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Preface

The Third World Congress on Formal Methods (FM 2019) took place during
October 7–11, 2019, in Porto, Portugal. The congress comprised nine conferences: the
23rd International Symposium on Formal Methods (FM 2019); the 29th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2019);
the 13th International Conference on Mathematics of Program Construction (MPC
2019); the 21st International Symposium on Principles and Practice of Declarative
Programming (PPDP 2019); the 19th International Conference on Runtime Verification
(RV 2019); the 26th International Static Analysis Symposium (SAS 2019); the 13th
International Conference on Tests and Proofs (TAP 2019); the 7th International
Symposium on Unifying Theories of Programming (UTP 2019); and the 13th Inter-
national Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS 2019). The conference also included a Doctoral Symposium, an
Industry Day, 2 festschrifts, 16 workshops, and 5 tutorials. In total there were 630
registered participants from 43 countries, 381 presentations from 821 authors, 44
invited speakers, and 13 tool exhibitors. The 16 workshops emerged out of 18 work-
shop proposals. Three workshops, the Second International Workshop on Dynamic
Logic, New Trends and Applications (DaLí 2019), the Third International Workshop
and Tutorial on Formal Methods Teaching (FMTea 2019), and the 5th Workshop on
Formal Integrated Development Environment (F-IDE 2019), had their proceedings
published separately. This two-volume book consists of the proceedings of the other 13
workshops.

Volume 1:

AFFORD 2019
The Third Workshop on Practical Formal Verification for Software Dependability

DataMod 2019
The 8th International Symposium From Data to Models and Back

FMAS 2019
The First Formal Methods for Autonomous Systems Workshop

FMBC 2019
The First Workshop on Formal Methods for Blockchains

FMIS 2019
The 8th International Workshop on Formal Methods for Interactive Systems

Volume 2:

HFM 2019
The First History of Formal Methods Workshop

NSAD 2019
The 8th International Workshop on Numerical and Symbolic Abstract Domains



OpenCERT 2019
The 9th International Workshop on Open Community Approaches to Education,
Research and Technology

Overture 2019
The 17th Overture Workshop

Refine 2019
The 19th Refinement Workshop

RPLA 2019
The First International Workshop on Reversibility in Programming, Languages, and
Automata

SASB 2019
The 10th International Workshop on Static Analysis and Systems Biology

TAPAS 2019
The 10th Workshop on Tools for Automatic Program Analysis

The diversity of the workshop themes reflects the evolution that formal methods of
software development have taken since the first World Congress on Formal Methods in
1999 (Toulouse, France) and the second in 2009 (Eindhoven, The Netherlands). Each
workshop has its unique history and style that was left up to the workshop organizers to
maintain. We are pleased to have four workshops for the first time: FMAS, FMBC,
HFM, and RPLA. In total, 123 papers were accepted after a first round of reviewing for
the presentation at FM 2019. Of those, 108 were submitted for a second round of
reviewing after the congress and 68 selected for inclusion in these proceedings. The
workshop organizers ensured that all papers received at least three reviews. Nine
invited abstracts, two invited papers, and one workshop summary are included as well.

We are grateful to the workshop authors, the workshop organizers, the Program and
Organizing Committee members of the workshops, the local organizers, the sponsors
of the congress, and everyone else involved in the 34 events of the congress for the
concerted effort in putting together such a rich program.

Finally, we thank Springer for their immediate willingness to publish the collected
FM 2019 workshop proceedings in the LNCS series and their support in the editing
process.

May 2020 Emil Sekerinski
Nelma Moreira
José N. Oliveira

viii Preface
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AFFORD 2019 - 3rd Workshop on
Practical Formal Verification for

Software Dependability



AFFORD 2019 Organizers’ Message

The Third Workshop on Practical Formal Verification for Software Dependability
(AFFORD) was held in conjunction with FM 2019 (the 3rd World Congress of Formal
Methods – FM2019). The second edition was organised in conjunction with the 27th
IEEE International Symposium on Software Reliability Engineering - ISSRE 2017 in
Toulouse, France. The first edition was held in conjunction with ISSRE 2016 under the
name Formal Verification for Practicing Engineers (FVPE).

Formal verification techniques have already shown that they can increase the
dependability of software. However, they are only sporadically applied in an industrial
context (if at all) and mostly in projects where it is explicitly required by regulatory
bodies. A broad adoption of formal verification techniques is not in sight.

The inherent complexity of the systems being built, as well as the complexity of
their analyses pose scalability challenges in applying these techniques in real industrial
projects. Other important reasons for their low adoption are related to pragmatic aspects
such as usability or the cost of applying formal verification. For a large majority of
software engineers and developers, formal verification techniques are viewed rather as
expert tools and not as engineering tools that can be used on a daily basis.
The AFFORD workshop aims to build a community interested in the application of
formal verification techniques to increase dependability of software intensive systems,
by developing and promoting approaches, techniques and tools that can be understood
and applied by practicing engineers – without special education in formal methods.
Specifically, we aim to bring together researchers and practitioners interested in low-
ering the adoption barrier to use formal verification for the development of dependable
software. We especially focus on the needs of main-stream developers that do not
(necessarily) work on highly safety critical systems but on more main-stream systems
that still need to be reliable.

AFFORD’19 had 10 submissions which were rigorously reviewed by three
reviewers. We were able to accept 6 papers. The workshop program was composed of a
keynote and six presentations of regular papers. The keynote, given by Paolo Masci
from the National Institute of Aerospace (NIA), presented an approach for establishing
a dialogue between formal methods experts and a multi-disciplinary team of engineers,
domain experts, and end users of the system for the purpose of validation and
debugging.

We would like to thank all members of the program committee for their support.
We also thank the authors and presenters for sharing their experiences with us. We
thank everyone for attending the workshop and we hope you all enjoyed the program
and continue to help us make the pragmatics of applying formal verification a first-class
research topic.

November 2019 Daniel Ratiu
Alexander Romanowsky
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Experiences with Streamlining Formal
Methods Tools

Paolo Masci(B)

National Institute of Aerospace, Hampton, VA, USA
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Abstract. This paper discusses the use of formal methods in the con-
text of multi-disciplinary teams. Success stories are presented based on
experiences with industry and regulatory agencies. It will be shown that a
pragmatic approach based on the use of prototypes driven by executable
formal models represents an effective means to present the formal anal-
ysis effort to non-experts of formal methods.

Keywords: Rapid prototyping · Executable formal models

1 Introduction

Successful application of formal methods technologies is not just a matter of
skillful use of formal methods tools and mathematical analysis techniques. It also
requires establishing a constructive dialogue between formal methods experts
and a multi-disciplinary team of developers (e.g., see [16]).

Consider the typical workflow followed by formal methods experts. It includes
three main activities: (1) Create a formal model that captures information pro-
vided in design documents; (2) Translate natural language requirements into
formal properties; (3) Perform the analysis with a formal tool.

In this workflow, formal methods experts need to engage with engineers and
domain specialists to gain confidence that: (i) Formal models correctly capture
the characteristics and functionalities of the system under analysis; (ii) Formal
properties to be verified of the system correctly capture the intended meaning of
requirements given in natural language; (iii) Counter-examples produced by the
formal tool point out genuine design issues that need fixing, and not artifacts
due to approximations used in the formal model.

The current generation of formal tools is not designed to facilitate these
engagement activities. The tools provide text-based front-ends, rich of math-
ematical details that non-experts of formal methods find hard to understand.
These elements can create strong communication barriers between formal meth-
ods experts and the rest of the team, resulting in important delays in the devel-
opment life-cycle and overall reduced benefits from using formal methods.

This invited paper reports on a series of success stories where communica-
tion barriers were eliminated by instrumenting formal methods tools with rapid

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 5–11, 2020.
https://doi.org/10.1007/978-3-030-54994-7_1
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prototyping capabilities. The intuition is that interactive prototypes based on exe-
cutable formal models represent a convenient means to present relevant aspects
of the formal analysis effort to non-experts of formal methods. The prototypes
reproduce the visual appearance and behavior of the real system. They can be
used to create scenario-based simulations that can be readily comprehended by
engineers and domain specialists.

The rest of the paper is organized as follows. Section 2 describes an approach
to instrument existing formal methods tools with rapid prototyping capabilities.
Section 3 provides an overview of PVSio-web [9], a prototyping toolkit developed
using the presented approach. Section 4 presents success stories based on expe-
riences with using PVSio-web with industry and regulatory agencies. Section 5
presents related work and concluding remarks.

2 Instrumenting Formal Tools with Rapid Prototyping

A convenient approach to instrument existing formal methods tools with rapid
prototyping capabilities builds on the use of formal model animation and a client-
server architecture.

Formal model animation is a functionality provided by formal tools for eval-
uating executable fragments of a formal model. The functionality is typically
provided in the form of an interactive command prompt with a read-eval-print
loop: an expression is entered in the prompt; the tool evaluates the expression;
a result is returned to the prompt. When the formal model captures informa-
tion on the state of the system and on the events that trigger the evolution of
the system state, the eval-print-loop can be used to compute execution traces
necessary to drive the behavior of a prototype.

The use of a client-server architecture facilitates the integration of a formal
tool with the rendering technology adopted for visual animation of the proto-
type. The server back-end encapsulates the formal tool. The APIs of the server
provide means to interact with the read-eval-print loop of the formal tool. The
client front-end runs the rendering technology and handles user actions per-
formed on the prototype (in the case of prototypes with user interfaces). The
visual appearance of the prototype reproduces that of the real system in the
corresponding state. State information is provided by the server back-end.

The advantages of this approach are: (i) The formal tool can be used as-is—
this guarantees that the prototyping capabilities do not affect the soundness of
the formal tool; (ii) Platform-independence between client and server—the most
appropriate platform can be chosen for the prototype front-end, e.g., a tablet,
without worrying about whether the platform can support the execution of the
formal tool.

3 The PVSio-web Toolkit

PVSio-web [9] is a prototyping toolkit based on PVS [11], a state-of-the-art
theorem prover routinely used at SRI International and NASA for the analysis
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Fig. 1. Screenshots of prototypes generated with the PVSio-web toolkit.

of safety-critical systems, e.g., see [15]. PVS is well known for its expressive
specification language based on higher-order logic, as well as for its extensive
library of proved properties and decision procedures. Formal model animation
is provided by a component called PVSio [10]. Its read-eval-print loop accepts
PVS expressions as input, and returns the result of the evaluation as output.
PVSio-web uses Web technologies to instrument the PVSio component with

rapid prototyping capabilities. On the client side, HTML, Cascading Style Sheets
(CSS) and JavaScript are used for rendering realistic prototypes that closely
resemble the look & feel of a real system (e.g., see Fig. 1). A picture of the final
system can be used as a basis for creating the prototype. CSS transitions are used
to perform 2D and 3D transformations necessary for smooth transition between
visual states of the prototype. Hotspot areas over the picture identify interactive
elements, such as displays and buttons. JavaScript programs monitor and update
the hotspot based on state information provided by the server. A library of user
interface elements and a web-based IDE are provided to facilitate the creation
of the prototypes (see [9] for additional details). On the server side, NodeJS
(http://nodejs.org) is used to create process workers that encapsulate PVSio
and interact with its read-eval-print loop on-demand, e.g., when the front-end
sends an evaluation request following a user action on the prototype.

4 Success Stories with PVSio-web

PVSio-web has been used successfully since 2012 to present the formal analysis
effort to a range of different stakeholders, including device developers, human
factors specialists, regulatory agencies, procurement staff, and end users. This
section presents representative examples.

4.1 Analysis of Commercial Devices

PVSio-web prototypes played a key role in the identification of previously unde-
tected software design anomalies in commercial medical devices. An example
anomaly is a keypad software error causing the device to erroneously ignore dec-
imal point key presses for certain ranges of numbers. This anomaly could result

http://nodejs.org
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in situations where clinicians accidentally enter a value ten times larger than the
intended value.

The anomaly emerged while verifying PVS models of commercial devices
in use in hospitals across the US and EU. Most of the models were created by
reverse engineering real devices. This involved systematic execution of interaction
sequences with the real devices based on information presented in the owner’s
manuals. When available, the software source code of the device was also used
as part of the reverse engineering process. The formal analysis was carried out
to verify a human factors principle, consistency of user actions. The principle
asserts that the same user actions should produce the same results in logically
equivalent situations. Failed proof attempts pointed out counter-examples where
the property was not satisfied. An example is as follows: entering 100.1 erro-
neously results in a value of 1,001 (full details of the formal analysis are in [8]).
Execution of the same input sequence on the real device confirmed the erroneous
behavior observed in the prototype.

