
Emil Sekerinski · Nelma Moreira ·
José N. Oliveira et al. (Eds.)

LN
CS

 1
22

33

Porto, Portugal, October 7–11, 2019

Revised Selected Papers, Part II

Formal Methods
FM 2019 International Workshops

Lecture Notes in Computer Science 12233

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Emil Sekerinski • Nelma Moreira •

José N. Oliveira et al. (Eds.)

Formal Methods
FM 2019 International Workshops

Porto, Portugal, October 7–11, 2019
Revised Selected Papers, Part II

123

Editors
Emil Sekerinski
McMaster University
Hamilton, ON, Canada

Nelma Moreira
University of Porto
Porto, Portugal

José N. Oliveira
University of Minho
Braga, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-54996-1 ISBN 978-3-030-54997-8 (eBook)
https://doi.org/10.1007/978-3-030-54997-8

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Workshop Editors see next page

https://orcid.org/0000-0001-9788-5842
https://orcid.org/0000-0003-0861-0105
https://orcid.org/0000-0002-0196-4229
https://doi.org/10.1007/978-3-030-54997-8

Workshop Editors

AFFORD
Daniel Ratiu
Argo Ai
Munich, Germany
dratiu@argo.ai

DataMOD
Riccardo Guidotti
University of Pisa
Pisa, Italy
riccardo.guidotti@di.unipi.it

FMAS
Marie Farrell
University of Liverpool
Liverpool, UK
marie.farrell@liverpool.ac.
uk

Matt Luckcuck
University of Liverpool
Liverpool, UK
m.luckcuck@liverpool.ac.uk

FMBC
Diego Marmsoler
University of Exeter
Exeter, UK
d.marmsoler@exeter.ac.uk

FMIS
José Campos
University of Minho
Braga, Portugal
jose.campos@di.uminho.pt

HFM
Troy Astarte
University of Newcastle
Newcastle upon Tyne, UK
t.astarte@ncl.ac.uk

NSAD
Laure Gonnord
Claude Bernard University
Lyon, France
laure.gonnord@ens-lyon.fr

OpenCert
Antonio Cerone
Nazarbayev University
Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

Overture
Luis Diogo Couto
Forcepoint
Ireland
ldcouto@gmail.com

Refine
Brijesh Dongol
University of Surrey
Guildford, UK
b.dongol@surrey.ac.uk

RPLA
Martin Kutrib
University of Giessen
Giessen, Germany
kutrib@informatik.uni-gies-
sen.de

SASB
Pedro Monteiro
University of Lisbon
Lisbon, Portugal
pedro.tiago.monteiro@tec-
nico.ulisboa.pt

TAPAS
David Delmas
Airbus Operations S.A.S.
Toulouse, France
david.delmas@lip6.fr

http://orcid.org/0000-0003-2691-5279

Preface

The Third World Congress on Formal Methods (FM 2019) took place during
October 7–11, 2019, in Porto, Portugal. The congress comprised nine conferences: the
23rd International Symposium on Formal Methods (FM 2019); the 29th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2019);
the 13th International Conference on Mathematics of Program Construction (MPC
2019); the 21st International Symposium on Principles and Practice of Declarative
Programming (PPDP 2019); the 19th International Conference on Runtime Verification
(RV 2019); the 26th International Static Analysis Symposium (SAS 2019); the 13th
International Conference on Tests and Proofs (TAP 2019); the 7th International
Symposium on Unifying Theories of Programming (UTP 2019); and the 13th Inter-
national Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS 2019). The conference also included a Doctoral Symposium, an
Industry Day, 2 festschrifts, 16 workshops, and 5 tutorials. In total there were 630
registered participants from 43 countries, 381 presentations from 821 authors, 44
invited speakers, and 13 tool exhibitors. The 16 workshops emerged out of 18 work-
shop proposals. Three workshops, the Second International Workshop on Dynamic
Logic, New Trends and Applications (DaLí 2019), the Third International Workshop
and Tutorial on Formal Methods Teaching (FMTea 2019), and the 5th Workshop on
Formal Integrated Development Environment (F-IDE 2019), had their proceedings
published separately. This two-volume book consists of the proceedings of the other 13
workshops.

Volume 1:

AFFORD 2019
The Third Workshop on Practical Formal Verification for Software Dependability

DataMod 2019
The 8th International Symposium From Data to Models and Back

FMAS 2019
The First Formal Methods for Autonomous Systems Workshop

FMBC 2019
The First Workshop on Formal Methods for Blockchains

FMIS 2019
The 8th International Workshop on Formal Methods for Interactive Systems

Volume 2:

HFM 2019
The First History of Formal Methods Workshop

NSAD 2019
The 8th International Workshop on Numerical and Symbolic Abstract Domains

OpenCERT 2019
The 9th International Workshop on Open Community Approaches to Education,
Research and Technology

Overture 2019
The 17th Overture Workshop

Refine 2019
The 19th Refinement Workshop

RPLA 2019
The First International Workshop on Reversibility in Programming, Languages, and
Automata

SASB 2019
The 10th International Workshop on Static Analysis and Systems Biology

TAPAS 2019
The 10th Workshop on Tools for Automatic Program Analysis

The diversity of the workshop themes reflects the evolution that formal methods of
software development have taken since the first World Congress on Formal Methods in
1999 (Toulouse, France) and the second in 2009 (Eindhoven, The Netherlands). Each
workshop has its unique history and style that was left up to the workshop organizers to
maintain. We are pleased to have four workshops for the first time: FMAS, FMBC,
HFM, and RPLA. In total, 123 papers were accepted after a first round of reviewing for
the presentation at FM 2019. Of those, 108 were submitted for a second round of
reviewing after the congress and 68 selected for inclusion in these proceedings. The
workshop organizers ensured that all papers received at least three reviews. Nine
invited abstracts, two invited papers, and one workshop summary are included as well.

We are grateful to the workshop authors, the workshop organizers, the Program and
Organizing Committee members of the workshops, the local organizers, the sponsors
of the congress, and everyone else involved in the 34 events of the congress for the
concerted effort in putting together such a rich program.

Finally, we thank Springer for their immediate willingness to publish the collected
FM 2019 workshop proceedings in the LNCS series and their support in the editing
process.

May 2020 Emil Sekerinski
Nelma Moreira
José N. Oliveira

viii Preface

Organization

General Chair

José N. Oliveira University of Minho, INESC TEC, Portugal

Program Chairs

Maurice H. ter Beek ISTI-CNR, Italy
Annabelle McIver Macquarie University, Australia

Industry Day Chairs

Joe Kiniry Galois Inc., USA
Thierry Lecomte ClearSy, France

Doctoral Symposium Chairs

Alexandra Silva University College London, UK
Antónia Lopes University of Lisbon, Portugal

Journal First Track Chair

Augusto Sampaio Federal University of Pernambuco, Brazil

Workshop and Tutorial Chairs

Emil Sekerinski McMaster University, Canada
Nelma Moreira University of Porto, Portugal

Organizing Committee

Luís Soares Barbosa University of Minho, INESC TEC, Portugal
José Creissac Campos University of Minho, INESC TEC, Portugal
João Pascoal Faria University of Porto, INESC TEC, Portugal
Sara Fernandes University of Minho, INESC TEC, Portugal
Luís Neves Critical Software, Portugal
Ana Paiva University of Porto, INESC TEC, Portugal

Local Organizers

Catarina Fernandes University of Minho, INESC TEC, Portugal
Paula Rodrigues INESC TEC, Portugal
Ana Rita Costa INESC TEC, Portugal

Web Team

Francisco Neves University of Minho, INESC TEC, Portugal
Rogério Pontes University of Minho, INESC TEC, Portugal
Paula Rodrigues INESC TEC, Portugal

FME Board

Ana Cavalcanti University of York, UK
Lars-Henrik Eriksson Uppsala University, Sweden
Stefania Gnesi ISTI-CNR, Italy
Einar Broch Johnsen University of Oslo, Norway
Nico Plat Thanos, The Netherlands

x Organization

Contents – Part II

HFM 2019 - History of Formal Methods Workshop

Flow Diagrams, Assertions, and Formal Methods . 15
Mark Priestley

The School of Squiggol: A History of the Bird–Meertens Formalism. 35
Jeremy Gibbons

Reasoning About Shared-Variable Concurrency: Interactions Between
Research Threads . 54

Cliff B. Jones

Specification with Class: A Brief History of Object-Z 73
Graeme Smith and David J. Duke

Formal Specifications and Software Testing, a Fruitful Convergence 87
Marie-Claude Gaudel

From Manuscripts to Programming Languages: An Archivist Perspective 95
Alexandra Vidal, Ana Sandra Meneses, and António Sousa

What Have Formal Methods Ever Done for Us? An Audience Discussion . . . 103
Troy Kaighin Astarte

NSAD 2019 - 8th Workshop on Numerical and Symbolic
Abstract Domains

Combination of Boxes and Polyhedra Abstractions for Constraint Solving . . . 119
Ghiles Ziat, Alexandre Maréchal, Marie Pelleau, Antoine Miné,
and Charlotte Truchet

An Abstract Domain for Objects in Dynamic Programming Languages 136
Vincenzo Arceri, Michele Pasqua, and Isabella Mastroeni

OpenCERT 2019 - 9th International Workshop on Open Community
Approaches to Education, Research and Technology

A Survey of Learning Methods in Open Source Software 157
Aidarbek Suleimenov, Assiya Khuzyakhmetova, and Antonio Cerone

A Calculus of Chaos in Stochastic Compilation: Engineering in the Cause
of Mathematics . 167

Peter T. Breuer and Simon J. Pickin

Runtime Verification of Linux Kernel Security Module 185
Denis Efremov and Ilya Shchepetkov

Open and Interactive Learning Resources for Algorithmic
Problem Solving . 200

João F. Ferreira and Alexandra Mendes

Challenges Faced by Students in an Open Source Software
Undergraduate Course . 209

Dias Issa

Open Source Software as a Learning Tool for Computer Science Students . . . 224
Assiya Khuzyakhmetova and Aidarbek Suleimenov

Overture 2019 - 17th Overture Workshop

Exploring Human Behaviour in Cyber-Physical Systems
with Multi-modelling and Co-simulation . 237

Ken Pierce, Carl Gamble, David Golightly, and Roberto Palacín

Migrating the INTO-CPS Application to the Cloud 254
Hugo Daniel Macedo, Mikkel Bayard Rasmussen, Casper Thule,
and Peter Gorm Larsen

Towards a Static Check of FMUs in VDM-SL . 272
Nick Battle, Casper Thule, Cláudio Gomes, Hugo Daniel Macedo,
and Peter Gorm Larsen

ViennaDoc: An Animatable and Testable Specification
Documentation Tool . 289

Tomohiro Oda, Keijiro Araki, Yasuhiro Yamamoto, Kumiyo Nakakoji,
Hiroshi Sako, Han-Myung Chang, and Peter Gorm Larsen

Refine 2019 - 19th Refinement Workshop

A Map of Asynchronous Communication Models . 307
Florent Chevrou, Aurélie Hurault, Shin Nakajima,
and Philippe Quéinnec

An Abstract Semantics of Speculative Execution for Reasoning About
Security Vulnerabilities . 323

Robert J. Colvin and Kirsten Winter

xii Contents – Part II

Weakening Correctness and Linearizability for Concurrent Objects
on Multicore Processors . 342

Graeme Smith and Lindsay Groves

Towards a Method for the Decomposition by Refinement in Event-B 358
Kenza Kraibi, Rahma Ben Ayed, Joris Rehm, Simon Collart-Dutilleul,
Philippe Bon, and Dorian Petit

Transformations for Generating Type Refinements 371
Douglas R. Smith and Stephen J. Westfold

Comparing Correctness-by-Construction with Post-Hoc
Verification—A Qualitative User Study . 388

Tobias Runge, Thomas Thüm, Loek Cleophas, Ina Schaefer,
and Bruce W. Watson

RPLA 2019 - Workshop on Reversibility in Programming, Languages,
and Automata

Reversible Programs Have Reversible Semantics. 413
Robert Glück, Robin Kaarsgaard, and Tetsuo Yokoyama

Two-Way Quantum and Classical Automata with Advice for Online
Minimization Problems . 428

Kamil Khadiev and Aliya Khadieva

Quotients and Atoms of Reversible Languages . 443
Hellis Tamm

SASB 2019 - 10th International Workshop on Static Analysis
and Systems Biology

Bayesian Verification of Chemical Reaction Networks. 461
Gareth W. Molyneux, Viraj B. Wijesuriya, and Alessandro Abate

Nested Event Representation for Automated Assembly of Cell Signaling
Network Models . 480

Evan W. Becker, Kara N. Bocan, and Natasa Miskov-Zivanov

TAPAS 2019 - 10th Workshop on Tools for Automatic
Program Analysis

PrideMM: Second Order Model Checking for Memory
Consistency Models . 507

Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore,
and Mikoláš Janota

Contents – Part II xiii

Fkcc: The Farkas Calculator . 526
Christophe Alias

Handling Heap Data Structures in Backward Symbolic Execution 537
Robert Husák, Jan Kofroň, and Filip Zavoral

AUTHCHECK: Program-State Analysis for Access-Control Vulnerabilities 557
Goran Piskachev, Tobias Petrasch, Johannes Späth, and Eric Bodden

Author Index . 573

xiv Contents – Part II

Contents – Part I

AFFORD 2019 - 3rd Workshop on Practical Formal Verification
for Software Dependability

Experiences with Streamlining Formal Methods Tools 5
Paolo Masci

The Bourgeois Gentleman, Engineering and Formal Methods 12
Thierry Lecomte

SEB-CG: Code Generation Tool with Algorithmic Refinement Support
for Event-B . 19

Mohammadsadegh Dalvandi, Michael Butler,
and Asieh Salehi Fathabadi

Compiling C and C++ Programs for Dynamic White-Box Analysis 30
Zuzana Baranová and Petr Ročkai

Model Checking in a Development Workflow: A Study on a Concurrent
C++ Hash Table . 46

Petr Ročkai

Addressing Usability in a Formal Development Environment 61
Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene,
and Patrizia Scandurra

Formal Modelling and Verification as Rigorous Review Technology:
An Inspiration from INSPEX . 77

Richard Banach, Joseph Razavi, Olivier Debicki, and Suzanne Lesecq

DataMod 2019 - 8th International Symposium From Data
to Models and Back

Validation of a Simulation Algorithm for Safety-Critical
Human Multitasking . 99

Giovanna Broccia, Paolo Milazzo, Cristina Belviso,
and Carmen Berrocal Montiel

An Ontology-Based Approach to Support Formal Verification
of Concurrent Systems. 114

Natalia Garanina, Igor Anureev, Elena Sidorova, Dmitry Koznov,
Vladimir Zyubin, and Sergei Gorlatch

How to Look Next? A Data-Driven Approach for Scanpath Prediction 131
Giuseppe Boccignone, Vittorio Cuculo, and Alessandro D’Amelio

“Know Thyself” How Personal Music Tastes Shape the Last.Fm Online
Social Network . 146

Riccardo Guidotti and Giulio Rossetti

Gender Recognition in the Wild with Small Sample Size - A Dictionary
Learning Approach . 162

Alessandro D’Amelio, Vittorio Cuculo, and Sathya Bursic

An Instrumented Mobile Language Learning Application for the Analysis
of Usability and Learning. 170

Aigerim Aibassova, Antonio Cerone, and Mukhtar Tashkenbayev

Analysis and Visualization of Performance Indicators in University
Admission Tests . 186

Michela Natilli, Daniele Fadda, Salvatore Rinzivillo, Dino Pedreschi,
and Federica Licari

Anomaly Detection from Log Files Using Unsupervised Deep Learning 200
Sathya Bursic, Vittorio Cuculo, and Alessandro D’Amelio

FMAS 2019 - 1st Formal Methods for Autonomous Systems Workshop

Formalisation and Implementation of Road Junction Rules
on an Autonomous Vehicle Modelled as an Agent 217

Gleifer Vaz Alves, Louise Dennis, and Michael Fisher

CriSGen: Constraint-Based Generation of Critical Scenarios
for Autonomous Vehicles. 233

Andreas Nonnengart, Matthias Klusch, and Christian Müller

Verification of Fair Controllers for Urban Traffic Manoeuvres
at Intersections . 249

Christopher Bischopink and Maike Schwammberger

Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs. 265
Keith Clark, Brijesh Dongol, and Peter Robinson

A Mission Definition, Verification and Validation Architecture 281
Louis Viard, Laurent Ciarletta, and Pierre-Etienne Moreau

FMBC 2019 - 1st Workshop on Formal Methods for Blockchains

Smart Contracts: Application Scenarios for Deductive
Program Verification . 293

Bernhard Beckert, Jonas Schiffl, and Mattias Ulbrich

xvi Contents – Part I

Deductive Proof of Industrial Smart Contracts Using Why3 299
Zeinab Nehaï and François Bobot

Verifying Smart Contracts with Cubicle . 312
Sylvain Conchon, Alexandrina Korneva, and Fatiha Zaïdi

Call Me Back, I Have a Type Invariant . 325
M. Anthony Aiello, Johannes Kanig, and Taro Kurita

Statistical Model Checking of RANDAO’s Resilience to Pre-computed
Reveal Strategies. 337

Musab A. Alturki and Grigore Roşu

A Distributed Blockchain Model of Selfish Mining 350
Dennis Eijkel and Ansgar Fehnker

Towards a Verified Model of the Algorand Consensus Protocol in Coq 362
Musab A. Alturki, Jing Chen, Victor Luchangco, Brandon Moore,
Karl Palmskog, Lucas Peña, and Grigore Roşu

Mi-Cho-Coq, a Framework for Certifying Tezos Smart Contracts 368
Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin,
and Julien Tesson

Smart Contract Interactions in Coq . 380
Jakob Botsch Nielsen and Bas Spitters

Formal Specification of a Security Framework for Smart Contracts 392
Mikhail Mandrykin, Jake O’Shannessy, Jacob Payne,
and Ilya Shchepetkov

FMIS 2019 - 8th Formal Methods for Interactive Systems Workshop

Examples of the Application of Formal Methods to Interactive Systems. 409
Michael D. Harrison

Modelling Human Reasoning in Practical Behavioural Contexts Using
Real-Time Maude . 424

Antonio Cerone and Peter Csaba Ölveczky

A Survey of Papers from Formal Methods for Interactive
Systems (FMIS) Workshops . 443

Pascal Béger, Sebastien Leriche, and Daniel Prun

Formal Modelling of Safety-Critical Interactive Devices Using Coloured
Petri Nets. 465

Sapna Jaidka, Steve Reeves, and Judy Bowen

Contents – Part I xvii

Model-Based Testing of Post-WIMP Interactions Using Object Oriented
Petri-Nets. 486

Alexandre Canny, David Navarre, José Creissac Campos,
and Philippe Palanque

Fortune Nets for Fortunettes: Formal, Petri Nets-Based, Engineering
of Feedforward for GUI Widgets . 503

David Navarre, Philippe Palanque, Sven Coppers, Kris Luyten,
and Davy Vanacken

Author Index . 521

xviii Contents – Part I

HFM 2019 - History of Formal
Methods Workshop

HFM 2019 Organizers’ Message

This collection of papers is the result of a workshop held on 11th October 2019, as part
of the FM’19 conference, in Porto, Portugal. The workshop was on the history of
formal methods: mathematical or logical techniques for modelling, specifying, and
reasoning about aspects of computing. The aim was to bring together historians of
computing, technology, and science with practitioners in the field of formal methods to
reflect on the discipline’s history. It was the first workshop to bear this name and
represented an early attempt to turn the eye of history towards formal methods
specifically. The conference web pages can be found at https://sites.google.com/view/
hfm2019/ where they will hopefully remain long after the site becomes a historical
artefact itself. Here, the pre-conference abstracts can be seen, as well as the slides for
each talk.

My own involvement in the workshop came through a rather roundabout route.
José Oliveira, the FM’19 chair, got in touch with my PhD supervisor Cliff Jones to ask
him if he wanted to chair a workshop on the history of formal methods at the upcoming
conference. Cliff said “No, but you could ask Brian Randell.” Brian said “Yes, but only
if I have a junior partner (to do most of the work)!” At that time I was just wrapping up
work on my thesis, on the history of formal semantics, and jumped at the chance to get
involved with organising something so relevant to my research interests. Now, a year
and a half later, the last efforts have finally made it over the finish line, and the
proceedings are complete. It has taken rather a lot of energy and work to get here, but
Brian and I—and indeed everyone involved—are very proud of what we all managed
to achieve.

There is a long history of mathematical (as well as scientific and engineering)
influence on computing, especially due to the large number of trained mathematicians
working with the early electronic computers. This is one reason for a community
concerned with mathematising aspects of computing: mathematicians brought the tools
and agendas of mathematics with them and developed a number of theories of com-
putation. At the same time, growing concerns amongst programmers about the diffi-
culty of determining the correctness of programs, especially as programs took on a
more central and vital role in human society, led to the ‘Software Crisis’ of the late
1960s. Part of the response to that was the development of specialised tools and
approaches for designing, specifying, and reasoning about, programs. Many of these
concepts and ideas evolved over the years into what are now called ‘formal methods’—
the term often connoting a desire to find tools for practical problems that apply and use
theoretical notions. Research on formal methods has been instrumental in developing
fundamental understanding of computation and providing techniques for rigorous
development of software, but has not always had the impact on practical and industrial
computing that FM proponents might have desired1.

1 This topic was explored in more detail in a reflective session at the end of the workshop,
reported on in ‘What have formal methods ever done for us? An audience discussion’, found in
this volume.

https://sites.google.com/view/hfm2019/
https://sites.google.com/view/hfm2019/

The workshop was aimed at being accessible to people without any historical
background. It attracted a wide audience, including a great many current researchers in
formal methods. The workshop and the papers resulting contained herein are a valuable
source for further analysis and synthesis by historians of science whose work covers
formal aspects of computing. One particularly important source is the collection of
IFIP WG 2.1 papers, held in the Braga District Archive—the curation of which is
discussed in ‘From Manuscripts to Programming Languages’ by Vidal, Meneses, and
Sousa. They are also of great use to current researchers: we firmly believe under-
standing the history of the field brings greater clarity to technical research. The
workshop saw efforts from early stage researchers trying their hand at historical
reflection and building an idea of the field’s grounding (see, for example, the talk ‘The
History and Evolution of B and Event-B’ by Krings et al.); contributions from histo-
rians of computing which provided context and background to formal methods (see
‘Flow Diagrams, Assertions, and Formal Methods’ by Priestley); and most of all
reflections from researchers who have worked in formal methods considering their own
contributions and those of their colleagues (for example ‘Specification with Class’ by
Duke and Smith, and ‘Formal Specifications and Software Testing, a Fruitful Con-
vergence’ by Gaudel).

What follows is a selection of papers resulting from work presented at the work-
shop, as well as extended abstracts representing the talks which were not able, for
various reasons, to result in full papers in this volume.

February 2020 Troy Kaighin Astarte

Organization

General Chair

Troy Kaighin Astarte Newcastle University, UK

Program Committee Chairs

Troy Kaighin Astarte Newcastle University, UK
Brian Randell Newcastle University, UK

Program Committee

Gerard Alberts University of Amsterdam, The Netherlands
Dan Berry University of Waterloo, Canada

HFM 2019 Organizers’ Message 3

Jonathan Bowen London South Bank University, UK,
& Southwest University, China

Liesbeth De Mol Université de Lille, France
Helena Durnová Masaryk University, Czechia
Cliff Jones Newcastle University, UK
Matt Luckuck University of Liverpool, UK
Simone Martini Università di Bologna, Italy
Elisabetta Mori Middlesex University London, UK
Peter Mosses Delft University of Technology,

The Netherlands
Olaf Owe University of Oslo, Norway
Tomas Petricek University of Cambridge, UK
Davide Sangiorgi University of Bologna, Italy
John Tucker Swansea University, UK
Jim Woodcock University of York, UK
Jeffrey Yost University of Minnesota, USA

Additional Reviewers

Jeremy Gibbons
Adrian Johnstone
Philipp Körner
Sebastian Krings

Sponsor

Sponsored by the Commission
for the History and Philosophy of Computing,
http://www.hapoc.org.

4 HFM 2019 Organizers’ Message

http://www.hapoc.org

Extended Abstract

The Prehistory and History of RE (+ SE)
as Seen by Me: How My Interest in FMs

Helped to Move Me to RE and to Teach Me
Fundamental Impediments to Using FMs

in SW Systems Development

Daniel Berry

Cheriton School of Computer Science, University of Waterloo, Waterloo, ON,
N2L 3G1 Canada

dberry@uwaterloo.ca

Abstract. This talk builds on Berry’s personal professional history as it attempts
to explain why formal methods are not being used to develop large-scale
software-intensive computer-based systems by appealing to the Reference
Model for Requirements and Specifications by Gunter, Gunter, Jackson, and
Zave.

Keywords: Formal methods • Requirements engineering •
Requirements engineering reference model • Software development

Extended Abstract

Berry very briefly weaves the twin peaks of (1) his life with interests in computing,
programming, programming languages, software engineering, formal methods, elec-
tronic publishing, and requirements engineering with (2) the almost concurrent
development of the fields of Programming Languages (PLs), Software Engineering
(SE), and Requirements Engineering (RE).

He then describes his participation in the field of Formal Methods (FMs), how it
stimulated his eventual move to RE at the same time he was becoming more and more
disillusioned about the usefulness and effectiveness of formal methods.

What he learned while doing RE research, in particular, the RE reference model [2],
allows him to understand and explain why formal methods cannot be as effective as
formal methodologists had hoped. His own work on the importance of ignorance in RE
[1, 3] suggests that what does help is the presence of formal methodologists in a
software development project.

Berry’s slides, both those actually covered in the regular one-half-hour slot
(0_5hrHyperTrimmedHistoryOfMe_SE_FMs_RE_focusFMs.pdf) and a two-hour
version (2hrHistoryOfMe_SE_FMs_RE_focusFMs.pdf), and other materials can be
found at https://cs.uwaterloo.ca/*dberry/FTP_SITE/lecture.slides/HistoryOfMe_SE_
FMs_RE/. Attached to the end of the two-hour version is a complete bibliography

https://cs.uwaterloo.ca/~dberry/FTP_SITE/lecture.slides/HistoryOfMe_SE_FMs_RE/
https://cs.uwaterloo.ca/~dberry/FTP_SITE/lecture.slides/HistoryOfMe_SE_FMs_RE/

listing the sources of the claims made in the slides; citations to these sources have been
added in blue to the relevant slides in this version.

Acknowledgments. Daniel Berry’sworkwas supported in part by aCanadianNSERC
grant NSERC-RGPIN227055-15.

References

1. Berry, D.M.: The importance of ignorance in requirements engineering. J. Syst. Softw. 28
(1995)

2. Gunter, C.A., Gunter, E.L., Jackson, M.A., Zave, P.: A reference model for requirements and
specifications. IEEE Softw. 17(3), 37–43 (2000)

3. Niknafs, A., Berry, D.M.: The impact of domain knowledge on the effectiveness of
requirements engineering activities. Empirical Softw. Eng. 22(4), 2001–2049 (2017). https://
rdcu.be/6gYF

The Prehistory and History of RE (+ SE) 7

https://rdcu.be/6gYF
https://rdcu.be/6gYF

Babbage’s Mechanical Notation

Adrian Johnstone and Elizabeth Scott

Royal Holloway, University of London
A.Johnstone@rhul.ac.uk

Extended Abstract

Charles Babbage (1791–1871) was Lucasian Professor of mathematics in Cambridge
from 1828–1839. He displayed a fertile curiosity that led him to study many con-
temporary processes and problems in a way which emphasised an analytic, data driven
view of life. In popular culture Babbage has been celebrated as an anachronistic
Victorian engineer. In reality, Babbage is best understood as a figure rooted in the
enlightenment, who had substantially completed his core investigations into ‘mecha-
nisation of thought’ by the mid 1830s: he is thus an anachronistic Georgian: the
construction of his first difference engine design is contemporary with the earliest
public railways in Britain.

A fundamental question that must strike anybody who examines Babbage’s pre-
cocious designs is: how could one individual working alone have synthesised a
workable computer design, designing an object whose complexity of behaviour so far
exceeded that of contemporary machines that it would not be matched for over a
hundred years?

We shall explore the extent to which the answer lies in the techniques Babbage
developed to reason about complex systems. His Notation which shows the geometry,
timing, causal chains and the abstract components of his machines, has a direct parallel
in the Hardware Description Languages developed since 1975 to aid the design of large
scale electronics. These modern languages typically have a geometry facet in which the
arrangement of electronic components in space is specified; a register transfer facet
which emphasises the interconnection of functional units and registers; and a beha-
vioural facet which describes sequences as state machines or in software-like notations.
The interlaced facets present different abstractions to the design engineer: the separa-
tion of concerns underpins our ability to design complex systems. Babbage’s notation
has a ‘trains’ facet which captures the chain of cause and effect within a system, a
timing facet which displays state and a zforms’ facet which shows geometry.

In this presentation, we shall provide a basic tutorial on Babbage’s notation
showing how his concepts of ‘pieces’ and ‘working points’ effectively build a graph in
which both parts and their interactions are represented by nodes, with edges between
part-nodes and interaction-nodes denoting ownership, and edges between interaction-
nodes denoting the transmission of forces between individual assemblies within a
machine. We shall give examples from Babbage’s Difference Engine 2 (DE2) for
which a complete set of notations was drawn in 1849, and compare them to a design of
similar complexity specified in 1987 using the Inmos HDL.

We shall show that early drafts of the DE2 notations use hierarchy to manage
complexity. We shall discuss whether Babbage’s notation is sufficiently formal and
complete to allow symbolic simulation of a system such as DE2. We shall conclude by
examining the role of abstraction in Babbage’s design process, with special reference to
Reuleaux’s 1876 criticism of Babbage’s notation that “It is at once evident, however,
that under this system mechanisms of completely different constructions might be
represented by one and the same set of symbols” [1].

Reference

1. Reuleaux, F.: Kinematics of Machinery. London: Macmillan and Co. (1876)

Babbage’s Mechanical Notation 9

The History and Evolution of B and Event-B

Philipp Körner1 , Sebastian Krings1 , Michael Butler2 ,
Thierry Lecomte3, Michael Leuschel1 , Luis-Fernando Mejia4,

and Laurent Voisin5

1 Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1, D-40225,
Düsseldorf, Germany

{rp.koerner,sebastian.krings,leuschel}@hhu.de
2 University of Southampton, University Road, Southampton, SO17 1BJ, UK

mjb@ecs.soton.ac.uk
3 CLEARSY, 320 avenue Archimède, 13100, Aix en Provence, France

thierry.lecomte@clearsy.com
4 Alstom Transportation Systems, 48 rue Albert Dhalenne, 93400, Saint-Ouen,

France
luis-fernando.mejia@alstomgroup.com

5 Systerel, 1090 rue René Descartes, 13100, Aix-en-Provence, France
laurent.voisin@systerel.fr

Extended Abstract

The B method for software and systems development together with the specification
language B and its successor Event-B offer a rich history. Method, language and tools
have been influenced by research stemming from other communities, but also have
driven research in formal methods themselves. At the same time, the B method has
been successfully used in industry, in particular in the railway domain.

B has originally been developed as a successor to Z by Jean-Raymond Abrial in the
1990s, focusing on two key concepts: using refinement to gradually develop models
and tool support for proof and model checking. At the time of writing, three classes of
industrial applications of B have been established, which evolved from the original
ideas:

• B for software (classical B) [4]: refine specifications until B0, a low-level subset of
B, is reached and apply code generators

• B for system modelling (Event-B) [5]: verify critical properties, understand why a
system is correct

• B for data validation: express properties in B and check data (possibly using a
second tool-chain)

In our talk, we will first give a primer on B and Event-B, introducing the main
language features and how they are used. Afterwards, we will describe the history of B,
starting with B’s genesis as a tool for software validation [2, 3, 11], discussing
industrial applications of B in projects such as train speed control [10] and signalling
[13] and other projects with RATP and SNCF performed by Alstom, Line 14 (Meteor)
[14] or Canarsie [15].

http://orcid.org/0000-0001-7256-9260
http://orcid.org/0000-0001-6712-9798
http://orcid.org/0000-0001-4642-5373
http://orcid.org/0000-0001-4595-1518
http://orcid.org/0000-0002-2426-0101

Following, we will focus on the evolution of B into Event-B and from software to
systems modelling, again focusing on industrial applications such as the flushing line
NY [23], OCTYS [12], GIK/Railground [9], the HL3 standard [16] and cooperations
with Peugeot. Additionally, we will discuss ventures of using B in other domains such
as smart cards [8, 17].

The latest language evolution, B for data validation, will again highlight B’s
prevalence in the railway domain, discussing its use for Paris Line 1 [22] and the
(subway) trains in Barcelona, Amsterdam, Calcutta, Cairo, Singapore and many more
locations.

Additionally, we will briefly present other data validation projects and how they
influenced language and tool evolution, e.g., projects by RATP using Ovado with
predicateB as first and PROB as secondary tool chain [1, 7] and projects by Alstom
using B for their URBALIS 400 CBTC system in 2014 using a tool based on ProB
called DTVT developed by CLEARSY for various lines, e.g., in Mexico, Toronto, São
Paulo and Panama [18]. While discussing B for data validation, we will also take a
brief glance at minor language evolutions, where some parties extended the B language
in order to increase usability and flexibility.

Language evolution aside, we want to discuss tool evolution in the B ecosystem.
Both B and Event-B are supported by a range of tools, from provers to animators to
model checkers. We want to give an overview over the B-method tools currently in use
and their development and history, such as the B-Toolkit [19, 24], Atelier-B [11], PROB
[20, 21] as well as to Rodin [6]. As not all tools are still available, we will also
honorably mention the ones that disappeared or never really appeared.

In addition to industrial success stories, the academic reception of the B-method
and its tools is notable as well and will be a distinct part of the talk. Starting with the B
User Workshop, to the ZB conference and further to the ABZ conference series, which
brings together researchers working on different specification languages.

Switching from history and evolution to outlook, we want to discuss new language
features such as extensions and customisations on top of classical B and Event-B as
understood by Rodin or PROB. Furthermore, we intend to discuss new areas of
application both for B as a language as well as for the B-method tools.

Acknowledgments. Wewould like to express our gratitude to Jean-RaymondAbrial,
who provided us with sources, discussions, insider information and knowledge from
his personal experiences developing B and Event-B.

References

1. Abo, R., Voisin, L.: Formal implementation of data validation for railway safetyrelated
systems with OVADO. In: Proceedings SEFM 2013. LNCS, vol. 8368, pp.221–236.
Springer (2014)

2. Abrial, J.R.: The b tool (abstract). In: Bloomfield, R.E., Marshall, L.S., Jones, R.B. (eds.).
Proceedings VDM. pp. 86–87. Springer (1988)

The History and Evolution of B and Event-B 11

3. Abrial, J.R., Lee, M.K.O., Neilson, D.S., Scharbach, P.N., Sørensen, I.H.: The bmethod. In:
Prehn, S., Toetenel, H. (eds.). Proceedings VDM. pp. 398–405. Springer (1991)

4. Abrial, J.R.: The B-Book. Cambridge University Press (1996)
5. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge,

University Press (2010)
6. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An Open Extensible Tool Environment

for Event-B. In: Proceedings ICFEM. LNCS, vol. 4260, pp. 588–605. Springer (2006)
7. Badeau, F., Doche-Petit, M.: Formal data validation with Event-B. CoRR abs/1210.7039,

proceedings of DS-Event-B 2012, Kyoto (2012)
8. Benveniste, M.: On Using B in the Design of Secure Micro-controllers: An Experience

Report. ENTCS 280, 3–22 (2011)
9. Butler, M.J., Dghaym, D., Fischer, T., Hoang, T.S., Reichl, K., Snook, C.F., Tummelt-

shammer, P.: Formal Modelling Techniques for Efficient Development of Railway Control
Products. In: Proceedings RSSRail. LNCS, vol. 10598, pp. 71–86. Springer (2017)

10. Carnot, M., DaSilva, C., Dehbonei, B., Mejia, F.: Error-free software development for
critical systems using the B-Methodology. In: Proceedings ISSRE. pp. 274–281. IEEE
(1992)

11. ClearSy: Atelier B, User and Reference Manuals. Aix-en-Provence, France (2009). http://
www.atelierb.eu/

12. Comptier, M., Déeharbe, D., Perez, J.M., Mussat, L., Thibaut, P., Sabatier, D.: Safety
Analysis of a CBTC System: A Rigorous Approach with Event-B. In: Proceedings, RSSRail.
LNCS, vol. 10598, pp. 148–159. Springer (2017)

13. Dehbonei, B., Mejia, F.: Formal methods in the railways signalling industry. In: Proceed-
ings FME. LNCS, vol. 873, pp. 26–34. Springer (1994)

14. Dollé, D., Essamé, D., Falampin, J.: B dans le transport ferroviaire. L’expérience de Siemens
Transportation Systems. Technique et Science Informatiques 22(1), 11–32 (2003)

15. Essamé, D., Dollé, D.: B in Large-Scale Projects: The Canarsie Line CBTC Experience. In:
Proceedings B. LNCS, vol. 4355, pp. 252–254. Springer (2007)

16. Hansen, D., et al.: Using a Formal B Model at Runtime in a Demonstration of the ETCS
Hybrid Level 3 Concept with Real Trains. In: Proceedings ABZ. LNCS, vol. 10817,
pp. 292–306. Springer (2018)

17. Lanet, J.L.: The use of B for Smart Card. In: Proceedings FDL (2002)
18. Lecomte, T., Burdy, L., Leuschel, M.: Formally Checking Large Data Sets in the Railways.

CoRR abs/1210.6815, proceedings of DS-Event-B 2012, Kyoto (2012)
19. Lee, M., Sørensen, I.H.: B-tool. In: Proceedings VDM. LNCS, vol. 551, pp. 695–696.

Springer (1991)
20. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From Animation to Data

Validation: The ProB Constraint Solver 10 Years On. In: Formal Methods Applied to
Complex Systems: Implementation of the B Method, chap. 14, pp. 427–446. Wiley ISTE
(2014)

21. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. STTT 10
(2), 185–203 (2008)

22. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated Property Verification for Large
Scale B Models. In: Proceedings FM. LNCS, vol. 5850, pp. 708–723. Springer (2009)

23. Sabatier, D.: Using Formal Proof and B Method at System Level for Industrial Projects. In:
Proceedings RSSRail. LNCS, vol. 9707, pp. 20–31. Springer (2016)

24. Sorensen, I., Neilson, D.: B: Towards zero defect software. In: Winter, V.L., Bhattacharya,
S. (eds.) High Integrity Software, pp. 23–42. Springer (2001)

12 P. Körner et al.

http://www.atelierb.eu/
http://www.atelierb.eu/

History of Abstract Interpretation

Roberto Giacobazzi1 and Francesco Ranzato2

1University of Verona, Italy
roberto.giacobazzi@univr.it

2University of Padova, Italy

Extended Abstract

We trace the roots of abstract interpretation and its role as a fundamental theoretical
framework to understand and design program analysis and program verification
methods. Starting from the historical roots of program verification and formal methods,
from A.M. Turing to C.A.R. Hoare, we show how abstract interpretation fits this
mainstream in perfect continuity and how this theory shaped the literature and the
practice in program analysis in the last 40 years, providing powerful methodologies for
designing static program analyzers, automatic verifiers of software/hardware systems,
type systems, security protocol analyzers, analyzers of machine learning models,
algorithms for formal languages.

We also trace the beginning of the industrialization of abstract interpretation from
the very first systematic use in verification of embedded systems to the nowadays
widespread use in high-end static program analysers. Noteworthy examples include:
(1) Polyspace is a static analyzer for C/C++/Ada programs, fully conceived and
designed by abstract interpretation and successfully commercialized by MathWorks,
USA; (2) Astrée is a C static analyzer, envisaged and designed from scratch by Patrick
and Radhia Cousot’s research group on abstract interpretation at École Normale
Supérieure Paris, marketed by AbsInt GmbH, Germany, and used in the
defense/aerospace (Airbus, Honda), electronic (Siemens), and automotive industries
(Daimler); (3) Infer and Zoncolan are static analysis tools developed by Facebook;
Infer detects memory safety and concurrency bugs in Java/C/C++/Objective-C code,
Zoncolan finds security and privacy violations in Facebook’s Hack codebase; both
Infer and Zoncolan are firmly based on abstract interpretation and routinely used by
Facebook software engineers.

The top five most cited articles at the ACM Symposium on Principles of Pro-
gramming Languages (POPL, the top-tier and oldest conference in programming lan-
guages) include three articles on abstract interpretation, in particular the most cited
article, which according to Google scholar has more than 7500 citations. We survey the
birth and evolution of abstract interpretation starting from the celebrated Cousot and
Cousot’s POPL77 paper and landing, through a 40+ years journey, to the current state-
of-the-art of this research discipline. We also give some personal hints on the main
future challenges faced by abstract interpretation research.

Flow Diagrams, Assertions, and Formal
Methods

Mark Priestley(B)

The National Museum of Computing, Bletchley Park, UK
m.priestley@gmail.com

Abstract. This paper examines the early history of the flow diagram
notation developed by Herman Goldstine and John von Neumann in the
mid-1940s. It emphasizes the motivation for the notation’s mathematical
aspects and the provision made for formally checking the consistency of
diagrams. Goldstine and von Neumann’s introduction of assertion boxes
is considered in detail. The practical use of flow diagrams is considered
briefly, and the paper then reads Turing’s 1949 essay on “Checking a
large routine” in the light of his likely knowledge of the Goldstine/von
Neumann notation. In particular, his different use of the term “assertion”
is considered, and related to the earlier work.

Keywords: Flow diagrams · Assertions · Formal methods

1 Introduction

Flowcharts are one of the defining visual representations of modern computing.
Introduced in 1947 by Herman Goldstine and John von Neumann as part of a
comprehensive methodology for what they called the “planning and coding of
problems”, they were a ubiquitous aid to the development of computer programs
for at least the next two decades. A wide variety of notations was used, but
all forms of the diagrams contained boxes representing operations and decision
points, linked by directed line segments representing the flow of control [18].

Despite this ubiquity, historians have questioned the role of flowcharts.
Rather than being a significant part of the development process, they were criti-
cized as being burdensome and misleading documentation produced only at the
behest of bureaucratically-minded project managers. Ensmenger [5] describes
them as boundary objects whose value lay in their ability to mediate between
managers and developers while meaning something different to the two groups.

Given this, it comes as something of a surprise to realize that, for Goldstine
and von Neumann, flow diagrams provided not only a graphic representation of
program structure but also a sophisticated mathematical notation. They defined
a number of formal conditions, akin to what we would now call proof rules, for

I thank Troy Astarte and Brian Randell for the invitation to give the talk at the HFM
2019 workshop on which this paper is based.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 15–34, 2020.
https://doi.org/10.1007/978-3-030-54997-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_1

16 M. Priestley

demonstrating the consistency of a diagram. It is not unreasonable, if slightly
anachronistic, to describe the original diagrams not simply as a design notation
but as an early attempt to define a formal method for software development.

Computer scientist Cliff Jones [16,17] cited the 1947 diagrams as a precursor
of Alan Turing’s 1949 paper on “checking a large routine” [21,24]. Jones focused
on the term “assertion”: Turing defined a number of assertions to be checked by
the programmer, and the Goldstine/von Neumann notation included a feature
called “assertion boxes” which appeared to allow arbitrary logical formulas to
be inserted into the diagram. This appears, in turn, to look forward to the work
of Robert Floyd in the mid-1960s: in a paper widely regarded as a milestone
in the development of formal methods, Floyd attached propositions to the line
segments in flowcharts to provide a basis for constructing formal proofs about
the correctness of the program represented by the diagram [6].

This gap of almost 20 years should make us pause and wonder whether the
resemblance between early and later work is simply a superficial similarity, or
whether there are deeper and more meaningful connections. This paper focuses
on the development of the Goldstine/von Neumann notation and examines the
motivation for its development and the problems it was supposed to solve. The
notation is then used to analyze Turing’s 1949 flow diagram, highlighting the
similarities and the differences between the two approaches.

2 Block Diagrams

Von Neumann’s collaboration with Goldstine began in 1944, when the latter was
the US Army’s representative on the ENIAC project [12]. Along with ENIAC’s
designers Presper Eckert and John Mauchly, the pair worked on designs for a
successor machine, EDVAC, the first so-called “stored-program” computer. By
1946, however, the team had split up and Goldstine followed von Neumann to the
Institute for Advanced Study to work on the electronic computer project there.
Flow diagrams were first described in a 1947 project report [11], and Goldstine
later gave an outline history of their development:

In the spring of [1946] von Neumann and I evolved an exceedingly crude
sort of geometrical drawing to indicate in rough fashion the iterative nature
of an induction. At first this was intended as a sort of tentative aid to use
in programming. Then that summer I became convinced that this type of
flow diagram, as we named it, could be used as a logically complete and
precise notation for expressing a mathematical problem, and indeed that
this was essential to the task of programming. Accordingly, I developed
a first, incomplete version and began work on the paper called Planning
and Coding [. . .] Out of this was to grow not just a geometrical notation
but a carefully thought out analysis of programming as a discipline [9, pp.
266–7].

As far as the surviving evidence allows us to judge, this account is quite
accurate. A “first, incomplete” version of the notation appears in an unpub-
lished draft of the Planning and Coding reports [10]. At this stage, the notations

Flow Diagrams, Assertions, and Formal Methods 17

were called block diagrams but by the time the first report was published in
1947, significant syntactic and semantic modifications had taken place, and the
terminology had changed [11].

They were not the first graphical representations of computer programs. A
wide range of notations had been used to document ENIAC programs, including
“master programmer diagrams” [12]. Named for the machine’s high-level control
unit, these box-and-arrow diagrams represented the “steppers”, devices which
counted loop iterations and controlled the execution of straight-line blocks of
operations shown as simple boxes. The diagrams therefore presented the high-
level organization of a program, and were capable of showing complex structures
of nested loops and conditional branches.

So-called “flow sheets” had been in use since the late nineteenth century to
show the flow of materials in processes in industries such as milling [22], and in
the 1920s more general “process charts” were proposed as part of a methodology
for describing and improving industrial and commercial processes [7]. A 1947
standard [1] distinguished operation from flow process charts, the latter showing
the events affecting some material in an industrial process. Ensmenger [5] notes
that flow diagrams are sometimes said to have come to computing through this
route, thanks to von Neumann’s undergraduate studies in chemical engineering,
though similar “flow charts” had been independently used on the ENIAC project
to describe the processing of decks of punched cards [19].

However, the fact that the diagrams were originally called “block diagrams”
suggests an alternative source, namely the use of block diagrams in electronics.
These provided a high-level view of the structure of a circuit, and Goldstine
and von Neumann’s block diagrams similarly presented a high-level view of the
problem-specific organization of a computer’s memory. As there was no physical
flow of material between processes being illustrated, the use of the term “flow”
may not have immediately suggested itself (the metaphor of a “flow of control”
seems to postdate the adoption of the diagrams). The change in terminology may
reflect the evolution, described below, from a kind of memory map to a more
abstract representation of the structure of a computational process. In 1946,
Haskell Curry and Willa Wyatt [3] had drawn what they called a “flowchart” to
describe the structure of an ENIAC program, in which electronic pulses did flow
through the machine’s wires to control the order of processing, a usage which
may have helped legitimize the term “flow diagram”.

The ultimate aim of the diagrams was to effect a division of labour in the
process of preparing problems for automatic computation:

We have attempted [. . .] to standardize upon a graphical notation for a
problem in the hope that this symbolism would be sufficiently explicit to
make quite clear to a relatively unskilled operator the general outline of the
procedure. We further hope that from such a block-diagram the operator
will be able with ease to carry out a complete coding of a problem [10].

The process described in the final report was much more complex, but the
aim was the same: to bring the work to a point from which the code could

18 M. Priestley

�i � �

1
0′ −
1′ 5′ + 2(N − 1)
2′ 5′ + 2n (5′)
3′ 1
4′ 2
5′ a
6′ b
7′ x1
8′ −
· · · · · ·

5′ + 2N xN

6′ + 2N −

2

n ⇒ n − 1 �
3

x2
n + axn + b �

4

N − n − 1
< 0

� 0

�
�

��
� � �e

Fig. 1. Block diagram describing the computation of N values of a polynomial [10]. xn

is found in location 5′ + 2n and the value of x2
n + axn + b is stored in location 6′ + 2n.

be generated in a straightforward way. The reports contain a range of example
problems that are described and coded in detail with the aid of the new diagrams.

In the summer of 1945, von Neumann coded a number of problems to test the
code he was designing for the EDVAC. One of these survives, namely a routine
to merge two sequences of data [19]. Von Neumann used the familiar technique
of “definition by cases” to describe the general outline of the procedure, includ-
ing alternative courses of action. The introduction of diagrams in 1946 might
have been motivated by the belief that diagrams were intrinsically clearer than
text for complex problems or that they would be more accessible to “relatively
unskilled operators”. It may not be a coincidence that ENIAC’s first operators
recalled using the block diagrams of the machine’s electronics as a way coming
to understand it well enough to program it.

Figure 1 shows the first diagram from the draft report, a program to calculate
and store N values of the polynomial x2

n + axn + b. Each box in the diagram
represents a contiguous area of memory. Box 1 is a storage box describing the
data manipulated by the program: 0′, 1′, . . . are symbolic addresses of memory
locations whose contents are described using the mathematical vocabulary in
which the problem is stated. Boxes 2, 3, and 4 represent instructions whose
effect is specified by the expressions in the boxes. The program consists of a
simple loop controlled by what Goldstine and von Neumann referred to as the
“induction variable” n. Box 2 represents the code that increments the value of n,
box 3 represents the calculation of the polynomial’s value for the current value
of n (but doesn’t state where that value is to be stored), and the alternative
box 4 represents the test for loop termination. The initial value n = 0 must be
inferred by comparing the initial (5′) and the general (5′ + 2n) values given in
box 1 for storage location 2′. The expression n ⇒ n − 1 in box 2 denotes the
change in the value of n from one iteration to the next.

Flow Diagrams, Assertions, and Formal Methods 19

Address Order Result Comment

2.1 2′ A : 5′ + 2(n− 1) Clear A and add
2.2 4′ h A : 5′ + 2n Add to A
2.3 2′ S 2′ : 5′ + 2n Store
2.4 3.1 Sp 3.1 : (5′ + 2n) R Store address field
2.5 3.2 Sp 3.2 : (5′ + 2n) × Store address field
2.6 3.4 Sp 3.4 : (5′ + 2n) R Store address field
2.7 3′ h A : 6′ + 2n Clear A and add
2.8 3.8 Sp 3.8 : (6′ + 2n) S Store address field

3.1 5′ + 2n R R : xn Load register
3.2 5′ + 2n × A : x2

n Multiply
3.3 0′ S 0′ : x2

n Store
3.4 5′ + 2n R R : xn Load register
3.5 5′ × A : axn Multiply
3.6 0′ h A : x2

n + axn Add to A
3.7 6′ h A : x2

n + axn + b Add to A
3.8 6′ + 2n S 6′ + 2n : x2

n + axn + b Store

4.1 2′ − A : −(5′ + 2n) Clear A and subtract
4.2 1′ h A : 2N − 2− 2n Add to A
4.3 2.1 Cc N − n− 1 � 0 Conditional transfer
4.4 e C Jump to next order e

Fig. 2. Symbolic code for the polynomial program (after [10]). Three blocks of memory
contain the instructions corresponding to boxes 2, 3, and 4 in Fig. 1. The instruction
code is defined in [2]. Each order contains a memory reference (in some cases to a
location in the table itself) and a code symbol. The result column shows the effect of
transfer and arithmetic orders by giving the updated contents of the accumulator (A),
the register (R), or a particular memory location, as appropriate. “Sp” orders copy
data from the accumulator to the address field of the specified location.

Figure 2 shows the code corresponding to the operation boxes 2, 3, and
4 in Fig. 1. Von Neumann thought of computer memory as a symbolic space
consisting of addressable locations in which words were stored. Number words
held coded numbers and order words held coded instructions. Most instruc-
tions included a numeric field, the address of the memory location on which the
instruction was to operate. The purpose of executing instructions was to bring
about changes in the contents of memory, a process that von Neumann described
as a kind of substitution. Newly calculated numbers could replace the entire con-
tents of a number word or the address field within an order word. The code also
seems to allow for the substitution of entire order words, but none of Goldstine
and von Neumann’s examples use this capability, and the block and flow dia-
grams provided no way to represent its effect. This capability would prove to be
crucial in the automation of coding through such tools as assemblers but, apart
from a rather unconvincing discussion of subroutine relocatability, the Planning
and Coding reports did not cover this topic.

20 M. Priestley

A block diagram can therefore be interpreted in two very different ways. At
one level, it is an abstract map of part of a computer’s memory. Each block in
the diagram corresponds to an area of memory and the directed lines joining
them represent what Goldstine called the “itinerary” of the control organ as it
executes the program. In this respect, the diagrams are abstract representations
of machine-specific hardware, just as ENIAC’s master programmer diagrams
were. But at the same time the new diagrams aspired to be, in Goldstine’s
words, “a logically complete and precise notation for expressing a mathematical
problem”. An important theme in the evolution of the notation was trying to
find a way to reconcile these rather different aims.

3 Describing Iterative Processes

In Goldstine’s account, the use of diagrams began as an attempt to “indicate
[. . .] the iterative nature of an induction”. The most problematic aspect of this
was finding a way to describe the changing value of the inductive variable; as
this section will explain, Goldstine and von Neumann reached for the concept of
substitution to manage this relationship, but it proved less than straightforward
to devise a way to make this work.

The loop in Fig. 1 is controlled by the induction variable n. The value of
n is not explicitly stored, however, and it only appears in the definition of the
contents of location 2′, namely the address of the location storing xn. The code
in Fig. 2 corresponding to box 2, then, must first increment the value in 2′ by 2
(instructions 2.1 to 2.3), and then write this new value into the address fields of
the instructions which retrieve xn (3.1, 3.2, and 3.4) and the instruction which
stores the new value of the polynomial (3.8). So while the diagram shows a
loop controlled by a simple induction variable, the code corresponding to the
mathematical operation of incrementing that variable performs a range of quite
different tasks.

The annotations given in the code help us understand the way in which the
substitution is expressed. The variable n, where 1 ≤ n ≤ N , defines the current
iteration of the loop. At the point where the dashed line attaches the storage box
to the control flow line, then, the values held in storage correspond to the value
n − 1, as they have not yet been updated by the box 2 code. At this point, the
value in 2′ is 5′ +2(n−1), recorded as the accumulator contents after instruction
2.1. Adding 2 to this gives the required value of 5′ + 2n and the substitution
n ⇒ n − 1 describes the algebraic change.

The notation is rather unfortunate, however, in that the diagram suggests
that location 2′ holds the value 5′ + 2n at the point of attachment, i.e. before
box 2, which appears to increment the value of n. In a hand-written insertion
on the typescript, von Neumann commented as follows:

An alternative procedure would be this: Attach the storage box in its ini-
tial form, i.e. with a 5′ opposite the memory location number 2′, outside
the n-induction loop, i.e. between �i and the first � . Attach at the

Flow Diagrams, Assertions, and Formal Methods 21

�i � �

1
0′ −
1′ 5′ + 2(N − 1)
2′ 5′

3′ 1
4′ 2
5′ a
6′ b
7′ x1
8′ −
· · · · · ·

5′ + 2N xN

6′ + 2N −

1a

2′ 5′ + 2n

2

n ⇒ n − 1 �
3

x2
n + axn + b �

4

N − n − 1
< 0

� 0

�
�

��
� � �e

Fig. 3. Block diagram with distributed storage boxes

storage box’s present location, i.e. within the n-induction loop, a small
storage box which indicates only the change that takes place during the
induction: 2′ : 5′ + 2n . At present the simpler notation of the text will be
used, however there are more complicated situations (e.g. multiple induc-
tions) where only a notation of the above type is unambiguous [10].

The block diagram with these changes is shown in Fig. 3. This diagram clearly
distinguishes the initial value of 2′ from the more general value given in terms
of the inductive variable that it has while the loop is executing.

It looks as if we should be able to do more: the value stored in 2′ is changed
when n is incremented, and it is tempting to insert another storage box after
box 2 describing the updated contents of 2′ as 5′ +2(n+1). However, this would
make the diagram inconsistent: neither box 3 nor box 4 changes the value of n, so
when the loop reenters just before box 2, 2′ must still hold the value 5′+2(n+1).
But at this point, box 1a states that its value is 5′ + 2n.

The root of the problem is an ambiguity in the treatment of n. On the one
hand it is the inductive variable, recording the ordinal number of the current
loop iteration, but on the other hand, it helps define a stored quantity which is
updated at a particular point within the loop. It is therefore unclear exactly when
n is incremented, and it seems to be impossible to reconcile these two aspects
and to indicate consistently and usefully the point at which the mathematical
variable is incremented.

In the flow diagram notation, Goldstine and von Neumann addressed this
problem by making a cleaner separation between mathematics and code, and
altering and clarifying the semantics of substitution. The flow diagram in Fig. 4
shows one way of representing the polynomial program in the later notation.

22 M. Priestley

�i � �

1
0′ −
1′ 5′ + 2(N − 1)
2′ 5′

3′ 1
4′ 2
5′ a
6′ b
7′ x1
8′ −
· · · · · ·

5′ + 2N xN

6′ + 2N −

#

0 → n � �

2

2′ 5′ + 2n
6′ + 2k P (xk), for 0 < k � n

3

5′ + 2(n + 1) to 2′

P (x(n+1)) to 6′ + 2(n + 1)

�

4

2′ 5′ + 2(n + 1)
6′ + 2k P (xk), for 0 < k � n + 1

5

N − n − 1
− � �e

+

�

#

n + 1 → n

�

�

Fig. 4. Flow diagram for the polynomial calculation (P (x) = x2 + ax + b)

The boxes in the diagram now fall into two different categories. As in the
block diagrams, operation, alternative and storage boxes correspond to areas of
storage containing number or order words, as appropriate. Operation boxes now
explicitly show the memory location that a calculated value will be stored in
and alternative boxes have a new syntax. However, substitution boxes, marked
with #, no longer represent areas of storage. Thus in Fig. 4, the substitution box
containing the formula n+1 → n does not represent the coded instructions that
will increment the value of n; these are now carried out as part of box 3.

If substitution boxes no longer stand for coded words, what is their meaning?
The best way to approach this question is by considering the general conditions
that Goldstine and von Neumann defined for checking the consistency of a flow
diagram. The aim of these conditions was to show that the values recorded in
storage boxes were consistent with the operations described in the diagram.

For example, box 4 in Fig. 4 states that location 2′ holds the value 5′ +
2(n + 1). The preceding box, operation box 3, calculates that very value and
stores in it 2′, so in this respect the diagram is consistent. The general form of
a consistency condition for this situation is shown graphically on the left-hand
side of Fig. 5, and was expressed by Goldstine and von Neumann as follows
(a “constancy interval” can be taken to be a region of a diagram containing a
storage box):

The interval in question is immediately preceded by an operation box with
an expression in it that is referred “to . . . ” this field: The field contains
the expression in question . . . [11].

Flow Diagrams, Assertions, and Formal Methods 23

� f(x) to A �

A f(x)

�

A P

#

f → i �

A P ′

Fig. 5. Conditions on storage boxes preceded by operation (left) and substitution
(right) boxes. The configuration on the right must satisfy the condition P ′[f → i] = P

A similar consistency condition was given for the situation where a storage
box was immediately preceded by a substitution box. The right-hand side of
Fig. 5 shows the general case and the condition was expressed as follows:

Replace in the expression of the field every occurrence of every such i by
its f . This must produce the expression which is valid in the field of the
same storage position at the constancy interval immediately preceding this
substitution box [11].

(It is striking that Goldstine and von Neumann’s rule applies the substitution
to the expression in the storage box following the substitution, a move formally
related to the later notion of a weakest precondition).

For example, consider location 2′ in box 2 in Fig. 4. Box 2 is preceded by
the substitution 0 → n. Substituting 0 for n in the expression 5′ + 2n in box 2
gives the expression 5′ as the preceding value of 2′, as recorded in box 1. Box 2
is also preceded, along a different path in the flow diagram, by the substitution
n+ 1 → n: substituting n+ 1 for n in 5′ + 2n gives 5′ + 2(n+ 1), the expression
recorded for 2′ in storage box 4. The consistency of the diagram at this point
follows from these two observations and the following structural rule:

If the interval in question contains a merger (of several branches of the
flow diagram), so that it is immediately preceded by several boxes [. . .],
then the corresponding conditions [. . .] must hold with respect to each box
[11].

4 Assertions

The previous section showed how, by using storage boxes and substitutions,
Goldstine and von Neumann found a way of describing in mathematical terms
the step-by-step operation of computations, and in particular the behaviour of
typical iterative loops. The flow diagram notation also included assertion boxes,
however, and these have been seen as foreshadowing later uses of assertions in
formal methods [16]. To evaluate this claim, it is useful to look at the role of
assertion boxes in flow diagrams and the reasons for their introduction.

Assertion boxes were a late addition to the notation, introduced to solve a
problem that arose in describing the result of computing

√
x by the Newton-

Raphson method. In the draft report this was coded in a form which limited the

24 M. Priestley

�i � x1 = 1+a
2 to A

A x1

�
#

1 → i � �
A xi

� xi+1 = 1
2 (xi + a

xi
) to A �

A xi+1

�

xi − xi+1 − 2−19
+

�
#

i + 1 → i

�

−
�

∗
A

√
a

�e

Fig. 6. Von Neumann’s initial flow diagram for the calculation of
√
x

process to three iterations, and in early 1947 von Neumann was attempting to
develop a more general approach where the loop terminated when the difference
between two successive approximations became sufficiently small.

He initially drew a flow diagram similar to the one shown in Fig. 6 [23]. The
storage box ∗ at the end of the diagram records where the computed value of

√
a

is stored. However, Goldstine pointed out that this conflicted with the previous
storage box that gave the value stored in A as xi+1. Von Neumann then proposed
adding the substitution box shown in Fig. 7, where i0 is defined as the first value
of i for which xi−xi+1 < 2−19, giving xi0 as the desired approximation to

√
a. He

hoped that this would allow the two storage boxes in Fig. 7 to be “reconciled”,
but soon realized that this solution would not work:

I must have been feeble minded when I wrote this: i0 → i will reconcile
A

√
a with a succeeding A xi , but not with a preceding one. I.e. one

needs something new.
One might play with new entities like i → i0 , but I think that the best
modus procedendi is this:
Let us introduce a new type of box, called assertion box. It can be inserted
anywhere into the flow diagram, and it contains one or more relations of
any kind. It expresses the knowledge that whenever C gets there, those
relations are certainly valid. It calls for no operations. It reconciles a stor-
age box immediately after it with one immediately before it (and referring
to the same storage position), if the expressions in these are equal by virtue
of its relations. It is best to mark assertion boxes, say with a cross #.

�

A xi+1

xi − xi+1 − 2−19
+�

�
−

#

i0 → i

∗
A

√
a

�e

Fig. 7. Von Neumann’s “feeble-minded” attempt, using a substitution box

Flow Diagrams, Assertions, and Formal Methods 25

�

A xi+1

xi − xi+1 − 2−19
+�

�
−

#

i = i0
v = xi0+1

A v

�e �

A P

#

Φ �

A P ′

Fig. 8. The final version of the diagram with an assertion box (left-hand side). The
general configuration on the right must satisfy the condition Φ ⇒ P ′ = P .

Figure 8 shows the corresponding portion of the diagram from the published
report. The two equations in the assertion box imply that xi+1 = v and hence
reconcile the expressions defining the contents of A in the two storage boxes.
The fact that v is the required approximation to

√
a was stated in the preamble.

The formulas written in assertion boxes were not meant to be proved. They
often represent an injection of knowledge into the diagram (such as the fact that
at the end of a Newton-Raphson iteration the value computed is

√
a) or allow the

introduction of new symbols with given properties. As with substitution boxes,
their structural role in the notation is to reconcile preceding and succeeding
storage boxes, according to the general schema given in Fig. 8. Goldstine and
von Neumann expressed this condition as follows:

It must be demonstrable, that the expression of the field [i.e., A] is, by
virtue of the relations that are validated by this assertion box, equal to
the expression which is valid in the field of the same storage position at
the constancy interval immediately preceding this assertion box [11].

In some cases there was no succeeding storage box, in which case the assertion
box has a purely documentary role.

5 Flow Diagrams in Practice

It is outside the scope of this paper to analyze in detail the corpus of flow
diagrams surviving from the years following the publication of the first Planning
and Coding report. The overall picture is one of great notational diversity, united
only by the use of a directed graph to depict the “flow of control” between boxes
representing operations of various kinds. At the same time, the text in the boxes
became increasingly informal. This section briefly describes the fate of the more
formal aspects of the notation in three significant areas.

5.1 The Planning and Coding reports

The three Planning and Coding reports contain examples of the application of
flow diagrams to a variety of problems. It is striking that, despite the very general
way in which they were described, substitution and assertion boxes are sparingly
used, and for a rather limited range of purposes.

26 M. Priestley

� −|v|
+

� 20−39 · 50 to B.1 �
#

50 → n �

− � −20−39 · 50 to B.1 �
#

−50 → n �

� �

B.1 2−39n

Fig. 9. Substitution boxes uniting different values of a variable

Substitution boxes were almost exclusively used to record the changing values
of the induction variables in loops, as shown in Fig. 4. Occasionally they were
used in straight-line code to assign a new value to a variable. Figure 9 shows
an application of this where n is given different values on the two branches of a
conditional structure.

Assertion boxes were most commonly used at the end of loops. If termination
was controlled by an explicit test of the inductive variable, the assertion restated
and possibly strengthened the loop termination condition. For example, if an
alternative box terminating a loop contained the formula j − J � 0, it might be
followed by a box asserting j = J . If the test terminating a loop did not involve
the inductive variable, however, an assertion box might introduce a new variable
to denote its final value, as in Fig. 8 above.

Assertions boxes were also used with variable remote connections. In one
example, an assertion before the connector stated the conditions under which a
variable had one of three possible values, and in another case assertions stated
properties of certain variables just after a remote connection.

5.2 The Monte Carlo Flow Diagrams

The flow diagram notation was put to the test in the development of the first
program to use the Monte Carlo method, a simulation of neutron diffusion in
fissile material run on ENIAC in April and May, 1948 [12]. This project took
place in the same timeframe as, and most likely inspired, plans to use ENIAC
as an interpreter for an EDVAC-style code. Accordingly, the program design
graduated from a generic computing plan to large and complex flow diagrams
drawn using the notation of the Planning and Coding reports. Two complete
diagrams have been preserved. The first was drawn up by von Neumann himself
in the summer or early autumn of 1947, and the second dates from December of
the same year.

Von Neumann’s diagram consisted of about 70 operation boxes, 25 stor-
age boxes, 20 substitution boxes, and no assertion boxes. There were six loops,
including a nested pair of loops defining the large-scale structure of the program.
Storage boxes were not included every time a new value was stored in memory.
The program was divided into 10 sections, and storage boxes were typically,
though not exclusively, placed at the end of a section to record the location of a
significant new value calculated in that section. Many storage boxes immediately
followed an operation box assigning a value to the location of interest, perhaps

Flow Diagrams, Assertions, and Formal Methods 27

with an intervening substitution box to reconcile notation or introduce a new
variable in an obvious way. As a result, the conditions that would need to be
checked to be assured that the diagram was well adjusted were largely trivial.

Von Neumann’s original design went through an extensive series of changes,
but by December it had stabilized and was documented by Adele Goldstine in
a second complete flow diagram. This had basically the same structure as von
Neumann’s, although a couple of sections had been rewritten with alternative
algorithms. Storage boxes were used in much the same way as in von Neumann’s
diagram but notated slightly differently, while the use of substitution boxes in
the annotation of loops was rather different.

In this project, we can watch the flow diagram notation evolving in practice.
Diagrams were not fully annotated, and became increasingly informal under the
twin pressures of application to a large and complex problem and adaptation
to the needs of a variety of users. There is no evidence that the conditions for
well-adjustedness were recorded or formally checked anywhere. In most cases,
these were so trivial that this may not have been felt to be necessary.

5.3 Flow Diagrams Cross the Atlantic

Two British mathematicians were in direct contact with Goldstine and von Neu-
mann as the flow diagram notation was being developed. In January 1947, Alan
Turing represented the National Physical Laboratory at a computing symposium
at Harvard and then spent a couple of weeks with Goldstine and von Neumann.
On his return to the UK he noted that “[t]he Princeton group seems to me to
be much the most clear headed and far sighted of these American organizations,
and I shall try to keep in touch with them” [20]. There are no records of the
discussions, but it is likely that one topic would have been the approaches to
programming being considered at Princeton and the NPL.

The mathematical physicist Douglas Hartree had a long-standing interest in
computing machinery, and had visited Philadelphia in 1946 to run a problem
on ENIAC. He kept in touch with Goldstine, and was sent a copy of the first
Planning and Coding report soon after its publication. He took it on a family
holiday in the west of England, but unexpectedly good weather left him with
little time for reading, as he explained to Goldstine:

So although I was very glad to get your report with von Neumann on cod-
ing, and have looked at it rather superficially, I haven’t studied it seriously
yet. My first impression was that you had made it all seem very difficult,
and I wondered if it was really as difficult as all that?! [13].

Goldstine’s reply was rather waspish:

You suggest that possibly our report on coding seems very difficult. Of
course it is very hard for me to be objective about it, but I thought, on
the contrary, it was fairly simple. Van Wijngaarden, who is now here with
us, spent three days studying the text and was then able to code problems

28 M. Priestley

with a reasonable degree of proficiency. I hope that after you have had a
chance to look at the report in more detail you will agree with his opinion
[8].

Hartree’s reservations persisted, and he exhibited a continuing preference for
ENIAC-style notations. His 1949 book [14] on computing machines, based on
lectures given the previous year, included a single flow diagram presented in
parallel with an ENIAC master programmer diagram for the same problem. The
flow diagram incorporated a number of modifications to the Planning and Coding
notation. In a 1952 textbook [15], he even described something that looked very
similar to an ENIAC diagram as a flow diagram.

This was typical of British uses of the notation, which seemed to treat it
more as a vehicle for exploration than a finished product. At a conference in
Cambridge in 1949, five papers presented flow diagrams of one form or another,
but about all they had in common was the use of a directed graph. In particular,
the mechanism of storage boxes, substitutions, and assertions that enabled the
consistency of a diagram to be checked was almost universally ignored. The sole
exception was a paper by Turing himself on “Checking a large routine” [21,24].

6 Checking a Routine

As we have seen, Goldstine and von Neumann defined a number of conditions
that had to be checked to ensure that a diagram was consistent. They explained
the connection between the satisfaction of these conditions and the correctness
of the diagram as follows:

It is difficult to avoid errors or omissions in any but the simplest problems.
However, they should not be frequent, and will in most cases signalize
themselves by some inner maladjustment of the diagram, which becomes
obvious before the diagram is completed [11].

The worked examples in the Planning and Coding reports do not, of course,
include any maladjusted diagrams. To get a sense of what this might have meant
in practice and how the notation might have worked as a formal method, we need
to look at a different example.

Turing’s 1949 paper [21,24] included a flow diagram for computing factorials
and discussed how to reason about the correctness of the program. At first
sight, Turing’s notation is rather different from Goldstine and von Neumann’s.
Nevertheless, Turing’s diagram contains operation and alternative boxes linked
by directed line segments, and we will assume that the resulting structure has
the same meaning as in the Goldstine/von Neumann notation. For example, in
language that could almost have been copied from Planning and Coding, Turing
writes that “[e]ach ‘box’ of the flow diagram represents a straight sequence of
instructions without changes of control”.

Rather than attaching storage boxes at different points around the diagram,
Turing presented a single table whose columns were labelled with letters cross-
referencing locations on the diagram, a presentation option that had also been

Flow Diagrams, Assertions, and Formal Methods 29

�i �

A

29 n

1
r′ = 1
u′ = 1

� �

B
28 r
30 r!

�
2

v′ = u �

C

31 r!

r − n

+

�

D

31 n!

�e
�−

3

s′ = 1 � �

E
27 s
30 s · r!

�
4

u′ = u + v �

G

30 (s + 1) · r!

5

s′ = s + 1

�

F

27 s + 1

s − r

−

�

�
+

6

r′ = r + 1

�

Fig. 10. Turing’s flow diagram expressed using the notation of the Planning and Coding
report. The lettered storage boxes correspond to the sections of Turing’s storage table.
Operation boxes have been numbered for ease of reference.

described in the Planning and Coding report. The table listed the five storage
locations used by the program and described their contents using mathematical
notation. Turing also associated a unique variable with each storage location:

location 27: s – inductive variable for inner loop

28: r – inductive variable for outer loop

29: n – routine parameter

30: u – accumulates (r + 1) · r! in inner loop

31: v – stores r!

(The variables u and v do not appear in the storage table). The sections of the
storage table describe the contents of memory just before the boxes to which
their labels are attached and so can be represented as storage boxes attached to
the flow line immediately before the relevant box. Figure 10 shows a transcription
of Turing’s diagram into the Goldstine/von Neumann notation.

Turing’s most significant notational deviation was in the operation boxes.
Rather than specifying the location where a value is stored, he used primed
variable names to indicate what he described as “the value at the end of the
process represented by the box”. Box 5, for example, contains the expression
s′ = s + 1, indicating that at the end of the box the value of s has increased
by 1. Turing does not state when this value is written into the storage location
corresponding to s. However, storage box F gives the content of storage location
27 as s+ 1, implying that the memory update has taken place by the end of the
box. The contents of box 5 will therefore be translated as “s + 1 to 27” in the
Goldstine/von Neumann notation.

As well as storing the new value, Turing’s explanation suggests that the value
of the variable s has been incremented by the end of box 5. Showing the change

30 M. Priestley

�i
�

A

29 n
1
1 to 28
1 to 30

�
28 1
30 1 #

1 → r

��B
28 r
30 u = r!

�
2

v = u to 31 �

C

31 v = r!

r − n

+

�
#

r = n �

D

31 n!

�e

�−
3

1 to 27 � �
27 1

#

1 → s �

E
27 s
30 u = s · r!

�
4

u + v to 30 �

G

30 (s + 1) · r!

5

s + 1 to 27

�

F

27 s + 1

#

s + 1 → s�

27 s
30 s · r!

s − r

−

�

�
+

#

s = r�
X
27 r
30 r · r!

6

r + 1 to 28�
28 r + 1

#

r + 1 → r

�

Fig. 11. Turing’s diagram with operation boxes rewritten, variables added to storage
boxes, and substitution and assertion boxes added. The diagram is “maladjusted”, as
the substitution r + 1 → r does not reconcile location 30 in storage boxes X and B.

of value of a variable, as opposed to a storage location, is the reason Goldstine
and von Neumann introduced substitution boxes. Adding these to the diagram,
we arrive at the diagram shown in Fig. 11 as a full translation of Turing’s flow
diagram into the Goldstine/von Neumann notation.

Unfortunately, this diagram is “maladjusted”, to use von Neumann’s term.
At the end of the outer loop, the expression describing the contents of location
30 changes from r · r! to r! in the passage between storage boxes X and B.
This change should be reconciled by applying the substitution r + 1 → r to the
expression in box B: however, this gives (r + 1)!, which is not equal to the value
r · r! given in box X. Morris and Jones [17] describe this as a “discrepancy”,
commenting that “Turing chooses to regard [s′ = s + 1] as having no effect
on the values of his variables”; they correct Turing’s diagram by changing the
expression being tested at the end of the inner loop to s − 1 − r, commenting
further that Turing appears to give “no clear rule about when the addition of a
prime to a letter makes a difference”.

This interpretation differs from the natural reading of Turing’s explanation
adopted above. The root of the problem is that Turing blurred the distinction
between storage locations and mathematical variables by associating a variable
with each location. As a result, his notation leaves the temporal relationship
between updating a variable value and updating a storage location unspecified.
We can make this explicit in the Goldstine/von Neumann notation, and Fig. 12
shows an alternative way of making Turing’s diagram consistent. Interestingly,
separating the operation box that updates location 27 from the substitution

Flow Diagrams, Assertions, and Formal Methods 31

�i
�

A

29 n
1
1 to 28
1 to 30

�
28 1
30 1 #

1 → r

��B
28 r
30 u = r!

�
2

v = u to 31 �

C

31 v = r!

r − n

+

�
#

r = n �

D

31 n!

�e

�−
3

1 to 27 � �
27 1

#

1 → s �

E
27 s
30 u = s · r!

�
4

u + v to 30 �

G

30 (s + 1) · r!

5

s + 1 to 27

�

F

27 s + 1

�s − r

−�
�

#

s + 1 → s

�

+

#

s = r�
X
27 r + 1
30 (r + 1) · r! = (r + 1)!

6

r + 1 to 28�
28 r + 1

#

r + 1 → r

�

Fig. 12. A “well-adjusted” version of Turing’s flow diagram

box that updates the variable s results in a more idiomatic use of the notation,
similar in style to the examples in Planning and Coding.

Two assertion boxes have been added in Figs. 11 and 12 to make explicit all
the conditions necessary to prove the diagram’s consistency, but the identities
they state were left implicit in Turing’s diagram. Turing himself used the term
“assertion” in the following, rather different, sense:

In order to assist the checker, the programmer should make assertions
about the various states that the machine can reach.

Unlike assertion boxes, Turing’s assertions were not a notational feature. They
were written in the columns in the storage table, and their function is to explicitly
relate each storage box to its successor, giving additional information about the
conditions under which transitions occur and the values of certain variables. For
box B, for example, Turing’s assertion reads simply “to C”, and he paraphrased
the argument that the checker would make as follows:

From the flow diagram we see that after B the box v′ = u applies. From
the upper part of the column for B we have u = r!. Hence v′ = r! i.e. the
entry for v i.e. for line 31 in C should be r!. The other entries are the same
as in B.

This is similar in intent to the condition that Goldstine and von Neumann
gave for verifying the contents of storage boxes after operation boxes containing
“to” (see Fig. 5). The most striking difference is that Turing argues “forwards”
from box B to box C, while Goldstine and von Neumann’s condition for substi-
tution boxes works “backwards”, as explained above.

32 M. Priestley

Turing’s use of “assertion”, then, has nothing to do with the assertion boxes of
the Goldstine/von Neumann notation. In Turing’s usage, assertions are roughly
equivalent to the conditions, or proof obligations as we might call them, that
the flow diagram imposes on the person checking the routine. The fact that
the word “assertion” is used for both is nothing more than a coincidence. One
possible explanation for this ambiguity would be that when he wrote the 1949
paper, Turing relied solely on his memory of the discussions that took place in
Princeton in January 1947. As we have seen, assertion boxes were introduced
after this date, and if Turing had never in fact read the Planning and Coding
report, he would not have been aware of the later usage.

7 Conclusions

Flow diagrams emerged from a culture of computing that made extensive use
of graphical notations. From electronic circuit diagrams to Curry and Wyatt’s
more abstract flowchart, ENIAC was surrounded by visual representations of the
machine and the computations set up on it.

As programs were set up on ENIAC in a very immediate and physical way,
by plugging wires and setting switches, diagrams of program structure could
also be read as pictures of the machine. Less obviously, the same is true of the
diagrams introduced by Goldstine and von Neumann. EDVAC-type machines
replaced ENIAC’s physical connectivity with more transient connections made
in a large multi-purpose memory, and the boxes in a block diagram provide a map
of memory usage for a particular problem. By implication, the unmarked white
surface of the paper represents the computer’s memory, a striking image for the
logical space defined by the ambitiously large and functionally undifferentiated
storage units planned for the new machines.

Crucially, the new machines also made possible programs that modified their
own code. This was a central feature of even the elementary polynomial example
described above. Eckert and Mauchly [4] noted that diagrams had been used for
“laying out the procedure” for programs on ENIAC but, after making explicit
reference to the first Planning and Coding report, went on to comment:

The important point, however, is that [. . .] the instructions may themselves
be altered by other instructions. Therefore the particular program that is
chosen may not remain the same during successive traverses of it. Because
of this feature, it becomes increasingly difficult to follow the course of more
complicated problems unless some systematic procedure is adopted. The
flow chart just referred to is the basis for such a procedure.

Flow diagrams, in other words, were a direct response to a new generation of
computers with a distinctive architecture demanding a new approach to program
planning. The development of the notation was driven by the specific challenge of
adequately describing the behaviour of a simple loop controlled by an inductive
variable. Simple counted loops could be modelled perfectly well with existing
notations, such as the ENIAC’s master programmer diagrams, but even in the

Flow Diagrams, Assertions, and Formal Methods 33

polynomial example, the inductive variable n does not just count loop iterations
but is involved in updating the address field of a coded instruction in order to
specify where the next function value will be stored.

In order to describe this situation precisely, Goldstine and von Neumann
developed a formidable formal notation which described a computation on both
physical and symbolic levels and provided a way to check the consistency of
diagrams. It is striking, then, that users of the notation, themselves included,
made little use of its full capabilities. It was either ignored, simplified, or heavily
modified for use in particular circumstances. The most faithful user, Turing,
applied it not in practical program development but in a conference paper which
emphasized precisely its capabilities for checking correctness.

It is beyond the scope of this paper to consider in detail the relationship
between the work described here and Floyd’s 1967 paper [6]. Floyd, apparently
unaware of the earlier work, described an “interpretation” of a flowchart as the
association of a proposition with each of its edges. Syntactically, this could be
achieved in the Goldstine/von Neumann notation by placing the proposition in
an assertion box at the appropriate point in the diagram, though the pragmatics
of the two notations are rather different. Floyd intended to give a “semantic
definition” of the notation rather than a practical tool for program development,
though his definitions would enable proofs of properties of flowcharts to be given.
The relationship between such proofs and the consistency conditions put forward
in the Planning and Coding report remains a topic for future research.

The reasons for the lack of uptake of the formal aspects of the original flow
diagram notation remain underexplored. The earliest application of the notation,
the evolution of the diagrams for the Monte Carlo program from von Neumann’s
original diagram to the final, less formal version, provides a good case study. This
passage of work is characterized by the fact that a wide range of people with
different skills, interests, and responsibilities became involved with the project.
The second diagram was drawn by Adele Goldstine and the code produced and
later maintained by Klara von Neumann. Neither had a background or training in
logic, and the program used address modification only to control the return from
a subroutine [12]. In these circumstances, the formal aspects of flow diagrams
may have seemed an overhead that added little to solving the problem at hand
or, more importantly perhaps, to the stated aim of enabling operators to produce
code from the diagrams.

References

1. ASME Standard: Operation and flow process charts. American Society of Mechan-
ical Engineers (1947)

2. Burks, A.W., Goldstine, H.H., von Neumann, J.: Preliminary discussion of the
logical design of an electronic computing instrument. The Institute for Advanced
Study, 28 June 1946

3. Curry, H.B., Wyatt, W.A.: A study of inverse interpolation of the Eniac. Ballistic
Research Laboratories Report No. 615. Aberdeen Proving Ground, MD (1946)

34 M. Priestley

4. Eckert, J.P., Mauchly, J.: First draft report on the UNIVAC. Electronic Control
Company, Philadelphia, PA. Herman Goldstine papers, Hampshire College, box 3
(1947)

5. Ensmenger, N.: The multiple meanings of a flowchart. Inf. Cult. 51(3), 321–351
(2016)

6. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathemat-
ical Aspects of Computer Science. Proceedings of Symposia in Applied Mathemat-
ics, vol. XIX, pp. 19–32. American Mathematical Society (1967)

7. Gilbreth, F.B., Gilbreth, L.M.: Process charts. American Society of Mechanical
Engineers (1921)

8. Goldstine, H.H.: Letter to Douglas Hartree. Herman Goldstine papers, American
Philosophical Society, box 3, 16 September 1947

9. Goldstine, H.H.: The Computer from Pascal to von Neumann. Princeton University
Press, Princeton (1972)

10. Goldstine, H.H., von Neumann, J.: unpublished draft of [11]. John von Neumann
papers, Library of Congress, box 33, folder 7 (1946)

11. Goldstine, H.H., von Neumann, J.: Planning and coding problems for an electronic
computing instrument, Part II, vol. 1. The Institute for Advanced Study (1947)

12. Haigh, T., Priestley, M., Rope, C.: ENIAC in Action: Making and Remaking the
Modern Computer. MIT Press, Cambridge (2016)

13. Hartree, D.R.: Letter to Herman Goldstine. Herman Goldstine papers, American
Philosophical Society, box 3, 7 September 1947

14. Hartree, D.R.: Calculating Instruments and Machines. The University of Illinois
Press, Urbana (1949)

15. Hartree, D.R.: Numerical Analysis. Oxford University Press, Oxford (1952)
16. Jones, C.B.: The early search for tractable ways of reasoning about programs.

IEEE Ann. Hist. Comput. 25(2), 26–49 (2003)
17. Morris, F.L., Jones, C.B.: An early program proof by Alan turing. Ann. Hist.

Comput. 6(2), 139–143 (1984)
18. Morris, S.J., Gotel, O.C.Z.: Flow diagrams: rise and fall of the first software engi-

neering notation. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams
2006. LNCS (LNAI), vol. 4045, pp. 130–144. Springer, Heidelberg (2006). https://
doi.org/10.1007/11783183 17

19. Priestley, M.: Routines of Substitution: John von Neumann’s Work on Software
Development, 1945-1948. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-319-91671-2

20. Turing, A.M.: Report on visit to U.S.A., 1st–20th January 1947. Mathematics
Division [NPL], 3 February 1947

21. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, 22–25 June 1949. pp. 70–72. University Mathe-
matical Laboratory, Cambridge (1949). Reprinted in [24], pp. 3–164

22. Voller, W.R.: Modern Flour Millling, 3rd edn. D. Van Nostrand Company, New
York (1897)

23. von Neumann, J.: Letter to Herman Goldstine. Herman Goldstine papers, Ameri-
can Philosophical Society, box 20, 2 March 1947

24. Williams, M.R., Campbell-Kelly, M. (eds.): The Early British Computer Confer-
ences. Charles Babbage Institute Reprint Series for the History of Computing, vol.
14. The MIT Press, Cambridge (1989)

https://doi.org/10.1007/11783183_17
https://doi.org/10.1007/11783183_17
https://doi.org/10.1007/978-3-319-91671-2
https://doi.org/10.1007/978-3-319-91671-2

The School of Squiggol

A History of the Bird–Meertens Formalism

Jeremy Gibbons(B)

University of Oxford, Oxford, UK
Jeremy.Gibbons@cs.ox.ac.uk

Abstract. The Bird–Meertens Formalism, colloquially known as
“Squiggol”, is a calculus for program transformation by equational rea-
soning in a function style, developed by Richard Bird and Lambert
Meertens and other members of IFIP Working Group 2.1 for about
two decades from the mid 1970s. One particular characteristic of the
development of the Formalism is fluctuating emphasis on novel ‘squig-
gly’ notation: sometimes favouring notational exploration in the quest
for conciseness and precision, and sometimes reverting to simpler and
more rigid notational conventions in the interests of accessibility. This
paper explores that historical ebb and flow.

1 Introduction

In 1962, IFIP formed Working Group 2.1 to design a successor to the seminal
algorithmic language Algol 60 [4]. WG2.1 eventually produced the specification
for Algol 68 [63,64]—a sophisticated language, presented using an elaborate two-
level description notation, which received a mixed reception. WG2.1 continues to
this day; technically, it retains responsibility for the Algol languages, but practi-
cally it takes on a broader remit under the current name Algorithmic Languages
and Calculi. Over the years, the Group has been through periods of focus and
periods of diversity. But after the Algol 68 project, the period of sharpest focus
covered the two decades from the mid 1970s to the early 1990s, when what later
became known as the Bird–Meertens Formalism (BMF) drew the whole group
together again. It is the story of those years that is the subject of this paper.

BMF arose from the marriage of the work of Richard Bird (then at the Uni-
versity of Reading) in recursive programming [14,15] and of Lambert Meertens
(then at the Mathematisch Centrum in Amsterdam) in programming language
design, notably ABC [34,48].1 The motivation for the BMF is transformational
programming : developing an efficient program by starting with an obviously cor-
rect but possibly hopelessly inefficient—maybe even unexecutable—initial speci-
fication, then applying a series of meaning-preserving transformations to yield an
extensionally equivalent but acceptably efficient final program. In other words,

1 Guido van Rossum, who worked on the ABC project in Amsterdam, was mentored
by Meertens and went on to design Python [55] based on some of the ideas in ABC.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 35–53, 2020.
https://doi.org/10.1007/978-3-030-54997-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_2

36 J. Gibbons

the approach follows Christopher Strachey’s First Law of Programming: “Decide
what you want to say before you worry about how you are going to say it” [5].

The essence of the formalism is a concise functional notation. The func-
tional approach ensures referential transparency, and admits the straightforward
manipulation technique of substitution of equals by equals, as in high school alge-
bra. Concision is necessary in order to make such manipulations feasible with
just pen and paper. In particular, like APL [36], BMF embraced funny sym-
bols such as a slash for reduction (“+/” sums a sequence of numbers), arrows
for directed folds and scans (“ /→” and “//→”, now called “foldl” and “scanl”
in Haskell), and banana brackets (“([. . .])”) for homomorphisms; this tendency
led to the notation being nicknamed Squiggol. Little emphasis was placed on
executability: the notation was ‘wide-spectrum’ [7], accommodating convenient
specification notations such as inverses and intersection as well as a sublanguage
with an obvious correspondence to executable code.

The BMF research paradigm consisted of establishing a body of theorems
about recurring problem structures and corresponding solution techniques. Typ-
ical examples are fusion properties (combining two traversals over a data struc-
ture into one), scan lemmas (replacing the independent reductions of overlap-
ping parts of a data structure with a single accumulation across the whole), and
Horner’s Rule (exploiting distributivity, as for products over sums in polynomial
evaluation). These three formed the core of a beautiful derivation of a linear-
time solution to the Maximum Segment Sum problem [23], a central example in
the BMF canon. The effort culminated in Bird and de Moor’s book The Alge-
bra of Programming [10], with a collection of theorems expressed in a relational
notation providing greedy and dynamic-programming solutions to optimization
problems.

WG2.1’s passion for the approach started to fade after Bird and de Moor’s
book appeared, and the group’s focus diversified again. Partly this was due to
falling out of love with the Squiggolly notation, which may be convenient for
aficionados but excludes the unfamiliar reader; later work favours more con-
ventional syntax. It was also partly due to dissatisfaction with the relational
approach, which seems necessary for many optimization problems but is too
complicated for most readers (and even for writers!); in fact, Bird is returning in
a forthcoming book [24] to tackling many of the same ‘Algebra of Programming’
optimization problems but using a nearly completely functional approach. The
purpose of this paper is to pick out some of the lessons from this ebb and flow
of enthusiasm.2

2 From its start, my own research career has been intimately entwined with WG2.1
and the BMF, although I came somewhat late to the party. Bird supervised my
DPhil dissertation (1987–1991) [35], and Meertens was my external examiner. I have
worked on and off with Bird ever since, and most of my research has been inspired by
the BMF; I am Bird’s co-author on his forthcoming book [24]. I served as secretary of
WG2.1 for thirteen years (1996–2009), during the Chairmanships of Doug Smith and
Lambert Meertens, and then succeeded Meertens as Chair myself for the following
six years (2009–2015).

The School of Squiggol 37

2 Abstracto

The history of the development of Algol 68 has been well reported [37,38,53],
and we will not dwell on it here. After 1968, WG2.1 spent a few years making
small improvements to the language and clarifying its description, leading to the
publication of the Revised Report [64] in 1974.3 The Group then entered a brief
‘what next?’ phase, setting up a Future Work subcommittee chaired by Robert
Dewar. This subcommittee in turn organized two conferences on New Directions
in Algorithmic Languages in 1975 and 1976, with proceedings [56,57] edited by
Stephen Schuman. These conferences were public, intended to collect input from
the broader community about research topics in algorithmic languages.

After that short period of scanning the horizon, the Group decided to focus
again on specific topics. Robert Dewar, as Chair of the Future Work Subcom-
mittee, wrote a letter to members in July 1977, in advance of Meeting #23 of
the Group in Oxford in December of that year, explaining:

We have decided to break with our two year old ‘tradition’ of holding confer-
ences with invited outside participants. These conference have been helpful
in exploring ideas, but now it is time to get back to the work of our working
group and concentrate on the resources of our membership. [30]

The decision was for the Group to focus for the time being on two topics: pro-
gramming languages for beginners, and “Abstracto”. The former direction led to
Meertens’s development of ABC [34,42,43,54] and hence eventually to Python
[55]; but it is the latter that is of interest to us here.

The name Abstracto arose through a misunderstanding:

The first author [Geurts], teaching a course in programming, remarked that
he would first present an algorithm “in abstracto” (Dutch [sic] for “in the
abstract”) before developing it in Algol 60. At the end of the class, a stu-
dent expressed his desire to learn more about this Abstracto programming
language. [33]

Abstracto itself is defined in Dewar’s letter as follows:

We have taken the name to describe a programming language some of
whose features we know:
1. It is very high level, whatever that means.
2. It is suitable for expressing initial thoughts on construction of a pro-

gram.

3 It is fair to say that the Reports did not meet with universal acclaim. One reason for
the mixed reception was the use of van Wijngaarden’s two-level grammar notation for
describing the language, whereby a possibly infinite language grammar is generated
by a finite meta-grammar. The Algol 68 experience has engendered a keen interest
in notational issues within the Group ever since.

38 J. Gibbons

Fig. 1. Abstracto 84 [41]

3. It need not be (and probably is not) executable. This arises either
from efficiency considerations, or even non-effective dictions, say those
involving infinite sets.

Abstracto is not a specification language as such since it is still concerned
with how to do things and not just what is to be done, but it allows the
expression of the ‘how’ in the simplest and most abstract possible way. [30]

So Abstracto was envisioned as an algorithmic language: for describing the algo-
rithmic steps in a computation, not just the input–output relation or similar
behavioural specification. But it was still envisaged as an exploratory medium,
a pen-and-paper notation, a ‘tool of thought’, rather than primarily an imple-
mentation language.

A representative example of Abstracto is shown in Fig. 1. This is part of the
development of a ‘fast exponentiation’ algorithm: given natural numbers X and
Y , compute z = XY using only O(log2 Y) iterations. The first program shows
a ‘while’ loop, with invariant z × xy = XY , variant y , and guard y �= 0. The
second program factors out r = y mod 2, refining the nondeterminism in the
first program to a deterministic loop. Thus, Meertens’ vision for Abstracto is a
kind of refinement calculus for imperative programs, as later developed in much
greater depth by Ralph Back [1,2] and Carroll Morgan [49,50].4

4 Indeed, the loop body in the first exponentiation program is a ‘specification state-
ment’ in Morgan’s sense [49], albeit one without a frame.

The School of Squiggol 39

Although it was intended as a focus for the whole Group, the work on a
notation named Abstracto was mainly undertaken by Meertens and his group at
the Mathematisch Centrum (later CWI) in Amsterdam, and the few published
papers [33,41] are written by them. (In 1987, Meertens very helpfully collected
these papers—and other papers of his on BMF—into a reader [46] for WG2.1,
interspersed with a retrospective commentary on the background to the original
publications.)

However, other members of the Group were conducting parallel projects with
similar goals. Fritz Bauer’s group at the Technical University in Munich, includ-
ing Helmuth Partsch, Bernhard Möller, and Peter Pepper, were working on the
Computer-Aided, Intuition-Guided Programming (CIP) project [6–8], develop-
ing a wide-spectrum language to encompass both abstract specifications and
efficient implementations of programs. Jack Schwartz, Robert Dewar, and Bob
Paige at New York University designed SETL [51,58,59] as a language that
accommodated the gradual transformation of specifications using high-level set-
oriented dictions such as comprehensions into lower-level programs by instantiat-
ing abstract datatypes with concrete implementations and by applying ‘strength
reduction’ [52] to loops. These are just two of the larger projects; there were many
smaller ones as well.

3 Disillusionment and Enlightenment

For some of the subsequent meetings of the Group, members were set specific
problems to work on in advance [31], so that approaches and solutions could
be presented at the meeting—applications such as a text editor and a patient
monitoring system, and more technical problems such as string matching and
longest upsequence. Meertens observed in the introduction to the Algorithmics
paper [45] included in the Abstracto Reader [46]:

Using the framework sketched in [41], I did most of the examples from
the problem sets prepared for the Brussels meeting of WG2.1 in Decem-
ber 1979 [Meeting #26] and the meeting in Wheeling WV in August 1980
[Meeting #27]. On the whole, I was reasonably successful, but I neverthe-
less abandoned the approach. [46]

To illustrate Meertens’ disillusionment, consider the two programs shown in
Fig. 2. The problem is to find the (assumed unique) oldest inhabitant of the
Netherlands, where the data is given by a collection dm of Dutch municipali-
ties, and an array mr [−] of municipal registers of individuals, one register per
municipality. The program on the left combines all the municipal registers into
one national register; the program on the right finds the oldest inhabitant of
each municipality, and then findest the oldest among these “local Methuse-
lahs”. Provided that no municipality is empty of inhabitants, these programs
have equivalent behaviour. However, one cannot reasonably expect precisely the
transformation from one to the other to be present in any catalogue of trans-
formations; the development should proceed by a series of simpler steps that

40 J. Gibbons

Fig. 2. The oldest inhabitant, in Abstracto [45]

themselves are present in a smaller and more manageable catalogue of more
general-purpose transformations. But what would those atomic general-purpose
transformations be?

Meertens continued:

The framework is, in fact, largely irrelevant: finding the theorems to be
applied is the key to the development [. . .] If the Abstracto dream is to
come true [. . .] the key ‘transformations’ are the mathematical theorems
and not the boring blind-pattern-match manipulations that I looked upon
until now as being ‘the’ transformations. [46]

The breakthrough was to abandon the imperative Algol-like language and the
corresponding refinement-oriented approach of Abstracto, and to switch to a
more algebraic, functional presentation. Meertens continued:

Then came the Nijmegen meeting [Meeting #28] in May 1981, at which
Richard Bird entered the stage5 and presented a paper entitled “Some
Notational Suggestions for Transformational Programming”.6 It used an
applicative (functional) style [. . .] There were notations for high-level con-
cepts, and just the kind of manipulations, at the right level, that you would

5 In fact, Bird and Meertens had both been present at Meeting #27 in Wheeling in
August 1980, although the meeting of minds evidently had to wait a bit longer.

6 Meertens’ preface in the Abstracto Reader, Meertens’ contemporary papers, and the
WG2.1 minutes all record Bird’s paper under the title “Some Notational Sugges-
tions. . . ” [17]; but the technical report [16] is entitled “Notational Suggestions. . . ”.

The School of Squiggol 41

Fig. 3. Notational Suggestions for Functional Programming [16]

want to see [. . .] Investigating this led to a whole lot of other discoveries
(the applicability to ‘generic’ structures [. . .]), and I was very excited about
this. [46]

Some of Bird’s suggested notations are shown in Fig. 3: “f · S” for mapping
function f over collection S , “P : S” for filtering collection S to retain only
elements satisfying predicate P , “any S” for choosing an arbitrary element of
(nonempty) collection S ; “(max\f) S” for the element of collection S that max-
imizes function f ; “subS” for the powerset of collection S ; juxtaposition for
function composition; and so on. Thus rule Δ1 is what became known as “map
fusion”7 and Δ10 as “filter promotion”8.

The equivalent transformation for the problem of the oldest inhabitant using
Bird’s suggestions [45] is:

The left-hand side takes the oldest in the union of the registers of each of the
municipalities, and the right-hand side takes the oldest among the oldest inhabi-
tants of each of the municipalities. (Here, “⊕/” reduces a collection using binary
operator ⊕, absent from Bird’s suggestions; “+” is binary union; “↑f ” chooses

7 Applying g to every element of S and then f to every element of the result is the
same as applying g then f to every element of S in a single pass.

8 Applying f to every element and then filtering to keep the results that satisfy P is
the same as filtering first, using the predicate “P after f ”, then applying f to every
element that will subsequently satisfy P .

42 J. Gibbons

Fig. 4. The Promotion and Accumulation Strategies [18]

which of two arguments has the greater f -value; “g∗” maps function g over a
collection; and function composition is indicated by juxtaposition.)

Clearly the BMF presentation is an order of magnitude shorter than the
Abstracto one. It is also easier to see what form the small general-purpose trans-
formation steps should take—just the kinds of equation shown in Fig. 3.

4 Evolution

The BMF notations evolved through use, and through interactions at subsequent
WG2.1 meetings. The Algorithmics paper [45] was presented at the Symposium
on Mathematics and Computer Science in November 1983, when the Mathema-
tisch Centrum in Amsterdam changed its name to the Centrum voor Wiskunde
en Informatica (CWI).9

Bird and Meertens produced another working paper [12] for IFIP WG2.1,
trying to converge on notational conventions such as operator precedence and
semantic considerations such as indeterminacy for an “as yet unborn Science of
Algorithmics”. This was done together with Dave Wile, whose PhD thesis [65]
had been on “a closely related approach to language design” [46]; although Wile
was also a member of WG2.1, he could only contribute by post whereas Bird and

9 Publication of the proceedings of this conference seems to have taken frustratingly
long: in a 1984 working paper [44] using the same notation, Meertens cites the
Algorithmics paper [45] as appearing in the year “[]/ (1984≤)� U”, that is, the
arbitrary choice of any number at least 1984. The same joke appears in a 1985
working paper [12] but with a 1985 lower bound.

The School of Squiggol 43

Fig. 5. Transformational Programming and the Paragraph Problem [20]

Meertens met twice in person, so “his influence [. . .] has probably been much
less than it otherwise would have been” [46].10

Bird used his version of the notation in journal papers published in 1984 [18]
and 1986 [20], extracts from which are shown in Fig. 4 and Fig. 5 respectively.
Note that Bird has switched to Meertens’ convention of using an asterisk rather
than a centred dot for ‘map’,11 but still has no general ‘reduce’ operator. The
latter only came with a series of tutorial papers [19,21,22], produced in quick
succession and with very similar notation, two being lecture notes from Markto-
berdorf and one from the University of Texas at Austin Year of Programming;
an example, the calculation for the Maximum Segment Sum problem, is shown
in Fig. 6. Now the centred dot is used for function composition, and juxtaposi-
tion (not shown) is used only for function application; moreover, filter (also not
shown) is written with a triangle “�” rather than a colon.

Around the time of Bird’s three sets of lecture notes, presumably during one
of Bird’s presentations at WG2.1, Robert Dewar passed a note to Meertens which
has one word on it, “Squigol”, making a pun with language names such as Algol,
Cobol, and Snobol [47]. The name first appears in the minutes of Meeting #35
in Sausalito in December 1985. However, it has come to be written “Squiggol”,
perhaps to emphasise that the pronunciation should be "skwIg6l (“qui”) rather
than "skwaIg6l (“quae”).

10 Nevertheless, Wile’s ‘sectioning’ notation (giving a binary operator one of its two
arguments, as in the positivity predicate “(>0)” and the reciprocal function “(1/)”)
was discussed, and it persists today in Haskell.

11 In fact, Meertens says that he deliberately used a very small asterisk for ‘map’,
looking from a distance or on a poor photocopy like a ragged dot, so as not to have
to choose between the two notations.

44 J. Gibbons

Fig. 6. Constructive Functional Programming, showing Maximum Segment Sum [22]

5 Generic Structures

An important practical concern for a calculus of program transformations is that
the body of transformations is not only large enough and sufficiently general to
cover lots of applications, but also small enough and sufficiently structured to be
easy to navigate. In his preface to the Algorithmics paper [45], Meertens writes:

My main worry was the scope of applicability. Would I find that I needed
more and more primitive functions and corresponding rules as I did more
examples? So I started doing some problems this way. First I found that
I indeed had to invent new functions and laws all the time, which was
disappointing. I put it down for some time, but took it up again while I
was visiting NYU in ’82/’83, since it still looked like the most promising
line of research. Then I suddenly realized that there was a pattern in the
new functions and laws. [46]

The pattern Meertens noticed is that several of the core datatypes (namely
lists, bags, and sets) form a hierarchy of algebraic structures, and many of the
core operations (such as maps, filters, and reductions) are homomorphisms from
these algebras. Specifically, each of these three datatypes is generated from an
empty structure, singleton structures, and a binary combination operation—
for example, the empty list, singleton lists, and list concatenation—and differ
only in terms of the algebraic laws (associativity, commutativity, idempotence)
imposed on the binary operation. Meertens called these ‘generic structures’ in
the Algorithmics paper, as shown in Fig. 7.

Meertens used the same names for all three datatypes (“0” for the empty
structure, “ x̂” for a singleton structure containing element x , “+” for the binary
operation), disambiguating by context. In contrast, Bird introduced different
names for the different datatypes, as shown in Fig. 8. One might also impose no
laws on the binary operation, yielding a kind of binary tree as a fourth member
of the hierarchy, as in the following table:

The School of Squiggol 45

Fig. 7. Generic structures, from the Algorithmics paper [45] (reference [17] in the figure
is to McCarthy’s 1963 paper “A Basis for a Mathematical Theory of Computation”)

type empty singleton binary laws
tree 〈 〉 〈·〉 � identity
list [] [·] ++ . . . and associativity
bag � � �·� � . . . and commutativity
set { } {·} ∪ . . . and idempotency

(although there is no consensus on the naming conventions for trees).
Crucially, each datatype is the free algebra on the common signature with

a given set of equations, generated by a domain of individual elements; that is,
there exists a unique homomorphism from the datatype to any other algebra
of the same kind. Therefore to define a homomorphic function over one of the
datatypes in the hierarchy, it suffices to identify the target algebra. This leads
to the canonical definition scheme (see Fig. 8)12, as used for example for defining

12 Essentially the same canonical scheme is commonly used today in modern functional
programming languages like Haskell:

map f [] = []
map f (x : xs) = f x : map f xs

but for the signature of asymmetric ‘cons’ lists, rather than symmetric ‘cat’ lists.
This again depends on lists being a free algebra, so the equations have a unique
solution, namely the function being defined.

46 J. Gibbons

Fig. 8. Generic structures, from “Constructive Functional Programming” [22]

maps:
f ∗[] = []
f ∗[a] = [f a]
f ∗(x ++ y) = f ∗x ++ f ∗y

filters:
p � [] = []
p � [a] = [a], if p a

= [], otherwise
p � (x ++ y) = p � x ++ p � y

and reductions:
⊕/[] = 1⊕
⊕/[a] = a
⊕/(x ++ y) = ⊕/x ⊕ ⊕/y

This hierarchy of datatypes has become known as the ‘Boom Hierarchy’—a
neat pun. The hierarchy was introduced by and named after Hendrik Boom [26];
but Hendrik Boom is Dutch, and ‘boom’ is also Dutch for ‘tree’. Stephen Spack-
man was a local observer at Meeting #37 hosted by Boom in Montreal in May
1987, and gave a presentation [61] involving the Boom Hierarchy. Spackman was

The School of Squiggol 47

studying for a Master’s degree at Concordia University at the time, supervised
by Boom and by Peter Grogono. Spackman recalls:

My recollection of how the name came about is that it was Peter Grogono’s
coinage, that Hendrik instantly said, “what, because it’s about trees?”, that
I laughed, and the name stuck from that moment. My contribution was the
appreciation of the joke, not the naming! [60]

Backhouse [3] presents a detailed study of the Boom Hierarchy, and a compar-
ison to the quantifier notation introduced by Edsger Dijkstra and colleagues at
Eindhoven. Like Meertens and unlike Bird, Backhouse uses a common naming
scheme for all members of the Hierarchy, albeit a different one from Meertens’:
“1++”, “τ”, and “++”.

6 Retrenchment

The concern about whether or not to use a single notation for all the members of
the Boom Hierarchy gets to a key issue: a novel, rationalized notation can help
to reduce the number of definitions and laws and organize the theory, but by dis-
regarding mathematical convention it can make the presentation less accessible
to outsiders. In his preface to the 1984 working paper [44], Meertens recalls:

You can perhaps imagine my disappointment when I heard from Richard
that he had dropped this whole approach because he found it was generally
ununderstandable to audiences. Subsequent presentations of the Algorith-
mics paper at WG2.1 meetings strongly suggested the same to me. [46]

But the convenience of a rational notation is seductive. In the preface to the 1985
working paper [12] (which was written jointly with Bird and Wile), Meertens
continues the story:

Somehow or other Richard picked up interest in my ‘squiggles’ again (really
his, if he had not disowned them). It cannot have been the general acclaim
they met with at my presentations that made him do so. Maybe it was
the ease with which I kept pulling functions and operators to the left or
pushing them to the right (while writing the formulas upside-down) over a
beer, even after many beers, that convinced him of the continued value of
this approach. [46]

Similar concerns apply more widely to the choice of notation. The 1985 working
paper itself reports a difference of opinion with Wile:

Whereas RB and LM feel that the predefined infix operators should prefer-
ably be single symbols, DW prefers longer operator names. Moreover, LM
does not like predefined names that are English words. [12]

In a journal paper published in 1989 [23], Bird revisited the Maximum Seg-
ment Sum problem he had tackled in earlier Marktoberdorf lectures [22]. But he
abandoned the squiggles and reverted to mostly alphabetic identifiers, perhaps
under pressure from the journal editor; compare the development in Fig. 9 with
the earlier one shown in Fig. 6. Bird wrote in the paper:

48 J. Gibbons

Fig. 9. Algebraic Identities for Program Calculation, and Maximum Segment Sum [23]

In order to make the material as accessible as possible, we shall use the
notation for functional programming described by Bird and Wadler. This
is very similar to that used in Miranda. (Our preferred notation [19] is
rather different. For a start, it is more concise and mathematical [. . .])
[23]

7 The Book on Algorithmics

A recurring theme in the Abstracto papers is the idea of an imagined textbook
on algorithmics:

Suppose a textbook has to be written for an advanced course in algorith-
mics. Which vehicle should be chosen to express the algorithms? Clearly,
one has the freedom to construct a new language, not only without the
restraint of efficiency considerations, but without any considerations of
implementability whatsoever. [33]

The textbook theme is frequently mentioned in the minutes of discussions at
WG2.1 meetings around this time, and becomes a central desideratum for Squig-
gol. It is alluded to in the title “Two Exercises Found in a Book on Algorithmics”
of a short paper by Bird and Meertens [25], another paper with a long gestation
period (discussed at Meeting #34 in Utrecht in April 1985, presented at the TC2
Working Conference on Program Specification and Transformation in Bad Tölz
in April 1986, and eventually published in 1987).

About a decade later, Bird published the book “The Algebra of Program-
ming” [10] together with Oege de Moor. This book develops general theorems

The School of Squiggol 49

Fig. 10. The Algebra of Programming [10]

and specific constructions for solutions to optimization problems: greedy algo-
rithms, dynamic programming, and so on. Bird and de Moor discovered that
this class of problem really calls for a calculus of relations rather than one of
functions, because many problems are most naturally expressed in terms of con-
verses, intersections, orderings, and other notions that are awkward to handle
using pure functions alone. Moreover, in the quest for crisp statements of general
results, the book followed Grant Malcolm’s lead [39,40] in bringing in ideas from
category theory such as functors, natural transformations, and initial algebras.
Thus, it has more squiggles, and different ones, such as superscript circles for
converses, inclusions, relational divisions (a kind of weakest prespecification), as
shown in Fig. 10.

The Algebra of Programming book is many things: a work of art, and a tour
de force, and perhaps even a coup de grâce for Squiggol. But one thing it is
not: an easy read. The relational algebra is very elegant, and unquestionably the
idealist’s tool for this class of problems; but it is inherently complicated, because
there are simply a lot of laws to remember.

Bird envisioned this work as fulfilling the promise of the legendary textbook
on algorithmics [9], although the book does not actually present itself that way.
In fact, it follows closely the approach taken by de Moor in his doctoral thesis
[29], which itself drew on Freyd and Scedrov’s work on allegories as a categorical
axiomatization of relations [32], and Bird now says that “it turned out very
different to the book I had envisaged” [9].

50 J. Gibbons

8 Conclusions

The story of Squiggol is one of an ebb and flow of enthusiasm for the squiggly
notation. The notation is intended as a tool of thought more than a programming
language; so there is the freedom to experiment, to invent new operators, to
capture newly-observed recurring patterns, unfettered by the need to keep all
the paraphernalia of an automated tool chain up to date. But that freedom is a
mixed blessing, and it is all too easy to disappear down a rabbit-hole of private
scribbling; the notation should also be a tool of communication—with other
people, and even with one’s future self—and undisciplined invention blocks that
communication channel.

The supplementary website [11] for the Algebra of Programming book
describes it as an “introductory textbook”, which is rather optimistic: few peo-
ple have read the book all the way through, and fewer still have assimilated
and can remember all the laws it presents. With a few honourable exceptions,
almost everybody who was involved has abandoned the relational squiggles. De
Moor soon left this field and moved into work on programming tools, eventu-
ally leaving academia to found the company Semmle. Bird also quickly gave up
on the squiggly notation, succumbing to his 1989 critics [23] and doing almost
everything since the book in a purely functional (Haskell) notation.

Bird and the present author are putting the finishing touches to a new book
“Algorithm Design with Haskell” [24], addressing essentially the same material as
the Algebra of Programming book with no squiggles at all. This latest approach
definitely represents a compromise: a small excursion out of the world of pure
functions is required in order to accommodate nondeterministic choice [13]. Only
time will tell whether the balance is better this time, with greater accessibility
compensating for the loss of expressive power.

Acknowledgements. I am especially indebted to Richard Bird and Lambert
Meertens: for much discussion about this work, and correcting some of my misun-
derstandings, but more importantly for being the inspiration for essentially my entire
research career. I would also like to thank Doaitse Swierstra, Hendrik Boom, and
Stephen Spackman for answering my many questions, and Cezar Ionescu, Dan Shiebler,
the members of IFIP WG2.1, the participants at the workshop on the History of For-
mal Methods in Porto in October 2019, and the anonymous reviewers for their helpful
comments and enthusiastic feedback.

References

1. Back, R.-J.: On correct refinement of programs. J. Comput. Syst. Sci. 23(1), 49–68
(1981)

2. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer, Heidelberg (1998). https://doi.
org/10.1007/978-1-4612-1674-2

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2

The School of Squiggol 51

3. Backhouse, R.: An exploration of the Bird-Meertens formalism. In: International
Summer School on Constructive Algorithmics, Hollum, Ameland. STOP project:
Also available as Technical report CS 8810, p. 1988. Groningen University, Depart-
ment of Computer Science (1989)

4. Backus, J.W., et al.: Report on the algorithmic language ALGOL 60. Numer. Math.
2(1), 106–136 (1960)

5. Barron, D.W.: Christopher Strachey: a personal reminiscence. Comput. Bull. 2(5),
8–9 (1975)

6. Bauer, F.L.: Programming as an evolutionary process. In: International Conference
on Software Engineering, pp. 223–234. IEEE (1976)

7. Brauer, F.L., et al.: The Munich Project CIP, Volume I: The Wide Spectrum
Language CIP-L. LNCS, vol. 183. Springer, Heidelberg (1985). https://doi.org/10.
1007/3-540-15187-7

8. Bauer, F.L., et al.: The Munich Project CIP, Volume II: The Programme Transfor-
mation System CIP-S. LNCS, vol. 292. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-18779-0

9. Bird, R.: “Algebra of Programming” as the textbook on Algorithmics. Private
email to JG, February 2020

10. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Upper Saddle River
(1997)

11. Bird, R., de Moor, O.: Website for The Algebra of Programming (1997). http://
www.cs.ox.ac.uk/publications/books/algebra/

12. Bird, R., Meertens, L., Wile, D.: A common basis for algorithmic specification and
development. IFIP WG2.1 Working Paper ARK-3 (1985)

13. Bird, R., Rabe, F.: How to calculate with nondeterministic functions. In: Hut-
ton, G. (ed.) MPC 2019. LNCS, vol. 11825, pp. 138–154. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33636-3 6

14. Bird, R.S.: Improving programs by the introduction of recursion. Commun. ACM
20(11), 856–863 (1977)

15. Bird, R.S.: Notes on recursion elimination. Commun. ACM 20(6), 434–439 (1977)
16. Bird, R.S.: Notational suggestions for transformational programming. Technical

report RCS 144, University of Reading, April 1981
17. Bird, R.S.: Some notational suggestions for transformational programming. Work-

ing Paper NIJ-3, IFIP WG2.1 (1981)
18. Bird, R.S.: The promotion and accumulation strategies in transformational pro-

gramming. ACM Trans. Program. Lang. Syst. 6(4), 487–504 (1984)
19. Bird, R.S.: An introduction to the theory of lists. Monograph PRG-56, Program-

ming Research Group, University of Oxford, October 1986. Published in [27]
20. Bird, R.S.: Transformational programming and the paragraph problem. Sci. Com-

put. Program. 6, 159–189 (1986)
21. Bird, R.S.: A calculus of functions for program derivation. Monograph PRG-64,

Programming Research Group, University of Oxford, December 1987. Published
in [62]

22. Bird, R.S.: Lectures on constructive functional programming. Monograph PRG-69,
Programming Research Group, University of Oxford, September 1988. Published
in [28]

23. Bird, R.S.: Algebraic identities for program calculation. Comput. J. 32(2), 122–126
(1989)

24. Bird, R.S., Gibbons, J.: Algorithm Design with Haskell. Cambridge University
Press, Cambridge (2020, to appear)

https://doi.org/10.1007/3-540-15187-7
https://doi.org/10.1007/3-540-15187-7
https://doi.org/10.1007/3-540-18779-0
https://doi.org/10.1007/3-540-18779-0
http://www.cs.ox.ac.uk/publications/books/algebra/
http://www.cs.ox.ac.uk/publications/books/algebra/
https://doi.org/10.1007/978-3-030-33636-3_6

52 J. Gibbons

25. Bird, R.S., Meertens, L.: Two exercises found in a book on algorithmics. In:
Meertens, L. (ed.) Program Specification and Transformation, pp. 451–457. North-
Holland (1987)

26. Boom, H.: Further thoughts on Abstracto. Working Paper ELC-9, IFIP WG2.1
(1981)

27. Broy, M. (ed.): Logic of Programming and Calculi of Discrete Design. NATO ASI
Series F, vol. 36. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-
87374-4

28. Broy, M. (ed.): Constructive Methods in Computer Science. NATO ASI Series F,
vol. 55. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-74884-4

29. de Moor, O.: Categories, relations and dynamic programming. Ph.D. thesis, Pro-
gramming Research Group, Oxford, April 1992. Available as Technical Monograph
PRG-98

30. Dewar, R.: Letter to members of IFIP WG2.1, 26 July 1977. http://ershov-arc.iis.
nsk.su/archive/eaindex.asp?did=29067

31. Dewar, R.: Letter to members of IFIP WG2.1, 19 September 1979. http://ershov-
arc.iis.nsk.su/archive/eaindex.asp?did=29096

32. Freyd, P., Scedrov, A.: Categories, Allegories. Mathematical Library, vol. 39.
North-Holland, Amsterdam (1990)

33. Geurts, L., Meertens, L.: Remarks on Abstracto. ALGOL Bull. 42, 56–63 (1978).
Also in [46]

34. Geurts, L., Meertens, L., Pemberton, S.: The ABC Programmer’s Handbook.
Prentice-Hall, Upper Saddle River (1990). ISBN 0-13-000027-2

35. Gibbons, J.: Algebras for tree algorithms. D. Phil. thesis, Programming Research
Group, Oxford University (1991). Available as Technical Monograph PRG-94.
ISBN 0-902928-72-4

36. Iverson, K.E.: A Programming Language. Wiley, New York (1962)
37. Koster, C.H.A.: The making of Algol 68. In: Bjørner, D., Broy, M., Pottosin, I.V.

(eds.) PSI 1996. LNCS, vol. 1181, pp. 55–67. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-62064-8 6

38. Lindsey, C.H.: A history of Algol 68. In: HOPL-II: The Second ACM SIGPLAN
Conference on History of Programming Languages, pp. 97–132, April 1993

39. Malcolm, G.: Algebraic data types and program transformation. Ph.D. thesis, Rijk-
suniversiteit Groningen, September 1990

40. Malcolm, G.: Data structures and program transformation. Sci. Comput. Program.
14, 255–279 (1990)

41. Meertens, L.: Abstracto 84: the next generation. In: Proceedings of the 1979 Annual
Conference, pp. 33–39. ACM (1979)

42. Meertens, L.: Draft proposal for the B programming language. Technical report,
Mathematisch Centrum, Amsterdam (1981)

43. Meertens, L.: Issues in the design of a beginners’ programming language. In: de
Bakker, J.W., van Vliet, H. (eds.) Algorithmic Languages, pp. 167–184. Elsevier
North-Holland, New York, July 1981

44. Meertens, L.: Some more examples of algorithmic developments. IFIP WG2.1
Working Paper ADP-7 (1984)

45. Meertens, L.: Algorithmics: towards programming as a mathematical activity. In:
de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Proceedings of the CWI
Symposium on Mathematics and Computer Science, pp. 289–334. North-Holland
(1986). https://ir.cwi.nl/pub/20634

46. Meertens, L.: An Abstracto reader prepared for IFIP WG 2.1. Technical report
CS-N8702, CWI, Amsterdam, April 1987

https://doi.org/10.1007/978-3-642-87374-4
https://doi.org/10.1007/978-3-642-87374-4
https://doi.org/10.1007/978-3-642-74884-4
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?did=29067
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?did=29067
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?did=29096
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?did=29096
https://doi.org/10.1007/3-540-62064-8_6
https://doi.org/10.1007/3-540-62064-8_6
https://ir.cwi.nl/pub/20634

The School of Squiggol 53

47. Meertens, L.: Squiggol versus Squigol. Private email to JG, September 2019
48. Meertens, L.G.L.T., Pemberton, S.: Description of B. SIGPLAN Not. 20(2), 58–76

(1985)
49. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst. 10(3),

403–419 (1988)
50. Morgan, C.: Programming from Specifications. Prentice Hall, Upper Saddle River

(1990)
51. Paige, R.: Transformational programming: applications to algorithms and systems.

In: Wright, J.R., Landweber, L., Demers, A.J., Teitelbaum, T. (eds.) Principles of
Programming Languages, pp. 73–87. ACM (1983)

52. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. 4(3), 402–454 (1982)

53. Peck, J.E.L.: Aad van Wijngaarden and the mathematisch centrum: a personal
recollection. In: Alberts, G. (ed.) Conference on the History of ALGOL 68, volume
AM-HN9301. CWI, Amsterdam (1993)

54. Pemberton, S.: A short introduction to the ABC language. SIGPLAN Not. 26(2),
11–16 (1991)

55. Python Software Foundation. Python website (1997). https://www.python.org/
56. Schuman, S.A. (ed.): New directions in algorithmic languages. Prepared for

IFIP Working Group 2.1 on Algol, Institut de Recherche d’Informatique et
d’Automatique (1975)

57. Schuman, S.A. (ed.): New directions in algorithmic languages. Prepared for
IFIP Working Group 2.1 on Algol, Institut de Recherche d’Informatique et
d’Automatique (1976)

58. Schwartz, J.T.: On programming: an interim report on the SETL project. Technical
report, New York University (1974)

59. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schoenberg, E.: Programming with
Sets: An Introduction to SETL. Texts and Monographs in Computer Science.
Springer, Heidelberg (1986). https://doi.org/10.1007/978-1-4613-9575-1

60. Spackman, S.: Boom and Abstracto. Private email to JG, October 2019
61. Spackman, S., Boom, H.: Foop, poof, and parsing. Working Paper 560 COR-15,

IFIP WG2.1 (1987)
62. Turner, D.A. (ed.): Research Topics in Functional Programming. University of

Texas at Austin, Addison-Wesley, Boston (1990)
63. van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A.: Report on the

algorithmic language ALGOL 68. Numer. Math. 14(2), 79–218 (1969)
64. van Wijngaarden, A., et al.: Revised report on the algorithmic language Algol

68. Acta Inform. 5(1–3), 1–236 (1975). https://doi.org/10.1007/BF00265077. Also
appeared as Mathematical Centre Tract 50, CWI, Amsterdam, and published by
Springer Verlag in 1976

65. Wile, D.S.: A generative, nested-sequential basis for general purpose programming
languages. Ph.D. thesis, Department of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, Pennsylvania, November 1973

https://www.python.org/
https://doi.org/10.1007/978-1-4613-9575-1
https://doi.org/10.1007/BF00265077

Reasoning About Shared-Variable
Concurrency: Interactions Between

Research Threads

Cliff B. Jones(B)

School of Computing, Newcastle University, Newcastle upon Tyne, UK
cliff.jones@ncl.ac.uk

Abstract. Most research on concurrency involves either communication-
based approaches or accepts the shared-variable model. This paper
addresses the latter approach and traces the research from Hoare’s
axiomatic approach, through Sue Owicki’s work up to separation logics
and rely/guarantee methods. Researchers in these last two approaches
have been involved in a friendly rivalry and cooperation. The focus is on
the insights that have arisen rather than technical details.

1 Introduction

This paper addresses the important topic of reasoning formally about concurrent
computer programs that execute with variables that are shared between threads.
The attempt to trace the key insights that have shaped the research. There have
been some relatively linear sequences of ideas where research contributors build
on preceding work; there have also been periods of strong interaction and friendly
competition between adherents of different approaches.

Where dates are useful, they are normally related to publication dates. In
addition to publications, there have been a number of places where real progress
has been made with researchers interacting face-to-face: the most influential
venue might have been IFIP’s Working Group WG2.3 on Programming Method-
ology,1 further venues include meetings of lecturers at the Marktoberdorf Sum-
mer Schools, Schloss Dagstuhl and the UK Concurrency Working Group.

Some avenues of concurrency research focus on the avoidance of shared
variables—Process Algebras and other approaches not addressed in the body of
this paper are mentioned in Sect. 5.2. Despite the challenges that shared-variable
concurrent programs present to developers, such programs are both historically
important and remain in widespread use.

Even with primitive operating systems, the attempt to keep a CPU busy
–whilst slower external devices consumed or delivered data– required care in
program design. When there was a single CPU, programs could switch between
threads in a way that gave rise to most issues about shared variables. As
1 With respect to the topics considered in this paper, the most productive period was

probably the 1970s/80s but the whole history of WG2.3 deserves closer study.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 54–72, 2020.
https://doi.org/10.1007/978-3-030-54997-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_3

Reasoning About Shared-Variable Concurrency 55

input/output processors became more independent from the CPU, flags could be
set, interrupts generated and buffers filled independently of the program actually
written by a developer.

Concurrency issues have become more important over time because of the
creation of full-blown time-sharing systems, the emergence of applications that
interact with a world external to the computer and multi-core hardware.2

Developing concurrent software poses many challenges including data races,
deadlock and “livelock”3—the common cause of these issues is interference: the
behaviour of the thread of the program about which the programmer would like
to reason is influenced by external activities.

Fig. 1. Floyd’s hand drawn flowchart (with assertions) of division by successive
subtraction

1.1 Refresher on Reasoning About Sequential Programs

The key steps in research on reasoning about sequential (non-concurrent) soft-
ware are described in [49]: Hoare’s Axiomatic basis paper [33] is taken as key;4

Hoare acknowledges the influence of Floyd [29], van Wijngaarden [89] and

2 More recently, so-called “weak memory” hardware with thread-local caches has
added further difficulty—a paper that links with the material below is [56].

3 This term is attributed to Ed Ashcroft whose contributions are covered in Sect. 2.1.
4 Hoare is one of the most highly cited computer scientists—although his CSP

paper [36] has even more citations, [33] has over 7,000 (GS) citations and has main-
tained an almost constant level for many years.

56 C. B. Jones

Naur [69]. The trace in [49] back to Turing [86] and von Neumann [30]5 shows a
surprising hiatus in progress of this research area between 1949 and 1967.

Figure 1 comes from a mimeographed draft of Floyd’s 1967 seminal paper;6

it shows that his annotations were attached to arcs in flowcharts. In contrast,
Hoare introduced judgements –now referred to as “Hoare triples”– (now written
as {P} S {Q}) in which P and Q are assertions (predicates) and S is a program
text; Q is a post condition that expresses what the program text S achieves
providing the pre condition P holds before execution and S terminates normally.

One reason that the move away from flowcharts was so important is that
it points towards a top-down development method instead of a way of checking
completed programs. Hoare’s approach lends itself to starting with a specification
and decomposing it into progressively smaller sub-problems until each can be
achieved by statements of the desired programming language.7, 8 This top-down
description might be viewed as idealistic in today’s environment where most
programs evolve over time and are unlikely to have been designed initially in a
systematic way but understanding an ideal can throw light on other methods.

Hoare axioms (or rules of inference) for a very simple language are given in
Fig. 2; the issues in the remainder of this paper can be explained by focusing on
the first rule. Such inference rules permit the conclusion of the triple below the
horizontal line providing any judgements above the line can be proved. The rule
for sequential composition can be viewed as supporting problem decomposition,
it can inform the decomposition of the problem below the line indicated by pre
condition P and post condition R into finding S1 and S2 with their respective pre
and post conditions. A useful early survey of Hoare’s approach is given in [3,4]
a comprehensive and up-to-date survey is [2].

Crucially Hoare’s approach for sequential programs is compositional in the
sense that the developer of S1 need only consider the specification P/Q—no
awareness is needed of the sibling specification nor that of the overall context.
Later sections below make clear that compositionality is not easily achieved for
concurrent programs precisely because of interference between threads. But, for

5 Mark Priestly’s invited talk at the 2019 History of Formal Methods workshop in Porto
suggests a revision of the assessment of von Neumann’s contribution. In particular,
Priestly’s archive research has precisely identified the letter to Goldstine in which
von Neumann proposes assertion boxes.

6 Floyd acknowledges Gorn and Perlis as the originators of the ideas—Knuth suggested
that this was overly modest.

7 This only became clear in the published version of [35]: an early draft offered a post
facto proof of the final program and these proofs were extremely hard to check—
Hoare revised the paper to exhibit a stepwise development that was much more
convincing (the title of the paper was not changed).

8 It is worth noting that Hoare argued at the 1964 Formal Language Description
Languages conference at Baden-bei-Wien [84] for a language definition style that
could leave things undefined. Also [33, §6] talks about language definition. It could
be argued that what has become the cornerstone of 50 years of research into formal
development of programs was found during an attempt to solve a different problem
(i.e. that of writing a semantic description of a language).

Reasoning About Shared-Variable Concurrency 57

Fig. 2. Hoare’s axioms

sequential programs, pre and post conditions suffice: they record everything that
the developer of a (sub-)program needs to achieve.

For concurrent programs, non-compositional methods were discovered first
and they have a significant role in providing tools that analyse finished code.
Apart from the ideal of top-down problem decomposition, compositional meth-
ods indicate how descriptions of complex systems can be decomposed into under-
standable pieces. Ideas from compositional methods can also provide useful
abstractions for bottom-up approaches.

1.2 Useful Background Reading on Concurrency

There are many technical challenges that have to be faced when designing con-
current programs. These include data races, atomicity, deadlocks, livelocks and
fairness. Various programming language constructs have been proposed to help
overcome these challenges. Semaphores were an early idea and higher level con-
structs such as conditional critical sections have been put forward. Readers unfa-
miliar with these ideas would learn enough from [10] to follow the rest of the
current paper; [5,83] or [60] go much further into formal material.

1.3 Beyond the Sequential Case

Following on from the success of [33], Hoare and colleagues looked at a range of
extensions to the axiomatic approach (e.g. [17,34]). His first foray into applying
the approach to parallel programs resulted in [39]. Looking back at the rule for
sequential combination discussed in Sect. 1.1, the dream would be to find a rule
that permitted some simple combination of the pre and post conditions of two
threads such as:

?

{P1} S1 {Q1}
{P2} S2 {Q2}

{P1 and P2} S1||S2 {Q1 and Q2}

58 C. B. Jones

As one would expect, Hoare gives a clear outline of the issues and notes that
the above rule works (with logical conjunction in the conclusion) providing that
S1 and S2 refer only to disjoint variables. The paper [39] goes on to investigate
ways in which interference can be ruled out (notably by critical regions); tackles
a number of examples (including a bounded buffer, dining philosophers and a
parallel version of Quicksort); and includes an effusive acknowledgement to the
stimulus of Edsger W. Dijkstra.

The first insight then is that separation limits interference—with hindsight
this might sound obvious but, in addition, an ideal form of parallel inference rule
is given against which other proposals can be judged.

This sets the scene for an interesting split in research directions:

– one line of research is to look at explicit ways of reasoning about interference—
this avenue is discussed in Sect. 2;

– alternatively, researchers have investigated reasoning about separation even
in the more complicated arena of heap variables—Sect. refSspssep reviews this
approach.

Both approaches are clearly important and have spheres of applicability; Sects. 2
and 3 discuss the two avenues in roughly historical order; Sect. 4 outlines fruitful
interactions between researchers pursuing the two avenues.

2 Reasoning About Interference

Only with the benefit of hindsight did the criterion of compositionality became
a key issue (see [20]) but, since there is also a historical development, the dis-
tinction is used to separate Sects. 2.1 and 2.2. Sections 2.3 and 2.4 mention two
important –but somewhat orthogonal– detailed issues.

The phrase “non-compositional” might sound negative but bottom-up meth-
ods that work with finished code have given rise to many useful tools (see
Sect. 4)—part of the attraction of tools that work with finished programs is
that they can do useful work relatively automatically.

2.1 Non-compositional Approaches

A first step9 towards reasoning formally about interfering threads was made by
Ed Ashcroft and Zohar Manna in [7].

Ashcroft had done his PhD at Imperial College (London) under the super-
vision of John Florentin.10 Ashcroft was also known for his work on the Lucid
language with Bill Wadge.11 Manna’s PhD was supervised by Floyd (which fact
9 A reader who is tempted to view this section in particular as too linear should remem-

ber that in the 1970s there were fewer active researchers than there are today. Fur-
thermore, this paper is deliberately limited to shared-variable concurrency—subjects
such as process algebras were progressing in parallel (see Sect. 5.2).

10 Florentin and this paper’s author had extensive contacts during the 1960s/70s when
the latter worked for IBM.

11 Interestingly, Ashcroft supervised Matthew Hennessy’s PhD—Hennessy’s main
research area is process algebras.

Reasoning About Shared-Variable Concurrency 59

is important below). Manna made huge contributions to many areas12 including
Temporal Logics. A beautiful technical obituary is [21].

The 1971 paper was preceded by a Stanford Tech Report [6]. The ideas build
mainly on the Floyd approach including the use of flowcharts for the programs
to be justified. There is, in fact, a rather offhand reference to “see also [33]”.
Manna proposed the idea of non-deterministic programs in [63]13 and the 1971
paper translates concurrent threads into such a non-deterministic program. The
state of a computation is essentially the memory plus a program counter. As
the authors of [7] concede, this program can be exponentially larger than the
original concurrent text because it has to handle all mergings of the threads
([7, p. 37] gives some actual sizes for the examples).

The approach is non-compositional in the sense that it does not support
development from specifications because it relies on having full texts (flowcharts)
of all threads. Furthermore, it makes the assumption that assignment statements
can be executed atomically (this point is returned to below).

A number of ways of limiting the size of the generated non-deterministic
program are explained in [7, Part 3]:

– nested parallelism is not allowed;
– blocks are used to increase granularity;
– so-called “protected bodies” can be marked on the flowchart by dotted lines.

The examples covered are all abstract programs rather than solutions to
specified problems.

The insight is that shared-variable concurrency (without separation) cre-
ates huge non-determinacy because of the potential interleaving of statements
in threads. Furthermore, a specific way of representing such (equivalent) non-
deterministic programs is described.

The next step was taken by Ashcroft alone in [8]. The paper starts with the
prescient observation that reasoning formally about programs will become more
popular with concurrency (because concurrent programs defeat a programmer’s
mental ability to consider all possible mergings).

Ashcroft commented on the exponential number of proof obligations required
by the approach in [6] and set out to tackle this issue. He proposed employing
control states which record the statements to be executed in each concurrent
thread.14

Ashcroft’s 1975 approach reduces the proof obligation count to the product
of the control points. It is still the case that the approach is non-compositional
12 This paper’s author was present at the 1968 Mathematical Theory of Computation

conference at IBM Yorktown Heights where John McCarthy strongly advocated
Manna’s developments of Floyd’s approach.

13 Since this paper was published in an AI journal, the examples are mainly about
search algorithms but McCarthy’s 91 function is also tackled.

14 As an aside, this bears a strong resemblance to the Control Trees that are part
of the “grand state” in early Vienna operational descriptions of the semantics of
programming languages (see [59] for more on VDL and [50] for a discussion of the
problems with these descriptions).

60 C. B. Jones

because it is based on complete flowcharts of all threads and it retains the unre-
alistic assumption that assignment statements can be executed atomically. In
contrast to the 1971 joint paper, Ashcroft’s 1975 paper tackles a rather ambi-
tious Airline Reservation System example.

The next step is comparatively far more widely known (than the foregoing)
and was made by Susan Owicki—her thesis is [72] and a more accessible source
is the paper co-authored with her supervisor David Gries [73].15 Commonly
referred to as the “Owicki-Gries” approach, a proof rule is given for an await
statement (see rule 3.2 in Fig. 3). Furthermore the approach offers a semblance
of compositionality. The first step in the Owicki-Gries approach is to prove that
the threads satisfy their individual pre and post conditions. It is important for
the next phase that these proofs contain complete proof outlines with assertions
between every statement. The rule labelled 3.3 in Fig. 3 looks close to the ideal
rule in Sect. 1.3. The snag is that the interference free proof obligation (elsewhere
einmischungsfrei16) requires proving that no assignment in one thread invalidates
any proof step in another thread.

The Owicki-Gries method contributes the insight that interference can be
judged by its impact on the proof steps of other threads and it proposes a specific
proof obligation as a check.

Fig. 3. Proof rules from [73]

In addition to a small technical example, [73] introduces a FindPos example
that employs two threads to find the least index of an array A such that some
predicate p holds at p(A(i)); a producer/consumer problem is also addressed.

As indicated in [20], this approach is non-compositional because the correct-
ness of each thread can only be established with respect to the finished code of
all threads. It would clearly be possible that all threads were developed accord-
ing to their specifications but that the final einmischungsfrei proof obligation
fails and the development has to be completely restarted.

The [73] paper contains a specific acknowledgement to IFIP Working Group
WG2.3: Gries first observed17 at the meeting in December 1974 and was elected
15 This paper indicates that it was intended to be “Part I” but there is no trace of

subsequent parts and a recent private contact with Owicki confirmed that none was
written.

16 Gries obtained his PhD from what is now known as “Technische Universität
München” under supervision of Bauer which is the explanation of a German adjective
for the key proof obligation in the approach.

17 IFIP working groups have a process of inviting observers (sometimes several times)
before considering people for membership.

Reasoning About Shared-Variable Concurrency 61

a member in September 1975; Owicki was an observer at the July 1976 meeting.
These contacts possibly increased the incentive to relate the Owicki-Gries app-
roach to [33] but it is easy to see the Owicki-Gries approach as more strongly
linked to the flowcharts of [29]. Owicki’s thesis [72] provides soundness proofs
for the proof obligations and cites Peter Lauer’s research with Hoare [38].

A more subtle objection to the Owicki-Gries approach is the assumption that
single statements can be executed atomically (recall that this is also the case with
the two approaches above). The problem is that this assumption does not hold for
any reasonable compiler. There is an argument given that the assumption holds
if there is only one shared variable per assignment.18 This would prompt splitting
any assignment x ← x + 1 into two assignments using a temporary variable but
this still leaves the programmer needing to reason about the interference between
the statements.19

Another interesting discussion concerns auxiliary (or ghost) variables – this
topic is taken up in Sect. 2.4.

2.2 Recovering Compositionality

It is clear that finding a compositional approach to the design of concurrent pro-
grams is challenging: because threads interfere, they can potentially be affected
by statements in environmental threads; the code of all threads provides max-
imal information but is not available at the point when a developer suggests a
split into parallel threads. Although it would be judgemental to class the need
for availability of program code in the methods described in Sect. 2.1 as a flaw,
it must be conceded that it makes it impossible to achieve the sort of top-
down separation that was observed in Sect. 1.1 for the sequential composition of
statements.

One challenge therefore was to find a useful level of abstraction that faced
up to interference without having the code of all threads. The key step in the
Rely/Guarantee approach [43–45] was to characterise interference by relations.20

Figure 4:

– shows pre and (relational) post conditions as in their standard VDM use;
– marks that any environment interference can be thought of as an interfering

step that satisfies a rely condition—it functions like a post condition of the
interfering state transition; and

– shows that the guarantee condition is also a relation and records the interfer-
ence that the component being specified will inflict on the environment.

18 This is sometimes referred to as “Reynolds’ rule” but John Reynolds disowned it in
a conversation with this paper’s author.

19 Another venue where useful exchanges on these topics occurred was Schloss Dagstuhl:
there were two events on Atomicity in April 2004 [15,48] and spring 2006 [18].

20 VDM had consistently employed relations as post conditions—in fact, this goes back
to before the name “VDM” was coined [41]. Use of data abstraction was also a key
arrow in VDM’s quiver [40] with [42] being an early book to emphasis its use. This
becomes important with Rely/Guarantee ideas—see Sect. 2.3.

62 C. B. Jones

pre
︷︸︸︷

σ0 · · ·
rely

︷ ︸︸ ︷

σi σi+1 · · · σj σj+1
︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸

post

pre/rely are assumptions the developer can make
guar/post are commitments that the code must achieve

Fig. 4. A trace of states made by execution of a component and its context

The pre, rely, guarantee and post conditions fit into the generic picture in
Fig. 4 and this moves the discussion on to finding an appropriate proof rule that
can be used to justify steps of development that introduce concurrency. Pre, rely,
guarantee and post conditions can be written in a quintuple wrapped around
the program text that is to be executed: {P,R} S {G,Q}.21 To indicate how
the rely/guarantee rules relate to the non-interfering version of the parallel rule
at the beginning of Sect. 1.3, a slight simplification of the actual rule can be
written:22

|| − R/G

{P1, R ∨ G2} S1 {G1, Q1}
{P2, R ∨ G1} S2 {G2, Q2}

{P1 & P2, R} S1||S2 {G1 ∨ G2, Q1 & Q2 & · · · }

One example of the use of R/G in development can be based on the Sieve of
Eratosthenes for finding all primes up to some specified number. The specification
of the interesting part of the algorithm is to remove all composite numbers from
a set. Several papers [32,46] show how to tackle the design decision to achieve
this by executing instances of Rem(i) processes concurrently. The example indi-
cates how the formulation of rely and guarantee conditions interacts with post
conditions.

The prime sieve example above uses symmetric (Rem) processes but the proof
rule also caters for examples in which concurrent threads have different specifi-
cations (e.g. producer/consumer processes have asymmetric specifications).

Proof rules of the above form are proved sound with respect to a model-
oriented semantics in [19,43,76]. The oldest of these proofs is fairly ugly having
been based on a VDL semantics; Coleman’s soundness argument is much nicer
but is not machine checked; Prensa-Nieto’s proof is checked on Isabelle but
does not cover nested concurrency. Peter Aczel introduced a form of trace (now
referred to as “Aczel traces”) as a semantic model [1]; they are employed in [20].

There are many examples of Rely/Guarantee developments in the literature
including Owicki’s FindPos, a concurrent cleanup addition to the Fisher-Galler
21 This quintuple version of rely-guarantee obviously follows Hoare triples (see

Sect. 1.1). There are other ways of conveying the same information (see Sect. 5.2).
22 The simplification is that a stronger post condition can use information from the

guarantee conditions.

Reasoning About Shared-Variable Concurrency 63

implementation of Union-Find, Simpson’s four slot algorithm, the Treiber stack
and the concurrent prime sieve.

The insight here is that interference can be specified and reasoned about
if relations are used to abstract information about interference; based on this,
inference rules for parallelism can avoid the need for access to the code of con-
textual threads.

There are over twenty PhD theses related to the Rely-Guarantee approach
they include:

– [85,91] which both consider progress arguments;
– [64] uses Temporal Logic to encode rely and guarantee conditions;
– Dingel’s [22] is an early attempt to combine refinement calculus ideas with

the Rely/Guarantee approach;
– [75] tackles the challenging task of producing a clear formal development

of the implementation by Hugo Simpson of Asynchronous Communication
Mechanisms;

– Hongjin Liang’s 23 thesis [58] proposes RGSim whose interference predicates
also address ownership.

There are related approaches described in [20] under names such as assume-
commit.

The research described in this section sounds sufficiently linear that histo-
rians might fear a retrospective tidying up of the story. Two points are worth
remembering: the linearity concerns only this narrow thread of research and
Sect. 5.2 widens the viewpoint; strong interaction with other threads of research
have arisen more recently and are mentioned in Sect. 4.

2.3 Role of Data Abstraction/Reification

Abstract objects make it possible to write specifications which are far shorter
than if the same task was specified in terms of the restricted data types of a
programming language. Specifications can also postpone much algorithmic detail
by employing data types that match the problem rather than trying to achieve
efficient implementation. The process of (formally) designing a representation is
referred to variously as “refinement” or “reification” (making concrete). The use
of data abstraction in the specification of systems can be studied as a subject
quite separate from concurrency; its origins are traced in [80] and related to
other aspects of program specification and development in [49].

The reason for adding this subsection to the discussion of reasoning about
interference is that the use of abstract data types appears to be particularly
important in specifying and developing concurrent programs. The insight that
nearly all examples of Rely/Guarantee developments benefit from the use of
abstract data types was first recorded in [47]. To mention one specific example,

23 Hongjin Liang’s doctoral research was supervised by Xinyu Feng whose own research
on SAGL is mentioned below.

64 C. B. Jones

Simpson’s four slot implementation of Asynchronous Communication Mecha-
nisms is tackled in [53] where an abstract object of many slots is a shared vari-
able but the rely conditions on this abstraction facilitate working out exactly
what constraints need to be respected on Simpson’s (four) race-free slots.

2.4 Auxiliary Variables

An issue that clouds a number of specifications and designs of concurrent pro-
grams is the use of auxiliary (or ghost) variables. The idea is that variables
can be inserted into a thread that do not influence its behaviour but make it
easier to reason about a thread because the auxiliary variables record some infor-
mation about the environment. In the extreme, such auxiliary variables could
record everything about the environment including the steps to be taken by
other threads. This would clearly subvert compositionality. Most uses of auxil-
iary variables are less detailed and this paper’s author has argued that nearly all
cases can be avoided if a more appropriate abstraction is found. In some cases,
the notation of possible values developed in [51] obviates the need for auxiliary
variables.

The fact that recourse to auxiliary variable is so common suggests that not
everyone would count avoiding them by finding abstractions as an insight. Fur-
thermore a delicate (in the sense of tricky) on-the-fly garbage collector is stud-
ied in [55] and the tentative conclusion there is that the intimate connections
between the mutator and collector threads force the use of an auxiliary variable.
At the time of writing that paper, the authors were unaware of [31] which might
throw further light on the topic.

3 Avoiding or Constraining Interference

This section outlines the background of –and research in– what are termed “Con-
current Separation Logics” (CSL). There are in fact many forms of separation
logic making this a large subject; here only the central points are covered so as
to facilitate the discussion in Sect. 4 on the interaction between research threads.

There are two distinguished parents of CSL research: John Reynolds’ work
on Separation Logic and Hoare’s study [39] of how variable separation admits
the use of the idealised parallel rule from the beginning of Sect. 1.3.24

A key summary of Reynolds’ work on Separation Logic is [79] in which he
looks at the tricky topic of reasoning about programs that use dynamically
allocated heap variables. Such programs are notoriously difficult to design and
debug because mistakes can have effects that range far beyond the immediate
code.

Many presentations of reasoning about such programs start with the code
itself (rather than an abstract specification). Although they are in a formal

24 Peter O’Hearn emphasised the debt to [39] during his talk in Cambridge honouring
Tony Hoare in April 2009.

Reasoning About Shared-Variable Concurrency 65

system, the discussions tend to be bottom-up in that they abstract a specification
from code. (Recall that the point is made above that this offers a route to useful
tool support for detecting errors in finished code.)

CSL itself also focusses on programs that employ heap variables. In a concur-
rent context, interaction between threads often involves them exchanging owner-
ship of addresses between threads. To take the more obvious case of controlling
which thread has ownership to write to an address, data races are avoided by
making sure that only one thread has write ownership at any point in time but
the logic must make it possible to reason about exchange of ownership between
threads.25

The key reference to CSL is [70] which records a talk given by Peter O’Hearn
at the 2005 MFPS-XXI in honour of John Reynolds. A detailed and personal
history of the evolution of CSL is available as [14].

Arranging that assertions cover heap addresses requires an extension of the
idea of the state of a computation to include a mapping from addresses to values.
Based on this it is then possible to build the notion of two assertions as having
disjoint heap accesses: P1 ∗ P2 can only hold if the addresses in P1 and P2
are disjoint but otherwise the asterisk functions as a logical conjunction. It is
therefore easy to relate the following central CSL rule:

|| − CSL

{P1} S1 {Q1}
{P2} S2 {Q2}

{P1 ∗ P2} S1||S2 {Q1 ∗ Q2}

to the idealised rule at the beginning of Sect. 1.3 but it is important to remember
that Hoare’s rule dealt with (normal) stack variables and that the key to the
above || − CSL is handling heap variables.

Another rule that is considered important for CSL is the frame rule that
makes it possible to apply an assertion on a limited set of variables to a larger
state providing the variables are disjoint. This can be compared with the way
that frames are defined for stack variables in Morgan’s refinement calculus [67]
or even VDM’s keyword oriented definition of read and write variables.

Having attributed the insight about separation to Hoare in Sect. 1.3, it could
be thought that CSL “only” contributes its employment on heap variables. The
current author’s view is that the key insight is actually that CSL makes it
possible to reason about ownership of heap addresses.

One issue with studying or reporting on separation logics for concurrency
is their proliferation—a point made by Matthew Parkinson in the title of [74]
(“The next 700 Separation Logics”). O’Hearn reproduces in [70, Fig. 1] a chart
(generated by Ilya Sergey) of developments that relates many of these logics.
More recently, Parkinson and colleagues have proposed Views [23] as a com-
mon semantic underpinning of such logics. This at least reduces the burden of
establishing the soundness of the many logics.
25 At the MFPS-XXI conference referred to below, this paper’s author suggested that

the adjective “ownership” might describe the logic better than using “separation”.
The link back to Reynolds’ research was too strong for this suggestion to be followed.

66 C. B. Jones

Research related to CSL has led to extremely successful tools that are
applied in industry. Notably, O’Hearn and colleagues formed a company called
“Monoidics” that was then acquired by FaceBook and reports of the impact of
their tools (e.g. [24]) are extremely encouraging.

4 Productive Interactions Between Groups

The title of this paper mentions interactions between research groups and it is
only for simplicity of presentation that the separation is made to appear strong
between Sects. 2 and 3. (Furthermore, the focus in this paper on shared-variable
concurrency sidesteps discussion of many research avenues some of which are
touched on in Sect. 5.2).

Researchers have benefited from many interactions including:

– Both Peter O’Hearn and this paper’s author spoke at MFPS-XXI in honour of
John Reynolds—O’Hearn’s [70] tried to distinguish between CSL as reason-
ing about race freedom and Rely/Guarantee as tackling “racy programs”;26

Jones’ contribution to the proceedings is [47].
– A predominantly UK based Concurrency Working Group has met about once

every nine months for over a decade.
– Several of the prominent researchers involved in CSL(s) have been awarded

prestigious Fellowships by the Royal Academy of Engineering—this paper’s
author has been the official mentor of most of the CSL-related awards and
has found it an invaluable way of keeping in touch. In particular there were
many fruitful visits to Cambridge to see Matthew Parkinson and his doctoral
students.

Specific fruits of these interactions include:

– A friendly rivalry around getting clear specifications and justifications
of Simpson’s four slot implementation of Asynchronous Communication
Mechanisms—see [12,13,51–53].

– Important attempts to bring Rely/Guarantee and CSL ideas into one frame-
work [27,87,88].

– Deny-Guarantee reasoning [25].
– Local Rely/Guarantee reasoning [26].
– RGITL [82] which combines Moszkowski’s [68] Interval Temporal Logic with

Rely/Guarantee ideas.

26 The current author suspects that the negative flavour of the adjective was no acci-
dent. Furthermore it is contradicted by the fact that there are examples where an
early stage of design allows races on abstract variables as a stepping stone to design-
ing a race free representation—see [53].

Reasoning About Shared-Variable Concurrency 67

5 Concluding Comments

This paper has focussed on shared-variable concurrency and has identified key
insights that have shaped 50 years of research in this arena. This is only one
aspect of the broader subject of concurrency and this concluding section pin-
points some of the items that remain to be covered.

5.1 Recent References

This brief sub-section leaves some recent markers for researchers who might be
tempted to extend this study. The work on Views [23] is referenced earlier but its
full impact has yet to be worked out—for example Matthew Windsor’s PhD [90]
looks at direct tool support for Views.

Section 2.3 discusses the use of data abstraction and reification in developing
concurrent programs. A more recent paper [54] makes the point that many cases
of separation can be handled by viewing separation as an abstraction. Two
examples are presented where abstract variables that can be thought of as normal
(disjoint) stack variables that can then be reified onto heap structures with the
obligation that the disjointness must be established on the representation. It
would be fruitful to examine many more examples.

Recent collaboration with Australian colleagues centred around Ian Hayes
has led to a complete reformulation of the Rely/Guarantee approach that empha-
sises its algebraic properties—see [32] and the references therein.

5.2 Further Topics

There are many aspects of research on concurrency that have not been addressed
in the body of this paper. These include:

– Process Algebras such as CSP [37], CCS [66], ACP [9] and the π-calculus
[65,81]—Hoare credits discussions with Dijkstra at the Marktoberdorf sum-
mer schools for some of the inspirations that led to CSP.

– Temporal Logics [28,61,62] including TLA+ [57].
– model checking—see [16].
– considerations of real time.
– Petri net theory [11,71,77,78].

