of
the run.

3 Experimental Setup

In this section, we describe the system setup that we used for running our exper-
iments.
Hardware: We use a single node system running Windows Server 2016 Datacenter
with a pre-release candidate of Microsoft SQL Server 2019 (CTP 2.4) installed
as the database engine. The system is equipped with a 4-socket Intel R© XeonTM

Platinum 8164 processor (2 GHz), each with 26 physical cores (total 104 cores),
3 TB main memory (48 DIMMs of 64 GB each, Frequency: 2400 MHz), and
up to 40 TB of storage powered by Intel R© SSDs. We believe that the current
setup can be further tuned and there is potential for additional performance
gains even with the current experiments. This paper focuses on presenting our
initial results with the goal of showcasing the potential of scale-up configurations
for big data workloads.
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Our storage configuration is as follows. We have two storage bays with each
bay populated with 24 Intel R© SSD drives. The configuration is shown in Table 1.
For each bay, we created RAID0 across 7 × 800 GB Intel R© SSD drives for storing
database files (10 TB total storage for database data files) and followed same
configuration for tempdb drives (10 TB total storage for tempdb files). TempDB
is configured and placed on separate drives from the database files (mdf) to
isolate any the impact of any spills that may occur during query execution and
RAID0 ensures good performance. At query runtime, data is read in parallel
from the two data drives. Logical drives for storing raw data (flat files)were
created using 6 × 800 GB Intel R© SSD drives resulting in 4.36 TB storage on
each storage bay. The remaining 4 SSDs of 1.5TB each were used to storage
backup files. Lastly, for SQL log files, we included a single 800 GB Intel R© SSD.

Table 1. Storage configuration details per storage bay

File type SSD details # of files per file type

Datafiles/Tempdb files/Flat files/Log IntelR© SSD DC S3700 (800 GB) 7/7/6/1

Backup files IntelR© SSD DC S3500 (1.6 TB) 4

Software. We enabled following two features for SQL Server: lock pages in mem-
ory and large pages (-T834 flag). Using large pages allows SQL Server to allocate
allowed memory capacity at the time of startup and leverage CPU support for
large virtual memory pages. The amount of memory allocated by SQL Server is
equal to the minimum of ’max server memory’ and physical memory available
on the system. We set the max server memory to 2.4 TB for our experiments
leaving 6̃00 GB for other processes running on the system and execution of
machine learning services from within SQL Server [41]. This practice improves
query runtime since any memory required by a SQL query at runtime is not
dynamically allocated from OS and initialized at the time of execution, but is
readily available for use.

In terms of the available memory for query execution, we configured memory
grant % in resource governor settings in SQL Server, setting it to 75% [22]. This
ensures that each individual query can get maximum of 75% of the available
memory to SQL Server instance.

4 Results

In this section, we present our results from running TPCxBB workload over two
different scale factors: 1000, 3000. The experiments were conducted using the
schema and query implementations that were specifically developed to run Big-
Bench on SQL Server. Since the original implementation of BigBench supports
Hive on MapReduce, queries had to be translated to enable running them on a
relational engine, SQL Server in our case. We first present our data scalability
experiments to understand the trends in query response times with increase in
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dataset size. Next, we discuss hardware resource utilization for a subset of queries
which stresses different categories of resources. The methodology we followed for
collecting data for each scale factor is a restart of SQL server in order to clear the
buffer pool, followed by running all 30 queries sequentially in ascending order.
Table 2 shows contribution of each query group (Pure SQL, ML, NLP) to the
total runtime for 30 queries.

Table 2. Query runtimes %
per query group vs. scale
factor (ML and NLP queries
scale better than SQL)

Group 1TB 3TB
NLP 63.89 41.90
ML 6.16 3.08
SQL 29.95 55.02

In terms of the total elapsed time for the com-
plete run, 1 TB took 11,712 s (1̃95 min) while it
took 44,376 s(7̃39 min) with a 3 TB scale factor.
Baru et al. [10] present results from running Big-
Bench on a 6-node Cloudera cluster (20 cores and
128 GB main memory per node) with Hive/MapRe-
duce framework. The 30 queries run in sequential
order on their configuration took more than 1200
min. They also conducted similar study on a larger
cluster with 544 nodes (12 cores and 48 GB main
memory per node) and it took more than 200 min
to run all 30 queries. Our experiments were run on a
single node with lesser number of cores compared to
each of these cluster setups, yet finishes in less time. One of the reasons for this
performance gain can be attributed to the foundational schema-based nature
of relational databases. In Hadoop based systems, data is directly loaded onto
HDFS in raw format without assigning any particular structure to it. While this
often results in faster data load times, eventually the cost manifests at the query
runtime since the data needs to be parsed to be able to pull only the required
information.

In another study conducted in Frankfurt Big Data Lab [18], researchers used
BigBench on a 4 node cluster with a total of 30 cores/60 threads and 128 GB
total memory and using Hive/MapReduce as the execution framework. Absolute
runtimes of all 30 queries were reported showing how a single query (query 4) by
itself took more than 900 min. While our results can not be directly compared
to the 4-node cluster setup because of the difference in hardware configurations,
it still points to the potential of scale up configurations to run reasonably sized
big data workloads.

The other important point to note in Table 2 is how SQL queries dominate the
overall query runtime with increase in scale factor. We elaborate on this behavior
in the discussion around scalability experiments for specific query groups.

Data Scalability for ML Queries. While Table 2 presents a high-level pic-
ture, next we focus on specific queries and organize our results per query group.
Figure 2 shows the scaling behavior of all 30 queries over scale factors: 1000
and 3000. In this section, we focus on five machine learning queries (5, 20, 25,
26, 28). These queries cover clustering (20, 25, 26), regression and classifica-
tion (5, 28). All the five queries scale well (up to 2x) with overall 3x increase
in data size. While additional data from higher scale factors such as 10 and
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30 TB are required to validate the trend further, the current performance we
are observing can be attributed to following two areas within SQL Server: (1)
the distributed and parallel computation of machine learning algorithms based
on Microsoft implementations of these algorithms (RevoScaleR library) and the
data exchange model used between SQL Server and Machine Learning engine.
(2) multi-threaded execution of SQL queries which read and join data from the
database tables to prepare input data for ML algorithms used later in the query.

Data Scalability for NLP Queries. In this section, we focus on the scaling
behavior of natural language processing queries (10, 18, 19, 27) over scale factors:
1000 and 3000 in Fig. 2. Except query 18, rest three queries all scale linearly
or even better with increase in scale factor. This seems to be an artifact of the
amount of data that is actually passed to the java extensions framework for
running the underlying pre-compiled Java code for negative sentiment analysis
required in this query. Query 18 uses a set of SQL operators including joins,
scans, and filters to prepare the data for sentiment analysis using Java and
that input data shows 6× increase (4,013,405 vs. 24,634,495 rows) between
scale factors 1000 and 3000. In this context, the query did scale well (4̃× for
6̃× increase in data size). In our current set of experiments for NLP queries,
we restricted parallelism and used lesser number of cores than available on the
system and we plan to investigate this further to seek further optimizations.

Fig. 2. Scalability of BigBench queries with increase in scale factor

Data Scalability for Pure SQL Queries. Having discussed NLP and ML
queries, we now discuss scalability trends for SQL queries. Queries 3, 4, 8, 12,
and 30 appear as the worst scaling queries among the 21 SQL queries. For query
8, even though the runtime increased by 6× from 1 TB to 3 TB, the absolute
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runtimes are relatively small (11.89 s for 1 TB and 77.87 s for 3 TB). Similarly
query 12 takes 4× time to finish with 3x increase in data size. But again,
the absolute run times are quite short (4.95/22.27 s). We will elaborate on the
remaining three queries (3, 4, 30) and query 2 which seems to be scaling well.
Figure 5 offers an insight into query characteristics for 3, 4 and 30.

Query 3 shows a 7× increase in runtime with only 3x increase in data size.
This query reads data from one of the largest tables, web clickstreams. On ana-
lyzing resource utilization pattern from performance monitor, the query consis-
tently shows high CPU utilization ( 95%) over both scale factors with minimal
disk activity. This points to the fact that running it on a system with even
higher number of cores would potentially yield performance gains unless it is
busy waiting, i.e. spinning. We plan to investigate this behavior further.

Query 4 is memory bound with spills to tempdb at both 1 TB and 3 TB
scale factors. The memory grant information from query plans also shows the
memory pressure observed during this query. The maximum available memory
for any query based on our current settings is 1.3 TB where as query 4 desires
7 TB memory for 1 TB scale factor and it needs 22 TB for 3 TB. The CPU
utilization for this query decreased from 37% on average on 1 TB to 21% on
3 TB, and Figures 3 and 4 show the reason behind this drop in utilization. It
is either during the time period where query was writing to Tempdb or during
a phase where there is no Tempdb activity but utilization is still low. This is
coming from few single-threaded operations including stream aggregate. The
high memory capacity requirement highlighted here captures the characteristic
of the query as opposed to bottlenecks in underlying hardware or SQL Server
processing model.

Query 30 shows similar resource utilization behavior as query 4. There is a
drop in CPU utilization because of the increased I/O activity with Tempdb at
3 TB.

Fig. 3. CPU Utilization for query 4 on 3 TB scale factor (Low average utilization: 21%)
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Fig. 4. TempDB write activity over 3 TB for query 4 - Disk Write Bytes/sec (overlaps
with few areas of low CPU utilization from Figure 3)

While queries 3, 4, and 30 offer scope for further tuning for performance opti-
mizations, there are also queries which showed positive scaling behavior (queries
2, 11, 15, 22). Queries 11, 15, 22 do not show much variation in their run times
with the increase in data size. The runtime for query 2 is increased by 2.5× (101
vs. 259 s) while the input datasize went up three times. Analyzing the resource
consumption for this query, we observe that the CPU utilization increased from
21% on average on 1 TB to 34% on average on 3 TB, highlighting the perfor-
mance benefit gained from a system with high number of cores. However, there
is also disk activity coming from spills to Tempdb (16 GB on 1 TB vs. 82 GB
on 3 TB) that is impacting query runtime. But overall, query 2 does scale well.

This concludes our discussion on query behavior and performance over two
different scale factors. While most of the queries scale well, we do identify few
queries (3, 4, 30) that may have additional opportunities for optimization. In
addition, running experiments over higher scale factor such as 10 TB might help
in highlighting those areas as well.

5 Related Work

Given that BigBench is designed for evaluating big data systems, our survey
of existing contributions is directed along the following dimensions: (1) identify
related studies conducted on big data systems and which benchmarks did they
employ for benchmarking, (2) identify studies focused on BigBench, and (3)
performance studies focused on single node SQL Server and the benchmarks
that were employed for those studies.

For the first case, there exists several contributions that focus on evalu-
ating and comparing various SQL-on-Hadoop systems and many of them use
either TPC-H, TPC-DS inspired benchmarks [1–3,36], or microbenchmarks as
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Fig. 5. Processor/Disk Characteristics of worst scaling SQL queries - 3, 4, 30

described in Sect. 1 [5,6,8,9]. Floratou et al. [1] study the performance differ-
ences of two SQL engines - Hive and Impala against data stored in Hadoop
using TPC-H and TPC-DS based workloads. Chen et al. [3] present a perfor-
mance evaluation of five SQL-on-Hadoop solutions using a subset of TPC-DS
queries. Similarly, Poggi et al. [2] present results of a performance study charac-
terizing SQL-on-Hadoop solutions provided by four major cloud providers using
TPC-H.

All of these contributions study big data systems but none of them uses
BigBench which includes a broader set of processing paradigms (machine learn-
ing, natural language processing) and variety of data formats including semi-
structured (web-clickstreams) and unstructured data (product reviews) data.
Also, BigBench has support for up to petabyte scale databases while TPC-H or
TPC-DS are limited to 100 TB. The current publications of TPC-H/DS concen-
trate primarily on 10 TB databases while for BigBench we have a result with
30 TB of data as well [19,37].

Next, we summarize few research studies that have used BigBench over dif-
ferent frameworks to evaluate performance of hardware and software components
of their systems. In a recent study in 2017, Poggi et al. [11] complemented their
prior work by looking at BigBench to characterize Spark and Hive performance
across different PaaS (Platform-as-a-Service) offerings. There have been few stud-
ies and official submissions at TPC that employ BigBench to analyze and compare
performance of Big Data offerings [18,19]. But all of these evaluations are over
cluster-based environments. We are not aware of any studies that have explored
BigBench on a single node configuration and a relational database engine such
as Microsoft* SQL Server*. Wang et al. [12] share results on running BigBench
on a 9-node Cloudera cluster. Their experiments are designed to understand the
impact of core and disk scaling and tuning CPU frequency on query response time.
While we are yet to do similar studies, our preliminary results show how queries
2, 4, and 30 are impacted by disk bandwith since we observe spills to Tempdb for
each of these queries (primarily queries 4 and 30). Cao et al. [13] present results
over a cluster-based configuration (two cluster setups - 9 node, 60 node) running
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BigBench for Hive over MapReduce. Complete run of 30 queries on their 9-node
cluster (total of 216 cores and 2.2 TB memory) takes 34,076 s while 3 TB run on
our system takes 44,376 s. Now, we do observe optimization opportunities which
if implemented can improve the total runtime and the core count on the cluster
setup is almost double of what we have on our system. The paper does not show
individual query times which would have enabled us to compare each query’s per-
formance. CPU intensive queries siuch as query 3 would significantly benefit from
higher number of cores. Baru et al. [10] looked at 1 TB scale factor over a 6-node
cluster configuration with a total of 120 cores and 768 GB main memory but their
total runtime is still much higher than our system. Authors have mentioned that
it is raw, out-of-the-box performance and the runtimes could potentially improve
with tuning. The study done by Ivanov et al. [18] presents detailed analysis and
results on running BigBench over a 4-node cluster using Hive and Spark frame-
works and across multiple scale factors. Given that the configuration had a total
of 128 GB memory for the 1 TB BigBench scale factor, it is not practical to com-
pare their runtimes with our results. The authors also present resource utilization
of a subset of queries and it would be worthwhile to study it and identify if there
are any insights that can be gained about the core characteristics of the workload
from it.

On our third survey dimension identifying contributions which have looked
at benchmarking single node SQL Server*, the evaluations have been based on
TPC-H or TPC-DS [4,20,21,37]. Our work is the first attempt to measure and
demonstrate performance of Microsoft* SQL Server* 2019 (pre release) on the
Intel R© XeonTM processor 8164 product family using BigBench as the workload.

6 Conclusions and Future Work

This paper presents our experiences and initial experiments using BigBench on a
single node configuration powered by Intel technologies and a relational database
system, Microsoft* SQL Server*. Our initial results on 1 and 3 TB data sizes
demonstrate advanced capabilities of Microsoft SQL Server 2019 (pre-release
candidate) to handle heterogeneous and volume aspects of big data and how
even a single-node, relational database configuration can scale up to big data
workloads.

Given that this paper is an early study, there exists several avenues for future
research. Firstly, collecting and analyzing performance over higher scale factors
which are even more representative of the data volume aspect in big data is
an ongoing study. Secondly, profiling the benchmark to assess sensitivities of
BigBench queries to the number of cores, core frequency, memory, and storage
in a single node environment is another promising direction. There are similar
studies done over cluster-based environments. Combined with the existing stud-
ies on cluster-based configurations, these results can be used by practitioners
to compare the query resource requirements and processing methodology in a
single vs. multi-node configuration, and thus understand the impact of these dif-
ferent architectures on the performance of big data workloads. Also, it would be
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important to identify optimal platform configuration settings since the current
configuration may have been overconfigured for the scale factors considered in
this study. Another interesting direction would be to expand analysis to address
multiple concurrent streams. Richins et al. [23] have done a comprehensive anal-
ysis using BigBench on a cluster-based configuration. The authors have identified
thread level parallelism as a major bottleneck. It would be worthwhile to investi-
gate if similar behaviour shows up on single-node setup as well and drive further
analysis based on the results.
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Appendix

In this section we present two BigBench queries (10, 20) to highlight SQL Server
capabilities towards implementing queries that use machine learning algorithms
and third-party libraries such as Java. Query 10 is a sentiment analysis query
that uses java libraries and query 20 employs a k-means clustering algorithm in
machine learning. While we used SQL Server* CTP 2.4 version for our experi-
ments, the code shown here is based on the latest CTP 3.0 version to highlight
the latest feature implementations supported by Microsoft at the time of writing
of this paper [40].

Query 10 - Using Java based libraries and user code

/*

Query description

For all products, extract sentences from its product reviews that

contain positive or negative sentiment and display for each item the

sentiment polarity of the extracted sentences (POS OR NEG) and the

sentence and word in sentence leading to this classification*/

CREATE OR ALTER PROCEDURE [dbo].[query10] @param1 nvarchar(20), @param2

nvarchar(15) , @param3 bigint, @param4 nvarchar(50), @param5

nvarchar(20), @query nvarchar(400)

AS

BEGIN

-- Saving query results in a table

drop table if exists Q10Results;

Create table Q10Results
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(

itemid bigint

,sentence varchar(4000)

,sentiment varchar(3)

,token varchar(20)

)

--The method invoked in the Java code is always the "execute" method

EXEC sp_execute_external_script

@language = N’Java’

, @script = N’Query10.SentimentAnalysis’

, @input_data_1 = @query

, @params = N’@tablename nvarchar(20), @serverInstanceName nvarchar(15)

, @port bigint, @modelsParentFolder nvarchar(50), @databaseName

nvarchar(20)’

, @tablename = @param1

, @serverInstanceName = @param2

, @port= @param3

, @modelsParentFolder= @param4

, @databaseName= @param5

with result sets ((itemsk bigint, sentence varchar(4000), sentiment

varchar(3), word varchar(20)));

END

GO

--Now execute the above stored procedure and provide the input

parameters and an input query

EXECUTE [dbo].[query10] N’Q10Results’, N’SQL2019CTP3’, 11212,

N’C:\NLPSQLCTP25’, N’TPCxBB_1GB_2019’, N’SELECT pr_item_sk,

pr_review_content FROM product_reviews option(maxdop 20)’

GO

END

Query 20 - Using machine learning k-means algorithm

DROP PROCEDURE IF EXISTS [q20_create_customer_return_clusters]

GO

CREATE PROCEDURE [dbo].[q20_create_customer_return_clusters]

AS

/*

This procedure uses R to classify customers into different groups based

on their purchase & return history.

Query description

Customer segmentation for return analysis: Customers are separated along

the following dimensions: return frequency, return order ratio

(total number of orders partially or fully returned versus the total

number of orders), return item ratio (total number of items returned

versus the number of items purchased), return amount ration (total

monetary amount of items returned versus the amount purchased),
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return order ratio. Consider the store returns during a given year

for the computation. */

BEGIN

DECLARE @model_generation_duration float

, @predict_duration float

, @instance_name nvarchar(100) = @@SERVERNAME

, @database_name nvarchar(128) = DB_NAME()

-- Input query to geenerate the purchase history & return metrics

, @input_query nvarchar(max) = N’

SELECT

ss_customer_sk AS customer,

ROUND(COALESCE(returns_count / NULLIF(1.0*orders_count, 0), 0), 7) AS

orderRatio,

ROUND(COALESCE(returns_items / NULLIF(1.0*orders_items, 0), 0), 7) AS

itemsRatio,

ROUND(COALESCE(returns_money / NULLIF(1.0*orders_money, 0), 0), 7) AS

monetaryRatio,

COALESCE(returns_count, 0) AS frequency

FROM

(

SELECT

ss_customer_sk,

-- return order ratio

COUNT_BIG(DISTINCT ss_ticket_number) AS orders_count,

-- return ss_item_sk ratio

COUNT_BIG(ss_item_sk) AS orders_items,

-- return monetary amount ratio

SUM( ss_net_paid ) AS orders_money

FROM store_sales s

GROUP BY ss_customer_sk

) orders

LEFT OUTER JOIN

(

SELECT

sr_customer_sk,

-- return order ratio

COUNT_BIG(DISTINCT sr_ticket_number) as returns_count,

-- return ss_item_sk ratio

COUNT_BIG(sr_item_sk) as returns_items,

-- return monetary amount ratio

SUM( sr_return_amt ) AS returns_money

FROM store_returns

GROUP BY sr_customer_sk

) returned ON ss_customer_sk=sr_customer_sk

’

EXECUTE sp_execute_external_script

@language = N’R’
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, @script = N’

# Define the connection string

connStr <- paste("Driver=SQL Server;Server=", instance_name,

";Database=", database_name, ";Trusted_Connection=true;", sep="");

cc <- RxInSqlServer(connectionString=connStr)

rxSetComputeContext(cc)

customer_returns <- RxSqlServerData(sqlQuery = input_query, colClasses =

c(customer = "numeric", orderRatio = "numeric",

itemsRatio = "numeric", monetaryRatio =

"numeric", frequency =

"numeric"),connectionString =

connStr);

# Output table to hold the customer group mappings

return_cluster = RxSqlServerData(table = "customer_return_clusters",

connectionString = connStr);

# set.seed for random number generator for predictability

set.seed(10);

# generate clusters using rxKmeans and output key / cluster to a table

model_generation_duration <- system.time(clust <- rxKmeans( ~ orderRatio

+ itemsRatio + monetaryRatio + frequency, customer_returns,

numClusters = 10

, outFile = return_cluster, outColName = "cluster",

extraVarsToWrite = c("customer"), overwrite =

TRUE))[3];

’

, @input_data_1 = N’’

, @params = N’@instance_name nvarchar(100), @database_name

nvarchar(128),@input_query nvarchar(max),

@model_generation_duration float OUTPUT’

, @instance_name = @instance_name

, @database_name = @database_name

, @input_query=@input_query

, @model_generation_duration = @model_generation_duration OUTPUT;

PRINT CONCAT(N’Model generation time: ’, @model_generation_duration,

’ seconds.’);

END

GO

exec [dbo].[q20_create_customer_return_clusters]
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Abstract. Nowadays software architects face new challenges because Internet
has grown to a point where popular websites are accessed by hundreds of mil-
lions of people on a daily basis. One powerful machine is no longer economically
viable and resilient in order to handle such outstanding traffic and architectures
have since been migrated to horizontal scaling. However, traditional databases,
usually associated with a relational design, were not ready for horizontal scaling.
Therefore, NoSQL databases have proposed to fill the gap left by their predeces-
sors. This new paradigm is proposed to better serve currently massive scaled-up
Internet usagewhen consistency is no longer a top priority and a high available ser-
vice is preferable. Cassandra is a NoSQL database based on the Amazon Dynamo
design. Dynamo-based databases are designed to run in a cluster while offering
high availability and eventual consistency to clients when subject to network parti-
tion events. Therefore, the main goal of this work is to propose CBench-Dynamo,
the first consistency benchmark for NoSQL databases. Our proposed benchmark
correlates properties, such as performance, consistency, and availability, in differ-
ent consistency configurations while subjecting the SystemUnder Test to network
partition events.