In this case, the prototypes facilitated engagement with human factors spe-
cialists, medical device trainers, and regulatory officials. The dialogue with
human factors specialists was key to develop a correct formalization of the human
factors principle. Engagement with medical device trainers and regulatory offi-
cials was fundamental to recognize the severity of the design issues identified by
the formal analysis.

4.2 Development of a New Product

PVSio-web prototypes were used to introduce formal analysis in the engineering
process of a new portable electrocardiography (ECG) monitor produced by a
small medical company. The company had limited experience with formal tools.

PVSio-web prototypes were developed to explore different functionalities
when the software of the final product was still under development (see Fig. 1,
left side). The same prototypes were also used to showcase the device to end
users and clinicians when the final product was still unfinished. This allowed
developers to gather additional requirements and adjust the software design at
reduced cost and effort. Overall, this process resulted in a substantial reduction
of the development time.

Formal analysis was used to analyze the modes of operation of the device
against given requirements. This resulted in the creation of a reference specifica-
tion for core software modules. A PVSio-web prototype based on the reference
specification was developed to provide developers with a convenient means to
explore the reference specification—functionalities could be explored simply by
pressing buttons on the user interface of the prototype, and watching the output
on the prototype displays.
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4.3 Research on Future Systems

PVSio-web prototypes are currently used to support advanced research on flight
displays. A new library DAA-Displays of user interface elements has been created
for this purpose. The library extends the standard PVSio-web library with visual
elements commonly used in flight displays (compass, interactive map, speed and
altitude indicators, etc.). New simulation tools were also created to facilitate
comparative analysis of different design alternatives.

An example application of the library is based on a Detect-and-Avoid (DAA)
system developed at NASA [3]. The DAA system is designed to help the pilot-
in-command maintain a safe distance between the ownship and all other aircraft
within the ownship’s surveillance range. The system uses real-time flight data
to project route information and compute potential route conflicts. Maneuvers
necessary to avoid conflicts are dynamically presented to the pilot in the form
of color-coded conflict bands rendered on the flight instruments. Configuration
options can be used to fine tune the behavior of the system, e.g., the granularity
of maneuvers and the look-ahead time for conflict detection and resolution.

An example prototype of the DAA system is shown on the right side of
Fig. 1. These prototypes are useful to discuss the behavior of the DAA system
with pilots. This discussion is carried out with the aim to validate the behavior
of the DAA system for different configurations, to make sure that generated
maneuver recommendations are reasonable and can be followed by pilots.

5 Related Work and Conclusion

This paper discussed a pragmatic approach to facilitate the use of formal meth-
ods in the context of multi-disciplinary teamwork. It involves instrumenting for-
mal tools with rapid prototyping capabilities. A series of success stories was
presented based on the use of PVSio-web, a prototyping toolkit for PVS.

Others are exploring similar approaches and are experiencing similar success
stories with different verification tools. Prototypes based on formal models can
be created in the VDM toolset using the Maestro [14] tool. The prototypes have
recently been applied to a case study based on ESA’s Mars Rover [4]. A tool
BMotionWeb [7] introduces prototyping capabilities in the B toolset. Heitmeyer’s
group created a tool SCR [6] and applied it to perform validation of requirements
and specifications. Palanque’s group at IRIT routinely uses prototyping tools as
part of the formal analysis of flight display systems [12]. Thimbleby uses inter-
active prototypes to present verification results obtained with Mathematica to
non-experts of the analysis tool [13]. The IVY Workbench [2], which builds on
the NuSMV model checker, and uses tabular expressions to present formal verifi-
cation results. This approach proves valuable when discussing requirements and
formal analysis results with software engineers. A recent success story involves
the use of IVY in the development of a new neonatal dialysis machine [5].

All these success stories clearly indicate the importance of prototyping and
formal animation techniques in formal methods. From a tool perspective, future
developments should aim to standardize support for rapid prototyping. For
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example, the Functional Mockup Interface (FMI [1]), which is a de-facto stan-
dard technology for integrating different simulation environments, seems to be
a promising direction worth exploring in formal tools.

Acknowledgement. Work supported by the System Wide Safety Project, under
NASA/NIA Cooperative Agreement NNL09AA00A.
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The Bourgeois Gentleman, Engineering
and Formal Methods

Thierry Lecomte(B)

ClearSy, 320 avenue Archimède, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. Industrial applications involving formal methods are still
exceptions to the general rule. Lack of understanding, employees without
proper education, difficulty to integrate existing development cycles, no
explicit requirement from the market, etc. are explanations often heard
for not being more formal. This article reports some experience about a
game changer that is going to seamlessly integrate formal methods into
safety critical systems engineering.

Keywords: B method · Safety platform · Automated proof

1 Introduction

The Moliere’s Bourgeois Gentleman claimed that “for more than forty years [he
has] been speaking prose while knowing nothing of it”. What about imagining
engineers claiming the same assertion but about formal methods? Formal meth-
ods and industry are not so often associated in the same sentence as the formers
are not seen as an enabling technology but rather as difficult to apply and linked
with increased costs. Lack of understanding, employees without proper educa-
tion, difficulty to integrate existing development cycles, no explicit requirement
from the market, etc. are explanations often heard for not being more formal.
Our experience with formal methods, accumulated over the last 20 years [2–
5,7,8], clearly indicates that not every one is able to abstract, refine, and prove
mathematically. The Swiss psychologist Piaget claimed that only one third of
the population is able to handle abstraction1. However we are firmly convinced
that formal methods are a fundamental key to ensure safety for our all-connected
world. Several years ago, we imagined a new solution smartly combining the B
formal method, a diverse compilation tool-chain and a double processor archi-
tecture [6]. At that time, our sole objective was to reduce development costs
but since then, given the full automation of the process, we are now considering
this it as a way to obtain quite easily control-command systems certifiable at
the highest levels of safety. This paper briefly presents the technical principles
of this platform, the successful experiments/deployments/dissemination before
listing the remaining scientific and technological challenges to address in the
future.
1 Skill acquired and developed during the so-called Formal Operational Stage.

c© Springer Nature Switzerland AG 2020
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2 CLEARSY Safety Platform

The CLEARSY Safety Platform (abbreviated as CSSP in the rest of the docu-
ment) is a new technology, both hardware and software, combining a software
development environment based on the B language and a secured execution
hardware platform, to ease the development of safety critical applications.

It relies on a software factory that automatically transforms function into
binary code that runs on redundant hardware. The starting point is a text-
based, B formal model that specifies the function to implement. This model
may contain static and dynamic properties that define the functional boundaries
of the target software. The B project is automatically generated, based on the
inputs/outputs configuration (numbers, names). From the developer point of
view, only one function (name user logic) has to be specified and implemented
properly. The implementable model is then translated using two different chains:

– Translation into C ANSI code, with the C4B Atelier B code generator
(instance I1). This C code is then compiled into HEX2 binary code with
an off-the-shelf compiler (gcc).

– Translation into MIPS Assembly then to HEX binary code, with a specific
compiler developed for this purpose (instance I2). The translation in two steps
allows to better debug the translation process as a MIPS assembly instruction
corresponds to a HEX line (Fig. 1).

Fig. 1. The safe generation and execution of a function on the double processor.

The software obtained is the uploaded on the execution platform to be executed
by two micro-controllers.
2 A file format that conveys binary information in ASCII text form. It is commonly

used for programming micro-controllers.
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2.1 Safety

These two different instances I1 and I2 of the same function are then executed
in sequence, one after the other, on two PIC32 micro-controllers. Each micro-
controller hosts both I1 and I2, so at any time 4 instances of the function are
being executed on the micro-controllers. The results obtained by I1 and I2 are
first compared locally on each micro-controller then they are compared between
micro-controllers by using messages. In case of a divergent behaviour (at least one
of the four instances exhibits a different behaviour), the faulty micro-controller
reboots.

The sequencer and the safety functions are developed once for all in B by the
IDE design team and come along as a library. This way, the safety functions are
out of reach of the developers and cannot be altered.

Fig. 2. Process for developing an application and the safety library. Both application
and safety belt rely on the B method plus some handwritten code - mainly I/O.

The safety is based on several features such as:

– the detection of a divergent behaviour,
– micro-controller liveness regularly checked by messages,
– the detection of the inability for a processor to execute an instruction prop-

erly3,
3 All instructions are tested regularly against an oracle.
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– the ability to command outputs4,
– memory areas (code, data for the two instances) are also checked (no overlap,

no address outside memory range),
– each output needs the two micro-controllers to be alive and providing respec-

tively power and command, to be active (permissive mode). In case of mis-
behaviour, the detecting micro-controller deactivate its outputs and enter an
infinite loop doing nothing.

Some of the tools in Fig. 2 have been “certified by usage” since 1998, but the
newest tools of this toolchain have no history to rely on for certification. It is not
a problem for railway standards as the whole product is certified (with its envi-
ronment, the development and verification process, etc.), hence it is not required
to have every tool certified. Instead the main feature used for the safety demon-
stration is the detection of a misbehaviour among the 4 instances of the function
and the 2 microcontrollers. This way, similar bugs that could affect at the same
time and with the same effects two independent tools are simply neglected. In
its current shape, the CLEARSY Safety Platform provides an automatic way
of transforming a proven B model into a program that safely executes on a
redundant platform while the developer does not have to worry about the safety
aspects.

2.2 Target Applications

The execution platform is based on two PIC32 micro-controllers5. The process-
ing power available is sufficient to update 50k interlocking Boolean equations
per second, compatible with light-rail signalling requirements. The execution
platform can be redesigned seamlessly for any kind of mono-core processor if a
higher level of performance is required.

The IDE provides a restricted modelling framework for software where:

– No operating system is used.
– Software behaviour is cyclic (no parallelism).
– No interruption modifies the software state variables.
– Supported types are Boolean and integer types (and arrays of).
– Only bounded-complexity algorithms are supported (the price to pay to keep

the proof process automatic).

4 Outputs are read to check if commands are effective, a system not able to change
the state of its outputs has to shutdown.

5 PIC32MX795F512L providing 105 DMIPS at 80 MHz.
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3 Deployment and Dissemination

3.1 Research and Development

CSSP was initially an in-house development project before being funded6 by the
R&D project LCHIP7 to obtain a generic version of the platform. This project is
aimed at allowing any engineer to develop a function by using its usual Domain
Specific Language and to obtain this function running safely on a hardware
platform. With the automatic development process, the B formal method will
remain “behind the curtain” in order to avoid expert transactions. As the safety
demonstration does not require any specific feature for the input B model, it
could be handwritten or the by-product of a translation process. Several DSL
are planned to be supported at once (relays schematic, grafcet) based on an
Open API (Bxml). The translation from relays schematic is being studied for
the French Railways.

The whole process, starting from the B model and finishing with the software
running on the hardware platform, is expected to be fully automatic, even with
“not so simple models” with the integration of the results obtained from some
R&D projects8.

3.2 Education

The IDE is based on Atelier B 4.5.3, providing a simplified process-oriented
GUI. A first starter kit, SK0, containing the IDE and the execution platform,
was released by the end of 20179, presented and experimented at the occasion
of several hands-on sessions organised at university sites in Europe, North and
South America. Audience was diverse, ranging from automation to embedded
systems, mechatronics, computer science and formal methods. Results obtained
are very encouraging:

– teaching formal methods is eased as students are able to see their model
running in and interacting with the physical world,

– less theoretic profiles may be introduced/educated to more abstract aspects
of computation,

– the platform has demonstrated a certain robustness during all these manip-
ulations and has been enriched with the feedback collected so far.

– CSSP is yet used to teach in M2 in universities and engineering schools.

6 The project is partly funded by BPI France, Région PACA, and Métropole Aix-
Marseille, with a strong support from the “Pôles de compétitivité” I-Trans (Lille),
SCS (Aix en Provence) and Systematic (Paris).

7 Low Cost High Integrity Platform.
8 Project BWARE (http://bware.lri.fr/index.php/BWare project), to improve auto-

matic proof performances.
9 https://www.clearsy.com/en/our-tools/clearsy-safety-platform/.

http://bware.lri.fr/index.php/BWare_project
https://www.clearsy.com/en/our-tools/clearsy-safety-platform/
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3.3 Deployment

CSSP building blocks are operating platform-screen doors in São Paulo L15
metro (certified in 2018 at level SIL3 by CERTIFER on the inopportune opening
failure of the doors), in Stockholm City line (certified in 2019), and in New York
city (to be certified in 2019).