The Leverhulme grant received by this paper’s author will hopefully make it
possible to cover many of these avenues.

Acknowledgements. This paper is a post-conference version of the talk given at the
History of Formal Methods meeting in Porto in October 2019. The author is grateful
to the organisers for the event and the audience for their feedback. Furthermore, Troy
Astarte kindly commented on a draft of this paper. I am extremely grateful for the
perceptive and helpful input received from anonymous referees.

68 C. B. Jones

Past research has been funded by the EPSRC Strata Platform grant and earlier
EPSRC responsive mode funding of the Rely/Guarantee research. On the purely tech-
nical front, I am a Partner Investigator on Ian Hayes’ ARC grant which is closely
related to my concurrency research.

The Leverhulme grant (2019–2020) awarded to this paper’s author will provide
funding to address more topics in the history of concurrency research.

References

1. Aczel, P.H.G.: On an inference rule for parallel composition (1983). (Private com-
munication) Manuscript, Manchester

2. Apt, K., Olderog, E.R.: Fifty years of Hoare’s logic. Formal Aspects Comput. 31(6),
751–807 (2019)

3. Apt, K.R.: Ten years of Hoare’s logic: a survey–part I. ACM Trans. Program. Lang.
Syst. 3(4), 431–483 (1981)

4. Apt, K.R.: Ten years of Hoare’s logic: a survey–part II: nondeterminism. Theoret.
Comput. Sci. 28(1–2), 83–109 (1983)

5. Apt, K.R., Olderog, E.R.: Verification of Sequential and Concurrent Programs.
Texts and Monographs in Computer Science. Springer, New York (1991). https://
doi.org/10.1007/978-1-4757-4376-0

6. Ashcroft, E.A., Manna, Z.: Formalization of properties of parallel programs. Tech-
nical report AIM-110, Stanford Artificial Intelligence Project, February 1970. Pub-
lished as [7]

7. Ashcroft, E.A., Manna, Z.: Formalization of Properties of Parallel Programs. In:
Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 6, pp. 17–41. Edinburgh
University Press, Edinburgh (1971)

8. Ashcroft, E.A.: Proving assertions about parallel programs. J. Comput. Syst. Sci.
10(1), 110–135 (1975)

9. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

10. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Prentice Hall
International Series in Computer Science. Prentice Hall, Upper Saddle River (1990)

11. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical
Computer Science An EATCS Series. Springer, Heidelberg (2001). https://doi.org/
10.1007/978-3-662-04457-5

12. Bornat, R., Amjad, H.: Inter-process buffers in separation logic with rely-guarantee.
Formal Aspects Comput. 22(6), 735–772 (2010). https://doi.org/10.1007/s00165-
009-0141-8

13. Bornat, R., Amjad, H.: Explanation of two non-blocking shared-variable commu-
nication algorithms. Formal Aspects Comput. 25(6), 893–931 (2013)

14. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47–65 (2016)

15. Burton, J.I., Jones, C.B.: Atomicity in system design and execution. J. Univ.
Comput. Sci. 11(5), 634–635 (2005). http://www.jucs.org/jucs 11 5/atomicity in
system design/managing.html

16. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking,
vol. 10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

17. Clint, M., Hoare, C.A.R.: Program proving: jumps and functions. Acta Informatica
1(3), 214–224 (1972)

https://doi.org/10.1007/978-1-4757-4376-0
https://doi.org/10.1007/978-1-4757-4376-0
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/s00165-009-0141-8
https://doi.org/10.1007/s00165-009-0141-8
http://www.jucs.org/jucs_11_5/atomicity_in_system_design/managing.html
http://www.jucs.org/jucs_11_5/atomicity_in_system_design/managing.html
https://doi.org/10.1007/978-3-319-10575-8

Reasoning About Shared-Variable Concurrency 69

18. Coleman, J.W., Jones, C.B.: Atomicity: a unifying concept in computer science. J.
Univ. Comput. Sci. 13(8), 1042–1043 (2007). https://eprints.ncl.ac.uk/file store/
production/161042/DCEAA1B2-B87B-4B2D-8227-31DAE51FC776.pdf

19. Coleman, J.W.: Constructing a tractable reasoning framework upon a fine-grained
structural operational semantics. Ph.D. thesis, Newcastle University School of
Computer Science, January 2008

20. De Roever, W.P., et al.: Concurrency Verification: Introduction to Compositional
and Noncompositional Methods. Cambridge University Press, Cambridge (2001)

21. Dershowitz, N., Waldinger, R.: Zohar Manna (1939–2018). Formal Aspects Com-
put. 31(6), 643–660 (2019)

22. Dingel, J.: Systematic parallel programming. Ph.D. thesis, Carnegie Mellon Uni-
versity (2000). cMU-CS-99-172

23. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 287–300. ACM (2013)

24. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses
at Facebook. CACM 62(8), 62–70 (2019)

25. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9 26

26. Feng, X.: Local rely-guarantee reasoning. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, New York, NY, USA, pp. 315–327. ACM (2009). https://doi.org/10.1145/
1480881.1480922

27. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation
logic and assume-guarantee reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 173–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71316-6 13

28. Fisher, M.: An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley, Chichester (2011)

29. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposium in
Applied Mathematics. Mathematical Aspects of Computer Science, vol. 19, pp.
19–32. American Mathematical Society (1967)

30. Goldstine, H.H., von Neumann, J.: Planning and coding of problems for an elec-
tronic computing instrument. Technical report, Institute of Advanced Studies,
Princeton (1947)

31. de Gouw, S., Rot, J.: Effectively eliminating auxiliaries. In: Ábrahám, E., Bon-
sangue, M., Johnsen, E.B. (eds.) Theory and Practice of Formal Methods. LNCS,
vol. 9660, pp. 226–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30734-3 16

32. Hayes, I.J., Jones, C.B.: A guide to rely/guarantee thinking. In: Bowen, J.P., Liu,
Z., Zhang, Z. (eds.) SETSS 2017. LNCS, vol. 11174, pp. 1–38. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02928-9 1

33. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

34. Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In: Engeler,
E. (ed.) Symposium on Semantics of Algorithmic Languages. LNM, vol. 188, pp.
102–116. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0059696

35. Hoare, C.A.R.: Proof of a program: FIND. Commun. ACM 14(1), 39–45 (1971).
https://doi.org/10.1145/362452.362489

https://eprints.ncl.ac.uk/file_store/production/161042/DCEAA1B2-B87B-4B2D-8227-31DAE51FC776.pdf
https://eprints.ncl.ac.uk/file_store/production/161042/DCEAA1B2-B87B-4B2D-8227-31DAE51FC776.pdf
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-319-30734-3_16
https://doi.org/10.1007/978-3-319-30734-3_16
https://doi.org/10.1007/978-3-030-02928-9_1
https://doi.org/10.1007/BFb0059696
https://doi.org/10.1145/362452.362489

70 C. B. Jones

36. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21, 666–677
(1978)

37. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

38. Hoare, C.A.R., Lauer, P.E.: Consistent and complementary formal theories of
the semantics of programming languages. Acta Informatica 3(2), 135–153 (1974).
https://doi.org/10.1007/BF00264034

39. Hoare, C.A.R.: Towards a theory of parallel programming. In: Hansen, P.B. (ed.)
The Origin of Concurrent Programming, pp. 231–244. Springer, New York (1972).
https://doi.org/10.1007/978-1-4757-3472-0 6

40. Jones, C.B.: Formal development of correct algorithms: an example based on Ear-
ley’s recogniser. SIGPLAN Notices 7(1), 150–169 (1972)

41. Jones, C.B.: Operations and formal development. Technical report TN 9004, IBM
Laboratory, Hursley, September 1972

42. Jones, C.B.: Software Development: A Rigorous Approach. Prentice Hall Interna-
tional, Englewood Cliffs (1980). http://portal.acm.org/citation.cfm?id=539771

43. Jones, C.B.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University, June 1981. Printed as: Programming
Research Group, Technical Monograph 25

44. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, North-Holland, pp. 321–332 (1983)

45. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. Trans. Program. Lang. Syst. 5(4), 596–619 (1983). https://doi.org/10.1145/
69575.69577. https://doi.acm.org/10.1145/69575.69577

46. Jones, C.B.: Accommodating interference in the formal design of concurrent object-
based programs. Formal Methods Syst. Des. 8(2), 105–122 (1996). https://doi.org/
10.1007/BF00122417

47. Jones, C.B.: Splitting atoms safely. Theoret. Comput. Sci. 375(1–3), 109–119
(2007). https://doi.org/10.1016/j.tcs.2006.12.029

48. Jones, C.B., Lomet, D., Romanovsky, A., Weikum, G.: The atomic manifesto. J.
Univ. Comput. Sci. 11(5), 636–650 (2005). https://doi.org/10.3217/jucs-011-05-
0636. http://www.jucs.org/jucs 11 5/the atomic manifesto

49. Jones, C.B.: The early search for tractable ways of reasoning about programs.
IEEE Ann. Hist. Comput. 25(2), 26–49 (2003). https://doi.org/10.1109/MAHC.
2003.1203057. https://doi.ieeecomputer.society.org/10.1109/MAHC.2003.1203057

50. Jones, C.B., Astarte, T.K.: An Exegesis of four formal descriptions of ALGOL 60.
Technical report CS-TR-1498, Newcastle University School of Computer Science,
September 2016

51. Jones, C.B., Hayes, I.J.: Possible values: exploring a concept for concurrency. J.
Log. Algebr. Methods Program. (2016). https://doi.org/10.1016/j.jlamp.2016.01.
002

52. Jones, C.B., Pierce, K.G.: Splitting atoms with rely/guarantee conditions cou-
pled with data reification. In: Börger, E., Butler, M., Bowen, J.P., Boca,
P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 360–377. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87603-8 47. http://www.springerlink.
com/content/d63746175654u503/fulltext.pdf

53. Jones, C.B., Pierce, K.G.: Elucidating concurrent algorithms via lay-
ers of abstraction and reification. Formal Aspects Comput. 23(3), 289–
306 (2011). https://doi.org/10.1007/s00165-010-0156-1. http://www.springerlink.
com/content/e52509k41r31g880/

https://doi.org/10.1007/BF00264034
https://doi.org/10.1007/978-1-4757-3472-0_6
http://portal.acm.org/citation.cfm?id=539771
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.acm.org/10.1145/69575.69577
https://doi.org/10.1007/BF00122417
https://doi.org/10.1007/BF00122417
https://doi.org/10.1016/j.tcs.2006.12.029
https://doi.org/10.3217/jucs-011-05-0636
https://doi.org/10.3217/jucs-011-05-0636
http://www.jucs.org/jucs_11_5/the_atomic_manifesto
https://doi.org/10.1109/MAHC.2003.1203057
https://doi.org/10.1109/MAHC.2003.1203057
https://doi.ieeecomputer.society.org/10.1109/MAHC.2003.1203057
https://doi.org/10.1016/j.jlamp.2016.01.002
https://doi.org/10.1016/j.jlamp.2016.01.002
https://doi.org/10.1007/978-3-540-87603-8_47
http://www.springerlink.com/content/d63746175654u503/fulltext.pdf
http://www.springerlink.com/content/d63746175654u503/fulltext.pdf
https://doi.org/10.1007/s00165-010-0156-1
http://www.springerlink.com/content/e52509k41r31g880/
http://www.springerlink.com/content/e52509k41r31g880/

Reasoning About Shared-Variable Concurrency 71

54. Jones, C.B., Yatapanage, N.: Reasoning about separation using abstraction and
reification. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp.
3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0 1

55. Jones, C.B., Yatapanage, N.: Investigating the limits of rely/guarantee relations
based on a concurrent garbage collector example. Formal Aspects Comput. 31(3),
353–374 (2019). https://doi.org/10.1007/s00165-019-00482-3. Online April 2018

56. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 25

57. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

58. Liang, H.: Refinement verification of concurrent programs and its applications.
Ph.D. thesis, USTC, China (2014)

59. Lucas, P., Walk, K.: On the formal description of PL/I. Ann. Rev. Autom. Pro-
gram. 6, 105–182 (1969)

60. Magee, J., Kramer, J.: State Models and Java Programs. Wiley, Hoboken (1999)
61. Manna, Z., Pnueli, A.: Temporal Logic of Reactive Systems. Springer, New York

(1991). https://doi.org/10.1007/978-1-4612-0931-7
62. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer, New

York (1995). https://doi.org/10.1007/978-1-4612-4222-2
63. Manna, Z.: The correctness of nondeterministic programs. Artif. Intell. 1(1–2),

1–26 (1970)
64. Middelburg, C.A.: Syntax and semantics of VVSL: a language for structured VDM

specifications. Ph.D. thesis, PTT Research, Leidschendam, Department of Applied
Computer Science, September 1990

65. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inf. Comput.
100, 1–77 (1992)

66. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle Rive
(1989)

67. Morgan, C.: Programming from Specifications. Prentice-Hall, Upper Saddle River
(1990)

68. Moszkowski, B.: Executing temporal logic programs. In: Brookes, S.D., Roscoe,
A.W., Winskel, G. (eds.) CONCURRENCY 1984. LNCS, vol. 197, pp. 111–130.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15670-4 6

69. Naur, P.: Proof of algorithms by general snapshots. BIT Numer. Math. 6(4), 310–
316 (1966)

70. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.
375(1–3), 271–307 (2007)

71. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship, vol. 23. Cambridge University Press, Cambridge (2005)

72. Owicki, S.S.: Axiomatic proof techniques for parallel programs. Ph.D. thesis,
Department of Computer Science, Cornell University (1975). Published as tech-
nical report 75–251

73. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6, 319–340 (1976)

74. Parkinson, M.: The next 700 separation logics. In: Leavens, G.T., O’Hearn, P.,
Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 169–182. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15057-9 12

https://doi.org/10.1007/978-3-319-22969-0_1
https://doi.org/10.1007/s00165-019-00482-3
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/3-540-15670-4_6
https://doi.org/10.1007/978-3-642-15057-9_12

72 C. B. Jones

75. Pierce, K.: Enhancing the useability of rely-guaranteee conditions for atomicity
refinement. Ph.D. thesis, Newcastle University (2009)

76. Prensa Nieto, L.: Verification of parallel programs with the Owicki-Gries and rely-
guarantee methods in Isabelle/HOL. Ph.D. thesis, Institut für Informatic der Tech-
nischen Universität München (2001)

77. Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-69968-9

78. Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
33278-4

79. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of 17th LICS, pp. 55–74. IEEE (2002)

80. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and Their Comparison. Cambridge University Press, Cambridge (1999)

81. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

82. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: a temporal logic
framework for compositional reasoning about interleaved programs. Ann. Math.
Artif. Intell. 71(1–3), 131–174 (2014)

83. Schneider, F.B.: On Concurrent Programming. Springer, New York (1997). https://
doi.org/10.1007/978-1-4612-1830-2

84. Steel, T.B.: Formal Language Description Languages for Computer Programming.
North-Holland, Vienna (1966)

85. Stølen, K.: Development of parallel programs on shared data-structures. Ph.D.
thesis, Manchester University (1990). Published as technical report UMCS-91-1-1

86. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67–69. University Mathematical Laboratory,
Cambridge, June 1949

87. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge (2007)

88. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

89. van Wijngaarden, A.: Numerical analysis as an independent science. BIT Numer.
Math. 6(1), 66–81 (1966)

90. Windsor, M.: Starling: a framework for automated concurrency verification. Ph.D.
thesis, University of York (2019)

91. Xu, Q.: A theory of state-based parallel programming. Ph.D. thesis, Oxford Uni-
versity (1992)

https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-1-4612-1830-2
https://doi.org/10.1007/978-1-4612-1830-2
https://doi.org/10.1007/978-3-540-74407-8_18

Specification with Class: A Brief History
of Object-Z

Graeme Smith1(B) and David J. Duke2

1 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

smith@itee.uq.edu.au
2 School of Computing, University of Leeds, Leeds, UK

duke.j.david@gmail.com

Abstract. The end of the 1980s saw a growing interest in object orienta-
tion as both a design and programming methodology with the advent of
programming languages like C++ and Eiffel. The trend was taken up by
some in the formal methods community, including a team of researchers
in Australia. Their contribution was a formal specification language,
Object-Z, which had immediate industrial impact, gained rapid inter-
national recognition, and then two decades later began to fade, along
with some of its contemporaries, from the formal methods scene. This
paper details the rise and fall of Object-Z from the perspective of two of
its original developers.

1 Introduction

The formal specification language Object-Z [20,30,34,78] grew from an alliance
of two trends in computer science in the late 1980s. The first was an increasing
interest in model-oriented formal specification languages as a means to specify
important properties, resolve ambiguities and detect design errors early in sys-
tem development. Unlike algebraic languages such as Clear [18] and OBJ [38],
model-oriented languages provided explicit models of systems. This tended to
result in specifications which were easier to read and understand; particularly
as the languages built on the standard mathematics of set theory and predicate
logic that were part of the vocabulary of most programmers. Some of these lan-
guages were state-based , including an explicit state as part of the model; notable
examples include VDM [54], Z [83] and B [1]. Others were event-based , describing
transitions, or events, without explicit reference to a state; in particular the pro-
cess algebras CSP [46], CCS [68] and ACP [11]. While this interest mainly arose
in academia, some industry sectors also followed the trend. In particular, the
state-based languages SDL [10] and Estelle [49], and the event-based language
LOTOS [14], were standardised for use in the telecommunications industry; an
industry grappling at the time with the increasing sophistication of its protocols
and services.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 73–86, 2020.
https://doi.org/10.1007/978-3-030-54997-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_4

74 G. Smith and D. J. Duke

The second trend was the rise of object orientation as a dominant pro-
gramming paradigm. Object orientation originated in the 1960s with the pro-
gramming language Simula 67 [12], but re-emerged in the programming lan-
guage community in the 1980s following the advent of Smalltalk-80 [39]. Several
object-oriented languages were developed including the C extensions, C++ [86]
and Objective-C [21], and the Lisp extensions, LOOPS [13] and Flavors [19].
There were also new languages developed following the object-oriented paradigm
including FOOPS [37], POOL [6] and Eiffel [66]. This trend was driven by the
need to be able to handle complexity in large-scale software systems: object ori-
entation offered a modular approach to programming where components, i.e.,
classes, could be understood in isolation and reused to build other classes, and
systems understood in terms of interactions between instances of classes, i.e.,
objects.

Scalability was also a major concern for the formal methods community in
the late 1980s. While there had been some industrial success stories, such as
the formalisation of parts of IBM CICS in Z [43], the inability to cope with the
complexities of large-scale systems was recognised as a barrier to wider adoption
of formal methods: the VDM community, for example, explored modules [9], as
did the RAISE project [70]. Hence, a natural response to the aforementioned
trends was the incorporation of object orientation in model-oriented specifica-
tion languages. This was led by those working with the standardised languages
of the telecommunications industry. An object-oriented approach to specification
in SDL was published in 1987 [69], and object-oriented approaches for Estelle
and LOTOS in 1988 [63,75]. The LOTOS approach showed that process alge-
bras offered an intuitive model of the behaviour of objects, and object-oriented
notions such as subtyping could be captured using the extension relation defined
for LOTOS by Brinksma et al. [16].

At the same time as these developments, Stephen Schuman and David Pitt
of the University of Surrey developed a specification language that captured
a more intuitive notion of a class by more directly capturing the structure of
a class in an object-oriented programming language [74]. Their language was
a variant of Z in which classes are specified by a single state schema and an
associated set of operation schemas related to the state schema by their headers:
the header of each operation schema was prefixed by the state schema’s name.
This relationship meant that there was no need to explicitly include the state
schema’s variables in both a pre- and post-state form in each operation, as is
done in Z. Semantically, a class was represented by a set of operation histories.
This oft-overlooked work was a precursor of things to come.

This paper recounts the rise and fall of Object-Z from the point of view of
two of its original developers. It reflects on factors that led to its initial success,
and what later caused its loss in popularity. We begin in Sect. 2 by describing the
setting in which Object-Z was conceived, a collaboration between the University
of Queensland and the Overseas Telecommunication Commission of Australia.
In Sect. 3, we detail the initial development of Object-Z, along with the initial
successes in both academia and industry. In Sect. 4, we step back and look at

Specification with Class: A Brief History of Object-Z 75

the intentional context in which the research was done. We discuss Object-Z’s
relative success, and reflect on the factors that led to this. In Sect. 5, we examine
how Object-Z adapted to meet additional challenges, and to contribute to a
change in focus of the international research community. We also conjecture that
a further change of focus, to which Object-Z was unable to adapt, ultimately led
to it being left behind. Communities of practice are groups of people involved
in the development of a particular body of knowledge. In Sect. 6, we use this
concept to compare Object-Z with the similar, but more popular, notations Z
and B. In Sect. 7, we conclude with a brief summary of Object-Z’s contributions
to the formal methods discipline.

2 A Suggestion from Industry

The Z notation, on which Object-Z was based, was developed by the Program-
ming Research Group at the Oxford University Computing Laboratory from
initial ideas of Jean-Raymond Abrial [3]. One of those involved in the work,
driving Z’s application to CICS and editing the first book on Z [45], was the
Australian computer scientist Ian Hayes. Hayes returned to Australia in 1985
joining the Department of Computer Science at the University of Queensland
(UQ), primarily to work with Gordon Rose who had become interested in Z
while visiting Oxford on sabbatical the previous year. In 1986, Rose and Hayes
set up a collaboration with the Overseas Telecommunications Commission (later
Corporation) of Australia (OTC) to improve the state of the art in the use of
formal methods in the telecommunications industry. The focus of their work
was on using Z. Roger Duke, a National Research Fellow at UQ, joined the
collaboration, later taking on a leading role.

The funding from OTC supported two PhD students, Paul King (commenc-
ing in 1987) and Anthony Lee (commencing in 1988), and a research assistant,
Graeme Smith (commencing in 1988). The initial task was to compare the stan-
dardised languages, SDL, Estelle, and LOTOS, with other formalisms. As part
of this work, various communications protocols and services were specified using
Z [29,31,44,72,76]. This work was well-accepted by OTC, who agreed that Z
was suitable for specifying communications systems. The second task, beginning
in mid-1988, was to apply Z to a full-scale industrial design provided by OTC.
The chosen system was a fault-tolerant communications processor (FTCP) being
implemented by OTC as a basis for more flexible and reliable telecommunications
services. The system comprised a number of network-layer processors connected
to a shared memory which provided fault-tolerant storage, in case one of the
processors went down, as well as mutual exclusion and synchronisation for the
processors. In particular, the system ran a custom cache coherence protocol, a
scaled-down version of which is specified in [80].

Smith took on the role of producing a Z specification from OTC’s design
documents which were mostly in English with accompanying tables and dia-
grams, and comprised both high-level functional detail, e.g., invariant properties
of the shared memory, and low-level implementation detail, such as bit allocation.

76 G. Smith and D. J. Duke

To resolve ambiguities and avoid misunderstandings required an extended visit
to OTC (which was in Sydney, over 900 km from UQ), followed by email com-
munication and occasional face-to-face meetings with OTC software engineers.
There were no particular technical problems in producing the specification, but
even at a high-level of abstraction, the specification started getting large – 37
schemas – and the size was growing considerably as more details of the design
were added. The OTC engineers were finding the specification, which was con-
siderably larger than those they had been previously presented with, difficult
to navigate and understand. This issue was discussed during a visit by Rose to
OTC in late 1988. One of the engineers familiar with C++, the language they
were using to implement the FTCP, asked why the Z specification could not
be structured like a C++ program. This comment, from a software engineer at
OTC, was the seed from which Object-Z was to grow.

3 First Steps

When Rose returned to UQ following the OTC visit, he gathered Smith and Duke
in front of a whiteboard and presented his idea for adding a notion of a class
to Z: a large Z-like schema in which a state, initial state and several operation
schemas were nested. That afternoon, Smith applied the idea to a simple case
study, the alternating bit protocol, which he and Duke had previously specified
in Z [35]. Specifying the classes for the protocol was straightforward; there was
a transmitter, a receiver and two lossy channels, one for messages and one for
acknowledgements. The challenge was how to combine the classes to specify the
system. Being more familiar with LOTOS than object orientation at the time,
Smith specified a system class in which operations of the various component
classes were combined using LOTOS’s parallel operator.

The conflation of classes and processes in this first specification was one
to which Smith, along with other members of the international research com-
munity, would return almost a decade later (see Sect. 5). For the immediate
needs of OTC, however, a more object-oriented approach was required. The pro-
gramming languages C++ and Eiffel were examined for inspiration, and it was
Bertrand Meyer’s excellent book, Object-Oriented Software Construction [66],
which became the main reference for further development of the notation into
Object-Z.

This development occurred over the following year with help from two new-
comers: David Carrington joined the group after taking on an academic position
at UQ, and Duke took on a PhD student David Duke (no relation) to develop
a semantics for the new notation. After the name OZ – a colloquialism for Aus-
tralia which also appeared in the domain of Australian email addresses at the
time – was rejected as not being serious enough, the name Object-Z was adopted.
Work progressed in parallel on the syntax, the semantics and the application of
the new notation to the FTCP. The close link with the requirements of the OTC
engineers encouraged a conservative approach to language design. Throughout
Object-Z’s design, the team at UQ were keen to relate specification constructs

Specification with Class: A Brief History of Object-Z 77

to the emerging practice of object-oriented programming, leading to extensive
agonising over (then) topical issues such as co- vs contra-variance in subtyping
(see, for example, the work of Roger Duke’s PhD student Cecily Bailes [7]), and
how best to support multiple inheritance. This concentrated effort resulted in a
number of rapid successes.

Papers on Object-Z were published in two major international conferences
on formal methods (their presentation aided by the new LaTeX style file, oz.sty,
developed by Paul King [58]). The first paper on Object-Z was published in
FORTE ’89 [20]. This paper introduced the new specification language using
case studies to illustrate object instantiation, inheritance and polymorphism.
Roger Duke presented the paper in Vancouver in December, 1989. This was
followed by a paper on a history semantics of classes for Object-Z in VDM ’90
[28].1 This paper built on the Z semantics in J.M. Spivey’s Understanding Z [82].
It was presented by David Duke in Kiel in April, 1990.

As well as these academic successes, Object-Z was also well received by the
engineers at OTC [33]. When the specification of the FTCP was completed,
Roger Duke and Smith attempted a proof of cache coherence which was regarded
as the critical property for reliable, fault-tolerant behaviour. A proof carried
out over several days on the whiteboard in Roger Duke’s office revealed three
errors in the cache coherence protocol developed by OTC. Without the Object-Z
specification and proof, these errors would not have been discovered until much
later in the development, if at all. This validation of the effectiveness of Object-
Z led OTC to continue using it internally on other projects [73]. OTC also
continued to fund UQ’s research on Object-Z, in the form of a PhD scholarship
for Smith, until 1992 when the Australian government decided to merge it with
Telecom Australia, and OTC ceased to exist.

4 Riding the Wave

Object-Z’s publication in 1989 turned out to be very timely. Four other
approaches to object-oriented formal specification based on Z were published
in 1990 – three in the 1990 Z User’s Meeting [59,65,88] and one in VDM ’90
[42] – and two more the following year in ECOOP ’91 [4,22]. A good survey of
the object-oriented varieties of Z from this time was provided by Susan Stepney,
Rosalind Barden and David Cooper [84], a summary of which appears in [85].
Another was provided by Kevin Lano and Howard Haughton [60].

Of all these approaches, however, it was Object-Z that grew most in pop-
ularity over the next decade. There was interest from individuals in Bellcore
and Motorola in the United States where it was used internally on projects,
it was considered for use in the ODP (Open Distributed Processing) standard,
and endorsed for use in the PREMO (Presentation Environment for Multimedia
Objects) standard in 1994 [27]. There was also much interest from universi-
ties and research institutes worldwide where it was used in both teaching and
1 The VDM series of conferences, of which VDM ’90 was a part, transformed into the

FME series (in 1993) and later (in 2005) the current FM conference series.

78 G. Smith and D. J. Duke

research. By the year 2000, two books on Object-Z were published. Smith, who
had become the default contact for questions about Object-Z, decided a lan-
guage definition was needed and produced The Object-Z Specification Language
[78] modelled on J.M. Spivey’s The Z Notation [83]. Roger Duke and Rose, who
had been teaching Object-Z at UQ for almost a decade, produced a textbook
based on their teaching material entitled Formal Object-Oriented Specification
using Object-Z [32]. These books were followed in 2001 by a book by John Der-
rick and Eerke Boiten of the University of Kent at Canterbury, Refinement in Z
and Object-Z [23], covering their research on refinement for Object-Z; research
done independently of its original developers.

We can only speculate about what pushed Object-Z ahead of its peers. One
possibility is that, designed to suit industry needs, Object-Z was a practical lan-
guage which was easy to use and understand. The notion of an explicit class
construct, Rose’s original idea, was to aid OTC’s software engineers who had
trouble navigating pages of Z schemas. Other approaches to object-oriented Z
did not have such an explicit notion of class. For example, Hall [42] presented
conventions for using standard Z in an object-oriented style, and Schumann and
Pitt [74], as mentioned in Sect. 1, only approximated the notion of a class with
naming conventions. Whysall and McDermid [88], on the other hand, explicitly
represented classes by accompanying a Z specification with an algebraic specifi-
cation of the class’s behaviour. This was aimed, however, at aiding the process
of refinement rather than readability. While their approach achieved this aim,
the overall specifications were arguably more complex to read and understand.

Another reason may be that it remained syntactically and semantically close
to the well-accepted Z language on which it was based. Lano’s Z++ [59], for
example, adopted a more ASCII-based syntax. Also, Schuman and Pitt [74]
adopted a notion of historical inference which meant each operation made
the minimal change allowed by its specification. This semantic difference to Z,
removed the ability to use nondeterminism for abstraction.

These reasons suggest that Object-Z’s relative success reflected modest ambi-
tion – this may well be true. The UQ team did not set out to provide a formal
foundation for object-oriented development, but to take ideas that were found
useful in one setting and ask whether, and how, they could be reconstructed
in a different setting. A final reason may simply have been that the language
was kept alive by continuing research (see Sect. 5). This was not the case for
the approaches of Hall, Schuman and Pitt, and Whysall and McDermid, nor for
those of Cusack [22] and Alencar and Goguen [4]. While research did continue
on Z++ and Meira and Cavalcanti’s MooZ [65], it was not to the same extent
as that on Object-Z which, at the end of 1992, was about to undergo a major
transformation.

5 Changing Times

One of the original aims of Object-Z was to facilitate the refinement of formal
specifications into object-oriented programs. Towards the end of 1992, Rose and

Specification with Class: A Brief History of Object-Z 79

Roger Duke decided that it was time to face this challenge. Their idea was to give
Object-Z a reference semantics. Until that time, Object-Z had a value semantics
in which classes were denoted by a set of values; each value representing an
object at some stage of its evolution. The reference semantics would instead
denote Object-Z classes by a set of references, or pointers, to values representing
its objects. Semantically, this would be a major departure from Z. It would allow
object aliasing, where more than one variable could reference (and hence share)
a given object. It would allow an operation of an object to change, not just its
own state, but that of a referenced object. Ultimately, however, it would enable
specifications to be directly mapped to object-oriented programs.

Smith, who had just completed his PhD, argued that this would hinder the
abstract specification of systems and hence unnecessarily complicate reasoning
and refinement. Weekly meetings at UQ became animated as arguments for and
against a reference semantics were vigorously discussed.

At the beginning of 1993, Smith left UQ for a post-doctoral position in
Europe. During a workshop at ECOOP ’93 in Kaiserslautern, he discussed the
issue with Alan Wills who had developed an object-oriented version of VDM
called Fresco [89]. Together they decided that it would be desirable to refine
from a value-based specification to a reference-based one, which could then be
further refined to object-oriented code. However, almost ten years passed before
Smith eventually published this idea [79].

Meanwhile at UQ, Rose worked with a research assistant, Wendy Johnston,
on manually converting Object-Z to C++ [53], and took on a final-year under-
graduate student, Alena Griffiths, to develop a reference semantics for Object-Z.
Griffiths, continued this work in her PhD [41] which she began in 1994, and
additionally investigated refinement between Object-Z and Eiffel [40]. Another
PhD student, Jin Song Dong, who was supervised by Roger Duke, used Griffith’s
semantics to add self and mutually recursive operations and classes to Object-Z
[25]. Dong’s work, which also included a mechanism called containment for
explicitly restricting object aliasing [26], constituted the final changes to be
made to the language.

By the late 1990s, the formal methods community’s focus on specification
languages was being replaced by a focus on language integration – combining
different specification languages to exploit the strengths of each in a single spec-
ification. Notable research in this direction included Helen Treharne and Steve
Schneider’s work on CSP‖B [87], and Tony Hoare and He Jifeng’s Unifying The-
ories of Programming [48], which was the basis of Jim Woodcock’s and Ana
Cavalcanti’s work on the Circus specification language [90].

Object-Z was particularly suited to the trend. In 1996 and 1997, Smith
worked at the Technical University of Berlin on an integration of Object-Z and
CSP [77] – returning to the idea that a class could be viewed like a process to
integrate the languages semantically. At the same time, 400 km away in Old-
enburg, Clemens Fischer was developing his own integration of Object-Z and
CSP, CSP-OZ [36]. Another 700 km away, across the English channel in Canter-
bury, John Derrick, Eerke Boiten and others were looking at how to integrate

80 G. Smith and D. J. Duke

Object-Z and LOTOS [24]. At the 1st International Conference on Integrated
Formal Methods (IFM ’99) held in York in 1999, six out of the 22 accepted
papers used Object-Z. Work on these and other integrations, including several
with UML [5,56,57,67,71], fuelled research on Object-Z over the next five years.
Then the formal methods community’s focus was replaced by another one to
which Object-Z was less suited.

In the early 2000s, tool support for analysis of formal specifications became
increasingly important. While it had always been considered a necessity for the
wider adoption of formal methods, advances in technology meant that it could
no longer be ignored. This was perhaps underlined by Tony Hoare’s Verifying
Compiler Grand Challenge in 2003 [47]. At that time, tool support for Object-Z
was minimal; essentially just a type checker developed by Wendy Johnston called
Wizard [52].

In response to this new direction, Smith investigated encoding Object-Z in
both the CSP model checker FDR [55] and the theorem prover Isabelle/HOL
[81]. However, these approaches could not compete with new developments for
highly automated static verification of object-oriented programs using specifica-
tion languages like JML [17] and Spec# [8], which were directly embedded in
code. By 2007, when Smith’s PhD student, Tim McComb, completed his thesis
on refactoring Object-Z specifications [64], active research on the language had
effectively ceased.

6 Communities of Practice

A community of practice (CoP) is a collection of people developing a body of
knowledge for a particular professional domain. The concept first appeared in
a book by cognitive anthropologist Jean Lave and educational theorist Etienne
Wenger in 1991 [61]. A CoP can be seen as moving through five stages as it
develops:

1. Potential – a common interest is shared among a group of individuals
2. Coalescing – the group establishes goals based on an understanding of existing

knowledge in the field
3. Maturing – the initial goals are realised, the group’s context is widened, and

a body of knowledge (BoK) is created
4. Stewardship – the group’s momentum is maintained, and the knowledge it is

developing is kept relevant and up-to-date
5. Transformation – the group takes on a new form, or comes to the end of its

useful lifetime

The CoP concept has been used to discuss the evolution of Z [15]. It is
interesting to use it to compare Object-Z with other specification languages
of the time. Table 1 shows the stage of evolution reached by Object-Z and its
contemporary languages Z and B.

Object-Z arose from a shared interest between researchers at UQ and soft-
ware engineers at OTC in exploring the marriage of object orientation and formal

Specification with Class: A Brief History of Object-Z 81

Table 1. CoP evolution for Object-Z, Z and B

Object-Z Z B

Potential Yes Yes Yes

Coalescing Yes Yes Yes

Maturing Yes Yes Yes

Stewardship No Yes Yes

Transformation No No Yes

specification. After the initial language was defined and applied in industry, it
developed further and eventually became useful for integrating different speci-
fication paradigms (state-based, event-based, and diagrammatic techniques like
UML). The books on Object-Z constituted its body of knowledge. Hence, we see
Object-Z’s CoP as having reached the “Maturing” stage. However, interest in
Object-Z was not maintained once it reached this level of maturity, mainly (as
mentioned in Sect. 5) due to its lack of tool support for analysis.

In contrast, interest in Z was maintained after it reached maturity in the
late 1980s by the Z User Group, formed in 1992, which ran regular conferences,
and the Z Standardisation Committee which developed an ISO standard for
the language [50]. Hence, its CoP reached the “Stewardship” stage. However,
like Object-Z there was a distinct drop in interest in Z in the early 2000s. This
can again be linked to a lack of tools for analysis. Andrew Martin of Oxford
University started a Community Z Tools initiative in 2001, but the resulting
effort, led largely by Mark Utting of the University of Waikato, did not extend
far beyond syntax and type checking [62]. Both Z and Object-Z were designed
to be expressive languages, to help users write specifications which were easy to
read and understand. Part of the price of such expressiveness was that it was
difficult to develop sophisticated analysis tools for them. Furthermore, many of
those involved in the development of both languages were theoreticians who were
less inclined to work on support tools.

B, on the other hand, was a language that was designed from the start with
tool support in mind. It also underwent a major transformation in the early 2000s
into Event-B [2] (its CoP reaching the “Transformation” stage). This spurred a
new wave of research on both language issues and tools, and has seen Event-B,
and B, maintain their relevance to this day.

7 Conclusion

Although interest in Z has waned since the start of the century, this does not
negate its impact and importance. The exploration of state-based specification
carried out by research on the language played a major influence on current
tool-supported specification languages such as Alloy [51] and Event-B (through
B). Similarly, Object-Z has had some influence: for example, Daniel Jackson, the

82 G. Smith and D. J. Duke

developer of Alloy, consulted Graeme Smith when developing its object-oriented
features. Object-Z also allowed us, the formal methods community, to examine
and gain a better understanding of the relationship between formal specification
and object-oriented programming, between state-based and event-based specifi-
cation paradigms, and between formal and diagrammatic techniques for commu-
nicating and understanding object-oriented designs. But being a language, like
Z, designed for expressiveness rather than tool support, it has since accepted its
place in the history of formal methods and politely stepped back to make way
for the next generation of formal techniques.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

3. Abrial, J.R., Schuman, S., Meyer, B.: Specification language. In: McKeag, R., Mac-
naghten, A. (eds.) On the Construction of Programs: An Advanced Course. Cam-
bridge University Press, New York (1980)

4. Alencar, A.J., Goguen, J.A.: OOZE: an object oriented Z environment. In: Amer-
ica, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 180–199. Springer, Heidelberg
(1991). https://doi.org/10.1007/BFb0057022

5. Amálio, N., Polack, F.: Comparison of formalisation approaches of UML class
constructs in Z and Object-Z. In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.)
ZB 2003. LNCS, vol. 2651, pp. 339–358. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44880-2 21

6. America, P.: Issues in the design of a parallel object-oriented language. Formal
Aspects Comput. 1(4), 366–411 (1989)

7. Bailes, C., Duke, R.: The ecology of class refinement. In: Morris, J.M., Shaw, R.C.
(eds.) 4th Refinement Workshop, pp. 185–196. Springer, London (1991). https://
doi.org/10.1007/978-1-4471-3756-6 10

8. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

9. Bear, S.: Structuring for the VDM specification language. In: Bloomfield, R.E.,
Marshall, L.S., Jones, R.B. (eds.) VDM 1988. LNCS, vol. 328, pp. 2–25. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-50214-9 2

10. Belina, F., Hogrefe, D.: The CCITT-specification and description language SDL.
Comput. Netw. ISDN Syst. 16(4), 311–341 (1989)

11. Bergstra, J., Klop, J.: Process algebra for synchronous communication. Inf. Control
60, 109–137 (1984)

12. Birtwistle, G., Dahl, O.J., Myhrhaug, B., Nygaard, K.: Simula Begin. Auerbach,
Philadelphia (1973)

13. Bobrow, D., Stefik, M.: LOOPS: an Object-Oriented Programming System for
Interlisp. Technical report, Xerox PARC (1982)

14. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. ISDN Syst. 14, 25–59 (1987)

https://doi.org/10.1007/BFb0057022
https://doi.org/10.1007/3-540-44880-2_21
https://doi.org/10.1007/3-540-44880-2_21
https://doi.org/10.1007/978-1-4471-3756-6_10
https://doi.org/10.1007/978-1-4471-3756-6_10
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/3-540-50214-9_2

Specification with Class: A Brief History of Object-Z 83

15. Bowen, J.P., Reeves, S.: From a community of practice to a body of knowledge:
a case study of the formal methods community. In: Butler, M., Schulte, W. (eds.)
FM 2011. LNCS, vol. 6664, pp. 308–322. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21437-0 24

16. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implemen-
tations and their tests. In: Sarikaya, B., von Bochmann, G. (eds.) Protocol Speci-
fication, Testing, and Verification, VI. North-Holland (1987)

17. Burdy, L., et al.: An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf. (STTT) 7(3), 212–232 (2005)

18. Burstall, R., Goguen, J.: An informal introduction to specifications using Clear. In:
Boyer, R., Moore, J. (eds.) The Correctness Problem in Computer Science, chap.
4. International Lecture Series in Computer Science. Academic Press (1981)

19. Cannon, H.: Flavors. Technical report, MIT Artificial Intelligence Laboratory
(1980)

20. Carrington, D., et al.: Object-Z: an object-oriented extension to Z. In: Vuong,
S. (ed.) Formal Description Techniques, II (FORTE 1989), pp. 281–296. North-
Holland (1989)

21. Cox, B.: Object-Oriented Programming: An Evolutionary Approach. Addison-
Wesley, Reading (1986)

22. Cusack, E.: Inheritance in object oriented Z. In: America, P. (ed.) ECOOP 1991.
LNCS, vol. 512, pp. 167–179. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0057021

23. Derrick, J., Boiten, E.: Refinement in Z and Object-Z. Foundations and Advanced
Applications. Springer, London (2001)

24. Derrick, J., Boiten, E., Bowman, H., Steen, M.: Translating LOTOS to Object-Z.
In: 2nd BCS-FACS Northern Formal Methods Workshop. Workshops in Comput-
ing. Springer (1997)

25. Dong, J.S., Duke, R., Rose, G.: An object-oriented denotational semantics of a
small programming language. Object Oriented Syst. 4, 29–52 (1997)

26. Dong, J.S., Duke, R.: The geometry of object containment. Object-Oriented Syst.
2(1), 41–63 (1995)

27. Duce, D.A., Duke, D.J., ten Hagen, P.J.W., Herman, I., Reynolds, G.J.: Formal
methods in the development of PREMO. Comput. Stand. Interf. 17(5–6), 491–509
(1995)

28. Duke, D., Duke, R.: Towards a semantics for Object-Z. In: Bjørner, D., Hoare,
C.A.R., Langmaack, H. (eds.) VDM 1990. LNCS, vol. 428, pp. 244–261. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52513-0 14

29. Duke, R., Hayes, I.J., King, P., Rose, G.: Protocol specification and verification
using Z. In: Aggarwal, S., Sabnani, K. (eds.) Protocol Specification, Testing, and
Verification, VIII, pp. 33–46. North-Holland (1988)

30. Duke, R., King, P., Rose, G., Smith, G.: The Object-Z specification language.
In: Korson, T., Vaishnavi, V., Meyer, B. (eds.) Technology of Object-Oriented
Languages and Systems: TOOLS 5, pp. 465–483. Prentice Hall International (1991)

31. Duke, R., Rose, G.: Specifying a sliding-window protocol. In: Proceedings 11th Aus-
tralian Computer Science Conference (ACSC-11), pp. 352–361. Australian Com-
puter Science Association (1988)

32. Duke, R., Rose, G.: Formal Object-Oriented Specification Using Object-Z. Macmil-
lan, Basingstoke (2000)

33. Duke, R., Rose, G., Smith, G.: Transferring formal techniques to industry: a case
study. In: Formal Description Techniques (FORTE 1990), pp. 279–286. North-
Holland (1990)

https://doi.org/10.1007/978-3-642-21437-0_24
https://doi.org/10.1007/978-3-642-21437-0_24
https://doi.org/10.1007/BFb0057021
https://doi.org/10.1007/BFb0057021
https://doi.org/10.1007/3-540-52513-0_14

84 G. Smith and D. J. Duke

34. Duke, R., Rose, G., Smith, G.: Object-Z: a specification language advocated for
the description of standards. Comput. Stand. Interf. 17(5–6), 511–533 (1995)

35. Duke, R., Smith, G.: Temporal logic and Z specifications. In: Proceedings 12th
Australian Computer Science Conference (ACSC-12), Appendix, pp. 32–42. Aus-
tralian Computer Science Association (1989)

36. Fischer, C.: CSP-OZ - a combination of CSP and Object-Z. In: Bowman, H.,
Derrick, J. (eds.) Formal Methods for Open Object-Based Distributed Systems
(FMOODS 1997), pp. 423–438. Chapman & Hall (1997)

37. Goguen, J., Meseguer, J.: Unifying functional, object-oriented, and relational pro-
gramming with logical semantics. In: Shriver, B., Wegner, P. (eds.) Research Direc-
tions in Object-Oriented Programming, pp. 417–477. MIT Press (1987)

38. Goguen, J., Tardo, J.: An introduction to OBJ: a language for writing and testing
software specifications. In: Gehani, N., McGettrick, A. (eds.) Software Specification
Techniques, pp. 391–420. Addison-Wesley (1985)

39. Goldberg, A., Robson, D.: Smalltalk 80: The Language and its Implementation.
Addison-Wesley, Reading (1983)

40. Griffiths, A.: From Object-Z to Eiffel: a rigorous development method. In: Min-
gins, C., Duke, R., Meyer, B. (eds.) Technology of Object-Oriented Languages and
Systems (TOOLS 18), pp. 293–308. Prentice Hall (1995)

41. Griffiths, A.: An extended semantic foundation for Object-Z. In: 1996 Asia-Pacific
Software Engineering Conference (APSEC 1996), pp. 194–207. IEEE Computer
Society Press (1996)

42. Hall, A.: Using Z as a specification calculus for object-oriented systems. In: Bjørner,
D., Hoare, C.A.R., Langmaack, H. (eds.) VDM 1990. LNCS, vol. 428, pp. 290–318.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52513-0 16

43. Hayes, I.J.: Applying formal specification to software development in industry.
IEEE Trans. Softw. Eng. SE 11(2), 169–178 (1985)

44. Hayes, I.J., Mowbray, M., Rose, G.: Signalling System No. 7: the network layer. In:
Aggarwal, S., Sabnani, K. (eds.) Protocol Specification, Testing, and Verification,
IX. North-Holland (1989)

45. Hayes, I.J. (ed.): Specification Case Studies. Series in Computer Science, 2nd edn.
Prentice Hall International, London (1993)

46. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science.
Prentice Hall International, London (1985)

47. Hoare, T.: The verifying compiler: a grand challenge for computing research. In:
Böszörményi, L., Schojer, P. (eds.) JMLC 2003. LNCS, vol. 2789, pp. 25–35.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45213-3 4

48. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Computer
Science. Prentice Hall International, Englewood Cliffs (1998)

49. ISO TC97/SC21: Estelle - A Formal Description Technique Based on an Extended
State Transition Model (1988). International Standard 9074

50. ISO/IEC 13568:2002: Information Technology - Z Formal Specification Notation-
Syntax, Type System and Semantics (2002)

51. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press,
Cambridge (2006). Revised 2011

52. Johnston, W.: A Type Checker for Object-Z. Technical report 96–24, Software
Verification Research Centre, The University of Queensland (1996)

53. Johnston, W., Rose, G.: Guidelines for the Manual Conversion of Object-Z to C++.
Technical report 93–14, Software Verification Research Centre, The University of
Queensland (1993)

https://doi.org/10.1007/3-540-52513-0_16
https://doi.org/10.1007/978-3-540-45213-3_4

Specification with Class: A Brief History of Object-Z 85

54. Jones, C.: Systematic Software Development Using VDM. Series in Computer Sci-
ence. Prentice Hall International, Englewood Cliffs (1986)

55. Kassel, G., Smith, G.: Model checking Object-Z classes: some experiments with
FDR. In: 8th Asia-Pacific Software Engineering Conference (APSEC 2001), pp.
445–452. IEEE Computer Society Press (2001)

56. Kim, S.-K., David, C.: Formalizing the UML class diagram using Object-Z. In:
France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 83–98. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46852-8 7

57. Kim, S.-K., Carrington, D.: A formal mapping between UML models and Object-Z
specifications. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) ZB 2000.
LNCS, vol. 1878, pp. 2–21. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44525-0 2

58. King, P.: Printing Z and Object-Z LaTeX Documents (1990)
59. Lano, K.: Z++, an object-orientated extension to Z. In: Nicholls, J. (ed.) Z

User Workshop, Oxford 1990. Workshops in Computing. Springer, London (1990).
https://doi.org/10.1007/978-1-4471-3540-1 11

60. Lano, K., Haughton, H.: Object-Oriented Specification Case Studies. Prentice Hall
International, New York (1994)

61. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cam-
bridge University Press, Cambridge (1991)

62. Malik, P., Utting, M.: CZT: a framework for Z tools. In: Treharne, H., King, S.,
Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 65–84. Springer,
Heidelberg (2005). https://doi.org/10.1007/11415787 5

63. Mayr, T.: Specification of object-oriented systems in LOTOS. In: Turner, K. (ed.)
Formal Description Techniques (FORTE 1988), pp. 107–119. North-Holland (1988)

64. McComb, T., Smith, G.: A minimal set of refactoring rules for Object-Z. In: Barthe,
G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 170–184. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68863-1 11

65. Meira, S., Cavalcanti, A.: Modular object-oriented Z specifications. In: Nicholls, J.
(ed.) Z User Workshop, Oxford 1990. Workshops in Computing. Springer, London
(1990). https://doi.org/10.1007/978-1-4471-3540-1 12

66. Meyer, B.: Object-Oriented Software Construction. Series in Computer Science.
Prentice Hall International, Englewood Cliffs (1988)

67. Miao, H., Liu, L., Li, L.: Formalizing UML models with Object-Z. In: George, C.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 523–534. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36103-0 53

68. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

69. Narfelt, K.: SYSDAX - an object oriented design methodology based on SDL. In:
SDL 1987: State of the Art and Future Trends. North-Holland (1987)

70. Nielsen, M., Havelund, K., Wagner, K.R., George, C.: The RAISE language,
method and tools. In: Bloomfield, R.E., Marshall, L.S., Jones, R.B. (eds.) VDM
1988. LNCS, vol. 328, pp. 376–405. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-50214-9 25

71. Roe, D., Broda, K., Russo, A.: Mapping UML models incorporating OCL con-
straints into Object-Z. Technical report, Department of Computing, Imperial Col-
lege London (2003)

72. Rose, G., Duke, R., Hayes, I.J.: Specifying communications services and protocols.
In: Proceedings 2nd Australian Software Engineering Conference (ASWEC 1987),
pp. 161–170. The Institution of Radio and Electronics Engineers Australia (1987)

https://doi.org/10.1007/3-540-46852-8_7
https://doi.org/10.1007/3-540-44525-0_2
https://doi.org/10.1007/3-540-44525-0_2
https://doi.org/10.1007/978-1-4471-3540-1_11
https://doi.org/10.1007/11415787_5
https://doi.org/10.1007/978-3-540-68863-1_11
https://doi.org/10.1007/978-1-4471-3540-1_12
https://doi.org/10.1007/3-540-36103-0_53
https://doi.org/10.1007/3-540-50214-9_25
https://doi.org/10.1007/3-540-50214-9_25

86 G. Smith and D. J. Duke

73. Rosenberg, K.: The adoption of formal methods within OTC. In: Parker, K., Rose,
G. (eds.) Formal Description Techniques, IV (FORTE 1991), pp. 91–98. Elsevier
(1992)

74. Schuman, S., Pitt, D.: Object-oriented subsystem specification. In: Meertens,
L. (ed.) Program Specification and Transformation, pp. 313–341. North-Holland
(1987)

75. Sijelmassi, R., Gaudette, P.: An object-oriented model for Estelle. In: Turner, K.
(ed.) Formal Description Techniques (FORTE 1988), pp. 91–105. North-Holland
(1988)

76. Smith, G.: A formal specification of Signalling System No. 7 Telephone User Part.
In: Proceedings 1989 Singapore International Conference on Networks (SICON
1989), pp. 50–55. IEEE Singapore Section (1989)

77. Smith, G.: A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME 1997.
LNCS, vol. 1313, pp. 62–81. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63533-5 4

78. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods
Series. Kluwer Academic Publishers (2000)

79. Smith, G.: Introducing reference semantics via refinement. In: George, C., Miao,
H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 588–599. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36103-0 60

80. Smith, G., Duke, R.: Modelling a cache coherence protocol using Object-Z. In:
Proceedings 13th Australian Computer Science Conference (ACSC-13), pp. 352–
361. Australian Computer Science Association (1990)

81. Smith, G., Kammüller, F., Santen, T.: Encoding Object-Z in Isabelle/HOL. In:
Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272,
pp. 82–99. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1 5

82. Spivey, J.M.: Understanding Z: A Specification Language and its Formal Semantics,
Cambridge Tracts in Theoretical Computer Science, vol. 3. Cambridge University
Press, Cambridge (1988)

83. Spivey, J.M.: The Z Notation: A Reference Manual. Series in Computer Science,
Prentice Hall International, Englewood Cliffs (1989). 2nd edn. 1992

84. Stepney, S., Barden, R., Cooper, D.: Object Orientation in Z. Workshops in Com-
puting. Springer, London (1992). https://doi.org/10.1007/978-1-4471-3552-4

85. Stepney, S., Barden, R., Cooper, D.: A survey of object orientation in Z. Softw.
Eng. J. 7(2), 150–160 (1992)

86. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Boston (1986)
87. Treharne, H., Schneider, S.: Using a process algebra to control B operations. In:

Araki, K., Galloway, A., Taguchi, K. (eds.) IFM 1999, vol. 1945, pp. 437–456.
Springer, London (1999). https://doi.org/10.1007/978-1-4471-0851-1 23

88. Whysall, P., McDermid, J.: An approach to object oriented specification using Z.
In: Nicholls, J. (ed.) Z User Workshop, Oxford 1990. Workshops in Computing.
Springer, London (1990). https://doi.org/10.1007/978-1-4471-3540-1 13

89. Wills, A.: Capsules and types in Fresco. In: America, P. (ed.) ECOOP 1991.
LNCS, vol. 512, pp. 59–76. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0057015

90. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1 10

https://doi.org/10.1007/3-540-63533-5_4
https://doi.org/10.1007/3-540-63533-5_4
https://doi.org/10.1007/3-540-36103-0_60
https://doi.org/10.1007/3-540-45648-1_5
https://doi.org/10.1007/978-1-4471-3552-4
https://doi.org/10.1007/978-1-4471-0851-1_23
https://doi.org/10.1007/978-1-4471-3540-1_13
https://doi.org/10.1007/BFb0057015
https://doi.org/10.1007/BFb0057015
https://doi.org/10.1007/3-540-45648-1_10

Formal Specifications and Software
Testing, a Fruitful Convergence

Marie-Claude Gaudel(B)

LRI, Université Paris-Sud, Orsay, France
marieclaude.gaudel@gmail.com

Abstract. This paper gives some account of the evolution of ideas and
the main advances in the domain of software testing based on formal speci-
fications and reports some personal anecdotes on my activity in this field.
Going back to the seventies, being slightly caricatural, software testing
was perceived, on the one hand, by its actors as an empirical activity that
had nothing to gain from formal methods, on the other hand, by the advo-
cates of these methods as doomed to disappear based on the belief that in
the long run programs will be correct by construction. Currently, these two
communities haven’t yet reached a complete consensus. But fortunately
there have been some significant moves from both sides and various suc-
cess stories that allow saying that there is a fruitful convergence toward
testing methods based on formal specifications.

Keywords: Formal methods · Software testing · History

1 Introduction

Software testing based on formal specifications has a slightly troubled history.
In the seventies, most actors of both fields considered that they had nothing
to bring to each other. Even worse, some influential scientists from both sides
emitted mutual doubts on the pertinence of these fields: from the side of the
software-testing research community, one can cite De Millo et al. [13]; and from
the side on the formal-approaches-to-software-engineering community, one can
cite the famous Dijkstra curse against testing [15], which definitely deserves to
be quoted:

Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence. The only effective
way to raise the confidence level of a program significantly is to give a
convincing proof of its correctness

Another Dijkstra’s quotation, more directly relevant to the topic of this paper, is:

A common approach to get a program correct is . . . by subjecting the
program to numerous test cases. From the failures around us we can derive
ample evidence that this approach is inadequate. To remedy the situation

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 87–94, 2020.
https://doi.org/10.1007/978-3-030-54997-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_5

88 M.-C. Gaudel

it has been suggested that what we really need are “automatic test case
generators” by which the pieces of program to be validated can be exercised
still more extensively. But will this really help? I don’t think so. (EWD303,
year unknown1)

Fifty years later, the idea of software testing methods based on formal specifi-
cations is accepted as respectable, among the numerous existing approaches to
software testing [12], and some powerful tools exist. Most formal specification
methods come with some notion of test derivation, submission, verdict and there
is a number of success stories. Moreover, the complementarity of tests and proofs
in software validation and verification is the subject of active research activities,
attested by numerous publications and the fact that an international conference
“Tests and Proofs” has taken place annually since 2007. There is an excellent
survey by Hierons et al., titled “Using Formal Specifications to Support Testing”,
published in 2009 in ACM Computing Surveys [22].

Therefore, it is of interest to look back at this evolution towards convergence
of two research fields that were originally so distant.

2 Software Engineering, Formal Methods, and Testing in
the Seventies and the Beginning of the Eighties

A possible subtitle of this section could be: Why formal? Why testing?.
In the seventies, formal approaches to software development, validation, and

verification were not considered as credible by the majority of software engineers
and software testers. Symmetrically as mentioned above, many supporters of
formal approaches considered that software testing was an ineffective activity
doomed to disappearance after the generalisation of formal methods.

My interest in testing based on formal specifications arose during my Ph.D.
whose topic was compiler generation based on formal semantics of the source and
target languages. I needed examples of source programs to test the generated
compilers and my attention was drawn to a work by Houssais on the verification
of an Algol 68 implementation [24] and on a little-known subsequent research
report of the Université de Rennes 1, titled “Un générateur de tests commandé
par les grammaires”. Since testing compilers was not the main focus of my Ph.D.,
I didn’t spend much time on fully exploiting Houssais ideas. However, I used
them as guidelines, which turned out to be useful.

I had noticed some similarities between programming language definitions
and algebraic data types. In both cases, there is a syntax (for algebraic data
types, the signature), and some constraints (contextual rules for programming
languages, axioms for algebraic data types). This led me to propose as Ph.D.
subject to Luc Bougé the generation of test from algebraic specifications. The
thesis was defended in 1982 [3], followed by four other ones at the end of the

1 This note can be seen at https://www.cs.utexas.edu/users/EWD/ where it has no
date. But one can bracket it between two dated EWDs: EWD 292, 31 Aug 1970,
and EWD 306, 16th March 1971 (thanks to Jeremy Gibbons for the hint).

https://www.cs.utexas.edu/users/EWD/

Formal Specifications and Software Testing 89

eighties. It was the origin of successful developments, including industrial appli-
cations, that are summarised in [20]. At that time, it was not easy to publish
on this subject. Dijkstra’s curse was very present in the mind of researchers in
formal methods. Our first publication in an international conference was in 1985
[4]. However, these ideas turned out to be a rather good selling point of formal
methods to industry: in October 1981, I was hired to create a research group on
the use of such methods for software engineering in the research laboratory of
the Compagnie Générale d’Electricité.2

At the same time, i.e. 1981–1983, several research works were led on exactly
the same topic, namely testing based on algebraic abstract data types: Gannon,
McMullin, and Hamlet in the U.S. [19], and Jalote in India [26]. A lot of technical
questions were still open, but the fundamental ideas were well stated. Among
the open issues at that time, there were:

– the determination of equality between two test results, the difficulty coming
from the difference of levels of abstraction between the specification and the
implementation under test3.

– the occurrence of partial operations in the specification, with two causes of
partiality: either the result is mathematically undefined, or it is not specified,
the specification allowing some freedom to the implementation.

– the possibility of non-determinism in the specification or in the implementation.

Note that these issues are not due to the use of formal specifications. They arise
in any testing method that is specification-based. For some hints on the way
they have been formally treated later on, one can see [20] and [22].

Meanwhile, another research community had been very active in the domain
with very strong motivations: the researchers in telecommunication protocols.

3 The Area of Telecommunication Protocols at the
Beginning of the Eighties

Communicating systems use well-defined formats for exchanging messages. Each
message has an exact role and corresponds to a range of possible answers.

2 During my stay there (1981–1983) I interacted with a group of engineers who devel-
oped the software of a telephone switching system. I was impressed by their profes-
sionalism. They motivated me to pursue this line of research.

A (not so funny) anecdote is that some years later, being back as a professor in a
university, I visited the same place with a Ph.D. student, searching for challenging
case studies. Mood and people had changed and the head of the group explained
that their goal was to be first on the market and their development strategy was
“quick an dirty”. To that the Ph.D. student replied that “dirty we can do, but quick
I am not sure”. The meeting was unproductive...

3 This is similar to the issue of lifting computational types and values to the logical
level in Hoare’s logic.

90 M.-C. Gaudel

The specification of the protocol is independent of how it may be implemented
and exploited by the telecommunication operators. Besides, testing can be based
on the specifications only (i.e. it’s black-box testing), as manufacturers generally
don’t disclose implementation details.

Since communication protocols must be agreed upon by various entities such
as international agencies, operators, or developers, technical standards, formal
or not, have been developed very early for their definitions (see for instance [9])
as well as for conformance testing methodologies [25]. Certification is performed
via standard abstract test sets.

In such a context, research projects and publications on specification-based
testing of such protocols had flourished (see [33] among the early ones). Note
that this paper was published in 1984, at the 2nd IFIP International Work-
shop on Protocol Specification, Verification and Testing (IWPTS), which has
occurred yearly since, modulo a few changes of names4. Since 2007, under the
name TESTCOM this conference merged with the FATES workshop5 and has
gathered together researchers working on specification-based testing, indepen-
dently of the kind of considered software: communication protocols or others.

The characteristics of the approaches developed for communication protocols
was: the formal specification languages, such as SDL, ESTELLE, LOTOS, were
standardised, with some semantics based on Finite State Machines or Labelled
Transition Systems that are well-suited for the description of non-terminating
processes; the notions of conformance, abstract test specifications, certification,
were standardised as well.

In contrast, the approaches developed in the community of formal software
engineering, or those that were on the verge to be developed, were based on spec-
ification languages designed by research groups, with notations inspired from
logic, and semantics based on axioms satisfaction (algebraic data types) or pred-
icate transformers (Z, VDM).

4 What Happened in the Nineties and Later

The end of the eighties and the beginning of the nineties were a turning point
for the topic of testing based on formal specifications. Within five years a lot
of well-founded testing methods were established and validated for the main
formal specification methods. It’s impossible to cite all of them. Let us just
mention three sets of works6.

Tests derivation from formal specifications with semantics based on labelled
transition systems, such as LOTOS or SDL, started to be abundantly studied at

4 IWPTS: 1983–1996; IWTCS: 1997–1999, TESTCOM: 2000–2009, ICTSS: 2010-now.
5 This series of workshops (Formal Approaches to Testing of Software) took place in

2001–2007.
6 A notable omission here is the corpus of research on testing based on FSM (Finite

State Machines), which has been considerably influential since the sixties both in
hardware and in software testing. For an excellent survey with some historical indi-
cations see [28].

Formal Specifications and Software Testing 91

the end of the eighties [5,32,38]. Later, in 1996, Tretmans introduced the ioco
conformance relation [36], which turned out to be quite pertinent for testing
those systems that are input-enabled, i.e. they are always ready to accept some
input. It has been at the origin of several tools such as TGV [27], TorX [10] and
more recently TorXakis [37].

For the VDM specification method, Dick and Faivre presented in 1993 a
testing method [14] at the Formal Method Europe Conference (FME’93). It must
be observed that this work was performed in an industrial context, namely Bull
Information Systems in the UK and its Corporate Research Centre in France,
and that it has strongly influenced the subsequent researches on testing based
on model-based formal specifications. At the same time, Stocks and Carrington
proposed Test Templates, a test method based on Z specifications [35], which
was published at the International Conference on Software Engineering (ICSE
15). Both software formalists and software engineers recognised the interest of
testing methods based on model-based formal specifications.

In my group, we pursued the work on testing based on algebraic specifica-
tion. In 1991, with Bernot and Marre we published a case study on the test of
binary search trees [2], and in 1993 Dauchy and Marre successfully applied the
method and the tool to critical parts of the software of an automatic subway
[11]. Since then, our approach has been generalised to other formal methods:
full LOTOS [21], Lustre and Esterel [30] with applications to nuclear control
systems certification, CSP [7] and Circus [8].

One observes that since the mid-nineties, test derivation from formal specifi-
cations has become a popular research topic, well accepted both in conferences
and journals devoted to formal methods and in conferences and journals devoted
to software engineering and testing. New formal specification methods are almost
systematically enriched by some test derivation methods: for instance, it was the
case for the B method [29,34], and ASMl, the Abstract State Machine Language
[1] and its companion testing environment SPEC EXPLORER [39] developed at
Microsoft Research.

Moreover, the cultural gap between researchers from the telecommunication
world and from the formal software engineering community is much less pro-
nounced. Most theories, methods, and tools are of common use or unified, even
if the telecommunication universe remains much more dependent on standards.

5 Conclusion

Despite Dijkstra’s curse, the convergence of formal methods and software test-
ing has happened. Definitely, one of the antidotes to Dijksta’s curse has been
an invited conference and paper by Tony Hoare at the FME Symposium in
1996 titled “How Did Software Get So Reliable Without Proof?” [23]. There,
he underlined the effectiveness of software engineering techniques, among which
testing, and the fact that formal methods

provide a conceptual framework and basic understanding to promote the
best of current practice, and point directions for future improvement.

92 M.-C. Gaudel

As mentioned above, nowadays, most formal specification methods come with
some notion of test derivation, submission, verdict. There is a number of signifi-
cant success stories. A majority of them are in link with academia, but a number
of them took place in industry. Testing based on formal specification is now one
of the recognised resources in the arsenal of software testing methods.

At present, theorem provers and model checkers make use of tests [16,31], and
testing tools make use of theorem provers [6,17] and model checkers [18]. The
Test and Proof (TAP) series of conferences and the Verified Software: Theories,
Tools, Experiments (VSTTE) series of workshops are well established. They
attract both communities, provide a forum for meetings and talks, ensuring the
development of research activities integrating formal methods and testing.

Acknowledgment. I am grateful to Burkhart Wolff and the members of the LRI Test
Club who gave me the idea to talk and write on this topic.

References

1. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Towards a tool environment for model-based testing with AsmL. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 252–266. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24617-6 18

2. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991)

3. Bougé, L.: Modeling the notion of program testing; application to test set genera-
tion. Theses, Université Pierre et Marie Curie - Paris VI, October 1982. https://
tel.archives-ouvertes.fr/tel-00416558

4. Bougé, L., Choquet, N., Fribourg, L., Gaudel, M.C.: Application of PROLOG to
test sets generation from algebraic specifications. In: Ehrig, H., Floyd, C., Nivat,
M., Thatcher, J. (eds.) TAPSOFT 1985. LNCS, vol. 186, pp. 261–275. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-15199-0 17

5. Brinksma, E.: A theory for the derivation of tests. In: Proceedings of 8th Interna-
tional Conference on Protocol Specification, Testing and Verification, pp. 63–74.
North-Holland (1988)

6. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Asp. Comput.
25(5), 683–721 (2013)

7. Cavalcanti, A., Gaudel, M.-C.: Testing for refinement in CSP. In: Butler, M.,
Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp.
151–170. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76650-
6 10

8. Cavalcanti, A., Gaudel, M.C.: Testing for refinement in Circus. Acta Inf. 48(2),
97–147 (2011)

9. CCITT: Functional specification and description language (SDL), Recommenda-
tion Z.100–Z.104 (1984)

10. Chaudron, M.R.V., Tretmans, J., Wijbrans, K.: Lessons from the application of
formal methods to the design of a storm surge barrier control system. In: Wing,
J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1511–1526.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48118-4 30

https://doi.org/10.1007/978-3-540-24617-6_18
https://tel.archives-ouvertes.fr/tel-00416558
https://tel.archives-ouvertes.fr/tel-00416558
https://doi.org/10.1007/3-540-15199-0_17
https://doi.org/10.1007/978-3-540-76650-6_10
https://doi.org/10.1007/978-3-540-76650-6_10
https://doi.org/10.1007/3-540-48118-4_30

Formal Specifications and Software Testing 93

11. Dauchy, P., Gaudel, M.C., Marre, B.: Using algebraic specifications in software
testing: a case study on the software of an automatic subway. J. Syst. Softw.
21(3), 229–244 (1993)

12. DeMillo, R.A.: Software testing. In: Encyclopedia of Computer Science, pp. 1645–
1649. John Wiley and Sons Ltd., GBR (2003)

13. DeMillo, R.A., Upton, R.J., Perlis, A.J.: Social processes and proofs of theo-
rems and programs. Math. Intell. 3(1), 31–40 (1980). https://doi.org/10.1007/
BF03023394

14. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Woodcock, J.C.P., Larsen, P.G. (eds.) FME 1993.
LNCS, vol. 670, pp. 268–284. Springer, Heidelberg (1993). https://doi.org/10.1007/
BFb0024651

15. Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–866 (1972)
16. Dubois, C., Giorgetti, A.: Tests and proofs for custom data generators. For-

mal Aspects Comput. 30(6), 659–684 (2018). https://doi.org/10.1007/s00165-018-
0459-1

17. Feliachi, A., Gaudel, M.-C., Wenzel, M., Wolff, B.: The Circus testing theory revis-
ited in Isabelle/HOL. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol.
8144, pp. 131–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41202-8 10

18. Fraser, G., Wotawa, F., Ammann, P.: Issues in using model checkers for test case
generation. J. Syst. Softw. 82(9), 1403–1418 (2009)

19. Gannon, J.D., McMullin, P.R., Hamlet, R.G.: Data-abstraction implementation,
specification, and testing. ACM Trans. Program. Lang. Syst. 3(3), 211–223 (1981)

20. Gaudel, M.-C., Le Gall, P.: Testing data types implementations from algebraic
specifications. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods
and Testing. LNCS, vol. 4949, pp. 209–239. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78917-8 7

21. Gaudel, M.C., James, P.R.: Testing algebraic data types and processes: a unifying
theory. Formal Asp. Comput. 10(5–6), 436–451 (1998)

22. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Comput.
Surv. 41(2), 9:1–9:76 (2009)

23. Hoare, C.A.R.: How did software get so reliable without proof? In: Gaudel, M.-C.,
Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051, pp. 1–17. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60973-3 77

24. Houssais, B.: Verification of an Algol 68 implementation. ACM SIGPLAN Not.
12(6), 117–128 (1977)

25. ISO: Conformance testing methodology and framework. International Standard
IS-9646 (1991)

26. Jalote, P.: Specification and testing of abstract data types. In: IEEE International
Computer Software and Applications Conference COMSAC, pp. 508–511 (1983)

27. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Int. J. Softw. Tools
Technol. Transf. 7(4), 297–315 (2005)

28. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

29. Legeard, B., Peureux, F.: Generation of functional test sequences from B formal
specifications-presentation and industrial case study. In: 16th IEEE International
Conference on Automated Software Engineering (ASE 2001), Coronado Island,
San Diego, CA, USA, 26–29 November 2001, pp. 377–381. IEEE Computer Society
(2001)

https://doi.org/10.1007/BF03023394
https://doi.org/10.1007/BF03023394
https://doi.org/10.1007/BFb0024651
https://doi.org/10.1007/BFb0024651
https://doi.org/10.1007/s00165-018-0459-1
https://doi.org/10.1007/s00165-018-0459-1
https://doi.org/10.1007/978-3-642-41202-8_10
https://doi.org/10.1007/978-3-642-41202-8_10
https://doi.org/10.1007/978-3-540-78917-8_7
https://doi.org/10.1007/978-3-540-78917-8_7
https://doi.org/10.1007/3-540-60973-3_77

94 M.-C. Gaudel

30. Marre, B., Blanc, B.: Test selection strategies for Lustre descriptions in GATeL.
Electr. Notes Theor. Comput. Sci. 111, 93–111 (2005)

31. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: How testing helps
to diagnose proof failures. Formal Aspects Comput. 30(6), 629–657 (2018). https://
doi.org/10.1007/s00165-018-0456-4

32. Pitt, D.H., Freestone, D.: The derivation of conformance tests from LOTOS spec-
ifications. IEEE Trans. Software Eng. 16(12), 1337–1343 (1990)

33. Sarikaya, B., von Bochmann, G.: Some experience with test sequence generation
for protocols. In: Protocol Specification, Testing and Verification, Proceedings of
the IFIP WG6.1 Second International Workshop on Protocol Specification, Testing
and Verification, Idyllwild, CA, USA, 17–20 May 1982, pp. 555–567. North-Holland
(1982)

34. Satpathy, M., Butler, M., Leuschel, M., Ramesh, S.: Automatic testing from formal
specifications. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp.
95–113. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73770-4 6

35. Stocks, P., Carrington, D.A.: Test templates: a specification-based testing frame-
work. In: Proceedings of the 15th International Conference on Software Engineer-
ing, Baltimore, Maryland, USA, 17–21 May 1993, pp. 405–414. IEEE Computer
Society/ACM Press (1993)

36. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw. Concepts Tools 17(3), 103–120 (1996)

37. Tretmans, J., van de Laar, P.: Model-based testing with TorXakis. In: Proceedings
of 30th CECIIS, the Central European Conference on Information and Intelligent
Systems, Varaždin, Croatia, 2–4 October 2019, pp. 247–258 (1987)

38. Ural, H.: A test derivation method for protocol conformance testing. In: Protocol
Specification, Testing and Verification VII, Proceedings of the IFIP WG6.1 Sev-
enth International Conference on Protocol Specification, Testing and Verification,
Zurich, Switzerland, 5–8 May 1987, pp. 347–358. North-Holland (1987)

39. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer.
In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing.
LNCS, vol. 4949, pp. 39–76. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78917-8 2

https://doi.org/10.1007/s00165-018-0456-4
https://doi.org/10.1007/s00165-018-0456-4
https://doi.org/10.1007/978-3-540-73770-4_6
https://doi.org/10.1007/978-3-540-78917-8_2
https://doi.org/10.1007/978-3-540-78917-8_2

From Manuscripts to Programming
Languages: An Archivist Perspective

Alexandra Vidal1(B), Ana Sandra Meneses2(B), and António Sousa2(B)

1 Faculty of Documentación, Univ. Complutense Madrid, Madrid, Spain
alexsilv@ucm.es

2 Arquivo Distrital de Braga, Univ. Minho, Braga, Portugal
{anameneses,asousa}@adb.uminho.pt

https://documentacion.ucm.es/

http://www.adb.uminho.pt

Abstract. This paper presents the archival treatment of documenta-
tion produced by IFIP Working Group 2.1, Algorithmic Languages and
Calculi as kept by former chairman Willem van der Poel (1962-69) and
Chris Cheney. It highlights the importance of archival treatment based
on standards such as International Standard for Archival Description—
ISAD(G) and the International Standard Archival Authority Record
(Corporate Bodies, Persons and Families)—ISAAR-(CPF) both issued
by the International Council on Archives, the Portuguese Guidelines for
Archival Description ODA and Encoded Archival Description EAD.

The archived collection enables dissemination and effective access to
the information for research and in-depth knowledge of computer history
and specifically programming languages and formal methods.

The paper also addresses the issues of the long-term preservation of
archival records produced today in their various formats and the impor-
tance of contributing to preserving collective memory and enriching the
knowledge about the human society.

Keywords: History of software · Archival standards · Digital
preservation

1 Introduction

In 2017, some archival documentation from Working Group 2.1 - Algorithmic
Languages and Calculi, dating to the period when Willem Van der Poel was
chairman, was deposited in the Braga District Archive (ADB). This collection
is only a part of the documentation produced by the group, presumably from
a relevant period of its past. Perhaps something unusual, a technical working
group is concerned with the preservation “for future memory” of its activity,
not only by preserving the documents that highlight it, but also by promoting
its accessibility.

ADB is a cultural unit of the University of Minho (UMinho). Having as main
mission the archival heritage of the region, it could not miss this opportunity
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 95–102, 2020.
https://doi.org/10.1007/978-3-030-54997-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_6

96 A. Vidal et al.

to contribute to the preservation, enhancement and access to an archive closely
related to computing, a relevant scientific area of research at UMinho. The col-
lection is an important archive for the history of programming languages and
information technology, contributing to our understanding of the evolution of
programming technology, either on the technical side, or issues resulting from
their impact on society and even the economic and political constraints that may
have interfered in the group’s activity.

WG2.1 started its activity in the post WW-II period when there was an expo-
nential growth in the use of information and, consequently, in the production
of archival documents.1 These decades led the archival community to eventually
rethink its role and the way of looking and acting upon its object: the man-
agement of the archival information/document not only in its final stage of life
but since its production (as a record) by the individual or collective entity that
created or received it. Each archival item is a document produced or received by
an individual or a legal person in the exercise of their functions. It shows this
activity and is an express proof of a will, action or decision.

This is also the period when information technology begins to develop and
impose itself, eventually leading to its current omnipresence in one’s everyday
life through email, mobile phones, web sites and so on. The same advances in
technology have provided archivists with working tools for organizing, describing
and disseminating the contents of their archives, including the digital represen-
tation of documents. Tools have been created for the management of archival
information (information systems), allowing for information dematerialization,
thus entering directly into the area that archivists are chiefly dedicated to!

2 The Treatment of the WG2.1 Archive

2.1 The Project: How We (Archivists) Do Our Work

Following the standard practice, the treatment of the WG2.1 collection con-
sisted of its cleaning and packaging, archival organization and description (in
Portuguese and in English) and the digitization of an important and relevant
part of it. Both the description and digital representations are available from the
ADB search interface.2

Organization and description of the archives are the heart of our activity
to support their preservation and communicability. The organization of archival
information is based on respect for the principle of provenance and the original
order of the documents. Thus, its organization does not reflect a thematic struc-
ture (as in librarianship) or a particular, subjective criterion of the collection (as
in museums). It is an organization that reflects the organics and the functions
of the entity that produces the archive.

1 Document replication was facilitated by technologies that became increasingly acces-
sible, culminating in the widespread use the photocopier.

2 URL: http://pesquisa.adb.uminho.pt/.

http://pesquisa.adb.uminho.pt/

From Manuscripts to Programming Languages: An Archivist Perspective 97

These principles, combined with the analysis of the contents of the docu-
ments, the identification of the authors/producers and the organic-functional
context of the production, are characteristic aspects always present in archival
treatments. This is supported by rules for describing the documents and their
context and for the reference to the entities producing and intervening in the
acts.

Archival description instruments such as inventories and catalogs, as we will
see in the present case, are effectively a touchstone for the dissemination of
information. The idea of the archivist as a document keeper does not char-
acterize the whole job. At present, the information professional has as their
main objective also to give access to the information they work on. For this
access to be effective, we are guided by norms as the International Standard
for Archival Description—ISAD(G) [5] and the International Standard Archival
Authority Record (Corporate Bodies, Persons and Families)—ISAAR-(CPF) [6]
both issued by the International Council on Archives. We also use the Por-
tuguese Guidelines for Archival Description (ODA) [2]. All these standards are
compliant with the Encoded Archival Description (EAD).3

These rules and guidelines define a structure of information elements that
allow to represent the contents of the documents and the informational structure
(organic and/or functional) of the producer of the archive. Thus, we also have
information about the context of the production and use of documents.

The use of such standards is very important for access and dissemination
of the information based on scientific procedures. In this way, one unveils not
only the organic aspects of IFIP, of its Technical Committee TC2 and of WG
2.1, but also the relationships among them and main protagonists such as Heinz
Zemanek, Niklaus Wirth and many others.

Standards and guidelines for other purposes are used by Archeevo, a package
of software from Keep Solutions4 used at ADB for describing the documents,
managing them and their digitized images and for remote access and interoper-
ability.

The archival treatment results in the instruments that describe contents, offer
“finding aids” and allow for the dissemination of document metadata and the
associated digital reproduction when available. Information sciences and tech-
nology allows any user to access these remotely through the internet.

Archival Description. The adopted archival description is multilevel, ranging
from the top level – description of the archive producer – to the level of the most
basic unit, the document itself. These are organized according to the functions to
which they refer – series – and framed in the organic structure of the producing
entity – sections. Both series and section are also subject to description and
subject to subdivisions.

For the present case, the WG2.1 documentation belongs to the International
Federation for Information Processing (IFIP) archive, where it is an “archival”

3 URL: https://www.loc.gov/ead/.
4 URL: https://www.keep.pt/en.

https://www.loc.gov/ead/
https://www.keep.pt/en

98 A. Vidal et al.

subsection of its Technical Committee 2. The description made of the referred
documentation, resulted in this simplified structure (its series are detailed in the
next section):

– Fonds: International Federation for Information Processing (IFIP)
– Section: Technical Committee 2
– Subsection: Working Group 2.1 - Algorithmic Languages and Calculi
– Series:

• 001 Meeting minutes
• 002 Correspondence
• ...

It is within the scope of each series that documents are described. Each item
described has a unique identifier that is framed within those that represent its
hierarchical position. For instance, the document “Unconfirmed minutes of the
third meeting of IFIP/TC2-‘P/L’-Oslo with appendix” bears identifier 01411,
so its reference code is PT/UM-ADB/ASS/IFIP/TC2-WG2.1/001/01411, that is, it
is prefixed by identifiers for the country and institution where the document is
located and a non-mandatory management code (ASS, for association).

2.2 The Contents of the WG2.1 Archive

Series identification is essential to classify, describe, select, access and dissemi-
nate the documentation. It helps to organize the documents and present users
with the type of documents they can use in their research. In the ISAD Standard
(G), the notion of a series is defined as follows:

“Documents organized according to an archiving system or conserved form-
ing a unit as a result of the same accumulation, of the same archival pro-
cess, or of the same activity; that have a particular form; or as a conse-
quence of any other relationship derived from its production, reception or
use”

Theodore Schellenberg, a well-known American archivist, defined series as
“a group of documents, files or dossiers that have been gathered together for
a specific activity” [7].

In the present case study we detected ten types of documentary series, and
this is where we were able to reveal what IFIP’s activity was, the advances and
setbacks in relation to the Algol initiative and the pioneering spirit of so many
researchers who are now world authorities in computing:

– Series 001—Meeting minutes (1962–1995): Minutes, approved and informal
minutes on organizational and administrative matters.“Minutes” also include
the date of the meeting and the names of all members present or absent, but
focus more on summarizing key discussion points and listing all action items
to be performed by individuals or the group.

From Manuscripts to Programming Languages: An Archivist Perspective 99

– Series 002—Correspondence (1959–1996): The correspondence series
(received and dispatched) corresponds to most of the documentation kept by
this archive. The vast majority of letters are related to the activity of Willem
van der Poel as chairman of WG2.1, mostly concerning the development and
study of Algol, directed and received from researchers, university and busi-
ness institutions from different parts of the world. Within this typology we
find telegrams, telefax, aerogram and telex conversations.

– Series 003—Proposals (1967–1987): Proposals and also drafts of proposals
for the algorithmic language—Algol 68, creation of a metalanguage and its
implementation.

– Series 004—Technical Notes (1963–1986): Produced at meetings as a result
of investigations that had been or were being carried out, discussed or under
discussion: memoranda and drafts of comments, informal documents in cir-
culation that might be published.

– Series 005—Reports (1962–1981): This series includes the following diver-
sity: activity reports from Technical Committee 2 and Working Group 2.1;
copies of reports; preliminary reports; drafts of activity reports; drafts of
revised reports and revised reports, as such. There are also proposals for
reports, final drafts, evaluation reports and a “minority report” (the result of
a non-majority vote by group members).

– Series 006—Decisions: Formal resolutions taken by the group and meeting
resolutions, corresponding to the final product of the meetings.

– Series 007—Meeting dossiers (1962–1995): Support documentation of the
meetings: copies of IFIP statutes, meeting notes, memos, lists of group
members, participants and observers, WG2.1 membership forms, appen-
dices/annexes, work schedules, syntax lists, errata, meeting programs, votes
for decisions at meetings. Also follow-up of meetings, scientific communica-
tions to review and so on.

– Series 008—News from the press: Newspaper news about the group’s activity.
– Series 009—Scientific Communications (1962–1998): Published scientific

communications, drafts, abstracts and copies of abstracts on the Algol lan-
guage.

– Series 010—Management documents (1959–1997): Support documents for
the management of the overall group.

The relative size of each particular document series can be perceived in the chart
of Fig. 1.

If a particular item is to be chosen as most representative of the collection,
one could select the following dossier, which is catalogued under number 01456:5

Dossier with copies of working documents of IFIP WG2.1: “On certain
Basic Concept of Programming Languages by Niklaus Wirth” (1–32);
Report of Fraser Duncan to the members of WG2.1 about Algol X and
Y with an appendix and other reports on Zandvoort, Munich and Amster-
dam meetings (33–86); Jack N. Merner sends to WG2.1 members a report

5 Complete reference code: PT/UM-ADB/ASS/IFIP/TC2-WG2.1/004/01456.

100 A. Vidal et al.

Fig. 1. Relative distribution of documents per series in the WG2.1 archive.

of the Algol-X-I-O Subcommittee (1966-07-26) (87–114); General remarks
on the [WG2.1 Warsaw] meeting by A. Mazurkiewicz (115–115); Copy of
Notice of the 7th meeting of WG2.1 on Algol by Willem van der Poel (1966-
06-04) (116–116); Members mailing list of IFIP/WG2.1 on Algol (1966)
(117–123); Copy of letter of C.A.R. Hoare (Tony) to Willem van der Poel
about Willem’s chairman report (1966-09-28) (124–126); Copy of letter
of Niklaus Wirth to Willem van der Poel explaining his position concern-
ing the developments within WG2.1 (1966-09-27) (127–128); Manuscript
copy of Willem van der Poel to Andrei Ershov (129–129); Comments on
“A contribution to the Development of Algol” by T. Simauti (130–137);
Recursive definition of Syntax and semantics by A. Van Wijngaarden pre-
sented in IFIP working conference in Vienna (Formal Language Descrip-
tion Language) (138–147); Assigning meaning to programs by Robert W.
Floyd (148–167); Record Handling by C.A.R. Hoare (Tony) (a series of
lectures to be delivered at the 1966 NATO Summer School) (168–191).

The dossier contains not only administrative but also technical documentation
about the vibrant Algol activity of the time, in particular work on its definition
as a programming language (and of its “dialects”). More than this, it contains
preliminary versions of pioneering papers that would become very relevant in
the future, in particular in the field of formal methods, for instance [3].6

6 See also PT/UM-ADB/ASS/IFIP/TC2-WG2.1/002/001164, a letter sent by Tony Hoare
to Willem van der Poel in December 1968 containing his paper “The axiomatic
method, program execution”, a precursor of [4]. The letter refers to a previous version
that had been distributed at the North Berwick meeting (July/August 1968).

From Manuscripts to Programming Languages: An Archivist Perspective 101

3 Conclusions

Archives are unique and irreplaceable heritage passed from one generation to
another. Archives are managed to preserve documents’ value and meaning. They
are authoritative sources of information underpinning accountable and trans-
parent administrative actions. They play an essential role in the development of
societies by safeguarding and contributing to individual and community mem-
ory. Open access to archives enriches our knowledge of human society, promotes
democracy, protects citizens’ rights and enhances the quality of life.

The preservation of Willem van der Poel’s collection of documents concerning
the period he was chairman of WG2.1 has widened the scope of the Braga District
Archives (ADB). For the first time, heritage belonging to a recent technology7

was studied, analysed and classified by staff working at ADB. For some of us,
computing (‘informatics’) meant little more than using computer tools to record,
organize and analyse information. We learnt a lot, from the understanding of the
problem domain to the more mundane terminology of compilers, interpreters,
syntax, semantics and so on and so forth.

The initiative was also new to us from another facet: it was sponsored by
a software house, Primavera Software, telling that not only academics and
archivists are interested in preserving the past history of software, but also
entrepreneurs in the information technology field support the idea.

4 Future Work

Is this the beginning of a new (possibly never ending) story? Programming lan-
guages are the main way of producing computing software. Studying their history
and the evolution of the associated programming methodologies seems to be a
relevant area for research in the broader field of the history of technology.

It would be interesting to add to the WG2.1 collection under ADB’s custody
more documentation in the same field, possibly coming from the same or other
related TC2 working groups. Moreover, cross-checking information with other
on-line archives (e.g. the Ershov archive8) is much needed, complementing each
other. A possible international network of software archives could be set up.9

Using standards, as ADB always does, can but help in this respect. This
said, information technology presents new challenges for an old science, as the
traditional use of paper as the main document medium is being replaced by
computer files, in many different formats. Moreover, preserving large information
systems and their metadata is even more challenging. Such dematerialization

7 Recent is the right word here: one of us stepped from work on medieval seals straight
into the Algol programming language!

8 URL: http://ershov.iis.nsk.su/en.
9 Contributions to these challenges are welcome. The Committee on the Archives

of Science and Technology of the Section on University and Research Institutions
Archives (https://www.ica.org/en/suv) of the International Council on Archives, of
which ADB is a member, can be of help.

http://ershov.iis.nsk.su/en
https://www.ica.org/en/suv

102 A. Vidal et al.

will deprive archives in the future of their traditional raw material, and this
represents a major challenge for archival science.

In particular, and again taking WG2.1 as working example, is the archival
science prepared to preserve its last (say) 20 years bulk of emails, text source
files (written in a myriad of different, constant evolving markup conventions or
editor formats), PDFs, websites and so on, when compared to the “classical”
archival techniques applied to van der Poel’s collection?

This brings us into the field of digital preservation, defined by the American
Library Association as a combination of “policies, strategies and actions that
ensure access to digital content over time” [1]. Authenticity is an issue: policies
and security procedures should be used to provide evidence that the contents
of the archived electronic records has not been altered while in the archives’
custody. The economic impact of digital preservation is also great.

We believe digital preservation should be elected as a main topic to address in
the field of archival science, further to strategies to soften the significant invest-
ments in equipment and staffing required by preservation programs. Perhaps the
history of formal methods could be used as case study encompassing the old and
the new digital sources of information.

Acknowledgements. ADB and the University of Minho are very grateful to the
generosity of Primavera Software. The authors would like to thank the interest of
WG2.1 member J.N. Oliveira in bringing the WG2.1 collection into ADB custody. His
comments on the current version of the paper are also gratefully acknowledged.

References

1. American Library Association: Definitions of digital preservation. http://www.ala.
org/alcts/resources/preserv/defdigpres0408. Accessed 30 Jan 2020

2. DGARQ: Orientações para a descrição arquiv́ıstica (2007). Direcção Geral de
Arquivos, Grupo de trabalho de normalização da descrição em arquivo, 325 p.
http://arquivos.dglab.gov.pt/wp-content/uploads/sites/16/2013/10/oda1-2-3.pdf

3. Floyd, R.: Assigning meanings to programs. In: Schwartz, J. (ed.) Mathematical
Aspects of Computer Science, vol. 19, pp. 19–32. American Mathematical Society
(1967). Proc. Symposia in Applied Mathematics

4. Hoare, C.: An axiomatic basis for computer programming. CACM 12(10), 576–580,
583 (1969)

5. ICA: ISAD(G): General international standard archival description (1999). Interna-
tional Council on Archives. Adopted by the Committee on Descriptive Standards,
Stockolm, Sweden, 19–22 September 1999, 2nd edn. Ottawa: ICA/CDS (2000).
http://tiny.cc/suwdjz

6. ICA: ISAAR(CFP): International standard archival authority records for corporate
bodies, persons and families (2002). Prepared by the Committee on Descriptive
Standards, Rio de Janeiro, Brazil, 19–21 November 2002. http://tiny.cc/eswdjz

7. Schellenberg, T.R.: Modern archives; principles and techniques. Society of American
Archivists, Chicago (1996). http://hdl.handle.net/2027/mdp.39015071452539. xv,
247 p. Reprint of the 1956 edn. Includes bibliographical references and index

http://www.ala.org/alcts/resources/preserv/defdigpres0408
http://www.ala.org/alcts/resources/preserv/defdigpres0408
http://arquivos.dglab.gov.pt/wp-content/uploads/sites/16/2013/10/oda1-2-3.pdf
http://tiny.cc/suwdjz
http://tiny.cc/eswdjz
http://hdl.handle.net/2027/mdp.39015071452539

What Have Formal Methods Ever Done
for Us? An Audience Discussion

Troy Kaighin Astarte(B)

Newcastle University, Newcastle upon Tyne, UK
troy.astarte@ncl.ac.uk

Abstract. The History of Formal Methods 2019 workshop ended with
a discussion reflecting on the discipline of formal methods. An initial
prompting question, “What have formal methods ever done for us?”,
was presented, but the discussion evolved from there into consideration
of applicability, education, and even Star Trek. The session was chaired
and curated by Troy Astarte, who has also prepared this summary of the
discussion. It is not a perfect transcription but rather a report on the
interesting and stimulating conversation that resulted.

Keywords: Formal methods · History of computing

1 Introduction

At five o’clock on Friday 11th October 2019, contributed talks at the History
of Formal Methods 2019 workshop drew to a close. The day was not yet over,
however.

Since the very first discussions about the idea of the workshop, my co-chair
Brian Randell and I1 had wanted to include some form of guided discussion and
to write it up for the proceedings. We were inspired by the 1964 IFIP Working
Conference on Formal Language Description Languages [10], and others of its
time, whose proceedings included a detailed reporting of discussions which took
place after each talk.2 These conversations were often as illuminating as the
papers themselves—perhaps, for the historian, even more so. We decided in the
end that it would be too complicated to do this for every talk, and that the
nature of academic conferences had somewhat changed in the intervening fifty-
five years, but that a guided and curated discussion would serve rather well
instead.

The discussion was somewhat like a panel session, but one in which the whole
audience was equally free to participate. We thought it would be a good idea

Supported by EPSRC.
1 Throughout this text, I will refer to myself in the first person when I contributed
to the discussion.

2 I am grateful to Jeremy Gibbons for pointing out that in certain circles, such as IFIP
Working Conferences, this tradition persisted for some time. See the 2002 conference
on Generic Programming [3].

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 103–113, 2020.
https://doi.org/10.1007/978-3-030-54997-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_7&domain=pdf
http://orcid.org/0000-0002-5582-4096
https://doi.org/10.1007/978-3-030-54997-8_7

104 T. K. Astarte

to start with a provocative question—indeed, in early versions of our plans,
the session would be guided not by a chair but a provocateur—and then let
the discussion grow organically from there. We had counted on a diverse set
of historical perspectives to have been laid before the audience so that there
would be plenty of fuel for a pleasantly warm discussion; and the day did not
disappoint.

Here, then, is the report of the discussion. It is based on a recording made
by the FM’19 conference volunteers, for which they have our gratitude. It is not
a verbatim transcription, being edited for clarity and concision. There are an
additional series of footnotes which provide extra details or references.

2 Provocation

“What have formal methods ever done for us?”3

3 Industry

The first direction the discussion went in was consideration of formal methods
within industry.

Opening the contributions was Graeme Smith, from the University of Queens-
land. He explained that Amazon Web Services has begun using formal meth-
ods in their workflow to cope with significantly increased user numbers.4 They
employ TLA+ and associated tools to avoid releasing any code they’re not sure
about.

Brian Randell, from Newcastle University, continued the theme. A phrase he
learnt in the States many years ago was “technology is most easily transferred
on the hoof.” Randell thought it would be interesting to see some comprehensive
data on movements of people between academia and industry, through various
research partnerships and projects—rather than just on the exit trajectories of
PhD students, a commonly-cited statistic for engagement. Believable statistics
that were more than the current collection of anecdotes would be useful, and
industrial companies have indicated their interest in such work.5 Computing
companies have a certain percentage of their workforce with appropriate expe-
rience, but there is only anecdotal evidence about transmission of ideas.

Taking up the theme, Ursula Martin, of Oxford and Edinburgh Universi-
ties, explained that the origin of formal methods at Facebook was in a very
dynamic group of people led by Peter O’Hearn. They started up a company
called Monoidics Ltd., which was then bought by Facebook along with its engi-
neering team. Byron Cook at Amazon Web Services is another example of ex-
academics using formal methods in industry. She made the point, however, that
3 The inspiration for this question is, of course, the classic scene from Monty Python’s
Life of Brian.

4 See a report authored by a number of people from the company on their use of
formal methods [6].

5 One example of a study that addressed this was reported in [12].

What Have Formal Methods Ever Done for Us? 105

Facebook buying up a formal methods company is rather different from there
being a general cultural of understanding the maths involved. Another route
to formal methods in industry came from companies developing their in-house
versions.

Martin continued that one can look back in history and see evidence of indus-
trial and academic interaction. In 2016 there was a workshop at Oxford celebrat-
ing a hundred years since the birth of Christopher Strachey,6 and there, Martin
said, she was surprised to hear just how many people from companies were com-
ing to visit Oxford’s Programming Research Group on a regular basis. People
tend to talk as though university–industry interaction is something that was
invented ten years ago, but in fact it was always happening.

I added to this that I had seen some specific evidence of interaction about
(what would today be called) formal methods in the Strachey archive. In 1971,
a member of Oxford University whose job was to engage with industry went to
speak to the IBM facility at Hursley and showed them examples of all the various
kinds of computing research going on at Oxford. Strachey’s formal semantics
work had taken their interest most of all.

Jeremy Gibbons, also of Oxford University, now joined the conversation. One
thing that concerned him about companies like Amazon and Facebook was that
they were hiring lots of very clever people, and sometimes those employees did
get to keep doing work related to their research background, such as formal
methods, but very often they would be hired just because they were clever.
They would then be put to work on other kinds of projects doing other things,
sometimes working with quite unsophisticated tools. That might be helpful for
the company, and indeed lucrative for the employees, but we researchers might
have hoped for loftier goals: better communication with the research community
about the techniques developed and the problems experienced in industry.

Wrapping up this particular discussion, independent scholar and HFM2019
keynote speaker Mark Priestley entered the conversation. He remarked that
J Robert Oppenheimer, theoretical physicist and one of the developers of the
atomic bomb, said that the best way to send information from one place to
another is to wrap it in a human being. Priestley observed that this comment,
while humorous, makes the point that the kind of information which can be
transmitted in a paper or lecture is only a fragment of the practical experi-
ence and tacit knowledge that a person can take with them—equally valuable
information.

4 Hardware

Priestley then introduced a new topic of conversation, noting that this was a ques-
tion from an outsider to the world of formal methods. He observed that the vast
majority of talks given at HFM2019, his own included, had been about applica-
tions to software and programming. He wondered: is there anything to say about
6 The webpages can be found at https://www.cs.ox.ac.uk/strachey100/ which includes
a link to recordings of all the talks.

https://www.cs.ox.ac.uk/strachey100/

106 T. K. Astarte

hardware? Have formal methods succeeded differentially in hardware compared to
software, or been more accepted by the hardware design community?

Earlier in the day, Adrian Johnstone, of Royal Holloway, had mentioned in
his talk about Charles Babbage’s mechanical notation [5] that some similarity
could be observed with modern-day hardware description languages. It seemed
appropriate to turn to him to answer this question.

Johnstone began with a caution that he is not a hardware expert, but does
have some knowledge about the area. The British electronics firm Racal-Redac
developed an early hardware description language (HDL) called ISIS, which they
turned into a heavily marketed product. This HDL was quite radical, argued
Johnstone, and precipitated a major shift in the design of circuitry. Prior to
ISIS, nearly all integrated circuit design was done at the level of schematics.
Designers would draw coloured graphs of transistor circuitry, and print it at a
very large scale on acetate. They would then spend a long time literally crawling
all over the floor with this huge picture of the chip, making sure that artefacts
like wires were not so close to each other that they could not be manufactured
with precision.

This design practice was common as late as the mid-1980s, being used, for
example, by Motorola for the 6800 chip which powered the original Apple Mac-
intosh computer. So, Johnstone indicated, this was not archaic 1950s behaviour,
it was relatively modern. What happened in the late 1980s was a wholesale shift
from that essentially graphical mode of design to a textual version: HDLs.

This was a welcome change, explained Johnstone, who said he used to stand
up in conferences and say “If God had intended us to use schematic entry7

we would still be writing in hieroglyphs.” One time, however, he noticed he
was speaking to an audience comprising mostly Japanese people, and the joke
became somewhat unfortunate.

ISIS HDL never really caught on, though, and neither did an HDL called
Ella which was rooted in ALGOL 68 functional notions and was a very interest-
ing system. The languages that did make it, continued Johnstone, were Verilog
and VHDL. They remain in use today and the majority of current hardware
is designed using one of the two. VHDL in particular is worth noting for its
similarities to the programming language Ada.

Apart from the notation used, there was a particular design philosophy
espoused by Racal-Redac and used as the marketing slogan for the ISIS sys-
tem: “Correct by construction”. By this they meant that you wrote an abstract
specification and the system could compile your hardware from that. Johnstone
explained that this seemed intuitive to many programmers, who are used to writ-
ing Java or C programs and without worrying too much about the underlying
compiler. Even so, the ISIS system was not as abstract as is used today in the
heavily synthesised piece of hardware from, for example, synopsis VHDL.

7 Schematic entry is the particular part of the electronics design process that involves
drawing diagrams.

What Have Formal Methods Ever Done for Us? 107

Wrapping up, Johnstone said that there are indeed formal methods for the
hardware design process; and many early successes in verification were in the
hardware universe. He remembered being told once by a researcher in this area
that hardware was easier to verify than software, a comment Johnstone knows
is broadly agreed upon, but does not quite understand. It seems strange given
that hardware is something of an open and unconstrained zoo, whereas much
software is sequential.

Dan Berry, of the University of Waterloo, wished to provide a comment. He
told us he remembered asking a committee of verification people whether the
microcode for a computer’s instruction set is a small program. At that point, in
the 1980s, the general view amongst verificationists was that any small program
should be tractable enough for complete verification. Indeed, the formal methods
people were (perhaps consequently) arguing that all programs should be small.
So, wondered Berry, would a reduced instruction set architecture computer’s
instruction set be small enough for complete verification? The finiteness of the
instruction set should have led to a manageable state size, but whether this was
actually the case was unclear.8

5 Expression

We now moved to a new topic, on the original question, and a thoughtful message
from José Oliveira, of INESC TEC, University of Minho. He explained that he
felt a lot of the real formal methods impact was implicit rather than explicit—
as the previous discussion had considered. Oliveira observed that he felt people
always expressed themselves more clearly after attending formal methods events
like the FM conferences.

A while ago, Oliveira continued, he bought a book—the only copy remaining
at a Springer conference stand—that changed the way he thought about science.
The book was written by physicist and linguist Lucio Russo and was called The
Forgotten Revolution: How Science Was Born in 300 BC and Why it Had to Be
Reborn [9]. This book was interesting because it argued that, using evidence and
documents still extant, the Ancient Greeks were much better at science than the
Ancient Romans. This was arguable despite much more evidence surviving from
the Roman era. Russo’s linguistics background led him to state that a reason for
this is that the Greeks had better terminology. They could say in one word what
the Romans said in three. This meant that their understanding of problems was
superior—and, in the same way, Oliveira argued, formal methods give us the
language to express ourselves better.

Oliveira also told us about another reading experience: he went through a
book of mathematics written in 1567 by a Portuguese mathematician, Pedro
Nunes [7]. Oliveira read the book—supported by a modern description—and
compared the language used in the 16th Century with that used for the same

8 Berry later added by email that he was particularly thinking here of Patterson’s
PhD thesis [8].

108 T. K. Astarte

theorems nowadays. He observed quite a difference, and suggested that maths
has evolved and improved significantly.9

Finally, Oliveira mentioned that he had been recently examining the standard
for the patent of the stack concept; the very existence of a patent for something
that seems like a fundamental concept was interesting in itself. Furthermore, he
found it hard, looking through this patent, to understand exactly how they were
defining the stack.10 Oliveira thought it would be an interesting exercise to write
the same standard using a formal methods approach: surely the result would
be a much briefer specification. These days, he explained, we teach students
the concept of a stack in two minutes; but in the historic standard one had
to read very carefully for a much longer time in order to find what the stack
is. So, modern formal methods gives us the tools for considerably more precise
expression: a great thing.11

6 Inconsistency

The discussion now switched towards a critique of formal methods, courtesy of
Dan Berry.12 He came on the stage in order to use a flip chart to illustrate his
points.

Recently, explained Berry, he published a paper with Hadar and Zamansky
about dealing with inconsistency in requirements specification [4]. A core part of
that work discussed how, as you develop a new system and do not yet have full
information, your specification is bound to contain inconsistencies. Berry and his
co-authors found, from interviews with software engineering practitioners who
had experience of requirements specification, that these people had difficulty
dealing with inconsistencies and would feel they had to resolve every one.

Here Berry drew a diagram on the flip chart, reproduced in Fig. 1. He
explained: specification of the system entails the requirements: D,S � R. D
and R are written in the vocabulary of the environment and S is written in the

9 The history of maths community would reproach me if I did not comment that math-
ematical works must be appreciated within their historical context. One handbook
for doing this has been written by Wardaugh [11].

10 A further editorial note courtesy of Berry: patents are often written in a confusing
way in order to play up the non-obviousness of the proposed “invention”.

11 Expanding this point, Gibbons remarked in a later email: “Yes, a formal methodist
can make a more precise specification than someone who doesn’t know maths, e.g.
for writing a technical specification. The problem is that the specification must also
be readable by people who don’t know maths. Rick Hehner used to tell a nice story
about arguing with his lawyer while trying to write a will: how to specify the class
of related people to whom your assets will be distributed. The lawyer had a long
piece of text about cousins, and second cousins, and third, etc. Rick had a much
shorter specification in terms of the transitive closure of a small relation. Rick lost
the argument, because the reader of the will is not someone like Rick, but someone
like Rick’s lawyer”.

12 Earlier in the workshop, Berry had given a talk about his own shift in research
emphasis away from formal methods and towards requirement engineering [2].

What Have Formal Methods Ever Done for Us? 109

Fig. 1. Berry’s World Views diagram, originally from [13].

vocabulary of the interface. So, while the code of the system might be formal,
anything about the environment is about the real world and is informal. Thus,
in this view, the whole formula becomes hopelessly informal.

Berry gave us an example scenario. Consider some system engineers designing
a traffic system. A key safety requirement is that there should be no perpendic-
ular collisions. The specification of a traffic light permits focus on the condition
that prevents these collisions: a green light should not be shown in two perpen-
dicular directions simultaneously.

However, Berry continued, that might not be enough. This system makes
the assumption that drivers obey the light and that the cars obey the drivers.
If this assumption is forgotten and the specification is followed to the letter,
there could be some inconsistency. Berry argued that sometimes it is necessary
to tolerate an inconsistency temporarily until it can be resolved. In the traffic
light example, the main thing is that the driver obeys the lights. It might not be
necessary to tolerate that permanently, but there is no way to make the software
force the driver to obey the lights. Berry reported that when situations like this
were described in interviews, practitioners were prepared to accept that there
could be some inconsistencies that could not fixed, and would instead have to
be tolerated.

The situation might seem different, however, with self-driving cars. One might
think “Great! Maybe the light should control the vehicle.” This would obviate
the need for drivers to obey the lights. One of the aspects of the real world (here
Berry indicated the appropriate part of the diagram) has been moved over into
the specification, which tells the system it now has to be obeyed. Of course, the
vehicle still has to obey the system. This way of framing the situation, Berry
and his co-authors found in interviews, was more acceptable to practitioners:
it became something they could deal with. So, an informal version of a formal
method was able to help people deal with something they couldn’t have dealt
with when it was completely informal.

110 T. K. Astarte

7 Direction

Ursula Martin joined the conversation, and suggested an opening up of the dis-
cussion, with, in particular, a question of stakeholders. She noted that in Berry’s
example, there was a tacit community of involved parties: everyone who drives a
car, walks on the pavement hoping to avoid being hit by a car, or sits on a train.
She was interested in a clarification and opening up of this group. Who should
able to prioritise the next line of research questions coming for historians and
formal methods people? Should it be the technical community? Industry prac-
titioners? The next generation of students? Martin wondered by whom and in
which direction the research question should be developed; she was particularly
concerned with this in regards to teaching formal methods to undergraduate
students.

8 Education

This led us into our next discussion topic, education, on which topic Jeremy
Gibbons had a contribution to make. He wished to highlight Carroll Morgan’s
talk at the Formal Methods Teaching workshop, the topic of which was hidden
formal methods. Gibbons linked this to what Berry had been saying: the idea
was to gloss the intention of the formal method to make it more appealing
and memorable. This approach might avoid people thinking “Formal methods
are a theory thing, only for theoreticians. I’m a programmer or engineer, so I
don’t need to know this formal methods stuff.” Formal methods should not be
sold as something purely theoretical, Gibbons argued, but rather as a tool of
thought. These methods aid in thinking the right things, thinking them clearly,
and expressing them well—goals which are of use to everyone. So finding ways
to prevent students switching off is very important.

Coming in next on the subject of education, Elizabeth Scott, head of Comput-
ing at Royal Holloway, felt that for the three hundred students at her institution,
formal methods seemed just too hard. The way of learning them did not match
with what the students wanted: they wanted a practical experience. So, trying
to find a good angle to sell formal methods was vital. Acknowledging that she
was not particularly part of the formal methods community, Scott nevertheless
had an intriguing suggestion for this.

What if, she proposed, there was a Star Trek episode in which they travelled
to an alternate universe in which formal methods had won? Dana Scott and
Christopher Strachey13 revered—how would that world look different? There
was a particular Star Trek episode called ‘A Piece of the Action’ in which the
crew went to a planet on which a book describing the 1920s American gangster
scene had fallen. The planet’s inhabitants had shaped their whole culture around
this. In the fictional universe where formal methods had landed in this way, what
would the practitioners be doing? How would the world be different if formal
13 These two worked together on denotational semantics in the 1970s; for an account

of their work see Chap. 4 of [1].

What Have Formal Methods Ever Done for Us? 111

methods had been embraced in the way its proponents wished? If we could work
that out, Scott suggested, we might present it to students and industry as a
selling point.

This was a novel suggestion, and flipped the initial question on its head—not
“What have formal methods done for us?” but “What could they do for us?”

9 Proliferation

Brian Randell took the microphone, expressing a heartfelt sentiment that what
the FM community could do with is more historians. They could provide more
accurate stories and analyses of who really did what and what really happened.
He admitted he knew historians dislike being used as a source of ideas for what
should be done next, but Randell said he strongly believed in George Santayana’s
line “He who forgets the past is forced to relive it”.

That led Randell to what was, to him, the really irritating point: why the
hell are there so many different formal methods? Never mind so many thousands
of different programming languages. Acknowledging that he might just be seeing
greener grass, Randell said he felt that the disease was nothing like as strong in
the hardware world. He could imagine reasons for some of those constraints, but
thought that some good sceptical historians could give formal methods—and
many other fields in computer science—quite a strong dose of reality.

I had a response to the question of why there are so many different formal
methods, programming languages, and technologies generally. It was mentioned
to me that morning while I was talking to another workshop attendee, who was
no longer present by the afternoon session. She had told me about her experience
of working on a tough problem in an industrial setting: they understood the
problem to a reasonable degree of detail, but were not able to shape it easily
into a form that could be addressed by an existing language. In that case, they
felt, the easiest thing to do was just design a new approach.

I observed further that perhaps a reason for the current success of domain-
specific languages was because they enabled a more problem-oriented viewpoint.
In a world where there are, say, five formal methods, then one has to be able
to state every single problem in at least one of those five different methods.
Whereas, if the problem-first perspective is taken, one might design a way to
state the problem sufficiently precisely that a solution becomes easy to find.

10 Communication

I took the opportunity to make another observation about education. I had
recently started teaching by taking over a module previously taught by Cliff
Jones on the subject of semantics of programming languages. In that class, the
techniques are illustrated on a language that is neither full-scale and very com-
plicated, nor only trivial. Many students stated in their reflection at the end of
the module that they experienced a sudden moment of clarity. They would have
been sitting through the lectures, unable to make sense of the concepts—seeing

112 T. K. Astarte

only a jumble of confusing notations—and then suddenly something would click
and everything would fall into place. It was even my own experience when I took
the module as an undergraduate.

Once that moment had happened, the students became able to look at pro-
gramming languages in a different way. They were then able to see that what
they had thought of as distinct entities actually had a lot more similarity and
shared notions. Students reported that it had helped them think about real
issues in programming and even designing things like protocols.

In conclusion, I thought one of the real values of formal methods is that they
give us ways of discussing fundamental concepts in computing and transmitting
these to the next generation.A lot of the tools in formal methods assist in getting
to the important ideas and expressing them. Perhaps not always in the most
intuitive way, but in a way that is somehow precise and useful. This, of course,
linked back to what José Oliveira had said earlier—and indeed he was nodding
in agreement.

11 Concluding

This took us towards the end of the session. One final remark was made by Dan
Berry, who took up the thread of multiplicity of formal methods mentioned by
Randell. He indicated his diagram (Fig. 1), and noted that the specification and
the system are both formal models of the real world. Every part of the real world
was inevitably going to require different formal models, he argued. This can be
seen in physics, too: there is a formal model of the macro world which is totally
different from—and inconsistent with—the formal model of the quantum world.
The reason we have trouble with these formal methods, asserted Berry, is that
we are building systems for different parts of the real world, which will need
different models, and hence different formal methods.

I now handed the microphone to Brian Randell for a penultimate word from
the co-chair. He said he couldn’t disagree more with the point Berry had made,
and said that to express worries that there are too many languages is not the
same as saying “Why don’t we all use the same language?” Randell repeated a
quotation from Tony Hoare “If you’ve got a new problem, by all means invent a
new language; but for Pete’s sake don’t write a compiler for it!” Randell noted
that he would also add “Don’t start writing textbooks for it, and don’t start
proselyting around, unless you’ve got a very good reason!” It was almost like
a conservation issue to him. Every new language and every new method has
disadvantages through its very existence.

That brought the workshop to a close. All the attendees were thanked for a
great collection of talks with some very stimulating discussion, and a balanced
viewpoint on the effects of formal methods. I suggested we leave the final verdict
on whether formal methods had been a good thing or not to the thriving future
community of formal methods historians. Perhaps at the next HFM19, in one
hundred years’ time, decisions about what formal methods had done for us could
be made. Until then, everyone was left with a suggestion that reflection on one’s
work, and on one’s discipline, is always a good and healthy thing.

What Have Formal Methods Ever Done for Us? 113

References

1. Astarte, T.K.: Formalising meaning: a history of programming language semantics.
Ph.D. thesis, Newcastle University, June 2019

2. Berry, D.M.: The prehistory and history of RE (+SE) as seen by me: how my inter-
est in FMs helped to move me to RE and to teach me fundamental impediments
to using FMs in SW systems development (abstract). In: Moreira, N., Sekerinski,
E. (eds.) FM 2019 Workshops Proceedings, LNCS. Springer (2020)

3. Gibbons, J., Jeuring, J. (eds.): Generic Programming. In: Proceedings of the IFIP
TC2 Working Conference on Generic Programming, Schloß Dagstuhl, July 2002.
Kluwer Academic Publishers (2003). ISBN 1-4020-7374-7

4. Hadar, I., Zamansky, A., Berry, D.M.: The inconsistency between theory and prac-
tice in managing inconsistency in requirements engineering. Empir. Softw. Eng. 24,
3972–4005 (2019)

5. Johnstone, A., Scott, E.: Babbage’s mechanical notation (abstract). In: Moreira,
N., Sekerinski, E. (eds.) FM 2019 Workshops Proceedings, LNCS. Springer (2020)

6. Newcombe, C., et al.: Use of Formal Methods at Amazon Web Services, September
2014. http://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf

7. Nunes, P.: Libro de Algebra en Arithmetica y Geometria. Original edition by
Arnoldo Birckman (Anvers) (1567)

8. Patterson, D.A.: Verification of microprograms. Ph.D. thesis, University of Cali-
fornia, Los Angeles (1976)

9. Russo, L., et al.: The Forgotten Revolution: How Science was Born in 300 BC and
Why it had to be Reborn. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-18904-3

10. Steel, T.B.: Formal Language Description Languages for Computer Programming.
North-Holland, Amsterdam (1966)

11. Wardhaugh, B.: How to Read Historical Mathematics. Princeton University Press,
Princeton (2010)

12. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4) (2009)

13. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 6(1), 1–30 (1997)

http://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://doi.org/10.1007/978-3-642-18904-3
https://doi.org/10.1007/978-3-642-18904-3

NSAD 2019 - 8th Workshop on
Numerical and Symbolic Abstract

Domains

NSAD 2019 Organizers’ Message

This volume contains the post-proceedings of the 8th International Workshop on
Numerical and Symbolic Abstract Domains (NSAD 2019), held on 8 October 2019 in
Porto, Portugal, as part of the Third World Congress on Formal Methods.

The series of Workshops on Numerical and Symbolic Abstract Domains are
intended to promote discussions and exchanges of experience in the design of abstract
domains: semantic choices, data-structures and algorithmic aspects, and implementa-
tion decisions, as well as classical or less classical applications.

Previous workshops were held in Perpignan, Venice, Deauville, Munich, Edin-
burgh and New York.

The Program Committee (PC) received 6 submissions, which covered a large
number of topics, which significately increased the traditional audience of the NSAD
workshop.

Each paper was evaluated using a multi-phase review process. In the first phase,
each paper received independent reviews from 3 PC members. All 6 submissions were
accepted for presentation:

• Farah Benmouhoub, Pierre-Loic Garoche and Matthieu Martel Improving the
Numerical Accuracy of Parallel Programs by Data Mapping.

• Vincenzo Arceri, Michele Pasqua and Isabella Mastroeni An abstract domain for
objects in dynamic programming languages.

• Ghiles Ziat, Alexandre Maréchal, Marie Pelleau, Antoine Miné and Charlotte
Truchet Combination of Boxes and Polyhedra Abstractions for Constraint Solving.

• Guillaume Cluzel and Cezara Drägoi Towards an abstraction for data structures
that implement cooperation mechanisms.

• Maxime Jacquemin and Franck Vedrine, A Dividing Method Minimizing the Lin-
earization Term in Affine Arithmetic.

• Solène Mirliaz and David Pichardie, Flow Insensitive Relational Static Analysis.

The acceptation email also proposed to all papers to resubmit their paper to the
postproceeding phase, with clear hints on how to improve the submission to fit the
postproceeding standards.

In addition, the program also featured 3 invited talks, shared with the Tenth
Workshop on Tools for Automatic Program AnalysiS (TAPAS 2019):

• Transforming Development Processes of Avionics Software with Formal Methods,
by Pascal Lacabanne (Airbus, France);

• Establishing Sound Static Analysis for Integration Verification of Large-Scale
Software in Automotive Industry by Bernard Schmidt (Bosch, Germany);

• Some thoughts on the design of abstract domains, by Enea Zaffanella (University of
Parma, Italy).

Finally, revised versions of some of the presented papers were submitted after the
workshop, and the reviews of the PC were updated accordingly. These post-
proceedings enclose the two regular contributions to NSAD 2019 selected for formal

publication, as well as the abstracts of one invited talk. The abstract of the two other
invited talks may be found in the post-proceedings of TAPAS 2019.

We would like to thank everyone involved in the organization of the workshop, and
especially David Delmas, chair of TAPAS, which clearly helped a lot in the overall
organisation of our two friend worshops. We are very thankful for the members of the
Program Committee for their evaluation work, and for all the discussions on the
organization of the event. We would like to give a particular acknowledgment to the
Organizing Committees of the FM Week and the Static Analysis Symposium (SAS), in
particular José Nuno Oliveira (FM General Chair), Nelma Moreira and Emil Sekerinski
(FM Workshop and Tutorial Chairs), Bor-Yuh Evan Chang (SAS PC Chair), and
Antoine Miné (SAS PC member), for their great support to the organization of satellite
events such as TAPAS 2019. We would also like to thank Isabella Mastroeni and
Antoine Miné for giving us the opportunity to organize NSAD 2019.

Finally, we would also like to thank the authors and the invited speakers for their
contributions to the program of NSAD and TAPAS, as well as Springer for publishing
these post-proceedings.

December 2019 Laure Gonnord

Organization

Program Committee Chair

Laure Gonnord Université Claude Bernard Lyon1, France

Steering Committee

Isabella Mastroeni Università di Verona, Italy
Antoine Miné Université Pierre et Marie Curie, Paris

Program Committee

Clément Ballabriga Université de Lille, France
Mehdi Bouaziz Nomadic Labs, Paris, France
Matthieu Martel Université de Perpignan, France
Isabella Mastroeni Università di Verona, Italy
Pascal Sotin Université de Toulouse, France
Charlotte Truchet Univ Nantes, France

DataMod 2019 Organizers’ Message 117

Some Thoughts on the Design of Abstract
Domains (Invited Talk)

Enea Zaffanella

University of Parma, Italy
enea.zaffanella@unipr.it

Abstract. The Abstract Interpretation framework provides invaluable guidance
for the design of abstract domains to be used in static analysis tools.
Nonetheless, the development of an adequate abstract domain can be a chal-
lenging task: besides the mandatory correctness requirements, also its precision
and efficiency need to be properly considered. Drawing mainly from past
experience, we show a few examples of the problems that an abstract domain
developer may be facing. We rediscuss the tradeoffs that could be adopted while
working through the solutions, somehow confirming known rules of thumb,
possible exceptions to the rules of thumb and other interesting relationships
between correctness, precision and efficiency.

Combination of Boxes and Polyhedra
Abstractions for Constraint Solving

Ghiles Ziat1(B), Alexandre Maréchal1,2, Marie Pelleau3, Antoine Miné1,
and Charlotte Truchet4

1 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
ghiles.ziat@gmail.com

2 Univ. Grenoble Alpes, CNRS, VERIMAG, 38000 Grenoble, France
3 Université Côte D’Azur, CNRS, I3S, 06100 Nice, France

4 LS2N, UMR 6004, Université de Nantes, 44300 Nantes, France

Abstract. This paper investigates the use of abstract domains from
Abstract Interpretation (AI) in the field of Constraint Programming
(CP). CP solvers are generally very efficient on a specific constraint
language, but can hardly be extended to tackle more general languages,
both in terms of variable representation (discrete or continuous) and con-
straint type (global, arithmetic, etc.). For instance, linear constraints are
usually solved with linear programming techniques, but non-linear ones
have to be either linearized, reformulated or sent to an external solver. We
approach this problem by adapting to CP a popular domain construction
used to combine the power of several analyses in AI: the reduced prod-
uct. We apply this product on two well-known abstract domains, Boxes
and Polyhedra, that we lift to constraint solving. Finally we define gen-
eral metrics for the quality of the solver results, and present a benchmark
accordingly. Experiments show promising results and good performances.

1 Introduction

Constraint programming (CP) is a paradigm of declarative programming, in
which problems are described in mathematical terms involving constraints (i.e.
first-order logic formulas) over variables, and then solved using a constraint
solver. Solvers often focus on a few constraint languages, which are families of
constraints such as linear (in)equalities over the reals, over the integers, polyno-
mial constraints, real constraints with mathematical functions (sin, cos, log. . .),
integer cardinality constraints, etc. Yet, most solvers share two common ingredi-
ents: first, they use propagation algorithms to reduce the search space by reason-
ing on the constraints, without losing solutions. Second, they usually feature a
branching process that consists in adding hypotheses (e.g. variable instantiation
or domain splitting) to the problem. If the new problem is proved infeasible,
the solver backtracks on the current hypotheses and makes new ones to explore
other parts of the search space. In classic CP solvers, the variables are always
considered independent, the only relations between them being the constraints.
In practice, solvers thus work in the Cartesian product of the variables domains,
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 119–135, 2020.
https://doi.org/10.1007/978-3-030-54997-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_8

120 G. Ziat et al.

which can be real intervals with floating point bounds, integer intervals or finite
integer sets. Each of these domain representations comes with specific propaga-
tors, such as Hull consistency [3] for real domains or bound-consistency [18,23]
for integer intervals, to name a few.

Abstract domain has been introduced for over-approximating sets of interests
(traces of programs) in order to capture specific properties. Previous works [17]
showed how to unify the core constraint solving methods by re-defining a generic
notion of abstract domain, augmented with CP-oriented operations.

A generic solving process based on abstract domains has been introduced in
[16], and implemented in the AbSolute abstract solver. Given an abstract domain
(e.g. the Cartesian products of real intervals, also called boxes), the solver com-
bines propagators and branching operators well defined for this abstract domain
(for instance on boxes: Hull consistency propagation and interval splitting). An
important feature of this solving method is its modularity: the same formal
method can be parametrized with different abstract domains. The main proper-
ties of the solver, which are termination, completeness, and soundness, depend
on the properties of the abstract domain it uses.1

In this fashion, a solver can benefit from the many abstract domains that have
already been defined in Abstract Interpretation (AI) to tackle specific program
properties: Intervals [6], Polyhedra, etc. For instance, Octagons [14,15] have been
adapted to constraint solving with ad-hoc propagation and exploration heuris-
tics [17]. Abstract domains feature different precision and costs: for example,
Octagons are costlier than Intervals but more precise. Also, some domains such
as Ellipsoids are designed to capture very specific properties and ignore other
ones, or propose very coarse approximations for them. Choosing which domain
to use is not a trivial task as these facts must be taken into account.

In addition, AI defines a set of abstract domain transformers, building upon
one or several abstract domains to improve or combine their precision. Such
transformers are very useful as they create more expressive combined domains
in a modular and generic way. For example the Trace Partitioning transformer
[19] partitions execution traces of a program according to the control flow (e.g.,
which branch of a conditional statement was taken), leading to a path sensitive
analysis. It focuses on the abstraction of the control flow and delegates the
value analysis to another domain (generally a numeric one), whose accuracy
will benefit from the partitioning. In the following, we will extensively use the
Reduced Product [7], another very popular domain transformer. It combines two
domains to represent conjunctions of properties from both of them. Operations
in the reduced product apply a reduction operator to communicate information
between the base domains, thus improving the precision.

Contribution. In this article, we first present a Constraint Programming version
of the Box and Polyhedra abstract domains [8]. We then introduce a version
1 Contrarily to AI, in CP the term completeness refers to an algorithm which does

not lose solutions (over-approximating the solution set), while soundness means that
the solver under-approximates the solution set. This vocabulary can be misleading.
In the following, we will use “over/under-approximation” to avoid any ambiguity.

Boxes and Polyhedra 121

of the Reduced Product domain transformer adapted to CP purposes, and we
detail a constraint attribution operators for the Box-Polyhedra reduced product.
Finally, we present an implementation in the AbSolute solver and experiments
made on the Coconut benchmark [22].

To be usable in a CP framework, we will have to define on each abstract
domain (1) a split operator, to implement the branching process; (2) a size
function, to determine when the solver finishes; (3) and propagators for given
constraint languages. Compared to the classic reduced product of AI, our version
introduces a hierarchy between the domains, one of them being specialized to
a certain kind of problems only, in order to avoid a redundancy of information
between the two components of the product.

This paper is organized as follows: Sect. 2 recalls the definitions and results on
abstract domains needed afterwards, in particular the generic notion of abstract
domain for CP. Section 3 introduces the Box and Polyhedra abstract domains.
Section 4 then explains how to build Reduced Products domains for CP, and
details the Box-Polyhedra reduced product. Section 5 presents experiments using
AbSolute with the new Box-Polyhedra domain. Finally, Sect. 6 concludes.

Related Works. The links between CP and AI have already been highlighted
in previous works. The seminal work of Apt [1] expresses the propagation loop
which consists in propagating the unfeasible set of some constraints as chaotic
iterations in a well-chosen lattice. In the same spirit, [2] defines propagators,
whether discrete or continuous, in a similar framework. Later, [20] keeps the
same idea and weakens the conditions on the propagators while keeping the
convergence of the propagation loop. All these works focus on propagation. We
go one step further by expressing the splitting and size operators in the same
framework, thus taking into account the whole solving process.

A work more related to ours is [21], which also investigates the use of abstract
domains in CP and also mainly focuses on propagation. The key difference is the
way we build the abstract domain. [21] defines abstractions solely through Galois
connections, which is an important restriction as it bans interesting abstractions
such as polyhedra or zonotopes [10]. On the contrary, we can support a larger
set of abstractions, including those for which there is no Galois connection.

2 Abstract Constraint Solving

This section introduces the core notions of CP solving, and the extension of
abstract domains to the CP context.

2.1 Constraint Programming Background

Constraint solvers can deal with problems written as Constraint Satisfaction
Problems (CSP), where variables represent the unknowns of the problem. Each
variable takes its value from a given set, usually called domain, and constraints

122 G. Ziat et al.

express the relations between the variables. The variables, domains and con-
straints are given by the user to represent the problem to solve, and the triplet
of these make a Constraint Satisfaction Problem. Note that the domains defined
in CP are not abstract domains as defined in AI. Next section will clarify this.

Definition 1. A Constraint Satisfaction Problem is a triplet (V,D, C), where n
and m are respectively the number of variables and the number of constraints of
the problem:

– V = (v1, ..., vn) are variables representing the unknowns of the problem,
– D = (d1, ..., dn) are domains for the variable, such that vk ∈ dk,∀k ∈ [1, n],
– C = (c1, ..., cm) are constraints over the variables.

Constraints of a CSP are defined in a given constraint language, i.e. a family
of first-order logical formulæ. For simplicity, we focus in this section on the
case of real variables, where the domains are real intervals with floating-point
bounds, and the constraints can be written using arithmetic operators, common
mathematical functions (sin, cos, log, and any function which can be computed
on intervals), and a relation operator within {=, �=, <,≤}. The corresponding
abstract domain will be formally defined in Sect. 3.1. Many constraint languages
exist in the literature, in particular on finite domains.

We call an instance a total mapping V → D from variables to their domain. A
solution of a CSP is an instance that satisfies all of the constraints. In the case of
finite domains, a solution is given as an instance, i.e. values in the domains for the
variables, such that the constraints are satisfied when substituting the variables
by their corresponding values. If the solutions are not computer-representable,
as it is the case with variables taking real values, then solving the CSP means
finding, for each variable, subpart of its domains which are either entirely solu-
tions (all the instances inside the domains satisfy the constraints), or are smaller
than a given precision (on interval domains for instance, the size of the domain
is the interval length). Figure 1 illustrates an example of such a resolution.

The search space is usually either too large (in the discrete case, its size
is exponential in the number of variables) or infinite (in the continuous case,
solutions for real variable may not be computer-representable) to be explored
exhaustively. A key ingredient of constraint solving is the notion of propagation,
which relies on the constraints to reduce the search space.

Definition 2. Let (V,D, C) be a CSP, and let c ∈ C be a constraint. A propa-
gator ρ for c is a function from P(D) to itself such that:

– ∀D′ ∈ P(D), ρ(D′) ⊆ D′,
– ∀D′ ∈ P(D),∀(x1, . . . , xn) ∈ D′, c(x1, . . . , xn) =⇒ (x1, . . . , xn) ∈ ρ(D′)

The first condition makes the propagators always decreasing for the ⊂-order.2

The second condition ensures that a propagator does not remove solutions for its
2 Contrarily to the evolution of abstract elements during a static analysis in AI, con-

straint domains always decrease.

Boxes and Polyhedra 123

constraint. Constraint propagators are usually built to tighten the search space as
much as possible. For instance, Hull-consistency propagation on boxes [3], which
is similar to the bottom-up top-down algorithm in AI, reduces the domains by
analyzing the expressions inside the constraints with interval arithmetics.

The propagation step in a solver applies the propagators for each constraint,
until it reaches a given consistency. Consistencies are properties on the sat-
isfiability of a problem. The application of a propagator makes it possible to
establish such properties. For example, the HC4 propagator [3] establishes the
Hull-Consistency property (i.e. it computes the smallest box containing all of the
solutions of the problem). For example, given two real variables x and y defined
respectively on the intervals [0; 5] and [0; 10], the smallest box that contains all
of the solutions of the constraint x2+y2 ≤ 4 is the store that maps x to [0; 2] and
y to [0; 2]. Propagation is usually not sufficient to find solutions of the problems,
for instance when the solution set cannot be exactly represented by a single
abstract element (e.g., Cartesian products cannot represent complex shapes).
Thus, the solver alternates propagation steps and choice operations (split), as
detailed below.

2.2 Abstract Domains for Constraint Solving

A key point in our work is the use and combination of abstract domains. In AI,
they have been introduced to over-approximate program states [6]. For example
with the Interval abstract domain, each variable of a program is mapped to an
interval with floating point bounds, and a program state is a box. An abstract
domain is a partially ordered set (a poset), where several operations can be made:
transfer functions compute the result of an operation on an abstract element,
the meet operator represent intersections of abstract elements, etc.

Abstract domains have already been extended to be used in a CP solver in
[16]. We recall the main definitions and algorithms in this section. A classic CP
solver alternates two main steps: propagation and search. The abstract-solving
method is defined by lifting up these operations to abstract domains. An abstract
CP domain must thus feature a propagation operation, a size function and a split
operator. Propagation is quite specific in our work, and is defined in the next
subsection.

Definition 3 (Abstract Domain for Constraints). An abstract domain is
given by:

– a poset (E,⊆), with a computer representation for the elements of E,
– a propagator ρ : E → E for each constraint c,
– a splitting operator on E, ⊕E : E → P(E),
– a size function τE : E → R

+.

Here, the poset (E,⊆) defines the sets of points that can be exactly
represented (boxes, octagons, etc). The propagator must return an over-
approximation, so that it does not lose solutions (as in Definition 2). The prop-
agators may be designed specifically for an abstract domain, in particular when

124 G. Ziat et al.

Algorithm 1: Solving with abstract domains.
function solve(e, C) // e: initial abstract element, C: constraints

sols ← ∅ // abstract solutions

toExplore ← ∅ // abstract elements to explore

append e in toExplore
while toExplore �= ∅ do

e ← pop(toExplore)
e ← φ(e, C) // propagation of all constraints

if e �= ⊥ then
if τE(e) ≤ r or ∀c ∈ C, c(e) then

sols ← sols ∪ e

else
∀ei ∈ ⊕E(e), append ei in toExplore // splitting

the abstract domain is naturally defined with constraints: for example, Octagons
are defined by a set of constraints of a given format (±vi ± vj ≤ c for c a
constant), and propagating these constraints correspond to the refined Floyd
Warshall algorithm proposed in [13] to compute the normal form of an Octagon.
But they may also be defined in a generic way to handle any type of constraints,
as are most of the classical CP propagators on cartesian domains, such as the
HC4 algorithm [3] described above. The size function gives a metric on the size
of an abstract element. It is used for the termination condition and should be
designed such that an abstract element e ∈ E is considered as too small to be
split if τE(e) is less than or equal to a parameter r ∈ R

+. Moreover, if an element
e is an atom of E, τE(e) should be equal to 0 as it is not possible to split e into
smaller elements (e.g., interval singletons).

We call split the action of dividing an abstract element into smaller ones
w.r.t. ⊆. The split operator ⊕E must respect some conditions and should be
designed in accordance with τE .

Definition 4. Let (E,⊆) be a poset. A split operator ⊕E : E → P(E) is such
that, for e ∈ E an abstract element, we have:

– ∪ ⊕E (e) = e (no solution must be lost, nor added),
– |⊕E(e)| is finite (this ensures finite width of the search tree),
– ∃ε > 0,∀e,∀ei ∈ ⊕E(e), τE(ei) ≤ τE(e) − ε, (this ensures finite depth of the

search tree, hence termination).

If an abstract domain features all these operators, it can be used in the
abstract solving method defined in [16], which solves CSPs by computing and
refining covers of their solution space using abstract elements. Algorithm 1 gives
its pseudo-code. It proceeds as follows: given an initial abstract element e, sup-
posed to represent exactly the domains of definitions of the variables, and a set
of constraints C, we maintain a list of abstract elements toExplore, containing

Boxes and Polyhedra 125

x2 + 4y2 ≤ 4

2y2 ≤ x

(a) Constraint
system

(b) Resolution with the
interval domain

Fig. 1. Resolution of a continuous constraint problem using the interval abstract
domain.

all the abstract elements which remain to be explored, and initialized with e.
The main loop takes one element in toExplore, and performs the propagation
of the constraints on e, where φ is the successive application of ρ for each con-
straint in C: φ(e, {c1, c2, . . . , cn}) = ρ(. . . ρ(ρ(e, c1), c2) . . . cn). If e is empty, then
it contains no solution and is discarded. Otherwise, if e either fully satisfies all
the constraints, or is small enough, it is added to the solutions of the problem.
And in the other case, the status of e remains undecided, thus e is split and the
resulting new elements are added to toExplore. Any abstract domain can be
used within this algorithm, given that the constraint propagators are defined.

Figure 1(b) shows the result of this solving method on an example from the
Coconut benchmark. We can distinguish two kinds of elements in the resulting
cover: the one that are proven to satisfy the CSP, and the one that were too small
to be split. Considering only the former gives an under-approximation of the
solution set and considering both kinds gives the same result as the continuous
solving method in CP, that is a union of boxes over-approximating the solutions.

3 Boxes and Polyhedra as Constraint Abstract Domains

Abstract domains from AI can be adapted to be used in CP. We now introduce
two of them, Boxes and Polyhedra, in their CP version. The Boxes abstract
domain has been introduced in [16], and we recall the definitions here.

3.1 A Non-relational Abstract Domain: Continuous Boxes

In non-relational domains, variables are analyzed independently. In other words,
each variable is assigned to a domain regardless of the domains of the other
variables. We detail here the case of boxes, where a variable domain is a real
interval with floating-point bounds.

Generally, CP solvers over continuous variables use as a representation inter-
vals with floating-point bounds. This representation forms a lattice [2]. Consider
F the set of (non special) floating point numbers according to the IEEE norm
[9]. For a, b ∈ F, let [a, b] = {x ∈ R, a ≤ x ≤ b} the real interval delimited by a

126 G. Ziat et al.

and b, and I = {[a, b], a, b ∈ F} the set of all such intervals. For any interval I,
we write I (resp. I) its lower (resp. upper) bound. Similarly, for any real point
x, x (resp. x) is the floating-point lower (resp. upper) approximation of x.

Let v1, . . . , vn be variables over finite continuous domains d1, . . . , dn. We call
box a Cartesian product of intervals in d1 × · · · × dn. Boxes built upon D (the
initial domain of the variable) form a lattice:

B(D) =

{∏
i

[ai, bi] | ∀i, [ai, bi] ⊆ di

}

The abstract domain is based on the lattice B ordered by inclusion. Its consis-
tency is Hull-consistency [4]. The splitting operator first uses a variable selection
strategy (e.g., the variable with the biggest range) and then splits the domain
of the chosen variable in two. Let vi be the variable chosen for the split and
di = [ai, bi] ∈ I its domain. Let h = ai+bi

2 . The split operator is:

⊕B(d1 × · · · × dn) = {d1 × · · · × [ai, h] × · · · × dn,
d1 × · · · × [h, bi] × · · · × dn}

The size function corresponds to the Manhattan distance between two
extremities of a diagonal of a box:

τB([a1, b1] × . . . × [an, bn]) =
∑
i

(bi − ai)

Here, ⊕B and τB are designed in accordance with Definition 4, and we have
∀e′ ∈ ⊕B([a1, b1] × . . . × [an, bn]), τBe′ = τB(e) − 1

2 × max
i

(bi − ai). This respects

our termination criteria as max
i

(bi − ai) > 0 (except if e is an atom, in which

case we would not have split it).
Using this abstract domain with Algorithm 1, we retrieve the usual CP solv-

ing method on continuous variables. Results detailed in [17] show that this solver
terminates and returns a cover over-approximating the solutions.

Relational abstract domains get their names from the fact that they can
represent relations between variables. For instance, a linear relation y ≤ x can be
represented as a polyhedron, but not as an interval. This expressiveness comes at
a price, the operators being costlier in relational than in non-relational abstract
domains. We adapt here to CP a relational abstract domain, Polyhedra, and
present a Reduced Product for CP where Polyhedra and Boxes coexist.

3.2 A Relational Abstract Domain: Polyhedra

The polyhedra domain P [8] abstracts sets as convex closed polyhedra.

Definition 5 (Polyhedron). Given a set of linear constraints P, the convex
set of Rn points satisfying all the constraints in P is called a convex polyhedron.

Boxes and Polyhedra 127

(a) A polyhedron.

x ≥ 1
x ≤ 4
y ≥ 1
y ≤ 4
2 × y − x ≤ 6
2 × y − x ≥ 0
2 × x+ y ≥ 4

(b) Set of linear
constraints.

(c) Generators and
Precision.

Fig. 2. Different representations for the polyhedra.

Modern implementations [11] generally follow the “double description app-
roach” and maintain two dual representations for each polyhedron: a set of linear
constraints and a set of generators. A generator is either a vertex or a ray of the
polyhedron. However in practice, polyhedra are bounded in a constraint solver,
hence they do not feature rays.

Figure 2 illustrates the different representations for a same polyhedron. The
graphical representation Fig. 2(a), the set of linear constraints Fig. 2(b), and the
generators and the maximal distance between two generators Fig. 2(c).

The double description is useful because classic polyhedra operators [11] are
generally easier to define on one representation rather than the other. This also
holds for the operators we introduce here for CP. We define the initialization and
the consistency of a polyhedron on the set of linear constraints. The size function
is defined on generators and the split operator relies on both representations.

Propagation is an important operator to effectively reduce the search space.
In the following, we will consider a weak form of consistency for polyhedra: the
non-linear constraints are ignored (not propagated), only the linear constraints
are considered.

Definition 6 (Polyhedral consistency). Let Cl be a set of linear constraints,
Cnl a set of non-linear constraints, and C = Cl ∪ Cnl. The consistent polyhedron
for C is the smallest polyhedron including the solutions of Cl.

With this weak definition, the consistent polyhedron given a set of constraints
always exists and is unique. This simple consistency definition is sufficient when
using the polyhedron in the Box-Polyhedra Reduced Product. Note that higher
level consistencies could be defined to propagate non-linear constraints, using
for instance quasi-linearization [15], linearization of polynomial constraints [12],
cutting planes, or computing the hull box, to name a few. Our consistency can be
directly computed by adding the constraints to the polyhedron representation.

Proposition 1 (Polyhedral consistency). The polyhedral consistency
returns an over-approximation of the solutions

128 G. Ziat et al.

Proof. Assume that it does not return an over-approximation, then there exists
a polyhedron P ∈ P, a set of constraints C, the corresponding consistent poly-
hedron PC , and a solution s ∈ P such that s /∈ PC . Necessarily, one has c(s) for
all non-linear constraints c, because non-linear constraints are not considered.
Hence there exists a linear constraint c such that c(s) (because s is a solution of
the problem) and ¬c(s) because s /∈ PC , which gives a contradiction.

The size function is defined as the maximal Euclidean distance between pairs
of vertices. Let P ∈ P,

τP(P) = max
gi,gj∈P

||gi − gj ||

Finally, the splitting operator for polyhedra can be defined in a similar way
to that of boxes, i.e. by cutting the polyhedron into two parts according to a
linear constraint. But we will not use this operator in the following, and omit
here its definition.

4 Constraint-Oriented Reduced Products

We present here a generic way of defining Reduced Products for constraint
abstract domains. The idea is to combine domains which are not equivalent
in the product, and avoid duplicating constraint propagation in each domain.
Thus, we introduce a hierarchy between the two components of the product. We
make one of the component a specialized domain, dedicated to one type of con-
straints only, and the second one, a default domain which will apply to the other
constraints. We will refer afterwards to these as the default and the specialized
domains. This configuration avoids unnecessary computations on the constraints
that are not precise or not cheap to represent on some domains (e.g., x = cos(y)
with the domain of polyhedra or x = y with the domain of intervals). Never-
theless, we still keep the modular aspect of the reduced product: we can still
add a new domain on top of a reduced product by defining a reduction operator
with each existing component, and an attribution operator which specifies for a
constraint c if the new specialized domain is able to handle it.

Definition 7. Let (Ad,d), (As,s) be two abstract domains. Let C a set of
constraints, we define the product Ad × As, ordered with where As is the
specialized domain and Ad the default one.

– The product Ad × As is an abstract domain ordered by component-wise com-
parison. Let xd, yd be two elements of Ad and xs, ys be two elements of As,
then (xd, xs) (yd, ys) ⇐⇒ xd d yd ∧ xs s ys.

– A reduction operator is a function θ : Ad×As → Ad×As such that θ(xd, xs) =
(yd, ys) =⇒ (yd, ys) (xd, xs).

– Let c be a constraint, an attribution operator κ is a predicate κ : C →
{true, false} such that κ(c) = true if the domain As is well suited for the
constraint c.

Boxes and Polyhedra 129

Algorithm 2: Propagation in a reduced product
function ρ(e, c) // e: abstract element, c: constraint

(es, ed) ← e
if κ(c) then

e′ ← (ρs(es, c), ed)

else
e′ ← (es, ρd(e, c))

return θ(e′)

Using the reduced product, the propagation loop given in Algorithm 2 slightly
differs from the usual one in CP: for each constraint, either the specialized prop-
agator (ρs) or the default one (ρd) is applied, according to the result of the
attribution operator κ. When all of the constraints have been filtered, we then
apply the reduction operator (θ) on the resulting abstract element.

Consider Ad, As two abstract domains ordered with inclusion, and A =
Ad × As the product abstract domain with Ad the default domain and As the
specialized one. The consistency in A is defined as follow:

Definition 8 (Product-consistency). Let C be a set of constraints such that
C = Cd ∪ Cs with Cd = {C ∈ C | ¬κ(C)}, the constraints for the default domain
Ad, and Cs = {C ∈ C |κ(C)}, the constraints for the specialized domain As.
The product-consistent element for C is the product of the smallest element of
Ad including the solutions of Cd with the smallest element of As including the
solutions of Cs.

Proposition 2 (Product-consistency). The Product-consistency returns an
over-approximation of the solutions.

Proof. Assume that it does not return an over-approximation, then there exists
a product P ∈ A, a set of constraints C, the corresponding consistent product
PC , and a solution s ∈ P of the problem which has been lost, i.e. s /∈ PC . Then,
there exists a constraint c such that c(s) (because s is a solution of the problem)
and ¬C(s) because s /∈ PC , which gives a contradiction.

4.1 The Box-Polyhedra Reduced Product

The Box-Polyhedra abstract domain BP is particularly useful when solving prob-
lems which involve both linear and non-linear constraints. Here, the Polyhedra
domain is used as a specialized domain working only on the linear subset of the
problem. We use the Box domain as the default domain to solve the non-linear
part of the problem. More precisely, let Cl bet the set of linear constraints and Vl

the set of variables appearing in Cl, and let Cnl be the set of non-linear constraints
and Vnl the set of variables appearing in Cnl. We first build an exact represen-
tation of the space defined by Cl using the Polyhedra domain. By construction,
this polyhedron is consistent with respect to Cl once it is created (conjunctions

130 G. Ziat et al.

y ≤ 2x+ 10
2y ≥ x − 8

x2 + y2 ≥ 3

x, y ∈ [−5, 5]

(a) Linear and
non-linear con-
straints.

(b) Consistent
polyhedron.

(c) Solving the
non-linear part.

(d) Intersection
of the domains.

Fig. 3. Example of the reduced product of Box-Polyhedra.

of linear constraints can be expressed with a convex polyhedron with no loss of
precision). In effect, the linear constraints are propagated once and for all at the
initialization of the polyhedron. The variables Vnl appearing in at least one non-
linear constraint are then represented with the box domain and the sub-problem
containing only the constraints in Cnl is solved accordingly.

Figure 3 gives an example of the Box-Polyhedra abstract domain applied on
a problem with both linear and non-linear constraints. Figure 3(a) gives the set
of constraints, Fig. 3(b) the consistent polyhedron (for the linear constraints),
Fig. 3(c) the union of boxes solving the non-linear constraints, and Fig. 3(d) the
intersection of both domain elements obtained with the reduced product.

As, by construction, the initial polyhedron is consistent for all the linear
constraints of the problem, the operators in the reduced abstract domain BP are
defined only on the box part.

Definition 9 (Box-Polyhedra Consistency). Let C = Cl ∪ Cnl with Cnl (resp.
Cl) the set of non-linear (resp. linear) constraints. The box-polyhedra consistent
element is the product of the smallest consistent box including the solutions of
Cnl with the initial polyhedron.

This definition being a particular case of the Product-consistency is thus a
correct over-approximation of the solution set.

Let X = Xb×Xp ∈ BP with Xb the box and Xp the polyhedron. The splitting
operator splits on a variable in Vnl = (v1, . . . , vk) (in a dimension in Xb):

⊕BP(X) = {⊕B(Xb) × Xp}
Finally, the size function is:

τBP(X) = τB(Xb)

Thus, we take advantage of both the precision of the polyhedra and the
generic aspect of the boxes. Moreover, we bypass the disadvantages bound to
the use of polyhedra. We do not need any kind of constraint linearization and
we reduce the propagation/split phase to one step.

Boxes and Polyhedra 131

(a) Polyhedra. (b) Boxes. (c) Reduced Products.

Fig. 4. A reduced product for the Box-Polyhedra abstract domains. (Color figure
online)

Proposition 3 (Completeness of solving with BP). The solving method in
Algorithm 1 with the BP abstract domain returns a union of abstract element
over-approximating the solution set.

Proof. The Box-polyhedra consistency computes an over-approximation of the
solutions; then, by Definition 10 in [16], the abstract solving method using the
BP abstract domain returns a cover over-approximating the solutions.

5 Experiments

We have implemented the method presented above in the AbSolute constraint
solver.3 It implements the solving method presented in Algorithm 1 and in [16].
This solver is written in OCaml, and uses the APRON numerical abstract domain
library [11]. Its current version features a generic implementation of the prop-
agation loop with reduced products, the heuristic for the mixed box-polyhedra
abstract domain, and a visualization tool.

Figure 4 shows the results of a Boxes-Polyhedra reduced product. The solu-
tion space (in green) is approximated using the polyhedra (resp. boxes), abstract
domain on Fig. 4(a) (resp. Fig. 4(b)). The informations are then shared using the
reduced product. The reduced product first transforms the polyhedron into a box
by computing its bounding box (this operation is cheap using the generator rep-
resentation), and then the box into a polyhedron (this step is straightforward
as boxes are polyhedra). Finally, the reduction is performed for each abstract
element: we propagate constraints from the box into the polyhedron (this step
induces no loss of precision) and symmetrically from the polyhedron to the box
which gives an over-approximation of their intersection Fig. 4(c). In this exam-
ple, both abstract elements are reduced, but applying the reduced product does
not necessarily change both or even either one of the abstract elements.

In our experiments, we compared our solver with the defaultsolver of Ibex
2.3.1 [5], on a computer equipped with an Intel Core i7-6820HQ CPU at 2.70 GHz
16 GB RAM running the GNU/Linux operating system.

We selected problems from the Coconut benchmark4. This benchmark is
intended as a test set of continuous global optimization and satisfaction problems
3 Available on GitHub https://github.com/mpelleau/AbSolute.
4 Available at http://www.mat.univie.ac.at/∼neum/glopt/coconut/.

https://github.com/mpelleau/AbSolute
http://www.mat.univie.ac.at/~neum/glopt/coconut/

132 G. Ziat et al.

Table 1. Comparing Ibex and AbSolute with the interval domain.

Problem #var #ctrs Time, AbS Time, Ibex #sols AbS #sols, Ibex

booth 2 2 3.026 26.36 19183 1143554

cubic 2 2 0.007 0.009 9 3

descartesfolium 2 2 0.011 0.004 3 2

parabola 2 2 0.008 0.002 1 1

precondk 2 2 0.009 0.002 1 1

exnewton 2 3 0.158 26.452 14415 1021152

supersim 2 3 0.7 0.008 1 1

zecevic 2 3 16.137 17.987 4560 688430

hs23 2 6 2.667 2.608 27268 74678

aljazzaf 3 2 0.008 0.02 42 43

bronstein 3 3 0.01 0.004 8 4

eqlin 3 3 0.07 0.008 1 1

kear12 3 3 0.043 0.029 12 12

powell 4 4 0.007 0.02 4 1

h72 4 0 0.007 0.012 1 1

vrahatis 9 9 0.084 0.013 2 2

dccircuit 9 11 0.118 0.009 1 1

i2 10 10 0.101 0.010 1 1

i5 10 10 0.099 0.020 1 1

combustion 10 10 0.007 0.012 1 1

and is described in detail in [22]. We have selected problems with only linear
constraints, only non-linear constraints or both as this is the main focus of our
work according to the constraint language recognized by the AbSolute solver.
We have fixed the precision (the maximum size of the solutions, w.r.t. to the size
metric of the employed domain) to 10−3 for all problems for both solvers.

Traditionally, constraint solvers are evaluated on their performances either on
sets of benchmarks, or on new problems. Their performances are often measured
as the time needed to find a solution, or as the quality of the solution in case
of optimization problems. Here, we must define here the concept of solution for
both solvers. Ibex and AbSolute try to entirely cover a space defined by a set of
constraints with a set of elements. In Ibex, these elements are always boxes. In
AbSolute, these are both polyhedra and boxes. Thus, the performance metric we
adopt is, given a minimum size for the output elements, the number of elements
required to cover the solution space.5 Hence, the less elements we have, the faster

5 Note that AbSolute discriminates the elements in two categories: the ones such that
all of the points in them satisfy the constraints, and the one where it is not the case.
We have not showed this information in the experiments as Ibex does not do any
kind of discrimination on the resulting elements.

Boxes and Polyhedra 133

the computation will be. Furthermore, having fewer elements makes the reuse of
the output easier.

