
Fkcc: The Farkas Calculator

Christophe Alias(B)

CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, Lyon, France
Christophe.Alias@ens-lyon.fr

http://foobar.ens-lyon.fr/fkcc

Abstract. In this paper, we present fkcc, a scripting tool to proto-
type program analyses and transformations exploiting the affine form of
Farkas lemma. Our language is general enough to prototype in a few
lines sophisticated termination and scheduling algorithms. The tool is
freely available and may be tried online via a web interface. We believe
that fkcc is the missing chain to accelerate the development of program
analyses and transformations exploiting the affine form of Farkas lemma.

Keywords: Farkas lemma · Scripting tool · Termination · Scheduling

1 Introduction

Many program analyses and transformations require to handle conjunction of
affine constraints C and C ′ with a universal quantification as ∀x : x |= C ⇒ x |=
C ′. For instance, this appears in loop scheduling [6,7], loop tiling [2], program
termination [1] and generation of invariants [3]. Farkas lemma – affine form –
provides a way to get rid of that universal quantification, at the price of introduc-
ing quadratic terms. In the context of program termination and loop scheduling,
it is even possible to use Farkas lemma to turn universally quantified quadratic
constraints into existentially quantified affine constraints. This requires tricky
algebraic manipulations, not easy to applied by hand, neither to implement.

In this paper, we propose a scripting tool, fkcc, which makes it possible
to manipulate easily Farkas lemma to benefit from those nice properties. More
specifically, we made the following contributions:

– A general formulation for the resolution of equations ∀x : S(x) = 0 where S is
summation of affine forms including Farkas terms. So far, this resolution was
applied for specific instances of Farkas summation. This result is the basic
engine of the fkcc scripting language.

– A scripting language to apply and exploit Farkas lemma; among polyhedra,
affine functions and affine forms.

– Our tool, fkcc, implementing these principles, available at http://foobar.ens-
lyon.fr/fkcc. fkcc may be downloaded and tried online via a web interface.
fkcc comes with many examples, making it possible to adopt the tool easily.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 526–536, 2020.
https://doi.org/10.1007/978-3-030-54997-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_32&domain=pdf
http://foobar.ens-lyon.fr/fkcc
http://foobar.ens-lyon.fr/fkcc
https://doi.org/10.1007/978-3-030-54997-8_32

Fkcc: The Farkas Calculator 527

This paper is structured as follows. Sect. 2 presents the affine form of Farkas
lemma, our resolution theorem, and explains how it applies to compute schedul-
ing functions. Then, Sect. 3 defines the syntax and outlines informally the seman-
tics of the fkcc language. Section 4 presents two complete use-cases of fkcc.
Finally, Sect. 5 concludes this paper and draws future research perspectives.

2 Farkas Lemma in Program Analysis and Compilation

This section presents the theoretical background of this paper. We first introduce
the affine form of Farkas lemma. Then, we present our theorem to solve equations
S(x) = 0 where S is a summation of affine forms including Farkas terms. This
formalization will then be exploited to design the fkcc language.

Lemma 1 (Farkas Lemma, affine form). Consider a convex polyhedron P =
{x, Ax + b ≥ 0} ⊆ IRn and an affine form φ : IRn → IR such that φ(x) ≥ 0
∀x ∈ P.
Then: ∃λ ≥ 0, λ0 ≥ 0 such that:

φ(x) = tλ(Ax + b) + λ0 ∀x

Hence, Farkas lemma makes it possible to remove the quantification ∀x ∈ P by
encoding directly the positivity over P into the definition of φ, thanks to the
Farkas multipliers λ and λ0. In the remainder, Farkas terms will be denoted
by: F(λ0,λ, A, b)(x) = tλ(Ax + b) + λ0. We now propose a theorem to solve
equations S(x) = 0 where S involves Farkas terms. The result is expressed as a
conjunction of affine constraints, which is suited for integer linear programming:

Theorem 1. Consider a summation S(x) = u · x + v +
∑

i F(λi0,λi , Ai, bi)(x)
of affine forms, including Farkas terms. Then:

∀x : S(x) = 0 iff
{

u +
∑

i
tAiλi = 0 ∧

v +
∑

i (λi · bi + λ0i) = 0

Proof. We have:

S(x) = tx

(
∑

i

tAiλi

)

+
∑

i

(λi · bi + λ0i) + u · x + v

= tx

(

u +
∑

i

tAiλi

)

+ v +
∑

i

(λi · bi + λ0i)

