
Modelling Human Reasoning in Practical
Behavioural Contexts Using Real-Time

Maude

Antonio Cerone1(B) and Peter Csaba Ölveczky2

1 Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

2 Department of Informatics, University of Oslo, Oslo, Norway
peterol@ifi.uio.no

Abstract. In this paper we present an approach for modelling human
reasoning using rewrite systems and we illustrate our approach in the
context of human behaviour using a car driving example. Reasoning
inference rules and descriptions of human activities are expressed using
the Behaviour and Reasoning Description Language (BRDL). The BRDL
model is then translated into Real-Time Maude. The object-oriented and
equational logic aspects of Maude are exploited in order to define alter-
native semantic variations of BRDL that implement alternative theories
of memory and cognition.

Keywords: Human reasoning · Human behaviour · Formal methods ·
Rewrite systems · Real-time maude

1 Introduction

One of the main challenges in human-computer interaction (HCI) is that the way
humans use devices is not always consistent with the use for which such devices
have been designed and built. In fact, although a systematic exploration of the
concept of “plausible” behaviour may provide a good baseline for understanding
the interaction [5,11], some forms of “plausible” behaviour emerge only in specific
contexts and cannot be predicted a priori. Cognitive architectures [12], formal
methods [19,20] and several other approaches, including machine learning and
control theory [19], have been used to tackle this problem.

However, cognitive architectures tend to be specialised, each with a specific
scope, which is normally academic and seldom practical [12], formal methods
are “regarded as requiring too much expertise and effort for day-to-day use,
being principally applied in safety-critical areas outside academia” [19, Ch. 7,
page 187], and machine learning and control theory focus on the interaction
process rather than human behaviour. Moreover, although emulating reasoning

Work partly funded by Seed Funding Grant, Project SFG 1447 “Formal Analysis and
Verification of Accidents”, University of Geneva, Switzerland.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 424–442, 2020.
https://doi.org/10.1007/978-3-030-54994-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54994-7_32&domain=pdf
http://orcid.org/0000-0003-2691-5279
https://doi.org/10.1007/978-3-030-54994-7_32

Modelling Human Reasoning Using Real-Time Maude 425

is one of the main objectives of some cognitive architectures, past and current
efforts in this sense either do not consider human errors or are detached from
the practical context of human behaviour [12]. Furthermore, high-level reasoning
is not supported by control theory and, although it may emerge using machine
learning, the way it emerges cannot be explained.

Our approach builds on the Behaviour and Reasoning Description Language
(BRDL) [10] and on the use of the Maude rewrite system [16–18] to model
the dynamics of human memory and memory processes [8,9]. The semantics of
BRDL is based on a basic model of human memory and memory processes and
is adaptable to different cognitive theories. This allows us, on the one hand, to
keep the syntax of the language to a minimum, thus making it easy to learn and
understand without requiring expertise in mathematics or formal methods and,
on the other hand, to use alternative semantic variations to compare alterna-
tive theories of memory and cognition. BRDL, is equipped with the linguistic
constructs to specify reasoning goals, inference rules and unsolved problems. We
use rewrite systems [14,17] to implement such constructs. Specifically, BRDL is
translated into Real-Time Maude [16,18], thus combining human components
with the system components that model the environment in which humans
operate [9].

Real-Time Maude was used to model and analyse human multitasking by
Broccia et al. [3,4], who adopted the initial cognitive framework underlying
BRDL [8] and extended it with a number of time-related and other quantitative
aspects. In their work, basic activities (also called basic tasks [3,4,8]) incorporate
non-cognitive aspects, such as the duration and the difficulty of the task, which
are interface-dependent outcomes of the interaction process, as well as external
aspect, such as the delay in executing the basic activity, which is possibly due to
the switching from one task to another. In fact, this was an ad hoc extension for
modelling human multitasking. In contrast to Broccia et al. we model just one
time aspect within basic activities, the duration of the mental process, which
is the only time aspect characterising the basic activity. Broccia et al., instead,
neglect this time aspect.

The rest of the paper is structured as follows. Sections 2 and 3 present
overviews of Real-Time Maude and the way it models BRDL syntax, respec-
tively. Section 4 presents the Real-Time Maude implementation of the model
of human memory and memory processes that provide the dynamics of BRDL
constructs. Section 5 illustrates the rewrite rules to emulate human reasoning
and the environment in which humans operate. Section 6 concludes the paper.

2 Real-Time Maude

Real-Time Maude [16,18] is a formal modeling language and high-performance
simulation and model checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude.

426 A. Cerone and P. C. Ölveczky

An algebraic equational specification (specifying sorts, subsorts, functions
and equations defining the functions) defines the data types in a functional pro-
gramming style. Labeled rewrite rules crl [l]: t => t′ if cond define local
transitions from state t to state t′, and tick rewrite rules crl [l]: {t} =>
{t′} in time Δ if cond advance time in the entire state t by Δ time units.