The first three columns in Table 1 describe the problem: name, number of
variables and number of constraints. The next columns indicate the time and
number of solutions (i.e. abstract elements) obtained with AbSolute (col. 4 &
6) and Ibex (col. 5 & 7).

According to the metrics mentioned above, on most of these problems, AbSo-
lute outperforms or at least competes with Ibex in terms of time and solution
number. We justify the good results obtained by our method by two main facts:
firstly, the linear constraints solving is almost immediate with our method. For
example, the booth problem is composed of one linear constraint and one non-
linear constraint. The linear constraint is directly representable with a polyhe-
dron and thus, the solving process immediately finds the corresponding solution,
while working only with boxes makes the search go through many splits before
obtaining a set of boxes smaller than the required precision. Secondly, after each
split operation, AbSolute checks for each resulting abstract elements whether it
satisfies the set of constraints. If this is the case, the propagation/split phase
stops for this element. This makes it possible to stop the computation as soon
as possible. The defaultsolver of Ibex does not perform this verification and
thereby goes much slower. This makes our implementation competitive on prob-
lems with only non-linear constraints. For the exnewton problem which only
involves non-linear constraints (the resolution thus only uses boxes), we also
obtain good performances, showing that the time overhead induced by the use
of a specialized abstract domain is insignificant when this one is not used for
a given problem. Note that disabling the satisfaction verification in AbSolute
leads to results with the same number of solutions as for Ibex, but still with
a gain in time. For instance, with this configuration, on exnewton without the
satisfaction check, we obtain 1130212 elements in 9.032 s.

Finally, regarding the solving time, the two methods are similar. We can
however notice that on bigger problems, using a polyhedron to represent the
search space can be costly.

6 Conclusion

In this paper, we introduced a well-defined way of solving constraint problems
with several abstract domains. Our idea is to use an expressive domain able to
encode exactly a certain kind of constraints, and a low-cost domain to abstract
the constraints that can not be exactly represented in the specialized domain.
This allows us to get the best of both domains, while keeping the solver prop-
erties. We have detailed the case of the Polyedra-Boxes product, well suited for
problems with linear and non-linear constraints.

The principle is generic enough to add as many specialized domain as one
wishes. Integer domains need to be added to the framework, for instance, the
Congruence domain, based on constraints of the form: a ≡ b (mod n). We also
plan to investigate abstract domains efficiently representing global constraints,

134 G. Ziat et al.

as, for instance, Octagons and time precedence constraints. These domains could
be combined with more basic domains handling any constraint. In general, the
Reduced Product construction can be viewed as a way to combine different
specific constraint solving mechanisms, within a formal framework to study their
properties (soundness, completeness). Ultimately, each CP problem could be
automatically solved in the abstract domains which best fits it, as in AI.

Note. The research described in this article has been partly funded by the Coverif

ANR project 15-CE25-0002-03.

References

1. Apt, K.R.: The essence of constraint propagation. Theor. Comput. Sci. 221, 179–
210 (1999)

2. Benhamou, F.: Heterogeneous constraint solving. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 62–76. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61735-3 4

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revisiting hull and
box consistency. In: Proceedings of the 16th International Conference on Logic
Programming, pp. 230–244 (1999)

4. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and
boolean constraints. J. Logic Programm. 32(1), 1–24 (1997)

5. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100
(2009)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 238–252 (1977)

7. Cousot, P., Cousot, R., Mauborgne, L.: The reduced product of abstract domains
and the combination of decision procedures. In: Hofmann, M. (ed.) FoSSaCS 2011.
LNCS, vol. 6604, pp. 456–472. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19805-2 31

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pp. 84–96 (1978)

9. Goldberg, D.: What every computer scientist should know about floating point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

10. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11823230 3

11. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

12. Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral approx-
imation of multivariate polynomials using Handelman’s theorem. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 166–184. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 8

https://doi.org/10.1007/3-540-61735-3_4
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-662-49122-5_8

Boxes and Polyhedra 135

13. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7 10

14. Miné, A.: Domaines numériques abstraits faiblement relationnels. Ph.D thesis,
École Normale Supérieure, December 2004

15. Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. In: 7th International Conference on Verification, Model Checking, and
Abstract Interpretation (2006)

16. Pelleau, M., Miné, A., Truchet, C., Benhamou, F.: A constraint solver based on
abstract domains. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 434–454. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35873-9 26

17. Pelleau, M., Truchet, C., Benhamou, F.: The octagon abstract domain for contin-
uous constraints. Constraints 19(3), 309–337 (2014)

18. Puget, J.-F.: A fast algorithm for the bound consistency of alldiff constraints.
In: Proceedings of the 15th National/10th Conference on Artificial Intelli-
gence/Innovative Applications of Artificial Intelligence (AAAI 1998/IAAI 1998),
pp. 359–366. American Association for Artificial Intelligence (1998)

19. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. (TOPLAS) 29(5), 1–44 (2007)

20. Schulte, C., Tack, G.: Weakly monotonic propagators. In: Gent, I.P. (ed.) CP
2009. LNCS, vol. 5732, pp. 723–730. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04244-7 56

21. Scott, J.: Other things besides number: abstraction, constraint propagation, and
string variables. Ph.D thesis, University of Uppsala (2016)

22. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Bench-
marking global optimization and constraint satisfaction codes. In: Bliek, C., Jer-
mann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39901-8 16

23. van Hentenryck, P., Yip, J., Gervet, C., Dooms, G.: Bound consistency for binary
length-lex set constraints. In: Proceedings of the 23rd National Conference on
Artificial Intelligence (AAAI 2008), pp. 375–380. AAAI Press (2008)

https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/978-3-642-35873-9_26
https://doi.org/10.1007/978-3-642-35873-9_26
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1007/978-3-540-39901-8_16

An Abstract Domain for Objects in
Dynamic Programming Languages

Vincenzo Arceri(B), Michele Pasqua, and Isabella Mastroeni

Department of Computer Science, University of Verona, Verona, Italy
{vincenzo.arceri,michele.pasqua,isabella.mastroeni}@univr.it

Abstract. Dynamic languages, such as JavaScript, PHP, Python or
Ruby, provide a memory model for objects data structures allowing pro-
grammers to dynamically create, manipulate, and delete objects’ proper-
ties. Moreover, in dynamic languages it is possible to access and update
properties by using strings: this represents a hard challenge for static
analysis. In this paper, we exploit the finite state automata abstract
domain, approximating strings, in order to define a novel abstract domain
for objects. We design an abstract interpreter useful to analyze objects in
a toy language, inspired by real-word dynamic programming languages.
We then show, by means of minimal yet expressive examples, the preci-
sion of the proposed abstract domain.

1 Introduction

In the last years, dynamic languages such as JavaScript or PHP have gained a
huge success in a very wide range of applications. This mainly happened due
to the several features that such languages provide to developers, making the
writing of programs easier and faster. One of this features is the way strings
can be used to interact with programs’ objects. Indeed, it is popular, especially
in dynamic languages, to create, manipulate, and delete objects’ properties at
run-time, interacting with them using strings. If, on the one hand, this may help
developers to simplify coding and to build applications faster, on the other hand,
this may lead to misunderstandings and bugs in the produced code. Furthermore,
because of these dynamic features, reasoning about dynamic programs by means
of static analysis is quite hard, producing very often imprecise results.

For instance, let us consider the simple yet expressive example reported in
Fig. 1, supposing that the value of the if guard is statically unknown. The value
of idx is indeterminate after line 2 and it is updated at each iteration of the
while loop (line 6). The while guard is also statically unknown and at each
iteration we access obj with idx, incrementally saving the results in n. The goal
is to statically retrieve the value of idx and n at the end of the program. It is
worth noting that a crucial role here is played by the string abstraction used
to approximate the value of idx, that is used to access obj. Indeed, adopting
finite abstract domains, such as [13–15], will lead to infer that idx could be
any possible string. Consequently, when idx is used to access obj, in order to
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 136–151, 2020.
https://doi.org/10.1007/978-3-030-54997-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_9

An Abstract Domain for Objects in Dynamic Programming Languages 137

1 if (?) { idx = "a"; }
2 else { idx = "b"; };
3 n = 0; obj = new {a:1, aa:2, ab:3, ac:"world "};
4 while (?) {
5 n = n + obj[idx];
6 idx = concat(idx , "a");
7 }
8 obj[idx] = n; // value of idx and n ?

Fig. 1. Motivating example.

guarantee soundness, we need to access all properties of obj. For instance, we
also have to consider the property ac, which is never used to access obj during
the execution of the program. This ends up in an imprecise approximation of
idx and, in turn, of n.

In this paper, we employ a more precise abstraction for string values. In par-
ticular, we abstract strings with the finite state automata abstract domain [2],
able to derive precise results also when strings are modified in iterative con-
structs. Then, we define a novel abstract domain for objects, exploiting finite
state automata. The idea is to abstract the objects’ properties in the same
domain used to abstract string values, namely the finite state automata abstract
domain. We show that exploiting finite automata to abstract string values and
objects properties produces precise results in abstract computations, in partic-
ular in objects’ properties lookup and in objects’ manipulation inside iterative
constructs. We will formally present the objects abstract domain in Sect. 3.1.

Moreover, we use strings and objects abstract domains together with integers
and booleans abstractions, presenting an abstract interpreter built upon the com-
bination of these domains for a toy language, expressive enough to handle string
operations, object declarations, objects’ properties lookup and assignments.

2 Background

Notation. Given a finite set of symbols Σ, we denote by Σ∗ the Kleene-closure
of Σ, i.e., the set of all finite sequences of symbols in Σ. We denote an element of
Σ∗, called string, by s ∈ Σ∗. If s = s0s1 . . . sn, then the length of s is |s| = n+1
and the element in the i-th position is si. Given two strings s and s′, ss′ is
their concatenation. We use the following notations: Σi � {s ∈ Σ∗ | |s| = i}
and Σ<i �

⋃
0≤j<i Σj , for i ∈ N. We follow [12] for automata notation. A

finite state automaton is a tuple A = 〈Q, q0, Σ, δ, F 〉 where Q is a finite set of
states, q0 ∈ Q is the initial state, Σ is the (finite) alphabet, δ ⊆ Q × Σ × Q
is the transition relation and F ⊆ Q is a set of final states. In particular, if
δ ∈ Q×Σ −→ Q is a function, then A is called deterministic finite state automata
(DFA). The class of languages recognized by finite state automata is the class
of regular languages. Given an automaton A, we denote the language accepted
by A as L (A). A language L is regular iff there exists a finite state automaton
A such that L = L (A). From the Myhill-Nerode theorem [9], we have that for
each regular language there exists a unique minimum automaton, i.e., with the
minimum number of states, recognizing the language. Given a regular language

138 V. Arceri et al.

L, we denote by Min(L) the minimum DFA A such that L = L (A). For space
limitations, in the following we will refer to finite state automata by using the
corresponding regular expressions, which are isomorphic to regular languages
and, in turn, to finite state automata. Given two regular expressions r1 and r2,
we denote by r1 || r2 the disjunction between r1 and r2, by (r1)∗ the Kleene-
closure of r1, and by (r1)+ the Kleene-closure of r1 with at least one repetition.

Given a partial function f ∈ X ⇀ Y , we can define an equivalent total
function g ∈ X −→ Y↑, where Y↑ � Y ∪ {↑} and ↑ /∈ Y denotes indefiniteness.
The function g is defined as: g(x) � f(x) when f(x) is defined, and g(x) �
↑ otherwise. When we describe extensionally a function we omit the elements
mapped to ↑, namely g ∈ X −→ Y↑, described as [x1 	→ y1 x1 	→ y1 . . . xn 	→ yn],
is such that g(xi) = yi for every i ∈ {1, 2, . . . n} and g(xi) = ↑ otherwise.

Abstract Interpretation. The (concrete) semantic of a program is a represen-
tation of all its possible executions by means of a set of mathematical objects.
This set is, in general, not computable. It is well known, due to Rice’s theorem,
that all non trivial properties of the concrete semantics of a program are unde-
cidable. Abstract interpretation is born as a theory for soundly approximating
the semantics of discrete dynamic systems. The approximation consists in the
observation of the semantics at a specified level of abstraction, focusing only on
some important aspects of computations. In this setting, abstract interpretation
allows us to compute an abstract semantics of the program, depending on the
properties of interest. The approximation is correct by design, in the sense that
what holds in the abstract holds also in the concrete (no false negatives).

A theory of domains for abstract interpretation was defined in [7], based on
the notion of Galois insertion. A Galois insertion (C,α, γ,A) consists of two par-
tially ordered sets 〈C,≤C〉, 〈A,≤A〉 and two monotone functions α ∈ C −→ A,
γ ∈ A −→ C such that for all c in C and a in A it holds: α(c) ≤A a ⇔ c ≤C γ(a)
and α ◦ γ = id (the identity function λx . x). C is the concrete domain, A is
the abstract domain, α is the abstraction function and γ is the concretization
function. Sometimes, abstract interpretations are given by means of Galois con-
nections (instead of Galois insertions), relaxing the constraints α ◦ γ = id. Let
f ∈ C −→ C be a function on the concrete domain and f � ∈ A −→ A be a func-
tion on the abstract domain. f � is a sound (or correct) approximation of f if
f ◦ γ ≤C γ ◦ f � or, equivalently, if α ◦ f ≤A f � ◦ α [7].

Nevertheless, Galois insertions/connections represent the optimal case: some-
times we have to settle for weaker forms of abstract interpretation, as in the case
of the Polyhedra abstract domain [8], where we have only the concretization
function γ. In this setting, the soundness is expressed just as: f ◦ γ ≤C γ ◦ f �.

Finite State Automata Abstract Domain. We report here the finite state
automata abstract domain presented in [2], that over-approximates strings as regu-
lar languages, represented by the minimum deterministic finite state automata rec-
ognizing them [9]. The domain is 〈Dfa/≡,Dfa,�Dfa,�Dfa,Min(∅),Min(Σ∗)〉, where

An Abstract Domain for Objects in Dynamic Programming Languages 139

a ∈ ae ::= x | n | a + a | a - a | a * a | a / a
| length(s) | indexOf(s1,s2)

b ∈ be ::= x | true | false | b && b | b || b | ! b | a < a
| a == a | s == s

s ∈ se ::= x | "s" | substr(s,a1,a2) | charAt(s,a) | concat(s1,s2)
o ∈ oe ::= { } | { s0 : e0, s1 : e1, ..., sn : en }
e ∈ e ::= a | b | s | x[s]
st ∈ stmt ::= st ; st | skip | x = e | x = new o | x[s] = e

| if b { st } else { st } | while b { st }

where x ∈ Id (identifiers), n ∈ Z and s, s0, s1, . . . , sn ∈ Σ∗

Fig. 2. μJS syntax.

Dfa/≡ is the quotient set of Dfa w.r.t. the equivalence relation induced by lan-
guage equality, Dfa is the partial order induced by language inclusion, �Dfa and �Dfa

are the least upper bound and the greatest lower bound, respectively. The mini-
mum is Min(∅), corresponding to the automaton recognizing the empty language
and the maximum is Min(Σ∗), corresponding to the automaton recognizing any
possible string over Σ. We abuse notation by representing equivalence classes in
the domain Dfa/≡ by one of its automaton (usually the minimum), i.e., when we
write A ∈ Dfa/≡ we mean [A]≡. Since the domain Dfa/≡ is infinite, and it is not
ACC, i.e., it contains infinite ascending chains, it is equipped with the parametric
widening ∇n

Dfa. The latter is defined in terms of a state equivalence relation merg-
ing states that recognize the same language, up to a fixed length n ∈ N, a parame-
ter used for tuning the widening precision [4,10]. For instance, let us consider the
automata A, A′ ∈ Dfa/≡ recognizing the languages L = {ε, a} and L′ = {ε, a, aa},
respectively. The result of the application of the widening ∇n

Dfa, with n = 1, is
A ∇n

Dfa A
′ = A′′ such that L (A′′) = {an | n ∈ N}.

The µJS Language. In this paper, we adopt as core language μJS [2], whose
syntax is reported in Fig. 2. This simple toy language is able to express arithmetic
(ae), boolean (be) and string expressions (se). There is not implicit type conver-
sion, since the problem of analyzing programs with implicit conversions had been
already addressed in [1,2]. Anyway, it is straightforward to merge our analysis
with the ones proposed in [1,2]. In addition, we augment μJS with objects (oe),
where an object can be empty, denoted {}, or a finite set of comma-separated
property-expression associations, denoted { s0 : e0, s1 : e1, . . . , sn : en }.

Concerning the language’s semantics, the execution of a μJS program relies
on the notion of state, which is composed by environments and heaps, namely
states σ ∈ State are pairs 〈ξ, ρ〉 ∈ Env × Heap. An environment is a map
from identifiers to values, namely Env � Id −→ Val, while a heap is a map
from addresses to objects, namely Heap � Addr −→ Obj. Values v have domain
Val � Int∪Bool∪Str∪Addr∪{↑}, where Int � Z, Bool � {true, false},
Str � Σ∗, Addr � {n | n ∈ N} and ↑ denotes indefiniteness. An object
o ∈ Obj is represented as a map that associates strings to values, namely

140 V. Arceri et al.

Obj � Str −→ Val. It is worth noting that there is no order relation between
objects’ properties, as it happens in standard programming languages. Envi-
ronments update is defined as usual: ξ[x ← v](y) � v when x = y, and
ξ[x ← v](y) � ξ(y) otherwise. The update for heaps and objects is analogous.
The big-step semantics of a μJS program (i.e., a statement) is standard, fol-
lowing [1,2], and it is captured by the function �st� ∈ State −→ State. After
showing the concrete semantics of object-related expressions, we will focus on the
semantics of assignments, that slightly changes w.r.t. the standard one. As far
as expression semantics is concerned, it is also standard [2]. We abuse notation
denoting the semantics of an expression as �e� ∈ State −→ Val. The evaluation
of an object takes each association string-expression and it recursively evaluates
the expressions. The result is a map containing the string-value associations.

�{s0 : e0, s1 : e1, . . . sn : en}�σ � [sn 	→�en�σ] • . . . [s1 	→�e1�σ] • [s0 	→�e0�σ]

where f • g(s) � g(s) if g(s) �= ↑ ∧ f(s) = ↑ and f • g(s) � f(s) otherwise

For example, the expression {a:1, b:length("foo"), c:5+3} evaluates to the
object [a 	→ 1 b 	→ 3 c 	→ 8]. Following the JavaScript semantics, it is worth
noting that, for instance, {a:1, a:2} evaluates to [a 	→ 2], saving only the last
association with the same property a. The semantics of objects’ properties lookup
checks whether the object contains a string-value association, where the string
corresponds to the property. Hence, its definition is the following, supposing that
�s�〈ξ, ρ〉 = s ∈ Str:

�x[s]�〈ξ, ρ〉 � ρ(�x�〈ξ, ρ〉)(s) if �x�〈ξ, ρ〉 ∈ Addr and �x[s]�〈ξ, ρ〉 � ↑ otherwise

In our core language, we allow only to access already stored objects (condition
�x�〈ξ, ρ〉 ∈ Addr). Moreover, it is worth noting that when we try to access a
property s not present in the object pointed by x, then ρ(�x�〈ξ, ρ〉)(s) returns ↑.

The semantics of generic statements is standard, here we explain only the
semantics for assignments, which is also used for objects allocation and update.
We have three cases: x = e, where e evaluates to a value; x = new o, where o
evaluates to an object; x[s] = e, where s evaluates to a string and e evaluates to
a value. In the first case, we only update the environment, following the typical
concrete semantics of assignments. In the second case, we need to allocate the
object into a new address which x will point to. Then, both environment and
heap are properly updated. In the third case, we update the object pointed by
x in the heap. Formally, let n ∈ Addr be a fresh, i.e., not-used, address:

�x = e�〈ξ, ρ〉 � 〈ξ[x ← �e�〈ξ, ρ〉], ρ〉
�x = new o�〈ξ, ρ〉 � 〈ξ[x ← n], ρ[n ← �o�〈ξ, ρ〉]〉
�x[s] = e�〈ξ, ρ〉 �

〈
ξ, ρ

[
ξ(x) ←� ρ(ξ(x))[�s�〈ξ, ρ〉 ← �e�〈ξ, ρ〉]]〉

As a final remark, we point out that in our extension of μJS we do not model
features such as pointer arithmetic, objects comparisons and implicit type con-
version (e.g., x = 1 ; y = true ; z = x == y leads to an error).

An Abstract Domain for Objects in Dynamic Programming Languages 141

3 Static Analysis of µJS

In order to reason about a μJS program we need to take into account all its
possible executions, by means of the so called collecting semantics. Our con-
crete collecting semantics is a classic post-conditions semantics, computing state
invariants at every statement. It is defined as the direct-image lift of the big-
step semantics of μJS, hence it is a function from sets of states to sets of states.
We denote by �st� ∈ ℘(State) −→ ℘(State) the concrete collecting semantics.
For instance, the collecting semantics for assignments involving expressions, is
defined as �x = e�X � {�x = e�σ | σ ∈ X}. The semantics is similarly defined
for the other constructs and for assignments involving objects. In particular, the
collecting semantics for conditionals and loops is defined, as usual, as:

�if b { st1 } else { st2 }�X � �st1 �filterb(X) ∪ �st2 �filter!b(X)

�while b { st }�X � filter!b
(
lfp λT . X ∪ �st�filterb(T)

)

Here filterb ∈ ℘(State) −→ ℘(State) is a filtering function, namely it filters
out the states that do not fulfill the boolean condition b. Unfortunately, we
are not able to compute the concrete collecting semantics, since it is an infinite
mathematical object. Hence, in order to perform static analysis, we approxi-
mate the collecting semantics, following the abstract interpretation framework.
In order to make the computation, and in turn the analysis, feasible we need an
abstract semantics �st�� computer-representable and ensuring termination of the
analysis. Ideally, the abstract semantics computes on abstract states in State�,
approximations of the concrete ones. Precisely, State� is an approximation of
℘(State), with a concretization γ ∈ State� −→ ℘(State). The abstract seman-
tics must be sound, meaning that what we prove in the abstract also holds for
the concrete semantics. Put it in abstract interpretation terms, this means that
for every σ� ∈ State� we have that �st�γ(σ�) ⊆ γ(�st��

σ�). Before defining the
abstract semantics, we focus on the objects abstract domain, which is the core of
our paper and it is used to represent, possibly infinite, sets of concrete objects.

3.1 Abstract Objects

As previously introduced, in order to make the analysis feasible, we need to
finitely represent an infinite set of states. We start here with our representation
of infinite sets of objects, namely we define an abstract domain approximating
℘(Obj). First, we have a non-relational abstraction between objects-properties
and values, i.e., we abstract ℘(Obj) in ℘(Str) −→ ℘(Val).

Then we abstract ℘(Str) with the automata domain, while for ℘(Val) we
abstract separately each type of values in its abstract domain, obtaining the
product domain Val� � Int� × Bool� × Str� × ℘(Addr�) × {def, ?}. For
numeric values we can use any non-relational domain, such as integer inter-
vals. Bool� � {⊥, tt, ff,�} is isomorphic to ℘(Bool) and for sets of strings
we use the automata domain, namely Str� � Dfa/≡. As we will see in the next
subsection, we approximate heaps with an allocation-site abstraction of Addr.

142 V. Arceri et al.

So, possibly infinite sets of addresses are abstracted into finite sets of allocation
sites, namely Addr� � Lines, where Lines is the finite set of lines of code of a
given program. Here we abstract ℘(Addr) in ℘(Addr�), since an abstract object
could have more than one allocation site. The domain {def, ?} is isomorphic to
℘({↑}) and def represents the absence of indefiniteness while ? represents poten-
tial indefiniteness. An abstract value v� = 〈i�, b�, s�, A, u�〉 ∈ Val� represents the
union of the elements taken from every single-type abstraction:

γV(v�) = γI(i�) ∪ γB(b�) ∪ γS(s�) ∪ ⋃
l∈A γA(l) ∪ γU(u�)

where γI is the concretization defined in the numerical non-relational domain,
γB(⊥) � ∅, γB(tt) � {true}, γB(ff) � {false}, γB(�) � {true, false}, γS
is the concretization for the automata domain (i.e., the language recognized by
the given automaton) and γU(def) = ∅, γU(?) = {↑}. The concretization for
addresses γA will be introduced in Sect. 3.2, when we deal with abstract heaps.
Briefly, the concretization of a given allocation site is the set of all possible
addresses that can be allocated at that line of code. The abstract join ��

V and
the partial order �

V for Val� are defined pointwise.
The partial order �

O for Obj� is the pointwise ordering between functions,
i.e., o�

1 �
O o�

2 � (∀A ∈ Dfa/≡ . o�

1(A) �
V o�

2(A)). This order is not optimal but
it does not harm the analysis since, as we can see in Sect. 3.1, the order can
be strengthen. Analogously, the join for Obj� is defined as

⊔�

OX � λA .
⊔�

V

{o�(A) | o� ∈ X}. It is straightforward to see that 〈Obj�,�
O〉 is a lattice, with

minimum mapping every automaton to the tuple composed by the minimum
of each value-type domain, and maximum mapping every automaton to the
tuple composed by the maximum of each value-type domain. The concretization
γO ∈ Obj� −→ ℘(Obj) is defined as:

γO(o�) �{
o ∈ Obj

∣
∣ ∀s ∈ Str ∃A ∈ Dfa/≡ . (s ∈ γS(A) ∧ (o(s) ∈ γV(o�(A)) ∨ ø(s) = ↑))

}

In order to optimize the implementation of the abstract domain, we represent
singleton sets of strings as they are, instead of converting them into automata.
Indeed, it is worth noting that we can partition the finite state automata abstract
domain as Dfa/≡ = Dfa1

/≡∪Dfaω
/≡, where Dfa1

/≡ � {A ∈ Dfa/≡ | |L (A)| = 1},
namely the set of finite state automata that recognize singleton languages, and
Dfaω

/≡ � Dfa/≡�Dfa1
/≡, namely the set of finite state automata that recognizes

languages of size 0 or size greater than 1 (possibly infinite). Clearly Dfa1
/≡ is

isomorphic to Str, hence we can equivalently define abstract objects as maps
in Obj� � (Str ∪ Dfaω

/≡) −→ Val�.
In order to show how our objects abstract domain works, we consider a simple

yet expressive μJS example (Fig. 3, where we suppose that the boolean guards
of while and if statements are statically unknown). The fragment declares the
object o at line 1, and its abstract value at lines 1–7 is reported in Fig. 4a.
Then, it indefinitely iterates over the string variable idx at lines 3–6 appending
either the strings "x" or "y". Finally, idx is used to access the object o at line
7. Let us suppose to statically analyze the above program with the abstract

An Abstract Domain for Objects in Dynamic Programming Languages 143

1 o = new {x:1, y:2, z:3};
2 idx = "x";
3 while (?) {
4 if (?) { idx = concat(idx , "x") }
5 else { idx = concat(idx , "y") }
6 };
7 o[idx] = 7;

Fig. 3. μJS program example.

Fig. 4. (a) Abstract value of o after line 1 of the fragment reported in Fig. 3 (b) Abstract
value of o after line 6. (c) Normal form of o after line 6.

domain previously presented. Since the number of iterations of the while-loop
is statically unknown, the computation of the value of idx, abstracted as a finite
state automaton, may diverge. In order to enforce termination, the automata
widening ∇n

Dfa is applied. Tuning ∇n
Dfa with n = 3, the abstract value of idx at

line 7, after the while computation, corresponds to the automaton expressed by
the regular expression x(x || y)∗. Since idx does not represent just a single string,
when we analyze o[idx] we may have to overwrite an object property (e.g., x)
and add new properties to o (e.g., xyy). Since the abstract value of idx expresses
an infinite number of object properties, we call this property summary property.
The abstract value after line 6 is depicted in Fig. 4b, where the summary property
x(x || y)∗ is added to the object reported in Fig. 4a. Note that in the abstract
object updated at line 7, the abstract properties x and x(x || y)∗ share the
common concrete property x. In particular, the value of o["x"] may be either 1
or 7. We aim at an objects’ representation where every property does not share
any property with the others, namely when objects are in normal form.

Normalization. We now formally define the notion of abstract object normal
form. Given an abstract object o� ∈ Obj�, we denote by props(o�) ⊆ Str� the
set of its abstract properties, namely the properties which are not undefined. We
remind that Str� is the optimized version of the automata domain, i.e., Str� =
Str ∪ Dfaω

/≡. Formally, props(o�) � {p ∈ Str� | o�(p) = 〈i�, b�, s�, A, u�〉 ∧ u� =
def}. Abstract properties represent sets of concrete properties. Hence, given
p ∈ props(o�), we abuse notation denoting by L (p) the language of the concrete
properties captured by p. L (p) is the language recognized by the corresponding
automaton, when p ∈ Dfaω

/≡ and it is the language {p} when p ∈ Str.

144 V. Arceri et al.

Algorithm 1: Norm ∈ Obj� −→ Obj� algorithm
Data: o� ∈ Obj�

Result: Norm(o�)
1 foreach p ∈ props(o�) do
2 v� ← o�(p);
3 if |L (p)| /∈ {1, ω} then
4 remove p from o�;
5 foreach s ∈ L (p) do
6 o� ← o� •� [s �→ v�];

7 foreach p1 ∈ props(o�) do
8 v�

1 ← o�(p1); remove p1 from o�; normalized ← false;
9 foreach p2 ∈ props(o�) do

10 v�

2 ← o�(p2);
11 if p1 ��

S p2 �= Min(∅) ∧ p1 �= p2 then
12 normalized ← true;
13 o� ← o� •� [p1 ��

S p2 �→ o�(p1 ��
S p2) 	�

V v�

1 	�
V v�

2];
14 o� ← o� •� [p1 �

�
S p2 �→ o�(p1 �

�
S p2) 	�

V v�

1];
15 o� ← o� •� [p2 �

�
S p1 �→ o�(p2 �

�
S p1) 	�

V v�

2];
16 remove p2 from o�;

17 if !normalized then o� ← o� •� [p1 �→ v�

1]

18 return o�;

Definition 1 (Abstract object normal form). An abstract object o� ∈ Obj�

is in normal form when:

∀p ∈ props(o�) . |L (p)| ∈ {1, ω} ∧ ∀p1, p2 ∈ props(o�) .L (p1) ∩ L (p2) = ∅

Informally, we say that an abstract object is in normal form when each property
p represents only a single string (i.e., |L (p)| = 1) or an infinite language (i.e.,
|L (p)| = ω) and it does not share any concrete property with other abstract
properties. Hence, a normal form abstract object has two kind of properties:
p is a non-summary property, if |L (p)| = 1, and p is a summary property, if
|L (p)| = ω. For instance, the abstract object in Fig. 4a is in normal form, since
any abstract property expresses concrete properties that are not expressed by
other abstract properties and it only contains non-summary properties. Instead,
the abstract object in Fig. 4b is not in formal form, despite it has only summary
and non-summary properties, since the string x is expressed by the non-summary
property x and by the summary property x(x || y)∗.

During abstract computations, it may happen that abstract objects are not
in normal form, so we need to normalize them. We rely on the function Norm ∈
Obj� −→ Obj� that normalizes an abstract object and its behaviour is captured
by the algorithm reported by Algorithm 1, where o�

1 •� o�

2 is defined as:

let 〈i�

1, b
�

1, s
�
1, A1, u

�

1〉 = o�

1(p), 〈i�

2, b
�

2, s
�

2, A2, u
�

2〉 = o�

2(p) in

o�

1 •� o�

2(p) � o�

2(p) if u�

2 �= ? ∧ u�

1 = ? and o�

1 •� o�

2(p) � o�

1(p) otherwise

An Abstract Domain for Objects in Dynamic Programming Languages 145

In the algorithm, the operators ��
S and �

�
S are the operators �Dfa and �Dfa,

respectively, of the automata domain adapted to its optimized versions Str ∪
Dfaω

/≡. The first part of Algorithm 1, namely lines 1–6, checks if any property of
o� is summary or non-summary. If it finds a property p such that |L (p)| /∈ {1, ω}
then the algorithm first remove that property from the object, and then looks at
its language (that is finite) and adds any single property captured by p with its old
corresponding value. All the automata operations reported above and the check
|L (p)| /∈ {1, ω} can be performed with linear complexity w.r.t. the number of
state of the automata. For example, let consider the object [x || y 	→ [5, 5]], the
algorithm returns as result the normal form abstract object [x 	→ [5, 5], y 	→ [5, 5]].
The idea of the second part of Algorithm 1 (lines 7–17) is to check, for any p1 ∈
props(o�), if it shares at least a concrete property with any other p2 ∈ props(o�)
(lines 11–16). This boils down to check whether the intersection between p1 and
p2 is not empty. If so, three new abstract properties are created in o� (note that
p1 is removed at line 8 and p2 will be removed at line 16). In particular:

– the property p1 ��
S p2 points to the join of the previous values of p1 and p2

and the previous value (if present) of p1 ��
S p2 in o� (line 13);

– the property p1 �
�
S p2 points to the join of the previous value of p1 and the

previous value (if present) of p1 �
�
S p2 in o� (line 14);

– the property p2 �
�
S p1 points to the join of the previous value of p2 and the

previous value (if present) of p2 �
�
S p1 in o� (line 15);

Otherwise, if p1 does not share any property with other abstract properties of
o�, the association 〈p1, o�(p1)〉 is simply added to o� (line 17). For example, let
us consider again the abstract object reported in Fig. 4b. The result obtained by
applying Algorithm 1 is the abstract object reported in Fig. 4c.

Proposition 1. Given o� ∈ Obj�, the abstract object Norm(o�), computed by
Algorithm 1, is in normal form (Definition 1). Moreover, we have that γO(o�) =
γO(Norm(o�)).

As we have mentioned in Sect. 3, normalization strengthens the abstract order
between objects. For example, the objects [a 	→ [1, 1], b 	→ [1, 1]] and [a || b 	→
[1, 2]] are not comparable, but, if we normalize the second object (i.e., in [a 	→
[1, 2], b 	→ [1, 2]]), then we have [a 	→ [1, 1], b 	→ [1, 1]] �

O Norm([a || b 	→ [1, 2]]).

3.2 Abstract Semantics

Abstract states in State� are composed by abstract environments and abstract
heaps, so we have an abstraction from ℘(Env×Heap) to ℘(Env)×℘(Heap). As
an abstract representation of the heap, we use a classic allocation-site abstraction
of Addr [16]. Possibly infinite sets of addresses are abstracted into finite sets
of allocation sites, namely Addr� � Lines, where Lines is the finite set of
lines of code of a given program. Given a μJS program, we suppose to have a
labeling assigning to each statement of the program a unique line of code (a
natural number). Then, we define two functions, line ∈ stmt −→ Lines and
code ∈ Lines −→ stmt, returning the line of code of a given statement and the
statement assigned to a given line of code, respectively. The concretization is

146 V. Arceri et al.

Fig. 5. Abstract semantics for expressions and objects and the abstract filter

γA(l) �
{

n ∈ Addr

∣∣∣∣ ∃〈ξ, ρ〉 ∈ State .
�code(l)�〈ξ, ρ〉 = 〈ξ′, ρ′〉 ∧
ρ(n) = λs . ↑ ∧ ρ′(n) �= λs . ↑

}

meaning that the concretization of a given allocation site l is the set of all possible
addresses that can be allocated at that line of code. An abstract heap is a map
associating abstract addresses, i.e., lines of code, to abstract objects, namely
Heap� � Addr� −→ Obj�. As we have already seen, an abstract object is a map
associating an automaton with an abstract value.

For what concerns environments, we consider a non-relational abstraction,
approximating every identifier separately. This means that we abstract from
℘(Id −→ Val) to Id −→ ℘(Val). Abstract environments are maps from iden-
tifiers to abstract values, namely Env� � Id −→ Val�, exploiting the abstrac-
tion between ℘(Val) and Val� we have introduced in the previous subsection.
Finally, abstract states are, as in the concrete, pairs of abstract environments
and abstract heaps, namely State� � Env� × Heap�. The definition of the
abstract join �� and the partial order � for State� is straightforward.

The abstract semantics is then a function �st�� ∈ State� −→ State�, comput-
ing on abstract states. It relies on the abstract semantics for expressions �e�

�

E ∈
State� −→ Val�, on the abstract semantics for objects �o�

�

O ∈ State� −→ Obj�

and on the abstract filtering function filter�

b ∈ State� −→ State�1. All of them
must be sound w.r.t. their concrete counterparts, namely �e�γ(σ�) ⊆ γV(�e�

�

Eσ�),
�o�γ(σ�) ⊆ γO(�o�

�

Oσ�) and filterb(γ(σ�)) ⊆ γ(filter�

b(σ
�)), for every σ� ∈

State�. In Fig. 5 we have a part of the definition of the abstract semantics for

1 We assume that all negations ! have been removed using DeMorgan’s laws and usual
arithmetic laws: ! (b1 || b2) ≡ ! b1 && !b2, ! (a1 < a2) ≡ (a2 < a1 || a2 == a1), etc.

An Abstract Domain for Objects in Dynamic Programming Languages 147

Fig. 6. Example of materialization.

expressions and objects and the abstract filter, where σ�

⊥ is the minimum of the
lattice 〈State�,�〉. The abstract semantics for statements is quite standard:

�st1 ; st2 �
�
σ� � �st2 �

�
�st1 �

�
σ� �skip�

�
σ� � σ�

�if b { st } else { st }�
�
σ� � �st1 �

�filter�

b(σ
�) �� �st2 �

�filter�

!b(σ
�)

�while b { st }�
�
σ� � filter�

!b

(
lfp λσ�

w . σ� �� �st��filter�

b(σ
�

w)
)

Concerning generic assignments, the abstract semantics follows the definition of
the concrete one, so we have three cases: x = e, where e evaluates to a value;
x = o, where o evaluates to an object; x[s] = e, where s evaluates to a string and
e evaluates to a value. In the first, we have to modify the abstract environment,
setting x to the (abstract) evaluation of e. In the second, we need to update
the abstract address pointed by the identifier x, with the line of code of the
assignment. Then we have to update the abstract object pointed, in the abstract
heap, by the new line of code with the (abstract) evaluation of o. Formally:

�x = e�
�〈ξ�, ρ�〉 � 〈ξ�[x ← �e�

�

E〈ξ�, ρ�〉], ρ�]〉
�x = new o�

�〈ξ�, ρ�〉 � 〈ξ�[x ← {line(x = new o)}], ρ�[line(x = new o) ← �o�
�

O〈ξ�, ρ�〉]〉
As a third case, we have the abstract semantics of object-property update,

namely x[s] = e, where materialization occurs. As we have already mentioned
before, we allow to update only the objects that have been already stored into
the heap. Suppose that v� = �e�

�

E〈ξ�, ρ�〉, p = �s��

S〈ξ�, ρ�〉 and {l1, . . . ln} = ξ�(x):

let o�

i = Norm(ρ�(li)[p ← v� �Val� ρ�(li)(p)]), with i ∈ {1, . . . n} in

�x[s] = e�
�〈ξ�, ρ�〉 � 〈ξ�, ρ�[l1 ← o�

1, . . . ln ← o�
n]〉

The abstract semantics of x[s] = e does not update the environment, since it
only needs to update properties of abstract objects stored into the heap. For
each location l ∈ Addr�, associated to the identifier x (i.e., the ones contained
in ξ�(x)), the abstract semantics updates ρ�(l), at the property p, with the lub
between v� (i.e., the abstract evaluation of the expression e) and the previous
value of ρ�(l)(p). This corresponds to a weak update of the object contained in
x [3]. Before storing the updated abstract object in ρ�(l), the latter is normalized.
In this paper, we only perform weak updates. We could improve the precision
of the analysis performing a must-may analysis in order to differentiate between
properties that certainly point to some value and properties that may point
to others. This can be done improving the proposed analysis using standard
techniques, such as the ones reported in [3,16,17].

148 V. Arceri et al.

Fig. 7. (a) μJS fragment, (b) Value of o after while-loop.

For example, let us suppose that ρ�(l) is the object reported in Fig. 6(a)
and we want to update the property a, with the interval [1, 1]. Applying these
values to the previously defined abstract semantics, we obtain, at the allocation
site l, the abstract object reported in Fig. 6(b). We say that the property a has
been materialized, since, before the update, it was part of a summary property,
and after the update it is a non-summary property. We say that a (concrete)
property is materialized when a string of an abstract object passes, during the
update, from a summary property to a non-summary property. It is worth noting
that normalization take care of materialization. The abstract semantics is sound
w.r.t. the concrete collecting semantics, i.e., it computes an over-approximation
of state invariants at every statement.

Theorem 1 (Soundness). For every μJS program st ∈ stmt we have that:

∀σ� ∈ State� . �st�γ(σ�) ⊆ γ(�st��
σ�)

3.3 Widening

The domain 〈State�,�〉 is not ACC, i.e., it contains infinite ascending chains,
because of the intervals abstract domain, the automata abstract domain and the
novel objects abstract domain. Hence, fix-point computations in our abstract
interpreter may diverge, if we do not introduce an extrapolation operator. In
order to enforce termination, the abstract domain Val� is equipped with the
widening operator ∇V ∈ Val� ×Val� −→ Val� defined point-wisely. In particular,
the intervals domain is equipped with its well-known widening defined in [7],
the automata abstract domain is equipped with the widening ∇n

Dfa, reported in
Sect. 2, while for addresses and booleans we can just use their least upper bound
(they are finite). We can define the widening operator ∇ξ ∈ Env�×Env� −→ Env�

between environments upon ∇V, applied point-wisely. For instance, suppose to
use the widening ∇n

Dfa, with n = 3, for the finite state automata. We have
that [x 	→ 〈[1, 1],⊥,Min(aaa), ∅, def〉] ∇ξ [x 	→ 〈[2, 2],⊥,Min(aaaa), ∅, def〉] is
equal to the abstract environment [x 	→〈[1,+∞],⊥,Min(a∗), ∅, def〉]. Fix-point
computations may also diverge on heaps, since also Heap� is not ACC, due
to the objects abstract domain. In particular, this happens because we model
objects’ properties with the finite state automata domain, which is not ACC.
Anyway, a slight extension of the join ��

O is enough to guarantee termination of
heap computations, exploiting the widening of the finite state automata domain.
Informally speaking, abstract string values, in while-loop computations, always
converge since finite state automata domain is equipped with a widening.

An Abstract Domain for Objects in Dynamic Programming Languages 149

Fig. 8. (a) μJS fragment, (b) Value of o after while-loop.

Let us consider the μJS fragment reported in Fig. 7a and suppose that the
boolean guard value is statically unknown. At each iteration on the while-loop,
the string "a" is concatenated to the string value of key and then it is used to
add a new property to the object o. If the Dfa/≡ were not equipped with a
widening, the computation of the value of key would diverge. Since convergence
of string computations is enforced by the widening ∇n

Dfa (with n = 3), also the
computations of objects’ properties of o converge. Indeed, the while-loop con-
verges and the abstract interpreter produces, for the variable o, the (normalized)
object reported in Fig. 7b. Clearly, the simple object join is enough for objects’
properties convergence but it is not for the associated value. For example, let
consider the μJS fragment reported in Fig. 8a. In this case, the number of prop-
erties of the object o does not increase in the while-loop but the value of the
property a increases at each iteration. The idea behind the widening for objects
is to apply the widening of values point-wisely between the properties of the two
objects. Hence, we define the widening on Obj� as: o�

1∇Oo�

2 � λp . o�

1(p)∇V o�

2(p).
Coming back to the example, applying the widening defined above, the abstract
value of o after the while-loop is reported in Fig. 8b. We then use this widen-
ing in order to define the widening for abstract heaps and, in turn, for abstract
states.

Motivating Example. We now illustrate the so far defined analysis on the
example reported in the introduction (Fig. 1). It is worth noting that, in this
example, objects’ widening does not occur. We have already commented it
with the fragments reported in Fig. 7 and Fig. 8. The goal of the analysis is
to reason about the value of idx (and, in turn, of n) at the end of the exe-
cution. At the beginning of the first iteration of the while loop, the value of
n is 〈[0, 0],⊥,Min(∅), ∅, def〉 and the value of idx is 〈⊥,⊥, (a ‖ b), ∅, def〉.
The latter is used during the first iteration to access obj and then the result
is stored in n (line 5). Since the property b is not present in obj, only the
property a is accessed by idx, and the value of n is 〈[1, 1],⊥,Min(∅), ∅, def〉.
Before starting the next iteration, idx is updated at line 6 and its value becomes
〈⊥,⊥, (aa ‖ ba), ∅, def〉.

Widening is applied before starting new iterations. Supposing to apply the
widening ∇n

Dfa, n = 1, and the widening for intervals, the values of the vari-
ables before the second iteration are: n = 〈[0,+∞],⊥,Min(∅), ∅, def〉, idx =
〈⊥,⊥, (a ‖ b ‖ aa ‖ ab), ∅, def〉 since, in this case, the widening for automata
coincides with the automata join. In the second iteration idx accesses the proper-
ties a and aa, hence n gets the value [1,+∞] = [0,+∞]+([1, 1]� [2, 2]). Similarly
to the previous iteration, idx becomes 〈⊥,⊥, (aa ‖ ba ‖ aaa ‖ aba), ∅, def〉.

150 V. Arceri et al.

Before starting the new iteration we apply the widening, obtaining the values
n = 〈[0,+∞],⊥,Min(∅), ∅, def〉 and idx = 〈⊥,⊥, (a ‖ b) a�, ∅, def〉. The third
iteration does not change the values of n and idx, hence the fixpoint is reached.

Finally, at line 8, the value of n is assigned to obj[idx], updating the abstract
object obj as follows (we omit bottom values): [a 	→ [0,+∞], aa 	→ [0,+∞], ab 	→
[3, 3], ac 	→ Min({"world"}), (a || b) a∗

� {a, aa} 	→ [0,+∞]]. The summary
property (a || b) a∗

� {a, aa} is added and only the properties a and aa are
modified. Properties already present in obj remain unaltered (e.g., ab and ac).

4 Discussion and Conclusion

We have proposed an abstract domain suitable for the analysis of objects’ prop-
erties in dynamic programming languages. The novelty consists in exploiting
finite state automata, in order to approximate objects’ properties. This leads
to a better precision (less false positives), compared to state-of-the-art domains
approximating strings (for instance, [5,6]). A key aspect of our abstract domain
is the normal form for objects and, in the paper, we have presented a normal-
ization algorithm: it transforms objects in their normal form. An object is in
normal form if and only if it has only two kind of properties: summary and
non-summary. The idea behind summarization, and hence materialization, is
not new in static analysis, and comes from the well-known shape analysis [16].
For example, this idea has been adopted in [11], where the authors present a
static analyzer for PHP that also involve heap analysis, where the heap, in their
abstraction, is made of summary heap identifiers and non-summary heap identi-
fiers. In particular, in [11], a summary heap identifier summarizes all the elements
of the heap that could be updated by statically unknown assignments. We have
adopted the same idea with the difference that we may have more summary
properties, expressed by automata recognizing infinite languages, rather than a
single summary property that merges together heap elements updated by stati-
cally unknown assignments. The idea of summarization has been also taken into
account in [3], where the authors propose the recency abstraction, which consists
in representing each abstract allocation site with two memory regions, namely
the most recently allocated block and the not most recently allocated blocks. The
latter is basically a summary memory region, since more than one block may
be allocated. Recency abstraction has been implemented also in TAJS [13], an
abstract interpretation-based static analyzer for JavaScript, showing that such
abstraction outperforms other abstract allocation-based techniques. As future
work, we aim to implement our objects’ abstract domain upon TAJS. We believe
that the combination of our abstract domain and the recency abstraction can
produce good results, w.r.t. analysis precision, and it would be interesting to
make a comparison with TAJS and other JavaScript static analyzers, such as
SAFE [15] and JSAI [14].

An Abstract Domain for Objects in Dynamic Programming Languages 151

References

1. Arceri, V., Maffeis, S.: Abstract domains for type juggling. Electr. Notes Theor.
Comput. Sci. 331, 41–55 (2017)

2. Arceri, V., Mastroeni, I.: Static program analysis for string manipulation lan-
guages. In: VPT 2019 (2019). https://doi.org/10.4204/EPTCS.299.5

3. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006).
https://doi.org/10.1007/11823230 15

4. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27813-9 25

5. Cortesi, A., Olliaro, M.: M-string segmentation: a refined abstract domain for string
analysis in C programs. In: TASE 2018 (2018)

6. Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static
analysis of string values. Softw. Pract. Exp. 45(2), 245–287 (2015)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977
(1977)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

9. Davis, M.D., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science. Academic Press Professional, Inc.,
New York (1994)

10. D’Silva, V.: Widening for Automata. MsC Thesis, Inst. Fur Inform. - UZH (2006)
11. Hauzar, D., Kofron, J.: Framework for static analysis of PHP applications. In:

ECOOP 2015 (2015). https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading (1979)
13. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for javascript. In: SAS 2009

(2009). https://doi.org/10.1007/978-3-642-03237-0 17
14. Kashyap, V., et al.: JSAI: a static analysis platform for javascript. In: FSE 2014

(2014)
15. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: formal specification and imple-

mentation of a scalable analysis framework for ECMAScript. In: FOOL (2012)
16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,

Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6
17. Wilhelm, R., Sagiv, M., Reps, T.: Shape analysis. In: Watt, D.A. (ed.) CC 2000.

LNCS, vol. 1781, pp. 1–17. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-46423-9 1

https://doi.org/10.4204/EPTCS.299.5
https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/978-3-540-27813-9_25
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/3-540-46423-9_1
https://doi.org/10.1007/3-540-46423-9_1

OpenCERT 2019 - 9th International
Workshop on Open Community

Approaches to Education, Research
and Technology

OpenCERT 2019 Organizers’ Message

Open Community is a generalisation of the concept of Open Source to other collab-
orative efforts. It includes Open Content, that is, some form of non restrictive license,
and Open Knowledge, that is, the freedom to use, reuse, and redistribute knowledge
without legal, social or technological restriction.

The 9th International Workshop on Open Community approaches to Education,
Research and Technology (OpenCERT 2019) expands the scope of the International
Workshop on Foundations and Techniques for Open Source Software Certification,
whose 8 editions run from 2007 to 2014. The new scope of the workshop aims at
promoting the use of Open Community approaches in Education and Research while
also exploiting them to achieve wide diffusion and proper assessment of new, inno-
vative Technology.

The workshop received seven full paper submissions, which were reviewed for
quality, correctness, originality and relevance. Each submission was posted on GitHub
and reviewed by at least three Program Committee members. The review process was
carried out as an interactive, open discussion between the authors and the reviewers.
A final closed discussion among the PC members was carried out using EasyChair. Six
contributions were accepted for presentation at the workshop and for publication in this
volume. The workshop programme also featured a keynote talk titled “Open Com-
munity approaches to Education Publishing and Research — a look into the recent
past” by Andreas Meiszner.

We would like to thank the Program Committee members for their enthusiasm and
effort in actively participating in the open review process. We are also grateful to the
General Chair, José Nuno Oliveira, the Finance Chair, José Creissac Campos, and the
Workshop and Tutorial Chairs, Emil Sekerinski and Nelma Moreira. Finally, we would
like to thank all workshop attendees for their active participation in discussions and for
the feedback they provided to the authors.

December 2019 Antonio Cerone
Luís Barbosa

Organization

Program Committee Chairs

Luís Barbosa University of Minho, Portugal,
and UNU-EGOV, UN

Antonio Cerone Nazarbayev University, Kazakhstan

Steering Committee

Lus Barbosa University of Minho, Portugal,
and UNU-EGOV, UN

Peter T. Breuer Hecusys LLC, USA
Antonio Cerone Nazarbayev University, Kazakhstan

Program Committee

Roberto Bagnara University of Parma and BUGSENG, Italy
Lus Barbosa (Co-chair) University of Minho, Portugal,

and UNU-EGOV, UN
Marco C. Barbosa Universidade Tecnológica Federal do Paraná,

Brazil
Leonor Barroca The Open University, UK
Soumaya Ben Dhaou UNU-EGOV, UN
Peter T. Breuer Hecusys LLC, USA
Daniel Burgos Universidad Internacional de La Rioja (UNIR),

Spain
F. Heron Carvalho Júnior Universidade Federal do Ceará, Brazil
Antonio Cerone (Co-chair) Nazarbayev University, Kazakhstan
Stefano De Paoli Abertay University, UK
Yannis Dimitriadis University of Valladolid, Spain
Elsa Estevez Universidad Nacional del Sur, Argentina
Michela Fazzolari Institute for Informatics and Telematics

(CNR-IIT), Italy
João F. Ferreira INESC-ID and University of Lisbon, Portugal
Roberta Gori University of Pisa, Italy
Paddy Krishnan Oracle, Australia
Maria Helena Martinho University of Minho, Portugal
Andreas Meiszner Scio, Portugal, and University of Liverpool, UK
Paolo Milazzo University di Pisa, Italy
Renato Neves University of Minho, Portugal

OpenCERT 2019 Organizers’ Message 155

John Noll University of East London, UK, and Lero,
Ireland

Donatella Persico Institute for Educational Technologies
(CNR-ITD), Italy

Alexander K. Petrenko Russian Academy of Sciences (ISP RAS),
Russia, Russia

Marinella Petrocchi Institute for Informatics and Telematics
(CNR-IIT), Italy

Lucia Rapanotti The Open University, UK
Steve Reeves University of Waikato, New Zealand
Mona Rizvi Nazarbayev Univeresity, Kazakhstan
Markus Roggenbach Swansea University, UK
Sulayman K. Sowe Carl von Ossietzky University of Oldenburg,

Germany
Marcus Specht Open University of The Netherlands,

The Netherlands
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Anthony Wasserman Carnegie Mellon University Silicon Valley,

USA

156 OpenCERT 2019 Organizers’ Message

A Survey of Learning Methods in Open
Source Software

Aidarbek Suleimenov, Assiya Khuzyakhmetova, and Antonio Cerone(B)

Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
{aidarbek.suleimenov,assiya.khuzyakhmetova,antonio.cerone}@nu.edu.kz

Abstract. Open source software (OSS) is usually developed by hetero-
geneous groups of people, each with their own interests, motivations and
abilities. Therefore, it is important to establish the best software devel-
opment and contributing practices early in the life-time of the project.
Such practices should foster the contributors’ involvement in the OSS
project as quickly as possible. The sustainability of an OSS project is
heavily based on the underlying community of contributors and on the
knowledge and skills they bring to the project and they acquire and
develop through their participation in the project and interaction with
the project community. Therefore, identifying and investigating contrib-
utors’ learning processes is an important research area in OSS.

This survey paper presents an overview of open source learning meth-
ods in order to explore how community interaction impacts the develop-
ment and application of OSS learning processes in other areas, especially
in education. It is argued that collaboration with peers and consistent
code contributions result in learning progress in OSS. Typical research
in this area is based on case by case analysis, whereas this survey tries
to highlight and combine the outcomes of several research contributions
from the literature.

Keywords: Open source software · Learning processes · Learning
methods · Education

1 Introduction

Free/libre/open source software (FLOSS), or simply open source software (OSS),
is software that is released together with the source code under a license that
protects the right to study, change and distribute such source code. OSS is usu-
ally developed in a collaborative manner within a distributed OSS community.
Members of such a community are called contributors and their contributions
consist of pieces of code or documentation to the project, support provided to
the software users, etc [21]. OSS is widely used today in many households, small
businesses and enterprises, agricultural conglomerates, etc. It is estimated that
OSS saved dozens of billions of dollars for companies [26]. Furthermore, the field
is still expanding.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 157–166, 2020.
https://doi.org/10.1007/978-3-030-54997-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_10

158 A. Suleimenov et al.

Important challenges in OSS development include how one can learn skills
in the OSS environment. Skills can refer to technical and social skills which are
required for contributing to OSS. Technical skills are those that help to make
contributions in terms of code while social skills are those that help to inter-
act with the community [5]. The open source environment requires individuals
to gain skills through the process of using resources such as mailing lists, bug
trackers, IRC chats, version control systems, etc.

It is important to understand learning processes in OSS projects as this helps
maintain further development of the project and its support. As people learn
more about OSS projects, there is empirical evidence that they become more
active and efficient contributors to the community [4]. Ye and Kishida suggest
that the main motivation for people to participate in OSS software development
is primarily to acquire skills and learn [34], an extrinsic motivation that is nor-
mally associated with and complemented by a number of intrinsic motivations,
including enjoyment, sense of creativity and accomplishment, and intellectual
stimulation [3,21]. Therefore, it is also important to investigate how one can
gain skills in OSS projects in order to fulfill individual motivations, which is a
significant factor of OSS development.

In this paper, we present an overview of learning processes in OSS communi-
ties and discuss the literature with a particular emphasis on formal and informal
methods of learning. Section 2 clarifies the distinction between informal and for-
mal learning both in general terms and in the specific OSS context. Section 3
reviews the literature on the analysis of OSS learning methods with reference
to community interaction, code contribution, internet technologies and commu-
nication tools. Section 4 discusses how OSS skills acquisition frameworks could
possibly be applied to learning in external activities in software development and
higher education. Finally, Sect. 5 summarizes the contributions and limitations
of the paper and envisages the future work in terms of both practical teaching
and research.

2 Formal and Informal Methods of Learning

Formal learning refers to a structured form of learning that leads to certification
by an official education organization [20]. Such a form of learning is normally
highly teacher-centered as it requires some authority to conduct class sessions,
provide feedback, give grades, etc. Examples of formal learning include higher
education and professional certifications.

Informal learning [15,17,23], instead, occurs outside education organizations
and has neither any set objective in terms of learning outcomes nor any specific
structure. In general, informal learning is never intentional from the learner’s
standpoint and does not necessarily lead to certification. However, it should not
be confused with non-formal learning, which often refers to organized learning
outside the formal education system, such as in a short-term format and/or on a
voluntary basis. There are several perspectives in defining informal learning that
differ in terms of intentionality and awareness at the time of the learning expe-
rience [20]. In the context of OSS environments informal learning specifically

Learning Methods in Open-Source Software 159

refers to learning-by-doing or project-based collaboration. This also includes
community interactions, code contributions, source code reading, technology
usages, etc.

In order to make contributions to OSS, it is essential to have required techni-
cal and social skills [1]. In our survey we focus on contributions that identify how
these skills can be acquired. Due to the distributed nature of OSS development
and its project based approach, it could be hypothesized that OSS skills are
acquired through informal learning [5]. Therefore, it is necessary to identify the
specific informal learning methods that help individuals to acquire such skills.

One of the biggest challenges of this task is the fact that it is not trivial to
assess the learning dynamics within an OSS environment. There are no assign-
ments or exams to check whether contributors gained any skills or learned some
concepts. Thus it is challenging to gather empirical evidences. One of the main
research approaches in this area is to perform data mining analysis on OSS
artifacts, such as mailing lists or code history changes [13,22,28]. In addition,
surveys are also used [9]. In the next sections some informal methods of learning
will be considered and their effects on learning will be discussed.

3 Learning Methods in OSS

Learning methods in OSS not only refer to an informal learning context but are
also heavily based on practice rather on acquiring notions. Moreover, practice not
only occurs at individual level but it is fostered and mediated by the participation
in the OSS community and the communication and development infrastructure
built around the OSS project.

3.1 Open Source Community Interaction

Community growth around some projects could actually decrease the complex-
ity of the system over time when compared to projects with only one individual
maintainer [11], thus making community an essential part of any big OSS project.
Moreover, open source communities play a vital role in contributors’ skill acqui-
sition. A specific OSS community grows around a particular project. This makes
each community different from each other, thus making it hard to generalize and
create comprehensive guidelines for newcomers.

The distributed nature of software development in these communities and the
constant increase in software complexity make it inevitable for contributors to
communicate with other peers within the community during the process of skill
acquisition [5]. However, the question arises on whether or not the interaction
with the community is actually beneficial for acquiring skills.

Singh et al. [28], collected data from 251 developers contributing to 25 OSS
projects hosted on SourceForge over a period of six years. In their study a devel-
oper is a person that contributed at least 10 times in the period including both
contributions to emails and to CVS. Then a Hidden Markov Model was built
out of such data and it was discovered that learning from peers is one of the

160 A. Suleimenov et al.

most important sources of learning in OSS. According to Wen [32] such a form
of learning can also facilitate knowledge-sharing for some domain-specific skills,
for example in the area of security.

Moreover, Kuk [14] found out that active interaction with the community
not only increases the individual’s skills but, combined with code and content
contributions, also moves contributors “to the center of OSS development”. Fur-
thermore, personal experience within the community and interactions with the
community have a long term dynamic impact rather than a short term static
impact on a developer’s code contribution behavior [28].

The “center of OSS development” refers to the core members of the OSS
community, who do make the majority of contributions [29] and decisions [21].
In the study by Kuk [14], 1500 messages from two OSS development mailing lists
were analyzed and it was found out that contributors with high degree of inter-
action with others are more likely to become core members of OSS projects. Kuk
stresses that such interactions also accelerate releases of individual knowledge
resources and exchange of information within the community [14].

Finally, Sowe and Stamelos [29] divide the learning process of individual
actors in four phases through which knowledge evolves: socialization, in which
knowledge is implicitly shared, externalization, in which tacit knowledge is made
explicit to the community, combination, in which community explicit knowledge
is combined and organized as abstract knowledge, and internalization, in which
abstract knowledge is absorbed and further combined with individual knowledge
and experiences to produce new tacit knowledge. Building on this conceptual
learning model, Cerone and Sowe [7] describe OSS projects as learning and
development environments in which heterogeneous communities get together to
exchange knowledge through discussion and put it into practice through actual
contributions to software development, revision and testing. This leads to the
view of OSS communities as open participatory ecosystems in which actors create
not only source code but a large variety of resources that include the implicit and
explicit definitions of learning processes and the establishment and maintenance
of communication and support systems [6].

3.2 Code Contributions

Code contributions play a vital part in OSS learning due to the project-based
nature of OSS development. Code contributions can also show the level of exper-
tise of the contributor. On the one hand, level of complexity of the code, fre-
quency of code contributions, domain the code was written for and number of
bugs that appeared after the new code was introduced could possibly show the
learning progress of the individual contributor. On the other hand, the level of
expertise increases the reputation of the contributor, thus serving as a major
source of motivation for developers to participate in a community [27].

There are empirical evidences that confirm the importance of code contribu-
tions and bug fixes in the learning process. For example, Kim and Jiang [13] ana-
lyzed the history of code changes of five OSS projects with overall 100 contribu-
tors. According to their study, the number of bugs resolved increases the chances

Learning Methods in Open-Source Software 161

for individuals to learn and reduces the chances to produce bugs in the future. This
is particularly important, since it was also found out that experienced developers
are as prone to introduce bugs as inexperienced developers [13].

In addition, Krogh et al. [30] found that it is expected for newcomers to
specialize only in one area of expertise. Their study was based on the analysis of
Freenet OSS project contributors’ behavior. After interviewing contributors, it
appeared that they made contributions on the basis of prior knowledge. There
are several reasons for this. One reason is the fact that contributing code to OSS
projects can be hard [12] and therefore requires extensive experience. It might
be more beneficial and easier to focus on one area in order to make significant
contributions. A second reason is that expertise in some particular area could
be highly beneficial for the community as a whole, once such expertise undergo
the process of knowledge sharing. Thus, these benefits can make the community
more than willing to accept newcomers in exchange for their experience [32].

Learning through code contributions and learning from community interac-
tions are not necessarily mutually exclusive. Interaction between newcomers and
experienced project members is essential for newcomers to make code contribu-
tions. Newcomers need to be allowed to make contributions that are equivalent
to their abilities and experienced members could potentially help them in iden-
tifying such kinds of contributions via collaborative efforts [8].

Finally, we can say that code production not only fosters learning through
practice in the code contributor, but also drives learning in those community
members who study and test that code. A similar role is played by other artifacts
of the OSS production process, such as documentations, guidelines and even
licenses.

3.3 Internet Technologies and Communication Tools

OSS is usually developed by a heterogeneous group of people distributed all over
the world [21], each having own role in the development of the final product.
Every software engineering project depends on collaboration, and collaboration
is essential in OSS. Since synchronized actions are significant for the completion
of complex tasks, effective communication and collaboration play an important
role in the production process [33]. Thus, developers are required to use some sort
of internet technologies in order to interact with each other. In OSS communities
this role is usually performed by mailing lists, internet relay chats (IRC), remote
version control systems, discussion forums, bug trackers, project management
tools, documentation web pages and many other tools depending on the projects’
needs.

All these tools serve as a way for knowledge manifestation, which makes it
unnecessary for face to face contact or for newcomers to use the bandwidth of
their experienced peers in order to answer already answered questions. All these
conclusions were made from an observation of K Desktop Environment (KDE)
OSS project community [10]. Other kind of tools that can facilitate learning in
OSS environments are Question & Answer internet communities such as Stack

162 A. Suleimenov et al.

Exchange. Users can post questions on a wide variety of topics and answer
questions of other people. Since participants are not paid for their efforts in
giving answers, anyone can freely benefit from interacting with this community
in a similar way to participating in OSS project communities [25].

We can conclude that the use of internet technologies and communication
tools may lead to more efficient development and faster learning processes.

4 Application of OSS Learning Methods

There are several ways of transferring informal OSS learning methods to formal
education: opening course materials and making them free to access, making
students generate content for the course and contribute to its processes and
usage of technologies. Weller and Meizsner [31] report on some of these ways,
and analyze their effectiveness and benefits when applied to formal education.

However, the main strength of OSS learning methods is the process of col-
laboration and how it results in learning-by-doing. In fact, after recognizing the
importance of OSS learning-by-doing in building big projects in a collaborative
manner, we now consider how to apply such methods to other areas, especially
to education. One of the main aspects of education in an OSS environment is
the fact that both expert (teacher) and learner (student) participate in content
creation and knowledge sharing [19]. Another fundamental aspect is that tra-
ditional learning techniques are limited in terms of applications of knowledge,
whereas in OSS there is a clear visibility of results of skills acquisition in terms of
code submitted or questions replied. This means that there is a big opportunity
for transferring novel learning techniques from OSS communities to traditional
learning environments [18].

One of the most obvious applications of the OSS learning approach is to use it
as a part of a specific teaching module on OSS. Although learning project details
normally does not require classroom participation or any other formal learning
methods, it could be investigated if one could learn how to contribute to OSS
within the limits of the class. Some studies provide evidence of success of such
experience. One example is the Master courses in Open Source and Distributed
Development Models at the University of Skövde, Sweden [16]. A group of 12
students were introduced to the OSS community aspects and required to put
effort in making contributions with increasing complexity gradually overtime. As
a result, the students managed to make contributions to OSS projects in terms of
documentation, bug reports and desktop themes [16]. On the other hand, there
are evidences that contributing to OSS can be difficult and time-consuming [12].
Therefore, it is required to keep balance between students’ abilities and course
requirements. Students should be evaluated in terms of their efforts or progress
rather than based on the number of their code submissions or bugs fixes. This
approach is adopted in the 3rd and 4th year course on Open Source Software at
Nazarbayev University, Kazakhstan.

A more general exploitation of the OSS learning approach is as part of a
core subject in the area of software engineering. Undergraduate students at the

Learning Methods in Open-Source Software 163

Aristotle University Thessaloniki, Greece, participate as project team members
in real-life OSS projects as part of a course assignment on Software Engineering
[24]. Students are allowed to select an OSS project and assume a number of
possible contributor roles, thus getting to understand through real participation
how different professionals are involved in the software development process.

At the University of Minho, Fernandes et al. [9] carried out a pilot project in
teaching software engineering to students in the last year of a MSc course whose
completion entitles the students to teach Informatics at secondary school level.
Students spontaneously got together in small groups (up to 3 elements) and
chose an OSS project to get involved in. Data collection by the instructors was
carried out during the pilot project using direct observation and unstructured
interviews aiming at designing a learning-by-doing e-Learning framework for
teaching software engineering topics.

Finally, a recent approach that may contribute to the understanding of the
dynamics of learning processes is process mining [2], that is, the use of event
data to extract process-related information. With the aim of understanding the
learning dynamics of OSS communities, Mukala et al. [22] used process mining
to extract learning processes from mailing archives of OSS projects. Their results
provide insights on the possible discrepancies that are observed between an initial
theoretical representations of learning processes and the real behavior observed
from the data. Moreover, such a comparison helps foster the understanding on
how learning actually takes place in OSS environments.

5 Conclusion

We have seen that OSS represents an important approach to software devel-
opment and is a field that is expected to grow within the next few years. It is
essential to enable newcomers to easily join OSS projects in order for the projects
to be sustainable. For this reason understanding and fostering learning processes
is crucial in OSS.

We discussed that learning in OSS projects can be beneficial not only to
newcomers but also to core members. Newcomers can learn and acquire new
skills by contributing, while core members can receive help through newcomers’
contributions and possibly from their domain expertise.

We have surveyed a number of research works in the area of OSS in order
to summarize how learning occurs in OSS environment. We have found that
informal and project based learning methods are the most common in OSS
communities. Such methods include active interaction with a community and
code contributions.

We noted that the learning processes associated with such methods were
identified by empirical evidences and are an essential part of the individual
contributor’s learning process. Finally, we discussed how such methods have
been applied and can be effectively applied to education.

This paper does not pretend to provide an exhaustive review of learning
methods in OSS. It essentially shows the approaches that have been investigated

164 A. Suleimenov et al.

or have been used in the development of the course on Open Source Software at
Nazarbayev University, Kazakhstan.

Part of our future work is to analyze the effectiveness of this course and
its impact on the students’ post-graduation involvement in OSS activities and,
more in general, on their careers. Furthermore, the analysis of OSS learning
carried out in previous work [9,22] will be further developed, especially aiming
to the integration of data collection through direct observation and unstructured
interviews [9] and process mining techniques [22].

References

1. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/Libre and Open Source Soft-
ware: Survey and Study, January 2002

2. van der Aalst, W.: Process Mining. Data Science in Action, 2nd edn. Springer,
Heidelberg (2016)

3. Androutsellis-Theotokis, S., Spinellis, D., Kechagia, M., Gousios, G.: Open source
software: a survey from 10,000 feet. Found. Trends Technol. Inf. Oper. Manage.
4(3–4), 187–347 (2010)

4. Au, Y.A., Carpenter, D., Chen, X., Clark, J.G.: Virtual Organizational Learning
in Open Source Software Development Projects (0013), May 2007. https://ideas.
repec.org/p/tsa/wpaper/0041is.html

5. Barcomb, A., Grottke, M., Stauffert, J.-P., Riehle, D., Jahn, S.: How developers
acquire FLOSS skills. In: Damiani, E., Frati, F., Riehle, D., Wasserman, A.I. (eds.)
OSS 2015. IAICT, vol. 451, pp. 23–32. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-17837-0 3

6. Cerone, A.: Learning and activity patterns in OSS communities and their impact
on software quality. In: Proceedings of OpenCert 2011, Electronic Communications
of the EASST, vol. 48 (2012)

7. Cerone, A., Sowe, S.K.: Using free/libre open source software projects as
e-learning tools. In: Proceedings of OpenCert 2010, Electronic Communications
of the EASST, vol. 33 (2010)

8. Edwards, K.: Epistemic communities, situated learning and open source software
development. In: Proceedings from the conference on Epistemic Cultures and the
Practice of Interdisciplinarity (2001)

9. Fernandes, S., Martinho, M.H., Cerone, A., Barbosa, L.S.: Integrating formal and
informal learning through a FLOSS-based innovative approach. In: Antunes, P.,
Gerosa, M.A., Sylvester, A., Vassileva, J., de Vreede, G.-J. (eds.) CRIWG 2013.
LNCS, vol. 8224, pp. 208–214. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41347-6 15

10. Hemetsberger, A., Reinhardt, C.: Learning and knowledge-building in open-
source communities: a social-experiential approach. Manage. Learn. 37(2), 187–214
(2006). https://doi.org/10.1177/1350507606063442

11. Huntley, C.L.: Organizational learning in open-source software projects: an analysis
of debugging data. IEEE Trans. Eng. Manage. 50(4), 485–493 (2003)

12. Jaccheri, L., Osterlie, T.: Open source software: a source of possibilities for software
engineering education and empirical software engineering. In: First International
Workshop on Emerging Trends in FLOSS Research and Development (FLOSS
2007: ICSE Workshops 2007), p. 5, May 2007. https://doi.org/10.1109/FLOSS.
2007.12

https://ideas.repec.org/p/tsa/wpaper/0041is.html
https://ideas.repec.org/p/tsa/wpaper/0041is.html
https://doi.org/10.1007/978-3-319-17837-0_3
https://doi.org/10.1007/978-3-319-17837-0_3
https://doi.org/10.1007/978-3-642-41347-6_15
https://doi.org/10.1007/978-3-642-41347-6_15
https://doi.org/10.1177/1350507606063442
https://doi.org/10.1109/FLOSS.2007.12
https://doi.org/10.1109/FLOSS.2007.12

Learning Methods in Open-Source Software 165

13. Kim, Y., Jiang, L.: The learning curves in open-source software (OSS) develop-
ment network. In: Proceedings of the Sixteenth International Conference on Elec-
tronic Commerce (ICEC 2014), pp. 41–48. ACM (2014). https://doi.org/10.1145/
2617848.2617857

14. Kuk, G.: Strategic interaction and knowledge sharing in the KDE developer mailing
list. Manage. Sci. 52(7), 1031–1042 (2006). https://doi.org/10.1287/mnsc.1060.
0551

15. Livingstone, D.W.: Informal learning: conceptual distinctions and preliminary find-
ings. Counterpoints 249, 203–227 (2006)

16. Lundell, B., Persson, A., Lings, B.: Learning through practical involvement in the
OSS ecosystem: experiences from a masters assignment. In: Feller, J., Fitzgerald,
B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 289–294. Springer,
Boston, MA (2007). https://doi.org/10.1007/978-0-387-72486-7 30

17. Marsick, V.J., Watkins, K.E.: Informal and incidental learning. New Dir. Adult
Continuing Educ. 89, 25–34 (2001)

18. Meiszner, A., Glott, R., Sowe, S.K.: Free/libre open source software (FLOSS)
communities as an example of successful open participatory learning ecosystems.
UPGRADE Eur. J. Inform. Profess. 9(3), 62–68 (2008). http://oro.open.ac.uk/
16852/

19. Meiszner, A., Glott, R., Sowe, S.K.: Preparing the Ne(x)t Generation: Lessons
Learnt from Free/libre Open Source Software Why Free and Open are Pre-
conditions and Not Options for Higher Education (2008)

20. Merriam, S.B., Cafarella, R.S., Baumgartner, L.M.: Learning in Adulthood : A
Comprehensive Guide, 3rd edn. Jossey-Bass, San Francisco (2007)

21. Muffatto, M.: Open Source: A Multidisciplinary Approach (Series on Technology
Management). Imperial College Press, London (2006)

22. Mukala, P., Cerone, A., Turini, F.: An empirical verification of a-priori learning
models on mailing archives in the context of online learning activities of partici-
pants in free/libre open source software (floss) communities. Educ. Inf. Technol.
22(6), 3207–3229 (2017)

23. Overwien, B.: Informal learning and the role of social movements. Int. Rev. Educ.
46(6), 621–640 (2000)

24. Papadopoulos, P.M., Stamelos, I.G., Meiszner, A.: Enhancing software engineering
education through open source projects: four years of students’ perspectives. Educ.
Inf. Technol. 18(2), 381–397 (2013)

25. Posnett, D., Warburg, E., Devanbu, P., Filkov, V.: Mining stack exchange:
expertise is evident from initial contributions. In: 2012 International Confer-
ence on Social Informatics, pp. 199–204, December 2012. https://doi.org/10.1109/
SocialInformatics.2012.67

26. Riehle, D.: The economic motivation of open source software: stakeholder perspec-
tives. Computer 40, 25–32 (2007). https://doi.org/10.1109/MC.2007.147

27. Roberts, J., Hann, I., Slaughter, S.: Understanding the motivations, participation,
and performance of open source software developers: a longitudinal study of the
apache projects. Manage. Sci. 52(7), 984–999 (2006)

28. Singh, P.V., Youn, N., Tan, Y.: Developer Learning Dynamics in Open Source
Software Projects : A Hidden Markov Model Analysis (2006)

29. Sowe, S.K., Stamelos, I.: Reflection on knowledge sharing in F/OSS projects. In:
Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008. ITIFIP,
vol. 275, pp. 351–358. Springer, Boston, MA (2008). https://doi.org/10.1007/978-
0-387-09684-1 32

https://doi.org/10.1145/2617848.2617857
https://doi.org/10.1145/2617848.2617857
https://doi.org/10.1287/mnsc.1060.0551
https://doi.org/10.1287/mnsc.1060.0551
https://doi.org/10.1007/978-0-387-72486-7_30
http://oro.open.ac.uk/16852/
http://oro.open.ac.uk/16852/
https://doi.org/10.1109/SocialInformatics.2012.67
https://doi.org/10.1109/SocialInformatics.2012.67
https://doi.org/10.1109/MC.2007.147
https://doi.org/10.1007/978-0-387-09684-1_32
https://doi.org/10.1007/978-0-387-09684-1_32

166 A. Suleimenov et al.

30. Vonkrogh, G., Spaeth, S., Lakhani, K.: Community, joining and specialization in
open source software innovation: a case study, July 2003. https://www.alexandria.
unisg.ch/30623/

31. Weller, M., Meiszner, A.: Flosscom phase 2: Report on the effectiveness of a floss-
like learning community in formal educational settings. FLOSSCom Project (2008)

32. Wen, S.F.: An empirical study on security knowledge sharing and learning in
open source software communities. Computers 7(4) (2018). http://www.mdpi.
com/2073-431X/7/4/49

33. Xuan, Q., Filkov, V.: Building it together: synchronous development in OSS. In:
Proceedings of the 36th International Conference on Software Engineering (ICSE
2014), pp. 222–233. ACM (2014). https://doi.org/10.1145/2568225.2568238

34. Ye, Y., Kishida, K.: Toward an Understanding of the Motivation of Open Source
Software Developers, pp. 419–429, June 2003. https://doi.org/10.1109/ICSE.2003.
1201220

https://www.alexandria.unisg.ch/30623/
https://www.alexandria.unisg.ch/30623/
http://www.mdpi.com/2073-431X/7/4/49
http://www.mdpi.com/2073-431X/7/4/49
https://doi.org/10.1145/2568225.2568238
https://doi.org/10.1109/ICSE.2003.1201220
https://doi.org/10.1109/ICSE.2003.1201220

A Calculus of Chaos in Stochastic
Compilation

Engineering in the Cause of Mathematics

Peter T. Breuer1(B) and Simon J. Pickin2

1 Hecusys LLC, Atlanta, GA, USA
ptb@hecusys.com

2 Universidad Complutense de Madrid, Madrid, Spain
simon.pickin@fdi.ucm.es

Abstract. An unexpected outcome from an open project to develop
a ‘chaotic’ compiler for ANSI C is described here: a trace information
entropy calculus for stochastically compiled programs. A stochastic com-
piler produces randomly different object codes every time it is applied
to the same source code. This calculus quantifies the entropy intro-
duced into run-time program traces by a compiler that aims for the
maximal possible entropy, furnishing a definition and proof of security
for encrypted computing (Turing-complete computation in which data
remains in encrypted form throughout), where the status was formerly
unknown.

Keywords: Computer security · Encrypted computing · Program logic

1 Introduction

This article describes a program calculus that quantifies the entropy introduced
into a run-time trace by a stochastic compiler, developed as part of an open
source project (http://sf.net/p/obfusc) to develop a secure computing infras-
tructure. Open source projects may embrace changes of direction because the
goals are defined by community appetites, and that is what has happened here.
To be clear from the outset, the stochastic element occurs not in the execution
of a program but in the compilation. The software part of the project aims to
develop a complete tool-chain (compiler, assembler, linker, loader) for encrypted
computing [1] platforms [3,5,8,11,18,23]. Those are general purpose processors
in which data remains in encrypted form throughout processing. Obviously com-
puting encrypted is not less ‘secure’ than no encryption at all, but how secure
has little formal backing. A danger point is marked in [7] with a program for
an encrypted computing platform that decrypts ciphertexts back to plaintext in
real time and, intuitively, the constants in it ‘ought’ to be as hard to guess as the
encryption is to crack, but that needs proof. It turns out that key to a security
proof is a stochastic compiler and that story is set out here.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 167–184, 2020.
https://doi.org/10.1007/978-3-030-54997-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_11&domain=pdf
http://sf.net/p/obfusc
https://doi.org/10.1007/978-3-030-54997-8_11

168 P. T. Breuer and S. J. Pickin

Also introduced in [7] are properties of a machine code instruction set archi-
tecture (ISA) necessary for a secure runtime environment. Important is mal-
leability: the constants in each machine code instruction may be varied to offset
independently by any amount its inputs and outputs. That allows the data
beneath the encryption in a program trace to be varied arbitrarily by the com-
piler while the program black-box semantics remains the same, the code remains
the same apart from the varied constants, and the same sequence of instructions
appears in the trace [2,4,6]. Intuitively that means an attacker cannot be sure
they have ‘cracked the encryption’, as their solution is one of many. How many?

This paper will touch on security but focus on that pure computer science
problem of getting the maximum number of possible variations into run-time
traces via stochastic compilation, and how to state if it is so with assurance.
Introducing maximum variation will be called chaotic compilation . It was
not known if it were possible but this paper quantifies the notion and shows how
to guarantee a compiler gets it right via a formal logic. Then that is used to
formalise and answer the question ‘is secure computing possible’. As the subtitle
to this paper puts it, it is a case of engineering in the cause of mathematics.

The nearest existing applicable security concept is classic ‘Holy Grail’ cryp-
tographic semantic security [14] for encryptions, best known via the game theory
version of it [15]: there is no method of attack M of polynomial time complexity
in the encryption block size n that infinitely often does non-negligibly better
than chance (i.e., probability 1/2 + B for B > 0) at guessing the value of a given
bit of data beneath the encryption, as n → ∞. In the encrypted computing
context, the encryption block size n is the same as the hardware word size n, the
size of the processor’s registers. The plaintext word beneath the encryption is
constant size, typically 32 bits, but the hardware word may be 128, 256 bits or
more. IBM’s work on (non-Turing complete) computation over fully homomor-
phic encryptions (FHEs; encryptions E that respect addition and multiplication,
with E [a + b] = E [a] + E [b] and E [a ∗ b] = E [a] ∗ E [b]) [10,12] uses custom vec-
tor machines with word sizes in the millions of bits and atomic operations that
take on the order of one second [13]. But the word size n cannot vary arbitrarily,
because hardware cannot change, so the concept must be tested mathematically.

The similar security concept this project has created for encrypted computing
is relative semantic security : there is no successful method of attack M that (i)
has polynomial-time complexity in the number of bits n in the hardware word on
the encrypted computing platform, and (ii) reveals the run-time data beneath
the encryption, given (iii) there is no such method that is successful against the
encryption. ‘Success’ means the method has probability of guessing right on each
bit it reports that beats chance by a margin that does not tend to 0 as n → ∞.
Formally, if Tn is the trace of the program on an encrypted computing platform
with an n-bit word and b is the targeted bit beneath the encryption, and (i) the
worst case running time of M is Onk for some k, then (ii) prob[M(Tn)=b]>1/2+B
for some B > 0 infinitely often as n→∞ is impossible, provided (iii) there is no
such method M ′ against the encryption alone (classic cryptographic semantic
security). Put 1/2m+B in (ii) if guessing m bits at a time.

A Calculus of Chaos in Stochastic Compilation 169

The argument for that is sketched out further in Sect. 6. It proceeds via a
quantification of the entropy induced in a program trace by a chaotic compiler.
The formal method involved is a program logic expressing the trace entropy.
Extant program logics with stochastic aspects [16,20] all, as far the authors
know, deal with run-time randomness and we have not been able to discover
any that deal with compile-time randomness. Program logics are abstractions of
program semantics and in this case the aspect of interest is how much the pro-
gram trace varies when the same program is compiled to make it vary ‘as much
as possible’ from recompilation to recompilation. If the compiler works success-
fully as required, its variations statistically swamp the programmed information
content in the trace, meaning that any attack is effectively against statistically
independent random data, which reduces it to an attack against the encryption
alone.

This paper is organised as follows. Section 2 gives an informal introduction
to the ‘trick’ of stochastic compilation and the so-called maximum (˜h) and min-
imum (h

˜

) entropy principles. Section 3 gives a slightly formal view-from-the-top
of stochastic compilation and introduces a modified OpenRISC (http://openrisc.
io) machine code instruction set as concrete target for chaotically stochastic com-
pilation. Compilation is described in Sect. 4 in 4.1 and 4.2. A pre-/post-condition
Hoare program logic [17] for the calculus of differences that tracks a compiler’s
code variations is introduced in Sects. 4.3, and in Sect. 4.4 it is modified to an
information entropy (‘chaos’) calculus for run-time traces. Section 5 gives exam-
ples and Sect. 6 sketches the chaotic compilation security argument.

2 Overview of the Technical Foundation

The source language is ansi C [19] here but the approach is generic. Chaotic
compilation is guided by the maximal entropy principle:

Every machine code arithmetic instruction that writes should intro-
duce maximal possible entropy into the run-time trace. (˜h)

The restriction to arithmetic instructions is because copy and goto must work
normally. The mechanism (introduced in [6]) is as follows: the object-code differs
from the nominal semantics beneath the encryption by a planned and different
randomly generated ‘delta’ at every register and memory location before and
after every instruction. That is a difference scheme:

Definition 1. A difference scheme is a set of vectors of deltas from nominal for
the data per memory and register location, one vector per point in the control
graph of the machine code, i.e., before and after each machine code instruction.

The scheme is generated by the compiler and is shared with the user/owner
of the code, so they may validate or verify the run-time trace and create inputs
for the running program and read outputs from it.

http://openrisc.io
http://openrisc.io

170 P. T. Breuer and S. J. Pickin

A thought experiment illustrates the trick of this mechanism. Consider the
following pseudo-code loop:

while x < y + z + 1 do {x ← x + 2; x ← x + 3; }

Imagine new program variables X, Y, Z, shifted by different deltas from the
program variables x, y, z at different points in the code as shown below:

while X + 4
︸ ︷︷ ︸

x

< Y + 5
︸ ︷︷ ︸

y

+Z + 6
︸ ︷︷ ︸

z

+1 do {X+7
︸︷︷︸

x

← X + 4
︸ ︷︷ ︸

x

+2;X + 4
︸ ︷︷ ︸

x

← X + 7
︸ ︷︷ ︸

x

+3; }

The relation x = X + 4 has to be the same at the end of the loop as at the
beginning, but otherwise the choice of 4, 5, 6, 7 is free. Simplifying, that is:1

while X < Y + Z + 8 do {X ← X − 1;X ← X + 6;}

An observer can watch the first while loop execute and understand it as the
second loop. Conversely, a user intending the second while loop can execute the
first, with the translations above in mind.

A stochastic compiler systematically does the above, but at the object code
level. It introduces different deltas like 4, 5, 6, 7 above at every register and
every memory location, per machine code instruction. A summary is that the
object codes generated from the same source code

(a) all have the same structure, differing only in the constant parameters embed-
ded in the individual machine code instructions; also

(b) run-time traces have the same instructions (modulo (a)) in the same order
reading and writing the same registers and memory locations; but

(c) data varies from nominal by planned but randomly chosen and arbitrary
deltas, different at every point in the run-time trace and registers/memory.

The catch is, as with the x = X+ 4 above, a minimal entropy principle applies:

deltasmust be equal across copy or skip, andwherever control pathsmeet. (h
˜

)

That is necessary in order for computation to work properly.
Compilation must be systematic, or it will produce neither the intended

semantics nor properties. So this paper first (Sect. 4) describes ‘correct by con-
struction’ compilation along the lines of the thought experiment above, intro-
ducing the ‘deltas’ of a difference scheme as compile-time parameters.

The question is if those can be chosen without restriction as (˜h) demands. The
induced variation in the run-time program traces is measurable as (information-
theoretic) entropy.2 What (˜h) expresses is that at every instruction in the run-
time trace where, say, a 32-bit value is written beneath the encryption, the

1 Signed 2s complement comparison is translation-invariant. I.e., x<y iff x+k<y+k.
2 Entropy is formally the stochastic expectation H = −E[log2 pi] of the probability pi

of the possible observations i, thus H = − ∑

i

pi log2 pi with 0 ≤ pi ≤ 1 and H ≥ 0.

A Calculus of Chaos in Stochastic Compilation 171

chaotic compiler should introduce a delta with 32 bits of entropy in the choice
available. Shannon’s theorem [21] holds that adding one signal to another in fixed
length arithmetic does not decrease entropy. Here, one input is the compiler’s, the
other is the programmer’s. When the compiler’s has maximal entropy (32 bits)
then the combined signal also has maximal entropy and the information from
the programmer has been statistically swamped and an observer cannot infer
any deterministic relation or statistical tendency from the programmer’s input.
The two inputs are (i) not separately visible to a run-time observer, having been
combined at compile time (and in encrypted computing the unencrypted form
of the data is itself not visible), and (ii) the programmed data can be recovered
afterwards by the intended user with the help of the difference scheme.

Box 1: A stochastic (expression) compiler for encrypted computing.

The compiler C[−] translates an expression e of type Expr that should end up in

register r at run-time to machine code mc of type MC and plans a 32-bit integer

delta Δr (type Off) for it in r:

C[-]r :: Expr → (MC, Off)

C[e]r = (mc, Δr) (1)

Let sr be the value in register (or memory location) r in state s of the processor

at run-time. The state is comprised by the values in registers and memory. Let

�e�s be a nominal evaluation of expression e in state s.a Running the code mc

changes the state s after several steps to state s′ that holds a value in r whose

value differs by Δr from the nominal value of the expression. That is:

s
mc� s′ where s′

r = E [D[�e�s] + Δr] (2)

where E is encryption (it may be trivial), D is decryption.

a If source code variable x is in register r with delta Δr, then the nominal value

�x�s = E [D[sr] − Δr], �e1+e2�s = E [D[�e1�s] + D[�e2�s]], etc.

But (h
˜

) acts to constrain entropy. Section 4 will show that, in a chaotically
compiled program, at any m points in the trace not related as in (h

˜

), variations
with 32m bits of entropy are produced among the traces, on a 32-bit machine.
For each pair of points related as in (h

˜

), entropy reduces by 32 bits. That analysis
leads to the argument (Sect. 6) that there is no successful3 method of attack on
the run-time data with polynomial-time complexity in the number of bits n in
a processor word on an encrypted computing platform, given there is no such
method that succeeds against the encryption in use (it has an n-bit block-size).
3 ‘Success’ is stochastic: the method has probability of being right on each bit that

beats chance by a (‘non-negligible’) margin B that does not tend to 0 as n→∞.

172 P. T. Breuer and S. J. Pickin

3 Overview of Stochastic Compilation

The action of a stochastic compiler (Box 2) parallels (a-c) of Sect. 1: (A) the
constants embedded in the machine code instructions are varied so (B) all fea-
sible trace variations are exercised (C) equiprobably, because an equiprobable
distribution over the full range of values (uniquely) has maximal entropy.

An implementation generates a new difference scheme at each recompilation,
as set out in Box 1 for compilation of pure expressions. The Δr is the entry in
the difference scheme for register r at the given point in the program.

Box 2: A stochastically ‘chaotic’ compiler implements the following strategy:

(A) change only program constants, generating an arrangement of planned deltas
from nominal for instruction inputs and outputs (a difference scheme);

(B) leave run-time traces unchanged, apart from differences in the program con-
stants (A) and run-time data;

(C) equiprobably generate all possible difference schemes satisfying (A), (B).

Table 1. RISC ‘FxA’ machine code instruction set.

op. fields mnem. semantics

add r0 r1 r2 Ek add r0←E[Dr1 + Dr2 + k]

sub r0 r1 r2 Ek subtract r0←E[Dr1 − Dr2 + k]

mul r0 r1 r2 Ek0Ek1Ek2 multiply r0←E[(Dr1 − k1) ∗ (Dr2 − k2) + k0]

div r0 r1 r2 k0k1k2 divide r0←E[(Dr1 − k1) ÷(Dr2 − k2) + k0]

. . .

mov r0 r1 move r0←r1

beq i r1 r2 Ek branch if b then pc←pc+i, b ⇔ Dr1 = Dr2 + k

bne i r1 r2 Ek branch if b then pc←pc+i, b ⇔ Dr1 �= Dr2 + k

blt i r1 r2 Ek branch if b then pc←pc+i, b ⇔ Dr1 < Dr2 + k

bgt i r1 r2 Ek branch if b then pc←pc+i, b ⇔ Dr1 > Dr2 + k

ble i r1 r2 Ek branch if b then pc←pc+i, b ⇔ Dr1 ≤ Dr2 + k

bge i r1 r2 Ek branch if b then pc←pc+i, b ⇔ Dr1 ≥ Dr2 + k

. . .

b i branch pc ← pc + i

sw (Ek0)r0 r1 store mem�E[Dr0 + k0]� ← r1

lw r0 (Ek1)r1 load r0 ← mem�E[Dr1 + k1]�

jr r jump pc ← r

jal j jump ra ← pc + 4; pc ← j

j j jump pc ← j

nop no-op

Legend

r – register index

k – 32-bit integer

pc – prog. count reg.

j – prog. count

‘←’ – assignment

ra – return addr. reg.

i – prog. incr.

r – register content

E – encryption

D – decryption

A reduced instruction set (RISC) machine code with ‘fused anything and
add’ (FxA) [6] -style ISA will be the compilation target here, adapted originally
from OpenRISC v1.1 (http://openrisc.io/or1k.html), The portion needed for this

http://openrisc.io/or1k.html

A Calculus of Chaos in Stochastic Compilation 173

paper is shown in Table 1. The general pattern of the ISA is that instructions
access up to three 32 general purpose registers (GPRs), and one of those may
instead be a (‘immediate’) constant embedded in the instruction. The salient
feature here is that every arithmetic instruction embeds encrypted constants that
may displace the instruction’s inputs and outputs independently (‘malleability’).

Add and branch would suffice for Turing completeness (c.f. Fractran [9]).

4 Chaotic Compilation

The compiler works with difference scheme sectionsD : Loc → Off with integer
entries Δl (type Off), indexed per register or memory location l (type Loc). A dif-
ference scheme {Dp | p ∈ P} has one section per point p in the object code
program P ’s control graph, i.e., before and after every machine code instruc-
tion. The delta Δl is how much the run-time data is to differ from nominal in l
at point p.

A database L : Var→Loc that maps source code variables to registers and
memory will be assumed. Then the expression compiler C[e]r described in Box 1
that puts a result in register r is more exactly C

L[D : e]r of type:

C
L[:]r : Dsect × Expr → MC × Off (3)

where Dsect is the type of D, MC is the type of machine code, a sequence of
(FxA) instructions mc. The compiler aims to vary the deltas Δl equiprobably
over the full range across recompilations. The following paragraphs explain how.

4.1 Pure Expressions

How source code is translated has to be shown in some detail in order to confirm
or deny (˜h), because every time an ‘instruction that writes’ is emitted, it must
be checked if it can be varied by the compiler to the maximum extent possible.
Compilers work compositionally, so structural induction suffices for that. For
pure expressions, every operation in it requires that the operands be in registers
and a single machine code instruction then acts on them arithmetically and
writes the result into another register. That instruction must be varied.

Translating x+y where x, y are signed 32-bit integer source code variables,
the compiler emits machine code mc1 as in (4a) that at run-time puts the value
of x in register r1=Lx with offset delta Δr1 (a pair (D,) is written D : here):

(mc1,Δx) = C
L[D : x]r1 (4a)

By inductive hypothesis, that is the nominal value plus the target register’ delta:

s0
mc1� s1 : s1 r1 = E [D[�x� s0] + Δr1] (4b)

The small step semantics is from Table 1, with sr = s r for the value in register
r in state s of the processor. The nominal value �x�s of variable x, as defined in
footnote a of Box 1, is preserved as the state s changes from s0 to s1 via mc1:

�x� s1 = E [D[s0 Lx] − D Lx] = E [D[s0 r1] − Δr1] = �x� s0 (4c)

174 P. T. Breuer and S. J. Pickin

By induction too, machine code mc2 for y is emitted preserving its nominal
value:

(mc2,Δy) = C
L[D : y]r2 (5a)

s1
mc2� s2 : s2 r2 = E [D[�y� s1] + Δr2] (5b)

�y� s2 = . . . = �y� s1 (5c)

The compiler then emits the extra add instruction that at run-time sums r1 and
r2 into r0 with an increment k, a constant embedded in the instruction:

C
L[D : x + y]r0 = (mc0,Δe) (6a)

mc0 = �mc1;mc2;add r0 r1 r2 k�

Choosing k=Δr0−Δr1−Δr2, the following value goes in r0 at run-time:

s0
mc0� s2 : s2 r0 = E [D[�x� s0] + D[�y� s1] + Δr0] (6b)

= E [D[�x + y� s2] + Δr0] (6c)

The nominal value plus a delta ends up in register r0 and the delta Δr0 is
independently and arbitrarily chosen by the compiler via its choice of k. The
induction shows (˜h) is satisfied for pure expressions.

4.2 Statements

Let Stat be the type of statements, then compiling a statement changes the
deltas and produces a new difference scheme section, as well as machine code:

C
L[:] : Dsect × Stat → Dsect × MC (7)

Consider an assignment z=x + y of expression x + y to a source code variable z,
which the location database L binds in register rz=Lz. Let x+y be called e here.
The compiler emits code mc0 that evaluates expression e in register t0 with
(randomly chosen) offset Δr0 as described in (6a) with t0 = r0. A short-form
add instruction with semantics rz ← t0 + k is emitted to move that to rz:

C
L[D0 : z=e] = D1 : �mc0;add rz t0 k� (8a)

The compiler sets k=Δrz−Δr0 to choose delta Δrz arbitrarily:

s0
mc0� s2

add�s3 : s3 rz = E [D[�x + y� s2] + Δrz] (8b)

The difference scheme section is updated at rz from D0rz to D1rz=Δrz, so:

�z� s3 = �x + y� s2 (8c)

The final delta Δrz = D1Lz may be freely and independently chosen by set-
ting the instruction constant k appropriately. This is the induction step for the
assignment statement, with the inductive result for pure expressions as hypoth-
esis, and it implies side-effecting expressions are compiled both to preserve the
intended ‘nominal value’ per (8c) and to preserve principle (˜h).

A Calculus of Chaos in Stochastic Compilation 175

4.3 Difference Calculus

A Hoare-style deterministic pre-/post-condition calculus [17] is a natural step-
ping stone to a stochastic calculus. The Hoare-style calculus expresses the evo-
lution of the current difference scheme section during a compiler pass. The oper-
ational semantics of the code is not at issue, freedom of choice is.

Assignment. Generalise the x+y with intermediates in r1, r2 of Sect. 4.1 to
e with intermediates in ρ={r0, . . . , rn}. The result z is stored in r0. The delta
offsets have value Δri in ri before and value Δ′ri after the assignment. That is:

{Δr0, Δr1, . . . , Δrn}
z = e

{Δ′r0, Δ′r1, . . . , Δ′rn}
(9)

By (6b, 8b), Δ′r, Δr can be independently chosen. Reading the Δ as a vector:

{Δ} z = e {Δ′} (9a)
Δ ⊇ Δ′|ρ̄ (9b)

That is, Δ extends Δ′|ρ̄, Δ (possibly) differs from Δ′ on ρ and is unaltered from
it on the complement ρ̄ of ρ. The Δ are indexed by the full range of registers
and memory locations but in practice only a small subset need be considered.

When pointers (memory addresses calculated dynamically) are available to
programmers, the type system of the source language must be augmented so
each pointer is declared as pointing into a named global array as workspace:

int A[100]; . . . ; restrict A int ∗ ptr;

That limits the possible memory locations (indices of Δ) for ptr to A. An unre-
stricted pointer may gain any address at runtime, which results in the compiler
producing impossibly large/slow code, so the programmer wants to use restrict.

Conditionals. An if then else is compiled to machine code using branch instr-
uctions, but which branch is for true and which for false is varied by the com-
piler. It randomly chooses to generate code for b or for ¬b at each level of boolean
subexpression. The compile procedure is detailed in [6], but it has been described
here already: the result b of each boolean subexpression is modified by a ran-
domly chosen 1-bit delta δ to b + δ mod 2 just as for arithmetic expressions
except that the arithmetic is 1-bit (i.e., mod 2), not 32-bit (mod 232).

The same technique is used in classic ‘garbled circuits’ [24] technology for
obfuscating hardware logic circuit design – an arbitrarily selected exclusive-or
(i.e., addition mod 2) mask is applied to inputs and outputs of every gate in the
circuit in order to recover the designer’s intended logic.

The compiler ensures that whichever branch is taken at runtime, the same
difference scheme avails for the instruction after the conditional. It appends add

176 P. T. Breuer and S. J. Pickin

instructions at the end of each branch as necessary for that. The upshot is the
logic is nondeterministic choice. Let ρ be the registers written in e. The rule is:

{Δ1} s1 {Δ′} {Δ2} s2 {Δ′}
{Δ} if (e) s1 else s2 {Δ′} (10a)

Δ ⊇ Δ1|ρ̄ ∪ Δ2|ρ̄ (10b)

and Δ1, Δ2 are equal on ρ̄ after e, independently chosen on ρ by the compiler,
and deltas Δ′ are set up by it to be equal at the end of both branches, per (h

˜

).

Loops. The compiler implements do while loops as code for the body followed
by a conditional branch back to the start. Let ρ be the registers written in e
and put Δ1|ρ̄=Δ2|ρ̄=Δ′|ρ̄ in (10a), (10b) to get the following rule for compiled
code:

{Δ} s {Δ′}
{Δ} do s while e {Δ′} (11a)

Δ ⊇ Δ′|ρ̄ (11b)

The compiler sets deltas Δ|ρ, Δ′|ρ independently. Per (h
˜

), the deltas are arranged
to be the same values Δ′|ρ̄ at beginning and end of the loop.

4.4 Calculus of Chaos

Let fr be the probability distribution of offset Δr from nominal value v in
register r, as the compilation varies stochastically. That is prob[sr = v+d] =
prob[Δr=d] = fr(d), where s is the processor state. A stochastic analogue (12)
of (9) is obtained by regarding each Δr, Δ′r as a random variable. Let variable
x be stored in location rx = Lx, y in ry = Ly, z in rz = Lz. Then:

{Δrx, Δry, Δrz}
z = x + y

{Δ′rx, Δ′ry, Δ′rz}
(12)

That asserts possibly different probability distributions before and after the
assignment. Now let T be the run-time trace of a program. That is a sequence
consisting of instructions executed and the values each read and wrote.

The entropy H(T) of the random variable T distributed as fT is the expec-
tation E[− log2 fT]. The increase in entropy from T to longer T ′ (it cannot
decrease) is interpretable as the number of bits of unpredictable information
introduced. These two facts from information theory will be needed:

Fact 1. The flat distribution fX=1/k constant is the unique one with maximal
entropy H(X)= log2 k, on a signal X that can take k values.

A Calculus of Chaos in Stochastic Compilation 177

Fact 2. Adding a maximal entropy signal to any random variable on a n-bit
space (i.e., with 2n values) gives another maximal entropy, flat, distribution.

Fact 1 identifies maximal entropy as n on n-bit space, achieved when each of
the 2n possible values is equiprobable. That is a disordered, i.e., ‘chaotic’, signal.
Fact 2 uses the result (Shannon [21]) that the entropy of the sum of two n-bit
signals is no less than that of either. The inference is that the characteristics of
any distribution on a finite point space are obscured completely, not partially,
by adding a ‘chaotic’ signal to it, i.e., one with flat, uniform distribution.

Below, logic is given for this stochastic view of compilation for the three source
code constructs treated in Sect. 4.3, supposing the compiler implements (˜h).

Assignment. As in (9a), for pre-/post-condition:

{Δ} z = e {Δ′} (13a)

but the Δ, Δ′ are vectors of random variables Δr, Δ′r. Let ρ={r0, . . . , rn} be
the registers written in e or in writing to z. For r/∈ ρ, Δ′r=Δr, as those r are
unchanged, by (9b), so the same condition Δ|ρ̄=Δ′|ρ̄ holds here. I.e.:

Δ ⊇ Δ′|ρ̄ (13b)

We suppose the compiler follows (˜h), and that means each new random variable
is independent with maximal entropy and each represents the compiler’s free
choice of embedded constant, like k of (6a, 8a), in ‘an arithmetic instruction
that writes’. Then the machine code instruction that writes rz does so with a
delta that is a uniformly distributed independent random variable U and that
increases the trace entropy to H(T ′)=H(T)+H(U). The delta is 32-bit on a 32-
bit platform, chosen with flat distribution by the compiler, per (˜h), so H(U)=32.
There are n+1 registers r0, . . . , rn written independently, including that for z,
so trace entropy increases by 32(n+1) bits. For any predicate p(x), e.g., h = x:

{p(H(T)+32(n+1))} z = e {p(H(T ′))} (13c)

If the machine code instruction that writes has appeared earlier in the trace, the
delta is already known, and the increment in trace entropy is zero second time:

{p(H(T))} z = e {p(H(T ′))} (13c0)

Conditionals. As in (9b), (10b) but with random variables for the deltas:

{Δ1} s1 {Δ′} {Δ2} s2 {Δ′}
{Δ} if (b) s1 else s2 {Δ′} (14a)

Δ ⊇ Δ1|ρ̄ ∪ Δ2|ρ̄ (14b)

178 P. T. Breuer and S. J. Pickin

The deltas Δr=Δ1r=Δ2r are all the same for r/∈ρ by (10b). The entropy
added to the trace T is from the trace of b, say 32n bits of entropy from n writes
to n registers, plus the entropy from the trace through branch s1 or s2:

{p(H(T ′))} s1 {q} {p(H(T ′))} s2 {q}
{p(H(T)+32n)} if (b) s1 else s2 {q} (14c)

The compiler inserts extra ‘arithmetic instructions that write’ (adds) so the
entropy increase is the same in both branches. It can because, even for loops,
the entropy increase is finite and bounded (see below).

If the conditional appears in the trace a second time and branches the same
way again then that contributes zero entropy as the deltas are already known:

{p(H(T))} if (b) s1 else s2 {p(H(T ′))} (14c0)

If it branches differently from the first time, the branch (but not the test) con-
tributes entropy, as the deltas in that branch are yet unknown. But the, say m,
instructions that align final deltas are constrained in (10b) to agree with the
deltas in the other branch, which are already known. So those m do not count:

{p(H(T ′))} s1 {q} {p(H(T ′))} s2 {q}
{p(H(T)+32m)} if (b) s1 else s2 {q} (14c1)

Those m instructions that ‘align final deltas’ with the other branch have a name:

Definition 2. An instruction emitted by the compiler to adjust a final delta to
agree with that in a joining control path is called a trailer instruction.

Loops. Let ρ={r1, . . . , rn} be the registers written during b. Then, per (11a),
(11b), but with random variables as deltas, the following rule holds:

{Δ} s {Δ′}
{Δ} do s while (b) {Δ′} (15a)

Δ ⊇ Δ′|ρ̄ (15b)

That means Δr=Δ′r for r/∈ρ. Those distributions are equal because the values
are equal, by (13b), and trailer instructions reestablish Δ on the loop back-path.

A trace over the loop is always the same length between recompiled codes,
because the compiler varies data values, not the semantics at a deeper level (see
conserved nominal values in Sect. 4.1). Say the loop repeats N≥1 times for a

A Calculus of Chaos in Stochastic Compilation 179

particular set of input values. Then it could be unrolled to N instances of the
loop body s and N instances of the loop test b. The variation in the trace is
only that of (a) s repeated once, because the same m deltas appear second time
too, and (b) b repeated once, for the same reason, with n deltas. The entropy
calculation is (a) plus (b), no matter what N ≥ 1 is (a do while loop repeats at
least once):

{p(H(T)+32m)} s {p(H(T ′))}
{p(H(T)+32(n+m))} do swhile b {p(H(T ′))} (15c)

So do while lengthens the trace like a loop but adds entropy to it like a condi-
tional. Note that second time through the loop, zero entropy is added, because
the same deltas are repeated:

{p(H(T))} do s while b {p(H(T ′))} (15c0)

Equations (13c), (13c0), (14c), (14c0), (14c1), (15c), (15c0) are an information
entropy calculus for runtime traces when compilation follows (˜h). Counting up:

Lemma 1. The entropy of a trace is 32(n+i) bits where n is the number in it
of distinct arithmetic instructions that write (a pair of trailer instructions that
regulate the same delta count as one and a trailer instruction that reestablishes
an earlier delta does not count) and i is the number of inputs.

‘Inputs’ are those instructions that read a location that has not been written.
(Remark) The logic holds for incomplete and/or non-contiguous sub-traces too.

The following characterises the compiler strategy that produces the maxi-
mum run-time trace entropy:

Proposition 1. The entropy in the run-time traces induced by a compiler fol-
lowing the principle (˜h) as modified by (h

˜

) is maximal among compositional
compilation strategies.

Proof. The issue is over whether a compiler could put more entropy into the
run-time trace. The final deltas for data that is not read by following code do
not have to be in agreement along both branches of a conditional, for example,
so not following (h

˜

) for them does no harm. But a compiler that works compo-
sitionally does not know the eventual context in which the code will be used so
it must suppose that data that is written will later be read, and so must arrange
for agreement between all final offset deltas in both branches of conditionals,
enforcing (h

˜

) in that case, indeed in all cases.
The other way to put more entropy into the trace is to vary instructions

more, but that is impossible if the compiler already implements (˜h). �

That characterisation decides details of chaotic compilation. For example,
to the question of whether an array should have (a) one delta common to the
whole array or (b) one per entry, the answer is (b) one per entry. One per array
would mean each write to an entry must be followed by a ‘write storm’ to all

180 P. T. Breuer and S. J. Pickin

other entries too, to realign their deltas to the newly written entry’s (which is
changed because the write instruction must add entropy to the trace). But the
write storm’s write instructions import no entropy as their deltas are all the
same as the first, contradicting the characterisation.

The Proposition implies that, on a 32-bit platform, 32 bits of entropy per
datum are provided by a chaotic compiler, a (weak) form of semantic security:

Corollary 1. The probability across different compilations that any particular
32-bit value x beneath the encryption is in a given register or memory location
at any given point in the trace at run-time is uniformly 1/232.

The general interest is with multiple data values observed at different points
in the trace. The result depends on how they are connected computationally:

Definition 3. Two data values in the trace are (entropy) dependent if they are
from the same register or memory location at the same point, are input and
output of a copy instruction, or are from the same register or location at a join
of two control paths after the last write to it in each and before the next write.

If data is taken at m independent points, the variation obtained by a chaotic
compiler is maximal, i.e., 32m bits, because the data is not constrained by (h

˜

):

Theorem 1. The probability across different compilations that any m particular
32-bit values beneath the encryption in the trace are precisely xi, provided they
are pairwise independent, is 1/232m.

(Remark) Each dependent pair reduces the entropy by 32 bits.

5 Implementation

Our prototype ‘chaotic’ compiler http://sf.net/p/obfusc is for ansi C [19], where
pointers and arrays present particular difficulties. Currently, the compiler has
near total coverage of ansi C and GNU C extensions, including statements-
as-expressions and expressions-as-statements, gotos, arrays, pointers, structs,
unions, floating point, double integer and floating point data. Pointers are obliga-
torily declared via ansi restrict to point into arrays. It is missing longjmp and
efficient strings (char and short are same as int). The largest C source compiled
(correctly) so far is 22,000 lines for the IEEE floating point test suite at http://
jhauser.us/arithmetic/TestFloat.html. A trace4 of the Ackermann function5 [22]
is shown in Table 2, with null encryption for better visibility. The instruction con-
stants and values written to registers are encrypted on an encrypted computing
platform, with, e.g., E [-86921031] in place of -86921031.

4 For readability here, the final delta in register v0 is set to zero.
5 C code: int A(int m, int n) { if(m=0)return n+1; if(n=0)return A(m−1, 1); return A

(m−1,A(m, n−1)); }.

http://sf.net/p/obfusc
http://jhauser.us/arithmetic/TestFloat.html
http://jhauser.us/arithmetic/TestFloat.html

A Calculus of Chaos in Stochastic Compilation 181

Table 2. Trace for Ackermann(3,1), result 13.

PC instruction trace update
...
35 add t0 a0 zer -86921031 t0 = -86921028
36 add t1 zer zer -327157853 t1 = -327157853
37 beq t0 t1 2 240236822
38 add t0 zer zer -1242455113 t0 = -1242455113
39 b 1
41 add t1 zer zer -1902505258 t1 = -1902505258
42 xor t0 t0 t1 -1734761313 1242455113 1902505258

t0 = -17347613130
43 beq t0 zer 9 -1734761313
53 add sp sp zer 800875856 sp = 1687471183
54 add t0 a1 zer -915514235 t0 = -915514234
55 add t1 zer zer -1175411995 t1 = -1175411995
56 beq t0 t1 2 259897760
57 add t0 zer zer 11161509 t0 = 11161509
...
143 add v0 t0 zer 42611675 v0 = 13
...
147 jr ra # (return 13 in v0)

Legend (registers)

a0 = function argument

sp = stack pointer

t0, t1 = temporaries

v0 = return value

zer = null reference

6 (Informal) Security Argument

Here is a sketch proof that a chaotic compiler makes programs ‘safe from
polynomial-time discovery’ of what the data in the runtime-trace is intended
to mean, in the context of encrypted computing. The claim is that there is no
polynomial time method M that can estimate the value of a designated bit b
in the trace of a program P , if there is none that succeeds against the encryp-
tion alone. Success means with a probability that exceeds 1/2 by some margin
B > 0 infinitely often as the word size n tends to infinity, but the precise notion
may be varied for the proof: for example, being correct about b with probability
p > 1/2 + 1/n.

Proof: [Sketch] Let the compiler unroll source code loops to depth N=2n and
inline function calls to depth N and push code after conditional blocks into both
branches to depth N , leaving no branches, loops or function calls for N steps. By
Theorem 1 a chaotic compiler generates object code for P with maximal entropy
in at least the first N instruction cycles of the run-time traces, measured from
one recompilation to the next, following (˜h). The constraint (h

˜

) does not apply.
By Theorem 1, there is no algebraic or any other relation M can rely on

among the m≤p(n)≤N trace-points it has time to access, for polynomial p of
order k, and M must depend on its capability against the encryption alone,
which it is hypothesised to be not successful against. �

The same argument works for any number of bits.

182 P. T. Breuer and S. J. Pickin

7 Conclusion

In summary, this paper discusses stochastic compilation and defines chaotic com-
pilation as stochastic compilation with maximum entropy. The compiler works
with a difference scheme describing the variation from nominal of the value in
each register and memory location, differing per instruction in the machine code
program. A program logic of differences extends to an information entropy cal-
culus for run-time traces that quantifies chaotic compilation. That feeds an argu-
ment for security against polynomial-time complexity methods of attack against
encrypted computing. The unusual aspect here is software engineering in the
cause of mathematics. Definition and proof of security for encrypted computing
has been the goal, and the idea of a chaotic compiler is to allow mathematical
reasoning for the stochastic properties to be replaced by engineering for them.

The chaotic C compiler (‘havoc’) is available from the open source project at
http://sf.net/p/obfusc and covers all of ansi C except longjmp/setjmp. Array
access is On but otherwise the compiled code is not slower than normal.

Acknowledgments. Simon Pickin’s work has been supported by the Spanish
MINECO-FEDER (grant numbers DArDOS, TIN2015-65845-C3-1-R and FAME,
RTI2018-093608-B-C31). Peter Breuer thanks Hecusys LLC for continued support in
encrypted computing research.

References

1. Breuer, P.T., Bowen, J.P.: A fully homomorphic crypto-processor design: correct-
ness of a secret computer. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS
2013. LNCS, vol. 7781, pp. 123–138. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36563-8 9

2. Breuer, P., Bowen, J.: Chaotic compilation: a (statistical) cloak for a secret com-
puter. In: Proceedings of 1st Annual International Workshop SW/HW Interaction
Faults (SHIFT 2019), IEEE International Symposium on SW Reliability Engi-
neering Workshops (ISSREW 2019), CA, USA, pp. 428–433. IEEE, October 2019.
https://doi.org/10.1109/ISSREW.2019.00106

3. Breuer, P., Bowen, J.: A fully encrypted high-speed microprocessor architecture:
the secret computer in simulation. Int. J. Crit. Comput.-Based Sys. 9(1/2), 26–55
(2019). https://doi.org/10.1504/IJCCBS.2019.10020015

4. Breuer, P., Bowen, J.: (Un)encrypted computing and indistinguishability obfusca-
tion, January 2019. http://arxiv.org/abs/1811.12365v1. Principles of Secure Com-
pilation (PriSC 2019) at 46th ACM Symposium on Principles of Programming
Languages (POPL 2019)

5. Breuer, P., Bowen, J., Palomar, E., Liu, Z.: A practical encrypted microprocessor.
In: Callegari, C., et al. (eds.) Proceedings of 13th International Conference on Secu-
rity and Cryptography (SECRYPT 2016), Port, vol. 4, pp. 239–250. SCITEPRESS,
July 2016. https://doi.org/10.5220/0005955902390250

http://sf.net/p/obfusc
https://doi.org/10.1007/978-3-642-36563-8_9
https://doi.org/10.1007/978-3-642-36563-8_9
https://doi.org/10.1109/ISSREW.2019.00106
https://doi.org/10.1504/IJCCBS.2019.10020015
http://arxiv.org/abs/1811.12365v1
https://doi.org/10.5220/0005955902390250

A Calculus of Chaos in Stochastic Compilation 183

6. Breuer, P., Bowen, J., Palomar, E., Liu, Z.: On obfuscating compilation for
encrypted computing. In: Samarati, P., et al. (eds.) Proceedings of 14th Inter-
national Conference on Security and Cryptography (SECRYPT 2017), Port, pp.
247–254. SCITEPRESS, July 2017. https://doi.org/10.5220/0006394002470254

7. Breuer, P.T., Bowen, J.P., Palomar, E., Liu, Z.: On security in encrypted comput-
ing. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 192–211.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 12

8. Breuer, P., Bowen, J., Palomar, E., Liu, Z.: Superscalar encrypted RISC: the
measure of a secret computer. In: Proceedings of 17th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom
2018), pp. 1336–1341. IEEE Computer Society (2018). https://doi.org/10.1109/
TrustCom/BigDataSE.2018.00184

9. Conway, J.H.: FRACTRAN: a simple universal programming language for arith-
metic. In: Cover, T.M., Gopinath, B. (eds.) Open Problems in Communication and
Computation, pp. 4–26. Springer, Heidelberg (1987). https://doi.org/10.1007/978-
1-4612-4808-8 2

10. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

11. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: Proceedings of 7th ACM Work-
shop on Scalable Trusted Computing (STC 2012), pp. 3–8. ACM, New York (2012).
https://doi.org/10.1145/2382536.2382540

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
41st Annual ACM Symposium on Theory of Computing (STOC 2009), NY, USA,
pp. 169–178 (2009). https://doi.org/10.1145/1536414.1536440

13. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 9

14. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of Annual ACM Symposium
on Theory of Computing (STOC 1982), pp. 365–377. ACM (1982). https://doi.
org/10.1145/800070.802212

15. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–
299 (1984)

16. den Hartog, J.I.: Verifying probabilistic programs using a hoare like logic. In: Thia-
garajan, P.S., Yap, R. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 113–125. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46674-6 11

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

18. Irena, F., Murphy, D., Parameswaran, S.: CryptoBlaze: a partially homomorphic
processor with multiple instructions and non-deterministic encryption support. In:
Proceedings of 23rd Asia and South Pacific Design Automation Conference (ASP-
DAC 2018), pp. 702–708. IEEE (2018)

19. ISO/IEC: Programming languages - C. 9899:201x Technical report, n1570, Inter-
national Organization for Standardization, August 2011. JTC 1, SC 22, WG 14

https://doi.org/10.5220/0006394002470254
https://doi.org/10.1007/978-3-030-01950-1_12
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00184
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00184
https://doi.org/10.1007/978-1-4612-4808-8_2
https://doi.org/10.1007/978-1-4612-4808-8_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1145/2382536.2382540
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1007/3-540-46674-6_11
https://doi.org/10.1145/363235.363259

184 P. T. Breuer and S. J. Pickin

20. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Prog. Lang. Syst. (TOPLAS) 18(3), 325–353 (1996). https://doi.org/10.
1145/229542.229547

21. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

22. Sundblad, Y.: The Ackermann function: a theoretical, computational, and formula
manipulative study. BIT Numer. Math. 11(1), 107–119 (1971)

23. Tsoutsos, N.G., Maniatakos, M.: The HEROIC framework: encrypted computation
without shared keys. IEEE TCAD IC Syst. 34(6), 875–888 (2015)

24. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, pp. 162–167. IEEE (1986). https://doi.org/
10.1109/SFCS.1986.25

https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

Runtime Verification of Linux Kernel
Security Module

Denis Efremov(B) and Ilya Shchepetkov

ISP RAS, Moscow, Russia
{efremov,shchepetkov}@ispras.ru

Abstract. The Linux kernel is one of the most important Free/Libre
Open Source Software (FLOSS) projects. It is installed on billions of
devices all over the world, which process various sensitive, confidential or
simply private data. It is crucial to establish and prove its security prop-
erties. This work-in-progress paper presents a method to verify the Linux
kernel for conformance with an abstract security policy model written in
the Event-B specification language. The method is based on system call
tracing and aims at checking that the results of system call execution do
not lead to accesses that violate security policy requirements. As a basis
for it, we use an additional Event-B specification of the Linux system
call interface that is formally proved to satisfy all the requirements of
the security policy model. In order to perform the conformance checks
we use it to reproduce intercepted system calls and verify accesses.

Keywords: Runtime verification · Operating system kernel · Security
policy model · Event-B · Linux security modules

1 Introduction

Access control mechanisms in operating systems are usually implemented based
on a security policy model, which contains description of the security properties
to be enforced by these mechanisms. A security policy model may be a simple
text document, but for a certain level of assurance it should be formalized and
verified, as stated by the Common Criteria standard [17,18]. An additional level
of assurance may be achieved by demonstrating that the implementation of an
access control mechanism indeed conforms to its formal specification.

Access control mechanisms in Linux are implemented in the kernel. We pro-
pose to intercept system calls to the kernel while performing various actions like
creating, reading, writing, deleting files, spawning processes, etc., and check that
the results of their execution do not lead to accesses that are forbidden by the
security policy model. It is difficult to check directly because of the abstrac-
tion gap. Security policy models are often too high-level comparing to concrete

This work has received funding from the Ministry of Education and Science of Russia
under grant agreement RFMEFI60719X0295.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 185–199, 2020.
https://doi.org/10.1007/978-3-030-54997-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_12

186 D. Efremov and I. Shchepetkov

data structures and functions of the Linux kernel. To overcome the difference
between the specification and the implementation we develop an Event-B [1]
specification of the Linux system call interface, formally prove that it satisfies all
requirements of the security policy model (which is also formalized in Event-B),
and then translate it to an executable form which is more suitable for checking
correctness of intercepted system calls.

The following section briefly describes the security policy model in use.
Section 3 depicts the Event-B language in which the model was formalized and
verified. Section 4 briefly describes the formal specification of the security model.
Section 5 provides a description of an additional Event-B specification required to
perform a conformance verification. Section 6 describes the Linux security mod-
ules framework, which is used to implement security policy models inside the
kernel. Section 7 presents the runtime verification method itself. Related work is
observed in Sect. 8. The final section concludes the paper and considers future
work.

2 Security Policy Model

A security policy is a high-level specification of the security properties that
a given system should possess, and of security mechanisms that enforce those
properties. Security policies are described in the form of security policy models
as state transition systems, where each possible state transition from a secure
state must preserve security properties and produce another secure state. The
state is declared secure if all current accesses and permissions are in accordance
with a security policy.

Operating system (OS) security policy models define the rules for controlling
accesses of subjects (users and programs running on their behalf) to various
objects (files, directories, devices) and other subjects. They define state transi-
tions as transition functions that model usual OS actions, like creating and delet-
ing files, processes, requesting accesses, etc. Examples of such models would be
the classic Bell-LaPadula [4,5] and Biba [7] models, which were first to describe
semantics and security properties of multilevel security and mandatory integrity
control respectively.

In this paper we use a Hierarchical Integrated Model of Access Control and
information Flows (the HIMACF model, previously known as the MROSL DP-
model [8,9]). It describes means to enforce the separation of information based
on confidentiality and integrity requirements. It combines several security mech-
anisms:

– Role Based Access Control (RBAC). In RBAC, permissions to perform vari-
ous actions are grouped intro roles and are assigned to a user by an adminis-
trator or obtained through special administrative roles. RBAC is often used
as a replacement for more simple discretionary access control;

– Mandatory Integrity Control (MIC). In MIC, an integrity level is assigned
to all users, processes and files. That level represents their level of trustwor-
thiness, so the higher the level—the more trusted and important a user, a

Runtime Verification of Linux Kernel Security Module 187

process or a file. MIC controls accesses of subjects to objects according to
their integrity levels. MIC is implemented in Windows and macOS to protect
system files from modification by users or malicious software;

– Multilevel Security based on Mandatory Access Control (MLS, MAC). It was
designed to deal with classified documents in military computer systems. MLS
controls accesses according to the user’s clearance and the file’s classification.

Fig. 1. The hierarchy of levels
in the HIMACF model.

These mechanisms are integrated into a linear
hierarchy, where each next level is based on the
previous ones. Also since the sequence of perfectly
normal and secure accesses may lead to insecure
information flows, there is an additional level that
contains proofs of their absence (see Fig. 1).

The HIMACF model is implemented in the
certified distribution Astra Linux Special Edi-
tion [24] using the Linux Security Modules frame-
work [23]. The model is written in plain text with
extensive use of math and consists of approxi-
mately 300 pages. We have formalized and ver-
ified [10] it using the Event-B specification lan-
guage. It took us 4 years, and during this process
we have found and fixed a number of issues and
inconsistencies in the HIMACF model.

3 Event-B

Event-B is a formal method based on set theory and predicate logic. It has
a simple notation and comes with a tool support in the form of the Rodin
Platform [2]. It is mainly used for developing models of various control systems,
but it is also particularly well suited for security policy modeling.

An Event-B specification is a discrete transition system and consists of con-
texts and machines. Contexts contain the static, or unchanged parts of the
specification: definitions of carrier sets, constants, axioms. Machines contain the
dynamic or behavioral parts of the specification: variables, invariants and events.

Event-B is a state-based method, so values of variables form the current state
of the specification. Events represent the way the state changes over time—the
transition. Events may contain parameters, guard conditions that are necessary
for the event to be enabled (or preconditions), and actions, that change variables’
values. Invariants describe important properties of the system and are supposed
to hold whenever variable values change, so such changes need to be explicitly
proven to be correct. For each case that requires a proof the Rodin platform
generates a corresponding proof obligation, that can be discharged automatically
using various provers and solvers or interactively. Interactive proofs are also
automatically checked for soundness.

188 D. Efremov and I. Shchepetkov

4 Event-B Specification of the HIMACF Model

The HIMACF model uses set theory and predicate logic for defining the state
and the properties that the state must satisfy, and it also contains several atomic
state transition rules which describe events taking place in the operating sys-
tem. It makes its structure very similar to the structure of a typical Event-B
specification, so its formalization in Event-B was quite straightforward1.

The state variables of the Event-B specification are expressed as sets and
functions (set of ordered pairs with additional restrictions):

– Sets:
• user accounts;
• entities (objects and containers);
• subjects;
• roles (administrative, ordinary, negative).

– Functions:
• integrity and security levels (in the form of lattice);
• current accesses and access rights (or permissions) to entities and roles;
• hierarchies of roles, entities and subjects;
• some additional relations between elements of the specification;
• various flags.

These variables describe the usual operating system elements like user
accounts, subjects (which are processes), entities (files, directories, sockets, etc.),
and roles. Each of these elements have integrity and security labels that are
mapped to them by a number of corresponding functions. Some additional things
are also modelled as functions, like current accesses, permissions, hierarchies, and
so on.

In total the specification contains 65 state variables. There are also 80 events
that describe possible state transitions typical for an OS:

– Create or delete entities, user accounts, subjects, roles;
• create or delete hard links for entities and roles;
• rename entities or roles;

– Get or delete accesses, access rights to roles, entities;
– Change security, integrity labels, various flags;
– Additional events for analysis of information flows;

• example: if an entity x have write access to a subject y, which have write
access to a subject z, then there can be an information flow from x to z.

Finally, the specification contains 260 invariants divided into three groups.
First one are type invariants: they describe types of all state variables. For
example, the type of the variable that contains accesses of subjects to entities
is expressed in Event-B like this: SubjectAccesses ∈ Subjects → (Entities ↔
Accesses). Another group is consistency invariants: they impose correctness con-
straints on the system state. For instance, if we have a variable that describes
1 Publicly available part of the specification: https://github.com/17451k/base-model.

https://github.com/17451k/base-model

Runtime Verification of Linux Kernel Security Module 189

filesystem (hierarchy of files and folders), then it must not contain cycles, i.e., a
folder cannot contain itself, even indirectly.

The last group of invariants is the most important one: it contains all secu-
rity properties of corresponding security mechanisms. For example, there is the
following security property: if a subject has write access to an entity, then its
integrity label must be greater or equal than the integrity label of this entity.
It is expressed in Event-B like this: ∀s, e · s ∈ Subjects ∧ e �→ WriteA ∈
SubjectAccesses(s) =⇒ EntityInt(e) � SubjectInt(s).

5 Event-B Specification of the System Call Interface

The HIMACF model and its Event-B specification, however, are quite abstract
and different from the concrete data structures and functions of the Linux kernel,
which contain the security policy implementation as the Linux Security Module.
To prove their conformance it is necessary to reduce this gap. Event-B supports
the refinement technique [3] to represent systems at different abstraction levels
that can be used to resolve this issue.

We have used refinement to develop an additional Event-B specification of
the Linux kernel system call interface. Using Rodin we have formally proved
that the additional specification correctly refines the Event-B specification of
the HIMACF model and thus satisfies its properties. Hence, if we will show the
conformance between the additional specification of the system call interface and
the Linux kernel, then the desired conformance between the Linux kernel and
the security policy model will be derived automatically.

The additional specification, however, has quite an unusual structure. The
difference lies in the nature of system calls: the exact sequence of actions that
will be performed as the result of the system call depends on the current state
of the OS and on the arguments of the call. Because of this variability it is
impossible to model them as single atomic events. Instead, we used a different
approach.

To overcome this issue we have decided to represent each system call as a
graph of events connected together with the special state variable called Next.
Next is used to specify the order in which normally independent events should
occur. This is achieved as follows: each event in the graph of events have a
guard condition specifying that it can only occur if the current value of the Next
variable is the name of this event. Depending on other guards the event also
changes the value of the Next variable with the name of the event that should
follow next.

Each graph of events representing a system call have a single entry node (the
“initial” event), a single exit node (the “final” event) and a large amount of
paths in between. Each path is a series of events and the next event in the path
is specified by the current value of the Next state variable. The path (concrete
series of events representing a particular execution of the system call) is defined
by the parameters of the “initial” event and the current state of the specification
in a way that for each event in the path there is no more than one possible next
event.

190 D. Efremov and I. Shchepetkov

Let’s consider the open() system call to open or create a file. This sys-
tem call has the following declaration2: int open(const char *pathname, int
flags). The open() call has two arguments: pathname specifies the file to open,
and flags determines its access mode: read-only, write-only, or read/write.
These access modes are expressed by corresponding flags O RDONLY, O WRONLY
and O RDWR. flags may also contain additional file creation and status flags.
The return value of open() is a file descriptor, which can be later used in sub-
sequent system calls (read(), write(), etc.).

Now let’s consider a specific case of open() system call in which the file
from the pathname argument does not exist, and the flags argument contains
O WRONLY (open file to write) and O CREAT (create file if it does not exist) flags.
If the process which calls open() has all necessary permissions, then open()
performs the following sequence of actions:

– parse and validate values of it arguments;
– check that the process has all necessary permissions. In this case the check is

successful;
– get the process write access to the directory where the file will be created;
– create the file;
– get the process permission to write to the created file;
– get the process write access to the created file;
– return file descriptor of created and opened to write file.

This case can be formalized in the Event-B specification of the system call
interface as the sequence of 8 events: open start, open check p, open write p,
open create, open grant, open check, open write, open finish, where:

– open start contains preconditions (guards) that analyze arguments of the
(open) call and decide which event should occur next. In the given case, the
file being opened does not exist, so the next event is open check p. If the
file existed, the next event would be open check, and the sequence of events
would be different;

– open check p checks that the process has all necessary permissions. In this
case the check is successful, so the next event is open write p;

– open write p is a refinement of the access write entity event of the Event-
B specification of the HIMACF model. This event grants the process write
access to the directory where the file will be created;

– open create is a refinement of the create object event of the Event-B spec-
ification of the HIMACF model. This event creates the file;

– open grant is a refinement of the grant rights event of the Event-B speci-
fication of the HIMACF model. This event grants the process permission to
write to the created file;

2 According to the Linux manual page
http://man7.org/linux/man-pages/man2/open.2.html.

http://man7.org/linux/man-pages/man2/open.2.html

Runtime Verification of Linux Kernel Security Module 191

– open check checks that the process has necessary permissions to obtain access
to the created file and decides which event should occur next. In this case the
process opens file to write, so the next event is open write;

– open write is a refinement of the access write entity event of the Event-
B specification of the HIMACF model. This event grants the process write
access to created file;

– open finish returns the requested file descriptor.

Fig. 2. Graph of events corresponding to several special cases of open() system call.

This sequence of events corresponds to one specific case of open() system
call. To demonstrate our approach we have formalized a few more cases3 (see
Fig. 2). You can see that the graph consists mostly from the same events, but
there are more possible paths between them.

If we formalize all the remaining cases, the resulting graph will be a formal
specification of the behavior of the open() system call. Due to the use of refine-
ment, this specification will be correct by construction and fully conform to the
3 Code can be found here: https://github.com/17451k/base-model/tree/open.

https://github.com/17451k/base-model/tree/open

192 D. Efremov and I. Shchepetkov

rules and events of the HIMACF model. In turn, this will mean that for any
combination of parameters and the state of the system, executing the open()
system call will hold all the security properties of the HIMACF model.

All system calls can be formalized in a similar way, resulting in the specifi-
cation of the system call interface that is proved to be consistent and complete.
But such specification can turn out to be extremely large (several times more
than the Event-B specification of the HIMACF model) and difficult to write
and prove, mainly from the complicated refinement relation between them (see
Fig. 3).

Fig. 3. Refinement between Event-B specifications of the HIMACF model and the
system call interface.

6 Linux Security Modules

In Linux, userspace programs work with external resources via the kernel, and
make requests for accesses through system calls. When a program executes a
system call to, for example, open a file, the kernel performs a number of checks.
It verifies the correctness of the passed arguments, checks the possibility of their
allocation, and also checks that the program has the permission to obtain the
requested resource by the discretionary access control. If more advanced access
control mechanisms are used, then the kernel also checks that the access request
satisfies their security policy. Such mechanisms are called security modules and
based on the Linux Security Modules (LSM) framework. LSM adds a call to
a security module after the discretionary access checks in a control flow of a
system call handling. These calls are placed across the kernel and called LSM
hooks (see Fig. 4).

There are several potential cases when the kernel manages permissions and
accesses incorrectly. First, it is possible that the control flow does not reach a
security module [6,12,27]. The LSM interface may not be complete enough, so

Runtime Verification of Linux Kernel Security Module 193

Fig. 4. Linux Security Modules (LSM) hooks.

it may lack hooks to check certain situations [14,20]. A security module can also
be implemented incorrectly and grant accesses that should not be granted, or
deny accesses that should be granted. There is always place for errors due to the
abstraction gap and specifics of kernel—module interactions. Thus, we want to
verify that the kernel of Astra Linux distribution with the security module indeed
conforms the Event-B specification of the HIMACF model and this includes all
enumerated errors.

It is worth to note that the Event-B specification of the system call interface
does not model such things as the availability of resources (number of processes,
virtual memory), and does not contain description of the discretionary access
control mechanism. So, for example, the kernel could deny an access due to the
lack of physical resources of the machine, but at the same time the specification
grants it assuming that the resources are unlimited. Thus the divergence between
the specified behavior and the real one should be treated as an error only in case
the security policy model denies the access, but the security module grants it.

7 Runtime Verification Method

We propose to demonstrate the absence of such divergences by means of runtime
verification, which require a test suite. The test suite should cover various pat-
terns of access requests. In this paper we do not consider the issue of constructing
tests and instead use special tests for our model and whole system tests such
as Spruce [25], ltp [22] fuzzing with syzkaller [26]. These test suites allow us to

194 D. Efremov and I. Shchepetkov

achieve relatively good line coverage (more than 80%) on our security module
and to cover all LSM hooks in target subsystems of the Linux kernel.

The runtime part of the method is divided into two consecutive steps: gath-
ering of information about the kernel behavior (monitoring) and its analysis.

At the first step, the execution traces of the Linux kernel are collected. It is
performed while a test suite is run. In order to reproduce such traces on the spec-
ification we also need to record a global state of the kernel, which is performed
at the very beginning of this step. This includes, for example, information about
running processes, opened files, shared resources, etc.

Traces contain arguments of the system call and the result of its processing
by the kernel (output arguments and the result code). Along with this, each
trace contains an additional information that is necessary for mapping the global
kernel state to the state of the specification, such as inodes and dentries for files,
user ids, etc.

We use SystemTap [19] tool to gather the traces from the kernel. It allows
one to describe desired probe points in the kernel, such as system calls, with a
special language and log the state of in-kernel data structures to a journal.

Algorithm 1. Replay of single system call on the Event-B specification
1: procedure Replay Syscall(spec, syscall)
2: syscall graph := spec[syscall[name]]
3: params := syscall[args]
4: event := syscall graph[initial]
5: while event �= syscall graph[final] do
6: if guards hold(spec[state], event, params) then
7: spec[state] ← event(spec[state], params) � update
8: else
9: return Denied
10: end if
11: event := next(spec[state], event, params)
12: end while
13: return Granted
14: end procedure

At the second step, we initialize the state of the Event-B specification with
the state of the kernel and replay system calls from the trace on the Event-B
specification.

The replay algorithm consists of the following steps (see Algorithm 1):

1. Pass the arguments of the system call as parameters to the “initial” event of
its specification;

2. Check that all guards of the current event are satisfied. If they are not sat-
isfied, then report that the access is denied according to the security policy
rules (lines 6, 9);

Runtime Verification of Linux Kernel Security Module 195

3. If current event is not “final”, then compute the “next” event, apply event to
the current state to change it (line 7), mark the “next” event as current and
return to step 2;

4. If current event is “final”, then apply it to the current state and report that
the access is granted according to the security policy rules;

Algorithm 2. Replay of kernel traces on the spec
1: procedure Replay Trace(trace, spec, journal)
2: spec[state] ← trace[init state] � initial state of the specification
3: while syscall := shift(trace[syscalls]) do
4: real result := syscall[result]
5: spec result := Replay Syscall(spec, syscall)
6: switch (spec result, real result) of
7: case (Denied, Granted) :
8: journal ← (CRIT, syscall) � An error with its level
9: return(Failure, journal)
10: case (Granted, Denied) :
11: journal ← Check ErrCode(syscall)
12: spec[state] ← revert(spec[state], syscall) � rollback update
13: end switch
14: end while
15: journal ← compare states(trace[final state], spec[state])
16: return (Success, journal)
17: end procedure

We need to check that the result of the replaying conforms the result of the
real system trace execution (see Algorithm 2):

1. If access is granted or denied on both the specification and the real system,
then we should proceed to the next system call (lines 3, 14);

2. If access is granted on the real system, but it is denied on the Event-B spec-
ification (line 7), this clearly signals about an error in the kernel or in the
security module. It is not possible to proceed further after this kind of error,
the analysis is stopped;

3. If access is denied on the real system, but it is granted on the Event-B speci-
fication (line 10), the return code of the system call is investigated (see Algo-
rithm 3). For example, if the return code signals about4:

– not enough memory in the system, then no additional actions are taken;
– invalid values in the system call’s arguments, then with high probabil-

ity this means that the specification is not complete. This divergence is
recorded to the anomaly journal;

– not enough permissions. That means there is an error in the kernel or in
the security module. This kind of divergence is recorded to the journal.

4 The listed error codes are taken from the Linux kernel file
include/uapi/asm-generic/errno-base.h.

196 D. Efremov and I. Shchepetkov

After this we restore the previous state of the specification (line 12) and
proceed to the next system call from the trace.

4. If the replay reaches the end of the trace the global states of the kernel and
the specification are compared. The divergences are logged to the anomaly
journal.

Algorithm 3. Investigation of the error code of a system call
1: procedure Check ErrCode(syscall)
2: err code := syscall[result][err code]
3: switch err code of
4: case ENOMEM : � Out of memory
5: return ∅

6: case EINVAL : � Invalid argument
7: return (WARN, syscall)
8: case EACCES : � Permission denied
9: return (CRIT, syscall)
10: case . . . :
11: . . .
12: end switch
13: end procedure

The replay analysis outputs the journal of the divergences between the behav-
ior of the real system and the modelled behavior of the Event-B specification.
The journal records need to be analyzed manually to reveal flaws in the specifi-
cation or the implementation. However, if no divergences were found then with
a certain level of certainty based on obtained sources and specification cover-
age, we can claim that we successfully demonstrated conformance between the
implementation and its specification.

We measure the coverage by lines of code of the security module and the
number of covered LSM hooks across the kernel. The specification allows more
behaviors (states) than it is possible to observe on the real system, thus the spec-
ification coverage consists of covered global invariants and different conjuncts of
guards conditions. To evaluate the proposed algorithms we have manually trans-
lated a part of the Event-B specification of the HIMACF model to an executable
program and tested it on the system call traces gathered with SystemTap.

8 Related Work

In [28] Zanin and Mancini present a formal model for analyzing an arbitrary
security policy configuration for SELinux. At the end of the paper the authors
propose an algorithm based on their model for verifying whether, given an arbi-
trary security policy configuration, a given subject can access a given object in
a given mode. However, they don’t go down to the SELinux implementation.

Runtime Verification of Linux Kernel Security Module 197

Guttman et al. [15] present a formalization of the access control mechanism
of the SELinux security server together with a labeled transition system rep-
resenting an SELinux configuration. Linear temporal logic is used to describe
the desired security objectives. The authors use model checking to determine
whether security goals hold in a given system.

There are other examples of using formal methods such as B and TLA+ to
formalize and prove correctness of various access control mechanisms or security
policy models [16,21], but they also do not consider the implementation.

In [11] the correctness of LSM hooks placement in the Linux kernel is ana-
lyzed. The proposed runtime verification method leverages the fact that most of
the LSM hooks are correctly placed to find the misplaced ones.

The authors of [13] analyze the information flows in the LSM framework.
They verify that for any execution path in the kernel starting with a system call
and leading to an information flow, there is at least one LSM hook before the
flow is performed. The analysis statically checks the control flow graphs of kernel
functions, which are obtained by a compiler plugin during the kernel build, for
existence of feasible paths without mediation of the LSM framework.

9 Conclusion and Future Work

We have outlined a method for verification of the access control mechanisms
implemented as a module inside the Linux kernel for conformance with its
abstract specification. The method consists of several steps. First, one needs to
formalize the specification of the access control mechanisms in the Event-B lan-
guage and prove its correctness. Then, since the resulting Event-B specification
is high-level and too different from the concrete data structures and functions of
the Linux kernel, we propose to develop an additional specification of the Linux
system call interface and prove that it conforms to the Event-B specification of
access control mechanisms. Next, we trace system calls to the kernel while per-
forming a series of typical user actions and tests. Finally, we replay them on the
Event-B specification of the system call interface to check the obtained accesses
satisfy the security policy model.

We have evaluated the proposed method on the HIMACF model, which
integrates several advanced access control mechanisms, and its implementation
inside Astra Linux distribution. We have developed and proved both Event-B
specifications, which are required by the method. We have found that the spec-
ification of the system call interface, which is required by the method, turns out
to be much larger and more complex than the specification of the security pol-
icy model. A part of the specification was manually translated to an executable
form to obtain the proof of concept and test the replay algorithm of the proposed
method. For this we have gathered system call traces with the SystemTap tool.
The future work involves development of a translator from Event-B to an effec-
tive executable form and research the possibility of simultaneous OS execution
and in-kernel verification of accesses.

198 D. Efremov and I. Shchepetkov

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Abrial, J.R., et al.: Rodin: an open toolset for modelling and reasoning in event-B.
Int. J. Softw. Tools Technol. Transf. 12(6), 447–466 (2010). https://doi.org/10.
1007/s10009-010-0145-y

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to event-B. Fundamenta Informaticae 77, 1–28 (2007)

4. Bell, D.E., La Padula, L.J.: Secure Computer System: Unified Exposition and
MULTICS Interpretation. ESD-TR-75-306, Electronic Systems DivisiDon, AFSC,
Hanscom AFB, 1976 (1976)

5. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations.
ESD-TR-73-278 v. 1, Electronic Systems Division, AFSC, Hanscom AFB (1973)

6. Belousov, K., Viro, A.: Linux kernel LSM file permission hook restriction bypass
(2006). https://vulners.com/osvdb/OSVDB:25747

7. Biba, K.: Integrity considerations for secure computer systems. Technical report
MTR-3153, The MITRE Corporation (1977)

8. Devyanin, P.N.: Themodels of security of computer systems: access control and infor-
mation flows. Goryachaya Liniya-Telecom, Moscow, Russia (2013). (in Russian)

9. Devyanin, P., Khoroshilov, A., Kuliamin, V., Petrenko, A., Shchepetkov, I.: Formal
verification of OS security model with alloy and event-B. In: Ait Ameur, Y., Schewe,
K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 309–313. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43652-3 30

10. Devyanin, P.N., Khoroshilov, A.V., Kuliamin, V.V., Petrenko, A.K., Shchepetkov,
I.V.: Using refinement in formal development of OS security model. In: Mazzara,
M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 107–115. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41579-6 9

11. Edwards, A., Jaeger, T., Zhang, X.: Runtime verification of authorization hook
placement for the Linux security modules framework. In: Proceedings of the 9th
ACM Conference on Computer and Communications Security, pp. 225–234. CCS
2002. ACM, New York (2002). https://doi.org/10.1145/586110.586141, http://doi.
acm.org/10.1145/586110.586141

12. Georget, L.: Add missing LSM hooks in MQ timed send, receive and splice (2016).
http://thread.gmane.org/gmane.linux.kernel.lsm/28737

13. Georget, L., Jaume, M., Tronel, F., Piolle, G., Tong, V.V.T.: Verifying the reli-
ability of operating system-level information flow control systems in Linux. In:
2017 IEEE/ACM 5th International FME Workshop on Formal Methods in Soft-
ware Engineering (FormaliSE), pp. 10–16, May 2017. https://doi.org/10.1109/
FormaliSE.2017.1

14. Goyal, V.: Overlayfs SELinux support (2016). https://lwn.net/Articles/693663/
15. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying infor-

mation flow goals in security-enhanced linux. J. Comput. Secur. 13(1), 115–134
(2005)

16. Huynh, N., Frappier, M., Mammar, A., Laleau, R., Desharnais, J.: Validating the
RBAC ANSI 2012 standard using B. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ
2014. LNCS, vol. 8477, pp. 255–270. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43652-3 22

17. ISO/IEC 15408–1:2009. Information technology - Security techniques - Evaluation
criteria for IT security - Part 1: Introduction and general model. ISO (2009)

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://vulners.com/osvdb/OSVDB:25747
https://doi.org/10.1007/978-3-662-43652-3_30
https://doi.org/10.1007/978-3-319-41579-6_9
https://doi.org/10.1145/586110.586141
http://doi.acm.org/10.1145/586110.586141
http://doi.acm.org/10.1145/586110.586141
http://thread.gmane.org/gmane.linux.kernel.lsm/28737
https://doi.org/10.1109/FormaliSE.2017.1
https://doi.org/10.1109/FormaliSE.2017.1
https://lwn.net/Articles/693663/
https://doi.org/10.1007/978-3-662-43652-3_22
https://doi.org/10.1007/978-3-662-43652-3_22

Runtime Verification of Linux Kernel Security Module 199

18. ISO/IEC 15408–2:2008. Information technology - Security techniques - Evaluation
criteria for IT security - Part 2: Security functional components. ISO (2008)

19. Jacob, B., Larson, P., Leitao, B., Da Silva, S.: SystemTap: instrumenting the Linux
kernel for analyzing performance and functional problems. In: IBM Redbook, vol.
116 (2008)

20. Jurgens, D.: SELinux support for Infiniband RDMA (2016). https://lwn.net/
Articles/684431/

21. Kozachok, A.: TLA+ based access control model specification. In: Proceedings of
the Institute for System Programming of the RAS, vol. 30, pp. 147–162, January
2018. https://doi.org/10.15514/ISPRAS-2018-30(5)-9

22. Larson, P.: Testing Linux with the Linux test project. In: Ottawa Linux Sympo-
sium, p. 265 (2002)

23. Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security modules: general secu-
rity support for the Linux kernel. In: USENIX Security Symposium, pp. 17–31.
ACM Berkeley, CA (2002)

24. RusBITech: Astra Linux R© Special Edition. https://astralinux.ru/products/astra-
linux-special-edition/

25. Tsirunyan, K., Martirosyan, V., Tsyvarev, A.: The Spruce System: quality verifi-
cation of Linux file systems drivers. In: Proceedings of the Spring/Summer Young
Researchers Colloquium on Software Engineering. ISP RAS (2012)

26. Vykov, D.: Syzkaller (2015). https://github.com/google/syzkaller
27. Write, C.: LSM update, another missing hook (2005). https://lwn.net/Articles/

155496/
28. Zanin, G., Mancini, L.V.: Towards a formal model for security policies specifi-

cation and validation in the SELinux system. In: Proceedings of the Ninth ACM
Symposium on Access Control Models and Technologies, pp. 136–145. ACM (2004)

https://lwn.net/Articles/684431/
https://lwn.net/Articles/684431/
https://doi.org/10.15514/ISPRAS-2018-30(5)-9
https://astralinux.ru/products/astra-linux-special-edition/
https://astralinux.ru/products/astra-linux-special-edition/
https://github.com/google/syzkaller
https://lwn.net/Articles/155496/
https://lwn.net/Articles/155496/

Open and Interactive Learning Resources
for Algorithmic Problem Solving

João F. Ferreira1(B) and Alexandra Mendes2,3

1 INESC-ID & Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
joao@joaoff.com

2 Department of Informatics, Universidade da Beira Interior, Covilhã, Portugal
alexandra@archimendes.com

3 HASLab, INESC TEC, Porto, Portugal

Abstract. Algorithmic problem solving is a way of approaching and
solving problems by using the advances that have been made in the
principles of correct-by-construction algorithm design. The approach has
been taught at first-year undergraduate level since September 2003 and,
since then, a substantial amount of learning materials have been devel-
oped. However, the existing materials are distributed in a conventional
and static way (e.g. as a textbook and as several documents in PDF for-
mat available online), not leveraging the capabilities provided by modern
collaborative and open-source platforms.

In this paper, we propose the creation of an online, open-source reposi-
tory of interactive learning materials on algorithmic problem solving. We
show how the existing framework Mathigon can be used to support such
a repository. By being open and hosted on a platform such as GitHub, the
repository enables collaboration and anyone can create and submit new
material. Furthermore, by making the material interactive, we hope to
encourage engagement with and a better understanding of the materials.

Keywords: Algorithmic problem solving · Formal methods ·
Interactive learning materials

1 Introduction

Algorithmic problem solving is about the formulation and solution of problems
where the solution involves, possibly implicitly, the principles and techniques
that have been developed to assist in the construction of correct algorithms.
Algorithms have been studied and developed since the beginning of civilisation,
but, over the last few decades, the unprecedented scale of programming prob-
lems and the consequent demands on the reliability of computer software led to
massive improvements in our algorithmic-problem-solving skills. The improve-
ments are centred on goal-directed, calculational construction of algorithms as
opposed to the traditional guess-and-verify methodology.

Algorithmic problem solving has been taught at first-year undergraduate
level since September 2003 and, since then, its adoption became easier due to
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 200–208, 2020.
https://doi.org/10.1007/978-3-030-54997-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_13

Open and Interactive Learning Resources for Algorithmic Problem Solving 201

the publication of a textbook [1] and to the development of a substantial amount
of learning materials (in particular, a collection of teaching scenarios is available
for educators to use [8]). Recreational problems are often used to teach APS
concepts, since they can make serious concepts more palatable to students and
encourage interactivity in the classroom [10–12]. However, the materials available
to support the teaching of APS are distributed in a conventional and static way
(e.g. as several documents in PDF format available online), not leveraging the
capabilities provided by modern collaborative and open-source platforms. In this
paper, we present the first steps towards changing this current state of affairs.

We propose the creation of an online, open-source repository of interactive
learning materials on algorithmic problem solving. We show how the existing
framework Mathigon1 can be used to support such a repository. By being open
and hosted on a platform such as GitHub, the repository enables collaboration
and anyone can create and submit new material allowing the material to evolve
over time as a collaborative effort by the community. Furthermore, by mak-
ing the material interactive, we hope to reach a wider audience and encourage
engagement with and a better understanding of APS.

Outline. To illustrate the type of recreational problems that we use when teach-
ing APS, we show in Sect. 2 an example of a river-crossing problem, which we
use as a running example. We use it to introduce concepts such as state and
state-transition diagram, and to illustrate principles such as the importance of
avoiding unnecessary naming. In Sect. 3 we present an example of how APS
material can be made more interactive. We conclude in Sect. 5, where we also
present some ideas for the next steps.

2 Example: River-Crossing Puzzles

River crossing puzzles are about carrying items from one river bank to another,
usually in the fewest trips possible and typically with restrictions that make a
solution non-obvious. According to Wikipedia2, the earliest known river-crossing
problems occur in the manuscript Propositiones ad Acuendos Juvenes (English:
Problems to sharpen the young), traditionally said to be written by Alcuin. The
earliest copies of this manuscript date from the 9th century.