S(x) = τ · x + τ0 = 0 for any x iff τ = 0 and τ0 = 0. Hence the result.
�

528 C. Alias

Application to Scheduling. Consider the polynomial product kernel depicted in
Fig. 3.(a). Farkas lemma and Theorem 1 may be applied to compute a schedule,
this is a way to reorganize the computation of the program to fulfill various
criteria (overall latency, locality, parallelism, etc). On this example, a schedule
may be expressed as an affine form θ : (i, j) �→ t assigning a timestamp t ∈ ZZ
to each iteration (i, j). This way, a schedule prescribes an execution order ≺θ :=
{((i, j), (i′, j′)) | θ(i, j) < θ(i′, j′)}. Figure 3.(b) illustrates the order prescribed
by the schedule θ(i, j) = i: a sequence of vertical wave fronts, whose iterations
are executed in parallel.

A schedule must be positive everywhere on the set of iteration vectors
DN = {(i, j) | A t(i, j,N) + b} (referred to as iteration domain). In general,
the iterations domains are parametrized (typically by the array size N) and the
schedule may depends on N . Hence we have to consider vectors (i, j,N) instead
of (i, j):

θ(i, j,N) ≥ 0 ∀(i, j) ∈ DN (1)

Applying Farkas lemma, this translates to:

∃λ0 ≥ 0,λ ≥ 0 such that θ(i, j,N) = F(λ0,λ, A, b)(i, j,N) (2)

Moreover, a schedule must satisfy the data dependencies (i, j) → (i′, j′). → is
generally expressed as a Presburger relation [8], in turned abstracted as a rational
convex polyhedron ΔN containing the correct vectors (i, j, i′, j′) and sometimes
false positives. Here again, ΔN = {(i, j, i′, j′) | C t(i, j, i′, j′, N) + d ≥ 0} is
parametrized by structure parameter N . This way, the correctness condition
translates to:

θ(i′, j′, N) > θ(i, j,N) ∀(i, j, i′, j′) ∈ ΔN (3)

Note that θ(i′, j′, N) > θ(i, j,N) is equivalently written as the positivity of an
affine form over a convex polyhedron: θ(i′, j′, N) − θ(i, j,N) − 1 ≥ 0. Applying
Farkas lemma:

∃μ0 ≥ 0,μ ≥ 0 such that θ(i′, j′, N)−θ(i, j,N)−1 = F(μ0,μ, C,d)(i, j, i′, j′, N)

Substituting θ using Eq. (2), this translates to S(i, j, i′, j′, N) = 0, where
S(i, j, i′, j′, N) is defined as the summation:

F(λ0,λ, A, b)(i′, j′, N) − F(λ0,λ, A, b)(i, j,N) − F(μ0,μ, C,d)(i, j, i′, j′, N) − 1

Since −F(λ0,λ, A, b) = F(−λ0,−λ, A, b), we may apply Theorem 1 to obtain
a system of affine constraints with λ0,λ, μ0,μ. Linear programming may then
be applied to find out the desired schedule [2,7]. The same principle might be
applied in termination analysis to derive a ranking function [1], this will be
developed in Sect. 4.

3 Language

This section specifies the input language of fkcc and outlines informally its
semantics. Figure 1 depicts the input syntax of fkcc. Keywords and syntax

Fkcc: The Farkas Calculator 529

program ::= (parameters = { p, ..., p };)? instruction; ...; instruction;

instruction ::= object | id := object | lexmin polyhedron | lexmax polyhedron | set id

object ::= polyhedron | affine form | affine function

polyhedron ::=
[p, ..., p] -> { [v, ..., v] : inequation and ... and inequation }

| polyhedron * ... * polyhedron
| solve affine form = 0

| define affine form with v
| keep v, ..., v in polyhedron
| find id, ..., id s.t. affine form = 0

affine form ::= leaf affine form | leaf affine form [+-] ... [+-] leaf affine form

leaf affine form ::=
{ [v, ..., v] -> expression }

| positive on polyhedron
| leaf affine form . affine function
| int
| int * leaf affine form

affine function ::= { [v, ..., v] -> [expression, ..., expression] }

Fig. 1. Fkcc syntax

sugar are written with verbatim letters, identifiers with italic letter and syntactic
categories with roman letters. Among identifiers, p is a parameter, v is a variable
(typically a loop counter) and id is an fkcc identifier.