Keywords: Consistency · Availability · Network fault tolerance · NoSQL
databases · Benchmark · Dynamo · Cassandra

1 Introduction

The Internet has grown to a point where billions of people have access to it, not only from
a desktop but also from smartphones, smartwatches, and even other servers and services.
Nowadays systems need to scale. The monolithic database architecture, based on a pow-
erful server, does not guarantee the high availability and network partition required by
today’s web-scale systems, as demonstrated by the CAP (Consistency, Availability, and
Network Partition Tolerance) theorem [1]. Strong consistency is a property that has been
relaxed to achieve a more scalable database system. Relational databases foundations
were designed to support strong consistency,where each transactionmust be immediately
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committed, and all clients will operate over consistent data states. Also, reads from the
sameobjectwill present the samevalue to all client requests.Although strong consistency
is the ideal requirement for a database, it deeply compromises horizontal-scalability.Hor-
izontal scalability is a more affordable approach when compared to vertical scalability.
It enables higher throughput and data distribution across multiple database nodes. On
the other hand, vertical scalability relies on a single powerful database server to store
data and answer all requests. Although horizontal scaling may seem preferable, CAP
theorem presents that when network partitions occur, one has to opt between availability
and consistency [2]. Horizontal scaling has inspired a new category of databases called
NoSQL. These systems have been created with a common requirement inmind, scalabil-
ity. Several NoSQL designs prioritize high-availability over a more relaxed consistency
strategy, an approach known as BASE (Basically Available, Soft-state and Eventually
consistent) [3].

Although performance frameworks, such as YCSB [4], have been developed for
benchmarking NoSQL databases, they lack a consistency tier to fully compare the
tradeoffs annunciated by the CAP theorem.

In this work, we propose CBench-Dynamo, a benchmark for testing consistency and
availability on a horizontal-scaled system.We also define how to address themain quality
attributes of a benchmark, i.e. Relevance, Reproducibility, Fairness, Verifiability, and
Usability [5]. Our goal is to extract different measurements on performance, consistency,
and availability with different consistency configurations of the System Under Test
(SUT) while subjecting this system to network partition events.

Finally, we will run the proposed benchmark on a Cassandra cluster and discuss the
resulting measurements.

2 Related Work

Cooper et al. [6] propose the YCSB (Yahoo! Cloud Serving Benchmark), a benchmark-
ing framework for cloud serving systems. It comes to fill the need for performance
comparisons between NoSQL databases and keep tracking of their tradeoffs such as
read performance versus write performance, latency versus durability, and synchronous
versus asynchronous replication. Although benchmark tiers such as performance and
scaling are included in YCSB, it lacks other tiers such as availability and consistency.

Bailis et al. [7] suggest an approach that predicts the expected consistency of
an eventually consistent Dynamo data store using models the authors developed
called Probabilistically Bounded Staleness (PBS). This approach lacks a benchmark
framework.

The work of Bermbach and Tai [8] propose a benchmark methodology on Amazon’s
cloud database AWS S3. This is the closest work of what we aim to do in this paper.
Bermbach and Tai project a long-term monitor system on AWS S3 to evaluate how this
service changes its consistency ability over time and the benchmark approach used can
be easily extended for other usages and databases as we aim to demonstrate in our paper.

Patil et al. [9] propose a benchmark architecture that evaluates time to consistency.
The authors extend the YCSB framework and add support to distributed architectures by
using ZooKeeper for coordination. However, since 2011, development of the YCSB++
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framework has been discontinued, andCassandra support is still in progress. OnlyHBase
and Acumulo support are available, but they are outdated as major releases of both
databases have been released. YCSB++ also does not fully evaluate consistency trade-
offs based on the CAP theorem as YCSB++ does not support network partition events.

Our work differentiates from the rest by proposing the first NoSQL consistency
benchmarking framework and testing it on Cassandra. To the best of our knowledge,
no such framework compares consistency levels to other quality attributes such as
availability and performance while subjecting the target system to network partition
events.

3 Dynamo

Dynamo design and implementation were first introduced by Amazon as a highly avail-
able key-value storage system [10]. Since then, Amazon has built many cloud services
emerged around this design, e.g. Amazon DynamoDB and Amazon S3.

Dynamo prioritizes eventual consistency, targeted to applications that need an “al-
ways writeable” database where no updates are rejected due to failures or concurrent
writes.

Dynamo was designed to scale incrementally, hence it was designed with a partition
mechanism in mind. Dynamo’s partition mechanism is based on a consistent hashing
to distribute the load across multiple data nodes. The output of this hashing function
can be illustrated as a ring as seen in Fig. 1, in which the highest output wraps around
the smallest one. Each node is assigned a random value within the range of the hashing
function. To know which node will store a given data value, the correspondent key of
this value is hashed. Then, we walk the ring clockwise, from the smallest to the largest
number, to find the first node with a position larger than the hashing result.

Fig. 1. Partitioning and replication of keys in Dynamo ring [10].

4 Consistency in Dynamo-Based Databases

Amazon’s Dynamo based databases such as Cassandra, all use the same variant of
quorum-style replication [11]. Quorum-style replication is associated with a replication
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factor N, i.e. the number of replicas that some data eventual will be in. Read and write
consistency can be configured as follows, ONE, QUORUM, or ALL.

The following configurations describe the differences between the three write
consistency levels for Dynamo-based database systems [12]:

• ALL: data is written on all replica nodes in the cluster before the coordinator node
acknowledges the client. Therefore, this configuration has: Strong Consistency and
High latency.

• QUORUM: data is written on a given number of replica nodes in the cluster before the
coordinator node acknowledges the client, where this number is called the quorum.
This configuration has: Eventual Consistency and Low latency.

• ONE: data is written in at least one replica node. This configuration has: Eventual
Consistency and Low latency.

Analogous to the write consistency levels, the following configuration constants
describe the differences between the three read consistency levels for Dynamo-based
database systems [12]:

• ALL. The coordinator node returns the requested data to the client only after all replicas
have responded. This configuration has: Strong consistency and Less availability.

• QUORUM. The coordinator node returns the requested data to the client only after a
quorum of replicas has responded. This configuration has: Eventual consistency and
High-availability.

• ONE. The coordinator node returns the requested data to the client from the closest
replica node. This configuration has: Eventual consistency and High availability.

Under normal operation, i.e. without network partition events, given the number of
replicas required for a read operation as R, the number of replicas required for a write
operation as W, and the replication factor as N, Dynamo-based databases guarantee
consistency when [11]:

R+W > N (1)

Given RQuorum and WQuorum, as Read Consistency and Write Consistency set to
QUORUM, respectively, and the floor function that takes as input a real number and
round it down to the closest integer. The conversion from the QUORUM notation to the
R,W notation is as follows:

RQUORUM , WQUORUM = R,W = floor

(
N

2
+ 1

)
(2)

Under abnormal operations where a network partition event had occurred, if con-
sistency is set to strong, i.e. ALL, availability is compromised as the Fig. 2 illustrates.
The scenario illustrated by Fig. 2 describes a situation where a read operation needs to
involve the total number of replicas N in order to retrieve the data to the client. In case of
a network partition, e.g. node C crashes, the coordinator of the request, node A, was not
able to serve data, hence the total number of replicas had been involved in the operation,
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and the coordinator had no other option than announcing a lack of service availability
to the client, resulting in a TIMEOUT response.

Fig. 2. Data request on abnormal operation where a node fails, and strong read consistency is set
(i.e. ALL).

Under abnormal operations where a network partition event had occurred, if con-
sistency is set to eventual configuration (ONE), we achieve service availability even in
the presence of a node crash as the Fig. 3 illustrates. The scenario illustrated by Fig. 3
describes a situation where a read operation only needs to involve one replica in order to
retrieve the requested data to the client. Because only one replica had been involved, the
response may not contain the latest data as this example suggests. Although consistent
responses are not ensured, this configuration results in a high-available service.

Fig. 3. Data request on abnormal operation where a node fails, and eventual read consistency is
set (i.e. ONE).

For Dynamo-based databases, high availability does not necessarily ensures write
persistence. When addressing the concept of availability, in terms of service availability
and not data availability, i.e. when a request is made, a successful response is given even
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if such key does not exist anymore. The response is successful, even if the response
refers to the inexistent of such resource. There may be the case when, for instance, a
configuration of W = 1 (ONE) is set and the same node crashes right afterward, the
data is lost and there is no acknowledgment to the client that such abnormality had
happened. To avoid such events,W values greater than 1 increase data redundancy and,
consequently, the probability of all replicas that contain the data fail is reduced.

5 CBench-Dynamo

A benchmark is a standardized tool to evaluate and compare competing systems or com-
ponents according to specific characteristics. These characteristics can be performance,
dependability, among others.

According to [5] the benchmarks can be categorized into three types: specification-
based benchmarks, kit-based benchmarks, and a hybrid based on the latest two.
Specification-based benchmarks are simulated based on a specific business problem
by imposing certain functions that must be achieved, such as required input parameters
and expected outcomes. This type of benchmark imposes a big development invest-
ment on presenting multiple implementations for the same problem and proceed with
an evaluation of that set of development. While for specification-based benchmark, the
specification is a set of rules implemented by the third party to load and run the bench-
mark. The Kit-based benchmarks use the specification as a guide for implementing the
benchmark kit. A hybrid category can be provided mostly as a kit but allows some
functions to be implemented depending on each individual benchmark run.

In this section, we propose CBench-Dynamo, a consistency benchmark that is a stan-
dard procedure to evaluate and compare consistency in the System Under Test (SUT).
The specification we aim to present proposes a benchmark approach to test consistency
and availability in Dynamo-based NoSQL databases while subjecting these systems to
network partition events. Therefore, we aim to contribute towards standardizing con-
sistency benchmarking and lead vendors to better understand which system better suits
their requirements.

5.1 CBench-Dynamo Properties

Benchmark researching and industry participants describe a benchmark into the follow-
ing properties [5]: Relevance, Reproducibility, Fairness, Verifiability, and Usability.

Although the proposed benchmark, CBench-Dynamo can be adapted to run in dedi-
cated instances it has only been tested with Amazon EC2 instances. Some orchestration
playbooks, such as easy instance setup, must be adapted to work on dedicated machines.
However, we aim to make the system more generic and versatile in future work. For
the present paper, our goal is to define the workload approach and present preliminary
empirical results from the benchmark tests using this workload.

Relevance. Relevance is the most important property when defining a benchmark
[5]. The relevance of a benchmark splits up into two dimensions, the spectrum of its
applicability and the degree of relevance in the given area.
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The CBench-Dynamo is designed to target all Dynamo-based databases and the area
of relevance is the study of the properties consistency, availability and network partition
tolerance, of a horizontal-distributed database system. This benchmark aims to be a
framework to facilitate the decision process of choosing the most appropriate NoSQL
database depending on the degree of performance, availability, consistency, and network
fault tolerance required for running a given application.

Reproducibility. Reproducibility will be attained as CBench-Dynamo exports the
instances’ hardware and software facts via Ansible. In addition, the workload speci-
fications will be also exported at the end of the associated run.

The goal of this extensive and detailed description is for other people to obtain
identical results by configuring the whole system as described.

Fairness. Fairness is the ability of the results being supported by the system merit
without artificial constraints. To reach fairness a set of artificial constraints must be
consent and well defined. CBench-Dynamo defines the following constraints:

• The SUT must be a Dynamo-based NoSQL database system, e.g. Cassandra;
• The SUT must have the same hardware, network and operating system components
when comparing benchmark test results targeting similar SUT;

• TheWorkload Coordinator must support a JVM to run the benchmark test and Python
to analyze and translate the data into meaningful measurements;

• The fact that theWorkload Coordinator uses Java and Python to coordinate the bench-
mark and post-process all the data, respectively, makes the system highly portable and
therefore fair as JVM and Python based applications can run virtually in any system.

Verifiability. It is important that results are trustworthy. Results must be validated and
decrease the possibility of chance or manipulation.

CBench-Dynamo results from academicwork, all the workloads presented herewere
subject to peer-review by other researchers.

Usability. Usability is the degree of how easy a system is to use. The CBench-Dynamo
has detailed instructions for making the benchmark easy to use and several layers of
abstractions were taken into account so that only a minimum input is needed to start a
benchmark test.

All the proposed benchmark modules are hosted on GitHub. There is a repository for
each of these modules, modified YCSB [13], analyzer [14], and orchestration playbooks
[15].

5.2 Architecture Specification

CBench-Dynamo is composed of a Workload Coordinator, a Load Balancer and a
Dynamo cluster (SUT). All these components are orchestrated by the orchestrator via
Ansible playbooks, as illustrated in Fig. 4.
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Fig. 4. CBench-Dynamo architecture specification.

Orchestrator. The orchestrator via Ansible playbooks allows the vendor to configure
and run a benchmark test via the Workload Coordinator. The following configurations
are needed prior a benchmark testing:

• IP addresses of the instances of the SUT;
• IP address of the load balancer that serves as the external gateway of the SUT;
• YCSB project home directory;
• Analyzer project home directory;
• Analysis results output directory;
• Ansible facts output directory;
• List ofworkload configurationswith the followingparameters: {workloaddescription,
YCSB database driver descriptor (e.g. cassandra-cql), write and read consistency
levels (i.e. ONE, QUORUM or ALL), number of threads used, number of objects to
update, number of updates/versions per object}.

The orchestrator is responsible for the following benchmark testing stages:

• Setup a dynamo cluster composed of AWS EC2 Ubuntu 16.04 Xenial 64 bits clean
instances (only Cassandra setup was implemented);

• Prepare the data space for running the customized YCSB workload, i.e. a table called
workload with two string-type fields, y_id and version;

• Request the Workload Coordinator to run a list of given workload configurations and
reboot the SUT in each iteration;

• Request the Workload Coordinator to analyze the test output it has collected at the
end of the test;

• Download from the workload coordinator the analysis output as a.csv file containing
all the measures. Each line is the result of a single workload test.

Workload Coordinator. Theworkload coordinator is responsible for running CBench-
Dynamo workloads.

Load Balancer. The load balancer is responsible for uniformly distribute the query load
throughout the SUT.

SUT. The SUT is composed of a dynamo-based cluster.
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5.3 Workload

This paper proposes a workload that evaluates how consistency, performance, and avail-
ability are affected when consistency is configured either to prefer a high-available sys-
tem or a high-consistent system while in a distributed system, such as Dynamo-based
databases, where network partition events may occur.

The proposed workload is a customized YCSB workload and follows the method-
ology proposed by Bermback and Tai [8]. Bermback and Tai propose a benchmark
methodology to study how Amazon S3 handles consistency over a long time period.
This long-term experiment proposes a single writer and a variable number of readers as
Fig. 5 suggests. To achieve a uniformly load throughout the cluster’s replicas and avoid
always hitting the same replica, writer and readers interact with the cluster through a
load balancer.

Fig. 5. Bermback and Tai’s long-term benchmark approach.

Our benchmark is composed of two stages, the load, and run stages. The load stage
is off the record for benchmark purposes. This stage’s goal is to load all the objects into
the database. These objects are composed only of two fields, key, and version.

During the benchmark run phase, both update and read operations occur uniformly.
When configuring aworkload run, the parameters threads indicate howmuchwriters and
readers will be running, as only one writer is used, the number of readers is calculated
as threads-1. Each write operation increments a given object’s version and each read
operation reads the version of a given object.

The writer and the readers each have their task plan pre-generated at the beginning
of the test and the benchmark ends when all the objects have been updated and read
from until the pre-configured final version. Each operation is registered into a common
file and follows the structure represented in Fig. 6.

The generated data is sufficient to inferwhether a consistency anomaly had happened.
For a given object’s key, if a read operation returns a version inferior to a version already
written by some write operation in the past, there was a consistency anomaly.

At the same time this occurs, there is a module that is disconnecting from time to
time one instance at a time from the cluster to simulate network partition events (see
Fig. 7). For every operation that the cluster was not able to retrieve a successful answer,
the version assumes the UNAVAILABLE value as Fig. 6 suggests.
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…
writer_id:0, key:9345f1bae61442dab3f167c02d19a4a8,
timestamp:17309459474301, version:1 
… 
reader_id:2, key:9345f1bae61442dab3f167c02d19a4a8,
timestamp:17309253174394, version:0 
reader_id:1, key:9345f1bae61442dab3f167c02d19a4a8,
timestamp:17309253174398, version:UNAVAILABLE

… 

Fig. 6. Proposed benchmark’s results data structure.

All consistency anomalies are then processed and translated into the following
measurements: availability probability, consistency probability, write latency, and read
latency.

Fig. 7. Network partition event scenario

6 Benchmark Testing

For the first test of the proposed benchmark, we chose Cassandra as the SUT. Cassandra
is a database system built with distributed systems in mind, like almost every NoSQL
systems. Following the CAP theorem, Cassandra by default is on the AP (Availability
and Network Partition Tolerance) side, hence prioritizing high-availability when subject
to network partitioning. As we will further see, Cassandra’s consistency can be tuned to
be a CP (Consistency and Network Partition Tolerance) database system, so it becomes
a strong consistent database when subject to network partitioning [12].

6.1 Testing Architecture

CBench-Dynamo requires an architecture composed of an orchestrator, a workload
coordinator, and a dynamo cluster as the SUT. The following architecture was defined
for our first test (see Fig. 8):
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Orchestrator. The orchestrator is a MacBook Pro 13-inch, 2017, 2.3 GHz Intel Core
i5 with 8 GB of RAM.

Workload Coordinator. The workload coordinator is an Amazon EC2 C5n.xlarge
instance (4 vCPUs, 10.5 GB RAM).

SUT. The System Under Test is a Cassandra cluster composed of eight Amazon EC2
M5d.large instances. Each cluster instance will be rebooted and reloaded between
workloads by the Orchestrator and the Workload Coordinator.

Fig. 8. Testing architecture

6.2 Experiment

In this section, we present the results obtained after running the proposed workload
configurations. Our experiment targets an 8-node Cassandra cluster and combines dif-
ferent consistency configurations, i.e. ONE, QUORUM, ALL, as described in Table 1.
The common input parameters for every configuration are the following:

• Replication Factor: 3;
• Total number of objects: 1.000.000;
• Versions/updates per object: 2;
• Network partition event duration: 2 s;
• Interval between network partition events: random between [1 s, 25 s].

Table 1. Cassandra’s benchmark workload configurations.

Configuration SUT Write
consistency

Read
consistency

1 Cassandra ALL ALL

2 Cassandra ONE ONE

3 Cassandra QUORUM ONE

4 Cassandra ONE QUORUM

5 Cassandra QUORUM QUORUM
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Consistency and Availability. When in a configuration both read andwrite consistency
is ALL, we achieve results of Strong Consistency while compromising availability. This
happens as theorized because all replicas must be involved before returning to the client.
If some replica is down, resulting from a network partition event, the request can’t fulfill
and the response to the client reports an unavailable service. Although this configuration
generated an availability of 99.7539%, the industry does not consider this value high.
Availability is usually represented by how many nines the availability probability has
(see Table 2). The value we attained in the ALL-ALL configuration only has 2-nines,
which means that this number only falls into the second level of availability, hence
translating into 3.65 days of availability when rounding down the number to 99.0000%.
Many businesses that require high-availability may fail with such a long unavailable
service time.

Table 2. Availability and nines notation [16].