We use river-crossing problems to illustrate and introduce concepts and prin-
ciples such as state-transition diagrams, symmetry, and the importance of avoid-
ing unnecessary naming. Consider, for example, the following puzzle:

Goat, Cabbage and Wolf
A farmer wishes to ferry a goat, a cabbage and a wolf across a river.
However, his boat is only large enough to take one of them at a time,
making several trips across the river necessary. Also, the goat should not

1 Mathigon’s website: https://mathigon.org (accessed 18 July 2019).
2 Wikipedia link: https://en.wikipedia.org/wiki/River crossing puzzle (accessed 18
July 2019).

https://mathigon.org
https://en.wikipedia.org/wiki/River_crossing_puzzle

202 J. F. Ferreira and A. Mendes

be left alone with the cabbage (otherwise, the goat would eat the cabbage),
and the wolf should not be left alone with the goat (otherwise, the wolf
would eat the goat).
How can the farmer achieve the task?

We typically structure the discussion of this puzzle as follows.

On Algorithmic Problems. The first discussion we have with the students is
divided into two parts. First, we ensure that the problem statement is clear and
that students understand the goal of the puzzle. For example, implicit in the
problem statement is that initially all the four elements are at the same river
bank and that the farmer has to accompany each of the other elements when
crossing the river. Also, we adopt what E. W. Dijkstra called the rule of no
cancellation, i.e. we reject any schedule in which a subsequence of successive
moves results in no change [6].

Second, we discuss why this puzzle can be considered an algorithmic puzzle.
We reach the conclusion that this is clearly an algorithmic problem, because the
solution consists of a sequence of instructions (i.e. an algorithm) indicating who
or what should cross. A typical instruction would be: “the farmer crosses with
the wolf” or “the farmer returns alone”.

On States and State-Transition Diagrams. We proceed our discussion by noting
that to solve this problem, it is useful to introduce a notation that identifies the
position of each element. We name the two river banks as left and right and we
introduce a simple notation that denotes whether each element is on the left or
on the right bank. For example, we write LLRR to denote that the farmer is
on the left bank, the goat is on the left bank, the cabbage is on the right bank,
and the wolf is on the right bank (exactly by that order). We thus introduce the
notion of state, representing the initial and final states of this problem as:

LLLL RRRR

This discussion leads to a very natural question: how many states exist in
this problem? Given that there are 4 elements, and each element can be in either
one of two river banks, we quickly conclude that there is a total of 24 (i.e. 16)
states. We also take the opportunity to explore how many states we would have
if the number of elements were different. After only a few examples, students see
that the number of states grows very quickly.

We also observe that not all of the 16 states are valid. For example, the
following states are invalid:

LRLR LRRR RLLL RLRL

At this point, most students already have a solution to the puzzle. After
enquiring some of them about the methodology that they followed to find their
solutions, we notice that they have tried multiple steps until reaching a sat-
isfactory solution. We use this to introduce the notion of brute-force search.

Open and Interactive Learning Resources for Algorithmic Problem Solving 203

We describe the technique and introduce the concept of state-transition dia-
gram. Together with the class, we build the following state-transition diagram
and we observe that there are indeed two solutions to this problem:

LLLL RRLL LRLL

RRRL

RRLR

LLRL

LLLR

RLRR LLRR RRRR

We also take the opportunity to observe that river-crossing problems have a
property that reduces the amount of effort required to solve them: they are sym-
metric. In other words, suppose that we have a solution that takes the elements
from the left bank to the right bank; if we reverse that solution, we immediately
have a solution that takes the elements from the right bank to the left bank.
The state-transition diagram is an excellent device to observe this property.

On Unnecessary Naming. It is impossible to solve problems without introducing
names. However, if we name unnecessary elements or if we make unnecessary
distinctions, we add unnecessary detail and complexity to the solution.

This puzzle is a good example to illustrate that the avoidance of unnecessary
naming leads to more effective and simple solutions. Recall that the problem is
about taking across four individuals without violating the two conditions:

1. the goat should not be left alone with the cabbage;
2. the wolf should not be left alone with the goat.

These two conditions expose a similarity between the wolf and the cabbage: the
goat cannot be left with either the wolf or the cabbage. Moreover, there are no
restrictions on leaving the wolf alone with the cabbage. This clearly suggests
that both the cabbage and the wolf are playing the same role. Why, then, are the
“wolf” and the “cabbage” distinguished by giving them different names?

We restate the problem3, this time with a naming convention that omits
the unnecessary distinction between the wolf and the cabbage. In the restated
problem, we call the goat an “alpha” and the cabbage and the wolf “betas”:

A farmer wishes to ferry an alpha and two betas across a river. However,
his boat is only large enough to take one of them at a time, making several
trips across the river necessary. Also, an alpha should not be left alone with
a beta.
How can the farmer achieve the task?

Now the problem becomes much easier to solve and most students find a solution
immediately. Indeed, there is only one solution: take the alpha across, and then
one beta across, returning with the alpha; then take the second beta across,
followed by the alpha. Because there is only one solution, it is easy to discover
3 The restatement of the problem and the subsequent two paragraphs are extracted
from [1].

204 J. F. Ferreira and A. Mendes

(note that in the problem with the four individuals, we have two solutions, since
we have two different choices when choosing the first beta to take across).

When elements of a problem are given individual names, it distinguishes them
from other elements of the problem, and adds to the size of the state space. The
process of omitting unnecessary detail, and reducing a problem to its essentials
is called abstraction. Poor solutions to problems are ones that fail to “abstract”
adequately, making the problem more complicated than it really is.

3 Interactive Learning Materials

The material presented in the previous section is taught during lectures in an
interactive manner, with students being encouraged to participate actively in
solving the problem individually and as a whole-class effort. For deep learning
to be achieved, students need to think about what they are learning and engage
with the material, rather than sit and listen—we believe that the nature of our
lectures helps to achieve that. As Tyler (1949) points out (cited by Biggs and
Tang [4]),

Learning takes place through the active behavior of the student: it is what
he does that he learns, not what the teacher does.

However, when it comes to revising the material and to further study, the
interactivity disappears and students are left with only books and slides to assist
them, which are static. We thus propose the creation of online, open-source,
interactive material that gives students a further opportunity to take on a more
active role in learning APS, even when they are alone. By making it widely
available via a website, APS can potentially reach a larger audience than it
would if it continued limited to lectures and static supporting material (even if
available online); by being open-source, anyone can contribute with new material
and improvements.

Initial Prototype. To implement and experiment with some of our initial ideas, we
wrote parts of the material presented in Sect. 2 for Mathigon, a groundbreaking
new education open-source platform that enables interactive learning.

Mathigon makes it possible to present the material in a way that encourages
the learner to become a participant by e.g. answering multiple choice questions,
by solving interactive puzzles, and by exploring further reading (e.g. biogra-
phies and further context) presented to them via non-intrusive popups. As the
learner navigates through the content and interacts with it, further information
is provided to complement their learning.

For example, Fig. 1 shows how multiple choice answers can be integrated in
the material. The sentence that starts with “Indeed, since we have 4 elements”
is only displayed after the student selects the correct answer. Moreover, the box
with arrows is a variable slider, which allows inline variables to be manipulated
by the student. In this example, the student is able to interactively see how the

Open and Interactive Learning Resources for Algorithmic Problem Solving 205

Fig. 1. Multiple choice and variable slider.

Fig. 2. Incorrect answers are clearly marked. Biographies are shown as popups.

total number of states grows (e.g. if the value of the variable increases from 4 to
5, the number 16 is automatically updated to 32).

Figure 2 illustrates a correct choice (“all the four elements are at the same
river bank”) and an incorrect choice, clearly marked with a cross (“goat”). It
also shows an example of a biographical popup.

Given that the material is offered as a web application, we can easily incor-
porate interactive artefacts that are programmed in, for example, Javascript.
Figure 3 shows the integration of an external Javascript implementation of the

206 J. F. Ferreira and A. Mendes

puzzle4. Our work-in-progress is available on GitHub5; everyone is welcome to
contribute.

Fig. 3. External artefacts can be incorporated (e.g. Javascript code)

4 Effectiveness and Students’ Feedback

This paper describes a new open community project that is at a very early stage
of development and that has not yet been thoroughly evaluated. The problems,
puzzles, techniques, and approach have been evaluated to some extent, but the
online Mathigon-based interactive material has not.

We argue that the approach is effective given that the techniques and meth-
ods taught have been used to find new solutions to non-trivial problems (e.g. new
results in number theory [2,3,7] and in solitaire games [1]). However, measuring
whether the approach helps students become better problem solvers is more dif-
ficult and requires further work. So far, we performed a small-scale experiment
to try to determine if a cohort of students became better problem solvers [9].
The focus was the calculational method and, generally, they adopted what was
taught in the module for solving problems, but their use of the calculational
style was not effective. We also tested some APS material with pre-university
4 The implementation of the puzzle that we used was created by Victor Ribeiro
(https://github.com/victorqribeiro/bridge).

5 See the repository textbooks (folder content/river-crossing) in https://github.com/
algprobsolving.

https://github.com/victorqribeiro/bridge
https://github.com/algprobsolving
https://github.com/algprobsolving

Open and Interactive Learning Resources for Algorithmic Problem Solving 207

students [12]: after being exposed to the material, students were able to apply
techniques like invariants by themselves.

Our experience is that students appreciate the approach. This is confirmed
by feedback about a session that we delivered on analysing an algorithmic card
trick [10]. This is further confirmed by feedback about a session delivered to
pre-university students [12], which also shows that the material (or, at least,
parts of the material) can even be taught at pre-university level. During some
teaching sessions, we have also collected feedback from our students. In general,
they appreciate the use of recreational problems and the interactivity that arises
from solving those problems.

Thousands of students have been exposed to the APS material throughout
the years. The material was taught for about 10 years at the University of Not-
tingham (it started in 2003). It was taught at Teesside University from 2011 to
2018. Backhouse’s book on APS [1] is used in the course CS2104 at Virginia
Tech. We believe that creating an interactive APS book will help to increase the
adoption of this approach to teach APS.

5 Conclusion

The famous quote “Learning is not a spectator sport”[5] could not be more
true for a subject like APS. We believe that the idea proposed in this paper
supports this quote, by encouraging learners to become participants. Moreover,
it is our view that Mathigon offers a sound and extensible base for the creation
of interactive APS material that supports active learning. With this initiative,
and by making all the artefacts open-source and available on Github, we hope to
encourage the community to make a joint effort to create and use these materials.

Future Work. As an immediate next step, we intend to create further interactive
material to support APS. We will also explore how to create interactive mate-
rial to support teaching programming methodology following an approach such
as that proposed in [13]. To facilitate collaboration, we will also create docu-
mentation on how to contribute to the project. In order to incorporate in the
web application all the APS material that we have been teaching in the last few
years, we envisage that Mathigon will have to be extended with a few technical
features. For example:

– To support the formats used in the calculational method (e.g. proof format),
we might have to write extensions to AsciiMath (Mathigon is currently able
to parse AsciiMath and convert it to MathML). This is important, because
the calculational method is central to our approach [9,11].

– To enable support for handwritten calculational mathematics and build on
previous work [14,15], we will explore frameworks such as MyScript6.

– To encode some of our case studies (e.g. [10]), we might have to write spe-
cialised Javascript libraries that allow richer interactions.

6 MyScript webpage: https://www.myscript.com.

https://www.myscript.com

208 J. F. Ferreira and A. Mendes

Acknowledgments. This work is partially financed by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia through
the project: UID/EEA/50014/2019.

References

1. Backhouse, R.: Algorithmic Problem Solving. Wiley, New York (2011)
2. Backhouse, R., Ferreira, J.F.: On Euclid’s algorithm and elementary number the-

ory. Sci. Comput. Programm. 76(3), 160–180 (2011). https://doi.org/10.1016/j.
scico.2010.05.006

3. Backhouse, R., Ferreira, J.F.: Recounting the rationals: twice!. In: Audebaud, P.,
Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 79–91. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70594-9 6

4. Biggs, J., Tang, C.: Teaching for Quality Learning at University: What the Student
does (Society for Research Into Higher Education), 4th edn. Open Univ. Press,
Buckingham (2011)

5. Chickering, A.W., Gamson, Z.F.: Seven principles for good practice in undergrad-
uate education. AAHE Bull. 3, 7 (1987)

6. Dijkstra, E.W.: Pruning the search tree, January 1997. http://www.cs.utexas.edu/
users/EWD/ewd12xx/EWD1255.PDF

7. Ferreira, J.F.: Designing an algorithmic proof of the two-squares theorem. In:
Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 140–
156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13321-3 10

8. Ferreira, J.F.: Principles and applications of algorithmic problem solving. Ph.D.
thesis, School of Computer Science, University of Nottingham (2010)

9. Ferreira, J.F., Mendes, A.: Students’ feedback on teaching mathematics through
the calculational method. In: 2009 39th IEEE Frontiers in Education Conference,
pp. 1–6. IEEE (2009)

10. Ferreira, J.F., Mendes, A.: The magic of algorithm design and analysis: teaching
algorithmic skills using magic card tricks. In: ACM ITiCSE (2014)

11. Ferreira, J.F., Mendes, A., Backhouse, R., Barbosa, L.S.: Which mathematics for
the information society? In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS,
vol. 5846, pp. 39–56. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04912-5 4

12. Ferreira, J., et al.: Logic training through algorithmic problem solving. In: Black-
burn, P., van Ditmarsch, H., Manzano, M., Soler-Toscano, F. (eds.) TICTTL 2011.
LNCS (LNAI), vol. 6680, pp. 62–69. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21350-2 8

13. Hoare, T., Mendes, A., Ferreira, J.F.: Logic, algebra, and geometry at the founda-
tion of computer science. In: Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019.
LNCS, vol. 11758, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-32441-4 1

14. Mendes, A.: Structured editing of handwritten mathematics. Ph.D. thesis, School
of Computer Science, University of Nottingham, UK (2012)

15. Mendes, A., Backhouse, R., Ferreira, J.F.: Structure editing of handwritten math-
ematics: improving the computer support for the calculational method. In: ACM
ITS (2014). http://doi.acm.org/10.1145/2669485.2669495

https://doi.org/10.1016/j.scico.2010.05.006
https://doi.org/10.1016/j.scico.2010.05.006
https://doi.org/10.1007/978-3-540-70594-9_6
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1255.PDF
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1255.PDF
https://doi.org/10.1007/978-3-642-13321-3_10
https://doi.org/10.1007/978-3-642-04912-5_4
https://doi.org/10.1007/978-3-642-04912-5_4
https://doi.org/10.1007/978-3-642-21350-2_8
https://doi.org/10.1007/978-3-642-21350-2_8
https://doi.org/10.1007/978-3-030-32441-4_1
https://doi.org/10.1007/978-3-030-32441-4_1
http://doi.acm.org/10.1145/2669485.2669495

Challenges Faced by Students in an Open
Source Software Undergraduate Course

Dias Issa(B)

Computer Science Department, Nazarbayev University,
Nur-Sultan 010000, Republic of Kazakhstan

dias.issa@nu.edu.kz

Abstract. The Open Source Software (OSS) development is gaining
popularity from year to year, however, entering the OSS community still
remains a challenging task. In this work, we describe challenges faced by a
beginner OSS code-developer during the first contribution. Additionally,
we analyze our experience and offer hints for potential newcomers. Whole
work was done as the project of the Open Source Software undergraduate
course at the Computer Department of Nazarbayev University.

Keywords: Open Source Software · Code developer · OSS challenges

1 Introduction

The paper reports the student’s experience in contributing to the open-source
software project from GitHub gained during studying at the undergraduate Open
Source Software course. We included a number of failed attempts to contribute
to different projects alongside the successful one. Each project’s background
information and each contribution attempt were analyzed, while the acquired
experience was digested into some useful advises for a newcomer. Finally, we
drew several conclusions and noted about our future plans.

Our background includes experience in developing software systems and
applications, and Machine Learning models for different platforms including
mobile devices, personal computers, and sensor devices. Therefore, we decided
to take the Open Source Software (OSS) course in the final semester in order
to have a broader view of the field of Software Engineering. In detail, our moti-
vations in taking OSS class were both intrinsic and extrinsic [1,13]. We love
coding and solving problems, so working on OSS project was a new experience
for us. Additionally, we wanted to enhance our coding skills and learn novel
things. Last but not least was that contribution to the project could improve
the “experience” section of our resume.

Furthermore, our expectations from the course were both in theoretical and
practical areas. We wanted to identify the main features of open source software
development together with the reasons for its emergence and successful existence.
At the same time, we wanted to get a practical experience of contribution to one

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 209–223, 2020.
https://doi.org/10.1007/978-3-030-54997-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_14&domain=pdf
http://orcid.org/0000-0002-9114-4610
https://doi.org/10.1007/978-3-030-54997-8_14

210 D. Issa

of OSS projects. Finally, the internal structure of the OSS community was an
aspect which we were curious to know.

The Open Source Software course has perfectly met our expectations due to
its twofold structure. The first part was comprised of regular lectures about the
history of OSS development, its features and tools. This material was taught
using Open Source: A Multidisciplinary Approach authored by M. Mufatto [13]
and Open Source Software: A Survey from 10,000 ft authored by Androutsellis-
Theotokis et al. [1]. The material was checked during examinations.

The second part was about contributing to OSS project and it was totally
independent work. A student was responsible for searching an open source soft-
ware project and for becoming its active contributor. This part was examined
utilizing the milestone reports and presentations. The next sections describe
some of these milestones and outcomes of the work.

The paper is structured in the following order: the project selection section
with specifications for each option and their comparison, the contribution
section, the learned lessons, and conclusion.

2 Project Selection

Despite the enthusiasm at the beginning of the course, the process of finding an
appropriate project for further contribution was not an easy task. During the
class, we changed the chosen projects two times due to different reasons that are
described below. Therefore, project selection state is one of the most important
steps during the open source software contribution process. Right decision at
the beginning would help young contributor a lot in decreasing the amount of
resistance during the development. By “resistance” we mean the generalized term
for various factors hindering the process of contribution. In the next subsections,
we describe our project selections, motivations for such selections as well as
expectations, and reasons for withdrawal.

2.1 First Project: AVA

The first project was chosen after a long time spent on project search in GitHub.
The variety of interesting projects there combined with our knowledge of several
programming languages made this decision last so long.

General Project Description. AVA [21] is the testing library on Node.js [18],
so the main language of the project is JavaScript. The library allows executing
tests in parallel, therefore, much faster. The community was medium active.
According to AVA’s statistics by February 4, the project had over 1.4k commits,
with the last commit done on 18th of January 2019. During the previous month,
there were done 15 pull requests, 9 issues were closed and 5 issues were opened.
AVA was released 50 times and had 200 contributors. The project has very
decent documentation translated to 8 other languages including English. There
were 141 open issues, with 73 issues good for the first contribution by February

Challenges Faced by Students in an OSS UG Course 211

2019. AVA is under MIT license and has support on Twitter, Stack Overflow
and Spectrum [21].

Justification of the Decision. This project seemed for us as an appropriate
option for OSS class due to its detailed documentation, friendly community, and
a variety of issues for beginners. Additionally, parallel programming was a new
and interesting field for involvement. Subsequently, we tended to consider that
the code developing for this project could lead to learning a great variety of new
concepts. Finally, we consider AVA as a good project to enhance our skills in
JavaScript.

Detailed Role Description and Provisional Activity Plan. As a developer
for this project, we planned to work on issues tagged as “enhancement” and
“bug”. It was also desirable that these issues were tagged as “good for beginner”.
As the first stage of contribution, we chose to get familiar with the code of
the project and its documentation for contributors. Then, depending on the
understanding of the code, we were going to solve bugs or perform enhancements.

Activities and Reasons for Withdrawal. After a more detailed analysis
of the project, it was found out that most of the “good for beginner” issues
were outdated and were not solved for a long period of time. Moreover, most
of them were in the field of documentation, while we wanted to solve developer
issues [21]. Additionally, there almost did not appear new propositions with
“good for beginner” tag, while other issues required skill and knowledge which,
in our opinion, we could not provide. Figure 1 clearly demonstrates all these
drawbacks. As a result, after several unsuccessful attempts to solve issues, we
were compelled to search for a new project to contribute.

2.2 Second Project: Coala

The second project was chosen also after a long time spent on project search
in GitHub. The first failure and aspiration for successful contribution forced us
to treat this process carefully. Therefore, the project is analyzed and described
in details in following subsections: the general description of the project, the
reasons for selection, the role description and provisional activity plan, the gov-
ernance structure of the project, its community structure, its architecture, and
the justification for withdrawal of the project.

General Project Description. The project is aimed to help programmers
during revising their codes for bugs. Coala [5,7] is a software designed for linting
and fixing codes in a very broad range of languages. It is highly customizable, so
the user could utilize Coala from his favorite coding environment (editor) and
add extra Coala plugins whenever he needs. The main language of the source
code of the project is Python.

212 D. Issa

Fig. 1. Issues tagged as “good for beginner”. AVA.

Justification of the Selection. We had several reasons for choosing Coala for
OSS class. Firstly, automatic code linting was an undiscovered and intriguing
area for us. Secondly, the community is open for new members and helps them
to make their first contributions. Thirdly, the project has good structured and
well-written guide dedicated to newcomers. Fourthly, a wide range of issues with
difficulty levels suitable for beginners. Finally, we liked their motto, the words
of John F. Woods: “Always code as if the guy who ends up maintaining your
code will be a violent psychopath who knows where you live.” [5].

Detailed Role Description and Provisional Activity Plan. For this
project, we planned to work on coding issues rather than documentation issues

Challenges Faced by Students in an OSS UG Course 213

due to the reasons listed in the introduction of this paper. In the beginning,
besides studying contributors guide of the project and its code, we decided to
solve bugs because this procedure seemed to us less complex than developing
new features. After that, when we would gain experience, we were going to per-
form enhancements of the code or to develop new functionality. According to the
plan, the first issues with which we wanted to start would have had tags “diffi-
culty/newcomer” or “difficulty/low”, because it is the part of the requirements
of Coala community for new developers [6].

Governance Structure. We could not properly identify the governance struc-
ture of the project, however, we tend to think that it is monarchical.

Fig. 2. Contributors. Coala.

The reasons for this claim are the following: from the Fig. 2 one could clearly
see that the owner of the project, sils [15], is the most valuable contributor
with almost 7 times and 50 times larger contribution than the second and third
valuable contributors. Also, according to the forum posts depicted on the Fig. 3,
he delegated some of his responsibilities to other players in his team, for example,
he delegated to javdb [19] the work with the community. However, with the
owner’s much better knowledge of the project and his amount of contribution,
we assert that the project owner’s voice is the most valuable.

214 D. Issa

Fig. 3. Issue forum. Coala.

Community Structure. The community structure of Coala is hierarchical.
This could be seen from their contribution guide [6], which states that in order
to solve issues with a particular level of difficulty, you need to fix at least one
issue and review at least one contribution that is one level of difficulty below.
Additionally, in order to become a full developer of the project, you need to make
a promotion request. Though Coala has such a strict structure that is typical
for more proprietary software development, it resides under the strongest copy-
left license: GNU Affero General Public License v3.0 [5]. This license obligates
potential users to open the source code of possible derivatives of the project.

It could be said that such structure of Coala project is beneficial for the role
of new developer of the project because a newbie has a clear understanding of
which issues he or she should work and what to do next. At the same time,
more experienced developers will not take out the potential issues that the new
developer could solve due to the strict division of difficulty levels.

Challenges Faced by Students in an OSS UG Course 215

Architecture. The general architecture of the project is modular. Basically,
Coala consists of different modules each dedicated to a particular programming
language. Most of the popular languages are supported right now. The project
has working builds on Linux and MacOS, and it is planned to develop a working
build for Windows because currently, it is failing [7]. Most of the issues of the
project reside in the area of documentation and dependencies, some of the issues
are bugs [5]. Also, due to such variety in supported programming languages,
there are lots of issues connected with a particular language. Additionally, the
project does not have a nice user interface and the work is performed using a
command line [6]. This is acceptable for the current auditorium, however, better
UI could attract more people who are not professionals (students, newbies in
programming, etc.)

Activities and Interaction. We started to search for an issue at the issue
forum of Coala on GitHub [5]. There was a strong deficit of “newcomer” issues,
so it was decided to monitor the forum for the appearance of new issues in this
category. At the time when a new issue appeared, we were too hesitant in taking
it. Therefore, because of this several minute long hesitancy, another contributor
was assigned to the issue. After that, the sudden freeze of the project occurred,
so we decided to communicate with the owner of the project in order to get
any issues to work on. The owner of Coala, sils [15], stated that he is no longer
engaged in the project and cannot help us much. Sils suggested us to check out
“newcomer” issues on the GitHub forum. We also wrote an email to another
active community member, jayvdb [19]. However, he did not answer the letter.

Reasons for Withdrawal. Coala was an ideal potential project for OSS class,
the only drawback was that there were a large number of new contributors, so
the number of issues was not enough for everyone. Nevertheless, the main reason
for withdrawal was in project freeze, which occurred suddenly. Eventually, we
were forced to search a new OSS project, because we needed to contribute as
soon as possible due to deadlines of the OSS class schedule.

2.3 Third Project: Jarvis

The third and final project was chosen in a short amount of time, mostly spent
on traversing GitHub. Jarvis [17] was listed as the third and the second project
for potential contribution during two previous searches. Therefore, after two
unsuccessful attempts, it was Jarvis’ time to come on stage.

General Project Description. Jarvis is an open source personal assistant
for Linux and MacOS platforms, which works using command line interface.
Additionally, it supports voice response. The assistant has such features as telling
the weather, finding nearby places for having meal, etc. [17] The community is
medium active. Jarvis has the following statistics by March 26: the project has

216 D. Issa

over 800 commits, with the last commit done on the 26th of March. During the
last month, there were done 11 pull requests, 7 issues were closed and 5 issues
were opened. Jarvis has 74 contributors. The project is young and ambitious.
Jarvis is under MIT license and has support on Gitter [17].

Justification of the Selection. We state that this project was a good option
for the OSS course due to its young age, which gives an opportunity to find
bugs and design new functionality. Additionally, personal assistance was a very
interesting field to study and develop, especially for us, because we could apply
our knowledge in Machine Learning in order to design new features for Jarvis.
Also, we assert that we learned Python better during solving the issues because
all code of the project is written in this language.

Detailed Role Description and Provisional Activity Plan. As a developer
for this project, we planned to work on issues tagged as “bug”. We also wanted
to design new features for Jarvis, several of them we published at the forum [8,9].

Governance Structure. We again could not properly identify the governance
structure of the project due to the absence of a document with the rules of Jarvis’
community [17]. Nevertheless, we tend to think that the governance structure
is federal. The reason for this claim is the following: the owner of the project is
only the 6th most valuable contributor of the project (Fig. 4).

Moreover, according to Fig. 4, appi147 [4], the core member of Jarvis, has
the largest amount of code contributed. Additionally, the owner allowed to the
other major contributors to work with the master branch [10]. Also, according
to the forum posts, the new functionality could be confirmed by the core team
of the project, not only by the owner [8]. Therefore, we state that the major
contributors have the most valuable vote, which corresponds to the meritocracy
that is the base of the federal model.

Community Structure. The community structure of Jarvis is not clear,
because of its small size and anarchistic way of contributions. Subsequently,
we assume that the community structure of this project is based on a fluid com-
munity organization model. The reasons for such assertion are the following:
every member of the community, even newbies with no contribution, could offer
new features and implement them, which was proved by our contribution [8].
This, in turn, leads to the second point, that membership in the community and
its roles are fluid, so a developer could be an idea creator or a tester. Finally,
according to the issue forum, the project evolution depends on the innovations
offered by the members of the community [17].

Architecture. The architecture of Jarvis is highly modular. Basically, Jarvis
operates using a variety of plugins, which are independent of each other and

Challenges Faced by Students in an OSS UG Course 217

Fig. 4. Contributors and the highlighted owner of the project. Jarvis.

are responsible for different features of the personal assistant. The project has
working builds only on MacOS and Linux platforms, while Windows is not sup-
ported at all and is not planned to be supported in the near future. Most of
the issues of the project are located in the area of enhancements of the current
functionality and in the area of implementation of new features. Jarvis has no
GUI and operates through the command line and voice commands, which are not
supported well [17]. Therefore, we claim that in order to increase the popularity
of the project, Jarvis needs GUI.

2.4 Comparison of the Projects

Table 1 shows the comparison of the three projects described in this section.
The “starting complexity” entry of the table was assessed by the following cri-
teria: the effort spent for understanding the code of the project, the amount
of knowledge of the project needed to perform a contribution, time spent on
learning the documentation to become familiar with the project and its order
of contribution, and the effort spent for getting assigned for an issue. From the
table, we can see that both Coala [7] and AVA [21] were founded in 2014, while
Jarvis [17] is relatively young. Also, according to the number of contributors,

218 D. Issa

Table 1. General comparison

AVA [21] Coala [5] Jarvis [17]

Commits number >1.4k >4.4k >800

Contributors 200 439 74

Releases 50 17 0

License MIT AGPL-3.0 MIT

Documentation Very decent Decent Poor

Time of 1st commit Nov. 2014 Jul. 2014 Mar. 2017

Starting complexity Hard Medium Hard Easy

AVA and Coala projects are significantly more popular than Jarvis. At the same
time, starting complexity at Jarvis is much lower than in the two older projects.
Therefore, using the given data, it could be said that as a project gets older
and more popular, the “resistance” for making the first contribution increases,
such that even well-written documentation does not facilitate this procedure to
the right degree. By “resistance” here we mean such hindrances for contribution
as individual skills requirement, the complexity of issues, the requirements on
the knowledge of the project to make the contribution, etc. This issue could be
addressed using the following method utilized by some OSS projects [12]: new
contributors start their development via pair coding sessions organized by other
experienced members of the project, which in turn helps newbies to adapt, pop-
ularizes the project and leaves a good impression that motivates them to join
its community.

To conclude, entering the OSS community for a new member is a complex
procedure that is mostly dependent on the user’s individual skills, project’s age
and its attitude towards new contributors.

3 Contribution

As said before, Jarvis was the most appropriate project for us to contribute. We
contributed to the project in four different ways: fixed the bug, offered the new
features, implemented the new features, and found the bug in the code of the
project [8–10]. The subsections below describe each of the contributions.

3.1 Bug Fix

We decided to start our first contribution to Jarvis with the simple task of fixing a
bug. Fortunately, the project owner had found an “easy to fix” bug and offered
it to community members [10]. We took into the account the last experience
with the issue assignment in Coala project, and answered immediately, without
any idea of solving the bug. Fortunately, we were assigned this bug and started
working on it. Though the bug was easy and eventually was solved by us, we

Challenges Faced by Students in an OSS UG Course 219

spent a very large amount of time fixing it. This happened mostly because of
the absence of experience in contribution to OSS projects using GIT framework.
Additionally, the time was also spent on multiple corrections of the submitted
code due to our limited knowledge of such OSS code writing rules as no empty
lines with spaces, or space after comment sign, etc. Finally, we had done our pull
request and it was merged with the master branch of the project [10].

3.2 New Feature Offers

Furthermore, we offered two new features for Jarvis. First of them was about
adding the functionality of searching images using their description [9]. We even
implemented the basic functionality using deep neural networks, however, the
core team did not give an answer for this request. We assume that this happened
due to the large complexity of implementation and usage of the offered feature.

Additionally, we offered a console game “Bulls and Cows”, which was imme-
diately accepted with strong enthusiasm [8]. We suppose that this occurred due
to the simplicity of the idea and implementation process. Also, there could be
other reasons for this. The nature of OSS encourages community members for
voluntary contributions. The silence of the core members of Jarvis to our previous
feature offer could made them feel uncomfortable due to possible “misconduct”
on the subconscious level. Thus, unconscious desire to improve could affected
the level of their enthusiasm.

Finally, we have a lot of ideas of new features that could be added to Jarvis,
and which we could offer to the community.

3.3 New Feature Implementation

We implemented our first feature before it was offered, however, the feature was
not accepted by the core team of Jarvis [9]. Therefore, we moved to create a
plugin for our next offered feature - the game [8]. The programming part of the
game was easy, so we wrote the code considerably faster than in bug fix case.
However, the way of plugin creation and its insertion to Jarvis was not so clear,
so most of the time was spent on these two tasks. Finally, after some attempts,
we were able to submit our pull request, which passed all tests. The plugin was
tested by the core members of Jarvis, and the pull request was merged with the
master branch [8].

3.4 Bug Investigation

Finally, we detected bugs occasionally while submitting our pull request. It was
found out that some of the tests on Python 2.7 were not passing on the remote
code checking server. However, according to the error report, the problem was
not in the game plugin but in another plugin, which was part of the project, and,
subsequently, was downloaded during cloning Jarvis. After the post on the forum,
one member of the core team answered that he had merged his contribution with
the master branch without checking it with lower Python version. Finally, he
fixed the bug himself, which allowed us to finish our pull request [8].

220 D. Issa

4 Lessons Learned

The project contribution procedure is not an easy process. Additionally, the right
decision at the beginning could substantially affect the future performance of a
contributor. This could be clearly seen from the evidence given in Sect. 2.

From Sects. 2.1 and 2.2 we learned several lessons. Firstly, the contribution
to OSS project requires some amount of courage. One should not stand in awe
of potential failures because failure always could happen even with the most
experienced programmers as clearly illustrates “bug investigation” section [8]. A
newbie should be worried more about not contributing. It is better to try and
fail rather than stay in silence. In the end, the only important thing in OSS
contribution is an experience both technical and behavioral.

Secondly, it is better to search for projects, which have a considerable amount
of issues dedicated to beginners. Also, these issues should be fresh enough, not
problems that are not solved for months. The issue of finding a task to start was
emphasized in works of Von Krogh et al. [20], Ben et al. [2] and Capiluppi and
Michlmayr [3].

Finally, communicate with core community members in advance, do not wait
for an appropriate moment. Core members could be busy and answer after a
significant amount of time. In cases when no answer is received, it could be
a sign for a newbie to immediately withdraw from a potential project. This
situation was described in the work of Jensen et al. [11], where they note that
the posts of newcomers which were replied, especially within 48 h, had a positive
correlation with their future project activity.

These lessons were learned by us at the time when we approached our third
project selection - Jarvis [17]. Another lesson was learned from Jarvis’s section:
do not hesitate to offer something new. Even if one’s offer is rejected, it gives
him an experience, which could be used in the next attempt. Additionally, peo-
ple do not like to reject, especially in the OSS community, where volunteering
is encouraged. Therefore, one should propose his offer because even rejections
eventually will lead to acceptance.

Furthermore, governance and community structures substantially affected
the challenges we had to face. According to our own experience, the strict hier-
archical structure could be beneficial for newbies due to its clear guidance offered
by a project. This assertion is indirectly supported by the works of Park and
Jensen [14], and Von Krogh et al. [20], where they claim that the community
delegates the process of picking up the task for contribution to a newcomer [20],
while the newcomer is not aware how to perform it [14]. However, on the other
hand, the severe hierarchy limits the potential of a new contributor, it confines
him in particular boundaries restricting from different possible ways of contribu-
tion. We encountered this phenomenon during interaction with Coala project’s
community [6], eventually ending with the contribution to Jarvis [17], which has
fluid community structure.

Additionally, younger projects could be a better source of contribution than
mature ones. The reasons are that younger projects are less complex and have
more space for new ideas and creativity. At the same time, they offer a decent

Challenges Faced by Students in an OSS UG Course 221

opportunity of finding new bugs and designing new features. Studies of Capiluppi
and Michlmayr [3] support this point by stating that new members of a project
“tend to work more easily on new modules than on older ones”. Moreover, they
claim that new developers should be encouraged to create new ideas for a project.
At the same time, mature projects are more stable, therefore, have fewer bugs.
They tend to enhance existing features rather than creating new ones. Mature
projects could be a good option for experienced developers, while young projects
are better suited for beginners.

To sum up, we faced a number of challenges connected with the lack of knowl-
edge, hesitancy to contribute, difficulty in getting feedback from the community,
convincing its members, issues connected with the code design and its read-
ability, etc. We discussed these issues with other members of the OSS course,
a large amount of them faced similar problems. From one of them, we have
discovered the excellent OSS project Gatsby [12], which has a very active and
friendly community. This motivated us to not give up after failures and keep
trying. Therefore, the last lesson learned and which could be suggested to a new
OSS contributor: share the unsuccessful experience with the community, as well
as, successful. In the first case, someone could help you to overcome challenges.
At the same time, your failure would prevent others to make the same mis-
take. While in the second case, your success could encourage other community
members and it could be a source for important lessons.

Finally, the only suggestion for instructors is in organizing classroom practice
sessions for the first project contribution. It would substantially enhance the
overall students’ experience during course connected with open-source software.
At the same time, these sessions could be also beneficial for different projects
which have easy-to-solve questions but lack of people who would work on them.

According to the categorization offered by Steinmacher et al. [16] the chal-
lenges described above cover 4 out of 5 barrier classes:

– Social Interaction
– Technical Hurdles
– Finding a Way to Start
– Newcomers’ Previous Knowledge

This clearly indicates that the challenges described by Steinmacher et al. [16]
still remain prevalent in the field of OSS. Despite the growth of open source
movement, the quality of its organization stays the same, so that contributors
face the same issues again and again. This leads to the idea that the organization
of OSS should be enhanced in order to overcome the barriers. For example, by
creating some common organizational criteria which are mandatory in order to a
project be part of the OSS community, for instance, pair programming sessions
as in case of Gatsby [12].

5 Conclusion

To conclude, in the paper we described our experience, as a new open source
software programmer, about the entrance to the world of OSS development.

222 D. Issa

According to the evidence given above, it could be said that contributing to
OSS, especially for the first time, is a tricky procedure. However, it could be
clearly seen, that a successful contribution motivates the contributor to con-
tribute more. Therefore, the first experience is very significant during the devel-
opment of open source software. The experience with Jarvis motivated us to
continue contributing to OSS projects in the future. We plan to enter Gatsby’s
community suggested by one of the members of the OSS course.

Acknowledgement. Thanks to Professor Antonio Cerone from the Department of
Computer Science in Nazarbayev University for valuable discussions.

References

1. Androutsellis-Theotokis, S., Spinellis, D., Kechagia, M., Gousios, G., et al.: Open
source software: a survey from 10,000 feet. Found. Trends R© Technol. Inf. Oper.
Manag. 4(3–4), 187–347 (2011)

2. Ben, X., Beijun, S., Weicheng, Y.: Mining developer contribution in open source
software using visualization techniques. In: 2013 Third International Conference
on Intelligent System Design and Engineering Applications, pp. 934–937. IEEE
(2013)

3. Capiluppi, A., Michlmayr, M.: From the Cathedral to the Bazaar: an empirical
study of the lifecycle of volunteer community projects. In: Feller, J., Fitzgerald,
B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 31–44. Springer,
Boston, MA (2007). https://doi.org/10.1007/978-0-387-72486-7 3

4. Choudhary, A.: appi147 - overview, April 2019. https://github.com/appi147
5. Developers, T.C.: Coala github, April 2019. https://github.com/coala/coala
6. Developers, T.C.: Coala newcomers’ guide, April 2019. https://api.coala.io/en/

latest/Developers/Newcomers Guide.html
7. Developers, T.C.: Coala website, April 2019. https://coala.io/
8. Issa, D.: New feature - game. https://github.com/sukeesh/Jarvis/issues/448
9. Issa, D.: New feature - image search using captions. https://github.com/sukeesh/

Jarvis/issues/438
10. Issa, D.: Solution for two broken methods in movie.py. https://github.com/

sukeesh/Jarvis/pull/447
11. Jensen, C., King, S., Kuechler, V.: Joining free/open source software communities:

an analysis of newbies’ first interactions on project mailing lists. In: 2011 44th
Hawaii International Conference on System Sciences, pp. 1–10. IEEE (2011)

12. Mathews, K., Mathews, S.: gatsbyjs/gatsby, April 2019. https://github.com/
gatsbyjs/gatsby

13. Moreno, M.: Open Source: A Multidisciplinary Approach, vol. 10. World Scientific,
Singapore (2006)

14. Park, Y., Jensen, C.: Beyond pretty pictures: examining the benefits of code visu-
alization for open source newcomers. In: 2009 5th IEEE International Workshop
on Visualizing Software for Understanding and Analysis, pp. 3–10. IEEE (2009)

15. Schuirmann, L.: SILS - overview, April 2019. https://github.com/sils
16. Steinmacher, I., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F.: A systematic liter-

ature review on the barriers faced by newcomers to open source software projects.
Inf. Softw. Technol. 59, 67–85 (2015)

https://doi.org/10.1007/978-0-387-72486-7_3
https://github.com/appi147
https://github.com/coala/coala
https://api.coala.io/en/latest/Developers/Newcomers_Guide.html
https://api.coala.io/en/latest/Developers/Newcomers_Guide.html
https://coala.io/
https://github.com/sukeesh/Jarvis/issues/448
https://github.com/sukeesh/Jarvis/issues/438
https://github.com/sukeesh/Jarvis/issues/438
https://github.com/sukeesh/Jarvis/pull/447
https://github.com/sukeesh/Jarvis/pull/447
https://github.com/gatsbyjs/gatsby
https://github.com/gatsbyjs/gatsby
https://github.com/sils

Challenges Faced by Students in an OSS UG Course 223

17. Sukeesh: sukeesh/jarvis, April 2019. https://github.com/sukeesh/Jarvis
18. Tilkov, S., Vinoski, S.: Node.js: Using javascript to build high-performance network

programs. IEEE Internet Comput. 14(6), 80–83 (2010)
19. Vandenberg, J.: jayvdb - overview, April 2019. https://github.com/jayvdb
20. Von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization

in open source software innovation: a case study. Res. Policy 32(7), 1217–1241
(2003)

21. Wubben, M., Sorhus, S., Demedes, V.: Avajs/ava, April 2019. https://github.com/
avajs/ava

https://github.com/sukeesh/Jarvis
https://github.com/jayvdb
https://github.com/avajs/ava
https://github.com/avajs/ava

Open Source Software as a Learning Tool
for Computer Science Students

Assiya Khuzyakhmetova(B) and Aidarbek Suleimenov(B)

Nazarbayev University, Astana, Kazakhstan
{assiya.khuzyakhmetova,aidarbek.suleimenov}@nu.edu.kz

Abstract. In this paper authors’ experience of contributing to Open
Source Software (OSS) is described. Contributions were done as a part
of the OSS course taken at Nazarbayev University during the Spring 2019
term. Two junior bachelors degree students described their experience,
motivations to contribute to OSS, selected projects, course structure and
the lists of activities they performed. Assessment of this experience by
other community members and the course instructor are also reported
in this publication. This paper also studies how the course structure can
affect people’s ability to make contributions in general.

Keywords: Open source software · Student experience · Distributed
development · Computer science learning

1 Introduction

This paper describes the authors’ experience in contribution to Open Source
Software (OSS). Although there are differences in terms of background, moti-
vations, and expectations, both of junior bachelors degree students took OSS
course in Nazarbayev University during the Spring 2019 term. The structure of
the course allowed flexibility in terms of project selection and types of contribu-
tions with the only requirement of being fluent with the programming language
of the project. Students were allowed to freely choose any OSS project in any
language they are proficient with. Therefore, this paper tries to evaluate if free-
dom of choice in terms of OSS project and technology affects students’ ability
to contribute. One example of a similar approach took place in University of
Skövde [1]. This study shows that masters students successfully made contri-
butions to OSS projects as a part of the course. However, the question if the
same approach could be applied to bachelors degree students remains open. This
paper aims to investigate this issue and proof or disproof if freedom of choice
in OSS course affects the outcome. This is done by evaluating two chosen stu-
dents’ experience in contributing to OSS projects. The individual experience of
each student is described and they are referred to as Student A and Student B
respectively next in this paper. Generalized conclusion of both students’ work
and a piece of advice for future contributors are presented in the paper.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 224–232, 2020.
https://doi.org/10.1007/978-3-030-54997-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_15

Open Source Software as a Learning Tool for Computer Science Students 225

1.1 Course Structure and Study Participants

One part of the OSS course included information about the types of commu-
nities, governance structures, licenses, and other theoretical topics about OSS.
Another part included project selection, interaction with the community sup-
porting the chosen project, work on the project, and presentations of students’
contributions to the class and professor. Speaking about the flexibility of roles,
students could choose between roles of OSS contributor, OSS observer, and OSS
consultant, and each of the roles had their assessment criteria. Both of these
students have chosen OSS contributor roles, specifically being Code Developers.
Although both of them were junior Computer Science students they had dif-
ferent programming background that was influenced by previous experience in
Competitive Programming, having different courses in university and different
prior work experience. This resulted in different challenges that they faced dur-
ing the course, i.e. Student A had challenges in learning new technologies, while
Student B had mostly challenges related to interaction with the community.

1.2 Students’ Motivations

Both of the students also had the motivation to learn new technologies and
things during the period of the course through contributions to OSS. Student
A wanted to learn more about Machine Learning, whereas Student B wanted
to learn how to use different databases. Moreover, Student B also wanted to
improve his career prospects through OSS contributions. Speaking about their
intrinsic motivation, they are interested in Open Source and they wanted to feel
like a part of a big team of Open Source Developers doing something useful
for the society. This resulted in Student A choosing “Mozilla BugBug” project
and Student B choosing “Redash” project. Descriptions of these projects will be
described in this paper. Moreover, the following paper will combine their expe-
rience of contributing to these OSS projects and will describe their motivations,
contributions, and challenges that they faced more closely.

2 Contributed OSS Projects Description

2.1 Mozilla BugBug

Mozilla BugBug project is a Platform for Bugzilla Machine Learning projects.
Bugzilla is server software designed to help manage software development [4].
The project aims to apply Machine Learning models to Bugzilla Dataset with
bugs to learn it to automatically detect such thing as types of bugs, to identify
whether a bug needs quality assurance, or to automatically assign a person to the
bug, etc. This project, like any other Machine Learning project, heavily relies on
data collection, and for this purpose, there is a Bugzilla Data Collector project
written in JavaScript as a Firefox Web Extension. Since Student A wanted to
learn Machine Learning, BugBug project was chosen because of its technical
aspects.

226 A. Khuzyakhmetova and A. Suleimenov

Technical Aspects of the Project. Mozilla BugBug project is written in
Python and XGBoost optimized distributed gradient boosting library is used as a
classifier but any other classifier can be applied. The project contains data process-
ing pipelines that use several Mozilla APIs to feed the data to the classifier. Train-
ing is performed with the neural-network library. Simple JSON database imple-
mented for data storage. Taskcluster with Docker is used for building and test-
ing of the project. Dependency updates are done by PyUp bot [10]. Firefox Web
Extension[3] is used primarily for data extraction. It is written in JavaScript with
NodeJS framework and HTML. Collected data is saved as CSV file. Open issues
that are available for contributors are under the issues tab of the projects. There
are currently 104 issues in BugBug [6] and 4 in Bugzilla Data Collector [7].

General Aspects of the Project and Community. This particular project
belongs to the Mozilla Foundation. While Mozilla can be considered to have
Federal Leadership model, BugBug has Monarchical Leadership model since the
main decisions are made by one person. The tasks allocation process is voluntary.
Specifically, tasks are freely selected by participants. Issues are not assigned to
any of the contributors until there is a Pull Request referring to this issue. Code
owner is the same person as a Leader of the Community. The license that this
project has is MPL (Mozilla Public License).

2.2 Redash Project

As today’s world is becoming more and more data-driven, it is important for
companies and governments to analyze data that they have and to easily extract
some valuable insights from them. There are many solutions to this problem,
but most of them are proprietary and expensive (like Tableau). On the contrary,
Redash [11] is an open-source solution, which helps to democratize the data
analysis and visualization and makes it available for all. For this reason, Student
B found the project’s mission quite appealing.

Technical Aspects of the Project. The project itself is a single repository
on Github hosting provider [11]. Currently, the repository consists of 2 server
applications: one is the API written in Python programming language with Flask
framework and another one is a server dedicated to distributing code for front
end application written in Angular/ReactJS. Project data is stored in the Post-
greSQL database and project uses Docker image for simplifying hosting and
testing. There are currently more than 300 different issues raised in the areas of
the front end, back end, UI, UX, etc. 2 big improvements are being made to the
project. First is complete migration from Angular to a ReactJS and second one
is to redo of the permission system.

Open Source Software as a Learning Tool for Computer Science Students 227

General Aspects of the Project. The leader of the project is the CEO of
the company with the same name, which was established on top of the open-
source software. In theory, all critical decisions regarding the project could be
made by company employees. However, the number of employees is so small that
governance structure can be considered as monarchical, which essentially means
that all decisions are made by the CEO. Most of the big decisions are proposed
by him, but anyone can make some suggestions or raise issues. Several people are
the core members of the project, but not all of them work in the Redash company.
Some of the core members are working at Mozilla or the biggest Russian sports
website, while others still studying at university. The typical contribution path is
going from looking for issues on the GitHub page, forking the project, committing
changes and opening a pull request. The Open Source software is distributed
under the BSD-2 license.

3 Contribution

3.1 Contributions to Mozilla BugBug Project

Project Selection Process. Motivation is a significant factor to consider when
speaking about the project selection process. Student A motivation could have
been divided into 4 main kinds: personal intrinsic, social intrinsic, technical
extrinsic and economic extrinsic [12]. Technical extrinsic motivation had the
most important impact on her choice since she wanted to gain experience in
Machine Learning and improve existing skills in Python, and Mozilla BugBug
project was the best candidate for this. During Spring term Student A accom-
plished 2 tutorials on Machine Learning and learned how to add a feature, what
does labeling of data means and how accuracy can be changed from the addi-
tion of wrong features. This also made her interested in Machine Learning and
she started Coursera Stanford course on Machine Learning upon completion of
Spring term. She has also learned how to work with web extensions for the
Firefox browser and how to collect data using them.

Role in the Selected Project. Student A has chosen a Contributor role,
specifically, a Code Developer. The project can be considered active since it has
many closed Pull Requests in the last month and the average response time is
less than 1 day during the workweek. Also, due to the number of commits to the
repository of BugBug (4 commits), on the end date of Spring term (April 14)
Student A was the 7th contributor in the project out of 24.

Interaction with the Community. Student A started an interaction with
the community on January 22 by adding an issue related to a bug that she
found in Bugzilla Data Collector. After fixing that issue, Student A started
communication with BugBug project and her contributions described in the
next section (Fig. 1).

228 A. Khuzyakhmetova and A. Suleimenov

Fig. 1. Initial interaction with the community [5].

Activities and Challenges. Student A’s contributions to the project could
be divided into 3 parts: code commits, code reviews, and creation of issues or
feature requests. Statistics on contributions in terms of issues or feature requests,
code reviews, pull requests, commits and number of lines of code changed can
be found in Fig. 2 below. Speaking about the challenges that were faced, it was
challenging to contribute to the project that used technologies that were not
used before.

Fig. 2. Statistics on Student A activity during the Spring Term.

Open Source Software as a Learning Tool for Computer Science Students 229

3.2 Contributions to Redash Project

Project Selection Process. The main motivation of Student B for choosing
the project was to acquire new skills, learn new technologies and to improve
his employment opportunities. On the other hand, the project should have used
programming languages that he already knew, since otherwise, his contributions
wouldn’t be valuable enough. Therefore, there always should be a good balance
between what he already knew and what he would like to learn. Firstly, Stu-
dent B was looking for projects in Go programming language, since he wanted
to learn more about it. However, he couldn’t find an appropriate project with
this programming language, because he was too novice in using it. That’s why
Student B decided to find a project in Python programming language with
which he was more familiar. Regarding improving his employment opportuni-
ties, Student B wanted the project to be popular enough, but not too popular
since it’s hard to make contributions with many community members. Redash
has more than 13 000 “stars” on the Github page and widely used in different
organizations [11]. For that reason, Student B had chosen Redash as the selected
project.

Role in the Selected Project. Student B chose the Redash project and
decided to be a contributor there. More specifically, he decided to be Code
Contributor. Firstly, Student B planned to look at the issues of the project from
the Github page and search for the ones he can solve. The project is very popular
with more than 300 issues open [8], which makes it easy enough to find different
types of problems. He planned to solve as many simple issues as possible so that
Student B could become more comfortable in solving harder ones.

Interaction with the Community. Student B’s community interaction was
done asynchronously and took place during discussions of certain issues on the
Github issues page [8]. Mainly it was asking for clarifications regarding the issues.
There were also some discussions in the comments to the Pull Requests page as
well [9].

Activities and Challenges. During the course, Student B made 3 pull requests
accepted to the main project’s repository and 2 were waiting to be accepted.
Moreover, he also made one contribution once the course was finished. Almost all
of these were made using Python programming language and one was made using
Bash. Scope of his code heavily varied: adding HTTP headers to the response,
MongoDB type error fixes, Clickhouse and Presto settings configuration changes,
creation of Celery tasks and Bash script writing. The main reason for choosing
such a different type of tasks was to learn how to use new technologies. It was
also a challenging thing to do, as each issue turned out to be related to a different
technology. Apart from technologies, the scope of work also differed completely.
Some issues took only a couple of hours to solve with more than a hundred
lines of code, while others required to spend up to one week for them resulting

230 A. Khuzyakhmetova and A. Suleimenov

Fig. 3. Example of student B’ clarifications to the issue

Fig. 4. List of student B’s Pull Requests (closed and open)

only in three lines of code. The community itself was very helpful in solving
different issues as well as providing feedback to solutions. As a result of Student
B’s interaction and contributions, he was invited to become maintainer in the
Redash community. The role of the maintainer is rather symbolic but has some
additional privileges like labeling certain issues, assigning people to review and
accepting other Pull Requests. Apart from Redash, Student B also contributed
to Beats [2] project after the course finished. The project and contributions
were written in Go programming language, which he was eager to learn at
the beginning of the course. His experience with the Redash project helped to
increase confidence and try more challenging tasks and also learn a new language
(Figs. 3 and 4).

Open Source Software as a Learning Tool for Computer Science Students 231

4 Conclusion and Future Work

4.1 Students’ Conclusion

Contribution to Open Source projects can be considered as a powerful learning
tool for students that allows to learn and practice technical skills [13]. Both stu-
dents indicated that the experience of contributing to Open Source Software was
very helpful for the professional development and helped to understand how big
projects are done, how to interact with OSS communities, create contributions
and overcome technical obstacles. Both students were happy with the choice of
projects they made and the results of the work done during the course. As was
noted by Student B, the things that were learned during contribution, according
to his experience, then were easily transferred when contributing to completely
different OSS projects. Speaking about differences in experiences, there were
delays in communication with the community from the side of Student B, while
it was not the case at Student A. The reason for that is that Mozilla’s community
has instant messaging communication IRC channel IRC in Mozilla IRC Cloud
in contrast to Redash, where communication was mostly done on GitHub. For
that reason, Student B needed to ask for a response of community core members
several times. The possible reason for this is the high volume of work taken by
the main creator of the Student B’s project. This created some inconveniences
that are usually absent at the regular software engineering job.

As for advice from both students to newbie contributors, it is significant
to find a middle between the desire to learn new technologies relevant to the
project and being able to be useful in the project with your current knowledge.
This could prevent many difficulties in contributing to Open Source Software.
One more thing is not to be afraid of asking questions and making mistakes.
Usually, a contributor can simply ask for help in the comments under issues or
Pull Requests and to get help in a short period.

4.2 Study Conclusion

Introduction of the course of Open Source Software to the curriculum of universi-
ties and colleges could benefit many students in both short-term and long-term
perspectives boosting their CVs, technical and social skills. Furthermore, the
freedom of choice in terms of projects to contribute and technologies to use has
proven to result in successful OSS contributions, which supports current stud-
ies [1]. The success of contributions is assessed by OSS communities’ members
as each piece of code passed a rigorous assessment by several people. Speak-
ing about assessment from the course side, both students received the highest
possible mark by the course instructor.

4.3 Future Work

The future work in this research could include analysis of the experience of a
higher number of students in OSS. Moreover, feedback and survey of the core
members of the OSS community could be included.

232 A. Khuzyakhmetova and A. Suleimenov

References

1. Lundell, B., Persson, A., Lings, B.: Learning through practical involvement in the
OSS ecosystem: experiences from a masters assignment. In: Feller, J., Fitzgerald,
B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 289–294. Springer,
Boston, MA (2007). https://doi.org/10.1007/978-0-387-72486-7 30

2. Beats Repository. https://github.com/elastic/beats
3. Bugzilla Data Collector Repository. https://github.com/marco-c/bugzilla-data-

collector
4. Bugzilla Official Site. https://www.bugzilla.org/
5. GitHub Issue 5 in Bugzilla Data Collector. https://github.com/marco-c/bugzilla-

data-collector/issues/5. Accessed 6 July 2019
6. List of Issues in BugBug project. https://github.com/mozilla/bugbug/issues.

Accessed 6 July 2019
7. List of Issues in Bugzilla Data Collector project. https://github.com/marco-c/

bugzilla-data-collector/issues. Accessed 7 July 2019
8. List of Issues in Redash project. https://github.com/getredash/redash/issues.

Accessed 7 July 2019
9. List of Pull Requests in Redash project. https://github.com/getredash/redash/

pulls. Accessed 7 July 2019
10. PyUp Bot Repository. https://github.com/pyup-bot
11. Redash Repository. https://github.com/getredash/redash
12. Androutsellis-Theotokis, S., Spinellis, D., Kechagia, M., Gousios, G.: Open Source

Software: A Survey from 10,000 Feet (2010)
13. Kuk, G.: Strategic Interaction and Knowledge Sharing in the KDE Developer Mail-

ing List (2006). https://doi.org/10.1287/mnsc.1060.0551

https://doi.org/10.1007/978-0-387-72486-7_30
https://github.com/elastic/beats
https://github.com/marco-c/bugzilla-data-collector
https://github.com/marco-c/bugzilla-data-collector
https://www.bugzilla.org/
https://github.com/marco-c/bugzilla-data-collector/issues/5
https://github.com/marco-c/bugzilla-data-collector/issues/5
https://github.com/mozilla/bugbug/issues
https://github.com/marco-c/bugzilla-data-collector/issues
https://github.com/marco-c/bugzilla-data-collector/issues
https://github.com/getredash/redash/issues
https://github.com/getredash/redash/pulls
https://github.com/getredash/redash/pulls
https://github.com/pyup-bot
https://github.com/getredash/redash
https://doi.org/10.1287/mnsc.1060.0551

Overture 2019 - 17th Overture
Workshop

Overture 2019 Organizers’ Message

The 17th Overture Workshop was held on 07 October 2019 in association with the 3rd
World Congress on Formal Methods (FM2019).

The 17th Overture Workshop was the latest in a series of workshops around the
Vienna Development Method (VDM), the open-source project Overture, and related
tools and formalisms. VDM is one of the best established formal methods for systems
development. A lively community of researchers and practitioners in academia and
industry has grown around the modelling languages (VDM-SL, VDM++, VDM-RT,
CML) and tools (VDMTools, Overture, Crescendo, Symphony, and the INTO-CPS
chain). Together, these provide a platform for work on modelling and analysis tech-
nology that includes static and dynamic analysis, test generation, execution support,
and model checking.

The workshop received 8 submissions. Every submission was reviewed by 3
members of the program committee. Of these 8 submissions, 6 were accepted and
presented at the workshop. The workshop also featured a keynote presentation by Ana
Paiva, entitled Teaching VDM.

Of the 6 papers presented at the workshop, 4 have been revised and included in
these post-proceedings. Each revised paper was reviewed by two members of the
program committee.

The accepted papers reflect the diversity of the Overture community and the
flexibility of the VDM family of languages. This year those submissions demonstrate
both the use of VDM for the formal analysis of specifications and configurations of
simulations, through to the use of VDM to model human behaviour and the devel-
opment of a simulation environment that supports the co-simulation of VDM alongside
other formalisms.

December 2019 Luís Diogo Couto
Carl Camble

Organization

Program Committee Chairs

Luís Diogo Couto Forcepoint, Ireland
Carl Gamble Newcastle University, UK

Program Committee

Nick Battle Newcastle University, UK
Leo Freitas Newcastle University, UK

John Fitzgerald Newcastle University, UK
Fuyuki. Ishikawa NII, Japan
Peter Gorm Larsen Aarhus University, Denmark
Paolo Masci National Institute of Aerospace (NIA), USA
Ken Pierce Newcastle University, UK
Peter W. V. Tran-Jørgensen Aarhus University, Denmark

Overture 2019 Organizers’ Message 235

Exploring Human Behaviour in Cyber-Physical
Systems with Multi-modelling and

Co-simulation

Ken Pierce1(B), Carl Gamble1, David Golightly2, and Roberto Palacín2

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
{kenneth.pierce,carl.gamble}@newcastle.ac.uk

2 School of Engineering, Newcastle University, Newcastle upon Tyne, UK
{david.golightly,roberto.palacin}@newcastle.ac.uk

Abstract. Definitions of cyber-physical systems often include humans within the
system boundary, however design techniques often focus on the technical aspects
and ignore this important part of the system. Multi-modelling and co-simulation
offer a way to bring together models from different disciplines to capture better
the behaviours of the overall system. In this paper we present some initial results
of incorporating ergonomic models of human behaviours within a cyber-physical
multi-model. We present three case studies, from the autonomous aircraft and
railway sectors, including initial experiments, and discuss future directions.

Keywords: Cyber-physical systems · Ergonomics · Human behaviour ·
Multi-modelling

1 Introduction

Cyber-Physical Systems (CPSs) are systems constructed of interacting hardware and
software elements, with components networked together and distributed geographically
[25]. Importantly, humans are a key component of CPS design, for example, Rajkumar
et al. call for “systematic analysis of the interactions between engineering structures,
information processing, humans and the physical world” [36, p.734]. Humans may act
as operators, acting with or in addition to software controllers; or as users, interpreting
data from or actions of the CPS.

Model-based design techniques offer opportunities to achieve this systematic anal-
ysis. When considering the diverse nature of disciplines however, and therefore diverse
modelling techniques and even vocabulary, creating models that sufficiently capture all
aspects of a CPS presents a challenge. Multi-modelling techniques present one solu-
tion, where models from appropriate disciplines are combined into a multi-model and
are analysed, for example, through co-simulation [16,21]. Multi-modelling has demon-
strated its utility in a range of scenarios (for example, building automation [9], smart
agriculture [12] and manufacturing [30]).

An open challenge in CPS design is how to accurately reflect human capabilities
and behaviours. Without considering such an important part of a CPS, observed per-
formance in an operation context may differ from that predicted by models [10,17].
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 237–253, 2020.
https://doi.org/10.1007/978-3-030-54997-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_16

238 K. Pierce et al.

For example, train systems not achieving optimal performance due to drivers not fol-
lowing eco-driving advice [35], or optimal performance requiring unrealistic demands
on operators (e.g. challenging peaks or reduced wellbeing) [28].

There is a body of work in modelling human behaviours within the field of
ergonomics—the study of people’s efficiency in their working environment—which is
discussed in Sect. 2. Multi-modelling would seem to offer an ideal way for these exist-
ing models to be incorporated into system-level models of CPSs. This paper reports on
three initial studies where ergonomics models were incorporated into multi-models with
cyber and physical components. The first looks at operator loading in drone inspection
of infrastructure, and the second at the effect of driving style on energy use within an
urban rail system. The third extends the urban rail model by importing the UAV opera-
tor model and using that as a signaller model. The studies focus on the use of VDM and
Overture as a vehicle for initial experimentation, with references provided to papers on
the ergonomic implications published within that domain.

In the remainder of the paper, Sect. 2 presents technical background on multi-
modelling and brief survey of ergonomic modelling techniques, including related work
describing their limited use in multi-modelling scenarios. Sections 3, 4 and 5 describe
three case studies in which ergonomic models were employed within a multi-modelling
context, including simulation results. Finally, Sect. 6 concludes the paper and describes
avenues for future work in this area.

2 Background

This section provides background material necessary to understand the case studies
presented in the later sections. It begins by describing the technologies used: the INTO-
CPS technologies for multi-modelling, based on FMI (the Functional Mock-up Inter-
face); VDM-RT for discrete-event modelling using the Overture tool; and the 20-sim for
modelling physical phenomena. It then outlines a range of models from the ergonomics
domain that could help in analysis of CPSs, and highlights some related work where
ergonomic models have been used within a multi-modelling context.

2.1 Multi-modelling Technologies

The FMI standard is an emerging standard for co-simulation of multi-models, where
individual models are packaged as Functional Mockup Units (FMUs). FMI defines an
open standard that any tool can implement, and currently more than 30 tools can pro-
duce FMUs, with the number expected to surpass 100 soon, taking into account partial
or upcoming support1. INTO-CPS is a tool chain based on FMI for the modelling and
analysis of CPSs [21]. At the core of the tool chain is Maestro [38], an open-source
and fully FMI-compliant co-simulation engine supporting variable- and fixed-step size
Master algorithms across multiple platforms. Maestro includes advanced features for
simulation stabilisation and hardware-in-the-loop simulation. INTO-CPS also provides
a graphical front end for defining and executing co-simulations.

1 http://fmi-standard.org/tools/.

http://fmi-standard.org/tools/

Exploring Human Behaviour in Cyber-Physical Systems 239

The Vienna Development Method (VDM) [22] is a family of formal languages
based on the original VDM-SL language for systematic analysis of system specifica-
tions. The VDM-RT language allows for the specification of real-time and distributed
controllers [39], including an internal computational time model. VDM-RT is an exten-
sion of the VDM++ object-oriented dialect of the family, which itself extends the base
VDM-SL language. VDM is a state-based discrete-event (DE) language, suited to mod-
elling system components where the key abstractions are state, and modifications of that
state through events or decisions. Overture2 is an open-source tool for the definition and
analysis of VDM models, which supports FMU export of VDM-RT models.

The 20-sim tool3 supports modelling and simulation of physical formula based on
differential equations. 20-sim can represent phenomena from the mechanical, electrical
and even hydraulic domains, using graphs of connected blocks. Blocks may contain
further graphs, code or differential equations. The connections represent channels by
which phenomena interact; these may represent signals (one-way) or bonds (two-way).
Bonds offer a powerful, compositional and domain-independent way to model physical
phenomena, as they carry both effort and flow, which map to pairs of familiar physical
concepts, e.g. voltage and current. 20-sim is a continuous-time (CT) tool which solves
differential equations numerically to produce high-fidelity simulations of physical
components.

2.2 Ergonomics Modelling

There are a variety of modelling techniques which attempt to predict human behaviour
and performance that could be used to enhance the analysis of CPS designs through
inclusion in multi-models. The examples presented below highlight the potential of this
area and are not intended to be an exhaustive list.

Some models suggest algebraic relationships from which predictions can be made.
For example, Fitts’ Law predicts that the time taken for a human to reach a target is
a ratio of the distance to and size of the target [27], while models of response time
processing can predict the impact of operator delay on a real-time system [37]. Models
of operator attention can predict choice of tasks and likelihood of completion [41],
while combinations of workload, fatigue and task complexity can make predictions for
optimum configurations of control [19].

The Yerkes-Dodson arousal model suggests that poorer performance occurs as both
the lowest and highest levels of demand [6], implying that humans can be both under-
loaded (potentially leading to distraction effects and vigilance decrements) and over-
loaded (where high workload either slows action due to multi-tasking or impedes deci-
sion making). This model has been applied to performance under varying levels of
demand [6] and predicts an inverted U-shaped curve of performance, with poorer per-
formance at both lower and upper bounds of demand. Empirical evidence suggests these
bounds to be around 30% and 70% of occupancy [7,32].

A range of bespoke modelling tools incorporate these types of models computation-
ally. These include discrete-event simulation of train operator availability under given

2 http://overturetool.org/.
3 http://www.20sim.com/.

http://overturetool.org/
http://www.20sim.com/

240 K. Pierce et al.

schedules [32], Monte Carlo simulations of human behaviour in Microsaint [23], and
cognitive architectures such as ACT-R [2] and Soar [31] that include cognition, percep-
tion and movement performance models. Tools such as Jack [4] can also analyse com-
plex physical models of individual human performance, while Legion supports agent-
based modelling of groups of individuals in social situations such as evacuations [34].

There are limited examples of ergonomics within multi-modelling, despite the
promise of bringing together work in the CPS and human factors domains. Examples
include making models of human thermal comfort [1,29] and user interactions [8] FMI
compliant, and integrating agent-based models with building energy models using FMI
[5,26]. Other examples of FMI use in ergonomic studies primarily focus on bringing the
human into the loop to study nuclear reactors [40], urban mobility [3], medical devices
[33], and demands on telecommunications networks [24].

While performance modelling is a mature field, a significant gap remains between
the CPS and ergonomics domains. These applications suggest a clear opportunity to
improve CPS design by bringing ergonomics modelling into the CPS domain. The next
sections provide three case studies which show the potential of multi-modelling as one
way to achieve this.

3 Case Study 1: Operator Loading in Drone Searching

The first case study incorporating ergonomic models within a multi-model is in the
area of Unmanned Aerial Vehicle (UAV) control. The low price and capabilities of
multi-rotor UAVs make them an enticing option for inspection and searching tasks [20].
UAVs fitted with high-resolution cameras are routinely used for visual inspection of
infrastructure such as railway lines [11], where physically sending inspection workers
carries risk of injury and fatality.

While we can envision highly-autonomous UAV systems using software flight con-
trol and image recognition to perform inspections, the current state of practice includes
humans in the loop, in particular to intervene and inspect images of assets as they are
relayed from UAVs. This human element means that there is an effect on system per-
formance based on the relationship between tasks and operator availability. An existing
multi-model of UAV searching [42] was enhanced with a model of operator availability
to demonstrate the potential of understanding human performance within CPS design4.

3.1 Scenario

The baseline multi-model [42] had UAVs systematically searching a wide area in a
zigzag pattern, able to travel at approximately six metres per second. In this new sce-
nario, four UAVs are tasked with visiting waypoints along a railway line, setting off
from a central launch site, to perform a visual inspection by relaying images back to
an operator. Each UAV has three distinct waypoints to visit with maximum distance of
1500m and mission time of approximately six minutes, as shown in Fig. 1.

4 See also Golightly et al. [13] which is aimed at an ergonomics audience.

Exploring Human Behaviour in Cyber-Physical Systems 241

Fig. 1.Waypoints visited by each of the four UAVs

At each waypoint, the UAV must wait until the inspector has checked the image before
moving to the next waypoint. The model represents human performance in three ways:

Task activity The operator must realise that UAV requires attention (duration = TSA),
check the images (duration = Tdec), and interact with the UAV (duration = Tint).
The total time (duration = T) suggested by ergonomics models is 28 s [13].

Operator occupancy The operator is not available to attend a UAV while occupied
with another. Given the operator’s capacity, a rolling window of operator occupancy
was calculated over the previous 100 simulated seconds.

Task switching The operator must decide which of the waiting UAVs to attend. This
was achieved by always attending to the UAV that has been waiting longest.

Dynamic performance In addition to the above (static) calculations, a real-time model
allows for feedback to affect the performance model based on the evolving con-
ditions in the simulation. In this case, the Yerkes-Dodson-like underload/overload
model was used, with time penalties (increase in TSA) added for an underloaded
operator losing track of UAV status (under 30%), and an overloaded worker dealing
with high task demands (above 70%).

There are three scenarios presented in the results section: the baseline static scenario
including task activity, occupancy, and task switching); a dynamic scenario including
dynamic performance; and a dynamic scenario including wind in the physical model,
representing external perturbations of the system by the environment.

3.2 Multi-model

The multi-model comprises three FMUs, as shown in Fig. 2. The UAV is realised as a
continuous-time model in 20-sim. It contains a model of a quadcopter, which accepts
inputs to control flight in three dimensions (throttle, pitch, roll, and yaw) and reports
its position. An optional 3D visualisation FMU is not shown, which connects to these
outputs to show the UAVs in a 3D environment. The Controller is realised as a VDM
model. It contains both a low-level loop controller, which moves the UAV within 3D
space, and a high-level waypoint controller, which visits a sequence of waypoints using
the loop controller. A single UAV instance is paired with a single Controller instance,
and these pairs are replicated to realise multiple UAVs. This part of the multi-model is
an updated version after Zervakis et al. [42].

242 K. Pierce et al.

Fig. 2. The FMUs in the UAV control multi-model and their relationships

To this baseline model, an Operator model was added to consider human per-
formance element of the inspection system. Again, VDM was used as this is the most
appropriate modelling language from which FMUs can be readily produced. TheOper-
ator is aware of each Controller instance and receives a signal when the UAV is “on
station” (read for the image to be inspected). Once the inspection is complete, a return
signal is sent to allow the UAV to continue to the next waypoint. TheOperator encodes
the Yerkes-Dodson-like model of occupancy described above by selecting a waiting
UAV, then simulating processing of the data by occupying time before releasing the
UAV to the next waypoint. When dynamic performance is switched on, the baseline
time to process input is increased if the workload is below the underload threshold
(under 30%) or above the overloaded threshold (over 70%) as seen in the listing for the
updateErgonomicTimings() operation:

�

updateErgonomicTimings() == (
if inspector_workload < work_load_n_curve_lower then (

sa_time := sa_time_normal + workload_uload_sa_modifier;
) else (

sa_time := sa_time_normal;
);

if inspector_workload > work_load_n_curve_upper then (
d_time := d_time_normal + workload_oload_sa_modifier;

) else (
d_time := d_time_normal;

)
)

�� �

3.3 Results

Figure 3 shows output from the three scenarios for two metrics. The scenarios are as
described above: static occupancy calculation without wind (blue, dot-dashed line),

Exploring Human Behaviour in Cyber-Physical Systems 243

(a) Operator occupancy (%) over time (s) (b) Cumulative wait time (s) over time (s)

Fig. 3. Operator occupancy and cumulative UAV waiting time during three scenarios (Colour
figure online)

dynamic occupancy calculation without wind (orange, dashed line), and finally dynamic
occupancy calculation with wind (black, solid line). The first graph, Fig. 3a, shows oper-
ator occupancy as a percentage during the three scenarios. The peaks and troughs show
the operator receiving and clearing inspection tasks. It can be seen that the more real-
istic dynamic occupancy model indicates that the operator is close to saturation by the
end of the simulation. When wind is included, the altered arrival times happen to push
the operator to saturation, indicating a likely reduction in wellbeing and performance.

The second graph, Fig. 3b, shows the cumulative wait time of the UAVs during
the simulation. This is clearly a monotonically increasing value, so it is the rate of
accumulation that is indicative of system performance. Again, it can be seen that the
more-realistic dynamic occupancy model shows a significantly increased wait time
for the UAVs, which will impact on battery life and performance. Interestingly, when
wind is introduced, the cumulative wait time is significantly reduced, indicating a more
favourable arrival time due to some UAVs getting a speed boost with a tailwind, while
others are slowed down with a headwind. Although this indicates a favourable scenario
for battery performance, it is clear that operator wellbeing is impacted. This shows
the potential of multi-models to reveal hidden interactions between human, cyber and
physical aspects of CPSs which otherwise might not be discovered until deployment.

4 Case Study 2: Driver Behaviour in Urban Rail

The second case study demonstrating inclusion of ergonomics models within multi-
models is in the area of de-carbonisation in urban rail. De-carbonisation can be achieved
principally through reducing overall energy usage, and reducing energy wastage
through recovering energy from braking. While some urban rail lines are autonomous,
most are still driven by human operators. Driving style has a significant effect on energy
usage [35], because electrical current has a squared relationship to power, therefore
accelerating and braking aggressively uses more energy. Drivers who follow defensive

244 K. Pierce et al.

techniques—accelerating and braking gradually—should use less power and reduce car-
bon footprint, though this driving style must be traded-off against potentially increased
journey times. A multi-model was developed to demonstrate the effect of driving style
and more efficient rolling stock (trains) on energy usage5.

4.1 Scenario

This study was based upon the Tyne and Wear Metro network within Newcastle upon
Tyne, UK. The Metro cars weigh 40 metric tons and are powered by 1.5 kV overhead
lines throughout. The chosen scenario, illustrated in Fig. 4 is an 800m section between
two stations on the busiest part of the network, South Gosforth station and Ilford Road
station. Peak throughput is 30 trains per hour. This section has also been studied previ-
ously [35], which provides baseline data to validate the co-simulation against.

Fig. 4. The trains, stations and signals in the train control scenario (Colour figure online)

Each station is within a track section, and each section must only contain a single
train at any one time. A “movement authority” controls access to each section using
stop-go (two-aspect) signals. Drivers must stop when the signal is red, and may go when
the signal is green. The movement authority changes the signals when trains enter and
leave sections.

In the simulated scenario, there are two trains. One train begins at Ilford Road sta-
tion (Train 1), and the other at South Gosforth station (Train 2). Train 2 cannot leave
South Gosforth until Train 1 departs from Ilford Road, therefore the signal for Train 2
is red. The signal for Train 1 is green, so it may leave as soon as the simulation begins.
Once it has left, the signal for Train 2 goes green, so it may accelerate to leave its sta-
tion, drive, then brake to stop at the next station. This gives a full accelerate, drive and
brake cycle to study driver behaviour.

There are two types of drivers: aggressive drivers who use full throttle and full
brake, and defensive drivers who use half throttle and half brake. There are also two
types of rolling stock, the baseline Metro cars as they exist today, and a hypothetical
lighter rolling stock with 30% energy recovery from regenerative braking. This gives
four scenarios: aggressive drivers with existing rolling stock, aggressive drivers with
lightweight rolling stock, defensive drivers with existing rolling stock, and defensive
drivers with lightweight rolling stock.

5 See also Golightly et al. [14] which is aimed at an urban rail audience.

Exploring Human Behaviour in Cyber-Physical Systems 245

Fig. 5. The FMUs in the train control multi-model and their relationships

4.2 Multi-model

The multi-model comprises four FMUs, as shown in Fig. 5. The Train is realised as a
continuous-time model in 20-sim. It accepts a throttle and brake signal and computes
the position, speed and energy usage of the train. Two different FMUs were produced
for the baseline and lightweight rolling stock, which were swapped between scenarios.
A Powermodel was also realised in 20-sim, which provides a voltage to each train and
receives back the energy consumed, calculating the overall power usage of the scenario.
In this experiment the model is ideal and does not include voltage drop or line losses.

The Movement Authority is informed of the positions of all trains and updates
the state of the stop-go signals as trains enter and leave track sections. These enter and
leave events mean that VDM was the most appropriate modelling language for this
component. Each Train instance is paired with a Driver instance, which observes the
speed and position of their train and the state of the next signal ahead on the track. The
throttle and brake in Metro cars are notched, and can only take three values (off, half,
and full), therefore VDM is again an appropriate choice. The aggressive and defensive
styles of driving are given as a parameter to the Driver model, with the listing below
showing what happens when throttle() operation is applied:

�

private throttle: () ==> ()
throttle() == (

if mode = <AGGRESSIVE> then (
throttleActuator.setValue(AGGRESSIVE_THROTTLE);

) elseif mode = <DEFENSIVE> then (
throttleActuator.setValue(DEFENSIVE_THROTTLE);

);
brakeActuator.setValue(0)

)
�� �

246 K. Pierce et al.

4.3 Results

Figure 6 shows the driver and train outputs for Train 2 as it moves from being stationary
at South Gosforth to being stationary at Ilford Road. Figure 6a shows that the aggressive
driver uses full power to reach maximum speed quickly and full braking to stop quickly,
while the defensive driver uses half power and brake. Figure 6b shows the speed profiles
of the aggressive and defensive driver. Note that the defensive driver reaches the station
later, so lower energy usage must be traded-off against journey times and timetables
updated accordingly.

Figure 7 shows the total energy usage of the two trains in the four scenarios
described above. The existing rolling stock with aggressive driving (dashed line) uses
the most energy, while defensive driving with lightweight rolling stock (dotted line)
uses the least. The downward curve here represents energy being recovered from the
brakes and returning to the power system. Finally, using defensive driving with exist-
ing rolling stock or simply acquiring lightweight rolling stock provide a similar reduc-
tion in energy usage. This suggests a potential trade-off between retraining drivers and
enforcing defensive driving versus investing in new stock and accepting current driver
performance.

(a) Driver output for aggressive (top)
and defensive (bottom) driving

(b) Speed profiles for for aggressive (solid) and
defensive (dashed) driving

Fig. 6. Driver outputs and corresponding speed profiles for aggressive and defensive driving

5 Case Study 3: Signaller Modelling Within Urban Rail

The third case study extends the urban metro model to include a human signaller. The
signaller (also known as a dispatcher or controller) is the operator who controls the
signals that provide movement authority to trains. Historically, this involved manual
input on the part of the signaller to set signals and points. Increasingly, this has moved
to a monitoring role where signals are set automatically, while the human signaller
oversees the process and intervenes where appropriate. Signallers may still need to
control signals directly in the event of disruption or system failures.

Exploring Human Behaviour in Cyber-Physical Systems 247

Fig. 7. Total energy usage for combinations of driving style and rolling stock

Like the hypothetical UAV controller in Case Study 1, signallers maintain situation
awareness of overall system state, and the state of specific vehicles (trains rather than
UAVs) [15]. Signallers act to monitor and potentially set signals. Also, the signaller
task is one where workload can be a critical concern: as underload in highly automated,
low-traffic situations; as high workload in very high demand, high-traffic situations; and
in times of disruption and significant deviation from the timetable.

This workload model may potentially follow the 30%/70% relationship seen in UAV
control [18]. Drawing on the capabilities of FMI, theOperator FMU from Case Study 1
can be plugged into theMovementAuthority FMU in the urban control multi-model of
Case Study 2. This is a first-pass proof of concept about the flexibility of FMI allowing
deployment of ergonomics models to a variety of different domains.

5.1 Scenario

The scenario is essentially the same as the scenario in Case Study 2, with two trains
moving through the South Gosforth to Ilford Road section of the Tyne and Wear Metro.
The scenario is adapted to accommodate a model of a human signaller, where part of the
signalling system is under manual control. Green signals are set to red automatically by
an interlock, but the human signaller needed to change red signals to green. Specifically,
the signaller needs to set the red signal in front of Train 2 at South Gosforth to green
once Train 1 has passed Ilford Road station and reached the next section of track.

5.2 Multi-model

Figure 8 shows the updated multi-model for the train control multi-modeller. The
Movement Authority FMU was updated to send a request to a Signaller FMU for

248 K. Pierce et al.

Fig. 8. The FMUs in the train control multi-model with an additional signaller FMU, which is
based on the operator FMU from the UAV case study

a signal could be turned green (once the track section was clear). This model then pro-
cesses the request and informs the movement authority to change the signal to green.
Changing of green signals to red once a train passes still occurs automatically, repre-
senting a hardware interlock.

The Signaller FMU is essentially the Operator FMU taken from Case Study 1.
The timing parameters of the signaller model were altered to reflect the simpler task of
setting a signal. The time attending to a new request, TSA, deciding what to do, Tdec,
and interacting to perform the task, Tint, were all set to two seconds. This gives an
overall time of six seconds. In addition to updating the timings, the input and output
ports were renamed, and an override was included to set the initial workload of the
signaller model to a preset level. Apart from these small updates, the two FMUs are
materially the same. This suggests the potential to produce a generic, customisable
FMU to encode processing of tasks by humans in a range of CPSs.

It was necessary to include an initial workload parameter in order to observe that
signaller overload could cause delays in the system, because the scenario only includes
a single task for the signaller to process which is insufficient to cause overload unless
the signaller is already highly loaded. It should be borne in mind that whereas theOper-
ator FMU in the UAV system is monitoring the whole system, the track section covered
in the metro simulation is only a small part of the overall system. The Tyne and Wear
Metro system contains 60 stations over 78 km, including significantly more track sec-
tions and signals, so a simulation that incorporated more of the Metro operator’s area
of control could easily demonstrate realistic instances of signaller overload effects.

Exploring Human Behaviour in Cyber-Physical Systems 249

(a) Processing time for moderate occupancy
(solid) and high occupancy (dotted) signaller

(b) Train arrival time for moderate occupancy
(solid) and high occupancy (dotted) signaller

Fig. 9. Signaller processing and train arrival times for an signaller at 50% capacity and a signaller
at 85% capacity. The signaller experiencing high task occupancy and workload shows increased
decision time. (Colour figure online)

5.3 Results

Figure 9 shows outputs from two co-simulations. In order to explore effects under dif-
ferent conditions, the first co-simulation was run with the signaller at an initial occu-
pancy of 50% (representing a moderate workload), while the second co-simulation was
run with an initial occupancy of 85% (representing a very high workload), a situation
that might be experienced during disruption. Figure 9a shows the state of the signaller
model near the beginning of the co-simulation. In both scenarios, Train 1 passes the
green signal at eight seconds. The interlock changes this signal to red and a request is
sent to the signaller to change the signal in front of Train 2 to green.

The scenarios are shown for both moderate load (solid green line) and high load
(dotted red line), with the request being received at 8 s. The height of the line indicates
when the operator is attending to (TSA), deciding on (Tdec), or interacting with (Tint)
a request. The dotted red line shows the increased decision time in the second scenario
due to the operator being over the 75% workload threshold. This delays the changing
of the signal by two seconds. Figure 9b shows the speed of Train 2 later in the co-
simulation as it arrives at Ilford Road and comes to a halt. Train 2 arrives two seconds
late at the station in the overloaded signaller simulation due to the corresponding delay
of the change of signal.

The overall goal of such a study would be to assess the effect of signaller overload
on system-wide performance. Although the delay observed in this single scenario is
small, scaled up to multiple trains over a network of 60 stations over 78 km, the knock-
on effects can be significant. In addition, this current demonstration does not account
for drivers becoming frustrated at being held at signals, which might cause aggressive
driving in previously defensive drivers.

6 Conclusions and Future Work

This paper argued that CPSs necessarily include humans within the system boundary, as
operators or users of parts of the system. Until such time as we achieve full autonomy

250 K. Pierce et al.

within these systems, it is necessary to take into account the needs and performance
characteristics of humans when designing CPSs. The paper argues further that multi-
modelling—combining domain models from across disciplines into system models—
offers a promising avenue for exploring human performance within analysis of CPSs,
supported by a brief survey of existing modelling approaches that could be incorporated,
and promising related work in a similar vein.

The paper then described three initial studies in which human performance charac-
teristics were included within multi-models. The first study considered a human opera-
tor responding to data from UAVs performing inspections of a railway line. The human
performance aspects included the time taken for operators to process images and switch
tasks, and included performance penalties for underloading and overloading. The sec-
ond study considered the effect of driver behaviour on energy usage in an urban rail
system. The human performance aspects here considered aggressive drivers using max-
imum throttle and brake versus defensive drivers using half throttle and break. In both
case studies, inclusion of human performance in the multi-model enabled trade-offs
between human aspects (e.g. workload, wellbeing) and physical aspects (e.g. energy
usage, system performance). The third study combined the first two by incorporating
the human operator FMU from the UAV case study as signaller within the urban rail sys-
tem. This demonstrated the flexibility of FMI to combine existing models within new
scenarios, and suggests the possibility to create a generic human performance model as
an FMU that could be incorporated into a wide variety of CPS and other multi-models.

Not only has the inclusion of ergonomic models shown potential for increasing the
validity of the CPS multi-models, this process has benefits for the ergonomist by forc-
ing a clearer definition of terms and values. For example, in the UAV operator model,
occupancy is a function of task load over a time period. Implementing this performance
characteristic into the model forces the ergonomist to reflect on considerations such as
whether the impact of occupancy is linear or more complex, and what the preceding
time period over which an experience of occupancy occurs or dissipates is. There are
therefore not only benefits for CPS engineers of the inclusion of ergonomics in multi-
models, but there are also benefits for the ergonomist.

In terms of concrete next steps, all three studies can be expanded to validate the
results against observed data from experiments and improve the human performance
models to incorporate state-of-the-art ergonomics models. All human models were built
using VDM-RT and generated as FMUs using Overture, based on appropriate perfor-
mance calculations from ergonomics literature. While this was an appropriate choice for
experimentation, a clear avenue for future work is to add FMI functionality to specific
ergonomics modelling tools. Alternatively, dedicated FMUs could be produced to allow
others to incorporate human performance factors without being ergonomics experts.

Applying the techniques to other domains should also yield interesting insights. We
envision incorporating physiological models (such as Jack) to multi-models of smart
manufacturing [30] to account for physical effort and movement time while interacting
with an assembly line, for example. Finally, incorporating human-in-the-loop simula-
tion, potentially using virtual reality, will allow us to refine the parameters used in the
multi-models and potentially serve as training tools for operators.

Exploring Human Behaviour in Cyber-Physical Systems 251

Acknowledgements. The work reported here is supported in part by the Rail Safety and Stan-
dard Board (RSSB) project “Digital Environment for Collaborative Intelligent De-carbonisation”
(DECIDe, reference number COF-IPS-06). The authors wish to thank the anonymous reviewers
of both the workshop and extended version of this paper for their efforts.

References

1. Alfredson, J., Johansson, B., Gonzaga Trabasso, L., Schminder, J., Granlund, R., Gårdhagen,
R.: Design of a distributed human factors laboratory for future airsystems. In: Proceedings
of the ICAS Congress. International Council of the Aeronautical Sciences (2018)

2. Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory
of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)

3. Beckmann-Dobrev, B., Kind, S., Stark, R.: Hybrid simulators for product service-systems:
innovation potential demonstrated on urban bike mobility. Procedia CIRP 36, 78–82 (2015).
25th CIRP Design Conference on Innovative Product Creation

4. Blanchonette, P.: Jack human modelling tool: a review. Technical report DSTO-TR-2364,
Defence Science and Technology Organisation (Australia) Air Operations Division (2010)

5. Chapman, J., Siebers, P.O., Robinson, D.: On the multi-agent stochastic simulation of occu-
pants in buildings. J. Build. Perform. Simul. 11(5), 604–621 (2018)

6. Cummings, M., Nehme, E.C.: Modeling the impact of workload in network centric supervi-
sory control settings. In: Steinberg, R., Kornguth, S., Matthews, M.D. (eds.) Neurocognitive
and Physiological Factors During High-Tempo Operations, chap. 3, pp. 23–40. Taylor &
Francis, Abingdon (2010)

7. Cummings, M., Guerlain, S.: Developing operator capacity estimates for supervisory control
of autonomous vehicles. Hum. Factors 49(1), 1–15 (2007)

8. Filippi, S., Barattin, D.: In-depth analysis of non-deterministic aspects of human-machine
interaction and update of dedicated functional mock-ups. In: Marcus, A. (ed.) DUXU 2014.
LNCS, vol. 8517, pp. 185–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07668-3_19

9. Fitzgerald, J., Gamble, C., Payne, R., Larsen, P.G., Basagiannis, S., Mady, A.E.D.: Col-
laborative Model-based Systems Engineering for Cyber-Physical Systems - a Case Study
in Building Automation. In: Proceedings of INCOSE International Symposium on Systems
Engineering. Edinburgh, Scotland (July 2016)

10. Flach, J.M.: Complexity: learning to muddle through. Cogn. Technol. Work 14(3), 187–197
(2012)

11. Flammini, F., Pragliola, C., Smarra, G.: Railway infrastructure monitoring by drones. In:
2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion
and Road Vehicles International Transportation Electrification Conference (ESARS-ITEC),
pp. 1–6 (2016)

12. Foldager, F.F., Larsen, P.G., Green, O.: Development of a driverless lawn mower using co-
simulation. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 330–344.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_23

13. Golightly, D., Gamble, C., Palacín, R., Pierce, K.: Applying ergonomics within the multi-
modelling paradigm with an example from multiple UAV control. Ergonomics (2019, to
appear)

14. Golightly, D., Gamble, C., Palacín, R., Pierce, K.: Multi-modelling for decarbonisation in
urban rail systems. Urban Rail Transit (2019, submitted)

15. Golightly, D., Wilson, J.R., Lowe, E., Sharples, S.: The role of situation awareness for under-
standing signalling and control in rail operations. Theor. Issues Ergon. Sci. 11(1–2), 84–98
(2010)

https://doi.org/10.1007/978-3-319-07668-3_19
https://doi.org/10.1007/978-3-319-07668-3_19
https://doi.org/10.1007/978-3-319-74781-1_23

252 K. Pierce et al.

16. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a survey.
ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

17. Hollnagel, E., Woods, D.D.: Joint Cognitive Systems: Foundations of Cognitive Systems
Engineering, 1st edn. CRC Press, Boca Raton (2005)

18. Huang, L., Cummings, M.L., Nneji, V.C.: Preliminary analysis and simulation of railroad
dispatcher workload. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 62(1), 691–695 (2018)

19. Humann, J., Spero, E.: Modeling and simulation of multi-UAV, multi-operator surveillance
systems. In: Annual IEEE International Systems Conference (SysCon 2018), pp. 1–8 (2018)

20. Kingston, D., Rasmussen, S., Humphrey, L.: Automated UAV tasks for search and surveil-
lance. In: 2016 IEEE Conference on Control Applications (CCA), pp. 1–8 (2016)

21. Larsen, P.G., Fitzgerald, J., Woodcock, J., Gamble, C., Payne, R., Pierce, K.: Features of
integrated model-based co-modelling and co-simulation technology. In: Cerone, A., Roveri,
M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 377–390. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74781-1_26

22. Larsen, P.G., et al.: VDM-10 language manual. Technical report TR-001, The Overture Ini-
tiative, April 2013. www.overturetool.org

23. Laughery Jr., K.R., Lebiere, C., Archer, S.: Modeling human performance in complex sys-
tems, chap. 36, pp. 965–996. Wiley (2006)

24. Leclerc, T., Siebert, J., Chevrier, V., Ciarletta, L., Festor, O.: Multi-modeling and co-
simulation-based mobile ubiquitous protocols and services development and assessment. In:
Sénac, P., Ott, M., Seneviratne, A. (eds.) MobiQuitous 2010. LNICST, vol. 73, pp. 273–284.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29154-8_23

25. Lee, E.A.: Cyber physical systems: design challenges. Technical report UCB/EECS-2008-
8, EECS Department, University of California, Berkeley, January 2008. http://www.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html

26. Li, C., Mahadevan, S., Ling, Y., Choze, S., Wang, L.: Dynamic Bayesian network for aircraft
wing halth monitoring digital twin. AIAA J. 55(3), 930–941 (2017)

27. MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer interaction.
Hum. Comput. Interact. 7(1), 91–139 (1992)

28. de Mattos, D.L., Neto, R.A., Merino, E.A.D., Forcellini, F.A.: Simulating the influence of
physical overload on assembly line performance: a case study in an automotive electrical
component plant. Appl. Ergon. 79, 107–121 (2019)

29. Metzmacher, H., Wölki, D., Schmidt, C., Frisch, J., van Treeck, C.A.: Real-time assessment
of human thermal comfort using image recognition in conjunction with a detailed numerical
human model. In: 15th International Building Simulation Conference, pp. 691–700 (2017)

30. Neghina, M., Zamrescu, C.B., Larsen, P.G., Lausdahl, K., Pierce, K.: Multi-paradigm
discrete-event modelling and co-simulation of cyber-physical systems. Stud. Inf. Control
27(1), 33–42 (2018)

31. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)
32. Nneji, V.C., Cummings, M.L., Stimpson, A.J.: Predicting locomotive crew performance in

rail operations with human and automation assistance. IEEE Tran. Hum. Mach. Syst. 49(3),
250–258 (2019)

33. Palmieri, M., Bernardeschi, C., Masci, P.: A flexible framework for FMI-based co-simulation
of human-centred cyber-physical systems. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF
2018. LNCS, vol. 11176, pp. 21–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-04771-9_2

34. Pelechano, N., Malkawi, A.: Evacuation simulation models: challenges in modeling high
rise building evacuation with cellular automata approaches. Autom. Constr. 17(4), 377–385
(2008)

35. Powell, J., Palacín, R.: A comparison of modelled and real-life driving profiles for the simu-
lation of railway vehicle operation. Transp. Plan. Technol. 38(1), 78–93 (2015)

https://doi.org/10.1007/978-3-319-74781-1_26
https://doi.org/10.1007/978-3-319-74781-1_26
www.overturetool.org
https://doi.org/10.1007/978-3-642-29154-8_23
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
https://doi.org/10.1007/978-3-030-04771-9_2
https://doi.org/10.1007/978-3-030-04771-9_2

Exploring Human Behaviour in Cyber-Physical Systems 253

36. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing
revolution. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), pp. 731–736
(2010)

37. Teal, S.L., Rudnicky, A.I.: A performance model of system delay and user strategy selec-
tion. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 295–305. ACM
(1992)

38. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: The INTO-CPS
CO-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019). http://www.
sciencedirect.com/science/article/pii/S1569190X1830193X

39. Verhoef, M., Larsen, P.G.: Enhancing VDM++ for modeling distributed embedded real-time
systems. Technical report, Radboud University Nijmegen, March 2006. A preliminary ver-
sion of this report is available on-line at http://www.cs.ru.nl/~marcelv/vdm/

40. Vilim, R., Thomas, K.: Operator support technologies for fault tolerance and resilience. In:
Advanced Sensors and Instrumentation Newsletter, pp. 1–4. U.S. Department for Energy
(2016)

41. Wickens, C.D., Gutzwiller, R.S., Vieane, A., Clegg, B.A., Sebok, A., Janes, J.: Time shar-
ing between robotics and process control: validating a model of attention switching. Hum.
Factors 58(2), 322–343 (2016)

42. Zervakis, G., Pierce, K., Gamble, C.: Multi-modelling of Cooperative Swarms. In: Pierce, K.,
Verhoef, M. (eds.) The 16th Overture Workshop, pp. 57–70. Newcastle University, School
of Computing, Oxford, July 2018. TR-1524

http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
http://www.cs.ru.nl/~marcelv/vdm/

Migrating the INTO-CPS
Application to the Cloud

Hugo Daniel Macedo(B), Mikkel Bayard Rasmussen, Casper Thule,
and Peter Gorm Larsen

DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{hdm,casper.thule,pgl}@eng.au.dk,

mbrbayard@live.dk

Abstract. The INTO-CPS Application is a common interface used to
access and manipulate different model-based artefacts produced by the
INTO-CPS tool chain during the development of a cyber-physical sys-
tem. The application was developed during the INTO-CPS project. It
uses web-technologies on top of the Electron platform, and it requires
local installation and configuration on each user local machine. In this
paper, we present a cloud-based version of the INTO-CPS Application
which was developed while researching the potential of cloud technolo-
gies to support the INTO-CPS tool chain environment. The proposed
application has the advantage that no configuration or installation on a
local machine is needed. It makes full usage of the cloud resource man-
agement, and its architecture allows for a local machine version, keeping
the current local approach option open.

1 Introduction

In Cyber-Physical Systems (CPSs), computing and physical processes interact
closely. Their effective design, therefore, requires methods and tools that bring
together the products of diverse engineering disciplines. Without such tools, it
would be difficult to gain confidence in the system-level consequences of design
decisions made in any one domain, and it would be challenging to manage trade-
offs between them.

The INTO-CPS project created a tool chain supporting different disciplines
such as software, mechatronics, and control engineering. All have notations and
theories that are tailored to their needs, and it is undesirable to suppress this
diversity by enforcing uniform general-purpose models [4,5,10,12,13]. The goal is
to achieve a practical integration of diverse formalisms at the semantic level (per-
forming co-simulation of different models) and to realise the benefits in integrated
tool chains. In order to demonstrate that the technology works industrially, it
has been applied in very different application domains (e.g., [3,6,8,12,17,18]).

Practice shows that the integration of the diverse tools in the INTO-CPS
tool chain forces users to install several software packages and to configure their
desktops to satisfy the multiple dependencies required by the different tools.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 254–271, 2020.
https://doi.org/10.1007/978-3-030-54997-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_17

Migrating the INTO-CPS Application to the Cloud 255

To guide users, the INTO-CPS Application was developed. It includes a down-
load manager with links to specific versions of the tools, alongside other inter-
facing features allowing users to explore the tool chain.

The INTO-CPS Application is a cross-platform desktop app developed using
web-technologies enabled by the Electron framework1. Although it is built on
top of a modern framework and provides a good fit for its purpose, the solu-
tion has several drawbacks. For instance, when unzipped, the current version2

occupies 268 MB in size and comprises 11080 items. For an interface, those are
overwhelming numbers, which then cause the Microsoft Windows Malicious Soft-
ware Removal Tool to consume 50% of CPU time during a lengthy unzipping
operation. Moreover, as desktop specifications differ, variations in performance
are often observed, thus frustrating the user experience.

To deploy a lightweight web-based interface, alleviate the installation burden,
and to obtain a unified and improved performance, it is possible to migrate the
application to the cloud providing a lean, pre-configured and elastic resources
solution. As the current usage of the tool is seasonal, a cloud solution can launch
several co-simulation servers during the short periods of intensive usage and
provide a green approach (shutting down the co-simulation servers) during the
currently characteristic lengthy periods of downtime.

Another advantage is that the cloud is capable of redistributing its resources
on-demand, resulting in dynamic upscaling and downscaling, while resources are
only paid for when needed. All can be handled from the cloud provider’s interface
and allows for cloud users to measure their usage of cloud resources. In summary,
the cloud enables the INTO-CPS Application to be offered as a service.

This paper reports on work in progress towards the migration of the INTO-
CPS Application to the cloud, which originated in the work of [19]. The current
results consist of a prototype of a cloud solution consisting of several packages,
which was experimentally tested as a local service and as an Amazon Web Ser-
vices EC2 service. The test results indicate that a cloud solution for co-simulation
is feasible, yet whether it is possible to migrate the full set of features of the pre-
vious desktop is still an open question.

In the remainder of this paper, we provide background information in Sect. 2,
the cloud solution overview in Sect. 3, and experimental results in Sect. 4. Finally,
Sect. 5 contains concluding remarks and envisaged future work.

2 Background

This section briefly introduces the tool chain features and typical usage. In it,
we also provide details about the application software architecture to migrate.

2.1 The INTO-CPS Tool Chain

The INTO-CPS Application combines the capabilities of several tools that a
user interacts with to design components and to perform co-simulations of the
1 https://electronjs.org/.
2 into-cps-app-3.4.9-win32-x64.zip.

https://electronjs.org/

256 H. D. Macedo et al.

Fig. 1. Illustrates an overview of the INTO-CPS tool chain (taken from [11]). The
cloud icon labels the features that were migrated during our research work.

combined behaviour. The chain of tools is illustrated in Fig. 1, where the com-
ponents that have been migrated are labelled with a small cloud symbol.

At the core is the INTO-CPS Application itself, which provides a User Inter-
face (UI) to the tool chain, where the user is able to configure and launch co-
simulations and visualise the results, perform Design Space Exploration (DSE),
among other tasks.

Co-simulations are performed by the Co-simulation Orchestration Engine
(COE) called Maestro, which is used by the INTO-CPS Application [20,21].
The INTO-CPS Application is capable of optimising a CPS design using DSE
to carry out multiple co-simulations to search for optimal designs [9].

Modelio is a tool within the toolchain that supports the Systems Modelling
Language (SysML) and is capable of creating a range of different diagrams
describing the connectivity between the Functional Mock-up Units (FMUs). The
tool generates a configuration file (.mm) known as the Multi-Model describing the
local instances and connections between the FMUs variables, along with values
for parameters of the FMUs. This can be read by the INTO-CPS Application
to generate a co-simulation configuration file (.coe) that offers a configuration
of the co-simulation, specifying how it should be performed by the COE. This
file can be modified using the INTO-CPS Application, for instance specifying
changes to co-simulation parameters defaults (e.g. logging, live streaming, step
size). An experimental alternative to the SysML graphical overview of the con-
nection between FMUs directly inside the INTO-CPS Application is also under-
way [14].

Migrating the INTO-CPS Application to the Cloud 257

The INTO-CPS Interface The INTO-CPS OutputsThe INTO-CPS Projects

DSEs FMUs

Model-
Checking

Multi-
Models

Resources SysML

Test-Data-
Generation

Traceability

userMetric-
Scripts

.project.json README.md

Models

Fig. 2. Illustrates an INTO-CPS project structure and the INTO-CPS Application’s
representation of a project. Additionally, it illustrates the outputs that the INTO-CPS
Application and the COE, are capable of producing.

Modelio also produces a description of a model that can be imported by
the other tools within the INTO-CPS tool chain3. Overture, 20-sim, OpenMod-
elica, and RT-Tester import the model description to produce, for instance, a
skeleton of the FMU definitions to be completed by the user, enabling them to
interconnect using the Functional Mock-up Interface (FMI) standard to generate
compatible co-simulation FMUs [2] to be used by the INTO-CPS Application4.

2.2 The INTO-CPS Application

The application provides a UI to individual projects developed using the INTO-
CPS tool chain. To read project contents, the application uses a specific folder
structure, which is illustrated to the left in Fig. 2. A project has two essential
folders: the FMU folder and the Multi-models (MM) folder. The FMU folder
contains the project developed FMU’s files (.fmu), and the MM folder includes
the (.mm) and (.coe) files mentioned in Subsect. 2.1. The cloud migration of the
UI and project structure posed no major difficulty.

The project files are presented in the application left menu, as illustrated
within the dotted lines in the middle of Fig. 2. Using the left menu, users can
navigate to different files within an INTO-CPS project, and, for instance, by
clicking on a model, which is made using one of the tools of the INTO-CPS tool
chain, the application launches the corresponding tool with the corresponding

3 https://www.modelio.org/about-modelio/features.html.
4 Note that currently none of the modelling and simulation tools have been migrated,

but it is envisaged the HUBCAP project (see http://hubcap.au.dk) will establish a
collaboration platform in the cloud where this could be possible.

https://www.modelio.org/about-modelio/features.html
http://hubcap.au.dk

258 H. D. Macedo et al.

Git

NodeJS Chromium

Development Application frame

COE

JavaScript

TypeScript

Angular

ElectronJS

Third Party
INTO-CPS Application

Desktop

JavaScript
HTML
CSS

DSE

....

Gulp

Fig. 3. The technologies used in the desktop-version of the INTO-CPS Application
and their interactions.

model loaded. Although in a cloud application the first is easy to implement,
the latter is not straightforward.

Additionally, the INTO-CPS Application includes a download manager which
supports fetching the tools of the INTO-CPS tool chain, including the COE and
the DSE scripts, which must be downloaded to carry out simulations and DSEs.
In a cloud version, a COE and DSE scripts would be expected to be available
by default, and download links may be provided as well.

The INTO-CPS Application, in combination with the COE, generates a set
of simulation results stored in the MM folder. These results can be presented to
a user in multiple ways, as they are based on raw data files that describe the
FMUs interactions over time. A typical use case is to present live streaming of
the simulation using 2D plots or 3D animations. Both outputs are illustrated to
the right in Fig. 2, depending on the use of 20-sim, which in this case provides
the 3D capability. The 20-sim requirement posed an additional challenge during
the cloud migration research, and our work focused on 2D plots only.

Technologies of the INTO-CPS Application. The INTO-CPS Application is a
complex web app, making usage of several technologies. Figure 3 provides an
overview of the different technologies that power the INTO-CPS Application (in
the application frame), the software development environment, and the third-
party applications used.

Architecture of the Desktop Version of the INTO-CPS Application. The Type-
Script class architecture of the pre-existing desktop version of the INTO-CPS
Application caters for all INTO-CPS project features, thus we chose to reverse
engineer the architecture, which we generated from the codebase, as a top-down
architecture for the INTO-CPS GUI. This is still work in progress, and our
research focuses on a subset (project management plus launch and visualisation
of co-simulation) of the desktop version features. Figure 4 is generated from the

Migrating the INTO-CPS Application to the Cloud 259

COE Service

Init

DownloadManager FMUBuilder

MM Config

MM Component

MM view

COE Simulation
Component

COE Config
Component

COE view

DSE Config

DSE view

Traceability
Config

Traceability
Overview

Traceability
view

HandlerBrowser

Fetch

New

Rename

BottomProj MainMenu

FMU

Preview COE Process

System Utils

IntoCpsApp

Settings
Service

Fig. 4. Illustrates an extract of an architecture diagram of the INTO-CPS Application
codebase. Note that the dotted lines illustrate relations with classes that are shared
across the entire application, the coloured lines are only for distinguishing between
lines and carry no meaning.

code base and illustrates its monolithic approach. The diagram also shows the
nested relationship found within a part of the INTO-CPS Application.

Allowing multiple users to commonly access and use the desktop application
poses a problem, due to the usage of global classes and variables. Users could
configure settings on the cloud, potentially affecting other users’ experience, thus
a cloud version requires an architectural redesign.

Fig. 5. Illustrates a comparison between the new and the old user interface, with the
desktop version illustrated on the left and the cloud version illustrated on the right.

260 H. D. Macedo et al.

3 The INTO-CPS Cloud Application

A cloud solution allows users to interact with the application from a wider range
of devices because it delegates the computationally intensive tasks to the cloud
devices. Therefore, it made sense to explore visual re-designs during the migra-
tion process reported in [19]. The result is a new user interface, illustrated in
Fig. 5, and the cloud application presents a modern visual design with increased
colour contrast.

3.1 Use-Cases of the Cloud Prototype

In the cloud version, users are able to create accounts, to add projects, to con-
figure co-simulations by modifying the MM (.mm) configurations and the cor-
responding co-simulation configuration (.coe) files, and to run and visualise a
co-simulation. The explored use cases are illustrated in Fig. 6.

Users must sign up to access projects, which can be either uploaded to the
cloud or an existing project can be selected and configured. The two types of
configuration can be carried out and saved, and lastly, a co-simulation can be
started and the results viewed while a co-simulation is executing.

Actor

Login

Signup

Get available
projects

Upload
project

Configure
MM

Save
MM

Configure
CoSim

Save
CoSim

Simulate Stop

View Results

Select Project

Request New
Password Logout

Fig. 6. Illustrates the use-case diagram of the users interacting with the cloud-based
version of the INTO-CPS Application.

The desktop version of the INTO-CPS Application does not include authen-
tication and user registration, nor does it provide the ability to upload and store
files or projects in a cloud server for long term use. These functionalities were
added and allow users to be recognised by their unique ID and map the users to
their uploaded files.

Furthermore, the addition enabled the management of COE servers, letting a
user reserve a COE for the time it takes to carry out a co-simulation. Addition-
ally, it enables keeping track of the users and provides each with an encapsulated
experience, a trusted platform that safely handles confidential data.

Migrating the INTO-CPS Application to the Cloud 261

3.2 Architecture of the Cloud Version of the INTO-CPS
Application

The software architecture of the developed prototype follows the micro-services
approach. The application is structured as a collection of four web services, four
distributed processes hosted in potentially different nodes connected using the
popular TCP/IP protocol suite, namely:

– a frontend server providing the user interface (dynamic web application),
– a backend server providing a public Application Programming Interface (API)

to be called by the frontend when core functionality is to be executed (authen-
tication, storage, co-simulation service management),

– a COE server to be scaled up and down on demand to provide an encapsulated
simulation server to each user, and

– a web server functioning as a reverse proxy channelling traffic directly to the
front-end.

The joint behaviour of the application as a unit, as experienced by the user,
is, in fact, an illusion emerging from the result of intrinsic communication coor-
dination mediated through the reverse proxy web server. The communication
involves an amalgam of HyperText Transfer Protocol (HTTP), Representational
State Transfer (REST) API, and ad hoc protocol connections.

The joint behaviour experience starts when a user points its browser to the
web server proxy, which itself redirects the client to the frontend. Further inter-
action with the user interface leads to further communication via the proxy
with the backend service, which itself communicates with the other services, for
instance, with the servers in the pool of COEs via an ad hoc JavaScript Object
Notation (JSON) over HTTP protocol defined API.

3.3 Technologies of the Cloud-Based INTO-CPS Application

To run the four micro-service architecture described in Sect. 3.2 in the cloud,
the cloud solution uses Docker5 to easily package the different application com-
ponents in the form of containers, which also eases the burden of executing the
application in a suitable environment (with libraries. . .).

Figure 7 provides an overview of the different technologies that take part
in the cloud-based INTO-CPS Application and may be compared with Fig. 3,
where the desktop version technologies are depicted.

The cloud solution consists of four Docker containers, one for each micro-
service: the frontend, the backend, the COE, and the reverse proxy:

– The frontend uses the Angular framework6 to provide the web application
with the visual elements of the INTO-CPS Application, and it connects to
the backend to handle more extensive tasks.

5 https://docs.docker.com/get-started.
6 See https://angular.io/.

https://docs.docker.com/get-started
https://angular.io/

262 H. D. Macedo et al.

Git

NodeJS

Development Cloud: AWS (IaaS)

COE

TypeScript

Angular

Third Party
INTO-CPS Application

Browser

DSE

....

Backend

Frontend

TypeScript

Docker

Docker

Docker-
Compose

Docker

Docker

Firebase

Docker

Docker

Docker

NGINX

NodeJS

Fig. 7. Illustrates the technologies used in the cloud-based INTO-CPS Application
and their interaction. Artefacts marked in grey mark technologies that did not migrate
during the first migration iteration, but are expected to be easily executed using Docker.

– The backend is a server developed using NodeJS, providing a REST API
offering the functions and operations made available to users via the frontend.

– The COE container deploys a pool of COE instances.
– The reverse proxy is provided via an NGINX7 web server to securely interface

the micro-services with the internet. Users access the cloud application using
a browser to connect to the NGINX instance, which, by default, redirects the
user to the frontend.

The different Docker containers are managed and started by the docker-
compose tool8, which orchestrates the build and launch of the Docker containers.

To authenticate users, the backend uses an API provided by Firebase, which
offers a database and a preconfigured authentication module, that allows users
to register for the platform and login. Firebase, therefore, stores the user cre-
dentials, and handles the user registration and access, providing each user with
a unique identifier, which is used by the INTO-CPS Application to distinguish
between users.

In our research experiments, all the Docker components were hosted on an
IaaS offered by Amazon Web Services’ EC2 instance9 to scale resources to the
necessary amount on demand. The EC2 service offers a virtual Linux server
running Docker.

7 https://www.nginx.com/resources/glossary/nginx.
8 https://docs.docker.com/compose/.
9 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.

https://www.nginx.com/resources/glossary/nginx
https://docs.docker.com/compose/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

Migrating the INTO-CPS Application to the Cloud 263

3.4 Micro-services Details

This section describes the details of the architectural structure of the two micro-
services and the COE container that were developed for the cloud solution. The
micro-services are based on the monolithic architecture, that was illustrated in
Fig. 4 and we embedded the desktop COE into a container.

Micro-service: Frontend. The frontend of the cloud-based INTO-CPS Appli-
cation must provide the different views found in the desktop version of the
INTO-CPS Application. Angular is used for some of the visuals elements found
on the desktop version of the INTO-CPS Application. It was therefore chosen
as the frontend framework of the cloud-based solution. The Angular framework
is component-based development, and the frontend components are illustrated
in Fig. 8.

The components and services included in the frontend are combined within
the frontend server found at the top of Fig. 8, which acts as a starting point for
the micro-service. The different components carry out different tasks:

– The management component contains the logic associated with user manage-
ment (signup, login. . .), thereby offering an authentication unit.

– The menu component contains the components that allow a user to select
between uploaded projects and present their content.

– The context component allows the configuration files to be presented as GUI
offering users a useful configuration method. Additionally, it allows users to
start a co-simulation and visualise the results.

– The communication component allows the frontend to interact with the back-
end, as a service. It offers a connection to the REST API offered by the
backend, and bridges the components depicted in Fig. 8 and Fig. 9.

Micro-service: Backend. The backend of the cloud-based INTO-CPS Appli-
cation contains different handlers each connected to the server element that
offers the REST API for the frontend. Figure 9 illustrates the components imple-
mented, including the handlers, and the desktop version components yet to be
migrated in grey.

The backend contains three handlers: the COE handler, storage handler, and
the authentication handler :

– The authentication handler manages user access, resourcing to Firebase,
which is a service provided by Google, which stores the user credentials
securely, and allows for an easy authentication integration.

– The storage handler manages the files that are uploaded by the individual
users. It prevents users from accessing unauthorised files and enables the user
to upload files and entire projects to the cloud.

264 H. D. Macedo et al.

Frontend Server

Context Component Menu Component
Management
Component

Status Component
Communication

Component

List projects

List selected
project context

Project Management
import / export / delete

(git)

Project Modification
Compoenent

Display
Json content

Modify Json

Start simulation

Simulation
visualization

COE status

COE Console

COE Log

Trace Daemon Log

User Authentication

User Settings

Communication
Service

Backend
REST

REST

Fig. 8. Illustrates the architecture diagram of the frontend of the cloud solution, the
grey boxes were excluded during the first migration iteration.

– The COE handler manages the reservation of the COEs and provides the
communication with each COE. The handler registers users and checks if a
COE is available. If a COE is available, it adds the user and virtual IP of
that COE to a ledger indicating that the COE is occupied. The handler takes
care of the simulation status and data and provides the necessary information
back to the frontend. Once the backend receives a notification from the COE
asserting that a simulation has ended, it removes the user and the COE from
the ledger freeing the COE for other users.

Cloud Challenges to the COE Handler . If all COEs are busy, users are
required to wait, as the co-simulation only starts if a COE is available. Our
solution is not ideal, yet the cloud allows several solutions to this challenge. A
cloud approach is to offer subscription-based dedicated COEs while keeping the
free COEs for new users that want to try the INTO-CPS application.

If a user’s COE breaks during a co-simulation, the COE remains reserved,
preventing the user to reserve another one. This issue can be addressed using
the feedback that the backend receives from the COE to remove the user from
the ledger.

COEs Container and Pooling. The COE container wraps the COE in a
suitable java runtime, and a shell script is used to launch a pool of COEs. The
pool launching is carried out using the features offered by the local network
creation features of docker-compose, which provides each COE with a unique
virtual IP, rather than a fixed IP with a different port number, allowing better
encapsulation and security management.

Migrating the INTO-CPS Application to the Cloud 265

SVN

Server

DSE Handler COE Handler Storage Handler
Authentication

Handler

Project Settings

Database

Project
Management

Git Handler

Create Project Upload Project

Download Project

Download File

Upload File

Clone / Pull Push

Get Project Data Update / Create File

Frontend

REST

REST

Fig. 9. Illustrates the components that exist on the backend of the cloud solution, the
grey boxes were excluded in the first migration iteration.

During the launch of the container, docker-compose defines a folder on the
cloud environment that the backend and the pool of COEs share. This folder is
used to provide a direct sharing of co-simulation required files.

4 Implementation, Experiments, and Results

We implemented the migration during the project reported in [19]. The software
development was carried out over 80 days including the migration of existing
components (project management UI plus co-simulation launching and visual-
ization UI) and the complete development of the many cloud-specific components
(authentication, encrypted web connection, shared COEs pool. . .) absent in the
desktop version.

Our experiments confirm that the migration deals with the complexity of
local tool configuration problems for the INTO-CPS Application, COE, and their
dependencies (e.g.: Java runtime). Given the elasticity of the cloud resources,
the uniform user experience in terms of performance was also achieved with the
migration. Nevertheless, the solutions to those problems come at the cost of
operating the app in the cloud beyond our experiments.

Our research results also included a study on cloud deployment options [19].
We considered at least two possibilities to migrate a desktop application to the
cloud: a private hosting (local machine installed with cloud-like services) or a
cloud hosting (provided by any of one of the major vendors). In the following,
we present the details about two experiments one for each of the options.

Cloud Hosting. We tested the cloud option of the INTO-CPS Cloud Application
by deploying the services into an AWS machine running in its EU (Frankfurt)
region. We used the AWS console to launch a Canonical, Ubuntu, 18.04 LTS,
amd64 bionic image running on a single Amazon EC2 Instance Type t2.micro

266 H. D. Macedo et al.

providing an Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40 GHz with 1 GB of mem-
ory hardware platform. The Docker version was 18.09.7 and the docker-compose
version was 1.23.1. In the cloud setup, we launched one COE only and per-
formed single-user tests. To launch the instances, we used: docker-compose up.
The average cost was 6$ per month.

Private Hosting. We tested the private server option of the INTO-CPS Cloud
Application in a local virtual machine used to host web services at Aarhus Uni-
versity. We launched a Linux Debian 4.19.0-6-cloud-amd64 x86 64 GNU/Linux
operating system on a virtual Intel Core Processor (Haswell, no TSX, IBRS) @
2.4 GHz with 4 GB of memory) hardware. The Docker version was 19.03.2 and
the docker-compose version was 1.24.1. During the experiment, we launched 5
instances of the COE resourcing to: docker-compose up --scale coe=5. The
5 COEs version allowed multiple user access and to test the COE Pool man-
agement functionality defined in the backend. Costs are not computable as the
hosting cost is shared with other services.

Performance Results. We observed no difference in performance between the
Private and the Cloud hosting in terms of timings regarding page loading and
co-simulation performance. During our experiments, when loading the landing
page, there were around 15 requests performed by the browser, which total in
14.10 MB to be downloaded by the client and take an average of 2.5 s. Compared
to the huge size app size and the lengthy process of unzipping of the Desktop
version, the cloud version seems more attractive. Nevertheless, the two apps are
not comparable as one provides more and different features than the other.

Regarding the memory resources usage, the results between the Private and
the Cloud deployments diverged because there was a time gap between each, and
the Docker configurations were optimized for memory reduction in the posterior
Private deployment. In Table 1 we display the memory usage results. For each
of the options, we show the memory occupation for the Docker images (roughly
corresponding to the folder containing the desktop app) and the sizes of the con-
tainers, which are created while launching the cloud app using docker-compose.

The deployment in the Private hosting totals 570 MB in memory occupation.
In that total, the COE occupies 318 MB. Therefore, for a fair comparison with
the Desktop application (COE jar not included), we obtain a total of 252 MB
occupied to serve the application. This number is slightly better, yet there are
several missing features in the cloud version. In addition, each image contains a
full snapshot of an operating system root and running environment beyond the
application code. Thus, the numbers are not comparable, but it is fair to claim
that it is possible to store the cloud version with roughly the same amount of
space spent by a single user of the desktop app. If the cloud app reaches the
maturity to serve thousands of users, the gains are compelling.

The deployment in the Cloud hosting environment is more expensive in terms
of memory consumption due to the deployment of larger Docker images contain-
ing unnecessary resources that were later discarded in the second and optimized
Private hosting experiment.

Migrating the INTO-CPS Application to the Cloud 267

Table 1. Application size for the Cloud hosting experiment with a single COE and for
the Private hosting experiment with 5 COEs. The results are according to the output
of docker system df -v and express the size of the images and of the containers
themselves.

Experiment Type Total Active Size (MB)

Cloud Images Proxy 1 1 20

Frontend 1 1 53

Backend 1 1 344

COE 1 1 892

Total 4 4 1246

Containers Total 4 4 3.3

Private Images Proxy 1 1 15

Frontend 1 1 49

Backend 1 1 188

COE 1 1 318

Total 4 4 570

Containers Total 8 8 41

5 Concluding Remarks and Future Work

The INTO-CPS Application was migrated from a locally installed desktop appli-
cation to a cloud-based application that users can access and interact with using
a web browser. As it is discussed in Sect. 4, the cloud solution mitigates the
problems related to the local installation and configuration requirement of the
Desktop app. The results indicate the cloud solution improves storage efficiency,
running time, and provides a uniform experience to its users.

Although the cloud-based INTO-CPS Application is still missing some of the
functionality available in the desktop version, as detailed in Sect. 2.1, we claim
that the result is a reasonable proof-of-concept and that our research clarified
the feasibility boundaries of the migration.

The cloud-based INTO-CPS Application is the first and only tool of the
INTO-CPS tool chain to migrate to the cloud. The result illustrates that such
a migration is possible, even though only a fraction of the application was
migrated. An additional outcome is that it also offers users a configuration free
experience, and directs the developers to focus on a single OS, rather than mul-
tiple OSs.

An alternative approach to offering the previously existing desktop version
of the application as a cloud application would be to provide a cloud running a
virtual machine and with remote desktop access to users. This approach requires
additional resources due to the overhead of the virtualised OS, as each user
would require an isolated OS without a connection to other users’ files for both
operational and data security reasons. This becomes a challenge in terms of
resources needs and costs.

268 H. D. Macedo et al.

5.1 Future Work

The cloud solution misses fundamental additional functionalities to be made
available for users. The intent is also to use the co-simulation technology
described here in a digital-twin setting with live streaming of data [7]. The
application developed in [19] is a prototype. As it is usual in the outcomes of
the research projects of this kind, there are several improvements that need to
be in place before the prototype reaches a fully functional state. The immediate
needs are to improve the test coverage (unit tests are sparse and end-to-end
testing is minimal). Also, current users are accustomed to high-availability and
fault-tolerant web services, therefore the need to perform a fault analysis and
develop a fault-tolerant architecture (for instance adapting the one in [15] where
the several services are monitored and new Docker instances are launched in case
of failures).

The INTO-CPS Application proposes a new architecture, which allows the
application to offer a frontend that can be expanded allowing new functionalities.
We expect to see improvements in visualisation capabilities with the opening of
new research projects on new alternatives for co-simulation configuration inside
the INTO-CPS Application, like the one in [14].

A cloud solution poses substantial security risks. There is a need to develop
a secure platform that encrypts data and guarantees allows authorised users to
decrypt it, as co-simulations often involve sensitive data. Also, the shift from the
desktop running environment to a cloud co-simulation environment opens the
possibility for cyber-attacks and malware deployment embedded in the libraries
to be launched by the COE. A continuation of the work in [16] to cover FMUs
is a possibility.

As the cloud is billed depending on the used resources, resource measurement
and a payment wall must be implemented (or contracted to a cloud provider) to
ensure extensive users pay the associated costs.

Another possible extension is the inclusion of FMU static checkers as the one
proposed in [1], to prevent running co-simulations, and thus usage and billing of
resources, that are known in advance to be bound to non-compliant FMUs.

Another advantage of the new architecture is that the cloud application was
developed with the possibility for deployment both in the cloud and in a desktop.
Such work is to be taken in the future, as it requires overhead for developers, but
it can be handled using a builder tool such as Gulp. The previous desktop-based
approach is most useful when using the app in environments where cloud access
is restricted.

In the near future, we expect to port more features from the desktop version
into the cloud, for instance porting the grey boxes in Fig. 7, Fig. 8, and Fig. 9. In
the following, we provide a priority list of features to be added to the application.

– Logging: The COE produces two logs, a status of the simulation and a sta-
tus of the COE. Furthermore, the Traceability Daemon also produces a log.
The logs must be presented for the users when connected to either of the
technologies.

Migrating the INTO-CPS Application to the Cloud 269

– Download Manager: Allowing the users to download the tools found within
the INTO-CPS toolchain. This requires changes to offer the files for download
using the user’s browser.

– Single File Upload: Users are currently only capable of uploading entire
projects. Uploading individual files must be handled to allow users to append
an FMU or other files to an existing project.

– DSE, Traceability, and Test Case Generation: Those features introduce new
technologies, which must be developed. Additionally, this would require fur-
ther development on the backend and frontend and their Docker containers
to get the technologies to work.

– git: Used to manage project folders as git repositories using the supporting
tooling. Handling multiple users and their git credentials is a sensitive issue
in a cloud setup, thus requiring in-depth analysis and development.

Acknowledgements. We would like to thank all stakeholders that have been involved
in the development of the INTO-CPS Application. We acknowledge the EU for funding
the INTO-CPS project (grant agreement number 644047) which was the original source
of funding for the INTO-CPS Application. We are also grateful to the Poul Due Jensen
Foundation, which has supported the establishment of a new Centre for Digital Twin
Technology at Aarhus University, which will take forward the principles, tools and
applications of the engineering of digital twins. Finally, we would like to thank Nick
Battle and the anonymous reviewers for valuable feedback on earlier versions of this
paper.

References

1. Battle, N., Thule, C., Gomes, C., Macedo, H.D., Larsen, P.G.: Towards static
check of FMUs in VDM-SL. In: Gamble, C., Couto, L.D. (eds.) The 17th Overture
Workshop: New Capabilities and Applications for Model-based Systems Engineer-
ing. Newcastle University Technical Report Series CS-TR-1530, Porto, Portugal,
pp. 17–31, October 2019

2. Brosse, E., Quadri, I.: SysML and FMI in INTO-CPS: Integrated Tool chain for
model-based design of Cyber Physical Systems, p. 37, December 2017

3. Couto, L.D., Basagiannis, S., Ridouane, E.H., Mady, A.E.-D., Hasanagic, M.,
Larsen, P.G.: Injecting formal verification in FMI-based co-simulations of cyber-
physical systems. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729,
pp. 284–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-
1 20

4. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-physical
systems design: formal foundations, methods and integrated tool chains. In: For-
maliSE: FME Workshop on Formal Methods in Software Engineering, ICSE 2015,
Florence, Italy, May 2015

5. Fitzgerald, J., Gamble, C., Payne, R., Larsen, P.G., Basagiannis, S., Mady, A.E.D.:
Collaborative model-based systems engineering for cyber-physical systems – a case
study in building automation. In: Proceedings of INCOSE International Sympo-
sium on Systems Engineering, Edinburgh, Scotland, July 2016

https://doi.org/10.1007/978-3-319-74781-1_20
https://doi.org/10.1007/978-3-319-74781-1_20

270 H. D. Macedo et al.

6. Fitzgerald, J., Gamble, C., Payne, R., Larsen, P.G., Basagiannis, S., Mady, A.E.D.:
Collaborative model-based systems engineering for cyber-physical systems, with a
building automation case study. In: INCOSE International Symposium, vol. 26,
no. 1, pp. 817–832 (2016)

7. Fitzgerald, J., Larsen, P.G., Pierce, K.: Multi-modelling and co-simulation in the
engineering of cyber-physical systems: towards the digital twin. In: ter Beek, M.H.,
Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and
Tools, and Back. LNCS, vol. 11865, pp. 40–55. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30985-5 4

8. Foldager, F., Larsen, P.G., Green, O.: Development of a driverless lawn mower
using co-simulation. In: 1st Workshop on Formal Co-Simulation of Cyber-Physical
Systems, Trento, Italy, September 2017

9. Gamble, C.: Design Space Exploration in the INTO-CPS Platform: Integrated
Tool chain for model-based design of Cyber Physical Systems. Aarhus University,
October 2016

10. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS Project. In: CPS Data Workshop, Vienna, Austria, April
2016

11. Larsen, P.G., Fitzgerald, J., Woodcock, J., Gamble, C., Payne, R., Pierce, K.:
Features of integrated model-based co-modelling and co-simulation technology. In:
Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 377–390. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 26

12. Larsen, P.G., Fitzgerald, J., Woodcock, J., Lecomte, T.: Trustworthy Cyber-
Physical Systems Engineering, Chapter 8: collaborative modelling and simula-
tion for cyber-physical systems. Chapman and Hall/CRC, September 2016. ISBN
9781498742450

13. Larsen, P.G., Fitzgerald, J., Woodcock, J., Nilsson, R., Gamble, C., Foster, S.:
Towards semantically integrated models and tools for cyber-physical systems
design. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 171–
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 13

14. Legaard, C.M., Thule, C., Larsen, P.G.: Towards Graphical Configuration in the
INTO-CPS Application. In: Gamble, C., Couto, L.D. (eds.) The 17th Overture
Workshop. Newcastle University TR CS-TR-1530, Porto, Portugal, pp. 1–16, Octo-
ber 2019

15. Macedo, H., Nilsson, R., Larsen, P.: The harvest coach architecture: embedding
deviation-tolerance in a harvest logistic solution. Computers 8(2), 31 (2019)

16. Macedo, H.D., Touili, T.: Mining malware specifications through static reachability
analysis. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 517–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40203-6 29

17. Neghina, M., Zamrescu, C.B., Larsen, P.G., Lausdahl, K., Pierce, K.: A dis-
crete event-first approach to collaborative modelling of cyber-physical systems.
In: Fitzgerald, T.O. (ed.) The 15th Overture Workshop: New Capabilities and
Applications for Model-based Systems Engineering. Newcastle University, Comput-
ing Science. Technical Report Series. CS-TR- 1513, Newcastle, UK, pp. 116–129,
September 2017

https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/978-3-319-74781-1_26
https://doi.org/10.1007/978-3-319-47169-3_13
https://doi.org/10.1007/978-3-642-40203-6_29
https://doi.org/10.1007/978-3-642-40203-6_29

Migrating the INTO-CPS Application to the Cloud 271

18. Pedersen, N., Lausdahl, K., Sanchez, E.V., Larsen, P.G., Madsen, J.: Distributed co-
simulation of embedded control software with exhaust gas recirculation water han-
dling system using INTO-CPS. In: Proceedings of the 7th International Conference
onSimulation andModelingMethodologies,Technologies andApplications (SIMUL-
TECH 2017), Madrid, Spain, pp. 73–82, July 2017. ISBN 978-989-758-265-3

19. Rasmussen, M.B.: A process for migrating desktop applications to the cloud. Mas-
ter’s thesis, Aarhus University, Department of Engineering, June 2019

20. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: The INTO-
CPS co-simulation framework. Simul. Modell. Pract. Theory 92, 45–61 (2019).
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X

21. Thule, C., et al.: Towards reuse of synchronization algorithms in co-simulation
frameworks. In: Co-Sim-19 workshop, September 2019

http://www.sciencedirect.com/science/article/pii/S1569190X1830193X

Towards a Static Check of FMUs
in VDM-SL

Nick Battle1(B), Casper Thule1, Cláudio Gomes2, Hugo Daniel Macedo1,
and Peter Gorm Larsen1

1 DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{casper.thule,hdm,pgl}@eng.au.dk

2 University of Antwerpen, Antwerp, Belgium
claudio.gomes@uantwerp.be

Abstract. In order to ensure that the co-simulation of Cyber-Physical
Systems (CPSs) is possible with as wide a variety of tools as possible, a
standard called the Functional Mockup Interface (FMI) has been defined.
The FMI provides the means to compute the overall behaviour of a cou-
pled system by the coordination and communication of simulators, each
responsible for a part of the system. The contribution presented in this
paper is an initial formal model of the FMI standard using the VDM
Specification Language. Early results suggest that the FMI standard
defines a number of FMU static constraints that are not enforced by
many of the tools that are able to export such FMUs.

1 Introduction

In Cyber-Physical Systems (CPSs), computing and physical processes interact
closely. Their effective design therefore requires methods and tools that bring
together the products of diverse engineering disciplines [19,20]. This has been
the motivation for establishing common co-simulation technologies to enable
full system evaluation through the interconnection of individual simulators [10].
One of the most widely adopted simulation interfaces is the Functional Mock-up
Interface (FMI) standard [2,3,7].

In the context of the FMI standard, the simulators are encapsulated with
their corresponding models in an executable format. These are denoted as
Functional Mock-up Units (FMUs). The FMI interface establishes which opera-
tions, and parameters, can be used to communicate with the FMUs.

While the FMI allows for the integration of many simulation tools, it under-
specifies the interaction protocol with the simulators. That is, the same pair
of simulators can synchronise data in different ways, each leading to a poten-
tially different result. This is a feature and not a limitation: the FMI steering
committee recognised that, in order to produce reliable results, different sets of
simulators (and the corresponding models) may require different synchronisation
algorithms. In fact, finding the best algorithm for a particular co-simulation is
one of the main research challenges in this field [1,8,9].

N. Battle—Independent
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 272–288, 2020.
https://doi.org/10.1007/978-3-030-54997-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_18

Towards a Static Check of FMUs in VDM-SL 273

However, as recognised in a recent empirical survey [16], “The most acknowl-
edged challenge is related to practical aspects. These include: faulty/incomplete
implementations of the FMI standard, ambiguities/omissions in the specification
and documentation of the FMUs, . . . ”. We argue that one of the contributing
factors is the fact that the FMI specification is semi-formal, and that the ambi-
guities lead to different implementations of FMUs. This is a challenge for the
orchestration of a collection of FMUs in a semantically sound fashion [17].

Contribution. We propose to formalise what the FMI standard actually states,
and this paper is an attempt at moving towards a common agreement about the
static constraints for FMUs used for co-simulation in such a formal specification.
This work has been released as an open source tool that is able to rigorously
test the static validity of FMUs. We present early empirical results regarding the
application of this tool to the FMI Cross Check repository, the repository used
to evaluate whether tools successfully support the standard. We hope to be able
to later extend this with the different allowed dynamic semantics interpretations
of the actual co-simulation engines.

The rest of this paper starts with background information for the reader in
Sect. 2. This is followed by Sect. 3 which provides an overview of the VDM-SL
formalisation and Sect. 4 which summarises the results discovered by using the
model to analyse FMUs. Finally, Sect. 5 provides a few concluding remarks and
comments on the future directions expected for this work.

2 Background

2.1 The Functional Mockup Interface

The FMI standard is purely concerned with specifying the packaging of, API
interface to, and common configuration of individual FMUs. It does not define
what particular FMUs model, or the different ways of coordinating the simulation
of a collection of FMUs.

By offering a common standard for simulated components, the FMI standard
promotes interoperability between a wide variety of tools for exploring the cre-
ation of systems that are composed of multiple interacting components. Today1

there are around 50 independent tools that conform to version 2.0 of the co-
simulation part of the FMI standard. This includes the INTO-CPS tool chain
which integrates several tools that are able to deal with FMUs [4,5,13–15].

The FMI standard has both static and dynamic semantics, though both are
defined informally. The static semantics are concerned with the configuration of
FMUs according to the rules defined in the standard. The dynamic semantics are
concerned with the behavioural constraints placed on FMUs when a sequence
of API calls are made to them, as defined in the standard. The current work is
only concerned with the formal definition of the static semantics.

1 From https://fmi-standard.org/tools/, as of August 2019.

https://fmi-standard.org/tools/

274 N. Battle et al.

2.2 VDM Modelling

VDM is a long established formalism for the specification and analysis of discrete
systems [6,12]. A VDM specification comprises a set of data types, constant
values, functions, state information and operations that describe the functional
behaviour of a system. A specification relies heavily on constraints to define the
correct behaviour of the model, for example via data type invariants, function
preconditions and postconditions, state data invariants and so on.

A VDM function is an expression over its arguments which returns a result;
if the same arguments are passed, the same result is returned. A type invariant
is a total function over the possible values of the type, returning “true” for all
valid values.

A VDM annotation is a comment in the source of the model which allows
user-written plugins to observe values on the fly (but not change them) and
affect the behaviour of analyses (e.g., suppressing or generating warnings). By
annotating subclauses of a complex expression, a VDM function can be traced
or report multiple problems without affecting the behaviour or meaning of the
specification.

3 The VDM Model of the FMI Standard

The VDM model presented here is based on version 2.0.1 of the FMI standard,
dated October 2nd 2019.A later version 3.0 of the standard is being worked on,
but that has not yet been released. Most tools work with the 2.0 standard, so
this is the most useful version to formalise initially. Release 2.0.1 of the standard
added clarification and corrected minor errors, rather than adding functionality
to 2.0.

The FMI standard defines how to configure individual FMUs and it also
defines a common API for interacting with all FMUs. The VDM model cur-
rently only defines the constraints on the static configuration, though a formal
specification of the API semantics is a natural extension of this work. The cur-
rent work builds on earlier work [11] that defined the static semantics of part of
the FMI standard.

3.1 The FMI V2.0 XSD Schema

The FMI standard defines an XML configuration file format for FMUs. The
structure of the file is defined using an XSD schema with annotations, combined
with an informal description of the meaning and constraints on the various fields
in the document text. The XSD defines basic constraints, such as the xs:types
of fields, and the minOccurs and maxOccurs attributes for repeating or optional
elements and attributes. An example XML extract is shown in Listing 1.1.

Towards a Static Check of FMUs in VDM-SL 275

Listing 1.1. Extract of an FMU configuration XML file.
<Sca la rVar i ab l e

name="h"
va lueRefe rence="0"
c au s a l i t y="output "
v a r i a b i l i t y=" cont inuous "
i n i t i a l=" exact ">

<Real
s t a r t="1"
declaredType="Pos i t i on "/>

</ Sca l a rVar i ab l e>

A tool has been developed in this work to parse FMU configuration XML files
and convert them to the equivalent in VDM, so that specific FMU configurations
may be checked automatically using VDM constraint checking tools. The FMI
standard deliberately defines an XSD schema that is very simple, and this makes
the VDM translation straightforward. The authors are not aware of any XML
constraint checking technology that has the power and flexibility of a VDM
model, especially as the VDM formalism has the potential to define both the
static and the dynamic semantics, which is future work presented in Sect. 5.

3.2 The VDM-SL Modelling Approach

The VDM model is currently written in the VDM-SL dialect. This is the simplest
dialect, without support for object orientation or concurrency, but it is compat-
ible with more sophisticated dialects if their capabilities become essential. The
authors hope that the simplicity of the VDM-SL dialect makes the formal FMI
specification more readily accessible to domain experts who are not familiar with
the VDM notation.

Since it currently only formalises the XSD schema, the VDM model is
comprised entirely of type definitions with supporting invariant functions. The
type definitions correspond to the XSD element definitions (and have the same
names); the invariants correspond to the constraints that are added by the XSD,
its informal annotations and descriptions in the main text. The value of the VDM
specification is therefore almost entirely contained in the invariant functions,
with their ability to unambiguously specify the rules concerning the construc-
tion of each XML element.

The most common way to construct a VDM model of a static system is to
define types with invariants as an explicit property of each type. This means
that it is not possible to construct a value of the type which does not meet the
invariant constraints. Unfortunately, when using such a model to test real FMU
XML configurations, the VDM tools stop when they encounter the first invariant
violation (for example, a variable start attribute which is not between its min
and max values). Although this is reasonable behaviour (the start attribute is
definitely wrong), there may well be other errors in the XML that the VDM tools
do not report until the first problem is resolved and the specification re-tested.

276 N. Battle et al.

So to make the VDM model more useful, it defines types without explicit
invariants, and provides a number of (nested) isValid... functions that do
the invariant checks and report all of the errors that they encounter. This is a
similar approach to that taken in [11]. To report all of the errors, the normal
boolean pattern of check1 and check2 and check3 and ... is converted to
a style that uses a set of boolean results, {check1, check2, check3, ...} =
{true}. This causes the evaluation to perform every check in the set, and only
fail at the end, if at least one of the checks fails.

3.3 VDM Annotations

The invariant checking functions described above need to be able to capture
which sub-clauses are in error, and then carry on with the evaluation. To enable
this, a new annotation was developed as part of this work, called @OnFail.
The annotation has to be applied to a bracketed boolean sub-clause. If (and
only if) the sub-clause returns false then a string with embedded arguments is
printed to the console (the arguments work like printf, with “%s” placeholders
being substituted for the arguments that follow). The evaluation of the function
overall is not affected by this. For example:

That produces the following result, when the function is evaluated from the
console:

> print checkMinMax(1, 10, 5)
= true

> print checkMinMax(1, 10, 123)
2.2.7 start (123) must be >= min (1) and <= max (10)
= false

> print checkMinMax(10, 1, 123)
2.2.7 min (10) must be <= max (1)
2.2.7 start (123) must be >= min (10) and <= max (1)
= false

Note the set-comparison pattern. This will always perform both checks in the
set. If either fail, the corresponding message(s) will be written to the console,
but @OnFail cannot affect the overall result (which will be false). If the tests in
the set pass, the @OnFail annotation will not be triggered.

Towards a Static Check of FMUs in VDM-SL 277

The number at the start of the messages is (by convention) a link to the FMI
standard section number where the corresponding rule is defined. This linkage
could be strengthened in future.

3.4 The Top Level Structure - FMIModelDescription

The top level XML element in the configuration of an FMU is called FMIMod-
elDescription. The equivalent structure in VDM-SL is as follows:

The commented XSD section references refer to the section in the FMI stan-
dard where the corresponding XML element types are defined. The names of
the VDM-SL types are the same as the XSD types. Note that most fields are
optional types (that is, the type is shown in [brackets] and may have the value
nil, indicating “no value”, which is the same as the absence of an element in
XML).

In addition to this type definition, a validation function is defined, which
applies all of the checking rules recursively to each of the fields of an FMIMod-
elDescription. The function (truncated for brevity) is as follows:

278 N. Battle et al.

The first part of the validation function produces a modified version of the
ModelVariables. This is because variable definitions can omit fields, which then
default to an effective value according to rules defined in the FMI standard (i.e. p.
50 of the FMI standard). Subsequent checks that depend on the modelVariables
then use these effective values.

The main body of the validation function is a set of boolean checks, as dis-
cussed in Sect. 3.2. All of the validation functions are named isValid<type>,
and they are defined for each type in the schema. So the first field of the FMI-
ModelDescription structure is of type ModelAttributes (corresponding to the
XML attributes of the FMIModelDescription element) and its validity function
is isValidModelAttributes. That function may have @OnFail annotations, but
if the attributes are not valid, this outer level will raise its own @OnFail to say
that the attributes have problem(s).

Towards a Static Check of FMUs in VDM-SL 279

Checks at this level also verify that values are consistent between fields, for
example that all of the output variables in the ModelStructure exist in the
ModelVariables and are of type output, as shown.

3.5 Model Variables - ScalarVariable

The ModelVariables section of an FMIModelDescription is a sequence of at least
one ScalarVariable definition. This section has to be modelled as a sequence
(rather than a set) because the order of the variable declarations is used to
identify them elsewhere in the configuration. These indexes start at 1, which is
the same convention as VDM. The equivalent types in VDM-SL are as follows:

The isValidScalarVariable function checks the validity of the fields, which
involves checking the min/max/start values of the variables, and checking that
the causality, variability, initial and variable start field values, are a valid com-
bination according to the rules in the standard. The (truncated) function is as
follows:

280 N. Battle et al.

The main validation function checks that the whole sequence of variables passed
defines unique names, at most one of independent causality and that the
aliased variables follow the rules. Then it calls a second function to check
each ScalarVariable in isolation. The second function checks that for each of
causality, variability and initial, the other two values are valid. For example,

Towards a Static Check of FMUs in VDM-SL 281

if the effective causality is parameter, then the effective variability must be
fixed or tunable and the initial value must be exact; and later, if the effective
initial value is exact, then the variable must have a start value defined.

3.6 The Model Structure - ModelStructure

The ModelStructure section of an FMIModelDescription lists the outputs,
derivatives and initial unknown values for the FMU. This is represented in VDM-
SL as follows:

The isValidModelStructure function is small enough to list here in full:

282 N. Battle et al.

The validation of the Unknown type checks that the dependencies
and dependenciesKind are consistent: if dependencies is defined, then
dependenciesKind need not be, but if it is then it has the same number of ele-
ments as dependencies; dependencies must not have duplicate entries; if there
are no dependencies, then there must be no dependenciesKind.

The validation of the overall ModelStructure of Unknowns checks that
each Unknown is valid, and that any dependencyKinds defined for the initial
unknowns can only be dependent or constant.

3.7 Other Types

There are other types defined at the top level of FMIModelDescription, but their
definitions and validation functions are not as complex as those covered in previ-
ous sections. The remaining @OnFail messages are listed below for completeness:

Towards a Static Check of FMUs in VDM-SL 283

3.8 Automated FMU Checking in VDM

A VDM model is useful in itself, because it encodes a more precise and unam-
biguous description of the constraints in the FMI standard than either the XSD
or informal documentation alone. But to be actively useful, the model and sup-
porting VDM tools need to be able to analyse an FMU file directly.

To do this, the FMU package file first has to be unpacked to access the
“modelDescription.xml” file within it. That XML then has to be converted into
VDM-SL such that the result can be put together with the VDM-SL representa-
tion of the XSD types, and the top level isValidFMIModelDescription function
can be called to check it.

This process can be completely automated. Unpacking an FMU package is
a simple matter as the package is a ZIP format. The extracted XML file can
be converted to VDM-SL with a fairly simple SAX parser (using standard Java
libraries). Combining the main VDM model files with the generated file and then
calling isValidFMIModelDescription is simple because the command line VDM
tools accept input from multiple files, and a function to evaluate can be passed.

284 N. Battle et al.

The whole process is combined into a bash shell script called VDMCheck.sh,
which either prints the result of isValidFMIModelDescription as true or lists
the @OnFail’s that were raised and prints false. For example:

$ VDMCheck.sh
Usage: VDMCheck.sh [-v <VDM outfile>] <FMU or modelDescription.xml file>

$ VDMCheck.sh WaterTank_Control.fmu
true

$ VDMCheck.sh MixtureGases.fmu
2.2.7 start -1 is not within min 1/max 10000
2.2.7 Variable min/max/start/nominal invalid at line 1143
2.2.7 ScalarVariables["Medium2.fluidConstants[6].normalBoilingPoint"] invalid at
line 1143
2.2.1 ScalarVariables invalid
2.2.8 Derivatives declared, but no Real/derivative variables at line 3130
2.2.8 InitialUnknowns must include: {353, 354}
false

Note that several messages relate to the same area: the first two messages
relate to the fields of the normalBoilingPoint variable identified in the third
message, and the last two messages say that there are ModelStructure Deriva-
tives but no derivative variables declared, and that the InitialUnknowns are
missing two index entries.

The locations given are line numbers within the XML file. Each @OnFail mes-
sage starts with a section reference in the FMI standard where the corresponding
rule is defined. An alpha release of VDMCheck is available2.

3.9 Online FMU Checking

A command line tool such as VDMCheck is useful, but it can be difficult to
package the tool in such a way that it will run easily in multiple user environ-
ments (Windows, Linux, Mac and so on). To try to simplify this, the VDM model
can be used to verify an FMU via an online website, where an FMU binary is
uploaded and checked, and a report of any problems given.

The site is currently being developed, but a very early preview is available
here: https://sweng.au.dk/fmiutils/fmichecker.

4 Empirical Evaluation of Static Conformance

The VDMCheck.sh tool3 described in Sect. 3.8 has been executed on all of the
FMUs within the version 2.0 branch of the Modellica FMI Cross Check repos-
itory4. The preliminary results are as follows, though these “faults” have to be
investigated to determine whether the VDM model is being too strict:

2 https://github.com/INTO-CPS-Association/FMI2-VDM-Model/releases.
3 Version 0.0.2 build 191107.
4 https://github.com/modelica/fmi-cross-check/tree/master/fmus/2.0/.

https://sweng.au.dk/fmiutils/fmichecker
https://github.com/INTO-CPS-Association/FMI2-VDM-Model/releases
https://github.com/modelica/fmi-cross-check/tree/master/fmus/2.0/

Towards a Static Check of FMUs in VDM-SL 285

– There are 692 FMUs in this branch the repository (many are duplicated for
different architectures and tools)

– 294 (42%) of them pass without any @OnFail messages (ie. isValidFMIMod-
elDescription returns true)

– 175 of them have aliases that do not have compatible settings
– 123 of them have malformed structured variable names
– 118 of them have invalid InitialUnknowns
– 112 of them have ModelStructure Derivatives indexes that do no match

Real/derivative variables
– 65 of them have ScalarVariable attribute inconsistencies
– 56 of them have aliased variables that do not all have the same units
– 24 have the reinit flag set for co-simulation models
– 14 have Real units that are not declared in UnitDefinitions
– 13 of them have ModelStructure Outputs that do not match the “output”

variables
– 4 of them have InitialUnknowns that are not sorted in ascending order

We wish to emphasise that these results are preliminary and may be a reflec-
tion of faults in the VDM model rather than faults with the FMUs concerned.
The same FMUs produce the following results with the current FMU Compliance
Checker5 (version 2.0.4):

– The same 692 FMUs were tested
– 488 (65%)of them pass without any error or warnings messages
– 123 of them have malformed structured variable names
– 27 of them have Derivatives that do not refer to a derivative variable
– 12 of them have inconsistent ScalarVariable causality/variability/initial/start

settings

The most frequent discrepancy between the checking tools is regarding the
variability of sets of aliased variables. The rules for this were clarified in FMI
2.0.1 (Sect. 2.2.8, p53), but 25% of the models in the repository do not follow
these rules.

The second most frequent discrepancy is regarding the population of the
InitialUnknowns field of the Model Structure. The rules for this seem fairly clear
(Sect. 2.2.8, p60), but 17% of the models in the repository do not follow these
rules.

Similarly, the rules for the remaining discrepancies are stated in the FMI
Standard, and yet many models do not follow them.

Note that the problem of malformed structured names is reported identically
in both tools: the same 123 files are reported, and within them the same errors
are identified. Given the degree of discrepancy otherwise found between the tools,
this may be surprising. But it is because the section of the FMI standard that
defines the rules uses a formal notation (EBNF in Sect. 2.2.9). This means that
FMUChecker and VDMCheck can agree exactly on what the rules are.
5 https://github.com/modelica-tools/FMUComplianceChecker/releases.

https://github.com/modelica-tools/FMUComplianceChecker/releases

286 N. Battle et al.

4.1 Tailored XML Test Results

A set of 24 modelDescription.xml files have been produced in order to test each
one of the @OnFail messages in the VDM model. The same set of XML files can
be packaged into minimal FMU ZIP files and processed with the FMUChecker
for comparison. The FMUChecker currently reports that only 10 of the files
contain errors, so here again FMUChecker is identifying far fewer problems than
the VDM model. We have yet to determine whether this is the VDM model
being too strict.

5 Concluding Remarks and Future Work

This paper has demonstrated that producing a formal specification of the semi-
formal FMI standard highlights a number of issues that are not sufficiently
clearly described in the standard, nor checked by the FMUChecker tool. Most
commonly this leads to misconfigured aliased variables, InitialUnknowns and
inconsistent Derivatives declarations. Significantly, the only area where the
FMUChecker tool agrees precisely with the formal VDM model is with structured
variable names, which are defined in the FMI standard using a formal grammar
(EBNF). This is added evidence that formal specifications reduce ambiguity and
lead to more consistent implementations.

The work to try to determine the correct semantics, based on the FMUs
in the Cross-Check repository and the behaviour of the FMUChecker tool, is
ongoing. We hope that the FMI community at large will welcome the kinds of
verification we are able to perform in this manner.

The current work can naturally be migrated to cover subsequent versions of
the FMI standard, and the process of migrating the model may identify weak-
nesses in the supporting standard documentation. We also plan to extend the
scope of the work to cover the dynamic semantics of the orchestration of the
co-simulation of a collection of FMUs that is defined in the FMI standard.
This would then allow the behaviour of different orchestration algorithms to
be explored, from a formal footing (e.g., as done in [8]), and enable verification
of the modular version of the Maestro co-simulation engine [18].

