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Abstract. During the past decade, reversible programming languages
have been formalized using various established semantic frameworks.
However, these semantics fail to effectively specify the distinct proper-
ties of reversible languages at the metalevel, and even neglect the central
question of whether the defined language is reversible. In this paper, we
build on a metalanguage foundation for reversible languages based on
the category of sets and partial injective functions. We exemplify our
approach through step-by-step development of the full semantics of an
r-Turing complete reversible while-language with recursive procedures.
This yields a formalization of the semantics in which the reversibility
of the language and its inverse semantics are immediate, as well as the
inversion of programs written in the language. We further discuss appli-
cations and future research directions for reversible semantics.

1 Introduction

Over the past years, reversible programming languages ranging from imperative
to functional and object-oriented languages have been formalized using estab-
lished semantic frameworks, such as state transition functions, structural oper-
ational semantics and, recently, denotational semantics (e.g. [7,8,21,22]). These
frameworks, which have been used to provide meaning to advanced language fea-
tures and computation models, such as nondeterminism and parallelism, have
turned out to be ineffective at specifying the distinct semantic properties of
reversible languages. Immediate answers to questions regarding the uniqueness
of the inverse semantics, the inversion of programs and, in particular, the central
question of whether a language is reversible, are unavailable.

In this paper, we build on a metalanguage foundation for reversible languages
based on the category PInj of sets and partial injective functions. The rationale
behind this approach is straightforward: Interpretations of syntax are composed
in ways that preserve their injectivity. More specifically, interpretations of syn-
tax are composed of sequential composition, cartesian product, disjoint union,
function inversion, iteration, and recursion. To achieve this, we make use of the
categorical foundation developed elsewhere (e.g. [5,13]). Our approach exploits
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the fact that reversible programs have reversible semantics: We regard a pro-
gram as (compositionally) reversible iff each of its meaningful subprograms are
partially invertible. This allows us to provide a clean reversible semantics to a
reversible language.

We demonstrate the aforementioned idea through step-by-step development
of a full formal semantics for the reversible procedural language R-WHILE, which
includes iteration and recursion. This leads to a formal semantics in which the
reversibility of the language and its inverse semantics are immediate, along with
program inversion. The reversibility of the language follows immediately from
the formalization. It is apparent from the signatures of semantic functions that
the language is clean and without any hidden tracing. Note that this approach is
independent of the specific details of the language and can be extended to other
ways of composing semantic functions, provided their injectivity is preserved.

R-WHILE with procedures is a reversible while-language with structured
control-flow operators and dynamic data structures [7,8].1 This language is
reversibly universal (r-Turing complete), which means that it is computationally
as powerful as any reversible programming language can be. It has features repre-
sentative of reversible imperative and functional languages, including reversible
assignments, pattern matching, and inverse invocation of recursive procedures.

The metalanguage used here has a distinct property familiar from reversible
programming: It is not possible to define an irreversible (non-injective) language
semantics. To ensure reversibility, conventional metalanguages require discipline
in the formalization, e.g., a standard denotational semantics. In the case of opera-
tional semantics, it is quite unclear how to restrict an inference system to a purely
reversible one. One possible future direction is an investigation of metalanguage
extensions to capture other composition forms and language features, which may
include object-oriented features, combinators, and machine languages.

Overview: Sect. 2 introduces the elements of the formal semantics and Sect. 3
describes the reversible language R-WHILE with procedures. In Sect. 4, the formal
semantics of the language is developed in a step-by-step manner. Sections 5 and 6
present related work, concluding remarks, and directions for future work. We
assume the reader is familiar with the basic concepts of reversible languages
(e.g., [21]) and formal semantics (e.g., [19]).

2 Elements of the Formal Semantics

This section is concerned with some of the details of sets and partial injective
functions as they will be used in the following sections (compare, e.g., [2,4,
17]). While the constructions mentioned in this section are extracted from the
study of the category PInj of sets and partial injective functions, no categorical
background is assumed (though a basic understanding of sets, partial functions,
and domain theory is).

