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Abstract. In this paper, we argue that there are two fundamental ways
of defining correctness of concurrent objects on the weak memory models
of multicore processors: we can abstract from concurrent interleaving
and weak memory effects at the specification level, or we can abstract
from concurrent interleaving only, leaving weak memory effects at the
specification level. The first allows us to employ standard linearizability
as the correctness criterion; a result proved in earlier work. The second
requires a weakening of linearizability. We provide such a weakening and
prove it sound and complete with respect to this notion of correctness.

1 Introduction

Libraries of efficient concurrent objects are central to developing concurrent pro-
grams. High-level concurrent algorithms utilise concurrent objects for sharing
data between threads, e.g., concurrent queues and stacks, and for inter-thread
synchronisation, e.g., locks [15]. Correctness of such objects is usually defined
with respect to a sequential specification. For example, a concurrent queue being
accessed concurrently by multiple threads should still behave essentially like a
queue. The standard criterion for relating concurrent implementations of objects
to their sequential specifications is linearizability [16]. In recent years, however,
the question has arisen as to whether linearizability is the appropriate correct-
ness criterion in the presence of weak memory models.1 This has led to several
proposals for weaker versions of linearizability which either change the sequential
specification to allow weak memory effects [4,14], or change the definition of lin-
earizability itself [8,9,11,25], as well as new approaches to verifying correctness
unrelated to linearizability [21].

On sequentially consistent (SC) memory models, observational refinement
[12] and contextual refinement [10] have been proposed as reference points with

1 In this paper, we refer solely to hardware weak memory models of multicore pro-
cessors, e.g., x86-TSO [19], ARM [13,20] and IBM POWER [22], and not software
weak memory models that allow for compiler optimisations, e.g., C11 [3].
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which to judge such correctness criteria. These take the view that an object
implementation is correct if and only if a client program calling the object’s
operations cannot distinguish the object from one that behaves according to the
specification. Filipović et al. [12] prove that under certain assumptions observa-
tional refinement is equivalent to linearizability.

A similar reference point for judging correctness criteria on weak memory
models, called object refinement, was recently proposed by Smith et al. [23]. In
follow-on work, they prove the (somewhat surprising) result that the standard
definition of linearizability for SC is also equivalent to object refinement [24].
Their proof holds for all current memory models, including SC, and without
the assumptions required by Filipović et al. For SC, this suggests that object
refinement captures exactly what was intended by linearizability.

The result for weak memory models, however, is quite strong. A number
of efficient implementations of concurrent objects are incorrect under standard
linearizability. This is due to the fact that under weak memory models the effect
of an operation on one thread may be delayed from the perspective of other
threads. In this paper, we suggest a relaxation of object refinement that allows
more implementation flexibility, and discuss the consequences in terms of the
verification and use of concurrent objects. In particular, we present a definition of
weak linearizability that is sound and complete with respect to our relaxed notion
of object refinement, and argue why both weak linearizability and standard
linearizability are required in practice.

2 Correctness

The operations of a concurrent object may be called by multiple threads simul-
taneously. This results in an interleaving of their code in which interference
must be handled using locks or, when efficiency is important, non-blocking
techniques [18]. The behaviour of such interleaved code is difficult to reason
about, and specifications usually abstract from interleaving by having opera-
tions which are atomic. For example, operations may be specified with a pre-
condition/postcondition pair. An implementation C of a concurrent object is
considered correct in this setting when any program P which calls C ’s opera-
tions behaves in a way consistent with calling the atomic operations of A:

∀P • P [A] � P [C ] (1)

where P [A] and P [C ] denote the program P calling the atomic operations of
A, and the potentially interleaving operations of C , respectively, and � denotes
trace refinement [1,2] where observations are of changes to program variables,
i.e., variables declared as part of P .