We briefly summarize the syntax of Real-Time Maude and refer to Ölveczky’s
work [16,18] for more details. Maude equational logic supports declaration of
sorts, with keyword sort for one sort, or sorts for many. A sort A may be spec-
ified as a subsort of a sort B by subsort A < B. Operators are introduced with
the op and ops keywords: op f : s1 . . . sn -> s. They can have user-definable
syntax, with underbars ‘_’ marking the argument positions. Some operators can
have equational attributes, such as assoc, comm, and id, stating that the operator
is associative, commutative and has a certain identity element, respectively. Such
attributes are used by the Maude engine to match terms modulo the declared
axioms. An operator can also be declared to be a constructor (ctor) that defines
the carrier of a sort. Equations and rewrite rules are introduced with, respec-
tively, keywords eq, or ceq for conditional equations, and rl, or crl for condi-
tional rules. The mathematical variables in such statements are declared with
the keywords var and vars, or can be introduced on the fly in a statement
without being declared previously, in which case they have the form var:sort.
An equation f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can
be applied to a subterm f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C with
attributes att1 to attn of sorts s1 to sn. An object of class C is represented as
a term < O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort
Oid, is the object’s identifier, and where val1 to valn are the current values of
the attributes att1 to attn. The state is a term of sort Configuration, and is
a multiset of objects and messages. Multiset union is denoted by an associative
and commutative juxtaposition operator, so that rewriting is multiset rewriting.

Real-Time Maude specifications are executable, and the tool provides a vari-
ety of formal analysis methods. The timed rewriting command (tfrew t in
time <= timeLimit .) simulates one of the system behaviours by rewriting the
initial state t up to duration timeLimit .

3 Behaviour and Reasoning Description Language

The Behaviour and Reasoning Description Language (BRDL) [10] originates
from and extends the Human Behaviour Description Language (HBDL) intro-
duced in previous work [8,9]. HBDL aims at the modelling of automatic and
deliberate human behaviour while interacting with an environment consisting
of heterogenous physical components. It requires reasoning and problem solving
aspects to be modelled explicitly in a procedural way, whereby the reasoning
process and the problem solution are explicitly described with the language.
BRDL, instead, is equipped with the linguistic constructs to specify reasoning

Modelling Human Reasoning Using Real-Time Maude 427

goals, inference rules and unsolved problems. It is then the cognitive engine
that implements the language to emulate the reasoning and problem solving
processes.

BRDL is based on Atkinson and Shiffrin’s multistore model of human mem-
ory [1]. This model is characterised by three stores between which various forms
of information flow: sensory memory, where information perceived through the
senses persists for a very short time, short-term memory (STM), which has a lim-
ited capacity and where the information that is needed for processing activities
is temporarily stored with rapid access and rapid decay, and long-term memory
(LTM), which has a virtually unlimited capacity and where information is organ-
ised in structured ways, with slow access but little or no decay. A usual practice
to keep information in memory is rehearsal. In particular, maintenance rehearsal
allows us to extend the time during which information is kept in STM, whereas
elaborative rehearsal allows us to transfer information from STM to LTM [2].
We consider a further decomposition of LTM: semantic memory, which refers
to our knowledge of the world and consists of the facts that can be consciously
recalled, and procedural memory, which refers to our skills and consists of rules
and procedures that we unconsciously use to carry out tasks, particularly at the
motor level.

BRDL has a concise, appealing syntax, which is presented elsewhere [10]. In
order to show how BRDL is translated to Maude, in this section we introduce
an ASCII, verbose version of the syntax, as it is implemented in Maude. Both
HDBL and BRDL describe human behaviour through the manipulation of three
kinds of entities:

perceptions are sensed in the environment and enter human input channels;
actions are performed by the human on the environment;
cognitive information consists in the items we store in our STM, including

information retrieved from the LTM, goals, recent perceptions or planned
actions.

3.1 BRDL Entities and Cognitive Control

BRDL entities are modelled with Maude using the following sort structure.

sorts Perception Action Cognition BasicItem Item Goal .

subsorts Cognition Perception Action < BasicItem < Item .

subsort Goal < Item .

where Perception, Action and Cognition model perceptions, actions and cog-
nitive information, respectively. Sort Item models anything that can be stored
in STM and sort BasicItem is its subsort that excludes goals (from sort Goal).
All these entities may also be elements of sets that define further sorts as follows:

subsorts Perception < PerceptionSet < BasicItemSet .

subsorts Cognition < CognitionSet < BasicItemSet .

subsorts Action < ActionSet < BasicItemSet .

428 A. Cerone and P. C. Ölveczky

subsort BasicItem < BasicItemSet .

subsorts EmptyItemSet < PerceptionSet CognitionSet ActionSet

< BasicItemSet < ItemSet .

subsort Item < ItemSet .

op none : -> EmptyItemSet [ctor] .

op _;_ : BasicItemSet BasicItemSet ->

BasicItemSet [ctor assoc comm id: none] .

op _;_ : PerceptionSet PerceptionSet ->

PerceptionSet [ctor assoc comm id: none] .

op _;_ : ActionSet ActionSet ->

ActionSet [ctor assoc comm id: none] .

op _;_ : ItemSet ItemSet -> ItemSet [ctor ditto] .

We use semicolon “;” as the general operator to add elements or subsets to a
set, starting from an empty set (none in this case).

We extend Perception to DefPerception and Action to DefAction by
including as default values noPerception and noAction to model the absence
of perception and action, respectively.

sorts DefPerception DefAction .

subsort Perception < DefPerception . subsort Action < DefAction .

op noAction : -> DefAction [ctor] .

op noPerception : -> DefPerception [ctor] .