Acknowledgements. We are grateful to the Poul Due Jensen Foundation, which has
supported the establishment of a new Centre for Digital Twin Technology at Aarhus
University, which will take forward the principles, tools and applications of the engi-
neering of digital twins. We also acknowledge EU for funding the INTO-CPS project
(grant agreement number 644047) which was the original source of funding for the
INTO-CPS Application, and the Research Foundation - Flanders (Grant File Number
1S06316N). Finally, we thank the reviewers for their throughout feedback.

References

1. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI.
In: 8th International Modelica Conference, pp. 115–120. Linköping University Elec-
tronic Press, Linköpings universitet, Dresden, Germany, June 2011

Towards a Static Check of FMUs in VDM-SL 287

2. Blochwitz, T., et al.: The functional mockup interface for tool independent
exchange of simulation models. In: 8th International Modelica Conference, pp.
105–114. Linköping University Electronic Press, Linköpings universitet, Dresden,
Germany, June 2011

3. Blockwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: 9th International Modelica Conference,
pp. 173–184. Linköping University Electronic Press, Munich, Germany, November
2012

4. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-physical
systems design: formal foundations, methods and integrated tool chains. In: For-
maliSE: FME Workshop on Formal Methods in Software Engineering. ICSE 2015,
Florence, Italy, May 2015

5. Fitzgerald, J., et al.: Collaborative model-based systems engineering for cyber-
physical systems - a case study in building automation. In: Proceedings of INCOSE
International Symposium on Systems Engineering. Edinburgh, Scotland, July 2016

6. Fitzgerald, J., Larsen, P.G.: Modelling Systems - Practical Tools and Techniques in
Software Development, 2nd edn. Cambridge University Press, Cambridge (2009).
ISBN 0-521-62348-0

7. FMI: Functional Mock-up Interface for Model Exchange and Co-Simulation. Tech-
nical report, FMI development group (2014)

8. Gomes, C., et al.: Semantic adaptation for FMI co-simulation with hierarchical
simulators. SIMULATION 95(3), 1–29 (2018)

9. Gomes, C., et al.: HintCO - hint-based configuration of co-simulations. In: Inter-
national Conference on Simulation and Modeling Methodologies, Technologies and
Applications, Prague, Czech Republic, pp. 57–68 (2019). https://doi.org/10.5220/
0007830000570068

10. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a Survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018). Article 49

11. Hasanagić, M., Tran-Jørgensen, P.W.V., Lausdahl, K., Larsen, P.G.: Formalising
and validating the interface description in the FMI standard. In: Fitzgerald, J.,
Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
344–351. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_21

12. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
International, Englewood Cliffs (1990). ISBN 0-13-880733-7

13. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS project. In: CPS Data Workshop. Vienna, Austria, April
2016

14. Larsen, P.G., Fitzgerald, J., Woodcock, J., Lecomte, T.: Trustworthy Cyber-
Physical Systems Engineering. Chapter 8: Collaborative Modelling and Simulation
for Cyber-Physical Systems. Chapman and Hall/CRC, Boca Raton (2016). ISBN
9781498742450

15. Larsen, P.G., Fitzgerald, J., Woodcock, J., Nilsson, R., Gamble, C., Foster, S.:
Towards semantically integrated models and tools for cyber-physical systems
design. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 171–
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_13

16. Schweiger, G., et al.: An empirical survey on co-simulation: promising standards,
challenges and research needs. Simul. Model. Pract. Theor. 95, 148–163 (2019)

17. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theor 92, 45–61 (2019).
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X

https://doi.org/10.5220/0007830000570068
https://doi.org/10.5220/0007830000570068
https://doi.org/10.1007/978-3-319-48989-6_21
https://doi.org/10.1007/978-3-319-47169-3_13
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X

288 N. Battle et al.

18. Thule, C., et al.: Towards reuse of synchronization algorithms in co-simulation
frameworks. In: Accepted for Publication at the Co-Sim-19 Workshop, September
2019

19. Tomiyama, T., D’Amelio, V., Urbanic, J., ElMaraghy, W.: Complexity of multi-
disciplinary design. CIRP Ann. Manuf. Technol. 56(1), 185–188 (2007)

20. Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engi-
neering at work: the challenges for designing mechatronic products. Eng. Comput.
29(3), 389–408 (2013)

ViennaDoc: An Animatable and Testable
Specification Documentation Tool

Tomohiro Oda1(B), Keijiro Araki2, Yasuhiro Yamamoto3, Kumiyo Nakakoji1,3,
Hiroshi Sako4, Han-Myung Chang5, and Peter Gorm Larsen6

1 Software Research Associates, Inc., Tokyo, Japan
tomohiro@sra.co.jp, kumiyo@acm.org

2 National Institute of Technology, Kumamoto College, Kumamoto, Japan
araki@kyudai.jp

3 Future University Hakodate, Hakodate, Japan
yxy@acm.org

4 Designer’s Den, Tokyo, Japan
sakoh@ba2.so-net.ne.jp

5 Nanzan University, Nagoya, Japan
chang@nanzan-u.ac.jp

6 DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
pgl@eng.au.dk

Abstract. An obstacle to applying formal specification techniques to industrial
projects is that stakeholders with little engineering background may experience
difficulty comprehending the specification. Forming a common understanding of
a specification is indeed essential in software development because a specification
is consulted by many kinds of stakeholders, including those who do not necessar-
ily have an engineering background.

This paper introduces ViennaDoc, a specification documentation tool that inter-
leaves animation of a formal specification into informal texts written using natu-
ral language. ViennaDoc helps readers to understand the behaviour of the spec-
ified system by providing opportunities to verify their understanding by execut-
ing the specification in the context of the informal explanation. ViennaDoc also
helps maintainers of the specification by enabling unit testing that asserts equality
between values embedded in the informal specification and formal expressions.

1 Introduction

A development team needs a common understanding of the system to be developed.
Ambiguity, looseness and inconsistency in a specification may result in disagreement
in understanding among the development stakeholders. Misunderstandings of a specifi-
cation between stakeholders may lead the development to produce a useless system.

VDM-SL [5] is a formal specification language with rigorous syntax and seman-
tics, and therefore gives an unambiguous meaning to the specification. However, the
mathematical meaning of a formal specification is not enough to avoid disagreement
of understanding because the specification of a software system should also be situ-
ated in the context of the real world as well. In industrial projects, informal documents
in a natural language are created along with formal specifications. Such informal docu-
ments typically explain the operational usage of the formal specification to stakeholders
c© Springer Nature Switzerland AG 2020

E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 289–302, 2020.
https://doi.org/10.1007/978-3-030-54997-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_19

290 T. Oda et al.

unfamiliar with formal notations, and illustrate the concrete situations that the formally
specified system is expected to be used inside. In this paper, we call such informal
descriptions specification documents to distinguish them from formal specifications.

Specification documents are literature to explain the meaning of the specification.
Conventional IDEs for VDM, such as VDMTools [3] and the Overture tool [4], sup-
port the VDM-SL’s literate format that embed VDM-SL modules in a LATEX document.
Although LATEX is a practical tool to print documents such as books, its main target is
to print on paper and to produce PDF files with static contents, and it does not afford
dynamic representations that are suitable for explaining dynamic behaviour of the sys-
tem in particular scenarios.

Specification animation is a technique to simulate behaviour of the system to be
realised [6,8]. Animation has been used mainly by formal engineers in practice. Inte-
grated Development Environments (IDEs) for VDM provide animation mechanisms
including interpreters and transpilers so that the specification engineers can confirm the
formal specification means what was intended. Those IDEs also provide unit testing
mechanisms to automatically test whether or not the operational meaning of the formal
specifications is kept as intended.

The authors have been developing a formal specification environment called Vien-
naTalk that supports stakeholders with little engineering skills to understand the spec-
ified system in contexts of specific domains [9]. One of the major objectives of Vien-
naTalk is to enable more features for animation techniques for a wider range of stake-
holders. A stakeholder, in general, uses animation to check whether the stakeholder’s
understanding is correct or not. The stakeholder typically has a particular situation
in mind, and reproduces it in the animation. If the animation provides the expected
behaviour, the stakeholder gains confidence on the validity of the formal specification
and also the correctness of the stakeholder’s understanding. Animation techniques can
thus be used in the context of comprehension support.

It is, however, often hard for stakeholders without sufficient training in formal speci-
fications to articulate an expression to evaluate. Some of the difficulties are of the VDM-
SL language features such as its formal syntax and semantics. ViennaTalk addresses the
language difficulty by collaborative approaches. Lively Walk-Through is a User Inter-
face (UI) prototyping environment provided in ViennaTalk to develop shared under-
standing of the formal specification between formal engineers and UI designers. Other
stakeholders, such as product owners and end user representatives, can also use Lively
Walk-Through to experience the specified system. Those systems support stakeholders
to understand formal specifications without knowledge of VDM-SL.

This paper introduces ViennaDoc, a web publishing tool for VDM-SL specification
documents with live animation and testing features. In ViennaDoc, formal expressions
expressed using VDM-SL are placed along with use scenarios of the system. Stake-
holders with little formal background can understand the scenario exemplified with pre-
defined animations without writing any formal expressions. ViennaDoc can also help
maintenance of the specification document by unit testing. ViennaDoc is developed as
a part of ViennaTalk and its source code is available under the MIT license1.

1 https://github.com/tomooda/ViennaTalk/.

https://github.com/tomooda/ViennaTalk/

ViennaDoc: An Animatable and Testable Specification Documentation Tool 291

In Sect. 2, overall design objectives of ViennaDoc will be presented. In Sect. 3,
implementation and features of ViennaDoc are explained and discussed. Section 4 will
introduce related work, and Sect. 5 will conclude the discussion and describes possible
future work.

2 Informal Documents Augmented with Formal Specifications

Formal specification often complements informal specification documents for many pur-
poses. A specification document is not only for stakeholders with little engineering back-
ground, but also for formal engineers to understand how the specified system will be used
in the real world. Situating the formal specification is a critical role of its documentation
for stakeholders to share a common understanding of the system to be developed. For-
mal engineers can use interpreters to confirm the specified system exhibits the intended
behaviour in particular situations. However, the use of animation was mainly limited to
formal engineers due to difficulty of articulating appropriate formal expressions.

Inconsistency between a formal specification and its documentation may become one
of the barriers for stakeholders to have a shared understanding. For example, a piece of
formal specification that appears in a specification document should be the right version.
The effects of an action are often explained informally in a specification document. Such
an explanation must naturally agree with the behaviour of the formal specification. Nev-
ertheless, it is not a trivial task to maintain a documentation consistent with the formal
specification. A specification document needs to be revised for many reasons, such as
a change of the formal specification, a change of the expected uses of the system, and
inaccurate discourse of the explanation. Animation has been used to test formal specifi-
cations in practice, and case studies report that those tests were effective [2]. However,
the use of animation in testing was limited to the formal specification.

Fig. 1. Formal specification, specification document and animation

292 T. Oda et al.

This paper proposes to apply specification animation techniques to informal specifi-
cation documents. Figure 1 describes the relationship among a formal specification, its
documentation and the animated system. This paper discusses roles of animation mech-
anisms in the documentation environment, drawn in the thick box and the thick arrows.
ViennaDoc is a simple animation tool for HTML documents on a VDM-SL specifica-
tion. ViennaDoc provides the following three features to support documentation:

– Source expansion to include a VDM-SL source;
– animation to illustrate the system’s behaviour; and
– assertion to validate values in the document.

The source expansion feature helps the author of a specification document to keep
the embedded source up to date. It is a simple and effective way to maintain a document
without spoiling the agility of the specification phase.

The animation feature is meant to explain the system’s behaviour in a particular
scenario. When a user scenario is explained in natural language, the user can see how the
system will behave in the scenario by executing an operation with the given contextual
state of the system. The user can even explore different series of actions by performing
animation in an arbitrary order. Animation can be used for exercises to check whether
the reader’s understanding is correct. This flexibility cannot be provided by a static
PDF file.

The assertion is a declaration of a certain property of the system or a part of it, and
software testing is one of its major applications. The assertion in ViennaDoc is to test
the specification document whether or not a VDM-SL value displayed in a document is
equal to the result of evaluating the given expression in the given state of the system. If
they are not equal, the document is inconsistent with the formal specification.

Section 3 will describe how ViennaDoc is implemented and how it works inside a
web browser.

3 Implementation

ViennaDoc is implemented in JavaScript enabling HTML documents to animate a
VDM-SL specification. Figure 2 illustrates the overview of ViennaDoc and related com-
ponents. The ViennaDoc object provided by the ViennaDoc.js script has two
responsibilities: 1) to perform animation and assertion and 2) to scan the Document
Object Model (DOM) to insert the formal specification sources, animation mechanisms
and assertions into the ViennaDoc specific DOM elements. The HTML file also loads a
specification specific script (Counter.js in Fig. 2) generated by ViennaTalk [9]. The
specification specific script defines a dictionary of source code for each module, type,
value, function, state and operation.

The ViennaDoc.js script uses the public VDMPad [9] server2 via the functions
provided by the ViennaClient.js script. The ViennaClient.js script extends
the String object with the vienna eval() method. To animate a formal specifica-
tion, the source specification, the state before evaluation, the expression to evaluate and

2 https://vdmpad.viennatalk.org/.

https://vdmpad.viennatalk.org/

ViennaDoc: An Animatable and Testable Specification Documentation Tool 293

Fig. 2. Overview configuration of a typical ViennaDoc document

the namespace (module) must be specified. The vienna eval() method uses the
receiver string as the VDM-SL source specification. The expression to evaluate is given
as the first argument. The state before evaluation and the module are optionally given as
the second and the third arguments in order. The return value of the vienna eval()
method is triple of the return value, the post-state, and the error message.

The ViennaDoc.evalShow() method is called by an event on a DOM ele-
ment, such as a clicked event on a code element. The ViennaDoc.evalShow()
method manipulates the requesting DOM element to show the animation result. The
String.vienna eval() method is used to get the animation result.

294 T. Oda et al.

The ViennaDoc.js script scans the HTML document for ViennaDoc specific
elements, that are code elements with both the vdm class and vienna attribute. The
ViennaDoc.js script inserts DOM elements to inject functions to run animation and
show the results. The ViennaDoc.js script also manages DOM elements that need
active updates at every animation step.

Table 1. ViennaDoc attributes on the code element

vienna attribute Other attributes Description

"source" src = module name or global name include source code specified

by the src attribute

"eval" prestates = variable list (optional) insert a run button that

poststates = state variables (optional) evaluates the content and

module = module name (optional) prints the return value and

pre/post states

"watch" module = module name (optional) always print the latest value

of the variable specified

in the content

"assert" eval = expression evaluate the given expression

prestates = state variables (optional) and insert a warning message

module = module name (optional) if the result is not equal to

the content

Table 1 summarises the ViennaDoc specific elements. The ViennaDoc.js script
scans for code elements with the vienna attribute when the HTML has been loaded
to the browser. ViennaDoc currently supports four values of the vienna attribute;
source, eval, watch and assert. The rest of this section will explain each kind
of code elements one by one. The example document used in this section is available
online3.

3.1 Embedding Formal Specification in Documents

ViennaDoc provides access to source listings of modules and definitions. Figure 3 illus-
trates how a code element for source listing is specified in ViennaDoc and how it
appears inside a browser.

A code element with the vienna="source" attribute fills the element with the
corresponding source specified by the src attribute. In Fig. 3, the Counter module
is specified by the src attribute. Using the source embedding feature of ViennaDoc,
the source listings shown in the document are kept identical to the ones used for the
animation.

3 https://viennatalk.org/ViennaDoc/counter.html.

https://viennatalk.org/ViennaDoc/counter.html

ViennaDoc: An Animatable and Testable Specification Documentation Tool 295

Fig. 3. Screenshot of a ViennaDoc page that includes a module source

Fig. 4. Screenshot of a ViennaDoc page that includes an operation’s source

296 T. Oda et al.

The value of the src attribute is either a module name or a global name. In Fig. 4,
the Counter‘unsafe inc operation is specified by the src attribute. Please note
that a global name should be specified to include a source listing of an operation, func-
tion or any other definition. A global name should be in the form of 〈module name〉
‘〈identifier〉, and the source is stored at ViennaDoc.sources[〈global name〉].
ViennaDoc needs the source listings from an external source for source embedding
as well as animation and assertions. ViennaTalk’s VDM browser generates JavaScript
source code to supply the source listings.

ViennaDoc automatically enclose the code element with a pre element so that
newline and indentations are preserved when rendered on the browser. Although Vien-
naDoc does not have any feature to decorate source code, the HTML file can use an
external engine to highlight the source specifications inserted by ViennaDoc. For exam-
ple, the source listings in Fig. 3 and Fig. 4 are highlighted by the highlight.js4

package.

3.2 Animated Specification Documents

ViennaDoc employs animation to exhibit concrete behaviour of the specified system.
ViennaDoc provides user interfaces for animation in a controlled manner comparing to
those in IDEs. For example, VDMPad enables the user to evaluate an arbitrary expres-
sion in an arbitrary state by providing entry fields for state variables and the expression
to evaluate. VDMPad allows the user as much freedom as possible so that the user can
explore a wider range of use scenarios. On the other hand, ViennaDoc does not allow
the user to change the expression to evaluate. The objective of the animation capability
inside ViennaDoc is to help the user’s comprehension of the specification document in
a natural language by showing simulated behaviour of the system. Agreement between
the explanation in natural language and animation in a formal language is crucial and
therefore the expression to evaluate is hardcoded.

ViennaDoc provides two kinds of user interfaces for animation. One is a push but-
ton. ViennaDoc.js inserts a push button after a code element with the vienna=
"eval" attribute. Figure 5 shows how a push button is placed in a ViennaDoc docu-
ment and how it can present the animation result. The code element shown in the upper
box is rendered on a web browser while the middle box shows the rendered element. A
push button labeled run is placed after the code node (inc() in a grey background).
When the user clicks on the run button, a brief text in the gray background is appended
after the run button as shown in the lower box. The appended text is in the form of
{bindings before evaluation}expr ret value{bindings after evaluation}.

The animation state is managed by the ViennaDoc.states variable. At every
animation, ViennaDoc first reads the state from the ViennaDoc.states, evalu-
ates the given expression, and updates the ViennaDoc.states. If the prestates
attribute has bindings indicated by =, the value will be used instead of the corresponding
value in the ViennaDoc.states. In Fig. 6, the value of the state variable count is
set to 5 before evaluating inc().

4 See https://highlightjs.org/.

https://highlightjs.org/

ViennaDoc: An Animatable and Testable Specification Documentation Tool 297

Fig. 5. Animation of a ViennaDoc page with a run button

Fig. 6. An HTML source for animation with a prestate value specified

Another user interface for animation is a watch variable. ViennaDoc.js inserts a
brief text after a code element with the vienna="watch" attribute. Figure 7 shows
how a watch variable is shown in a ViennaDoc. The code element shown in the upper
box is rendered on a web browser as shown in the middle box. The text in a grey
background is placed after the code node (count also in the grey background) to
indicate that the value of the state variable count is now set to 0. Whenever the user
clicks on any of the run buttons in the document, the value after the hand symbol is
updated with the new value of the variable count.

In Fig. 7, the module Counter is specified in the code element and its con-
tent is in a short name of the variable inside that module. A global name in form
of module name‘state variable name can be specified in the content without the
module attribute.

The state variables are managed as a JavaScript object on the page. If the user
reloads the page, the state will be initialised by the formal specification. The state will

298 T. Oda et al.

Fig. 7. Animation of a ViennaDoc page with a watch variable

also be initialised when the web page transitions by hyperlinks. ViennaDoc has been
designed to employ the volatile state that a ViennaDoc page always opens with a fresh
initial state.

3.3 Testable Specification Documents

Software testing is a widely used technique to find a deviation from the expected
behaviour. ViennaDoc provides testing feature on an HTML document to find such
deviations from the actual behaviour of the formal specification. ViennaDoc performs
a test on a code element with the vienna=assert attribute.

Fig. 8. A successful assertion and its appearance on a browser

Figure 8 shows a successful case of the assertion. ViennaDoc evaluates the given
expression mk (reset(), count).#2 with count=5, which returns the value of

ViennaDoc: An Animatable and Testable Specification Documentation Tool 299

the count variable after the reset() operation call. ViennaDoc will get 0 as the
result which is identical to the value in the content of the code element. The assertion
is successful and the web browser shows the code element without modification.

Fig. 9. An assertion failure and its appearance on a browser

On the other hand, Fig. 9 shows a failure case. ViennaDoc evaluates the given
expression mk (inc(), count).#2 with count=5, which returns the value of
the count variable after the inc() operation call instead of the reset() operation
call. ViennaDoc will get 6 as the result which is different from 0 in the content of
the code element. The assertion fails and the web browser warns that the value in the
document does not agree with the actual result.

Assertion failures may happen due to various causes. One possible cause of failure is
that the document is not updated after a change of the VDM-SL specification. Another
possible cause is that the author misunderstands the formal specification. ViennaDoc’s
assertion enables specification documents tested its consistency with the formal speci-
fication on the readers’ web browsers just in time.

4 Related Work

This section introduces four software tools and explains their differences from this
work.

4.1 Lively Walk-Through

Lively Walk-Through [9] is a UI prototyping tool to support formal methods engineers
and UI designers to share a common understanding of the specified system. Lively
Walk-Through can be also used as a prototyping tool for stakeholders with little engi-
neering background to experience the expected use of the system in the specific domain.
ViennaDoc and Lively Walk-Through share the same objective to provide a dynamic
medium for stakeholders without formal engineering skills to understand what the for-
mal specification means through animation.

300 T. Oda et al.

A major difference between ViennaDoc and Lively Walk-Through is flexibility
of animation. ViennaDoc provides a restrictive UI for animation while Lively Walk-
Through provides full flexibility to evaluate arbitrary expressions. ViennaDoc is a doc-
umentation tool and therefore takes a more instructive approach to explain the formal
specification. Lively Walk-Through does not provide textual explanations in natural
languages, and thus expects emergent understanding in action.

4.2 PVSio-web

PVSio-web [7] is a prototyping environment that combines formal specification in PVS
and human interface. One major application field of PVSio-web is embedded systems
such as medical devices. With PVSio-web, the user can virtually manipulate the target
device with feedback by animated specification.

A major difference between ViennaDoc and PVSio-web is the way the presentation
is made. While PVSio-web is a simulator with photo realistic visual interface of the
target device, ViennaDoc is documentation tool with textual descriptions.

4.3 Pillar

Pillar [1] is a documentation tool built on top of the Pharo Smalltalk system. Pillar
has its own lightweight markup language with many dynamic features such as import-
ing the source code from a live Smalltalk system, programmatically taking a snapshot
image of the GUI, evaluating Smalltalk expressions, and testing assertions attached
with Smalltalk expressions. Pillar can publish a document in various formats includ-
ing LATEX, PDF, HTML and Smalltalk’s Text objects. Pillar has already been used for
publishing numerous books and online documents shared among the Pharo community.
Agile Visualization5 is a book authored with Pillar and published in paperback, eBook
and HTML.

The conceptual design of ViennaDoc was highly inspired by Pillar. Both ViennaDoc
and Pillar can incorporate source code into the document. Pillar also checks consistency
between a book content and the actual behaviour of the system using assertion mecha-
nisms in a way similar to that of ViennaDoc.

The major difference is that Pillar processes dynamic elements in a document source
within Pillar itself. For example, a document is generated after assertions in the docu-
ment source have been all checked. The readers of the book do not see its validation
process. ViennaDoc, on the other hand, provides dynamic features such as the run but-
ton and watch variables on the browser. Animations performed on those elements are
commenced by the reader, and the animation results are exposed to the reader. Asser-
tions are also checked on the reader’s browser, and the results are rendered inline on the
browser.

5 http://agilevisualization.com/.

http://agilevisualization.com/

ViennaDoc: An Animatable and Testable Specification Documentation Tool 301

4.4 Jupyter Notebook

Jupyter Notebook is a web-based interpreter interface initially for Python. Jupyter Note-
book basically provides a REPL (Read, Eval, Print Loop) interface in a form of a web-
page, and the server runs the Python interpreter to execute the commands given by the
user. Code fragments given by the user and the resulting output of the Python interpreter
are recorded on the webpage. The user can review those command lines and outputs to
summarise the exploratory process and store it for later reference. The resulting page
can be seen as a documentation of the exploration process.

Jupyter Notebook is also used for documenting software systems. Some develop-
ment hosting services, such as github, provide functionality to view Jupyter Notebook
files.

Both Jupyter Notebook and ViennaDoc provide an execution engine on the web
and help the user understand code fragments. Although they have common technical
elements such as dynamic web content, evaluation engine on the server side, and mixed
use of natural languages and computational language, their objectives and supposed
users are different.

Jupyter Notebook is primarily a tool for exploration among diverse usage in prac-
tice. The user types a fragment of code, and the system runs it to display the result.
Each code fragment and its result are recorded so that the user can review the whole
exploration process and other users can check whether or not the same results can be
reproduced. As a documentation tool, Jupyter Notebook generates HTML pages on the
server side. Styles and dynamic features of documents depends on the Jupyter Notebook
server.

ViennaDoc is, on the other hand, a tool for explanation. The author of a ViennaDoc
page already have a formal specification at hand, and writes explanation quoting a frag-
ment of specification. A reader of the ViennaDoc page does not necessarily write a for-
mal expression, but follows the explanation with help of animation. Because ViennaDoc
manipulates only specific elements in HTML files, VIennaDoc can be used along with
other documenting tools and formats. It is possible to use markdown to author a doc-
ument with ViennaDoc specific elements while Jupyter Notebook controls the whole
document.

5 Concluding Remarks

Lightweight formal methods inherently need to work with informal notations and meth-
ods. ViennaDoc is an attempt to utilise the specification animation techniques in infor-
mal documents. Although we have been focused on specification documents, we believe
this approach could be applied to many other formal specification tools.

One possible future work direction is using this inside VDM-SL tutorials. Many
online tutorials for programming language learners provide functionality to evaluate a
piece of code. ViennaDoc’s animation feature can provide such a playground for VDM.
Tutorials also need to be maintained along with growth of the languages and libraries.
ViennaDoc’s assertion mechanism could help authors of tutorials to keep them confor-
mant to the latest version of the language and libraries.

302 T. Oda et al.

Another possible application is for other open source communities. There are many
emerging open source efforts associated with VDM. ViennaDoc is an HTML-based
technology and thus could be an affordable medium for open source communities. The
authors expect ViennaDoc could support more use of VDM in open source projects.

Acknowledgments. The authors gratefully acknowledge Stèphane Ducasse for his inspiring
comments on the initial idea of this research. We would also thank anonymous reviewers for their
thoughtful and constructive feedback. A part of this research was supported by JSPS KAKENHI
Grant Number JP 18K18033.

References

1. Arloing, T., Dubois, Y., Ducasse, S., Cassou, D.: Pillar: a versatile and extensible lightweight
markup language. In: Proceedings of the 11th Edition of the International Workshop on
Smalltalk Technologies, p. 25. ACM (2016)

2. Kurita, T., Chiba, M., Nakatsugawa, Y.: Application of a formal specification language in the
development of the “Mobile FeliCa” IC chip firmware for embedding in mobile phone. In:
Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 425–429. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-0 31

3. Larsen, P.G.: Ten years of historical development: “Bootstrapping” VDMTools. J. Univ. Com-
put. Sci. 7(8), 692–709 (2001)

4. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The overture
initiative - integrating tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (2010). https://
doi.org/10.1145/1668862.1668864

5. Larsen, P.G., et al.: VDM-10 language manual. Technical report, TR-001, The Overture Ini-
tiative, April 2013. www.overturetool.org

6. Lausdahl, K., Larsen, P.G., Battle, N.: A deterministic interpreter simulating a distributed
real time system using VDM. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991,
pp. 179–194. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6 14.
http://dl.acm.org/citation.cfm?id=2075089.2075107. ISBN 978-3-642-24558-9

7. Masci, P., Couto, L.D., Larsen, P.G., Curzon, P.: Integrating the PVSio-web modelling and
prototyping environment with Overture. In: Ishikawa, F., Larsen, P.G. (eds.) Proceedings of
the 13th Overture Workshop, pp. 33–47. Center for Global Research in Advanced Software
Science and Engineering, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-Ku,
Tokyo, Japan, June 2015. http://grace-center.jp/wp-content/uploads/2012/05/13thOverture-
Proceedings.pdf. gRACE-TR-2015-06

8. Nielsen, C.B., Lausdahl, K., Larsen, P.G.: Combining VDM with executable code. In: Derrick,
J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 266–279. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30885-7 19

9. Oda, T., Araki, K.: ViennaTalk: an integrated specification environment focused on the early
stage of the formal specification phase. Comput. Softw. 34(4), 4 129–4 143 (2017). https://
www.jstage.jst.go.jp/article/jssst/34/4/34 4 129/ article/-char/ja/

https://doi.org/10.1007/978-3-540-68237-0_31
https://doi.org/10.1145/1668862.1668864
https://doi.org/10.1145/1668862.1668864
http://www.overturetool.org/
https://doi.org/10.1007/978-3-642-24559-6_14
http://dl.acm.org/citation.cfm?id=2075089.2075107
http://grace-center.jp/wp-content/uploads/2012/05/13thOverture-Proceedings.pdf
http://grace-center.jp/wp-content/uploads/2012/05/13thOverture-Proceedings.pdf
https://doi.org/10.1007/978-3-642-30885-7_19
https://doi.org/10.1007/978-3-642-30885-7_19
https://www.jstage.jst.go.jp/article/jssst/34/4/34_4_129/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jssst/34/4/34_4_129/_article/-char/ja/

Refine 2019 - 19th Refinement
Workshop

Refine 2019 Organizers’ Message

This volume contains the papers presented at Refine 2019: Refinement Workshop 2019
held on October 7, 2019 in Porto, co-located with FM 2019.

This 19th workshop continued a 20+ year tradition in refinement workshops run
under the auspices of the British Computer Society (BCS) FACS special interest
group. After the first seven editions had been held in the UK, in 1998 it was combined
with the Australasian Refinement Workshop to form the International Refinement
Workshop, hosted at The Australian National University. More editions have followed
in a variety of locations, all with electronic published proceedings and associated
journal special issues.

Like previous editions, the 19th edition was co-located with a major formal
methods conference. This year we were delighted to be co-located with the FM
international conference, which again proved to be a very productive pairing of events.
Each submission was reviewed by 3, program committee members. The committee
decided to accept 6 full papers. The program also included 1 invited talk. The papers
cover a wide range of topics in the theory and application of refinement.

The organisers would like to thank everyone: the invited speakers, the authors,
BCS-FACS, and the organisers of FM 2019 for their help in organising this workshop,
the participants of the workshop, and the reviewers involved in selecting the papers.

October 2019 John Derrick
Brijesh Dongol
Steve Reeves

Organization

Program Committee Chairs

John Derrick University of Sheffield, UK
Brijesh Dongol University of Surrey, UK
Steve Reeves University of Waikato, New Zealand

Program Committee

Bernhard Aichernig TU Graz, Austria
Richard Banach The University of Manchester, UK
Luis Barbosa University of Minho, Portugal
Eerke Boiten De Montfort University, Leicester, UK
Ana Cavalcanti University of York, UK
John Derrick Unversity of Sheffield, UK

Brijesh Dongol University of Surrey, UK
Lindsay Groves Victoria University of Wellington,

New Zealand
Rob Hierons The University of Sheffield, UK
Larissa Meinicke The University of Queensland, Australia
Marcel Oliveira Universidade Federal do Rio Grande do Norte,

Brazil
Steve Reeves University of Waikato, New Zealand
Gerhard Schellhorn Universitaet Augsburg, Germany
Steve Schneider University of Surrey, UK
Emil Sekerinski McMaster University, Canada
Graeme Smith The University of Queensland, Australia
Heike Wehrheim University of Paderborn, Germany

Refine 2019 Organizers’ Message 305

A Map of Asynchronous Communication
Models

Florent Chevrou1, Aurélie Hurault1, Shin Nakajima2,
and Philippe Quéinnec1(B)

1 Université de Toulouse – IRIT, Toulouse, France
{florent.chevrou,aurelie.hurault,philippe.queinnec}@irit.fr

2 National Institute of Informatics, Tokyo, Japan
nkjm@nii.ac.jp

Abstract. Asynchronous communication encompasses a variety of fea-
tures besides the decoupling of send and receive events. Those include
message-ordering policies which are often crucial to the correctness of a
distributed algorithm. This paper establishes a map of communication
models that exhibits the relations between them along two axes of com-
parison: the strength of the ordering property and the level of abstrac-
tion of the specification. This brings knowledge about which model can
be substituted by another without breaking any safety property. Fur-
thermore, it brings flexibility and ready-to-use modules when developing
correct-by-construction distributed systems where model decomposition
exposes the communication component. Both criteria of comparison are
covered by refinement. We consider seven ordering policies and we model
in Event-B these communication models at three levels of abstraction.
The proofs of refinement between all of these are mechanized in Rodin.

Keywords: Asynchronous communication · Formal verification ·
Refinements of communication models · Event-B

1 Introduction

A classic way to develop distributed algorithms is to start with a global goal, such
as mutual exclusion or global agreement. A distributed version of the algorithm is
then derived, either directly or by progressive transformation of the specification,
e.g. by refinement. This approach dates back to early work by Dijkstra [11],
Chandy-Misra with UNITY [7], Back and Kurki-Suonio with action systems [5],
or Lamport with TLA+ [19]. It is still bustling in the correct-by-construction
community and Event-B [1] is a framework which embodies this methodology. At
one point in the development process, communication is explicitly introduced, to
express the flow of information from one site to another, and it eventually takes
the form of message exchanges. When the development is conducted with formal
verification, the properties of the communication are shown to be sufficient for
the correctness of the algorithm. However, it is often unclear what are the specific

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 307–322, 2020.
https://doi.org/10.1007/978-3-030-54997-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_20

308 F. Chevrou et al.

properties of this communication that are necessary to ensure the correctness
of the algorithm. Especially, it may be difficult to replace one communication
model with another without doing again the complete proof.

The present work aims at alleviating these difficulties for asynchronous point-
to-point communication with message ordering policies. These policies control
message deliveries based on past events or involved peers, and their relative
strength forms a hierarchy of communication models. To this end, we use simu-
lation: if a model M1 simulates another model M2, M2 has less non-determinism,
hence fewer behaviors. Thus a safety property proved under M1 in a given system
will hold if M1 is substituted by M2 (there is no guarantee of preservation for
liveness properties). A distributed application is refined up to the point where
communication is introduced. Then, model decomposition isolates the commu-
nication part and the hierarchy is used to choose an adequate ordering policy.

There exist several approaches to decomposition in Event-B [14]: shared-
variable [3], shared-event [6] and modularization [16]. Our map is well suited for
shared-event decomposition, where variables are partitioned and a set of events
are synchronized and shared by sub-models. During the refinement of a system,
asynchronous communication appears via two events: send and receive. These
events are isolated in a sub-model to be refined using the results of this paper.

Nevertheless, the proposed one-dimensional scale is not sufficient as several
communication models may realize the same ordering policy. They often have
little in common: some directly map the ordering property on high level data
structures such as distributed executions while others will make use of ad-hoc
concrete approaches (e.g. counters on messages) from which the property arises.
Mapping the communication models depending on their level of abstraction com-
pletes the approach. Therefore, we draw a bidimensional map of communication
models and use refinement as a common ground for the two orthogonal compar-
ison criteria: refinement for simulation, and data refinement for concretization.
Our results, summed up in the map in Fig. 1, are proved and mechanized in
Event-B. Regarding decomposition, this means once an ordering policy has been
chosen across the simulation direction, the model can be refined across the con-
cretization direction as part of a correct-by-construction development.

The outline of this paper is the following. Section 2 recalls basic definitions of
the theory of asynchronous distributed systems and their modeling in Event-B.
Section 3 presents seven communication models and proves the hierarchy of their
ordering policies, based on simulation, using refinement. Section 4 presents vari-
ants of the models based on message histories, and proves that the hierarchy still
holds. Section 5 refines them one step further towards practical concrete models.
Section 6 discusses proof effort and localization. Section 7 provides related work.

The page http://hurault.perso.enseeiht.fr/MenagerieOfRefinements contains
all the models discussed in this paper and gives indications to replay the proofs.

http://hurault.perso.enseeiht.fr/MenagerieOfRefinements

A Map of Asynchronous Communication Models 309

Fig. 1. Map of the asynchronous communication models. A black arrow means
“refines”. The two axis of refinement are the level of abstraction (data refinement)
and the strength of the ordering policy (reduction of non-determinism).

2 Distributed Systems

2.1 Distributed Executions

An asynchronous message-passing distributed system is composed of a set of
peers that exchange messages. This paper considers point-to-point communi-
cation where a message has exactly one sender and at most one receiver. A
distributed execution is a partially ordered set of events, where events are com-
munication events: message send events and message receive events; internal
events are ignored. The partial order is named the causal order [18,23], and it
abstracts independent events. Events occur on peers: a labeling function states
where the event e has occurred. Assuming interleaving of independent events
and no true concurrency, a run is a linear extension of a distributed execution.

Let PEER be the set of peers, MESSAGE an enumerable set of messages identi-
fiers, and COM � {Send,Receive} the communication labels.

Definition 1. A distributed execution (E,≺c, com,mes, peer) is a partially
ordered set with labeling functions, where E is an enumerable set, ≺c is a par-
tial order on E, and com, mes and peer are labeling functions from E to COM,
MESSAGE and PEER. An event e that occurs on peer(e) is either the sending or
the reception (com(e)) of message mes(e). (E,≺c, com,mes, peer) satisfies:

– no message is sent or received more than once:
∀e, e′ ∈ E :

(
com(e) = com(e′) ∧ mes(e) = mes(e′)

) ⇒ e = e′

– a receive event is preceded by a send event:
∀e ∈ E : com(e) = Receive

⇒ ∃e′ ∈ E :
(
com(e′) = Send ∧ mes(e′) = mes(e) ∧ e′ ≺c e

)

310 F. Chevrou et al.

– events occurring on the same peer are totally ordered:
∀e, e′ ∈ E : peer(e) = peer(e′) ⇒ e ≺c e′ ∨ e′ ≺c e

Definition 2. A run σ = (E,≺c, <σ, com,mes, peer) extends a distributed exe-
cution (E,≺c, com,mes, peer): (E,<σ) is a linear extension of (E,≺c).

2.2 Event-B

A model in Event-B [1] is an abstract state machine containing state variables,
invariants, and events (the word “event” refers either to an element of a dis-
tributed execution or a part of an Event-B machine – a transition predicate –;
the context hopefully makes it clear which is which). An event E parameterized
by x has the form EVENT E ANY x WHERE G(v, x) THEN A(v, x) END, where G(v, x)
is the guard of the event and A(v, x) an action changing the values of v. In
this paper, actions are deterministic assignments of the form v := expr where
v is a state variable. INITIALISATION specifies the initial state of a machine. A
machine can be related to an Event-B context (SEES) that specifies sets, con-
stants, axioms and theorems.

The main concept of the Event-B method is the refinement (REFINES) of
machines. It consists of a refinement of the events: the guards may be weakened
and the behavior must conform to the abstract event. New events refine the
special event called “skip”. The Rodin tool [2] generates proof obligations for
the refinements and the preservation of the invariants by the events.

In Event-B, x1 	→ x2 denotes a pair (x1, x2). Relations are sets of pairs.
dom(r) and ran(r) denote the domain and range of a relation r. E ↔ F denotes
the set of relations between E and F , E ↔↔F the set of total surjective relations,
and E → F total functions from E to F . The relation r1; r2 denotes the forward
composition of relations r1 and r2. “�” is the domain restriction operator such
that given a relation r and a set E, E � r � {x 	→ y | x 	→ y ∈ r ∧ x ∈ E}.
“�−” is the domain subtraction operator such that given a relation r and a set
E′, E′ �− r � {x 	→ y | x 	→ y ∈ r ∧ x /∈ E′}. “�−” is the overriding operator such
that given relations r1 and r2, r1 �− r2 � r2 ∪ (dom(r2) �− r1). P(E) denotes the
powerset of E.

2.3 Event-B Distributed Executions

First, we introduce each feature of asynchronous communication through a
series of initial refinements: concept of “events”, “happening”, and “past”, then
the pairing of two events (communication), localization of the events (distri-
bution) and causality (distributed executions), linearization of the executions
(totally ordered runs), and eventually messages which label the exchanges.
This paper skips these preliminary refinements. The resulting machine called
RunWithMessages, presented in Fig. 2, is a boilerplate for any asynchronous
point-to-point communication model. It conforms to the distributed executions
and runs of Definitions 1 and 2. By playing with the guards, other communi-
cation paradigms can be specified (e.g. synchronous communication, multicast,
join).

A Map of Asynchronous Communication Models 311

Fig. 2. Event-B machine for asynchronous point-to-point communication

The machine relies on sets defined in the contexts: EVENT the set of event
identifiers labeled by elements of PEER, MESSAGES, and COM (Send or Receive).
Events are labeled by variables peerOf, mesOf, and comOf once they are intro-
duced in the machine (e.g. e 	→ Send ∈ comOf). New communication events are
introduced by the actions of the two Event-B events send and receive. They
are stored in the past variable and the labeling functions evolve according to the
parameters of send and receive: the peer it has occurred on and the exchanged
message. Additionally, variables prec (partial causal order ≺c) and run (total
order <σ) log the dependencies between the events which serves to specify the
communication properties (including ordering policies in future machines).

312 F. Chevrou et al.

3 Abstract Communication Models

The communication model specifies when a communication action (send or
receive) is possible in order to ensure specific properties on the communica-
tion. We focus on message ordering properties (e.g. global ordering: all messages
are received in their emission order). In this section, each abstract communica-
tion model is a machine based on RunWithMessages that is characterized by an
ordering invariant on distributed executions or runs. We use this invariant to
filter out the distributed executions and runs that do not abide to the ordering
policy and keep all those that do.

The communication models constitute steps between fully asynchronous dis-
tributed communication (async) where sending and receiving a message is always
possible, partially ordered communication (fifo11, causal, fifo1n, fifon1), totally
ordered communication (fifonn), and almost synchronous communication (RSC)
where a message must be received immediately after it has been sent. We use sim-
ulation to define a hierarchy based on the strength of the delivery order. Stronger
models have less non-determinism on the receptions. Machine RunWithMessages
models asynchronous communication and corresponds to the async model. The
other models impose more and more determinism on reception (and, for RSC,
on send). The first column of Fig. 1 accounts for the hierarchy of these models.
Refinement is used to prove the simulation relations between the models. Note
that these are not concretization refinements: no model can be called more (or
less) concrete or realizable. Concretization of the communication models follow
a specific path for each model and is described later.

3.1 Informal Specifications

In this paper, we study seven asynchronous point-to-point communication mod-
els. A detailed description with figures of each model is given in [10].

RSC. Realizable with Synchronous Communication [8,17]. The send event of a
message is immediately followed by the receive event of this message (viewed
atomically, it corresponds to synchronous communication).

fifo n-n. Messages are globally ordered and are delivered in their send order.
fifo 1-n. Messages from the same peer are delivered in their send order.
fifo n-1. On a given peer, messages are received in their send order.
fifo 1-1. Messages between a couple of peers are delivered in their send order.

Messages from/to different peers are independently delivered.
causal. Messages are delivered according to the causality of their emission [18].

If a message m1 is causally sent before a message m2 (i.e. there exists a causal
path from the first emission to the second one), then a peer cannot get m2

before m1.
async. Fully Asynchronous. No order on message delivery is imposed. The

machine RunWithMessages is this model.

A Map of Asynchronous Communication Models 313

3.2 Event-B Specifications

We consider the specifications of the communication models with events. Each
communication model is characterized by an invariant that describes the ordering
properties it ensures on the communication. The invariants of the models all
introduce es1 and es2, the send events of two distinct messages, as well as er1
and er2, the corresponding receive events. The model-specific part imposes an
order on the receive events (er1 and er2) based on the causal or run order of the
send events (es1 and es2) and whether or not the sending or receiving peers are
the same (same sending peer and same receiving peer for fifo 1-1, same sending
peer for fifo 1-n, same receiving peer for fifo n-1 and causal). For instance, the
ordering invariant in the machine CausalEvent is:
// Given two transmissions of messages and the four corresponding events : es1 er1 and es2 er2
∀ es1, er1, es2, er2 · es1 ∈ past ∧ er1 ∈ past ∧ es2 ∈ past ∧ er2 ∈ past

∧ comOf(es1) = Send ∧comOf(es2) = Send ∧comOf(er1) = Receive ∧comOf(er2) = Receive
∧ mesOf(es1) = mesOf(er1) ∧ mesOf(es2) = mesOf(er2)
// Model−specific part :
∧ es1 �→ es2 ∈ prec // If es1 CAUSALLY precedes es2
∧ peerOf(er1) = peerOf(er2) // and the corresponding RECEPTIONS occur on the SAME PEER
⇒ er1 �→ er2 ∈ run // then they must occur in the emission order .

Our next goal is to compare the communication models, by proving that some
have less transitions than others (i.e. are more deterministic). Later in Sects. 4
and 5, we derive more concrete specifications of these models. However, at this
point, having machines that are as liberal as the ordering allows is important.
Thus, the weakest preconditions of the ordering invariants are stipulated for the
guards of the send and receive events. As the actions are assignments of the
form var := var ∪ {· · · }, the computation of the weakest preconditions is triv-
ial [12]. As an example, Fig. 3 presents the resulting structure of the CausalEvent
machine with a close up on the ordering guard of the receive event.

3.3 Proofs and Invariants

The difference between the models is an invariant directly related to the order of
delivery and the associated weakest precondition used as a guard on the commu-
nication events. A proof of refinement consists in proving the logical implications
between these invariants. Most of the time these proofs require little manual
intervention thanks to auto-provers, post-tactics, and SMT solvers.

The refinements of causal in fifo-n1 and fifo-1n need manual intervention
with a specific invariant that states that two causally related events on different
peers are necessary linked by (at least) one message. Informally, it means that
causality between events on distinct peers only exists due to message exchanges.

∀ e1, e2 · e1 �→ e2 ∈ prec ∧peerOf(e1)
= peerOf(e2) ⇒
(∃ es,er · e1 �→ es ∈ prec ∧ es �→ er ∈ prec ∧ er �→ e2 ∈ prec ∧peerOf(e1) = peerOf(es)

∧ comOf(es) = Send ∧comOf(er) = Receive ∧mesOf(es) = mesOf(er))

314 F. Chevrou et al.

Fig. 3. Structure of the causal communication model described with events. The
machine corresponds to E RunWithMessages with an additional ordering invariant and
the associated guards.

4 History-Based Models

In this section, we take one step forwards in the direction of concretization. These
new specifications share a common framework in which the ordering properties
rely upon keeping track of dependent messages in histories. This makes it easier
to compare them much like in the previous section. Yet, the specifications are
now operational and realistic enough to be implemented and used as such.

There are two directions involved in the mapping of these communication
models. First, each history-based model relates to its execution-based counter-
part: it is a concretization of the latter, which means the underlying ordering
properties still hold, and we use refinement to prove it in Sect. 4.2. For exam-
ple, Fifo11History is a concretization of Fifo11Event. Second, it is expected
that the history-based communication models, which model the same ordering
policies, preserve the hierarchy of these ordering policies. Once again, the simu-
lation relations (i.e. the reduction of the non-determinism of the communication

A Map of Asynchronous Communication Models 315

events send and receive) are made explicit and proved by refinement. For instance
CausalEvent is stronger than (refines) Fifo11Event and CausalHistory is
stronger than (refines) Fifo11History.

4.1 Specifications with Histories

We consider specifications of the asynchronous point-to-point interaction mod-
els where communication occurs according to two parameterized events:
send(p,m, d) (peer p sends message m to an explicit peer d) and receive(p,m)
(peer p receives message m).

The models rely on a state variable net that contains messages in transit.
Sent messages are labeled to carry information about the communication: the
origin peer, the destination peer, and the history of the message. The history of a
message is the set of messages on which it depends, i.e. the set of messages which
precede it. As two notions of precedence exist (causal/execution), two kinds of
message histories are defined: namely causal and global.

Definition 3. (Message Histories) For a run σ = (E,≺c, <σ, com,mes, peer),
and a message m:

hcOf(m) �

⎧
⎪⎪⎨

⎪⎪⎩

m′ ∈ MESSAGE : ∃e, e′ ∈ E :
com(e) = Send ∧ com(e′) = Send

∧ mes(e) = m ∧ mes(e′) = m′

∧ e′ ≺c e

⎫
⎪⎪⎬

⎪⎪⎭

hgOf(m) �

⎧
⎪⎪⎨

⎪⎪⎩

m′ ∈ MESSAGE : ∃e, e′ ∈ E :
com(e) = Send ∧ com(e′) = Send

∧ mes(e) = m ∧ mes(e′) = m′

∧ e′ <σ e

⎫
⎪⎪⎬

⎪⎪⎭

In the Event-B models, the message histories are built upon state variables
hg ⊆ MESSAGE, the global history, and hc ∈ PEER → P(MESSAGE), the causal
histories of each peer. When peer p sends a message m, the global history (hgOf)
and the causal history (hcOf) of m are the current values of hg and of hc(p).
The new message is also added to the history state variables (hg and hc(p)).
The causal history hc(p) of peer p is updated when a message m is received to
account for the causal relation induced by the transmission of the message from
one peer to another: m and its causal history hcOf(m) are added to hc(p). The
validity of these constructions with regard to the above definitions is stated as
two invariants. The ordering properties of a model are determined by guards on
the send and receive events that depend on the message histories, origin, and
destination of a message.

4.2 Concretization

For each communication model, the refinement of the event-based model by the
history-based model is split in two steps to facilitate the proofs. First, add new

316 F. Chevrou et al.

variables to hold histories and message destination (net, hg, hc, hgOf, hcOf,
destOf), and replace the guards about events by guards about histories. Then,
remove the now useless variables related to events (past, prec, run, . . .).

As an example, Fig. 4 is the resulting machine for the causal model. Its
ordering invariant states that if m1 and m2 have the same destination, and m1

was sent causally before m2 (thus m1 is in the causal history of m2), then m1

cannot be in transit when m2 is not. This means that m1 must be received before
m2. Accordingly, the ordering guard for receive allows to deliver a message m if
there does not exist another message m2 in transit, with same destination, and
which is in the history of m.

Fig. 4. History-based Event-B model for causal communication

Data refinement consist in proving that the model-specific guards on the
communication events guarantee the ordering properties on the distributed exe-
cutions. The proofs rely on the ordering invariant, and wisely formulated gluing
and consistency invariants. The gluing invariants relate the state variables of
the abstract (events, executions) and concrete machines (network, histories).
For instance, a message m1 is in the causal history of m2 if the send event of m1

is causally anterior to the send event of message m2. The consistency invariants
clarify links between the state variable of the concrete machine (e.g. if a message
m1 is in the causal history of m2, it is also in its global history). Besides, signif-
icant manual interventions have to be carried out to supervise the proof process
as the number of state variables and invariants misdirect the automatic provers.
Finding the optimal formulation (e.g. proposition vs. contraposition), through
trial and error, is a large portion of the proof effort.

A Map of Asynchronous Communication Models 317

5 Concrete Models

In the first approach, the models based on events directly translate the order-
ing policies of the communication models. The second approach using message
histories is more concrete: the locality and transmission of data is taken into
account with messages that carry their history. However, keeping trace of all the
previously sent messages is still unrealistic in practice. Therefore we refine the
models that use histories with concrete structures such as counters of messages
or queues of messages.

5.1 Logical Clocks

Regarding the causal communication model as described in Fig. 5, the causality
relation can be explicit, using pruned causal histories [17] (in the worst case, this
is as costly as our version with histories), or derived from logical vector clocks
of size n or matrix clocks of size n × n [23].

Every peer p has a vector clock vcOf (p). For peers p and pp, vcOf (p)(pp)
holds the number of send events on pp that are in the current past of peer p. When
a peer sends a message, it increments its own count (vcOf (p)(p)) and piggybacks
its vector with the message. At reception, a peer updates every component of its
vector with the max of its current value and of the component of the received
vector. Thus, vcOf (p)(pp) holds the number of messages sent by pp and known
by p. A message m is in the causal history of m′ iff every vector component of m
is lower or equal than the one of m′ (and at least one is strictly lower: distinct
messages have different vectors). To ensure causal reception, a message can be
delivered to a peer iff no other message exists for this peer with a lower vector.

The refinement of CausalHistory replaces the history variables with vector
clocks. The events are refined to update these variables and, in the receive
event, the guard built on histories is replaced with a property on the vectors.
The refinement proof requires gluing invariants on causal histories and vector
clocks.

5.2 Other Concretizations

As shown in Fig. 1, other concrete models have been defined. The various fifo*
models are easily described with counters. If n denotes the number of peers, 2
counters (fifonn), 2 × n counters (fifon1 and fifo1n), or 2 × n2 counters (fifo11)
are used to account for the ordinal rank of the last sent and last received messages
in the system (fifonn), a peer (fifon1 and fifo1n), or a couple of peers (fifo11).
The ranks of the last received messages determine the rank of the messages that
can be received. Alternatively, message queues can be used: if n denotes the
number of peers, we need a global queue (fifonn), n inbox queues (fifon1), n
outbox queues (fifo1n), or n2 queues (fifo11).

318 F. Chevrou et al.

Fig. 5. Concrete model for causal communication using vector clocks

6 Additional Remarks

6.1 Proof Effort

The full menagerie holds 42 machines, 41 refinements, 329 invariants, and more
than 1400 proof obligations. Once the necessary invariants are stated, the large
majority of these proof obligations are automatically proved by Rodin with SMT
solvers (49 manual proofs, 3.5% of the proof obligations). The main difficulties
are described below.

To make the proofs automatic, the trick is to find additional invariants. For
instance, to prove that RscHistory refines RscEvent, the invariant

∀ e1, e2 · e1 �→ e2 ∈ run ∧ comOf(e1) = Send ∧ e1
= e2 ⇒ mesOf(e1) /∈ net

has to be made explicit (it says that if there exists at least one event after a
send event e1, then the message sent at e1 is no longer in transit). As expected,
the discovery of the necessary invariants is the hardest part in the proofs, and
the largest part of our proof effort was devoted to this point. Our methodology
consists in running the automatic provers and analyzing the failure (if any).
After some case analysis of the disjunctions, a contradiction often appears in the
hypotheses. This contradiction leads us to a relevant new invariant. Once stated
and proved, this new invariant may, with good luck, suppress the unsuccessful
branch and advance towards the fully automatic proof.

A Map of Asynchronous Communication Models 319

The refinements involving causal are never easy. One essential invariant is:
∀ e1, e2 · e1 �→ e2 ∈ prec ∧ peerOf(e1)
= peerOf(e2) ⇒ (∃ es,er · e1 �→ es ∈ prec ∧ es �→ er ∈
prec ∧ er �→ e2 ∈ prec ∧peerOf(e1) = peerOf(es) ∧ comOf(es) = Send ∧ comOf(er) = Receive
∧ mesOf(es) = mesOf(er))

It states that two causally related events on different peers are necessarily linked
by (at least) one message, or conversely, that causality between peers only arises
from message exchanges. This invariant had to be manually instantiated.

Lastly, concrete models need ad-hoc reasoning. For instance, Sect. 5.1
presents the specific invariants that are required to prove that CausalVector
refines CausalHistory. These invariants are expected as they state that vector
clocks encode causality. Nevertheless, the refinement proofs require to manually
recall and instantiate these invariants.

6.2 Localization

The last point concerns the distributed nature of the communication models.
The first abstract models, based on properties of the executions, are purely
logical and offer a global point of view of the communication models. The second
models, based on histories, are actually directly implementable even if costly.
The third concrete models offer realistic implementations. By looking at their
definitions, one can distinguish two classes of communication models. The models
async, fifo11, causal and fifo1n only need meta information piggybacked with the
message and local knowledge available on the peer. On the other hand, fifon1,
fifonn and rsc require global shared variables, and their implementation in a
distributed system requires a central coordinator or totally ordered multicast.

7 Related Work

Asynchronous communication models in distributed systems are studied and
compared in [17] (notion of ordering paradigm), [8] (notion of distributed com-
putation classes), and [13] (for message sequence charts). Implementations of
the basic communication models (causal, fifo11) using histories or clocks are
explained in classic textbooks [17,23]. In our previous work, we have unified
and extended these results in [10]. The goal was to develop a framework to
mechanically verify algorithms [9], and to give a unified description of the
models. However only the communication models with message histories were
specified in TLA+. All the Event-B models presented here are new, as well as
the refinement relations leading to the distributed executions (Sect. 2), between
the abstract communication models (Sect. 3), and between the concretizations
(abstract model to history-based model to ad-hoc model, Sects. 4.2 and 5).

Formal verification of distributed algorithms have been conducted with suc-
cess. However the hypotheses on the communication are often fuzzy or unclear
and one has to dive deep into the proofs to identify them. For instance, [22]
studies the topology maintenance in structured peer-to-peer networks. Differ-
ent algorithms are studied, some assume FIFO channels and some do not. It is
unclear why it is required, and if it is required for all channels.

320 F. Chevrou et al.

Refinement has been used to verify distributed algorithms. [20] describes the
addition of Byzantine resilience to standard Paxos. The proof is conducted by
refinement of the distributed non-Byzantine algorithm and has been mechan-
ically checked with the TLA+ Proof System. Another approach is presented
in [21]. Three versions of Paxos (the classic one, disk Paxos and Byzantine Paxos)
are derived from an abstract, non-distributed algorithm.

The Event-B book [1] presents several examples of refinements of distributed
algorithms. The simple file transfer protocol decomposes the atomic sending of
a file in a sequence of send events, and uses counters to coordinate the progres-
sion. This protocol is later extended to handle loss and re-transmission with an
alternating bit protocol. In this example, asynchronous communication appears
implicitly during refinement, and properties of the communication are directly
embedded in the resulting machine. A logical clock is used in the routing algo-
rithm for a mobile agent to order the messages sent by a mobile agent while it
moves. This example can be seen as the development of an ordered communica-
tion model down to a concrete localizable model. Lastly, the leader election on a
connected graph network deals with the difficulties of splitting an atomic action
(in a shared-memory model) into several actions (in a message-passing model).
This creates deadlocked states (a situation called contention in the algorithm)
where two nodes are each waiting for the other to progress. This development is
more concerned with providing a algorithmic solution in presence of non-atomic
actions, than with the development of non-atomicity (i.e. messages).

[4] presents the development by refinement of snapshot algorithms. It starts
with the specification of the snapshot problem, which is by essence a global
property. A generic architecture with asynchronous communication is presented,
which allows the derivation of several algorithms. At one point, the set of mes-
sages (which models fully asynchronous communication) is refined by FIFO
queues (which models ordered communication). This leads to a simpler snap-
shot algorithm, which ends being the well-known Chandy-Lamport algorithm.

[15] describes the formal derivation of an algorithm for leader election in
Event-B. The abstract model is centralized, and refinement introduces distri-
bution. The behavioral part of the communication model first comprises two
events, send and receive which directly access the state variable of the other
peers. Then, a new refinement introduces new variables to decouple the peers
and to get a “one-to-one asynchronous communication channel”.

8 Conclusion

This paper provides a guide for the design of the communication component in
the development of distributed systems and algorithms. It considers a wide range
of asynchronous communication models that enforce message-ordering properties
on the system and positions each one of them on a map of refinement relations.
The map, shown in Fig. 1, has two dimensions: it compares the models according
to the strength of the underlying ordering properties and their level of abstrac-
tion. All these models are specified and the refinements proved in Event-B which

A Map of Asynchronous Communication Models 321

paves the way for reusing part of the mechanization in a correct-by-construction
development of a distributed system thanks to shared-event model decomposi-
tion. Our machines are indeed pluggable to any system where communication
occurs according to two events send and receive with usual parameters (message,
destination). A classic development process consists in introducing asynchronous
communication which corresponds to our RunWithMessages machine, the root of
our map, and make use of the rest of the map to strengthen the ordering policy
depending on the needs, pursue the development towards the concrete practical
specifications models (with counters or queues), or even substitute models after-
wards knowing the safety properties are preserved. Besides, each one of the three
sets of communication models we provide has its assets: the concrete models are
close to practical implementations, the event-based models clearly translate the
ordering policies which ease theoretical reasoning on the properties themselves,
and the history-based models offer a compromise with operational descriptions
that are implementable and yet remain uniform to ease formal reasoning.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010). https://doi.org/10.1007/s10009-010-0145-y

3. Abrial, J., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete
models: application to Event-B. Fundam. Inform. 77(1–2), 1–28 (2007)

4. Andriamiarina, M.B., Méry, D., Singh, N.K.: Revisiting snapshot algorithms by
refinement-based techniques. Comput. Sci. Inf. Syst. 11(1), 251–270 (2014)

5. Back, R., Kurki-Suonio, R.: Distributed cooperation with action systems. ACM
Trans. Program. Lang. Syst. 10(4), 513–554 (1988)

6. Butler, M.J.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim,
H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00255-7 2

7. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,
Boston (1988)

8. Charron-Bost, B., Mattern, F., Tel, G.: Synchronous, asynchronous, and causally
ordered communication. Distrib. Comput. 9(4), 173–191 (1996)

9. Chevrou, F., Hurault, A., Quéinnec, P.: Automated verification of asynchronous
communicating systems with TLA+. In: Electronic Communications of the EASST
(PostProceedings of AVoCS 2015), vol. 72 (2015)

10. Chevrou, F., Hurault, A., Quéinnec, P.: On the diversity of asynchronous com-
munication. Formal Aspects Comput. 28(5), 847–879 (2016). https://doi.org/10.
1007/s00165-016-0379-x

11. Dijkstra, E.W.: EWD851b - reducing control traffic in a distributed implementation
of mutual exclusion (1983)

12. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, New York (1990). https://doi.org/10.1007/978-1-4612-3228-5

13. Engels, A., Mauw, S., Reniers, M.A.: A hierarchy of communication models for
message sequence charts. Sci. Comput. Program. 44(3), 253–292 (2002)

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1007/978-1-4612-3228-5

322 F. Chevrou et al.

14. Hoang, T.S., Iliasov, A., Silva, R., Wei, W.: A survey on Event-B decomposition.
ECEASST 46, 1–15 (2011)

15. Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A.: Formal derivation of a
distributed program in Event B. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 420–436. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24559-6 29

16. Iliasov, A., et al.: Supporting reuse in Event B development: modularisation app-
roach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11811-1 14

17. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2011)

18. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

19. Lamport, L.: Specifying Systems. Addison Wesley, Boston (2002)
20. Lamport, L.: Byzantizing paxos by refinement. In: Peleg, D. (ed.) DISC 2011.

LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24100-0 22

21. Lampson, B.W.: The ABCD’s of Paxos. In: Symposium on Principles of Distributed
Computing, PODC 2001, p. 13. ACM (2001)

22. Li, X., Misra, J., Plaxton, C.G.: Active and concurrent topology maintenance. In:
Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 320–334. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30186-8 23

23. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-38123-2

https://doi.org/10.1007/978-3-642-24559-6_29
https://doi.org/10.1007/978-3-642-24559-6_29
https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-540-30186-8_23
https://doi.org/10.1007/978-3-642-38123-2

An Abstract Semantics of Speculative
Execution for Reasoning About Security

Vulnerabilities

Robert J. Colvin1,2(B) and Kirsten Winter1,2

1 Defence Science and Technology Group, Brisbane, Australia
2 School of Information Technology and Electrical Engineering,

University of Queensland, Brisbane, Australia
r.colvin@uq.edu.au

Abstract. Reasoning about correctness and security of software is
increasingly difficult due to the complexity of modern microarchitectural
features such as out-of-order execution. A class of security vulnerabili-
ties termed Spectre that exploits side effects of speculative, out-of-order
execution was announced in 2018 and has since drawn much attention.
In this paper we formalise speculative execution and its side effects as
an extension of a framework for reasoning about out-of-order execution
in weak memory models. Our goal is to allow speculation to be reasoned
about abstractly at the software level. To this end we encode specula-
tive execution explicitly using a novel language construct and modify
the definition of conditional statements correspondingly. Underlying this
extension is a model that has sufficient detail to enable specification of
the relevant microarchitectural features. We add an abstract cache to the
global state of the system, and derive some general refinement rules that
expose cache side effects due to speculative loads. The rules are encoded
in a simulation tool, which we use to analyse an abstract specification of
a Spectre attack and vulnerable code fragments.

1 Introduction

Modern multicore architectures exhibit several features to speed up execution:
commands may appear to occur out of order, allowing computation to proceed
past some bottleneck (e.g., loading a value from memory), several levels of faster
intermediate memory (caches) to speed up repeated accesses, and in particular,
speculative execution, where a branch is optimistically executed, even though
local computation may not yet have determined if it is the correct branch. Such
features are difficult to reason about, though there has been significant work in
understanding weak memory models [1,2,15,23,35,36] and also detailed formal
microarchitectural models (e.g., [4]).

Recently several significant security vulnerabilities have been found related
to out-of-order execution, e.g., Meltdown [27], Foreshadow [5], and Spoiler [22].
In this paper we focus on the recently published Spectre class of attacks [24,25].
Spectre differs in that the attack may target the victim’s code to retrieve private
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 323–341, 2020.
https://doi.org/10.1007/978-3-030-54997-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_21

324 R. J. Colvin and K. Winter

information, while other attacks exploit processor features only. While complex
to exploit, Spectre is a vulnerability present in almost all modern architectures.
It allows malicious code to access the memory of a victim process, potentially
reading private data, without sharing the virtual memory space. The attack
works by detecting footprints in the cache left by speculative execution; for
instance, a branch that includes a bounds check on an index i into an array A
may speculatively load the element at A[i], before it knows for certain that i
is within the bounds of A. Though the speculative computations leading up to
the point where the mis-speculation is detected are discarded, depending on the
subsequent access patterns there may still be an effect on the cache, which is not
discarded, and which can be used to infer the value in memory at out-of-bounds
address A[i].

In earlier work we have proposed a semantic framework to support reasoning
about weak memory models [12] which is implemented in a simulation/model
checking tool based on Maude [8]. In this paper we extend this framework with
a model of cache behaviour and speculative execution. Although Spectre may
occur in memory models that provide sequential consistency, a weak memory
model framework is a natural fit for speculative execution as speculated instruc-
tions may begin out of order, i.e., before the relevant branch is reached. This
enables not only a close inspection of Spectre-like attacks but also the analy-
sis of other related potential vulnerabilities that may arise in modern hardware
architectures. Our intention for the semantics is to allow analysis of vulnerabil-
ity to Spectre-like attacks to be integrated within a more general, software-level
reasoning framework; we do not aim to precisely model the implementation of
speculative execution or caches for a particular architecture.

Speculative execution presents several challenges. Firstly, it requires a model
of the cache which, for our concerns, needs to be modelled at a level that presents
enough details to realistically capture the effects of speculative execution, but is
abstract enough to not over-complicate reasoning. Secondly, speculative execu-
tion should allow side effects to take effect before the relevant branch is reached.
Thirdly, speculation can be nested, and the target of future branches may depend
on speculatively executed computations, necessitating the creation of transient
state that can be discarded if speculation is found to be incorrectly chosen.
Finally, we want to be able to model and explore possible mitigations, e.g.,
memory barriers to halt speculation, such as Intel’s LFENCE instruction [21,
Sect. 11.4.4.3].

The paper is structured as follows: in Sect. 2 we summarise a wide-spectrum
language and its semantics for reasoning about weak memory models. In Sect. 3
we extend this with new constructs for reasoning about speculative execution,
and give its semantics. We formalise some attacker and victim patterns, in par-
ticular those of Spectre, in Sect. 4. Related work is discussed in Sect. 5.

2 Background: IMP-ro

A wide-spectrum language for reasoning about weak memory models, IMP-ro, is
introduced in [11,12]. It is essentially an imperative language with assignments,

An Abstract Semantics of Speculative Execution for Reasoning 325

conditionals and loops, with the difference that instead of sequential composition
(c1 ; c2 for ci a command) it has prefixing, α ; c, where α is an instruction (as
in process algebras such as CSP [20] and CCS [30]). The semantics of prefixing
is defined so that either α may be executed, or some instruction β from within
c may be executed, provided that β can be reordered before α according to the
rules of the memory model. To instantiate IMP-ro for a particular memory model
a “reordering relation” r⇐ on instructions is defined, stating when instructions
can occur out of order; in addition, different models may also have different
instruction types, for instance, memory barriers for enforcing order.

We recap IMP-ro below, before extending it to include speculative execution
in later sections. We ground our work in a weak memory framework because
speculation can occur before preceding instructions are executed, even when
speculative execution is implemented on architectures which enforce sequential
consistency. In addition, it appears that increasingly security vulnerabilities will
be found due to instruction reordering on modern architectures, e.g., [22]. How-
ever, the particular reordering relation is not important for the analysis in this
paper, and to avoid distraction we mostly assume sequential consistency.

The elements of IMP-ro are actions (instructions) α, commands (programs)
c, processes (local state and a command) p, and the top level system s, encom-
passing a shared state and all processes. We assume a set of variables Var ,
divided into locals (registers) and globals. By convention we use r , r1, r2, etc., to
name local variables, and unless otherwise stated, x , y , z for global variables. A
state σ is a mapping from Var to values, with the notation σ[x := v] representing
an update of σ to map x to v . Below x is a variable (shared or local) and e an
expression.

α ::= x := e | [e]
c ::= nil | α ; c | α � c | c1 � c2 | while b do c
p ::= (local σ • c)
s ::= (global σ • p1 ‖ p2 ‖ . . .)

An action may be an update x := e or a guard [e]. For weak memory models
the set of actions may also include fences (memory barriers); we introduce an
abstract barrier in later sections. Commands include the terminated command
nil, prefixing, choice, and iteration. We also include the abstract command type
for “true prefixing”, α � c, where reordering is forbidden, i.e., � is prefixing in
the usual CSP [20] and CCS [30] sense. For brevity, for a command α ; β ; nil
we omit the trailing nil and just write α ; β. A process encapsulates a command
within a local state σ (total on local variables), representing registers. A system
is structured as the parallel composition of processes sharing a global state, each
with their own values for local variables.

A relevant subset of the operational rules are given in Fig. 1. Transitions are
labelled with the syntax of the transition, i.e., assignments and guards, with the
addition of the silent label τ , modelling an internal step of a process with no
effect on the context. For brevity and ease of explanation we tend to focus on
rules involving guards of a particular form, [x = v], which represents a load of x

326 R. J. Colvin and K. Winter

Rule 1 (Prefix)

(α ; c) α−→ c (a)
c

β−→ c′ α
r⇐ β〈α〉

(α ; c)
β〈α〉−−−→ (α ; c′)

(b)

Rule 2 (Choice)

c � d
τ−→ c

c � d
τ−→ d

Rule 3 (While)

while b do c
τ−→ if b then (c ; while b do c) else nil

Rule 4 (Locals)

c r := v−−−→ c′

(local σ • c) τ−→ (local σ[r := v] • c′)

Rule 5 (Locals/store)

c x := r−−−→ c′ σ(r) = v

(local σ • c) x := v−−−→ (local σ • c′)

Rule 6 (Locals/load)

c r := x−−−→ c′

(local σ • c)
[x=v]−−−→ (local σ[r := v] • c′)

Rule 7 (Locals/guard)

c
[e]−−→ c′

(local σ • c)
[eσ]−−→ (local σ • c′)

Rule 8 (Parallel)

p1
α−→ p′

1

p1 ‖ p2
α−→ p′

1 ‖ p2

p2
α−→ p′

2

p1 ‖ p2
α−→ p1 ‖ p′

2

Rule 9 (Globals/store)

p x := e−−−→ p′

(global σ • p) τ−→ (global σ[x := eσ] • p′)

Rule 10 (Globals/load)

p
[x=v]−−−→ p′ σ(x) = v

(global σ • p) τ−→ (global σ • p′)

Fig. 1. Semantics of the language

when x = v . The more general rules are given in [12]. We omit some rules, such

as terminating rules like (local σ • nil) τ−→ nil.
Rule 1 is the key rule that allows later instructions to happen earlier, accord-

ing to an architecture-specific reordering relation r⇐. For instance, for TSO, the
main part of the reordering relation is that loads can come before stores, i.e.,
x := 1 r⇐ r := y , while α �r⇐ β for all other instruction types. Relations for
TSO, ARM and POWER are given in [12]. To avoid distraction in this paper we
assume sequential consistency, i.e., α �r⇐ β for the basic instruction types, with
the exception that τ steps can be reordered (allowing future local calculations to
be executed ahead of time). In Rule 1 the notation β〈α〉 accounts for forwarding,
where in a case such as x := 1 ; r := x the instruction r := x can take effect
before x := 1 provided the value 1 is forwarded to r , meaning that r := 1 is
executed (rather than r := x , which it would not be sensible to execute before

An Abstract Semantics of Speculative Execution for Reasoning 327

x := 1 from a sequential semantics perspective). Forwarding is defined straight-
forwardly in [12], and we do not repeat it here. The semantics for true prefixing,
α � c, is given by an equivalent version of Rule 1(a).

Rule 2 is straightforward for nondeterministic choice. In Rule 3 we unfold a
loop into a conditional; the definition of conditional in a speculative context is
crucial and is deferred until Sect. 3.2. Rule 4 covers the case of some change to
the local registers. This is an internal step of the process and is a silent τ step at
the global level. Rule 5 applies when a store x := r is executed by a process: the
local value v for r is substituted so that the label x := v is promoted to the global
state (this rule can be generalised to cover any assignment of the form x := e
[10]). Rule 6 states that when a load r := x instruction is executed internally it
becomes a load of x , i.e., a guard [x = v], for any value v . Although there is a
transition [x = v] for every possible v , only the guard with the correct value for
x will be possible at the system level (via Rule 10). The loaded value becomes
the new value for r in the local state. Rule 7 states that a guard is evaluated
with respect to the registers, and is promoted for evaluation with respect to the
global state. Rule 8 gives the usual interleaving model of concurrency. Rules 9
and 10 straightforwardly update and access the global store via promoted stores
(Rule 5) and loads (Rule 6).1

Refinement (�) is defined so that c � d iff all terminating traces of d are also
traces of c, ignoring subsequences of internal (τ) steps. Terminating traces are
those retrieved from the operational semantics where eventually nil is reached.
(For simplicity we ignore non-terminating behaviours, that is, for this paper we
consider only partial correctness, which is sufficient for detecting Spectre-like
attacks.) Note that if a behaviour is blocked (no rules are applicable, e.g., a
false guard) it is not considered terminating. This eliminates behaviours where
the wrong branch is incorrectly taken (as opposed to incorrectly speculated), as
discussed in more detail in [12].

We lift reasoning from the operational to refinement level via Law 11, which
allows us to straightforwardly derive Law 13. More specific laws may also
be straightforwardly derived, such as resolving nondeterminism via Law 12,
and Law 14 that hides local effects, exposing a process’s global effect; this
helps later to abstract from the details of transient speculative contexts.

c α−→ c′ � c � α � c′ (11)

c1 � c2 � c1 (12)

α ; c � α � c (13)

(local {r �→ 1} • x := r) � x := 1 (14)

3 Caches in Weak Memory Models: IMP-ro-spec

From the perspective of functional correctness, speculative execution may be
ignored: in the case where a process speculates along the branch that is eventually
taken (after the conditional is evaluated) implementations ensure that speculated

1 In this paper we assume a multicopy atomic storage system; for memory models
which lack this (e.g., POWER) the storage system described in [12] may be used.

328 R. J. Colvin and K. Winter

instructions are committed in a consistent order; and when speculation was
down the incorrect branch any speculative computation is discarded. However,
as revealed by Spectre and other vulnerabilities, incorrect speculation can have
side effects, and in this section we extend IMP-ro to expose them.

For convenience we call the extended language IMP-ro-spec, which defines
conditionals to expose (incorrect) speculative execution, and records operations
on the cache in a global variable. Speculation occurs within a transient context,
which is discarded if speculation is found to be incorrect.

3.1 Syntax of IMP-ro-spec

Speculative Execution. We introduce three new commands to capture spec-
ulative execution in IMP-ro.

α ::= . . . | specfence (15)

c ::= . . . | spec(c) | c1 	 c2 | (buf σ • c) (16)

c̃ =̂ (buf ∅ • (local σ • c)) (17)

if b then c1 else c2 =̂ spec(c̃2) 	 ([b] ; c1) � spec(c̃1) 	 ([¬b] ; c2) (18)

The instruction type specfence blocks load speculation; this is an abstract
command type that may correspond to, for instance, the LFENCE command of
Intel architectures [21]. We include it to demonstrate the relevance of reordering
relations and how mitigation techniques can be considered in our framework.
A speculation command spec(c) gives the effect of executing command c spec-
ulatively, that is, no effects on the global or local state can be seen, however,
there can be cache side effects based on the steps of c. A partial pre-execution
command c1 	 c2 partially executes c1 before c2 begins. The initial command
c1 may not execute at all, execute to completion, or partially execute. It is the
well-known CSP “interrupt” operator, but we rename it in this context to avoid
confusion with hardware interrupts. The transient buffer command (buf σ • c)
is used to keep track of modifications to globals executed speculatively.

We also introduce the abbreviation c̃ which creates the transient context for a
speculative execution of c, that is, a (temporary) mapping of (all) registers, and
an initially empty transient buffer (17). The values for the speculative copy of
registers σ created here is left unconstrained and may differ to the actual local
state in the outer context; this accounts for different strategies that different
architectures may take. Because the specifics of the local state are not relevant
for reasoning about Spectre we do not model a specific strategy, which could be
given by adding an explicit transition that sets up the local state according to the
current context. A speculative execution of code c is of the form spec(buf σb •
(local σl • c)), where a copy of the locals is encapsulated in σl , stores to globals
are encapsulated in σb , and the outer speculative command generates the cache
side effects. An example of how they interact is given in Sect. 3.3.

Speculation is evident at branch points, and hence we model conditionals
differently. Whereas in [12] a conditional if b then c1 else c2 was defined in the

An Abstract Semantics of Speculative Execution for Reasoning 329

standard way as ([b] ; c1) � ([¬b] ; c2) here we extend the definition to poten-
tially pre-execute speculation down the alternative branches as given in (18).
This says there are two possibilities: speculatively execute the second branch
(ignoring the guard) up until the point where the first branch is chosen, or spec-
ulatively execute the first branch until the point the second branch is chosen.
These two possibilities cover all behaviours relevant in the context of Spectre; as
far as is known speculation down the eventually correct branch has no impact
on the security of the system that is not already visible through other analysis
techniques, e.g., information flow [32]. However, speculation down the correct
branch is straightforward to capture, as discussed in Appendix A.

To explain the relevance of the transient context (initialised in (17)) consider
the execution of spec(x := 1; r := x ; . . .). The effect of x := 1 must not be seen
globally (as it is difficult to unwind), however during speculation r must use the
value 1. If instead r was to use a value of x loaded from main memory this would
violate local consistency (see [1]). This detail is especially important if r is used
in later (speculated) calculations, including future branches. In our approach it
emerges from the semantics that x is not loaded nor drawn into the cache during
speculation of the above code. A purely syntactic approach to determining the
effect of speculative execution might conclude that x is added to the cache, and
hence could be overly pessimistic from a security analysis perspective.

Nested speculation, which may arise from nested conditionals or a speculated
loop, is straightforward in our framework; a new, nested, transient context is
created, and if an inner speculation attempts to load a global which the outer
speculation has buffered then the cache effect is removed (see Rule 24(e)).

The Cache. The cache is modelled as a single global variable cache, kept in
the shared state, which holds a set of type Addr , representing addresses (for this
work we do not care what values are in the cache; however it is straightforward to
modify the type of cache). We assume an uninterpreted function &:Var → Addr
such that &x returns the address of the (global) variable x . We introduce three
operations on cache to model cache side channels abstractly: cache fetching
(adding something to the cache), cache clearing (clearing the (entire) cache),
and cache querying (checking if an address is in the cache). Other explicit cache
operations could be added, but these are sufficient for modelling the attack
patterns utilised to instrument Spectre attacks [24].

cache += x =̂ cache := cache ∪ {&x} (19)
cclear =̂ cache := ∅ (20)

x ∈ cache ⇔ &x ∈ cache (21)

As these are abbreviations for updates to and guards on a global variable they
fit in with the framework introduced in Sect. 2. A cache fetch represents the side
effect of a speculated load. The instruction cclear captures abstractly flushing
as well as eviction of particular cache lines as it ensures that a certain address
is not present in the cache any more.

330 R. J. Colvin and K. Winter

The variable cache is kept in the global state and hence is shared between all
processes. An alternative would be to explicitly model it as a separate construct,
e.g., (cch C • c) where C is a set of addresses. This approach would allow more
fine-grained control over cache levels, e.g., each process could have its own L1
cache, with some subset sharing an L2 cache, with the L3 cache at the top level.

(cch L3 • (cch L2a • (cch L11 • p1) ‖ (cch L12 • p2)) ‖ (cch L2b • . . .))

We are interested in the worst case behaviour of the cache, where it leaks private
information, and are not concerned with the specifics of how that may happen.
However details of the cache, such as its update policy, may also be captured
with extra machinery. In that sense our model of the cache is an abstraction of
the underlying microarchitecture implementation, which could be verified using
data and action refinement techniques [3,19,31].

3.2 Semantics of IMP-ro-spec

Partial Pre-execution. The semantics of a partial pre-execution process is
based on that of the interrupt operator from CSP [20].

Rule 22 (Partial pre-execution)

c1
α−→ c′

1

c1 	 c2
α−→ c′

1 	 c2
(a)

c2
α−→ c′

2

c1 	 c2
α−→ c′

2

(b)

For commands of the form spec(c)	d the speculation of c occurs for some period
of time (Rule 22(a)) before discarding the computation and starting down the d
branch (Rule 22(b)). The arbitrariness of when c2 starts captures the unknown
time at which speculation may be found to be incorrect. We make use of the
following law that covers the interruption occurring after a single action.

(α � c1) 	 c2 � α � c2 (23)

Transient Buffers. Transient buffers catch stores and record them in a state;
recorded values may be used for speculative computations.

Rule 24 (Buffer)

c
x := v−−−→ c′

(buf σ•c) τ−→ (buf σ[x := v]•c′)
(a)

c
[x = v]−−−→ c′ (x �→ v)∈ σ

(buf σ•c) τ−→(buf σ•c′)
(b) c

[x = v]−−−→c′ x �∈ dom(σ)

(buf σ•c)
[x = v]−−−→ (buf σ•c′)

(c)

c
cache += x−−−−−−→ c′ x ∈ dom(σ)

(buf σ•c) τ−→ (buf σ•c′)
(d) c

cache += x−−−−−−→ c′ x �∈ dom(σ)

(buf σ•c) cache += x−−−−−−→(buf σ•c′)
(e)

An Abstract Semantics of Speculative Execution for Reasoning 331

Rule 24(a) states that (speculated) stores are recorded in the transient buffer;
Rule 24(b) states that (speculated) loads are serviced by the buffer (similar to for-
warding [12]) if a value is available; Rule 24(c) states that otherwise the load is
promoted (to be handled by the global state via Rule 10). In cases where nested
speculation has resulted in a cache fetch, Rule 24(d), similarly to Rule 24(b), hides
a fetch of x if a store of x is in the buffer already;Rule 24(e) states that otherwise the
cache fetch is promoted. In addition a transient buffer command promotes other
instruction types not covered above (e.g., τ , specfence), and the rules do not need
to cover registers since the transient buffer encloses a local state (17).

Speculation (Down an Incorrect Path). Speculation should have no observ-
able effect on registers or globals (the “CPU state”), however in reality it may
leave a footprint in the cache. The main concept is to make explicit a cache fetch
with each speculated load.

Rule 25 (Speculative context)

c
[x=v]−−−−→ c′

spec(c) cache += x−−−−−−−→ ([x = v] ; spec(c′))
(a)

c τ−→ c′

spec(c) τ−→ spec(c′)
(b)

c cache += x−−−−−−−→ c′

spec(c) cache += x−−−−−−−→ spec(c′)
(c) spec(nil) τ−→ nil (d)

Rule 25(a) states that speculated loads of global variables have an initial side effect
on the cache. The load is delayed until after the cache fetch. Rule 25(b) states that
speculative execution can perform local computation. Rule 25(c) states that cache
fetches are promoted (from nested speculation). Rule 25(d) states that speculation
may silently complete. By omission, i.e., since there is no corresponding rule, spec-
ulation is blocked if c executes a specfence command. We do not need to consider
further action types, since speculation always encompasses a transient context out
of which only loads and cache fetches are exposed.

Reordering of Cache Instructions. The semantics of IMP-ro is instantiated
for a particular memory model by defining the relation r⇐, as used in Rule 1(b).
We must therefore define the cases under which the new (cache-based) instruc-
tion types can be reordered. The concept of speculative execution is that loads
can be initiated ahead of time, though they must still (appear to) conform to
the particular memory model. However the cache fetches are not so constrained.
We therefore allow cache fetch instructions to be reordered before the majority
of instruction types.

y := e r⇐ cache += x iff x ,y distinct (26)

specfence �r⇐ r := x specfence �r⇐ cache += x (27)

332 R. J. Colvin and K. Winter

Equation (26) states that a cache fetch of x may occur earlier than loads, and
stores of other variables (note that x := 1 �r⇐ cache += x as the assignment will
service the corresponding load, rather than memory). Equation (27) states that
specfence instructions block loads and cache fetches. A potential mitigation
for the Spectre vulnerability (short of turning off speculation entirely) is to
insert (concrete) specfence instructions at the start of each potentially affected
branch. However, this would have too great an impact on processor speed to be
seriously considered as a blanket fix [29].

As an example of out-of-order execution with cache side effects consider a
command of the following form, where li are loads and si are store instructions
to distinct locations.

l1 ; l2 ; (if b then l3 ; s1 else s2 ; l4)

Speculation allows cache fetches to come earlier (out-of-order), although whether
the loads themselves can come earlier than preceding loads depends on the archi-
tecture; ARM and POWER allow loads to be reordered, whereas TSO doesn’t
[1,36]. Let c3 be the cache fetch corresponding to load l3. One possible behaviour,
where the true branch is speculated before the false branch is executed, is given
by the following sequence, which exposes the cache fetch for l3.

c3 � l1 � l2 � l3 � [¬b] � s2 � l4

The cache fetch for l3 occurs before the earlier loads, which, for some execution-
and architecture-specific reason, have taken longer to resolve. Note l3 itself occurs
in an order consistent with the memory model.

For simplicity we enforce ordering on cache operations, though the framework
is flexible (for instance, on Intel architectures cache flush instructions do not
necessarily prevent pre-fetching [21]).

α �r⇐ cclear cclear �r⇐ α x ∈ cache �r⇐ α α �r⇐ x ∈ cache

We do not intend for these to be definitive, but rather develop a framework that
is flexible enough to cope with different models.

3.3 Example of Cache Side Effects Due to Speculation

In this section we show the particular behaviour of a conditional statement,
where the true branch is (partly) speculated before the false branch begins.
We construct the true branch, branchT, so that it modifies some global x and
a register r1, before loading z into register r2 and proceeding as branch′

T. A
(partial) behaviour of branchT is given by (28).

branchT =̂ x := 1 ; r1 := 2 ; r2 := z ; branch′
T

branchT
x := 1 r1 := 2 r2 := z−−−−−−−−−−−−−−−→ branch′

T (28)

The trace ends with a load of z . We will take the case where globally z has the
value 42. Now consider speculating branchT.

An Abstract Semantics of Speculative Execution for Reasoning 333

spec(˜branchT)
= Set up new transient context (17)2

spec(buf ∅ • (local σ • branchT))
τ−→

∗
From (28), locally update x by Rule 24(a) and r1 by Rule 4
spec(buf {x �→ 1} • (local σ[r1 := 2] • r2 := z ; branch′

T))
cache += z−−−−−−−→ Fetch z (Rule 25(a)); arbitrarily assume z is 42

[z = 42] ; spec(buf {x �→ 1} • (local σ[r1 := 2][r2 := 42] • branch′
T))

The cache fetch has been exposed in the trace (the corresponding load [z = 42]
is pending). We abbreviate the remaining code as branch′′

T, and may derive (29)
by the above calculation and Law 11.

branch′′
T =̂ [z = 42] ; spec(buf {x �→ 1} • (local σ[r1 := 2][r2 := 42] • branch′

T))

spec(˜branchT) � cache += z � branch′′
T (29)

Now we show how the cache fetch in the true branch may be seen in
behaviours where the false branch is taken.

if b then branchT else branchF
=̂ Definition 18

spec(˜branchF) 	 ([b] ; branchT) � spec(˜branchT) 	 ([¬b] ; branchF)
� Arbitrarily choose false branch by Law 12

spec(˜branchT) 	 ([¬b] ; branchF)
� by (29)

(cache += z � branch′′
T) 	 ([¬b] ; branchF)

� by Law 23
cache += z � ([¬b] ; branchF)

From the system’s perspective the speculation has had no effect: the assignment
to x was caught in the transient buffer, and then discarded, and the computations
involving registers r1 and r2 became silent steps that did not affect the outer
state. However, the cache has (potentially) been modified.

At the system level this gives the following behaviour, assuming global state
σg satisfies σg(z) = 42 and assuming σg(cache) = C (the value for x is irrele-
vant), and σl is the local state (mapping r1 and r2).

(global σg • (local σl • if b then branchT else branchF) ‖ . . .)
� By the above derivation (note that neither σg nor σl are affected)

(global σg • (local σl • cache += z � ([¬b] ; branchF)) ‖ . . .)
� Execute instruction (Rule 1(a)), (19), Rule 9

(global σg [cache :=C∪{&z}] • (local σl • [¬b] ; branchF) ‖ . . .)

The processes in ‘. . .’ could include a malicious attacker that may be able to
exploit the existence of z in the cache. We give an example of this in the next
section.
2 Note that branchT does not depend on any of the values it buffers/loads, and hence

we may choose an arbitrary local σ; for other cases the choice of σ may be important.

334 R. J. Colvin and K. Winter

The derivations above cover the situation where a single speculated load is
promoted to a cache fetch. The variant of the Spectre attack we consider in the
next section contains two speculated loads; using similar reasoning to the above
we can straightforwardly show the following.

spec(˜r1 := x ; r2 := y)
� cache += x � [x = v1] ; spec(˜r2 := y)

� cache += x � cache += y � [x = v1] ; [y = v2] ; spec(˜nil)

And hence by generalising Law 23 we may deduce the following.

spec(˜r1 := x ; r2 := y) 	 c � cache += x � cache += y � c (30)

if b then r1 := x ; r2 := y else c � cache += x � cache += y � [¬b] ; c (31)

4 Security Vulnerabilities

4.1 Attack Patterns

Cache-based timing attacks often utilise certain attack strategies to set up the
cache as a covert or side channel to expose secret information. Generally, an
attacker that shares a cache with a victim can observe through the variation
in access time whether a particular memory address resides in the cache (a
cache hit) and hence has been accessed previously, or not (a cache miss). To
reduce noise on this covert channel, the attacker first “clears” the cache to make
sure the memory address in question does not reside in the cache. This can be
achieved by either flushing the cache line in question (some Intel architectures
offer an instruction clflush), or by filling the cache with other content (by
accessing physically congruent addresses in a large array [17]), so that due to
the contention the memory addresses in question (if present) will be evicted.
Both these options are captured in our model through the instruction cclear
(as emptying the cache and filling the cache with other content amounts to the
same desired effect).

For example consider the following code that iterates over the elements of an
array B to determine which of B [i] is in the cache.

Atk =̂ i := 0 ; (while i < 256 do (if B [i] ∈ cache then r := i) ; i += 1) (32)

If the attacker is trying to determine the value of some byte of data d, then
under the assumption B [d] ∈ cache and for all i �= d we have B [i] �∈ cache
then we have r = d.

The guard B [i] ∈ cache is an abstraction of a timing attack that loads B [i]
and checks the amount of time against an architecture-specific threshold. For
our level of analysis we do not need to explicitly model such detail, we care only
that it is possible.

Flush+Reload [45] and also Evict+Reload [17], two examples that follow
the above pattern, can be used to target the last level cache (LLC), which is

An Abstract Semantics of Speculative Execution for Reasoning 335

shared between cores, and hence works on any cross-core as well as cross-VM
settings [26]. In cases where a flush instruction is not available eviction is used
to “clear” the cache. The following fundamental concepts of micro-architectures
are exploited in these attack patterns [17]: 1) the LLC is shared amongst all
CPUs; 2) the LLC is inclusive (i.e., contains all data that is stored in the L1
and L2 caches, hence modifications on the LLC influence caches on all other
cores); 3) single cache lines are shared amongst processes on the same core; and
4) programs can map any other program binary/library into their address space.

4.2 The Spectre Attack

Spectre attacks typically use an attack pattern based on those described above.
Additionally to setting up the cache as a channel, the attacker (mis)trains
the branch predictor to speculate down the desired branch. Depending on the
processor-specific branch prediction mechanism used, the training can occur by
repeatedly running the code with “correct” input. When unexpectedly supplied
with an “incorrect” input, the processor will (incorrectly) speculate the desired
branch, in which secret information is loaded from memory (e.g., execute a mem-
ory access at an address that is chosen by the attacker), or in other variants the
attacker may leverage its own code to access the secret from the same process,
for instance, a webpage script run from within a browser process. In a third
phase of the attack the timing difference between a cache hit and a cache miss
is observed by the attacker, as in (32), allowing it to deduce the secret value.

An example of victim’s code that is susceptible to a Spectre attack is given
below (following [25]). Assume that the attacker wishes to know the value of
some data d, held at some address in the private space of the victim process V
and which can be retrieved via variable k, i.e., d is at address &k. The attacker
knows/calculates the address of k relative to the victim array A, which we will
call χ, loading the value into r2 via an out-of-bounds index into A. That is,
A[χ] = d. This private data is then used as an index into another array B .

V =̂ r1 := χ ; n := #A; if r1 < n then (r2 := A[r1] ; r3 := B [r2])

We apply Law 31 to observe the potential effects of speculation.

V � r1 := χ ; n := #A ; cache += A[χ] � cache += B [d] � [r1 �< n]

(We let &A[i] return a unique address for the array A at index i .) Let σl be
the local state for V (A,n, r1, r2, r3 ∈ dom(σl)), and σg the global state (B ∈
dom(σg), σg(cache) = C); then we can derive the following refinement.

(global σg • (local σl • V) ‖ p) �
(global σg [cache :=C∪{&k,&B [d]}] • (local σ′

l • nil) ‖ p)

The data d does not appear explicitly in the shared state, but indirectly through
a cache fetch. Note that the values of the variables whose addresses are in the
cache are not accessible.

336 R. J. Colvin and K. Winter

To infer d the attacker may perform an attack as given by Atk in (32). For
simplicity here we assume Atk and V share B , for instance if B is a read-only
array of data shared by processes in a system; alternatively Atk does not need
to share B , but rather know where B maps to in a shared cache, and map
an array BAtk of its own so that the addresses in the cache line up. At this
level of abstraction we do not distinguish these alternatives. To establish the
precondition that all elements of B are not in the cache the attacker sets up the
context to ensure that it executes a cclear before the victim’s code is run. For
instance, if the vulnerable code is in a function call provided by the server V ,
with the initial value of r1 passed as an argument,

(global {cache �→ , . . .} • cclear ; V (χ) ; Atk)

This pattern can be repeated; in fact χ need not be a specific address, as data
from V ’s private space can be read consecutively byte-by-byte by incrementing
χ on each attack.

Model Checking. We validated the semantics by encoding the refinement laws
as an extension to the simulation tool described in [12], which is written in the
Maude rewriting engine [8,41]. The refinement laws and auxiliary definitions
(such as r⇐ for cache fetches) were encoded straightforwardly. We then encoded
the Spectre attacker and victim processes, extending the array A so that its
contents went beyond its stated length to model an out-of-bounds index into
private memory; the simulation runs showed that r = d is established in the
attacker (32) in the cases where speculation is not interrupted in the victim
until after the two cache fetches.

5 Related Work

Cache side channels have been studied in the past decade (see [16,46] for an
overview), and a number of tools have been developed to support the detection
of vulnerabilities (e.g., [6,14,38,43]). However, these developments predate the
publication of the Spectre vulnerability [24,25] and hence do not consider the
effects of speculative execution. Since the effects of speculation do not affect the
functional correctness of an implementation (the results of incorrect speculation
are thrown away), they could be safely ignored in earlier work on the semantics
of weak memory models (e.g., [12]). Detailed formal models of microarchitecture
describe the interaction of the cache with processors [4], but are not readily
integrated with language-level analysis techniques.

A model of speculative execution to study vulnerabilities and support the
evaluation of software mitigations is presented in [29]. That work assumes a
uniprocessor system and is not integrated with a weak memory model, and is
designed to give a precise description of the behaviour of the microarchitecture.
The work of [13] gives a model of execution that highlights speculative behaviours
by explicitly modelling executions down false branches within a partially-ordered

An Abstract Semantics of Speculative Execution for Reasoning 337

multiset graph-based model. In contrast to our framework, they don’t consider
nested speculation, nor reorder speculated instructions.

A number of tools have been developed for detecting Spectre-vulnerable code
and injecting fences to mitigate the danger [25,42,44] as well as information
flow approaches to ensuring security in the presence of speculative execution
[7,18]. The operational semantics underlying these approaches is less abstract
than that presented in this paper, and the analysis is performed at the semantic
level. The key difference of our work is that we encode speculative execution at
the command level, and hence our framework supports algebraic, or refinement-
based reasoning.

The CheckMate tool [39] integrates a model of speculative execution into a
weak memory model framework [28]. Since the work aims at the verification of
microarchitectures, their model is set at that level and does not provide high-
level properties such as Law 31 to support reasoning on the program level. Their
tool is used to synthesise Spectre-style attacks and generate assembler test pro-
grams that can be used to determine if a particular processor is susceptible. We
can potentially use these test programs to investigate the security implications
within our more abstract framework. We have focused on cache effects from
speculative loads, however two variants of Meltdown and Spectre discovered by
the CheckMate tool [39,40] work from speculative stores. On architectures where
speculatively executed stores affect the cache we can adapt our semantics such
that Rule 24(a) emits the appropriate cache-modifying action (rather than being
a purely internal step).

6 Conclusion

We have captured the side effects of speculative execution down the wrong path
with a relatively small extension to an existing framework for reasoning about
weak memory models (out-of-order execution). To calculate speculated compu-
tations (beyond loads) we introduced a transient context, which is discarded
in the case of incorrect speculation. In our semantic framework, in contrast to
Plotkin-style semantics where states appear in the configuration of the opera-
tional rules [34], we expose the effect of a transition in its label. This simplifies
semantic issues concerning redeclaration of variables (see [9,10] for a further dis-
cussion); operations on variables in the inner (transient) scope become silent τ
steps that do not effect the variables in the outer scope, despite sharing the same
names. Allowing early execution of speculated instructions was straightforward
to specify in the reordering relation of IMP-ro [12].

Our intention is to allow abstract functional analysis techniques to be used
alongside security analysis techniques, reusing existing tools. In particular, the
information flow analysis framework in [32,33] has been extended to weak mem-
ory models [37] based on the reordering semantics of IMP-ro [12]. We envisage a
further extension of that work based on IMP-ro-spec to find information leaks
resulting from speculative execution. We have aimed to provide just enough
detail so that cache effects can be modelled, but not so much that the ability to
derive generic algebraic laws (such as Law 31) is lost.

338 R. J. Colvin and K. Winter

Acknowledgements. We thank Samuel Chenoweth, Patrick Meiring, Mark Beau-
mont, Harrison Cusack and the anonymous reviewers for helping us improve the paper.

A Speculation Down the Correct Branch; Parallel
Speculation

As far as is currently known correct speculation has no security implications,
and therefore we do not model such behaviours explicitly. However if needed we
can capture this in several ways. For instance, a cache fetch can be associated
with every load, whether inside or outside a speculation, similarly to Rule 25(a).
Such semantics can be given by annotating each load that may exhibit this side
effect.

(r := x)cache
cache += x−−−−−−−→ r := x

Alternatively we could add the possibility of speculation down the eventually
chosen branch as a choice.

spec(c2 � c1) 	 ([b] ; c1) � spec(c1 � c2) 	 ([¬b] ; c2)

A more precise model that commits the transient context when correct specula-
tion is found is possible, though significantly more complicated.

The concept of speculation down either branch can be extended straightfor-
wardly to parallel speculation down multiple branches, for instance,

(spec(c1) ‖ spec(c2)) 	 ([b] ; c1)

References

1. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

2. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against hard-
ware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp.
41–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 5

3. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidel-
berg (1994). https://doi.org/10.1007/978-3-540-48654-1 28

4. Bijo, S., Johnsen, E.B., Pun, K.I., Lizeth Tapia Tarifa, S.: An operational semantics
of cache coherent multicore architectures. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, SAC 2016, pp. 1219–1224. ACM, New York
(2016)

5. Van Bulck, J., et al.: Foreshadow: extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In: USENIX Security Symposium (2018)

6. Chattopadhyay, S., Roychoudhury, A.: Symbolic verification of cache side-channel
freedom. CoRR, abs/1801.01203 (2018)

https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1007/978-3-540-48654-1_28

An Abstract Semantics of Speculative Execution for Reasoning 339

7. Cheang, K., Rasmussen, C., Seshia, S., Subramanyan, P.: A formal approach to
secure speculation. Cryptology ePrint Archive, Report 2019/310 (2019). https://
eprint.iacr.org/2019/310

8. Clavel, M., et al.: Maude: specification and programming in rewriting logic. Theor.
Comput. Sci. 285(2), 187–243 (2002)

9. Colvin, R., Hayes, I.J.: CSP with hierarchical state. In: Leuschel, M., Wehrheim,
H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 118–135. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00255-7 9

10. Colvin, R.J., Hayes, I.J.: Structural operational semantics through context-
dependent behaviour. J. Logic Algebraic Programm. 80(7), 392–426 (2011)

11. Colvin, R.J., Smith, G.: A high-level operational semantics for hardware weak
memory models. CoRR, abs/1812.00996 (2018)

12. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 240–257. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7 14

13. Disselkoen, C., Jagadeesan, R., Jeffrey, A., Riely, J.: Code that never ran: modeling
attacks on speculative evaluation. In: Proceedings of IEEE Symposium on Security
and Privacy (S&P) (2019)

14. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015)

15. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, pp. 608–621. ACM, New York
(2016)

16. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptographic Eng.
8(1), 1–27 (2016). https://doi.org/10.1007/s13389-016-0141-6

17. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: 24th USENIX Security Symposium (USENIX
Security 15), pp. 897–912. USENIX Association (2015)

18. Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J., Sánchez, A.: SPECTEC-
TOR: principled detection of speculative information flows. CoRR, abs/1812.08639
(2018)

19. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robi-
net, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16442-1 14

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc, Upper
Saddle River (1985)

21. Intel. Intel 64 and IA-32 Architectures Software Developers Manual, January 2019
22. Islam, S., et al.: SPOILER: Speculative Load Hazards Boost Rowhammer And

Cache Attacks (2019)
23. Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising seman-

tics for relaxed-memory concurrency. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pp. 175–189.
ACM, New York (2017)

24. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In 40th IEEE
Symposium on Security and Privacy (S&P 2019) (2019)

https://eprint.iacr.org/2019/310
https://eprint.iacr.org/2019/310
https://doi.org/10.1007/978-3-642-00255-7_9
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/3-540-16442-1_14

340 R. J. Colvin and K. Winter

25. Li, P., Zhao, L., Hou, R., Zhang, L., Meng, D.: Conditional speculation: an effec-
tive approach to safeguard out-of-order execution against Spectre attacks. In:
2019 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 264–276, February 2019

26. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: Armageddon: cache
attacks on mobile devices. In: 25th USENIX Security Symposium (USENIX Secu-
rity 2016), pp. 549–564. USENIX Association (2016)

27. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In USENIX
Security Symposium (2018)

28. Lustig, D., Pellauer, M., Martonosi, M.: PipeCheck: specifying and verifying
microarchitectural enforcement of memory consistency models. In: Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, pp. 635–646, Washington, DC, USA. IEEE Computer Society (2014)

29. Mcilroy, R., Sevcik, J., Tebbi, T., Titzer, B.L., Verwaest, B.L.: Spectre is here to
stay: an analysis of side-channels and speculative execution. CoRR, abs/1902.05178
(2019)

30. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980). https://doi.org/10.1007/3-540-10235-3

31. Morgan, C., Gardiner, P.: Data refinement by calculation. Acta Informatica 27,
481–503 (1990)

32. Murray, T.C., Sison, R., Engelhardt, K.: COVERN: a logic for compositional verifi-
cation of information flow control. In: 2018 IEEE European Symposium on Security
and Privacy, EuroS&P 2018, pp. 16–30. IEEE (2018)

33. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification
and refinement of concurrent value-dependent noninterference. In: IEEE 29th Com-
puter Security Foundations Symposium, CSF 2016, pp. 417–431. IEEE Computer
Society (2016)

34. Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic
Program. 60–61, 17–139 (2004)

35. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. SIGPLAN Not. 46(6), 175–186 (2011)

36. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

37. Smith, G., Coughlin, N., Murray, T.: Value-dependent information-flow security
on weak memory models. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM
2019. LNCS, vol. 11800, pp. 539–555. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30942-8 32

38. Touzeau, V., Mäıza, C., Monniaux, D., Reineke, J.: Fast and exact analysis for
LRU caches. Proc. ACM Program. Lang. 3(POPL), 54:1–54:29 (2019)

39. Trippel, C., Lustig, D., Martonosi, M.: Checkmate: automated synthesis of hard-
ware exploits and security litmus tests. In: 2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pp. 947–960 (2018)

40. Trippel, C., Lustig, D., Martonosi, M.: MeltdownPrime and SpectrePrime:
automatically-synthesized attacks exploiting invalidation-based coherence proto-
cols. CoRR, abs/1802.03802 (2018)

41. Verdejo, A., Mart-Oliet, N.: Executable structural operational semantics in Maude.
J. Logic Algebraic Programm. 67(1–2), 226–293 (2006)

42. Wang, G., Chattopadhyay, S., Gotovchits, I., Mitra, T., Roychoudhury, A.:
oo7: low-overhead defense against spectre attacks via binary analysis. CoRR,
abs/1807.05843 (2018)

https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1007/978-3-030-30942-8_32

An Abstract Semantics of Speculative Execution for Reasoning 341

43. Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: CacheD: identifying cache-based
timing channels in production software. In: 26th USENIX Security Symposium
(USENIX Security 2017), pp. 235–252. USENIX Association (2017)

44. Wu, M., Wang, C.: Abstract interpretation under speculative execution. In: Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, pp. 802–815. ACM, New York (2019)

45. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security Symposium (USENIX Security 2014),
pp. 719–732. USENIX Association (2014)

46. Zhang, Y.: Cache side channels: state of the art and research opportunities. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, pp. 2617–2619. ACM (2017)

Weakening Correctness and
Linearizability for Concurrent Objects on

Multicore Processors

Graeme Smith1(B) and Lindsay Groves2

1 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

smith@itee.uq.edu.au
2 School of Engineering and Computer Science, Victoria University of Wellington,

Wellington, New Zealand

Abstract. In this paper, we argue that there are two fundamental ways
of defining correctness of concurrent objects on the weak memory models
of multicore processors: we can abstract from concurrent interleaving
and weak memory effects at the specification level, or we can abstract
from concurrent interleaving only, leaving weak memory effects at the
specification level. The first allows us to employ standard linearizability
as the correctness criterion; a result proved in earlier work. The second
requires a weakening of linearizability. We provide such a weakening and
prove it sound and complete with respect to this notion of correctness.

1 Introduction

Libraries of efficient concurrent objects are central to developing concurrent pro-
grams. High-level concurrent algorithms utilise concurrent objects for sharing
data between threads, e.g., concurrent queues and stacks, and for inter-thread
synchronisation, e.g., locks [15]. Correctness of such objects is usually defined
with respect to a sequential specification. For example, a concurrent queue being
accessed concurrently by multiple threads should still behave essentially like a
queue. The standard criterion for relating concurrent implementations of objects
to their sequential specifications is linearizability [16]. In recent years, however,
the question has arisen as to whether linearizability is the appropriate correct-
ness criterion in the presence of weak memory models.1 This has led to several
proposals for weaker versions of linearizability which either change the sequential
specification to allow weak memory effects [4,14], or change the definition of lin-
earizability itself [8,9,11,25], as well as new approaches to verifying correctness
unrelated to linearizability [21].

On sequentially consistent (SC) memory models, observational refinement
[12] and contextual refinement [10] have been proposed as reference points with

1 In this paper, we refer solely to hardware weak memory models of multicore pro-
cessors, e.g., x86-TSO [19], ARM [13,20] and IBM POWER [22], and not software
weak memory models that allow for compiler optimisations, e.g., C11 [3].

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 342–357, 2020.
https://doi.org/10.1007/978-3-030-54997-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_22

Weakening Correctness and Linearizability for Concurrent Objects 343

which to judge such correctness criteria. These take the view that an object
implementation is correct if and only if a client program calling the object’s
operations cannot distinguish the object from one that behaves according to the
specification. Filipović et al. [12] prove that under certain assumptions observa-
tional refinement is equivalent to linearizability.

A similar reference point for judging correctness criteria on weak memory
models, called object refinement, was recently proposed by Smith et al. [23]. In
follow-on work, they prove the (somewhat surprising) result that the standard
definition of linearizability for SC is also equivalent to object refinement [24].
Their proof holds for all current memory models, including SC, and without
the assumptions required by Filipović et al. For SC, this suggests that object
refinement captures exactly what was intended by linearizability.

The result for weak memory models, however, is quite strong. A number
of efficient implementations of concurrent objects are incorrect under standard
linearizability. This is due to the fact that under weak memory models the effect
of an operation on one thread may be delayed from the perspective of other
threads. In this paper, we suggest a relaxation of object refinement that allows
more implementation flexibility, and discuss the consequences in terms of the
verification and use of concurrent objects. In particular, we present a definition of
weak linearizability that is sound and complete with respect to our relaxed notion
of object refinement, and argue why both weak linearizability and standard
linearizability are required in practice.

2 Correctness

The operations of a concurrent object may be called by multiple threads simul-
taneously. This results in an interleaving of their code in which interference
must be handled using locks or, when efficiency is important, non-blocking
techniques [18]. The behaviour of such interleaved code is difficult to reason
about, and specifications usually abstract from interleaving by having opera-
tions which are atomic. For example, operations may be specified with a pre-
condition/postcondition pair. An implementation C of a concurrent object is
considered correct in this setting when any program P which calls C ’s opera-
tions behaves in a way consistent with calling the atomic operations of A:

∀P • P [A] � P [C] (1)

where P [A] and P [C] denote the program P calling the atomic operations of
A, and the potentially interleaving operations of C , respectively, and � denotes
trace refinement [1,2] where observations are of changes to program variables,
i.e., variables declared as part of P .

2.1 Linearizability

The standard notion of correctness on SC is linearizability [16]. The semantics
[[C]] of a concurrent object C is expressed as a prefix-closed set of histories, where

344 G. Smith and L. Groves

each history is a sequence of events corresponding to invocations and responses
of operations calls. The semantics [[A]] of an object specification A can similarly
be expressed as a prefix-closed set of histories. Since operations are regarded
as atomic (i) operation calls cannot overlap, i.e., an invocation is immediately
followed by its matching response, and (ii) prefixes are restricted to complete
histories in which the final event cannot be an invocation.

Linearizability relates histories of an object implementation, which may have
pending invocations, i.e., invocations for which there is no response, to histories
of an object specification which do not. To do this, it needs to complete the
implementation histories. This can be done by adding a response when a pending
invocation is deemed to have taken effect, and removing the invocation when it
has not [16].

Let ext(h) be the set of extensions of a history h formed by adding a sequence
of responses for an arbitrary subset of the pending invocations, and comp(h)
complete h by removing all pending invocations. A concurrent object C is said
to linearize with an object specification A when the following holds.

C lin A =̂ ∀ h : [[C]] • ∃ h ′ : [[A]] • ∃ h+ :ext(h) • comp(h+) ∼ h ′ ∧ ≺comp(h+) ⊆ ≺h′

where h ∼ h ′ denotes that h and h ′ are thread equivalent, i.e., when restricted
to the events of any one thread they have the same sequence of invocations
and responses, and ≺h captures the order of operations in a trace, where one
operation comes before another if its response is before the other’s invocation.

The intuition behind the definition is that operations which are overlapping
in comp(h+) are not ordered by ≺comp(h+) and, with ≺h′ being a superset of
≺comp(h+), can occur in any order in h ′. The implementation history h is said
to linearize to h ′.

Linearizability is compositional, allowing us to prove the correctness of a
system of interacting objects by showing each component object is linearizable
with respect to its specification [16].

3 Weak Memory Models

Weak memory models optimise performance by allowing the hardware to control
accesses to shared memory. As a consequence, the effect of operations on one
thread may be delayed from the perspective of another. On TSO, for example,
writes to shared variables are placed in a FIFO store buffer, and only take effect
in memory at a later time determined by the hardware, or when a fence is reached
in the code [19]. Such fences may be added liberally by the programmer, but can
negate the optimisations that the memory model offers.

POWER and ARM are weaker than TSO, allowing delayed writes to take
effect out of FIFO order unless a specific dependency exists between them [13,22].
They additionally support non-multi-copy atomicity .2 This allows writes by one
thread to be seen by other threads at different times, again determined by the
2 This is no longer true for the latest version of ARMv8 [20].

Weakening Correctness and Linearizability for Concurrent Objects 345

hardware. This can be captured semantically by a write list [6] which orders all
writes which have occurred in a program execution along with which threads
have seen those writes.

3.1 Modelling Weak Memory Behaviour

Following [23], we model additional behaviours under weak memory models by
adding an effect event for each program step and each operation call. An effect
event indicates when the program step or operation takes place from the global
perspective of all threads in the program. For a program step, this will be after
the program step occurs, and for an operation after its invocation. The exact
position of the effect event is determined by the memory model semantics.

For program steps and operations which write to shared variables, the effect
will be when all threads have seen all of the writes. For example, on TSO the
effect will be when the last write associated with the program step or operation
takes place in the global memory. On non-multi-copy atomic processors, the
effect will be when, for each updated variable, all threads have seen the write,
or have seen a later write to the same variable.

Given a memory model M , we let [[C]]M denote the set of histories of an
implementation C under M , and [[A]]M the set of histories of a specification A
under M . These histories will include effects, as well as invocations and responses.

Returning to correctness as defined in (1), while the behaviour of P [C] under
M can be determined from [[C]]M , a choice needs to be made about the meaning
of P [A]. On SC, the behaviour of P [A] abstracts from interleaving of operations,
as A’s operations are regarded as atomic. On weak memory models, there are
two fundamental possibilities:

1. P [A] abstracts from the interleaving of operations (as on SC) and weak mem-
ory model effects.

2. P [A] abstracts from the interleaving of operations but includes weak memory
effects.

In [23], the first option was taken, resulting in correctness being equivalent
to linearizability for all memory models [24]. As discussed in [24], a consequence
of this choice is that any operation whose effect can influence the output of a
later operation needs to be fenced to be correct on a weak memory model. This
is quite strict as it disallows many implementations where fences are avoided to
improve efficiency. In the remainder of this paper we consider the second option
above by allowing weak memory effects in P [A].

4 Weakening Correctness

Program behaviour under a weak memory model is modelled in terms of traces,
which are sequences of (program) step, invocation, response and effect events:

Event =̂ step(PS) | eff (PS) | inv(Op,Val) | res(Op,Val) | eff (Op,Val)

346 G. Smith and L. Groves

where PS is a program step by a particular thread, Op an operation call by a
particular thread, and Val a set of values for inputs and outputs, including ⊥
meaning no input or output.

Each event in a trace is unique (calls to the same operation, for exam-
ple, being distinguished by annotating the operation name with its order of
occurrence):

Trace =̂ {t : seqEvent | (∀ i , j ≤ #t • i �= j ⇒ ti �= tj) ∧ wf (t)}

where wf , the well-formedness condition on traces, states that an invocation of
an operation always occurs before the associated response and effect, a program
step always occurs before its effect, and the output value of an operation’s effect
is the same as that of the corresponding response event.

wf (t) =̂ (∀ a : Op; out : Val • ∀ j ≤ #t • tj ∈ {res(a, out), eff (a, out)} ⇒
∃ in : Val ; i < j • ti = inv(a, in)) ∧

(∀ p : PS • ∀ j ≤ #t • tj = eff (p) ⇒ ∃ i < j • ti = step(p)) ∧
(∀ a : Op • ∃ out : Val •

∀ i ≤ #t ; o : Val • t(i) = res(a, o) ∨ t(i) = eff (a, o) ⇒ o = out)

A sequential trace is one where operations are atomic, i.e., all invocations have
a matching response, and no events apart from effects may occur between the
invocation and response of an operation.

SeqTrace =̂ {t : Trace | (∀ a : Op; in : Val ; i ≤ #t • ti = inv(a, in) ⇒
∃ out : Val ; j ≤ #t • tj = res(a, out)) ∧

(∀ a : Op; in, out : Val ; i < j < k ≤ #t •
ti = inv(a, in) ∧ tk = res(a, out) ⇒

∃ b : Op; outb : Val • tj = eff (b, outb))}

The events of a trace t determine a set, events(t), and the (total) order in which
these events occur is denoted by a relation, <t :

events(t) =̂ {a : Event | ∃ i ≤ #t • ti = a}
<t =̂ {(a, b) : Event × Event | ∃ i , j ≤ #t • i < j ∧ ti = a ∧ tj = b}

A program P has a set of events, events(P), which it can undergo (according
to the program text) and, for each memory model M , a partial order, <PM

,
which captures when an event can occur only after another under M (see [24]
for further details). The traces of P are defined as follows:

[[P]]M =̂ {t : Trace | events(t) ⊆ events(P) ∧ <PM
� <t }

where <PM
� <t specifies whether an order is allowed by P on M , formally

defined as:

<PM
� <t =̂ ∀(a, b) : <PM

• b ∈ events(t) ⇒ (a, b) ∈ <t

Weakening Correctness and Linearizability for Concurrent Objects 347

That is, for any event b that occurs in trace t , if this event is constrained to
come after another event a by <PM

, then event a must also occur in t before
event b.

The semantics of P [C] under M are those traces t of [[P]]M whose restriction
to object events (invocation, responses and operation effects), denoted t|o , is in
[[C]]M .

[[P [C]]]M =̂ {t : [[P]]M | t|o ∈ [[C]]M }
The semantics of P [A] is given similarly:

[[P [A]]]M =̂ {t : [[P]]M | t|o ∈ [[A]]M }
To motivate our definition of [[A]]M , consider an object with two operations: W ,
which writes to an object variable x , whose value is initially 0, and R, which
reads x . One possible behaviour under a weak memory model such as TSO is:

〈inv(n.W , 1), res(n.W ,⊥), inv(m.R,⊥), eff (m.R, 0), res(m.R, 0), eff (n.W ,⊥)〉
where the read by thread m returns 0 since the effect of the write by thread n has
not yet taken effect. The operations do not overlap (the invocation of m.R occurs
after the response of n.W), modelling that the operations are atomic. However,
weak memory effects are included, due to the effect of n.W being delayed.

The above trace corresponds to a history of A, the specification of the object,
where m.R occurs before n.W . In general, a history h of AM will be thread equiv-
alent to a history h ′ of A such that the operations of h are ordered consistently
with placing them between the corresponding invocations and effects of h. This
can be defined in terms of the notation h ∼ h ′ and ≺h introduced to define
linearizability in Sect. 2:

[[A]]M =̂ {h : SeqTrace | h|o = h ∧ ∃ h ′ : [[A]] • h ∼ h ′ ∧ ≺trans(h) ⊆ ≺h′}
where trans(h) replaces the effect of each operation in h by its response:

trans(〈 〉) = 〈 〉
trans(〈inv(a, in)〉 � h ′) = 〈inv(a, in)〉 � trans(h ′)
trans(〈res(a, out)〉 � h ′) = trans(h ′)
trans(〈eff (a, out)〉 � h ′) = 〈res(a, out)〉 � trans(h ′)

Object refinement, our notion of correctness, is then defined as:

P [A] �M P [C] =̂ ∀ t : [[P [C]]]M • ∃ t ′ : [[P [A]]]M • t ′
|global = t|global

where t|global is the restriction of t to observable program steps, i.e., those which
change global variables.

5 Weak Linearizability

We now present a notion of weak linearizability, and prove it sound and complete
with respect to our notion of object refinement defined in Sect. 4. This notion

348 G. Smith and L. Groves

has been previously suggested for concurrent objects on TSO [8,25]. It involves
allowing an operation to linearize anywhere between its invocation and effect
(i.e., when the operation’s final write takes place in global memory on TSO).
Here we show it corresponds to our notion of correctness not just for TSO, but
for any weak memory model.

Let ext return the set of traces which extend a given trace with a sequence
of responses such that the result is still a trace, i.e., responses are only added
for pending invocations:

ext(t) =̂ {t � tr : Trace | ∀ i ≤ #tr • ∃ a : Op; out : Val • tri = res(a, out)}
and let comp return the trace obtained by removing all invocations from a given
trace which have neither an effect nor a response:

comp(〈 〉) = 〈 〉
comp(〈inv(a, in)〉 � t ′) = comp(t ′), if NoResp(a, t ′)
comp(〈e〉 � t ′) = 〈e〉 � comp(t ′), otherwise

where NoResp(a, t) =̂ � i ≤ #t ; out : Val • ti ∈ {res(a, out), eff (a, out)}.
Weak linearizability, linM , is defined for any weak memory model M . By

weak memory model, we mean a memory model where effects of program steps
and operations may be delayed—this definition is not intended to be used with
SC.

C linM A =̂ ∀ h : [[C]]M • ∃ h ′ : [[A]] •
∃ h+ :ext(h) • comp(h+) ∼ h ′ ∧ ≺trans(comp(h+)) ⊆ ≺h′

Note that we linearize with respect to the original specification A which is
independent of the memory model M .

Weak linearizability is proved to be compositional in [7]. The proofs of sound-
ness and completeness below rely on the following lemmas proved in [24].

Lemma 1. If the events of a trace t are events of a program P, then so are the
events of any completion of t.

∀P • ∀ t : Trace • ∀ t+ : ext(t) •
events(t) ⊆ events(P) ⇒ events(comp(t+)) ⊆ events(P)

Lemma 2. If a trace t is allowed by a program P on memory model M , then
so is any completion of t that only adds responses for operations whose effects
have occurred.

∀P ,M • ∀ t : Trace • ∀ t � tr : ext(t); a : Op; out : Val •
(∀ i ≤ #tr • tri = res(a, out) ⇒ ∃ j ≤ #t • tj = eff (a, out)) ∧ <PM

� <t ⇒
<PM

� <
comp(t�tr)

Our proofs also use the notion of a matching trace, which is formed from a
trace t as follows. Firstly, t is extended with responses for exactly those pending
invocations for which there is an effect, and the remaining pending invocations
are removed. Secondly, each response is moved to immediately after any con-
tiguous sequence of effects following its invocation.

Weakening Correctness and Linearizability for Concurrent Objects 349

5.1 Soundness

We now show that our notion of weak linearizability is sound with respect to
our definition of object refinement.

Theorem 1. If an object implementation C linearizes with an object specifica-
tion A on memory model M , then C is an object refinement of A on M .

C linM A ⇒ ∀P • P [A] �M P [C]

Proof. Assume that C linM A holds, and consider an arbitrary program P with
[[P [C]]]M �= ∅ (when [[P [C]]]M = ∅ the consequent is trivially true). We must
show that for any trace, t , of P [C] under weak memory model M , there is a
corresponding trace, t ′, of P [A] under M .

Since t ∈ [[P [C]]]M , there is an h ∈ [[C]]M such that t|o = h, and since
C linM A, there is also an h ′ ∈ [[A]] and h+ ∈ ext(h) such that:

comp(h+) ∼ h ′ ∧ ≺trans(comp(h+)) ⊆ ≺h′ (S1)

There may be several possible choices for h+. We choose h+ so that a response
is added for each pending invocation whose effect occurs in t . This is always pos-
sible since we know that there exists at least one extension and related abstract
history. Call them h+

0 and h ′
0, respectively. h+

0 cannot have less than the required
responses. If it did, comp(h+) would be left with a pending invocation (with an
effect) but no response. Hence, comp(h+) ∼ h ′ would not hold. If h+

0 has more
than the required responses, since [[A]] is prefixed-closed, we can find an h ′ which
is a subsequence of h ′

0 which does not have the additional operations correspond-
ing to the extra responses.3 This h ′ will satisfy (S1) for our chosen h+.

Let t ′ be the matching trace of t . Since a matching trace maintains the order
of program steps and their effects we have:

t ′
|global = t|global (S2)

To complete the proof, it remains to show that t ′ ∈ [[P [A]]]M .
Since there are no overlapping operations on a given thread, the order of

invocations and responses on a given thread in comp(h+) will be maintained in
t ′. Hence from (S1) we have:

t ′
|o ∼ h ′ (S3)

Since the relative order of invocations and effects in comp(h+) will be main-
tained in t ′, we have that trans(t ′

|o) = trans(comp(h+)). Hence from (S1) we
have:

≺trans(t′
|o)

⊆ ≺h′ (S4)

3 Since there is at most one pending invocation per thread, such an h ′ will be in the
prefix-closed set [[A]].

350 G. Smith and L. Groves

Since invocations and responses are only separated by effects in t ′, provided
that it satisfies the well-formedness property of traces and is in Trace, it will be
in SeqTrace:

t ′ ∈ Trace ⇒ t ′ ∈ SeqTrace (S5)

Therefore, from (S3), (S4) and (S5) and the definition of [[A]]M , we have:

t ′ ∈ Trace ⇒ t ′
|o ∈ [[A]]M (S6)

Given the definition of [[P [A]]]M and (S6), to prove that t ′ ∈ [[P [A]]]M we need
to show that t ′ ∈ Trace, and that t ′ ∈ [[P]]M , i.e., events(t ′) ⊆ events(P) and
<PM

� <t′ . We prove each of these below, where t+ is the trace t extended with
the sequence of responses added to h to form h+.

(i) t ′ ∈ Trace:
Since t ∈ [[P [C]]]M , it follows from Lemmas 1 and 2 that comp(t+) ∈ [[P]]M
and hence is a Trace. Since t ′ has the same events as comp(t+), its events
are unique. Also, since the construction of t ′ does not alter the relative order
of program steps with their effects, nor invocations with their responses and
effects, wf holds. Hence, t ′ ∈ Trace.

(ii) events(t ′) ⊆ events(P):
Since comp(t+) ∈ [[P]]M , it follows that events(comp(t+)) ⊆ events(P)
from the definition of [[P]]M . Since t ′ has the same events as comp(t+), it
follows that events(t ′) ⊆ events(P).

(iii) <PM
� <t′ :

To prove this property we show that ∀(a, b) : <PM
• b ∈ events(t ′) ⇒

(a, b) ∈ <t′ . We consider four cases, according to whether a and b are
program events or object events.

(a) The order between two program events (i.e., program steps or their effects)
that is enforced by <PM

is maintained in t ′.
This holds as the relative order of program events of t is unchanged in t ′.

(b) If <PM
enforces that a program event has to occur before an object event

(i.e., an invocation, response or effect of an operation) then this order is
maintained by t ′.
The relative order of program events with invocations and effects of t is
unchanged in t ′. Since an object’s state is only accessed via its operations,
there can be no synchronisation between a program event and the object’s
state while the operation is executing. Hence, if a program step must
come before an operation’s response, it must come before its invocation
too. Since the response of an operation is not moved before its invocation,
it is not moved before any program events which must come before it.

(c) If <PM
enforces that an object event has to occur before a program event

then this order is maintained by t ′.
The relative order of program events with invocations and effects of t is
unchanged in t ′. Since responses are only moved earlier in the trace, all
program events after a response remain after the response.

Weakening Correctness and Linearizability for Concurrent Objects 351

(d) The order between two object events that is enforced by <PM
is main-

tained in t ′.
The response of an operation op is not moved before its invocation, and
its effect (on a weak memory model) cannot be constrained by P to occur
before the response (since this would require the operation to either not
write to shared variables or have a fence, and the operation’s implemen-
tation is outside of P ’s control).
Also, since the implementation of object operations is outside P ’s control,
synchronisation between operations cannot be enforced by P . Hence, if a
response of an operation op must occur after another operation event e,
other than op’s invocation, then op’s invocation must also occur after e.
Hence, op’s response is not moved before e. �

5.2 Completeness

We now show that our notion of weak linearizability is complete with respect
to our definition of object refinement. The completeness proof uses a notion of
a recording program, which records each program step and operation call in a
global variable g . For each program step PS on thread n we have:

PS ; g := “n.PS”

and for each call on an operation Op on thread n we have:

l := in; x := Op(in); g := “n.Op(in, out)”

where l is a local variable used to hold the value of the input until after the
operation. Since the changes to g will appear in the observable part of any trace
of the recording program, when t|global = t ′

|global for any traces t and t ′, we
know that these traces have undergone the same program steps, operation calls
and outputs of operation calls up until the last recording on each thread. These
events may occur in a different order, however, since the recordings made by
different threads can be interleaved.

The completeness proof uses the following lemma.

Lemma 3. If P is a recording program and C is an object refinement of A, then
for a given implementation trace t ∈ [[P [C]]]M either the matching trace t ′ is in
[[P [A]]]M , or there is a trace t ′′ in [[P [A]]]M which is formed by moving one or
more effects in t ′ earlier than in t.

Proof. Following the reasoning for matching traces in the proof of Theorem 1,
t ′ will be in [[P]]M . Hence, the relative order of program steps and invocations
in t ′ will be allowed by P [A] on memory model M .

Since P is a recording program, if any effect allowed in t is not allowed by A,
C will have a trace which is observably different to any of A. This contradicts
the assumption that C is an object refinement of A. Hence, all effects in t are
allowed by A. It remains for us to show that the effects may occur in the order
of t ′ or some t ′′ formed from t ′ by moving one or more effects earlier.

352 G. Smith and L. Groves

We proceed using a proof by contradiction. Suppose that [[P [A]]]M does not
contain t ′ or any trace t ′′ formed from t ′ by moving one or more effects earlier.
For C to be an object refinement of A, there must be a trace s in [[P [A]]]M with
the same events as t but with one or more effects occurring later than in t .

Let t̄ denote the trace t with all responses removed, and u and v be non-
empty sequences of events, and w be a possibly empty sequence of events. Let
t̄ = u � 〈effa〉 � v � w and s̄ = u � v � 〈effa〉 � w , i.e., where a single effect
effa , of an event a, occurs later in s than in t . This implies that the occurrence
of the last event of v , or when that event is an invocation the required output
of its associated operation, requires that the effect of a has not occurred. From
this we can deduce that:

(i) the last event of v is not a program step. If it were a program step then
this program step would need to refer directly to a change made by a to a
program variable (otherwise effa could occur before it). Since the program
step is identical in the implementation (both use P), the implementation
traces would also require effa to occur after v .

(ii) the last event of v is not an invocation. Let the last event of v be b. If b
were an invocation then the associated operation’s outputs in A would rely
on a’s effect not having occurred. On the other hand, the operation in C
can produce the outputs in t after a has taken effect.
If a depends on earlier events of the same thread in t then there will be a
dependency between those events that will prevent the effect of a occurring
before the effects of the earlier events [6]. Hence, C allows the operation
associated with b to produce the outputs in t when all such earlier events
of a’s thread have taken effect.
Therefore, it is possible to construct a recording program P ′ similar to P
which forces a to take effect before b, e.g., eliding the recording events, P ′

could be:

...; a; fence; z = 1; ... || ...; await(z = 1); b; ... || ...
where the fence forces a (and all earlier events in a’s thread) to take effect,
and the await instruction ensures that b does not occur until this has
happened.
There will be a trace in [[P ′[C]]]M in which the operation invoked by b has
the same output as in t . However, there will not be such a trace in [[P ′[A]]]M .
The operation invoked by b will behave differently due to the effect of a.
This will result in a different recording, and hence implies C is not an object
refinement of A.

(iii) the last event of v is not an effect. The specification and implementation
execute on the same memory model. Hence, any constraint on the ordering
of effects in P [A] will also hold in P [C] [23].

Hence, the last step of v is neither a program step, invocation nor effect and we
have a contradiction. The proof can be generalised to more than one effect event
occurring later in s. �

Weakening Correctness and Linearizability for Concurrent Objects 353

We can now state and prove the completeness theorem.

Theorem 2. If an object implementation C is an object refinement of a speci-
fication A on memory model M then C linearizes to A on M .

(∀P • P [A] �M P [C]) ⇒ C linM A

Proof. Assume the antecedent is true and that [[C]]M �= ∅. Let h be a history
in [[C]]M , and let P be a recording program which can generate a trace t corre-
sponding to h, i.e., t|o = h. Let t+ ∈ ext(t) be an extension of t which adds a
response for exactly those pending invocations for which there is an effect in t .

Let t ′ be the matching trace of t . From Lemma 3 we know that there exists
a trace s in [[P [A]]]M such that s = t ′ or s is formed from t ′ by moving one or
more effects earlier. Therefore, from the definition of [[P [A]]]M , there exists an
h ′ ∈ [[A]] such that:

s|o ∼ h ′ ∧ ≺trans(s|o) ⊆ ≺h′ (C1)

Since there are no overlapping operations on a given thread, the order of invo-
cations and responses on a given thread in comp(t+) and s are the same.

comp(t+)|o ∼ s|o (C2)

The relative ordering of invocations and effects in t ′ is the same as that in
t . Hence, ≺trans(comp(t+)|o) = ≺trans(t′

|o)
. Any trace formed from t ′ by moving

effects earlier, will have less overlapping operations when trans is applied to it
than t ′ when trans is applied to it. Therefore, we have:

≺trans(comp(t+)|o) ⊆ ≺trans(s|o) (C3)

Hence, from (C1), (C2) and (C3), we have:

comp(t+)|o ∼ h ′ ∧ ≺trans(comp(t+)|o) ⊆ ≺h′ �

6 Chase-Lev Deque

In this section we consider the consequences of using our weakened definition of
correctness with respect to a typical concurrent object: a version of the Chase-
Lev work-stealing deque (double-ended queue) [5] developed specifically for ARM
[17]. The code in Fig. 1 corresponds to a version used in [6] which for simplic-
ity eliminates returns from within a branch, and assumes the elements of the
deque are integers. It also uses the fixes suggested in [6] for errors regarding the
placement of control fences4 present in [17].

4 A control fence (ctrl isync in ARM and denoted cfence in Fig. 1) ensures that all
branch instructions occurring before it take effect before any loads, i.e., reads of
global variables, occurring after it.

354 G. Smith and L. Groves

put(v)
int t;
t=tail;
tasks[t mod L]=v;
fence;
tail=t+1;
return;

take
int h,t,task;
t=tail-1;
tail=t;
fence;
h=head;
if (h <= t)

task=tasks[t mod L];
if (h=t)

if !CAS(head, h, h + 1) then
task=empty;

tail=tail+1;
else

task=empty;
tail=tail+1;

return task;

steal
int h,t,task;
h=head;
fence;
t=tail;
if (h < t)

cfence;
task=tasks[h mod L];
if !CAS(head, h, h+1)

task=fail;
else

task=empty;
return task;

Fig. 1. A version of Lê et al.’s work-stealing deque algorithm for ARM [17]

The deque is implemented as a circular array of size L with a head and tail
pointer. Elements may be put on or taken from the tail by a worker thread,
and additionally, other (thief) threads may steal an element from the head of
the deque (in order to balance system workload). Since the put and take opera-
tions are executed by a single thread, there is no interference between these two
operations.

The full details of the implementation can be found in [6,17]. What is inter-
esting for us is that the put operation has as assignment to tail which is unfenced,
and hence may be delayed from the point of view of the thief threads.

A possible history of the implementation on ARM is:

〈inv(n.put, v), res(n.put,⊥), inv((m.steal),⊥), res((m.steal), empty)〉

This occurs when the effect of the put operation is delayed until after the steal
operation has occurred. Specifically, tail is not updated until after the steal oper-
ation and hence h < t in steal is false.

This behaviour would not be available in a specification of the work-stealing
deque. Hence, the implementation is not linearizable. To make it linearizable
we would need to add a fence to the put operation, reducing efficiency. The
behaviour is, however, weakly linearizable. Therefore, whether the implementa-
tion is considered correct depends on which of the two notions of correctness we
assume.

There is an obvious trade-off. Abstracting from weak memory effects at the
specification level simplifies high-level reasoning: a steal operation following a
put may not return empty. If weak memory effects are included at the specifi-
cation level, any reasoning involves understanding the details of the processor
implementation: in this case, understanding that the steal may return empty.

Weakening Correctness and Linearizability for Concurrent Objects 355

While this is not too much of a burden for this example, it may become so for
more complex code.

However, abstracting from weak memory effects at the specification level
disallows certain efficient implementations such as that in Fig. 1, as fences are
required for many operations.

Ultimately, the choice will reside with the developer of the program; specif-
ically how confident they are with interpreting the behaviour of their program
using the concurrent object under the weak memory models they wish it to run
on. We envisage a library with a range of implementations for particular concur-
rent objects: one for the programmer who has limited knowledge of weak memory
models, and other, more optimised, implementations aimed at programmers with
a deeper understanding of particular weak memory models.

7 Conclusion

In this paper we have introduced a notion of object correctness which allows weak
memory model effects at the specification level, and provided a weakening of
linearizability which is sound and complete with respect to it. We have compared
this correctness notion with a perhaps more standard one which abstracts from
weak memory model effects at the specification level. While abstracting from
weak memory model effects simplifies high-level reasoning, it also limits what
is allowed in implementations regarded as being correct. In particular, it can
disallow many implementations which limit the use of fences to obtain efficiency.

As not all programmers will be confident with interpreting the use of con-
current objects in the presence of weak memory models, it seems reasonable to
expect libraries to have implementations satisfying both correctness notions for
a given object specification.

Acknowledgement. Thanks to Kirsten Winter for fruitful discussions on this
topic. This work was supported by Australian Research Council Discovery Grant
DP160102457.

References

1. Back, R.-J.R.: Refinement calculus, part II: Parallel and reactive programs. In: de
Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430,
pp. 67–93. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52559-9 61

2. Back, R.-J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson,
B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer,
Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1 28

3. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL, pp. 55–66. ACM (2011)

4. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol.
7211, pp. 87–107. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28869-2 5

https://doi.org/10.1007/3-540-52559-9_61
https://doi.org/10.1007/978-3-540-48654-1_28
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-642-28869-2_5

356 G. Smith and L. Groves

5. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: SPAA 2005, pp.
21–28. ACM Press (2005)

6. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 240–257. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7 14

7. Derrick, J., Smith, G.: A framework for correctness criteria on weak memory mod-
els. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 178–194.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 12

8. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures.
In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 341–356.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10181-1 21

9. Doherty, S., Derrick, J.: Linearizability and causality. In: De Nicola, R., Kühn, E.
(eds.) SEFM 2016. LNCS, vol. 9763, pp. 45–60. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41591-8 4

10. Dongol, B., Groves, L.: Contextual trace refinement for concurrent objects: safety
and progress. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol.
10009, pp. 261–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 17

11. Dongol, B., Jagadeesan, R., Riely, J., Armstrong, A.: On abstraction and compo-
sitionality for weak-memory linearisability. VMCAI 2018. LNCS, vol. 10747, pp.
183–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 9

12. Filipović, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010)

13. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: Bodik, R., Majumdar, R. (eds.) POPL 2016, pp. 608–621. ACM (2016)

14. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent
specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 31–45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33651-5 3

15. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Francisco (2008)

16. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

17. Lê, N.M., Pop, A., Cohen, A., Zappa Nardelli, F.: Correct and efficient work-
stealing for weak memory models. In: PPoPP 2013, pp. 69–80. ACM (2013)

18. Moir, M., Shavit, N.: Concurrent Data Structures. Handbook of Data Structures
and Applications, pp. 47:1–47:30 (2004)

19. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

20. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
Proc. ACM Program. Lang. 2(POPL), 19:1–19:29 (2018)

21. Raad, A., Doko, M., Rožić, L., Lahav, O., Vafeiadis, V.: On library correct-
ness under weak memory consistency: specifying and verifying concurrent libraries
under declarative consistency models. Proc. ACM Program. Lang. 3(POPL), 68:1–
68:31 (2019)

22. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. SIGPLAN Not. 46(6), 175–186 (2011)

https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-19249-9_12
https://doi.org/10.1007/978-3-319-10181-1_21
https://doi.org/10.1007/978-3-319-41591-8_4
https://doi.org/10.1007/978-3-319-41591-8_4
https://doi.org/10.1007/978-3-319-47846-3_17
https://doi.org/10.1007/978-3-319-47846-3_17
https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1007/978-3-642-33651-5_3
https://doi.org/10.1007/978-3-642-33651-5_3
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27

Weakening Correctness and Linearizability for Concurrent Objects 357

23. Smith, G., Winter, K., Colvin, R.J.: Correctness of concurrent objects under weak
memory models. In: Derrick, J., Dongol, B., Reeves, S. (eds.) Refine 2018, EPTCS,
vol. 282, pp. 53–67. Open Publishing Association (2018)

24. Smith, G., Winter, K., Colvin, R.J.: A sound and complete definition of lineariz-
ability on weak memory models. CoRR, abs/1802.04954v2 (2019)

25. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
311–326. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 21

https://doi.org/10.1007/978-3-319-03077-7_21

Towards a Method for the Decomposition
by Refinement in Event-B

Kenza Kraibi1(B), Rahma Ben Ayed1, Joris Rehm2, Simon Collart-Dutilleul3,1,
Philippe Bon3,1, and Dorian Petit4,1

1 Institut de Recherche Technologique Railenium, 59300 Famars, France
{kenza.kraibi,rahma.ben-ayed}@railenium.eu

2 CLEARSY, Strasbourg, France
joris.rehm@clearsy.com

3 Univ Lille Nord de France, University Gustave Eiffel, COSYS, ESTAS,
59650 Villeneuve d’Ascq, France

philippe.bon@ifsttar.fr
4 Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201,

59313 Valenciennes, France
dorian.petit@uphf.fr

Abstract. Refinement consists of detailing the specification in order
to get a more concrete model. However, this technique leads to large
models. Hence, model decomposition is used to reduce model complexity.
In this paper, we present the main methods of decomposition and their
limitations. Then, we define the decomposition by refinement method
that deals with these limitations. Thereafter, we proceed with the rules
to follow in order to get a correct decomposed model.

Keywords: Event-B · Refinement · Decomposition · System behavior

1 Introduction

In Event-B [5], there are different techniques to facilitate systems modeling such
as refinement and decomposition. Refinement [6] consists of adding more details
to the system and concreting the model. Then, at each stage of refinement,
one should ensure that the transitions of a machine preserve the invariant as
the first main proof activity in B called consistency checking. The second main
proof activity is refinement checking, which is used to show that one machine
is a valid refinement of another [16]. In other words, a refinement relationship
ensures consistency between two levels of modeling and is carried out in an incre-
mental way up to a certain level. However, after many steps of refinements the
model can become complex and difficult to prove. So, decomposition comes to
deal with this issue by partitioning the model. Several methods of decomposition
exist, among others we find shared variables [3] and shared events [10] decom-
positions, the most cited and used methods in the literature as presented in
Sect. 2. The first one allows to partition the system functionality and the second
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 358–370, 2020.
https://doi.org/10.1007/978-3-030-54997-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_23

Towards a Method for the Decomposition by Refinement in Event-B 359

one decomposes the behavior of the system. Nevertheless, these two methods
have some limitations as the loss of invariants containing shared variables, the
difficulty of decomposing complex predicates and the need of several interme-
diate steps of refinement to decompose [4,15]. As a consequence, we propose a
new method of decomposition in Sect. 4 called the Decomposition by Refinement
method as well as the rules to follow.

2 Event-B Syntactic Definition

In this section, we give the necessary syntactic definitions of an Event-B model
which are used in this paper. An Event-B model is composed of two types of
components: machine and context. A machine contains the dynamic part of a
model whereas a context contains the static part of a model. Figure 1 illustrates
a general structure of an Event-B model. A context C0 defines sets s, constants
c and axioms A(s, c). This context can be extended by another context C1.
C1 defines the sets d, the constants t and the axioms A(d, t). A machine M0

SEES the context C0. M0 defines variables v called state variables, invariants
I(s, c, v) that describe the system properties to preserve, and abstract events
ae. Events ae define guards G(s, c, v) and substitutions v : |R(s, c, v, v′) where
v′ is the new state of v and R is the before/after predicate. M0 can be refined
by another machine M1 with variables w. w are the variables refining v or/and
the new variables. M1 defines also gluing invariants J(d, t, v, w) that describe
the new variables properties and relations between the abstract variables and
the refining variables. Events re are refining abstract events ae. re define guards
H(d, t, w) and substitutions w : |Q(d, t, w,w′).

3 Event-B Refinement and Decomposition Background

Event-B refinement involves modeling the system incrementally from an abstract
model on the basis of the system specification. At each stage of refinement, details
of the system are gradually added in a concrete model that must preserve the
functionality and the properties of the refined model. Two Event-B refinement
techniques exist: horizontal refinement and vertical refinement [1,9]. The latter
contains the data refinement and the events refinement. In fact, a large model
can be partitioned or decomposed into smaller components after several steps
of refinement. This step of partitioning can be a result of a model complexity
or simply an architectural decision [19]. Among others, we find the shared event
decomposition and the shared variable decomposition which are the most cited
and used in the literature.

3.1 Refinement

Horizontal Refinement: consists in adding the specification details in order
to define progressively new functionalities of the system in the refinement such

360 K. Kraibi et al.

MACHINE M0

VARIABLES v
INVARIANTS I(s, c, v)
INITIALISATION v : |K(s, c, v′)
EVENTS

ae
when G(s, c, v)
then v : |R(s, c, v, v′)
end

CONTEXT C0

SETS s
CONSTANTS c
AXIOMS A(s, c)

REFINEMENT M1

VARIABLES w
INVARIANTS J(d, t, v, w)
INITIALISATION w : |N(d, t, w′)
EVENTS

re
when H(d, t, w)
then w : |Q(d, t, w,w′)
end

CONTEXT C1

SETS d
CONSTANTS t
AXIOMS A(d, t)

REFINES EXTENDS

SEES

SEES

Fig. 1. Event-B model structure

as introducing new variables and new events evolving these new variables. New
events refine a particular event of an abstract model which is the empty event
with skip substitution.

Vertical Refinement: has as a goal the concretization of the abstract model by
adding variables through a data refinement [8] and of the behavior by detailing
abstract events or adding new events by events refinement, also called algorith-
mic refinement [1]. These two types of refinement, data refinement and algo-
rithmic refinement, are not exclusive: they can be operated in the same stage
of refinement. It is obvious that any refinement of data leads to an algorithmic
refinement. Vertical refinement can be achieved by one or many of the following
methods:

– Data refinement : consists in defining concrete variables w in the refinement
machine in order to replace abstract variables v. Since substitutions are no
longer evolving the same abstract variable v space, they must be rewritten
(refined) with respect to the new variable w space. In this case, a predicate
J(v, w), called a gluing invariant, must be specified. This invariant makes
it possible to establish the link between the variables v and w. The gluing
invariant J(v, w) is specified in the INVARIANT clause of the refining com-
ponent. Proof obligations are generated at each refinement stage to ensure the
refinement correctness. In B method, refinement is based on this technique
to bring the model closer to the implementation.

– Events refinement : aims to refine one abstract event by one or many events
in the refinement machine in order to make the event more concrete. It is
the transformation of an abstract substitution evolving v into a less abstract
substitution evolving w. A graphical approach of events refinement has been

Towards a Method for the Decomposition by Refinement in Event-B 361

presented in [10–12]. Its main goal is to represent explicitly the events refine-
ment and the behavior sequencing [13].

3.2 Decomposition

An Event-B machine can have so many events and state variables that an addi-
tional refinement can become difficult to manage. Model decomposition tackles
this difficulty by providing a mechanism to divide a large model into several sub-
models. Models decomposition is another technique that completes refinement.
It is based on decomposing models in order to reduce their voluminosity. In the
following we present tho most known approaches of decomposition:

Decomposition by Shared Event: Butler proposes in [10] the decomposition
by shared events. This method allows the distribution of variables on several
sub-machines and events can be split into multiple sub-machines [10].

Decomposition by Shared Variable: In [6], Abrial proposes the decompo-
sition by shared variables. It consists in distributing the events of a machine
on the selected sub-machines. It allows the introduction of shared variables and
external events.

Other decomposing methods exist such as modularization [14], instantia-
tion [6], fragmentation and distribution [18]... The detailed description and anal-
ysis of these approaches have been presented in [15].

3.3 Synthesis

Refinement allows to add more details to the initial specification but the mod-
els become huge and complex. So we follow the Principle of divide-to-concur
in order to resolve this issue by using the decomposition technique. Another
reason behind the decomposition is the management of the different elements
and requirements that can be provided by the engineers from different enti-
ties (academic and/or industrial). After the analysis of the existing approaches
of decomposition we find that shared variables decomposition requires several
steps of refinement in order to simplify the model decomposition. In addition,
the shared variables should be replicated in the sub-machine and cannot be
refined. The invariants involving a shared variable together with other variables
is not copied. Concerning the shared events decomposition, the distribution of
the variables is not always possible: complex predicates (invariants and guards)
or complex actions involving distributed variables over different sub-machines.
This requires the separation of these variables by several steps of refinement with
mathematical proofs. We present the details and the analysis of these limitations
in [15].

As a consequence we propose an approach called the Decomposition by
refinement that we consider also as a multiple refinement method. Contrary
to the linear refinement, this approach aims for the decomposition of the model
with respect to the refinement principles. Its goal, on the one hand, is to preserve
the modeled behavior in the abstraction and, on the other hand, to reduce the

362 K. Kraibi et al.

model voluminosity [15]. The approach that we propose includes both the refine-
ment and the decomposition. Figure 2 shows the relations between the different
types of refinements, the models decomposition and the proposed approach.

Refinement

Horizontal
Refinement

Vertical
Refinement

Data
Refinement

Events
Refinement

Decomposition

Decomposition

by
Refinement

Shared

Event
Decomposition

Shared

Variable
Decomposition

Fig. 2. Different refinement and decomposition techniques

4 Decomposition by Refinement

Our goal is to define a new method of decomposition in order to:

– Decompose at any level of refinement without proceeding with the preparation
steps of refinement;

– Keep the formal link REFINES between the decomposed machine and the
sub-machines;

– Refine shared variables by one or many sub-machines;
– Define a new link between the resulting sub-machines to have a visibility on

the private variables of the other sub-machines.

As a consequence, we propose the multiple refinement method called the
decomposition by refinement method [15] (cf. Fig. 3). At a certain level (n−1) of
refinement, one can proceed with the decomposition by refinement method. This
method decomposes a machine Mn−1 into two or m machines. These machines
are refining the decomposed machine Mn−1. REFSEES is a new clause that we
intend to define in order to get a visibility on the private variables of the other
sub-machines by transitivity.

As we described in a previous work [15], our decomposition by refinement
approach defines a new semantic link between sub-machines: REFSEES. This
link allows the visibility of variables, invariants, constants, sets and properties of
a sub-machine by the other sub-machines. REFSEES clause is a combination of
REFINEMENT and SEES which means that one sub-machine can see or rather
make reference to another sub-machine, taking into account the refinement link

Towards a Method for the Decomposition by Refinement in Event-B 363

between the decomposing sub-machine and the abstract decomposed machine.
This link is different from the SEES clause in classical-B since it allows a machine
to see a refinement machine and there is a possibility of circular dependency
between sub-machines.

M0

M1

Linear refinement

Mn−1

Mna
Multiple

sub-machines
Mnm

REFINES

REFINES REFINESREFINES

REFSEES

REFSEES

REFSEES

REFSEES

Fig. 3. Structure of the proposed approach

Let us consider the case of two sub-machines, as presented in Fig. 2:

– Machine M , with state variables v ∈ S and relation transition ae over S such
as ae = {v �→ v′|I(s, c, v) ∧ G(s, c, v) ∧ R(s, c, v, v′)};

– Sub-machine Ma, with state variables wa ∈ Ta and relation transition rea
over Ta such as rea = {wa �→ w′

a|(∃v.I(s, c, v) ∧ Ja(da, ta, v, wa))∧
Ha(da, ta, wa, wb) ∧ Qa(da, ta, wa, wb, w

′
a)};

– Sub-machine Mb, with state variables wb ∈ Tb and relation transition reb over
Tb such as reb = {wb �→ w′

b|(∃v.I(s, c, v)∧Jb(db, tb, v, wb))∧Hb(db, tb, wa, wb)∧
Qb(db, tb, wa, wb, w

′
b)}.

Note that the sub-machines Ma and Mb can see different contexts C1a and
C1b, for example, where C1a (resp. C1b) defines sets da, constants ta and axioms
A(da, ta) (resp. sets db, constants tb and axioms A(db, tb)).

In order to formalize this approach, we define some rules Ri to follow. These
rules allow a correct decomposition by refinement:

R1: the state variables v of the decomposed machine M should all be present at
least in Ma or Mb. Some state variables can only be in one of the sub-machines.
We believe this still constitutes a refinement of M by Ma (and respectively Mb).
In the semantics of Event-B [3], there is a notion of external-set which allows to
ignore some “internal” variables in the refinement. We believe we can use this
concept to justify this new usage of the refinement.

364 K. Kraibi et al.

R2: the main difference with normal refinement, is the fact that the sub-machine
Ma (resp. Mb) can refer (in their events guards) to variables that can be only
present in Mb (resp. Ma).
This might be possible because we did already prove the M is correct. But we
must prove that this refinement is correct regarding the theoretical definition of
the B method [2].

R3: the resulting sub-machines Ma and Mb should correspond to a one transition
system that corresponds to the behavior of M0 (Fig. 4).