2.1 Linearizability

The standard notion of correctness on SC is linearizability [16]. The semantics
[[C ]] of a concurrent object C is expressed as a prefix-closed set of histories, where
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each history is a sequence of events corresponding to invocations and responses
of operations calls. The semantics [[A]] of an object specification A can similarly
be expressed as a prefix-closed set of histories. Since operations are regarded
as atomic (i) operation calls cannot overlap, i.e., an invocation is immediately
followed by its matching response, and (ii) prefixes are restricted to complete
histories in which the final event cannot be an invocation.

Linearizability relates histories of an object implementation, which may have
pending invocations, i.e., invocations for which there is no response, to histories
of an object specification which do not. To do this, it needs to complete the
implementation histories. This can be done by adding a response when a pending
invocation is deemed to have taken effect, and removing the invocation when it
has not [16].

Let ext(h) be the set of extensions of a history h formed by adding a sequence
of responses for an arbitrary subset of the pending invocations, and comp(h)
complete h by removing all pending invocations. A concurrent object C is said
to linearize with an object specification A when the following holds.

C lin A =̂ ∀ h : [[C ]] • ∃ h ′ : [[A]] • ∃ h+ :ext(h) • comp(h+) ∼ h ′ ∧ ≺comp(h+) ⊆ ≺h′

where h ∼ h ′ denotes that h and h ′ are thread equivalent, i.e., when restricted
to the events of any one thread they have the same sequence of invocations
and responses, and ≺h captures the order of operations in a trace, where one
operation comes before another if its response is before the other’s invocation.

The intuition behind the definition is that operations which are overlapping
in comp(h+) are not ordered by ≺comp(h+) and, with ≺h′ being a superset of
≺comp(h+), can occur in any order in h ′. The implementation history h is said
to linearize to h ′.

Linearizability is compositional, allowing us to prove the correctness of a
system of interacting objects by showing each component object is linearizable
with respect to its specification [16].

3 Weak Memory Models

Weak memory models optimise performance by allowing the hardware to control
accesses to shared memory. As a consequence, the effect of operations on one
thread may be delayed from the perspective of another. On TSO, for example,
writes to shared variables are placed in a FIFO store buffer, and only take effect
in memory at a later time determined by the hardware, or when a fence is reached
in the code [19]. Such fences may be added liberally by the programmer, but can
negate the optimisations that the memory model offers.

POWER and ARM are weaker than TSO, allowing delayed writes to take
effect out of FIFO order unless a specific dependency exists between them [13,22].
They additionally support non-multi-copy atomicity .2 This allows writes by one
thread to be seen by other threads at different times, again determined by the
2 This is no longer true for the latest version of ARMv8 [20].
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hardware. This can be captured semantically by a write list [6] which orders all
writes which have occurred in a program execution along with which threads
have seen those writes.

3.1 Modelling Weak Memory Behaviour

Following [23], we model additional behaviours under weak memory models by
adding an effect event for each program step and each operation call. An effect
event indicates when the program step or operation takes place from the global
perspective of all threads in the program. For a program step, this will be after
the program step occurs, and for an operation after its invocation. The exact
position of the effect event is determined by the memory model semantics.

For program steps and operations which write to shared variables, the effect
will be when all threads have seen all of the writes. For example, on TSO the
effect will be when the last write associated with the program step or operation
takes place in the global memory. On non-multi-copy atomic processors, the
effect will be when, for each updated variable, all threads have seen the write,
or have seen a later write to the same variable.

Given a memory model M , we let [[C ]]M denote the set of histories of an
implementation C under M , and [[A]]M the set of histories of a specification A
under M . These histories will include effects, as well as invocations and responses.

Returning to correctness as defined in (1), while the behaviour of P [C ] under
M can be determined from [[C ]]M , a choice needs to be made about the meaning
of P [A]. On SC, the behaviour of P [A] abstracts from interleaving of operations,
as A’s operations are regarded as atomic. On weak memory models, there are
two fundamental possibilities:

1. P [A] abstracts from the interleaving of operations (as on SC) and weak mem-
ory model effects.

2. P [A] abstracts from the interleaving of operations but includes weak memory
effects.

In [23], the first option was taken, resulting in correctness being equivalent
to linearizability for all memory models [24]. As discussed in [24], a consequence
of this choice is that any operation whose effect can influence the output of a
later operation needs to be fenced to be correct on a weak memory model. This
is quite strict as it disallows many implementations where fences are avoided to
improve efficiency. In the remainder of this paper we consider the second option
above by allowing weak memory effects in P [A].