Only relevant perceptions are transferred, possibly after some kind of processing,
to the STM using attention, a selective processing activity that aims to focus
on one aspect of the environment while ignoring others. Explicit attention is
associated with our goal in performing a task. It focusses on goal-relevant stimuli
in the environment. Implicit attention is grabbed by sudden stimuli that are
associated with the current mental state or carry emotional significance. Inspired
by Norman and Shallice [15], we consider two levels of cognitive control:

automatic control
fast processing activity that requires only implicit attention and is carried
out outside awareness with no conscious effort implicitly, using rules and
procedures stored in the procedural memory;

deliberate control
processing activity triggered and focussed by explicit attention and carried
out under the intentional control of the individual, who makes explicit use
of facts and experiences stored in the declarative memory and is aware and
conscious of the effort required in doing so.

In order to model automatic and deliberate control as well as reasoning, we
introduce the following sorts and operations.

sorts Automatism KnowledgeDomain .

op automatism : KnowledgeDomain -> Automatism [ctor] .

op goal : KnowledgeDomain BasicItemSet -> Goal [ctor] .

op infer : KnowledgeDomain -> Inference [ctor] .

Modelling Human Reasoning Using Real-Time Maude 429

We define automatic behaviour in terms of a specific knowledge domain (sort
KnowledgeDomain and operation automatism). Automatic behaviour is driven
by the knowledge domain, which gives a focus to implicit attention.

Deliberate behaviour is driven by a goal, which not only depends on the
knowledge domain but also on a representation of the goal achievement. This
representation may be given by a combination of perceptions, actions and cog-
nitive information. For example,

– during the interaction with an ATM (automatic teller machine) with the
goal of withdrawing cash, we achieve the goal when we perform the action of
collecting the cash;

– if our goal is to switch a light on, we achieve the goal when we perceive the
light being on;

– if our goal is to solve a mathematical puzzle, we achieve the goal when the
solution is represented by the cognitive information in our STM.

Inference is driven by the knowledge domain on which we are reasoning.

3.2 Basic Activities

Human behaviour is modelled in BRDL (and HTDL) as a set of basic activities,
defined through the following sorts and operations

sorts AutomaticActivity DeliberateActivity Knowledge .

op _:_>|_-->_|>_duration_ : Automatism BasicItemSet DefPerception

DefAction ItemSet Time -> AutomaticActivity . [ctor]

op _:_>|_-->_|>_duration_ :Goal BasicItemSet DefPerception

DefAction ItemSet Time -> DeliberateActivity [ctor] .

op _:_>|-->|>_duration_ : Inference BasicItemSet

ItemSet Time -> Knowledge [ctor] .

An automatic basic activity within a given knowledge domain domain is
modelled in BRDL and HTDL as

automatism(domain) : info1 >| perception --> action |> info2 duration d

where info1 is the triggering cognitive information in the STM, perception is the
triggering perception, action is the performed action, info2 is a new cognitive
information stored in the STM, and d is the duration of the mental processing.
Symbol “>|” denotes that info1 is removed from the STM and “|>” denotes
that info2 is stored in the STM. Using derived operations (i.e. not defined as
constructors but through equations) we have the following syntactic sugar

automatism(domain) : info1 | perception -->
action |> info2 duration d

where info1 acts as a trigger but is not is removed from STM, and

automatism(domain) : info | info1 >| perception -->
action|> info2 duration d

430 A. Cerone and P. C. Ölveczky

where the union info;info1 acts as a trigger but only info1 is removed from
STM.

A deliberate basic activity within a given knowledge domain domain is mod-
elled in BRDL and HTDL as

goal(domain, info) : info1 >| perception --> action |> info2 duration d

where info is the information denoting the achievement of the goal.
An inference within a given knowledge domain domain is modelled in

BRDL as

inference(domain) : info1 >|-->|> info2 duration d

where info1 is the premise and info2 is the consequence.
Syntactic sugar for deliberate basic activities and inferences is defined simi-

larly to automatic basic activities.
Procedural memory is modeled as the sort ProcMem, which is a set of auto-

matic basic activities

sort ProcMem . subsort AutomaticActivity < ProcMem .

op emptyPM : -> ProcMemory [ctor] .

op _;_ : ProcMemory ProcMemory -> ProcMemory

[ctor assoc comm id: emptyPM] .

Semantic memory is modeled by two sort, sort ActivMem, which is a set of
deliberate basic activities,

sort ActivMem . subsort DeliberateActivity < ActivMem .

op emptyAM : -> ActivMem [ctor] .

op _;_ : ActivMem ActivMem -> ActivMem [ctor assoc comm id: emptyASM] .

and sort InferMem , which is a set of inferences,

sort InferMem . subsort Knowledge < InferMem .

op emptyIM : -> InferMem [ctor] .

op _;_ : InferMem InferMem -> InferMem [ctor assoc comm id: emptyIM] .

3.3 Zebra Crossing Example

As an example to illustrate these forms of human behaviour and reasoning, let
us consider car driving. The knowledge domain is given by constant operation

op driving : -> KnowledgeDomain [ctor] .

Automatic control is essential in properly driving a car and, in such a context, it
develops throughout a learning process based on deliberate control. During the
learning process the driver has to make a conscious effort that requires explicit
attention. For example, the learner has to explicitly pay attention to the other
cars, the pedestrian walking on the footpath, who may be ready to walk across
the road, the presence of zebra crossings, traffic lights, road signals, etc. These are
goals that drive explicit attention. Moreover, the information gathered through
this process has to be deliberately used to achieve goals (deliberate control),
which continuously emerge while driving as a learner.