Program, Instructions, Polyhedra. An fkcc program consists of a sequence of
instructions. There is no other control structure than the sequence. An instruc-
tion may assign an fkcc object (polyhedron, affine form or affine function) to an
fkcc identifier, or may be an fkcc object alone. In the latter, the fkcc object
is streamed out to the standard output. Also, we often need to compute the
lexicographic optimum of a polyhedron, typically to pick an optimal schedule.
fkcc uses parameteric integer linear programming [5] via the Piplib library. The
result is a discussion on the parameter value:

parameters := {N};

lexmin [N] -> {[i,j]: 0 <= i and i <= N and 0 <= j and j <= N};

would give:

if(N >= 0)

{

[] -> {[0,0]}

}

530 C. Alias

else

{

(no solution)

}

;

Note that structure parameters must be declared with the parameters con-
struct. When no parameters are involved, the parameters construct may be omit-
ted. To ensure the compatibility with iscc [10] syntax, the parameters of a poly-
hedron may be declared on preceding brackets [N] -> This is purely optional:
fkcc actually does not analyze this part. The instruction set id emits id := to the
standard output. This makes it possible to generate iscc scripts for further anal-
ysis. Finally, the set intersection of two polyhedra P and Q is obtained with P*Q.

Affine Forms. An affine form may be defined as a Farkas term:

iterations := [] -> {[i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

If iterations is {x | Ax + b ≥ 0}, then theta is defined as F(λ0,λ, A, b)
where λ0 and λ are fresh positive variables. In that case, the polyhedron is never
parametrized: the parameters must be handled as variables. In particular, do not
name variables with identifiers declared as parameters with parameters :=, as
they would be treated as parameters whatever the context. Affine forms might
be summed, scaled and composed with affine functions, typically to adjust the
input dimension:

to_target := {[i,j,i’,j’,N]->[i,j,N]};

to_source := {[i,j,i’,j’,N]->[i’,j’,N]};

sum := theta.to_target - 2*theta.to_source + 1 + {[i,j,i’,j’,N] -> 2*i-i’};

In a summation of affine forms, affine forms must have the same input
dimension. Also, a constant (1) is automatically interpreted as an affine
form ([i,j,i’,j’,N] -> 1). Affine forms may also be stated explicitly
({[i,j,i’,j’,N] -> 2*i-i’}). The terms of the summation are simply sep-
arated with + and -, no parenthesis are allowed.

Resolution. The main feature of fkcc is the resolution of equations S(x) = 0
where S is a summation of affine forms including Farkas terms. This is obtained
with the instruction solve:

solve sum = 0;

The result is a polyhedron with Farkas multipliers (obtained after applying
Theorem 1):

[] -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4] :

(2+lambda_0)+(-1*lambda_1) >= 0 and (-2+(-1*lambda_0))+lambda_1 >= 0 and

lambda_2+(-1*lambda_3) >= 0 and (-1*lambda_2)+lambda_3 >= 0 and

(-1*lambda_1)+(-1*lambda_3) >= 0 and lambda_1+lambda_3 >= 0 and

(-1+(-2*lambda_0))+(2*lambda_1) >= 0 and (1+(2*lambda_0))+(-2*lambda_1) >= 0 and

(-2*lambda_2)+(2*lambda_3) >= 0 and (2*lambda_2)+(-2*lambda_3) >= 0 and

1+(-1*lambda_4) >= 0 and -1+lambda_4 >= 0 and lambda_4 >= 0 and

lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0 and

lambda_4 >= 0 and lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0};

Fkcc: The Farkas Calculator 531

At this point, we need to recover the coefficients of our affine form theta
in terms of λ (lambda 0,lambda 1,lambda 2,lambda 3) and λ0 (lambda 4).
Observe that theta(x) = F(λ0,λ, A, b)(x) = tλAx + λ · b + λ0. If the coeffi-
cients of theta are written: theta(x) = τ · x + τ0, we simply have: τ = tλA
and τ0 = λ · b + λ0. This is obtained with define:

define theta with tau;

The result is a conjunction of definition equalities, gathered in a polyhedron:

[] -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4,tau_0,tau_1,tau_2,tau_3] :
((-1*lambda_0)+lambda_1)+tau_0 >= 0 and (lambda_0+(-1*lambda_1))+(-1*tau_0) >= 0 and
((-1*lambda_2)+lambda_3)+tau_1 >= 0 and (lambda_2+(-1*lambda_3))+(-1*tau_1) >= 0 and
((-1*lambda_1)+(-1*lambda_3))+tau_2 >= 0 and (lambda_1+lambda_3)+(-1*tau_2) >= 0 and
(-1*lambda_4)+tau_3 >= 0 and lambda_4+(-1*tau_3) >= 0};