1 An online interpreter for R-WHILE with procedures and the example program con-
sidered in this paper are available at http://tetsuo.jp/ref/RPLA2019.

http://tetsuo.jp/ref/RPLA2019
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2.1 Composition and Inversion

Partial functions are ordinary functions, save for the fact that they may be
undefined on parts of their domain. To indicate that a partial function X

f−→ Y
is undefined on some x0 ∈ X (e.g., in the definition of a piecewise function), we
use symbol ↑. A partial function is injective iff, whenever f(x) and f(y) are both
defined and f(x) = f(y), it is also the case that x = y. Injectivity is preserved

by composition (i.e., if X
f−→ Y and Y

g−→ Z are both partial injective functions

so is X
g◦f−−→ Z), and each identity function X

id−→ X is trivially injective.
Partial injective functions can be inverted in a unique way: for every partial

injective function X
f−→ Y , there exists a unique partial injective function Y

f†
−→

X, which undoes whatever f does (how rude!), in the sense that f ◦ f† ◦ f = f ,
and, vice versa, f† ◦ f ◦ f† = f†.

Aside from sequential composition, partial injective functions can also be
composed in parallel in two ways. The first method utilizes the cartesian product
of sets X and Y , which we denote X ⊗ Y . If X

f−→ X ′ and Y
g−→ Y ′ are partial

injective functions, we can form a new partial injective function on the cartesian
product, X ⊗ Y

f⊗g−−−→ X ′ ⊗ Y ′, by (f ⊗ g)(x, y) = (f(x), g(y)). Note, however,
that projections (such as X ⊗ Y

π1−→ Y given by π1(x, y) = x) are unavailable,
as these are never injective. We denote the unit, up to bijective correspondence,
of the cartesian product (any distinguished singleton set is acceptable) by 1.

The second method of parallel composition is given on the disjoint union of
sets X and Y , which we denote X ⊕ Y . We think of elements of X ⊕ Y as being
tagged with either left (inl ·) or right (inr ·) depending on their set of origin;
for example, if x ∈ X then inl x ∈ X ⊕ Y , and if y ∈ Y then inr y ∈ X ⊕ Y .
Up to bijective correspondence, the unit of disjoint union is the empty set ∅,
which we will also denote as 0. The tagged union of partial injective functions
X

f−→ X ′ and Y
g−→ Y ′ is then a partial injective function of tagged unions,

X ⊕ X ′ f⊕g−−−→ Y ⊕ Y ′, which performs a case analysis of the inputs and tags the
outputs with their origins:

(f ⊕ g)(x) =
{
inl f(x′) if x = inl x′

inr g(x′) if x = inr x′

The cartesian product loses its projections in the setting of partial injective
functions. However, the disjoint union retains its usual injections: X

κ1−→ X ⊕ Y
and Y

κ2−→ X ⊕ Y given by κ1(x) = inl x and κ2(y) = inr y, respectively. Note
in particular that since we consider partial injective functions, these injections
have partial inverses κ†

i (sometimes called quasiprojections), which remove the
tag but are only defined for elements from the i’th part of the union. For example,

X ⊕ Y
κ†
1−→ X is given by κ†

1(inl x) = x and κ†
1(inr y) = ↑.
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2.2 Fixed Points and Iteration

Both sets and partial injective functions are well-behaved as regards recursive
definitions. For sets, any recursive definition of a set involving only disjoint
unions, cartesian products, and already defined sets (including 0 and 1) has a
unique least and greatest solution. As is usual in domain theory, we use μX . . .
for the least solution (the least fixed point) and νX . . . for the greatest solution
(the greatest fixed point), respectively. For example, the set of flat lists with
entries taken from a set A is given by the least fixed point μX.1 ⊕ (A ⊗ X).

A useful property of partial functions, as opposed to total functions, is that
the set of all partial functions with a specified domain and target forms a
directed complete partial order. This has useful consequences for the recursive
description of partial injective functions. In particular, any continuous func-
tion PInj(X,Y ) → PInj(X,Y ) (where PInj(X,Y ) denotes the set of partial
injective functions between sets X and Y ) has a least fixed point, which, by
its definition, must be a partial injective function X → Y (i.e., an element of
PInj(X,Y )). For the continuity requirement, we note that all previously pre-
sented operations on partial injective functions are continuous (i.e., sequential
composition, partial inversion, parallel composition using cartesian products and
disjoint unions). Thus, any function involving only these operations is guaranteed
to be continuous.