For instance, let us define perceptions, actions and cognitive information of
a driver dealing with a zebra crossing as follows:

Modelling Human Reasoning Using Real-Time Maude 431

ops static moving ped zebra : Oid -> Perception [ctor] .

ops stop go : Action [ctor] .

ops givenWayPed waitForPed leftZebraCrossing : -> Cognition [ctor] .

The role of such constructors will be explained later in this section.
A learner’s perception of an approaching zebra crossing, normally by seeing

a road signal, either a horizontal or vertical one, triggers the storage of the
cognitive representation of this perception in STM. We may model this instance
of explicit attention as

goal(driving,zebra) : none | zebra --> noAction |> zebra duration d1

where zebra denotes the perception of the zebra crossing and occurs three times
for modelling, from left to right: the achievement of the goal of explicitly per-
ceiving the presence of the zebra crossing, the actual perception and the repre-
sentation of the perception in STM. There is no resultant action since here we
are modelling attention.

When also pedestrians ready to cross are perceived, the cognitive represen-
tation of this perception is stored in STM.

goal(driving,ped) : none | ped --> noAction |> ped duration d2

Once the cognitive representations of perceptions zebra and ped are in STM, if
the car is moving and the driver is (cognitively) aware of it (modelled by moving
in the STM), this composite mental state triggers the retrieval of the following
inference, which models the road code rule concerning zebra crossings:

inference(driving) :

moving ; zebra ; ped |-->|> goal(driving,givenWayPed) duration d3

Retrieving the rule results in adding goal goal(driving,givenWayPed) to the
STM without removing moving, zebra and ped. Such a goal dictates the pre-
scribed behaviour of giving way to pedestrians (whose achievement is denoted
by givenWaypPed). This behaviour is ‘implemented’ by the human as modelled
by the following deliberate basic activity:

goal(driving,givenWayPed) :

none | none --> stop |> waitForFree duration d4

where stop is the action of stopping the car and waitForFree denotes the
driver’s mental state of waiting for the zebra crossing to be free.

Once automaticity in driving is acquired, the driver is no longer aware of
low-level details and resorts to implicit attention to perform them (automatic
control). In general, also an expert driver always starts driving with a precise
goal in mind, which normally is that of reaching a specific destination, possibly
as a subgoal of the reason for reaching it. Although such a goal is kept in the
driver’s STM, most driving activities are carried out under automatic control,
with no need to retrieve the learned rules. Therefore, the behaviour of an expert
driver is modelled as follows:

automatism(driving) : none | zebra --> noAction |> zebra duration d1

automatism(driving) : none | ped --> noAction |> ped duration d2

432 A. Cerone and P. C. Ölveczky

automatism(driving) :

moving ; zebra |> ped --> stop |> ped ; waitForFree duration d3

automatism(driving) :

moving ; ped |> zebra --> stop |> zebra ; waitForFree duration d3

The first two automatic activities model implicit attention, which results in the
storage of the perception of zebra crossing and pedestrians, respectively. The
last two automatic activities model the automatic reaction to the perception of
pedestrian in combination with the awareness of the presence of a zebra crossing
or the perception of zebra crossing in combination with the awareness of the
presence of pedestrian, depending on which perception occurs first.

We can note that automatic behaviour is more efficient than deliberate
behaviour for the following reasons:

– there are no goals in STM to drive explicit attention (low cognitive load);
– there is an immediate reaction to perceptions, when in the appropriate mental

state (faster reaction);
– there is no recourse to inference (decreased access to LTM).

4 Dynamics of BRDL Models

We model the structure of the human memory using the following Real-Time
Maude class.

class Human | cognitiveLoad : Nat,

shortTermMemory : TimedItemSet,

inferSemMem : InferMem,

activSemMem : ActivMem,

procMem : ProcMem .

The STM is modelled by attribute shortTermMemory with cognitiveLoad being
its current load, the semantic memory by the two attributes inferSemMem and
activSemMem and the procedural memory by the single attribute procMem.

4.1 STM Model with Real-Time Maude

The limited capacity of the STM requires the presence of a mechanism to empty
it when the stored information is no longer needed. In fact, information in the
STM decays very quickly, normally in less than one minute, unless it is reinforced
through maintenance rehearsal. To implement STM decay, we need to associate
a time to the elements of sort Item

sorts TimedItem TimedItemSet .

subsort TimedItem < TimedItemSet .

op _decay_ : Item Time -> TimedItem [ctor] .

op emptyTIS : -> TimedItemSet [ctor] .

op _;_ : TimedItemSet TimedItemSet -> TimedItemSet

[ctor assoc comm id: emptyTIS] .

op maxDecayTime : -> Time .

eq maxDecayTime = 20000 .

Modelling Human Reasoning Using Real-Time Maude 433

Therefore the STM is modelled as an element of sort TimedItemSet, the set of
elements of sort TimedItem. A piece of information in the STM is associated with
a decay time, which is initialised to the maximum decay time (maxDecayTime,
for example set to 20000 ms) when the information is stored in the STM. Then
decay time decreases along with the passage of time. A piece of information
disappears from the STM once its decay time has decreased to 0.