MACHINE M0
VARIABLES v
INVARIANTS I(s, c, v)
EVENTS

ae
when G(s, c, v)
then v : |R(s, c, v, v′)

end

REFINEMENT M1a
REFINES M0
REFSEES M1b
VARIABLES wa

INVARIANTS Ja(da, ta, v, wa)
EVENTS

rea ref ae
WHEN Ha(da, ta, wa, wb)
THEN wa : |Qa(da, ta, wa, wb, w

′
a)

END

REFINEMENT M1b
REFINES M0
REFSEES M1a
VARIABLES wb

INVARIANTS Jb(db, tb, v, wb)
EVENTS

reb ref ae
WHEN Hb(db, tb, wa, wb)
THEN wb : |Qb(db, tb, wa, wb, w

′
b)

END

REFINES REFINES

REFSEES

REFSEES

Fig. 4. Decomposition by refinement approach

R4 : Ma and Mb transitions are interlaced and then they are not synchronized
contrary to the decomposition by shared events.
This is done by the definition of the (theoretical) re-composition of the sub-
machines. Consequently, we can demonstrate that this way of re-composition is
a refinement of the machine M , following what has been presented in [4].

R5 : in addition to the partial correctness, which consists on proving that the sys-
tem is safe i.e. preserving the safety invariants, we should ensure the complete
correctness. This later consists on ensuring the vivacity properties such as those
of the variant and the deadlock freedom. A transition should not be triggered
indefinitely. So, a variant proof obligation rule should be defined. Concerning
the deadlock freedom, it allows to prove that the system is conform to the spec-
ification need. There are two types of deadlock freedom rules: the weak one and
the stronger one. The first one means that at least one of the events is triggered.
Whereas the stronger rule requires that each event is at least triggered one time.

In case of adding new events in the sub-machines, the deadlock freedom rules
and the variant rules should also be defined.

Towards a Method for the Decomposition by Refinement in Event-B 365

5 Correctness of the Proposed Approach

A linear refinement is the classical refinement in Event-B when one machine can
refine another higher-level machine. In the following, for reasons of simplification,
sets and constants of the contexts are not taken into consideration since they
are static. Let consider, as shown in Fig. 5, a set S of state variables v of the
abstract machine M0. v preserve the invariant I(v) such as:

S = {v|I(v)}
Let T be a set of state variables w of the refinement machine M1. w preserve
the gluing invariant J(v, w). T is defined as:

T = {w|∃v.(I(v) ∧ J(v, w))}
The state changes of the abstract variables v are done by the transition ae

such as v is preserving the invariant I(v). v′ is the variable describing the new
state of v after the transition ae:

ae = {v �→ v′|I(v) ∧ G(v) ∧ R(v, v′)}
Similarly for the refining machine M1, the transition re describes the state

changes of the refining variable w such as preserving the gluing invariant J(v, w)
and satisfying the guard Hi(w):

re = {w �→ w′|(∃v.I(v) ∧ J(v, w)) ∧ H(w) ∧ Q(w,w′)}
r defines the refinement relation between abstract state variables v and the

refining state variables w:

r = {w �→ v|I(v) ∧ J(v, w)}

SM0 S

TM1 T

ae

re

r rREFINES

Fig. 5. Relations between the abstract machine and its refinement

In [5], some sets and functions are defined, as shown in Fig. 6. On the basis of
observable variables definition, the set S is considered as able to be projected on

366 K. Kraibi et al.

an external set E. This latter defines what can be observed in a model. Similarly,
the refined state variables w are together moving within a certain set T , which
is considered also able to be projected on an external set F . So f and g denote
the functions projecting the sets S and T on the sets E and F respectively. In
order to link E and F sets, a total function h is defined.

The Abrial’s demonstration is based on f , h and g functions using the expres-
sion (1) and the definition of the relation r in (2).

∀x.y.(y �→ x : r ⇒ f(x) = h(g(y))) (1)

r : T ←←→ S (2)

Predicates (1) and (2) lead to the conclusion:

r−1; re ⊆ ae; r−1

S S

T T

E E

F F

ae

re

r rh h

f f

g g

Fig. 6. Relations between state variables and observable variables [5]

In order to justify the correctness of the refinement in our approach, let
consider the expression defined in [5] where observable variables are used for
the demonstration. The proof obligation rules of the linear refinement imply the
semantics definition of refinement:

– r−1
a ; rea ⊆ ae; r−1

a where ra = {wa �→ v|I(v) ∧ Ja(v, wa)}, I the invariant of
M , Ja the invariant of Ma;

– r−1
b ; reb ⊆ ae; r−1

b where rb = {wb �→ v|I(v) ∧ Jb(v, wb)}, I the invariant of
M , Jb the invariant of Mb.

In [3,4], after proceeding with the decomposition, the re-composition should
be proved without explicitly composing. Our goal is to follow this concept and
to define a relation between r−1

a ; rea ⊆ ae; r−1
a and r−1

b ; reb ⊆ ae; r−1
b in order

to prove the correctness of the proposed approach.
We note that shared event decomposition considers only the syntactic decom-

position of the abstract machine by sharing the same event in the independent
sub-machines so as to model mainly the architecture communication between
different components, based on transitions synchronization [17]. However, the

Towards a Method for the Decomposition by Refinement in Event-B 367

S S

Ta Ta

Tb Tb

ae

rea

ra ra

reb

rb rb

Fig. 7. Relations between the abstract machine and its refining sub-machines

shared variable decomposition considers the syntactic/semantic coherence of the
decomposition later when it verifies the correctness of the sub-machines com-
position vs. the initial abstract machine which requires additional rules on the
observable variables [7]. This decomposition shares a same variable by indepen-
dent sub-machines so as to model mainly complexity division inside the same
component, based on states synchronization [17]. For example, as shown in the
left of Fig. 8, a machine M can be decomposed into sub-machines N and P .
The machine N (resp. P) can be refined by several steps till the refinement NR
(resp. PR). Then, the semantic re-composition MR of the resulting refinements
NR and PR should be a refinement of M .

M

PN

NR PR

MR

DecomposesDecomposes

Composes

Refines Refines

M

MM

nM nM

MR

RefinesRefines

Composes

Refines Refines

a b

a b

Fig. 8. Difference between the decomposition by shared variable and the decomposition
by refinement

368 K. Kraibi et al.

S

TT

nT nT

Z

rere

nre nre

ae

qp

l mn

vu

re

a b

a b

ba

a
b

Fig. 9. Demonstration of the decomposition by refinement

In our approach, by refining the abstract machine when decomposing, the
resulting sub-machines keep the syntactic/semantic coherence as described in
the previous section on the basis of the states synchronization so as to ensure
the preservation of the invariants implicitly from the beginning and to make
the possibility to share events and variables according to the industrial context
needs. For instance, in the right of Fig. 8) a machine M can be refined by two
sub-machines Ma and Mb. The machine Ma (resp. Mb) can be refined by several
steps till the refinement nMa (resp. nMb). Then, the semantic re-composition
MR of the resulting refinements nMa and nMb should be a refinement of M .

Then, on the basis of Fig. 7 that describes the relations between the abstract
machine and the resulting sub-machines, we proceed with the verification of
the correctness of the refinement in the proposed approach using the schema in
Fig. 9. We define the following sets and functions:

– S is the set of state variables v in the abstract machine M ;
– Ta (resp. Tb) is the set of state variables wa (resp. wb) refining v;
– nTa (resp. nTb) is the set of state variables nwa (resp. nwb) refining (n−1)wa

(resp. (n − 1)wb) at a certain level n of refinement;
– Z is the set of all states variables resulting from the re-composition of nTa

and nTb;
– ae are the abstract events;
– rea (resp. reb) are the events refining ae in Ta (resp. Tb);
– nrea (resp. nreb) are the refining events of machines nTa (resp. nTb);
– re are the resulting events from the re-composition of nrea and nreb;

Then we define the relation between each of the machines. For example, p
(resp. q) is the refinement relation between M and Ma (resp. Mb). l (resp. m) is

Towards a Method for the Decomposition by Refinement in Event-B 369

the refinement relation between Ma and nMa (resp. nMb). u and v are the rela-
tion between the resulting re-composition and the re-composed sub-machines.
Then, we define n the relation between the initial decomposed machine and the
re-composition of the resulting refinements. The demonstration and the resulting
proof obligation rules will be detailed in a future work.

6 Conclusion

In the literature, refinement and decomposition are defined in such a way that
they can coexist in the formal modeling process in order to manage the sys-
tem complexity through multiple levels of abstraction. None of the existing
approaches of decomposition rely on the refinement correctness to define the
decomposition and preserve the syntactic/semantic coherence from the beginning
to the lower-level of modeling. Therefore, we propose an Event-B decomposition
approach based on the multiple refinement. In the context of the PRESCOM
project, we are working on a specific industrial context: railway systems model-
ing. This application domain of safety-critical systems recognizes the relevance
of the decomposition in the railway systems modeling. It identifies some needs
to separate the key features of the abstract specification system in a number of
lower-level sub-machines. This separation is realized according to the intended
purpose of the system modeling to get more readable and manageable specifica-
tions. In a future work, we will define the followed steps for the correctness of
the approach and the resulting proof obligations rules and then we will apply
the decomposition by refinement approach in a railway case study.

References

1. Abrial, J.-R., Lee, M.K.O., Neilson, D.S., Scharbach, P.N., Sørensen, I.H.: The B-
method. In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, pp. 398–405.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0020001

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

3. Abrial, J.R.: Discrete system models. Internal notes (www-lsr.imag.fr/B) (2002)
4. Abrial, J.R.: Event model decomposition. Technical report, ETH, Department of

Computer Science 626 (2009)
5. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
6. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-

crete models: application to Event-B. Fundamenta Informaticae 77(1–2), 1–28
(2007)

7. Abrial, J.R., Metayer, C., Voisin, L.: Rodin deliverable 3.2. Event-B language.
Technical report, School of Computing Science, Newcastle University (2005)

8. Back, R.J.R.: Refinement calculus, part II: parallel and reactive programs. In: de
Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430,
pp. 67–93. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52559-9 61

https://doi.org/10.1007/BFb0020001
http://www-lsr.imag.fr/B
https://doi.org/10.1007/3-540-52559-9_61

370 K. Kraibi et al.

9. Bolusset, T., Oquendo, F.: Formal refinement of software architectures based on
rewriting logic. In: ZB2002 International Workshop on Refinement of Critical Sys-
tems: Methods, Tools and Experience, Grenoble, vol. 29, pp. 1–20 (2002)

10. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00255-7 2

11. Dghaym, D., Butler, M., Fathabadi, A.S.: Extending ERS for modelling dynamic
workflows in Event-B. In: 2017 22nd International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 20–29. IEEE (2017)

12. Dghaym, D., Trindade, M.G., Butler, M., Fathabadi, A.S.: A graphical tool for
event refinement structures in Event-B. In: Butler, M., Schewe, K.-D., Mashkoor,
A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 269–274. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33600-8 20

13. Fathabadi, A.S., Rezazadeh, A., Butler, M.: Applying atomicity and model decom-
position to a space craft system in Event-B. In: Bobaru, M., Havelund, K., Holz-
mann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 328–342. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 24

14. Hoang, T.S., Iliasov, A., Silva, R.A., Wei, W.: A survey on Event-B decomposition.
Electron. Commun. EASST 46 (2011)

15. Kraibi., K., Ben Ayed., R., Rehm., J., Collart-Dutilleul., S., Bon., P., Petit.,
D.: Event-B decomposition analysis for systems behavior modeling. In: Pro-
ceedings of the 14th International Conference on Software Technologies-Volume
1: ICSOFT, pp. 278–286. INSTICC, SciTePress (2019).https://doi.org/10.5220/
0007929602780286

16. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

17. Romanovsky, A., Thomas, M.: Industrial Deployment of System Engineering Meth-
ods. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33170-1

18. Siala, B., Tahar Bhiri, M., Bodeveix, J.P., Filali, M.: Un processus de
Développement Event-B pour des Applications Distribuées. Université de Franche-
Comté (2016)

19. Silva, R., Butler, M.: Shared event composition/decomposition in Event-B. In:
Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25271-6 7

https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-319-33600-8_20
https://doi.org/10.1007/978-3-642-20398-5_24
https://doi.org/10.5220/0007929602780286
https://doi.org/10.5220/0007929602780286
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-642-33170-1
https://doi.org/10.1007/978-3-642-25271-6_7
https://doi.org/10.1007/978-3-642-25271-6_7

Transformations for Generating
Type Refinements

Douglas R. Smith(B) and Stephen J. Westfold

Kestrel Institute, 3260, Hillview Avenue, Palo Alto, CA 94304, USA
{smith,westfold}@kestrel.edu

Abstract. We present transformations for incrementally defining both
inductive sum/variant types and coinductive product/record types in
a formal refinement setting. Inductive types are built by incrementally
accumulating constructors. Coinductive types are built by incrementally
accumulating observers. In each case, when the developer decides that the
constructor (resp. observer) set is complete, a transformation is applied
that generates a canonical definition for the type. It also generates def-
initions for functions that have been characterized in terms of patterns
over the constructors (resp. copatterns over the observers). Functions
that input a possibly-recursive sum/variant type are defined inductively
via patterns on the input data. Dually, functions that output a possibly-
recursive record type are defined coinductively via copatterns on the
function’s output. The transformations have been implemented in the
Specware system [4] and have been used extensively in the automated
synthesis of concurrent garbage collection algorithms [9,12] and families
of protocol-processing codes for distributed vehicle control [5].

1 Introduction

We address the problem of incrementally defining types and their operators.
Rather than work in the context of a programming language, where expressions
are intended to have a single precise meaning, we work in a specification and
refinement setting, where a specification denotes a set of possible models or
implementations that satisfy a set of constraints. Incremental development by
refinement can allow a more natural staged introduction of design commitments
in a formal derivation. For example, program families are naturally expressed as
a refinement tree where each branch defines a distinct subfamily of programs. A
natural way to express such family trees is via the incremental accumulation of
constraints on the types, functions, procedures, components, and other system
structure. A type may have alternative elaborations in the various branches of
the family tree. A similar pattern is seen in product lines of systems and the
class hierarchies of object-oriented languages.

This work has been sponsored in part by DARPA under agreements FA8750-10-C-0241
and FA8750-12-C-0257.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 371–387, 2020.
https://doi.org/10.1007/978-3-030-54997-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_24

372 D. R. Smith and S. J. Westfold

The development of correct-by-construction code via a formal refinement pro-
cess has the abstract derivation form S0

�� S1
�� ... �� Sn

�������� Code .
A derivation process starts with a specification S0 of the requirements on a desired
software artifact. Each Si, i = 0, 1, ..., n represents a structured specification and
the arrows → are refinements. The refinement from Si to Si+1 embodies a design
decision which narrows down the number of possible implementations. In our app-
roach, most refinement steps are generated (semi)automatically by specification
transformations. The final step translates the lowest-level specification Sn to code
in a suitable programming language. Semantically the effect is to narrow down the
set of possible implementations of S0 to just one, so specification refinement can
be viewed as a constructive process for proving the existence of an implementation
of specification S0; i.e. proving its consistency.

We are interested in specification transformations that generate refinements
together with machine-checkable proofs [11]. If a formal derivation is generated
by a sequence of such refinement+proof-generating transformations, then we
can chain the resulting proofs together to get a proof that the final generated
specification is a correct refinement of the initial requirement-level specifica-
tion. Here, we introduce transformations for incrementally defining both (1)
inductive sum/variant-types and functions inductively defined on them, and (2)
coinductive product/record-types and functions that are coinductively defined
to produce them.

Inductive types are characterized by their constructors. In a refinement set-
ting, we can introduce a type symbol, say T , for an intended inductive type in a
specification, with some of its constructors, and without a definition. A function
f that takes a T input can be characterized by axioms that specify how f acts on
the existing constructors. A pattern-based or constructor-based characterization
of function f : T → A with respect to constructor c is an axiom that essen-
tially has the form f ◦ c = e for some well-defined expression e (e.g. see Fig. 1).
In subsequent refinements, we add other constructors, and add pattern-based
axioms for f . At each stage in the derivation (i.e. at an intermediate specifi-
cation), the models of T include a set for T defined by just the current set of
constructors, as well as models that allow other constructors, and even models
that are not inductive. At some point in the derivation, the developer decides
that the constructor set is complete by applying a transformation, called Com-
pleteSumType, that gives a canonical definition of T as a sum/named-variant
type with just the current set of constructors. It also generates inductive defini-
tions for functions that have been characterized by pattern-based axioms.

Dually, coinductive types are characterized by their observers – all that can
be known about an element of the type is given by various observations of it. In
a refinement setting, we can introduce a type symbol T for an intended coinduc-
tive type (cotype) in a specification, along with some of its observers. A function
f that produces a T value can be characterized by axioms that specify obser-
vations of its output. A copattern-based or observer-based characterization of
function f : A → T with respect to observer p is an axiom that essentially
has the form p ◦ f = e for some well-defined expression e (e.g. see Fig. 6).

Transformations for Generating Type Refinements 373

In subsequent refinements, we add other observers, and add appropriate
copattern-based axioms that specify the output of f . At each stage in the deriva-
tion, the models of T include a set for T with just the current set of observers,
as well as models that allow other observers, and even models that are not coin-
ductive. At some point in the derivation, we declare that the observer set is
complete by applying a transformation, called CompleteProductType, that
gives a canonical definition of T as a product/record type with just the current
set of observers as projections/fields. It also generates coinductive definitions for
functions that have been characterized by copattern-based axioms.

A variety of examples illustrate these transformations. Although our tech-
niques are applied in a purely logical/functional setting, we show how to use the
transformations to develop mutable global states and heap-allocated mutable
types for targeting imperative and object-oriented programming languages.

2 Basic Concepts

We present basic concepts of the formal specification-and-refinement approach
used in our Specware system [4,13]. A specification defines a language and con-
strains its possible meanings via axioms. A specification is given by a finite
collection of type symbols (optionally including a definition), function symbols
and their signature (optionally including a definition), and axioms over the type
and function symbols. We treat predicates as Boolean-valued functions. For pur-
poses of this paper, we focus on first-order specifications (i.e. functions do not
take functions as arguments), although Specware allows higher-order specifica-
tions. The deductive closure of the axioms is a theory, so a specification is a
finite presentation of a theory. Let Spec denote the type of specifications.

A refinement can be expressed formally via a specification morphism which
translates the language of one specification into the language of another specifi-
cation in a way that preserves theorems. Formally, a signature morphism from
specification S0 to specification S1 is a type-consistent map from the vocabulary
of S0 (i.e. its type and function symbols) to the vocabulary of S1. A specification
morphism from S0 to S1 is a signature morphism that preserves theorems; i.e.
that translates each theorem of S0 to a theorem of S1. To establish a specifi-
cation morphism, it is sufficient to prove that each axiom of S0 translates to a
theorem of S1. Let Morphism denote the type of specification morphisms (or
simply morphisms).

Specification S1 is an extension of specification S0 if there is an specification
morphism S0 → S1 whose underlying signature morphism is injective. We use
importation (with possible renaming) to express extension, allowing the con-
struction of complex specifications. More generally, specifications and their mor-
phisms constitute a category that has colimits, which provide a general means for
constructing complex specifications. A pushout is a special case of a colimit that
we will use frequently. The pushout of two morphisms with a common domain

specification B A
i�� j ��C is another pair of morphisms with a common

374 D. R. Smith and S. J. Westfold

codomain, B
j′

��D C
i′�� , called a cocone, where D is the pushout specifica-

tion. Intuitively, D is the simplest specification that combines B and C modulo
the common structure of A [13].

As models of specification S, we admit any structure of sets and functions
that interprets at least each type and function symbol in S and that satisfies the
function signatures and the axioms. This loose semantics allows structures for
extensions of S to be models of S. The denotation of a specification morphism
m is a map from models of the codomain of m into models of the domain – every
model of S1 is mapped to some model of S0.

Specification S0 refines to S1 if there is a specification morphism m :
S0 → S1. We refer to m as a refinement and a morphism, and in con-
text, S1 as a refinement of S0. In this paper we are interested in transfor-
mations that (semi)automatically generate refinements. A specification trans-
formation is a partial function on specifications that generates a refinement:
t : Spec → Morphism. That is, if t(S) = m, then m : S → codomain(m) is a
refinement of S.

An extension e : S0 → S1 is conservative if every theorem of S1 that is
expressed over the language of S0, is also a theorem of S0. A specification mor-
phism is consistent if it preserves consistency – whenever the source specification
is consistent (has a nonempty set of models), then the target specification is also
consistent.

The following “modularization” theorem provides general conditions for the
generation of consistent refinements [10,15].

P
c ��

r

��

S

r′
��

P ′ c′
�� S′

Theorem 1. Let P , P ′, and S be first-order specifications,
where c : P → S is a conservative extension and r : P → P ′ is
a consistent refinement. If S′ is the pushout with cocone mor-
phisms c′ : P ′ → S′ and r′ : S → S′, then c′ is a conservative
extension and r′ is a consistent refinement.

Theorem 1 is typically applied when the goal is to refine a given specification
S. A generic specification transformation based on the theorem performs the
following steps (we present several instances below):

SpecTransformation(S:Spec):Morphism
1. analyze S
2. generate the refinement morphism r : P → P ′

3. generate a classification morphism c : P → S which shows how r applies to S

4. compute the pushout of P ′ P
c�� r ��S yielding cocone P ′ c′

��S′ S
r′

��
5. return r′.

The generated morphism r′ : S → S′ is the desired consistent refinement of
S. The refinement r represents the core design decision and each transformation

Transformations for Generating Type Refinements 375

embodies its own class of design knowledge. The pushout extends its applica-
tion to the whole specification. Theorem 1 provides the most general conditions
known to us under which the generated refinement r′ is consistent. A proof
that r′ is a consistent morphism from S and that it embodies an instance of the
design knowledge codified by the transformation can be generated automatically
at refinement-generation time [11].

3 Incrementally Constructing Sum/Variant/Inductive
Types

A constructor for a type T is a function of type c : A[T] → T where A[T] is a
(possibly empty) product of auxiliary types and zero or more positive occurrences
of T . A base constructor has a signature c : A → T with no occurrence of T in
its domain. A constructor set is well-founded if it contains at least one base
constructor. An inductive type is defined by a well-founded set of constructors
(aka injections).

For example, the specification to the left in Fig. 1 contains a well-founded set
of constructors for the type of leaf-labeled binary trees, where Empty constructs
the empty BinTree, Leaf constructs leaves labeled with natural numbers, and
Fork builds a BinTree from a pair of (unlabeled) subtrees. There are many possi-
ble models of spec BinTree (including some with even more constructors), but if
we refine BinTree to BinTree1 where type BinTree is now defined as recursive
variant type (i.e. named sum-type), then there is only one model (up to iso-
morphism); i.e. the type BinTree has been refined. Spec BinTree1 also defines
a function on BinTrees by means of pattern-based axioms that specify how
BinTreeDepth behaves on each constructor. Overall, Fig. 1 exemplifies the kind
of refinement that we generate. This definition can be proved complete, consis-
tent, and terminating using the induction rule for BinTree. The construction
gives rise to an induction rule which reflects that, by construction, every ele-
ment of the type is the valuation of a unique term built out of constructors,
and conversely, that each term built out of constructors evaluates to a unique
element of the type. Under various conditions it is possible to allow axioms that,

Bintree = spec

type BinTree

op Empty: BinTree

op Leaf: Nat -> BinTree

op Fork: BinTree*BinTree -> BinTree

op BinTreeDepth: BinTree -> Nat

ax BinTreeDepth Empty = 0

ax BinTreeDepth Leaf n = 1

ax BinTreeDepth Fork(bt1,bt2)

= max(BinTreeDepth(bt1),

BinTreeDepth(bt2))

end-spec

n

Bintree1 = spec

type BinTree = | Empty | Leaf Nat

| Fork BinTree*BinTree

op BinTreeDepth(bt:BinTree):Nat =

case bt of

| Empty -> 0

| Leaf n -> 1

| Fork(bt1,bt2) -> max(BinTreeDepth(bt1),

BinTreeDepth(bt2))

end-spec

Fig. 1. Refinement to inductive Bintree specification

376 D. R. Smith and S. J. Westfold

for example, identify two distinct terms over the constructors (e.g. to admit a
commutative constructor). Our examples will not require this capability.

3.1 Incremental Accumulation of Constructors

Tspec = spec

type T

op c0:T

op c1:Nat*T-> T

op f:T->B

ax f(c0) = b0

ax f(c1(n,a1)) = b1

end-spec

Tspec1 = spec

import Tspec

op c2:T*T->T

ax f(c2(a1,a2)) = b2

end-spec

The idea of incrementally defining an inductive type
is simple. During a derivation, we introduce a new
undefined type symbol and incrementally add con-
structors. We also introduce function symbols and
incrementally add pattern-based axioms that spec-
ify how the function behaves on each constructor. In
the end, the developer declares the constructor set
complete and applies a transformation that defines
the type as a sum/variant type and provides induc-
tive definitions for the function symbols.

As an abstract example, Tspec introduces T as
an undefined type that has two constructors c0 and
c1. Tspec also introduces f as an undefined func-
tion that is constrained by its type and by axioms
that characterize its functionality by specifying how
it behaves on the two constructors. Tspec1 refines

Tspec by (1) extending it with a new constructor c2, and (2) extending the
characterization of f by showing how it behaves on the new constructor. Tspec1
can be further extended in a similar manner.

3.2 CompleteSumType Transformation

At some point in a derivation, the developers decide that no more constructors
are needed. The CompleteSumType transformation is then applied to generate
a refinement in which T and its functions are given definitions. This is a strong
refinement in the sense that it narrows down the possible interpretations of T
and its functions from a possibly infinite set to a singleton – they are given
canonical definitions (up to isomorphism) as sum types.

We present the CompleteSumType transformation as an instance of the
SpecTransformation transformation pattern in Sect. 2. We factor the transfor-
mation into two steps. The first, exemplified in Fig. 2, analyzes an arbitrary
given specification S to abstract out a subspecification Scons that contains just
the constructors over a given undefined type T. If the constructor set is well-
founded, then it generates a refinement/morphism r:Scons → Scons’, where
Scons’ introduces a sum-type definition for T in place of the constructor signa-
tures. It then generates a refinement of S by taking the pushout of r and the
conservative extension c:Scons → S. It is straightforward to show that r is a
consistent refinement, since it picks out the one model of T that is the least
fixpoint of the well-founded constructor set. By Theorem 1, if c is conservative
and S’ is the pushout of r and c, then the generated refinement r’:S→ S’ is
consistent.

Transformations for Generating Type Refinements 377

Scons = spec

type T

op c0:T

op c1:Nat*T-> T

op c2:T*T->T

end-spec

r
Scons’ = spec

type T = | c0 | c1 Nat*T | c2 T*T

end-spec

Fig. 2. Abstract refinement morphism

The second step analyzes S’ to abstract out a subspecification Sfuns that
contains just the function symbols that have pattern-based axioms over the con-
structors in Scons. It then generates a refinement n:Sfuns → Sfuns’ where
Sfuns’ introduces case-based definitions for each function in place of the induc-
tive axioms, as exemplified in Fig. 3. It then generates a refinement of S’ by
taking the pushout of r and the conservative extension c:Sfuns → S’. It is
straightforward to show that r is a consistent refinement, using the induction
rule that goes with the definition of a recursive sum-type. By Theorem 1, if c is
conservative and S’’ is the pushout of r and c, then the generated refinement
r’:S→ S’’ is consistent. Note that specification S may have constraints on f
beyond the pattern-based axioms, but the conservativeness of c requires that
they imply no additional theorems.

Sfuns = spec

type T = | c0 | c1 Nat*T | c2 T*T

op f:T->B

ax f(c0) = b0

ax f(c1(n,a1)) = b1

ax f(c2(a1,a2)) = b2

end-spec

r

Sfuns’ = spec

type T = | c0 | c1 Nat*T | c2 T*T

op f(a:T):B =

case a of

| c0 -> b0

| c1(n,a1) -> b1

| c2(a1,a2) -> b2

end-spec

Fig. 3. Generated refinement morphism

3.3 Example: Specifying Reference Types

The need to specify and design programs that use references in Specware was
a motivation for developing CompleteSumType. A key challenge is knowing
the type of a reference. A polymorphic definition of a reference type does not
allow retrieval of the underlying type. One solution is to maintain a ghost record
of the current types at all memory locations, where the allowed types are those
supported by the underlying architecture [6,14], sometimes implemented by fat
pointers. However, in a refinement setting, it is necessary to reference user-
introduced types that may not yet have a definition, so a more general mechanism
is needed.

378 D. R. Smith and S. J. Westfold

RefTypes = spec
type State
type Value
type Ref
op deref: State -> Ref -> Value

end-spec

Our solution is to introduce an inductive type
Value that represents all referenceable types in
our application. It need not represent all possi-
ble types, just those that are used. It is desirable
to be able to extend Value with new reference-
able types (e.g. for a program family). Ref is the
type of references, and a dereference function then
determines in a given State, what the Value is
of a given Ref.

During the refinement process, for each referenceable type T that is intro-
duced, we introduce a new constructor for T. We also introduce testors (to decide
if a Value represents a T element) and coercion/destructor functions (to invert
a constructor).

Nat32Ref = spec
import RefTypes
type Nat32
op c_Nat32: Nat32 -> Value
op Nat32?(val:Value):Bool =

(ex(n:Nat32) val = c_Nat32 n)
op coerce_Nat32(val:Value | Nat32? val):

{n:Nat32 | val=c_Nat32 n}
end-spec

PacketRef = spec
import RefTypes, Nat32Ref
type Packet
op c_Packet: Packet -> Value
op pkt?(val:Value):Bool =

(ex(pkt:Packet) val = c_Packet pkt)
op coerce_Packet(val:Value | pkt? val):

{pkt:Packet | val=c_Packet pkt}
op data: Packet -> Nat32
op get_data(st:State, pktRef:Ref

| pkt?(deref st pktRef)):Int32 =
data(coerce_Packet(deref st pktRef))

end-spec

For example, specification
PacketRef, introduces construc-
tors for Nat32 (eventually refining
to unsigned 32-bit integers) and
Packet (a user-defined type for use
in communication software). The
predicate Nat32? tests whether a
Value represents a Nat32, using
an existential quantification. The
function coerce Nat32 coerces a
Value back to a Nat32 assum-
ing that it represents a Nat32.
Its input and output types are
expressed as dependent types.
coerce Nat32 would be imple-
mented as a type cast in many
programming languages. Analo-
gous functions are introduced for
the user-defined Packet type.

As a simple example, the function get data takes in a reference to a Packet
and returns the data value of the packet. In Sect. 4.3, we extend this development
by allowing referenceable types that are also mutable.

3.4 Subtyping

One might want a family tree of sum-types and an appropriate notion of sum-
type subtyping. The example in Fig. 4 introduces T as an intended inductive
type, and then introduces T1 as an intended supertype T1:>T, and T2 as another
intended supertype T2:>T. We can then import S1 and S2 and transform as
shown in Fig. 5. In specification S3’, the function f1 may be passed a T or T1
element, and f2 may be passed a T or T2 element.

Transformations for Generating Type Refinements 379

S = spec

type T % intended sum-type

op c1: D1 -> T

op c2: D2 -> T

op f(a:T):A =

... pattern-based axioms

over c1 and c2 ...

end-spec

S1 = spec

import S

type T1 :> T

op c3: D3 -> T1

op f1(a:T1):A1 =

... pattern-based axioms

over c1, c2, and c3 ...

end-spec

S2 = spec

import S

type T2 :> T

op c4: D4 -> T2

op f2(a:T2):A2 =

... pattern-based axioms

over c1, c2, and c4 ...

end-spec

Fig. 4. Sum subtype development

S3 = spec

import S1,S2

...

end-spec

CompleteSumType(S3,T)

CompleteSumType(S3,T1)
CompleteSumType(S3,T2)

S3’ = spec

type T = |c1:D1 | c2:D2

type T1 = |c1:D1 | c2:D2 | c3:D3 :> T

type T2 = |c1:D1 | c2:D2 | c4:D4 :> T

op f(a:T) :A = ... inductive def on T ...

op f1(a:T1):A1 = ... inductive def on T1 ...

op f2(a:T2):A2 = ... inductive def on T2 ...

...

end-spec

Fig. 5. Sum refinement

4 Incrementally Constructing Product/Record Types

Suppose that our requirement modeling or design direction requires a type T but
a priori we don’t know its content. It may be natural to introduce constraints on
T as needed during the derivation process in the form of additional observations
of T . An observer of type T is a function p : T → A[T] where A[T] is a (possibly
empty) product of auxiliary types and zero or more positive occurrences of T .
An observer extracts information of type A[T] from a T object.

For example, in a vehicle context, we might introduce a State type together
with observations about the current time, and position of the vehicle, and a
drive function that changes state; see specification Vehicle in Fig. 6. Later we
might add an observation of the vehicle’s velocity; see specification Vehicle1
in Fig. 6. There are many possible models of State, but if we refine Vehicle1
to Vehicle2 where State is now defined as record type (i.e. named product),
then there is only one model (up to isomorphism). The refinement in Fig. 6
also defines a function that changes State by means of copattern-based axioms
that specify drive in terms of observations of its output. This definition can
be proved complete, consistent, and terminating using the coinduction rule that
can be generated for State. Overall, Fig. 6 exemplifies the kind of refinement
that our CompleteProductType transformation generates.

A possibly-recursive record (named product) is defined in the form

type T = {p1 : A1[T], ..., pn: An[T]}

380 D. R. Smith and S. J. Westfold

where pi:T-> Ai[T] for 1<=i<=n is the complete set of observers of T (aka
projections and fields). An element of st:State is written as a constant in the
form

st = {time=0, position=-1, velocity=2}
and a functional update to a record is written

st << {time = 1, position = 1}
to denote a new record that differs from st only in the fields time and position:

{time = 1, position = 1, velocity = 2}.
Streams provide a prototypical example of a recursive record type:

type Stream Nat = {hd : Nat, tl : Stream Nat}
Possibly-recursive record types and especially the infinite objects in coinductive
types are best understood in terms of their observers [3].

Deciding that the observers of State are complete, we can define State as
a record of current observations, and then give a definition to drive by simply
updating the input state to satisfy its copattern-based axioms. Completeness and
consistency can be proved trivially by coinduction. The resulting specification
can be readily translated to monadic or imperative form, when the occurrences of
T are single-threaded. The construction of T gives rise to a coinduction rule which
reflects that, by construction, every element of the type is uniquely identified
by its observed values. Intuitively, if we cannot distinguish two elements of T
through any sequence of observations, then the elements are equal. It is possible
to allow axioms that, for example, require a relationship between observers (e.g.
that p1(t) ≤ p2(t) for all t ∈ T). Our examples will not require this capability.

Vehicle = spec

type State

op time : State -> Nat

op position : State -> Integer

op drive:Integer->State->State

ax time (drive newVel st) = time st + 1

ax position (drive newVel st)

= position st + newVel

end-spec

Vehicle1 = spec

import Vehicle

op velocity : State -> Integer

ax velocity (drive newVel st) = newVel

end-spec

n

Vehicle2 = spec

type State = {time : Nat,

position: Integer,

velocity: Integer}

op drive(newVel:Integer)(st:State):State

= st << { time = st.time + 1,

position = st.position + newVel,

velocity = newVel}

end-spec

Fig. 6. Refinement to record-based coinductive vehicle specification

Transformations for Generating Type Refinements 381

4.1 CompleteProductType Transformation

The idea of incrementally defining a coinductive type T is simple. During a
derivation, we introduce a new type symbol and incrementally add observers. We
also introduce function symbols and incrementally add copattern-based axioms
on them. At some point in the derivation, the developers decide that no more
observers are needed on type T. The CompleteProductType transformation
is then applied to generate a refinement in which T and its functions are given
definitions. This is a strong refinement in the sense that it narrows down the
possible interpretations of T and its functions from a possibly infinite set to a
singleton – they are given canonical definitions (up to isomorphism) as record
types.

We present the CompleteProductType transformation as an instance of
the SpecTransformation transformation pattern in Sect. 2. As before, we fac-
tor the transformation into two steps. The first, shown in Fig. 7, analyzes the
given specification S to abstract out a subspecification Sobservers that con-
tains just the observers over a given undefined type T. It then generates a refine-
ment/morphism r:Sobservers → Sobservers’ where Sobservers’ introduces
a record-type definition for T, as exemplified in Fig. 7. It then generates a refine-
ment of S by taking the pushout of r and the extension c:Sobservers → S. It
is straightforward to show that r is a consistent refinement, since it picks out
the one model of T that is the greatest fixpoint of the recursive record type.
By Theorem 1, if c is conservative and S’ is the pushout of r and c, then the
generated refinement r’:S→ S’ is consistent.

Sobservers = spec

type T

op p0:T -> 1

op p1:T -> Nat

op p2:T -> T

end-spec

r
Sobservers’ = spec

type T = {p0:1, p1:Nat, p2:T}

end-spec

Fig. 7. Abstract refinement morphism on type T

The second step analyzes S’ to abstract out a subspecification Sfuns that
contains just the function symbols that have copattern-based axioms over the
observers in Sobservers. It then generates a refinement r:Sfuns → Sfuns’
where Sfuns’ introduces record update definitions for each function, as exem-
plified in Fig. 8. Since the function definition is co-recursive, and producing a
recursive record-type may not terminate, its translation to a programming lan-
guage must be handled with care. The transformation then generates a refine-
ment of S’ by taking the pushout of r and the extension c:Sfuns → S’. It is
straightforward to show that r is a consistent refinement, using the coinduction
rule that goes with the definition of a recursive record type. By Theorem 1,

382 D. R. Smith and S. J. Westfold

if c is conservative and S’ denotes the pushout of r and c, then the generated
refinement n’:S→ S’ is consistent.

Sfuns = spec

type T = {p0:1, p1:Nat, p2:T}

ax p0(f(a)) = e0(a)

ax p1(f(a)) = e1(a)

ax p2(f(a)) = e2(a)

end-spec

r

Sfuns’ = spec

type T = {p0:1, p1:Nat, p2:T}

op f(a:A):T = {p0 = e0(a), p1 = e1(a), p2 = e2(a)}

end-spec

Fig. 8. Abstract refinement morphism for a coinductively defined function

4.2 Example: Packets

Communication streams provide a source of examples for incremental construc-
tion, which we illustrate by developing network-layer and transport-layer packet
structures.
BasicPacket = spec

type Data
type Packet
op data: Packet -> Data

end-spec

BasicPacket introduces a Packet type
and one observer data of the content of a
Packet which has some unspecified type
Data.

TransportPacket = spec
import BasicPacket
type Port = Nat16
op srcPort,dstPort: Packet -> Port
op SeqNum : Packet -> Nat32

end-spec

TransportPacket extends BasicPacket
with observers of a packet’s source port
srcPort, its destination port dstPort,
and a sequence number SeqNum.

NetworkPacket = spec
import BasicPacket
type NetAddr = Nat32
op srcAddr,dstAddr: Packet -> NetAddr
op pktLen : Packet -> Nat16

end-spec

NetworkPacket extends BasicPacket
with observers of a packet’s source
address srcAddr, its destination address
dstAddr, and packet length pktLen. The
types Nat16 and Nat32 are subtypes of
Nat restricted to [0..216) and [0..232)
respectively.

FlatNetTransPacket = spec
import NetworkPacket,

TransportPacket
end-spec

FCT ��

FlatNetTransPacket1 = spec
import BasicPacket
type Port
type NetAddr = Nat32
type Packet =

{srcAddr, dstAddr: NetAddr,
pktLen : Nat16,
srcPort, dstPort: Port,
SeqNum : Nat32, data: Data}

end-spec

FlatNetworkTransportPacket incorporates the observers of BasicPacket,
NetworkPacket, and TransportPacket. The refinement m generated by Com-
pleteProductType creates the record-type definition for Packet.

Transformations for Generating Type Refinements 383

A variation on the above formulation of Packet would distinguish header
information (i.e. metadata) from payload content (i.e. data).

BasicPacket = spec
type Data
type Packet
op data: Packet -> Data
type Metadata
op metadata: Packet -> Metadata

end-spec

Extending this specification with various
observers of Metadata would give rise to the
familiar header structures of the TCP/IP
stack, by applying CompleteProductType
to both Packet and Metadata.

4.3 Example: Mutable Types

Suppose that we wish to treat Packets as dynamically allocated mutable objects.
This example combines the development of both inductive types (references from
Sect. 3.3) and coinductive types (Packet from Sect. 4.2). Continuing the example
from Sect. 4.2, specification MutableBasicPacket introduces a coinductive type
Packet together with its data observer. Continuing the example in Sect. 3.3, we
treat Packet as a referenceable type by introducing a constructor c Packet of
inductive type Value. We also introduce a defined observer get data of State
which observes the data of the Packet referenced by the argument pktref.
We also specify a State transformer set data that has the effect of chang-
ing the data observation of the Packet referenced by the argument pktref.
Finally, we introduce a constructor of Packet that returns a reference. Effec-
tively, MutablePackets provides a class-like specification, with a constructor,
observers for getter methods, and transformers serving as setters and other meth-
ods. Translation to a suitable object-oriented language such as Java would be
straightforward.

MutableBasicPacket = spec

import RefTypes, BasicPacket

op c_Packet: Packet -> Value

op pkt?(val:Value):Bool = (ex(pkt:Packet) val = c_Packet pkt)

op coerce_Packet(val:Value | pkt? val): {pkt:Packet | val=c_Packet pkt}

op get_data(st:State)(pktref:Ref | pkt?(deref st pktref)): Data

= data(coerce_Packet(deref st pktref))

op set_data(st:State)(pktref:Ref | pkt? (deref st pktref))(d:Data):

{(pktRef,st’):Ref*State | get_data st’ pktRef = d }

op new_Packet(d:Data)(st:State): {(pktRef,st’):Ref*State | pkt? (deref st’ pktRef)

&& get_data st’ pktRef = d}

end-spec

Fig. 9. MutableBasicPacket

As in the previous section, we can extend Packet structure with
Network structure by adding observers srcAddr, dstAddr,and pktLen,
and their corresponding getters and setters. We also define a construc-
tor for MutableNetworkPacket, which effectively becomes a subclass of
MutableBasicPacket. See Fig. 10.

384 D. R. Smith and S. J. Westfold

4.4 Example: Mutable Heaps for a Garbage Collector

One motivation for the development of the CompleteProduct transformation was
the derivation of a family tree of garbage collectors [9,12] that we carried out
using the Specware system [4].

cotype Graph

Observers Functions

nodes add/delete node

nodeValue set node value

arcs add/delete arc

source (of an arc)

target (of an arc) setTarget (ptr swing)

In this context a model of memory
starts with a directed graph type with
observers for the nodes and arcs and
associated observers of the content or
value of a node and the source and tar-
get of each arc. Various functions for
adding/deleting nodes and arcs, setting
the value of a node, and setting the tar-
get of an arc are characterized using
copattern-based axioms.

cotype Heap (extending Graph)

Observers Functions

roots add/delete root

supply add/delete supply node

allocate node

The Graph specification is general-purpose
and reusable, but a collector also needs to
extend it to model the runtime heap, with
additional observer for roots to specify the
registers and stack sources of pointers, and
the supply of nodes that can be dynamically
allocated.

MutableNetworkPacket = spec

import MutableBasicPacket

type NetAddr = Nat32

op srcAddr, dstAddr: Packet -> NetAddr

op pktLen : Packet -> Nat16

op get_srcAddr(st:State)(pktref:Ref | pkt?(deref st pktref)):Nat16

= srcAddr (coerce_Packet (deref st pktref))

op set_srcAddr(st:State)(pktref:Ref | pkt?(deref st pktref))(saddr:Nat16):

{(pktRef,st’):Ref*State | get_data st’ pktRef = get_data st pktRef

&& get_srcAddr st’ pktRef = saddr }

... similar definitions for get/set_dstAddr ...

op get_pktLen(st:State)(pktref:Ref | pkt? (deref st pktref)):Nat16

= pktLen (coerce_Packet (deref st pktref))

op set_pktLen(st:State)(pktref:Ref | pkt? (deref st pktref))(len:Nat16):

{(pktRef,st’):Ref*State | get_data st’ pktRef = get_data st pktRef

&& get_pktLen st’ pktRef = len}

op new_NetworkPacket(st:State)(d:Data)(saddr:NetAddr)(daddr:NetAddr)(pktlen:Nat16):

{(pktRef,st’):Ref*State | pkt? (deref st’ pktRef)

&& get_data st’ pktRef = d

&& get_srcAddr st’ pktRef = saddr

&& get_dstAddr st’ pktRef = daddr

&& get_pktLen st’ pktRef = pktlen}

end-spec

Fig. 10. MutableNetworkPacket

Transformations for Generating Type Refinements 385

S = spec

type T

op p1: T -> D1

op p2: T -> D2

op g(a:A):T =

... copattern-based axioms

over p1 and p2 ...

end-spec

S1 = spec

import S

type T1 <: T

op p3: T1 -> D3

op g1(a:A1):T1 =

... copattern-based axioms

over p1, p2, and p3 ...

end-spec

S2 = spec

import S

type T2 <: T

op p4: T2 -> D4

op g2(a:A2):T2 =

... copattern-based axioms

over p1, p2, and p4 ...

end-spec

Fig. 11. Record subtype development

CollectionHeap (extending Heap)

Observers Functions

black insert/delete black

mark, sweep

Finally, we add observers that are needed
by the particular collection algorithm.
For example, a mark-and-sweep algorithm
requires an observer of the mark bit (called
black by tradition dating to Dijkstra) per
node, and associated functions.

4.5 Subtyping

One might want a family tree of record-types and an appropriate notion of
record-type subtyping, as illustrated in Fig. 11. We can import S1 and S2 and
transform as shown in Fig. 12. In specification S3’, the function g may be passed
a T, T1, or T2 element, but g1 may only be passed a T1 element and g2 may only
be passed a T2 element. This transformation naturally leads to the development
of object class hierarchies in an object-oriented language.

S3 = spec

import S1,S2

...

end-spec

CompleteProductType(S3,T)

CompleteProductType(S3,T1)
CompleteProductType(S3,T2)

S3’ = spec

type T = {p1:D1, p2:D2}

type T1 = {p1:D1, p2:D2, p3:D3} <: T

type T2 = {p1:D1, p2:D2, o4:D4} <: T

op g(a:A) :T = ... coinductive def over T ...

op g1(a:A1):T1 = ... coinductive def over T1 ...

op g2(a:A2):T2 = ... coinductive def over T2 ...

...

end-spec

Fig. 12. Subtype record refinement

5 Implementation

An implementation of CompleteProductType must gather the observers on
a given type symbol T. Observers are functions of a particular type T → A
for some A that is not T. Of these, there are three subclasses of observers that
can arise in a derivation: (1) undefined observers, (2) defined observers that
are eagerly maintained (e.g. by a Finite Differencing transformation [7,8]), (3)
defined observers that are computed when needed. Only the observers in classes
1 and 2 are gathered for inclusion in the state definition. Class 3 is excluded for

386 D. R. Smith and S. J. Westfold

efficiency reasons only, under the presumption that they are called infrequently.
If it is called frequently, then it may be more efficient to maintain a state variable
for its value under all transformers (in which case it falls under class 2).

The transformations have been implemented in the Specware system [4] and
have been used extensively in the automated synthesis of families of protocol-
processing codes for distributed vehicle control [5], and concurrent garbage col-
lection algorithms [9,12] as summarized in Sect. 4.4.

6 Related Work

These transformations can be seen as addressing the expression problem which
arises from the desire to define a type and its functions incrementally by cases
while preserving static type checking and avoiding recompilation [2,16]. It was
observed that (1) in functional languages it is easy to add new functions but not
to add cases to a type, and (2) in object-oriented languages it is easy to add cases
to a type, but not to add new functions. The refinement setting provides a simple,
natural approach for developers (1) to incrementally add cases/constructors to
an inductive type, and (2) to extend functions that are defined inductively over
the constructors, and to add new functions. Dually, developers can incrementally
add new observers to a coinductive type, and extend functions/transformers that
are defined coinductively with respect to the observers.

The literature on (co)algebra has long noted the duality of defining functions
that input an inductive type by patterns versus defining functions that produce
a coinductive type by copatterns [3]. Recent work by Abel et al. [1] laid the
foundation for integrating this duality into Haskell and other programming lan-
guages by formalizing patterns and copatterns, and supporting pattern-based
definitions for inductive functions, and copattern-based definitions for functions
returning a coinductive type.

7 Concluding Remarks

We hope that the view expressed herein offers a richer understanding of pro-
grams and program development in general. Algebraic/inductive datatypes and
functions are useful for specifying immutable finite data structures. They natu-
rally support a functional programming style. Coalgebraic/coinductive datatypes
and functions are useful for specifying mutable data structures, non-well-founded
data structures, as well as dynamical systems that are possibly nonterminating
and concurrent. They naturally support imperative, object-oriented, and multi-
threaded programming styles. Together they provide a natural foundation for
a mixed use of functional, imperative, object-oriented and concurrent program-
ming. Embedding these dual concepts in a refinement setting provides flexibility
in the face of pressures to vary software, either to produce the products of a
product line (via alternative product requirements), or to respond to evolution-
ary changes to requirements.

Transformations for Generating Type Refinements 387

Acknowledgements. Thanks to Christoph Kreitz, Peter Pepper, Florian Rabe, and
the reviewers for helpful discussions and comments on the text.

References

1. Abel, A., Pientka, B., Thibodeau, D., and Setzer, A. Copatterns: programming
infinite structures by observations. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2013, pp. 27–38 (2013)

2. Cook, W.R.: Object-oriented programming versus abstract data types. In: de
Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds.) REX 1990. LNCS, vol. 489,
pp. 151–178. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0019443

3. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bull. EATCS
62, 222–259 (1996)

4. Kestrel Institute: Specware System and documentation (2003). http://www.
specware.org/

5. Kreitz, C., Smith, D.R.: Synthesis of network protocols: final report. Techni-
cal report, Kestrel Institute (2016). http://www.kestrel.edu/home/people/smith/
pub/HACMS-Final-Report.pdf

6. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. J. Autom. Reason. 41(1), 1–31 (2008)

7. Liu, Y.: Systematic Program Design: From Clarity to Efficiency. Cambridge Uni-
versity Press, Cambridge (2013)

8. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. 4(3), 402–454 (1982)

9. Pavlovic, D., Pepper, P., Smith, D.R.: Formal derivation of concurrent garbage
collectors. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol.
6120, pp. 353–376. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13321-3 20. Extended version in http://arxiv.org/abs/1006.4342

10. Smith, D.R.: Another proof of the modularization theorem. Technical report,
Kestrel Institute, February 1993. http://www.kestrel.edu/home/people/smith/
pub/modularization.pdf

11. Smith, D.R.: Generating programs plus proofs by refinement. In: Meyer, B., Wood-
cock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 182–188. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69149-5 20

12. Smith, D.R., Westbrook, E., Westfold, S.J.: Deriving concurrent garbage collectors:
final report. Technical report, Kestrel Institute (2015). http://www.kestrel.edu/
home/people/smith/pub/CRASH-Final-Report.pdf

13. Srinivas, Y.V., Jüllig, R.: Specware: formal support for composing software. In:
Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 399–422. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60117-1 22

14. Tuch, H.: Formal verification of C systems code: structured types, separation logic
and theorem proving. J. Autom. Reason. 42(2), 125–187 (2009)

15. Veloso, P.A., Maibaum, T.: On the modularization theorem for logical specification.
Inf. Process. Lett. 53(5), 287–293 (1995)

16. Wadler, P.: The expression problem. Technical report, Bell Labs, Murray Hill, NJ
(1998). http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

https://doi.org/10.1007/BFb0019443
http://www.specware.org/
http://www.specware.org/
http://www.kestrel.edu/home/people/smith/pub/HACMS-Final-Report.pdf
http://www.kestrel.edu/home/people/smith/pub/HACMS-Final-Report.pdf
https://doi.org/10.1007/978-3-642-13321-3_20
https://doi.org/10.1007/978-3-642-13321-3_20
http://www.kestrel.edu/home/people/smith/pub/modularization.pdf
http://www.kestrel.edu/home/people/smith/pub/modularization.pdf
https://doi.org/10.1007/978-3-540-69149-5_20
http://www.kestrel.edu/home/people/smith/pub/CRASH-Final-Report.pdf
http://www.kestrel.edu/home/people/smith/pub/CRASH-Final-Report.pdf
https://doi.org/10.1007/3-540-60117-1_22
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Comparing Correctness-by-Construction
with Post-Hoc Verification—A

Qualitative User Study

Tobias Runge1(B), Thomas Thüm2(B), Loek Cleophas3,4(B), Ina Schaefer1(B),
and Bruce W. Watson4,5(B)

1 TU Braunschweig, Braunschweig, Germany
{tobias.runge,i.schaefer}@tu-bs.de

2 University of Ulm, Ulm, Germany
thomas.thuem@uni-ulm.de

3 TU Eindhoven, Eindhoven, The Netherlands
loek@fastar.org

4 Stellenbosch University, Stellenbosch, South Africa
bruce@fastar.org

5 Centre for Artificial Intelligence Research, Stellenbosch, South Africa

Abstract. Correctness-by-construction (CbC) is a refinement-based
methodology to incrementally create formally correct programs. Pro-
grams are constructed using refinement rules which guarantee that the
resulting implementation is correct with respect to a pre-/postcondition
specification. In contrast, with post-hoc verification (PhV) a specification
and a program are created, and afterwards verified that the program sat-
isfies the specification. In the literature, both methods are discussed with
specific advantages and disadvantages. By letting participants construct
and verify programs using CbC and PhV in a controlled experiment, we
analyzed the claims in the literature. We evaluated defects in intermedi-
ate code snapshots and discovered a trial-and-error construction process
to alter code and specification. The participants appreciated the good
feedback of CbC and state that CbC is better than PhV in helping
to find defects. Nevertheless, some defects in the constructed programs
with CbC indicate that the participants need more time to adapt the
CbC process.

1 Introduction

Correctness-by-construction (CbC) [17,19,25,30] as proposed by Dijsktra is a
method for the construction of formally correct programs. The programmer refines
an abstract statement with pre-/postcondition specification to a concrete imple-
mentation, guided by the specification and refinement rules. It is claimed that pro-
grammers construct programs with low defect rates with CbC [20]. There are three
reasons for this that need to be evaluated. First, the structured reasoning disci-
pline which is enforced by the refinement rules reduces the possibility to introduce

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 388–405, 2020.
https://doi.org/10.1007/978-3-030-54997-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_25

Comparing Correctness-by-Construction with Post-Hoc Verification 389

defects. Second, defects in the code can be traced to their source through the refine-
ment structure. Third, programmers and users gain trust in the program because
a formal methodology was used to create the program [25]. We implemented the
correctness-by-construction approach in a graphical IDE called CorC,1 which sup-
port users during the construction and verification of programs.

With deductive post-hoc verification (PhV), we refer to techniques as used
in the KeY community [4], which verify a program after its creation. A verifier
checks whether the program satisfies its pre-/postcondition specification. PhV
does not provide a strict guideline on how to construct the program; the pro-
grammer can freely implement the program. This can decrease the time taken to
create a first (potentially faulty) version of a program, but can increase the pro-
gram verification time because it is more likely that defects occur in the code [36].
In order to evaluate this claim, we consider the post-hoc verifier KeY [4] as an
instance. KeY can verify Java programs annotated with pre-/postcondition spec-
ifications in the Java Modeling Language (JML).

As the title suggests, we compare correctness-by-construction with post-hoc
verification. In a qualitative user study, participants use CorC and KeY to imple-
ment and verify an algorithm with each tool. By analyzing 347 intermediate code
snapshots, we get better insights in the process used by participants to construct
and verify algorithms. With a user experience questionnaire, we compare which
advantages and disadvantages of the verification techniques and the tools have
been experienced. Our contributions in this paper are the following.

– We give an overview of advantages and disadvantages of CbC and PhV.
– We designed and performed a user study to compare both approaches. We

analyze the defects in code and specification of each intermediate snapshot
for both tools.

– We discuss our insights and compare CbC with PhV based on our user study.

2 Verification Techniques

In our user study, we evaluate the techniques PhV and CbC. Therefore, we first
present and compare the foundations of both techniques. We also survey claims
about their advantages and disadvantages as discussed in the research literature.

2.1 Post-hoc Verification

With post-hoc verification, we refer to a method which is used to verify whether
a program satisfies a given specification. A programmer develops a program and
a pre-/postcondition specification. Besides the pre-/postcondition specification,
loop invariants can be defined to specify the behavior of loops in the code. The
correctness of the program can be verified by using a deductive verification tool,
such as KeY [4]. It translates the program and the specification to a dynamic
logic formula (i.e., proof obligations). The program is executed symbolically, and
1 see https://github.com/TUBS-ISF/CorC and [34] for explanation of the editor.

https://github.com/TUBS-ISF/CorC

390 T. Runge et al.

the formula is updated according to the new symbolic state. After the program is
completely executed, it no longer appears in the formula, and the remaining first-
order proof goal can be evaluated by theorem proving. The verification can be
performed (semi-)automatically or interactively. We use automatic verification
in this paper in order to be able to focus the user study on the construction
of programs and specification. Most users in industry do not have a theoretical
background to verify programs interactively.

2.2 Correctness-by-Construction

Correctness-by-construction in the classical Dijkstra-style [17,25] is a program-
ming method which starts with a Hoare triple specification. This Hoare triple
contains a precondition, an abstract statement (i.e., a statement that is a place-
holder for concrete code), and a postcondition. The triple asserts total correct-
ness. If the program is in a state where the precondition holds, its execution will
terminate in a state where the postcondition holds. An abstract statement in a
Hoare triple can be refined to a concrete program using refinement rules. The
rules introduce new statements, such as loops or assignments. By refining the
program, the pre-/postcondition specification is propagated through the con-
structed program, so that the refined statements are also surrounded by a pre-
and a postcondition, forming more Hoare triples [17,25]. These refinement rules
introduce proof obligations which have to be discharged to establish the correct
application of the refinements rules. E.g., it has to be verified that by executing
an assignment the corresponding postcondition is implied, or that a loop invari-
ant holds after each iteration. The correctness of these proof obligations can be
checked using verification tools [1,34]. We implemented tool support for the con-
struction of programs following CbC [34]. The graphical editor CorC visualizes
program refinements in a tree-like structure.

2.3 Contrasting Correctness-by-Construction and Post-hoc
Verification

CbC and PhV are two different methods to create verified software. Neverthe-
less, they share commonalities. Both start with a pre-/postcondition specification
and result in a program that satisfies this specification. The procedure to con-
struct the program, however, is different. With CbC, the program is constructed
stepwise by applying checkable refinement rules. With PhV, the program is con-
structed without a strict guideline (i.e., the programmer can freely develop the
program and intermediate steps are not proven). Afterwards, the final program
can be verified.

It is claimed that CbC can lead to well-structured code that can be verified
more easily [25,36]. The additional time needed to construct the code is said
to be amortized with a significantly reduced time to prove the code. When
applying CbC, every refined statement leads to a provable side condition, where
a theorem prover can check whether this condition is satisfied. If the check fails,
the programmer can alter the refined statement to establish the proof. This is

Comparing Correctness-by-Construction with Post-Hoc Verification 391

a potential advantage compared to PhV because problems in the verification
process can be pinned to small parts of the program. In contrast, with PhV
additional expertise or sophisticated tool support is necessary to infer the defect
from open goals in the proof [33].

Programmers who use the CbC approach are bound to the stepwise refine-
ment using rules. Therefore, after each refinement the program with all condi-
tions can be reviewed by the programmers. They can continuously check the
surrounding specification of every statement. This can raise awareness of defects
in the program, resulting in fewer defects in comparison to PhV programming.
The number of required iterations to get to a correct program with CbC may also
be reduced because defects are detected early, even before a prover is used [36].

An open question is whether the experience of developers is crucial for the
development of correct code. Using PhV, programmers can implement algo-
rithms as they normally do and verify whether the program is correct after-
wards. Using CbC, the programmer needs an understanding of the refinement
rules to construct programs. Whether this barrier noticeably increases the time
of the construction process, or whether the CbC method does not have a negative
influence needs to be evaluated.

These claims are established in the literature but need to be evaluated in a
user study. We analyze defects in intermediate and final programs and interpret
the answers of a questionnaire to provide evidence for the claims.

3 Design of a User Study

To qualitatively evaluate CbC and PhV, we performed a user study with the two
tools, CorC and KeY. We decided explicitly for a controlled experiment to mon-
itor all participants in parallel during the tasks and to collect all programming
results. We selected CorC because it is a new tool that supports the CbC method
in a graphical user interface and which has been taught to the participants. KeY,
which is a major tool for the automatic verification of Java programs, is used
to get good comparability as CorC uses KeY as back-end for the verification.
Therefore, we have a comparable expressiveness with both tools.

We provide the participants a pre-/postcondition specification for an algo-
rithm, and they developed code to satisfy this specification. The algorithms can
be implemented in under ten lines of code. We decided explicitly for this size,
so the whole experiment could be done in 90 min because it is complicated to
motivate people to do longer experiments. We also excluded the process of writ-
ing an adequate pre-/postcondition specification because this has to be done
for both techniques and highly influences what needs to be implemented and
verified. The same starting point reduces the divergence, so that we can analyze
the results on the same basis. We want to qualitatively analyze how the partici-
pants develop and verify code. Therefore, we took intermediate snapshots of the
code every time the code was verified and analyzed the defects created during
the development process. We checked a total of 347 versions of programs, some-
thing which is not feasible with larger programs and more participants. The user

392 T. Runge et al.

experience with the tools was measured qualitatively by a questionnaire in order
to find improvement potentials. The material of the user study is published on
GitHub.2

Objective. We surveyed in Sect. 2.3 whether CbC can have a positive impact on
programming and verifying code. Hence, we want to evaluate whether a positive
impact can be detected (i.e, programmers appreciate that defects could be more
easily detected with CbC). We consider three research questions to evaluate the
methodologies (RQ1–2) and the tools (RQ3) qualitatively.

RQ1: What errors do participants make with CbC or PhV?
RQ2: What is the process of participants to create programs with CbC or PhV?
RQ3: Do participants prefer CorC or KeY?

Participants. Our participants were students of a software quality course at TU
Braunschweig, Germany. We decided for these students because they were taught
the fundamentals of software verification, and they got an introduction to both
tools. They have experience in verifying methods with both tools although the
specific algorithms of this experiment were new to them. We had ten participants
which were divided into two groups randomly. The programming experience
that was measured with an initial questionnaire [18] was 2.189 for group A
and 1.791 for group B.3 The experience of individuals ranged between 1.609
and 2.777. With a Mann-Whitney test, we calculated no significant difference
between both groups (p-value = 0.1514). Most of the students have several years
of programming experience in industry, and therefore, can be compared to junior
developers. Six participants had three to seven years experience as programmer
in industry, two were new programmers in larger projects, and only two never
programmed in larger projects.

The participants voluntarily attended in the experiment. They knew that
they took part in an experiment and that this experiment did not affect the
grade of the course. Every participant was paid AC 10 to create an incentive for
them. Participants who solved one or both exercises also had the chance to win
AC 50 (i.e., one of them was randomly selected). This lottery should increase the
motivation to solve the exercises by creating a realistic pressure to succeed.

Material. In our experiment, the participants had to implement and verify
two algorithms. For every participant, we prepared a computer with an Eclipse
installation that supports CorC and KeY, and contained a workspace with the
two exercises. We also provided a cheat sheet containing the syntax of KeY and
CorC to help the participants. In order for us to properly analyze the experiment,
participants took the programming experience questionnaire before the exercises

2 https://github.com/Runge93/UserstudyCbCPhV.
3 The calculation is explained in the work by Feigenspan et al. [18]. They derived with

stepwise regression testing that the experience in comparison to classmates with
factor 0.441 summed up with the logical programming experience with factor 0.286
is the best indicator for programming experience.

https://github.com/Runge93/UserstudyCbCPhV

Comparing Correctness-by-Construction with Post-Hoc Verification 393

and a user experience questionnaire afterwards. The user experience question-
naire is a combination of open questions (OQ 1–4) and the User Experience
Questionnaire4 (UEQ).

OQ1: What was better in CorC/KeY?
OQ2: How did you proceed with the task in CorC/KeY?
OQ3: Which tool would you use for verification, and why?
OQ4: Which tool better supports avoiding or fixing defects, and why?

UEQ is an established questionnaire which measures six properties of a prod-
uct (e.g., attractiveness) by asking the user to rate the product with 26 items.
Each item describes the product positively and negatively, and the user must
evaluate which and to what extent one of the descriptions fits. Additionally, the
workspaces were saved to analyze the created code and specifications.

Tasks. We used the Latin square design to arrange the participants. Group A
used CorC for a maximum element algorithm, and KeY for modulo. Group B did
the exercises in the same order, but each one with the other tool. We switched
the order of the tools to address learning and ordering effects. We believe that
an order between tools is worse than an order between exercises because we
want to get insights in the usability of the tools. Additionally, the order between
exercises was not varied because a split into four groups was not manageable. For
each exercise, we provided a pre-/postcondition, and a task description in which
we explained the purpose of the algorithm, so that the partcipants understood
what the implementation should achieve.

The algorithm maximum element finds the index of the maximum element in
an array. The array is assumed to be non-empty to simplify the algorithm, so that
an index of the array should always be returned. The algorithm modulo gets two
integers a and b as input and computes the two values factor and remainder for
the equation factor ∗ b + remainder = a. For the construction of the algorithm,
the division and modulo operations are prohibited. Both algorithms are similar
in size and cyclomatic complexity.

The tasks were designed such that a small, manageable subset of Java is
sufficient to implement the algorithms. Assignments, If-Then-Else, and While
were the only necessary statements. We excluded method calls because they
complicate the verification for these two algorithms unnecessarily.

Variables. In our experiment, the tool is an independent variable, with the
two treatments CorC and KeY. To check the correctness of the code in KeY,
we reran the proof for the solution of every participant. In CorC, we checked
that all nodes in the refinement hierarchy are proven. If a solution was not
proven, we checked whether the code is correct with KeY and, if necessary,
adjusted the specification, such as a loop invariant, to close the proof. If the code
was also incorrect, we checked how many defects were in the code by adjusting
the code. To evaluate the programming and verification process, we analyzed
the intermediate snapshots. Here, the changes and defects were also counted in
4 https://www.ueq-online.org/.

https://www.ueq-online.org/

394 T. Runge et al.

Table 1. Defects in code and specification of the final programs of participants

#Defects KeY CorC

Code Specification Code Specification

Verified 2 3

No defects 8 2 4 3

Minor defects 1 4 3 2

Major defects 1 3 1 2

Incomplete 0 1 2 3

terms of changed lines. For example, if an incorrect assignment was fixed by
a participant, we count one change in the program and reduce the number of
defects by one. The time needed for every exercise was measured manually. If a
participant solved a task, the time was noted. After 30 min, we interrupted the
participants when they were not finished.

Deviations. The participants assigned themselves randomly to a group by
selecting one computer. We missed that the participants per groups were
unequal. Group A had six participants, and group B had only four. This unequal
distribution changed which exercise was done with which tool. Since we used the
Latin square design, the influence should not be significant because we still had
ten results for each treatment.

4 Results and Discussion

In this section, we present the results of our evaluation. We analyzed the data
of the created programs and the answers of the questionnaire. The compara-
bly small number of participants reduces the generalizability of the results, but
allows us to evaluate the process of the participants in detail by analyzing all 347
intermediate code snapshots. This gives us anecdotal evidence to qualitatively
discuss advantages and disadvantages of CbC and PhV.

4.1 Defects in Implementation

To answer the first research question, RQ1, what errors do participants make
with CbC or PhV, we analyze defects in the program and the specification.

There are ten implementations with each tool. The defects in the code are
shown in Table 1 in column two and four, numbered left-to-right from one. With
KeY, eight programs were correct and two of them were verified. In one case,
only a loop guard was slightly incorrect (e.g., two variables were compared with
less than, but less than or equal was correct). Only one program contained major
defects. We classified a program to have major defects, if we could not correct

Comparing Correctness-by-Construction with Post-Hoc Verification 395

Table 2. Initial and final defects in the programs of participants

Row Initial defects Final defects KeY CorC

1 0 0 6 1

2 1 0 1 1

3 2 0 1 0

4 3 0 0 1

5 4 0 0 1

6 1 1 1 0

7 2 1 0 2

8 3 1 0 1

9 >5 >5 1 1

10 Incomplete 0 2

the program with at most five changes. With CorC, four programs were correct
and three of them could be verified. In three programs, a minor defect occurred,
one program had numerous mistakes, but also two programs were incomplete.

In the case of intermediate specifications which needed to be provided, for
both tools the results were worse. In Table 1, the defects in intermediate and loop
invariant specifications are shown in column three and five. Only in two cases for
KeY and three cases for CorC no defects occurred. In KeY, four specifications
contained minor defects, such as a missing boundary for a control variable or
an incorrect comparison of two variables. Three programs had major defects
in the specification. For example, it was not properly specified which elements
of the array were already examined in the maximum element algorithm. One
participant did not create an invariant. In the case of CorC, two minor and two
major defects occurred, but also three algorithms had incomplete specifications.
Two of these three incomplete specifications could be explained as incomplete
programs. In the third case, the algorithm was created but not specified.

To analyze the defects in more detail, we counted the defects during the
programming task. In Table 2, the defects in the initial (i.e., programs at the
first verification attempt) and final programs are shown. One difference between
programming in KeY and CorC is that the participants in KeY started the
first verification after the program was completely constructed. In CorC, some
users started earlier, with incomplete programs because they could verify Hoare
triples for parts of the programs that were already completely concretized. With
KeY, six participants created a program without any defects (Row 1). In two
cases (rows 2 and 3), one or two defects were found. One participant started
with one defect, but could not find the defect (Row 6). The participant also had
three defects in an intermediate result, but never found the incorrect loop guard
condition. One program had more than five defects in the beginning and the end
(Row 9). With CorC, only one program had no defects in the beginning (Row 1).
Three participants started with one to four defects and fixed the defects (rows 2,
4, and 5). One participant who started with two defects and ended with one
(Row 7), had a correct intermediate result, but inserted one defect in the final
version. One participant had a result which could not be fixed easily (Row 9).

396 T. Runge et al.

Two programs were incomplete in CorC (Row 10). Their developers started with
the first refinements, but could not finalize the program in the CorC editor.

The construction of algorithms with KeY was mostly the same. The partici-
pants created a correct or nearly correct algorithm. Afterwards, a loop invariant
was constructed and the program was verified. Astonishingly, no participant could
verify the program on the first try even though the program was correct because
the loop invariants were incorrect or too weak (e.g., for modulo the special case that
the input parameters could be equal was not handled). The approach of the par-
ticipants to get the program to a verifiable state was different. Some participants
mostly changed the invariant and verified the program again. Others changed the
loop and the invariant. A correct program was changed up to ten times to another
correct solution, but no sufficient invariant for KeY to verify the program was
found. Some participants also changed whether the loop variable was increased
or decreased several times.

With CorC, the most common approach was to create the program with all
refinements and specify the intermediate conditions or loop invariants in parallel.
Often the program was completely refined before the first verifier call. If the ver-
ification was not possible, missing parts such as the initialization of control vari-
ables were added, assignment or conditions were changed. In three cases, the initial
defects were found, but in one case, a correct intermediate program was changed to
an incorrect program. The participant with the incorrect result started with a pro-
gram where he forgot to decrease the control variable in the loop. Afterwards, the
participant decreased the variable correctly, but the loop invariant was wrong, so
the statements couldnot be verified. So, the programwas changed again to decrease
the control variable at another place in the program. In the process, the participant
introduced an incorrect execution path where the variable is not decreased. Two
other participants started with a loop, but forgot the initialization of necessary
variables. This mistake was recognized during the exercise.

In summary, both tools in some cases lead to correct and verified programs.
Small defects occurred with both tools, but in CorC, we observed incomplete
programs. If the program could not be verified, participants mostly changed the
loop guards, the loop body, or loop invariants. The changes in the code are fewer
with CorC than with KeY. If a program could not be verified, the problem was
in most cases an insufficient loop invariant or a wrong loop guard. With PhV,
most participants created correct code in the first place. As shown in Table 2,
only three defects were found in the process in total. With CbC, the users started
mostly with a defective program and found twelve defects in total. This higher
number of found defects may be explained with better tool support in CorC,
but also with the higher number of existing defects. With PhV, only four defects
existed by excluding the completely wrong program. Thus 75% of the defects
were found. For CbC, there are 15 defects in total, so 80% have been found.

RQ1. Comparing the defects in code, participants made similar errors with
both techniques (e.g., incorrect loop guard), but they made fewer and mostly
minor errors with PhV. This could be explained with the familiar environment of
standard Java with JML. The two incomplete programs in CorC can be explained
by problems interacting with the tool. Thus in total, more correct programs

Comparing Correctness-by-Construction with Post-Hoc Verification 397

were created with PhV than with CbC. That more programs were verified with
CbC anyway is interesting. One explanation could be that programs with CbC
were less changed. The participants might have thought more about the program
instead of changing the program by trial-and-error. Due to the similar correction
rates of defects for both tools, we cannot confirm a negative influence of CbC
in the programming process, but we should further investigate why more defect
programs with CbC exist.

4.2 Analysis of Programming Procedure

From the intermediate snapshots, we can evaluate the programming procedure
by analyzing the changes and defects in code and intermediate specification,
and missing program or specification parts. We analyzed 20 solutions containing
between 9 and 39 snapshots. We excluded the incomplete and entirely incorrect
cases because we could not count wrong or missing parts with the same scale as
for the other cases. In the following, three typical results are shown.

In Fig. 1, we show the graph of a participant solving the maximum element task
in CorC. The participant started the verification process with two missing lines
of code and two missing intermediate specification lines. The participant also had
two defects in the intermediate specification. Overall, 25 steps were taken by the
participant to achieve the correct solution. In the first 13 steps, the program and
the specification were changed, but no defects were fixed. In Step 14, the invariant
of the program was corrected. The special case that there can be more than one
maximum element in the array was included in the invariant. The next steps were
used to verify the program, until the participant realized that the initialization of
variables was missing. After this fix in Step 21, the program was verified.

In Fig. 2, the process to construct the maximum element algorithm in KeY is
shown. The participant started with a correct program where the invariant was
missing. After introducing the invariant with a defect, the participant changed
the code and the invariant during the whole task without finding a sufficient
invariant. The program was changed to iterate the array from forward to back-
ward and vice versa several times. The main reason that the program could not
be verified was that the invariant did not specify which elements of the array
were already visited. There were similar cases with KeY where also only the
invariant was wrong. The code and intermediate specifications were changed by
most participants during their development process. There were two participants
who mostly changed the invariant instead of the code.

In Fig. 3, we show a graph of a user developing the modulo algorithm in
CorC. The participant started with one defect in the code, an incorrect loop
guard, and two missing specification parts, the invariant and an intermediate
condition. In the first steps, the participant tried to verify the whole program
without changing it. Then, the missing specifications were added, but both were
wrong. In the invariant, the comparison operator was the wrong way around,
and the intermediate condition was too weak (i.e., it was not specified that the
correct factor was found). The specification was changed until step twelve, then
the participant tried to verify the program again. As this did not lead to a

398 T. Runge et al.

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Changes Code Changes Specifica on Missing Code

Missing Specifica on # Defects in Code # Defects in Specifica on

% verified

Fig. 1. Process to construct maximum element algorithm in CorC

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Changes Code Changes Specifica on Missing Code

Missing Specifica on # Defects in Code # Defects in Specifica on

% verified

Fig. 2. Process to construct maximum element algorithm in KeY

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Changes Code Changes Specifica on Missing Code

Missing Specifica on # Defects in Code # Defects in Specifica on

% verified

Fig. 3. Process to construct modulo algorithm in CorC

Comparing Correctness-by-Construction with Post-Hoc Verification 399

-1,25
-1,00
-0,75
-0,50
-0,25
0,00
0,25
0,50
0,75
1,00
1,25
1,50
1,75

A rac veness Perspicuity Efficiency Dependability S mula on Novelty

CorC KeY

Fig. 4. Results of the user experience questionnaire

solution, the code and specification were changed again. The wrong comparison
in the invariant was found, but the other two problems remained until the end.

RQ2. With the detailed analysis of all 347 program snapshots, we can discuss
the programming process of the participants. We saw that correct programs were
changed several times if they could not be verified, and surprisingly remained
correct. The participants did not realize that only the intermediate specification
was insufficient. They need better tool support to pinpoint the defects in code
or specification. We also noticed a non-monotonic construction process for both
techniques. By monotonic, we mean that a program is specified, constructed,
and then verified to be correct. An example for the non-monotonic construction
process with CbC and PhV are the trial-and-error changes in specification and
code. For example with PhV, the users changed to iterate the array from forward
to backward in several cases. With CbC, the users verified a correct part of
the program, but changed it if they could not verify the complete program. In
comparison to PhV, participants using the CbC approach changed the code less.
Furthermore, a correct specification may favor the finding of mistakes in the
program. Often defects were found after a correct loop invariant was introduced.
In our evaluation, all programs with correct specifications had no defects.

4.3 User Experience

The results of the UEQ are presented in Fig. 4. The answers of the participants
were evaluated according to the six measurements: attractiveness, perspicuity,
efficiency, dependability, stimulation, and novelty. The scale is between +3 and
−3 for each item. Overall, the average answers of the participants are higher
for CorC. For perspicuity both tools got a negative mean value. KeY also has a
negative result for novelty. We measured a significant difference with the T-test.5

Stimulation (p = 0.0457) and novelty (p = 0.0274) are significantly different.

5 Statistical hypothesis test to compare two independent samples which are normally
distributed.

400 T. Runge et al.

For the open questions, we clustered the answers to analyze whether the
participants had similar experiences. The results are shown in the following.

OQ1. What was better in CorC/KeY? Five to six participants valued the clar-
ity of CorC. They also valued the good feedback of CorC to spot the defects
in the program because the program is split into individually provable state-
ments. On the negative side, the unfamiliar syntax and the handling of the tool
were mentioned. In the case of KeY, the well-known Java and JML syntax was
appreciated by nearly all participants. Two participants also valued the clarity
of KeY. One participant disliked the bad error messages of KeY. Another one
mentioned that KeY gives more information about the problem, but this follows
from the design of the experiment. CorC uses KeY as back-end for verification,
but we suppressed the KeY editor on purpose in CorC because the verification
problems for the implemented algorithms should be small enough to be verified
automatically [34]. In the normal configuration, CorC can deliver the same infor-
mation by opening the proof in KeY. In summary, the known syntax in KeY was
an advantage, but the participants appreciated the better potential in CorC to
find the defects because the program was decomposed into provable statements.

OQ2. How did you proceed with the task in CorC/KeY? In KeY, all participants
created the code first, then they created the loop invariant and verified the
program. One participant emphasized that the program was inferred from the
postcondition. In CorC, the common case was to construct the code stepwise.
Two participants explicitly mentioned that they created the program in CorC
first, then specified the program. Two others started with the specification in
CorC. In contrast to KeY, the participants wrote specifications only in CorC
before or during the construction of the code.

OQ3. Which tool (CorC/KeY) would you use for verification, and why? Five
participants decided to use CorC for verification. They appreciated the clarity.
Two participants mentioned the support to verify and debug individual state-
ments. One participant highlighted the reflective coding process that is encour-
aged by CorC. Four participants decided to use KeY. They liked the familiar
environment and syntax. As in the first question, one participant mentioned that
KeY gives more information. There is no clear trend towards one tool.

OQ4. Which tool (CorC/KeY) better supports avoiding or fixing defects, and
why? Most participants decided for CorC to avoid or fix defects. They appreci-
ated that defects are assigned to individual statements, therefore, it was easier
to understand the problem. One participant mentioned that the stepwise con-
struction helped to create correct programs. For both tools, some participants
indicated that defects were detected and only correct code could be verified.
Although nearly the same number of participants would use KeY or CorC for
verification, most participants wanted to use CorC to find or fix defects in the
coding process. That defects were associated to specific statements was well
received by the participants.

RQ3. The third research question, whether participants prefer CorC or KeY,
can be answered with the results of the questionnaire. The participants preferred

Comparing Correctness-by-Construction with Post-Hoc Verification 401

KeY because of the familiar syntax, and CorC for the better feedback if there
were defects in the code. This leads to a balanced vote on which tool the partic-
ipants would use for verification. Interestingly, the participants voted in favor of
CorC when it comes to finding and fixing defects. This should be further inves-
tigated; what keeps participants from using CorC even though they mention
that it helped better to find defects. With the answers of the participants and
the analysis of the snapshots, we can also confirm how the participants worked
on the tasks. In KeY, the program was developed, and afterwards the specifi-
cation was constructed. So, the code was mostly correct in the first place. In
CorC, they had different approaches. They interleaved coding and specification
or started with the specification. This results in starting the verification earlier
with incomplete or incorrect programs. Surprisingly, nobody complained about
the additional specification effort in CorC.

4.4 Threats to Validity

In our experiment, we had only 10 participants. This reduces the generalizability
of the results, but allowed us to analyze all 347 versions of program snapshots in
detail. The participants were all students of a software quality course. We could
ensure that all students had the required theoretical and practical precognition.
They are no experts in verifying software, but smaller tasks, such as those of
our experiment, were solved before by the participants in class. Most students
also have part-time jobs in companies, so the results are generalizable to junior
developers. The motivation of the students is doubtful, but the lottery gave an
incentive to accomplish the tasks. Another limitation for the experiment was
the limited time. Most participants have accomplished to write correct code,
but only five out of twenty algorithms were also verified. With more time it is
possible that more algorithms would have been verified. We only used two small
size exercises in our experiment, and therefore, cannot generalize the results to
bigger problems. The results of the experiment also depend on our introduction
of the tools—though we tried to introduce both tools equally without bias to
the students.

5 Related Work

In the literature, tool support for verification was previously evaluated, but PhV
was not compared with CbC.

Spec# is an extension of the programming language C# to annotate
code with pre-/postconditions and verify the code using the theorem prover
Boogie [10,11]. Barnett et al. [11] explained their lessons learned of constructing
this verification framework. In contrast, we focus on how users solve program-
ming and specification tasks. Petiot et al. [33] examined how programmers could
be supported when a proof is not closed. They implemented tool support that
categorizes the failure and gives counter examples to improve the user feedback.
This idea is complementary to the CbC method by pinpointing the failure to

402 T. Runge et al.

a small Hoare triple, which was appreciated by the participants in this study.
Johnson et al. [23] interviewed developers about the use of static analysis tools.
They came to the same result as we did that good error reporting is crucial
for developers. Hentschel et al. [21] studied the influence of formal methods to
improve code reviews. They detected a positive impact of using the symbolic exe-
cution debugger (SED) to locate errors in already existing programs. This setup
is different to our evaluation where the participants had to program actively.
The KeY tool [12,13] was already evaluated to get insight into how participants
use the tool interactively. In contrast, we wanted to evaluate the automatic part
of KeY because we think that most users do not have a theoretical background
to verify a program interactively.

Besides CorC and KeY, there are other programming languages and tools
using specification for program verification. For example Eiffel [28,29] with the
verifier AutoProof [24,35], SPARK [9], Whiley [32], OpenJML [15], Frama-C [16],
VCC [14], Dafny [26,27], VeriFast [22], and VerCors [5]. These languages and
verification tools can be used to compare CbC with post-hoc verification. As we
only used a subset of the Java language in our experiment (comparable to a sim-
ple while language), the difference to other programming languages is minimal,
and we expect similar results for those tools as with KeY.

A related CbC approach is the Event-B framework [1]. Here, automata-
based systems are specified, and can be refined to concrete implementations.
The Rodin platform [3] implements the Event-B method. For the predecessor of
Event-B, namely the B method, Atelier B [2] is used to prove correctness. The
main difference to CorC is the different abstraction level. CorC uses source code
with specification rather than automata-based systems. The CbC approaches
of Back [8] and Morgan [30] are related to CbC by Dijkstra, and it would be
interesting to evaluate these approaches in comparison to our CbC tool in a
future study. For example, ArcAngel [31] could be used as an implementation
of Morgan’s refinement calculus. Back et al. [6,7] build the invariant based pro-
gramming tool SOCOS. They start explicitly with the specification of not only
pre-/postconditions but also invariants before the coding process. In their exper-
iment, they discovered that good tool support is needed and that invariants are
found iteratively by refining an incomplete and partly wrong invariant; an insight
which we can confirm.

6 Conclusion and Future Work

We compared correctness-by-construction and post-hoc verification by using the
tools CorC and KeY. Participants could create and verify programs, but the
majority failed to create invariants that were strong enough. When a program
could not be verified, trial-and-error was the most popular strategy to fix the
program. Regarding user experience, KeY and CorC were both considered useful
to verify software, but the good feedback of CorC was explicitly highlighted. Nev-
ertheless, the defects in the programs with CorC indicate that the participants
need more time to get used to CorC.

Comparing Correctness-by-Construction with Post-Hoc Verification 403

We evaluated the user study qualitatively to get insights in how users create
verified programs. For future work, we could repeat the experiment with more
participants to get quantitative data about defects in the programs. Furthermore,
our insights about the trial-and-error programming process could be used to
improve the usability of both tools.

Acknowledgment. We would like to thank Alexander Knüppel and Domenik
Eichhorn for their help with the user study. The hints and suggestions of Alexan-
der helped to construct the final version of the study. Thanks to Domenik for setting
up the tools.

References

1. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (2005)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book: From Theory to Practice, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

5. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07317-0 5

6. Back, R.-J.: Invariant based programming: basic approach and teaching experi-
ences. Formal Aspects Comput. 21(3), 227–244 (2009)

7. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

8. Back, R.-J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (2012)

9. Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity. Pearson Education, London (2003)

10. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

11. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

12. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol.
8938, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-
1 1

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-319-15201-1_1
https://doi.org/10.1007/978-3-319-15201-1_1

404 T. Runge et al.

13. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. Electron. Proc.
Theor. Comput. Sci. 167, 4–13 (2014)

14. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

15. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

16. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

17. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

18. Feigenspan, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring pro-
gramming experience. In: 2012 IEEE 20th International Conference on Program
Comprehension (ICPC), pp. 73–82. IEEE (2012)

19. Gries, D.: The Science of Programming. Springer, Heidelberg (1987)
20. Hall, A., Chapman, R.: Correctness by construction: developing a commercial

secure system. IEEE Softw. 19(1), 18–25 (2002)
21. Hentschel, M., Hähnle, R., Bubel, R.: Can formal methods improve the efficiency

of code reviews? In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 1

22. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

23. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software develop-
ers use static analysis tools to find bugs? In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 672–681. IEEE Press (2013)

24. Khazeev, M., Rivera, V., Mazzara, M., Johard, L.: Initial steps towards assessing
the usability of a verification tool. In: Ciancarini, P., Litvinov, S., Messina, A.,
Sillitti, A., Succi, G. (eds.) SEDA 2016. AISC, vol. 717, pp. 31–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70578-1 4

25. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27919-
5

26. Leino, K.R.M.: Specification and verification of object-oriented software. Eng.
Methods Tools Softw. Saf. Secur. 22, 231–266 (2009)

27. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

28. Meyer, B.: Eiffel*: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988)

29. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
30. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-

dle River (1994)
31. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for

refinement. Formal Aspects Comput. 15(1), 28–47 (2003)

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-33693-0_1
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-319-70578-1_4
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

Comparing Correctness-by-Construction with Post-Hoc Verification 405

32. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238–248. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 13

33. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
Testing helps to find the reason. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 130–150. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41135-4 8

34. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

35. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

36. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

https://doi.org/10.1007/978-3-319-02654-1_13
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-319-47166-2_52

RPLA 2019 - Workshop on Reversibility
in Programming, Languages, and

Automata

RPLA 2019 Organizers’ Message

The International Workshop on Reversibility in Programming, Languages, and Auto-
mata (RPLA 2019) was organized by the Institut für Informatik of the Universität
Giessen as a one-day event at October 9, 2019 to the 3rd World Congress of Formal
Methods (FM 2019). The workshop took place in Porto, Portugal. Reversibility has
attracted increasing interest in recent years. Many reversible computation models are
natural objects of theoretical computer science. They are studied from different points
of view in various areas with strong relations to both theoretical concepts and as formal
models for applications. The aim of this workshop is to bring together researchers
working on different aspects of reversibility in programming, languages, and automata
in order to exchange and develop novel ideas. A deeper and interdisciplinary coverage
of this particular area may gain new insights and substantial progress.

This chapter contains an extended abstract of the invited contribution and the
papers accepted and presented at RPLA. We warmly thank the invited speaker Robert
Glück (University of Copenhagen, Denmark) for accepting the invitation and pre-
senting us several diverse perspectives on reversible programming. Altogether, there
were six further presentations at RPLA 2019 presented by a total of 9 authors from 8
different countries. Three of this papers have been submitted and could be accepted as
full papers. The submission and refereeing process was supported by the EasyChair
conference management system. Each submission was single-blind reviewed by at least
three referees and discussed by the Program Committee. We would like to thank all
members of the Program Committee and the external reviewers for their excellent
work. We also thank all authors and speakers for their contributions and work without
which this event would not have been possible. All these efforts were the basis for the
success of the workshop. We like to thank in particular Nelma Moreira from the
University of Porto for her help and support for the workshop.

Finally, we are indebted to all participants for attending the workshop. We hope
that this conference will be a successful and fruitful meeting, will bear new ideas for
investigations, and will bring together people for new scientific collaborations.

December 2019 Markus Holzer
Martin Kutrib

Organization

Program Committee Chairs

Markus Holzer Universität Giessen, Germany
Martin Kutrib Universität Giessen, Germany

Program Committee

Markus Holzer Universität Giessen, Germany
Jarkko Kari University of Turku, Finland
Martin Kutrib Universität Giessen, Germany
Kenichi Morita Hiroshima University, Japan
Giovanni Pighizzini University of Milan, Italy
Rogério Reis University of Porto, Portugal
Sylvain Lombardy Bordeaux INP – Institut Polytechnique de

Bordeaux, France
Iain Phillips Imperial College London, UK
Irek Ulidowski University of Leicester, UK
Robin Kaarsgaard University of Copenhagen, Denmark
Tetsuo Yokoyama Nanzan University, Japan

Sponsoring Institutions

Centro de Matemática Universidade do Porto, Portugal
Institut für Informatik Universität Giessen, Germany

Reversible Computing from a Programming Language Perspective 409

Reversible Computing from a Programming
Language Perspective (Extended Abstract)

Robert Glück

DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
glueck@acm.org

Software plays a central role in all aspects of reversible computing systems and a
variety of reversible programming languages has been developed. This presentation
highlights the principles and main ideas of reversible computing viewed from a pro-
gramming language perspective with a focus on clean reversible languages. What I
present is the “Copenhagen interpretation” of reversible computing.

Mainstream programming languages, such as C++ and Java, are deterministic in the
forward direction of computation and nondeterministic in the backward direction. That
is, at each state during the computation of a program, the next state is always uniquely
determined, but not always the previous state. For instance, it is clear which branch of a
conditional to choose, but after the conditional, in general, we cannot say which of the
branches was chosen. Because their computation is forward deterministic (D) and
backward nondeterministic (N), we categorize many of today’s mainstream languages
as (D, N).

Reversible programming languages are deterministic in both directions. At each
state during a computation, both the next and the previous states are uniquely deter-
mined. We categorize reversible languages as (D, D). Exploring this domain fills a
blank spot on the map of computing and is interesting in its own right. Sometimes it is a
necessity, as in the case of quantum-inspired computing models and to overcome
Landauer’s physical limit [6]. Reversible computing complements, but does not
replace, conventional (irreversible) computing.

Our hypothesis is that reversible computing principles manifest themselves in
different guises on all levels of reversible computing systems, ranging from reversible
hardware to reversible software, and across all language abstractions from low-level
machine code to high-level languages. Our investigation into computing principles
across the entire computation stack in a 100% clean reversible setting and independent
of a particular language proved to be very fruitful, following the observation that it is
easier to dilute than to distil essences.

Computationally speaking, mainstream languages are Turing-complete, i.e. they are
as powerful as classical Turing machines. Reversible languages on the other hand are r-
Turing-complete, i.e. they are as powerful as reversible Turing machines [3]. Given
unbounded resources, they can realize any injective computable functions, which are
only a subset of the computable functions. This may seem a severe limitation, but any
computable function can be embedded in an injective computable function. For
reversible programming, this means that either the functional specification of a program
needs to be injectivized before writing the reversible program or an irreversible

program needs to be reversibilized into a reversible program, e.g., by recording the
computation history. Injectivization of functions and reversibilization of programs are
always possible, but at the expense of semantic modifications and operational
overhead.

Reversible programs operate on the same data structures as irreversible programs
(e.g., stacks, arrays, lists), but they cannot overwrite any data, and can only perform
reversible updates [2]. This makes reversible languages fundamentally different from
their irreversible counterparts, which can perform destructive updates. Control-flow
operators must be made backward deterministic in order to become reversible. Typi-
cally, each join point in the control flow is equipped in one way or another with a
predicate that asserts from where control came. Reversible conditionals, reversible
iterations, and reversible recursions are all available for programming. As a bare
minimum, an r-Turing-complete reversible programming language consists of a
reversible assignment, a reversible while-loop, and data built from a single constructor
and a single symbol [4].

Because of their backward determinism, reversible languages can provide uncon-
ventional features that invoke the inverse computation of a program unit (e.g., by
allowing one to uncall a procedure, while standard computation of a procedure is
invoked as usual by a call.) This enables code sharing and improved program relia-
bility. Instead of writing two separate implementations of a procedure, e.g., a lossless
encoder and decoder [5], it is sufficient to write and verify one of them and to obtain the
effect of the other by an uncall. However, reversible programming demands certain
sacrifices because data cannot be overwritten and join points in the control flow require
explicit assertions.

There are two and only two ways to implement a language, namely by an inter-
preter or a translator. The corresponding methods exist for implementing the inverse
semantics of a language, namely by an inverse interpreter or a program inverter [1].
Like a translator, a program inverter takes a program as input but, instead of performing
an equivalence transformation, transforms the program into its inverse. An inverse
interpreter performs inverse computation. It should be stressed that both tools exist for
any language, including irreversible ones (in all probability, the first inverse interpreter
was for irreversible Turing machines [7]). In the special case of a reversible language,
both methods are efficient and straightforward [8]. As usual, in practice various
combinations exist, such as inverters in translators and interpreters on inverse
interpreters.

As with conventional languages, there is no ‘best’ reversible language, but a variety
of possibilities. There are structured and unstructured reversible flowcharts, low-level
reversible assembler languages and high-level languages with imperative, functional
and object-oriented features supported by dynamic memory management on reversible
hardware, as well as domain-specific languages, such as reversible hardware descrip-
tion languages, and theoretically-oriented languages for abstract models such as
reversible pushdown automata. Moreover, hybrid languages may combine irreversible
and reversible features in novel ways.

In short, reversible computation is an emerging field of computer science that
comprises all aspects of computing (theoretical, practical, technical and applied) and
complements many of the traditional fields. It is here to stay.

Reversible Computing from a Programming Language Perspective 411

References

1. Abramov, S.M., Glück, R.: The universal resolving algorithm and its correctness: inverse
computation in a functional language. Sci. Comput. Program. 43(2–3), 193–229 (2002)

2. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract processor
architecture. In: Diekert, V., et al. (eds.) Computer Science – Theory and Applications, LNCS
4649, 56–69. Springer (2007)

3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
4. Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans. Inf. Syst.

E100-D(5), 1026–1034 (2017)
5. Glück, R., Yokoyama, T.: Constructing a binary tree from its traversals by reversible recur-

sion and iteration. Inf. Process. Lett. 147, 32–37 (2019)
6. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5

(3), 183–191 (1961)
7. McCarthy, J.: The inversion of functions defined by Turing machines. In: Shannon, C.E.,

McCarthy, J., (eds.) Automata Studies, 177–181. Princeton Univ. Press (1956)
8. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-

interpreter. In: Partial Evaluation and Program Manipulation, pp. 144–153. ACM (2007)

412 R. Glück

Reversible Programs Have Reversible
Semantics

Robert Glück1(B), Robin Kaarsgaard1, and Tetsuo Yokoyama2

1 DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

glueck@acm.org, robin@di.ku.dk
2 Department of Software Engineering, Nanzan University, Nagoya, Japan

tyokoyama@acm.org

Abstract. During the past decade, reversible programming languages
have been formalized using various established semantic frameworks.
However, these semantics fail to effectively specify the distinct proper-
ties of reversible languages at the metalevel, and even neglect the central
question of whether the defined language is reversible. In this paper, we
build on a metalanguage foundation for reversible languages based on
the category of sets and partial injective functions. We exemplify our
approach through step-by-step development of the full semantics of an
r-Turing complete reversible while-language with recursive procedures.
This yields a formalization of the semantics in which the reversibility
of the language and its inverse semantics are immediate, as well as the
inversion of programs written in the language. We further discuss appli-
cations and future research directions for reversible semantics.

1 Introduction

Over the past years, reversible programming languages ranging from imperative
to functional and object-oriented languages have been formalized using estab-
lished semantic frameworks, such as state transition functions, structural oper-
ational semantics and, recently, denotational semantics (e.g. [7,8,21,22]). These
frameworks, which have been used to provide meaning to advanced language fea-
tures and computation models, such as nondeterminism and parallelism, have
turned out to be ineffective at specifying the distinct semantic properties of
reversible languages. Immediate answers to questions regarding the uniqueness
of the inverse semantics, the inversion of programs and, in particular, the central
question of whether a language is reversible, are unavailable.

In this paper, we build on a metalanguage foundation for reversible languages
based on the category PInj of sets and partial injective functions. The rationale
behind this approach is straightforward: Interpretations of syntax are composed
in ways that preserve their injectivity. More specifically, interpretations of syn-
tax are composed of sequential composition, cartesian product, disjoint union,
function inversion, iteration, and recursion. To achieve this, we make use of the
categorical foundation developed elsewhere (e.g. [5,13]). Our approach exploits
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 413–427, 2020.
https://doi.org/10.1007/978-3-030-54997-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_26

414 R. Glück et al.

the fact that reversible programs have reversible semantics: We regard a pro-
gram as (compositionally) reversible iff each of its meaningful subprograms are
partially invertible. This allows us to provide a clean reversible semantics to a
reversible language.

We demonstrate the aforementioned idea through step-by-step development
of a full formal semantics for the reversible procedural language R-WHILE, which
includes iteration and recursion. This leads to a formal semantics in which the
reversibility of the language and its inverse semantics are immediate, along with
program inversion. The reversibility of the language follows immediately from
the formalization. It is apparent from the signatures of semantic functions that
the language is clean and without any hidden tracing. Note that this approach is
independent of the specific details of the language and can be extended to other
ways of composing semantic functions, provided their injectivity is preserved.

R-WHILE with procedures is a reversible while-language with structured
control-flow operators and dynamic data structures [7,8].1 This language is
reversibly universal (r-Turing complete), which means that it is computationally
as powerful as any reversible programming language can be. It has features repre-
sentative of reversible imperative and functional languages, including reversible
assignments, pattern matching, and inverse invocation of recursive procedures.

The metalanguage used here has a distinct property familiar from reversible
programming: It is not possible to define an irreversible (non-injective) language
semantics. To ensure reversibility, conventional metalanguages require discipline
in the formalization, e.g., a standard denotational semantics. In the case of opera-
tional semantics, it is quite unclear how to restrict an inference system to a purely
reversible one. One possible future direction is an investigation of metalanguage
extensions to capture other composition forms and language features, which may
include object-oriented features, combinators, and machine languages.

Overview: Sect. 2 introduces the elements of the formal semantics and Sect. 3
describes the reversible language R-WHILE with procedures. In Sect. 4, the formal
semantics of the language is developed in a step-by-step manner. Sections 5 and 6
present related work, concluding remarks, and directions for future work. We
assume the reader is familiar with the basic concepts of reversible languages
(e.g., [21]) and formal semantics (e.g., [19]).

2 Elements of the Formal Semantics

This section is concerned with some of the details of sets and partial injective
functions as they will be used in the following sections (compare, e.g., [2,4,
17]). While the constructions mentioned in this section are extracted from the
study of the category PInj of sets and partial injective functions, no categorical
background is assumed (though a basic understanding of sets, partial functions,
and domain theory is).

1 An online interpreter for R-WHILE with procedures and the example program con-
sidered in this paper are available at http://tetsuo.jp/ref/RPLA2019.

http://tetsuo.jp/ref/RPLA2019

Reversible Programs Have Reversible Semantics 415

2.1 Composition and Inversion

Partial functions are ordinary functions, save for the fact that they may be
undefined on parts of their domain. To indicate that a partial function X

f−→ Y
is undefined on some x0 ∈ X (e.g., in the definition of a piecewise function), we
use symbol ↑. A partial function is injective iff, whenever f(x) and f(y) are both
defined and f(x) = f(y), it is also the case that x = y. Injectivity is preserved

by composition (i.e., if X
f−→ Y and Y

g−→ Z are both partial injective functions

so is X
g◦f−−→ Z), and each identity function X

id−→ X is trivially injective.
Partial injective functions can be inverted in a unique way: for every partial

injective function X
f−→ Y , there exists a unique partial injective function Y

f†
−→

X, which undoes whatever f does (how rude!), in the sense that f ◦ f† ◦ f = f ,
and, vice versa, f† ◦ f ◦ f† = f†.

Aside from sequential composition, partial injective functions can also be
composed in parallel in two ways. The first method utilizes the cartesian product
of sets X and Y , which we denote X ⊗ Y . If X

f−→ X ′ and Y
g−→ Y ′ are partial

injective functions, we can form a new partial injective function on the cartesian
product, X ⊗ Y

f⊗g−−−→ X ′ ⊗ Y ′, by (f ⊗ g)(x, y) = (f(x), g(y)). Note, however,
that projections (such as X ⊗ Y

π1−→ Y given by π1(x, y) = x) are unavailable,
as these are never injective. We denote the unit, up to bijective correspondence,
of the cartesian product (any distinguished singleton set is acceptable) by 1.

The second method of parallel composition is given on the disjoint union of
sets X and Y , which we denote X ⊕ Y . We think of elements of X ⊕ Y as being
tagged with either left (inl ·) or right (inr ·) depending on their set of origin;
for example, if x ∈ X then inl x ∈ X ⊕ Y , and if y ∈ Y then inr y ∈ X ⊕ Y .
Up to bijective correspondence, the unit of disjoint union is the empty set ∅,
which we will also denote as 0. The tagged union of partial injective functions
X

f−→ X ′ and Y
g−→ Y ′ is then a partial injective function of tagged unions,

X ⊕ X ′ f⊕g−−−→ Y ⊕ Y ′, which performs a case analysis of the inputs and tags the
outputs with their origins:

(f ⊕ g)(x) =
{
inl f(x′) if x = inl x′

inr g(x′) if x = inr x′

The cartesian product loses its projections in the setting of partial injective
functions. However, the disjoint union retains its usual injections: X

κ1−→ X ⊕ Y
and Y

κ2−→ X ⊕ Y given by κ1(x) = inl x and κ2(y) = inr y, respectively. Note
in particular that since we consider partial injective functions, these injections
have partial inverses κ†

i (sometimes called quasiprojections), which remove the
tag but are only defined for elements from the i’th part of the union. For example,

X ⊕ Y
κ†
1−→ X is given by κ†

1(inl x) = x and κ†
1(inr y) = ↑.

416 R. Glück et al.

2.2 Fixed Points and Iteration

Both sets and partial injective functions are well-behaved as regards recursive
definitions. For sets, any recursive definition of a set involving only disjoint
unions, cartesian products, and already defined sets (including 0 and 1) has a
unique least and greatest solution. As is usual in domain theory, we use μX . . .
for the least solution (the least fixed point) and νX . . . for the greatest solution
(the greatest fixed point), respectively. For example, the set of flat lists with
entries taken from a set A is given by the least fixed point μX.1 ⊕ (A ⊗ X).

A useful property of partial functions, as opposed to total functions, is that
the set of all partial functions with a specified domain and target forms a
directed complete partial order. This has useful consequences for the recursive
description of partial injective functions. In particular, any continuous func-
tion PInj(X,Y) → PInj(X,Y) (where PInj(X,Y) denotes the set of partial
injective functions between sets X and Y) has a least fixed point, which, by
its definition, must be a partial injective function X → Y (i.e., an element of
PInj(X,Y)). For the continuity requirement, we note that all previously pre-
sented operations on partial injective functions are continuous (i.e., sequential
composition, partial inversion, parallel composition using cartesian products and
disjoint unions). Thus, any function involving only these operations is guaranteed
to be continuous.

Finally, partial injective functions can also be tail-recursively described using
the trace operator. Intuitively, the trace of a partial injective function X ⊕U

f−→
Y ⊕ U is a function X

Tr(f)−−−→ Y , which is given as follows: if f(inl x) = inl y for
some y, this y is returned directly. Otherwise, if f is defined at inl x, it must be
the case that f(inl x) = inr u for some u. If that case, this inr u is fed back into
f , and the feedback loop continues until it either terminates to some inl y, which
is then returned, or fails to do so. In the latter case, the trace is undefined at x.

This trace operator may be described as a function PInj(X ⊕ U, Y ⊕ U) Tr−→
PInj(X,Y). It is most easily defined using a tail-recursively described pretrace
PInj(X ⊕ U, Y ⊕ U)

pretrace−−−−→ PInj(X ⊕ U, Y), which is defined as follows:

pretrace(f)(x) =
{

y if f(x) = inl y
pretrace(f)(inr y) if f(x) = inr y

f

Fig. 1. Data flow
of trace Tr(f) with
feedback loop.

Hence, it is defined simply as Tr(f)(x) = pretrace(f)(inl x).
The data flow of Tr(f) is illustrated in Fig. 1, in which the
flow is from left to right and the feedback loop represents the
repeated application of f to elements of U .

While less general than the fixed point (which can be used
to describe arbitrary recursion), this tail recursion operator
is very well behaved with respect to inversion, as it satisfies

Tr(f†) = Tr(f)†

for all partial injective functions X ⊕ U
f−→ Y ⊕ U . (Formally, the trace operator

can also be defined as a fixed point using the trace formula, see [9].)

Reversible Programs Have Reversible Semantics 417

e ::= x | s | (e.e) | hd(e) | tl(e) | =? e e

q ::= x | s | (q.q) | call f(q) | uncall f(q)
c ::= x =̂ e | q ⇐ q | c; c | if e then c else c fi e | from e do c loop c until e

p ::= proc f(q) c; return q;

m ::= p · · · p

Fig. 2. Syntax of the reversible language R-WHILE with procedures.

2.3 Summary of the Metalanguage

Collecting the injective constructs for the formal semantics introduced above,
we can specify a clean reversible metalanguage L to describe objects of PInj:

f :: = a | κi | id | μφ.f | f ⊕ f | f ⊗ f | f ◦ f | Tr(f) | f† | φ.

An atomic function a can be any auxiliary partial injective function, such as
“swap” for cartesian products: swap⊗(x, y) = (y, x). For any expression in L,
the least fixed point exists. The formal argument of the least fixed point φ expects
a program context, i.e., a disjoint union of partial injective functions. L is closed
under inversion, and the inverse semantics of each expression is unique and
immediate. Any language described by the metalanguage is (compositionally)
reversible. L is sufficiently expressive for full formalization of the semantics of
reversibly-universal languages. This is demonstrated below for R-WHILE.

3 R-WHILE with Reversible Recursion and Iteration

We informally describe the semantics of the reversible language R-WHILE with
procedures, and illustrate it with a recursive program that translates infix expres-
sions to Polish notation; this is a classic translation that is reversible. The data
domain of the language is tree-structured data (lists known from Lisp and many
modern languages). Readers familiar with reversible programming can skip to
Example 1 below and return to the informal description later.

The syntax of the language [8] is shown in Fig. 2. A program m is a sequence
of procedures p · · · p, where the topmost procedure is the main procedure. A
procedure p has a name f , an argument pattern q, a command c as its body,
and a return pattern q. The input to and output from a procedure is through
the argument and return patterns, respectively. All procedures have arity and
coarity one. Thus, it is convenient to compose and decompose input and output
values via patterns.

A command c is a reversible assignment x =̂ e, a reversible replacement
q ⇐ q, a reversible conditional if...fi, or a reversible loop from...until. The latter
are two control structures familiar from reversible flowchart languages (e.g., [21]).

The variable x in a reversible assignment x =̂ e must not occur in expres-
sion e, which calculates a value (e.g., x =̂ x is not well formed). It is important

418 R. Glück et al.

1: proc infix2pre(t)
2: y ⇐ call pre((t.nil));
3: return y;
4:

5: proc pre2infix(y)
6: (t.nil) ⇐ uncall pre(y);
7: return t;
8:

9: proc pre((t.y))
10: if =? t 0 then
11: y ⇐ (t.y)
12: else
13: (l.(d.r)) ⇐ t;
14: y ⇐ call pre((r.y));
15: y ⇐ call pre((l.y));
16: y ⇐ (d.y)
17: fi =? hd(y) 0;
18: return y;

(* infix exp to Polish notation *)

(* call preorder traversal *)

(* Polish notation to infix exp *)

(* uncall preorder traversal *)

(* recursive preorder traversal *)

(* tree t is a leaf? *)

(* add leaf to list y *)

(* decompose tree t *)

(* traverse right subtree r *)

(* traverse left subtree l *)

(* add label d to list y *)

(* head of list y is a leaf? *)

Fig. 3. Translation between infix expressions and Polish notation in R-WHILE.

to note that the assignment sets x to the value of e if the value of x is nil , and
sets x to nil if the values of x and e are equal; otherwise, it is undefined. In
other words, a variable is updated or cleared depending on the original value
of x. This definition ensures the reversibility of assignments.

No value is duplicated by a reversible replacement q1 ⇐ q2. Before the value
constructed by q2 is matched with q1, all variables in q2 are nil-cleared. Thus, the
same variable may occur on both sides of a replacement (unlike an assignment).

Patterns play a central role in the construction and deconstruction of values,
and are used in both ways (e.g., reversible replacements). A pattern q is a variable
x, a symbol s, a pair of patterns (q.q), or an invocation or inverse invocation of a
procedure by call f(q) or uncall f(q), respectively. Patterns are linear (no variable
occurs more than once in a pattern). The semantics of a procedure uncall is the
inverse semantics of a procedure call. Procedures can only be invoked in patterns.

Expressions are conventional. An expression e is a variable x, a symbol s,
or the application of an operator, i.e., constructor cons (· . ·), selectors head hd
and tail tl, or equality test =?. The variables in a program are denoted by small
letters, such as l, d, r, and symbols are overlined, such as nil .

Example 1. There are many practical applications of translating infix expres-
sions to Polish notation, and vice versa. Because this function is injective, it can
be programmed cleanly in a reversible language and run in both directions.

In R-WHILE, infix expressions can be represented by full binary trees

tree :: = 0 | (tree . (1 . tree)),

where symbols 0 and 1 stand for an operand (leaf) and an operator (inner label)
in an expression, respectively. For simplicity, we only use these two symbols.

Reversible Programs Have Reversible Semantics 419

Figure 3 shows the recursive procedure pre, which reversibly translates an
infix expression to a prefix expression (Polish notation) via a preorder traversal of
the full binary tree t representing the infix expression. Procedure pre is called and
uncalled in the two procedures infix2pre and pre2infix for translating to Polish
notation, and vice versa. For example, the infix expression t = ((0 . (1 . 0)) . (1 . 0))
translates to Polish notation y = (1 . (1 . (0 . (0 . (0 . nil))))).

In infix2pre, the translation is invoked by a call to pre (line 2)

y ⇐ call pre((t.nil)),

where the argument of the call is a singleton list (t.nil) containing t, and the
result is matched with the trivial pattern y, which binds the value to y. In
pre2infix, the inverse computation of pre is invoked by an uncall of pre (line 6)

(t.nil) ⇐ uncall pre(y),

where y is the argument and t is picked from the resulting singleton list.
The body of pre is a reversible conditional if...fi (lines 10–17) with an entry

test =? t 0 and an exit assertion =? hd(y) 0. If t is a leaf 0, t is added to list y by
y ⇐ (t.y) (line 11). Otherwise, in the else-branch, pre calls itself recursively on
the right and left subtrees r and l with the current list y (lines 14–15). The two
subtrees and label d are selected from t by (l.(d.r)) ⇐ t. List y is constructed
from right to left; thus, d is added after both subtrees are translated (line 16).
The arity of all procedures is one; therefore, it is convenient to decompose the
argument value by pattern (t.y) already in the head of pre (line 9).

4 An Intrinsically Reversible Semantics

In this section, we illustrate the principle of reversible semantics by construct-
ing a denotational semantics for R-WHILE with procedures using sets and partial
injective functions. First, the domains of computation are constructed, followed
by a semantic function for each syntactic category. While this approach yields
a semantics for R-WHILE with procedures, for construction of such semantics for
reversible programming languages in general, we stress the use of abstract con-
cepts (e.g., cartesian products, disjoint unions, traces, and fixed points), rather
than the concrete realization of R-WHILE with procedures.

In the following, we use standard notation of denotational semantics [19],
including brackets for semantic functions �·�, which show that the domain of the
argument is syntax.

4.1 States and Values

We begin by constructing appropriate domains of computation for values and
states. To achieve this, we assume that we are given an alphabet Λ of symbols,
elements of which we denote using an overline, e.g., 0, 1, and nil. The set of
values V is then constructed as the set of binary trees with elements from Λ at

420 R. Glück et al.

the leaves. More formally, this set can be constructed by the least fixed point of
sets V = μX.Λ⊕ (X ⊗X). If t1 and t2 are such binary trees, we use the notation
t1 • t2 (read: “t1 cons t2”) to mean the binary tree constructed from t1 and t2.

t1 t2

A state associates each variable with a value. The set of states
Σ can be constructed as finitely supported colists (i.e., lists of
infinite length) of values; that is, Σ = V⊗V⊗· · · (explicitly,
this is constructed as the largest fixed point νX.I ⊕(V⊗X)).
By associating each variable in the language (of which there
are countably many) with a distinct index, a state is then precisely a description
of the contents of all variables. In keeping with this principle, we write variables
as x1, x2, x3, etc. rather than as x, y, z etc. Note that the number of non-nil
values in a state of a given program is finite.

4.2 Expressions

In irreversible languages, expressions are usually interpreted as partial functions
of the signature Σ → V. Obviously, because there are multiple states resulting in
the same value, such a function is not injective and cannot be an atomic function
a in the metalanguage L. Instead, expressions are interpreted as partial injective
functions with signature

Σ ⊗ V
E�e�−−−→ Σ ⊗ V.

Regardless of their syntactic form, expression interpretation is defined as

E�e1�(σ, v) =

⎧⎪⎨
⎪⎩

(σ, E ′�e1�σ) if v = nil
(σ, nil) if v = E ′�e1�σ
= nil
↑ otherwise

where E ′�e�σ ∈ V, given below, is understood to be the value of e in the state
σ. When v in E�e1�(σ, v) is nil , the value of e1 in σ is obtained. When v is
equal to the value of e1 in σ, nil is obtained. In both cases, σ is left unchanged.
Otherwise, the meaning is undefined. The semantic function defines a reversible
update [1] of the value argument, which also implies that it is self-inverse.

Concretely, E ′ is defined as follows, depending on the form of e:

E ′�xi�σ = vi where σ = (v1, v2, . . . , vi, . . .)
E ′�s1�σ = s1

E ′�(e1.e2)�σ = E ′�e1�σ • E ′�e2�σ

E ′�hd(e1)�σ =
{

v1 if E ′�e1�σ = v1 • v2
↑ otherwise

E ′�tl(e1)�σ =
{

v2 if E ′�e1�σ = v1 • v2
↑ otherwise

E ′�=? e1 e2�σ =
{

nil • nil if E ′�e1�σ = E ′�e2�σ
nil otherwise

Reversible Programs Have Reversible Semantics 421

As such, the meaning of a variable in a state is given by its contents, and the
meaning of a symbol is given by its direct representation in the alphabet Λ.
The meaning of the cons of two expressions is given by the cons of their mean-
ings, while the head (tail) of an expression takes the head (tail) of its meaning,
diverging if not of this form. The meaning of equality test returns distinct values
indicating whether the two expressions have the same value. Obviously, more
operators can be added to this list.

A non-injective function is often used in the definition of an injective function
in the context of reversible computation. Above, E�e�, a reversible update defined
using non-injective E ′�e�, is injective for any e. Because E�e� is not defined
exclusively in terms of the metalanguage, we regard it as defining an atomic
function a of L.

4.3 Patterns

As patterns may include procedure invocation, the meaning of a pattern depends
on the program context φ in which it is interpreted. Patterns in a program
context are all interpreted as partial injective functions with signature

Σ
Q�q�φ−−−−→ Σ ⊗ V.

In particular, note that this signature allows patterns to perform state alterna-
tions. Indeed, patterns may have side effects (here, in the form of altering the
store). They should be regarded as a means to prepare a given value in a state,
in such a manner that may alter the state it began with. Pattern interpretation
is defined as follows, depending on the form of q:

Q�xi�φ(σ) = ((v1, . . . , vi−1, nil, . . .), vi) where σ = (v1, . . . , vi−1, vi, . . .)

Q�call fi(q1)�φ(σ) = (σ′, (κ†
i ◦ φ ◦ κi)(v)) where (σ′, v) = Q�q1�φ(σ)

Q�uncall fi(q1)�φ(σ) = (σ′, (κ†
i ◦ φ† ◦ κi)(v)) where (σ′, v) = Q�q1�φ(σ)

Q�(q1.q2)�φ(σ) = (σ′′, v1 • v2)

where (σ′, v1) = Q�q1�φ(σ) and (σ′′, v2) = Q�q2�φ(σ′)

The meaning of a variable, as a pattern, is simultaneous extraction of its contents
and clearing of the variable. A procedure call call fi(q1) is interpreted as passing
the value of q1 to the i’th component of the program context φ, followed by
extraction from the i’th component. As we discussed in Sect. 4.6, this corresponds
precisely to invoking the i’th procedure. Uncalling of a procedure is handled
analogously, but the inverse of the program context is used instead. Finally, the
meaning of a cons pattern (q1.q2) is as a kind of sequential composition: First,
q1 is executed, yielding a new state σ′ and value v1. Then, q2 is executed in σ′,
yielding a final state σ′′ and value v2. The two values are then consed together,
finally yielding the state σ′′ and prepared value v1 • v2. Recall that no variable
occurs more than once in a pattern.

Alternatively, uncall can be defined using the inverted procedures instead of
the inverse to the program context, φ†, provided the inverted procedures are
in φ. Addition of the inverse procedures to φ is discussed in Sect. 4.6.

422 R. Glück et al.

4.4 Predicates

The predicate interpretation provides a different means of interpreting expres-
sions for determining branching of control flow. They are interpreted as partial
injective functions with signature

Σ
T �e�−−−→ Σ ⊕ Σ.

The definition is based on the convention that an expression interpreted as nil
in a state σ is considered to be false in σ and true otherwise. The predicate
interpretation of an expression e is defined as follows:

T �e1�(σ) =
{
inl σ if E ′�e1�σ
= nil
inr σ otherwise

As such, the predicate interpretation of e1 sends the control flow to the first com-
ponent if e1 is considered true in the given state, and to the second component
otherwise. As discussed in Sect. 4.5, this style allows straightforward interpreta-
tion of the conditional execution of commands. Here, inl and inr correspond to
true and false in the semantics level, respectively.

4.5 Commands

Commands are interpreted as invertible state transformations, i.e., as partial
injective functions with signature

Σ
C�c�φ−−−→ Σ.

Command interpretation is defined as follows, depending on the form of c:

C�c1; c2�φ = C�c2�φ ◦ C�c1�φ

C�xi =̂ e1�φ = (Q�xi�φ)† ◦ E�e1�◦Q�xi�φ

C�q1 ⇐ q2�φ = (Q�q1�φ)† ◦ Q�q2�φ

C�if e1 then c1 else c2 fi e2�φ = T �e2�
† ◦ (C�c1�φ ⊕ C�c2�φ) ◦ T �e1�

C�from e1 do c1 loop c2 until e2�φ = Tr
(

(C�c2�φ ⊕ id) ◦ T �e2� ◦ C�c1�φ ◦ T �e1�
†
)

Note the use of inverses to patterns and predicates in the above definition. The
inverse to a predicate corresponds to its corresponding assertion, whereas the
inverse to a pattern performs state preparation consuming (part of) a value
(rather than, in the forward direction, value preparation consuming part of
a state).

Pattern inverses are illustrated in both reversible assignments and pattern
matching, each consisting of a value preparation (indeed, the expression inter-
pretation can be regarded as side-effect-free value preparation), using the inter-
pretation of patterns, followed by a state preparation using the inverse. Similarly,
the interpretation of conditionals and loops relies on predicate inverses. In both

Reversible Programs Have Reversible Semantics 423

cases, they serve as conditional join points, corresponding to an assertion that
e2 is expected to be true when coming from the then branch of the conditional
(respectively from the outside of the loop), and false when coming from the else
branch (respectively from the inside of the loop).

4.6 Procedures

As procedures use the local state only, procedure definitions are interpreted (in a
program context) as partial injective value transformations, i.e., partial injective
functions of the form

V
P�f�φ−−−−→ V.

To define the procedure interpretation, we need an injective helper function
V

ξ−→ Σ ⊗ V given by

ξ(v) = (#»o , v),

where #»o = (nil, nil, . . .) is the state in which all variables are cleared (i.e., they
contain nil). This canonical state is the initial computation state in which all
procedures are executed. A procedure definition in the program context φ is
interpreted as

P�proc f(q1) c; return q2�φ = ξ† ◦ Q�q2�◦C�c�φ ◦ (Q�q1�φ)† ◦ ξ.

This definition should be read as follows: in the canonical state #»o , the state
described by the inverse interpretation of the input pattern q1 is first prepared.
Then, the body of the procedure is executed, yielding a new state that is then
used to prepare a value as specified by interpretation of the output pattern q2.
At this point, the system must again be in the canonical state #»o . If this is the
case, #»o can then be discarded, leaving only the output value.

4.7 Programs

Finally, programs are interpreted as the meaning of their topmost defined pro-
cedure and, thus, are interpreted as partial injective functions of signature

V
M�m�−−−−→ V.

As procedures may be defined to invoke themselves as well as other procedures,
we must wrap them in a fixed point, passing the appropriate program context φ
to each procedure interpretation. This yields the interpretation

M�f1 · · · fn�=κ†
1 ◦ (μφ.P�f1�φ ⊕ · · · ⊕ P�fn�φ) ◦ κ1.

Note the inner interpretation of procedures f1 · · · fn as a disjoint union P�f1�φ⊕
· · ·⊕P�fn�φ: This gives one large partial injective function, which behaves iden-
tically to the partial injective functions P�fi�φ when inputs are injected into the

424 R. Glück et al.

i’th component, save for the fact that outputs (if any) are also placed in the i’th
component. This behavior explains the need for injections κi and quasiprojec-
tions κ†

i in the definition of procedure calls in Sect. 4.3.
The interpretation (M�·�, P�·�φ, and C�·�φ) maps syntax to injective (value,

store, . . .) transformations (on stores, values). The injective (value, store, . . .)
transformations can be expressed in L.

4.8 Use of Inverse Semantics

In conventional programming languages, programs are not guaranteed to be
injective, program inversion requires a global analysis, and inverse interpretation
requires additional overhead. However, owing to the formalization, programs in
object languages formalized in L are always injective, program inversion can be
achieved through a recursive descendent transformation, and inverse interpre-
tation often has a constant time overhead only. The intrinsic properties of the
metalanguage are extremely helpful in deriving rules for program inversion. For
any command c, the inverse semantics (C�c�φ)† can be a composition of the
semantics of its components and traces, which can be mechanically obtained
from the properties of PInj [5]. For example, we have

(C�q1 ⇐ q2�φ)† = ((Q�q1�φ)† ◦ Q�q2�φ)† = (Q�q2�φ)† ◦ Q�q1�φ,

for a reversible replacement and, hence, we obtain the inverse replacement

(C�q1 ⇐ q2�φ)† = C�q2 ⇐ q1�φ.

The right-hand sides of the semantic function of commands are mostly sym-
metric. Therefore, their inversion rules are obtained in a similar way. The only
exception is the loop, which requires an additional identity Tr((f1 ⊕ id) ⊕ f2) =
Tr(f2 ⊕ (id ⊕ f1)) in order to yield the inversion rule. A similar anti-symmetry
appears in the operational semantics of the reversible language Janus [22], in
which the inference rule for the loop can be either right or left recursive.

As regards the semantic function of patterns, the inverse semantics of the
program context, φ†, defines the meaning of a procedure uncall. The inverse
semantics of procedures is equal to the semantics of inverted procedures. This
yields an alternative formalization of the same meaning. First, the inverted pro-
cedures are added to the program context in addition to the original procedures:

μφ. P�f1�φ ⊕ · · · ⊕ P�fn�φ ⊕ (P�f1�φ)† ⊕ · · · ⊕ (P�fn�φ)†.

Given such an extended program context φ, the access to the inverse semantics
κ†

i ◦ φ† ◦ κi in the pattern execution Q�uncall fi(q1)�φ(σ) (Sect. 4.3) can be
replaced by κ†

i+n ◦ φ ◦ κi+n; i.e., the n + i’th function is accessed.

5 Related Work

Formal meaning has been assigned to reversible programming languages using
well-established formalisms, such as operational semantics to the imperative lan-
guage Janus [22], the functional language RFUN [20], and the concurrent lan-
guages [15], small-step operational semantics to the assembler language PISA [1],

Reversible Programs Have Reversible Semantics 425

transition functions to the flowchart language RFCL [21], and denotational
semantics to R-WHILE [7,8]. However, the reversibility of a language is not directly
expressed by these formalisms. It is the language designer’s responsibility to
guarantee the reversibility and to show the inversion properties of each language.
Notably, the semantics of R-WHILE was first expressed irreversibly [22]. Note also
that the type and effects systems have been studied for reversible languages [12].

In this paper, the reversible elements of R-WHILE were composed via the meta-
language L in a manner that preserved their reversibility. In previous work, com-
positional approaches to reversibility were applied in various guises, e.g., in the
diagrammatic composition of reversible circuits from reversible logic gates and
reversible structured flowcharts from reversible control-flow operators [21]. Sim-
ilarly, reversible Turing machines have been constructed from reversible rotary
elements [16].

To give meaning to reversible languages by interpreters and translators is
another operational approach to a semantics. Examples of similar applications
include the realization of reversible interpreters [7,22], translation of the high-
level language R to the reversible assembler language PISA [3], and mapping
hardware descriptions in SyReC to reversible circuits [18]. A different approach
involves the reversibilization of irreversible languages by extending the oper-
ational semantics via tracing, so as to undo program runs [10]. Alternatively,
irreversible programs can be inverted by program inverters, e.g., [6]. Reversible
cellular automata may have non-injective local maps; However, if the local map
is injective, the update by the global map is guaranteed to be reversible [14].

6 Conclusion

Reversible systems have reversible semantics. In this study, we built upon a
semantic foundation intended to describe the semantics of reversible program-
ming languages. Our approach was demonstrated through the full development
of a formal semantics for the reversibly universal language R-WHILE. This allowed
us to concisely formalize features representative of many reversible languages,
including iteration, recursion, pattern matching, dynamic data structures, and
access to a program’s inverse semantics. The intrinsic properties of the meta-
language were essential for achieving formal reversible semantics. Hence, we
argued that this approach provides a strong basis for understanding and rea-
soning about reversible programs.

Further exploration of the best description of advanced object-oriented struc-
tures, combinators, or features for concurrency, and the potentially useful meta-
language features, may be interesting. Some related challenges include the char-
acterization of reversible heap allocation and concurrent reversible computations.
However, further explanation of the practical feasibility of the metalanguage
and its relationship to advanced reversible automata including nondeterminism,
e.g., [11], is necessary.

Acknowledgments. Support in the form of EU COST Action IC1405 is acknowl-
edged. The third author is supported by JSPS KAKENHI Grant Number 18K11250.

426 R. Glück et al.

References

1. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74510-5 9

2. Cockett, R., Lack, S.: Restriction categories III: colimits, partial limits and exten-
sivity. Math. Struct. Comput. Sci. 17(4), 775–817 (2007)

3. Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, MIT (1999)
4. Giles, B.: An investigation of some theoretical aspects of reversible computing.

Ph.D. thesis, University of Calgary (2014)
5. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible

flowchart languages: Soundness and adequacy. Log. Methods Comput. Sci. 14(3)
(2018)

6. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for Lisp. SIG-
PLAN Not. 40(5), 8–17 (2005)

7. Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans.
Inf. Syst. E100-D 100(5), 1026–1034 (2017)

8. Glück, R., Yokoyama, T.: Constructing a binary tree from its traversals by
reversible recursion and iteration. IPL 147, 32–37 (2019)

9. Haghverdi, E.: A categorical approach to linear logic, geometry of proofs and full
completeness. Ph.D. thesis, Carlton Univ. and Univ. Ottawa (2000)

10. Hoey, J., Ulidowski, I., Yuen, S.: Reversing parallel programs with blocks and pro-
cedures. In: Pérez, J.A., Tini, S. (eds.) Expressiveness in Concurrency, Structural
Operational Semantics. Electronic Proceedings in TCS, vol. 276, pp. 69–86 (2018)

11. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,
I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6 3

12. James, R.P., Sabry, A.: Information effects. In: POPL, pp. 73–84. ACM (2012)
13. Kaarsgaard, R., Axelsen, H.B., Glück, R.: Join inverse categories and reversible

recursion. J. Log. Algebr. Methods 87, 33–50 (2017)
14. Kari, J.: Reversible cellular automata: from fundamental classical results to recent

developments. New Gener. Comput. 36(3), 145–172 (2018)
15. Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese, I.

(eds.) RC 2016. LNCS, vol. 9720, pp. 20–35. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40578-0 2

16. Morita, K.: Reversible computing and cellular automata – a survey. Theor. Com-
put. Sci. 395(1), 101–131 (2008)

17. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.
(ed.) New Structures for Physics. LNP, vol. 813, pp. 289–355. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-12821-9 4

18. Wille, R., Schönborn, E., Soeken, M., Drechsler, R.: SyReC: a hardware description
language for the specification and synthesis of reversible circuits. Integration 53,
39–53 (2016)

19. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

20. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1 2

https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-29517-1_2

Reversible Programs Have Reversible Semantics 427

21. Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart lan-
guages. Theor. Comput. Sci. 611, 87–115 (2016)

22. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: PEPM, pp. 144–153. ACM (2007)

Two-Way Quantum and Classical
Automata with Advice for Online

Minimization Problems

Kamil Khadiev1,2(B) and Aliya Khadieva2,3

1 Smart Quantum Technologies Ltd., Kazan, Russia
kamilhadi@gmail.com

2 Kazan Federal University, Kazan, Russia
aliya.khadi@gmail.com

3 University of Latvia, Riga, Latvia

Abstract. We consider online algorithms. Typically the model is inves-
tigated with respect to competitive ratio. In this paper, we explore two-
way automata as a model for online algorithms. We focus on quantum
and classical online algorithms. We show that there are problems that
can be solved more efficiently by two-way automata with quantum and
classical states than classical two-way automata in the case of sublog-
arithmic memory (sublinear size) even if classical automata get advice
bits.

Keywords: Quantum computation · Online algorithms · Streaming
algorithms · Online minimization problems · Two-way automata ·
Automata

1 Introduction

Online algorithms are a well-known computational model for solving optimiza-
tion problems. The peculiarity is that the algorithm reads an input piece by piece
and should return an answer piece by piece immediately, even if the answer can
depend on future pieces of the input. The algorithm should return an answer for
minimizing (maximizing) an objective function (the cost of the output). There
are different methods to define the effectiveness of online algorithms [13,17], but
the most standard is the competitive ratio [28,42]. Typically, online algorithms
have unlimited computational power. At the same time, it is quite interesting
to solve online minimization problems in the case of a big input stream such
that the stream cannot be stored completely in the memory. As the algorithms,
we can consider Turing machines with restricted memory or two-way automata
with non-constant size (a number of states). In the paper, we focus on two-
way automata. Streaming algorithms or one-way automata as online algorithms
were considered in [9,14,26,30,34–36]. We focus on quantum online algorithms.
This model was introduced in [35] and discussed in [1]. In the case of one-way

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 428–442, 2020.
https://doi.org/10.1007/978-3-030-54997-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_27

Two-Way Automata with Advice for Online Minimization Problems 429

streaming algorithms, it is known that quantum online streaming algorithms
can be better than classical ones [30,35]. Another model that was considered by
researchers is quantum online streaming algorithms with repeated test [45].

In this paper, we explore quantum online algorithms that have the only
restriction on memory but have no restriction on access to already taken input
variables. We mean two-way automata as online algorithms [33]. This model
is more close to the general model of online algorithms comparing to online
streaming algorithms or online streaming algorithms with repeated test. The
question of comparing quantum and classical models was explored for streaming
algorithms (OBDDs and one-way automata) [2–4,6,7,21–25,31,32,38,39], and
for two-way automata [8]. Our results use these ones as a base.

Moreover, we are interested in an advice complexity measure [12,15,16,19,
20,37]. In this case, an online algorithm gets some bits of advice about an input.
A trusted Adviser sending these bits knows the whole input and has unlim-
ited computational power. Deterministic and randomized online algorithms with
advice are considered in [10,27,37]. If we consider online streaming algorithms
with advice, then the quantum model can be better than classical ones [34–
36]. We compare the power of quantum online algorithms and classical ones in
the case of two-way automata. This question was not investigated before. Typ-
ically, term “Adviser” is used in online algorithms theory; and term “Oracle”
in the case of other models. We use the “Black Hats Method” for constructing
hard online minimization problems [34,36]. We present problems for a separa-
tion between the power of quantum and classical two-way automata using this
method. Suppose that algorithms use only o(log n) bits of memory (no(1) states)
in the case of exponential expected working time and o

(
(log n)0.5−α

)
bits of

memory (no(log n)−(0.5+α)) states) in the case of polynomial expected working
time, where n is the length of an input, 0 < α < 0.5. For both cases (exponential
and polynomial working time), we have two results:

(i) There is a special online minimization problem that has a two-way automa-
ton with classical and quantum states with better competitive ratio than
any two-way classical (probabilistic or deterministic) automata, even if the
classical ones have a non-constant number of advice bits.

(ii) For the same problem, a two-way automaton with classical and quantum
states has a better competitive ratio than any deterministic online algorithm
with unlimited computational power has.

We consider problems that are based on “Black Hats Method” [34,36]; Palin-
drome and Unitary equality languages from [8].

The paper is organized as follows. We present definitions in Sect. 2. Black
Hats Method is described in Sect. 3. A discussion on two-way automata with
quantum and classical states vs. classical ones is given in Sect. 4.

2 Preliminaries

An online minimization problem consists of a set I of inputs and a
cost function. Each input I ∈ I is a sequence of requests I = (x1, . . . , xn).

430 K. Khadiev and A. Khadieva

Furthermore, a set of feasible outputs (or solutions) is associated with each I;
an output is a sequence of answers O = (y1, . . . , yn). The cost function assigns a
positive real value cost(I,O) to a feasible input I and a feasible output O. For
each input I, we call any feasible output O for I that has the smallest possible
cost (i. e., that minimizes the cost function) an optimal solution for I. The goal
is the searching for the optimal solution for I.

Let us define an online algorithm for this problem as an algorithm which
gets requests xi from I = (x1, . . . , xn) one by one and should return answers yi

from O = (y1, . . . , yn) immediately, even if an optimal solution can depend on
future requests. A deterministic online algorithm A computes the output
sequence A(I) = (y1, . . . , yn) such that yi is computed from x1, . . . , xi. We say
that a deterministic online algorithm A is c-competitive if there exists a non-
negative constant α such that, for every n and for any input I of size n, we have:
cost(I,A(I)) ≤ c · cost(I,Opt(I)) + α, where Opt is an optimal offline algorithm
for the problem and c is the minimal number that satisfies the inequality. Also
we call c the competitive ratio of A. If α = 0, c = 1, then A is optimal.

An online algorithm A with advice computes an output sequence
Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is
the message from the adviser, who knows the whole input. A is c-competitive
with advice complexity b = b(n) if there exists a non-negative constant α such
that, for every n and for any input I of size n, there exists some φ such that
cost(I,Aφ(I)) ≤ c · cost(I,Opt(I)) + α and |φ| ≤ b ; |φ| is a length of φ.

A randomized online algorithm R computes an output sequence Rψ(I) =
(y1, . . . , yn) such that yi is computed from ψ, x1, . . . , xi, where ψ is the content
of the random tape, i. e., an infinite binary sequence, where every bit is chosen
uniformly at random and independently of all the others. By cost(I,Rψ(I)) we
denote the random variable expressing the cost of the solution computed by R
on I. R is c-competitive in expectation if there exists a constant α > 0 such
that, for every I, E [cost(I,Rψ(I))] ≤ c · cost(I,Opt(I)) + α.

We use two-way automata for online minimization problems as online algo-
rithms with restricted memory. Let us give definitions of automata.

A two-way deterministic automaton working on inputs of length/size
m ≥ 0 (2DA) D is a 6-tuple D = (Σ,Γ, S, s1, δ, Result), where (i) Σ is an input
alphabet; (ii) Γ is an output alphabet; (iii) S = {s1, . . . , sd} is the set of states
(d can be a function in m), s1 ∈ S is the initial state; (iv) Results : S → Γ
is a function that transforms a state to an output symbol; (v) δ : S × Σ →
S × {←, ↓,→} is a transition function. Any given input u ∈ Σm is placed on a
read-only tape with a single head as ¢u1u2 . . . um$�, where ui ∈ Σ is the i-th
symbol of u, ¢ is a left end marker and $, � are right end markers. When D is in
s ∈ S and reads ui ∈ Σ on the tape, the automaton switches to state s′ ∈ S and
updates the head position with respect to a ∈ {←, ↓,→} if δ(s, ui) → (s′, a).
If a = “ ← ” (“ → ”), then the head moves one square to the left (the right),
and, it stays on the same square, otherwise. The transition function δ must be
defined to guarantee that the head never leaves ¢u$� during the computation.

Two-Way Automata with Advice for Online Minimization Problems 431

Moreover, if the automaton reaches the second endmarker � in a state s, then
D finishes the computation and returns Result(s) as a result.

The probabilistic counterpart of 2DA, denoted 2PA, can choose from more
than one transition in each step such that each transition is associated with a
probability. Thus, 2PAs can be in a probability distribution over the determinis-
tic configurations (the state and the position of the head forms a configuration)
during the computation. The total probability must be 1, i.e., the probability of
outgoing transitions from a single configuration must be 1. Thus, a 2PA returns
some result for each input with some probability. For v ∈ Γ , a 2PA returns a
result v for an input, with bounded-error if the 2PA returns the result v with
probability at least 1/2 + ε for some ε ∈ (0, 1/2].

Let us use these models for online minimization problems. A 2DA for online
minimization problems A computes the output sequence A(I) = (y1, . . . , yn)
where yi is a result of computation A on the input ¢x1, . . . , xi$�, such that A
starts from a state s that is the final state for computing yi−1, and the input
head observes x1. A 2PA, a 2DA with advice and a 2PA with advice for
online minimization problems have similar definitions, but with respect to
definitions of corresponding models of online algorithms.

Let us define the quantum counterparts of the models. You can read more
about quantum automata in [7,8,40]. Quantum devices manipulate quantum
states. A quantum state can be described by a 2q-dimensional vector from
Hilbert space over the field of complex numbers. Here q is a number of quan-
tum bits (qubits). A unitary transformation is applying 2q × 2q (left) unitary
matrices of complex numbers. Let us describe the measurement process. Sup-
pose that an automaton is in a distribution of quantum states |ψ〉 = (v1, . . . , v2q)
before a measurement and measures the i-th qubit. Suppose states with num-
bers a0

1, . . . , a
0
2q−1 correspond to the 0 value of the i-th qubit, and states with

numbers a1
1, . . . , a

1
2q−1 correspond to the 1 value of the qubit. Then the result

of the measurement of the qubit is 1 with probability pr1 =
∑2q−1

j=1 |va1
j
|2 and 0

with probability pr0 = 1 − pr1. If the algorithm measures z qubits on the j-th
step, then it gets number γ ∈ {0, . . . , 2z − 1} as a result of the measurement.

A quantum online algorithm Q computes the output sequence Q(I) =
(y1, . . . , yn) such that yi depends on x1, . . . , xi. The algorithm uses quantum
memory, and can apply unitary transformations to quantum memory and mea-
sure qubits several times during a computation. Note that a quantum computa-
tion is a probabilistic process. Q is c-competitive in expectation if there exists a
constant ξ ≥ 0 such that, for every I, E [cost(I,Q(I))] ≤ c · cost(I,Opt(I)) + ξ.

Let us consider a two-way automaton with quantum and classical
states (2QCA), which is a 9-tuple M = (Q,S,Σ, Γ, θ, δ, v1, s1, Result), where
(i) Q and S are sets of quantum and classical states respectively; (ii) θ and
δ are quantum and classical transition functions; (iii) v1 ∈ Q and s1 ∈ S are
initial quantum and classical states; (iv) Σ is an input alphabet and Γ is an
output alphabet; (v) Results : S → Γ is a function that obtain output symbol
by a state. The function θ specifies the evolution of the quantum portion of the
internal state: for each pair (s, x) ∈ S×Σ, θ(s, x) is an action to be performed on

432 K. Khadiev and A. Khadieva

the quantum portion of the internal state of M . Each action θ(s, x) corresponds
to either a unitary transformation or an orthogonal measurement. The function
δ specifies the evolution of the classical part of M (i.e., the classical part of the
internal state and the tape head). In a case θ(s, x) is a unitary transformation,
δ(s, x) is an element of S × {←, ↓,→} specifying a new classical state and a
movement of the tape head. In a case θ(s, x) is a measurement, δ(s, x) is a
mapping from the set of possible results of the measurement to S × {←, ↓,→}
(again specifying a new classical state and a tape head movement, this time one
such pair for each outcome of the observation). It is assumed that δ is defined so
that the tape head never moves left when scanning the left end-marker ¢, and
never moves right when scanning the right end-marker �. Other restrictions and
behavior are similar to 2DA. We can define 2QCA for online minimization
problems in the same way as for 2DA for online minimization problems. The
2QCA model is similar to 2QCFA model from [8] but the size (the number of
states) of 2QCA can depend on the length of the input m. The same difference
between 2DA and 2DFA, 2PA and 2PFA.

In the paper we use the terminology for branching programs [43] and algo-
rithms. We say that an automaton computes a Boolean function fm if for any
input X of length m, the automaton returns result 1 iff f(X) = 1. We say that
an automaton has s bits of memory if it has 2s states.

3 Two-Way Automata for Black Hats Online
Minimization Problem

Let us describe the “black hats method” from [34,36] that allows us to construct
hard online minimization problems. In the paper we discuss a Boolean function
f , but in fact we consider a family of Boolean functions f = {f1, f2, . . . }, for
fm : {0, 1}m → {0, 1}. We use notation f(X) for fm(X) if the length of X is m
and it is clear from the context.

Suppose we have a Boolean function f and integers k, r, w, t > 0, where k mod
t = 0. Then an online minimization problem BHt

k,r,w(f) is the following. We have
k guardians and k prisoners. They stay one by one in a line like G1P1G2P2 . . . ,
where Gi is a guardian, Pi is a prisoner. The prisoner Pi has an input Xi of length
mi and computes a function fmi

(Xi). The prisoner paints his hat black or white
with respect to the result 1 or 0. Each guardian wants to know the parity of a
number of following black hats. So, Gi wants to compute fmi

(Xi)⊕· · ·⊕fmk
(Xk).

We split sequential guardians into t blocks. The cost of a block is r if all guardians
of the block are right; and w, otherwise. Let us define the problem formally:

Definition 1 (Black Hats Method). We have a Boolean function f . Then an
online minimization problem BHt

k,r,w(f), for integers k, r, w, t > 0, where k mod
t = 0, is the following. Suppose we have an input I = (x1, . . . , xn) and k integers
m1, . . . ,mk > 0, where n =

∑k
i=1(mi +1). Let I = 2 X1 2 X2 2 X3 2 . . . 2 Xk,

where Xi = (xi
1, . . . , x

i
mi

) ∈ {0, 1}mi , for i ∈ {1, . . . , k}. Let O be a sequence of
answers that corresponds to the input I. Let O′ = (y1, . . . , yk) be answer variables

Two-Way Automata with Advice for Online Minimization Problems 433

corresponding to input variables with value 2 (in other words, output variables
for guardians). An answer variable yj corresponds to an input variable xij

, where
ij = j +

∑j−1
r=1 mr. Let gj(I) =

⊕k
i=j fmi

(Xi). We separate all answer variables
yi to t blocks of length z = k/t. The cost of the i-th block is ci. Here ci = r if
yj = gj(I) for j ∈ {(i− 1)z +1, . . . , i · z}; and ci = w, otherwise. The cost of the
whole output is costt(I,O) = c1 + · · · + ct.

We can show that any 2DA using s bits of memory cannot solve BHt
k,r,w(f)

if there is no 2DA computing the function f using s bits of memory.

Theorem 1. Let s be a positive integer. Suppose a Boolean function f is such
that no 2DA for f uses at most s bits of memory. Then there is no c-competitive
2DA for BHt

k,r,w(f) using s bits of memory, where c < w/r.

Proof. Let us consider any 2DA A for the BHt
k,r,w(f) problem that uses at most

s bits of memory. Suppose that A returns y1 as an answer of the first guardian.
Let us prove that there are two parts of the input X0

1 ,X1
1 ∈ {0, 1}m1 such that

A returns the same value y2 for both, but f(X0
1) = 0, f(X1

1) = 1. Assume that
there is no such triple (y2,X0

1 ,X1
1). Then, we can construct a 2DA A′ that uses

s bits of memory and has the following property: A′(X ′
1) = A′(X ′′

1) iff f(X ′
1) =

f(X ′′
1), for any X ′

1,X
′′
1 ∈ {0, 1}m1 . The automaton A′ emulates the automaton

A. Therefore, A′ computes f or ¬f . In the case of ¬f , we can construct A′′ such
that A′′(X1) = ¬A′(X1). It is a contradiction with the claim of the theorem.
By the same way, we can show existence of similar triples (yi+1,X

0
i ,X1

i) for
i ∈ {2, . . . , k}. Let us choose σi = yi ⊕ 1 ⊕ ⊕k

j=i+1 σj , for i ∈ {1, . . . , k}. Let us
consider an input IA = 2Xσ1

1 2 . . . 2Xσk

k . An optimal offline solution is (g1, . . . , gk)
where gi =

⊕k
j=i σj . Let us prove that gi �= yi for each i ∈ {1, . . . , k}. We have

σi = yi ⊕ 1 ⊕ ⊕k
j=i+1 σj . Therefore, yi = σi ⊕ 1 ⊕ ⊕k

j=i+1 σj = 1 ⊕ ⊕k
j=i σj =

1 ⊕ gi, so yi = ¬gi. Hence, all answers are wrong and costt(IA, A(IA)) = tw. So
the competitive ratio c cannot be less than tw/(tr) = w/r. �

The similar result holds for probabilistic two-way automata.

Theorem 2. Let s be a positive integer. Suppose a Boolean function f is such
that no 2PA uses at most s bits of memory and computes f with bounded error.
Then there is no c-competitive in expectation 2PA using s bits of memory and
solving BHt

k,r,w(f) with bounded error, where c < 2−z + (1 − 2−z)w/r.

Proof (Sketch). The proof is similar to deterministic case but we can guess
unknown bits with probability 0.5. �

There is a bound on the competitive ratio in the case of unlimited computa-
tional power for a deterministic online algorithm.

Theorem 3 ([34])

Claim 1. There is no c-competitive deterministic online algorithm A comput-
ing BHt

k,r,w(f), for c <
(�(t + 1)/2� · w + (t − �(t + 1)/2�) · r)/(tr).

434 K. Khadiev and A. Khadieva

Claim 2. There is no c-competitive deterministic online algorithm A for
BH1

k,r,w(f), for c < w/r.

Theorem 4. Let us consider a Boolean function f . Suppose we have a 2QCA
R that computes f with bounded error ε using s classical bits and s quantum bits
of memory, where 0 ≤ ε < 0.5. Then there is a 2QCA A for BHt

k,r,w(f) that
uses at most s + O(1) classical bits and at most s + 1 quantum bits of memory,
and has expected competitive ratio c ≤ (

0.5(1 − ε)z−1 · (r − w) + w
)
/r.

Proof. Let us present the 2QCA A:

Step 1. The automaton A guesses y1 with equal probabilities and stores it
in a qubit |p〉: the automaton initializes the qubit |p〉 = 1√

2
|0〉 + 1√

2
|1〉. Then

A measures |p〉 and returns a result of the measurement as y1.
Step 2. The automaton reads X1 and computes |p〉 as a result of CNOT
or XOR of |p〉 and R(X1), where R(X1) is the result of computation for R
on the input X1, i.e. |p〉 → |p ⊕ R(X1)〉. The automaton A uses a register
|ψ〉 of s qubits for processing X1. Then the automaton returns a result of a
measurement for |p〉 as y2. After that A measures all qubits of |ψ〉 and sets
|ψ〉 to |0 . . . 0〉.
Step i. The automaton reads Xi−1 and computes |p〉 → |p ⊕ R(Xi−1)〉. A
uses the same register |ψ〉 on processing Xi−1. Then A returns a result of the
measurement for |p〉 as yi. The A measures |ψ〉 and sets |ψ〉 to |0 . . . 0〉.
Step k. The automaton reads and skips Xk. It does not need these variables,
because it guesses y1, and using this value it can obtain y2, . . . , yk without Xk.

Let us compute a cost of the output for this automaton. Let us consider a
new cost function cost′(I,O). For this function, a “right” block costs 1 and a
“wrong” block costs 0. So, costt(I,O) = (r−w) ·cost′(I,O)+tw. Let us compute
E [cost′(I,O)]. We recall that the problem has k guardians, t blocks and z = k/t.

Firstly, let us compute pi the probability that block i is a “right” block (costs
1). Let i = 1. So, if the i-th block is “right”, then all z − 1 prisoners inside the
block return right answers and a guess of the first guardian is right. A probability
of this event is p1 = 0.5 · (1 − ε)z−1.

Let i > 1. If the i-th block is “right”, then two conditions should be true:
(i) All z − 1 prisoners inside the block should return right answers. (ii) If we
consider a number of preceding guardians that return wrong answers plus 1 if
the preceding prisoner has an error. Then this number should be even.

The probability of the first condition is (1− ε)z−1. Let us compute the prob-
ability of the second condition. Let E(j) be the number of errors before the
j-th guardian. It is a number of errors for the previous prisoners plus 1 if the
guess of the first guardian is wrong. Let F (j) be a probability that E(j) is even.
Therefore 1 − F (j) is a probability that E(j) is odd. If there is an error in a
computation of the (j − 1)-th prisoner, then E(j − 1) should be odd. If there
is no error for the (j − 1)-th prisoner, then E(j − 1) should be even. Therefore,
F (j) = ε(1 − F (j − 1)) + (1 − ε)F (j − 1) = F (j − 1)(1 − 2ε) + ε. Note that the
guess of the first guardian is right with probability 0.5. Therefore, F (1) = 0.5.

Two-Way Automata with Advice for Online Minimization Problems 435

So, F (j) = F (j − 1)(1 − 2ε) + ε = F (j − 2)(1 − 2ε)2 + (1 − 2ε)ε + ε = . . .
= F (j − j + 1)(1 − 2ε)j−1 + (1 − 2ε)j−2ε + · · · + (1 − 2ε)ε + ε = F (1) · (1 −

2ε)j−1 + ε
∑j−2

l=0 (1 − 2ε)l = (1−2ε)j−1

2 + 1−(1−2ε)j−1

2 = 0.5
Hence, pi = 0.5 · (1 − ε)z−1.
Finally, let us compute the expected cost:
E [cost′(I,A(I))] =

∑t
i=1

(
pi · 1 + (1 − pi) · 0)

=
∑t

i=1 pi = 0.5 · (1 − ε)z−1 · t.
Therefore, E [costt(I,A(I))] = 0.5 · (1 − ε)z−1 · t(r − w) + tw.
Let us compute the expected competitive ratio c:

c≤(
0.5 · (1 − ε)z−1 · t(r − w) + tw

)
/(tr) =

(
0.5 · (1 − ε)z−1 · (r − w) + w

)
/r �

Let us consider the model with advice. In the following properties of
BHt

k,r,w(f) problem, we show that if the model has not enough memory, then
the problem can be interpreted as the “String Guessing, Unknown History”
(2−SGUH) problem from [11]. The problem is the following. On each step, an
algorithm should guess the next input bit. The following result for the 2−SGUH
is known:

Lemma 1 ([11]). Consider an input string of length k for 2−SGUH, for some
positive integer k. Any online algorithm that is correct in more than αk charac-
ters, for 0.5 ≤ α < 1, needs to read at least (1 + (1 − α) log2(1 − α) + α log2 α) k
advice bits.

Using this result for 2−SGUH, we can show the following properties of
BHt

k,r,w(f) problem with respect to two-way automata with advice for online
minimization problems.

Theorem 5. Let s be a positive integer. Suppose a Boolean function f is such
that no 2DA uses at most s bits of memory and computes f . Then there is no
c-competitive 2DA that uses s − b bits of memory and b advice bits, and solves
BHt

k,r,w(f), where c < (hr + (t − h)w)/(tr), h = �v/z�, z = k/t, v is such that
b = (1 + (1 − v/k) log2(1 − v/k) + (v/k) log2(v/k)) k, 0.5 · k ≤ v< k.

Proof. Let us prove the following claim by induction. If the automaton gets b
advice bits, then there is an input such that at least k−b prisoners return wrong
answers. Let us consider different cases. The case of b = k is next. Then the
adviser can send (g1, . . . , gk), for gi =

⊕k
j=i f(Xj). So, The automaton returns

right answers for all guardians. The case of b = 0 is next. It is a case of no advice
that is described in Theorem 1.