Finally, partial injective functions can also be tail-recursively described using
the trace operator. Intuitively, the trace of a partial injective function X ⊕U

f−→
Y ⊕ U is a function X

Tr(f)−−−→ Y , which is given as follows: if f(inl x) = inl y for
some y, this y is returned directly. Otherwise, if f is defined at inl x, it must be
the case that f(inl x) = inr u for some u. If that case, this inr u is fed back into
f , and the feedback loop continues until it either terminates to some inl y, which
is then returned, or fails to do so. In the latter case, the trace is undefined at x.

This trace operator may be described as a function PInj(X ⊕ U, Y ⊕ U) Tr−→
PInj(X,Y ). It is most easily defined using a tail-recursively described pretrace
PInj(X ⊕ U, Y ⊕ U)

pretrace−−−−→ PInj(X ⊕ U, Y ), which is defined as follows:

pretrace(f)(x) =
{

y if f(x) = inl y
pretrace(f)(inr y) if f(x) = inr y

f

Fig. 1. Data flow
of trace Tr(f) with
feedback loop.

Hence, it is defined simply as Tr(f)(x) = pretrace(f)(inl x).
The data flow of Tr(f) is illustrated in Fig. 1, in which the
flow is from left to right and the feedback loop represents the
repeated application of f to elements of U .

While less general than the fixed point (which can be used
to describe arbitrary recursion), this tail recursion operator
is very well behaved with respect to inversion, as it satisfies

Tr(f†) = Tr(f)†

for all partial injective functions X ⊕ U
f−→ Y ⊕ U . (Formally, the trace operator

can also be defined as a fixed point using the trace formula, see [9].)
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e ::= x | s | (e.e) | hd(e) | tl(e) | =? e e

q ::= x | s | (q.q) | call f(q) | uncall f(q)
c ::= x =̂ e | q ⇐ q | c; c | if e then c else c fi e | from e do c loop c until e

p ::= proc f(q) c; return q;

m ::= p · · · p

Fig. 2. Syntax of the reversible language R-WHILE with procedures.

2.3 Summary of the Metalanguage

Collecting the injective constructs for the formal semantics introduced above,
we can specify a clean reversible metalanguage L to describe objects of PInj:

f :: = a | κi | id | μφ.f | f ⊕ f | f ⊗ f | f ◦ f | Tr(f) | f† | φ.

An atomic function a can be any auxiliary partial injective function, such as
“swap” for cartesian products: swap⊗(x, y) = (y, x). For any expression in L,
the least fixed point exists. The formal argument of the least fixed point φ expects
a program context, i.e., a disjoint union of partial injective functions. L is closed
under inversion, and the inverse semantics of each expression is unique and
immediate. Any language described by the metalanguage is (compositionally)
reversible. L is sufficiently expressive for full formalization of the semantics of
reversibly-universal languages. This is demonstrated below for R-WHILE.

3 R-WHILE with Reversible Recursion and Iteration

We informally describe the semantics of the reversible language R-WHILE with
procedures, and illustrate it with a recursive program that translates infix expres-
sions to Polish notation; this is a classic translation that is reversible. The data
domain of the language is tree-structured data (lists known from Lisp and many
modern languages). Readers familiar with reversible programming can skip to
Example 1 below and return to the informal description later.

The syntax of the language [8] is shown in Fig. 2. A program m is a sequence
of procedures p · · · p, where the topmost procedure is the main procedure. A
procedure p has a name f , an argument pattern q, a command c as its body,
and a return pattern q. The input to and output from a procedure is through
the argument and return patterns, respectively. All procedures have arity and
coarity one. Thus, it is convenient to compose and decompose input and output
values via patterns.