Additionally, every time a goal is achieved, a process called closure may
determine a subconscious removal of information from the STM: the informa-
tion used to complete the task is likely to be removed from the STM, since
it is no longer needed. Therefore, when closure occurs, a piece of information
may disappear from the STM even before its decay time has decreased to 0.
Conversely, maintenance rehearsal resets the decay time to the maximum decay
time.

In order for a goal with BIS as parameter of sort BasicItemSet to be achieved

– the entire cognitive information included in BIS has to be in STM;
– one of the perceptions (if any) has to be the trigger of the occurring basic

activity (which may be automatic or deliberate);
– one of the actions (if any) has to be performed by the occurring basic activity.

This is implemented by operations

op removeTime : TimedItemSet -> ItemSet .

op goalAchieved : Goal ItemSet DefPerception DefAction -> Bool .

where operation removeTime removes the time from the elements of the STM
and operation goalAchieved returns true if the goal is achieved.

It is not fully understood how closure works. We can definitely say that once
the goal is achieved, it is removed from the STM. However, it is not clear what
happens to the information that was stored in STM in order to achieve the
goal. We said at the end of Sect. 3.1 that if an ATM is used with the goal of
withdrawing cash, the goal is achieved when the user collects the cash delivered
by the ATM [8]. However, old ATM interfaces (some still in activity) deliver the
cash before returning the card to the user. There is then the possibility that the
user collects the cash and, feeling the goal achieved, abandons the interaction
forgetting to collect the card. This cognitive error is known as post-completion
error [6,7,13]. It could be explained by the loss of the information that was
stored in STM, when the user inserted the card in the ATM, as a reminder to
collect the card at a later stage. In fact, such a loss of information is the result of
the closure due to the achievement of the goal when the user collects the cash.

In practice, however, a user interacting with an old ATM interface does not
always forget the card. This may be explained by assuming that the likelihood
to forget the card depends on the user’s cognitive load. Therefore we define the
following thresholds

op closureThresholdLow : -> Nat . eq closureThresholdLow = 4 .

op closureThresholdHigh : -> Nat . eq closureThresholdHigh = 6 .

434 A. Cerone and P. C. Ölveczky

and force closure to occurs if the cognitive load is at least closureThreshold
High and prevent its occurrence if the cognitive load is less than closure
ThresholdLow. In all other cases closure may occur non-deterministically.

Finally, a piece of information may also non-deterministically disappear from
the STM when the STM has reached its maximum capacity and it is needed to
make space for the storage of new information. This is implemented by allowing
the STM to temporarily exceed its capacity, thus reaching an unstable state in
which the only applicable rule is

crl [forgetSomethingIfSTMfull] :
< H : Human | shortTermMemory : (ITEM decay NZT) ; STM,

cognitiveLoad : CL >
=>

< H : Human | shortTermMemory : STM,
cognitiveLoad : sd(CL, 1) >

if CL > stmCapacity .

where sd is the symmetric difference between natural numbers.

4.2 Model of the Environment

A specific environment with which the human interacts is defined as an object
of class

class Environment | state : TimedEnvState,

transitions : EnvTransitions .

The state attribute characterises the environment and its time aspects by means
of the following sort structure

sort EnvState .

sorts TimedEnvState ExpiringEnvState TimedEnvStateSet .

subsort EnvState < ExpiringEnvState < TimedEnvState < TimedEnvStateSet .

op _expiring‘in_ : EnvState Time -> ExpiringEnvState [ctor] .

op _expired : EnvState -> ExpiringEnvState [ctor] .

op _in‘time_ : ExpiringEnvState Time -> TimedEnvState [ctor right id: 0]

var STATE : EnvState .

eq STATE expiring in 0 = STATE expired .

op noEnvState : -> TimedEnvStateSet [ctor] .

op _;_ : TimedEnvStateSet TimedEnvStateSet -> TimedEnvStateSet

[ctor assoc comm id: noEnvState] .

where

– sort EnvState of environmental states is user-defined and application-specific;
– sort ExpiringEnvState add a life time to the environmental state;
– sort TimedEnvState add a delay time to the (possibly expiring) environmental

state.

Modelling Human Reasoning Using Real-Time Maude 435

Note that 0 is right identity in the construction of timed environmental states
out of expiring environmental states. Thus a timed environmental state with
delay 0 is actually an expiring environmental state (with no delay). Moreover,
expiring environmental states are characterised by a postfix constructor expired
in order to determine different transitions with respect to the non-expired states.

The sort EnvTransitions models environmental transitions as follows:

sort EnvTransitions .

sort EnvTransition .

subsort EnvTransition < EnvTransitions .

op noTrans : -> EnvTransitions [ctor] .

op _-->_ : ExpiringEnvState TimedEnvState -> EnvTransition [ctor] .

op _--_-->_ : EnvState Action TimedEnvState -> EnvTransition [ctor] .

op _;_ : EnvTransitions EnvTransitions -> EnvTransitions

[ctor assoc comm id: noTrans] .

Obviously interactions (-- -->) are associated with actions, internal actions
(-->) are not.

The sort EnvTransitions is populated through the user-defined, application-
specific operation

op transitions : Cid Oid -> EnvTransitions .

where Cid is a class identifier and Oid is an object identifier.
States of the environment may be observable by humans. Such observability

is modelled as

op observability : ExpiringEnvState -> PerceptionSet .

eq observability(STATE expired) = none .

eq observability(STATE expiring in NZT) = observability(STATE) .

with the rest of operation observability user-defined and application-specific.