4 Weakening Correctness

Program behaviour under a weak memory model is modelled in terms of traces,
which are sequences of (program) step, invocation, response and effect events:

Event =̂ step(PS ) | eff (PS ) | inv(Op,Val) | res(Op,Val) | eff (Op,Val)
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where PS is a program step by a particular thread, Op an operation call by a
particular thread, and Val a set of values for inputs and outputs, including ⊥
meaning no input or output.

Each event in a trace is unique (calls to the same operation, for exam-
ple, being distinguished by annotating the operation name with its order of
occurrence):

Trace =̂ {t : seqEvent | (∀ i , j ≤ #t • i �= j ⇒ ti �= tj ) ∧ wf (t)}

where wf , the well-formedness condition on traces, states that an invocation of
an operation always occurs before the associated response and effect, a program
step always occurs before its effect, and the output value of an operation’s effect
is the same as that of the corresponding response event.

wf (t) =̂ (∀ a : Op; out : Val • ∀ j ≤ #t • tj ∈ {res(a, out), eff (a, out)} ⇒
∃ in : Val ; i < j • ti = inv(a, in)) ∧

(∀ p : PS • ∀ j ≤ #t • tj = eff (p) ⇒ ∃ i < j • ti = step(p)) ∧
(∀ a : Op • ∃ out : Val •

∀ i ≤ #t ; o : Val • t(i) = res(a, o) ∨ t(i) = eff (a, o) ⇒ o = out)

A sequential trace is one where operations are atomic, i.e., all invocations have
a matching response, and no events apart from effects may occur between the
invocation and response of an operation.

SeqTrace =̂ {t : Trace | (∀ a : Op; in : Val ; i ≤ #t • ti = inv(a, in) ⇒
∃ out : Val ; j ≤ #t • tj = res(a, out)) ∧

(∀ a : Op; in, out : Val ; i < j < k ≤ #t •
ti = inv(a, in) ∧ tk = res(a, out) ⇒

∃ b : Op; outb : Val • tj = eff (b, outb))}

The events of a trace t determine a set, events(t), and the (total) order in which
these events occur is denoted by a relation, <t :

events(t) =̂ {a : Event | ∃ i ≤ #t • ti = a}
<t =̂ {(a, b) : Event × Event | ∃ i , j ≤ #t • i < j ∧ ti = a ∧ tj = b}

A program P has a set of events, events(P), which it can undergo (according
to the program text) and, for each memory model M , a partial order, <PM

,
which captures when an event can occur only after another under M (see [24]
for further details). The traces of P are defined as follows:

[[P ]]M =̂ {t : Trace | events(t) ⊆ events(P) ∧ <PM
� <t }

where <PM
� <t specifies whether an order is allowed by P on M , formally

defined as:

<PM
� <t =̂ ∀(a, b) : <PM

• b ∈ events(t) ⇒ (a, b) ∈ <t
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That is, for any event b that occurs in trace t , if this event is constrained to
come after another event a by <PM

, then event a must also occur in t before
event b.

The semantics of P [C ] under M are those traces t of [[P ]]M whose restriction
to object events (invocation, responses and operation effects), denoted t|o , is in
[[C ]]M .