The first coefficients tau k define τ , the last one defines the constant τ0. On
our example, theta(i,j,N) = tau 0*i + tau 1*j + tau 2*N + tau 3. Now
we may gather the results and eliminate the λ to keep only τ and τ0:

keep tau_0,tau_1,tau_2,tau_3 in ((solve sum = 0)*(define theta with tau));

The result is a polyhedron with the solutions. Here, there are no solutions:
the result is an empty polyhedron. All these steps may be applied once with the
find command:

find theta s.t. sum = 0;

The coefficients are automatically named theta 0, theta 1, etc with the
same convention as define. We point out that define choose fresh names for
coefficients (e.g. tau 4, tau 5 on the second time with ‘‘tau’’) whereas find
always choose the same names. Hence find would be prefered when deriving
separately constraints on the same coefficients of theta. find may filter the
coefficients for several affine forms expressed as Farkas terms in a summation:

find theta_S,theta_T s.t.

theta_T.to_target - theta_S.to_source - 1

- (positive_on dependences_from_S_to_T) = 0;

This is typically used to compute schedules for programs with multiple
assignments (here S and T with dependences from iterations of S to iterations
of T). Finally, note that keep tau 0,tau 1,tau 2,tau 3 in P; projects P on
variables tau 0,tau 1,tau 2,tau 3: the result is a polyhedron with integral
points of coordinates (tau 0,tau 1,tau 2,tau 3). This way, the order in which
tau 0,tau 1,tau 2,tau 3 are specified to keep impacts directly a further lexi-
cographic optimization.

4 Examples

This section shows how fkcc might be used to specify in a few lines termination
analysis and loop scheduling.

532 C. Alias

assert x0 > 0 ∧ y0 > 0
x := x0; y := y0;
while x �= y
if x > y
then x := x − y;
else y := y − x;

start

loop

stop

•
x′:=x0,y′:=y0

x=y
•

x>y
x′:=x−y

y>x
y′:=y−x

Istart = {x0 > 0 ∧ y0 > 0}
Iloop = {x > 0 ∧ y > 0 ∧ x ≤ x0 ∧ y ≤ y0}
Istop = {x ≤ y0 ∧ x ≤ x0 ∧ x > 0 ∧ x = y}

ρstart(x, y) = (2)
ρloop(x, y) = (1, x + y − 2)
ρstop(x, y) = (0)

(a) Kernel (b) Affine automaton (c) Invariants and
ranking

Fig. 2. Termination example

4.1 Termination Analysis

Consider the example depicted on Fig. 2. The program computes the gcd of two
integers x0 and y0 (a). It is translated to an affine automaton (b) (also called
integer interpreted automaton), in turn analyzed to check the termination (c):
does the program terminates for any input (x0, y0) satisfying the precondition
x0 > 0 ∧ y0 > 0?

This problem is – as most topics in static analysis – undecidable in general.
However, we may conclude when it is possible to derive statically an abstrac-
tion precise enough of the program execution. In [1], we provide a termina-
tion algorithm based on the computation of a ranking. A ranking is an applica-
tion ρlabel : ZZn → (R,≺) which maps each reachable state of the automaton
〈label,x〉 to a rank belonging to well-founded set. On our example a reachable
state could be 〈loop, (x : 3, y : 3, x0 : 3, y0 : 6)〉 after firing the initial transition
and the right transition.

The ranking is decreasing on the transitions: for any transition 〈label,x〉 →
〈label′,x′〉, we have: ρlabel’(x′) ≺ ρlabel(x). Since ranks belong to a well founded
set, there are – by definition – no infinite decreasing chain of ranks. Hence infinite
chains of transitions from an initial state never happen.

On [1], we provide a general method for computing a ranking of an affine
automaton. Our ranking is affine per label: ρlabel(x) = Alabelx + blabel ∈ INp.
Figure 2.(c) depicts the ranking found on the example. Ranks ordered with the
lexicographic ordering �, the well-founded set is (INp,�). This means that, by
decreasing order, start comes first (2), then all the iterations of loop (1), and
finally stop (0). The transitions involved to compute those constants are the
transitions from start to loop and the transitions from loop to stop. Then,
transitions from loop to loop (left, denoted τ1 and right, denoted τ2) are used
to computed the second dimension of ρloop. In the remainder, we will focus on
the computation of the second dimension of ρloop (x + y − 2) from transitions τ1
and τ2. We will write ρloop(x) for ρloop(x)[1] to simplify the presentation.