A command c is a reversible assignment x =̂ e, a reversible replacement
q ⇐ q, a reversible conditional if...fi, or a reversible loop from...until. The latter
are two control structures familiar from reversible flowchart languages (e.g., [21]).

The variable x in a reversible assignment x =̂ e must not occur in expres-
sion e, which calculates a value (e.g., x =̂ x is not well formed). It is important
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1: proc infix2pre(t)
2: y ⇐ call pre((t.nil));
3: return y;
4:

5: proc pre2infix(y)
6: (t.nil) ⇐ uncall pre(y);
7: return t;
8:

9: proc pre((t.y))
10: if =? t 0 then
11: y ⇐ (t.y)
12: else
13: (l.(d.r)) ⇐ t;
14: y ⇐ call pre((r.y));
15: y ⇐ call pre((l.y));
16: y ⇐ (d.y)
17: fi =? hd(y) 0;
18: return y;

(* infix exp to Polish notation *)

(* call preorder traversal *)

(* Polish notation to infix exp *)

(* uncall preorder traversal *)

(* recursive preorder traversal *)

(* tree t is a leaf? *)

(* add leaf to list y *)

(* decompose tree t *)

(* traverse right subtree r *)

(* traverse left subtree l *)

(* add label d to list y *)

(* head of list y is a leaf? *)

Fig. 3. Translation between infix expressions and Polish notation in R-WHILE.

to note that the assignment sets x to the value of e if the value of x is nil , and
sets x to nil if the values of x and e are equal; otherwise, it is undefined. In
other words, a variable is updated or cleared depending on the original value
of x. This definition ensures the reversibility of assignments.

No value is duplicated by a reversible replacement q1 ⇐ q2. Before the value
constructed by q2 is matched with q1, all variables in q2 are nil-cleared. Thus, the
same variable may occur on both sides of a replacement (unlike an assignment).

Patterns play a central role in the construction and deconstruction of values,
and are used in both ways (e.g., reversible replacements). A pattern q is a variable
x, a symbol s, a pair of patterns (q.q), or an invocation or inverse invocation of a
procedure by call f(q) or uncall f(q), respectively. Patterns are linear (no variable
occurs more than once in a pattern). The semantics of a procedure uncall is the
inverse semantics of a procedure call. Procedures can only be invoked in patterns.

Expressions are conventional. An expression e is a variable x, a symbol s,
or the application of an operator, i.e., constructor cons (· . ·), selectors head hd
and tail tl, or equality test =?. The variables in a program are denoted by small
letters, such as l, d, r, and symbols are overlined, such as nil .

Example 1. There are many practical applications of translating infix expres-
sions to Polish notation, and vice versa. Because this function is injective, it can
be programmed cleanly in a reversible language and run in both directions.

In R-WHILE, infix expressions can be represented by full binary trees

tree :: = 0 | (tree . (1 . tree)),

where symbols 0 and 1 stand for an operand (leaf) and an operator (inner label)
in an expression, respectively. For simplicity, we only use these two symbols.
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Figure 3 shows the recursive procedure pre, which reversibly translates an
infix expression to a prefix expression (Polish notation) via a preorder traversal of
the full binary tree t representing the infix expression. Procedure pre is called and
uncalled in the two procedures infix2pre and pre2infix for translating to Polish
notation, and vice versa. For example, the infix expression t = ((0 . (1 . 0)) . (1 . 0))
translates to Polish notation y = (1 . (1 . (0 . (0 . (0 . nil))))).

In infix2pre, the translation is invoked by a call to pre (line 2)

y ⇐ call pre((t.nil)),

where the argument of the call is a singleton list (t.nil) containing t, and the
result is matched with the trivial pattern y, which binds the value to y. In
pre2infix, the inverse computation of pre is invoked by an uncall of pre (line 6)

(t.nil) ⇐ uncall pre(y),

where y is the argument and t is picked from the resulting singleton list.
The body of pre is a reversible conditional if...fi (lines 10–17) with an entry

test =? t 0 and an exit assertion =? hd(y) 0. If t is a leaf 0, t is added to list y by
y ⇐ (t.y) (line 11). Otherwise, in the else-branch, pre calls itself recursively on
the right and left subtrees r and l with the current list y (lines 14–15). The two
subtrees and label d are selected from t by (l.(d.r)) ⇐ t. List y is constructed
from right to left; thus, d is added after both subtrees are translated (line 16).
The arity of all procedures is one; therefore, it is convenient to decompose the
argument value by pattern (t.y) already in the head of pre (line 9).