[[P [C ]]]M =̂ {t : [[P ]]M | t|o ∈ [[C ]]M }
The semantics of P [A] is given similarly:

[[P [A]]]M =̂ {t : [[P ]]M | t|o ∈ [[A]]M }
To motivate our definition of [[A]]M , consider an object with two operations: W ,
which writes to an object variable x , whose value is initially 0, and R, which
reads x . One possible behaviour under a weak memory model such as TSO is:

〈inv(n.W , 1), res(n.W ,⊥), inv(m.R,⊥), eff (m.R, 0), res(m.R, 0), eff (n.W ,⊥)〉
where the read by thread m returns 0 since the effect of the write by thread n has
not yet taken effect. The operations do not overlap (the invocation of m.R occurs
after the response of n.W ), modelling that the operations are atomic. However,
weak memory effects are included, due to the effect of n.W being delayed.

The above trace corresponds to a history of A, the specification of the object,
where m.R occurs before n.W . In general, a history h of AM will be thread equiv-
alent to a history h ′ of A such that the operations of h are ordered consistently
with placing them between the corresponding invocations and effects of h. This
can be defined in terms of the notation h ∼ h ′ and ≺h introduced to define
linearizability in Sect. 2:

[[A]]M =̂ {h : SeqTrace | h|o = h ∧ ∃ h ′ : [[A]] • h ∼ h ′ ∧ ≺trans(h) ⊆ ≺h′}
where trans(h) replaces the effect of each operation in h by its response:

trans(〈 〉) = 〈 〉
trans(〈inv(a, in)〉 � h ′) = 〈inv(a, in)〉 � trans(h ′)
trans(〈res(a, out)〉 � h ′) = trans(h ′)
trans(〈eff (a, out)〉 � h ′) = 〈res(a, out)〉 � trans(h ′)

Object refinement, our notion of correctness, is then defined as:

P [A] �M P [C ] =̂ ∀ t : [[P [C ]]]M • ∃ t ′ : [[P [A]]]M • t ′
|global = t|global

where t|global is the restriction of t to observable program steps, i.e., those which
change global variables.

5 Weak Linearizability

We now present a notion of weak linearizability, and prove it sound and complete
with respect to our notion of object refinement defined in Sect. 4. This notion
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has been previously suggested for concurrent objects on TSO [8,25]. It involves
allowing an operation to linearize anywhere between its invocation and effect
(i.e., when the operation’s final write takes place in global memory on TSO).
Here we show it corresponds to our notion of correctness not just for TSO, but
for any weak memory model.

Let ext return the set of traces which extend a given trace with a sequence
of responses such that the result is still a trace, i.e., responses are only added
for pending invocations:

ext(t) =̂ {t � tr : Trace | ∀ i ≤ #tr • ∃ a : Op; out : Val • tri = res(a, out)}
and let comp return the trace obtained by removing all invocations from a given
trace which have neither an effect nor a response:

comp(〈 〉) = 〈 〉
comp(〈inv(a, in)〉 � t ′) = comp(t ′), if NoResp(a, t ′)
comp(〈e〉 � t ′) = 〈e〉 � comp(t ′), otherwise

where NoResp(a, t) =̂ � i ≤ #t ; out : Val • ti ∈ {res(a, out), eff (a, out)}.
Weak linearizability, linM , is defined for any weak memory model M . By

weak memory model, we mean a memory model where effects of program steps
and operations may be delayed—this definition is not intended to be used with
SC.

C linM A =̂ ∀ h : [[C ]]M • ∃ h ′ : [[A]] •
∃ h+ :ext(h) • comp(h+) ∼ h ′ ∧ ≺trans(comp(h+)) ⊆ ≺h′

Note that we linearize with respect to the original specification A which is
independent of the memory model M .

Weak linearizability is proved to be compositional in [7]. The proofs of sound-
ness and completeness below rely on the following lemmas proved in [24].

Lemma 1. If the events of a trace t are events of a program P, then so are the
events of any completion of t.

∀P • ∀ t : Trace • ∀ t+ : ext(t) •
events(t) ⊆ events(P) ⇒ events(comp(t+)) ⊆ events(P)

Lemma 2. If a trace t is allowed by a program P on memory model M , then
so is any completion of t that only adds responses for operations whose effects
have occurred.