Positivity on Reachable States. The ranking must be positive on reachable states
of loop. The set of x such that 〈loop,x〉 is reachable from an initial state is

Fkcc: The Farkas Calculator 533

called the accessibility set of loop. In general, we cannot compute it – this is
the undecidable part of the analysis. Rather, we compute an over-approximation
thanks to linear relation analysis [4,9]. This set is called an invariant and will
be denoted by Iloop. Figure 2.(c) depicts the invariants on the program. All the
challenge is to make the invariant close enough to the accessibility set so a
ranking can be computed. In fkcc, the assertion x |= Iloop ⇒ ρloop(x) ≥ 0
translates to:

I_loop := [] -> {[x,y,x0,y0]: x>0 and y>0 and x <= x0 and y <= y0};

rank := positive_on I_loop;

Decreasing on Transitions. Now it remains to find a ranking decreasing on tran-
sitions τ1 and τ2. We first consider τ1. The assertion x |= Iloop ∧ x > y ⇒
ρloop(x − y, x, x0, y0) < ρloop(x, y, x0, y0) translates to:

tau1 := [] -> {[x,y,x0,y0]: x>y};

s1 := find rank s.t. rank - (rank . {[x,y,x0,y0]->[x-y,y,x0,y0]}) - 1

- positive_on (tau1*I_loop) = 0;

Similarly we compute a solution set s2 from τ2 and Iloop. Finally, the ranking
is found with the instruction lexmin (s1*s2);, which outputs the result:

[] -> {[1,1,0,0,-2]};

This corresponds to the dimension x + y − 2.

for i := 0 to N
for j := 0 to N

c[i+j] := c[i+j] + a[i]*b[j];

i

j

0

1

2

N = 3

0 1 2 3

θ(i, j, N) = i

eludehcsdnasnoitaretI)b(slaimonylopfotcudorP)a(

Fig. 3. Scheduling example

4.2 Scheduling

Figure 3 depicts an example of program (a) computing the product of two poly-
nomials specified by their array of coefficients a and b, and the iteration domain
with the data dependence across iterations (b) and an example schedule θ pre-
scribing a parallel execution by vertical waves, as discussed in Sect. 2.

534 C. Alias

Positivity. Similarly to the ranking, the positivity condition (1) translates to:

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

dependence := [] -> { [i,j,i’,j’,N]: 0 <= i and i <= N and 0 <= j and

j <= N and 0 <= i’ and i’ <= N and 0 <= j’ and

j’ <= N and i+j = i’+j’ and i<i’};

theta(i,j,N) >= 0 for any iteration (i,j,N)

theta := positive_on iterations;

Correctness. We enhance the correctness condition (2) by making it possible
to select the dependence to satisfy. For each dependence class d, we use a 0-1
variable εd. Here we have a single dependence class from S to S, so have only
one 0-1 variable ε:

θ(i′, j′, N) ≥ θ(i, j,N) + ε ∀(i, j, i′, j′) ∈ ΔN

On the ranking example, we would have four classes (i = start → loop, τ1, τ2, e =
loop → stop). This makes it possible to choose which dependence class is satisfied
(εd = 1) or just respected (εd = 0). This is the way multidimensional schedules
are built [7]: on the termination example we would have εi = εe = 1, ετ1 = ετ2 = 0
for the first dimension, then ετ1 = ετ2 = 1 for the second dimension. Here it is
kind of artificial, since we have a single dependence. However, the presentation
generalizes easily to several dependence classes. This translates as:

parameters := {inv_eps,eps};

to_target := {[i,j,i’,j’,N]->[i’,j’,N]};

to_source := {[i,j,i’,j’,N]->[i,j,N]};

s -> t ==> theta(s) <= theta(t) + eps, 0 <= eps <= 1

theta_correct := solve (theta . to_target) - (theta . to_source)

+ {[i,j,i’,j’,N] -> -1*eps}

- (positive_on dependence) = 0;

theta_def := define theta with theta;

eps_correct := [] -> {[i]: 0 <= eps and eps <= 1 and inv_eps = 1-eps};

Here is the trick: parameters are forbidden to define Farkas terms; how-
ever parameters are perfectly allowed in summation. In that case, the reso-
lution interprets parameters as constants. Hence the trick to set ε as a
parameter and to put it in the summation by declaring an explicit affine form
{[i,j,i’,j’,N] -> -1*eps}. We then keep the definition of theta coefficients
in terms of Farkas multipliers (theta def) and the domain of ε (eps correct).