Availability(%) Downtime per year

90.0000 (one nine availability) 36.53 days

99.0000 (two nines availability) 3.65 days

99.9000 (three nines availability) 8.77 h

99.9900 (four nines availability) 52.60 min

99.9990 (five nines availability) 5.26 min

99.9999 (six nines availability) 31.56 s

In the other hand, when querying Cassandra with no consistency constraints by
setting both read and write operations to involve just one replica (write consistency =
ONE and read consistency = ONE), we achieved 100% of availability, but we have
compromised consistency down to the lowest value achieved in the whole experience.

As of configurations using QUORUM combined with ONE, we achieved a more
balanced consistency/availability relation. As we had chosen a replica factor of three,
the QUORUM involves two replicas when processing a client request. When reading
withONE and writing withQUORUM, the request may involve the third replica that was
not part of the QUORUM for that given data object, hence returning an outdated version.
When inverting the order, the ONE in the writing and the QUORUM in the reading, it
seems not to have such a drastic deterioration in consistency, however availability loses
a nine.

For a QUORUM-QUORUM configuration, we achieved strong-consistency and
high-availability. This configuration can tolerate some network partition events unless
the number of replicas down compromises the quorum. Because our network partition
events had disconnected one replica at a time, the quorum had never been compromised,
hence the results we had are represented in Fig. 9.

Performance. Our second analysis is in terms of read and write operation latencies
given a consistency setting. As Fig. 10 illustrates, for an ALL-ALL configuration we
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Fig. 9. Consistency and availability results for all configurations.

achieved as expected the highest latencies of all configurations because all replicas had
to be involved in read and write operations.

For the ONE-ONE configuration, because only one replica needed to be involved in
read and write operations, the latencies are the lowest among all configurations tested
when combining the two latencies. However, when compared solely on mixed ONE-
QUORUM configurations, ONE latency in these last configurations are better.

Fig. 10. Write latency and read latency results for all configurations.
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Finally, for QUORUM-QUORUM configuration we achieved the most balanced
configuration between latency, consistency, and availability.

7 Conclusions and Future Work

In this paper, we have proposed CBench-Dynamo as a new benchmark methodology
focused on study the three properties of the CAP theorem, consistency, availability, and
network partition tolerance. From the best of our knowledge, this benchmark specifi-
cation for studying performance, consistency, and availability on different consistency
configurations while subjecting the SUT to network partition events has never been
proposed before.

In this paper, we have conceptualized, defined, and experimented our proposed
benchmark resulting in interesting data on how consistency and network partition events
influence consistency, availability, and performance. This benchmark is a valuable tool
for testing already existing NoSQL databases against the client requirements, but also to
test new databases implementations that aim a certain level of performance, consistency,
availability, and network partition tolerance.We alsomadeCBench-Dynamo benchmark
available on GitHub [14, 15].

For future work, we intend to support more NoSQL databases and evolve the pro-
posed benchmark to be a well industry establish framework to test NoSQL databases,
so that the users have a deeper understanding of the tradeoffs of each configuration and
what system and system configurations suits better their requirements.
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Abstract. Embedded database libraries provide developers with a com-
mon and convenient data persistence layer. They are a key component
of major mobile operating systems, and are used extensively on interac-
tive devices like smartphones. Database performance affects the response
times and resource consumption of millions of smartphone apps and bil-
lions of smartphone users. Given their wide use and impact, it is critical
that we understand how embedded databases operate in realistic mobile
settings, and how they interact with mobile environments. We argue that
traditional database benchmarking methods produce misleading results
when applied to mobile devices, due to evaluating performance only at
saturation. To rectify this, we present PocketData, a new benchmark
for mobile device database evaluation that uses typical workloads to
produce representative performance results. We explain the performance
measurement methodology behind PocketData, and address specific
challenges. We analyze the results obtained, and show how different
classes of workload interact with database performance. Notably, our
study of mobile databases at non-saturated levels uncovers significant
latency and energy variation in database workloads resulting from CPU
frequency scaling policies called governors—variation that we show is
hidden by typical benchmark measurement techniques.

Keywords: PocketData · Mobile · SQLite · Android

1 Introduction

General-purpose, embedded database libraries like SQLite and BerkeleyDB pro-
vide mobile app developers with full relational database functionality, contained
entirely within an app’s namespace. These libraries are used extensively in apps
for smartphones, tablets, and other mobile computing devices, for example as
the recommended approach for persisting structured data on iOS and Android.
However, database libraries can be a bottleneck [39], causing sluggish app per-
formance and unnecessary battery drain. Hence, understanding database library
performance and different database library configurations is critical, not just for
library developers—but for any developer looking to optimize their app.

Unfortunately existing tools for measuring the performance of data man-
agement systems are presently targeted exclusively at server-class database
systems [1,9,12,13,24], including distributed databases [3,21] and key value
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Fig. 1. Measuring mobile database performance using server-class benchmarks pro-
duces misleading results.

stores [2,8,35]. Unsurprisingly, server-class database systems optimize for dif-
ferent criteria than do embedded databases like SQLite or BerkeleyDB (Fig. 1a).
Thus, existing measurement tools can not be used directly to assess the perfor-
mance of embedded databases. In this paper, we focus on one specific impedance
mismatch: Server-class database benchmarks use throughput as a proxy for over-
all database performance. To determine performance, server-class benchmarks
measure throughput at saturation: The maximum query rate a database can
sustain.

However, the measurement of throughput is vastly less important on phones.
While there are many tasks, both interactive and background, phone databases
are per-app. Our prior study [18] found that smartphone database instances need
to cope with bursts of at most a few hundred queries, well below the throughput
potential of a single thread, and well below saturation.

To understand why measurement at saturation is a problem, consider Fig. 1b,
which illustrates the results of one server-class benchmark (YCSB Workload C)
applied to SQLite and BerkeleyDB, each using their default settings. Each point
represents another thread worth of load being offered to the database. As more
concurrent load is added, latency increases as contention overheads compound.
The result is seemingly a clear victory for BerkeleyDB. However, this graph is not
representative of actual smartphone usage. In the low throughput area that is
representative (the zoomed-in portion of the graph), the systems are competitive,
with SQLite actually being the faster of the two on most workloads.

More generally, by measuring performance at lower throughputs, results
are more affected by noise from OS and hardware optimizations, background
activity, and other sources endemic to phones. Although this noise significantly
impacts embedded database performance, existing performance measurement
techniques do not accurately capture it. In this paper, we identify several sources
of measurement error arising from measuring performance at low throughputs,
and show how they can produce misleading results. We introduce PocketData,
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a mobile benchmarking toolkit, designed to work around these error sources.
To build PocketData, we extend the Android Operating System Platform
(AOSP) [14] with new logging capabilities, control over relevant system proper-
ties, and a benchmark-runner app. These extended capabilities help expose the
precise causes of performance differences between systems or experimental trials.
The result is a toolkit for obtaining reliable, reproducible results when evaluating
data management technologies on mobile platforms like smartphones1.

In our recent study of mobile database workloads [18], we made two key
observations: (1) mobile workloads are dominated by key-value style queries,
and (2) mobile database workloads are bursty. Following the first observation,
we build on the Yahoo Cloud Services Benchmark (YCSB) [8], a popular key-
value workload generator. To account for the latter observation, we extend the
YCSB workload generator to operate at lower throughputs. We use the result-
ing workload generator to evaluate both performance and power consumption
of SQLite on Android. One key finding of this evaluation was that for spe-
cific classes of workload, Android’s default power management heuristics cause
queries to take longer and/or consume more power. For example, we observe
that the default heuristics are often significantly worse than far simpler naive
heuristics. On nearly all workloads we tested, running the CPU at half-speed
significantly reduces power consumption, with minimal impact on performance.
Android’s heuristics introduce higher latency and increase energy consumption
due to excessive micromanagement of CPU frequencies.

The specific contributions of this paper include: 1. We identify sources of
error in database performance measurement at low-throughputs (Sect. 2). 2. We
propose a database benchmarking framework called PocketData that makes it
possible to mitigate these sources of error (Sect. 3). 3. We present results from an
extensive benchmarking study of SQLite on mobile devices (Sect. 4). We cover
related work and conclude in Sect. 5 and Sect. 6, respectively.

2 The Need for Mobile Benchmarking

Understanding the performance of data management systems is critical for tun-
ing and system design. As a result, numerous benchmarks have emerged for
server-class data management systems [1–3,8,9,12,13,21,24,35]. In contrast,
mobile data management [23,28,30] is a very different environment (Fig. 1a).
Here, we focus on one key difference: mobile workloads operate significantly below
saturation. Measuring at saturation makes sense for typically multi-client server-
class databases, which aim to maximize throughput. However, typical mobile
data management happens at much lower rates [18], and on resource- and power-
constrained hardware. As a result, metrics like latency and power consumption
are far more important, while measuring performance at saturation hides mean-
ingful performance quirks that can arise in practice.

The Performance Impact of Frequency Scaling Is Hidden at Satura-
tion. The most direct effect of measuring at below saturation is related to a
1 Available for download at http://pocketdata.info.

http://pocketdata.info
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feature called frequency scaling, which allows the operating system to adjust
CPU performance in response to changing load. As load drops, lower CPU fre-
quencies can significantly extend battery life. While frequency scaling does exist
on server-class database hardware, battery-powered mobile devices remain per-
petually concerned with conserving energy. As such, they are far more aggressive
with frequency scaling. During periods of low load, the OS can vary CPU fre-
quencies to dozens of settings, or disable CPU cores altogether.

The particular policy heuristics to implement this adjustment are termed
governors, such as the Ondemand governor used in most Linux distributions as
well as earlier Android phones, or the Interactive governor used in more recent
Android phones. Though their specific policies differ, both governors rely on
only a single input datum: how busy the CPU is. By measuring the database
at saturation, the CPU is kept completely, continuously busy, and virtually all
governors react identically to this input: by running the CPU at maximum speed.

Figure 2a illustrates the impact of running below saturation. To simulate
operation at lower throughputs, we injected periodic thread sleeps into YCSB [8]
Workload C. The left bar cluster shows the results of three throughputs: At
saturation (0ms delay), constant throughput below saturation (1ms delay), and
bursty throughput below saturation (lognormal delay)2. Adding delays increases
the time spent off-core (dark-blue), as expected. However, the time spent doing
useful work on the CPU (light-red) also increases. To confirm this is a result
of frequency scaling, we re-ran the experiment, but with the CPU pinned to
maximum frequency (right bar cluster). Here, on-core time is almost constant.

Making matters worse, the frequency scaling operation is expensive: No activ-
ity can be scheduled for several milliseconds while the core is scaled up or down.
Hence, when the CPU is running at a low frequency, a database with a burst of
work takes a double performance hit: first from having an initially slower CPU
and second from waiting while the core scales up. Ironically, this means that a
database running on a non-saturated CPU could significantly improve latencies
by simply busy-waiting to keep the CPU pinned at a high frequency.

I/O Performance Is Different at Saturation. I/O on mobile devices is
quite distinct from I/O on server-class devices. Most notably, mobile devices use
exclusively flash media for persistent storage. Writes to flash-based storage are
bursty, as the flash media’s internal garbage collection identifies and reclaims
overwritten data blocks. On write-heavy workloads, this effect is far less pro-
nounced below saturation, as the disk has a chance to “catch up”.

CPU frequency scaling also plays a significant role in embedded database
I/O behavior as well. Repeated idling, such as from lower loads or I/O-blocked
operations are interpreted by the OS as a lack of work to be done and a signal
to scale down cores to save power.

Governors Are Indistinguishable at Saturation. Running benchmarks at
full saturation, as a server-class study would do, obscures a broader performance
factor. Consider Fig. 2b, which shows the effect of frequency scaling on total
2 Here, we follow [18], which observes lognormal delay with a 6ms mean in typical use.
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Fig. 2. Performance on for Workload C (read-only) (Color figure online)

latency when run with different CPU governor policies. The dark (blue) bars
show database performance when the CPU is saturated; the lighter (red) bars
show performance when the CPU is unsaturated. Each cluster shows the total
latency for a workload when run under a particular CPU governor policy.

When running Workload C queries at saturation (dark-blue), database per-
formance latency is nearly identical across all governor choices, excepting the
Powersave governor which deliberately runs the CPU at lowest speed. Only
when the workload is run below saturation (light-red) do significant differences
between the governors begin to emerge. These differences can have a significant
impact on real-world database performance and need to be addressed.

3 PocketData

Traditional database benchmarks [8,29,36] are designed to run on server-class
databases, and rank databases by either the maximum number of queries pro-
cessed per second (i.e., throughput) or equivalently the minimum time taken to
process a batch of queries. In both cases, database performance is measured at
saturation, which can produce misleading results when run on the mobile plat-
form. In this section, we first propose adjusting classical database benchmarks to
run below saturation and then outline the PocketData workflow and runtime.

3.1 Benchmark Overview

The initial input to PocketData is a database and query workload, such as
one generated by an existing server class benchmark. Specifically, we require
an initial database configuration (e.g., as generated by TPC-H’s dbgen util-
ity), as well as a pre-generated workload: a sequence of queries (e.g., as gener-
ated by TPC-H’s qgen utility). PocketData operates in three stages: First, a
pre-processing stage prepares the query workload for later stages. Second, the
benchmark database configuration is installed on the test device, and finally the
prepared workload is evaluated.
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Inter-query Delays. The PocketData test harness simulates performance at
levels below saturation by injecting delays in between queries. These delays are
randomly generated by PocketData’s workload preprocessor, which extends
the pre-generated query workload with explicit instructions to sleep the bench-
mark thread. The length and regularity of the inter-query delays is provided
to as a parameter to the preprocessor. Throughout the remainder of the paper,
we consider three values for this parameter: 1. A lognormally distributed delay,
mirroring typical app behavior [18]. 2. A fixed 1 ms inter-query delay, for com-
parison, and 3. Zero delay, or performance at saturation.

3.2 Benchmark Harness

The second and third stages are run by the benchmark harness, whicc a driver
application and a rooted version of the standard Android platform with cus-
tomized performance parameters. The application part of the benchmark con-
nects to an embedded database through a modular driver. We developed drivers
for: 1. Android OS’s native SQLite integration, 2. BerkeleyDB through JDBC,
and 3. H2 through JDBC. As it is used almost exclusively on the two major
mobile platforms, our focus in this paper is on evaluating SQLite3.

The benchmark harness takes three parameters: A CPU governor, a database
configuration, and a workload annotated with delays. The selected governor is
enabled by the benchmark as the phone boots up. After boot, the benchmark
next initializes the database to the selected configuration, creating database files
(if needed), creating tables, and pre-loading initial data. Once the database is
initialized, the benchmark app exits and restarts.

After the benchmark app restarts it loads the pre-defined workload into mem-
ory. The choice to use a pre-defined, pre-loaded trace was made for two reasons.
First, this ensures that overheads from workload generation remain constant
across experiments; there is no cost for assembling the SQL query string rep-
resentation. Second, having the same exact sequence of queries allows for com-
pletely repeatable experiments across different experimental configurations.

Metrics Collected. Log data was collected through ftrace. We instrumented
the Android kernel, SQLite database engine, and driver application to log and
timestamp the following events: 1. I/O operations like FSync, Read, and Write;
2. Context switches to and from the app’s namespace; 3. Changes in CPU voltage
scaling; and 4. Trace start and end times.

Logging context switches allows us to track points where the app was sched-
uled on-core, track background application use, and see when cores are idling.
This is crucial, as unlike in server-class database measurement, we are intention-
ally operating the embedded database at well below saturation. The overhead of
native-code platform events (1) and kernel-level events (2–3) are minimal. Trace
start and end times, while injected from the app, are only 2 events and have
minimal total impact.

3 Complete benchmark results are available at http://www.pocketdata.info/.

http://www.pocketdata.info/
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3.3 The PocketData Benchmark

We base the PocketData measurement workload on insights drawn from our
prior study [18], which found that smartphone queries typically follow key-value-
style access and update patterns. Queries or updates operate on individual rows,
or (rarely) the entire table. A quarter of apps observed by the study used exclu-
sively key-value-style queries. Even the median app’s workload was over 80%
key-value style queries. Accordingly, we build PocketData by adapting the
workloads from YCSB [8], an industry standard benchmark for key-value stores.
We used an initial database of 500 records, approximately the median size of
databases in our prior study [18] and a workload of 1800 operations per trial.

4 Benchmark Results

We organize this section by first discussing our application of the Pocket-
Data benchmark to our test environment. We then overview the results obtained
from our study, and highlight areas identified for potential system performance
improvement. Finally, we discuss measurement variance trends we observed, and
identify two sources of this variance.

Reference Platforms. Our database benchmarking results were obtained from
two Android Nexus 6 devices, running Android OS 6.0.1, with 2 GB RAM and
a Quad-core 2.3 GHz CPU (quality bin 2 for both devices). One of the Nexus 6
devices was modified to permit energy measurements, which we collected using a
Monsoon LVPM Power Meter4. To ensure measurement consistency, we modded
the AOSP on the device to disable a feature that turns the screen on when it is
plugged in or unplugged—the screen remained off throughout the benchmark.
For one set of experiments, in order to analyze the source of variance in database
latencies, we additionally modded the SQLite engine in AOSP to monitor time
spent performing I/O operations.

4.1 Results Obtained and Analysis Method

Our key findings for the Nexus 6 are as follows:

– Below saturation, Android’s default governors keep the CPU at approxi-
mately half-speed, even on CPU-intensive workloads, reducing performance.

– A governor that pins the CPU to half-speed outperforms both default gover-
nors on virtually all workloads below saturation.

– Below saturation and on a fixed workload, both of Android’s default governors
also under-perform with respect to power consumption.

S Using the Monsoon meter, we measured the total energy consumed by the
system, from launch to completion of the benchmark runner app while running
a single workload. To account for a spike in power consumption as the runner
4 http://www.msoon.com/LabEquipment/.

http://www.msoon.com/LabEquipment/
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app launches and exits, we count net energy use relative to a null workload that
simply launches and exits the benchmark without running any queries.

Results by Workload. The multiple workloads within the PocketData
benchmark yield finer insight into performance under different types of condi-
tions. For conciseness, we focus our discussion on a workload subset that explores
these differences (A, B, C, E). As shown in Fig. 3 this results in a gradient of read-
heavy to write-heavy (C, B, A, respectively), as well as a more CPU-intensive
scan-heavy workload. We specifically divide our discussion into three categories
of workload: Read-heavy (B,C), Write-heavy (A), and Scan-heavy (E).

Workload Description
YCSB-A 50% write, 50% read zipfian
YCSB-B 5% write, 95% read zipfian
YCSB-C 100% read zipfian
YCSB-E 5% append, 95% scan zipfian

Fig. 3. The four YCSB workloads.

A second dimension of analysis is CPU load. As we discussed in the intro-
duction, system performance can change dramatically when the CPU operates
below saturation. Thus, we present results for two different CPU conditions:
saturated (0 ms delay) and unsaturated (lognormal delay).

Next, we ran each workload under each of 5 different CPU governor policies.
3 of them are non-default choices: Performance (run at the highest possible
speed, 2.65 GHz), Fixed-50 (The customizable Userspace governor set to run at
a fixed midpoint frequency of 1.26 GHz), and Powersave (run the CPU at the
lowest possible speed, 300 MHz). The last 2 choices, Interactive and Onde-
mand, are the current and previous Android defaults as discussed in Sect. 2.

The 4 workloads (A, B, C, and E), 2 CPU saturation settings, and 5 gov-
ernor policies produce 40 measurement combinations. We ran each combination
3 times, and report the average and 90% confidence intervals. As we discuss
below, certain workload combinations proved much more consistent in measure-
ment than others. We observed measurement variance resulting from I/O block-
ing and the phone’s power source. To investigate this aspect further, we re-ran
several representative workloads, while measuring database file access time at
the SQLite-kernel boundary. We re-ran each of these workloads under each of 3
different power source settings, 6 additional times each.

4.2 Read Heavy Workloads

Read-heavy database workloads are particularly important, as reads account for
three-quarters of a typical database workload [18]. Energy consumption is also
a key issue on mobile. CPU governors, in turn, heavily influence the behavior of
both of these factors. We therefore focus on the performance-energy relationship
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of database operations under different governor settings. Our study results show
that system default governors result in sub-optimal latencies and energy costs
for database workloads in the bulk of representative read-heavy scenarios.

Workloads Are CPU-Bound but Respond Quickly. Latencies from read
operations are due nearly entirely to CPU time (plus explicit benchmark delays)
as a consequence of pre-caching performed by the SQLite database library.
Figure 2a, for read-only workload YCSB-C, illustrates this clearly: there is vir-
tually no unscheduled time beyond the total time spent explicitly waiting (0 s,
2 s, and 12 s, respectively). There was very little I/O activity under C, nearly
all of it immediately at the start of the workload as the table is pre-fetched.
Because of this pre-fetching, reads are serviced mostly from cache and there is
little blocking.

Non-default Governors Offer Better Performance. Mobile platforms
must always balance performance against energy. Figures 5 and 6 show the
database latency and energy cost for each of the 5 governor choices for 2 read-
heavy loads: C is read-only; B adds 5% writes. An ideal governor would be as
close to the bottom left of the scatterplot as possible – that is, it should optimize
both database latency and energy consumption.