∀P ,M • ∀ t : Trace • ∀ t � tr : ext(t); a : Op; out : Val •
(∀ i ≤ #tr • tri = res(a, out) ⇒ ∃ j ≤ #t • tj = eff (a, out)) ∧ <PM

� <t ⇒
<PM

� <
comp(t�tr)

Our proofs also use the notion of a matching trace, which is formed from a
trace t as follows. Firstly, t is extended with responses for exactly those pending
invocations for which there is an effect, and the remaining pending invocations
are removed. Secondly, each response is moved to immediately after any con-
tiguous sequence of effects following its invocation.
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5.1 Soundness

We now show that our notion of weak linearizability is sound with respect to
our definition of object refinement.

Theorem 1. If an object implementation C linearizes with an object specifica-
tion A on memory model M , then C is an object refinement of A on M .

C linM A ⇒ ∀P • P [A] �M P [C ]

Proof. Assume that C linM A holds, and consider an arbitrary program P with
[[P [C ]]]M �= ∅ (when [[P [C ]]]M = ∅ the consequent is trivially true). We must
show that for any trace, t , of P [C ] under weak memory model M , there is a
corresponding trace, t ′, of P [A] under M .

Since t ∈ [[P [C ]]]M , there is an h ∈ [[C ]]M such that t|o = h, and since
C linM A, there is also an h ′ ∈ [[A]] and h+ ∈ ext(h) such that:

comp(h+) ∼ h ′ ∧ ≺trans(comp(h+)) ⊆ ≺h′ (S1)

There may be several possible choices for h+. We choose h+ so that a response
is added for each pending invocation whose effect occurs in t . This is always pos-
sible since we know that there exists at least one extension and related abstract
history. Call them h+

0 and h ′
0, respectively. h+

0 cannot have less than the required
responses. If it did, comp(h+) would be left with a pending invocation (with an
effect) but no response. Hence, comp(h+) ∼ h ′ would not hold. If h+

0 has more
than the required responses, since [[A]] is prefixed-closed, we can find an h ′ which
is a subsequence of h ′

0 which does not have the additional operations correspond-
ing to the extra responses.3 This h ′ will satisfy (S1) for our chosen h+.

Let t ′ be the matching trace of t . Since a matching trace maintains the order
of program steps and their effects we have:

t ′
|global = t|global (S2)

To complete the proof, it remains to show that t ′ ∈ [[P [A]]]M .
Since there are no overlapping operations on a given thread, the order of

invocations and responses on a given thread in comp(h+) will be maintained in
t ′. Hence from (S1) we have:

t ′
|o ∼ h ′ (S3)

Since the relative order of invocations and effects in comp(h+) will be main-
tained in t ′, we have that trans(t ′

|o) = trans(comp(h+)). Hence from (S1) we
have:

≺trans(t′
|o)

⊆ ≺h′ (S4)

3 Since there is at most one pending invocation per thread, such an h ′ will be in the
prefix-closed set [[A]].
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Since invocations and responses are only separated by effects in t ′, provided
that it satisfies the well-formedness property of traces and is in Trace, it will be
in SeqTrace:

t ′ ∈ Trace ⇒ t ′ ∈ SeqTrace (S5)

Therefore, from (S3), (S4) and (S5) and the definition of [[A]]M , we have:

t ′ ∈ Trace ⇒ t ′
|o ∈ [[A]]M (S6)

Given the definition of [[P [A]]]M and (S6), to prove that t ′ ∈ [[P [A]]]M we need
to show that t ′ ∈ Trace, and that t ′ ∈ [[P ]]M , i.e., events(t ′) ⊆ events(P) and
<PM

� <t′ . We prove each of these below, where t+ is the trace t extended with
the sequence of responses added to h to form h+.

(i) t ′ ∈ Trace:
Since t ∈ [[P [C ]]]M , it follows from Lemmas 1 and 2 that comp(t+) ∈ [[P ]]M
and hence is a Trace. Since t ′ has the same events as comp(t+), its events
are unique. Also, since the construction of t ′ does not alter the relative order
of program steps with their effects, nor invocations with their responses and
effects, wf holds. Hence, t ′ ∈ Trace.