4.3 Zebra Crossing Environment

In order to define the behaviour of the environment for the example in Sect. 3.3,
we need two environments, one to model the car behaviour and one to model
the zebra crossing behaviour. Both car and zebra crossing have a location, which
is variable for the car and fixed for the zebra crossing. They also need to have
additional state components to characterise whether the car is moving or is static
and whether the zebra crossing has pedestrians or is free.

Environment and Observability. If we assume to have only one human, one
car and one zebra crossing

ops driver1 car1 zebra1 : -> Oid [ctor] .

then the environmental state is defined as follows:

436 A. Cerone and P. C. Ölveczky

sorts Location AdditionalState .

ops atInit atZebra atFinal : -> Location [ctor] .

ops hasPed isFree isMoving isBraking isStatic : -> AdditionalState [ctor] .

op state : Location AdditionalState -> EnvState [ctor] .

The meanings of the operations that define locations and additional state
components are obvious. An environmental state consists of a location and an
additional state.

The observability operation is defined as follows:

eq observability(state(LOC,isStatic)) = static .

eq observability(state(LOC,isMoving)) = moving .

eq observability(state(zebra1,AS)) = zebra .

eq observability(state(zebra1,isFree)) = zebra ; noPed .

eq observability(state(zebra1,hasPed)) = zebra1 ; ped .

Transition System. The environmental transition systems are defined as

class Car . subclass Car < Environment .

var C : Oid .

eq transitions(Car, C) =

(state(atInit,isMoving) --> state(atZebra, isMoving)

expiring in 1 in time 30000) ;

(state(atZebra,isMoving) -- stop(C) --> state(atZebra, isBraking)) ;

(state(atZebra,isBraking) --> state(atZebra, isStatic) in time 2000) ;

(state(atZebra,isStatic) -- go(C) --> state(atZebra, isMoving)) ;

(state(atZebra,isMoving) --> state(atFinal, isMoving)

expiring in 1 in time 30000) ;

(state(atFinal,isMoving) -- stop(C) --> state(atFinal, isBraking)) ;

(state(atFinal,isBraking) --> state(atFinal, isStatic in time 2000) .

for the car, and

class Zebra . subclass Zebra < Environment .

var Z : Oid .

eq transitions(Zebra, Z) =

(state(Z,isFree) expired --> state(Z, hasPed) expiring in 5000) ;

(state(Z,hasPed) expired --> state(Z, isFree) expiring in 20000) .

for the zebra crossing.
The timings mean that the car takes time 30000 to move between two con-

secutive locations and time 2000 to brake, being in an unstable state until
these times are elapsed and, once stable, expiring immediately (in time 1)
if not taken, and that there are pedestrian crossing every 25000 time units
(25000 = 20000 + 5000) who take time 5000 to cross.

Initial Configuration. Let us consider a driver who has already acquired a
general automatism in driving, in which implicit attention controls the storage
of information in STM, but still needs to perform inferences to apply road code
rules. The initial configuration of the overall system is

Modelling Human Reasoning Using Real-Time Maude 437

op init : -> Configuration .

eq init = < cerone : Human |

cognitiveLoad : 2,

shortTermMemory : emptyTIS,

proceduralMemory :

(automatism(driving) : none | moving --> noAction |> moving duration 1) ;

(automatism(driving) : none | static --> noAction |> static duration 1) ;

(automatism(driving) : none | zebra --> noAction |> zebra duration 1) ;

(automatism(driving) : none | ped --> noAction |> hasPed duration 1) ;

(automatism(driving) : none | freePed --> noAction |> freePed duration 1),

knowledge :

(infer(driving) : (moving ; zebra ; hasPed) |-->|>

goal(driving,givenWayPed) duration 10) ;

(infer(driving) : (static ; zebra ; freePed) |-->|>

goal(driving,leftZebraCrossing) duration 10),

activity :

(goal(driving,givenWayPed) :

(moving ; zebra ; hasPed) | noPerception -->

stop(car1) |> waitForPed) duration 10) ;

(goal(driving,leftZebraCrossing) :

(zebra ; waitForPed) > (static ; freePed) | noPerception -->

go(car1) |> none duration 10)

>

< zebra1 : Zebra | transitions : transitions(Zebra, zebra1),

state : state(zebra1,zebraPed) expiring in 5000

>

< car1 : Car | transitions : transitions(Car, car1),

state : state(initLoc,moving)

> .

5 Rewrite Rules

At the end of Sect. 4.1 we have introduced the forgetSomethingIfSTMfull
rewrite rule. In this section we illustrate three more rewrite rules: internal,
reasoning and timePassing. Other rewrite rules not presented here involve the
automatic and deliberated activities, including special cases such as implicit and
explicit attention, which are characterised by the presence of perception and
absence of action, and cognition, which are characterised by the absence of both
perception and action. Such rules are duplicated for the closure and non-closure
cases.

5.1 Internal Action Rewrite Rule

Internal actions are modelled by the following rewrite rule.

crl [internal] :

{< E : Environment | >

438 A. Cerone and P. C. Ölveczky

REST}
=>

{< E : Environment | state : TESTATE >

REST}
if ALL-TESTATES := fireTransitions(< E : Environment | >)

/\ TESTATE ; OTHER-TESTATES := ALL-TESTATES .