The general case is next. Assume that the claim is proven for any pair (b′′, k′)
such that b′′ ≤ b, k′ ≤ k and at least one of these inequalities is strict. We focus
on the first prisoner. Assume that there is an input X1 ∈ {0, 1}m1 for the first
prisoner such that this prisoner cannot compute an answer with bounded error.
Then we use this input and get a situation for (k − 1, b). In that case, k − b − 1
prisoners are wrong. Also, the first one is wrong by assumption.

436 K. Khadiev and A. Khadieva

Assume that the automaton always can compute an answer with a bounded
error for the first prisoner. So we can describe the process of communication
with the adviser as follows: the adviser separates all possible inputs into 2b non-
overlapping groups G1, . . . , G2b . After that, he sends a number of the group to
the automaton, the group is such that it contains the current input. Then the
automaton A processes the input with the knowledge that an input can be only
from this group. Let us consider three sets of groups: I0 = {Gi : ∀σ ∈ {0, 1}m1

such that σ is an input for the first prisoner and f(σ) = 0}, I1 = {Gi : ∀σ ∈
{0, 1}m1 such that σ is an input for the first prisoner and f(σ) = 1}, I10 =
{G1, . . . , G2b}\(I1 ∪ I0). Let |Ia| �= 0, for some a ∈ {0, 1}. If |Ia| ≤ 2b−1, then
we take any input from any group G ∈ Ia as X1. Hence, we have at most 2b−1

possible groups for the adviser that distinguish inputs of the next guardians.
These groups can be encoded using b−1 bits, and we get the situation (k−1, b−1).
The claim is true for this situation. If |Ia| > 2b−1, then we take any input from
any group G �∈ Ia as X1. Hence, we have at most 2b−1 possible groups for the
adviser and the same situation. The claim is true for this case.

Let |I0| = |I1| = 0. Suppose that the automaton can solve the problem using
s′ bits of memory, where s′ < s− b. We can simulate the work of the automaton
with advice using the automaton B with the following structure. B has two parts
of memory: M1 of b bits and M2 of s′ bits. Suppose that the adviser initialized
M1 by advice bits. Then B invokes A depends on the value of M1 and advice
bits. So, B can simulate the work of A, the automaton B uses s′ + b < s bits of
memory and computes f . It is a contradiction with the claim of the theorem.

Therefore, the only way to compute the result for the first prisoner is sending
answer as one advice bit. So, we have the situation for k − 1 prisoners and b − 1
advice bits. So, it means, that for the algorithm the problem is the same as
the String Guessing Problem with Unknown History(2−SGUH) from [11]. Due
to Lemma 1, if we want to get v right answers for guardians, then we need
b =

(
1 + (1 − v

k) log2(1 − v
k) + v

k log2
v
k

)
k.

Because of properties of the cost function, the best case for the algorithm
is getting right results about all guardians of a block. Hence, the algorithm can
get h = �v/z� full blocks and cost for each of them will be r, for z = k/t. Other
blocks have at least one “wrong” guardian, and these blocks cost w. Therefore,
we can construct an input such that it costs �v/z� · r + (t − �v/z�)w, for b =(
1 + (1 − v

k) log2(1 − v
k) + v

k log2
v
k

)
k. Hence, the algorithm is c-competitive for

c ≥ �v/z�·r+(t−�v/z�)w
tr , b =

(
1 + (1 − v

k) log2(1 − v
k) + v

k log2
v
k

)
k. �

We have a similar situation in a probabilistic case. We use a function δx :
R → {0, 1} in the claim of the following theorem: δx = 1 iff x �= 0.

Theorem 6. Let s be a positive integer. Suppose a Boolean function f is such that
no 2PAuses atmost s bits ofmemory and computes f .Then there is no c-competitive
in expectation 2PA that uses s − b bits of memory and b advice bits, and solves
BHt

k,r,w(f) with bounded error, where c ≥ (hr + δu · (2u−zr + (1 − 2u−z)w) + (t −
h − δu)(2−zr + (1 − 2−z)w))/(tr), for h = �v/z�, z = k/t, u = v − hz, v is such
that b = (1 + (1 − v/k) log2(1 − v/k) + (v/k) log2(v/k)) k, 0.5k ≤ v < k.

Two-Way Automata with Advice for Online Minimization Problems 437

The idea of the proof is similar to the proof of Theorem 5, but here we can guess
all “unknown” guardians with probability 0.5.

4 Application

Let us discuss applications of Black Hats Method. We present examples of prob-
lems that allow us to show benefits of quantum computing.

Exponential Expected Working Time. Let us consider exponential expected
working time for two-way automata. In this case, we analyze the palindrome
Boolean function. The Boolean function Pal : {0, 1}m → {0, 1} is the following.
Pal(X) = 1 if X = XR; and Pal(X) = 0, otherwise. Here X = (x1, . . . , xm),
XR = (xm, . . . , x1) is a reversed X. It is known that there is a 2QCFA that
recognizes the palindrome language [8]. 2QCFA is 2QCA with a constant size of
memory. At the same time, we can show a lower bound for 2PA that is based
on lower bounds from [5,18,29,37,41]. Therefore, we have the following results:

Lemma 2. The following two claims are true: 1. There is a 2QCA that uses
quantum and classical memory of constant size that works in exponential expected
time and computes Pal with bounded error. 2. No 2PA uses o(log n) bits of
memory that works in exponential expected time and computes Pal with bounded
error, where n is the length of the input.

Proof. The first claim follows from the result for the language version of Pal [8],
let us prove the second claim. It is known from [18,29] that if a 2PA recognize a
language or computes a Boolean function f , then the following property holds:
N(f) ≤ (C1 · log T)C2·d2 log2 d, where C1, C2 = const, T is expected time, d is
the size (the number of states) of the automaton. N(f) is a number of Myhill-
Nerode classes in a language version and the number of subfunctions in a Boolean
functions version. The number of subfunctions is analogue of number of Myhill-
Nerode classes, you can read more in [37,43,44]. Additionally, it is easy to see
that N(Pal) ≥ 2n/2.

The memory of the automaton is o(log n) = o(0.5 log n − log log n). Therefore,

d = o(
√

n/(log n)2) = o

(√
n/(log n)

log(n/ log n)

)
. Hence d2 log d = o(n/ log n). If T is

exponential, then we can replace C1 log T by C3 ·n for some constant C3. Finally,
we obtain that (C1 · log T)C2·d2 log2 d = 2o(n) < 2n/2. Therefore, by lower bounds
[18,29], 2PAs with o(log n) bits of memory cannot compute the function. �

Let us consider the BHPaltk,r,w = BHt
k,r,w(Pal) problem. Recall that

BHt
k,r,w(f) is a black hat problem for k guardians, t blocks of guardians, the cost

r for a right answer of a block, the cost w for a wrong answer of a block, z = k/t
and k mod t = 0. Let us discuss the properties of the BHPaltk,r,w problem:

Theorem 7. Suppose P t = BHPaltk,r,w, t ∈ {1, . . . , k}, k = (log2 n)O(1), v is
such that b = (1 + (1 − v/k) log2(1 − v/k) + (v/k) log2(v/k)) k, 0.5k ≤ v < k,
all automata work in exponential expected time; then

438 K. Khadiev and A. Khadieva

1. There is no c-competitive 2DA that uses s = o(log n) bits of memory and b
advice bits, and solves P t, where c < C1 = w/r, b = o(z/ log z).

2. There is no deterministic online algorithm with unlimited computational
power computing P 1 that is c-competitive, for c < C1 = w/r.

3. There is no c-competitive in expectation 2PA that uses o(log n) bits of memory
and solves P t, where c < C3 = 2−z + (1 − 2−z)w/r.

4. There is no c-competitive 2DA that uses s = o(log n) bits of memory and b

advice bits, and solves P t, where c < C2 = hr+(t−h)w
tr , h = �v/z�.

5. No 2PA uses s = o(log n) bits of memory, b advice bits and solves P t that is
c-competitive in expectation for h = �v/z�, u = v − hz,
c < C4 = hr+δu·(2u−zr+(1−2u−z)w)+(t−h−δu)(2

−zr+(1−2−z)w)
tr .

6. There is a 2QCA Q that uses a constant number of classical and quantum
bits of memory and solves P t. The algorithm Q has expected competitive ratio
c ≤ ((1 − ε)z−1 · 0.5 · (r − w) + w)/r < C1, C2, C3, C4, for some ε: 0 < ε < 0.5.

Proof. Let us consider Claim 1 of the theorem. Due to Lemma 2, no 2DA with
o(log n) computes P t. Hence, because of Theorem 5, Claim 1 is true. Claim
2 follows from Theorem 3. Let us consider Claim 3 of the theorem. Due to
Lemma 2, no 2PA with o(log n) computes P t with bounded error. Therefore,
because of Theorem 2, Claim 3 is true. Claim 4 follows from Lemma 2 and
Theorem 5. Claim 5 follows from Lemma 2 and Theorem 6. Claim 6 follows
from Lemma 2 and Theorem 4. �

This theorem gives us the following important results. (i) There is a 2QCA
with a constant size of memory for BHPal1k,r,w that has a better competitive
ratio than any 2DA or 2PA with sublogarithmic memory and sublogarithmic
number of advice bits (Claims 1, 3, 4, 5 and 6 of Theorem 7); any deterministic
online algorithm without restriction on memory (Claims 2 and 6 of Theorem 7).
(ii) If we increase the number of advice bits for 2DA or 2PA for BHPaltk,r,w, then
the competitive ratio becomes smaller, in the case of sublogarithmic memory and
1 < t ≤ k/2. At the same time, the competitive ratio is still larger than for a
2QCA (Claims 4, 5 and 6 of Theorem 7).

Polynomial Expected Working Time. Let us consider the polynomial
expected working time for two-way automata. For this case, we analyze the
UEQ Boolean function. The Boolean function UEQ : {0, 1}m → {0, 1} is the
following. UEQ(X) = 1 iff #1(X) = #0(X), where #j(X) is the number of
symbols j in X. It is known that there is a 2QCFA that recognizes the language
version of UEQ in polynomial time [8]. At the same time, we can show a lower
bound that is based on lower bounds from [18,29,37]. So, we have the next result.

Lemma 3. The following two claims are true. 1.There is a 2QCA that uses
quantum and classical memory of constant size that works in exponential expected
time and computes UEQ with bounded error. 2.No 2PA uses o

(
(log n)0.5−α

)

bits of memory that works in polynomial expected time and computes UEQ with
bounded error, where n is the length of input, 0 < α < 0.5.

Two-Way Automata with Advice for Online Minimization Problems 439

Proof. The first claim follows from [8], the proof of the second claim is similar
to the proof of Lemma 2. �

Let us consider the BHUEQt
k,r,w = BHt

k,r,w(UEQ) problem. Recall that the
problem is a black hat problem for k guardians, t blocks of guardians, the cost r
for a right answer of a block, the cost w for a wrong answer of a block, z = k/t
and k mod t = 0. Let us discuss the properties of the BHUEQt

k,r,w problem:

Theorem 8. Suppose P t = BHUEQt
k,r,w, t ∈ {1, . . . , k}, k = (log2 n)O(1), v

is such that b = (1 + (1 − v/k) log2(1 − v/k) + (v/k) log2(v/k)) k, 0.5k ≤ v < k,
all automata work in polynomial expected time, 0 < α < 0.5; then

1. There is no c-competitive 2DA that uses s = o
(
(log n)0.5−α

)
bits of memory

and b advice bits, and solves P t, where c < C1 = w/r, b = o(z/ log z).
2. There is no deterministic online algorithm with unlimited computational

power computing P 1 that is c-competitive, for c < C1 = w/r.
3. There is no c-competitive in expectation 2PA that uses o

(
(log n)0.5−α

)
bits of

memory and solves P t, where c < C3 = 2−z + (1 − 2−z)w/r.
4. There is no c-competitive 2DA that uses s = o

(
(log n)0.5−α

)
bits of memory

and b advice bits, and solves P t, where c < C2 = hr+(t−h)w
tr , h = �v/z�.

5. No 2PA using s = o
(
(log n)0.5−α

)
bits of memory, b advice bits and solving

P t that is c-competitive in expectation for h = �v/z�, u = v − hz,
c < C4 = hr+δu·(2u−zr+(1−2u−z)w)+(t−h−δu)(2

−zr+(1−2−z)w)
tr .

6. There is a 2QCA Q that uses a constant number of classical and quantum
bits of memory and solves P t. The algorithm Q has expected competitive ratio
c ≤ ((1 − ε)z−1 · 0.5 · (r − w) + w)/r < C1, C2, C3, C4, for some ε: 0 < ε < 0.5.

Proof. The proof is similar to the proof of Theorem 7. The claims follow from
Lemma 3 and all theorems from Sect. 3. �

This theorem gives us the following important results: (i) There is a 2QCA for
BHUEQ1

k,r,w with constant size of memory and polynomial expected time that
has a better competitive ratio than any 2DA or 2PA with the size of memory less
than o

(√
log2 n

)
and the number of advice bits less than o

(√
log2 n

)
, and works

in polynomial time (Claims 1, 3, 4, 5 and 6 of Theorem 8); any deterministic
online algorithm without restriction on memory (Claims 2 and 6 of Theorem 8).
(ii) If we increase the number of advice bits for 2DA or 2PA for BHUEQt

k,r,w,
then the competitive ratio becomes smaller, in the case of sublogarithmic mem-
ory and 1 < t ≤ k/2. At the same time, the competitive ratio is still larger than
for a 2QCA (Claims 4, 5 and 6 of Theorem 8).

Acknowledgements. This work was supported by Russian Science Foundation Grant
19-71-00149.

440 K. Khadiev and A. Khadieva

References

1. Ablayev, F., Ablayev, M., Khadiev, K., Vasiliev, A.: Classical and quantum com-
putations with restricted memory. In: Böckenhauer, H.-J., Komm, D., Unger, W.
(eds.) Adventures Between Lower Bounds and Higher Altitudes. LNCS, vol. 11011,
pp. 129–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4 9

2. Ablayev, F., Ambainis, A., Khadiev, K., Khadieva, A.: Lower bounds and hier-
archies for quantum memoryless communication protocols and quantum ordered
binary decision diagrams with repeated test. In: Tjoa, A.M., Bellatreche, L., Biffl,
S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp.
197–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9 14

3. Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the com-
putational power of probabilistic and quantum branching program. Inf. Comput.
203(2), 145–162 (2005)

4. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H.,
Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6 6

5. Ablayev, F., Khadiev, K.: Extension of the hierarchy for k-OBDDs of small width.
Russ. Math. 53(3), 46–50 (2013)

6. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise
problems. Inf. Process. Lett. 112(7), 289–291 (2012)

7. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. Technical
report 1507.01988, arXiv (2015)

8. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. Theoret. Comput. Sci. 287(1), 299–311 (2002)

9. Becchetti, L., Koutsoupias, E.: Competitive analysis of aggregate max in windowed
streaming. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 156–170. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02927-1 15

10. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Královič, R., Rossmanith, P.:
On the power of randomness versus advice in online computation. In: Bordihn,
H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 30–43.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31644-9 2

11. Böckenhauer, H.J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. Theoret. Comput. Sci. 554, 95–108 (2014)

12. Boyar, J., Favrholdt, L., Kudahl, C., Larsen, K., Mikkelsen, J.: Online algorithms
with advice: a survey. ACM Comput. Surv. 50(2), 19 (2017)

13. Boyar, J., Irani, S., Larsen, K.S.: A comparison of performance measures for online
algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS
2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03367-4 11

14. Boyar, J., Larsen, K.S., Maiti, A.: The frequent items problem in online streaming
under various performance measures. Int. J. Found. Comput. Sci. 26(4), 413–439
(2015)

15. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10631-6 35

https://doi.org/10.1007/978-3-319-98355-4_9
https://doi.org/10.1007/978-3-319-73117-9_14
https://doi.org/10.1007/978-3-319-09704-6_6
https://doi.org/10.1007/978-3-642-02927-1_15
https://doi.org/10.1007/978-3-642-31644-9_2
https://doi.org/10.1007/978-3-642-03367-4_11
https://doi.org/10.1007/978-3-642-03367-4_11
https://doi.org/10.1007/978-3-642-10631-6_35
https://doi.org/10.1007/978-3-642-10631-6_35

Two-Way Automata with Advice for Online Minimization Problems 441

16. Dobrev, S., Královič, R., Pardubská, D.: How much information about the future
is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-77566-9 21

17. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. SIGACT News 36(3), 67–81 (2005)

18. Dwork, C., Stockmeyer, L.J.: A time complexity gap for two-way probabilistic
finite-state automata. SIAM J. Comput. 19(6), 1011–1123 (1990)

19. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02927-1 36

20. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoret. Comput. Sci. 412(24), 2642–2656 (2011)

21. Gainutdinova, A.F.: Comparative complexity of quantum and classical OBDDs for
total and partial functions. Russ. Math. 59(11), 26–35 (2015). https://doi.org/10.
3103/S1066369X15110031

22. Gainutdinova, A., Yakaryılmaz, A.: Unary probabilistic and quantum automata on
promise problems. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 252–263.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21500-6 20

23. Gainutdinova, A., Yakaryılmaz, A.: Nondeterministic unitary OBDDs. In: Weil, P.
(ed.) CSR 2017. LNCS, vol. 10304, pp. 126–140. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58747-9 13

24. Gainutdinova, A., Yakaryılmaz, A.: Unary probabilistic and quantum automata on
promise problems. Quantum Inf. Process. 17(2), 1–17 (2017). https://doi.org/10.
1007/s11128-017-1799-0

25. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential sep-
arations for one-way quantum communication complexity, with applications to
cryptography. In: STOC 2007, pp. 516–525 (2007)

26. Giannakopoulos, Y., Koutsoupias, E.: Competitive analysis of maintaining frequent
items of a stream. Theoret. Comput. Sci. 562, 23–32 (2015)

27. Hromkovic, J.: Design and Analysis of Randomized Algorithms: Introduction to
Design Paradigms (2005)

28. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. In: 27th Annual Symposium on FOCS 1986, pp. 244–254. IEEE (1986)

29. Khadiev, K., Ibrahimov, R., Yakaryılmaz, A.: New size hierarchies for two way
automata. Lobachevskii J. Math. 39(7), 997–1009 (2018)

30. Khadiev, K., Khadieva, A.: Quantum automata for online minimization problems.
In: Ninth Workshop on NCMA 2017 Short Papaers, pp. 25–33. Institute fur Com-
putersprachen TU Wien (2017)

31. Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and
classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS,
vol. 10304, pp. 162–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-58747-9 16

32. Khadiev, K., Khadieva, A.: Quantum online streaming algorithms with logarithmic
memory. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04209-1

33. Khadiev, K., Khadieva, A.: Two-way quantum and classical machines with small
memory for online minimization problems. In: International Conference on Micro-
and Nano-Electronics 2018. Proceedings of SPIE, vol. 11022, p. 110222T (2019)

https://doi.org/10.1007/978-3-540-77566-9_21
https://doi.org/10.1007/978-3-642-02927-1_36
https://doi.org/10.3103/S1066369X15110031
https://doi.org/10.3103/S1066369X15110031
https://doi.org/10.1007/978-3-319-21500-6_20
https://doi.org/10.1007/978-3-319-58747-9_13
https://doi.org/10.1007/978-3-319-58747-9_13
https://doi.org/10.1007/s11128-017-1799-0
https://doi.org/10.1007/s11128-017-1799-0
https://doi.org/10.1007/978-3-319-58747-9_16
https://doi.org/10.1007/978-3-319-58747-9_16
https://doi.org/10.1007/s10773-019-04209-1

442 K. Khadiev and A. Khadieva

34. Khadiev, K., Khadieva, A., Kravchenko, D., Rivosh, A., Yamilov, R., Mannapov,
I.: Quantum versus classical online streaming algorithms with logarithmic size of
memory. Lobachevskii J. Math. (2019). (in print). arXiv:1710.09595

35. Khadiev, K., Khadieva, A., Mannapov, I.: Quantum online algorithms with respect
to space and advice complexity. Lobachevskii J. Math. 39(9), 1210–1220 (2018)

36. Khadiev, K., Ziatdinov, M., Mannapov, I., Khadieva, A., Yamilov, R.: Quantum
online streaming algorithms with constant number of advice bits. arXiv:1802.05134
(2018)

37. Komm, D.: An Introduction to Online Computation: Determinism, Random-
ization, Advice. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-
42749-2

38. Le Gall, F.: Exponential separation of quantum and classical online space com-
plexity. In: SPAA 2006, pp. 67–73. ACM (2006)

39. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded
nonuniform quantum complexity. Theoret. Comput. Sci. 334(1), 177–225 (2005)

40. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction.
In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources.
LNCS, vol. 8808, pp. 208–222. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13350-8 16

41. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3, 198–200 (1959)

42. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

43. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. SIAM, Philadelphia (2000)

44. Yablonsky, S.V.: Introduction to Discrete Mathematics: Textbook for Higher
Schools. Mir Publishers, Moscow (1989)

45. Yuan, Q.: Quantum online algorithms. UC Santa Barbara. Ph.D. thesis (2009)

http://arxiv.org/abs/1710.09595
http://arxiv.org/abs/1802.05134
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/978-3-319-13350-8_16
https://doi.org/10.1007/978-3-319-13350-8_16

Quotients and Atoms of Reversible
Languages

Hellis Tamm(B)

Department of Software Science, Tallinn University of Technology, Tallinn, Estonia
hellis@cs.ioc.ee

Abstract. We consider several reversible finite automaton models which
have been introduced over decades, and study some properties of their
languages. In particular, we look at the question whether the quotients
and atoms of a specific class of reversible languages also belong to that
class or not. We consider bideterministic automata, reversible deter-
ministic finite automata (REV-DFAs), reversible multiple-entry DFAs
(REV-MeDFAs), and several variants of reversible nondeterministic finite
automata (REV-NFAs). It is known that the class of REV-DFA lan-
guages is strictly included in the class of REV-MeDFA languages. We
show that the classes of complete REV-DFA languages and complete
REV-MeDFA languages are the same. We also show that differently from
the general case of a REV-DFA language, the minimal DFA of a com-
plete REV-DFA language is a complete REV-DFA. We also show that
atoms of any regular language are accepted by REV-NFAs with a single
initial and a single final state.

1 Introduction

Reversibility of finite automata has been a subject of study for several
decades [1,5,6,12,13], and recently there has been renewed interest in this topic
[2,7,8,10,11]. Over the decades, several different reversible finite automata mod-
els have been introduced. Although injectivity is required by most models, the
number of initial and final states varies between different models.

A very restricted model of a reversible deterministic finite automaton (DFA)
with one initial and one final state (also called bideterministic automaton) was
considered in [1,13–15]. Reversible DFAs (REV-DFAs) – with one initial and
multiple final states – were recently a research subject in [7]. Reversible multiple-
entry deterministic automata (REV-MeDFAs) (with multiple initial and multiple
final states) have been studied in [12,13]. All these models of reversible automata
differ in their computational power, and they accept strict subclasses of regular
languages. For example, it is known that the class of REV-DFA languages is
strictly included in the class of REV-MeDFA languages [7,8]. Also, in the general
case, the minimal DFA of a REV-DFA language is not a REV-DFA.

This work was supported by the Estonian Ministry of Education and Research insti-
tutional research grant IUT33-13.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 443–455, 2020.
https://doi.org/10.1007/978-3-030-54997-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_28

444 H. Tamm

However, we show that the classes of complete REV-DFA languages and
complete REV-MeDFA languages are the same. Also, we show that the minimal
DFA of a complete REV-DFA language is a complete REV-DFA.

Recently, reversibility in the nondeterministic finite automaton (NFA) model
was considered in [8], where an NFA has one initial state. It was shown in [8]
that reversible NFAs with a sole initial state are more powerful than reversible
DFAs, but still cannot accept all regular languages.

However, a model of NFA with multiple initial states is well known and has
been widely considered in the literature. We consider a reversible NFA with
multiple initial states and observe that this automaton model can accept any
regular language.

We study some properties of the left quotients and the atoms of the languages
accepted by different reversible automaton models mentioned above. Especially,
we look at the question whether the quotients and the atoms of a specific class
of reversible languages also belong to that class or not.

The paper is organized as follows. Section 2 provides definitions and notation
for automata, languages, quotients, and atoms of regular languages. In Sect. 3,
we present definitions of reversible automata and some known results about their
language classes. In Sect. 4, we start our research about quotients and atoms of
reversible languages in the bideterministic case, and in Sect. 5, we continue our
study of reversible DFAs. Section 6 is devoted to reversible multiple-entry DFAs,
and we give a particular consideration to the case of complete reversible MeDFAs
in Sect. 6.1. Finally, in Sect. 7, we study several classes of reversible NFAs: we
consider reversible NFAs with multiple initial states (REV-NFAs), with a single
initial state (REV-SeNFAs), and with a single initial and a single final state
(REV-SeSfNFAs). We show that atoms of any regular language are accepted
by REV-SeSfNFAs. Since any regular language is a union of some of its atoms,
we make an observation that every regular language is accepted by a union of
REV-SeSfNFAs.

2 Automata, Languages, Quotients, and Atoms

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, δ, I, F),
where Q is a finite set of states, Σ is a finite non-empty alphabet, δ : Q×Σ → 2Q

is the transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set
of final states. We extend the transition function to functions δ′ : Q × Σ∗ → 2Q

and δ′′ : 2Q × Σ∗ → 2Q, using δ for all these functions. The left language of a
state q of N is the set of words w ∈ Σ∗ such that q ∈ δ(I, w), and the right
language of a state q ∈ Q is the set of words w ∈ Σ∗ such that δ(q, w) ∩ F �= ∅.
A state is unreachable if its left language is empty. A state is empty if its right
language is empty. An NFA is trim if it has no empty or unreachable states. The
language accepted by an NFA N is L(N) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}. Two
NFAs are equivalent if they accept the same language.

A strongly connected component (SCC) of an NFA N is a maximal subau-
tomaton N ′ = (Q′, Σ, δ, I ∩ Q′, F ′ ∩ Q′) of N , with Q′ ⊆ Q, such that for every

Quotients and Atoms of Reversible Languages 445

p, q ∈ Q′ there are words u, v ∈ Σ∗ such that q ∈ δ(p, u) and p ∈ δ(q, v). An
NFA N is strongly connected if it has only one SCC.

An NFA N is a multiple-entry deterministic finite automaton (MeDFA) if
|δ(q, a)| � 1 for every state q ∈ Q and a ∈ Σ.

A MeDFA N is a deterministic finite automaton (DFA) if |I| = 1.
A MeDFA (or DFA) N is complete if |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ,

otherwise it is incomplete. It is well known that for every regular language there
is a unique complete/incomplete minimal DFA.

An NFA N can be determinized by the well-known subset construction,
resulting in a complete DFA ND where only subsets (including the empty subset)
reachable from the initial subset of ND are used.

The reverse of N is the NFA NR = (Q,Σ, δR, F, I), where q ∈ δR(p, a) if
and only if p ∈ δ(q, a) for p, q ∈ Q and a ∈ Σ.

One can also use a trimming operation on N , deleting all unreachable and
empty states from N together with the incident transitions, yielding a trim
NFA N T .

The left quotient, or simply quotient, of a language L by a word w ∈ Σ∗ is the
language w−1L = {x ∈ Σ∗ | wx ∈ L}. We note here the fact that left quotients
of L correspond to the states of the minimal DFA of L.

An atom of a regular language L with quotients K0, . . . ,Kn−1 is any non-
empty language of the form ˜K0 ∩ · · · ∩ ˜Kn−1, where ˜Ki is either Ki or Ki, and
Ki is the complement of Ki with respect to Σ∗ [3]. An atom is initial if it has
L (rather than L) as a term; it is final if it contains ε. There is exactly one
final atom, the atom ̂K0 ∩ · · · ∩ ̂Kn−1, where ̂Ki = Ki if ε ∈ Ki, and ̂Ki = Ki

otherwise. If K0 ∩ · · · ∩ Kn−1 is an atom, then it is called the negative atom,
all the other atoms are positive. Thus atoms of L are regular languages uniquely
determined by L; they define a partition of Σ∗. Every quotient Ki is a (possibly
empty) union of atoms.

We also note that atoms are the classes of the left congruence L≡ of L
defined as follows: for x, y ∈ Σ∗, xL≡y if for every u ∈ Σ∗, ux ∈ L if and only
if uy ∈ L [9].

Let A = {A0, . . . , Am−1} be the set of atoms of L, let IA be the set of
initial atoms, and let Am−1 be the final atom. The átomaton of L is the NFA
A = (A,Σ, α, IA, {Am−1}) where Aj ∈ α(Ai, a) if and only if Aj ⊆ a−1Ai, for
all Ai, Aj ∈ A and a ∈ Σ. It was shown in [3] that the atoms of L are the
right languages of the states of the átomaton, and that the reverse NFA of the
átomaton is the minimal DFA of the reverse language LR of L.

We will use the next theorem which is a slightly modified version of the result
by Brzozowski [4]:

Theorem 1. If an NFA N has no empty states and NR is a DFA, then ND is
a minimal DFA.

446 H. Tamm

3 Reversible Automata and Languages

Let L be a regular language and let N = (Q,Σ, δ, I, F) be an NFA accepting L.
A state q ∈ Q of N is reversible if for any a ∈ Σ there is at most one state p ∈ Q
such that q ∈ δ(p, a). An NFA N is reversible if all of its states are reversible,
and it is said that N is a reversible NFA (REV-NFA). We note that N is a REV-
NFA if and only if NR is a MeDFA. If L is accepted by a REV-NFA, then L is
called a REV-NFA language. Similarly, we define a reversible DFA (REV-DFA)
together with REV-DFA languages, and a reversible MeDFA (REV-MeDFA)
and REV-MeDFA languages. A reversible DFA with a single final state is also
called bideterministic (Bi-DFA) because its reverse automaton is a DFA. We also
consider reversible single-entry NFAs (REV-SeNFA) (that is, REV-NFAs with a
single initial state), and REV-SeNFAs with a single final state (REV-SeSfNFA).

All the classes of reversible languages mentioned above have different expres-
sive powers. Let the family of languages accepted by some type X of automata be
denoted by L(X) and let REG denote the class of regular languages. The follow-
ing strict inclusions were shown in [8] (although some of them have been known
earlier): L(Bi-DFA)⊂ L(REV-DFA)⊂ L(REV-MeDFA)⊂ REG, and L(REV-
DFA)⊂ L(REV-SeNFA)⊂ REG. Also, it was shown in [8] that the language
classes L(REV-SeNFA) and L(REV-MeDFA) are not comparable.

While NFAs and single-entry NFAs accept the same class of languges – reg-
ular languages –, the classes of languages accepted by REV-NFAs and REV-
SeNFAs are not the same. In Sect. 7 we will observe that any regular language
is accepted by a REV-NFA, that is, L(REV-NFA) = REG. We will also show
that the strict inclusion L(REV-SeSfNFA) ⊂ L(REV-SeNFA) holds, and we will
argue that although both REV-DFA and REV-SeSfNFA languages are subclasses
of REV-SeNFA languages, they are not comparable.

We also note that Bi-DFA languages are clearly a proper subclass of REV-
SeSfNFAs.

4 Bideterministic Languages

A Bi-DFA is a reversible DFA with a single final state. It is not difficult to see
that any Bi-DFA is a minimal DFA. Indeed, let D be a Bi-DFA of a language
L. By Theorem 1, the complete minimal DFA of L is isomorphic to the DFA
DRDRD. If D is complete, then DRDRD = D, and D is a complete minimal DFA.
If D is incomplete, then DRDRDT = D, and D is an incomplete minimal DFA.

Moreover, it has been shown in [15] that a Bi-DFA is a unique minimal NFA
of its language.

There is a result in [3] that a language L is a complete Bi-DFA language if
and only if the átomaton of L is isomorphic to the minimal DFA of L. Since
the quotients of a language are the right languages of the states of the minimal
DFA, and the atoms are the right languages of the átomaton, we can state the
following:

Quotients and Atoms of Reversible Languages 447

Proposition 1. A language is a complete Bi-DFA language if and only if its
atoms are equal to its quotients.

We also observe that for a complete Bi-DFA language, there is no empty
quotient and all the atoms are positive.

For an incomplete Bi-DFA language, there exists an empty quotient and a
negative atom. However, the following still holds for the general case:

Proposition 2. A language is a Bi-DFA language if and only if its positive
atoms are equal to its non-empty quotients.

Proposition 3. The non-empty quotients and positive atoms of a Bi-DFA lan-
guage are Bi-DFA languages.

Proof. If we take any state of a Bi-DFA as the only initial state, we get a Bi-DFA
for the corresponding quotient/atom of the original Bi-DFA language.
�
Proposition 4. The quotients of any Bi-DFA language are pairwise disjoint.

Proof. Follows from Proposition 2 and from the fact that atoms of any language
are pairwise disjoint.
�

5 Languages with a Reversible DFA

In this section we consider languages with a reversible DFA (REV-DFA
languages).

Example 1. Consider a unary cyclic language L which has a minimal DFA D =
(Q, {a}, δ, q0, F), where Q = {q0, . . . , qn−1} and δ(qi, a) = qi+1 for i = 0, . . . , n−2,
and δ(qn−1, a) = q0. Since D is reversible, L is a REV-DFA language.

Languages with a reversible DFA have been studied by Holzer, Jakobi and
Kutrib [7], who showed that for the general case of a REV-DFA language, the
minimal DFA is not necessarily reversible. They had the following result:

Theorem 2. Let D = (Q,Σ, δ, q0, F) be a trim minimal DFA of a language
L. The language L is accepted by a reversible DFA if and only if there do not
exist states p, q ∈ Q, a letter a ∈ Σ, and a word w ∈ Σ∗ such that p �= q,
δ(p, a) = δ(q, a), and δ(q, aw) = q.

Proposition 5. All non-empty quotients of a REV-DFA language are REV-
DFA languages.

Proof. Let L be a REV-DFA language and let D = (Q,Σ, δ, q0, F) be a reversible
DFA of L. It is known that for every non-empty quotient Ki of L, there is
some state qi of D and the corresponding DFA Di = (Q,Σ, δ, qi, F), such that
Ki = L(Di). Clearly, any such DFA Di is also reversible, implying that every
non-empty quotient Ki is a REV-DFA language.
�

448 H. Tamm

0, 1

0, 1

1

b

1, 2
a, ba

0

ba

a

b

b

a

2

1

0

1

b

1, 2
a, ba

0

ba

Fig. 1. A REV-DFA D (left); DRDT (top right); DRDTR (bottom right)

Proposition 6. The reverse of a complete (incomplete) REV-DFA is a complete
(incomplete) REV-MeDFA (with a single final state).

Proof. Let D = (Q,Σ, δ, q0, F) be a reversible DFA, either complete or incom-
plete. If we interchange the initial and final states of D, and reverse the transi-
tions of D, then the resulting automaton DR is a REV-MeDFA (with a single
final state). Since the number of transitions of D is |Q||Σ| if D is complete, and
less than that otherwise, and the same applies to DR, we conclude that DR is
complete if and only if D is complete.
�

It is known that the class of REV-MeDFA languages strictly includes REV-
DFA languages [7,8]. The following example shows that the reverse of a REV-
DFA language – which is accepted by a REV-MeDFA with a single final state –
does not necessarily have a reversible DFA, and that the atoms of a REV-DFA
language are not REV-DFA languages:

Example 2. Consider a reversible DFA D of the language L = ab∗ + ab∗a + b,
shown in Fig. 1 on the left. When this DFA is reversed, determinized, and
trimmed, we know by Theorem 1 that the resulting DFA DRDT is the (incom-
plete) minimal DFA of LR (on the top right). One can see that this DFA con-
tains a “forbidden pattern” of Theorem 2: δ′({1}, b) = δ′({1, 2}, b) = {1}, and
δ′({1}, bε) = {1}, where δ′ is the transition function of DRDT . Therefore the
language LR cannot be accepted by a reversible DFA. The trim átomaton of L
is isomorphic to the NFA DRDTR (on the bottom right). One can verify that the
right language b∗b(a + b) of the state {1} of DRDTR does not have a REV-DFA,
by computing the minimal DFA of this language and applying Theorem 2 again.
Thus, the corresponding atom is not a REV-DFA language.

Quotients and Atoms of Reversible Languages 449

6 Languages with a Reversible MeDFA

In this section we study properties of the languages accepted by a reversible
MeDFA. REV-MeDFAs and their languages have been studied, for example, by
Pin [13] and Lombardy [12], who used the terms “reversible automaton” and
“reversible language”. Some characterizations of REV-MeDFA languages have
been established in [13]. In [12], a method to compute a REV-MeDFA from the
minimal DFA of a REV-MeDFA language was presented.

We note that a reversible MeDFA is not necessarily complete. If the complete
version of a REV-MeDFA involves an empty state, then it is not reversible.

A REV-MeDFA may consist of one or more connected components which are
themselves REV-MeDFAs.

In [13] the following property of a REV-MeDFA language was presented:

Proposition 7. A language is accepted by a REV-MeDFA if and only if it is a
finite union of Bi-DFA languages.

Also, it is clear that the following statement holds:

Proposition 8. The reverse language of a REV-MeDFA language is a REV-
MeDFA language.

When we determinize a REV-MeDFA, the resulting DFA is not necessarily
reversible (otherwise the classes of REV-MeDFA and REV-DFA languages would
be the same). Figure 2 shows a REV-MeDFA M and the DFA MDT , obtained
from M by determinization and removing the empty state. This DFA is not
reversible.

Proposition 9. The quotients of a REV-MeDFA language are REV-MeDFA
languages.

Proof. Let L be a REV-MeDFA language and let M be a REV-MeDFA accepting
L. Clearly, any quotient of L is a union of right languages of some states of M.
For any state of M, its right language is accepted by a REV-DFA, and the union
of these languages is a REV-MeDFA language.
�

However, atoms of a REV-MeDFA language are not necessarily REV-MeDFA
languages, as we will see by the next example. The following proposition is a
slightly modified version of a property of a REV-MeDFA language presented by
Pin [13] (originally, Pin [13] had xu+y ⊂ L instead of xu+y ⊆ L):

Proposition 10. If L is a REV-MeDFA language, then for every x, u, v ∈ Σ∗,
xu+y ⊆ L implies xy ∈ L.

Example 3. Consider the language L = a∗ ∪ b∗. This language is a REV-MeDFA
language, as can be seen by a REV-MeDFA M of Fig. 2. The states of the
determinized and trimmed version MDT of M correspond to the non-empty
quotients of L. The quotients of L are K0 = ε−1L = a∗ ∪ b∗, K1 = a−1K0 = a∗,

450 H. Tamm

b

a

1

2

b

a

1a

b 2

1, 2

Fig. 2. A REV-MeDFA M (left) and the DFA MDT (right)

K2 = b−1K0 = b∗, and the empty quotient K3 = b−1K1 = a−1K2 = ∅. The
positive atoms of L are A0 = K0 ∩ K1 ∩ K2 ∩ K3 = a∗a, A1 = K0 ∩ K1 ∩
K2 ∩ K3 = b∗b, A2 = K0 ∩ K1 ∩ K2 ∩ K3 = ε, and there is also the negative
atom A3 = K0 ∩ K1 ∩ K2 ∩ K3 = Σ∗(ba∗a ∪ ab∗b). By Proposition 10, the atom
A0 = a∗a is not a REV-MeDFA language because εa+ε ⊆ A0, but εε /∈ A0.
Similarly, one can verify that A1 and A3 are not REV-MeDFA languages.

6.1 Languages with a Complete Reversible MeDFA

In this section we study properties of the languages accepted by a complete
reversible MeDFA.

First, similarly to the general case of REV-MeDFA languages, we can state
the following proposition for the subclass of complete REV-MeDFA languages:

Proposition 11. A language is accepted by a complete REV-MeDFA if and
only if it is a finite union of complete Bi-DFA languages.

A complete REV-MeDFA may consist of one or more connected components.
Clearly, every connected component of a complete REV-MeDFA is itself a com-
plete REV-MeDFA.

Proposition 12. Any connected complete REV-MeDFA is strongly connected.

Proof. Let M be a connected complete REV-MeDFA. Let us suppose that M
is not strongly connected, that is, M consists of at least two strongly connected
components. Because M is connected, every SCC of M is connected to some
other SCC by either an incoming or outgoing transition. Consider any SCC Ci

of M. Because of complete reversibility, every state of Ci has |Σ| incoming and
|Σ| outgoing transitions. If no state of Ci would have any incoming transition
from any other SCC of M, then every outgoing transition from every state of Ci

would have to go into some state of Ci, or otherwise there would be a state of
Ci with less than |Σ| incoming transitions. Therefore, because Ci is connected
to some other SCC by an incoming or outgoing transition, we conclude that Ci

has an incoming transition from some SCC Ch as well as an outgoing transition
to some SCC Cj , where Ch �= Ci and Cj �= Ci. Since every SCC of M has this
property and the number of SCCs is finite, we conclude that there are at least
two SCCs which are strongly connected, a contradiction.
�

Quotients and Atoms of Reversible Languages 451

Proposition 13. The reverse of a complete REV-MeDFA is a complete REV-
MeDFA.

Proof. Let M be a complete REV-MeDFA. If we interchange the initial and final
states of M and reverse the transitions of M, then the resulting automaton MR

is also a complete REV-MeDFA.
�
Proposition 14. The result of applying determinization to a complete REV-
MeDFA is a complete REV-DFA.

Proof. Let M = (Q,Σ, δ, I, F) be a complete REV-MeDFA, and let us deter-
minize it to get MD. First, we can see that every state s of MD is a subset of
Q with exactly |I| elements in it.

Let the DFA MD have n states. We show that every state of MD is reversible.
Let s be a state of MD and a ∈ Σ. Because M is complete and reversible, there
is a unique set s′ ⊆ Q with |s′| = |s|, such that δ(s′, a) = s, implying that the
state s can have at most one incoming transition by a. Since the total number of
transitions of MD is n|Σ|, we conclude that every state of MD has exactly one
incoming transition with every symbol. Thus, MD is a complete REV-DFA.
�

As a consequence of Proposition 14, we can state the following theorem:

Theorem 3. The classes of complete REV-MeDFA languages and complete
REV-DFA languages are the same.

Proposition 15. The minimal DFA of a complete REV-MeDFA language is a
complete REV-DFA.

Proof. Let L be a complete REV-MeDFA language and let M be a complete
REV-MeDFA of L. By Theorem 1, the minimal DFA of L is isomorphic to the
DFA MRDRD. By Propositions 6, 13, and 14, the DFA MRDRD is a complete
REV-DFA.
�
Corollary 1. The minimal DFA of a complete REV-DFA language is a com-
plete REV-DFA.

Proposition 16. The quotients of a complete REV-MeDFA language are com-
plete REV-DFA languages.

Proof. Let L be a complete REV-MeDFA language, and let D be the minimal
DFA of L. By Proposition 15, D is a complete REV-DFA. Since any complete
REV-DFA is connected and belongs to the class of complete REV-MeDFAs, we
know by Proposition 12 that D is strongly connected. That is, every state of D
is reachable from any other state of D. Therefore, if we take any state of D as
the initial state, we still get a complete REV-DFA. Thus, the right language of
any state of D – a quotient of L – is a complete REV-DFA language.
�
Proposition 17. The átomaton of a complete REV-MeDFA language is a com-
plete REV-MeDFA.

452 H. Tamm

Proof. Let L be a complete REV-MeDFA language. By Proposition 13, the reverse
language LR is also accepted by a complete REV-MeDFA. By Proposition 15, the
minimal DFA of LR is a complete REV-DFA, and by Proposition 6, the reverse
automaton of the latter – the átomaton of L – is a complete REV-MeDFA.
�
Proposition 18. The atoms of a complete REV-MeDFA language are complete
Bi-DFA languages.

Proof. Let L be a complete REV-MeDFA language, and let A be the atomaton
of L. By Proposition 17, A is a complete REV-MeDFA. Since an atomaton is
the reverse of a minimal DFA of the reverse language, A is connected, and by
Proposition 12, A is strongly connected. Therefore, if we take any state of A as
the only initial state, we get a complete REV-DFA with a single final state – a
complete Bi-DFA. Thus, the right language of any state of A – an atom of L –
is a complete Bi-DFA language.
�

7 Languages with a Reversible NFA

In this section we consider a class of languages accepted by a reversible NFA
(REV-NFA). First, we make the following observation:

Proposition 19. The átomaton of any regular language is a REV-NFA.

Proof. The átomaton of a regular language is a REV-NFA (with a single
final state), because its reverse automaton is the minimal DFA (of the reverse
language).
�
Corollary 2. The class of REV-NFA languages is equal to the class of regular
languages.

A subclass of REV-NFAs having a single initial state has been studied in [8].
We call such an NFA a reversible single-entry NFA (REV-SeNFA). In [8] it was
shown that the class of REV-SeNFA languages is strictly included in the class of
regular languages, implying that REV-SeNFA languages form a strict subclass
of REV-NFA languages.

Example 4. Consider the language L = c(a∗ + b∗). The trim minimal DFA of
L is shown in Fig. 3 on the left. One can see that this DFA does not meet
the conditions of Theorem 2, therefore there is no REV-DFA for L. The trim
átomaton of L is shown in Fig. 3 on the right. Since the átomaton has a single
initial state, one can conclude that L is a REV-SeNFA language (in fact, it is a
REV-SeSfNFA language). However, the quotient language c−1L = a∗ + b∗ does
not have a REV-SeNFA as argued in [8].

As a consequence of Example 4, we can state the following two propositions:

Proposition 20. Quotients of a REV-SeNFA language are not necessarily
REV-SeNFA languages.

Quotients and Atoms of Reversible Languages 453

b

a

a

b

c

b

a

c

c

a

b

c

Fig. 3. Trim minimal DFA (left) and trim átomaton (right) of L = c(a∗ + b∗)

Proposition 21. Quotients of a REV-SeSfNFA language are not necessarily
REV-SeNFA languages.

Next, we will take a closer look at REV-SeNFAs with a single final state.

Proposition 22. A language L is a REV-SeSfNFA language if and only if the
átomaton of L has a single initial state.

Proof. Let L be accepted by a REV-SeSfNFA N . Then the reverse automaton
NR of N is a DFA with a single final state. This implies that the minimal DFA
of LR has a single final state. Therefore, the átomaton of L has a single initial
state.

Conversely, if the átomaton of L has a single initial state, then it is a REV-
SeSfNFA.
�

The class of REV-SeNFA languages includes the REV-SeSfNFA languages
as a strict subclass. An example of a REV-SeNFA language which does not
have a REV-SeSfNFA, is the language a∗(a + b + ε). Indeed, one can verify that
this language is accepted by a REV-SeNFA, but does not have a REV-SeSfNFA
because its átomaton has two initial states.

The following holds:

Proposition 23. Atoms of any regular language are REV-SeSfNFA languages.

Proof. Let L be a regular language and let A = (A,Σ, δ, IA, {Am}) be its atom-
aton. By Proposition 19, A is a REV-NFA. Now, for every atom Ai of L, we
can form the NFA Ai = (A,Σ, δ, {Ai}, {Am}) that accepts the language Ai.
Some states of Ai may be unreachable, so we can also trim it. Clearly, AT

i is a
REV-SeSfNFA.
�

Proposition 23 shows that atoms – which are building blocks of regular lan-
guages –, belong to a strict subclass of regular languages. Since any quotient of
a regular language is a union of atoms, the following holds:

454 H. Tamm

Proposition 24. Quotients of a regular language are unions of REV-SeSfNFA
languages.

Also, every regular language L is equal to its initial quotient ε−1L, therefore
we can make the following corollary:

Corollary 3. Every regular language is a union of REV-SeSfNFA languages.

We note that although both REV-DFA and REV-SeSfNFA languages are
subclasses of REV-SeNFA languages, they are not comparable. For example,
the language a + aa + b is in the class of REV-DFA languages (its incomplete
minimal DFA is reversible), but by Proposition 22, it is not accepted by a REV-
SeSfNFA. And the language a∗a is in the class of REV-SeSfNFA languages as
can be verified by Proposition 22, but by Theorem 2, it is not accepted by any
REV-DFA.

We also note that bideterministic languages are clearly a proper subclass of
REV-SeSfNFA languages.

References

1. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
2. Axelsen, H.B., Holzer, M., Kutrib, M.: The degree of irreversibility in deterministic

finite automata. Int. J. Found. Comput. Sci. 28(5), 503–522 (2017)
3. Brzozowski, J., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27

(2014)
4. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite

events. In: Proceedings of the Symposium on Mathematical Theory of Automata.
MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute
of Brooklyn, N.Y. (1963)

5. Garćıa, P., de Parga, M.V., López, D.: On the efficient construction of quasi-
reversible automata for reversible languages. Inf. Process. Lett. 107(1), 13–17
(2008)

6. Héam, P.: A lower bound for reversible automata. ITA 34(5), 331–341 (2000)
7. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite

automata. Int. J. Found. Comput. Sci. 29(2), 251–270 (2018)
8. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,

I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6 3

9. Iván, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. 116, 356–
360 (2016)

10. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible
automata. J. Autom. Lang. Combin. 22(1–3), 145–168 (2017)

11. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Weakly and strongly irreversible reg-
ular languages. In: Proceedings 15th International Conference on Automata and
Formal Languages, AFL 2017, Debrecen, Hungary, 4–6 September 2017, pp. 143–
156 (2017)

12. Lombardy, S.: On the construction of reversible automata for reversible languages.
In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy,
M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45465-9 16

https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1007/3-540-45465-9_16

Quotients and Atoms of Reversible Languages 455

13. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023844

14. Tamm, H.: On transition minimality of bideterministic automata. In: Harju, T.,
Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 411–421.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73208-2 38

15. Tamm, H., Ukkonen, E.: Bideterministic automata and minimal representations of
regular languages. Theor. Comput. Sci. 328(1–2), 135–149 (2004)

https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/978-3-540-73208-2_38

SASB 2019 - 10th International
Workshop on Static Analysis

and Systems Biology

SASB 2019 Organizers’ Message

The 10th International Workshop on Static Analysis and Systems Biology (SASB
2019) was held on October 8th, 2019 at Porto, Portugal. SASB 2019 was co-located
with SAS 2019 (26th Static Analysis Symposium), both being part of the 3rd World
Congress on Formal Methods.

The workshop SASB aims at promoting discussions and collaborations between
biologists (modelers), computer scientists and applied-mathematicians. The workshop
targets biological networks and executable models of biological systems, focusing on
their formal specification and static analysis. A special emphasis is given to rule-based
or process-algebraic languages that have the advantage of compact representation and
provide a robust tool for systems and synthetic biology as well as a good base for
molecular programming languages.

This year, five papers have been selected according to a rigorous refereeing process.
The selected papers were presented at the workshop together with two invited pre-
sentations by Anne Siegel (CNRS, IRISA, Université Rennes 1, France) and
Miguel P. Rocha (Universidade do Minho, Portugal). The post-proceedings include
two out of the five workshop contributions. Fifteen Program Committee members
helped to provide at least three reviews of the submitted contributions.

Further details on SASB 2019 are featured on the website: http://sat.inesc-id.pt/
sasb2019/.

We are very grateful to the SAS General Chair Bor-Yuh Evan Chang, and to the
FM’19 Workshop and Tutorial Chairs Emil Sekerinski and Nelma Moreira, for making
this workshop possible. Also to Jérôme Feret for his advice and help on the organi-
zation and managing of SASB. We also would like to thank the Program Committee.
We thank as well our contributing authors and our invited speakers Anne Siegel and
Miguel P. Rocha.

November 2019 Pedro T. Monteiro
Jean Krivine

Organization

Lea Popovic Concordia University, Canada
Verena Wolf Saarland University, Germany
David Šafranek Masaryk University, Czech Republic
Tatjana Petrov University of Konstanz
Jérôme Feret Inria, France
Luca Cardelli Microsoft, UK
Ashutosh Gupta TIFR, India
John Bachman Harvard University, USA
Loïc Pauleve CNRS/LRI, France
Heinz Koeppl TU Darmstadt, Germany

http://sat.inesc-id.pt/sasb2019/
http://sat.inesc-id.pt/sasb2019/

Nicola Paoletti Stony Brook University, USA
Hans-Michael Kaltenbach ETH Zurich, Switzerland
Natasa Miskov-Zivanov University of Pittsburgh, USA
Eugenio Cinquemani Inria, France
Thomas Sauter University of Luxembourg

SASB 2019 Organizers’ Message 459

Bayesian Verification of Chemical
Reaction Networks

Gareth W. Molyneux(B), Viraj B. Wijesuriya, and Alessandro Abate

Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
{gareth.molyneux,viraj.wijesuriya,alessandro.abate}@cs.ox.ac.uk

Abstract. We present a data-driven verification approach that deter-
mines whether or not a given chemical reaction network (CRN) satisfies
a given property, expressed as a formula in a modal logic. Our approach
consists of three phases, integrating formal verification over models with
learning from data. First, we consider a parametric set of possible models
based on a known stoichiometry and classify them against the property
of interest. Secondly, we utilise Bayesian inference to update a prob-
ability distribution of the parameters within a parametric model with
data gathered from the underlying CRN. In the third and final stage, we
combine the results of both steps to compute the probability that the
underlying CRN satisfies the given property. We apply the new approach
to a case study and compare it to Bayesian statistical model checking.

1 Introduction

Constructing complete models of biological systems with a high degree of accu-
racy is a prevalent problem in systems and synthetic biology. Attaining full
knowledge of many existing biological systems is impossible, making their anal-
ysis, prediction, and the designing of novel biological devices an encumbrance.
In this work, we integrate the use of probabilistic model-based analysis tech-
niques with a data-based approach via Bayesian inference. Chemical Reaction
Networks (CRNs) [22] provide a convenient formalism for describing various bio-
logical processes as a system of well-mixed reactive species in a volume of fixed
size. This methodology allows for the construction of an accurate model from
the data to verify that the underlying data-generating system satisfies a given
formal property. Thus, by verifying the properties of the model, we can assert
quantitatively whether the underlying data generating system satisfies a given
property of interest. We leverage model analysis by means of formal verification,
namely quantitative model checking [6]. The end result is the computation of
a probability, based on the collected data, that the underlying system satisfies
a given formal specification. If the obtained probability is closer to either one
or zero, we can confidently draw an assertion on the satisfaction of the prop-
erty over the underlying biological system. On the other hand, with a moderate

Gareth Molyneux acknowledges funding from the University of Oxford, the EPSRC &
BBSRC Centre for Doctoral Training in Synthetic Biology (grant EP/L016494/1).

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 461–479, 2020.
https://doi.org/10.1007/978-3-030-54997-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_29

462 G. W. Molyneux et al.

probability value, a decision on the experimental setup or on the models needs
to be made: we can either collect more data from the experiments, or propose
alternative models and start the procedure once more. The proposed approach
is different from statistical model checking (SMC) [1], in that standard SMC
procedures require target systems with fully known models: these are also in
general too large for conventional probabilistic model checkers (PMC) [6]. Alter-
native SMC procedures can also work with unknown models, provided that one
is able to produce fully observable traces. Our work instead targets partially
known systems that produce noisy observations at discrete points in time, which
are commonplace in biology: these systems are captured by a parametric model
class with imperfect knowledge of rates within a known stoichiometry. The new
approach comprises of three phases. First, we propose a parametric model of a
given, partially known biological system, and perform parameter synthesis [20]
to determine a set of parameters over the parametric models that relates to
models verifying the given property. This is performed via PRISM [20,21]. The
second phase, executed in parallel with the first, uses Bayesian inference to infer
posterior distributions over the likely values of the parameters, based on data
collected from the underlying partially known and discretely observed system.
In the third phase, we combine the outputs from the two phases to compute
the probability that the model satisfies the desired property, which results in
an assertion on the satisfaction of the property over the underlying biological
system.

Related Work. CRNs have been utilised to model biological systems both
deterministically [3] and stochastically [67] via the chemical master equation
[30]. We use continuous-time Markov chains [42] (CTMCs) to model CRNs.
Both probabilistic model checking approaches [5,44] and statistical model check-
ing approaches [1] have been applied in many areas within biology [45,46,70]
with tools such as PRISM [47], providing crucial support to perform proce-
dures for continuous-time Markov chains such as parameter synthesis [18,20,38].
Bayesian inference [16,19] techniques have long been applied to biological sys-
tems [49]. In particular, we focus on inferring the kinetic parameters of the
CRNs [17,60,66]. Exact inference is difficult due to the intractability of the
likelihood function. Sampling techniques such as particle Markov chain Monte
Carlo [33,34] and likelihood-free methods [52,58] such as approximate Bayesian
computation [63,65] have been utilised to circumvent intractable likelihoods.
Inferring parameters and formally verifying properties using statistical model
checking for deterministic models is considered in [36]. Computing probability
estimates using data produced by an underlying stochastic system, driven by
external inputs to satisfy a given property, is considered in [37]. The integra-
tion of the parameter synthesis problem and Bayesian inference is considered
for discrete-time Markov chains in [54] with the extension to actions for Markov
decision processes in [55]. In [54], the authors consider exact parameter inference
for a discrete state, discrete time system that consists of a handful of states with
fully observed, continuous data. In our work, the data considered are discretely
observed data points produced by a single simulation from a continuous-time

Bayesian Verification of Chemical Reaction Networks 463

Markov chain given the true parameters, which is then perturbed by noise and
we pursue likelihood free inference in the form of approximate Bayesian Com-
putation [11,61]. Our approach is then compared to a Bayesian approach to
statistical model checking [41,71].

The problem of learning and designing continuous-time Markov chains sub-
ject to the satisfaction of properties is considered in [14] meanwhile the model
checking problem is reformulated to a sequential Bayesian computation of the
likelihood of an auxiliary observation process in [51]. Directly related work is
presented in [13]; a Bayesian statistical algorithm was developed that defines a
Gaussian Process (GP) [57] over the parameter space based on a few observa-
tions of true evaluations of the satisfaction function. The authors build upon
the idea presented in [14] and define the satisfaction function as a smooth func-
tion of the uncertain parameters of a given CTMC, where this smooth function
can be approximated by a GP. This GP allows one to predict the value of the
satisfaction probability at every value of the uncertain parameters from indi-
vidual model simulations at a finite number of distinct parameter values. This
model checking approach is incorporated into the parameter synthesis problem
considered in [15] which builds upon the parameter synthesis problem defined
in [21], but differs with the incorporation of the model checking approach pre-
sented in [13] and an active learning step being introduced to adaptively refine
the synthesis. Model construction and selection via Bayesian design is presented
in [7,8,69].

The rest of the paper is as follows. In Sect. 2, we cover the necessary back-
ground material required for our framework. In Sect. 3, we introduce our frame-
work, covering parameter synthesis, Bayesian inference and the probability cal-
culation techniques required. In Sect. 4, we consider the application of this frame-
work to a case study and compare our framework to Bayesian statistical model
checking [71]. We conclude with a discussion of our work and possible extensions.

2 Background

2.1 Parametric Continuous-Time Markov Chains

We work with discrete-state, continuous-time Markov chains [42].

Definition 1 (Continuous-time Markov Chain). A continuous-time Mar-
kov chain (CTMC) M is a tuple (S,R, AP,L), where;

– S is a finite, non-empty set of states,
– s0 is the initial state of the CTMC,
– R : S × S → R≥0 is the transition rate matrix, where R(s, s′) is the rate of

transitioning from state s to state s′,
– L : S → 2AP is a labelling function mapping each state, s ∈ S, to the set

L(s) ⊆ AP of atomic propositions AP , that hold true in s.

464 G. W. Molyneux et al.

The transition rate matrix R governs the dynamics of the overall model. A
transition between states s and s′ can only occur if R(s, s′) > 0 and s �= s′,
in which case, the probability of triggering the transition within a time t is
1 − e−tR(s,s′). If s = s′, R(s, s) = −E(s) = −

∑
s′∈S R(s, s′), where E(s) is

defined as the exit rate from s. The time spent in state s before a transition is
triggered is exponentially distributed by the exit rate, E(s). We define a sample
trajectory or path of a CTMC as follows.

Definition 2 (Path of a CTMC). Let M = (S,R, AP,L) be a CTMC. A
path ω of M is a sequence of states and times ω = s0t0s1t1 . . . , where for all
i = 0, 1, 2, . . . , n,, si ∈ S and ti ∈ R≥0, is the time spent in state si.

Parametric continuous-time Markov chains (pCTMCs) extend the notion of
CTMCs by allowing transition rates to depend on a vector of model param-
eters, θ = (θ1, θ2, ..., θk). The domain of each parameter θk is given by a
closed real interval describing the range of possible values, [θ⊥

k , θ�
k]. The param-

eter space Θ is defined as the Cartesian product of the individual intervals,
Θ =×k̃∈{1,...,k}[θ

⊥
k̃

, θ�
k̃

], so that Θ is a hyperrectangular set.

Definition 3 (Parametric CTMC). Let Θ be a set of model parameters.
A parametric Continuous-time Markov Chain (pCTMC) over θ is a tuple
(S,Rθ , AP,L), where:

– S, s0, AP and L are as in Definition 1, and
– θ = (θ1, . . . , θk) is the vector of parameters, taking values in a compact hyper-

rectangle Θ ⊂ R
k
≥0,

– Rθ : S × S → R[θ] is the parametric rate matrix, where R[θ] denotes a set of
polynomials over the reals R with variables θk, θ ∈ Θ.

Given a pCTMC and a parameter space Θ, we denote with MΘ the set
{Mθ |θ ∈ Θ} where Mθ = (S,Rθ , AP,L) is the instantiated CTMC obtained
by replacing the parameters in R with their valuation in θ. We restrict the rates
to be polynomials, which are sufficient to describe a wide class of biological
systems [29].

2.2 Properties - Continuous Stochastic Logic

We aim to verify properties over pCTMCs. To achieve this, we employ the time-
bounded fragment of continuous stochastic logic (CSL) [4,44].

Definition 4. Let φ be a CSL formula interpreted over states s ∈ S of a pCTMC
Mθ , and ϕ be a formula over its paths. The syntax of CSL is given by

φ := true | a | ¬φ | φ ∧ φ | φ ∨ φ | P∼p[ϕ]

ϕ := Xφ | φU [t,t′]φ | φUφ,

where a ∈ AP , ∼ ∈ {<,≤,≥, >}, p ∈ [0, 1], and t, t′ ∈ R≥0.

Bayesian Verification of Chemical Reaction Networks 465

P∼p[ϕ] holds if the probability of the path formula ϕ being satisfied from a given
state meets ∼ p. Path formulas are defined by combining state formulas through
temporal operators: Xφ is true if φ holds in the next state, φ1U

Iφ2 is true if
φ2 holds at all time points t ∈ I and φ1 holds for all time points t′ < t. We
now define a satisfaction function to capture how the satisfaction probability of
a given property relates to the parameters and the initial state.

Definition 5 (Satisfaction Function). Let φ be a CSL formula, Mθ

be a pCTMC over a space Θ, s ∈ S, s0 is the initial state, and
PathMθ (s0) is the set of all paths generated by Mθ with initial state s0.
Denote by Λφ : θ → [0, 1] the satisfaction function such that Λφ(θ) =
Prob

(
{ω ∈ PathMθ (s0) |= ϕ} |ω(0) = s0

)
∼ p.

That is, Λφ(θ) is the probability that a pCMTC Mθ satisfies a property φ,
Mθ |= φ.

2.3 Stochastic Modelling of Chemical Reaction Networks

Semantics for continuous-time Markov chains include states that describe the
number of molecules of each species and transitions which correspond to reac-
tions that consume and produce molecules. These reactions are typically param-
eterised by a set of kinetic parameters that dictate the dynamics of the overall
network and it is these parametric CRNs that we will turn our focus towards:

Definition 6 (Parametric Chemical Reaction Network). A parametric
Chemical Reaction Network (pCRN) C is a tuple (M,X,W,R,υ) where

– M = {m1, . . . ,mn} is the set of n species;
– X = (X1, ...,Xn) is a vector where each Xi represents the number of molecules

of each species i ∈ {1, ..., n}. X ∈ W , with W ⊆ N
N the state space;

– R = {r1, . . . , rk} is the set of chemical reactions, each of the form rj =
(vj , αj), with vj the stoichiometry vector of size n and αj = αj(X, υj) is the
propensity or rate function.

– υ = (υ1, . . . , υk) is the vector of (kinetic) parameters, taking values in a
compact hyper-rectangle Υ ⊂ R

k.

Each reaction j of the pCRN can be represented as

rj : uj,1m1 + . . . + uj,nmn
αj−→ u′

j,1m1 + . . . + u′
j,nmn, (1)

where uj,i (u′
j,i) is the amount of species mi consumed (produced) by reac-

tion rj . The stoichiometric vector vj is defined by vj = u′
j − uj , where

uj = (uj,1, . . . , uj,n) and u′
j = (u′

j,1, . . . , u
′
j,n).

A pCRN can be modelled as a pCTMC if we consider each state of the
pCTMC to be a unique combination of the number of molecules. That is, if we
denote X(ti) as the number of molecules of each species at a given time, ti, then
the corresponding state of the pCTMC at time ti is si = X(ti). In fact, pCTMC

466 G. W. Molyneux et al.

semantics can be derived such that the transitions in the pCTMC correspond to
reactions that consume and produce molecules, by defining the rate matrix as:

R(si, sj) =
∑

j∈ζ(si,sj)

αj(si, υj) =
∑

j∈ζ(si,sj)

υjgj(si), (2)

where ζ(si, sj) denotes all the reactions changing state si into sj and αj is the
propensity or rate function defined earlier and the propensity, αj , often takes
the form αj(si, υj) = υjgj(si), where gj(si) is the combinatorial factor that is
determined by the number of molecules in the current state, si and the type of
reaction j. It is clear to see that this new pCTMC is governed by the kinetic
rate parameters, υ, thus, Mυ is the pCTMC that models the pCRN and for
the rest of this paper, with a slight abuse in notation, we will let Mθ be the
pCTMC that represents a pCRN where θ are the kinetic rate parameters. Now
the vector of kinetic parameters is defined as θ = (θ1, . . . , θk), where θ ∈ Θ and
Θ ⊂ R

k.

2.4 Bayesian Inference

When constructing mathematical models to describe real applications, statistical
inference is performed to estimate the model parameters from the observed data.
Bayesian inference [16] is performed by working either with or without a para-
metric model and experimental data, utilising the experimental data available to
approximate the parameters in a given model and to quantify any uncertainties
associated with the approximations. It is of particular interest to the biological
community to constrain any uncertainty within the model parameters (or indeed
the model itself) by using the observed data of biological systems. Moreover,
when one is working with obstreperous stochastic models, noisy observations
may add another layer of uncertainty. A plethora of literature is focused on the
problem of Bayesian inference in stochastic biochemical models [60,65,67], let
alone stochastic models [19]. Bayesian methods have been used extensively in
the life sciences for parameter estimation, model selection and even the design
of experiments [26,49,50,59,63,64].

Given a set of observations or data, D, and a model governed by θ, the task
of Bayesian inference is to learn the true parameter values given the data and
some existing prior knowledge. This is expressed through Bayes’ theorem:

p(θ|D) =
p(D | θ)p(θ)

p(D)
. (3)

Here p(θ|D) represents the posterior distribution, which is the probability den-
sity function for the parameter vector, θ, given the data, D; p(θ) is the prior
probability distribution which is the probability density of the parameter vector
before considering the data; p(D|θ) is the likelihood of observing the data given
a parameter combination; and p(D) is the evidence, that is, the probability of
observing the data over all possible parameter valuations. Assumptions about
the parameters are encoded in the prior meanwhile assumptions about the model

Bayesian Verification of Chemical Reaction Networks 467

itself are encoded into the likelihood. The evidence acts as a normalisation con-
stant and ensures the posterior distribution is a proper probability distribution.
To estimate the posterior probability distribution, we will utilize Monte Carlo
techniques.

3 Bayesian Verification

The main problem we address in this work is as follows. Consider a real-life,
data generating biological system S, where we denote the data generated by the
system as D and we are interested in verifying a property of interest, say φ. Can
we use this obtained data and the existing knowledge of the model to formally
verify a given property over this system, S?

Here on, we will be considering this problem using chemical reaction networks
to describe biological systems. We assume that we have sufficient knowledge to
propose a parametric model for the underlying system, which in this case is a
pCTMC denoted by Mθ . We define the property of interest, φ, in CSL and
we also assume that we are able to obtain data, D, from the underlying sys-
tem. There are three aspects to the Bayesian Verification framework: parameter
synthesis [20,21], Bayesian inference [16,19,52] and a probability or credibility
interval calculation [16]. We shall discuss the data we work with and these meth-
ods in detail later. Given a model class Mθ and a property of interest, φ, we
first synthesise a set of parameter valuations Θφ ⊆ Θ. If we were to choose a
vector of parameters θ′ such that θ′ ∈ Θφ, then the paths or traces generated
from the induced pCTMC, Mθ′ would satisfy the property of interest with some
probability, which we denote as Mθ ′ |= φ. We learn the parameters of interest
by inferring them from the data via Bayesian inference, to provide us with a
posterior distribution, p(θ|D). Once we have this posterior distribution and a
synthesised set of parameter regions, Θφ we integrate the posterior probability
distribution over these regions to obtain a probability on whether the underly-
ing data generating system satisfies the property or not. The full procedure is
illustrated in Fig. 1.

3.1 Parameter Synthesis

Given a parametric model class Mθ and a property φ defined in CSL, we syn-
thesise parameter regions that satisfy φ using the approach introduced in [21].
We will focus on the threshold synthesis problem. Note that solutions to the
threshold synthesis problem may sometimes lead to parameter points that are
left undecided, that is, parameter points that either do or do not satisfy the prop-
erty with a given probability bound, ∼ p. Let us define this problem formally.

Definition 7 (Threshold Synthesis). Let Mθ be a pCTMC over a parameter
space Θ, φ a CSL formula, ∼ p a threshold where p ∈ [0, 1], ∼∈ {≤, <,>,≥}
and E > 0 be a volume tolerance. The threshold synthesis problem is finding a
partition {T ,U ,F} of Θ such that:

468 G. W. Molyneux et al.

Property, φ
Model Class

(pCTMC) Mθ

Generate data, D from
System, S

Parameter Synthesis
Θφ = {θ ∈ Θ : Mθ |= φ} ⊆ Θ

Bayesian Inference,
p(θ|D)

Probability
Calculation

C = P (S |= φ|D) =
∫

Θφ
p(θ|D)dθ

Fig. 1. Bayesian verification framework.

1. ∀θ ∈ T . Λφ(θ) ∼ p; and
2. ∀θ ∈ F . Λφ(θ) � p; and
3. vol(U)/vol(Θ) ≤ E

where vol(A) is the volume of A.

The goal of parameter synthesis is to synthesise the set of all possible valua-
tions for which the model class Mθ satisfies the property φ:

Θφ = {θ ∈ Θ : Mθ |= φ}. (4)

We define the region Θφ ⊆ Θ as the feasible set of parameters. Parametric
model checking capabilities of the tool introduced in [21] is leveraged to perform
parameter synthesis over the CTMC constructed from a given pCRN.

3.2 Bayesian Inference for Parametric CTMC

In this section, we discuss the application of Bayesian inference for paramet-
ric CTMCs to infer unknown model parameters. Inferring parameters from
pCTMCs is a widely studied problem in the realms of biology [17,28,34,35,
60,63,65–67]. The focus of our work here will be on performing inference over
noisy time series data that has been observed a finite number of times at discrete
points in time.

Partially Observed Data. Let us consider the case where the data D consists
of Q observations of the CRN state vector at discrete points in time, t̃1, t̃2, . . . , t̃Q.
Let D = [Y(t̃1),Y(t̃2), . . . ,Y(t̃Q)], where Y(t̃i) ∈ R

N represents an observation
of the molecule count sample X(t̃i), which has a corresponding state si in the
pCTMC. It is common to incorporate uncertainty in these observations with the
use of additive noise [60,67],

Y(t̃i) = OX(t̃i) + ξ, (5)

Bayesian Verification of Chemical Reaction Networks 469

where O is a O × n matrix, R
O×n and ξ is a O × 1 vector of independent Gaus-

sian random variables. The observation vectors Y(t̃i), are O × 1 vectors where
O ≤ n, which reflects the fact that only a sub-set of chemical species of X(ti)
are observed. For this work, O = I, where I is an n×n identity matrix, recalling
that n is the number of different chemical species. Due to both the nature of
data we are working with and the intractability of the chemical master equation
[30] that determines the likelihood, we turn away from working with the analyt-
ical likelihood to consider likelihood free methods [52,65]. Two popular classes
of likelihood-free inference methods available are pseudo-marginal Markov chain
Monte Carlo [2] and Approximate Bayesian Computation (ABC) [11,61]. In our
work, we utilise ABC to infer parameters of our model. Not only do ABC meth-
ods allow working with highly complicated models with intractable likelihoods
to be investigated, but also ABC methods are very intuitive and easy to imple-
ment - it has proven to be an invaluable tool in the life sciences [9,11,48,63].
To deploy ABC methods, we need to be able to simulate trajectories from a
given model of interest, which in our case is a pCTMC, and require a discrep-
ancy metric, ρ(D, X̃), where X̃ = (X̃(t̃1), . . . , X̃(t̃M)) is the vector of simulated
data generated through the model that consists of M reactions. This discrep-
ancy metric provides a measure of distance between that of the experimental
data and the simulated data and this simulated data will form the basis of our
Bayesian inference technique. After calculating ρ(D, X̃), we accept the traces
where ρ(D, X̃) ≤ ε, where ε is the discrepancy threshold. This leads to a modi-
fication of the original Bayes theorem

p(θ|ρ(D, X̃) ≤ ε) =
p(ρ(D, X̃) ≤ ε | θ)p(θ)

p(ρ(D, X̃) ≤ ε)
. (6)

For the prior probability distribution, p(θ), we will assume a uniform prior over
the possible parameter set, θ. By being able to produce simulations from the
model, we are able to perform inference for the parameters of interest, subject to
data D. The discrepancy threshold ε determines the level of approximation - as
ε → 0, p(θ | ρ(D, X̃) ≤ ε) → p(θ|D). In practice, Equation (6) can be treated as
an exact posterior under the assumption of model and observation error when
ε → 0 [68]. Picking an appropriate discrepancy metric is a challenge in itself
[61] as the choice in discrepancy metric can lead to bias. The discrepancy metric
used in our work is defined by

ρ(D, X̃) =

[
Q∑

i=1

(Y(t̃i) − X̃(t̃i))2
]1/2

, (7)

Clearly for any ε > 0, ABC methods produce biased results and this bias should
be considered in any subsequent results we obtain, especially for any Monte
Carlo estimate. In order to estimate integrals such as the expected mean and
covariance, which is necessary for the posterior probability distribution, we must
be able to generate samples, θ(i) from the posterior. A summary of different
methods available to obtain these samples can be found in [65] along with a

470 G. W. Molyneux et al.

detailed discussion on every method. We will be focusing on the approximate
Bayesian computation sequential Monte Carlo (ABCSeq) approach [10,62,63].
The idea behind the ABCSeq approach is to use sequential importance resam-
pling to propagate m samples, called particles, through a sequence of R + 1
ABC posterior distributions defined through a sequence of discrepancy thresh-
olds, ε0, ε1, . . . , εR, with εr > εr+1, for r = 0, 1, . . . , R − 1, for a number of R
thresholds and ε0 = ∞. The method is presented in Algorithm 1.

Algorithm 1. ABCSeq Algorithm
1: Initialize threshold sequence ε0 > · · · > εR

2: Set r = 0
3: for i = 1, . . . , m do

4: Simulate θ
(0)
i ∼ p(θ) and X̃ ∼ p(X̃|θ(0)

i) until ρ(D, X̃) < ε1

5: wi = 1/m
6: end for
7: for r = 1, . . . , R − 1 do
8: for i = 1, . . . , m do
9: while ρ(D, X̃) > εr do

10: Pick θ∗
i from the previously sampled θ

(r−1)
i with corresponding probabilities w

(r−1)
i ,

draw θ
(r)
i ∼ Kr(θ

(r)
i |θ∗

i) and X̃ ∼ p(X̃|θ(r)
i)

11: end while
12: Compute new weights as

w
(r)
i ∝ p(θ

(r)
i)

∑m
i=0 w

(r−1)
i Kr(θ

(r)
i |θ(r−1)

i)

13: Normalize w
(r)
i subject to

∑m
i=0 w

(r)
i

14: end for
15: end for
16: return final particles, θ(R−1)

In Algorithm 1, Kr(·|·) is a conditional density that serves as a transition
kernel to move sampled parameters and then appropriately weight the accepted
values, which are the parameter valuations which produce trajectories sufficiently
close to the data. In the context of real-valued parameters, which we consider
here, Kr(θ∗|θ) is taken to be a multivariate normal distribution centred near
θ. There are many adaptive schemes to increase the accuracy and the speed
of ABCSeq [12,24], which vary from the choice of kernel [25], Kr(·|·) to adapt-
ing the discrepancy threshold [56]. We implement the proposed kernel densi-
ties presented in [12] and chose an adaptive discrepancy threshold such that
εr+1 = median(ρr), where ρr is the vector of all accepted distances for each
particle, calculated in line 9 of Algorithm 1. However, a larger number of par-
ticles, m, is required than the desired number of independent samples from the
ABC posterior with discrepancy threshold ε. For our implementation, we set a
maximum number of iterations in the loop in line 3 of Algorithm 1 to avoid
infinite loops, and we return the particles of the previous sampled parameters if
this were to be the case.

Bayesian Verification of Chemical Reaction Networks 471

3.3 Probability Computation

In the final phase of our approach, a probability estimate is computed corre-
sponding to the satisfaction of a CSL specification formula φ by a system of
interest such that S |= φ. To calculate the probability that the system satisfies
the specified property, we require two inputs - the posterior distribution over the
whole set of kinetic parameters, θ, discussed in Sect. 3.2, and the feasible set of
parameters that have been calculated in Sect. 3.1:

Definition 8. Given a CSL specification φ and observed data D from the system
S, the probability that S |= φ is given by

C = P (S |= φ | D) =
∫

Θφ

p(θ | D)dθ, (8)

where Θφ denotes the feasible set of parameters. We estimate this integral with
the use of Markov chain Monte Carlo (MCMC) methods focusing on the slice
sampling technique [53].

4 Results

Experimental Setup. All experiments have been run on an Intel(R) Xeon(R)
CPU E5-1660 v3 @ 3.00 GHz, 16 cores with 16 GB memory. We work with
partially observed data of the type discussed in Sect. 3.2. Data is of the form
Y(t̃i) = X(t̃i)+ξ, where in the case of noisy observations, the additive noise for
each observation j will be given by, ξj ∼ N (0, σ) and σ = 2. The data generating
system, S will in fact be a pCTMC with a chosen combination of parameters,
of which we consider two. The first combination, θφ ∈ Θφ, have been chosen
such that Mθφ

|= φ, that is, the pCTMC model Mθφ
, governed by θφ, satisfies

the property of interest. The second combination we choose are the parameters
given by θ¬φ ∈ Θ \ Θφ, such that Mθ¬φ

�|= φ. We will consider the scenario
where we have both noisy and noiseless observations. To summarise, we have
instances where we observe either 10 or 20 data points per species, which can be
either noisy or noiseless and working with data that has been produced by either
Mθφ

or Mθ¬φ
. To ensure the inference does not depend on the initialisation of

the ABCSeq technique, we ran 10 independent batches with 1000 particles each
and calculated the corresponding weighted means and variance of the batches
to derive the inferred mean and credibility intervals. The ABCSeq method pro-
duces sampled particles from the posterior probability distribution, which we
use to calculate the mean, μ and the covariance, Σ, of the kinetic parameters.
We assume the parameters are independent of each other, thus the nondiagonal
elements of the covariance matrix are equal to 0. The inferred parameters θ̃ is
thus described by a multivariate normal distribution θ̃ ∼ N (μ,Σ).

The Bayesian statistical model checking method [41] approach collects sam-
ple trajectories from the system, and then determines whether the trajectories
satisfy a given property and applies statistical techniques, such as calculation of
credibility intervals and hypothesis testing, to decide whether the system satisfies
the property or not with a degree of probability.

472 G. W. Molyneux et al.

4.1 Case Study: Finite-State SIR Model

We take into account the stochastic epidemic model [43], known alternatively
as the SIR model. Epidemiological models of this type behave largely in the
same way as CRNs [21]. The model describes the epidemic dynamics of three
types, the susceptible group (S), the infected group (I), and recovered group
of individuals (R). The epidemic dynamics can be described with mass action
kinetics:

S + I
ki−→ I + I, I

kr−→ R. (9)

Whenever a susceptible individual S encounters an infected individual I, the
susceptible individual becomes infected with the rate ki and infected individuals
recover at rate kr. Letting S, I and R represent chemical species instead of groups
of individuals, this epidemiological model is the same as a CRN. From now on
we treat the SIR model as a CRN. This CRN is governed by the parameters θ =
(ki, kr), where each state of the CTMC describes the combination of the number
of molecules for each species. The problem we consider is as follows. We assume
that initially there are 95 molecules of species S, 5 molecules of species I and
0 molecules of species R, thus, the initial state is s0 = (S0, I0, R0) = (95, 5, 0).
We wish to verify the following property, φ = P>0.1[(I > 0)U [100,150](I = 0)],
i.e. whether, with a probability greater than 0.1, the chemical species I dies out
strictly within the interval of t = 100 and t = 150 seconds. The data is produced
by both Mθφ

and Mθ¬φ
, where θφ = (0.002, 0.05) and θ¬φ = (0.002, 0.18).

Fig. 2. Synthesised Parameter regions are shown here. The feasible set of parameters,
T , is shown in yellow (lighter colour), meanwhile the infeasible set of parameters, F , is
shown in blue (darker colour) Θ¬φ, with the undecided areas (if any) shown in white,
the set U . (Color figure online)

Bayesian Verification of Chemical Reaction Networks 473

In the first phase of our method, we synthesise the feasible set of parameters,
Θφ. For the parameter synthesis technique used in our work [20,21], we define
parameter bounds and we confine our parameters to the set Θ = [k⊥

i , k�
i] ×

[k⊥
r , k�

r] = [5 × 10−5, 0.003] × [0.005, 0.2]. The results of the parameter synthesis
is shown in Fig. 2 and took a total of 3096 seconds (51.6 min) to compute. The
second phase of our approach involves learning the kinetic parameters from data,
D, via the ABCSeq method introduced in Sect. 3.2. To showcase the accuracy of
our method, we consider different data scenarios. We take into account observed
data where the observations are either distorted or not by additive noise, and
the aforementioned two cases but with additional observed data points. A full
list of different data scenarios and corresponding inferred parameters can be
seen in Table 1. As expected, if we observe more, noiseless data points then our
inferred parameters converge to the true parameters, θφ or θ¬φ. The accuracy
decreases drastically for data produced by the model Mθ¬φ

. This is due to the
largely uninformative observations as the samples reach steady state. To increase
accuracy, more observations should be taken during the transient period of the
model.

Bayesian SMC requires multiple simulated trajectories over a given model Mθ

to determine whether Mθ |= φ. The issue with Bayesian SMC is that it considers
a single instance of parameters, θ0 and produces multiple simulations and statisti-
cally verifies whether the property is satisfied or not. When inferring parameters,
we compute a probability distribution over the set of inferred parameters. If this
distribution were to have a high variance, one would need to sample many parame-
ters from the posterior distribution to sufficiently cover the space of the parameter
probability distribution and then produce simulations for Bayesian SMC to eval-
uate each instantiation of the parameters. Meanwhile in our approach, we would
only need to integrate the posterior distribution p(θ|D) over the feasible parameter
set Θφ to obtain a probability whether this property is satisfied or not. Bayesian
SMC is illustrated in Fig. 3. For both Bayesian SMC and our method, we first had
to infer the parameters to obtain a posterior probability distribution, which in this
case, is a bivariate normal distribution. For Bayesian SMC, we sampled 100 inde-
pendent evaluations of the parameters, and produced 1000 simulations for each
evaluation to determine the probability that the model, Mθ , satisfies the property
of interest. The sampled parameters are represented by the points represented by
circles in Fig. 3, meanwhile the 95% credibility interval for the inferred parameters
are represented by the black ellipses. The computation time for the Bayesian SMC
approach was 756 seconds (12.6 min). With our approach, we simply need to inte-
grate the bivariate normal distribution over the feasible parameter regions over the
parameter regions to obtain the values in Table 1, and we do this numerically via
slice sampling [53]. Both our technique andBayesian SMCare in agreement, but for
the Bayesian SMC approach we would require a larger number of sampled param-
eters to verify whether or not the entire posterior probability distribution lies in

474 G. W. Molyneux et al.

Fig. 3. Bayesian statistical model checking is performed over the inferred parameters
for the case with 10 noisy observations on the left figure and for the case with 20
noiseless observations on the right figure. Dark blue (left figure) and green points
(right figure) represent the probability values of 1 meanwhile the purple (left figure)
and red points (right figure) represent probability values of 0. The parameters chosen to
produce the data are represented by the cyan and orange triangles. The black elliptical
lines represent the 95% credibility intervals of the inferred posterior distribution. The
yellow (or blue) points represent the parameter valuation regions that satisfy (T) (or
don’t satisfy, F) the property. (Color figure online)

these feasible regions. Despite the fact that the parameter synthesis for the whole
region takes longer to compute, the exhaustive parameter synthesis technique pro-
vides us a picture of the whole parameter space which is useful for further experi-
ments and canbedone entirely offline.For ourmultivariate slice sampler,weheuris-
tically chose the number of samples to be 10000 and the scale estimates for each
parameter, νi was chosen to be νi = 2, with the initial value of the slice equal to the
mean of the inferred posterior probability distribution. For further details on mul-
tivariate slice sampling (which leads to the credibility calculation given in Table 1),
see [53]. For convergence results with statistical guarantees, we refer the reader to
[23] meanwhile if interested in obtaining an upper bound on the probability cal-
culated, we refer to [40]. Both the inference and Bayesian SMC techniques break
down if simulating traces for CRNs is costly. Fortunately, there is ongoing research
on approximation techniques that sacrifice the accuracy of Gillespie’s algorithm
for speed (such as the classical tau-leaping method [31]). For alternative approxi-
mation techniques, see [39,65] for more details.

Bayesian Verification of Chemical Reaction Networks 475

Table 1. We have four different data scenarios to produce the data. Data within
each of these datasets is produced given a combination of parameters that satisfy the
property of interest, θφ = (0.002, 0.05) and those that do not satisfy the property of
interest θ¬φ = (0.002, 0.18), (with or without additive noise σ = 2). We integrate the
corresponding posterior distribution to give us the probability in column 5.

Inferred parameters

Data True par. Mean Std. dev. Prob. Comp. time (s)

10 Obs. with Noise θφ μki
= 0.0027 σki

= 4.7× 10−5 1 11791

μkr = 0.0451 σkr = 0.0012

θ¬φ μki
= 0.0006 σki

= 8.7× 10−5 0 75

μkr = 0.1676 σkr = 0.0063

20 Obs. with Noise θφ μki
= 0.0022 σki

= 0.0001 0.9901 10840

μkr = 0.0468 σkr = 0.0036

θ¬φ μki
= 0.0015 σki

= 0.0002 0 3256

μkr = 0.1620 σkr = 0.0104

10 Obs without Noise θφ μki
= 0.0019 σki

= 8.8× 10−5 0.9969 7585

μkr = 0.0549 σkr = 0.00514

θ¬φ μki
= 0.0015 σki

= 0.0001 0 3802

μkr = 0.1565 σkr = 0.0074

20 Obs. without Noise θφ μki
= 0.0021 σki

= 7.3× 10−5 1 15587

μkr = 0.0487 σkr = 0.0020

θ¬φ μki
= 0.0017 σki

= 0.0001 0 5194

μkr = 0.1630 σkr = 0.0084

5 Conclusions and Further Work

We have presented a data-driven approach for the verification of CRNs modelled
as pCTMCs. The framework proposed integrates Bayesian inference and formal
verification and proves to be a viable alternative to Bayesian SMC methods.
We demonstrate how to infer parameters using noisy and discretely observed
data using ABC and with the inferred posterior probability distribution of the
parameters at hand, we calculate the probability that the underlying data gen-
erating system satisfies a property by integrating over the synthesised feasible
parameter regions. Thus, given data from an underlying system, we can quanti-
tatively assert whether properties of the underlying system are satisfied or not.
Our method differs from that of typical Bayesian SMC as we calculate a single
probability value with respect to the entire posterior distribution, meanwhile
with Bayesian SMC, we would have to sample a sufficient amount of parameter
values to cover the posterior distribution, thereon generate traces to determine
whether a property is satisfied or not. Future work consists of integrating both
learning and verification further as is done in [15] to improve the scalability of
the parameter synthesis, working with different model classes such as stochastic
differential equations [27,32] and models with actions, as is done in [55].

476 G. W. Molyneux et al.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

2. Andrieu, C., Roberts, G.O., et al.: The pseudo-marginal approach for efficient
monte carlo computations. Ann. Stat. 37(2), 697–725 (2009)

3. Angeli, D.: A tutorial on chemical reaction network dynamics. Eur. J. Control
15(3), 398–406 (2009)

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 75

5. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
7. Barnes, C.P., Silk, D., Sheng, X., Stumpf, M.P.: Bayesian design of synthetic bio-

logical systems. Proc. Natl. Acad. Sci. 108(37), 15190–15195 (2011)
8. Barnes, C.P., Silk, D., Stumpf, M.P.: Bayesian design strategies for synthetic biol-

ogy. Interface Focus 1(6), 895–908 (2011)
9. Beaumont, M.A.: Approximate bayesian computation in evolution and ecology.

Annu. Rev. Ecol. Evol. Syst. 41, 379–406 (2010)
10. Beaumont, M.A., Cornuet, J.M., Marin, J.M., Robert, C.P.: Adaptive approximate

bayesian computation. Biometrika 96(4), 983–990 (2009)
11. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate bayesian computation

in population genetics. Genetics 162(4), 2025–2035 (2002)
12. Bonassi, F.V., West, M., et al.: Sequential monte carlo with adaptive weights for

approximate Bayesian computation. Bayesian Anal. 10(1), 171–187 (2015)
13. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain

continuous-time Markov chains. Inf. Comput. 247(C), 235–253 (2016)
14. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from

logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 7

15. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 23

16. Box, G., Tiao, G.: Bayesian Inference in Statistical Analysis. Wiley Classics
Library. Wiley, Hoboken (1973)

17. Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.: Bayesian inference for a discretely
observed stochastic kinetic model. Stat. Comput. 18(2), 125–135 (2008)

18. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of
stochastic biochemical systems using quantitative model checking. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 7

19. Broemeling, L.: Bayesian Inference for Stochastic Processes. CRC Press, Boca
Raton (2017)

20. Ceska, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Inf. 54(6), 589–623
(2014)

https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/978-3-642-40196-1_7
https://doi.org/10.1007/978-3-642-40196-1_7
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-642-39799-8_7

Bayesian Verification of Chemical Reaction Networks 477

21. Češka, M., Pilař, P., Paoletti, N., Brim, L., Kwiatkowska, M.Z.: PRISM-PSY:
precise GPU-accelerated parameter synthesis for stochastic systems. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 367–384. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 21

22. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-88869-7 27

23. Cowles, M.K., Carlin, B.P.: Markov chain monte carlo convergence diagnostics: a
comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)

24. Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential monte carlo method
for approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)

25. Filippi, S., Barnes, C.P., Cornebise, J., Stumpf, M.P.: On optimality of kernels
for approximate Bayesian computation using sequential Monte Carlo. Stat. Appl.
Genet. Mol. Biol. 12(1), 87–107 (2013)

26. Galagali, N., Marzouk, Y.M.: Bayesian inference of chemical kinetic models from
proposed reactions. Chem. Eng. Sci. 123, 170–190 (2015)

27. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences,
vol. 13, 4th edn. Springer, Heidelberg (2009)

28. Georgoulas, A., Hillston, J., Sanguinetti, G.: Unbiased Bayesian inference for pop-
ulation Markov jump processes via random truncations. Stat. Comput. 27(4), 991–
1002 (2017)

29. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

30. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A
188(1), 404–425 (1992)

31. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically react-
ing systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

32. Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306
(2000)

33. Golightly, A., Wilkinson, D.J.: Bayesian sequential inference for stochastic kinetic
biochemical network models. J. Comput. Biol. 13(3), 838–851 (2006)

34. Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic bio-
chemical network models using particle markov chain monte carlo. Interface Focus
1(6), 807–820 (2011)

35. Golightly, A., Wilkinson, D.J.: Bayesian inference for Markov jump processes with
informative observations. Stat. Appl. Genet. Mol. Biol. 14(2), 169–188 (2015)

36. Gyori, B.M., Paulin, D., Palaniappan, S.K.: Probabilistic verification of partially
observable dynamical systems. arXiv preprint arXiv:1411.0976 (2014)

37. Haesaert, S., den Hof, P.M.J.V., Abate, A.: Data-driven and model-based verifica-
tion: a Bayesian identification approach. CoRR abs/1509.03347 (2015)

38. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for prob-
abilistic time-bounded reachability. In: 2008 Real-Time Systems Symposium, pp.
173–182 (2008)

39. Higham, D.J.: Modeling and simulating chemical reactions. SIAM Rev. 50(2), 347–
368 (2008)

40. Hoeffding, W.: Probability inequalities for sums of bounded random variables
(1962)

https://doi.org/10.1007/978-3-662-49674-9_21
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1007/978-3-540-88869-7_27
http://arxiv.org/abs/1411.0976

478 G. W. Molyneux et al.

41. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03845-7 15

42. Karlin, S., Taylor, H., Taylor, H., Taylor, H., Collection, K.M.R.: A First Course
in Stochastic Processes, vol. 1. Elsevier Science, Amsterdam (1975)

43. Kermack, W.: A contribution to the mathematical theory of epidemics. Proc. R.
Soc. Lond. A: Math. Phys. Eng. Sci. 115(772), 700–721 (1927)

44. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

45. Kwiatkowska, M., Thachuk, C.: Probabilistic model checking for biology. In: Soft-
ware Safety and Security. NATO Science for Peace and Security Series - D: Infor-
mation and Communication Security. IOS Press (2014)

46. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking: advances
and applications. In: Drechsler, R. (ed.) Formal System Verification, pp. 73–121.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57685-5 3

47. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

48. Kypraios, T., Neal, P., Prangle, D.: A tutorial introduction to Bayesian inference
for stochastic epidemic models using approximate Bayesian computation. Math.
Biosci. 287, 42–53 (2017). 50th Anniversary Issue

49. Lawrence, N.D., Girolami, M., Rattray, M., Sanguinetti, G. (eds.): Learning and
Inference in Computational Systems Biology. MIT Press, Cambridge; London
(2010)

50. Liepe, J., Filippi, S., Komorowski, M., Stumpf, M.P.H.: Maximizing the informa-
tion content of experiments in systems biology. PLoS Comput. Biol. 9(1), 1–13
(2013)

51. Milios, D., Sanguinetti, G., Schnoerr, D.: Probabilistic model checking for
continuous-time Markov chains via sequential Bayesian inference. In: McIver, A.,
Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 289–305. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99154-2 18

52. Murphy, K.P.: Machine Learning - A Probabilistic Perspective. Adaptive Compu-
tation and Machine Learning Series. MIT Press, Cambridge (2012)

53. Neal, R.M.: Slice sampling. Ann. Statist. 31(3), 705–767 (2003)
54. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Data-efficient Bayesian

verification of parametric Markov chains. In: Agha, G., Van Houdt, B. (eds.) QEST
2016. LNCS, vol. 9826, pp. 35–51. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43425-4 3

55. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Automated experiment
design for data-efficient verification of parametric Markov decision processes. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 259–274.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 16

56. Prangle, D., et al.: Adapting the ABC distance function. Bayesian Anal. 12(1),
289–309 (2017)

57. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von
Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9 4

https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-99154-2_18
https://doi.org/10.1007/978-3-319-43425-4_3
https://doi.org/10.1007/978-3-319-43425-4_3
https://doi.org/10.1007/978-3-319-66335-7_16
https://doi.org/10.1007/978-3-540-28650-9_4

Bayesian Verification of Chemical Reaction Networks 479

58. Revell, J., Zuliani, P.: Stochastic rate parameter inference using the cross-entropy
method. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp.
146–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 9

59. Sanguinetti, G., Lawrence, N.D., Rattray, M.: Probabilistic inference of transcrip-
tion factor concentrations and gene-specific regulatory activities. Bioinformatics
22(22), 2775–2781 (2006)

60. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods
for stochastic biochemical kinetics: a tutorial review. J. Phys. A: Math. Theor.
50(9), 093001 (2017)

61. Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Com-
putation. Chapman and Hall/CRC, Boca Raton (2018)

62. Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential monte carlo without likelihoods.
Proc. Natl. Acad. Sci. 104(6), 1760–1765 (2007)

63. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate bayesian
computation scheme for parameter inference and model selection in dynamical
systems. J. R. Soc. Interface 6(31), 187–202 (2008)

64. Vanlier, J., Tiemann, C.A., Hilbers, P.A., van Riel, N.A.: Optimal experiment
design for model selection in biochemical networks. BMC Syst. Biol. 8(1), 20 (2014)

65. Warne, D.J., Baker, R.E., Simpson, M.J.: Simulation and inference algorithms for
stochastic biochemical reaction networks: from basic concepts to state-of-the-art.
J. R. Soc. Interface 16(151), 20180943 (2019)

66. Wilkinson, D.J.: Parameter inference for stochastic kinetic models of bacterial gene
regulation: a Bayesian approach to systems biology. In: Proceedings of 9th Valencia
International Meeting on Bayesian Statistics, pp. 679–705 (2010)

67. Wilkinson, D.: Stochastic Modelling for Systems Biology, 2nd edn. Chapman &
Hall/CRC Mathematical and Computational Biology, Taylor & Francis (2011)

68. Wilkinson, R.D.: Approximate Bayesian computation (ABC) gives exact results
under the assumption of model error. Stat. Appl. Genet. Mol. Biol. 12(2), 129–141
(2013)

69. Woods, M.L., Leon, M., Perez-Carrasco, R., Barnes, C.P.: A statistical approach
reveals designs for the most robust stochastic gene oscillators. ACS Synth. Biol.
5(6), 459–470 (2016)

70. Zuliani, P.: Statistical model checking for biological applications. Int. J. Softw.
Tools Technol. Transfer 17(4), 527–536 (2015)

71. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. Formal Methods Syst. Des. 43, 338–
367 (2013)

https://doi.org/10.1007/978-3-319-99429-1_9

Nested Event Representation for
Automated Assembly of Cell Signaling

Network Models

Evan W. Becker1(B), Kara N. Bocan1, and Natasa Miskov-Zivanov1,2,3

1 Department of Electrical and Computer Engineering, University of Pittsburgh,
Pittsburgh, USA

{ewb12,knb12,nmzivanov}@pitt.edu
2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA

3 Department of Computational and Systems Biology, University of Pittsburgh,
Pittsburgh, USA

Abstract. The rate at which biological literature is published far out-
paces the current capabilities of modeling experts. In order to facilitate
the automation of model assembly, we improve upon methods for con-
verting machine reading output obtained from papers studying intracel-
lular networks into discrete element rule-based models. We introduce a
graph representation that can capture the complicated semantics found
in machine reading output. Specifically, we focus on extracting change-
of-rate information available when network elements are found to inhibit
or catalyze other interactions (nested events). We demonstrate the via-
bility of this approach by measuring the prevalence of these nested events
in cancer literature, as well as the success rates of two machine readers
in capturing them. Finally, we show how our algorithm can translate
between machine reading output and the new graphical form. By incor-
porating these more detailed interactions into the model, we can more
accurately predict cellular dynamics on a broad scale, leading to improve-
ments in experimental design and disease treatment discovery.

Keywords: Machine reading · Text mining · Cell signaling networks ·
Automated model generation

1 Introduction

Modeling summarizes relevant information about a system and allows researchers
to make inferences about behavior, find knowledge gaps, and construct new
experiments. In the field of systems biology, researchers have often used qual-
itative graphical models, with cellular components represented as nodes (e.g.,
proteins, genes, chemicals), and interactions between these components as edges
(e.g., phosphorylation, transcription) [1,2]. These models are highly interpretable
and suitable for conveying the information about complex signaling pathways
and feedback loops. Tools such as Cytoscape [3], OmicsNet [4,5], REACTOME
[6], and STRING [7] have been designed to automatically visualize biological
networks as graphs. However, experts must manually input information for each

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 480–499, 2020.
https://doi.org/10.1007/978-3-030-54997-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_30

Nested Event Representation 481

interaction into these tools, a process that becomes impractical for extremely
large networks. The tools that provide graphical model representations are also
highly variable (e.g., different naming conventions, allowable interactions), mak-
ing it difficult for researchers to share and extend.

Adding functions in nodes or on edges of graphical models enables model
simulation, which can in turn provide detailed predictions about system dynam-
ics. Compared to graphs, these models require many more parameters to be
carefully selected. Typically, parameters are harder to find as well, often lead-
ing to tedious searches through specialized databases and experimental data.
Sometimes, parameter values are not available at all, and in such cases parame-
terization techniques must be used to estimate them.

To solve the problem of automating both the model network assembly and
the parameterization, attempts have been made to standardize the language of
scientific discourse itself. Languages such as SBML (systems biology markup lan-
guage) [8], CellML [9], BioNetGen (BNGL) [10], and Kappa [11] have been pro-
posed and utilized to various extents for the communication of biological systems.
However, these standards are often hard to directly interpret by humans and still
require manual modification, either directly or through an interface. Moreover,
natural language remains the most efficient way for researchers to summarize
and distribute their findings. As there is currently no universal method for inter-
preting scientific text, models are often entirely constructed and parameterized
by hand from the information in literature, leading to limitations in scope and
accuracy [12]. The high rate of scientific publication further emphasizes the need
for a standardized representation, which would also facilitate the automation of
model assembly from publications.

First step in the automated assembly of models from scientific texts requires
reliable machine reading engines. The field of natural language processing (NLP)
focuses on tasks such as machine translation, information retrieval, text summa-
rization, question answering, information extraction, and opinion mining [13].
As NLP techniques have moved from purely syntactic interpretations to deeper
semantic understanding, the opportunity now exists to automate model gen-
eration. Two NLP systems (also called machine readers) built with this goal
in mind are REACH [14] and TRIPS [15]. INDRA (Integrated Network and
Dynamical Reasoning Assembler) is an example of a system currently being
developed to automatically process machine reading output into models. INDRA
utilizes domain specific “statements” to represent detailed information about
interactions that are extracted from scientific papers by machine readers such
as REACH or TRIPS. For biological applications, dozens of unique statement
classes are instantiated with attributes such as location, mutation, residue. As
INDRA aims to assemble event (biochemical reaction) rule-based models [16] and
continuous ODE models, these statements must be very detailed. This require-
ment complicates the process of mapping NLP extractions to INDRA statements.

On the other hand, discrete element rule-based models have been shown to
efficiently simulate biological systems, without the need for a complex parame-
terization process [12,17,18]. This highly canonical representation lends itself
well to an automated assembly process, as demonstrated in [19], where the
BioRECIPES format was proposed as an intermediate representation between

482 E. W. Becker et al.

NLP system output and discrete element rule-based models. BioRECIPES is
a tabular format where one row corresponds to one model element, listing the
available structured information about that element, and each column represents
one of the attributes of either a model element or the element’s influence set.
This format is easy to read and extend by both machines and humans. Hav-
ing this intermediate representation is useful for aggregating data from multiple
NLP sources, verifying the accuracy of extractions, and filtering the information
to be used for constructing the executable model. Furthermore, as shown pre-
viously, various biological motifs (phosphorylation, translocation, transcription,
binding, etc.) are easily represented using the BioRECIPES format [19,20].

Here we define a nested event to be any direct interaction between two events
occurring in natural language. We also define a regulating nested event as a sub-
type of the nested event in which one event is modified by the other (e.g., an
increase in activation). This type of interaction stands in contrast to a nested
event in which one event serves as a causal input to another event (e.g., phospho-
rylation causes activation). The regulating nested event is the type of interaction
that we are specifically focusing on in this work. A statement containing a regu-
lating nested event would typically suggest a change in rate for an ODE model.

While enabling straightforward automated translation of simple biological
interactions into executable models, the translation of nested events from read-
ing output to the BioRECIPES format is still done manually. Being able to
automatically capture this more complicated information (when available) would
enable faster assembly and parameterization of models that will allow for more
accurate simulation of system dynamics. To this end, the contributions of the
work presented here include:

1. We propose a new data structure to extend the BioRECIPES representation
format and enable more effective representation of nested events.

2. We introduce an algorithm to automatically translate biological nested events
from available machine reading output into the new data structure.

3. We evaluate the accuracy of NLP systems at extracting nested events and
demonstrate our algorithm’s function on reading examples processed through
REACH and TRIPS/DRUM systems.

2 Background

2.1 Discrete Element Rule-Based Models

Since we are especially interested in the cause and effect relationships between
system components (instead of just correlations), we model connections between
elements as directed. In other words, the set of all regulators influencing one
element is called an influence set [1,21,22], and the overall model network is
referred to as an influence network. All the information essential for studying
such influence networks can be expressed using the BioRECIPES representation
format [19].

Nested Event Representation 483

Furthermore, the influence network models can also be translated from the
BioRECIPES format into a graph representation. In graphical form, influences
are represented with signed edges, which imply either an increase or decrease
in value of the regulated node (illustrated with an arrow and bar, respectively).
Edges are always directed toward a single child node but can have multiple
parent nodes (directed hyperedge, see Fig. 1(left)) joined by logical operators.
This formalism is extremely useful for its scalability and interpretability.

Fig. 1. (Left) Graphical visualization of a BioRECIPES influence set. Elements B and
C are joined together with an AND rule (illustrated with an arc), while element D is
inverted (illustrated with an unfilled circle). Positive and negative regulators can then
be combined into a discrete update rule (right).

From both the BioRECIPES and the graphical format described above, one
can automatically generate executable models in which each model element is
assigned a variable and a regulatory function called element update rule. In dis-
crete executable models, variable values correspond to the activation, strength,
or quantity levels of the corresponding element. A special case of discrete mod-
els are logical models that assume only two values (0 and 1) for all variables
and logic operations (AND, OR, NOT) between variables. While our methodol-
ogy is applicable more generally to models with discrete variables and algebraic
operations, for simplicity, we will use logical model examples in this paper (e.g.,
Fig. 1(right)).

When models are created from the information extracted from literature,
both qualitative information about biological mechanisms of interactions and
quantitative information about levels of activity or amount are incorporated,
resulting in discrete element rule-based models. These models can be directly
used to study the system dynamics and the behavior of its components in time,
through simulations and model checking. The simulation is done by changing
element states over time according to their update rules. Here, we use DiSH
(Discrete, Stochastic, Heterogeneous) simulator, which offers several different
schemes for updating element states, including simultaneous (deterministic, all
elements are updated at the same time, based on their update rule and previ-
ous state), random-order sequential (elements update one at a time based on a
probability distribution), and ranked sequential (elements or groups of elements
updated in a predefined order) [14].

484 E. W. Becker et al.

2.2 Established Motifs

In their initial paper on biological motifs, Sayed et al. [20] explored map-
ping gene expression, receptor activation, and translocation interactions to the
BioRECIPES format. Later, the list of motifs was expanded to include com-
plexes, activation/inhibition type events, and nested events [19]. A brief overview
of these motifs is provided below, including the motif for simple biochemical
interactions.

The Simple Interaction motif represents posttranslational modification
events (phosphorylation, acetylation, methylation, dephosphorylation, ubiquiti-
nation, demethylation), as well as increase amount and decrease amount events.
In Fig. 2(a), we show an example of phosphorylation, which is represented in the
BioRECIPES format as positive regulation, unless it is explicitly stated that it
is a negative regulation.

The Gene Expression motif represents a chain of elements, a gene,
and its corresponding mRNA and protein. As illustrated in Fig. 2(b), in the
BioRECIPES format, gene transcription is represented as positive regulation of
mRNA X by gene X, and translation is represented as positive regulation of
protein X by mRNA X.

The Receptor Activation motif includes three elements, an inactive
(present) receptor, activated receptor, and ligand that binds to the receptor to
activate it. In the BioRECIPES format, this is represented as the active receptor
form being positively regulated by the presence of inactive receptor form and
the ligand (AND rule). In the graphical representation, this motif is mapped to
a hypergraph, as shown in Fig. 2(c).

The Translocation motif includes two versions of the same element at two
different locations (e.g., protein in nucleus and protein in cytoplasm). In the
BioRECIPES format, as shown in Fig. 2(d), this is represented as the version
of element in the original (“from”) location positively regulating the version of
element in the final (“to”) location.

The Binding motif is represented in the BioRECIPES format using multiple
elements, that is, each individual component of a complex being formed has a
corresponding model element, as shown in Fig. 2(e). If element X is facilitating
the binding of A and B into a complex, then this regulation is included in the
update rule of A as B AND X, and in the update rule for B as A AND X.

The Regulation by Complex motif is used when an element Y is regulated
by a complex consisting of elements A and B. In the BioRECIPES format, this
regulation is included in the update function for Y as A AND B. The graph
representation of this motif is also shown in Fig. 2(e), on the right side of the
graph.

The Nested Interaction motif, as defined in Sect. 1, represents regulation
of activation or inhibition, that is, the situations when interactions between ele-
ments are themselves being regulated. An example of such motif, where protein
A increases dephosphorylation of protein Y by protein X is shown in Fig. 2(f).

Nested Event Representation 485

2.3 Machine Reading Engines

Representation format of machine reading output varies widely across readers,
and even from application to application. Popular methods for representing
knowledge about natural language include first order logic, default logic, pro-
duction rules, semantic networks, and Bayesian networks [13]. The two readers
analyzed in this work both produce outputs that can be considered semantic
networks. They mainly consist of event nodes (indicating a type of change over
time) and entity nodes (objects from text that can be distinctly identified). A
set of predefined relations (semantic roles) link the nodes together.

Fig. 2. Established motifs: (a) Simple Interaction motif: phosphorylation example,
kinase X and substrate Y; (b) Gene Expression motif; (c) Receptor Activation motif,
both ligand and receptor are necessary to activate receptor, illustrated with an arc; (d)
Translocation motif, example of translocation of element X from cytoplasm to nucleus;
(e) Binding and Regulation by Complex motifs, example of complex formation, and
regulation of other elements by that complex; (f) Nested Interaction motif, example of
protein A catalyzing dephosphorylation of Y by X, illustrated here by an edge ending
at another edge.

TRIPS and Logical Form Graphs: The TRIPS (The Rochester Interactive
Planner System) parser is a broad-coverage semantic parser that produces logical
forms from natural language [15]. The logical form is a semantic notation that
captures the meaning of a sentence and consists of a set of terms from the
ontology that describe events, relations and entity types, all linked together by
semantic roles. Two of the most useful semantic roles for our application describe
how entities relate to events, either through an instigative role (AGENT) or an
altered role (AFFECTED). In graphical form, terms are represented by nodes
and roles by edges as seen in Fig. 3(a).

486 E. W. Becker et al.

Since one of our modeling aims is to enable representation of causal relations,
we need evidence of an object changing in response to another. Therefore, tran-
sitive and telic verbs are mainly of interest, and other semantic roles included in
TRIPS such as neutral, formal, and experiencer are ignored. While roles such as
modality are important for differentiating between putative relations and factual
statements, their interpretation is outside the scope of this work.

TRIPS extends its parser for specific applications such as cellular biology
(DRUM parser) [24]. Extensions include different cost minimization functions
for sentence structure and custom named entity recognition (NER) mappings.
With a few extraction rules for each class of event (phosphorylation, increase,
decrease, etc.), TRIPS can then select relevant information to pass on to the
user, called the extraction knowledge base (EKB). The EKB is serialized into
XML format, allowing for further automated processing.

REACH: REACH (Reading and Assembling Contextual and Holistic Mech-
anisms from Text) is a system for automated, large-scale machine reading of
biomedical papers [14]. Like TRIPS, it extracts events and associated entities
through a series of rule-based and statistical techniques. REACH supports 12
types of simple biological events (e.g., ubiquitination, translocation), and can
also detect nested events (catalysis and inhibition). Entities can be associated
with events through a controlling or controlled role (similar to agent and affected
in TRIPS). The role of theme is to denote when an entity is being modified by
the event in some capacity (e.g., pRb, is the theme of phosphorylation in the
sentence “CDK4 phosphorylates pRb”).

Fig. 3. Examples of machine reader outputs for “CDK-4 phosphorylates pRb”: (a)
Extractions from TRIPS (EKB); (b) REACH output shown using the online Bio Visu-
alizer tool [21].

Nested Event Representation 487

3 Methods

In this section, we propose a representation for regulating nested events and
discuss its general use cases. We also provide an outline of a recursive algorithm
that can automatically convert nested events from machine reading output into
this new representation format.

3.1 Intermediate Nodes

While the six motifs shown in Fig. 2 allow us to represent a wide variety of
biological networks, the nested interaction, as depicted in Fig. 2(e), cannot be
immediately represented in a typical graph data structure. This stems from the
fact that a standard graph (consisting of element nodes containing links to other
nodes) has no way to represent regulation of an edge [23]. This incompatibility
makes it challenging for nested events found in NLP extractions to be automat-
ically translated into the BioRECIPES format. One can model nested events by
creating implicit notations for hyperedges (see Fig. 2, parts (c) and (e)) but this
format is not amenable to extension, since it is difficult to add new regulators to
the hyperedge once created. The regulator notation used in the tabular format
may be difficult to interpret by human readers without additional visualization
software, especially when other logical operators are combined with nested nota-
tion. An example of such situation is illustrated in Fig. 4.

Fig. 4. Graphical representation where an edge ends in another edge instead of a node
(left), and the same interaction represented using the BioRECIPES tabular notation
(right). In this example, protein W increases the rate of dephosphorylation by phos-
phatase X. This complex interaction is represented by a bracketed notation.

To accurately model regulating nested events, we extend the graphical rep-
resentation with an intermediate node, and a new type of influence termed fixed
regulation. The intermediate node represents the biological event being modified
and is regulated by this event’s agent. This fixed regulation means that the child

488 E. W. Becker et al.

node’s value directly tracks the parent node’s value (this can be thought of as
0th order function as opposed to 1st order rate function that we see with positive
and negative regulation). Additionally, the event is also positively or negatively
regulated by the controlling event’s agent. The intermediate node can then reg-
ulate other elements in the same manner as any other node in the graph. In
the intermediate node template in Fig. 5(a), the influence of element B on the
intermediate node is of a fixed regulation type, that is, when B’s value is high,
so is the intermediate node’s value.

The proposed structure provides a few key advantages over previous represen-
tations. First, the intermediate node is compatible with all operations allowed
by the BioRECIPES format, and therefore, can be used by tools that auto-
matically extend models from literature, such as the method presented in [18].
Second, intermediate nodes are highly amenable to extension. Special cases of
regulating nested events often occur when the regulated event is underspecified,
that is, when the regulated event is missing either an agentive or affected role.
Here, we propose mappings that maximize the information conserved and allow
for additional information about the interaction to be added at a later time.

3.2 Underspecified Nested Events

We list here several types of underspecified nested events. The first type occurs
when the modified event is missing an affected entity. An example sentence for
which this situation applies is: “A inhibits phosphorylation by B”. Though we
do not know B’s target, we can assume from the text that B acts as a kinase.
Therefore, we create an intermediate node, as shown in Fig. 5(b). Later, if we
process the sentence, “B phosphorylates C”, we can simply run a check for
existing intermediate nodes and extend our graph with node C.

Likewise, if our modified event is missing an agent, we can still include an
intermediate node as a placeholder. When an agent is introduced in later extrac-
tions, another check of existing intermediate nodes is run, and the graph is
extended, as shown in Fig. 5(c). Since an element can have multiple agents for
the same event (for example multiple kinases), multiple extensions can occur in
stages (Fig. 5(d)).

A standard event can also be extended into a nested interaction. For the
example shown in Fig. 5(e), if an extraction is given describing, “A increases the
effect of B on C”, and if we already have extracted the event “B phosphorylates
C”, we can run a check for all events involving B and C. When the phosphory-
lation is found, we can consolidate the two into a fully specified nested event.

Nested Event Representation 489

ff

ff fi

Fig. 5. Representation and extension of nested events, from machine reading output
to the BioRECIPES format. (a) An event and entity graph, similar to TRIPS logical
form (left), and the corresponding template graph for the BioRECIPES format, includ-
ing an intermediate node (right); (b) Example of an interaction missing an affected role,
extracted from “A inhibits phosphorylation by B”, and an extension with the new sen-
tence “B phosphorylates C” (new node and influence are shown in grey on the right);
(c) Example of an interaction missing an agent role, “A inhibits phosphorylation of C”,
and an extension with the same sentence as in (b); (d) Extension of the underspecified
nested event with two new sentences: “B phosphorylates C” and “X phosphorylates C”;
(e) Example of extending a simple interaction into a nested interaction, due to extraction
from “A increases the effect of B on C” or “A decreases the effect of B on C”.

490 E. W. Becker et al.

3.3 Translation Algorithm

In our main translation function (from machine reading output to the
BioRECIPES format), for each element found in the machine reading extrac-
tions we can check if that element is the affected child of an event node. If it
is, then we call a recursive function to add a new regulator to that element’s
influence set. The function to add the new influence first checks if the event mod-
ifying our target element is itself being modified. If so, then we have encountered
a regulating nested event structure. To handle this situation, we first create an
intermediate node and assign the event agent as its fixed regulator. Then, the
add-influence function is called again to add a new regulator to the influence set
of the intermediate node.

If instead our original event is not being modified, we have a standard event.
In this case, the event agent is added into the target element’s influence set.
Before this occurs however, we can also run a check on existing intermediate
nodes to determine whether we can add information to an underspecified nested
event. If we can, then we consolidate the two BioRECIPES graph structures.
The pseudocode for our translation algorithm is provided in Table 1.

Table 1. Pseudocode for the overall translation algorithm.

4 Results

We conducted several experiments to estimate the prevalence of nested events
in biological literature (specifically, focusing on cancer cells), and to evaluate
our translation algorithm. For the extraction and analysis of nested events from
papers, manual processing was done by an expert, and we also used the web API’s
provided by REACH1 and TRIPS2. The translation algorithm is implemented in
Python and run on an Intel core i7 processor. The time to translate each paper
was on the order of a few seconds.
1 http://trips.ihmc.us/parser/api.html.
2 http://agathon.sista.arizona.edu:8080/odinweb/api/nxml.

http://trips.ihmc.us/parser/api.html
http://agathon.sista.arizona.edu:8080/odinweb/api/nxml

Nested Event Representation 491

4.1 Prevalence of Nested Events

We selected from PubMed [26–33] eight highly cited papers studying cancer cells
and reviewed them manually in order to find nested events. This list of found
nested events was then compared to the number of nested event extractions pro-
cessed by the REACH and TRIPS reading engines. The selected papers provided
more than 1000 sentences to use for classification. While machine readers can
read and output orders of magnitude more sentences, this would be impractical
for a human expert reader, who could still process 1000 sentences in a relatively
reasonable amount of time (approx. 15 h).

Each regulating nested event (consisting of multiple events taken from a
single sentence) was counted as a single instance. The prevalence of nested events
in each of these papers is presented in Fig. 6(a). Both the prevalence of regulating
nested events in literature, as well as the precision and recall rates of the two
NLP readers analyzed here vary widely from paper to paper. On average however,
prevalence was recorded at 32.7%, with the lowest occurrence seen at 11%. This
suggests that a significant amount of information may be available in the form
of nested events. In Fig. 6(b), detailed prevalence data is shown for two of the
papers [24,25], including the percentage of extracted events that REACH and
TRIPS classified as nested events (regardless of accuracy).

Fig. 6. Prevalence of nested events in literature: (a) Percentage of events manually
classified as nested during a review of eight PubMed papers. Average prevalence of
nested events was found to be 32.7% (65/199); (b) Extractions captured as nested
events from two [26,27] of the eight PubMed papers, manual count gives the true
prevalence of nested events out of all sentences in each paper, while REACH and
TRIPS columns give the percentage of events extracted that were classified as nested.

When presenting the accuracy metrics of the two NLP readers, an important
distinction is to be drawn between the classification (i.e., identifying if an event
is of the type) of nested events and the capture (i.e., accurately representing the
specific semantic structure) of nested events. Both readers had high precision
when simply tasked with classifying sentences containing nested events (REACH

492 E. W. Becker et al.

had 82.4% and TRIPS had 87.3%, see Appendix Table 2). In Fig. 7(a), the cap-
ture rates of the two readers are compared graphically. The manual column gives
the breakdown of nested events (manual true positive) and non-nested events
(manual true negative), while the next two columns depict the nested extrac-
tions captured correctly (machine true positive) and those captured incorrectly
(machine false positive). The precision and recall metrics were computed assum-
ing the manual true positive and true negative classification as ground truth,
with precision computed as (machine true positive)/(machine true positive +
machine false positive) and recall computed as (machine true positive)/(manual
true positive). The two metrics, illustrated in Fig. 7(b), based on the literature
sample that we used, provide an estimate of accuracy of each reader in capturing
nested events.

TRIPS was observed to pick up on complicated syntax better and generally
had better recall, especially when simply identifying text which contained nested
events. However, both systems suffered from variable precision when capturing
the full information from the nested events. REACH performed best in situ-
ations where nested events took on a typical inhibit/activate phosphorylation
paradigm, which explains why it performed well on the second paper (whose
focus was a drug inhibiting the phosphorylation of a cancer related protein).

Fig. 7. (a) Total nested events as a fraction of all events (manual), compared to nested
event extractions from both readers. (b) Precision and recall rates for nested events
extracted from PMC1403772 (Paper 1) and PMC128294 (Paper 2) by REACH and
TRIPS/DRUM systems.

4.2 Reading Examples

We conducted further analysis of the reading output accuracy from the first
paper (PMC1403772) [26], and the following examples illustrate correct and
incorrect nested event extractions. For interpretability purposes, the serialized
output in JSON (JavaScript Object Notation) format from REACH has been
converted into a graphical format similar to TRIPS logical form. See Appendix
Tables 3, 4, 5, and 6 for full output.

Nested Event Representation 493

Entity Recognition Issue. The first example, shown in Fig. 8, demonstrates
a common situation in which phosphorylation is being catalyzed or inhibited.
REACH processes this text correctly. The TRIPS extraction demonstrates a cor-
rect chain of events (inhibition of phosphorylation) but fails to properly capture
Notch-IC as an agent due to errors in entity recognition (did not view Notch-IC
as a form of Notch). This mistake could be easily rectified by using the Text-
Tagger functionality to extend the TRIPS/DRUM ontology [24].

Fig. 8. (a) The sentence processed through machine reading, (b) REACH output in
graphical form, and (c) the logical form of TRIPS output.

Underspecified Nested Event Example. In the example shown in Fig. 9,
while AKT can most likely be thought of as a direct, negative regulator of
GSK3β, the extraction still captures all relevant information without making
unnecessary assumptions. Both readers successfully extract this event. This is
an underspecified nested event, since no agent is assigned to transcription. Once
converted to BioRECIPES format, an agent could be added at a later time.

Complex Syntax Issue. As observed in Valenzuela-Escárcega et al. [14], mis-
translating complex syntax is the most common error made by the REACH
system. For the example shown in Fig. 10, while REACH picks up on the inner
event consisting of GSK3β phosphorylating N-IC, it also mistakenly detects that
GSK3 regulates the phosphorylation event as well. TRIPS, on the other hand,
can pick up on this complex example correctly, assuming that the term N-IC is
changed to Notch.

4.3 Translation of Examples

For the examples in Fig. 8 and Fig. 9, the corresponding graphical representation
including the intermediate node is shown in Fig. 11. The third “complex syntax”

494 E. W. Becker et al.

Fig. 9. (a) The sentence processed through machine reading, (b) REACH output in
graphical form, and (c) the logical form of TRIPS output.

Fig. 10. (a) The sentence processed through machine reading, (b) REACH output in
graphical form, and (c) the logical form of TRIPS output.

Fig. 11. Graphical visualization of the BioRECIPES influence set for the nested event
example. (a) Here, regNode1 is the intermediate node representing the phosphoryla-
tion event. (b) In the translation of the second example, no fixed regulator of the
transcription event is present.

Nested Event Representation 495

example is not shown because it contains an event as an input, whose translation
will be addressed in our future work.

In all cases where the NLP readers correctly extracted nested events, the
reading output was converted successfully into the extended BioRECIPES for-
mat. Most of the incorrect extractions observed occurred when information was
missing from the nested event (typically the agent of the regulating event), mean-
ing conversion to the BioRECIPES format would not introduce false information
into the model. This observation was supported by both readers’ high precision
in classifying nested events. In other words, it is unlikely that a sentence not
containing a nested event type would be extracted as one. REACH and TRIPS
both were found to capture nested events that the other did not, suggesting that
the two could be used in a complementary fashion to maximize the collected
useful information.

Often a researcher uses nested events to refer to indirect interactions between
elements in the model. For example, when the authors in [27] mention, “serum-
stimulated phosphorylation of p70S6K and 4EBP1,” the element “serum,” may
not directly interact with the kinases of the mentioned proteins, but instead
promote the pathway leading to the phosphorylation event. A future direction
for this work could be to investigate methods of resolving these “causal short-
circuits” by favoring direct interactions over those of intermediate nodes in the
model. Using a standardized data structure creates opportunities for other graph
analysis techniques such as clustering and network embedding [34], which will
also be explored in future work.

Representing these second order interactions as a cascade of two first order
events also provides the opportunity to simulate system dynamics more accu-
rately. If intermediate nodes were simulated in the executable model like a nor-
mal element, its activation level over time could represent the “strength” of
interaction between the nodes that it connects.

5 Conclusion

In this paper, we presented our work on a new data structure that can be used
to extend the BioRECIPES representation format, and which enables biological
nested events to be efficiently captured from scientific literature into models. This
modelling extension was applied to papers from the PubMed database that had
been run through TRIPS and REACH reading systems. Our results emphasize
the fact that a significant portion of events extracted from literature is of the
nested event type, all of which (when processed correctly by machine reading)
were successfully translated into the BioRECIPES format and element influence
sets. As NLP systems continue to improve, we anticipate that the number and
accuracy of extracting complex biological interactions from published literature
will keep increasing, thus highlighting the importance of efficient automated
translation of this information into models. In turn, such rapid and accurate
model evolution, will guide experts to new discoveries in disease diagnosis and
treatment.

496 E. W. Becker et al.

Acknowledgements. This work was partially supported by DARPA award W911NF-
17-1-0135, and by the Swanson School of Engineering and the Office of the Provost at
the University of Pittsburgh. The authors would like to thank Dr. Cheryl Telmer of
the Molecular Bio-sensor and Imaging Center at Carnegie Mellon University for her
constructive feedback.

Appendix

Table 2. Precision and recall rates for nested event CLASSIFICATION from
PMC1403772 (1) and PMC128294 (2) by REACH and TRIPS/DRUM systems.

REACH (1) TRIPS (1) REACH (2) TRIPS (2)

Precision 60% (3/5) 95.8% (23/24) 91.7% (11/12) 80.6% (25/31)

Recall 9.38% (3/32) 71.9% (23/32) 19.0% (11/58) 43.1% (25/58)

Table 3. Example 1 reading output from REACH: “Notch-IC expression blocks TCR-
mediated phosphorylation of Akt”.

Table 4. Example 2 reading output from REACH: “Expression of wild-type GSK3β,
which is inhibited by Akt”.

Nested Event Representation 497

Table 5. Example 3 reading output from REACH “Inactivation of GSK3β by the
Wingless pathway enhanced Notch signals by preventing inhibitory phosphorylation of
N-IC by GSK3”.

Table 6. Example 4 reading output from REACH: “Akt construct was sufficient to
potentiate the ability of pN1-IC to drive CBF1-dependent reporter”.

References

1. Shcuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathways
useful for systematic organization and analysis of complex metabolic networks.
Nat. Biotechnol. 18(3), 326–332 (2000). https://doi.org/10.1038/73786

2. Pawson, T., Scott, J.: Protein phosphorylation in signaling - 50 years and counting.
Trends Biochem. Sci. 30(6), 286–290 (2005). https://doi.org/10.1016/j.tibs.2005.
04.013

3. Shannon, P.: Cytoscape: a software environment for integrated models of biomolec-
ular interaction networks. Genome Res. 13, 2498–2504 (2003)

4. Zhou, G., Xia, J.: Using OmicsNet for network integration and 3D visualization.
Curr. Protoc. Bioinform. 65(1) (2018). https://doi.org/10.1002/cpbi.69

https://doi.org/10.1038/73786
https://doi.org/10.1016/j.tibs.2005.04.013
https://doi.org/10.1016/j.tibs.2005.04.013
https://doi.org/10.1002/cpbi.69

498 E. W. Becker et al.

5. Zhou, G., Xia, J.: OmicsNet: a web-based tool for creation and visual analysis of
biological networks in 3D space. Nucleic Acids Res. 46(1) (2018). https://doi.org/
10.1093/nar/gky510

6. Fabregat, A., et al.: The reactome pathway knowledgebase. Nucleic Acids Res.
46(1), D649–D655 (2017)

7. Szklarczyk, D., et al.: STRING v10: protein-protein interaction networks, inte-
grated over the tree of life. Nucleic Acids Res. 43(1), D447–D452 (2014)

8. Hucka, M., et al.: The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524–531 (2003)

9. Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter,
P.J.: An overview of CellML 1.1, a biological model description language. Simula-
tion 79, 740–747 (2003)

10. Harris, L.A., et al.: BioNetGen 2.2: advances in rule-based modeling. Bioinformat-
ics 32, 3366–3368 (2016)

11. Boutillier, P., et al.: The Kappa platform for rule-based modeling. Bioinformatics
34(13), i583–i592 (2018). https://doi.org/10.1093/bioinformatics/bty272

12. Albert, R., Wang, R.S.: Discrete dynamic modeling of cellular signaling networks.
Methods Enzymol. 467, 281–306 (2009)

13. Cambria, E., White, B.: Jumping NLP curves: a review of natural language pro-
cessing research. IEEE Comput. Intell. Mag. 9, 48–57 (2014)

14. Valenzuela-Escárcega, M.A., et al.: Large-scale automated machine reading discov-
ers new cancer-driving mechanisms. Database 2018 (2018). bay098, https://doi.
org/10.1093/database/bay098

15. Allen, J.F., Teng, C.M.: Broad coverage, domain-generic, deep semantic parsing.
In: AAAI Workshop on Construction Grammars, Stanford, CA (2017)

16. Lopez, C.F., Muhlich, J.L., Bachman, J.A., Sorger, P.K.: Programming biological
models in Python using PySB. Mol. Syst. Biol. 9, 646–646 (2014)

17. Sayed, K., Kuo, Y.-H., Kulkarni, A., Miskov-Zivanov, N.: DiSH simulator: captur-
ing dynamics of cellular signaling with heterogeneous knowledge. In: 2017 Winter
Simulation Conference (2017)

18. Sayed, K., Bocan, K.N., Miskov-Zivanov, N.: Automated extension of cell signaling
models with genetic algorithm. In: 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology (2018). https://doi.org/10.1109/embc.
2018.8513431

19. Sayed, K., Telmer, C.A., Butchy, A.A., Miskov-Zivanov, N.: Recipes for translating
big data machine reading to executable cellular signaling models. In: Nicosia, G.,
Pardalos, P., Giuffrida, G., Umeton, R. (eds.) MOD 2017. LNCS, vol. 10710, pp.
1–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72926-8 1

20. Sayed, K., Telmer, C.A., Miskov-Zivanov, N.: Motif modeling for cell signaling
networks. In: 8th Cairo International Biomedical Engineering Conference, Cairo
(2016)

21. Miskov-Zivanov, N., Marculescu, D., Faeder, J.R.: Dynamic behavior of cell signal-
ing networks. In: Proceedings of the 50th Annual Design Automation Conference
(2013). https://doi.org/10.1145/2463209.2488743

22. Miskov-Zivanov, N.: Automation of biological model learning, design and analysis.
In: Proceedings of the 25th Edition on Great Lakes Symposium on VLSI (2015).
https://doi.org/10.1145/2742060.2743765

23. Klamt, S., Haus, U., Theis, F.: Hypergraphs and cellular networks. PLoS Comput.
Biol. 5(5) (2009). https://doi.org/10.1371/journal.pcbi.1000385

https://doi.org/10.1093/nar/gky510
https://doi.org/10.1093/nar/gky510
https://doi.org/10.1093/bioinformatics/bty272
https://doi.org/10.1093/database/bay098
https://doi.org/10.1093/database/bay098
https://doi.org/10.1109/embc.2018.8513431
https://doi.org/10.1109/embc.2018.8513431
https://doi.org/10.1007/978-3-319-72926-8_1
https://doi.org/10.1145/2463209.2488743
https://doi.org/10.1145/2742060.2743765
https://doi.org/10.1371/journal.pcbi.1000385

Nested Event Representation 499

24. Allen, J.F., Bahkshandeh, O., de Beaumont, W., Galescu, L., Teng, C.M.: Effective
broad-coverage deep parsing. In: Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, LA (2018)

25. Valenzuela-Escárcega, M.A., Hahn-Powell, G., Surdeanu, M., Hicks, T.: A domain-
independent rule-based framework for event extraction. In: Proceedings of ACL-
IJCNLP 2015 System Demonstrations (2015). https://doi.org/10.3115/v1/p15-
4022

26. Mckenzie, G., et al.: Cellular Notch responsiveness is defined by phosphoinositide
3-kinase-dependent signals. BMC Cell Biol. 7(1), 10 (2006). https://doi.org/10.
1186/1471-2121-7-10

27. Tichelaar, J.W., Zhang, Y., Leriche, J.C., Biddinger, P.W., Lam, S., Ander-
son, M.W.: Increased staining for phospho-Akt, p65/RELA and cIAP-2 in pre-
neoplastic human bronchial biopsies. BMC Cancer 5(1), 1–13 (2005)

28. Westphal, S., Kalthoff, H.: Apoptosis: targets in pancreatic cancer. Mol. Cancer
2(6), 6 (2003)

29. Pym, A.S., Saint-Joanis, B., Cole, S.T.: Effect of katG mutations on the virulence
of myco-bacterium tuberculosis and the implication for transmission in humans.
Infect. Immun. 70, 4955–4960 (2002)

30. Bockstaele, L., Coulonval, K., Kooken, H., Paternot, S., Roger, P.P.: Regulation
of CDK4. Cell Div. 1(25) (2006)

31. Peiro, S.: Snail1 transcriptional repressor binds to its own promoter and controls
its expression. Nucleic Acids Res. 34, 2077–2084 (2006)

32. Salvioli, S., Sikora, E., Cooper, E.L., Franceschi, C.: Curcumin in cell death pro-
cesses: a challenge for CAM of age-related pathologies. Evid.-Based Complement.
Altern. Med. 4, 181–190 (2007)

33. Miakotina, O.L., Goss, K.L., Snyder, J.M.: Insulin utilizes the PI 3-kinase pathway
to inhibit SP-A gene expression in lung epithelial cells. Respir. Res. 3, 26 (2002)

34. Pavlopoulos, G.A., et al.: Using graph theory to analyze biological networks. Bio-
Data Mining 4(1) (2011). https://doi.org/10.1186/1756-0381-4-10

https://doi.org/10.3115/v1/p15-4022
https://doi.org/10.3115/v1/p15-4022
https://doi.org/10.1186/1471-2121-7-10
https://doi.org/10.1186/1471-2121-7-10
https://doi.org/10.1186/1756-0381-4-10

TAPAS 2019 - 10th Workshop on Tools
for Automatic Program Analysis

TAPAS 2019 Organizers’ Message

This volume contains the post-proceedings of the Tenth Workshop on Tools for
Automatic Program AnalysiS (TAPAS 2019), held on 8 October 2019 in Porto, Por-
tugal, as part of the Third World Congress on Formal Methods.

The series of Workshops on Tools for Automatic Program AnalysiS are intended to
promote discussions and exchanges of experience between users of static analysis
tools, and specialists in all areas of program analysis design and implementation.
Previous workshops were held in Perpignan, Venice, Deauville, Seattle, Munich, Saint-
Malo, Edinburgh, New York, and Freiburg.

The Program Committee (PC) received 16 submissions by authors from 12
countries. Each paper was evaluated using a multi-phase review process. In the first
phase, each paper received independent reviews from 3 PC members. Then, a meta-
review was supervised by the PC chair, to reach a consensus. 7 submissions were
accepted for presentation:

– PrideMM: Second Order Model Checking for Memory Consistency Models, by
Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore and Mikolas Janota;

– fkcc: the Farkas Calculator, by Christophe Alias;
– Experiments in Context-Sensitive Incremental and Modular Static Analysis in

CiaoPP (Extended Abstract), by Isabel Garcia-Contreras, Jose F. Morales and
Manuel V. Hermenegildo;

– Boost the Impact of Continuous Formal Verification in Industry, by Felipe R.
Monteiro, Mikhail R. Gadelha and Lucas Cordeiro;

– Handling Heap Data Structures in Backward Symbolic Execution, by Robert
Husák, Jan Kofron and Filip Zavoral;

– AuthCheck: Program-state Analysis for Access-control Vulnerabilities, by Goran
Piskachev, Tobias Petrasch, Johannes Späth and Eric Bodden;

– Leveraging Highly Automated Theorem Proving for Certification, by Deni Raco,
Bernhard Rumpe and Sebastian Stüber.

The authors additionally notified whether their submission was also accepted for
publication as part of the current post-proceedings, or whether it needed to be signif-
icantly updated, or resubmitted.

In addition, the program also featured 3 invited talks, shared with the 8th Inter-
national Workshop on Numerical and Symbolic Abstract Domains (NSAD 2019):

– Transforming Development Processes of Avionics Software with Formal Methods,
by Pascal Lacabanne (Airbus, France);

– Establishing Sound Static Analysis for Integration Verification of Large-Scale
Software in Automotive Industry by Bernard Schmidt (Bosch, Germany);

– Some thoughts on the design of abstract domains, by Enea Zaffanella (University of
Parma, Italy).

Finally, revised versions of some of the presented papers were submitted after the
workshop, and the reviews of the PC were updated accordingly. These post-

proceedings enclose the four regular contributions to TAPAS 2019 selected for formal
publication, as well as the abstracts of two invited talks. The abstract of the third invited
talk may be found in the post-proceedings of NSAD 2019.

We would like to thank everyone involved in the organization of the workshop. We
are very thankful for the members of the Program Committee for their evaluation work,
and for all the discussions on the organization of the event. We would like to give a
particular acknowledgment to the Organizing Committees of the FM Week and the
Static Analysis Symposium (SAS), in particular José Nuno Oliveira (FM General
Chair), Nelma Moreira and Emil Sekerinski (FM Workshop and Tutorial Chairs), Bor-
Yuh Evan Chang (SAS PC Chair), and Antoine Miné (SAS PC member), for their great
support to the organization of satellite events such as TAPAS 2019. We would also like
to thank Patrick Cousot for giving us the opportunity to organize TAPAS 2019.

Finally, we would also like to thank the authors and the invited speakers for their
contributions to the program of TAPAS 2019, as well as Springer for publishing these
post-proceedings.

December 2019 David Delmas

Organization

Program Committee Chair

David Delmas Airbus, France

Steering Committee

Bor-Yuh Evan Chang University of Colorado Boulder, USA
Francesco Logozzo Facebook, USA
Anders Moeller Aahrus University, Denmark
Xavier Rival Inria, France

Program Committee

Fausto Spoto Università di Verona, Italy
Caterina Urban Inria, France
Franck Vedrine CEA LIST, France
Jules Villard Facebook, UK
Jingling Xue University of New South Wales, Australia
Tomofumi Yuki Inria, France
Sarah Zennou Airbus, France

TAPAS 2019 Organizers’ Message 503

Invited Talks

Transforming Development Processes
of Avionics Software with Formal Methods

Pascal Lacabanne

Airbus Operations S.A.S., 316 route de Bayonne, 31060 Toulouse Cedex 9,
France

Pascal.Lacabanne@airbus.com

Abstract. The safety and correctness of of avionics software products is para-
mount, especially for safety-critical software. It is thus developed against
stringent international regulations (DO-178). Nonetheless, the size and com-
plexity of avionics software products have grown exponentially in the four last
decades. Legacy methods, based on informal designs, testing and intellectual
analysis, have been shown to scale poorly, as opposed to some formal tech-
niques. Airbus have therefore been transforming the development processes of
avionics software, taking advantage from sound formal formal methods to
preserve safety, while improving cost-efficiency. The talk will report on this
transformation.

Establishing Sound Static Analysis
for Integration Verification of Large-Scale

Software in Automotive Industry

Bernard Schmidt

Robert Bosch GmbH, Renningen, 70465 Stuttgart, Germany
Bernard.Schmidt@de.bosch.com

Abstract. Safety-critical embedded software has to satisfy stringent quality
requirements. For example, one such requirement, imposed by the relevant
safety standard (ISO26262), is that no critical run-time errors must occur. In the
last years, we introduced sound static analysis methods and tools in the
development process for large-scale software with several million lines of code.
They are used to prove highly automated the absence of run-time errors espe-
cially caused by integration. The talk will report on this experience and give an
outlook about future challenges.

PrideMM: Second Order Model Checking
for Memory Consistency Models

Simon Cooksey1(B), Sarah Harris1, Mark Batty1, Radu Grigore1,
and Mikoláš Janota2

1 University of Kent, Canterbury, UK
{sjc205,seh53,mjb211,rg399}@kent.ac.uk

2 IST/INESC-ID, University of Lisbon, Lisbon, Portugal

Abstract. We present PrideMM, an efficient model checker for second-
order logic enabled by recent breakthroughs in quantified satisfiability
solvers. We argue that second-order logic sits at a sweet spot: constrained
enough to enable practical solving, yet expressive enough to cover an
important class of problems not amenable to (non-quantified) satisfiabil-
ity solvers. To the best of our knowledge PrideMM is the first automated
model checker for second-order logic formulae.

We demonstrate the usefulness of PrideMM by applying it to prob-
lems drawn from recent work on memory specifications, which define
the allowed executions of concurrent programs. For traditional memory
specifications, program executions can be evaluated using a satisfiabil-
ity solver or using equally powerful ad hoc techniques. However, such
techniques are insufficient for handling some emerging memory specifi-
cations.

We evaluate PrideMM by implementing a variety of memory specifi-
cations, including one that cannot be handled by satisfiability solvers. In
this problem domain, PrideMM provides usable automation, enabling a
modify-execute-evaluate pattern of development where previously man-
ual proof was required.

1 Introduction

This paper presents PrideMM, an efficient model checker for second-order (SO)
logic. PrideMM is used to automatically evaluate tests under the intricate mem-
ory specifications1 of aggressively optimised concurrent languages, where no
automated solution currently exists, and it is compared to existing tools over
a simpler class of memory specifications.

We argue that SO logic is a sweet spot: restrictive enough to enable efficient
solving, yet expressive enough to extend automation to a new class of memory
specifications that seek to solve open problems in concurrent language design.
PrideMM enables a modify-execute-evaluate pattern of memory-specification
development, where changes are quickly implemented and automatically tested.
1 The paper uses the term ‘memory specification’ instead of ‘memory (consistency)

model’, and reserves the word ‘model’ for its meaning from logic.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 507–525, 2020.
https://doi.org/10.1007/978-3-030-54997-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_31

508 S. Cooksey et al.

Memory specifications define what values may be read in a concurrent
system. Current evaluators rely on ad hoc algorithms [3,6,14] or satisfiabil-
ity (SAT) solvers [40]. However, flaws in existing language memory specifica-
tions [5]—where one must account for executions introduced through aggressive
optimisation—have led to a new class of memory specifications [20,22] that can-
not be practically solved using existing ad hoc or SAT techniques.

Many memory specifications are definable in ∃SO in a natural way and one
can simulate them using SAT solvers. We demonstrate this facility of PrideMM
for a realistic C++ memory specification [24], reproducing previous results
[39,40]. But, some memory specifications are naturally formulated in higher-
order logic. For example, the Jeffrey-Riely specification (J+R) comes with a
formalisation, in the proof assistant Agda [11], that clearly uses higher-order
features [20]. We observed that the problem of checking whether a program exe-
cution is allowed by J+R can be reduced to the model checking problem for SO.
From a program execution, one obtains an SO structure A on an universe of
size n, and then one asks whether A |= JRn, where

JRn := ∃X
(
TCn(AeJn)(∅,X) ∧ F(X)

)

AeJn(P,Q) :=

⎧
⎨

⎩

sub1(P,Q) ∧ V(P) ∧ V(Q) ∧
∀X

(
TCn(AJ)(P,X) → ∃Y

(
TCn(AJ)(X,Y) ∧ J(Y,Q)

))

We will define precisely these formulae later (Sect. 5.4). For now, observe that
the formula JRn is in ∃∀∃SO. In practice, this means that it is not possible to use
SAT solvers, as that would involve an exponential explosion. That motivates our
development of an SO model checker. It is known that SO captures the polyno-
mial hierarchy [27, Corollary 9.9], and the canonical problem for the polynomial
hierarchy is quantified satisfiability. Hence, we built our SO model checker on
top of a quantified satisfiability solver (QBF solver), QFUN [17].

The contributions of our work are as follows:

1. we present a model checker for SO, built on top of QBF solvers;
2. we reproduce known simulation results for traditional memory specifications;
3. we simulate a memory specification (J+R) that is a representative of a class

of memory specifications that are out of the reach of traditional simulation
techniques.

2 Overview

Figure 1 shows the architecture of our memory-specification simulator. The input
is a litmus test written in the LISA language, and the output is a boolean
result. LISA is a programming language that was designed for studying memory
specifications [1]. We use LISA for its compatibility with the state-of-the-art
memory-specification checker Herd7 [3]. We transform the input program into
an event structure [41]. The memory-specification generator (MSG) produces an
SO formula. We have a few interchangeable MSGs (Sect. 5). For some memory

PrideMM: Second Order Model Checking for Memory Consistency Models 509

specifications (Sect. 5.1, Sect. 5.2, Sect. 5.3), which Herd7 can handle as well, the
formula is in fact fixed and does not depend at all on the event structure. For
other memory specifications (such as Sect. 5.4), the MSG might need to look
at certain characteristics of the structure (such as its size). Finally, both the
second-order structure and the second-order formula are fed into a solver, giving
a verdict for the litmus test.

LISA AST
Event

Structure

Formula
(φ)

Structure
(A)

SO Solver Result (B)
Parse

MSG

Convertor

Fig. 1. From a LISA test case to a Y/N answer, given by the SO solver.

We are able to do so because of a key insight: relational second-order logic
represents a sweet-spot in the design space. On the one hand, it is expressive
enough such that encoding memory specifications is natural. On the other hand,
it is simple enough such that it can be solved efficiently, using emerging QBF
technology.

2.1 Memory Specifications

A memory specification describes the executions allowed by a shared-memory
concurrent system; for example, under sequential consistency (SC) [25] mem-
ory accesses from all threads are interleaved and reads take their value from
the most recent write of the same variable. Processor speculation, memory-
subsystem reordering and compiler optimisations lead mainstream languages and
processors to violate SC, and we say such systems exhibit relaxed concurrency.
Relaxed concurrency is commonly described in an axiomatic specification (e.g.
SC, ARM, Power, x86, C++ specifications [3]), where each program execution
is represented as a graph with memory accesses as vertices, and edges represent-
ing program structure and dynamic memory behaviour. A set of axioms permit
some execution graphs and forbid others.

Figure 2 presents a litmus test—a succinct pseudocode program designed to
probe for a particular relaxed behaviour—together with an execution graph and
an axiom. We shall discuss each in turn.

The test, called LB+ctrl, starts with x and y initialised to 0, then two threads
concurrently read and conditionally write 1 back to their respective variables.
The outcome r1 = 1 ∧ r2 = 1 (1/1) is unintuitive, and it cannot result from SC:
there is no interleaving that agrees with the program order and places the writes
of 1 before the reads for both x and y.

In an axiomatic specification, the outcome specified by the test corresponds
to the execution graph shown in Fig. 2. Initialisation is elided, but the read and

510 S. Cooksey et al.

a: Rx 1

b: W y 1

c: R y 1

d: W x 1

rf

rf
po po

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
r1 == 1, r2 == 1 allowed?

acyclic(po ∪ rf)

Fig. 2. LB+ctrl, an axiomatic execution of it, and an axiom that forbids it.

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
else

{x = 1}
r1 == 1, r2 == 1 allowed?

Init

Rx 0
a

Rx 1
b

W y 1
c

R y 0
d

W x 1
e

R y 1
f

W x 1
g

Fig. 3. LB+false-dep and the corresponding event structure.

write of each thread is shown with po edges reflecting program order and rf
edges linking writes to reads that read from them. The axiom of Fig. 2 forbids
the outcome 1/1 as the corresponding execution contains a cycle in po ∪ rf . The
SC, x86, Power and ARM specifications each include a variant of this axiom, all
forbidding 1/1, whereas the C++ standard omits it [6] and allows 1/1.

MemSAT [39] and Herd7 [3] automatically solve litmus tests for axiomatic
specifications using a SAT solver and ad hoc solving respectively, but not all
memory specifications fit the axiomatic paradigm.

Axiomatic Specifications Do Not Fit Optimised Languages. Languages like C++
and Java perform dependency-removing optimisations that complicate their
memory specifications. For example, the second thread of the LB+false-dep test
in Fig. 3 can be optimised using common subexpression elimination to r2 = y;
x = 1;. On ARM and Power, this optimised code may be reordered, permit-
ting the relaxed outcome 1/1, whereas the syntactic control dependency of the
original would make 1/1 forbidden. It is common practice to use syntactic depen-
dencies to enforce ordering on hardware, but at the language level the optimiser
removes these false dependencies.

The memory specification of the C++ standard [15] is flawed because its
axiomatic specification cannot draw a distinction between the executions leading
to outcome 1/1 in LB+ctrl and LB+false-dep: to see that the dependency is false,
one must consider more than one execution path, but axiomatic specifications
judge single executions only [5].

Event Structures Capture the Necessary Information. A new class of specifica-
tions aims to fix this by ordering only real dependencies [12,20,22,31]. With a
notable exception [22], these specifications are based on event structures, where
all paths of control flow are represented in a single graph. Figure 3 presents the

PrideMM: Second Order Model Checking for Memory Consistency Models 511

event structure for LB+false-dep. Program order is represented by arrows ().
Conflict () links events where only one can occur in an execution (the same
holds for their program-order successors). For example, on the left-hand thread,
the load of x can result in a read of value 0 (event a) or a read of value 1 (event b),
but not both. Conversely, two subgraphs unrelated by program-order or conflict,
e.g. {a, b, c} and {d, e, f, g}, represent two threads in parallel execution.

It should be clear from the event structure in Fig. 3 that regardless of the
value read from y in the right-hand thread, there is a write to x of value 1; that is,
the apparent dependency from the load of y is false and could be optimised away.
Memory specifications built above event structures can recognise this pattern
and permit relaxed execution.

The Jeffrey and Riely Specification. J+R is built above event structures and cor-
rectly identifies false dependencies [20]. Conceptually, the specification is related
to the Java memory specification [29]: in both, one constructs an execution step-
wise, adding only memory events that can be justified from the previous steps.
The sequence captures a causal order that prevents cycles with real dependen-
cies. While Java is too strong, J+R allows writes that have false dependencies
on a read to be justified before that read. To do this, the specification recognises
confluence in the program structure: regardless of the execution path, the write
will always be made. This search across execution paths involves an alterna-
tion of quantification that current ad hoc and SAT-based tools cannot efficiently
simulate. However, the problem is amenable to QBF solvers.

2.2 Developing SC in SO Logic

The SC memory specification can be expressed as an axiomatic model [3] using
coherence order, a per-variable total order of write events. An execution is allowed
if there exists a reads-from relation rf and a coherence order co such that the tran-
sitive closure of rf ∪ co ∪ (rf −1; co)∪po is acyclic. Here, po is the (fixed) program-
order relation, and it is understood that co and rf satisfy certain further axioms.
In our setting, we describe the sequentially consistent specification as follows. We
represent rf and co by existentially-quantified SO arity-2 variables Yrf and Yco ,
respectively. For example, to say (x, y) ∈ co, we use the formula Yco(x, y). The
program order po is represented by an interpreted arity-2 symbol <. Then, the SO
formula that represents rf ∪ co ∪ (rf −1; co) ∪ po is

R(y, z) := Yrf (y, z) ∨ Yco(y, z) ∨ ∃x
(
Yrf (x, z) ∧ Yco(x, y)

) ∨ (y < z)

The definition from above should be interpreted as a macro expansion rule: the
left-hand side R(y, z) is a combinator that expands to the formula on right-hand
side. To require that the transitive closure of R is acyclic we require that there
exists a relation that includes R, is transitive, and irreflexive:

∃Z
(
sub2(R, Z) ∧ trans(Z) ∧ irrefl(Z)

)

512 S. Cooksey et al.

The combinators sub2, trans, irrefl are defined as one would expect. For example,
sub2(P,Q), which says that the arity-2 relation P is included in the arity-2
relation Q, is ∀xy

(
P (x, y) → Q(x, y)

)
. In short, the translation from the usual

formulation of memory specifications into the SO logic encoding that we propose
is natural and almost automatic.

To represent programs and their behaviours uniformly for all memory specifi-
cations in Sect. 5, we use event structures. These have the ability to represent an
overlay of potential executions. Some memory specifications require reasoning
about several executions at the same time: this is a salient feature of the J+R
memory specification.

Once we have the program and its behaviour represented as a logic struc-
ture A and the memory specification represented as a logic formula φ, we ask
whether the structure satisfies the formula, written A |= φ. In other words, we
have to solve a model-checking problem for second-order logic, which reduces to
QBF solving because the structure A is finite.