(ii) events(t ′) ⊆ events(P):
Since comp(t+) ∈ [[P ]]M , it follows that events(comp(t+)) ⊆ events(P)
from the definition of [[P ]]M . Since t ′ has the same events as comp(t+), it
follows that events(t ′) ⊆ events(P).

(iii) <PM
� <t′ :

To prove this property we show that ∀(a, b) : <PM
• b ∈ events(t ′) ⇒

(a, b) ∈ <t′ . We consider four cases, according to whether a and b are
program events or object events.

(a) The order between two program events (i.e., program steps or their effects)
that is enforced by <PM

is maintained in t ′.
This holds as the relative order of program events of t is unchanged in t ′.

(b) If <PM
enforces that a program event has to occur before an object event

(i.e., an invocation, response or effect of an operation) then this order is
maintained by t ′.
The relative order of program events with invocations and effects of t is
unchanged in t ′. Since an object’s state is only accessed via its operations,
there can be no synchronisation between a program event and the object’s
state while the operation is executing. Hence, if a program step must
come before an operation’s response, it must come before its invocation
too. Since the response of an operation is not moved before its invocation,
it is not moved before any program events which must come before it.

(c) If <PM
enforces that an object event has to occur before a program event

then this order is maintained by t ′.
The relative order of program events with invocations and effects of t is
unchanged in t ′. Since responses are only moved earlier in the trace, all
program events after a response remain after the response.
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(d) The order between two object events that is enforced by <PM
is main-

tained in t ′.
The response of an operation op is not moved before its invocation, and
its effect (on a weak memory model) cannot be constrained by P to occur
before the response (since this would require the operation to either not
write to shared variables or have a fence, and the operation’s implemen-
tation is outside of P ’s control).
Also, since the implementation of object operations is outside P ’s control,
synchronisation between operations cannot be enforced by P . Hence, if a
response of an operation op must occur after another operation event e,
other than op’s invocation, then op’s invocation must also occur after e.
Hence, op’s response is not moved before e. �

5.2 Completeness

We now show that our notion of weak linearizability is complete with respect
to our definition of object refinement. The completeness proof uses a notion of
a recording program, which records each program step and operation call in a
global variable g . For each program step PS on thread n we have:

PS ; g := “n.PS”

and for each call on an operation Op on thread n we have:

l := in; x := Op(in); g := “n.Op(in, out)”

where l is a local variable used to hold the value of the input until after the
operation. Since the changes to g will appear in the observable part of any trace
of the recording program, when t|global = t ′

|global for any traces t and t ′, we
know that these traces have undergone the same program steps, operation calls
and outputs of operation calls up until the last recording on each thread. These
events may occur in a different order, however, since the recordings made by
different threads can be interleaved.

The completeness proof uses the following lemma.

Lemma 3. If P is a recording program and C is an object refinement of A, then
for a given implementation trace t ∈ [[P [C ]]]M either the matching trace t ′ is in
[[P [A]]]M , or there is a trace t ′′ in [[P [A]]]M which is formed by moving one or
more effects in t ′ earlier than in t.

Proof. Following the reasoning for matching traces in the proof of Theorem 1,
t ′ will be in [[P ]]M . Hence, the relative order of program steps and invocations
in t ′ will be allowed by P [A] on memory model M .

Since P is a recording program, if any effect allowed in t is not allowed by A,
C will have a trace which is observably different to any of A. This contradicts
the assumption that C is an object refinement of A. Hence, all effects in t are
allowed by A. It remains for us to show that the effects may occur in the order
of t ′ or some t ′′ formed from t ′ by moving one or more effects earlier.
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We proceed using a proof by contradiction. Suppose that [[P [A]]]M does not
contain t ′ or any trace t ′′ formed from t ′ by moving one or more effects earlier.
For C to be an object refinement of A, there must be a trace s in [[P [A]]]M with
the same events as t but with one or more effects occurring later than in t .