A new starter kit, SK1, released end of 2018 and aimed at prototyping10, has
been experimented by the French Railways for transforming relay-based, wired
logic into programmed ones [1] (see Fig. 3).

Fig. 3. Example of a relay circuit. Highlighted wires appear in yellow, entered circuit
elements appear in green (when energized in default state) and red (otherwise) squares
(Color figure online)

This starter kit definitely attracts a lot of attention from industry, from railways
but also robotics and autonomous vehicles. With the forthcoming CSSP Core
(safety programmable logic controller) by the end of 2019, more deployments in
industry are expected.

4 Conclusion and Perspectives

CSSP, combined with improved proof performances and connection with Domain
Specific Languages, pave the way to easier development of SIL4 functions (includ-
ing both hardware and software). The platform safety being out of reach of the
10 It embeds 20 inputs and 8 outputs, all digital.
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software developer, the automation of the redundant binary code generation pro-
cess and the certificates already obtained for products embedding CSSP building
blocks, would enable the repetition of similar performances without requiring
highly qualified engineers.

Moreover, the hardware platform is generic enough to host a large number of
complexity-bounded11 industry applications, with a special focus on the robotics
and autonomous vehicles/systems domains.

However some aspects have to be considered in the near future to ensure a
wide dissemination in the target application domains like: improved automatic
proof performances to reach 100 % for not-so-complicated software functions,
support for continuous values (as opposed to digital ones), support of more pow-
erful, single-core processors, increase of the genericity while keeping the ability
to be certified, etc.
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Abstract. The guarded atomic action model of Event-B allows it to be
applied to a range of systems including sequential, concurrent and dis-
tributed systems. However, the lack of explicit sequential structures in
Event-B makes the task of sequential code generation difficult. Scheduled
Event-B (SEB) is an extension of Event-B that augments models with
control structures, supporting incremental introduction of control struc-
tures in refinement steps. SEB-CG is a tool for automatic code generation
from SEB to executable code in a target language. The tool provides facil-
ities for derivation of algorithmic structure of programs through refine-
ment. The flexible and configurable design of the tool allows it to target
various programming languages. The tool benefits from xText technol-
ogy for a user-friendly text editor together with the proving facilities of
Rodin platform for formal analysis of the algorithmic structure.

Keywords: Automatic code generation · Event-B · Program
verification

1 Introduction

Event-B [1] is a general purpose formal modelling language based on set theory
and predicate logic. It has been successfully applied in a wide range of systems
including sequential, concurrent and distributed systems. The language is sup-
ported by a tool called Rodin [2]. Rodin is an extensible Eclipse-based platform
which facilitates modelling and verification of Event-B models. Event-B in its
original form does not support code generation. There have been a number of
attempts to provide Event-B and Rodin with a code generation tool [6,8,9].
However, the lack of explicit control flow in Event-B made these tools suffer
from usability problems. Other issues like the lack of clear and formal relation-
ship between the generated code and the high level formal model decreased the
confidence in the code generated by those tools.

This work is a fresh attempt to provide the Event-B toolset with facilities
required for formal development and generation of sequential programs. The tool

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 19–29, 2020.
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described in this paper is built on our empirical experience with existing Event-B
code generation tools in particular [6]. In developing SEB-CG, we have tried to
address shortcomings of existing tools and also build on our previous theoretical
work on derivation of algorithmic structures and verifiable code generation from
Event-B models [3,4]. In designing SEB-CG, we have had the following principles
in mind:

– Extensibility: The tool should be designed in a way that it is straightforward
to extend it to accommodate new target languages.

– Customisability: The output of the tool should be highly customisable so
that it can be used for generating programs for different domains.

– Self-Sufficiency: The tool should be self-sufficient for its core functionalities
and its dependency on other Rodin plugins should be minimal.

– Usability: The tool should be designed in way that it is intuitive, useful and
easy to use.

The above principles have been realised in SEB-CG in various ways. We
have provided interfaces for extending the tool and adding support for new
programming languages in a clear way. Also it is straightforward to add new
translation rules for new target languages. The output of the tool is defined
using templates and can be customised by modifying the templates. For instance,
the way that a program is structured in terms of procedures and classes can
be defined by the user. Unlike some of the previous works that were heavily
dependent on other Rodin plugins for some of their core functionalities (e.g.
translation rule definitions), SEB-CG has minimal dependency on other Rodin
plugins and it has native support for its core functionalities. The scheduling
language of SEB-CG is implemented using xText1. The xText editor provides a
user-friendly environment for writing schedules. We have implemented a number
of validation rules using the xText validator which provide the user with live and
useful feedbacks including error and warning messages and tips on how to resolve
the problem.

The tool and the instructions on how to install and use are provided in
http://dalvandi.github.io/SEB-CG. The rest of this paper is devoted to details
of the tool and its implementation.

2 Scheduled Event-B

SEB-CG implements the approach introduced in [3,4] which augments Event-
B models with explicit control structures. We provided a scheduling language
that allows the modeller to specify the control flow of events explicitly. In our
approach, starting from the most abstract specification, the modeller provides
a schedule associated with each machine. As Event-B refinement continues, the
schedule associated with each refinement model should also refine the abstract
schedule. We also provided a number of schedule refinement rules that direct the

1 https://www.eclipse.org/Xtext/.

http://dalvandi.github.io/SEB-CG
https://www.eclipse.org/Xtext/
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modeller in deriving a concrete program structure from the abstract schedule
through refinement. In [4] we provided a number of translation rules for generat-
ing code and contracts (logical assertions) from a scheduled Event-B model. Our
translation rules transform a concrete scheduled Event-B model to executable
code and also generate a number of assertions that allow static verification of
code properties.

3 Tool Overview

The SEB-CG tool is implemented as a Rodin plugin. The tool consists of a UI and
a code generation core. The UI provides the user with a text editor for writing
schedules. It also extends the Rodin explorer to include Schedule elements in a
Rodin project folder and also provides a handle to the schedule-specific proof
obligation generated by the tool.

Fig. 1. A high-level overview of SEB-CG

The code generation machinery of the tool is depicted in Fig. 1. As shown,
the SEB-CG tool receives four inputs: Schedule, Model, Program Template, and
Translation Rules. A brief description of these inputs follows.

Schedule and Model: A Schedule is a text file written in the Scheduled Event-
B (SEB) language and has .seb extension. The SEB language supported by the
tool is presented in Appendix A. The schedule file contains a reference to a
machine whose events it schedules. This is specified using the machine keyword.
The name of the schedule is defined using the schedule keyword and it should
be the same as the schedule file name. The schedule may refine another schedule.
This is defined using refines keyword. As an example see the schedule presented
in Fig. 2. The schedule name is s3 and it refines the abstract schedule s2. It is
scheduling machine m3. Once the SEB-CG is invoked on a schedule for a target
language, then the tool takes the schedule and the specified machine as inputs.

Program Template: We mentioned earlier that extensibility and customisabil-
ity are two of the principles of SEB-CG. To realise these principles we have
introduced program templates. A program template is a convenient feature of
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schedule s3 refines s2

machine m3

proc binSearch(in:f, in:z, in:v, out:r)

begin

while(’f(k) �= v’)

{

if(’f(k) < v’)

{

search_inc

}

else

{

search_dec

}

}

found

end

Fig. 2. An example of a schedule for a binary search algorithm

the SEB-CG that allows the user to specify and customise the output of the tool
without the need for making changes to the implementation. It is expected that
each new language that the tool is extended with, is provided with a program
template. The program templates are not expected to be modified by non-expert
users as this may make the output of the tool invalid. Template files are XML
files that describe how different elements of the program are ordered and placed
in the final generated code. An example of a program template for C is presented
in Fig. 3. This template for example places variable declaration (vardecl) before
procedures (procedures).

<file name ="# MACHINENAME.cpp">

<vardecl/>

<procedures >

<procedure inpar="true" outpar ="false" return ="true">

<init/>

</procedure >

</procedures >

</file >

Fig. 3. An example of a program template for C

We have defined a simple language for templates. The grammar of our Pro-
gram Template Language (PTL) is given in Appendix B.

Translation Rules: Translation rules define the way in which a scheduled
Event-B model is translated to code in a target language. Instead of hard-coding
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the rules in the implementation of the tool, SEB-CG provides a flexible way for
defining translation rules. Each target language has a translation rule file in
XML format. Figure 4 depicts a translation rule for a binary operation.

<rule type=" operator">

<source > $a - $b </source >

<target > ($a - $b) </target >

</rule >

Fig. 4. An example of a translation rule for C

The grammar of the syntax of the Translation Rule Language (TRL) is given
in Appendix C.

4 Tool Components

Figure 1 provides a high level view of the tool core machinery. As can be seen
there are four main components in the tool: xText Generator, PO Generator,
AST Generator and AST Translator. The work flow of the tool is also depicted
in the figure. The rest of this section provides details of various components.

xText Component: We have leveraged the power of xText [7] in the imple-
mentation of our tool. Specifically, we have used xText to define the grammar of
the scheduling language. xText also provides us with other useful facilities like
text editor and a basic validator out of the box. We extended the xText valida-
tor with schedule refinement rules so that concrete schedules are checked to be
valid refinements of the abstract ones. We have also used the xText generator
to translate the textual representation of the schedule to a newly defined Rodin
element called ScheduleAux. This translation is performed in order to be able
to use the Rodin proof obligation generator easier. ScheduleAux is an internal
element and is hidden from the Rodin user.

PO Generator: As explained in [3], there are a number of proof obligations
(i.e. guard elimination POs) that a schedule must satisfy. We have extended
the Rodin proof obligation generator to generate the required proof obligations
based on the schedule (ScheduleAux) and the model (machine and context) that
the schedule is referring to.

AST Generator: In order to translate a model to code in a target language,
the tool first generates an abstract syntax tree (AST). The AST is generated
based on the program template, schedule and the model. The AST represents
the overall structure of the program and the hierarchical order of different parts
of the program, e.g. classes, procedures, program body, etc. Sequentialisation of
event actions [4] are also done by the AST generator as part of the event AST
generation.
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AST Translator: Once the AST is generated, it is translated to the code in the
target language by the AST translator. The AST translator receives translation
rules and the generated AST as its inputs and traverses the AST recursively and
matches its sub-trees with appropriate rules and outputs the program text.

5 Tool Usage

SEB-CG is designed to be an easy-to-use tool. The GUI is intuitive and consists
of a simple text editor. The text editor has syntax colouring and highlighting
support and provides live feedback on syntactical warnings/errors. The sched-
ule is also checked in the background to ensure conformance to the refinement
rules of [3]. Schedules appear in the Event-B project explorer of Rodin alongside
other project elements e.g. machines and contexts. A schedule can only refer to
machines in the same project. Since schedules and their respective proof obliga-
tions are stored separately from the Event-B model, modifying a schedule does
not change its associated model or its proofs.

Fig. 5. A screen-shot of the tool

Figure 5 is a screen-shot of the tool. (1) is a schedule editor showing the
concrete schedule s3 and (2) is another editor showing the abstract s2 schedule.
Note that s3 refines s2. We intentionally injected an error into s2 by referenc-
ing to a wrong machine (m1 instead of m2) so that the text highlighting is
demonstrated. (4) is the Event-B explorer showing schedules s0, .., s3 and proof
obligations related to s3. (5) is the menu that allows the invocation of the code
generator for any of the available target languages. Finally (3) is an Event-
B machine m3, which is scheduled by s3, shown using the standard Event-B
machine editor.
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The recommended practice for using the tool is to start introducing the sched-
ules from the abstract level where the abstract machine is defined and then refine
it alongside the machine refinement. The abstract schedule usually contains only
abstract scheduling constructs (i.e. choice and iteration). As the refinement con-
tinues, the abstract constructs are replaced with concrete ones (i.e. if-branches
and while-loops). Although it is possible to define the concrete schedule for the
concrete model directly without going through schedule refinement steps, it is
a discouraged practice since it is more likely to result in guard elimination POs
that cannot be discharged.

Once the refinement has reached a concrete level, both for the model and
schedule, the user can invoke the code generator by right-clicking on the con-
crete schedule element and select the desired target language from the list of
available target languages. It is at this time that the tool starts building the
AST with respect to the program template, schedule and model. The generated
AST together with the translation rules are then fed into the translator and the
code is generated. If during the translation phase, the translator does not find a
match between a sub-tree and the provided rules, an exception will be thrown
and the user will be provided with the pattern of the rule that it was unable to
find.

6 Conclusion

In this paper we presented a tool for automatic code generation from scheduled
Event-B models. The tool is customisable and extensible and can potentially
accommodate a wide range of target languages. Currently the tool has out of
the box support for C and Java code generation and it can be extended to include
other languages.