3 Preliminaries

To introduce the necessary notation, we recall some standard definitions [27]. A
(finite, relational) vocabulary σ is a finite collection of constant symbols (1, . . . , n)
together with a finite collection of relation symbols (q, r, . . .). A (finite, relational)
structure A over vocabulary σ is a tuple 〈A,Q,R, . . . 〉 where A = {1, . . . , n} is a
finite set called universe with several distinguished relations Q,R, . . . We assume
a countable set of first-order variables (x, y, . . .), and a countable set of second-
order variables (X, Y , . . .). A variable α is a first-order variable or a second-order
variable; a term t is a first-order variable or a constant symbol; a predicate P is a
second-order variable or a relation symbol. A (second-order) formula φ is defined
inductively: (a) if P is a predicate and t1, . . . , tk are terms, then P (t1, . . . , tk) is
a formula2; (b) if φ1 and φ2 are formulae, then φ1 ◦ φ2 is a formula, where ◦ is
a boolean connective; and (c) if α is a variable and φ is a formula, then ∃α φ
and ∀α φ are formulae. We assume the standard satisfaction relation |= between
structures and formulae.

The logic defined so far is known as relational SO. If we require that all
quantifiers over second-order variables are existentials, we obtain a fragment
known as ∃SO. For example, the SC specification of Sect. 2.2 is in ∃SO.

The Model Checking Problem. Given a structure A and a formula φ, determine
if A |= φ. We assume that the relations of A are given by explicitly listing their
elements. The formula φ uses the syntax defined above.

Combinators. We will build formulae using the combinators defined below. This
simplifies the presentation, and directly corresponds to an API for building for-
mulae within PrideMM.

2 We make the usual assumptions about arity.

PrideMM: Second Order Model Checking for Memory Consistency Models 513

subk(P k, Qk) := ∀�x
(
P k(�x) → Qk(�x)

)
id(x, y) := (x = y)

eqk(P k, Qk) := ∀�x
(
P k(�x) ↔ Qk(�x)

)
inv(P 2)(x, y) := P 2(y, x)

seq(P 2, Q2)(x, z) := ∃y
(
P 2(x, y) ∧ Q2(y, z)

)
irrefl(P 2) := ∀x ¬P 2(x, x)

inj(P 2) := sub2
(
seq(P 2, inv(P 2)), id

)
or(R, S)(x, y) := R(x, y) ∨ S(x, y)

trans(P 2) := sub2
(
seq(P 2, P 2), P 2

)
maybe(R)(x, y) := or(id,R)(x, y)

acyclic(P 2) := ∃X2
(
sub2(P 2, X2) ∧ trans(X2) ∧ irrefl(X2)

)

TC0(R) := eq1

TCn+1(R)(P 1, Q1) := eq1(P 1, Q1) ∨ ∃X1
(
R(P 1, X1) ∧ TCn(R)(X1, Q1)

)

By convention, all quantifiers that occur on the right-hand side of the definitions
above are over fresh variables. Above, P k and Qk are arity-k predicates, x and y
are first-order variables, and R and S are combinators.

Let us discuss two of the more interesting combinators: acyclic and TC. A
relation P is acyclic if it is included in a relation that is transitive and irreflexive.
We remark that the definition of acyclic is carefully chosen: even slight variations
can have a strong influence on the runtime of solvers [18]. The combinator TC
for bounded transitive closure is interesting for another reason: it is higher-
order—applying an argument (R) relation in each step of its expansion. By way
of example, let us illustrate its application to the subset combinator sub1.

TC1(sub1)(P, Q)

= eq1(P, Q) ∨ ∃X
(
sub1(P, X) ∧ TC0(sub1)(X, Q)

)

=

{ ∀x1

(
P (x1) ↔ Q(x1)

)∨
∃X

(∀x2

(
P (x2) → X(x2)

) ∧ eq1(X, Q)
)

=

{
∀x1

(
P (x1) ↔ Q(x1)

)∨
∃X

(∀x2

(
P (x2) → X(x2)

) ∧ ∀x3

(
X(x3) ↔ Q(x3)

))

In the calculation above, P , Q and X have arity 1.

4 So Solving Through QBF

From a reasoning perspective, SO model-checking is a highly non-trivial task
due to quantifiers. In particular, quantifiers over relations, where the size of the
search-space alone is daunting. For a universe of size n there are 2n2

possible
binary relations, and there are 2nk

possible k-ary relations.3

A relation is uniquely characterised by a vector of Boolean values, each deter-
mining whether a certain tuple is in the relation or not. This insight lets us for-
mulate a search for a relation as a SAT problem, where a fresh Boolean variable
is introduced for any potential tuple in the relation. Even though the translation
is exponential, it is a popular method in finite-model finding for first-order logic
formulae [13,33,38].

3 Finding constrained finite relations is NEXP-TIME complete [26].

514 S. Cooksey et al.

However, in the setting of SO, a SAT solver is insufficient since the input
formula may contain alternating quantifiers. We tackle this issue by translating
to quantified Boolean formulae (QBF), rather than to plain SAT. The translation
is carried out in three stages.

1. each interpreted relation is in-lined as a disjunction of conjunctions over the
tuples where the relation holds;

2. first-order quantifiers are expanded into Boolean connectives over the ele-
ments of the universe, i.e. ∀xφ leads to one conjunct for each element of the
universe and ∃xφ leads to one disjunct for each element of the universe;

3. all atoms now are ground and each atom is replaced by a fresh Boolean
variable, which is inserted under the same type of quantifier as the atom.

For illustration, consider the formula ∃X∀Y ∀z
(
Y (z) → X(z)

)
and the

universe A = {1, 2}. The formula requires a set X that is a superset of
all sets. Inevitably, X has to be the whole domain. The QBF formulation is
∃x1x2∀y1y2

(
(y1 → x1

) ∧ (
y2 → x2)

)
. Intuitively, rather than talking about a set,

we focus on each element separately, which is enabled by the finiteness of the
universe. Using QBF enables us to arbitrarily quantify over the sets’ elements.

PrideMM enables exporting the QBF formulation into the QCIR format [21],
which is supported by a bevy of QBF solvers. However, since most solvers only
support prenex form, PrideMM, also additionally prenexes the formula, where
it attempts to heuristically minimise the number of quantifier levels.

The experimental evaluation showed that the QFUN solver [17] performs
the best on the considered instances, see Sect. 6. While the solver performs very
well on the J+R litmus tests, a couple of instances were left unsolved. Encour-
aged by the success of QFUN, we built a dedicated solver that integrates the
translation to QBF and the solving itself. The solver represents the formula in
dedicated hash-consed data structures (the formulae grow in size considerably).
The expansion of first-order variables is done directly on these data structures
while also simplifying the formula on the go. The solver also directly supports
non-prenex formulation (see [19] for non-prenex QBF solving). The solver applies
several preprocessing techniques before expanding the first-order variables, such
as elimination of relations that appear only in positive or only in negative posi-
tions in the formula.

5 Memory Specification Encodings

In this section, we show that many memory specifications can be expressed con-
veniently in second-order logic. We represent programs and their behaviours
with event structures: this supports the expression of axiomatic specifications
such as C++, but also the higher-order specification of J+R. For a given pro-
gram, its event structure is constructed in a straightforward way: loads give rise
to mutually conflicting read events and writes to write events [20]. We express
the constraints over event structures with the following vocabulary, shared across
all specifications.

PrideMM: Second Order Model Checking for Memory Consistency Models 515

Vocabulary. A memory specification decides if a program is allowed to have a
certain behaviour. We pose this as a model checking problem, A |= φ, where A
captures program behaviour and φ the memory specification. The vocabulary
of A consists of the following symbols:

– arity 1:read, write, final
– arity 2: ≤, conflict, justifies, sloc, =

Sets read and write classify read and write events. The symbol final, another
set of events, identifies the executions that exhibit final register states matching
the outcome specified by the litmus test.

Events x and y are in program order, written x ≤ y, if event x arises from an
earlier statement than y in the program text. We have conflict(x, y) between
events that cannot belong to the same execution; for example, a load state-
ment gives rise to an event for each value it might read, but an execution
chooses one particular value, and contains only the corresponding event. We
write justifies(x, y) when x is a read and y is a write to the same memory
location of the same value. We have sloc(x, y) when x and y access the same
memory location. Identity on events, { (x, x) | x ∈ A }, is denoted by =.

Configurations and Executions. We distinguish two types of sets of events. A
configuration is a set of events that contains no conflict and is downward closed
with respect to ≤; that is, X is a configuration when V(X) holds, where the
V combinator is defined by

V(X) :=

⎧
⎪⎨

⎪⎩

∀x∀y
((

X(x) ∧ X(y)
) → ¬conflict(x, y)

)

∧ ∀y
(
X(y) → ∀x

(
(x ≤ y) → X(x)

))

We say that a configuration X is an execution of interest when every final
event is either in X or in conflict with an event in X; that is, X is an execution
of interest when F(X) holds, where the F combinator is defined by

F(X) := V(X) ∧ ∀x

((
final(x) ∧ ¬X(x)

) →
∃y

(
conflict(x, y) ∧ final(y) ∧ X(y)

)

)

Intuitively, we shall put in final all the maximal events (according to ≤) for
which registers have the desired values.

Notations. In the formulae below, X will stand for a configuration, which may be
the execution of interest. Variables Yrf , Yco , Yhb and so on are used to represent
the relations that are typically denoted by rf , co, hb, . . . Thus, X has arity 1,
while Yrf , Yco , Yhb , . . . have arity 2.

In what follows, we present four memory specifications: sequential consistency
(Sect. 5.1), release–acquire (Sect. 5.2), C++ (Sect. 5.3), and J+R (Sect. 5.4). The
first three can be expressed in ∃SO (and in first-order logic). The last one uses
both universal and existential quantification over sets. For each memory specifi-
cation, we shall see their encoding in second-order logic.

516 S. Cooksey et al.

5.1 Sequential Consistency

The SC specification allows all interleavings of threads, and nothing else. It is
described by the following SO sentence:

SC := ∃XYcoYrf

(
F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(R(Yco ,Yrf))

)

Intuitively, we say that there exists a coherence order relation Yco and a reads-
from relation Yrf which, when combined in a certain way, result in an acyclic
relation R(Yco ,Yrf). The formula co(X,Yco) says that Yco satisfies the usual
axioms of a coherence order with respect to the execution X; and the formula
rf(X,Yrf) says that Yrf satisfies the usual axioms of a reads-from relation with
respect to the execution X. Moreover, the formula F(X) asks that X is an
execution of interest, which results in registers having certain values.

co(X,Yco) :=

⎧
⎪⎪⎨

⎪⎪⎩

trans(Yco) ∧

∀xy

((
X(x) ∧ X(y) ∧ write(x) ∧ write(y) ∧ sloc(x, y) ∧ (x �= y)

)

↔ (
Yco(x, y) ∨ Yco(y, x)

)

)

rf(X,Yrf) :=

⎧
⎨

⎩

inj(Yrf) ∧ sub2(Yrf , justifies) ∧
∀y

((
read(y) ∧ X(y)

) → ∃x
(
write(x) ∧ X(x) ∧ Yrf (x, y)

))

When X is a potential execution and Yco is a potential coherence-order relation,
the formula co(X,Yco) requires that the writes in X for the same location include
some total order. Because of the later condition that R(Yco ,Yrf) is acyclic, Yco is
in fact required to be a total order per location. When X is a potential execution
and Yrf is a potential reads-from relation, the formula rf(X,Yrf) requires that
Yrf is injective, is a subset of justifies, and relates all the reads in X to some
write in X.

The auxiliary relation R(Yco ,Yrf) is the union of strict program-order (<),
reads-from (Yrf), coherence-order (Yco), and the from-reads relation:

R(Yco ,Yrf)(y, z) := (y < z) ∨ Yco(y, z) ∨ Yrf (y, z) ∨ ∃x
(
Yco(x, z) ∧ Yrf (x, y)

)

5.2 Release–Acquire

Release–Acquire is a simple relaxed memory specification, which is represented
straightforwardly in SO logic. It is captured by the formula RA using the vocab-
ulary established in the definition of SC:

RA := ∃XYcoYrf

⎛

⎜
⎜
⎜
⎝

F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(Yco)

∧ ∃Yhb

⎛

⎜
⎝

sub2(<,Yhb) ∧ sub2(Yrf ,Yhb) ∧ trans(Yhb)

∧ irrefl(Yhb) ∧ irrefl(seq(Yco ,Yhb))

∧ irrefl(seq(inv(Yrf), seq(Yco ,Yhb)))

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎠

The existential SO variable Yhb over-approximates a relation traditionally called
happens-before.

PrideMM: Second Order Model Checking for Memory Consistency Models 517

5.3 C++

To capture the C++ specification in SO logic, we follow the Herd7 specification
of Lahav et al. [24]. Their work introduces necessary patches to the specifi-
cation of the standard [6] but also includes fixes and adjustments from prior
work [4,23]. The specification is more nuanced than the SC and RA specifica-
tions and requires additions to the vocabulary of A together with a reformulation
for efficiency, but the key difference is more fundamental. C++ is a catch-fire
semantics: programs that exhibit even a single execution with a data race are
allowed to do anything—satisfying every expected outcome. This difference is
neatly expressed in SO logic:

CPP := ∃XYcoYrf Yαβ

(
co(X,Yco) ∧ rf(X,Yrf) ∧ hb(Yαβ ,Yrf)

∧ M(Yαβ ,Yco ,Yrf) ∧ (F(X) ∨ C(Yαβ ,Yrf))

)

The formula reuses co(X,Yco), rf(X,Yrf) and F(X) and includes three new
combinators: hb(Yαβ ,Yrf), M(Yαβ ,Yco ,Yrf) and C(Yαβ ,Yrf). hb(Yαβ ,Yrf)
constrains a new over-approximation, Yαβ , used for building a transitive rela-
tion. M(Yαβ ,Yco ,Yrf) captures the conditions imposed on a valid C++ execu-
tion, and is the analogue of the conditions applied in SC and RA. C(Yαβ ,Yrf)
holds if there is a race in the execution X. Note that the expected outcome is
allowed if F(X) is satisfied or if there is a race and C(Yαβ ,Yrf) is true, matching
the catch-fire semantics.

New Vocabulary. C++ Read-modify-write operations load and store from memory
in a single atomic step: a new rmw relation links the corresponding reads and writes.
C++ fence operations introduce new events and the set fences identifies them.
The programmer annotates each memory access and fence with a memory order
parameter that sets the force of inter-thread synchronisation created by the access.
For each choice, we add a new set: na, rlx, acq, rel, acq-rel, and sc.

Over-Approximation in Happens Before. The validity condition, M(Yαβ ,Yco ,
Yrf), and races C(Yαβ ,Yrf), hinge on a relation called happens-before. We over-
approximate transitive closures in the SO logic for efficiency, but Lahav et al. [24]
define happens-before with nested closures that do not perform well. Instead
we over-approximate a reformulation of happens-before that flattens the nested
closures into a single one (see Appendix A).

We define a combinator for happens-before, HB(Yαβ ,Yrf), that is used in
M(Yαβ ,Yco ,Yrf) and C(Yαβ ,Yrf). It takes as argument an over-approximation
of the closure internal to the reformed definition of happens-before, Yαβ .
hb(Yαβ ,Yrf) constrains Yαβ , requiring it to be transitive and to include the
conjuncts of the closure, α and β below.

518 S. Cooksey et al.

HB(Yαβ ,Yrf) := or(<, seq(maybe(<), swbegin(Yrf),Yαβ , swend(Yrf),maybe(<)))

α(Yrf) := seq(swend(Yrf),maybe(<), swbegin(Yrf))

β(Yrf) := seq(Yrf , rmw)

hb(Yαβ ,Yrf) :=

{
trans(Yαβ)

∧ sub2(id,Yαβ) ∧ sub2(α(Yrf),Yαβ) ∧ sub2(β(Yrf),Yαβ)

5.4 Jeffrey–Riely

The J+R memory specification is captured by a sentence JRn, parametrised by
an integer n. Unlike the formulae we saw before, JRn makes use of three levels of
quantifiers (∃∀∃), putting it on the third level of the polynomial hierarchy. We
begin by lifting4 justifies from events to sets of events P and Q:

J(P,Q) := ∀y

((¬P (y) ∧ Q(y) ∧ read(y)
)

→ ∃x
(
P (x) ∧ write(y) ∧ justifies(x, y)

)

)

AJ(P,Q) := J(P,Q) ∧ sub1(P,Q) ∧ V(P) ∧ V(Q)

We read J as ‘justifies’, and AJ as ‘always justifies’. Next, we define what Jeffrey
and Riely call ‘always eventually justify’

AeJn(P,Q) :=

⎧
⎨

⎩

sub1(P,Q) ∧ V(P) ∧ V(Q) ∧
∀X

(
TCn(AJ)(P,X) → ∃Y

(
TCn(AJ)(X,Y) ∧ J(Y,Q)

))

The size of the formula TCn(AeJm)(P,Q) we defined above is Θ(mn). In partic-
ular, it is bounded. Finally, we let5

JRn := ∃X
(
TCn(AeJn)(∅,X) ∧ F(X)

)

and ask solve the model checking problem A |= JRn. Since the formulae above
are in MSO, it is sufficient to pick n := 2|A|. Since all bounded transitive closures
include the subset relation, they are monotonic, and it suffices, in fact, to pick
n := |A|. For actual solving, we will use this observation.

6 Evaluation

We evaluate our tool in the context of Herd7 [3], which is a standard tool among
memory specification researchers for building axiomaticmemory specifications.No
similar tool exists for higher-order event structure based memory specifications.
4 Our definition of J is different from the original one [20]: we require that only new

reads are justified, by including the conjunct ¬P (y). Without this modification, our
solver’s results disagree with the hand-calculations reported by Jeffrey and Riely;
with this modification, the results agree.

5 The symbol ∅ denotes the empty unary relation, as expected.

PrideMM: Second Order Model Checking for Memory Consistency Models 519

J+R SpecificationC++ Specification

Fig. 4. Comparison of PrideMM’s performance in contrast to Herd7 [3].

6.1 Comparison to Existing Techniques

In Fig. 4 we compare the performance and capabilities of PrideMM to Herd7,
the de facto standard tool for building axiomatic memory specifications. Herd7
and PrideMM were both executed on a machine equipped with an Intel i5-5250u
CPU and 16 GB of memory. We choose not to compare our tool to MemSAT [39],
as there are more memory specifications implemented for Herd7 in the CAT
language [2] than there are for MemSAT.

Performance. Notably Herd7’s performance is very favourable in contrast to the
performance of PrideMM, however there are some caveats. The performance of
PrideMM is largely adequate, with most of the standard litmus tests taking less
than 2 s to execute. y ≤ 1s is highlighted on the chart. We find that our QBF
technique scales better than Herd7 with large programs. This is demonstrated
in the SB-16 test, a variant of the “store buffering” litmus test with 16 threads.
The large number of combinations for quantifying the existentially quantified
relations which are explored näıvely by Herd7 cause it to take a long time to
complete. In contrast, smarter SAT techniques handle these larger problems
handily.

Expressiveness. We split the chart in Fig. 4 into 2 sections, the left-hand side
of the chart displays a representative subset of common litmus tests showing
PrideMM’s strength and weaknesses. These litmus tests are evaluated under
the C++ memory specification. Note that these include tests with behaviour
expected to be observable and unobservable, hence there being two MP bars.
The C++ memory specification is within the domain of memory specifications
that Herd7 can solve, as it requires only existentially quantified relations.

The right-hand half of the chart is the first 10 Java causality test cases
run under the J+R specification, which are no longer expressible in Herd7.
PrideMM solves these in reasonable time, with most tests solved in less than

520 S. Cooksey et al.

Prob. SAT caqe (s) qfun (s) qfm (s)
1 N ⊥ 610 2
2 N ⊥ 23 2
3 Y ⊥ ⊥ 222
4 Y ⊥ 2 5
5 Y ⊥ 78 51
6 N 5 4 1
7 Y ⊥ 280 56
8 N ⊥ 2 2
9 N ⊥ 2 1

Prob. SAT caqe (s) qfun (s) qfm (s)
10 Y ⊥ 36 10
11 Y ⊥ 598 335
13 Y 1 1 1
14 Y ⊥ 29 33
15 Y ⊥ 512 157
16 N ⊥ ⊥ 12
17 N ⊥ 39 311
18 N ⊥ 359 190
#17 #2 #15 #17

Fig. 5. Solver approaches for PrideMM on Java causality test cases. ⊥ represents time-
out or mem-out.

10 min. Our J+R tests replicate the results found in the original paper, but
where they use laborious manual proof in the Agda proof assistant, PrideMM
validates the results automatically (Fig. 5).

6.2 QBF vs SO Solver Performance

PrideMM enables emitting the SO logic formulae and structures directly for the
SO solver, or we can convert to a QBF query (see Sect. 4). This allows us to
use our SO solver as well as QBF solvers. We find that the SO solver affords
us a performance advantage over the QBF solver in most of the Java causality
test cases, where performance optimisations for alternating quantification are
applicable.

We include the performance of the QBF solvers CAQE and QFUN, the
respective winners of the CNF and non-CNF tracks at 2017’s QBFEVAL com-
petition [32]. Our QBF benchmarks were first produced in the circuit-like format
QCIR [21], natively supported by QFUN. The inputs to CAQE were produced
by converting to CNF through standard means, followed by a preprocessing step
with Bloqqer [7].

We can also emit the structures and formulae as an Isabelle/HOL file, which
can then be loaded into Nitpick [8] conveniently. We found that Nitpick cannot
be run over the C++ specification or the J+R specification, timing out after
1 hr on all the litmus tests.

7 Related Work

We build on prior work from two different areas—relaxed memory specifica-
tions, and SAT/QBF solving: the LISA frontend comes from the Herd7 memory-
specification simulator [3], the MSGs implement memory specifications that have
been previously proposed [20,24], and the SO solver is based on a state-of-the-art
QBF solver [17].

There is a large body of work on finite relational model finding in the con-
text of memory specifications using Alloy [16]. Alloy has been used to compare
memory specifications and find litmus tests which can distinguish two specifi-
cations [40], and has been used to synthesise comprehensive sets of tests for a

PrideMM: Second Order Model Checking for Memory Consistency Models 521

specific memory specification [28]. Applying SAT technology in the domain of
evaluating memory specifications has been tried before, too. MemSAT [39] uses
Kodkod [38], the same tool that Alloy relies on to do relational model finding.
MemSynth [10] uses Ocelot [9] to embed relational logic into the Rosette [37] lan-
guage. Our results are consistent with the findings of MemSAT and MemSynth:
SAT appears to be a scalable and fast way to evaluate large memory specifica-
tion questions. Despite this, SAT does not widen the class of specifications that
can be efficiently simulated beyond ad hoc techniques.

There is work to produce a version of Alloy which can model higher-order
constructions, called Alloy* [30], however this is limited in that each higher
order set requires a new signature in the universe to represent it. Exponential
expansion of the sets quantified in the J+R specification leaves model finding
for J+R executions intractable in Alloy* too.

While Nitpick [8] can model higher order constructions, we found it could not
generate counter examples in a reasonable length of time of the specifications
we built. There is work to build a successor to Nitpick called Nunchaku [34],
however, at present Nunchaku does not support higher order quantification. Once
Nunchaku is more complete we intend to output to Nunchaku and evaluate its
performance in comparison to our SO solver.

There is a bevy of work on finite model finding in various domains. SAT is a
popular method for finite model finding in first-order logic formulae [13,33].
There are constraint satisfaction-based model finders, e.g. the SEM model
finder [42], relying on dedicated symmetry and propagation. Reynolds et al. pro-
pose solutions for finite model finding in the context of SMT [35,36] (CVC4 is
in fact used as backend to Nunchaku).

8 Conclusion

This paper presents PrideMM, a case study of the application of new solving
techniques to a problem domain with active research. PrideMM allows mem-
ory specification researchers to build a new class of memory specifications with
richer quantification, and still automatically evaluate these specifications over
programs. In this sense we provide a Herd7-style modify-execute-evaluate pat-
tern of development for higher-order memory specifications that were previously
unsuitable for mechanised model finding.

Acknowledgments. This work was supported by national funds through FCT —
Fundação para a Ciência e a Tecnologia with reference UID/CEC/50021/2019 and the
project INFOCOS with reference PTDC/CCI-COM/32378/2017. The work was sup-
ported by the European Regional Development Fund under the project AI&Reasoning
(reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

Appendix A Reformulation of Happens Before

Lahav et al. [24] define happens before, hb, in terms of sequenced before sb, the
C++ name for program order, and synchronises with, sw, inter-thread synchroni-
sation. Their rf and rmw relations match Yrf and rmw in our vocabulary. Fixed

522 S. Cooksey et al.

sequences of memory events initiate and conclude synchronisation, and these
are captured by swbegin and swend. In the definition below, semicolon represents
forward relation composition.

sw := swbegin; (rf; rmw)∗; swend

hb := (sb ∪ sw)+

For efficiency we over-approximate transitive closures in the SO logic, but
the nesting over-approximation that follows from the structure of hb does not
perform well. Instead we over-approximate a reformulation of hb.

hb’ := sb ∪ (sb?; swbegin ; ((swend ; sb?; swbegin)) ∪ (rf; rmw))∗; swend ; sb?)

By unpacking the definition of sw, the reformulation flattens the nested clo-
sures into a single one. The closure combines fragments of happens before where
at the start and end of the fragment, a synchronisation edge has been initiated
but not concluded. Within the closure, the synchronisation edge can be con-
cluded and a new one opened, or some number of read-modify-writes can be
chained together with rf.

We explain the definition of hb’ by considering the number of sw edges that
constitute a particular hb edge. If a hb edge contains no sw edge, then because
sb is transitive, the hb edge must be a single sb edge. Otherwise, the hb edge is
made up of a sequence of one or more sw edges with sb edges before, between
and after some of the sw edges. The first sw edge is itself a sequence of edges
starting with swbegin. This is followed by any number of rf; rmw edges. At the
end of the sw edge there are two possibilities: this edge was the final sw edge,
or there is another in the sequence to be initiated next. The first conjunct of
the closure, swend ; sb?; swbegin captures the closing and opening of sw edges, the
second captures the chaining of read-modify-writes. The end of the definition
closes the final sw edge with swend .

References

1. Alglave, J., Cousot, P.: Syntax and analytic semantics of LISA (2016). https://
arxiv.org/abs/1608.06583

2. Alglave, J., Cousot, P., Maranget, L.: Syntax and analytic semantics of the weak
consistency model specification language CAT (2016). https://arxiv.org/abs/1608.
07531

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014). https://doi.org/10.1145/2627752. http://doi.acm.org/10.
1145/2627752

https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.07531
https://arxiv.org/abs/1608.07531
https://doi.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752

PrideMM: Second Order Model Checking for Memory Consistency Models 523

4. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
OpenCL. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, 20–22 January 2016, pp. 634–648 (2016). https://doi.org/10.1145/2837614.
2837637. http://doi.acm.org/10.1145/2837614.2837637

5. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8 12

6. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 Jan-
uary 2011, pp. 55–66 (2011). https://doi.org/10.1145/1926385.1926394. http://doi.
acm.org/10.1145/1926385.1926394

7. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
101–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-
6 10

8. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

9. Bornholt, J., Torlak, E.: Ocelot: a solver-aided relational logic DSL (2017). https://
ocelot.memsynth.org/

10. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18–23 June 2017, pp. 467–481 (2017). https://doi.org/10.1145/3062341.3062353.
http://doi.acm.org/10.1145/3062341.3062353

11. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9 6

12. Chakraborty, S., Vafeiadis, V.: Grounding thin-air reads with event struc-
tures. PACMPL 3(POPL), 70:1–70:28 (2019). https://dl.acm.org/citation.cfm?
id=3290383

13. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model
finding. In: Proceedings of the CADE-19 Workshop: Model Computation - Princi-
ples, Algorithms, Applications (2003)

14. Gray, K.E., Kerneis, G., Mulligan, D.P., Pulte, C., Sarkar, S., Sewell, P.: An inte-
grated concurrency and core-ISA architectural envelope definition, and test ora-
cle, for IBM POWER multiprocessors. In: Proceedings of the 48th International
Symposium on Microarchitecture, MICRO 2015, Waikiki, HI, USA, 5–9 Decem-
ber 2015, pp. 635–646 (2015). https://doi.org/10.1145/2830772.2830775. http://
doi.acm.org/10.1145/2830772.2830775

15. ISO/IEC: Programming languages - C++. Draft N3092, March 2010. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf

16. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002). https://doi.org/10.1145/505145.505149.
http://doi.acm.org/10.1145/505145.505149

https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/2837614.2837637
http://doi.acm.org/10.1145/2837614.2837637
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://ocelot.memsynth.org/
https://ocelot.memsynth.org/
https://doi.org/10.1145/3062341.3062353
http://doi.acm.org/10.1145/3062341.3062353
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://dl.acm.org/citation.cfm?id=3290383
https://dl.acm.org/citation.cfm?id=3290383
https://doi.org/10.1145/2830772.2830775
http://doi.acm.org/10.1145/2830772.2830775
http://doi.acm.org/10.1145/2830772.2830775
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
https://doi.org/10.1145/505145.505149
http://doi.acm.org/10.1145/505145.505149

524 S. Cooksey et al.

17. Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI
Conference on Artificial Intelligence (2018)

18. Janota, M., Grigore, R., Manquinho, V.: On the quest for an acyclic graph. In:
RCRA (2017)

19. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016). https://doi.org/10.
1016/j.artint.2016.01.004

20. Jeffrey, A., Riely, J.: On thin air reads towards an event structures model of relaxed
memory. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2016, pp. 759–767. ACM, New York (2016). https://doi.
org/10.1145/2933575.2934536. http://doi.acm.org/10.1145/2933575.2934536

21. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: AAAI
Workshop: Beyond NP. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

22. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France, 18–20
January 2017, pp. 175–189 (2017). http://dl.acm.org/citation.cfm?id=3009850

23. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 Jan-
uary 2016, pp. 649–662 (2016). https://doi.org/10.1145/2837614.2837643. http://
doi.acm.org/10.1145/2837614.2837643

24. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential con-
sistency in C/C++11. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18–23 June 2017, pp. 618–632 (2017). https://doi.org/10.1145/3062341.3062352.
http://doi.acm.org/10.1145/3062341.3062352

25. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979). https://doi.org/
10.1109/TC.1979.1675439. https://doi.org/10.1109/TC.1979.1675439

26. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980). https://doi.org/10.1016/0022-0000(80)90027-6.
http://www.sciencedirect.com/science/article/pii/0022000080900276

27. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07003-1

28. Lustig, D., Wright, A., Papakonstantinou, A., Giroux, O.: Automated synthe-
sis of comprehensive memory model litmus test suites. In: Proceedings of the
Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2017, pp. 661–675. ACM,
New York (2017). https://doi.org/10.1145/3037697.3037723. http://doi.acm.org/
10.1145/3037697.3037723

29. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, 12–14 January 2005, pp.
378–391 (2005). https://doi.org/10.1145/1040305.1040336

30. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: a general-purpose higher-
order relational constraint solver. In: ICSE (2015)

https://doi.org/10.1016/j.artint.2016.01.004
https://doi.org/10.1016/j.artint.2016.01.004
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/2933575.2934536
http://dl.acm.org/citation.cfm?id=3009850
https://doi.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
http://doi.acm.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1016/0022-0000(80)90027-6
http://www.sciencedirect.com/science/article/pii/0022000080900276
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/3037697.3037723
http://doi.acm.org/10.1145/3037697.3037723
http://doi.acm.org/10.1145/3037697.3037723
https://doi.org/10.1145/1040305.1040336

PrideMM: Second Order Model Checking for Memory Consistency Models 525

31. Pichon-Pharabod, J., Sewell, P.: A concurrency semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, 20–22 January 2016, pp. 622–633
(2016). https://doi.org/10.1145/2837614.2837616

32. QBF Eval 2017. http://www.qbflib.org/event page.php?year=2017
33. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-

order logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
323–341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 20

34. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI),
vol. 9706, pp. 133–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 10

35. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 42

36. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38574-2 26

37. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided
host languages. In: Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2014, pp. 530–541. ACM,
New York (2014). https://doi.org/10.1145/2594291.2594340. http://doi.acm.org/
10.1145/2594291.2594340

38. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

39. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: checking axiomatic specifications of
memory models. In: Proceedings of the 31st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2010, pp. 341–350. ACM,
New York (2010). https://doi.org/10.1145/1806596.1806635

40. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically
comparing memory consistency models. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, 18–20 January 2017, pp. 190–204 (2017). http://dl.acm.org/citation.cfm?
id=3009838

41. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

42. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI, pp.
298–303. Morgan Kaufmann (1995). http://ijcai.org/Proceedings/95-1/Papers/
039.pdf

https://doi.org/10.1145/2837614.2837616
http://www.qbflib.org/event_page.php?year=2017
https://doi.org/10.1007/978-3-319-40970-2_20
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1007/978-3-642-39799-8_42
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1145/2594291.2594340
http://doi.acm.org/10.1145/2594291.2594340
http://doi.acm.org/10.1145/2594291.2594340
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1145/1806596.1806635
http://dl.acm.org/citation.cfm?id=3009838
http://dl.acm.org/citation.cfm?id=3009838
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
http://ijcai.org/Proceedings/95-1/Papers/039.pdf
http://ijcai.org/Proceedings/95-1/Papers/039.pdf

Fkcc: The Farkas Calculator

Christophe Alias(B)

CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, Lyon, France
Christophe.Alias@ens-lyon.fr

http://foobar.ens-lyon.fr/fkcc

Abstract. In this paper, we present fkcc, a scripting tool to proto-
type program analyses and transformations exploiting the affine form of
Farkas lemma. Our language is general enough to prototype in a few
lines sophisticated termination and scheduling algorithms. The tool is
freely available and may be tried online via a web interface. We believe
that fkcc is the missing chain to accelerate the development of program
analyses and transformations exploiting the affine form of Farkas lemma.

Keywords: Farkas lemma · Scripting tool · Termination · Scheduling

1 Introduction

Many program analyses and transformations require to handle conjunction of
affine constraints C and C ′ with a universal quantification as ∀x : x |= C ⇒ x |=
C ′. For instance, this appears in loop scheduling [6,7], loop tiling [2], program
termination [1] and generation of invariants [3]. Farkas lemma – affine form –
provides a way to get rid of that universal quantification, at the price of introduc-
ing quadratic terms. In the context of program termination and loop scheduling,
it is even possible to use Farkas lemma to turn universally quantified quadratic
constraints into existentially quantified affine constraints. This requires tricky
algebraic manipulations, not easy to applied by hand, neither to implement.

In this paper, we propose a scripting tool, fkcc, which makes it possible
to manipulate easily Farkas lemma to benefit from those nice properties. More
specifically, we made the following contributions:

– A general formulation for the resolution of equations ∀x : S(x) = 0 where S is
summation of affine forms including Farkas terms. So far, this resolution was
applied for specific instances of Farkas summation. This result is the basic
engine of the fkcc scripting language.

– A scripting language to apply and exploit Farkas lemma; among polyhedra,
affine functions and affine forms.

– Our tool, fkcc, implementing these principles, available at http://foobar.ens-
lyon.fr/fkcc. fkcc may be downloaded and tried online via a web interface.
fkcc comes with many examples, making it possible to adopt the tool easily.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 526–536, 2020.
https://doi.org/10.1007/978-3-030-54997-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_32&domain=pdf
http://foobar.ens-lyon.fr/fkcc
http://foobar.ens-lyon.fr/fkcc
https://doi.org/10.1007/978-3-030-54997-8_32

Fkcc: The Farkas Calculator 527

This paper is structured as follows. Sect. 2 presents the affine form of Farkas
lemma, our resolution theorem, and explains how it applies to compute schedul-
ing functions. Then, Sect. 3 defines the syntax and outlines informally the seman-
tics of the fkcc language. Section 4 presents two complete use-cases of fkcc.
Finally, Sect. 5 concludes this paper and draws future research perspectives.

2 Farkas Lemma in Program Analysis and Compilation

This section presents the theoretical background of this paper. We first introduce
the affine form of Farkas lemma. Then, we present our theorem to solve equations
S(x) = 0 where S is a summation of affine forms including Farkas terms. This
formalization will then be exploited to design the fkcc language.

Lemma 1 (Farkas Lemma, affine form). Consider a convex polyhedron P =
{x, Ax + b ≥ 0} ⊆ IRn and an affine form φ : IRn → IR such that φ(x) ≥ 0
∀x ∈ P.
Then: ∃λ ≥ 0, λ0 ≥ 0 such that:

φ(x) = tλ(Ax + b) + λ0 ∀x

Hence, Farkas lemma makes it possible to remove the quantification ∀x ∈ P by
encoding directly the positivity over P into the definition of φ, thanks to the
Farkas multipliers λ and λ0. In the remainder, Farkas terms will be denoted
by: F(λ0,λ, A, b)(x) = tλ(Ax + b) + λ0. We now propose a theorem to solve
equations S(x) = 0 where S involves Farkas terms. The result is expressed as a
conjunction of affine constraints, which is suited for integer linear programming:

Theorem 1. Consider a summation S(x) = u · x + v +
∑

i F(λi0,λi , Ai, bi)(x)
of affine forms, including Farkas terms. Then:

∀x : S(x) = 0 iff
{

u +
∑

i
tAiλi = 0 ∧

v +
∑

i (λi · bi + λ0i) = 0

Proof. We have:

S(x) = tx

(
∑

i

tAiλi

)

+
∑

i

(λi · bi + λ0i) + u · x + v

= tx

(

u +
∑

i

tAiλi

)

+ v +
∑

i

(λi · bi + λ0i)

S(x) = τ · x + τ0 = 0 for any x iff τ = 0 and τ0 = 0. Hence the result.
�

528 C. Alias

Application to Scheduling. Consider the polynomial product kernel depicted in
Fig. 3.(a). Farkas lemma and Theorem 1 may be applied to compute a schedule,
this is a way to reorganize the computation of the program to fulfill various
criteria (overall latency, locality, parallelism, etc). On this example, a schedule
may be expressed as an affine form θ : (i, j) �→ t assigning a timestamp t ∈ ZZ
to each iteration (i, j). This way, a schedule prescribes an execution order ≺θ :=
{((i, j), (i′, j′)) | θ(i, j) < θ(i′, j′)}. Figure 3.(b) illustrates the order prescribed
by the schedule θ(i, j) = i: a sequence of vertical wave fronts, whose iterations
are executed in parallel.

A schedule must be positive everywhere on the set of iteration vectors
DN = {(i, j) | A t(i, j,N) + b} (referred to as iteration domain). In general,
the iterations domains are parametrized (typically by the array size N) and the
schedule may depends on N . Hence we have to consider vectors (i, j,N) instead
of (i, j):

θ(i, j,N) ≥ 0 ∀(i, j) ∈ DN (1)

Applying Farkas lemma, this translates to:

∃λ0 ≥ 0,λ ≥ 0 such that θ(i, j,N) = F(λ0,λ, A, b)(i, j,N) (2)

Moreover, a schedule must satisfy the data dependencies (i, j) → (i′, j′). → is
generally expressed as a Presburger relation [8], in turned abstracted as a rational
convex polyhedron ΔN containing the correct vectors (i, j, i′, j′) and sometimes
false positives. Here again, ΔN = {(i, j, i′, j′) | C t(i, j, i′, j′, N) + d ≥ 0} is
parametrized by structure parameter N . This way, the correctness condition
translates to:

θ(i′, j′, N) > θ(i, j,N) ∀(i, j, i′, j′) ∈ ΔN (3)

Note that θ(i′, j′, N) > θ(i, j,N) is equivalently written as the positivity of an
affine form over a convex polyhedron: θ(i′, j′, N) − θ(i, j,N) − 1 ≥ 0. Applying
Farkas lemma:

∃μ0 ≥ 0,μ ≥ 0 such that θ(i′, j′, N)−θ(i, j,N)−1 = F(μ0,μ, C,d)(i, j, i′, j′, N)

Substituting θ using Eq. (2), this translates to S(i, j, i′, j′, N) = 0, where
S(i, j, i′, j′, N) is defined as the summation:

F(λ0,λ, A, b)(i′, j′, N) − F(λ0,λ, A, b)(i, j,N) − F(μ0,μ, C,d)(i, j, i′, j′, N) − 1

Since −F(λ0,λ, A, b) = F(−λ0,−λ, A, b), we may apply Theorem 1 to obtain
a system of affine constraints with λ0,λ, μ0,μ. Linear programming may then
be applied to find out the desired schedule [2,7]. The same principle might be
applied in termination analysis to derive a ranking function [1], this will be
developed in Sect. 4.

3 Language

This section specifies the input language of fkcc and outlines informally its
semantics. Figure 1 depicts the input syntax of fkcc. Keywords and syntax

Fkcc: The Farkas Calculator 529

program ::= (parameters = { p, ..., p };)? instruction; ...; instruction;

instruction ::= object | id := object | lexmin polyhedron | lexmax polyhedron | set id

object ::= polyhedron | affine form | affine function

polyhedron ::=
[p, ..., p] -> { [v, ..., v] : inequation and ... and inequation }

| polyhedron * ... * polyhedron
| solve affine form = 0

| define affine form with v
| keep v, ..., v in polyhedron
| find id, ..., id s.t. affine form = 0

affine form ::= leaf affine form | leaf affine form [+-] ... [+-] leaf affine form

leaf affine form ::=
{ [v, ..., v] -> expression }

| positive on polyhedron
| leaf affine form . affine function
| int
| int * leaf affine form

affine function ::= { [v, ..., v] -> [expression, ..., expression] }

Fig. 1. Fkcc syntax

sugar are written with verbatim letters, identifiers with italic letter and syntactic
categories with roman letters. Among identifiers, p is a parameter, v is a variable
(typically a loop counter) and id is an fkcc identifier.

Program, Instructions, Polyhedra. An fkcc program consists of a sequence of
instructions. There is no other control structure than the sequence. An instruc-
tion may assign an fkcc object (polyhedron, affine form or affine function) to an
fkcc identifier, or may be an fkcc object alone. In the latter, the fkcc object
is streamed out to the standard output. Also, we often need to compute the
lexicographic optimum of a polyhedron, typically to pick an optimal schedule.
fkcc uses parameteric integer linear programming [5] via the Piplib library. The
result is a discussion on the parameter value:

parameters := {N};

lexmin [N] -> {[i,j]: 0 <= i and i <= N and 0 <= j and j <= N};

would give:

if(N >= 0)

{

[] -> {[0,0]}

}

530 C. Alias

else

{

(no solution)

}

;

Note that structure parameters must be declared with the parameters con-
struct. When no parameters are involved, the parameters construct may be omit-
ted. To ensure the compatibility with iscc [10] syntax, the parameters of a poly-
hedron may be declared on preceding brackets [N] -> This is purely optional:
fkcc actually does not analyze this part. The instruction set id emits id := to the
standard output. This makes it possible to generate iscc scripts for further anal-
ysis. Finally, the set intersection of two polyhedra P and Q is obtained with P*Q.

Affine Forms. An affine form may be defined as a Farkas term:

iterations := [] -> {[i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

If iterations is {x | Ax + b ≥ 0}, then theta is defined as F(λ0,λ, A, b)
where λ0 and λ are fresh positive variables. In that case, the polyhedron is never
parametrized: the parameters must be handled as variables. In particular, do not
name variables with identifiers declared as parameters with parameters :=, as
they would be treated as parameters whatever the context. Affine forms might
be summed, scaled and composed with affine functions, typically to adjust the
input dimension:

to_target := {[i,j,i’,j’,N]->[i,j,N]};

to_source := {[i,j,i’,j’,N]->[i’,j’,N]};

sum := theta.to_target - 2*theta.to_source + 1 + {[i,j,i’,j’,N] -> 2*i-i’};

In a summation of affine forms, affine forms must have the same input
dimension. Also, a constant (1) is automatically interpreted as an affine
form ([i,j,i’,j’,N] -> 1). Affine forms may also be stated explicitly
({[i,j,i’,j’,N] -> 2*i-i’}). The terms of the summation are simply sep-
arated with + and -, no parenthesis are allowed.

Resolution. The main feature of fkcc is the resolution of equations S(x) = 0
where S is a summation of affine forms including Farkas terms. This is obtained
with the instruction solve:

solve sum = 0;

The result is a polyhedron with Farkas multipliers (obtained after applying
Theorem 1):

[] -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4] :

(2+lambda_0)+(-1*lambda_1) >= 0 and (-2+(-1*lambda_0))+lambda_1 >= 0 and

lambda_2+(-1*lambda_3) >= 0 and (-1*lambda_2)+lambda_3 >= 0 and

(-1*lambda_1)+(-1*lambda_3) >= 0 and lambda_1+lambda_3 >= 0 and

(-1+(-2*lambda_0))+(2*lambda_1) >= 0 and (1+(2*lambda_0))+(-2*lambda_1) >= 0 and

(-2*lambda_2)+(2*lambda_3) >= 0 and (2*lambda_2)+(-2*lambda_3) >= 0 and

1+(-1*lambda_4) >= 0 and -1+lambda_4 >= 0 and lambda_4 >= 0 and

lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0 and

lambda_4 >= 0 and lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0};

Fkcc: The Farkas Calculator 531

At this point, we need to recover the coefficients of our affine form theta
in terms of λ (lambda 0,lambda 1,lambda 2,lambda 3) and λ0 (lambda 4).
Observe that theta(x) = F(λ0,λ, A, b)(x) = tλAx + λ · b + λ0. If the coeffi-
cients of theta are written: theta(x) = τ · x + τ0, we simply have: τ = tλA
and τ0 = λ · b + λ0. This is obtained with define:

define theta with tau;

The result is a conjunction of definition equalities, gathered in a polyhedron:

[] -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4,tau_0,tau_1,tau_2,tau_3] :
((-1*lambda_0)+lambda_1)+tau_0 >= 0 and (lambda_0+(-1*lambda_1))+(-1*tau_0) >= 0 and
((-1*lambda_2)+lambda_3)+tau_1 >= 0 and (lambda_2+(-1*lambda_3))+(-1*tau_1) >= 0 and
((-1*lambda_1)+(-1*lambda_3))+tau_2 >= 0 and (lambda_1+lambda_3)+(-1*tau_2) >= 0 and
(-1*lambda_4)+tau_3 >= 0 and lambda_4+(-1*tau_3) >= 0};

The first coefficients tau k define τ , the last one defines the constant τ0. On
our example, theta(i,j,N) = tau 0*i + tau 1*j + tau 2*N + tau 3. Now
we may gather the results and eliminate the λ to keep only τ and τ0:

keep tau_0,tau_1,tau_2,tau_3 in ((solve sum = 0)*(define theta with tau));

The result is a polyhedron with the solutions. Here, there are no solutions:
the result is an empty polyhedron. All these steps may be applied once with the
find command:

find theta s.t. sum = 0;

The coefficients are automatically named theta 0, theta 1, etc with the
same convention as define. We point out that define choose fresh names for
coefficients (e.g. tau 4, tau 5 on the second time with ‘‘tau’’) whereas find
always choose the same names. Hence find would be prefered when deriving
separately constraints on the same coefficients of theta. find may filter the
coefficients for several affine forms expressed as Farkas terms in a summation:

find theta_S,theta_T s.t.

theta_T.to_target - theta_S.to_source - 1

- (positive_on dependences_from_S_to_T) = 0;

This is typically used to compute schedules for programs with multiple
assignments (here S and T with dependences from iterations of S to iterations
of T). Finally, note that keep tau 0,tau 1,tau 2,tau 3 in P; projects P on
variables tau 0,tau 1,tau 2,tau 3: the result is a polyhedron with integral
points of coordinates (tau 0,tau 1,tau 2,tau 3). This way, the order in which
tau 0,tau 1,tau 2,tau 3 are specified to keep impacts directly a further lexi-
cographic optimization.

4 Examples

This section shows how fkcc might be used to specify in a few lines termination
analysis and loop scheduling.

532 C. Alias

assert x0 > 0 ∧ y0 > 0
x := x0; y := y0;
while x �= y
if x > y
then x := x − y;
else y := y − x;

start

loop

stop

•
x′:=x0,y′:=y0

x=y
•

x>y
x′:=x−y

y>x
y′:=y−x

Istart = {x0 > 0 ∧ y0 > 0}
Iloop = {x > 0 ∧ y > 0 ∧ x ≤ x0 ∧ y ≤ y0}
Istop = {x ≤ y0 ∧ x ≤ x0 ∧ x > 0 ∧ x = y}

ρstart(x, y) = (2)
ρloop(x, y) = (1, x + y − 2)
ρstop(x, y) = (0)

(a) Kernel (b) Affine automaton (c) Invariants and
ranking

Fig. 2. Termination example

4.1 Termination Analysis

Consider the example depicted on Fig. 2. The program computes the gcd of two
integers x0 and y0 (a). It is translated to an affine automaton (b) (also called
integer interpreted automaton), in turn analyzed to check the termination (c):
does the program terminates for any input (x0, y0) satisfying the precondition
x0 > 0 ∧ y0 > 0?

This problem is – as most topics in static analysis – undecidable in general.
However, we may conclude when it is possible to derive statically an abstrac-
tion precise enough of the program execution. In [1], we provide a termina-
tion algorithm based on the computation of a ranking. A ranking is an applica-
tion ρlabel : ZZn → (R,≺) which maps each reachable state of the automaton
〈label,x〉 to a rank belonging to well-founded set. On our example a reachable
state could be 〈loop, (x : 3, y : 3, x0 : 3, y0 : 6)〉 after firing the initial transition
and the right transition.

The ranking is decreasing on the transitions: for any transition 〈label,x〉 →
〈label′,x′〉, we have: ρlabel’(x′) ≺ ρlabel(x). Since ranks belong to a well founded
set, there are – by definition – no infinite decreasing chain of ranks. Hence infinite
chains of transitions from an initial state never happen.

On [1], we provide a general method for computing a ranking of an affine
automaton. Our ranking is affine per label: ρlabel(x) = Alabelx + blabel ∈ INp.
Figure 2.(c) depicts the ranking found on the example. Ranks ordered with the
lexicographic ordering �, the well-founded set is (INp,�). This means that, by
decreasing order, start comes first (2), then all the iterations of loop (1), and
finally stop (0). The transitions involved to compute those constants are the
transitions from start to loop and the transitions from loop to stop. Then,
transitions from loop to loop (left, denoted τ1 and right, denoted τ2) are used
to computed the second dimension of ρloop. In the remainder, we will focus on
the computation of the second dimension of ρloop (x + y − 2) from transitions τ1
and τ2. We will write ρloop(x) for ρloop(x)[1] to simplify the presentation.

Positivity on Reachable States. The ranking must be positive on reachable states
of loop. The set of x such that 〈loop,x〉 is reachable from an initial state is

Fkcc: The Farkas Calculator 533

called the accessibility set of loop. In general, we cannot compute it – this is
the undecidable part of the analysis. Rather, we compute an over-approximation
thanks to linear relation analysis [4,9]. This set is called an invariant and will
be denoted by Iloop. Figure 2.(c) depicts the invariants on the program. All the
challenge is to make the invariant close enough to the accessibility set so a
ranking can be computed. In fkcc, the assertion x |= Iloop ⇒ ρloop(x) ≥ 0
translates to:

I_loop := [] -> {[x,y,x0,y0]: x>0 and y>0 and x <= x0 and y <= y0};

rank := positive_on I_loop;

Decreasing on Transitions. Now it remains to find a ranking decreasing on tran-
sitions τ1 and τ2. We first consider τ1. The assertion x |= Iloop ∧ x > y ⇒
ρloop(x − y, x, x0, y0) < ρloop(x, y, x0, y0) translates to:

tau1 := [] -> {[x,y,x0,y0]: x>y};

s1 := find rank s.t. rank - (rank . {[x,y,x0,y0]->[x-y,y,x0,y0]}) - 1

- positive_on (tau1*I_loop) = 0;

Similarly we compute a solution set s2 from τ2 and Iloop. Finally, the ranking
is found with the instruction lexmin (s1*s2);, which outputs the result:

[] -> {[1,1,0,0,-2]};

This corresponds to the dimension x + y − 2.

for i := 0 to N
for j := 0 to N

c[i+j] := c[i+j] + a[i]*b[j];

i

j

0

1

2

N = 3

0 1 2 3

θ(i, j, N) = i

eludehcsdnasnoitaretI)b(slaimonylopfotcudorP)a(

Fig. 3. Scheduling example

4.2 Scheduling

Figure 3 depicts an example of program (a) computing the product of two poly-
nomials specified by their array of coefficients a and b, and the iteration domain
with the data dependence across iterations (b) and an example schedule θ pre-
scribing a parallel execution by vertical waves, as discussed in Sect. 2.

534 C. Alias

Positivity. Similarly to the ranking, the positivity condition (1) translates to:

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

dependence := [] -> { [i,j,i’,j’,N]: 0 <= i and i <= N and 0 <= j and

j <= N and 0 <= i’ and i’ <= N and 0 <= j’ and

j’ <= N and i+j = i’+j’ and i<i’};

theta(i,j,N) >= 0 for any iteration (i,j,N)

theta := positive_on iterations;

Correctness. We enhance the correctness condition (2) by making it possible
to select the dependence to satisfy. For each dependence class d, we use a 0-1
variable εd. Here we have a single dependence class from S to S, so have only
one 0-1 variable ε:

θ(i′, j′, N) ≥ θ(i, j,N) + ε ∀(i, j, i′, j′) ∈ ΔN

On the ranking example, we would have four classes (i = start → loop, τ1, τ2, e =
loop → stop). This makes it possible to choose which dependence class is satisfied
(εd = 1) or just respected (εd = 0). This is the way multidimensional schedules
are built [7]: on the termination example we would have εi = εe = 1, ετ1 = ετ2 = 0
for the first dimension, then ετ1 = ετ2 = 1 for the second dimension. Here it is
kind of artificial, since we have a single dependence. However, the presentation
generalizes easily to several dependence classes. This translates as:

parameters := {inv_eps,eps};

to_target := {[i,j,i’,j’,N]->[i’,j’,N]};

to_source := {[i,j,i’,j’,N]->[i,j,N]};

s -> t ==> theta(s) <= theta(t) + eps, 0 <= eps <= 1

theta_correct := solve (theta . to_target) - (theta . to_source)

+ {[i,j,i’,j’,N] -> -1*eps}

- (positive_on dependence) = 0;

theta_def := define theta with theta;

eps_correct := [] -> {[i]: 0 <= eps and eps <= 1 and inv_eps = 1-eps};

Here is the trick: parameters are forbidden to define Farkas terms; how-
ever parameters are perfectly allowed in summation. In that case, the reso-
lution interprets parameters as constants. Hence the trick to set ε as a
parameter and to put it in the summation by declaring an explicit affine form
{[i,j,i’,j’,N] -> -1*eps}. We then keep the definition of theta coefficients
in terms of Farkas multipliers (theta def) and the domain of ε (eps correct).

Optimality. We seek a schedule θ with a minimal latency 	(θ) (number of steps).
When θ is an affine form, 	(θ) may be bounded by an affine form L(N) of the
structure parameters [6]: 	(θ) ≤ L(N). This means that:

∀(i, j) ∈ DN : θ(i, j,N) ≤ L(N)

Which is, again, completely Farkas compliant. It remains to express L(N), which
have to be positive provided DN is not empty i.e. N ≥ 0. This translates to:

Fkcc: The Farkas Calculator 535

L(N) >= 0 on the parameter domain

latency := positive_on ([] -> {[N]: N >= 0});

theta(i,j,N) <= L(N)

theta_bounded := solve (latency . {[i,j,N] -> [N]}) - theta

- (positive_on iterations) = 0;

bound_def := define latency with latency;

Finally, it remains to gather the constraints (positivity, correctness, optimal-
ity) to obtain the result:

lexmin (keep inv_eps,latency_0,latency_1,theta_0,theta_1,theta_2,theta_3,eps

in theta_correct*theta_def*eps_correct*theta_bounded*bound_def);

By priority order, we want to (i) maximize the dependence satisfied (minimize
inv eps), then (ii) to minimize the latency (L(N) = latency 0*N + latency 1).
This amounts to find the lexicographic minimum with variables ordered as
(inv eps,latency 0,latency 1). Note that eps and inv eps are parameters.
Adding them to the variable list of keep has the effect to turn them to coun-
ters eps counter and inv eps counter. We obtain the following result, pretty
printed using the -pretty option:

theta_0 = 0

theta_1 = -1

theta_2 = 1

theta_3 = 0

latency_0 = 1

latency_1 = 0

eps_counter = 1

inv_eps_counter = 0

Hence θ(i, j,N) = N − j, L(N) = N and the dependence was satisfied
(eps counter = 1).

5 Conclusion

In this paper, we have presented fkcc, a scripting tool to prototype program
analyses and transformations using the affine form of Farkas lemma. The script
language of fkcc is powerful enough to write in a few lines tricky schedul-
ing algorithms and termination analysis. The object representation (polyhedra,
affine functions) is compatible with iscc, a widespread polyhedral tool featuring
manipulation of affine relations. fkcc provides features to generate iscc code,
and conversely, the output of iscc might be injected in fkcc. This will allow to
take profit of both worlds.

We believe that scripting tools are mandatory to evaluate rapidly research
ideas. So far, Farkas lemma-based approaches were locked by two facts: (i) apply-
ing by hand Farkas Lemma is nearly impossible and (ii) implementing an analysis
with Farkas lemma is usually tricky, time consuming and highly bug prone. With
fkcc, computer scientists are now freed from these constraints.

536 C. Alias

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

2. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementa-
tion, Tucson, AZ, USA, 7–13 June 2008, pp. 101–113 (2008). https://doi.org/10.
1145/1375581.1375595

3. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6 39

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: 5th ACM Symposium on Principles of Programming Languages
(POPL 1978), Tucson, pp. 84–96, January 1978

5. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opérationnelle
22(3), 243–268 (1988)

6. Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part I. one-
dimensional time. Int. J. Parallel Program. 21(5), 313–348 (1992). https://doi.org/
10.1007/BF01407835

7. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
multi-dimensional time. Int. J. Parallel Prog. 21(6), 389–420 (1992)

8. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 1581–1592. Springer, Boston (2011). https://doi.org/
10.1007/978-0-387-09766-4

9. Gonnord, L.: Accélération abstraite pour l’amélioration de la précision en Analyse
des Relations Linéaires. Ph.D. thesis, Université Joseph Fourier - Grenoble (2007)

10. Verdoolaege, S.: Counting affine calculator and applications. In: First International
Workshop on Polyhedral Compilation Techniques (IMPACT 2011), Charmonix,
France (2011)

https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4

Handling Heap Data Structures
in Backward Symbolic Execution

Robert Husák(B), Jan Kofroň, and Filip Zavoral

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
{husak,zavoral}@ksi.mff.cuni.cz, jan.kofron@d3s.mff.cuni.cz

Abstract. Backward symbolic execution (BSE), also known as weakest
precondition computation, is a useful technique to determine validity of
assertions in program code by transforming its semantics into boolean
conditions for an SMT solver. Regrettably, the literature does not cover
various challenges which arise during its implementation, especially when
we want to reason about heap objects using the theory of arrays and to
use the SMT solver efficiently. In this paper, we present our achievements
in this area. Our contribution is threefold. First, we summarize the two
most popular state-of-the-art approaches used for BSE, denoting them
as disjunct propagation and conjunct combination. Second, we present
a novel method for modelling heap operations in BSE using the theory
of arrays, optimized for incremental checking during the analysis and
handling the input heap. Third, we compare both approaches with our
heap handling implementation on a set of program examples, present-
ing their strengths and weaknesses. The evaluation shows that conjunct
combination is the most efficient variant, exceeding the straightforward
implementation of disjunct propagation in an order of magnitude.

Keywords: Backward symbolic execution · Weakest precondition ·
Heap data structures · Input heap · Theory of arrays

1 Introduction

Symbolic execution is an established technique to explore semantics of programs,
create tests with high code coverage and discover bugs [2]. To achieve that, it
systematically explores the state space of the program reachable from the entry
point, transforming the possible execution paths into boolean constraints. These
constraints are usually passed to an SMT solver to determine the reachability
of the corresponding paths. To reason about objects on the heap, several of the
practically-usable tools [6,18] use the theory of arrays [10], which can be handled
by the most of the state-of-the-art SMT solvers [8].

If we are not interested in the exploration of the whole program and we want
to inspect only one particular problematic place instead, we can use the backward
variant of symbolic execution, sometimes referred to also as the weakest precon-
dition analysis [7,9]. As its name suggests, backward symbolic execution starts
at the assertion of our interest and traverses the execution direction backwards.
If it manages to reach the entry point and find an assignment satisfying the path

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 537–556, 2020.
https://doi.org/10.1007/978-3-030-54997-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_33&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_33

538 R. Husák et al.

constraints, it can provide us with a valuable test case. Otherwise, if no under-
approximation is used and the assertion violation is proved to be unreachable,
it is validated.

As we can see, each run of backward symbolic execution can be very expensive
in terms of resources. However, the information it provides is potentially very
detailed and useful for detecting the causes of errors. Therefore, it is important
to use it in an appropriate context. There is a plethora of techniques which use
some kind of abstraction, enabling them to efficiently analyse large programs for
the cost of introducing false positives [11,15,17]. Backward symbolic execution
can be then used only at the places where these techniques found potential errors
in order to examine them further. For example, the authors of Snugglebug were
able to verify 29 of 38 feasible null dereference exceptions found by FindBugs
[11] in a Java codebase of 750 kLOC [7]. Another usage of backward symbolic
execution is to run it in an interactive fashion, enabling programmers to gather
as much information about a specific program error as possible [12].

Although backward symbolic execution can be indeed very useful, it is not
as popular in the literature as the forward variant. Therefore, many important
design considerations and potential complications have to be rediscovered during
each implementation. For example, when calling an SMT solver multiple times,
it is often efficient for the subsequently analysed conjunctions to share a com-
mon prefix. As we illustrate in Sect. 2, that complicates the way to handle the
constraints, because we then should not alter the existing ones, only add new
ones. We tackle this problem and other issues in our contributions:

1. We summarize the existing algorithms commonly used for backward symbolic
execution in Sect. 3.

2. We present a novel way to transform heap operations into boolean constraints
in Sect. 4. These transformations fit into the mentioned algorithms and utilize
performance enhancements of the state-of-the-art SMT solvers.

3. We compare the performance of all the presented approaches on a set of code
examples in Sect. 5.

In Sect. 6, we compare our approach to the most important papers and tools
related to our work, while Sect. 7 concludes.

2 Problem

All the issues related to implementing a backward symbolic execution tool stem
from its very nature. Forward symbolic execution starts with a fixed set of
symbolic input variables and all the gradually constructed constraints can be
essentially build from them. With backward symbolic execution, the situation
is different, as the set of input variables constantly changes according to the
variables encountered along the way. Every time a variable is read, it is added
to this set; every time it is assigned to, it is removed from it.

Handling Heap Data Structures in Backward Symbolic Execution 539

We will illustrate the approaches on a simple method ScalarExample in
Listing 1.1. The forward variant starts with a symbolic variable a assigned to
a, at lines 2 and 3 it then assigns 1 to b and 2 to c. When it comes to the
assertion a != b at line 4, it interprets it using the known values and negates
the expression to discover any error inputs, resulting in a simple condition a = 1.
The backward variant starts directly at the assertion, creating a condition a = b,
where a and b are the input variables corresponding to their symbolic variables
a and b, respectively. As the condition is not dependent on c in any way, it can
safely skip its assignment at line 3. Next, the assignment of 1 into b at line 2
must effectively remove it from the set of input variables and replace it by 1 in
the condition, resulting again in a = 1. Although this simple example does not
demonstrate any significant differences, things become more complicated when
heap operations and various efficiency optimizations are involved.

Constantly Changing Input Heap: The rule with the constantly changing set of
input variables applies to the input heap as well. Moreover, its analysis gets more
complicated, because the objects from the input heap might get intertwined with
the ones created during the analysed program run. Consider the assertion a !=
b on the line 10 in Listing 1.1. At first, the objects in the input heap might
be possibly referenced by both a and b. The field read at line 9 causes b to be
loaded from the current input heap. However, we cannot assume that the loaded
reference is from the input heap as well, because it can always be assigned an
explicitly allocated object, as at line 8. Therefore, we need to provide a way to
correctly distinguish between the input heap and the explicitly allocated objects
and to enable their various interactions.

540 R. Husák et al.

Incremental Solving: There are many usage scenarios of SMT solvers where we
need to call them successively on similar formulas. E.g., in the case of symbolic
execution, we might want to explore two independent code branches sharing the
same prefix. Therefore, a modern SMT solver can be usually used incrementally,
with the possibility to cache certain knowledge between subsequent calls. To
add and remove assertions, they offer two useful mechanisms: an assertion stack
and assumptions. The former enables us to use a stack-based system of scopes
containing the particular assertions, with the ability to destroy all the data
of the topmost scope while retaining the remaining ones. The latter works by
adding every assertion a in the form of l =⇒ a, where l is a literal specified
later during each call of the solver. Because we want to utilize these features
to optimize our SMT calls, it is important that we construct the formulas in a
proper way, possibly combining the strengths of both techniques.

3 Backward Symbolic Execution

3.1 Notation

Let us clarify the terminology and semantics of various formulas and symbols
used in this paper. If we speak about a function or mapping g : A → B, it is
understood as a partial function, hence defined on the subset of its domain A.
If g(a) for a ∈ A is not defined, we denote it as g(a) = undef. The function
g[a → b] is defined to be the same as g, except for it maps a to b. This notation
can be generalized for a set: g[{a1, ..., an} → b] = g[a1 → b]...[an → b].

As to the formalism used for SMT queries, many-sorted first-order logic is
used. Because the meaning of sort in logic corresponds to the meaning of type in
computer science, we will use these two names interchangeably, according to the
context. The signature Σ = (S,F ,P) comprises a set of sorts S, a set of function
symbols F and a set of predicate symbols P. Symbolic variables Σv, terms Σt,
atoms Σa, and formulas Σf are derived from the signature, using the standard
recursive way. A formula ϕ[a/b] is constructed by replacing all the occurrences
of a in ϕ by b. The function FreshΣv

retrieves a symbolic variable not yet used
in any context. In general, for any domain A, FreshA retrieves a variable a ∈ A,
which is not yet used in the analysis.

Let C be a set of classes contained in the analysed program. For each class
c ∈ C, there is a corresponding set Fc containing all its fields. All the fields in
the program are contained in F =

⋃
c∈C Fc. To enable working with reference

symbolic variables, we introduce a set of reference sorts R = {σc | c ∈ C} ⊂ S.
As an instrument to reason about types of fields and variables, we use function
t : V ∪ F → S. Ft(v) as an abbreviation for Fc where σc = t(v). Reference fields
FR and value fields FV are defined as follows:

FR = {f ∈ F | t(f) ∈ R} FV = F \ FR

Analogicaly, reference and value variables:

VR = {v ∈ Σv | t(v) ∈ R} VV = Σv \ VR

Handling Heap Data Structures in Backward Symbolic Execution 541

Note that the sorts R representing reference variables are used only to ease
formal description of heap operations. They are effectively replaced by functions
on arrays and integers, as we describe in Sect. 4. All the reference variables are
expected to point to objects on the heap, there is no notion of low-level pointers
and of accessing stack variables by references.

To reason about a certain program, we expect it to be given as a control flow
graph (CFG). Each node n contains at most one operation n.op and each edge
e = (n1, ψe, n2) is marked with a condition ψe. The possible operations follow:
scalar assignment of term vt ←s t, reference assignment vt ←r vr, reference
comparison assignment1 vt ← (v1

r = v2
r), new object creation vt ←r new T , field

read vt ← vr.f and field write vr.f ← vv. Note that the last two operations can
occur both for reference and variable fields, in some cases we denote it by ←r

and ←s, respectively. Assertions are modelled as edges to special nodes.
To keep the scope limited, this paper does not directly address handling loops,

interprocedural analysis or recursion. In order to evaluate our approach on pro-
grams of smaller size, we use a simple preprocessor for CFGs, which unwinds the
loops for a given number of iterations. To handle interprocedural calls, we plan
to extend it to handle inlining of the procedures up to a certain level of recursive
calls. We are aware that this approach is underapproximate and does not scale
well on larger programs. In order to mitigate this issue, we will inspire from the
existing tools which were able to efficiently extend backward symbolic execution
into an interprocedural analysis. Snugglebug uses directed call graph construc-
tion and tabulation, enabling it to explore the call graph lazily and reuse certain
summaries obtained for each procedure [7]. Alter combines backward and for-
ward symbolic execution to combine method summaries, utilizing interpolant
computation to learn from infeasible paths [16].

3.2 Algorithm

Whereas in forward symbolic execution we usually want to reasonably spread
our analysis among the state space to achieve high code coverage [2], backward
symbolic execution often works by gathering summaries towards the entry point
[1,7]. At least in the intraprocedural case it is a natural approach, as we are
interested in finding a feasible path between the entry node and the target node.

An overall algorithm structure is shown in Fig. 1. Given a target node ntrg, it
traverses cfg backwards towards the entry node and gathers useful information
along the way. The information is stored in the states associative array. In the
beginning, because we expect cfg to be acyclic, we can sort its nodes according
to their topological order in the reversed cfg, skipping those not reachable from
ntrg. This way, when processing a node, we are sure that the dependent nodes
were already processed. For each node, we gather the states of the directly adjacent
nodes and their corresponding edge conditions into deps.Merge is a core function

1 We did not put reference comparison directly in the edge conditions so that we can
describe its processing later in the unified manner with the other heap operations,
see Sect. 4.

542 R. Husák et al.

Fig. 1. Backward symbolic execution algorithm

responsible for inferring the state of a given node according to its dependencies.
DoSolve is a heuristic returning true for the entry node and possibly also dur-
ing the exploration so that certain infeasible parts get pruned. GetCondition is
used to gather the condition corresponding to a given state, returns false if ntrg is
unreachable from that node. Eventually the algorithm retrieves all the computed
states. The caller can then extract interesting pieces of information from it, such
as a possible input driving the execution towards ntrg.

Fig. 2. Backward symbolic execution implementation using disjunct propagation

In the literature, we have identified two main possible implementations of
this algorithm. The first, listed in Fig. 2, is based on formulas in DNF and their
propagation in the form of disjuncts [7]. MergeDisj merges the disjunctions in
all the dependent nodes and enhances them by their corresponding edge condi-
tions, simplifying the resulting formula by Simplify and passing it to Proces-
sOperationDisj. Simplify applies various techniques of reducing a disjunc-
tion size while maintaining its semantics. ProcessOperationDisj handles an
assignment vt ←s t by replacing the target variable vt by the term t represent-
ing its value, GetConditionDisj simply returns the disjunction for the given
node. Heap operations and the implementation of GetCondition for heaps is
described in Sect. 4.

Handling Heap Data Structures in Backward Symbolic Execution 543

Fig. 3. Backward symbolic execution implementation using conjunct combination

In Fig. 3, the other implementation is listed [1]. Instead of propagating a
set of disjuncts to the entry node, it associates each node n with a condition
ψn describing its semantics and control flow. As seen in GetConditionConj,
to reason about the whole path, we can pass a conjunction of these conditions
to an SMT solver, which enables an efficient incremental usage. Since we can
reason about mutable variables, our state contains also a map vers containing
a version number for each encountered program variable. Unlike the previous
case, we need to store certain information about a symbolic heap in each state;
the details will be provided in Sect. 4.

MergeConj works as follows. Each node n is associated with a proposi-
tional variable cn to express that the control flow reached it. The condition ψn

is an implication with cn on the left side. The right side consists of two parts:
a join condition ψjoin and an operation condition ψop. The purpose of ψjoin is
to model the branching of the control flow by creating a disjunction on the edge
conditions where each disjunct redirects the flow to the corresponding cndep

and
possibly synchronizes the variable versions of the dependent nodes using Join-
Vers. An operation condition, created by ProcessOperationConj, handles
an assignment by making the given variable under its current version equal to
the given term and associating the variable with a new version. Notice that if
vt has not been encountered so far, we can safely ignore the operation. Heap
operation handling is described in Sect. 4, including the merging of heaps.

As we can see, each implementation is connected with certain advantages
and disadvantages. The disjunct propagation approach is based on maintaining
sets of disjuncts and simplifying them, while the operations are handled as term

544 R. Husák et al.

substitutions. As a result, the final condition can be potentially much simpler
than in the other case, because it does not contain any helper variables repre-
senting various versions and Simplify can help to get rid of various repetitive
patterns. On the other hand, if the simplification is not successful enough, the
size of the resulting formula can be exponential with respect to the number of
calls to Merge. Furthermore, it cannot fully utilize incremental SMT solvers, as
they work by adding immutable conjuncts to an assertion stack. The conjunc-
tion combination case is able to use them efficiently and the generated condition
size is usually linear with respect to the number of the analysed nodes, which is
redeemed by the presence of helper variables.

Although in this work, the implementations are handled as two separate
techniques, we plan to pursue a way to efficiently combine them, using the
best features of both. Creating simple procedure summaries might be crucial
for developing an efficient interprocedural algorithm, whereas utilizing an incre-
mental SMT solver might help with exploring large program state.

4 Modelling Heap Using Array Theory

4.1 Main Idea

The array theory enables SMT solvers to reason about heap memory in forward
symbolic execution and concolic execution [6,18]. Its axioms, in addition to those
of theory of uninterpreted functions, follow [4]:

∀a, i, j (i = j ⇒ read(write(a, i, v), j) = v)

∀a, i, j (i 	= j ⇒ read(write(a, i, v), j) = read(a, j))

∀a, b (∀i(read(a, i) = read(b, i)) ⇔ a = b)

As we can see, array theory generalises the operations of the array data
structure, with the only difference being the immutability of the array variables.
In the forward variant of symbolic execution, a common approach is to associate
an array with each defined field and represent all the references by integers
[18]. Reading a value from an instance can be then naturally modelled by using
the read operation on the corresponding reference and array. Writing a value
is similarly performed by using the write operation to produce a new version
of the particular array. To ensure that different allocations of new objects do
not reference the same object, we can use an internal counter and increment it
every time an allocation is performed (allocation site counting) [3]. To denote
null references, 0 is used.

All these principles can be directly adopted for backward symbolic execution
as well [7]. However, to our knowledge there is a serious problem not sufficiently
tackled in the literature. If we do not analyse a program from its very start,
we expect that there are existing objects on the heap, prior to the entry point,
where the analysis begins from, being called the input heap. Therefore, each
reference can point either to an object located in the input heap, to null, or to

Handling Heap Data Structures in Backward Symbolic Execution 545

an object allocated explicitly during the analysis. The problem is that if we do
not constrain the references from the input heap to be distinct from the explicitly
allocated objects, the SMT solver might produce a model where the references
from those two distinct groups are equal.

Consider the method HeapExample1 in Listing 1.1. Apart from the instance
created at line 8, there is also an instance passed as the parameter a. Because this
instance was created before the method call, we must assert that it is distinct
from the former. Otherwise, an SMT solver might create an invalid model where
a = b, so the input heap contains a reference to the explicitly created instance
before it even exists.

Furthermore, all the references from a in the beginning of the method must
point either to null or to other input heap instances. In method HeapExample2,
we can see the reason. If we do not constrain the reference loaded from a.next
in any way, the SMT solver can create a model where b = c.

A natural approach used in our solution is to restrict all the input heap
objects to be represented as negative integers. In the case of forward sym-
bolic execution, we can remember the first version of the variable represent-
ing each field and then constrain it whenever we access it from any reference.
In HeapExample1, we start with an input reference a ≤ 0 and an array vari-
able next0 representing the field next in the beginning. At line 8 we assert
next1 = write(next0, a, 1), making next1 the current version of the field. Never-
theless, when we access the field at line 9, we can retrospectively add a constraint
read(next0, a) ≤ 0, making a.next from the input heap either to be null or to
reference another object from the input heap. As we only add constraints and
never alter the existing ones, this approach is naturally efficient for incremental
solving.

When trying to using this approach in backward symbolic execution, we
encounter a major problem. Because the view of the input heap continues to
change as the analysis proceeds backwards, we cannot use any single version of
the array variable representing the given field. For example, if we decide to set
the input heap constraint at line 9 as read(next0, a) ≤ 0, we prevent a.next to
be assigned any explicitly created instance, which exactly happens at line 8.

As we explain below, we tackle this problem by creating a helper “input”
array variable for each field and firmly asserting its equality with the current field
variable version only when explicitly checking the condition. A similar solution
is created also for the reference variables, as they face the same issue.

4.2 Operation Definitions

The implementation of heap operation handling for the disjunct propagation
algorithm from Fig. 2 is shown in Fig. 4. To mark symbolic variables correspond-
ing to reference variables and fields, we use the s superscript. For a reference
variable v, vs represents a symbolic integer variable; for a field f , fs represents
a symbolic array variable indexed by integers. The value sort of fs is t(f) if
f ∈ FV , integer otherwise. The semantics of a reference variable v is as follows.

546 R. Husák et al.

If vs = 0, v is null ; therefore, nulls = 0. If vs > 0, v references an object explic-
itly created during the analysed part of the program. Otherwise, if vs < 0, v
references an object in the input heap, i.e., it is created in the not yet analysed
code.

Fig. 4. Heap operation modelling in the disjunct propagation approach from Fig. 2

We can see that assignments, comparisons and new object creations are
implemented as simple replacements of the corresponding target variables in
the existing formula. FreshN+ ensures that each created object is represented
by a distinct number. A field write replaces all the occurrences of the given field
array variable fs by an expression that writes the given value vv to fs on the
index given by the instance vr. Because vv can be either a reference variable or
a scalar value (term), we use a helper function Symb which optionally adds the
s superscript if vv ∈ VR. Because the operation would not have been executed if
vr was null, we also add the condition vs

r 	= 0.
When reading a value from a field, we distinguish between the scalar case ←s

and the reference case ←r. In the scalar case, we just replace the read variable
by the formula representing array read and assert that vr is not null. In the
reference case, we also need to handle the aforementioned problems with input
heap. Therefore, for each field f , we create also a helper symbolic array variable
f in, which is never rewritten during any operation. By adding read(f in, vs

r) ≤ 0
we ensure that any read from the input heap using vr will always either be null
or reference an input heap object. These variables are then used in GetCondi-
tionDisjHeap, where we associate all the constraints gathered for them with
their corresponding fields. We also identify all the input heap references and
constrain them to be ≤0 as well.

Handling Heap Data Structures in Backward Symbolic Execution 547

As we can see from the algorithms in Fig. 2 and Fig. 4, the disjunct propaga-
tion approach is straightforward to implement and the condition transformations
directly correspond to the operations. However, its efficiency heavily depends on
the implementation of formula handling, especially their substitution and sim-
plification. The best results are supposed to be obtained by a custom imple-
mentation which reflects all the requirements of the particular project [7]. It is
also possible to reuse existing solutions, for example the efficient algorithms for
terms in Z3 using its API [8].

Nevertheless, even with the best implementation possible, the conditions in
certain programs can grow beyond a reasonable complexity, where every term
substitution or simplification consumes too many resources. Therefore, we will
now focus on the implementation of heap operations in Fig. 5 for the conjunct
combination based algorithm shown in Fig. 3. Although the semantics regarding
fields as array variables and references as integer variables remains the same,
there are several differences, making the operations more complex. Because each
condition is associated with the semantics of a single node and we cannot manip-
ulate conditions for the already processed nodes, we are not allowed to use term
substitution. Instead, we utilize a version-based mechanism similar to the imple-
mentation of assignment in ProcessOperationConj, where the version of the
given variable is incremented and its equality with the particular term is added
to the condition.

As a result, each node is also associated with a symbolic heap (η, α). The
environment η contains all the current input heap reference variables and maps
each of them either to 0 or to an integer symbolic variable. In the beginning
of the analysis, η contains only the mapping from null to 0. The field version
map α associates each field f ∈ F with a non-negative integer representing the
current version of its array symbolic variable. If α[f] = i, the variable is denoted
f i. Initially, all fields have the version 0.

Let us proceed to the semantics of ProcessOperationConjHeap. The
reference assignment vt ←r vv distinguishes three cases. If we have not yet
encountered vt, it is not contained in η and we are not interested in any value
assigned to it. Otherwise, if we do not know vv, we associate it with variable2

η[vt]. If both vt and vv are known, we must assert the equality of their symbolic
variables. Eventually, in any case, we must remove vt from η, because by being
assigned to it was effectively removed from the set of input heap references.
When comparing two references v1 and v2, we use helper function Init, which
associates them in η with fresh symbolic integer variables, if they are not already
present there. Then, the scalar assignment of boolean term η[vt] = η[vv] to vt is
performed, updating the version of vt in vers accordingly. A new object creation
is again modelled only if we have encountered the target reference variable vt

before. Its symbolic integer variable η[vt] is asserted to be equal with a fresh
positive number and vt is removed from η. A field write vr.f ← vv needs to
manipulate α by incrementing the version of f and using its two distinct versions

2 We expect that null cannot be on the left side of the assignment.

548 R. Husák et al.

Fig. 5. Heap operation modelling in the conjunct combination approach from Fig. 3

to express the write. Note that due to the backward approach of our analysis,
the version being written to is the current one.

Handling Heap Data Structures in Backward Symbolic Execution 549

Again, a field read operation is the most complicated one to model. In both
scalar and reference cases, we use Init to ensure that there is a symbolic integer
variable corresponding to vr, constrain it not to be equal to null by η′[vr] 	= 0
and use read to model the read of the field from the heap. In the scalar case
←s, we must also handle the assignment into vt by increasing its version in
vers. In the reference case ←r, when we are interested in the reference stored in
vt, we also use the helper f in array variable enabling us to constrain the input
heap later in GetConditionConjHeap. Note that we also explicitly handle
the situation when vt = vr in order not to accidentally remove vr from the
environment. MergeHeaps uses the same version map merging as MergeConj
utilizing JoinVers. To merge environments with two or more distinct values
corresponding to one reference variable, it is suitable to randomly pick one of
them and constrain all the others to point to it. In the algorithm, we must avoid
introducing unintentional aliases in the resulting environment.

4.3 Example

To demonstrate the operations on a real-life example, let us examine the assertion
in Fig. 6, which corresponds to inspecting the reachability of the node n13 in the
CFG. Notice that the heap operations from the code were decomposed into the
atomic ones, producing helper variables such as tv, tn or rnv.

The solution using the disjunct propagation approach is depicted in Table 1.
Each row captures the current state of the condition computed for it, starting

(a) C# code (b) CFG

Fig. 6. Sample C# code with heap objects and the corresponding CFG

550 R. Husák et al.

Table 1. The verification of the assertion in Fig. 6 using disjunct propagation

n13 true

n12 rv > read(val, rn) ∧ rn �= 0

n11
rv > read(val, read(next, r)) ∧ read(next, r) �= 0

∧read(nextin, r) ≤ 0 ∧ r �= 0

n10
read(val, r) > read(val, read(next, r)) ∧ read(next, r) �= 0

∧read(nextin, r) ≤ 0 ∧ r �= 0

n9
read(val, this) > read(val, read(next, this)) ∧ read(next, this) �= 0

∧read(nextin, this) ≤ 0 ∧ this �= 0

n8, n7, n6
read(val, this) > read(val, n) ∧ n �= 0

∧read(nextin, this) ≤ 0 ∧ this �= 0

n5
read(val, n) > read(val, read(next, n)) ∧ read(next, n) �= 0

∧read(nextin, n) ≤ 0 ∧ n �= 0

n4
read(val, n) > read(val, this) ∧ this �= 0

∧ read(nextin, n) ≤ 0 ∧ n �= 0

n3
(v ≥ read(val, this) ∧ read(val, this) > read(val, n) ∧ n �= 0

∧ read(nextin, this) ≤ 0 ∧ this �= 0)

∨ (v < read(val, this) ∧ read(val, n) > read(val, this) ∧ this �= 0

∧ read(nextin, n) ≤ 0 ∧ n �= 0)

n2
(v ≥ read(write(val, n, v), this) ∧ read(write(val, n, v), this) > v ∧ n �= 0

∧ read(nextin, this) ≤ 0 ∧ this �= 0)

∨ (v < read(write(val, n, v), this) ∧ v > read(write(val, n, v), this) ∧ this �= 0

∧ read(nextin, n) ≤ 0 ∧ n �= 0)

n1, n0
(v ≥ read(write(val, 1, v), this) ∧ read(write(val, 1, v), this) > v

∧ read(nextin, this) ≤ 0 ∧ this �= 0)

∨ (v < read(write(val, 1, v), this) ∧ v > read(write(val, 1, v), this) ∧ this �= 0

∧ read(nextin, 1) ≤ 0)

from n13 and going backwards to n0. The table is divided into four blocks accord-
ing to the shape of the CFG. To simplify the notation, we do not use the s
superscripts to denote symbolic variables, as all the variables in the condition
are symbolic. Instead, they are differentiated by their font, as the program vari-
ables from the CFG use a monospaced one.

Since the reachability from n13 to n13 is trivial, the condition starts with true.
Next, to reach it from n12, the condition rv > rnv is added and the field read is
performed, replacing rnv with read(val, rn) and ensuring that rn is not null. The
next read into rn is a reference one; therefore, read(nextin, r) ≤ 0 is added. The
helper variable rv is replaced by its semantics in n10. Notice that if we called
GetConditionDisjHeap at this point, the condition next = nextin ∧ r ≤ 0
would be temporarily added, ensuring that the input heap consisting of r is
separated from the objects potentially created during the analysis.

Handling Heap Data Structures in Backward Symbolic Execution 551

Table 2. The verification of the assertion in Fig. 6 using conjunct combination

n13 c13 =⇒ true η13 = {(null, 0)}
α13 = {(next, 0), (val, 0)}

n12 c12 =⇒ c13 ∧ rv > rnv ∧ rnv = read(val0, rn) ∧ rn �= 0 η12 = η13[rn → rn]

n11
c11 =⇒ η11 = η12[rn → undef]

c12 ∧ rn = read(next0, r) ∧ r �= 0 ∧ read(nextin, r) ≤ 0

n10 c10 =⇒ c11 ∧ rv = read(val0, r) ∧ r �= 0 η10 = η11[r → r]

n9 c9 =⇒ c10 η9 = η10[r → undef, this →
r]

n8 c8 =⇒ c9 ∧ next0 = write(next1, r, n) ∧ r �= 0 η8 = η9[n → n]

α8 = α13[next → 1]

n7 c7 =⇒ c8 ∧ next1 = write(next2, n, tn) ∧ n �= 0 η7 = η8[tn → tn]

α7 = α8[next → 2]

n6
c6 =⇒ η6 = η7[tn → undef]

c7 ∧ tn = read(next2, r) ∧ r �= 0 ∧ read(nextin, r) ≤ 0

n5 c5 =⇒ c10 η5 = η10[r → undef, n → r]

n4 c4 =⇒ c5 ∧ next0 = write(next1, r, this) ∧ r �= 0 η4 = η5[this → this]

α4 = α13[next → 1]

n3

c3 =⇒ η3 =

((c4 ∧ v < tv ∧ next1 = next2 ∧ r = n) {(null, 0), (this, this), (n, n)}
∨ (c6 ∧ v ≥ tv ∧ r = this)) α3 = {(next, 2), (val, 0)}

∧ tv = read(val0, this) ∧ this �= 0

n2 c2 =⇒ c3 ∧ val0 = write(val1, n, v) ∧ n �= 0 α2 = α3[val → 1]

n1 c1 =⇒ c2 ∧ n = 1 η1 = η3[n → undef]

n0 c0 =⇒ c1

In n9, the last node of the else branch, the assignment r ←r this causes the
replacement of r by this. After the field write in n8, read(write(next, this, n), this)
is simplified to n. Notice that now next is not a part of the formula and this and
n are already constrained not to be null, so the operations in n7 and n6 do not
have any effects. The semantics of the positive if branch is similar, as it replaces
r by n and then reduces both occurrences of read(next, n) to this.

Node n3 merges the disjuncts from nodes n6 and n4, adds their respective
conditions and performs the replacement of tv by read(val, this). By the assign-
ment n.val ←s v in n2, we reduce read(val, n) to v. The creation of new object
in n1 replaces n by 1 in both disjuncts, simplifying away the conditions n 	= 0.
Finally, the condition for n0 enhanced with input heap handling is passed to the
SMT solver, proving the assertion by returning UNSAT.

Table 2 shows how the conjunct combination variant works. As its name
suggests, the assertions created for all the relevant nodes are combined using
conjunction. In order to determine the reachability from n1, we must combine
all the conditions in the table. Notice that for each node ni, there exist an

552 R. Husák et al.

environment ηi, a field version map αi and a helper ci to express that the control
flow reached it.

The semantics of the operations is the same as in the former case, but the
construction is different. In general, ηi and αi keep track of the symbolic variables
which represent the current versions of references and fields, respectively. As we
can see in n8, n7, n4 and n2, every field read causes the corresponding αi to
create another version of its corresponding array symbolic variable. Whenever
we read an unknown reference, we create a symbolic integer variable for it, such
as in the case of η12. As soon as that reference is being assigned to, we forget it,
e.g. in η11.

Let us have a look on the assignments in n9 and n5. The former one causes all
the usages of this in the else branch to be represented by r, whereas the latter
one does the same in the positive if branch for n. Their versions are properly
united after being merged in n3.

We can see that in our simple example, the formula resulting from disjunct
propagation is much shorter than the one from conjunct combination. However,
in case of larger programs with more branches, the number of disjuncts can grow
in an exponential manner if we do not simplify them efficiently.

5 Evaluation

We implemented the techniques into a development version of AskTheCode, an
open-source tool for backward symbolic execution of C# code, which uses Z3
as the SMT solver. In order to compare the efficiency of the aforementioned
approaches, we prepared a simple program which can be parametrized so that
its complexity and validity of the assertions can vary. Degree counting(a, b) is
an algorithm receiving a linked list as the input. Each of its nodes contains
an additional reference to another node and the algorithm calculates for each
node its in-degree: the number of nodes referencing it. The assertion fails if it
encounters a node whose in-degree is greater than its zero-based index in the list
and also greater than a given number a. The second parameter b specifies the
number of loop unwindings, i.e., the number of nodes inspected from the start of
the list. As a result, the assertion is refutable if and only if a + 2 ≤ b. Increasing
b produces a larger CFG with also potentially more complicated conditions, but
the counterexample might be easier to find due to a larger number of paths
corresponding to it.

The execution time of analysis of each input variant is shown in Table 33.
Notice that there are multiple approaches both to disjunct propagation Disj
and to conjunct combination Conj. Because we considered creating a custom
implementation of term simplification and efficient representation too complex,
we decided to use the well-optimized terms available in the API of Z3. DisjSet
uses a set of Z3 terms to represent the disjuncts in each state. Their unique-
ness is ensured by the hash consing implemented in Z3. The simplification is
3 We conducted the experiments on a desktop with an Intel Core i7 CPU and 6GB

RAM.

Handling Heap Data Structures in Backward Symbolic Execution 553

Table 3. Performance evaluation, the times are in milliseconds

Test case DisjSet DisjZ3 DisjComb ConjNever ConjAlways ConjLoops

Degree counting (0, 3) 298 775 668 18 55 20

Degree counting (1, 3) 302 773 688 21 60 26

Degree counting (2, 3) 284 752 675 15 59 20

Degree counting (1, 4) 2062 1225 791 31 119 46

Degree counting (2, 4) 2075 1152 822 43 121 53

Degree counting (3, 4) 1949 874 754 25 115 32

Degree counting (2, 5) 13334 1856 1287 91 242 102

Degree counting (3, 5) 13381 1947 1360 85 232 99

Degree counting (4, 5) 13226 1764 1125 40 246 50

Degree counting (3, 6) 81282 4728 4052 200 469 219

Degree counting (4, 6) 80853 4566 4214 161 427 178

Degree counting (5, 6) 80915 3116 2364 62 390 78

performed for each term separately. On the other hand, DisjZ3 represents each
state using a Z3 term; merging is performed by creating a disjunction of all the
terms in the dependent nodes. DisjComb is a combination of the two approaches.
A state is represented as a Z3 term set, but the merging is performed by creat-
ing a disjunction term and putting it as a single item of the set. In ConjNever,
DoSolve always returns false, so no intermediate calls of the SMT solver are
performed. An opposite extreme is ConjAlways, where DoSolve always returns
true. In ConjLoops, true is returned only for entry nodes of loops. The underly-
ing solver is used incrementally, which enables it to reuse the information gained
during the previous checks.

The results show that for our problem, conjunct combination was more effi-
cient than disjunct propagation. The best times were obtained for ConjNever,
where the SMT solver was called only once at the very end of the analysis. How-
ever, in case of more complicated examples where an early check may prevent
the analysis from inspecting large regions of code, the incremental usage of the
SMT solver might be useful. The results of ConjAlways show that it is unnec-
essary and inefficient to call it on every operation, as it causes an overhead of
more than 250% on average. Instead, when we carefully select the nodes where
to perform these additional checks like we did in ConjLoops, the overhead is less
than 25% on average.

We believe that implementing a custom well-optimized simplifier will lead
a substantial performance improvement of disjunct propagation, as achieved in
the case of Snugglebug [7]. However, writing such a simplifier might be a chal-
lenging feat, whereas the utilization of incremental solving can efficiently move
the problem to a well-optimized SMT solver.

554 R. Husák et al.

6 Related Work

The disjunct propagation approach originates from Snugglebug [1], a tool using
weakest preconditions to assess the validity of assertions in Java code. Snug-
glebug uses the algorithm for intraprocedural analysis, utilizing a custom-made
simplifier over the propagated disjuncts. For interprocedural analysis, various
other methods are used, such as directed call graph construction or tabulation.
The SMT solver is utilized only at the entry point, as many infeasible paths are
rejected using the simplifier. The conjunct combination approach is used in UFO
[1] as the under-approximation subroutine. UFO, however, does not handle heap
objects.

Microsoft Pex [18] is a tool generating unit tests for .NET programs using
dynamic symbolic execution. It executes the program with concrete inputs and
observes its behaviour, using the Z3 SMT solver to generate new inputs steering
the execution to uncovered parts of the code. It also uses the array theory to
model heap operations, but the way it works with the input heap is different
from our pure symbolic approach.

KLEE [6] is a symbolic virtual machine utilizing the LLVM [13] infrastruc-
ture, used mainly for C and C++ projects. It uses array theory not only to reason
about heap operations, but also about pointers, low-level memory accesses, etc.
This differs from our approach, because we target only higher level languages
with reference semantics, without the usage of pointers. Furthermore, KLEE
does not support running symbolic execution backwards.

Symbolic execution tools JBSE [5] and Java StarFinder (JSF) [14] both
employ lazy initialization to reason about heap objects, which lazily enumer-
ates all the possible shapes of the heap. They differ by the languages used for
specification of the heap objects’ invariants. Whereas JBSE uses custom-made
HEX, JSF utilizes separation logic. Although we use a different approach for the
core of the heap operations, taking heap invariants into account might help us
to prune infeasible paths and save resources.

7 Conclusion

In this paper, we focused on the task of demand-driven program analysis by
studying methods of efficiently implement backward symbolic execution. We
identified two main approaches used for the core algorithm, namely disjunct
propagation and conjunction combination. The former one has the benefit of
easier implementation and creating potentially simpler conditions passed to an
SMT solver, while the latter one is more predictable in terms of the resulting
condition size and can better utilize incremental SMT solvers. To handle heap
operations in both approaches, we use the theory of arrays, paying attention
to properly handle the notion of an input heap throughout the analysis. The
evaluation on our code examples shows that the effort put into the implemen-
tation of the conjunct combination approach is reasonable, because its results
exceeded the straightforward implementation of disjunct propagation in an order
of magnitude.

Handling Heap Data Structures in Backward Symbolic Execution 555

Due to the narrow focus of this work, the application of our technique is
currently limited mainly by the inability to soundly handle loops, interproce-
dural calls and recursion. Our future work will mainly focus on removing these
limitations by exploring the possibilities of computing and reusing procedure
summaries, possibly learning from infeasible paths using interpolants. We will
build on our knowledge of how disjunct propagation and conjunct combination
perform in different circumstances, combining them to reach a valuable synergy.

Acknowledgements. This work was supported by the project PROGRESS Q48, the
Czech Science Foundation project 17-12465S and the grant SVV-2017-260451.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 157–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28756-5 12

2. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 50 (2018)

3. Bjørner, N.: Engineering theories with Z3. In: Yang, H. (ed.) APLAS 2011. LNCS,
vol. 7078, pp. 4–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25318-8 3

4. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74113-8

5. Braione, P., Denaro, G., Pezzè, M.: JBSE: a symbolic executor for java programs
with complex heap inputs. In: Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pp. 1018–1022. ACM
(2016)

6. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008). http://dl.acm.org/
citation.cfm?id=1855741.1855756

7. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weakest
preconditions. SIGPLAN Not. 44(6), 363–374 (2009). http://doi.acm.org/10.1145/
1543135.1542517

8. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008/ETAPS 2008. LNCS, vol. 4963, pp. 337–
340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 24.
http://dl.acm.org/citation.cfm?id=1792734.1792766

9. Dinges, P., Agha, G.: Targeted test input generation using symbolic-concrete back-
ward execution. In: 29th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), Väster̊as, Sweden. ACM, 15–19 September 2014

10. Goel, A., Krstić, S., Fuchs, A.: Deciding array formulas with frugal axiom instan-
tiation. In: Proceedings of the Joint Workshops of the 6th International Workshop
on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise
Reasoning, SMT 2008/BPR 2008, pp. 12–17. ACM, New York (2008). http://doi.
acm.org/10.1145/1512464.1512468

https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-642-25318-8_3
https://doi.org/10.1007/978-3-642-25318-8_3
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://doi.acm.org/10.1145/1543135.1542517
http://doi.acm.org/10.1145/1543135.1542517
https://doi.org/10.1007/978-3-540-78800-3_24
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://doi.acm.org/10.1145/1512464.1512468
http://doi.acm.org/10.1145/1512464.1512468

556 R. Husák et al.

11. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39, 92–106 (2004).
https://doi.org/10.1145/1028664.1028717

12. Husák, R., Kofroň, J., Zavoral, F.: AskTheCode: interactive call graph exploration
for error fixing and prevention. Electron. Commun. EASST 77 (2019). https://
doi.org/10.14279/tuj.eceasst.77.1109. InterAVT 2019

13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
2004, pp. 75–86. IEEE Computer Society, Washington, DC (2004). http://dl.acm.
org/citation.cfm?id=977395.977673

14. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Testing heap-based programs
with java starfinder. In: Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceedings, pp. 268–269. ACM (2018)

15. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002). https://doi.org/10.1145/
514188.514190. http://doi.acm.org/10.1145/514188.514190

16. Sinha, N., Singhania, N., Chandra, S., Sridharan, M.: Alternate and learn: finding
witnesses without looking all over. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 599–615. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31424-7 42

17. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Alias analysis for
object-oriented programs. In: Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing
in Object-Oriented Programming. Types, Analysis and Verification. LNCS, vol.
7850, pp. 196–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36946-9 8

18. Tillmann, N., De Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

https://doi.org/10.1145/1028664.1028717
https://doi.org/10.14279/tuj.eceasst.77.1109
https://doi.org/10.14279/tuj.eceasst.77.1109
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/514188.514190
https://doi.org/10.1145/514188.514190
http://doi.acm.org/10.1145/514188.514190
https://doi.org/10.1007/978-3-642-31424-7_42
https://doi.org/10.1007/978-3-642-31424-7_42
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-540-79124-9_10

AuthCheck: Program-State Analysis
for Access-Control Vulnerabilities

Goran Piskachev1(B), Tobias Petrasch2, Johannes Späth1, and Eric Bodden1,3

1 Fraunhofer IEM, Paderborn, Germany
{goran.piskachev,johannes.spaeth}@iem.fraunhofer.de

2 BCG Platinion, Berlin, Germany
petrasch.tobias@bcgplatinion.com

3 Paderborn University, Paderborn, Germany
eric.bodden@upb.de

Abstract. According to security rankings such as the SANS Top 25
and the OWASP Top 10, access-control vulnerabilities are still highly
relevant. Even though developers use web frameworks such as Spring
and Struts, which handle the entire access-control mechanism, their
implementation can still be vulnerable because of misuses, errors, or
inconsistent implementation from the design specification. We propose
AuthCheck, a static analysis that tracks the program’s state using a
finite state machine to report illegal states caused by vulnerable imple-
mentation. We implemented AuthCheck for the Spring framework and
identified four types of mistakes that developers can make when using
Spring Security. With AuthCheck, we analyzed an existing open-source
Spring application with inserted vulnerable code and detected the vul-
nerabilities.

Keywords: Static analysis · Access-control · Authentication ·
Authorization · Web systems · Security

1 Introduction

With increasing popularity and amount of processed data, web applications are
attractive targets for attackers. The access-control vulnerabilities are still ones of
the most relevant as rankings show. For instance, five of the SANS Top 251 most
dangerous vulnerabilities are related to access-control. On the OWASP Top 102
ranking, on place two is broken authentication vulnerability and on place five is
broken authorization vulnerability.

Nowadays, web frameworks are heavily used by software developers [19].
Modern frameworks, such as Spring3 and Struts.4 provide mechanism for access-
control making developers’ implementation effort smaller. At runtime, the actual
1 https://cwe.mitre.org/top25/.
2 https://www.owasp.org/index.php/Top_10-2017_Top_10.
3 https://spring.io/.
4 https://struts.apache.org/.
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 557–572, 2020.
https://doi.org/10.1007/978-3-030-54997-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_34&domain=pdf
https://cwe.mitre.org/top25/
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://spring.io/
https://struts.apache.org/
https://doi.org/10.1007/978-3-030-54997-8_34

558 G. Piskachev et al.

access-control checks of such mechanism are performed within frameworks’ code
via dynamic verification, hereby software developers do not need to write cus-
tomized access-control code and implementation bugs are avoided.

Instead of writing access-control code manually, frameworks allow software
developer to specify the access rules via framework specific APIs. Spring, for
instance, provides a fluent interface with specification language SpEL [3] com-
bined with Java annotations to allow the specification of access rules.

However, implementing the access-control rules using the frameworks’ APIs
according to a design specifications, created by the software architect, remains
a challenging task. In practice, it is often the case that these specifications are
informally defined. In the implementation, the access-control is often a combi-
nation of annotations of methods, a configuration class, and a set of permission
groups for the resources of the system (i.e., URI). The resulting access-control of
the implementation easily diverges from the design specification and the appli-
cation may accidentally grant an unauthorized user access to confidential data.

In this paper, we propose a typestate-inspired analysis for detecting three
access-control vulnerabilities:

– CWE-306 missing authentication [8] - The system does not perform an iden-
tity check on a request to a resource which by design should be accessed only
be identified requests.

– CWE-862 missing authorization [9] - The system does not perform a check
whether an authenticated request has the correct rights to access a resource.

– CWE-863 incorrect authorization [7] - The system performs an authorization
check on the resources, but this check is wrong.

Our static analysis uses finite state machines (FSMs) of each vulnerability to
track the authorization state of the program. The state changes are triggered
by method calls that authorize the user or access a critical resource along the
control flow paths.

The main contributions of this paper are:

– AuthCheck: a program-state analysis for access-control vulnerabilities,
– an implementation of AuthCheck for the Spring Security framework,
– a running example and four typical errors in Spring Security, and
– a case study on a real-world open source application demonstrating the appli-

cability of the implementation.

The following section introduces our running example within the Java Spring
framework. In Sect. 3, we provide background information and definitions for
the AuthCheck approach, which is then introduced in Sect. 4. Implementation
details are discussed in Sect. 5. A case study and limitations are discussed in
Sect. 6.

2 Running Example

As a running example we consider a minimal web-application that helps a user
to organize her tasks. An anonymous user browsing the web application must

AuthCheck: Program-State Analysis for Access-Control Vulnerabilities 559

only see the web applications version number. A user that is authenticated can
view tasks assigned to herself. An administrator (group ADMIN) can create new
tasks for a particular user.

Table 1 details the design specification of the web-application’s REST-
API [10]. The specification maps the URI of an incoming request to the actual
API method which shall be invoked to process the incoming request. Table 1
additionally details the permissions required for each request. A software archi-
tect specifies these requirements and hands them to a software developer.

Table 1. Specification resources and access rules in the running example

HTTP URI Resource Description Access rule

GET /version version() Returns application’s version No rule
GET /profile profile() Returns user profile Authenticated
GET /task retrieveAll() Returns list of all tasks USER or ADMIN
POST /task create() Creates new task ADMIN

Spring-Based Implementation. The software developer uses the Spring frame-
work [1] to implement the software as specified. Spring provides a security com-
ponent [2] that ships with a mechanism for access-control of resources. Spring
handles requests from users via chain of filters (chain of responsibility design
pattern [11]). The requests are matched and processed based on their URIs.

1 public class WebSecurityConfig extends
WebSecurityConfigurerAdapter {

2 @Override
3 protected void configure(HttpSecurity http) throws

Exception {
4 http.csrf().disable ().sessionManagement ()
5 .sessionCreationPolicy(SessionCreationPolicy.STATELESS)
6 .and().authorizeRequests ()
7 .antMatchers(HttpMethod.GET , "/version").permitAll ()
8 .antMatchers(HttpMethod.GET ,

"/task").access("hasAnyRole(’USER ’, ’ADMIN ’)")
9 .antMatchers(HttpMethod.CREATE , "/task").hasRole("USER")

10 .antMatchers(HttpMethod.GET ,
"/profile").authenticated ().and().httpBasic ();

11 }}

Listing 1.1. Resource and access-control configuration of the running example
implemented with Spring Security

560 G. Piskachev et al.

Listing 1.1 shows the implementation of Table 1 using Spring Security. By
the use of a fluent interface the developer can implement the chain of filters that
is applied upon each incoming request at runtime. Each filter is created through
the method antMatcher(..) defined by the HTTP method and the URI of the
resources which that filter can process. The permitAll() method allows any
request to access the resource. The authenticated(..) method creates a filter
that restricts the incoming request to the one where the user is authenticated.
The hasRole(..) method allows access to the resource by any request that has
the role of the specified group. The access(...) method evaluates the specified
argument which has to be defined in the Spring Expression Language (SpEL)
[3], and when evaluated to true, allows the corresponding request to access the
resource.

The implementation in Listing 1.1 has inconsistency with the specification in
Table 1. The software developer erroneously allowed basic users (USER) to create
new tasks as opposed to restricting the action to ADMIN s only. AuthCheck
detects the deviation from the specification automatically.

3 Background and Definitions

3.1 Typestate Analysis and Program-State Analysis

Typestate analysis [20] is a data-flow analysis that can detect invalid states
of objects from the code being analyzed. The analysis uses specification of all
possible states of the object, typically expressed as final state machine (FSM).
For example, using the FSM of the type java.io.FileWriter, in a given program,
the analysis can report if any object of type java.io.FileWriter is not closed
at the end of the program. Another example is CogniCrypt [13], a typestate
analysis for detecting API misuses of cryptographic libraries.

To detect access-control vulnerabilities, such as CWE-306 [8], CWE-862 [9],
and CWE-863 [7], we designed a program-state [5,12] analysis. Similar to the
typestate analysis, the program-state analysis uses FSM to track the states, not
of single objects, but the state of the program. Figure 1 shows the FSM that
models the program states when detecting CWE-306 . Based on our running
example (Sect. 2), the acm() (authentication-critical method) is replaced by one
of the resources, e.g. profile(). The legal states are NA (not authenticated) and
A (authenticated). The init() transition models the entry point of the analysis,
which in this case is the arrival of a request from a user. If the request is for the
resource profile(), the application has to make sure that the call to the method
authenticate() from Spring was successfully called before. This is modeled by
the transition with label authenticate(). If this transition was fired, the state
of the FSM will be changed from NA to A. In case, the implementation of
the application does not contain a call to the method authenticate(), when the
resource profile() is requested, the FSM will go to the state CWE-306, which
models an illegal state and this can be reported.

AuthCheck: Program-State Analysis for Access-Control Vulnerabilities 561

Fig. 1. FSM for missing authentication CWE-306

3.2 Definitions

Before we introduce the AuthCheck approach (Sect. 4), we define the term
web application. In the following, we introduce the required terms. A user is
a client program, e.g. web browser, that can send requests to the server. An
authorization group is a boolean characteristic of a user with a unique name
and access rights. A user can belong to more authorization groups. The set of
all authorization groups G in a given system is finite.

The function userGroups : U → Pow(G) maps each user u ∈ U to the autho-
rization groups. Pow(G) is the power set of G. We define the help function
hasRole : U × G → B, that expresses whether a user u belongs to an authoriza-
tion group g: hasRole(u, g) := g ∈ userGroups(u)

Each user that is authenticated in the system belongs to the special autho-
rization group ANONYMOUS.

Authorization formula is a boolean formula a, formed by the function has-
Role, true, false, and the operators ∨,∧,¬.

Definition 1. Resource
An authentication and authorization critical resource is a 4-tuple r = (m, p, s, a),
where m is an HTTP method, p is a URI, s is a method signature, and a is
an authorization formula that defines the access rule of the resource. Access to
the resource is given when a is evaluated to true for a request of a user u.
Users identify each resource with the URI p and the HTTP method m. The
corresponding method in the system is identified by the signature s.

Definition 2. Web application
A web application W , is a pair W = (R,G), where R is a set of resources and
G is a set of authorization groups.

Example. The web application from Sect. 2 has the authorization groups
ADMIN, for administrators and USER, for basic users. By default, it also has
the ANONYMOUS group. Thus, G = {ANONYMOUS,ADMIN,USER}.
The set of resources has 4 elements (Table 1). The first resource is defined as
r1 = (GET, /version,Stringversion (), a1), where a1(u) = true.

562 G. Piskachev et al.

We consider a user u with userGroups(u) = {ANONYMOUS,USER}. If
this user requests the resource r1, the access will be allowed because a1(u) =
true. However, a request to the resource r4 will be denied because a4(u) =
hasRole(u,ANONYMOUS) ∧ hasRole(u,ADMIN) = false.

4 Approach

We present AuthCheck, a program-state analysis for detecting three access-
control vulnerabilities, CWE-306 , CWE-862 , and CWE-863 . The analysis uses
a call graph of the program (detailed in Subsect. 5.2) and an access-control spec-
ification model (ACSM), like the one in Table 1. ACSM is defined as a web
application S = WS , where WS = (RS , GS) (Definition 2). ACSM can be cre-
ated manually by software architects or automated from requirements and design
specifications. Either way, we assume that the following information is available:
resource API, URI, and access rule, that is aware of the authorization groups in
the system.

AuthCheck checks whether the call graph confirms the ACSM by checking
each path from the call graph (Algorithm 1). To extract all paths, the depth
first search DFS algorithm is used. AuthCheck uses a predefined FSM for
each vulnerability, e.g. Fig. 1. Algorithm 2 shows the tracking of each path with
the FSM. The FSM starts in the initial state (e.g. NA in Fig. 1) and for each
node of the path a new state of the FSM is calculated (line 4 in Algorithm 2).
If an error state is reached (e.g. CWE-306 in Fig. 1), a new vulnerability will be
reported.

For each path, the function DetectVuln is called which is defined by
Algorithm 2. DetectVuln uses the FSM to analyse the path.

Algorithm 1. Check the call graph against vulnerabilities
1: function CheckCallGraph(CallGraph, FSM)
2: Paths ← DFS(CallGraph)
3: V ul ← ∅
4: for each p ∈ Paths do
5: V ul ← V ul ∪ DetectVuln(p, FSM)

6: return V ul

The complexity of Algorithm 1 is O(|V | + |E| + |P | · T (DetectVuln)),
where V is the number of nodes, E is the number of edges, and P is the number
of paths in the call graph. In DetectVuln, every node of the path is analyzed,
resulting in O(|P |). The worst case path is the one with all nodes from the call
graph |V |. Additionally, the number of paths in the worst case is |E|. Thus, the
total complexity of Algorithm 1 is

O(|V | + |E| + |P | · |V |) = O(|V | + |E| + |V | · |E|) = O(|V | · |E|)
In the following, we discuss the three the FSM used by AuthCheck.

AuthCheck: Program-State Analysis for Access-Control Vulnerabilities 563

Algorithm 2. Checking each path against vulnerabilities
1: function DetectVuln(Path, FSM)
2: v ← FSM→init()
3: for each n ∈ Path do
4: v ← FSM→nextState(n)
5: if v ∈ FSM.ERROR_STATES then
6: return new V ulnerability(v)

7: return ∅

Missing Authentication. A program is vulnerable to CWE-306 when an
authentication-critical method (acm()) can be accessed by user that has not
been authenticated before. AuthCheck models this vulnerability as shown in
Fig. 1. Authentication critical methods are all resources that in the ACSM have
an access rule that requires authentication. The error state in Fig. 1 is reached
when an authentication-critical method is processed next in a given path and the
current state of the FSM is NA (not authorized). In this case, the program-state
analysis will create a vulnerability (Algorithm 2, line 8).

Missing Authorization and Incorrect Authorization. CWE-862 occurs in a given
program when a non-authorized user u can request an authorization-critical
method (azcm()). If the user is authorized but the belonging group g does not
confirm the access rule for that authorization-critical method as specified in
the ACSM (hasRole(u, g) = false), then incorrect authorization occurs (CWE-
863). Figure 2 shows the FSM that AuthCheck uses to model CWE-862 and
CWE-863 . The transitions with the label azcm() without an argument denote
calls to an authorization-critical method when the user is not authorized. When
there is an argument g, the user has been authorized and the belonging group
is being checked. This happens in state A2. When the user’s group evaluates
to true the self transition of state A2 is fired, otherwise the transition to state
CWE-863 is fired. AuthCheck performs a group hierarchy check.

Strategies for Detecting Critical Methods. The transitions acm() in Fig. 1 and
azcm() in Fig. 2 denote an authentication-critical and authorization-critical
method. These methods correspond to the resources defined in the ACSM. In
the following, we discuss AuthCheck’s strategies for detecting these methods
in the call graph.

In the case of CWE-306 , the authentication-critical methods are detected by
iterating the set of all resources R from the ACSM for each method M that is
currently processed in the path.

Algorithm 3 shows the AuthCheck strategy to identify the authorization-
critical methods in the call graph for CWE-862 . When checking the CWE-862 ,
each method M currently processed in the path is classified as authorization-
critical if the method is contained in the ACSM as a resource and its access
rule is not a tautology (i.e. the rule can be evaluated to false for at least one
input combination). The evaluation of the authorization formula depends on the

564 G. Piskachev et al.

Fig. 2. FSM for missing authorization CWE-862 and incorrect authorization CWE-
863

Algorithm 3. Identifying methods as authorization-critical
1: function isMethodAuthorizationCritical(R, s′)
2: for each r ∈ R do
3: if rs = s′ and ra is not tautology then
4: return true
5: return false

number of relevant authorization groups used in the authorization formula. For
the calculation, all possible combinations ∀ g ∈ Pow(G′) of relevant authoriza-
tion groups G′ must be evaluated.

Algorithm 4 shows the AuthCheck strategy to identify the authorization-
critical methods in the call graph. For each resource in the ACSM, it checks
whether its signature matches the signature of the method M currently pro-
cessed in the call graph. In addition, the authorization formulas are checked.
The runtime depends on the number of relevant authorization groups. For the
calculation, all possible combinations ∀ g ∈ Pow(G′) of relevant authorization
groups G′ must be evaluated for tautology check.

5 Spring Security AuthCheck

We implemented the AuthCheck concept from Sect. 4, as a Java application
that checks the implementation of a given Java Spring Security application and a
given ACSM. We used the Soot framework [14] for the analysis. In the following,
we discuss the architecture of our implementation, the insights of the call graph
construction, and the four typical developer’s mistakes with Spring Security that
AuthCheck can detect. Our implementation is available on Github [18].

AuthCheck: Program-State Analysis for Access-Control Vulnerabilities 565

Algorithm 4. Identifying methods as authorization-critical and group-
belonging
1: function isMethodAuthorizationCritical(R, s′, a′)
2: for each r ∈ R do
3: if rs = s′ and eval(ra) = eval(a′) then
4: return true
5: return false

5.1 Architecture

The AuthCheck tool follows a pipeline architecture, since it consists of several
sequential phases that work on shared artifacts. Our AuthCheck implementa-
tion consists of 3 phases:

1. Call graph construction: parses the code, the Spring Security configuration,
and annotations, and constructs the call graph,

2. Call graph update: patches missing edges into the call graph based on Spring
Security configuration,

3. CWE analysis: analyzes the call graph against CWE-306 , CWE-862 , and
CWE-863 based on Sect. 4.

Figure 3 shows the meta-model of the components of the tool’s architecture.
The root class is the Analysis that contains all components. The Phase can
process objects of type Artifact. This separation of the processes into Phases
and data into Artifacts, makes the architecture extensible. One can easily add or
remove Phases and Artifacts. Phases can be even executed in parallel if they are
not dependent. In our implementation, the call graph instance, FSMs, and ACSM
are defined as artifacts. The final results of the analysis are stored in a Result
object which can be presented via Presenter object. Our tool has one presenter,
that generates HTML pages (see Sect. 6 and Figure 5). In this architecture new
phases can be added easily. Furthermore, new types of vulnerabilities can be
created as FSM and added as artifacts in the analysis.

Fig. 3. UML class diagram of AuthCheck implementation for Spring Security

566 G. Piskachev et al.

5.2 Call Graph Construction

Phase 1 constructs the call graph using the class hierarchy algorithm and extracts
the Spring Security configuration needed in phase 2 to complete the missing
edges in the call graph due to reflection. The extracted information is prepared
according to Definition 2. Each critical method is annotated with its URI and
HTTP method. This is transferred together with the signature of the method
into a resource according to the Definition 1.

The Spring Security configuration is extracted from the program using an
intraprocedural analysis. A special case is the method access(a), which can take
as an input a SpEL formula. For this, we use the Spring mechanism to evaluate
the string values containing the SpEL formula.

An authorization formula is assigned to a resource when the defined filter
matches the method and the URI. If multiple authorization formulas are applied
to a resource, they are associated with a logical AND (∧).

Fig. 4. Incomplete call graph due to reflection

The extracted information is stored as web application (Definition 2). Then,
in phase 2, the missing edges are added to the call graph according to Algo-
rithm 5. The algorithm gets the extracted web application WJ and generated
call graph CallGraph. For each resource, it is checked whether the Spring Frame-
work performs an authorization check, authentication check, or no access check.

AuthCheck: Program-State Analysis for Access-Control Vulnerabilities 567

Accordingly, an edge is created to the critical method from the authorize(),
authenticate(), or init() methods as shown in Fig. 4. We use this three method
calls which are sufficient to model the call stack in Spring. We identified them
using dynamic traces we produced from our running example.

Algorithm 5. Adding missing edges in the call graph
1: function createMissingEdges(WJ = (RJ , GJ), CallGraph)
2: for each r ∈ RJ do
3: if isMethodAuthorizationCritical(RJ , rsig) then
4: CallGraph→addEdgeFromAuthorize(rsig)
5: else if isMethodAuthenticationCritical(RJ , rsig) then
6: CallGraph→addEdgeFromAuthenticate(rsig)
7: else
8: CallGraph→addEdgeFromInit(rsig)

5.3 Developers’ Mistakes

As demonstrated in Listing 1.1, the access-control rules in Spring Security are
specified with the SpEL fluent interface. With this approach, we foresee two
factors that can lead to inconsistencies of the implementation and the intended
design. First, the developer should be familiar with the domain specific language
SpEL in order to specify the antMatchers correctly, i.e. in the correct order.
Second, the string values of some arguments are not parsed and automatically
checked. Based on that and the information we found in the MITRE database5
for access-control CWEs, we identified 4 mistakes that developers can make when
using Java Spring Security.

Missing or Wrong Authentication Rule: The developer forgets to include the
authentication filter authenticated() for the URI of a particular resource in the
configuration or uses the filter permitAll() to incorrectly allow access to all users.
However, in the specification model, the resource requires valid authentication.
If no filter is specified, this is equivalent to the filter permitAll(). As a result, any
user without authentication is able to request this resource. The error causes the
security vulnerability missing authentication CWE-306 .

Missing Authorization Rule: The developer forgets to include one of the autho-
rization filters hasRole(role) or access(rule) for the URI of a particular resource.
However, according to the ACSM, the resource requires a valid authorization.
The filter authenticated() leads to the same error because it only checks the
authentication of the user. Depending on the filter used, either all users or only
authenticated users are able to request this resource. The error causes the secu-
rity vulnerability of missing authorization CWE-862 .

5 https://cwe.mitre.org.

https://cwe.mitre.org

568 G. Piskachev et al.

Incorrect Authorization Rule: The developer incorporates an authorization filter
hasRole(role) or access(rule) for the URI of a certain resource, but a wrong
authorization formula is used. As a result, a user without the required access
rights is able to request this resource. The error causes the security problem of
incorrect authorization CWE-863 .

Method Call with Higher Access Rights: The developer creates a correct configu-
ration for the resource, but in a deeper layer of the application, a call to a method
is created that requires higher access rights and therefore should not be called
by the user. The error causes the security problem of incorrect authorization
CWE-863 .

We implemented an extended version of the running example from Sect. 2
that includes the four mistakes and serves as a test scenario for our implementa-
tion. It is available under [18]. The tool generates a HTML page with all vulner-
abilities detected. Figure 5 shows a detected CWE-306 in our running example,
including the path and description for solving the issue.

Fig. 5. Screenshot from AuthCheck generated output with CWE-306

6 Case Study

We used the open-source project FredBet6 to perform a case study in which we
apply our analysis on a real-world application.

6.1 FredBet

The web application FredBet is a football betting system developed with Java
Spring Boot and Spring Security. FredBet offers the possibility to initiate an
online football bet with several users. In addition to the betting, the web appli-
cation offers statistics about the matches, rankings, a profile management, and

6 https://github.com/fred4jupiter/fredbet.

https://github.com/fred4jupiter/fredbet

AuthCheck: Program-State Analysis for Access-Control Vulnerabilities 569

many other features. The application is actively developed since 2015 and as of
October 2019, its repository has more than 1300 commits.

FredBet contains 37 resources. The access-control mechanism is implemented
via 22 Spring Security controllers organized in hierarchical structure where the
root controller is MatchController. There are 28 permission types used to define
4 authorization groups.

Since we have access only to the implementation and no design specification
is available from which we can infer an ACSM, we decided to create the ACSM
based on the implementation. Then, we ran AuthCheck for all controllers suc-
cessfully. As expected no errors were reported. The analysis took 71.9 s, running
on a machine with 8 GB RAM and i5-6200U CPU (2,3 GHz).

To evaluate whether real-world applications with known vulnerabilities will
be correctly analyzed by AuthCheck, we made some modifications in Fred-
Bet to introduce vulnerabilities. As implemented in FredBet, any request that
is authenticated by the MatchController is authenticated for all other con-
trollers. This is defined by the code line 61 in the file WebSecurityConfig.cs,
http.authorizeRequests().anyRequest().authenticated();. By commenting out
this line of code we are introducing CWE-306 vulnerability. To introduce
CWE-862 , it was easier to make a change in the ACSMs. In particular, we
chose the UserProfileController which contains four resources: changeUsername,
changeUsernamePost, changePassword, and changePasswordPost. As imple-
mented, these four resources can be accessed by any authorized user. We
made a change by changing the authorization expressions forchangeUsername
and changePassword to hasAuthority(′PERMADMINISTRATION ′). This
allows only users from the PERM_ ADMINISTRATION group to be able to
change usernames and passwords. In total, we introduced five errors. Further
details on them and how to run the analysis we documented on github7 where
we hosted our analysis code [18].

6.2 Limitations

When applying AuthCheck to FredBet, we realized that the specification scope
in Spring Security is much broader than the available official documentation
[2]. There are multiple ways to specify the same configuration information. For
example, a developer can specify an URI for a given class containing critical
methods. This URI is then concatenated to the URIs of the critical methods it
contains. Also, the annotations can have different formats or even some can be
skipped, like the HTTP method, which in such case, a default value GET will be
considered by the framework. Then, the configuration of the antMatchers (see
Listing 1.1) can have different parameters.

In the implementation of AuthCheck, the parser has a full support for the
language constructs that are part of the official documentation as well as all
corner cases that we found in the FredBet application. This does not guarantee

7 https://github.com/secure-software-engineering/authcheck/blob/master/Evalu-
ation_With_FredBet/Evaluation.md.

https://github.com/secure-software-engineering/authcheck/blob/master/Evalu-ation\protect \T1\textunderscore With\protect \T1\textunderscore FredBet/Evaluation.md
https://github.com/secure-software-engineering/authcheck/blob/master/Evalu-ation\protect \T1\textunderscore With\protect \T1\textunderscore FredBet/Evaluation.md

570 G. Piskachev et al.

a full coverage of the specification scope of Spring Security and one may need
to do further extensions to the parser for other corner cases that we are not
aware of. However, these extensions are only technical and does not change the
concepts presented in this paper.

Since Spring is written in Java, developers can specify dynamically con-
structed calls even for the fluent chain of method calls. This is statically hard to
analyze and our approach does not address it. For that reason false alarms can
occur.

7 Related Work

Security vulnerabilities caused by the misuses of access-control mechanisms have
been investigated by Dalton et al. [6]. The approach examines access-control
problems by analyzing the flow of user credentials within the web application.
In contrast to AuthCheck, their approach is dynamic and can not be used for
early detection of the vulnerabilities.

Sun et al. [21] introduced a static analysis approach for the detection of
access-control vulnerabilities. They assume that the source code contains implicit
documentation of intended accesses. From this, sitemaps for different authoriza-
tion groups are generated and checked whether forced browsing can happen.
Another static analysis specific for access-control of XML documents was intro-
duced by Murata et al. [16]. They use XPath representation for the access-
control rules and XQuery for specifying the requests. The analysis checks all
paths defined by the query against the XPath rules. Naumovich et al. [17] pro-
posed a static analysis for Java EE applications where the resources are security
fields from the Java Beans objects.

In the area of model checking, few approaches address the access-control
protocols [15,22]. In these approaches, the focus is to validate the message com-
munication of the defined protocols. Similarly, Alexander et al. applied model
checking to verify the authentication mechanism in the communication of a set
of interacting virtual machines [4].

8 Conclusion and Future Work

Even though sophisticated Java web frameworks, such as Spring, provide secure
mechanism for access-control of resources, for many developers using the APIs
and the configuration specifications correctly, can be challenging. Thus, these
misuses may cause access-control vulnerabilities in the code. In this paper, we
presented AuthCheck, a static analysis, that tracks the program-state to detect
the vulnerabilities CWE-306 , CWE-862 , and CWE-863 . Based on finite state
machine specification of each vulnerability, AuthCheck checks each path. We
implemented the approach on top of the Soot framework and applied it to one
open-source project on which we detected four types of errors that were previ-
ously inserted in the existing application.

AuthCheck: Program-State Analysis for Access-Control Vulnerabilities 571

We plan to evaluate the precision of AuthCheck in cooperation with indus-
try to overcome the problem of the open-source projects of not having a design
specification on which we can check the implementation against. Additionally,
in future the choice of the call graph algorithm should be evaluated.

Acknowledgement. We thank Abdul Rehman Tareen for extending the initial ver-
sion of the tool to support all Spring annotations needed for complete analysis of the
FredBet application. We also thank the reviewers for the constructive feedback and pro-
posals for improving this paper. This research was partially supported by the Software
Campus Program of the German Ministry of Education and Research and the research
project “AppSecure.nrw - Security-by-Design of Java-based Applications” funded by
the European Regional Development Fund (ERDF-0801379).

References

1. Spring framework, java spring. https://spring.io/projects. Accessed 9 Mar 2019
2. Spring framework, java spring security. https://spring.io/guides/topicals/spring-

security-architecture. Accessed 9 Mar 2019
3. Spring framework, spring expression language. https://docs.spring.io/spring/docs/

5.0.5.RELEASE/spring-framework-reference/core.html. Accessed 12 Mar 2019
4. Alexander, P., Pike, L., Loscocco, P., Coker, G.: Model checking distributed manda-

tory access control policies. ACM Trans. Inf. Syst. Secur. 18(2), 6:1–6:25 (2015)
5. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static

analysis. In: Proceedings of the 29th ACM SIGPLAN POPL, POPL 2002, pp. 1–3.
ACM, New York (2002)

6. Dalton, M., Kozyrakis, C., Zeldovich, N.: Nemesis: preventing authentication and
access control vulnerabilities in web applications. In: Proceedings of USENIX,
SSYM 2009, pp. 267–282. USENIX Association, Berkeley (2009)

7. Enumeration, C.C.W.: Incorrect authorization. https://cwe.mitre.org/data/
definitions/863.html. Accessed 12 Mar 2019

8. Enumeration, C.C.W.: Missing authentication for critical function. https://cwe.
mitre.org/data/definitions/306.html. Accessed 12 Mar 2019

9. Enumeration, C.C.W.: Missing authorization. https://cwe.mitre.org/data/
definitions/862.html. Accessed 12 Mar 2019

10. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

11. Gamma, E., Vlissides, J., Johnson, R., Helm, R.: Design Patterns CD: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.
Inc., Boston (1998)

12. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2_17

13. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: CrySL: an extensible app-
roach to validating the correct usage of cryptographic APIs. In: ECOOP, pp. 10:1–
10:27 (2018)

14. Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop (CETUS 2011), October 2011

https://spring.io/projects
https://spring.io/guides/topicals/spring-security-architecture
https://spring.io/guides/topicals/spring-security-architecture
https://docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/core.html
https://docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/core.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/862.html
https://doi.org/10.1007/3-540-44829-2_17

572 G. Piskachev et al.

15. Marrero, W., Clarke, E., Jha, S.: A model checker for authentication protocols. In:
Rutgers University (1997)

16. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. ACM Trans. Inf. Syst. Secur. 9(3), 292–324 (2006)

17. Naumovich, G., Centonze, P.: Static analysis of role-based access control in J2EE
applications. SIGSOFT Softw. Eng. Notes 29(5), 1–10 (2004)

18. Petrasch, T., Piskachev, G., Spaeth, J., Bodden, E.: Authcheck spring implemen-
tation. https://github.com/secure-software-engineering/authcheck/

19. del Pilar Salas-Zárate, M., Alor-Hernández, G., Valencia-Garca, R., Rodríguez-
Mazahua, L., Rodríguez-González, A., Cuadrado, J.L.L.: Analyzing best practices
on web development frameworks: the lift approach. Sci. Comput. Program. 102,
1–19 (2015)

20. Strom, R.E.: Mechanisms for compile-time enforcement of security. In: Proceedings
of the 10th ACM SIGPLAN POPL, pp. 276–284. ACM, New York (1983)

21. Sun, F., Xu, L., Su, Z.: Static detection of access control vulnerabilities in web
applications. In: Proceedings of USENIX. USENIX Association, Berkeley (2011)

22. Xu, Y., Xie, X.: Modeling and analysis of authentication protocols using colored
petri nets. In: Proceedings of the 3rd ASID, ASID 2009. IEEE Press, Piscataway
(2009)

https://github.com/secure-software-engineering/authcheck/

Author Index

Abate, Alessandro II-461
Aibassova, Aigerim I-170
Aiello, M. Anthony I-325
Alias, Christophe II-526
Alturki, Musab A. I-337, I-362
Alves, Gleifer Vaz I-217
Anureev, Igor I-114
Araki, Keijiro II-289
Arcaini, Paolo I-61
Arceri, Vincenzo II-136
Astarte, Troy Kaighin II-103

Banach, Richard I-77
Baranová, Zuzana I-30
Battle, Nick II-272
Batty, Mark II-507
Becker, Evan W. II-480
Beckert, Bernhard I-293
Béger, Pascal I-443
Belviso, Cristina I-99
Ben Ayed, Rahma II-358
Bernardo, Bruno I-368
Bischopink, Christopher I-249
Bobot, François I-299
Bocan, Kara N. II-480
Boccignone, Giuseppe I-131
Bodden, Eric II-557
Bon, Philippe II-358
Bonfanti, Silvia I-61
Bowen, Judy I-465
Breuer, Peter T. II-167
Broccia, Giovanna I-99
Bursic, Sathya I-162, I-200
Butler, Michael I-19

Campos, José Creissac I-486
Canny, Alexandre I-486
Cauderlier, Raphaël I-368
Cerone, Antonio I-170, I-424, II-157
Chang, Han-Myung II-289
Chen, Jing I-362
Chevrou, Florent II-307

Ciarletta, Laurent I-281
Clark, Keith I-265
Cleophas, Loek II-388
Collart-Dutilleul, Simon II-358
Colvin, Robert J. II-323
Conchon, Sylvain I-312
Cooksey, Simon II-507
Coppers, Sven I-503
Cuculo, Vittorio I-131, I-162, I-200

D’Amelio, Alessandro I-131, I-162, I-200
Dalvandi, Mohammadsadegh I-19
Debicki, Olivier I-77
Dennis, Louise I-217
Dongol, Brijesh I-265
Duke, David J. II-73

Efremov, Denis II-185
Eijkel, Dennis I-350

Fadda, Daniele I-186
Fehnker, Ansgar I-350
Ferreira, João F. II-200
Fisher, Michael I-217

Gamble, Carl II-237
Garanina, Natalia I-114
Gargantini, Angelo I-61
Gaudel, Marie-Claude II-87
Gibbons, Jeremy II-35
Glück, Robert II-413
Golightly, David II-237
Gomes, Cláudio II-272
Gorlatch, Sergei I-114
Grigore, Radu II-507
Groves, Lindsay II-342
Guidotti, Riccardo I-146

Harris, Sarah II-507
Harrison, Michael D. I-409
Hu, Zhenlei I-368
Hurault, Aurélie II-307
Husák, Robert II-537

Issa, Dias II-209

Jaidka, Sapna I-465
Janota, Mikoláš II-507
Jones, Cliff B. II-54

Kaarsgaard, Robin II-413
Kanig, Johannes I-325
Khadiev, Kamil II-428
Khadieva, Aliya II-428
Khuzyakhmetova, Assiya II-157, II-224
Klusch, Matthias I-233
Kofroň, Jan II-537
Korneva, Alexandrina I-312
Koznov, Dmitry I-114
Kraibi, Kenza II-358
Kurita, Taro I-325

Larsen, Peter Gorm II-254, II-272, II-289
Lecomte, Thierry I-12
Leriche, Sebastien I-443
Lesecq, Suzanne I-77
Licari, Federica I-186
Luchangco, Victor I-362
Luyten, Kris I-503

Macedo, Hugo Daniel II-254, II-272
Mandrykin, Mikhail I-392
Maréchal, Alexandre II-119
Masci, Paolo I-5
Mastroeni, Isabella II-136
Mendes, Alexandra II-200
Meneses, Ana Sandra II-95
Milazzo, Paolo I-99
Miné, Antoine II-119
Miskov-Zivanov, Natasa II-480
Molyneux, Gareth W. II-461
Montiel, Carmen Berrocal I-99
Moore, Brandon I-362
Moreau, Pierre-Etienne I-281
Müller, Christian I-233

Nakajima, Shin II-307
Nakakoji, Kumiyo II-289
Natilli, Michela I-186
Navarre, David I-486, I-503
Nehaï, Zeinab I-299
Nielsen, Jakob Botsch I-380
Nonnengart, Andreas I-233

O’Shannessy, Jake I-392
Oda, Tomohiro II-289
Ölveczky, Peter Csaba I-424

Palacín, Roberto II-237
Palanque, Philippe I-486, I-503
Palmskog, Karl I-362
Pasqua, Michele II-136
Payne, Jacob I-392
Pedreschi, Dino I-186
Pelleau, Marie II-119
Peña, Lucas I-362
Pesin, Basile I-368
Petit, Dorian II-358
Petrasch, Tobias II-557
Pickin, Simon J. II-167
Pierce, Ken II-237
Piskachev, Goran II-557
Priestley, Mark II-15
Prun, Daniel I-443

Quéinnec, Philippe II-307

Rasmussen, Mikkel Bayard II-254
Razavi, Joseph I-77
Reeves, Steve I-465
Rehm, Joris II-358
Riccobene, Elvinia I-61
Rinzivillo, Salvatore I-186
Robinson, Peter I-265
Ročkai, Petr I-30, I-46
Rossetti, Giulio I-146
Roşu, Grigore I-337, I-362
Runge, Tobias II-388

Sako, Hiroshi II-289
Salehi Fathabadi, Asieh I-19
Scandurra, Patrizia I-61
Schaefer, Ina II-388
Schiffl, Jonas I-293
Schwammberger, Maike I-249
Shchepetkov, Ilya I-392, II-185
Sidorova, Elena I-114
Smith, Douglas R. II-371
Smith, Graeme II-73, II-342
Sousa, António II-95
Späth, Johannes II-557
Spitters, Bas I-380
Suleimenov, Aidarbek II-157, II-224

574 Author Index

Tamm, Hellis II-443
Tashkenbayev, Mukhtar I-170
Tesson, Julien I-368
Thule, Casper II-254, II-272
Thüm, Thomas II-388
Truchet, Charlotte II-119

Ulbrich, Mattias I-293

Vanacken, Davy I-503
Viard, Louis I-281
Vidal, Alexandra II-95

Watson, Bruce W. II-388
Westfold, Stephen J. II-371
Wijesuriya, Viraj B. II-461
Winter, Kirsten II-323

Yamamoto, Yasuhiro II-289
Yokoyama, Tetsuo II-413

Zaïdi, Fatiha I-312
Zavoral, Filip II-537
Ziat, Ghiles II-119
Zyubin, Vladimir I-114

Author Index 575

	Workshop Editors
	Preface
	Organization
	Contents – Part II
	Contents – Part I
	HFM 2019 - History of Formal Methods Workshop
	HFM 2019 Organizers’ Message
	Organization
	General Chair
	Program Committee Chairs
	Program Committee
	Additional Reviewers
	Sponsor

	Extended Abstract
	The Prehistory and History of RE (+ SE) as Seen by Me: How My Interest in FMs Helped to Move Me to RE and to Teach Me Fundamental Impediments to Using FMs in SW Systems Development
	Babbage’s Mechanical Notation
	The History and Evolution of B and Event-B
	History of Abstract Interpretation
	Flow Diagrams, Assertions, and Formal Methods
	1 Introduction
	2 Block Diagrams
	3 Describing Iterative Processes
	4 Assertions
	5 Flow Diagrams in Practice
	5.1 The Planning and Coding reports
	5.2 The Monte Carlo Flow Diagrams
	5.3 Flow Diagrams Cross the Atlantic

	6 Checking a Routine
	7 Conclusions
	References

	The School of Squiggol
	1 Introduction
	2 Abstracto
	3 Disillusionment and Enlightenment
	4 Evolution
	5 Generic Structures
	6 Retrenchment
	7 The Book on Algorithmics
	8 Conclusions
	References

	Reasoning About Shared-Variable Concurrency: Interactions Between Research Threads
	1 Introduction
	1.1 Refresher on Reasoning About Sequential Programs
	1.2 Useful Background Reading on Concurrency
	1.3 Beyond the Sequential Case

	2 Reasoning About Interference
	2.1 Non-compositional Approaches
	2.2 Recovering Compositionality
	2.3 Role of Data Abstraction/Reification
	2.4 Auxiliary Variables

	3 Avoiding or Constraining Interference
	4 Productive Interactions Between Groups
	5 Concluding Comments
	5.1 Recent References
	5.2 Further Topics

	References

	Specification with Class: A Brief History of Object-Z
	1 Introduction
	2 A Suggestion from Industry
	3 First Steps
	4 Riding the Wave
	5 Changing Times
	6 Communities of Practice
	7 Conclusion
	References

	Formal Specifications and Software Testing, a Fruitful Convergence
	1 Introduction
	2 Software Engineering, Formal Methods, and Testing in the Seventies and the Beginning of the Eighties
	3 The Area of Telecommunication Protocols at the Beginning of the Eighties
	4 What Happened in the Nineties and Later
	5 Conclusion
	References

	From Manuscripts to Programming Languages: An Archivist Perspective
	1 Introduction
	2 The Treatment of the WG2.1 Archive
	2.1 The Project: How We (Archivists) Do Our Work
	2.2 The Contents of the WG2.1 Archive

	3 Conclusions
	4 Future Work
	References

	What Have Formal Methods Ever Done for Us? An Audience Discussion
	1 Introduction
	2 Provocation
	3 Industry
	4 Hardware
	5 Expression
	6 Inconsistency
	7 Direction
	8 Education
	9 Proliferation
	10 Communication
	11 Concluding
	References

	NSAD 2019 - 8th Workshop on Numerical and Symbolic Abstract Domains
	NSAD 2019 Organizers’ Message
	Organization
	Program Committee Chair
	Steering Committee
	Program Committee

	Some Thoughts on the Design of Abstract Domains (Invited Talk)
	Combination of Boxes and Polyhedra Abstractions for Constraint Solving
	1 Introduction
	2 Abstract Constraint Solving
	2.1 Constraint Programming Background
	2.2 Abstract Domains for Constraint Solving

	3 Boxes and Polyhedra as Constraint Abstract Domains
	3.1 A Non-relational Abstract Domain: Continuous Boxes
	3.2 A Relational Abstract Domain: Polyhedra

	4 Constraint-Oriented Reduced Products
	4.1 The Box-Polyhedra Reduced Product

	5 Experiments
	6 Conclusion
	References

	An Abstract Domain for Objects in Dynamic Programming Languages
	1 Introduction
	2 Background
	3 Static Analysis of JS
	3.1 Abstract Objects
	3.2 Abstract Semantics
	3.3 Widening

	4 Discussion and Conclusion
	References

	OpenCERT 2019 - 9th International Workshop on Open Community Approaches to Education, Research and Technology
	OpenCERT 2019 Organizers’ Message
	Organization
	Program Committee Chairs
	Steering Committee
	Program Committee

	A Survey of Learning Methods in Open Source Software
	1 Introduction
	2 Formal and Informal Methods of Learning
	3 Learning Methods in OSS
	3.1 Open Source Community Interaction
	3.2 Code Contributions
	3.3 Internet Technologies and Communication Tools

	4 Application of OSS Learning Methods
	5 Conclusion
	References

	A Calculus of Chaos in Stochastic Compilation
	1 Introduction
	2 Overview of the Technical Foundation
	3 Overview of Stochastic Compilation
	4 Chaotic Compilation
	4.1 Pure Expressions
	4.2 Statements
	4.3 Difference Calculus
	4.4 Calculus of Chaos

	5 Implementation
	6 (Informal) Security Argument
	7 Conclusion
	References

	Runtime Verification of Linux Kernel Security Module
	1 Introduction
	2 Security Policy Model
	3 Event-B
	4 Event-B Specification of the HIMACF Model
	5 Event-B Specification of the System Call Interface
	6 Linux Security Modules
	7 Runtime Verification Method
	8 Related Work
	9 Conclusion and Future Work
	References

	Open and Interactive Learning Resources for Algorithmic Problem Solving
	1 Introduction
	2 Example: River-Crossing Puzzles
	3 Interactive Learning Materials
	4 Effectiveness and Students' Feedback
	5 Conclusion
	References

	Challenges Faced by Students in an Open Source Software Undergraduate Course
	1 Introduction
	2 Project Selection
	2.1 First Project: AVA
	2.2 Second Project: Coala
	2.3 Third Project: Jarvis
	2.4 Comparison of the Projects

	3 Contribution
	3.1 Bug Fix
	3.2 New Feature Offers
	3.3 New Feature Implementation
	3.4 Bug Investigation

	4 Lessons Learned
	5 Conclusion
	References

	Open Source Software as a Learning Tool for Computer Science Students
	1 Introduction
	1.1 Course Structure and Study Participants
	1.2 Students' Motivations

	2 Contributed OSS Projects Description
	2.1 Mozilla BugBug
	2.2 Redash Project

	3 Contribution
	3.1 Contributions to Mozilla BugBug Project
	3.2 Contributions to Redash Project

	4 Conclusion and Future Work
	4.1 Students' Conclusion
	4.2 Study Conclusion
	4.3 Future Work

	References

	Overture 2019 - 17th Overture Workshop
	Overture 2019 Organizers’ Message
	Organization
	Program Committee Chairs
	Program Committee

	Exploring Human Behaviour in Cyber-Physical Systems with Multi-modelling and Co-simulation
	1 Introduction
	2 Background
	2.1 Multi-modelling Technologies
	2.2 Ergonomics Modelling

	3 Case Study 1: Operator Loading in Drone Searching
	3.1 Scenario
	3.2 Multi-model
	3.3 Results

	4 Case Study 2: Driver Behaviour in Urban Rail
	4.1 Scenario
	4.2 Multi-model
	4.3 Results

	5 Case Study 3: Signaller Modelling Within Urban Rail
	5.1 Scenario
	5.2 Multi-model
	5.3 Results

	6 Conclusions and Future Work
	References

	Migrating the INTO-CPS Application to the Cloud
	1 Introduction
	2 Background
	2.1 The INTO-CPS Tool Chain
	2.2 The INTO-CPS Application

	3 The INTO-CPS Cloud Application
	3.1 Use-Cases of the Cloud Prototype
	3.2 Architecture of the Cloud Version of the INTO-CPS Application
	3.3 Technologies of the Cloud-Based INTO-CPS Application
	3.4 Micro-services Details

	4 Implementation, Experiments, and Results
	5 Concluding Remarks and Future Work
	5.1 Future Work

	References

	Towards a Static Check of FMUs in VDM-SL
	1 Introduction
	2 Background
	2.1 The Functional Mockup Interface
	2.2 VDM Modelling

	3 The VDM Model of the FMI Standard
	3.1 The FMI V2.0 XSD Schema
	3.2 The VDM-SL Modelling Approach
	3.3 VDM Annotations
	3.4 The Top Level Structure - FMIModelDescription
	3.5 Model Variables - ScalarVariable
	3.6 The Model Structure - ModelStructure
	3.7 Other Types
	3.8 Automated FMU Checking in VDM
	3.9 Online FMU Checking

	4 Empirical Evaluation of Static Conformance
	4.1 Tailored XML Test Results

	5 Concluding Remarks and Future Work
	References

	ViennaDoc: An Animatable and Testable Specification Documentation Tool
	1 Introduction
	2 Informal Documents Augmented with Formal Specifications
	3 Implementation
	3.1 Embedding Formal Specification in Documents
	3.2 Animated Specification Documents
	3.3 Testable Specification Documents

	4 Related Work
	4.1 Lively Walk-Through
	4.2 PVSio-web
	4.3 Pillar
	4.4 Jupyter Notebook

	5 Concluding Remarks
	References

	Refine 2019 - 19th Refinement Workshop
	Refine 2019 Organizers’ Message
	Organization
	Program Committee Chairs
	Program Committee

	A Map of Asynchronous Communication Models
	1 Introduction
	2 Distributed Systems
	2.1 Distributed Executions
	2.2 Event-B
	2.3 Event-B Distributed Executions

	3 Abstract Communication Models
	3.1 Informal Specifications
	3.2 Event-B Specifications
	3.3 Proofs and Invariants

	4 History-Based Models
	4.1 Specifications with Histories
	4.2 Concretization

	5 Concrete Models
	5.1 Logical Clocks
	5.2 Other Concretizations

	6 Additional Remarks
	6.1 Proof Effort
	6.2 Localization

	7 Related Work
	8 Conclusion
	References

	An Abstract Semantics of Speculative Execution for Reasoning About Security Vulnerabilities
	1 Introduction
	2 Background: IMP-ro
	3 Caches in Weak Memory Models: IMP-ro-spec
	3.1 Syntax of IMP-ro-spec
	3.2 Semantics of IMP-ro-spec
	3.3 Example of Cache Side Effects Due to Speculation

	4 Security Vulnerabilities
	4.1 Attack Patterns
	4.2 The Spectre Attack

	5 Related Work
	6 Conclusion
	A Speculation Down the Correct Branch; Parallel Speculation
	References

	Weakening Correctness and Linearizability for Concurrent Objects on Multicore Processors
	1 Introduction
	2 Correctness
	2.1 Linearizability

	3 Weak Memory Models
	3.1 Modelling Weak Memory Behaviour

	4 Weakening Correctness
	5 Weak Linearizability
	5.1 Soundness
	5.2 Completeness

	6 Chase-Lev Deque
	7 Conclusion
	References

	Towards a Method for the Decomposition by Refinement in Event-B
	1 Introduction
	2 Event-B Syntactic Definition
	3 Event-B Refinement and Decomposition Background
	3.1 Refinement
	3.2 Decomposition
	3.3 Synthesis

	4 Decomposition by Refinement
	5 Correctness of the Proposed Approach
	6 Conclusion
	References

	Transformations for Generating Type Refinements
	1 Introduction
	2 Basic Concepts
	3 Incrementally Constructing Sum/Variant/Inductive Types
	3.1 Incremental Accumulation of Constructors
	3.2 CompleteSumType Transformation
	3.3 Example: Specifying Reference Types
	3.4 Subtyping

	4 Incrementally Constructing Product/Record Types
	4.1 CompleteProductType Transformation
	4.2 Example: Packets
	4.3 Example: Mutable Types
	4.4 Example: Mutable Heaps for a Garbage Collector
	4.5 Subtyping

	5 Implementation
	6 Related Work
	7 Concluding Remarks
	References

	Comparing Correctness-by-Construction with Post-Hoc Verification—A Qualitative User Study
	1 Introduction
	2 Verification Techniques
	2.1 Post-hoc Verification
	2.2 Correctness-by-Construction
	2.3 Contrasting Correctness-by-Construction and Post-hoc Verification

	3 Design of a User Study
	4 Results and Discussion
	4.1 Defects in Implementation
	4.2 Analysis of Programming Procedure
	4.3 User Experience
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	RPLA 2019 - Workshop on Reversibility in Programming, Languages, and Automata
	RPLA 2019 Organizers’ Message
	Organization
	Program Committee Chairs
	Program Committee
	Sponsoring Institutions

	Reversible Computing from a Programming Language Perspective (Extended Abstract)
	Reversible Programs Have Reversible Semantics
	1 Introduction
	2 Elements of the Formal Semantics
	2.1 Composition and Inversion
	2.2 Fixed Points and Iteration
	2.3 Summary of the Metalanguage

	3 R-WHILE with Reversible Recursion and Iteration
	4 An Intrinsically Reversible Semantics
	4.1 States and Values
	4.2 Expressions
	4.3 Patterns
	4.4 Predicates
	4.5 Commands
	4.6 Procedures
	4.7 Programs
	4.8 Use of Inverse Semantics

	5 Related Work
	6 Conclusion
	References

	Two-Way Quantum and Classical Automata with Advice for Online Minimization Problems
	1 Introduction
	2 Preliminaries
	3 Two-Way Automata for Black Hats Online Minimization Problem
	4 Application
	References

	Quotients and Atoms of Reversible Languages
	1 Introduction
	2 Automata, Languages, Quotients, and Atoms
	3 Reversible Automata and Languages
	4 Bideterministic Languages
	5 Languages with a Reversible DFA
	6 Languages with a Reversible MeDFA
	6.1 Languages with a Complete Reversible MeDFA

	7 Languages with a Reversible NFA
	References

	SASB 2019 - 10th International Workshop on Static Analysis and Systems Biology
	SASB 2019 Organizers’ Message
	Organization

	Bayesian Verification of Chemical Reaction Networks
	1 Introduction
	2 Background
	2.1 Parametric Continuous-Time Markov Chains
	2.2 Properties - Continuous Stochastic Logic
	2.3 Stochastic Modelling of Chemical Reaction Networks
	2.4 Bayesian Inference

	3 Bayesian Verification
	3.1 Parameter Synthesis
	3.2 Bayesian Inference for Parametric CTMC
	3.3 Probability Computation

	4 Results
	4.1 Case Study: Finite-State SIR Model

	5 Conclusions and Further Work
	References

	Nested Event Representation for Automated Assembly of Cell Signaling Network Models
	1 Introduction
	2 Background
	2.1 Discrete Element Rule-Based Models
	2.2 Established Motifs
	2.3 Machine Reading Engines

	3 Methods
	3.1 Intermediate Nodes
	3.2 Underspecified Nested Events
	3.3 Translation Algorithm

	4 Results
	4.1 Prevalence of Nested Events
	4.2 Reading Examples
	4.3 Translation of Examples

	5 Conclusion
	References

	TAPAS 2019 - 10th Workshop on Tools for Automatic Program Analysis
	TAPAS 2019 Organizers’ Message
	Organization
	Program Committee Chair
	Steering Committee
	Program Committee

	Invited Talks
	Transforming Development Processes of Avionics Software with Formal Methods
	Establishing Sound Static Analysis for Integration Verification of Large-Scale Software in Automotive Industry
	PrideMM: Second Order Model Checking for Memory Consistency Models
	1 Introduction
	2 Overview
	2.1 Memory Specifications
	2.2 Developing SC in SO Logic

	3 Preliminaries
	4 So Solving Through QBF
	5 Memory Specification Encodings
	5.1 Sequential Consistency
	5.2 Release–Acquire
	5.3 C++
	5.4 Jeffrey–Riely

	6 Evaluation
	6.1 Comparison to Existing Techniques
	6.2 QBF vs SO Solver Performance

	7 Related Work
	8 Conclusion
	A Reformulation of Happens Before
	References

	Fkcc: The Farkas Calculator
	1 Introduction
	2 Farkas Lemma in Program Analysis and Compilation
	3 Language
	4 Examples
	4.1 Termination Analysis
	4.2 Scheduling

	5 Conclusion
	References

	Handling Heap Data Structures in Backward Symbolic Execution
	1 Introduction
	2 Problem
	3 Backward Symbolic Execution
	3.1 Notation
	3.2 Algorithm

	4 Modelling Heap Using Array Theory
	4.1 Main Idea
	4.2 Operation Definitions
	4.3 Example

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	AuthCheck: Program-State Analysis for Access-Control Vulnerabilities
	1 Introduction
	2 Running Example
	3 Background and Definitions
	3.1 Typestate Analysis and Program-State Analysis
	3.2 Definitions

	4 Approach
	5 Spring Security AuthCheck
	5.1 Architecture
	5.2 Call Graph Construction
	5.3 Developers' Mistakes

	6 Case Study
	6.1 FredBet
	6.2 Limitations

	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