4 An Intrinsically Reversible Semantics

In this section, we illustrate the principle of reversible semantics by construct-
ing a denotational semantics for R-WHILE with procedures using sets and partial
injective functions. First, the domains of computation are constructed, followed
by a semantic function for each syntactic category. While this approach yields
a semantics for R-WHILE with procedures, for construction of such semantics for
reversible programming languages in general, we stress the use of abstract con-
cepts (e.g., cartesian products, disjoint unions, traces, and fixed points), rather
than the concrete realization of R-WHILE with procedures.

In the following, we use standard notation of denotational semantics [19],
including brackets for semantic functions �·�, which show that the domain of the
argument is syntax.

4.1 States and Values

We begin by constructing appropriate domains of computation for values and
states. To achieve this, we assume that we are given an alphabet Λ of symbols,
elements of which we denote using an overline, e.g., 0, 1, and nil. The set of
values V is then constructed as the set of binary trees with elements from Λ at
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the leaves. More formally, this set can be constructed by the least fixed point of
sets V = μX.Λ⊕ (X ⊗X). If t1 and t2 are such binary trees, we use the notation
t1 • t2 (read: “t1 cons t2”) to mean the binary tree constructed from t1 and t2.

t1 t2

A state associates each variable with a value. The set of states
Σ can be constructed as finitely supported colists (i.e., lists of
infinite length) of values; that is, Σ = V⊗V⊗· · · (explicitly,
this is constructed as the largest fixed point νX.I ⊕(V⊗X)).
By associating each variable in the language (of which there
are countably many) with a distinct index, a state is then precisely a description
of the contents of all variables. In keeping with this principle, we write variables
as x1, x2, x3, etc. rather than as x, y, z etc. Note that the number of non-nil
values in a state of a given program is finite.

4.2 Expressions

In irreversible languages, expressions are usually interpreted as partial functions
of the signature Σ → V. Obviously, because there are multiple states resulting in
the same value, such a function is not injective and cannot be an atomic function
a in the metalanguage L. Instead, expressions are interpreted as partial injective
functions with signature

Σ ⊗ V
E�e�−−−→ Σ ⊗ V.

Regardless of their syntactic form, expression interpretation is defined as

E�e1�(σ, v) =

⎧⎪⎨
⎪⎩

(σ, E ′�e1�σ) if v = nil
(σ, nil) if v = E ′�e1�σ 
= nil
↑ otherwise

where E ′�e�σ ∈ V, given below, is understood to be the value of e in the state
σ. When v in E�e1�(σ, v) is nil , the value of e1 in σ is obtained. When v is
equal to the value of e1 in σ, nil is obtained. In both cases, σ is left unchanged.
Otherwise, the meaning is undefined. The semantic function defines a reversible
update [1] of the value argument, which also implies that it is self-inverse.

Concretely, E ′ is defined as follows, depending on the form of e:

E ′�xi�σ = vi where σ = (v1, v2, . . . , vi, . . . )
E ′�s1�σ = s1

E ′�(e1.e2)�σ = E ′�e1�σ • E ′�e2�σ

E ′�hd(e1)�σ =
{

v1 if E ′�e1�σ = v1 • v2
↑ otherwise

E ′�tl(e1)�σ =
{

v2 if E ′�e1�σ = v1 • v2
↑ otherwise

E ′�=? e1 e2�σ =
{

nil • nil if E ′�e1�σ = E ′�e2�σ
nil otherwise
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As such, the meaning of a variable in a state is given by its contents, and the
meaning of a symbol is given by its direct representation in the alphabet Λ.
The meaning of the cons of two expressions is given by the cons of their mean-
ings, while the head (tail) of an expression takes the head (tail) of its meaning,
diverging if not of this form. The meaning of equality test returns distinct values
indicating whether the two expressions have the same value. Obviously, more
operators can be added to this list.