As far as we are aware, the only other code generation tool for Event-B that
allows introduction of explicit program order is Tasking Event-B [6]. However,
comparing to SEB-CG, the Tasking Event-B tool has a restrictive scheduling
language (e.g. no support for nested control structures or explicit loop/branch
conditions) and has no support for schedule refinement. There exist other code
generation tools for Event-B which do not allow introduction of algorithmic
structure of the model by the modeller [8,9]. The generated code by these tools
may not be optimised and depends entirely on the implementation of the tool
and not on a verified algorithmic structure provided by the modeller.

In future, we would like to extend the tool to also generate code contracts
(i.e. assertions and pre/post-conditions) as described in [4,5]. The generated
contracts will allow the verification of some properties of the generated code (e.g.
sequentialisation) using a static program analyser. Extension of the scheduling
language to support procedure calls is another feature for the future. We are
also interested in further development of our tool to support concurrent program
generation.
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Appendix B Program Template Language
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Appendix C Translation Rule Language
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Abstract. Building software packages from source is a complex and
highly technical process. For this reason, most software comes with build
instructions which have both a human-readable and an executable com-
ponent. The latter in turn requires substantial infrastructure, which helps
software authors deal with two major sources of complexity: first, gener-
ation and management of various build artefacts and their dependencies,
and second, the differences between platforms, compiler toolchains and
build environments.

This poses a significant problem for white-box analysis tools, which
often require that the source code of the program under test is com-
piled into an intermediate format, like the LLVM IR. In this paper, we
present divcc, a drop-in replacement for C and C++ compilation tools
which transparently fits into existing build tools and software deploy-
ment solutions. Additionally, divcc generates intermediate and native
code in a single pass, ensuring that the final executable is built from the
intermediate code that is being analysed.

1 Introduction

Automation is ubiquitous and essential, and this is no different in software engi-
neering. Processes which are automated are cheaper, they reduce the chances
of human error and are generally much more repeatable than processes which
involve manual steps. Program compilation is one of the earliest software engi-
neering tasks to have been automated. In addition to its intrinsic merits, build
automation forms a key component in other process automation efforts within
software engineering: automatic testing, continuous integration and continuous
deployment, to name a few.

Another area of software engineering which can greatly benefit from automa-
tion is correctness and performance analysis of programs. Of course, this is a
highly non-trivial problem and is the focus of intense research. However, neither
program source code nor the resulting machine code is very convenient for auto-
mated analysis: instead, tools prefer to work with intermediate representations,

This work has been partially supported by the Czech Science Foundation grant No.
18-02177S.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 30–45, 2020.
https://doi.org/10.1007/978-3-030-54994-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54994-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-54994-7_4


Compiling C and C++ Programs for Dynamic White-Box Analysis 31

unit 1 source object code

headers libraries executable

unit 2 source object code

compiler linker

Fig. 1. The process of building an executable from 2 source files.

such as LLVM.1 Analysis tools fall into two coarse categories: static and dynamic.
The latter are usually significantly more difficult to integrate into the workflows
of large software projects – a deficiency which we aim to address.

Programming languages come in two basic flavours: interpreted and compiled.
In the former case, the program is executed directly in its source form. However,
interpretation is often deemed inefficient and many programs are written in
languages which are first translated into machine code. Individual source files are
compiled into object code (a form of machine code which is suitable for linking –
the process of combining multiple compilation units to form a single program).
The process that encompasses both compilation of the individual translation
units, as well as the subsequent linking is then known as building (see Fig. 1).
A number of programs and/or libraries may result from a single build.

Since the build process is often complex, software implemented in compiled
languages – especially C and C++ – usually ships with comprehensive build
instructions which are automatically processed by a build system. Besides sim-
ply invoking the compiler and the linker, those build instructions often deal
with building the software on different platforms and operating systems, locat-
ing build-time dependencies2 and checking that a suitable version is correctly
installed and so on.

1.1 Motivation

One of the first tools which is discovered in the configuration phase of a build
is the system C compiler: it is common practice to use the compiler to perform
subsequent platform checks. It is typically assumed that the compiler used in
the configuration phase of the build is the same as the compiler used to build
the software package itself.3

1 Of course, tools which work with machine code, known as black-box tools, do exist,
but their use in software development is limited – they are mainly used in software
forensics. In this paper, we focus on white-box methods, which work with source
code or an intermediate representation thereof.

2 A separate (often third-party) software package which needs to be installed in the
system before the build can proceed – usually a library, sometimes a tool used in
the build process.

3 Not doing so could lead to configuration mismatches between the two compilers
causing build failures, or worse, miscompilation.
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Naturally, we would like to take advantage of existing build automation to
obtain intermediate code (in our case LLVM IR) which can then be used for cor-
rectness and performance analysis. In ideal circumstances, such analysis would
also be fully automated and incorporated into the continuous integration pro-
cess. However, even when employed in mostly manual processes, it is extremely
useful to always have an up-to-date intermediate form available. For this rea-
son, we would like to seamlessly and automatically produce this intermediate
form alongside standard libraries and executables. We met these goals to a very
high degree with the presented tool divcc, reusing existing build systems, and
producing the intermediate representation (LLVM IR) along with the executable.

There are a large number of tools which can benefit from improving the pro-
cess of obtaining LLVM bitcode for entire programs. Tools that perform dynamic
analysis can benefit the most.4 Some of the tools in this category that use LLVM
as their input representation are: the symbolic executor KLEE [3], the slicing-
based bug hunting tool Symbiotic [4], the software model checker DIVINE [2] or
the MCP model checker [13]. Likewise, stateless model checkers for weak mem-
ory models like Nidhugg [1] and RCMC [6] would be significantly easier to use on
test cases that use external libraries. Similar benefits apply to bounded model
checkers like LLBMC [11] or the LLVM-based IC3 tool VVT [5].

An important consideration is that very few of these tools offer comprehensive
support for the standard C library, while support for the C++ standard library or
for the widely used POSIX interfaces is even less frequent. Unfortunately, using
a tool like divcc to build the system C library (libc) into a usable bitcode form
is still a daunting task and it is not clear whether such bitcode could be sensibly
used with any of the abovementioned tools.

Linking an analysis-friendly C library into the bitcode version of the pro-
gram (providing bitcode definitions of functions that normally come from the
system libc) effectively side-steps the problem. One of the goals of divcc is to
make such substitution easy: in Sect. 3.5, we describe a variant of divcc, which
supplies the bitcode for standard C and C++ libraries provided by DiOS [10].
DiOS is a small model operating system that can be used as a foundation for pro-
grams built with divcc, in the sense that it provides the standard C and C++
libraries (as is expected of operating systems) – mainly libc, but also libm,
libc++, libpthread and libc++abi. Importantly, the combined tool dioscc
(which integrates divcc with DiOS) provides the libraries directly in the form
of LLVM bitcode, making it easy to combine them with other bitcode (the prod-
uct of the user source files) and include them in compilation. More information
about DiOS can be found in [10] Out of the tools mentioned above, DiOS and
the libraries it includes have been successfully ported to KLEE and DIVINE.

4 This is true even in cases where such tools can work with partial programs – i.e. pro-
grams which use functions whose definitions are not available to the tool; however,
this mode of operation negatively affects the precision of the analysis.
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1.2 Related Work

A number of tools with related goals to divcc already exist. If we focus on LLVM-
based tools, the most well-known tool which integrates white-box analysis into
the standard build process is perhaps scan-build [7]. This tool shares the same
fundamental technique of replacing the C/C++ compiler with a wrapper which,
in this case, directly executes the clang-analyzer tool on each source file after
compiling it using a standard compiler.

In the scan-build workflow, the compiler is only overridden temporarily,
during the execution of make or another build tool – it is not in use during project
configuration. This means that the compiler wrappers used by scan-build can
be somewhat more lax about matching the behaviour of the underlying compiler
perfectly. It is also simpler in the sense that it does not need to create persistent
artefacts and bundle them with standard build products.

Another related tool, this time from the CBMC [8] toolkit is goto-cc, which
is a gcc-compatible compiler which however does not produce executable binaries
at all. For this reason, it rather heavily deviates from the behaviour of a standard
compiler and as such can only work with comparatively simple build systems,
which do not invoke external tools on their build products nor do they execute
intermediate helper programs that were compiled as part of the build process.

An important source of inspiration in our effort was the link time optimiza-
tion [12] (LTO) subsystem of LLVM, which uses a special section in object files5

to store the bitcode which resulted from compiling the corresponding source unit.
In this case, the goal is not program analysis as such, but late-stage program
optimization: interprocedural optimization passes can operate more efficiently if
they see the entire program at once, instead of just a single unit at a time.

A tool perhaps most closely related to divcc is known as wllvm (where the
‘w’ stands for whole-program). Like many of the previously mentioned tools,
wllvm provides a wrapper for the compiler which performs additional work – in
this case, in addition to compiling the unit in a standard way, it runs the compiler
again but instructs it to produce bitcode instead of machine code. Unlike the link
time optimization system, this bitcode is not stored in the object file – instead,
it creates a hidden file next to the original object and embeds the absolute path
to the bitcode file in a section of the object file. Subsequently, a special tool
called extract-bc needs to be used to extract those paths from a build product
(a library or an executable) and link it into a single bitcode unit.

The approach taken by wllvm has a number of downsides: first, the creation of
hidden files deviates from standard compiler behaviour, and sometimes interferes
with the operation of build configuration tools. Second, even after installation
into a target location, the build products refer to files present in the original build
directory which therefore cannot be cleaned up as would be usual, making builds
of systems which consist of multiple independent packages more difficult and
error-prone. The wllvm tool offers workarounds for both these problems, though

5 And subsequently also in static libraries, which on POSIX systems are simply
archives of object files.
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they are not free of their drawbacks. Even then, integration into automated build
orchestration systems which build and package individual components, often in
a distributed computing environment without shared file systems, would be very
difficult, if at all feasible. On the other hand, the wllvm approach has one major
upside: there is no need to perform any additional work during the linking stage
of the compilation, since the wllvm-specific sections are correctly merged by a
standard linker, somewhat simplifying the implementation.

The whole problem is side-stepped by tools such as valgrind [9], which work
directly with machine code and hence do not need any special tooling to integrate
into build systems – at most, they re-use existing mechanisms to create debug-
enabled builds. Finally, middle ground is occupied by the clang sanitizers family
of dynamic analysis tools. Those tools are integrated in standard compilers (with
support in both clang and gcc), but require special builds which differ from
standard debug builds in the compiler flags passed to the compiler. They also
require special versions of runtime libraries, which are usually shipped with the
compiler in question.

1.3 Contribution

Our main contribution is an open-source tool, divcc,6 which serves a similar
purpose as wllvm but mitigates its problems by taking the LTO-like approach of
embedding the entire bitcode in object, library and executable files. Additionally,
unlike wllvm, our tool first translates the input C or C++ code into bitcode and
then compiles that bitcode into native code, saving effort and reducing the chance
of discrepancies between the bitcode and the corresponding machine code.

Moreover, our approach allows analysis tools to provide their own header
files and bitcode libraries, overriding the host system. This is crucial in scenarios
where strict verification is desired, ensuring that only the functionality fully
covered by the verification tool is made available to the program during build
configuration. Finally, we have evaluated the usability and performance of divcc
on a number of software packages. We report the results of this evaluation in
Sect. 4.

2 Preliminaries

In this section, we will explain the terms and concepts that are in more-or-less
common use and which are directly relevant to the remainder of this paper, most
prominently Sect. 3.

2.1 Storing Machine Code

On UNIX systems, the standard format for storing machine code (i.e. the binary
code understood by the CPU) is ELF, short for Executable and Linkable For-
mat. It is the common format for representing files that figure in the process of
compilation, such as object files, executables, or libraries.
6 Source code & supplementary material at https://divine.fi.muni.cz/2019/divcc.

https://divine.fi.muni.cz/2019/divcc


Compiling C and C++ Programs for Dynamic White-Box Analysis 35

During the process of building software, machine code exists in a number
of related, but distinct forms. It is first generated by the compiler in the form
of object code, which is usually stored in an object file. This form of the code
is relocatable, meaning the routines and variables stored in the file have not
been assigned their final addresses. A number of such object files can be bun-
dled together, unaltered, to form a static library (also known as an archive),
using a special program – ar. Finally, object files and archives can be linked
into executables or shared libraries. This final step is performed by another pro-
gram, a linker (often known as ld) and consists of resolving cross-references and
performing relocations.