Uninterrupted query timing essentially means the CPU will be running at
saturation regardless of governor choice, and latencies tend to flatten. Thus,
unsurprisingly, on uninterrupted, read-only workloads (Fig. 5a), both default
governors nearly match the performance governor’s latency. However, as the
vertical scale of 5a shows, running saturated read workloads with the Perfor-
mance governor also significantly saves rather than costs energy versus all other
choices. On this workload, there is no benefit to be gained by micro-managing
system performance, and so the static governor significantly outperforms the
dynamic defaults. The saturated 95% read workload B (Fig. 6a) shows similar
characteristics, albeit with an even more significant latency gap between the Per-
formance and the default governors. Here, the limited I/O is interpreted by the
system as a reduction in workload, and thus an opportunity to ramp down the
CPU. However, the overhead of micromanagement again outweighs the benefits.

Unsaturated read-heavy workloads (Figs. 5b and 6b) model bursty, interac-
tive usage patterns. Here, we observe a performance-energy trade-off between
the Performance and Fixed-50 governors. On both read-heavy workloads under
the performance governor, the average query is processed approximately 0.5
ms faster, while under the Fixed-50 governor power consumption is reduced by
approximately a third. Notably, the Fixed-50 governor outperforms both default
governors on both workloads and on both axes: Lower energy and lower latency.

Keeping the CPU Hot Can Reduce Energy Costs. We observe that both
default governors perform better on saturated workloads. When such satura-
tion is possible, it can be advantageous, not just from a latency but also an
energy standpoint, to keep the CPU busy. This makes batching read queries
especially important, as doing so can significantly reduce power consumption.



108 C. Nuessle et al.

Alternatively, it may be possible for apps to reduce power consumption by busy-
waiting the CPU during I/O operations when such operations are short and
infrequent.

Frequency Scaling has a Non-monotone Effect on Energy Consump-
tion. On the read-only workload C (Fig. 7a), energy cost is minimized with
the CPU running at half (Fixed-50), rather than minimum speed (Power-
save). Energy consumption scales super-linearly with frequency and there is an
unavoidable fixed energy cost to simply keeping the core powered on (although
recall that we keep the screen off during tests). Thus, the benefit of slowing the
processor down is outweighed by the cost of keeping the core powered up longer.

Fig. 4. Benchmark App Thread’s CPU
Frequency.

Threads are Very Sensitive to
Governor Performance Differences.
When running read-heavy workloads,
unless the CPU is already at satura-
tion, the CPU often runs well below
maximum speed under the Interactive
governor. Figure 4 shows that, with the
addition of 1ms pauses, the CPU fre-
quency is largely stuck near 500 MHz,
well below the 2.65 GHz maximum (the
minimum is 300 MHz). As the core is
running at a lower frequency when a
query arrives, the query takes a per-
formance hit. As the query finishes the
Interactive governor ramps up the CPU
unnecessarily, wasting energy. This same effect appears in Fig. 2b, which shows
higher latencies for intermittent queries (light-red bars on graph) with either
default governor (Interactive or Ondemand) than when the CPU is saturated
(Performance).

4.3 Write Heavy Workloads

Write-heavy workloads on the Android platform have higher latencies than their
read-heavy counterparts, and latencies of the fixed-speed (non-default) governors
scale inversely with energy consumption.

Non-default Governors Again Improve Performance. Fig. 7 shows the
latency/energy metrics for Workload A, which is 50% write operations. The
results for the saturated workload (Fig. 7a) show that the Fixed-50 governor
notably outperforms all others. The Powersave governor has the lowest energy
cost, but also has the worst performance. However, for write-heavy threads run-
ning on saturated CPUs (which is the case when a series of write operations arrive
consecutively), the system default choices again under-perform significantly.

Write-heavy operations that occur intermittently exhibit a similar latency-
energy metric to that of intermittent read-heavy threads. As before, Fig. 7b
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shows the tradeoff: Performance and Powersave offer the opposing extremes of
latency and energy, while the Fixed-50 governor compromises between extremes.

4.4 Scan Heavy Workloads

Scan-heavy workloads involve longer-running, CPU-bound queries, which keep
the CPU loaded for longer intervals. As a result, we see less variation between
saturated and unsaturated workloads.

Table Scans Are CPU-Intensive. In workload E, reads are scan opera-
tions. The increase in latency for workload E is mostly due to sharply higher
CPU time, with marginally greater non-scheduled non-benchmark delay time.

Fig. 5. Workload C: Latency performance and energy costs.

Fig. 6. Workload B: Latency performance and energy costs.
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Fig. 7. Workload A: Latency performance and energy costs.

Fig. 8. Workload E: Latency performance and energy costs.

This penalty is due to additional actual computation rather than frequency scal-
ing: Unlike with previous workloads, CPU time for E remains relatively unaf-
fected by increased benchmark delay settings. For E, DB usages involving signif-
icant scans can still be serviced largely from cache, but they incur computation
costs.

Non-default Governors Often Improve Performance. Workload E, com-
prised of 95% table scans, is shown in Fig. 8. When database operations arrive
uninterrupted, Fig. 8a shows the default Interactive governor offers best latency.
As in the read-heavy workloads, the Fixed-50 governor (not the Powersave gov-
ernor) offers the lowest energy cost, with only a slight latency penalty.



Benchmarking Pocket-Scale Databases 111

Unsaturated scan-heavy threads generally follow the latency-energy trade-off
pattern of previous workloads as well. Figure 8b shows that, as before, Perfor-
mance and Powersave offer opposing extremes of latency and energy metrics.
However, both are only negligibly better than the Fixed-50 governor, which also
outperforms the default governors on both metrics.

4.5 Sources of Measurement Variance

Fig. 9. Number of SQLite I/O
Operations

Energy usage measurements showed signifi-
cant but constant variation (reflected in the
vertical error bars in graphs 5, 6, 7, 8) across
all test configurations. Overall energy usage
is low, exposing measurement to noise from
small variations in background system behav-
ior. Note that the energy noise level stays con-
stant, even as overall load increases as in work-
load E. Conversely, latency variance (horizon-
tal error bars) is low for 3 of 4 workloads. Loads B, C and E, for both saturated
and unsaturated CPUs, all had relatively small margins: 11% at most. However,
measurement error for load A, particularly for a saturated CPU, was anoma-
lously high: from 15%–38% for all CPU policies except Powersave.

Fig. 10. Effect of I/O operations on
workload latency variance (Color figure
online)

Workload A is write-heavy, involv-
ing a relatively large number of I/O
operations compared to other loads (see
Fig. 9). To confirm that fluctuation in
I/O time was indeed the source of
the large latency error measurement for
A, we instrumented SQLite to mea-
sure the time spent blocked on read,
write, and fsync operations. We re-ran
A with a saturated CPU 20 additional
times. Figure 10 compares, for workload
A under the default Interactive gover-
nor, the latencies of these runs. Total
latency varies significantly, exhibiting
a bimodal distribution, with one mode
around 6 s and a second mode at 11 s. Looking deeper, the latency of each run is
composed of I/O time (dark blue) and non-I/O time (light orange). While non-
I/O time for each of the runs is quite consistent, I/O time also varies bimodally.
Likely, this is due to flash storage overhead having to prepare for block erases and
writes. The saturated CPUs particularly expose this: unsaturated CPUs allow
flash erasure to take place during quiescent periods, rather than forcing the
benchmark to block. Workloads B, C and E exhibit much less latency variance,
as they lack significant write activity and do not need to erase flash. Workload
A is dominated by write costs and thus suffers increased variance.
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5 Related Work

Lightweight DBMSes. MySQL [40] got its start as a lightweight DBMS, while
libraries like SQLite [30] and BerkeleyDB [28] both provide server-less database
functionality within an application’s memory space. TinyDB [23] is a lightweight
DBMS intended for use in distributed IoT settings. In addition to aiming for a
low memory footprint, it allows queries to be scheduled for distributed execution
over a cluster of wireless sensor motes. While these approaches target application
developers, other efforts like GestureDB [26] target users of mobile devices and
optimize for different types of interaction modalities.

Benchmarking. A range of benchmarks exist for server-class databases
[4,29,36] and other data management platforms [8,15,20]. However, as we point
out, assumptions typically made by these benchmarks produce invalid results
when evaluating pocket-scale data management systems. There is however over-
lap on some non-traditional metrics like energy use in data management plat-
forms [27,31–33]. Notably, configuration parameters optimized for these bench-
marks typically involve significant changes to the hardware itself. Through fea-
tures like frequency scaling on the CPU and RAM, mobile devices are capable
of far more fine-grained control on the fly, markedly changing the evaluation
landscape.

Conversely, A number of other benchmarks target embedded devices.
AndroStep [22] evaluates phone performance in general terms of CPU and energy
usage. Energy is also a common specific area of study – Wilke et al. compare con-
sumption by applications [38]. AndroBench [19] studies the performance of file
systems, but uses SQLite as a representative workload for benchmarking filesys-
tem performance. While these benchmarks use SQLite as a load generator, it is
the filesystem being evaluated and not the database itself.

Profiling Studies. One profiling study by Wang and Rountev [37] explored
sources of perceived latency in mobile interfaces. They found databases to be a
common limiting factor. A study by Prasad et al. [34] looked at hardware per-
formance profiles relative to CPU quality ratings assigned by the chip manufac-
turer. They found a wide distribution of thermal profiles and CPU performance
for devices ostensibly marketed as being identical. Our previous study [18] used
a user-study to explore characteristics of mobile database workloads, and forms
the basis for PocketData as described in this paper.

There have a been a number of performance studies focusing on mobile
platforms and governors for managing their runtime performance characteris-
tics [6,7,10,11,25]. Most of these studies focus on managing the performance
and energy tradeoff and none look at the effect of the governor on embedded
database performance. A few make the argument that for more effective over all
system utilization considerations of the whole program stack must be made [17]
and instead of managing applications individually, system wide services should
be created for more wholistic management [16]. More recently, there has been
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interest in specialized studies focusing on performance and energy consump-
tion of specific subsystems, like mobile web [5]. These studies do not, however,
document the competing performance metric tradeoffs between governors. Nor
do they explore the effect of system load on performance rankings of gover-
nor choices. We view our study and performance debugging methodology for
embedded databases on mobile devices to be a first step at understanding the
performance effect of the mobile platform on mobile databases.

6 Conclusions

The mobile platform presents unique characteristics for database benchmarking.
The systems themselves are resource-limited, and the typical workloads differ
markedly from those experienced by traditional server-class databases. Further-
more, mobile systems are structured differently, with power management and
flash memory I/O contributing a significant amount of noise to measurement
efforts. Measurement systems that fail to account for these differences will miss
critical performance information. While we focused our study on SQLite, the
system default database, we designed our benchmark to be database-agnostic,
and results from PocketData on other configurations can be found on our
website http://pocketdata.info.

For a given database and workload, different governors yield different
database performance and energy consumption metrics. A non-default governor
selection can often improve markedly on either latency or energy performance –
sometimes in both. While the database is aware of the information necessary to
make this choice, the kernel is not, suggesting opportunities for future improve-
ment. In future work, we will explore how the kernel can be adapted to solicit
this information and then incorporate it into a wiser governor selection.

Acknowledgments. This work is supported by NSF Awards IIS-1617586, CNS-
1629791 and CCF 1749539.

References

1. Ahmed, M., Uddin, M.M., Azad, M.S., Haseeb, S.: Mysql performance analysis on
a limited resource server: fedora vs. ubuntu linux. In: SpringSim (2010)

2. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis
of a large-scale key-value store. SIGMETRICS Perform. Eval. Rev. 40(1), 53–64
(2012)
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Abstract. With their capability to recognise complex patterns in data,
deep learning models are rapidly becoming the most prominent set of
tools for a broad range of data science tasks from image classification to
natural language processing. This trend is supplemented by the availabil-
ity of deep learning software platforms and modern hardware environ-
ments. We propose a declarative benchmarking framework to evaluate
the performance of different software and hardware systems. We further
use our framework to analyse the performance of three different software
frameworks on different hardware setups for a representative set of deep
learning workloads and corresponding neural network architectures (Our
framework is publicly available at https://github.com/vdeuschle/rysia.).

Keywords: Deep learning · Declarative benchmarking · Cloud
computing

1 Introduction

Driven by the digitization of ever more aspects of life, the increase of available
data as well as computing capacities has given rise to the application of com-
plex predictive models across a wide range of sectors in research and industry.
Most notably deep learning, used as an umbrella term for neural network based
computational models, continues to capture academic as well as public atten-
tion. With their capacity to model complex structures and dependencies within
data, neural networks are playing a rapidly increasing role as pattern recognition
techniques with powerful means for regression and classification objectives.

The impact of these models and algorithms was fueled (and has driven) the
development of a spectrum of publicly available software platforms that imple-
ment fundamental deep learning concepts such as auto-differentiation [17] and in
particular backpropagation [22]. Build around accessible APIs, these platforms
enable researchers to easily specify, train and deploy a broad range of neural
network architectures. Simultaneously, advances in modern hardware have made
efficient processing of large amounts of data, which are often required to train
neural networks possible. Most notably, graphics processing units (GPUs) and
c© Springer Nature Switzerland AG 2020
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GPU-related hardware units have proven to be efficient devices to perform the
linear algebra operations that deep learning principles are build on.

This vast spectrum of soft- and hardware choices constitutes a challenge for
researchers who are trying to settle on the optimal system combination for a
given task, e.g. natural language processing or image classification. With this
paper we introduce a novel benchmarking framework as an easy to use tool
to compare the performance of various deep learning software platforms and
hardware configurations. Utilizing our framework, we have conducted a num-
ber of performance experiments with representative deep learning workloads for
popular software platforms on CPU-restricted and GPU-accelerated hardware.
Specifically, we make the following contributions with this paper:

• We propose a declarative benchmarking framework for deep learning plat-
forms and hardware environments that guarantees comparability and repro-
ducibility with a flexible interface to formulate and represent benchmarking
workloads.

• We formulate three different workloads which represent popular subjects in
the broader field of deep learning to benchmark feed forward networks [29],
convolutional networks [25] and LSTM networks [23].

• We utilize our framework to conduct a number of training and inference exper-
iments, executing the aforementioned workloads, to compare the performance
of three different software platforms, namely Tensorflow [16], Apache MXNet
[19] and Pytorch [21], in different hardware environments.

The key insights of our work are the following:

• The benefits of GPU-accelerated hardware during training depend on various
factors, such as the neural network architecture and corresponding operators
(e.g. matrix multiplication or convolution).

• MXNet outperforms both other platforms in most GPU-accelerated hardware
environments during training. No platform outperforms any other under all
circumstances.

• Pytorch outperforms both other platforms during inference in all tested hard-
ware environments.

In the remainder of this paper we give brief introduction into the background
of our work (Sect. 2), introduce our benchmarking framework (Sect. 3), describe
our experiments and results (Sect. 4 and Sect. 5) and put our work in the context
of other contemporary deep learning benchmarking efforts (Sect. 6).

2 Background

In this section we provide an overview over the background that is required to
understand the context of our work. In Sect. 2.1 we introduce the three software
platforms that are subject of our analysis. In Sect. 2.2 we describe the hard-
ware environments that we used for our work. Most importantly, we distinguish
between CPU-restricted and GPU-accelerated setups.
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2.1 Software Platforms

In this section we introduce the three software platforms that are subject of our
analysis. We give a brief overview over each platform and specify which APIs
and engines we are analyzing in particular. In Table 1 we provide a concrete
listing of all software versions and APIs that are subject of our work.

Table 1. Platform versions, datatypes and operators that we use for our benchmark.

Version MXNet Tensorflow Pytorch

CPU
GPU

1.4.1
1.4.1

1.12.2
1.12.2

1.1
1.1

Datatype MXNet Tensorflow Pytorch

Feed forward,
Convolution LSTM
CudnnCompatibleLSTMCell

Variable LSTMCell
LSTMCell

Variable
LSTMBlock-
Cell

Variable

Operator MXNet Tensorflow Pytorch

Matrix-Multiplication
Convolution (2D)
Bias Addition
Max Pooling (2D)

linalg gemm2
Convolution
broadcast add
Pooling

matmul
conv2d
+
max pool

@ conv2d
+
max pool2d

Tensorflow. [16] is an open source deep learning platform developed by Google
Brain [9]. In it’s symbolic runtime, which is subject of our analysis, Tensorflow
builds, compiles and optimizes a computational graph, that represents a neural
network architecture before execution. We have chosen Tensorflow’s most low-
level Variable API as subject of our analysis for feed forward and convolutional
neural networks and two different LSTM cells for recurrent models.

Apache MXNet. [19] is an open source deep learning platform that is currently
part of the Apache Incubator project [2]. Symbolic as well as imperative pro-
gramming is supported on CPU-restricted and GPU-accelerated hardware. For a
purely symbolic execution, MXNet offers the “Symbol API” and “Module API”
to the user, the latter one serving as a wrapper for the Symbol API, providing
high level concepts such as in-build optimizer (e.g. gradient descent) to the user.
Similar to Tensorflow, we choose the symbolic Variable API for feed forward and
convolutional networks and prebuild LSTM cells for recurrent models.

PyTorch. [21] is an open source deep learning platform developed by Facebook
AI Research [8]. Imperative programming and eager execution are the central
design principles with symbolic computation not supported1. Computational

1 As of Version 1.0 Pytorch features a just-in-time compiler that will enable user to
precompile static models before runtime without the need of symbolic operators.
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graphs are not precompiled and may be modified during runtime. To enable
backpropagation and the computation of gradients, all operations that are per-
formed during a forward pass through the computational graph are recorded
when they occur during runtime. Subject of our analysis is PyTorch’s Tensor
API with prebuild LSTM cells being used for recurrent models.

2.2 Hardware Environments

In this section we describe the hardware setups that are subject of our anal-
ysis. We execute our experiments within the Amazon Web Services (AWS)
cloud environment [1], utilizing various CPU-restricted and GPU-accelerated
EC2 instances [6]. We provide a detailed overview over the specifics of all used
hardware environments in Table 2. All experiments are executed in containerized
virtual machines, using Docker [5].

Table 2. Hardware configurations of all EC2 instances that we use for training and
inference experiments.

EC2 instance Cores CPU type Main memory GPU

c4.2xlarge 8 2.9GHz, Intel Xeon E5-2666 v3 15GiB n/a

c5.xlarge 4 3.0GHz, Intel Xeon Platinum 8GiB n/a

c5.2xlarge 8 3.0GHz, Intel Xeon Platinum 16GiB n/a

c5.4xlarge 16 3.0GHz, Intel Xeon Platinum 32GiB n/a

c5.9xlarge 36 3.0GHz, Intel Xeon Platinum 72GiB n/a

p2.xlarge 8 2.3GHz, Intel Xeon E5-2686 v4 61GiB NVIDIA Tesla K80

p3.2xlarge 8 2.3GHz, Intel Xeon E5-2686 v4 61GiB NVIDIA Tesla V100

CPU-Restricted Runtime: Deep learning platforms utilize a variety of libraries
for efficient linear algebra computation which enable multithreaded parallelism.
Regarding the software platforms which are subject to this paper, MXNet and
Pytorch both employ OpenBlas [14] by default, while Tensorflow uses the Eigen
library [7]. In general, CPU-restricted computation constitutes a performance
limitation for deep learning workloads. The degree of parallelism is limited to
the number of available CPU threads, which is restricted by the number of
available CPU cores. Linear algebra operations however (and consequently deep
learning), often benefit from a considerably higher degree of parallelism.

GPU-Accelerated Runtime: The software library most commonly utilized by
deep learning platforms to allow GPU-accelerated computations is the NVIDIA
CUDA Toolkit [13]. The three platforms that are subject to this paper all utilize
CUDA for GPU-accelerated computations. Operators such as matrix multipli-
cation are formalized as kernels, which are routines written within the CUDA
framework, to be executed on a GPU. Most commonly, deep learning platforms
provide CUDA implementations for all operators that may define a computa-
tional graph. The performance gain of GPU-accelerated computations depends
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on a variety of factors. For instance, a frequent data exchange between main
memory and GPU may cause a runtime performance overhead.

3 The Rysia Benchmarking Framework

In this section we introduce the Rysia benchmarking framework that we imple-
mented for our experiments. We designed a declarative interface that enables
users to specify and execute benchmarking workloads without any coding
required. In Sect. 3.1 we describe the guiding design principles of our work. In
Sect. 3.2 we describe the architecture of our framework and the corresponding
workflow of any benchmarking experiments.

3.1 Design Principles

We propose a new benchmarking approach that aims to preserve the core princi-
ples of other approaches while ensuring a higher degree of comparability between
software platforms. We follow three guiding principles that define the core con-
cept of our benchmarking framework:

• Comparability We ensure functional equivalence between platforms for our
experiments, meaning that equivalent operations (e.g. matrix multiplication,
convolution) are used and the same data (e.g. same mini-batches in each
iteration of stochastic gradient descent) is being processed at each step of the
computation.

• Reproducibility We provide a way to formalize benchmarking workloads
in a declarative fashion that enables users to easily store, rerun and modify
experiment setups and workload specifications.

• Flexibility We implement an easy to use domain specific language to enable
users to easily specify deep learning models of different architectures for var-
ious workloads. Our framework automatically compiles these specifications
into platform specific implementations.