Let t̄ denote the trace t with all responses removed, and u and v be non-
empty sequences of events, and w be a possibly empty sequence of events. Let
t̄ = u � 〈effa〉 � v � w and s̄ = u � v � 〈effa〉 � w , i.e., where a single effect
effa , of an event a, occurs later in s than in t . This implies that the occurrence
of the last event of v , or when that event is an invocation the required output
of its associated operation, requires that the effect of a has not occurred. From
this we can deduce that:

(i) the last event of v is not a program step. If it were a program step then
this program step would need to refer directly to a change made by a to a
program variable (otherwise effa could occur before it). Since the program
step is identical in the implementation (both use P), the implementation
traces would also require effa to occur after v .

(ii) the last event of v is not an invocation. Let the last event of v be b. If b
were an invocation then the associated operation’s outputs in A would rely
on a’s effect not having occurred. On the other hand, the operation in C
can produce the outputs in t after a has taken effect.
If a depends on earlier events of the same thread in t then there will be a
dependency between those events that will prevent the effect of a occurring
before the effects of the earlier events [6]. Hence, C allows the operation
associated with b to produce the outputs in t when all such earlier events
of a’s thread have taken effect.
Therefore, it is possible to construct a recording program P ′ similar to P
which forces a to take effect before b, e.g., eliding the recording events, P ′

could be:

...; a; fence; z = 1; ... || ...; await(z = 1); b; ... || ...
where the fence forces a (and all earlier events in a’s thread) to take effect,
and the await instruction ensures that b does not occur until this has
happened.
There will be a trace in [[P ′[C ]]]M in which the operation invoked by b has
the same output as in t . However, there will not be such a trace in [[P ′[A]]]M .
The operation invoked by b will behave differently due to the effect of a.
This will result in a different recording, and hence implies C is not an object
refinement of A.

(iii) the last event of v is not an effect. The specification and implementation
execute on the same memory model. Hence, any constraint on the ordering
of effects in P [A] will also hold in P [C ] [23].

Hence, the last step of v is neither a program step, invocation nor effect and we
have a contradiction. The proof can be generalised to more than one effect event
occurring later in s. �
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We can now state and prove the completeness theorem.

Theorem 2. If an object implementation C is an object refinement of a speci-
fication A on memory model M then C linearizes to A on M .

(∀P • P [A] �M P [C ]) ⇒ C linM A

Proof. Assume the antecedent is true and that [[C ]]M �= ∅. Let h be a history
in [[C ]]M , and let P be a recording program which can generate a trace t corre-
sponding to h, i.e., t|o = h. Let t+ ∈ ext(t) be an extension of t which adds a
response for exactly those pending invocations for which there is an effect in t .

Let t ′ be the matching trace of t . From Lemma 3 we know that there exists
a trace s in [[P [A]]]M such that s = t ′ or s is formed from t ′ by moving one or
more effects earlier. Therefore, from the definition of [[P [A]]]M , there exists an
h ′ ∈ [[A]] such that:

s|o ∼ h ′ ∧ ≺trans(s|o) ⊆ ≺h′ (C1)

Since there are no overlapping operations on a given thread, the order of invo-
cations and responses on a given thread in comp(t+) and s are the same.

comp(t+)|o ∼ s|o (C2)

The relative ordering of invocations and effects in t ′ is the same as that in
t . Hence, ≺trans(comp(t+)|o) = ≺trans(t′

|o)
. Any trace formed from t ′ by moving

effects earlier, will have less overlapping operations when trans is applied to it
than t ′ when trans is applied to it. Therefore, we have:

≺trans(comp(t+)|o) ⊆ ≺trans(s|o) (C3)

Hence, from (C1), (C2) and (C3), we have:

comp(t+)|o ∼ h ′ ∧ ≺trans(comp(t+)|o) ⊆ ≺h′ �

6 Chase-Lev Deque

In this section we consider the consequences of using our weakened definition of
correctness with respect to a typical concurrent object: a version of the Chase-
Lev work-stealing deque (double-ended queue) [5] developed specifically for ARM
[17]. The code in Fig. 1 corresponds to a version used in [6] which for simplic-
ity eliminates returns from within a branch, and assumes the elements of the
deque are integers. It also uses the fixes suggested in [6] for errors regarding the
placement of control fences4 present in [17].