The data and code in an ELF file is split into multiple sections. There are sev-
eral well-known sections that have special roles in ELF files, the most important
of which are:

– .text - contains instructions (machine code) of the program,
– .data and .rodata - constant-initialized data, e.g. string literals,
– .bss - zero-initialized data (the zeroes are not stored in the file).

However, there are no significant restrictions on the number or the names of
individual sections. In particular, operating systems or compiler toolchains can
create or recognize additional sections with the semantics of their choosing.

2.2 Compiler Architecture

Most C and C++ compilers follow a fairly standard architecture, which is
depicted in Fig. 2. The entire process is managed by a driver, which decides
which stages and in what order need to be invoked. The responsibilities of the
individual components are as follows:

1. the preprocessor reads the input source file and any header files it may refer
to (via #include directives) and produces a single self-contained source file,

2. the frontend parses and analyses the source file produced by the preprocessor
and generates an intermediate representation out of it,

3. the middle end performs transformations (mainly optimization) on the inter-
mediate format, generating a new version thereof,

4. the backend, or code generator, translates the optimized intermediate repre-
sentation into object code (i.e. relocatable machine code).

The linker is technically not a part of the compiler: in most cases, it is a
separate program. However, it is usually the compiler driver that is responsible
for executing the linker with the correct arguments – the linker then simply
performs the tasks requested by the compiler. The selection and order of object
files (including the system-specific components linked into every program, like
crt0.o) and libraries (including system libraries like libc) to be linked is there-
fore the responsibility of the compiler driver.
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source preprocessor source frontend IR middle end

headers object code codegen IR

libraries linker executable

Fig. 2. The architecture of a typical compiler. The rounded boxes represent compiler
components, the squares represent data. Dashed boxes only exist as internal objects
within the compiler and will not be written into files unless requested by the user or
by the build system. Out of the dashed boxes in the picture, typically only object code
is written into a file.

Finally, an important consideration is the mechanics of archive linking: unlike
shared libraries, which are indivisible and linked into each program in their
entirety, or not at all, static libraries retain individual object files. By default,
the linker will only include those object files from each archive that are required
to provide symbols referenced by files already included. This optimization can
influence program behaviour, because unlike shared libraries, global constructors
which are defined in object files that are not referenced by the program (directly
or indirectly) will not run. It is therefore important to replicate this behaviour
in the bitcode linker component of divcc.

2.3 Build Systems

Non-trivial software tends to be composed of numerous source files and header
files, which are often organized into multiple libraries and executables. In addi-
tion to the source code shipped with the software itself, there are usually depen-
dencies on external libraries and header files, which may be either part of the
operating system, or provided by third parties as separate software packages.

Not only is it repetitive and error-prone for the programmer to carry out
this process manually, it is also vital to automate it if the software is expected
to be built by third parties, who are not sufficiently familiar with it. It further
gives a level of assurance that the build is deterministic and reproducible, which
is undoubtedly valuable. Many build automation systems have been proposed
and implemented. In most cases, the software package is accompanied by build
instructions which are read and performed by the build system or build tool in
question. For instance, the make build system reads a file called Makefile which
describes the steps for compiling and linking source code. The build process
carried out by a typical build system is split into 2 phases:

1. Build configuration is mainly concerned with inspecting the build platform.
i. The tool, taking into account the build instructions, examines the software

installed in the system, to see what is available and whether it is possible
to build the program at all.

ii. To this end, it may attempt to compile and sometimes run feature tests –
essentially tiny test programs; if the compilation fails, the tool concludes
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that the tested functionality is unavailable. Alternatively, it may contain
a database of known systems and their properties.

iii. At the end of the build configuration phase, the build tool will store the
configuration information (like compiler flags and feature macro defini-
tions) in a form which can be used during compilation.

2. The build proper, in which the software is compiled and linked.7 The build sys-
tem performs the steps specified in the build instructions to produce libraries
and executables which make up the package. The instructions are usually quite
abstract and the particulars of tool orchestration are left to the build system.

3 Design and Implementation

In this section, we first summarize the functional requirements for a tool which
would allow us to seamlessly integrate white-box dynamic analysis into existing
build systems and workflows, then we spell out the specific design choices we
made, describe the implementation, and discuss its limitations.

3.1 Functional Requirements

Our primary requirement when designing the tool was that it would serve as
a drop-in replacement for a C (and C++) compiler. There are multiple issues
that need to be considered, mainly to ensure compatibility with existing build
systems. Our list of functional requirements for divcc is, therefore, as follows:

– compatible interface – avoiding the need to alter existing build instructions,
– compatible output – the build system expects that certain files are created,

in a certain format so that it can work with them further,
– compilation – source code is compiled into intermediate and native code
– linking – both intermediate and native code is linked into executables and

shared libraries,
– archive support – the handling of intermediate code in archives is semantically

equivalent to the handling of object code therein,
– object bitcode – bitcode in object files needs to be stored in a format that

can be linked to form shared libraries and executables,
– loadable bitcode – the final result must be in a format that the analysis tool

can use as input, ideally with no changes to the tool
– single pass operation – no repeated front-end and middle end invocation,

minimizing the overhead introduced by the tool into the build process.

Additionally, we have a few non-functional requirements:

– user-friendliness – this extends the functional requirement that the pre-
existing build instructions do not need to be changed,

– re-use existing compiler code (CLang and LLVM),
– make it as easy as possible to keep up with changes in CLang and LLVM.
7 Most build systems also attempt to speed up repeated builds by avoiding re-compiling

files that are unchanged (and whose dependencies also remain up-to-date). This capa-
bility is important during development and testing, though of course it adds further
complexity to the process.
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Fig. 3. An example use of divcc to build and analyse gzip. We first retrieve the archive
of the gzip project from the official site using wget. With the following commands, we
unpack the archive, change to the project directory, run the configure script (passing
divcc as the compiler to use) and run make to build the project. Next, we pass the
traditional ‘hello world’ string to gzip to compress it into a file called hello.gz. We
used DIVINE (a model checker mentioned in the motivation) to check the behaviour of
the gzip executable, or rather the corresponding LLVM IR code. Running the model
checker is demonstrated on the 5th line of the example – we run it in check mode on
the gzip executable, taking standard input from the hello.gz file. The options are
passed on to gzip and mean: decompress (-d), force decompression even if the input
is a terminal (-f) and read the data to decompress from the standard input (-). The
last two lines demonstrate use of divcc with KLEE, a tool which needs to work with
the LLVM IR directly, so we first extract it from the executable using divcc-extract.

3.2 Intended Use

The expectation is that for the user, the only difference in building their pro-
grams is telling the build system to use divcc as the C compiler (and divc++
as the C++ compiler if the software contains C++ source code), for example:

– ./configure CC=divcc CXX=divc++ (with autotools-based builds)
– cmake -DCMAKE C COMPILER=divcc -DCMAKE CXX COMPILER=divc++
– make CC=divcc CXX=divc++ (with plain make-based builds)

The remainder of the build process should be unaffected. If the analysis tool
supports loading of bitcode from executables, it can be directly used. Otherwise,
the divcc-extract helper script can extract a standalone bitcode (.bc) file
corresponding to the given executable. The entire process is illustrated in Fig. 3.

3.3 Design

To achieve our goals, we need to modify the flow of data through the compiler in
a few places (the original data flow is illustrated in Fig. 2, the modifications are
highlighted in Fig. 4). First, we need to obtain the intermediate representation
after the middle end, so that we can store it alongside machine code in the object
file. This also means that we need to alter the path on which the object file is
written by the compiler, so that we can actually include the bitcode section8

8 We use a section named .llvmbc, which is the same as the LTO subsystem. This
section is recognized by some LLVM tools and is the closest there is to a ‘standard’
way to embed bitcode in object files.
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in it. The implementation of these alterations in the data flow is explained in
Sect. 3.4. The other component which needs to be modified is the part of the
compiler driver which supervises the invocation of the linker.

source file headers
bitcode

native code

object bitcode

object code

linked bitcode

native code

library

frontend

middle end object file executable

codegen

linker

Fig. 4. The flow of the compiled code within divcc. The source code along with
included header files is processed by the frontend and then middle end to generate
LLVM IR. This IR is used by the code generator to produce object code, stored within
the same object file. The linker then separately combines bitcode and machine code
from object files and libraries to produce an executable which again contains both
executable machine code and analysable bitcode.

1. Like with the changes in the compiler proper, we need to alter the data flow
– this time, to extract the bitcode from constituent object files and libraries,
and to include linked bitcode in the output of the linker.

2. We need to include a new component: a bitcode linker, which combines the
input bitcode files into a single bitcode module which can be inserted into
the output of the linker.

As noted in Sect. 2.2, the bitcode linker needs to follow the semantics of the
native linker, specifically when dealing with archives. While a bitcode linker is
part of LLVM, this linker can only combine individual modules and does not
directly support linking bitcode archives, much less archives which consist of
object files with embedded bitcode. There are essentially three options:

1. Re-use the LTO infrastructure, which uses linker plugins to perform bitcode
linking of modules selected by the native linker. This approach has significant
portability issues, since it requires the ability to extend the native linker.

2. Use an auxiliary section in a fashion similar to wllvm to learn which objects
were included by the native linker and perform the link based on those.

3. Extend the existing module-based bitcode linker to handle archive linking
semantics.



40 Z. Baranová and P. Ročkai

Even though not the simplest, we have taken option 3, since it has an impor-
tant advantage of also working with archives which only contain bitcode which
is not accompanied by any native code.9

3.4 Implementation

The implementation was done in C++ for the following reasons:

– to gain direct access to individual CLang components and utility functions,
– to allow distribution of divcc as a self-contained, statically linked binary,
– to avoid the overhead associated with fork-based wrappers.

Like upstream CLang, divcc will by default use fork and exec to invoke
the system linker for the actual linking of object files. However, it also includes
experimental support for using the lld linker as a library, avoiding the need
to interface with external programs altogether. The construction of the correct
linker command is delegated to the upstream CLang driver. Likewise, processing
command-line switches is mainly done by existing CLang code (making interface
compatibility a fairly straightforward matter), as is, obviously, all the heavy
lifting of the compilation process itself.

A relatively minor but notable issue is that C++ programs need to link to
additional libraries (the C++ runtime support library and the C++ standard
library, and any system libraries these two language-specific libraries depend on
– usually at least libpthread). For this reason, C++ compilers usually provide
two binaries, one for compiling and linking C programs and another for C++
programs, the main difference being precisely the libraries which are linked into
the program by default. A common solution, which divcc adopts as well, is to
provide a single binary, which decides whether to use C or C++ mode based on
the name it was executed with, so that divc++ can be made a link to divcc.

The final implementation issue is related to functions with variable argu-
ments. LLVM provides a special instruction (va arg) which implements access
to arguments passed to a function through ellipsis. Unfortunately, current ver-
sions of CLang do not emit this instruction and instead produce an architecture-
specific instruction sequence which directly reads the arguments from machine
registers or the execution stack. In the context of program analysis, this is far
from optimal – for this reason, we alter the behaviour of CLang so that divcc
instead emits the va arg LLVM instruction.

3.5 Library Substitutions

As mentioned in Sect. 1.1, it is sometimes desirable to provide alternate, bitcode-
only versions of system libraries to make analysis of the resulting bitcode easier.
We provide an alternate version of divcc, called dioscc, that links C programs

9 This is important with e.g. libraries provided by DiOS, which are normally only
compiled into bitcode and packaged into bitcode archives.
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to the DiOS libc and C++ programs also to DiOS versions of libc++ and
libc++abi. Likewise, DiOS versions of header files which belong to those libraries
are used during compilation. This is illustrated in Fig. 5. It is straightforward
to build additional variants of divcc with different substitutions.

The most important issue which relates to library substitutions is ABI com-
patibility – the property that both libraries use the same in-memory layouts for
data structures, same numeric values for various named constants and so on. If
ABI (Application Binary Interface) compatibility is broken, either the bitcode
or the native executable will misbehave. DiOS takes special precautions to make
its libc binary compatible with the one provided by the host system.10

user program native code execution

DiOS headers bitcode host libc

DiOS libraries linked bitcode analysis

Fig. 5. The compilation process with library substitutions enabled.

Besides bitcode libraries, dioscc includes native versions of libc++ and
libc++abi, since different implementations of C++ libraries are usually not
binary compatible with each other, and installing multiple versions of the C++
standard library is rather inconvenient. Finally, another native library bundled
with dioscc is libdios-host.a, which contains native versions of functions
which are present in the DiOS libc but may be missing from the system one.