By ensuring functional equivalence between platforms, we make sure that
for training workloads, each platform reaches the same accuracy after the same
amount of training iterations and that the same mathematical operations (e.g.
matrix multiplication, convolution) are being performed on the same batches of
data in each iteration2. We measure the runtime in seconds that is required to
perform a predefined amount of training iterations.

For inference workloads, we measure the throughput rate for a platform on a
given model. This means that we count the number of forward passes that each
platform accomplishes in a time window of one minute on a fix sized mini-batch

2 Under ideal conditions, our approach should indeed result in exactly the same accu-
racy curves between platforms. In reality however, even ensuring that the same
operations are performed on exactly the same data in each step, does not result in
perfectly aligning accuracy rates.
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of samples that are randomly selected from a dataset for each forward pass.
Dividing the throughput rate with 60, we measure mini-batches per second.

While other benchmarking approaches rely on hardcoded scripts that corre-
spond to a specific workload (e.g. image recognition), we offer a more flexible
approach, that lets users easily specify new model architectures, data sets and
hyperparameter in a unified, declarative fashion, without having to worry about
platform specific implementations. This clear separation of benchmark specifi-
cation and execution makes it easy to reproduce and compare a large variety
of experiments. Our framework ensures that for each workload the concept of
functional equivalence holds.

To ensure comparability between platforms it is crucial that identical work-
loads are executed under the same conditions. This especially includes the hard-
ware environments which we utilize to run our experiments. We believe that
the most reliable way to achieve this is a cloud-based runtime. We therefore
natively integrate cloud functionality in our framework, enabling the user to
choose between local execution and a variety of cloud-based hardware environ-
ments that will stay consistent over the course of any batch of experiments.

3.2 Architecture

In this section we describe the architecture of our benchmarking framework.
Following the design principles described in the previous section, we have imple-
mented a framework with which we aim to overcome some of the blind spots of
other benchmarking approaches. In the remainder of this section, we will give
a detailed introduction to the key components of our framework and how they
relate to the three principles that we have formulated in the previous section.

As we stated before, comparability, reproducibility and flexibility are the
guiding principles of our framework. We believe that the best way to materialize
these concepts is to provide the user with an accessible way to formalize bench-
marking workloads in a declarative fashion. To achieve that, we introduce the
idea of blueprint configuration files, in which the user can specify all relevant
parameters that define a benchmarking workload. Specifically, these blueprints
include:

• A domain specific language to formalize deep learning model architectures
• Hyperparameter Number of epochs, choice of optimizer, loss function, etc.
• Metaparameter Software platform to benchmark, hardware metrics to mon-

itor and number of runs
• Cloud Parameter EC2 instance type, Docker image location
• Data Paths Path to datasets, result folder path or model parameter path

All blueprints are implemented as Python modules, which are dynamically
imported at the beginning of our runtime. The most notable point of these declar-
ative specifications is that they provide a generalized formalization for the user,
whereas any platform specific implementation is automatized by our framework.
The concept of a generalized domain specific language (DSL) to formalize deep
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learning models independently from the platform they will be executed on has
been popularized first and foremost by the Keras API specification [10]. Users
can specify deep learning models that consist of layers, which define the mathe-
matical operation that is performed at the corresponding layer of the model (e.g.
feed forward layer correspond to matrix multiplication). The key advantage of
this approach is to separate the model architecture from any platform specific
implementation, which are generated automatically.

For our benchmarking framework we follow a similar principle, with the focus
shifted to build models for benchmarking workloads. Through our DSL, users
may specify model architectures that consist of feed forward, convolutional and
LSTM layers (with Max Pooling and Flattening as additional operators) since
it is commonly assumed that these three operators make up the vast majority
of computations in deep learning workloads. Within blueprint files, model archi-
tectures are specified as sequences of layers. During runtime, these sequences
are converted to models which implement these layers for the platform that has
been specified. For feed forward and convolutional layers, this means storing plat-
form specific variables, which represent weight and bias matrices. LSTM layers
hold a platform specific LSTM cell. All other layer types correspond to state-
less operations. Implementing our own DSL (and not utilizing publicly available
Keras implementations), enables us to maintain control over the operators and
APIs that we select for each software platform. To ensure comparability across
platforms, we have implemented our DSL with functionally equivalent low-level
operators (e.g. matrix multiplication or convolution) for each platform.

4 Experiment Setup

In this section we describe the experiments that we conducted within the scope of
this paper. Utilizing our framework described in Sect. 3, we analyze and address
subjects regarding training runtime and inference throughput performance. For
each subject we specify the questions that we will answer, as well as the cor-
responding experiment setup, which includes workloads, corresponding model
architectures, datasets, and hardware specifications. In the remainder of this
chapter we provide a detailed description of all experiments, subjects and cor-
responding workloads. In Sect. 4.1 we describe the three workloads and corre-
sponding model architectures that we use to analyze the three subjects listed
above. In Table 3 we specify the runtime environment of our experiments. In
the subsequent two sections, we provide further details for each subject such as
individual hyperparameter and utilized hardware setups.
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Table 3. Runtime environment that we use for our benchmark.

Version Docker base image OS

CPU ubuntu:16.04 Ubuntu 16.04

GPU nvidia/cuda:9.0-cudnn7-devel Ubuntu 16.04

Version CUDA/CUDNN Python

CPU n/a 3.6

GPU 9.0/7.3 3.6

4.1 Workloads and Deep Learning Model Architectures

In this section we specify the workloads and corresponding model architectures
that we use for our experiments. Workloads and models will remain consistent
across all subjects, meaning that the same three model architectures will be used
to benchmark and analyze training and inference performance. We have chosen
the following tasks as workloads for this paper, which are canonical and widely
applied in the field of deep learning:

• Handwritten digits classification with feed forward networks (MNIST)
• Image classification with convolutional networks (CIFAR-10)
• Sentiment analysis with LSTM Networks (IMDB)

The MNIST dataset [12] consists of greyscale images of handwritten digits.
Each image of size 28× 28 pixels is being flattened to a one-dimensional vector
with 784 features. For this relatively simple classification objective we have cho-
sen a conventional feed forward neural network architecture of three layers with
128, 64 and 10 neurons per layer.

The CIFAR-10 dataset [3] consists of RGB images of ten different objects.
Each image is of size 32× 32× 3 pixels and each label corresponds to an index
for one of ten different objects. To solve this classification problem we chose
a convolutional VGG16 neural network architecture [28] with 10 convolutional
network layers, followed by three feed forward layers.

The IMDB dataset [26] consists of movie reviews in text form. Each review
is treated as a sequence of words and each word is mapped to a word-vector
of 50 features, as described by [27]. Each sequence is truncated at 250 words
and each sequence that is smaller than 250 words is padded with an according
amount of zero-vectors, thus creating samples of size 250× 50 each. Since we are
performing sentiment analysis, each label marks a review as either “positive” or
“negative”. To solve this binary sequence classification task, we chose a LSTM
network with one layer and 128 cells. The data representation follows [15].

4.2 Training Runtime Performance

For this subject, we compare the runtime performance and hardware utiliza-
tion profiles of MXNet, Tensorflow and Pytorch for the three different training
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workloads described in the previous section. Within this context, we will address
the following two questions:

Table 4. Hyperparameter for training performance experiments.

MNIST CIFAR-10 IMDB

Epochs 200 100 100

Optimizer SGD Adam Adam

Batch size 128

Learning rate 0.01

Loss function Cross-entropy

• How do different software platforms perform with different training work-
loads?

• How do different hardware environments perform with different training work-
loads?

The hyperparameter configurations that we use for our training experiments
are listed in Table 4. For each task we use a batch-size of 128 and a learning-rate
of 0.01. The number of training epochs varies between tasks. We further chose
the cross-entropy loss function for each workload. While the feed forward model
for our MNIST job is trained with the vanilla gradient descent optimizer of each
framework, we chose the more advanced Adam optimizer [24] for the other two
training jobs.

In order to maximize comparability across platforms, we run all experiments
on the same types of EC2 instances, thus ensuring consistent hardware config-
urations across each experiment setup. Table 2 shows the EC2 instances that
have been used for each experiment. We compare instances with powerful CPU
types (older C4.2xlarge and newer C5.2xlarge) and instances that provide GPU
devices (older P2.xlarge and newer P3.2xlarge) in our training experiments.

4.3 Inference Throughput Performance

For this subject we compare the inference throughput performance of MXNet,
Tensorflow and Pytorch for multiple different inference workloads. Specifically,
we will address the following question:

• How well do different software platforms utilize different numbers of available
CPU cores during inference?

We utilize again the three datasets and corresponding model architectures
described in Sect. 4.1. We further take the pretrained models from Sect. 4.2 as
initial model parameters. For each forward pass we chose mini-batches of 128
samples that are randomly selected from the whole dataset. We measure how
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many complete forward passes each platform is able to perform for each model
within a time window of one minute. As opposed to our training experiments,
where we were measuring runtime for a fixed amount of iterations, we measure
the number of iterations for a fixed amount of time in our inference setup.

As with our training experiments, we run all throughput experiments on
the same types of EC2 instances, in order to maximize comparability. A key
difference for our inference subject is, that all experiments are executed on
CPU-restricted hardware, since this setup is more commonly used for inference
tasks. Table 2 shows the hardware specifications of each instance. We select C5
instances of different sizes with 4, 8, 16 and 36 CPU cores respectively.

5 Experiment Results

In this chapter we analyze the results and findings of the experiments that we
conducted in our work as described in Sect. 4. We show all relevant result met-
rics such as median runtime for training and median throughput for inference
experiments.

5.1 Training Performance

In this section we analyze the results and findings of our training performance
experiments, described in Sect. 4.2. For each experiment we report the median
runtime over seven runs.

Handwritten Digits Classification with Feed Forward Networks: In Fig. 1a we
show the observed median runtime for each combination of platform and
EC2 instance for the MNIST workload with feed forward networks. On CPU-
restricted C4 and C5 instances, we measured the fastest runtime performance for
Tensorflow, outperforming both other platforms with a median runtime of 155 s
on C4 instances and 132 s on C5 instances. On the newer C5 instance generation
we measured the most noticeable speedup for Pytorch and minor speedups for
Tensorflow and MXNet.

On GPU-accelerated P2 and P3 instances, MXNet outperforms both Pytorch
and Tensorflow by a small margin with a median runtime of 137 s on P2 instances
and 120 s on P3 instances. On the newer P3 instance, we measured minor
speedups across all platforms, compared to the older P2 instance.

Comparing the runtime on CPU-restricted and GPU-accelerated instances,
we measured noticeable speedups for MXNet and Pytorch on the latter. For Ten-
sorflow we did not measure any significant speedup, compared to its already fast
CPU-bound performance. In general, performance differences across platforms
proved much smaller on GPU-accelerated than on CPU-restricted hardware.
Averaging over all platforms and both types of CPU and GPU hardware envi-
ronments respectively, we have measured a speedup of 1.84 on the latter. We
conclude, that for relatively small feed forward neural networks, the speedup
of GPU-accelerated hardware needs to be leveraged against the significant cost
increase that comes with these types of hardware environments.
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Fig. 1. Results of our runtime experiments. Each bar shows the median runtime per-
formance of one software platform over seven runs.
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Image Classification with Convolutional Networks: In Fig. 1b we show the
observed median runtimes for each combination of platform and EC2 instance
for the CIFAR-10 workload with a convolutional VGG16 network. On C4 and
C5 instances, Pytorch outperforms both other platforms with a median runtime
of 43474 s on C4 instances and 27837 s on C5 instances. Each platform shows a
minor speedup on the newer C5 instance, compared to the older C4 instance.

On P2 instances we measured virtually identical runtime performance for
Tensorflow and MXNet, both outperforming Pytorch with a slightly faster
median runtime of 3556 s for MXNet. On P3 instances, we measured the fasted
median runtime for MXNet with 600 s, albeit all three platforms perform almost
identical.

Across all platforms, we have measured a tremendous performance increase,
when training convolutional neural networks in GPU-accelerated hardware envi-
ronments. Figure 1b shows that all frameworks perform multiple times faster on
P2 instances compared to CPU-restricted hardware and again multiple times
faster on P3 instances. Comparing the two newer generations of CPU and GPU
instances (C5 and P3), MXNet runs roughly 163 times faster on the latter,
Tensorflow 109 times faster and Pytorch 44 times. Averaging over all platforms
and both types of CPU and GPU hardware environments respectively, we have
measured a speedup of 23.05 on the latter.

Sentiment Analysis with LSTM Networks: In Fig. 1c we show the observed
median runtimes of seven runs for each combination of platform and EC2
instance for the IMDB workload with LSTM networks. On C4 and C5 instances,
Pytorch outperforms both other platforms with median runtimes of 5138 and
4033 s respectively. Each platform shows a minor speedup on the newer C5
instance, compared to the older C4 generation.

On GPU-accelerated instances we measured significant speedups for all
three platforms, compared to CPU-restricted hardware environments. On P2
instances, Pytorch outperforms both other platforms by a significant margin with
a median runtime of 1386 s. On P3 instances, MXNet runs fastest with a median
runtime of 1281 s. We further measured a significant performance increase on the
newer P3 generation across all platforms, compared to the older P2 generation.

Overall, we observed that all three platforms are capable of utilizing GPU-
accelerated hardware reasonably well, training LSTM networks. Averaging over
all platforms and both types of CPU and GPU hardware environments respec-
tively, we have measured a speedup of 3.15 on the latter.

5.2 Inference Throughput Performance

In this section we analyze the results and findings of our inference performance
experiments, described in Sect. 4.3. For each experiment we report the median
throughput over seven runs.

Handwritten Digits Classification with Feed Forward Networks: In Fig. 2a we
show the observed median throughput for each combination of platform and
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EC2 instance for the MNIST workload. For all CPU sizes we recorded the high-
est throughput rate for Pytorch and the lowest for Tensorflow. For Pytorch
we observed a constant performance increase up until 16 cores with no fur-
ther increase beyond that. For MXNet and Tensorflow we measured consistent
performance increases up until the maximum of 36 CPU cores, albeit without
ever coming close to the throughput rate of Pytorch. Across all platforms and
instance types we recorded the highest throughput rate for Pytorch on c5.4xlarge
(16 cores) instances with 3077.48 mini-batches per second.

Image Recognition with Convolutional Networks: In Fig. 2b we show the observed
median throughput for each combination of platform and EC2 instance for the
CIFAR-10 workload. We recorded the highest throughput rate for Pytorch for
all CPU sizes, with a continuous performance increase up to the maximum of
36 available cores. While Tensorflow showed a continuous raise in mini-batch
throughput with more available cores too, the platform never reached the per-
formance of Pytorch. We measured the lowest throughput rate for MXNet with
no performance increase beyond 8 CPU cores. Across all platforms and instance
types we recorded the highest throughput rate for Pytorch on c5.9xlarge (36
cores) instances with 12.55 mini-batches per second.

Sentiment Analysis with LSTM Networks: In Fig. 2c we show the observed
median throughput for each combination of platform and EC2 instance for the
IMDB workload. We observed the highest throughput rate for Pytorch across
all CPU sizes with a performance increase up to 16 available CPU cores and a
drop in performance afterwards. For Tensorflow we recorded constant increases
in performance up until 16 cores. For MXNet we recorded the lowest through-
put rate and only observed an increase in performance between four and eight
available cores with no further increase afterwards. Across all platforms and
instance types we recorded the highest throughput rate for Pytorch on c5.4xlarge
(16 cores) instances with 13.25 mini-batches per second.

6 Related Work

In this section we briefly introduce three other benchmarking approaches for deep
learning platforms. While similar end-to-end benchmarking concepts have been
applied and implemented before, we distinguish our work by offering an end-to-
end benchmark that lets users declaratively formulate deep learning workloads
in blueprint files.

C. Bourrasset et al. [18] define a set of principle requirements for deep learning
training and inference benchmarks in enterprise environments. For end-to-end
benchmarks which are subject of our work, the authors identify several rele-
vant metrics such as computation time and efficiency or energy and hardware
resource consumption (amongst others). Principal requirements that are stated
for benchmarking approaches are reproducibility, portability and comparability.
These concepts align with the design principles that we have selected for our
work.
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Fig. 2. Results of our inference experiments. Each plot shows the median runtime
performance of one software platform over seven runs.
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MLPerf. [11] is a benchmarking initiative that originated from the DAWNBench
project [20] by the Stanford University and is now supported by a variety of aca-
demic and industrial actors. MLPerf aims to compare deep learning platforms
on a workload level. The primary performance evaluation metric is defined as
the wall clock time to train a deep learning model to a target quality. Partici-
pators can submit results for a predefined workload in a deep learning platform
and a hardware setup of their own choosing. MLPerf strives for mathematical
equivalence, which is asserted by explicitly predefining a model architecture,
hyperparameter as well as initial model parameter that all submissions must
follow.

I. Karmanov et al. [4] propose a “Rosetta Stone approach” for benchmark-
ing deep learning platforms. The initiative was originated by data scientists at
Microsoft, with contributions by various teams working on different deep learn-
ing platforms such as CNTK and Pytorch. The authors describe the project
as an attempt to provide reference implementations for various deep learning
workloads across a variety of different platforms. The authors predefine model
architecture, dataset and hyperparameter for each given workload.

7 Conclusion

7.1 Summary

With this paper we have introduced the Rysia benchmarking framework as a
novel end-to-end benchmark for deep learning platforms. Following the key prin-
ciples of comparability, reproducibility and flexibility we have designed a frame-
work that enables users to specify benchmarking workloads without the need
of implementing any underlying functionality. To that purpose we introduced
the concept of blueprint files in which users may specify any relevant parame-
ters that define a benchmark, such as the model architecture, hyperparameter,
datasets and cloud resource specifications. With this clear separation of workload
specification and implementation, we guarantee reproducibility as well as flexi-
bility. We further guarantee comparability by ensuring that the platform-specific
execution of blueprints are functionally equivalent across platforms. In each com-
putational step our framework utilizes equivalent data structures and operators
of each platform. Over the course of this paper we have shown that the aforemen-
tioned paradigms are reasonable guidelines for benchmarking approaches which
are not fully realized by related work yet.

Utilizing our framework, we have conducted a broad range of representative
benchmarking experiments for deep learning platforms and hardware environ-
ments. We have shown that the performance of individual software platforms
and hardware environments during training depends on a given workload and
its corresponding model architecture. For GPU-accelerated hardware we have
measured by far the highest speedup when training convolutional networks on
image data. For training workloads we have further measured significant perfor-
mance differences across platforms, with no platform outperforming any other
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for each workload. We further noticed that symbolic setups with static com-
putational graphs (MXnet and Tensorflow) do not necessarily guarantee better
performance than imperative setups with dynamic graphs (Pytorch).

For inference workloads we observed the best performance for Pytorch in
all tested hardware environments. The benefits of higher degrees of parallelism
(provided by higher numbers of available CPU cores) largely depend on the
workload, corresponding model architecture and software platform in question.

7.2 Future Work

In this paper we have shown the merits of separating a benchmark specifica-
tion from its implementation and execution. By extending this concept, a far
broader range of deep learning workloads could be covered and analyzed. Our
domain specific language for formalizing model architectures could for instance
be extended with further operators (e.g. attention layer, dropout layer, etc.)
to cover a broader spectrum of neural network architectures. The crucial pre-
requisite for an extension of our own work would be the continued focus on
functional equivalence during the transformation of a declarative formalization
into a platform-specific implementation. We consider the Keras API specification
best suited for expressing more complex model architectures.

We have chosen three different deep learning software platforms to compare
and analyze. The landscape of available platforms is however far wider and
an obvious extension to our own work would be the support and analysis of
other platforms. The design principles that we followed throughout our work are
universally applicable and not limited to any specific platform.

While we focused on single-node hardware environments in our work, dis-
tributed training is a highly relevant research topic within the deep learning com-
munity. A valuable extension of our work would be an implementation and analy-
sis of training workloads on multi-node clusters or single machines with multiple
GPUs. Our concept of declarative benchmark specifications could be extended
accordingly, given that the analyzed software platforms offer distributed
training.
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Abstract. In recent year the TPCTechnology Conference on Performance Evalu-
ation andBenchmarking (TPCTC) series have had significant influence in defining
industry standards. The 11th TPC Technology Conference on Performance Evalu-
ation and Benchmarking (TPCTC 2019) organized an industry panel on the “Role
of the TPC in the Cloud Age”. This paper summaries the panel discussions.

1 Introduction

The panel on the “Role of the TPC in the Cloud Age” at the 11th TPC Technology Con-
ference on Performance Evaluation and Benchmarking (TPCTC 2019) brought together
industry experts and researchers from a broad spectrum of interests. The panel consisted
of:

• Alain Crolotte: Alian has over 25 years of experience in database technology with
Teradata. He participated in all TPC decision-support benchmark projects including
TPC-D, TPC-H, TPC-DS and TPCx-BB. He is very familiar with TPC processes and
benchmark specifications and led teams that published numerous benchmark results.
He also served as a member of the TAB, the TPC regulatory committee.