A non-injective function is often used in the definition of an injective function
in the context of reversible computation. Above, E�e�, a reversible update defined
using non-injective E ′�e�, is injective for any e. Because E�e� is not defined
exclusively in terms of the metalanguage, we regard it as defining an atomic
function a of L.

4.3 Patterns

As patterns may include procedure invocation, the meaning of a pattern depends
on the program context φ in which it is interpreted. Patterns in a program
context are all interpreted as partial injective functions with signature

Σ
Q�q�φ−−−−→ Σ ⊗ V.

In particular, note that this signature allows patterns to perform state alterna-
tions. Indeed, patterns may have side effects (here, in the form of altering the
store). They should be regarded as a means to prepare a given value in a state,
in such a manner that may alter the state it began with. Pattern interpretation
is defined as follows, depending on the form of q:

Q�xi�φ(σ) = ((v1, . . . , vi−1, nil, . . . ), vi) where σ = (v1, . . . , vi−1, vi, . . . )

Q�call fi(q1)�φ(σ) = (σ′, (κ†
i ◦ φ ◦ κi)(v)) where (σ′, v) = Q�q1�φ(σ)

Q�uncall fi(q1)�φ(σ) = (σ′, (κ†
i ◦ φ† ◦ κi)(v)) where (σ′, v) = Q�q1�φ(σ)

Q�(q1.q2)�φ(σ) = (σ′′, v1 • v2)

where (σ′, v1) = Q�q1�φ(σ) and (σ′′, v2) = Q�q2�φ(σ′)

The meaning of a variable, as a pattern, is simultaneous extraction of its contents
and clearing of the variable. A procedure call call fi(q1) is interpreted as passing
the value of q1 to the i’th component of the program context φ, followed by
extraction from the i’th component. As we discussed in Sect. 4.6, this corresponds
precisely to invoking the i’th procedure. Uncalling of a procedure is handled
analogously, but the inverse of the program context is used instead. Finally, the
meaning of a cons pattern (q1.q2) is as a kind of sequential composition: First,
q1 is executed, yielding a new state σ′ and value v1. Then, q2 is executed in σ′,
yielding a final state σ′′ and value v2. The two values are then consed together,
finally yielding the state σ′′ and prepared value v1 • v2. Recall that no variable
occurs more than once in a pattern.

Alternatively, uncall can be defined using the inverted procedures instead of
the inverse to the program context, φ†, provided the inverted procedures are
in φ. Addition of the inverse procedures to φ is discussed in Sect. 4.6.
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4.4 Predicates

The predicate interpretation provides a different means of interpreting expres-
sions for determining branching of control flow. They are interpreted as partial
injective functions with signature

Σ
T �e�−−−→ Σ ⊕ Σ.

The definition is based on the convention that an expression interpreted as nil
in a state σ is considered to be false in σ and true otherwise. The predicate
interpretation of an expression e is defined as follows:

T �e1�(σ) =
{
inl σ if E ′�e1�σ 
= nil
inr σ otherwise

As such, the predicate interpretation of e1 sends the control flow to the first com-
ponent if e1 is considered true in the given state, and to the second component
otherwise. As discussed in Sect. 4.5, this style allows straightforward interpreta-
tion of the conditional execution of commands. Here, inl and inr correspond to
true and false in the semantics level, respectively.

4.5 Commands

Commands are interpreted as invertible state transformations, i.e., as partial
injective functions with signature

Σ
C�c�φ−−−→ Σ.