Optimality. We seek a schedule θ with a minimal latency 	(θ) (number of steps).
When θ is an affine form, 	(θ) may be bounded by an affine form L(N) of the
structure parameters [6]: 	(θ) ≤ L(N). This means that:

∀(i, j) ∈ DN : θ(i, j,N) ≤ L(N)

Which is, again, completely Farkas compliant. It remains to express L(N), which
have to be positive provided DN is not empty i.e. N ≥ 0. This translates to:

Fkcc: The Farkas Calculator 535

L(N) >= 0 on the parameter domain

latency := positive_on ([] -> {[N]: N >= 0});

theta(i,j,N) <= L(N)

theta_bounded := solve (latency . {[i,j,N] -> [N]}) - theta

- (positive_on iterations) = 0;

bound_def := define latency with latency;

Finally, it remains to gather the constraints (positivity, correctness, optimal-
ity) to obtain the result:

lexmin (keep inv_eps,latency_0,latency_1,theta_0,theta_1,theta_2,theta_3,eps

in theta_correct*theta_def*eps_correct*theta_bounded*bound_def);

By priority order, we want to (i) maximize the dependence satisfied (minimize
inv eps), then (ii) to minimize the latency (L(N) = latency 0*N + latency 1).
This amounts to find the lexicographic minimum with variables ordered as
(inv eps,latency 0,latency 1). Note that eps and inv eps are parameters.
Adding them to the variable list of keep has the effect to turn them to coun-
ters eps counter and inv eps counter. We obtain the following result, pretty
printed using the -pretty option:

theta_0 = 0

theta_1 = -1

theta_2 = 1

theta_3 = 0

latency_0 = 1

latency_1 = 0

eps_counter = 1

inv_eps_counter = 0

Hence θ(i, j,N) = N − j, L(N) = N and the dependence was satisfied
(eps counter = 1).

5 Conclusion

In this paper, we have presented fkcc, a scripting tool to prototype program
analyses and transformations using the affine form of Farkas lemma. The script
language of fkcc is powerful enough to write in a few lines tricky schedul-
ing algorithms and termination analysis. The object representation (polyhedra,
affine functions) is compatible with iscc, a widespread polyhedral tool featuring
manipulation of affine relations. fkcc provides features to generate iscc code,
and conversely, the output of iscc might be injected in fkcc. This will allow to
take profit of both worlds.

We believe that scripting tools are mandatory to evaluate rapidly research
ideas. So far, Farkas lemma-based approaches were locked by two facts: (i) apply-
ing by hand Farkas Lemma is nearly impossible and (ii) implementing an analysis
with Farkas lemma is usually tricky, time consuming and highly bug prone. With
fkcc, computer scientists are now freed from these constraints.

536 C. Alias

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

2. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementa-
tion, Tucson, AZ, USA, 7–13 June 2008, pp. 101–113 (2008). https://doi.org/10.
1145/1375581.1375595

3. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6 39

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: 5th ACM Symposium on Principles of Programming Languages
(POPL 1978), Tucson, pp. 84–96, January 1978

5. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opérationnelle
22(3), 243–268 (1988)

6. Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part I. one-
dimensional time. Int. J. Parallel Program. 21(5), 313–348 (1992). https://doi.org/
10.1007/BF01407835

7. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
multi-dimensional time. Int. J. Parallel Prog. 21(6), 389–420 (1992)

8. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 1581–1592. Springer, Boston (2011). https://doi.org/
10.1007/978-0-387-09766-4

9. Gonnord, L.: Accélération abstraite pour l’amélioration de la précision en Analyse
des Relations Linéaires. Ph.D. thesis, Université Joseph Fourier - Grenoble (2007)

10. Verdoolaege, S.: Counting affine calculator and applications. In: First International
Workshop on Polyhedral Compilation Techniques (IMPACT 2011), Charmonix,
France (2011)

https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4

	Fkcc: The Farkas Calculator
	1 Introduction
	2 Farkas Lemma in Program Analysis and Compilation
	3 Language
	4 Examples
	4.1 Termination Analysis
	4.2 Scheduling

	5 Conclusion
	References