• Feifei Li: Feifei is a Tenured Professor of Computer Science at the University of
Utah and a world’s top scientist in the field of databases. For his academic and sci-
entific achievements he has won the ACM SIGMOD 2016 Best Paper Award, ACM
SIGMOD2015Best SystemPresentationAward, IEEE ICDE2014 10TheMost Influ-
ential Papers Award, Hewlett-Packard’s 2011 and 2012 Global R&DAwards, Google
Faculty Award in 2015, Visa Faculty Award in 2017, ACM Distinguished Member
in 2018, and the US NSF Career Award. He has hosted and participated in many
important research projects and has served as a member of the editorial board and the
chairman of many leading international academic journals and academic conferences
and is a reviewer and panelists of many major projects.
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• Meikel Poess:Meikel isConsultingMember ofTechnical Staff atOracleCorporation’s
database performance group. He has a long history with the TPC and SPEC and have
made significant contributions to industry standards. Has served as the chairman of
TPC-H, TPC-DS and TPCx-IoT standards committees and is the chairman of the TPC
Public Relation committee.

• Peter Boncz: Peter holds appointments as tenured researcher at CWI and professor at
VUUniversity Amsterdam.His academic background is in core database architecture,
with the MonetDB the systems outcome of his PhD – MonetDB much later won
the 2016 ACM SIGMOD systems award. He has a track record in bridging the gap
between academia and commercial application, receiving the Dutch ICTRegie Award
2006 for his role in the CWI spin-off company Data Distilleries. In 2008 he co-
founded Vectorwise around the analytical database system by the same name which
pioneered vectorized query execution – later acquired by Actian. He is co-recipient
of the 2009 VLDB 10 Years Best Paper Award, and in 2013 received the Humboldt
ResearchAward for his research on database architecture. He alsoworks on graph data
management, founding in 2013 the Linked Database Benchmark Council (LDBC), a
benchmarking organization for graph database systems.

• Raghunath Nambiar: Raghu is the Corporate Vice President and Chief Technology
Officer of Datacenter Ecosystems and Application Engineering at AMD. He brings
years of technical accomplishments with significant expertise in systems architec-
ture, performance engineering, and creating disruptive technology solutions. Raghu
has served in leadership positions on industry standards committees for performance
evaluation and leading academic conferences. He chaired the industry’s first standards
committee for benchmarking big data systems, the industry’s first standards commit-
tee for benchmarking Internet of Things, and is the founding chair of TPC’s Inter-
national Conference Series on Performance Evaluation and Benchmarking. Raghu
has published more than 75 peer-reviewed papers and holds ten patents with several
pending. He is the author of “Transforming Industry Through Data Analytics: Digital
Disruption in Cities, Energy, Manufacturing, Healthcare, and Transportation”.

2 State of the Union of the TPC and TPCTC

The Transaction Processing Performance Council (TPC) is a non-profit organization
established in August 1988. Over the past three decades, the TPC has had a signifi-
cant impact on the computing industry’s use of industry-standard benchmarks. Vendors
use TPC benchmarks to illustrate performance competitiveness for their existing prod-
ucts, and to improve and monitor the performance of their products under development.
Many buyers use TPC benchmark results as points of comparison when purchasing new
computing systems.

Over the years the TPC has created eighteen standards out of which eight are obsolete
as the technologies and business landscape changed. See Fig 1.

The information technology landscape is evolving at a rapid pace, challenging indus-
try experts and researchers to develop innovative techniques for evaluation,measurement
and characterization of complex systems. The TPC remains committed to developing
new benchmark standards to keep pace, and one vehicle for achieving this objective is
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Fig. 1. TPC Timeline.

the sponsorship of the Technology Conference on Performance Evaluation and Bench-
marking (TPCTC) since 2009 [1]. With this conference series, the TPC encourages
researchers and industry experts to present and debate novel ideas and methodologies
in performance evaluation and benchmarking. Over the past decade the TPCTC has
emerged a leading forum for performance evaluation and benchmarking and the new
benchmark standards.

• The first TPC Technology Conference on Performance Evaluation and Benchmarking
(TPCTC2009)was held in conjunctionwith the 35th International Conference onVery
Large Data Bases (VLDB 2009) in Lyon, France from August 24th to August 28th,
2009 [1].

• The secondTPCTechnologyConference on PerformanceEvaluation andBenchmark-
ing (TPCTC 2010) was held in conjunction with the 36th International Conference on
Very Large Data Bases (VLDB 2010) in Singapore from September 13th to September
17th, 2010 [2].

• The thirdTPCTechnologyConference onPerformanceEvaluation andBenchmarking
(TPCTC 2011) was held in conjunction with the 37th International Conference on
Very Large Data Bases (VLDB 2011) in Seattle, Washington from August 29th to
September 3rd, 2011 [3].

• The fourth TPC Technology Conference on Performance Evaluation and Benchmark-
ing (TPCTC 2012), held in conjunction with the 38th International Conference on
Very Large Data Bases (VLDB 2012) in Istanbul, Turkey from August 27th to August
31st, 2012 [4].

• The fifth TPCTechnology Conference on Performance Evaluation and Benchmarking
(TPCTC 2013), held in conjunction with the 39th International Conference on Very
Large Data Bases (VLDB 2013) in Riva del Garda, Trento, Italy from August 26th to
August 30th, 2013 [5].

• The sixth TPC Technology Conference on Performance Evaluation and Benchmark-
ing (TPCTC 2014), held in conjunction with the 40th International Conference on
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Very Large Data Bases (VLDB 2014) in Hangzhou, China, from September 1st to
September 5th, 2014 [6].

• The seventh TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2015), held in conjunction with the 41st International Conference
on Very Large Data Bases (VLDB 2015) in Kohala Coast, USA, from August 31st to
September 4th, 2015 [7].

• The eighth TPC Technology Conference on Performance Evaluation and Benchmark-
ing (TPCTC 2016), held in conjunction with the 42nd International Conference on
Very Large Data Bases (VLDB 2016) in New Delhi, India, from September 5th to
September 9th, 2016 [8].

• The ninth TPC Technology Conference on Performance Evaluation and Benchmark-
ing (TPCTC2017), held in conjunctionwith the 43rd International Conference onVery
Large Data Bases (VLDB 2017) inMunich, Germany, fromAugust 28th to September
1st, 2017 [9].

• The tenth TPC Technology Conference on Performance Evaluation and Benchmark-
ing (TPCTC 2018), held in conjunction with the 44th International Conference on
Very Large Data Bases (VLDB 2017) in Rio de Janeiro, Brazil, from August 27th to
August 31st, 2018 [10].

TPCTCconference series have emerged as a key forum in the performance benchmarking
space and have contributed to several new industry standards and enhancements to
existing standards by the TPC.

3 Panel Discussions

These are the main observations from the panel discussions on TPC and TPC benchmark
result publications:

• More “Express Class” benchmarks publications than “Enterprise Class” bench-
marks. Express Class Benchmarks are kit based and easier and more economical
for companies to test, tune and publish than the specification-based Enterprise Class
Benchmarks

• There are TPC benchmark result publications on public cloud instances which is new
and very encouraging

• Big Data Analytics is a top area of interest and observed several publications of
TPC Big Data benchmarks such as TPC Express Benchmark HS (TPCx-HS), TPC
Express Benchmark IoT (TPCx-IoT), TPC Express Benchmark (TPCxBB), and TPC
Benchmark DS (TPC-DS)

• Artificial Intelligence has been a hot topic in research and industry. In 2017 the Trans-
action Processing Performance Council (TPC) today announced the formation of
a new Working Group (TPC-AI), tasked with developing industry standard bench-
marks for both hardware and software platforms associated with running Artificial
Intelligence (AI) based workloads

• In 2017 the TPC changed its Pricing Specification to accommodate TPC benchmark
publications on clouds and observed the first TPC benchmark results on public clouds
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• While there has been significant progress within TPC in creating new standards, many
TPC standards were established decades ago, which have not been adapting towards
the complex workloads from new business scenarios. For example, applications for
large-scale applications on internet (such as Amazon.com and Tmall.com) usually
require high read throughput, as well as excellent scalability and high availability,
which do not match the existing TPC model

• The evaluation criteria and cost models in TPC are relatively obsolete, where the
pursuit of a high score often results in a prohibitive hardware investment. Achieving a
high score is hence an unnecessary burdensome for database vendors, while it brings in
very little reference value to end customers. Therefore, in the era of cloud computing,
the cost effectiveness will become a vital indicator, which would bring more values to
customers and in turn re-incentivizing more database vendors to use TPC benchmarks

• The evaluation process and criteria should be refined to encourage broader partici-
pations from various database vendors. Only in this way can the evaluation results
provide useful insight values to customers during their process of database product
selection, rather than being a “score game” among database vendors and hardware
manufacturers.

Following the discussion above, here is a list of more specific recommendations:

• The TPC evaluation process should be simplified. It is complex and extremely time
consuming, involving huge endeavor fromvendors to participate in and follow through
an evaluation.

• The cost model of TPC benchmarks should shift from the perspective of resource
consumption to the perspective of cloud service and database system itself, paying
more attention to availability and cost-effectiveness indicators.

• The cost-effectiveness indicator should take cloud-native architectures into consid-
eration, such as disaggregated storage and compute (e.g., Aurora, PolarDB). In this
scenario, we need to reformulate the cost model, rather than accumulating expenses
on purchased machines, disks and switches.

• The definition of high availability should be revised. The traditional “Failing the local
disk” should be replaced with node-level failures.

The panel discussed about TPC Benchmark C (TPC-C), one of the most popular bench-
marks from the TPC. Based on a simple model, it is still very relevant in transaction
processing workloads. But there are quite a few mismatched configurations/properties
in its cost model against current application trends, which should be re-visited:

• Data distribution. Though the access distribution in TPC-C considers data skewness,
it still fails to reflect the influence of real-world hot-spot issues, e.g., hot products and
hot records are not considered in current model.

• Integrity constraints. Compared to simple benchmarking tools (e.g., sysbench and
pgbench), TPC-C contains more complex query types and integrity constraints. How-
ever, more comprehensive integrity constraints should be enforced from the need of
enterprise applications.
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• Read-Write Ratio. TPC-C leverages a write-intensive workload (i.e., read-write ratio
is 1.9/1), which makes the evaluation of database capacity dominated by the I/O
bandwidth. However, as we observe, increasingly many enterprise applications are
read-intensive, leading to completely different performance observations.

4 Conclusion

Industry standard bodies like the TPC has to transform quickly in line with the technol-
ogy and industry evaluations. TPCTC is a vehicle to achieve that. The pricing changes
to accommodate benchmark result publications on the cloud is a major step. The stan-
dards under developments like artificial intelligence can be very useful to industry and
academic community. To serve the growing demands of cloud providers and cloud cus-
tomers the panel suggested to explore more complex benchmark workloads, changes to
the pricing policies and evaluation criteria.
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Abstract. Meanwhile, many database cloud services are available. The well-
known providers are AWS (Amazon Web Service), Google Cloud, and Azure
(Microsoft). Oracle and IBMoffer cloud services for their in-house database prod-
ucts. In the past, the TPC organization has focused on performance measurement
of database systems.Often, however, a database system is predefined, and the ques-
tion arises as to the most efficient infrastructure and the best price/performance
ratio -whether on-premise or as a cloud service.On the Internet, you canhardlyfind
comparable and traceable information about the performance of database cloud
services. Therefore, it is challenging to make corresponding price/performance
comparisons [1]. The company Peakmarks was founded in 2011 to provide a
robust and comprehensive benchmarking framework to identify representative
performance indicators of database services. Peakmarks does not sell any hard-
ware but runs benchmarks on behalf of users and manufacturers and thus guar-
antees absolute independence. Users can license Peakmarks benchmark software
to perform their own performance tests. This presentation gives a rough overview
of the Peakmarks benchmark software, its architecture, and workloads. Examples
are used to show how understandable key performance metrics for database cloud
services can be determined quickly and practically.

Keywords: Benchmark · Databases · Cloud services

1 Requirements to Benchmark Software

Huppler [3] described the five most important characteristics of a good benchmark:
relevant, repeatable, fair, verifiable, and economical. Peakmarks1 meets all these
requirements.

However, other features are also crucial for customer acceptance of benchmark
software:

Simplicity. It must be easy to install the benchmark software, perform the benchmark,
and interpret the results. Peakmarks is implementedwith the tools of the databasewithout
operating system scripts. Therefore, Peakmarks runs unchanged everywhere where the
database software is available. Any DBA can easily manage the benchmark software
without additional know-how.

1 From now on, we use the word Peakmarks synonymously with Peakmarks benchmark software.
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Speed. The installation, loading of the data, processing of the various workloads, and
evaluation of the performance key figures should be fast. Peakmarks is installed in a
few hours, including all adjustments of the database. The loading time of the database
depends on the database size and the performance of the infrastructure. On powerful
systems, loading times of 4 TByte per hour were measured. Complete benchmark runs
with all workloads typically take between 12 and 24 h; the results are immediately
available. A comprehensive benchmark project can be completed within a week. This
is significantly faster than many proof-of-concepts, which may take several weeks and
whose value is limited to the tested application.

Different Load Situations. Often it is not the maximum value of a performance metric
that is of interest, but the optimal value. Peakmarks analyzes the performance of a
database service in all load situations. A benchmark test starts with a low load and
increases the load continuously until the system is saturated. In this way, the optimum
performance range of a database service can be determined.

More Performance Metrics. Many benchmarks provide only a single performance
metric. This dramatically simplifies the comparison of different systems. However, a
single metric is difficult to understand [2]. Peakmarks provides a set of representative
and easy-to-understand metrics for different aspects. Actual performance questions can
be answered more easily. Performance bottlenecks and malfunctions can be detected
more easily. Since several performance metrics are available, the user must decide with
which priority the individual metrics are to be included in the decision-making process,
when choosing the right cloud service.

Product Specific Workloads. When customers have to pay license fees for database
software, they are interested in getting the highest performance out of their database
service. That’s why we’ve deliberately implemented workloads that can only be found
on certain database products but are essential for the solution architecture. Currently,
Peakmarks is available for Oracle 12.2 and upwards. There are considerations to port
the software to other database systems as well. Peakmarks is not suitable to compare
different database products; it only serves to compare the underlying infrastructure,
on-premise or in the cloud.

2 Key Performance Indicators

Representative performance indicators of database services can be used for various tasks:

Quality Assurance. A database service is validated for its performance properties. Per-
formance bottlenecks can be quickly identified; performance promises of the providers
are easily checked.

Evaluation. Performance indicators are used for price/performance considerations of
various database services, technologies, or configurations.

Capacity Planning. When systems migrate to new platforms or cloud services,
performance indicators help with capacity planning.
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License Cost Optimization. Our experience over many years has shown that many
users can halve license costs for the same performance, only by optimizing the
infrastructure. License costs often exceed infrastructure costs by far.

3 The Architecture of Peakmarks Benchmark Software

Peakmarks is written in the procedural SQL extension of the database system, in the case
of Oracle in PL/SQL. The size of the database can be configured in a range from 250
GByte up to 64 TByte per database server. Clusters with multiple servers are supported.
The record length of the benchmark tables can be configured between 80 bytes and 4’000
bytes. The redundancy of the benchmark data can be controlled via a parameter. The
data can optionally be encrypted using a further configuration parameter. All encryption
methods offered by the database system are supported. The scalable loading process of
the benchmark data automatically adapts its parallelism to the performance capabilities
of the database platform.

A workload generator generates the database load with database jobs, and a per-
formance monitor collects all relevant performance statistics before and after each per-
formance test. All workloads are generated within the database, and all performance
statistics also originate from the database (Fig. 1).

Fig. 1. Peakmarks benchmark software – on-premise and in the cloud

Peakmarks provides a library of workloads to determine the most important
performance indicators of database services for:

• Server and storage systems in database operation.
• Critical database background processes, responsible for transaction management (log
writer) and buffer management (database writer).

• Typical database operations such as data load, data analytics and transaction
processing.

• PL/SQL application code.
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4 Simple and Complex Workloads

Peakmarks distinguishes between simple and complex workloads. Simple workloads
execute precisely one type of load (SQL statement). Complex workloads are hierarchi-
cally composed of different simple workloads to simulate complex load situations.

The runtime of the workloads is configurable. Runtimes between 5 and 10 min per
test have proven to be representative. Let us take a closer look at some of the workloads.

4.1 Server Workloads

Server workloads determine the power of a server with its processors, main memory,
and internal memory channels in database operation. These workloads are especially
crucial if license cost must be optimized. License costs are often linked to the number
of processors2 used. In this case, a server with the highest performance per processor is
searched for.

Server workloads also show the efficiency of multithreading and virtualization tech-
nologies and provide hints about scalability when high numbers of sockets and cores
are used (NUMA effects). If database encryption is selected, its impact on the overall
database performance can also be determined.

All server workloads access tables via SQL with different access patterns. The
affected tables are fixed in the buffer cache. There are almost no I/O operations, so
these workloads are entirely CPU-bound.

The essential primary performancemetrics are queries per second (qps), the response
time, and the scan rate of queries (memory bandwidth). A secondary performancemetric
is the number of logical reads per second (Table 1).

Table 1. Peakmarks workloads to determine server performance.

Workload Action Key performance metric Unit

SRV-LIGHT Select single row via index.
Example: select account, product,
order, invoice, etc.

• Query throughput
• Response time

[qps]
[µs]

SRV-MEDIUM Select avg 25 rows via index.
Example: select account postings
last week; item list of order, etc.

• Query throughput
• Response time

[qps]
[µs]

SRV-HEAVY Select avg 125 rows via index.
Example: report of last month’s
call records, etc.

• Query throughput
• Response time

[qps]
[µs]

SRV-SCAN Data search without index support Buffer scan rate [MBps]

SRV-MIXED Complex workload with a mix of
simple server workloads and
concurrent table scan.

• Query throughput
• Response time

[qps]
[µs]

2 A processor may be a core or a thread, dependent on processor architecture and the used
multithreading technology.
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The benchmark report in Fig. 2 shows the performance of a database service for
workload SRV-LIGHT. This benchmark comprises 5 tests. The second column shows
the workload name. The column Nodes indicate how many cluster nodes are used in
the test. The column Jobs describes the number of processes that generate the load for
the workloads. The next 4 columns describe the percentage CPU load in the different
CPU modes. The column Queries total describes the total number of queries processed
per second. The columnQueries per cpu shows the performance per involved processor.
This information is important for license cost considerations. The columns Logical reads
total and Logical reads per cpu are the corresponding performance metrics for database
accesses in the buffer cache. The column BuCache read displays the hit rate of all
read accesses in the buffer cache and is only used to check that this workload has been
optimally processed.

CPU  CPU  CPU  CPU   Queries   Queries Response Log reads Log reads BuCache 
busy user  sys idle     total   per cpu     time     total   per cpu    read 

Test Workload  Nodes Jobs  [%]  [%]  [%] [%]     [qps]     [qps]     [ms]    [dbps]    [dbps]     [%]
---- --------- ----- ---- ---- ---- ---- ---- --------- --------- -------- --------- --------- -------

1 SRV-LIGHT     1    1   13   12    1   87    62,241    62,241    0.016   186,890   186,890   100.0
2 SRV-LIGHT     1    2   25   24    1   75   115,499    57,750    0.017   346,601   173,301   100.0
3 SRV-LIGHT     1    4   50   48    2   50   198,302    49,575    0.020   595,053   148,763   100.0
4 SRV-LIGHT     1    8   99   95    4    1   284,839    35,605    0.028   854,567   106,821   100.0
5 SRV-LIGHT     1   12   99   95    4    1   283,995    35,499    0.041   848,451   106,056   100.0

Fig. 2. Benchmark report for a server system workload.

It is straightforward to see how, as the load increases, the response time also increases,
but the number of queries per CPU decreases. The short response times of less than 30µs
show the exceptional efficiency of database queries when all the data is in the buffer
cache. It is also noticeable that throughput and CPU utilization do not correlate above
50%; a typical characteristic of some processor architectures when multi-threading is
enabled.

4.2 Storage Workloads

Conventional I/O benchmark tools such as vdbench, iometer, Orion often display per-
formance values that are not achieved in real database operations. The reason for this is
the complexity of database I/O operations.

If a data block is read, the buffer cache management of the database has to perform
many tasks: a) find a free slot for the block; b) if there is no free slot, replace older
blocks; c) synchronize all database processes that simultaneously try for free slots in the
buffer cache; d) if a shared disk cluster architecture is used, the synchronization has to
be cluster-wide; e) finally, blocks are checked for their integrity and consistency during
I/O transfer.

Peakmarks, therefore, generates I/O load with so-called SQL-generated I/O opera-
tions to obtain representative performance metrics for the storage system (Table 2).
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Table 2. Peakmarks workloads to determine storage performance.

Workload Action Key performance metric Unit

STO-READ SQL generated sequential
block read

Sequential I/O throughput [MBps]

STO-RANDOM SQL generated random block
read/write

• Random I/O throughput in
database blocks per second

• I/O service time

[dbps]
[µs]

Storage workloads show the efficiency of the I/O stack (I/O scheduler, queues, mul-
tipathing, virtualization), the technologies used (HDD, SSD, Flash, SAS or PCI, NVMe,
etc.) and storage specific functionalities (deduplication, compression, encryption,
snapshots, mirroring, SQL offloading).

The benchmark report in Fig. 3 shows the performance of a database service for
workload STO-RANDOM with 100% read operations.