Command interpretation is defined as follows, depending on the form of c:

C�c1; c2�φ = C�c2�φ ◦ C�c1�φ

C�xi =̂ e1�φ = (Q�xi�φ)† ◦ E�e1�◦Q�xi�φ

C�q1 ⇐ q2�φ = (Q�q1�φ)† ◦ Q�q2�φ

C�if e1 then c1 else c2 fi e2�φ = T �e2�
† ◦ (C�c1�φ ⊕ C�c2�φ) ◦ T �e1�

C�from e1 do c1 loop c2 until e2�φ = Tr
(

(C�c2�φ ⊕ id) ◦ T �e2� ◦ C�c1�φ ◦ T �e1�
†
)

Note the use of inverses to patterns and predicates in the above definition. The
inverse to a predicate corresponds to its corresponding assertion, whereas the
inverse to a pattern performs state preparation consuming (part of) a value
(rather than, in the forward direction, value preparation consuming part of
a state).

Pattern inverses are illustrated in both reversible assignments and pattern
matching, each consisting of a value preparation (indeed, the expression inter-
pretation can be regarded as side-effect-free value preparation), using the inter-
pretation of patterns, followed by a state preparation using the inverse. Similarly,
the interpretation of conditionals and loops relies on predicate inverses. In both
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cases, they serve as conditional join points, corresponding to an assertion that
e2 is expected to be true when coming from the then branch of the conditional
(respectively from the outside of the loop), and false when coming from the else
branch (respectively from the inside of the loop).

4.6 Procedures

As procedures use the local state only, procedure definitions are interpreted (in a
program context) as partial injective value transformations, i.e., partial injective
functions of the form

V
P�f�φ−−−−→ V.

To define the procedure interpretation, we need an injective helper function
V

ξ−→ Σ ⊗ V given by

ξ(v) = ( #»o , v),

where #»o = (nil, nil, . . . ) is the state in which all variables are cleared (i.e., they
contain nil). This canonical state is the initial computation state in which all
procedures are executed. A procedure definition in the program context φ is
interpreted as

P�proc f(q1) c; return q2�φ = ξ† ◦ Q�q2�◦C�c�φ ◦ (Q�q1�φ)† ◦ ξ.

This definition should be read as follows: in the canonical state #»o , the state
described by the inverse interpretation of the input pattern q1 is first prepared.
Then, the body of the procedure is executed, yielding a new state that is then
used to prepare a value as specified by interpretation of the output pattern q2.
At this point, the system must again be in the canonical state #»o . If this is the
case, #»o can then be discarded, leaving only the output value.

4.7 Programs

Finally, programs are interpreted as the meaning of their topmost defined pro-
cedure and, thus, are interpreted as partial injective functions of signature

V
M�m�−−−−→ V.

As procedures may be defined to invoke themselves as well as other procedures,
we must wrap them in a fixed point, passing the appropriate program context φ
to each procedure interpretation. This yields the interpretation

M�f1 · · · fn�=κ†
1 ◦ (μφ.P�f1�φ ⊕ · · · ⊕ P�fn�φ) ◦ κ1.

Note the inner interpretation of procedures f1 · · · fn as a disjoint union P�f1�φ⊕
· · ·⊕P�fn�φ: This gives one large partial injective function, which behaves iden-
tically to the partial injective functions P�fi�φ when inputs are injected into the
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i’th component, save for the fact that outputs (if any) are also placed in the i’th
component. This behavior explains the need for injections κi and quasiprojec-
tions κ†

i in the definition of procedure calls in Sect. 4.3.
The interpretation (M�·�, P�·�φ, and C�·�φ) maps syntax to injective (value,

store, . . . ) transformations (on stores, values). The injective (value, store, . . . )
transformations can be expressed in L.

4.8 Use of Inverse Semantics

In conventional programming languages, programs are not guaranteed to be
injective, program inversion requires a global analysis, and inverse interpretation
requires additional overhead. However, owing to the formalization, programs in
object languages formalized in L are always injective, program inversion can be
achieved through a recursive descendent transformation, and inverse interpre-
tation often has a constant time overhead only. The intrinsic properties of the
metalanguage are extremely helpful in deriving rules for program inversion. For
any command c, the inverse semantics (C�c�φ)† can be a composition of the
semantics of its components and traces, which can be mechanically obtained
from the properties of PInj [5]. For example, we have

(C�q1 ⇐ q2�φ)† = ((Q�q1�φ)† ◦ Q�q2�φ)† = (Q�q2�φ)† ◦ Q�q1�φ,

for a reversible replacement and, hence, we obtain the inverse replacement

(C�q1 ⇐ q2�φ)† = C�q2 ⇐ q1�φ.