Please note that unlike dioscc, divcc uses standard system headers, like
any other compiler would, and does not supply bitcode definitions for functions
from libc. It is up to the analysis tool in question to deal with the incomplete
bitcode and the platform ABI defined in system headers.

3.6 Limitations

The main compromise in the current implementation is related to shared
libraries. When a binary is linked to a shared library, the machine code ver-
sion is linked in the usual way. However, we still link the bitcode statically,
because no LLVM-based analysis tools can currently resolve dynamic dependen-
cies and automatically load the bitcode from shared libraries.11 The remaining
limitations are mainly due to external causes:

10 Unfortunately, libpthread, which is also provided by DiOS, is not yet ABI compat-
ible with the host version – see also Sect. 4.2.

11 This decision may be reversed in a later version, if the situation with support for
shared libraries in analysis tools improves.
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1. Inline assembly is compiled to machine code as normal, but the LLVM IR will
simply retain the architecture-specific assembly instructions, compromising
its usefulness for analysis.12

2. When used with DiOS, builds may fail due to missing API coverage or may
produce crippled binaries due to ABI compatibility issues. These problems
need to be addressed in DiOS.

Finally, a limitation of the implementation (i.e. not inherent in the design)
is that divcc currently only supports systems which use the ELF format for
storing executable code.

4 Evaluation

In this section, we introduce the projects selected for evaluation, report on our
findings and note issues we encountered with the build processes. We also provide
measurements of build time for each of the packages (shown in Table 1).

4.1 Summary

To evaluate our implementation, we have taken 7 existing C and C++ projects
and built them from source using their respective build systems (which meant
either CMake or configure, followed by make). Out of the tested projects, Eigen
and zlib were built using CMake, the remaining projects used an autotools con-
figure script which generates a Makefile.

Each project was built in 5 configurations: with divcc, dioscc, CLang ver-
sion 8, GCC version 8.3 and wllvm. All tools have built all the projects success-
fully, with some caveats described in Sect. 4.2.

– coreutils 8.31 is a set of over 100 GNU core utilities and various helper
programs for file and text manipulation (such as cat or ls) and shell utilities
(env, pwd, and others),

– gzip 1.10 – a data compression and decompression utility,
– Eigen 3.3.7 [C++] is a header-only template library that provides linear alge-

bra structures, such as matrices and vectors and operations on them,
– SQLite 3.28.0 – a widely used SQL database engine for database management
– BerkleyDB 4.6.21 – another database management library, more closely cou-

pled with the application
– libpng 1.6.37 – a library for reading and writing PNG image files
– zlib 1.2.11 – a compression library, included because it is required by libpng

12 In some cases, it may be possible to reconstruct platform-neutral LLVM IR using the
Remill decompilation library. This is especially pertinent to legacy software which
may use inline assembly in applications which would be better served with compiler
built-in functions. We will investigate using Remill in this capacity as an option in
the future.
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Table 1. Total elapsed time for the configuration and compilation phasesa of differ-
ent software packages. The clang and gcc columns are baseline compilers which only
produce native executables. The divcc and dioscc columns are variants of the tool
proposed in this paper (divcc uses native system libraries with no bitcode, dioscc uses
DiOS replacements for libc and libc++). We included wllvm, which is an existing tool
with similar goals to divcc, as another reference point. The make command was run
with 4 jobs in parallel using -j4.

gcc clang divcc dioscc wllvm

coreutils 1:33 + 0:22 2:28 + 0:31 3:59 + 0:42 3:46 + 0:45 7:01 + 1:04

db 0:18 + 0:20 0:33 + 0:26 0:43 + 0:45 0:51 + 0:47 1:11 + 0:53

eigen 0:14 + 0:00 0:21 + 0:00 0:27 + 0:00 0:30 + 0:00 0:34 + 0:00

gzip 0:21 + 0:02 0:45 + 0:04 1:04 + 0:05 1:13 + 0:05 2:08 + 0:09

libpng 0:05 + 0:09 0:10 + 0:10 0:16 + 0:11 0:17 + 0:12 0:28 + 0:18

sqlite 0:05 + 1:23 0:11 + 2:03 0:17 + 2:08 0:20 + 2:12 0:27 + 3:24

zlib 0:02 + 0:01 0:03 + 0:02 0:05 + 0:03 0:05 + 0:03 0:06 + 0:04
aThe times for the two phases are given as configuration time + compile
time in the table columns.

The measurements (Table 1) show that the implementation is slightly slower
than upstream CLang, in both configuration and building of the software, which
is not surprising as bitcode manipulation incurs overhead. This is, however, not
a significant cost when compared to wllvm, which compiles source code in two
passes. The times for wllvm also exclude the additional time required to link
the bitcode when extract-bc is executed and, when configuring Berkeley DB,
wllvm had to be given the WLLVM CONFIGURE ONLY=1 flag during configuration, as
the bitcode files it otherwise produces were confusing the build system. Finally,
GCC proved to be considerably faster than CLang and the remaining compilers
(which are all based on CLang).

4.2 Package Details

Eigen. This was the only project of the selection which uses CMake exclusively.
Since it is also a header-only library, the build instructions mainly exist to build
tests (with make buildtests) or build and run them (make check).13 As some
of the tools we used did not manage to build all test files, we did not include
compilation of the tests in the time measurements.

Berkeley DB. In this case, shared libraries have been disabled (using the
--disable-shared configure flag), to include at least one statically-built library
in the evaluation. In dioscc, several of the binaries result in a segmentation fault
when run. This is due to the use of the libpthread library, as the system version
is not ABI compatible with the DiOS libpthread.

13 This is the reason for zero build time of Eigen for all compilers.
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In this case, it was also necessary to run the configure script specially for
wllvm, passing WLLVM CONFIGURE ONLY=1 in the environment.

SQLite. This package was configured with --disable-dynamic-extensions
because DiOS (and hence dioscc) does not currently support the dlopen family
of functions. SQLite further exhibited the same problem as Berkeley DBD when
built with dioscc due to ABI incompatibility of libpthread.

Libpng. This package was partly included in the evaluation since it has a depen-
dency on a 3rd-party library, namely zlib. We built zlib version 1.2.11 using
the same tool as libpng and provided the resulting libz.so or libz.a to libpng
at configure time – in this case, we built both a static and a dynamic variant of
libpng (along with a matching build of zlib).

5 Conclusions

We have designed and implemented a tool which makes integration of dynamic
program analyses based on LLVM into the build and development processes sig-
nificantly easier. Our design takes the best ideas from a number of related tools
and combines them in a unique way to offer seamless integration into exist-
ing processes. Moreover, divcc optionally integrates with DiOS, making the
resulting bitcode more analysis-friendly without compromising the guarantees
stemming from the use of the same bitcode for native code generation and for
analysis. Finally, we have evaluated divcc on a number of existing software
packages, establishing its practicality and efficiency.
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4. Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J., Strejček, J.: Symbiotic 4: beyond
reachability. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
385–389. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-
5 28

5. Günther, H., Laarman, A., Weissenbacher, G.: Vienna verification tool: IC3 for par-
allel software (competition contribution). In: TACAS, pp. 954–957 (2016). https://
doi.org/10.1007/978-3-662-49674-9 69

6. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL),
17:1–17:32 (2017). https://doi.org/10.1145/3158105

7. Kremenek, T., et al.: Scan-build (2009). https://clang-analyzer.llvm.org/scan-
build.html

https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-662-49674-9_69
https://doi.org/10.1007/978-3-662-49674-9_69
https://doi.org/10.1145/3158105
https://clang-analyzer.llvm.org/scan-build.html
https://clang-analyzer.llvm.org/scan-build.html


Compiling C and C++ Programs for Dynamic White-Box Analysis 45

8. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
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Abstract. In this paper, we report on our effort to design a fast,
concurrent-safe hash table and implement it in C++, correctly. It is espe-
cially the latter that is the focus of this paper: concurrent data structures
are notoriously hard to implement, and C++ is not known to be a par-
ticularly safe language. It however does offer unparalleled performance
for the level of programming comfort it offers, especially in our area of
interest – parallel workloads with intense interaction.

For these reasons, we have enlisted the help of a software model
checker (DIVINE) with the ability to directly check the C++ imple-
mentation. We discuss how such a heavyweight tool integrated with the
engineering effort, what are the current limits of this approach and what
kinds of assurances we obtained. Of course, we have applied the stan-
dard array of tools throughout the effort – unit testing, an interactive
debugger, a memory error checker (valgrind) – in addition to the model
checker, which puts us in an excellent position to weigh them against
each other and point out where they complement each other.

1 Introduction

Designing correct software is hard and implementing it correctly is possibly even
harder. This is especially true of ‘plumbing’ – low-level code which must be both
robust and perform well. Of course, there are established libraries of such code in
wide use and considered correct precisely because they are universally used and
nobody has found a defect in them for a long time. However, for the same reason,
those same libraries are somewhat dated and assimilate new functionality at a
very slow rate.

A typical case would be data structures for representing sets and associa-
tive arrays. Until 2011, the only implementation available in standard C++
libraries were rebalancing binary search trees. Changes in computer hardware,
however, have gradually made data structures based on pointers, like linked lists
and search trees, less favourable when compared to more compact, array-like
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structures. In particular, it is often much better to implement sets and associa-
tive arrays using hash tables, even though search trees have, in theory, superior
complexity. The 2011 revision of the C++ standard has seen the inclusion of
unsorted set and unsorted map container classes, which are represented using
a hash table. Unfortunately, the design of those container classes is such that a
conforming implementation needs to use open hashing and must not invalidate
references to items while rehashing the table, strongly suggesting chained buck-
ets. None of these design choices are particularly suitable for modern processors,
though they do make the hash table easier to use.1

The remainder of the paper is organized as follows: the rest of this section
highlights the contributions of this paper and surveys the related work, while
Sect. 2 outlines the basic premises of the paper, including the basic methodology
and tools which we used. Section 3 then gives a high-level overview of design
criteria and design choices we have made for the hash table. Section 4 describes
the implementation and verification process in detail – one subsection for each
development iteration, where each of the iterations constitute 2–3 person-days
of combined programming, debugging and verification effort. Finally, Sect. 5
summarizes and concludes the paper.

1.1 Contribution

The main goal of this paper is to describe the experience of using a comparatively
heavyweight model checker in an otherwise lightweight development process. The
main takeaways are the following:

1. It is surprisingly easy to use model checking with self-contained C++ code.
2. While automated, exhaustive verification of source code seems quite remote,

using a model checker has real, practical benefits in day-to-day development.

We also hope that the moderately detailed description of our development
process can serve as a mostly positive example of applying formal methods in
the trenches of rather low-level programming.

1.2 Related Work

Formal methods have been the subject of steady interest from both academia and
industry, as evidenced by a substantial body of surveys on their applications,
e.g. [4,16]. A number of case studies have been performed and published, in
many instances with production software. Unlike the present work, most of the
existing studies focus on specific mission-critical software – flight control [3],
satellite control systems [5], particle accelerators [6,8] or real-time operating
system kernels [10]. A unique effort in this area is seL4 [7], which is, however,
based on heavyweight methods centred around theorem proving.
1 In particular, they provide nicer iterator and reference invalidation semantics and

are less susceptible to pathological behaviour when using sub-optimal user-supplied
hash functions.
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The most closely related study to ours is perhaps [8], since it involves directly
applying model checking to a C++ implementation, and employs the same model
checker – DIVINE – for this task as we do. The system examined, however,
was quite different, and included a separate model for checking liveness (LTL)
properties using SPIN.

2 Preliminaries

In this section, we first give a very brief overview of hash tables and their design
criteria, then of testing and debugging, and finally of model checking software
at the implementation level.

2.1 Hash Tables

A hash table is a data structure that represents an (unordered) set, in which
keys can be looked up and into which new keys can be inserted. Besides encod-
ing sets, hash tables can be straightforwardly extended to encode associative
arrays though we will only discuss the simpler case of sets in this paper. Both
the abovementioned operations are, on average, in O(1) – the average number
of steps is a constant. Of course, this complexity depends on the properties of
the hash function which the hash table uses and even with very good hash func-
tions, it is always possible to construct a sequence of operations that will exhibit
pathological behaviour (i.e. individual operations running in linear time). In the
remainder of this paper, we assume that a suitable hash function is available.

An important aspect of modern data structure design is the safety of con-
current access,2 which stems from properties of contemporary hardware: high
computation throughput can only be achieved with specific designs which mini-
mize contention. Luckily, in normal operation, hash tables naturally cause only
minimal contention. Of course, this assumes that there are no global locks or
some other heavyweight synchronization mechanism: either each cell, or at most
a small segment of cells, needs to be protected from race conditions individu-
ally. Operations that access multiple cells of the hash table need to be carefully
designed to not require additional communication to avoid races.