The rule makes use of the fireTransitions operation, which is defined as fol-
lows:

op fireTransitions : Configuration -> TimedEnvStateSet .

eq fireTransitions(< E : Environment |

state : ESTATE,

transitions : (ESTATE --> TESTATE) ; TRANSES > REST) =

TESTATE ; fireTransitions(< E : Environment |

state : ESTATE,

transitions : TRANSES > REST) .

eq fireTransitions(REST) = noEnvState [owise] .

The fireTransitions operation returns the set of the environmental states
generated by the firing of the enabled internal transitions. In the internal
rewrite rule, such a set is assigned to variable ALL-TESTATES, which is matched
to TESTATE ; OTHER-TESTATES, thus giving the rewritten state TESTATE.

5.2 Reasoning Rewrite Rule

Reasoning is modelled by the following rewrite rule.

crl [reasoning] :

{< H : Human |

cognitiveLoad : CL,

shortTermMemory : (TIS1 ; TIS2),

inferMem : (infer(KD) : BIS >| -->|> IS duration T) ; KNOW >

REST}
=>

{< H : Human |

cognitiveLoad : card(NEW-STM),

shortTermMemory : NEW-STM,

inferMem : (infer(KD) : BIS >| -->|> IS duration T) ; KNOW >

idle(REST, T)}
in time T

if BIS == removeTime(TIS1)

/\ CL < closureThresholdHigh /\ CL <= stmCapacity

/\ NEW-STM := addTime(BIS ; IS, maxDecayTime)) ; idle(TIS2,T) .

In addition to operation removeTime introduced in Sect. 4.1, the rule makes
use of

Modelling Human Reasoning Using Real-Time Maude 439

– the addTime operation, which transforms the untimed sets BIS and IS into a
timed set to be added to the STM;

– the idle operation, which models the passage of a given time by decrementing
each element of sort TimedItemSet of the STM and, for each environment
component, the delay and expiration times of the state attribute, which is
of sort TimedEnvState, if positive.

Note that the decay time of the premises in BIS is set to the maximum decay
time because the use of BIS in the inference is an implicit maintenance rehearsal
of its timed version TIS1.

Let us consider the zebra crossing example introduced in Sects. 3.3 and 4.3.
When moving, zebra and ped are stored in the STM, the road code rule con-
cerning zebra crossing (from Sect. 4.3)

inference(driving) :

moving ; zebra ; ped |-->|> goal(driving,givenWayPed) duration d3

is retrieved, thus enabling the application of Maude reasoning conditional rule
with

BIS = moving ; zebra ; ped and IS = goal(driving,givenWayPed)

The new goal goal(driving,givenWayPed) is then added to the STM and trig-
gers the following deliberate basic activity, stored in LTM, which implement the
road code rule (from Sect. 4.3):

goal(driving,givenWayPed) :

none | none --> stop |> waitForFree duration d4

Such a rule dictates the action of stopping the car (stop) and the storage of
waitForFree in the STM.

5.3 Time Passing Rewrite Rule

crl [timePassing] :

{CONFIG}
=>

{idle(CONFIG,1)}
in time 1

if nothingEnabled(CONFIG) .

where operation nothingEnabled is defined as

op nothingEnabled enablingSTM : Configuration -> Bool .

eq nothingEnabled(CONFIG) = (fireTransitions(CONFIG) == noEnvState)

and (enablingSTM(CONFIG)) == false .

and operation enablingSTM checks whether the configuration has an object of
class Human whose STM either exceeds the maximum cognitive load or is enabling
an inference rule, an automatic basic activity or a deliberate basic activity. In
this way the timePassing rewrite rule may be applied only if no other rewrite
rule can be applied.

440 A. Cerone and P. C. Ölveczky

6 Conclusion and Future Work

We have presented a translation of BRDL into Real-Time Maude. In previ-
ous work [8,9], a subset of BRDL, the Human Behaviour Description Language
(HBDL), was implemented using Core Maude. However, that untimed imple-
mentation was limited to automatic and deliberate behaviour powered by a very
simple, fixed short-term memory model, with a minimalist, inflexible approach
to closure and without decay. Reasoning and problem solving aspects had to be
modelled explicitly in a procedural way in a limited, unstructured environment
consisting of just one component.

BRDL, instead, is equipped with the linguistic constructs to specify reason-
ing goals, inference rules and unsolved problems. These linguistic constructs,
extensively described in our previous work [10] can be used to model human
behaviour in a natural way from the point of view of a psychologist or cogni-
tive scientist. The Real-Time Maude implementation of BRDL presented in this
paper provides an engine capable to emulate the human reasoning specified by
such constructs, but its knowledge is not needed to use BRDL. Moreover, the
object-oriented and real-time aspects of Maude allow us to overcome the limita-
tion of previous work [8] and carry out the implementation of the time aspects
envisaged in recent work [9].