4 A control fence (ctrl isync in ARM and denoted cfence in Fig. 1) ensures that all
branch instructions occurring before it take effect before any loads, i.e., reads of
global variables, occurring after it.
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put(v)
int t;
t=tail;
tasks[t mod L]=v;
fence;
tail=t+1;
return;

take
int h,t,task;
t=tail-1;
tail=t;
fence;
h=head;
if (h <= t)

task=tasks[t mod L];
if (h=t)

if !CAS(head, h, h + 1) then
task=empty;

tail=tail+1;
else

task=empty;
tail=tail+1;

return task;

steal
int h,t,task;
h=head;
fence;
t=tail;
if (h < t)

cfence;
task=tasks[h mod L];
if !CAS(head, h, h+1)

task=fail;
else

task=empty;
return task;

Fig. 1. A version of Lê et al.’s work-stealing deque algorithm for ARM [17]

The deque is implemented as a circular array of size L with a head and tail
pointer. Elements may be put on or taken from the tail by a worker thread,
and additionally, other (thief) threads may steal an element from the head of
the deque (in order to balance system workload). Since the put and take opera-
tions are executed by a single thread, there is no interference between these two
operations.

The full details of the implementation can be found in [6,17]. What is inter-
esting for us is that the put operation has as assignment to tail which is unfenced,
and hence may be delayed from the point of view of the thief threads.

A possible history of the implementation on ARM is:

〈inv(n.put, v), res(n.put,⊥), inv((m.steal),⊥), res((m.steal), empty)〉

This occurs when the effect of the put operation is delayed until after the steal
operation has occurred. Specifically, tail is not updated until after the steal oper-
ation and hence h < t in steal is false.

This behaviour would not be available in a specification of the work-stealing
deque. Hence, the implementation is not linearizable. To make it linearizable
we would need to add a fence to the put operation, reducing efficiency. The
behaviour is, however, weakly linearizable. Therefore, whether the implementa-
tion is considered correct depends on which of the two notions of correctness we
assume.

There is an obvious trade-off. Abstracting from weak memory effects at the
specification level simplifies high-level reasoning: a steal operation following a
put may not return empty. If weak memory effects are included at the specifi-
cation level, any reasoning involves understanding the details of the processor
implementation: in this case, understanding that the steal may return empty.
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While this is not too much of a burden for this example, it may become so for
more complex code.

However, abstracting from weak memory effects at the specification level
disallows certain efficient implementations such as that in Fig. 1, as fences are
required for many operations.

Ultimately, the choice will reside with the developer of the program; specif-
ically how confident they are with interpreting the behaviour of their program
using the concurrent object under the weak memory models they wish it to run
on. We envisage a library with a range of implementations for particular concur-
rent objects: one for the programmer who has limited knowledge of weak memory
models, and other, more optimised, implementations aimed at programmers with
a deeper understanding of particular weak memory models.

7 Conclusion

In this paper we have introduced a notion of object correctness which allows weak
memory model effects at the specification level, and provided a weakening of
linearizability which is sound and complete with respect to it. We have compared
this correctness notion with a perhaps more standard one which abstracts from
weak memory model effects at the specification level. While abstracting from
weak memory model effects simplifies high-level reasoning, it also limits what
is allowed in implementations regarded as being correct. In particular, it can
disallow many implementations which limit the use of fences to obtain efficiency.

As not all programmers will be confident with interpreting the use of con-
current objects in the presence of weak memory models, it seems reasonable to
expect libraries to have implementations satisfying both correctness notions for
a given object specification.
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