2.2 Testing and Debugging

Testing is the natural backbone of any validation or verification effort – examples
are the most intuitive tool for understanding the behaviour of processes and
systems. In the case of data structure design, the majority of testing is usually
done at the unit level – the programmer writes down small example programs
which exercise the data structure and inspects the results for conformance with
their expectations.

2 Here, concurrency means that multiple CPU cores perform operations on the same
data structure without additional synchronization.
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The most obvious and immediate problem that arises with (unit) testing is
concurrency. A single (sequential) unit test is a very concrete entity and is easy
to work with and argue about. Unfortunately, test scenarios that involve concur-
rency lack this concreteness: there is now an implicit quantifier over all possible
reorderings of concurrent actions. Every time we execute the test scenario, we see
a different ordering, and many types of problems will only appear in some such
orderings, but not in all of them. Due to the nature of concurrent programming
systems, it is usually also very hard to reproduce the exact ordering that led to
an error. In our effort, we have used a software model checker to deal with the
quantification over allowable event reorderings (for more details see Sect. 2.3).

Even with sequential test cases, the root cause of a failure is not always obvi-
ous: even short test cases can generate a fairly long sequence of steps, depending
on the internal complexity of the operations under test. There are two basic
techniques to clarify the sequence of steps that led to a failure, in addition
to mere inspection. First, tracing statements can be inserted into the program
under test, allowing the programmer to more easily follow the execution of the
program. Information about which branches were taken and the values of key
variables are usually included in such traces.

Second, the user can inspect the execution using an interactive debugger,
such as gdb [14]. In this case, the execution can be stopped at various points,
the user can instruct the debugger to only proceed with execution in small,
incremental steps and can inspect values of the variables at any point in the
execution. Usually, it is only possible to step or execute the program forward in
time, though extensions exist to allow reversible debugging [9,15] – the ability
to step back, to a point in the execution that was already visited once. While an
interactive debugger is an invaluable tool, it is in some sense also the tool of last
resort: it is the least amenable to automation, and modifications in the program
require a possibly long sequence of interactions to be repeated.

2.3 Model Checking

There are few choices when it comes to applying formal methods to C++ imple-
mentations of concurrent data structures. Heavyweight formal methods often
require the design to be ‘implemented’ in a special language (in addition to the
C++ implementation). The special language in question might be a protocol
modelling language (e.g. ProMeLa), or it might be a proof language (e.g. Coq),
but in either case, there is non-trivial effort involved in the translation of the
informal (working) description into this language.

Additionally, this special language is overwhelmingly likely to be unfamiliar
and hence pose additional challenges, including an increased risk of mistakes.
Even in proof languages, it is essential that the semantics of the theorems that
are being proved are properly understood, otherwise it might easily happen that
they do not correspond to the informal properties that we were interested in.

Finally, there would be no guarantee that the C++ version, which is what
will be actually executed, corresponds to the one that has been verified in any
meaningful way. While there has been an effort in the seL4 project to extend
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the proofs to cover machine code [11], anything of this sort is still extremely
far-fetched for code that relies on the extensive C++ runtime libraries.

For these reasons, we are more interested in comparatively lightweight meth-
ods which can directly work with the implementation. There are, obviously,
significant gaps: such tools tend to be more complex (especially when consid-
ering correctness-critical cores), their semantics are less rigorous and there is
inevitably a disconnect between the assumed and the actual semantics of the
underlying hardware.

In our case, model checking for safety properties appears to be the most
appropriate choice. The technique is very similar to testing (among their other
shared attributes, it is a dynamical method) but with efficient handling of uni-
versal quantification – either over inputs, over event reorderings or over possible
interactions with the environment.

There is a wide selection of (safety) model checking tools based on LLVM or
on CBMC which both have usable C++ frontends. Unfortunately, the latter does
not support modern C++ features and the tools based on the former often lack
support for concurrency (and exceptions). The one tool which fits all mentioned
criteria is DIVINE [1], even though it also has a number of limitations. Verification
of parallel programs with DIVINE is rather resource-intensive, since it enumerates
the entire state space. Even though it employs various state space reductions [13],
the state spaces for small programs with only 2 threads are rather large. In the
verification tasks we have performed, we were limited to 100 GiB of RAM, an
amount which unfortunately proved rather constraining.

Another limitation that we encountered in DIVINE is that enabling support
for weak memory models causes an additional blowup in the size of the state
space. However, our implementation only uses sequentially consistent atomic
operations, which hopefully means that this is not a significant issue.

2.4 Assertions

Assertions are a programming aid where a statement in the source code describes
a condition which the programmer expects to hold in every execution through
the given source code location. The program then checks, at runtime, that this
condition is indeed satisfied and aborts execution when the check fails. Assertion
statements are commonly used in testing and are compiled out of the program
in production builds. Depending on the number and quality of the assertion
statements, they can range from a sporadic sanity check to comprehensive pre-
and post-condition annotations reminiscent of inductive verification.

Besides testing, assertion annotations are also extremely useful in model
checking, since the verifier can easily execute the runtime check and ensure that
it holds true on every execution covered by the quantification provided by the
model checker (whether it is over event reorderings or input values).
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3 Design

The following points summarize our upfront design choices for the hash table
(i.e. the choices were made before the implementation work started).

1. The hash table will be stored as a flat array of cells3 using open addressing
and will use a cache-friendly combination of linear and quadratic probing for
collision resolution.

2. There will be multiple cell implementations for different scenarios and the
table will be parametrized by the cell type:

– a low-overhead cell for sequential programs,
– lock-free cells for small keys based on atomic compare & exchange,
– lock-based cells for medium-sized keys.

3. The table will employ on-demand, parallel rehashing, so that it can be used
in scenarios where the number of distinct keys is not known upfront.

4. It will implement key removal based on tombstones. The ability to shrink the
table (automatically or manually) is not a priority.

Our design was informed by the considerations outlined in Sect. 2.1 and by
our past experience with hash table design [2]. To simplify our task, we assume
that keys have a fixed size and are small (i.e. they are integers or pointers or
that a single key consists of at most a few pointers) and expect the user to
use indirection as appropriate to store larger or variable-sized keys. Together,
these criteria naturally lead to open addressing in a flat array of cells. A hash
table based on open addressing resolves the inevitable hash collisions by probing :
computing a sequence of indices instead of just one, and trying each index in
turn, until it either finds the correct key or an empty cell.

This immediately brings a few problems: the cell must be able to distinguish
a special ‘empty’ state, which is distinct from all possible key values. In some
circumstances, this could be a specific key picked by the user, but this approach is
fragile and not very user-friendly. Additionally, another special state is required
for tombstone-based key removal.

4 Development and Verification

The implementation and verification work was done in 4 iterations, each iteration
including both programming and testing and/or model checking activities. Each
iteration corresponds to 2–3 person-days of effort, adding up to approximately
2 weeks (10 days).

4.1 First Iteration

In this phase, we have done the programming equivalent of a ‘first draft’,
knowingly omitting part of the expected functionality and using sub-optimal,

3 Each cell can hold at most a single key. Basic operations on a cell include storing a
key and comparing the content of the cell with a key.
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but known-correct (or at least presumed correct) primitives from the standard
library. We have also re-used pieces of code from previous hash table designs,
especially for cell implementation. The main goal in this iteration was reduction
of memory overhead associated with our previous design.

The implementation after the first iteration uses a per-thread object which
only consists of a single std::shared ptr (2 machine pointers) and a flat table
with the cells and additional 5 machine words of metadata (the size, a rehashing
counter, another std::shared ptr and finally the reference count managed by
std::shared ptr). By the end of the fourth iteration, the per-thread object was
reduced to a single machine pointer and the per-table metadata to 4 words.4

Initial Implementation. The code is split into 3 layers:

1. the top-level class template is hash set5 and uses a simpler, fixed-size
hash table to implement the actual storage, lookup and insertion of keys

2. hash table is a compact structure (i.e. it is laid out contiguously in memory
and does not use pointers or references) whose main part is an array of cells

3. there are multiple implementations of the cell concept and each can hold a
single key and possibly a small amount of metadata

The hash set class is responsible for providing an interface to the user and
for managing the capacity of the hash table: when the hash set runs out of
space, a new, bigger hash table is constructed and the content of the previous
one is rehashed into the new one. The individual hash table instances form a
linked list – there might be an arbitrary number of them, since some threads
may fall behind others and hence keep the old instances alive (see also Fig. 1).

hash set 1 hs 2 (outdated)

next i i i i

null 7 40 3 16

Fig. 1. Example of a pair of hash set structures (each belonging to a different thread),
sharing a single list of hash table instances. The dashed arrows represent the lookup
sequence for an item with the hash value 1. Cells marked ‘i’ are invalid.

4 In comparison, the design from [2] uses 3 machine words per thread, 64 + 32 words
of fixed overhead per a hash table instance and 11 words per cell vector. It also
incurs 3 indirections compared to the single indirection in the current design.

5 The class naming has changed during later development stages. We use the last
iteration of the class names throughout the paper to avoid confusing the reader.
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For efficiency reasons, the linked list must be lock-free and concurrent-safe:
checking the existence of an item linked to the currently activehash table instance
is used to determine whether another thread has initiated rehashing. In this itera-
tion, a standard reference-counted smart pointer (std::shared ptr) was used for
memory management. A standard atomic compare-and-swap operation on those
pointers was then used to implement the linked list in a concurrent-safe fashion.

The rehashing is done in contiguous segments of the original hash table,6

each segment being rehashed as a single unit by a single thread. Allocation of
segments to rehash to threads is coordinated using a pair of atomic counters,
one counter in each hash table instance involved in the rehashing.

Finally, a separate ‘sequential’ variant of the hash set is included in the
implementation. Since it does not need to provide safe concurrent access, it is
somewhat simpler and also slightly faster.

The first iteration resulted in 820 lines of C++ (discounting unit tests),
distributed as follows: the cell implementations took 220 lines, utility classes,
shared interface code and other helpers 110 lines, the sequential implementation
of hash set was 170 lines and its concurrent counterpart was 280 lines (includ-
ing hash table). The remainder went to high-level comments and type alias
declarations.

Verification (Round 1). The initial implementation was only subject to unit
testing and to stress testing via concurrent application code (i.e. no model check-
ing was performed in this iteration). No ill effects were observed during the initial
testing run (though a number of problems were uncovered in later iterations).
The hash function was more or less assumed correct (however, the only real
requirement is that it is a function in the mathematical sense).

The implementation itself contains 7 consistency assertions which were
checked during unit testing, in addition to the checks performed by the tests
themselves. Those assertions were included for multiple reasons:

– first of all, they serve as machine-checked documentation, informing the
reader about local pre- and post-conditions and about assumptions the author
of the code has made,

– assertions make initial development easier, by quickly alerting the program-
mer about unwarranted assumptions and about mistakes in code composition
(where e.g. a pre-condition of a subroutine is violated by a caller),

– finally, they are checked during unit tests and model checking, serving as
additional checks of correctness.

We also include a few statistics about the unit tests:

– the unit testing code (written against the interface of the hash set class
template) consisted of approximately 250 lines of C++,

– there were 6 sequential test scenarios and 4 concurrent access scenarios,

6 Clearly, the keys stored in a continuous segment of the smaller hash table may end
up distributed arbitrarily in the entire range of the bigger (target) instance.
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– the sequential implementation was subjected to the sequential test cases with
2 sequential cell types,

– the concurrent implementation with 2 concurrent cell types were subjected
to both the sequential and the concurrent test cases,

– this added up to 32 unit test cases; code coverage was not measured.

The concurrent test cases were mainly of the stress-testing type: they per-
formed many operations in parallel in the hopes of more or less blindly hitting
problems. This approach, while rather inelegant, tends to work for ‘shallow’ or
high-probability bugs, but overall, it is not a very reliable method.

4.2 Second Iteration

The main driver of the second iteration was unification of the code between the
sequential and concurrent-safe implementations of the hash set class. The com-
paratively expensive rehashing protocol is statically disabled in the sequential
variant.

Implementation Changes. The sequential implementation of hash set has
been made a special case of the concurrent variant, with certain paths through
the code cut short: this change saved about 150 lines of code and a substantial
amount of duplication, leading to cleaner and more maintainable code. Overall,
by the end of this iteration, the implementation was down to 680 lines of code,
a net reduction of 140 lines.