CPU  CPU  CPU  CPU  CPU Phys reads Phys reads Service Phys reads BuCache FlCache
Wri            busy user  sys idle  iow      total      total time      total    read    read

Test Workload   [%] Nodes Jobs  [%]  [%]  [%]  [%]  [%]     [dbps]     [IOPS]    [us]     [MBps]     [%]     [%] 
---- ---------- --- ----- ---- ---- ---- ---- ---- ---- ---------- ---------- ------- ---------- ------- -------

6 STO-RANDOM   0     1    1    2    1    1   98    0     33,390     33,410     167        261     0.0     0.0
7 STO-RANDOM   0     1    2    3    1    1   99    0     63,570     63,590     175        497     0.0     0.0
8 STO-RANDOM   0    1    4    5    3    3   95    0    117,600    117,600     182        919     0.1     0.0
9 STO-RANDOM   0     1    8   10    5    5   90    0    209,800    209,800     194      1,640     0.1     0.0
10 STO-RANDOM   0     1   16   20   10    9   80   0    355,000    355,000     211      2,774     0.0     0.0
11 STO-RANDOM   0     1   32   37   21   17   63    0    549,700    549,700     243      4,295     0.1     0.0
12 STO-RANDOM   0     1   64   68   39   30   32    0    756,900    772,800     451      6,038     0.1     0.0
13 STO-RANDOM   0     1   96   88   48   39   12    0    801,900    825,200     945      6,447     0.2     0.0
14 STO-RANDOM   0     1  128   89   49   40   11    0    792,700    823,200   1,563      6,432     0.3     0.0

Fig. 3. Benchmark report for random read storage system workload.

This report shows the difference between the maximum and optimal range of per-
formance. The storage system can read over 800,000 random single database blocks per
second (dbps), but at a service time of just under one millisecond (Test 13). An all-flash
storage system is used in this case study. We expect a service time of less than 500
microseconds per single database block read for this storage technology. The optimal
performance is more like 750,000 dbps (Test 12). Higher values are possible, but only
at the price of sharply increasing service times. It is a good advice to keep the storage
utilization below this value.

4.3 Data Load Workloads

System architects and capacity planners need performance metrics from database ser-
vices regarding their ability to load data. This is particularly important for Data Ware-
house and Data Analytics systems, where data volumes are constantly growing as the
time available for loading becomes smaller.

Oracle provides different technologies for loading data: conventional loading via
buffer cache and direct loading bypassing the buffer cache. Peakmarks provides
workloads for both data loading techniques (Table 3).
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Table 3. Peakmarks workloads to determine data load performance.

Workload Action Key performance
metric

Unit

DL-BUFFER Buffered data load Data load
throughput

[MBps]

DL-DIRECT Direct data load Data load
throughput

[MBps]

The benchmark report in Fig. 4 shows the performance of a database service for both
data load workloads. The key performance metrics for data load is the amount of data
that can be loaded within a certain timeframe in column Loaded user data.

                               CPU  CPU  CPU  CPU  CPU         Loaded     Loaded    REDO BuCache FlCache FlCache 
                              busy user  sys idle  iow      user data  user data    data    read    read   write  
Test Workload  Nodes Jobs DOP  [%]  [%]  [%]  [%]  [%]          [rps]     [MBps] [MByte]     [%]     [%]     [%] 
---- --------- ----- ---- --- ---- ---- ---- ---- ---- -------------- ---------- ------- ------- ------- ------- 
  15 DL-BUFFER     1    1   1    2    1    1   98    0         29,935          9      30   100.0    56.7    89.7 
  16 DL-BUFFER     1    2   1    4    3    1   96    0         54,752         16      55   100.0    48.5    91.7 
  17 DL-BUFFER     1    4   1    7    6    1   93    0        105,138         32     107   100.0    49.4    91.8 
  18 DL-BUFFER     1    8   1    8    7    1   92    0        181,662         54     184   100.0    59.6    92.5 
  19 DL-BUFFER     1   16   1   12   10    1   88    0        284,286         85     288   100.0    63.0    93.9 
  20 DL-BUFFER     1   32   1   14   12    2   86    0        338,027        101     344   100.0    65.3    96.4 
  21 DL-BUFFER     2   64   1   30   26    3   70    0        786,876        236     798   100.0    59.4    96.1 
                                
                               CPU  CPU  CPU  CPU  CPU         Loaded     Loaded    REDO BuCache FlCache FlCache 
                              busy user  sys idle  iow      user data  user data    data    read    read   write  
Test Workload  Nodes Jobs DOP  [%]  [%]  [%]  [%]  [%]          [rps]     [MBps] [MByte]     [%]     [%]     [%] 
---- --------- ----- ---- --- ---- ---- ---- ---- ---- -------------- ---------- ------- ------- ------- ------- 
  22 DL-DIRECT     1    1   1    5    4    1   95    0         46,254         14      22    98.6    66.1    84.0 
  23 DL-DIRECT     1    2   1    5    4    1   95    0         92,640         28      44    99.3    62.5    86.0 
  24 DL-DIRECT     1    4   1    6    5    1   94    0        202,426         61      79    99.3    63.3    84.0 
  25 DL-DIRECT     1    8   1    7    6    1   93    0        387,664        116     121    99.3    67.9    87.7 
  26 DL-DIRECT     1   16   1   10    8    1   90    0        714,476        214     179    99.3    68.8    92.2 
  27 DL-DIRECT     1   32   1   16   14    2   84    0      1,144,732        343     225    99.3    68.5    93.5 
  28 DL-DIRECT     2   64   1   28   24    3   72    0      2,398,864        720     485    99.3    66.8    92.4 
 

Fig. 4. Benchmark report for data load workloads.

This case study was run on an Oracle Engineered System which uses flash cache
technology. The buffered load generates more REDO data. The direct load in workload
DL-DIRECT provides much higher throughput in data load. In the last test of each
workload, the load is doubled but distributed over two database servers. In both cases,
the system scales well.

4.4 Data Analytic Workloads

System Architects and capacity planners require performance metrics from database
services regarding their ability to search for data.Data analytics applications are typically
based on “full table scan” operations. The performance of “full table scans” depends
on the position of the data in the storage hierarchy and the technology used to boost
scanning performance.

Peakmarks provides workloads to test different data locations (storage, memory) and
to test different boost technologies (smart scan, in-memory column store) (Table 4).
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Table 4. Peakmarks workloads to determine data analytics performance.

Workload Action Key performance metric Unit

DA-LOW Full table scan with an aggregate of
low complexity

Data scan throughput [MBps]

The benchmark report in Fig. 5 shows the performance of a database service for data
analytic workloads. The key performance metric for data analytics is the amount of data
that can be scanned within a certain timeframe in column Scanned user data.

CPU  CPU  CPU  CPU          Scanned      Scanned BuCache FlCache
busy user  sys idle        user data    user data    read    read 

Test Workload Loc Nodes Jobs  DOP  [%]  [%]  [%]  [%]            [rps]       [MBps]     [%]     [%]   
---- -------- --- ----- ---- ---- ---- ---- ---- ---- ---------------- ------------ ------- -------
29 DA-LOW   STO     1    1    1    3    2    1   97        2,957,446        1,009     0.0    99.9      
30 DA-LOW   STO     1    2    1    3    2    1   97        6,504,650        2,220     2.9    99.9      
31 DA-LOW   STO     1    4    1    2    1    1   98       11,139,254        3,802     0.0 100.0      
32 DA-LOW   STO     1    8    1    5    4    1   95       16,622,389        5,674     0.0   100.0      
33 DA-LOW   STO     1   16    1    5    4    1   95       16,620,501        5,673     0.0   100.0      
34 DA-LOW   STO     1   24    1    4    3    1   96       16,841,046        5,748     0.0   100.0      
35 DA-LOW   STO     2   48    1    5    4    1   95       33,858,898       11,557     0.0   100.0      

CPU  CPU  CPU  CPU          Scanned      Scanned BuCache FlCache
busy user  sys idle        user data    user data    read    read

Test Workload Loc Nodes Jobs  DOP  [%]  [%]  [%]  [%]            [rps]       [MBps]     [%]     [%] 
---- -------- --- ----- ---- ---- ---- ---- ---- ---- ---------------- ------------ ------- -------
36 DA-LOW   EXA     1    1    1    2    1    1   98       38,705,238       13,211     0.0   100.0
37 DA-LOW   EXA     1    2    1    4    3    1   96  74,473,109       25,420     0.0   100.0
38 DA-LOW   EXA     1    4    1    5    4    1   95      121,551,795       41,490     0.0   100.0
39 DA-LOW   EXA     1    8    1    5    3    1   95      171,804,526       58,642     0.0   100.0
40 DA-LOW EXA     1   16    1    6    4    2   94      221,632,126       75,650     0.0   100.0
41 DA-LOW   EXA     1   24    1    5    3    2   95      246,288,356       84,066     0.0    99.8
42 DA-LOW   EXA     2   48    1    7    5    2   93      272,648,654       93,064     0.0    99.9

Fig. 5. Benchmark report for data analytics workloads using storage.

“Full table scans” cause sequential storage reads on the storage system and are
usually limited by the bandwidth between the storage system and server system, in this
case around 6 GBps (test 34). When two database servers request sequential reads, the
storage system scales well (2 cluster nodes are used in test 35 and test 42).

Test 36 to 42 show the performance when SQL offload technology can be used. Even
one database server can use the full performance capabilities of the storage system,which
is by factors higher than on a conventional storage system. But this technology requires
specialized hardware and software (Oracle Engineered System).

The benchmark report in Fig. 6 shows the same workload, but data is stored in main
memory using row store (test 43–51) or column store (test 52–60). The results are very
different (by factors) and allow a fair comparison of different technologies to calculate
the price-/performance ratio of each data analytics solution.
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CPU  CPU  CPU  CPU          Scanned      Scanned BuCache FlCache
busy user  sys idle        user data    user data    read    read

Test Workload Loc Nodes Jobs  DOP  [%]  [%]  [%]  [%]            [rps]       [MBps]     [%]     [%] 
---- -------- --- ----- ---- ---- ---- ---- ---- ---- ---------------- ------------ ------- -------
43 DA-LOW   ROW     1    1    1    2    2    0   98       24,461,819        8,100   100.0     0.0
44 DA-LOW   ROW     1    2    1    4    4    0   96  46,686,828       15,459   100.0     0.0
45 DA-LOW   ROW     1    4    1    8    8    0   92       87,802,201       29,073   100.0     0.0
46 DA-LOW   ROW     1    8    1   17   16    0   83       76,070,044       25,188   100.0     0.0
47 DA-LOW ROW     1   12    1   25   25    0   75       82,624,704       27,359   100.0     0.0
48 DA-LOW   ROW     1   16    1   33   33    0   67      113,429,349       37,559   100.0     0.0
49 DA-LOW   ROW     1   24    1   50   50    0   50      143,799,960       47,615   100.0     0.0
50 DA-LOW   ROW     1   32    1   66   66    0   34      145,733,328       48,255   100.0     0.0
51 DA-LOW   ROW     1   48    1   99   99    0    1      159,741,657       52,894   100.0     0.0

CPU  CPU  CPU  CPU          Scanned      Scanned BuCache FlCache  
busy user  sys idle        user data    user data    read    read

Test Workload Loc Nodes Jobs  DOP  [%]  [%]  [%]  [%]            [rps]      [MBps]     [%]     [%]  
---- -------- --- ----- ---- ---- ---- ---- ---- ---- ---------------- ------------ ------- -------
52 DA-LOW   COL     1    1    1    2    2    0   98      161,621,061       53,516   100.0     0.0
53 DA-LOW   COL     1    2 1    4    4    0   96      321,493,739      106,453   100.0     0.0
54 DA-LOW   COL     1    4    1    8    8    0   92      638,947,218      211,569   100.0     0.0
55 DA-LOW   COL     1    8    1   17   16    0   83    1,190,488,863      394,195   100.0     0.0
56 DA-LOW   COL     1   12    1   25   25    0   75    1,830,025,038      605,959   100.0     0.0
57 DA-LOW   COL     1   16    1   33   33    0   67    2,478,718,508      820,755   100.0     0.0
58 DA-LOW   COL     1   24    1   50   50    0   50    3,579,861,738    1,185,366   100.0     0.0
59 DA-LOW   COL     1   32    1   66   65    0   34    4,064,304,827    1,345,775   100.0     0.0
60 DA-LOW   COL     1   48    1   99   99    0    1    4,830,584,944    1,599,506   100.0     0.0

Fig. 6. Benchmark report for data analytics workloads using main memory.

4.5 Transaction Processing Workloads

System architects and capacity planners need performance metrics from database ser-
vices regarding their ability to run typical transaction processing applications. Peakmarks
provides transaction processing workloads of varying complexity (light, medium, and
heavy) (Table 5).

Table 5. Peakmarks workloads to determine transaction processing performance.

Workload Action Key performance metric Unit

TP-LIGHT Select/Update single row via index.
Example: account, product, order,
invoice, etc.

• Transaction throughput
• Response time

[tps]
[ms]

TP-MEDIUM Select/Update avg 25 rows via
index.
Example: account postings last
week; item list of order, etc.

• Transaction throughput
• Response time

[tps]
[ms]

TP-HEAVY Select/Update avg 125 rows via
index.
Example: last month’s call records
of smartphones, etc.

• Transaction throughput
• Response time

[tps]
[ms]

TP-MIXED Complex workload: mix of
Select/Update/Insert transactions.

• Transaction throughput
• Response time

[tps]
[ms]
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The following benchmark report in Fig. 7 shows the performance of a database
service for workloads TP-LIGHT and TP-HEAVY with 80/20 select/update ratio. The
percentage of update transactions can be configured from 0% to 100% in 10% steps
(column Upd).

CPU  CPU  CPU  CPU  CPU Trans Trans Resp Log reads Phys reads Log writes Phys writes BuCache 
Upd       busy user  sys idle  iow  total per cpu time    per tx     per tx     per tx      per tx    read 

Test Workload  [%]  Jobs  [%]  [%]  [%]  [%]  [%]   [tps]   [tps] [ms]   [dbptx]    [dbptx]    [dbptx]     [dbptx]     [%] 
---- --------- --- ---- ---- ---- ---- ---- ---- ------- ------- ------ --------- ---------- ---------- ----------- -------
61 TP-LIGHT   20     1   13   10    3   87    0 21,535  21,535 0.046      5.22       0.18       2.81        0.13    96.6 
62 TP-LIGHT   20     2   20   17    3   80    0  29,990  14,995 0.066      5.22       0.14       2.81        0.15    97.2 
63 TP-LIGHT   20     4   39   32    7   61    0  47,151  11,788 0.084      5.21       0.18       2.81        0.18    96.6 
64 TP-LIGHT   20     8   65   53   13   35    0  64,295   8,037 0.123      5.21       0.24       2.81        0.28    95.4 
65 TP-LIGHT   20    12   69   52   17   31    0  52,553   6,569 0.225      5.21       0.44       2.81        0.51    91.6

CPU  CPU  CPU  CPU  CPU Trans Trans Resp Log reads Phys reads Log writes Phys writes BuCache 
Upd       busy user  sys idle  iow total per cpu   time    per tx     per tx     per tx      per tx    read 

Test Workload  [%]  Jobs  [%]  [%]  [%]  [%]  [%]   [tps]   [tps]   [ms]   [dbptx]    [dbptx]    [dbptx]     [dbptx]     [%] 
---- --------- --- ---- ---- ---- ---- ---- ---- ------- ------- ------ --------- ---------- ---------- ----------- -------
66 TP-HEAVY   20     1   14   12    2   86    0     657     657  1.516    281.37       3.73     301.79        5.19    98.7 
67 TP-HEAVY   20     2   28   22    6   72    0   1,011 506  1.967    281.53       7.37     301.84        9.43    97.4 
68 TP-HEAVY   20     4   49   41    8   51    0   1,620     405  2.446    281.29       6.35     301.71       12.78    97.7 
69 TP-HEAVY   20     8   64   51   14   36    0   1,505    188  5.264    281.42      11.83     301.88       24.07    95.8 
70 TP-HEAVY   20    12   46   24   22   54    0     551      69 21.525    282.31      43.06     302.12       60.28    84.7

Fig. 7. Benchmark report for transaction processing, 20% updates.

The key performance metrics for these workloads are transactions per second
(column Trans total) and the response time (column Resp time).

The performance of these workloads depends on various factors, including the ratio
of database size to buffer cache size. The higher the hit rate of the buffer cache (column
BuCache read), the higher the transaction rate and the lower the response time of the
transactions column Resp time). This is particularly true for low update rates, where the
proportion of write operations is low in relation to the number of read operations.

The following benchmark report in Fig. 8 shows the performance of a database
service with the workload “TP-MIXED” with 20% update share. This complex work-
load is similar to a TPC-C workload, where queries, update, and insert transactions are
processed simultaneously.

CPU  CPU  CPU  CPU  CPU Trans Trans Resp Log reads Phys reads Log writes Phys writes BuCache
Upd       busy user  sys idle  iow total per cpu   time    per tx     per tx     per tx      per tx    read 

Test Workload  [%]  Jobs  [%]  [%]  [%]  [%]  [%]   [tps]   [tps]   [ms]   [dbptx]    [dbptx]    [dbptx]     [dbptx]     [%] 
---- --------- --- ---- ---- ---- ---- ---- ---- ------- ------- ------ --------- ---------- ---------- ----------- -------
71 TP-MIXED   20     4   45   36    9   55    0  13,326   3,331  0.298     21.57       0.48      20.59        0.66    97.8 
72 TP-MIXED   20     8   77   60   17   23    0  17,242   2,155  0.460     23.60       0.85      22.84        1.39    96.4 
73 TP-MIXED   20    12   80   61   19   20    0  13,440   1,680  0.879     29.35       1.22      29.22        2.44    95.8

Fig. 8. Benchmark report for mixed transaction processing, 20% updates.

4.6 PL/SQL Application Performance

PL/SQL is the preferred programming language for complex transaction logic and algo-
rithms. PL/SQL code is stored in the database server. Some large applications, e.g., core
banking systems, are entirely implemented in PL/SQL.
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Peakmarks providesworkloads to test PL/SQLcode efficiency on a particular proces-
sor. These workloads are entirely CPU-bound. The key performancemetrics for PL/SQL
application performance are the number of executed PL/SQL operations within a certain
timeframe and the execution time of PL/SQL algorithms (Table 6).

Table 6. Peakmarks workloads to determine transaction processing performance.

Workload Action Key performance metric Unit

PLS-ADD Addition of numbers. Throughput of PL/SQL
operations

[Mops]

PLS-BUILTIN Datatype-specific operations,
including SQL built-in functions,
based on core banking and telco
billing applications.

Throughput of PL/SQL
operations

[Mops]

PLS-PRIME Calculation of first N prime
numbers.

Algorithm processing
time

[s]

PLS-FIBO Calculation of Fibonacci number N
using a recursive algorithm.

Algorithm processing
time

[s]

PLS-MIXED Datatype-specific operations,
including SQL built-in functions.

Throughput of PL/SQL
operations

[Mops]

The following benchmark report in Fig. 9 shows the performance of a database
service with the workload “PLS_MIXED” with different numerical datatypes.

                                         CPU  CPU  CPU  CPU      Operations  Operations  Elapsed 
                                        busy user  sys idle           total     per cpu     time 
Test Workload     Type    N Nodes  Jobs  [%]  [%]  [%]  [%]          [Mops]      [Mops]      [s] 
---- ------------ ---- ---- ----- ----- ---- ---- ---- ---- --------------- ----------- -------- 
  74 PLS-MIXED       0    0     1     4   50   50    0   50          337.07       84.27      180 
  75 PLS-MIXED       0    0     1     8   99   99    0    1          401.76       50.22      180 
  76 PLS-MIXED       0    0     1    12  100   99    0    0          418.11       52.26      181 

Fig. 9. Benchmark report for PL/SQL code with mixed datatypes.

4.7 Database Service Processes

In the case of Oracle, the performance of the log writer background process is critical. It
is responsible for transaction logging and database recovery after system failures. The
latency of transaction logging can have a significant impact on the response time of user
transactions.

Optionally, the log writer is also used for database replication to synchronize standby
databases. This technology is very popular for disaster recovery solutions. Replication
can take place in synchronous or asynchronousmode. The data transfer between primary
and standbydatabases canoptionally be encrypted and/or compressed.With synchronous
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replication, local transactions have to wait until the standby databases have also applied
the transaction log. This may delay local transaction processing considerably.

To analyze the performance behavior of the log writer process in all possible sit-
uations, Peakmarks offers two different workloads. One workload analyzes log writer
latency, and the other one’s log writer throughput (Table 7).

Table 7. Peakmarks workloads to determine log writer performance.

Workload Action Key performance metric Unit

LGWR-LAT Small insert transactions with 1, 25 or 125 rows per transaction and
commit wait

• Transaction
throughput

• Response time
• REDO sync time

[tps]
[ms]
[µsec]

LGWR-THR Large insert transaction with 2’000 rows per transaction and
commit wait

Log writer throughput [MBps]

The following benchmark report in Fig. 10 shows the performance of a database
service with the workload “LGWR-LAT” and different transaction sizes (column TX
size) of 1 and 25 rows per transaction.