The right-hand sides of the semantic function of commands are mostly sym-
metric. Therefore, their inversion rules are obtained in a similar way. The only
exception is the loop, which requires an additional identity Tr((f1 ⊕ id) ⊕ f2) =
Tr(f2 ⊕ (id ⊕ f1)) in order to yield the inversion rule. A similar anti-symmetry
appears in the operational semantics of the reversible language Janus [22], in
which the inference rule for the loop can be either right or left recursive.

As regards the semantic function of patterns, the inverse semantics of the
program context, φ†, defines the meaning of a procedure uncall. The inverse
semantics of procedures is equal to the semantics of inverted procedures. This
yields an alternative formalization of the same meaning. First, the inverted pro-
cedures are added to the program context in addition to the original procedures:

μφ. P�f1�φ ⊕ · · · ⊕ P�fn�φ ⊕ (P�f1�φ)† ⊕ · · · ⊕ (P�fn�φ)†.

Given such an extended program context φ, the access to the inverse semantics
κ†

i ◦ φ† ◦ κi in the pattern execution Q�uncall fi(q1)�φ(σ) (Sect. 4.3) can be
replaced by κ†

i+n ◦ φ ◦ κi+n; i.e., the n + i’th function is accessed.

5 Related Work

Formal meaning has been assigned to reversible programming languages using
well-established formalisms, such as operational semantics to the imperative lan-
guage Janus [22], the functional language RFUN [20], and the concurrent lan-
guages [15], small-step operational semantics to the assembler language PISA [1],
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transition functions to the flowchart language RFCL [21], and denotational
semantics to R-WHILE [7,8]. However, the reversibility of a language is not directly
expressed by these formalisms. It is the language designer’s responsibility to
guarantee the reversibility and to show the inversion properties of each language.
Notably, the semantics of R-WHILE was first expressed irreversibly [22]. Note also
that the type and effects systems have been studied for reversible languages [12].

In this paper, the reversible elements of R-WHILE were composed via the meta-
language L in a manner that preserved their reversibility. In previous work, com-
positional approaches to reversibility were applied in various guises, e.g., in the
diagrammatic composition of reversible circuits from reversible logic gates and
reversible structured flowcharts from reversible control-flow operators [21]. Sim-
ilarly, reversible Turing machines have been constructed from reversible rotary
elements [16].

To give meaning to reversible languages by interpreters and translators is
another operational approach to a semantics. Examples of similar applications
include the realization of reversible interpreters [7,22], translation of the high-
level language R to the reversible assembler language PISA [3], and mapping
hardware descriptions in SyReC to reversible circuits [18]. A different approach
involves the reversibilization of irreversible languages by extending the oper-
ational semantics via tracing, so as to undo program runs [10]. Alternatively,
irreversible programs can be inverted by program inverters, e.g., [6]. Reversible
cellular automata may have non-injective local maps; However, if the local map
is injective, the update by the global map is guaranteed to be reversible [14].

6 Conclusion

Reversible systems have reversible semantics. In this study, we built upon a
semantic foundation intended to describe the semantics of reversible program-
ming languages. Our approach was demonstrated through the full development
of a formal semantics for the reversibly universal language R-WHILE. This allowed
us to concisely formalize features representative of many reversible languages,
including iteration, recursion, pattern matching, dynamic data structures, and
access to a program’s inverse semantics. The intrinsic properties of the meta-
language were essential for achieving formal reversible semantics. Hence, we
argued that this approach provides a strong basis for understanding and rea-
soning about reversible programs.

Further exploration of the best description of advanced object-oriented struc-
tures, combinators, or features for concurrency, and the potentially useful meta-
language features, may be interesting. Some related challenges include the char-
acterization of reversible heap allocation and concurrent reversible computations.
However, further explanation of the practical feasibility of the metalanguage
and its relationship to advanced reversible automata including nondeterminism,
e.g., [11], is necessary.
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