Moreover, our work differentiates itself from the work by Broccia et al. [3,4]
in several respects:

– we have implemented, using Real-Time Maude, a language for the high-level,
general description of human behaviour and reasoning (BRDL), whereas the
work by Broccia et al. is restricted to the modelling and analysis of human
multitasking;

– our modelling approach clearly separate human cognition from its environ-
ment, with all interaction aspects emerging through the composition of the
human component with the operating environment, whereas the framework
developed by Broccia et al. explicitly incorporates in the human component
interaction aspects, such as task duration and difficulty, and delay due to
external constraints, such as the presence of other tasks;

– we model the duration of the mental processing, a time aspect that has not
been considered by Broccia et al.;

– Broccia et al. adopt the same minimalist, inflexible approach to closure intro-
duced in Cerone’s previous work [8], in which all cognitive information used
to achieve the goal is removed independently of the cognitive load, whereas,
in our approach, we may use and compare several forms of closure and use
thresholds on cognitive load to control the application of closure;

– our components are eager, namely the time passing rewrite rule may be
applied only if no other rewrite rule can be applied.

As future work we plan to implement BRDL problem solving constructs [10] and
use the model checking capabilities of Real-Time Maude to extend the untimed
analysis approach used in previous work [8] to the formal verification of timed
properties.

Modelling Human Reasoning Using Real-Time Maude 441

References

1. Atkinson, R.C., Shiffrin, R.M.: Human memory: a proposed system and its control
processes. In: Spense, K.W. (ed.) The Psychology of Learning and Motivation:
Advances in Research and Theory II, pp. 89–195. Academic Press (1968)

2. Atkinson, R.C., Shiffrin, R.M.: The control of short-term memory. Sci. Am. 225(2),
82–90 (1971)

3. Broccia, G., Milazzo, P., Ölveczky, P.C.: An executable formal framework for
safety-critical human multitasking. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 54–69. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77935-5 4

4. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innov. Syst. Softw. Eng. 169–190 (2019). https://doi.
org/10.1007/s11334-019-00333-7

5. Butterworth, R., Blandford, A.E., Duke, D.: Demonstrating the cognitive plaus-
ability of interactive systems. Form. Asp. Comput. 12, 237–259 (2000)

6. Byrne, M.D., Bovair, S.: A working memory model of a common procedural error.
Cogn. Sci. 21, 31–61 (1997)

7. Byrne, M.D., Davis, E.M.: Task structure and postcompletion error in the execu-
tion of a routine procedure. Hum. Factors 48, 627–638 (2006)

8. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 20

9. Cerone, A.: Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018.
LNCS, vol. 11176, pp. 216–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04771-9 17

10. Cerone, A.: Behaviour and reasoning description language (BRDL). In: SEFM 2019
Collocated Workshops. LNCS. Springer (2019, in press)

11. Harrison, M.D., Campos, J.C., Rukšėnas, R., Curzon, P.: Modelling information
resources and their salience in medical device design. In: EICS 2016, pp. 194–203.
ACM (2026)

12. Kotseruba, I., Tsotsos, J.K.: 40 years of cognitive architectures: core cognitive
abilities and practical applications. Artif. Intell. Rev. 53(1), 17–94 (2018). https://
doi.org/10.1007/s10462-018-9646-y

13. Li, S.W., Blandford, A., Cairns, P., Young, R.M.: The effect of interruptions on
postcompletion and other procedural errors: an account based on the activation-
based goal memory model. J. Exp. Psychol. Appl. 14, 314–328 (2008)

14. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theoret.
Comput. Sci. 285(2), 121–154 (2002)

15. Norman, D.A., Shallice, T.: Attention to action: willed and automatic control of
behaviour. In: Consciousness and Self-Regulation, Advances in Research and The-
ory, vol. 4. Plenum Press (1986)

16. Ölveczky, P.C.: Real-time maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

17. Ölveczky, P.C.: Designing Reliable Distributed Systems. UTCS. Springer, London
(2017). https://doi.org/10.1007/978-1-4471-6687-0

18. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time-Maude.
High.-Order Symb. Comput. 20(1–2), 161–196 (2007)

https://doi.org/10.1007/978-3-319-77935-5_4
https://doi.org/10.1007/978-3-319-77935-5_4
https://doi.org/10.1007/s11334-019-00333-7
https://doi.org/10.1007/s11334-019-00333-7
https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-1-4471-6687-0

442 A. Cerone and P. C. Ölveczky

19. Oulasvirta, A., Kristensson, P., Bi, X., Howes, A. (eds.): Computational Interac-
tion. Oxford University Press, Oxford (2018)

20. Weyers, B., Bowen, J., Dix, A., Palanque, P.: Erratum to: the handbook of for-
mal methods in human-computer interaction. In: Weyers, B., Bowen, J., Dix, A.,
Palanque, P. (eds.) The Handbook of Formal Methods in Human-Computer Inter-
action. HIS, pp. E1–E3. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-51838-1 21

https://doi.org/10.1007/978-3-319-51838-1_21
https://doi.org/10.1007/978-3-319-51838-1_21

	Modelling Human Reasoning in Practical Behavioural Contexts Using Real-Time Maude
	1 Introduction
	2 Real-Time Maude
	3 Behaviour and Reasoning Description Language
	3.1 BRDL Entities and Cognitive Control
	3.2 Basic Activities
	3.3 Zebra Crossing Example

	4 Dynamics of BRDL Models
	4.1 STM Model with Real-Time Maude
	4.2 Model of the Environment
	4.3 Zebra Crossing Environment

	5 Rewrite Rules
	5.1 Internal Action Rewrite Rule
	5.2 Reasoning Rewrite Rule
	5.3 Time Passing Rewrite Rule

	6 Conclusion and Future Work
	References