TX              CPU  CPU  CPU  CPU  CPU Transactions Response     REDO    REDO REDO FlCache  
size             busy user  sys idle  iow        total     time   blocks    data     sync   write 

Test Workload [rpt] Nodes  Jobs  [%]  [%]  [%]  [%]  [%]        [tps]     [ms]   [rbps] [MByte]     [ms]     [%] 
---- -------- ----- ----- ----- ---- ---- ---- ---- ---- ------------ -------- -------- ------- -------- -------
77 LGWR-LAT     1     1     1   12    9    3   88    0        6,762    0.147   29,240      13    0.058     0.0
78 LGWR-LAT     1     1    2   24   17    7   76    0       11,293    0.176   49,077      21    0.070     0.0 
79 LGWR-LAT     1     1     4   41   31   10   59    0       15,719    0.253   66,757      30    0.118     0.0
80 LGWR-LAT     1     1     8   65   52   13   35    0  27,992    0.285  114,960      53    0.138     0.0 

TX              CPU  CPU  CPU  CPU  CPU Transactions Response     REDO    REDO     REDO FlCache 
size             busy user  sys idle  iow        total     time   blocks    data     sync   write

Test Workload [rpt] Nodes  Jobs  [%]  [%]  [%]  [%]  [%]        [tps]     [ms]   [rbps] [MByte]     [ms]     [%]
---- -------- ----- ----- ----- ---- ---- ---- ---- ---- ------------ -------- -------- ------- -------- -------
81 LGWR-LAT    25     1     1   12    9    3   88    0        1,270    0.785   70,581      35    0.242     0.0
82 LGWR-LAT    25     1     2   25   21    4   75    0        2,573    0.769  143,785      70    0.154     0.0 
83 LGWR-LAT    25     1     4 46   40    7   54    0        4,267    0.925  239,056     117    0.192     0.0 
84 LGWR-LAT    25     1     8   84   76    8   16    0        6,089    1.298  339,946     167    0.232     0.0 

Fig. 10. Benchmark report for log writer latency.

The following benchmark report in Fig. 11 shows the performance of a database
service with the workload “LGWR-THR” with large transactions.

TX              CPU  CPU  CPU  CPU  CPU Transactions Response     REDO    REDO     REDO FlCache  
size             busy user  sys idle  iow        total     time   blocks    data     sync   write     

Test Workload [rpt] Nodes  Jobs  [%]  [%]  [%]  [%]  [%]        [tps]     [ms]   [rbps] [MByte]     [ms]     [%]      
---- -------- ----- ----- ----- ---- ---- ---- ---- ---- ------------ -------- -------- ------- -------- -------
85 LGWR-THR  2000     1     1   14   12    3 86    0          115    8.631  115,085      57    0.740     0.0 
86 LGWR-THR  2000     1     2   27   23    4   73    0          205    9.615  205,126     102    0.802     0.0
87 LGWR-THR  2000     1     4   52   48    4   48    0          321   12.390  322,406     160    0.596     0.0
88 LGWR-THR  2000     1     8   95   88    6    5    0          449   17.545  450,739     223    0.914     0.0

Fig. 11. Benchmark report for log writer throughput.
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4.8 Order in Which Workloads Are Executed

We run the workloads in a logical order and start with the server and storage workloads.
For example, if the storage workloads do not perform satisfactorily, other workloads that
are heavily dependent on storage performance will also deliver disappointing results.

The following order has proven workable

• Workloads for Server Systems.
• Workloads for Storage Systems.
• Workloads for Database Background Processes.
• Workloads for Data Load.
• Workloads for Data Analytics.
• Workloads for Transaction Processing.
• Workloads for PL/SQL application programs.

5 Case Study

The Peakmarks benchmark software offers a fast and comprehensive performance anal-
ysis of Database Cloud Services. The results are understandable key performance
metrics for representative database operations and provide a reliable foundation for
price/performance comparisons and capacity planning.

Here is a summary of performance metrics of a database service with 8 processors,
32 GByte main memory, flash storage, and a 250 GByte database. The min/max values
describe the system behavior in all load situations (best case, worst case).

The whole benchmark took less than 24 h. The customer selected those workloads
from all that are important to him. The parameters for the workloads were chosen to
reflect the customer’s current environment best (Tables 8, 9, 10, 11, 12, 13 and 14).

Table 8. Peakmarks key performance metrics for server component.

Workload Description Cloud service A

SRV-MIXED Min/Max query throughput per CPU in [qps] 12,458/17,673

SRV-SCAN Min/Max scan throughput per CPU in [MBps] 2,118/3,986

[qps] queries per second
[MBps] megabytes per second

Table 9. Peakmarks key performance metrics for storage component.

Workload Description Cloud service A

STO-READ Max sequential read throughput in [MBps] 2,014

STO-RANDOM 100% read Max random read throughput in [dbps] at service time in [µs] 180,632 @ 387

STO-RANDOM 50% read Max random read throughput in [dbps] at service time in [µs] 55,043 @ 546

[dbps] database blocks per second
[MBps] megabytes per second
[µs] microseconds
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Table 10. Peakmarks key performance metrics for data load.

Workload Description Cloud service A

DL-BUFFER Buffered data load, max data load rate in [MBps] 68

DL-DIRECT Direct data load, max data load rate in [MBps] 136

[MBps] megabytes per second

Table 11. Peakmarks key performance metrics for data analytics.

Workload Description Cloud service A

DA-LOW default storage Max data scan rate in [MBps] 1,755

DA-LOW storage offload Max data scan rate in [MBps] –

DA-LOW row store Max data scan rate in [MBps] 16,828

DA-LOW column store Max data scan rate in [MBps] 96,078

[MBps] megabytes per second

Table 12. Peakmarks key performance metrics for transaction processing (80% read, 20%
update).

Workload Description Cloud service A

TP-LIGHT 1 row per tx Max transaction rate in [tps] at response time
in [ms]

73,0976 @ 107

TP-MEDIUM 25 rows per tx Max transaction rate in [tps] at response time
in [ms]

8,041 @ 971

TP-HEAVY 125 rows per tx Max transaction rate in [tps] at response time
in [ms]

1,775 @ 4,570

TP-MIXED Max transaction rate in [tps] at response time
in [ms]

20,924 @ 708

[tps] transactions per second
[ms] millisecond

Table 13. Peakmarks key performance metrics for PL/SQL application code.

Workload Description Cloud service A

PLS-ADD PLS_INTEGER Min/Max throughput per CPU in [Mops] 167/381

PLS-BUILTIN NUMBER Min/Max throughput per CPU in [Mops] 6.10/11.46

PLS-BUILTIN VARCHAR2 Min/Max throughput per CPU in [Mops] 1.98/4.38

PLS-MIXED all data types Min/Max mixed operations per CPU in [Mops] 50.22/84.27

[Mops] million operations per second
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Table 14. Peakmarks key performance metrics for database service processes.

Workload Description Cloud service A

LGWR-LAT 1 row per tx Max log writer transaction rate in [tps] at
service time in [µs]

27,992 @ 285

LGWR-LAT 25 rows per tx Max log writer transaction rate in [tps] at
service time in [µs]

6,089 @ 1,298

LGWR-LAT 125 rows per tx Max log writer transaction rate in [tps] at
service time in [µs]

1,583 @ 4,969

LGWR-THR Max log writer throughput in [MBps] 223

DBWR-THR Max database writer throughput in [dbps] 67,592

[Mops] million operations per second
[µs] microseconds
[tps] transactions per second
[dbps] database blocks per second
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Abstract. Erase count is a key performance indicator of hard drives,
and it shows the lifetime of a device. Analysis of erase counts helps us
understand the performance of a device and prevent the failure of it.
In this paper, a machine learning based framework is proposed to pre-
dict the curves of erase counts. Specifically, probabilities and erase-count
curves of different hard drives are first calculated from training data. The
probabilities are for deciding disk type in testing data. The erase-count
curves from training data serve as references to testing data. Long short-
term memory is utilized to model the erase-count difference between
a reference device and a testing device, and to predict the lifetime of
the testing device. Preliminary results of synthetic data show that our
method can follow references and precisely predict erase counts.

1 Introduction

Digitalization has become necessary to companies that take advantages of big
data to improve performance and enhance competitiveness. In addition, per-
sonal devices become prevalent and generate tremendous data. The astronomical
amount of data bring new challenges to data center, including the use of storage
devices and the management of them. When a hard drive fails, data in the hard
drive will be lost, which results in interruption of operation and financial losses
of business [3]. Failure of storage device is a crucial issue that every data center
needs to prevent and address [16]. In this paper, solid state drive (SSD) is used
as an example of storage devices when we explain our methods.

A storage device usually works in a write-erase-write cycle. After data are
written into the device, they will be erased before new data are written, either
when the disk is full or the data are manually deleted by user. This cycle is
called program-erase cycle (P/E cycle), which is a criterion for quantifying the
endurance of a device. Generally speaking, each cycle consumes a tiny portion
of the lifetime of a device. As the number of cycles increases, the remaining
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lifetime of a device decreases. Because erasing pairs with writing, thus erase
count is simply used as a key performance indicator (KPI) in measuring lifetime
of a storage device.

Figure 1 shows curves of erase counts generated by synthetic data, where x-
axis is for time and y-axis indicates erase counts. In this figure, each curve shows
the erase counts of a device, and different colors represent different disk types
and patterns. In each curve, as time goes by, erase counts increase in variable
speeds depending on how the device was used. At the end of life, the increase
of erase counts slowly fades out. Erase-count curves change according to how
devices are used. For instance, the erase-count curves of university users are
different from those of bank users. Hard drive erasing and writing of bank users
usually are frequent during business hours but rare after. On the other hand,
students in universities run computers overnight to get experiment results, and
the erasing and writing of those devices will not follow a 9–5 work schedule.

Fig. 1. Curves of erase counts from synthetic data. (Color figure online)

Predict the erase-count curve of a storage device is an interesting topic in
device management. Knowing the curve will help us anticipate the lifetime of a
device, adjust the use of it accordingly, and extend its life. In addition, analyze
usage pattern can predict device failure.

The lifetime of a device depends on a variety of factors, including device
specifications and how a device is being used [7,10]. In order to prevent device
failure, a general solution is to replace a device at a specific time before the
end of its life. However, it is difficult to anticipate when is the best time for
replacement. Too early to replace a device will increase costs unnecessarily, while
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too late and the device fails before replacement will result in data losses [6].
Not to mention that not every hard drive is used in the same way, i.e., most
devices do not fail at the same lifetime and do not have the same maximum
erase counts. Schroeder et al. studied a wide range of reliability characteristics
and found unexpected conclusions in flash reliability [13,14]. Narayanan et al.
analyzed extensive data and provided the first comprehensive analysis of the
characteristics of SSD failures [12].

Work has been done to predict device lifetime. Murray et al. developed a mi-
NB algorithm based on naive Bayesian learning to predict failure of hard drive.
They also compared their method with support vector machines, unsupervised
clustering, and non-parametric statistical tests [11]. Some statistical techniques
were employed in [2] to automatically detect which SMART parameters cor-
relate with disk replacement and use them in predicting disk replacement. In
addition, Shu et al. applied multiple machine learning methods to predict disk
drive failures for timely replacement [15]. They also evaluated these methods by
comparing prediction accuracy, recall and F-score. The methods of long short-
term memory (LSTM) are good for predictions of time series data [9]. Recently,
Lima et al. proposed a method based on LSTM and remaining useful life (RUL)
binning to classify RUL and predict failure [4]. In [1], Anantharaman et al. com-
pared LSTM with random forest on prediction of RUL, and suggested careful
feature selection may help improving the performance of LSTM.

In this paper, machine learning methods are used in lifetime prediction.
Specifically, erase-count curves are generated from training data and used as
benchmarks to guide the prediction. Probability methods are applied to find the
most possible curve from reference curves. Long Short-Term Memory (LSTM)
is utilized to predict the parameters of a distribution instead of predicting the
erase-count curve or device lifetime directly. This method catches the trend of
curve, and is robust to changes. Preliminary results from synthetic data show
that our methods can predict a erase-count curve even at an early stage of device
usage. The ability to predict lifetime early reduces the data needed in prediction
and increases the lifetime of a device.

2 Methods

The erase-count curves of a specific disk type usually follow the same pattern,
and are differentiable from those of other disk types. Disk type here is a type of
disks that have the same specifications and are used similarly.

Even though the erase-count curves of same disk type may not be exactly
the same, they follow the same pattern and the difference between these curves
can be seen as noise and modeled by functions. Accordingly, once the disk type
is known, the shape of corresponding erase-count curve is approximately known,
and the curve can be estimated by getting the parameters of a noise function,
i.e., adding noise to the reference curve. Using disk type and corresponding erase-
count curve from training data as benchmarks to predict lifetime of testing data
can dramatically narrow down options and reduce the data needed for prediction.
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Fig. 2. The framework of our methods. (1. Include calculation of probabilities; 2.
include obtaining parameters of distribution functions and fitting parameters into
LSTM model.)

Figure 2 shows the framework. First of all, the probability of disk type given
attributes are calculated using training data. The probability is used to deter-
mine disk types in testing data. Training data are also used to generate erase-
count curves of different disk types. These curves serve as references to testing
data. In order to approximate the curves of testing data, the reference curves
are added with noise that is presented by noise function. One of the benefits
doing so is to reduce the testing data needed for prediction so as to anticipate
the lifetime as early as possible. Theoretically, without using parameters, it will
take significant amount of data to predict a curve. Modeling the erase-count
curve as reference and noise makes it possible to know the whole lifetime with a
small amount of time points, as long as the noise function truly represents the
difference. Once the parameters of a noise function are known, the noise function
is predicted, so as the erase-count curve. Even though the disk type stays the
same, parameters of a disk may change overtime because of changes in usage.
In order to include these changes in our model and obtain the most recent set
of parameters in prediction, LSTM is applied to predict the trends of param-
eters. There are advantages of using LSTM to predict function parameters. It
enhances robustness in our model and reduces errors from fluctuation over time.
It takes into account the overall dataset up to the last time point and predicts
the most recent set of parameters. It provides flexibility in data needed. During
prediction, the model can use as many data as the whole lifetime and as few as
the first several time points.

2.1 Determination of Disk Type

In our method, there are two kinds of parameters that determine a disk type, disk
specifications and usage factors. Disk specifications are set during manufacture,
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and they cannot be changed by users. Usage factors show how devices are used,
and they can be changed by users. In this paper, we use attributes to describe
all the parameters (disk specifications and usage factors) that determine a disk
type. Let D = {Di|Di ∈ N�, i = 1, 2, ...,m} represent the disk types, and let A =

{Aj |Aj ∈ R, j = 1, 2, ... n} be the disk attributes, i.e., attributes that are set
once a disk is made, where m and n are the numbers of disk types and disk
specifications, respectively. Each attribute has a pool of options, such as 0 and
1. In addition, let H = {Hk|Hk ∈ R, k = 1, 2, ..., p} be the user attributes, i.e.,
attributes that can be changed by users and depend on how the devices are
being used. Disk attributes affect user attributes because users tend to make
proper use of a device according to its specifications. On the other hand, given
user attributes, the disk attributes can be estimated. Therefore, there are casual
relationships among disk attributes, user attributes, and disk types. A disk type
can be decided by attributes using conditional probabilities, i.e., given attributes,
the disk type is probably known.

Not every data center has all disk types, and not every user attribute is
known in practice. The conditional probability of disk type given attributes can
be calculated using training data. The most possible disk types are decided
by conditional probabilities and testing data. As discussed above, disk types
associate with specifications, i.e., given D, probability p(A|D) is known. Disk
type and specifications lead to how users use that type of disks, i.e., given D and
A, probability p(H|D,A) is known. Thus, even without all the information in
testing data as in a real situation, using training data, disk type can be decided
by choosing the one with highest probability.

p(D|A,H) ∝ p(H|D,A)p(A|D)p(D) (1)

The probabilities of p(H|D,A), p(A|D), p(D) are determined by training and
testing data. The disk type that has the largest value of posterior probability
will be decided as the disk type of that device. Data centers (users) can define
user attributes according to the services they provide and the hardware they
use. Thus, user attributes vary from disk type to disk type. In training, it is
advantageous to define attributes to detail, so the calculation of probabilities
will cover all possible disk types. Though, that means a large amount of data
and time are needed in training. In practice, if the testing data do not have a
specific attribute that is defined in training, than the probabilities relative to
that attribute can be simply set to 0 or 1 depending on the situation.

2.2 Prediction of Lifetime

Presumably, every attribute affects the shape of erase-count curve. Even though
two disks have the same disk type, their curves probably will not be the same,
because the exact value of each attribute can be different. However, devices with
same disk type usually have similar curves.

Once a disk type is decided, its reference erase-count curve is known. Let y
represent the reference curve, and y′ be the curve of a disk with the same disk
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type as y. y′ can be obtained by

y′ = y + E, (2)

where E is noise. E changes according to the values of attributes, and are decided
by a variety of conditions such as temperature and disk functionality.

In our method, E is modeled by a noise function. In order to find out function
parameters of E in testing data, erase counts of given time points are fit into
the curve combining reference and noise function. In our experiments, Gaussian
distribution is applied to present noise E. Though, E can be presented by other
distribution functions.

Solve Gaussian function at time t provides a set of parameters at that time
point. However, the parameters at a specific time point are not certain the
optimal parameters. In addition, parameters change from time to time because
attributes change. LSTM network is applied to extract the trend of changes from
parameters. Specifically, parameters of different time points are sent to LSTM
units to train and predict the best set of parameters for all the unknown time
points. Note that, the testing data are used for both training and testing of
LSTM network, because all the parameters are obtained from testing data. The
model is robust to local changes because of LSTM network.

2.3 Change of Disk Type

Disk type can be changed during the lifetime of a disk. For example, in a data
center, a hard drive can be assigned to bank users in the first half year but
university users in the second. When disk type and usage pattern change, erase-
count curve changes too. Thus, once disk type is changed, new prediction should
be performed.

There are methods to detect changes in disk type. The easiest way is through
detecting the changes in attributes. When the attributes of a disk change, its
disk type changes. Change of disk type can also be detected by distinct changes
in erase-count curve. If the shape of erase-count curve changes it is usually
because the attributes change. However, decision based on curve changes should
be made carefully, because a large number of factors can lead to curve changes,
such as noise. The duration, frequency, and amount of curve changes should be
considered.

After a change is detected, the erase-count curve of the corresponding new
disk type will start being used as a reference for prediction. It is possible that a
disk has multiple disk types in its lifetime. Because data consistency is impor-
tant to training and testing, frequent changes in disk type jeopardize prediction
accuracy.

3 Implementations

Our model is tested with synthetic data as shown in Fig. 1. The colors in this
figure represent disk types. The formulas in [8] are utilized to solve the parame-
ters of Gaussian distribution, AppendixA. Specifically, time points between t−5



160 Y. Zhu et al.

and t + 5 are used to calculate the set of Gaussian parameters at t. The LSTM
network in our method is based on [5], one LSTM for each parameter. If training
data have multiple curves of one disk type, the reference curve of that disk type
is generated by averaging all the curves.

Figure 3 and Fig. 4 show the preliminary results of our method. In these
figures, the two curves in each figure have same disk type. The curves in blue are
from training data and serve as references for prediction. The curves in orange
are from testing data, and the curves in green are prediction results. From the
results, we can see the predicted curves nicely follow the patterns of reference
curves.

Fig. 3. Reference and prediction results of disk type 1. (Color figure online)

Fig. 4. Reference and prediction results of disk type 2. (Color figure online)
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4 Discussions and Future Work

Because it takes thousands of P/C cycles for a device to fail, and there are a
variety of devices in the market, thus it takes time and effort to create a database
of erase-count curves as benchmarks. Some datasets are mentioned in the papers
of different vendors, such as BackBlaze, Google, and Microsoft. However, the
detail information, such as the attribute values of these data are not public.
Some of the data are hard drive data instead of SSD data. Thus, synthetic data
are used in the demonstration of our method. Methods and solutions need to be
updated for real data.

Gaussian distribution is used empirically in our experiments. The difference
between erase-count curve of training and that of testing may not follow Gaussian
distribution. Investigation in other distributions is of interest to us, especially
when real data are obtained.

Erase-count curves present combinations of attributes. It would be inter-
esting to see how attributes affect erase-count curves, and how each attribute
contributes to the curves. Knowing the contribution of attributes can generate
an erase-count curve by combining the effects of attributes without using any
data.

Future work includes investigation of other distribution models and how they
affect prediction results, investigation of the same distribution model on other
hard drives, comparison of state-of-the-art methods, and so on.

Appendix

A Estimation of Gaussian Parameters

Equation (2) can be written as

x = y′ − y = h + ce− (t−a)2

b , (3)

where t is time, and a, b, c, h are the Guassian parameters to estimate.
Let

P1 = 0 (4)

Pm = Pm−1 +
1
2
(xm + xm−1)(tm + tm−1) (5)

Q1 = 0 (6)

Qm = Qm−1 +
1
2
(tmxm + tm−1xm−1)(tm + tm−1) (7)

where m is the index of each {tm, xm}.
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In addition, let
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⎜⎜⎝
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⎟⎟⎠ = U−1V. (10)

The parameters a and b are obtained by

a = −B

C
, (11)

b = − 2
C
. (12)

Finally,

qm = e− (tm−a)2

b , (13)
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