This iteration has also seen improvements to the initially crude interaction
with the client code (especially in case of errors). In particular, a failure to
rehash the table is now reported as an exception and does not abort the entire
program. There are two reasons why rehashing may fail: either due to insufficient
uniformity of the hash function (in which case, aborting the program might be
appropriate, since it is really an implementation error in the client code) or due
to adversarial inputs that cause excessive collisions. In the latter case, throwing
an exception is much more appropriate, since the circumstance is likely outside
the control of the client application.

Verification (Round 2). Due to the merge of the two hash set implementa-
tions, one of the consistency assertions was removed (having become redundant),
leaving 6. In addition to the assertions, tracing statements were added to the
implementation to ease analysis of test failures and counterexamples from model
checking: the trace output shows up in the counterexample traces from the model
checker, which makes the said counterexamples much easier to understand, even
without using the interactive simulator [12]. Like consistency assertions, the
traces are kept in the code permanently, but compiled out in release builds.

The unit tests in this iteration were extended with cases of longer (68 byte
long) keys, which uncovered errors in the sequential cell types, which were in
turn fixed. Additionally, a problem was discovered through a combination of
unit testing and the use of valgrind. In this case, the unit tests were executed
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on a different platform than usual and exhibited sporadic failures affecting test
cases which used the atomic cell type, indicating a race condition or a memory
error. Since the latter are easier to diagnose, the unit test code was first executed
in valgrind, which quickly pinpointed the problem to a read of uninitialized
memory. The problem turned out to be due to padding bytes which the compiler
in some cases inserted into the implementation of the atomic cell. Because the
entire cell was accessed using a single atomic compare & exchange operation,
padding bytes were included in the comparison, leading to failures.

Besides the padding problem, a few edge cases were found in the implementa-
tion of the atomic cell which warranted a minor redesign of the metadata stored
in the cell and the operations on them. In the new version, 2 bits are reserved
to encode special cell states: empty, invalid,7 tombstone and full.

This was also the first iteration to use model checking for verification, with a
small initial set of scenarios to be considered. In each case, there are 2 threads,8

both accessing a single hash table, with each thread performing a fixed sequence
of operations (including fixed arguments), but arbitrary reorderings of those
operations are considered by the model checker. The scenarios included in this
iteration were following:

– a check for correctness of insertion concurrent with rehashing running in the
other thread (without the insertion triggering another resize),

– a case running an erase concurrent with insertions in the other thread,
– same, but an insert also triggered a rehashing concurrent with the erase.

No new counterexamples were found at this time, but the effort helped to
validate the fixes that were done in the atomic cell implementation based on
problems uncovered via testing.

4.3 Third Iteration

The third iteration was comparatively minor, with focus on application-level
testing and changes and improvements in the interface provided to the client
code. Minor mistakes caused by rearranging the code were caught by existing
unit tests and corrected.

Implementation Changes. This iteration included, besides a few small opti-
mizations in the key lookup code, mainly changes to the outside class interface:
the growth pattern (sequence of hash table sizes to use) was made into a static
(compile-time) parameter and the first iteration of the adaptor interface was
added. Among other things, this change further reduced the memory overhead
of hash set in cases where the user-provided object which performs hash com-
putation contains data members. At the end of this iteration, the code was 685
lines long (a net growth of only 5 lines).
7 Cells are invalidated when they are rehashed, so that concurrent insertion will not

accidentally use an empty cell that has already been ‘moved’ to the next generation
leading to a loss of the inserted key.

8 Unfortunately, model checking of scenarios with more than 2 threads does not seem
to be realistic, at least not with the allocated budget of 100 GiB of RAM.
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Verification (Round 3). The verification effort in this iteration was centred
around a first major push in application-level testing: the hash table was used in
an application which does a mix of key insertions with both new keys and with
keys already present in the hash table. These keys are indirect – the hash table
stores a pointer, and an adaptor is provided to compare the actual structured,
variable-size keys stored behind the pointer. The application was then exercised
in both single-threaded and in multi-threaded configurations.

During this testing, an error was discovered in the rehashing code, where
rehashing failures were not properly detected (instead, the code went into an
infinite loop making the hash table ever larger). Rehashing failures happen when
the table is used with a poor hash function which cause collisions that do not
get remapped as the hash table grows (i.e. they are collisions which are already
present in the hash output and are not introduced by scaling the range of the
hash function to the current size of the hash table). This was detected thanks
to a bug in the custom hash function which was part of the application code.9

Additionally, with the code path exposed to testing, a deadlock was discovered
in a previously unreachable error path in the same area of code.

Both errors were tracked down with the help of tracing and gdb (which
quite easily provided backtraces at the location of the deadlock once it could be
reproduced). It is also worth noting that even if the path was covered in model
checking scenarios (by using an intentionally conflict-prone hash function), the
deadlock was caused by spin-based synchronization – a type of error which is
rather hard to specify in current versions of DIVINE.10

Finally, no new test cases or model checking scenarios were introduced in
this iteration, though in the manner of continuous integration, existing unit
tests were executed after each self-contained change to the code.

4.4 Fourth Iteration

The last iteration reported in this paper brought a number of substantial changes
in the internals of the hash table, even though only indirectly. The well-tested
std::shared ptr was replaced with an intrusive pointer11 which did not yet
support atomic compare & exchange. This operation was added along with more
basic support for atomic access (atomic loads and stores of the pointer, and
support for manipulating reference counts atomically). Neither unit testing nor
application-level testing uncovered any problems in this code.

In addition to the changes in internals, the interface of the hash set class
was finalized in this iteration, providing the desired level of flexibility and ease
of use. The verification part of the effort was focused on correctness in general
and uncovering possible concurrency problems in particular.

9 This incident also revealed a weakness in our testing methodology, where only ‘good’
hash functions were used during unit testing and model checking – cf. Sect. 4.1.

10 Deadlocks involving pthread mutexes are detected, but these mutexes are too expen-
sive to be used in concurrent data structures.

11 A pointer which can only point at objects which manage their own reference counter.
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Implementation Changes. As outlined above, there were two main avenues of
change in this iteration. The first group of changes was directed at the hash set
interface:

1. the iterators which allow enumeration of values stored in the hash table were
slightly simplified,

2. the adaptor now offers the capability to store data outside of the hash table
proper, opening way to alternate collision resolution methods, which were val-
idated by creating an experimental concurrent-safe linked-list bucket imple-
mentation.12

The other major change was the migration away from std::shared ptr:

– unlike std::shared ptr which is represented as a pair of machine point-
ers, the intrusive reference-counting pointer (refcount ptr) only needs one,
reducing the memory overhead

– refcount ptr provides low-contention (even if not entirely atomic) compare
& swap operation – the least-significant bit of the pointer itself is used as a
lock while the reference counts are rearranged

Finally, it was noticed that in certain cases, the sequential cell types could
contain uninitialized values – this defect was also corrected. The final implemen-
tation spans 730 lines of code, a net increase of 45 lines, mainly attributable to
the changes in the adaptor interface.

Verification (Round 4). As mentioned above, the main focus of this iteration
was model checking. We have mostly focused on three instances, which all allowed
for runs, on which an insertion concurrent with rehashing could trigger another
rehashing of the table. The variants were as follows:

1. only insertions, with exactly 1 concurrent insert on one of the threads
2. same as above but with a call to erase sequenced after the isolated insertion,
3. another insert-only scenario where both threads perform 5 fully concurrent

insertions in opposite orders, exposing further arrangements of concurrent
inserts triggering rehashing13

The main ‘workhorse’ of the model checking effort was the first scenario. In
most cases, it took about 2 h to produce a counterexample, and consumed about
40 GiB of RAM. The second scenario did not differ substantially from the first,
while the third took almost 4 h. We have uncovered a number of problems during
this endeavour:
12 The implementation was tested, but not model checked, and is not part of the hash

table implementation (it was done in application-level code in an application-specific
manner).

13 All the scenarios used a hash set with the growth pattern 2-4-8. The last scenario
was however also attempted with the pattern 1-2-4, reducing the size of the state
space and memory requirements considerably, from 85GiB to about 15GiB.
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– the initial lock-free implementation of compare/exchange on refcount ptr was
wrong (it could cause one of the objects to be freed prematurely due to a race
condition),

– the contended case of a helper function, atomic add if nonzero was wrong,
updating the pointer even if it was, in fact, zero (though the return value
correctly indicated that the counter reached zero),

– a race condition in the rehashing protocol (during a concurrently triggered
rehashing).

Interestingly, all three problems uncovered in model checking were caught
by the same consistency assertion in the rehash protocol during model check-
ing of the same scenario (the first one in the above list). Since the model
checker only provides a single counterexample, the problems were detected
sequentially: the first counterexample pointed at the reference count problem;
after that was fixed, another counterexample cropped up due to the incorrect
atomic add if nonzero, and finally after this problem was also fixed, the race
condition in the rehash protocol surfaced.

Finally, after the initial fix to the race condition passed model checking
(i.e. no more counterexamples were reported), a deadlock was quickly found dur-
ing application-level testing. After it was confirmed that the race fix introduced
the deadlock, the problem was quickly analysed and corrected, partially because
the change was in a single line. The final fix for the race (which no longer caused
the deadlock) was confirmed by running the model checking scenarios again. No
further problems were detected.

4.5 Discussion

From the point of validation and verification, the most useful way to split the
code is along the sequential – concurrent axis. The sequential code is rather
trivial – almost all bugs were quickly discovered via unit testing and fixed almost
immediately after being introduced. The one exception to this rule was the
uninitialized memory read that was discovered and fixed in iteration 2. What
is noteworthy about this bug is that unit tests exercised this part of the code
quite heavily, but since we execute each unit test in a new process, the test cases
reliably encountered zeroed memory, which masked the problem. Automatically
running the unit tests through valgrind would have alerted us to the problem
earlier and we will consider altering our work flow to this effect in the future.

The concurrent case is very different, even though the code is still compar-
atively simple on its surface and some of the concurrent behaviours can still be
tested with success: specifically, problems on paths that are commonly taken can
be often uncovered with test cases that do not much differ from the sequential
instances. However, concurrent code often contains paths which are only tra-
versed under heavy contention (which is hard to trigger in traditional testing),
illustrated e.g. in the atomic add if nonzero problem. In this case, the detec-
tion was further hampered by the fact that the contention had to coincide with
zeroing of a counter, which only happens at most once for each such counter.
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The second source of hardness in concurrent code is ‘interaction at a dis-
tance’. This was the case with the race condition in the rehashing protocol: two
distinct synchronization handshakes on the same variable (number of segments
to be rehashed) accidentally matched up. In testing, a thread never woke up at
exactly the right moment to trigger the problem, even though unit tests triggered
a number of concurrent rehash operations. Code inspection did not uncover this
problem either – each handshake considered separately appears to be correct.

5 Conclusions

Like other authors, we have found that model checking can be a valuable tool
despite its numerous limitations. Our use case was perhaps somewhat unique
in the level of integration of model checking into the development process and
in the low-level nature of the code to which it was applied. Our experience
shows that testing and model checking nicely complement each other and that
employing both can mitigate some of their individual drawbacks. One feature of
the model checker which was essential in our endeavour was its ability to work
with unrestricted and annotation-free C++ code – in this sense, model checking
was entirely transparent. Preparing inputs was essentially the same as writing
unit tests, the only difference being that the cases must be small : running only a
few operations over small data structure instances. Fortunately, this ‘smallness’
does not seem to limit the ability of the model checker to uncover problems.

In our case, the most important weakness of model checking was, in agree-
ment with previous accounts, its high resource consumption and substantial
delay between asking a question and obtaining an answer. Sometimes, a simpler
tool can do the job: for instance valgrind can often detect similar classes of
programming errors. However, it only works well with deterministic, sequential
programs where the universal quantification over event reordering provided by
the model checker is not required.

Finally, interpretation of counterexamples was challenging, though not dis-
proportionately so when compared to traditional debugging. The two tools we
used the most in this context was ability to add text-based tracing (without
having to worry about reproducing the problem at hand), and the interactive
simulator, which allowed us to step through a single fixed counterexample.
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Abstract. Even though the formal method community tends to over-
look the problem, formal methods are sometimes difficult to use and not
accessible to average users. On one hand, this is due to the intrinsic
complexity of the methods and, therefore, some level of required exper-
tise is unavoidable. On the other hand, however, the methods are some-
times hard to use because of lack of a user-friendly tool support. In this
paper, we present our experience in addressing usability when developing
a framework for the Abstract State Machines (ASMs) formal method. In
particular, we discuss how we enhanced modeling, validation, and verifi-
cation activities of an ASM-based development process. We also provide
a critical review of which of our efforts have been more successful as well
as those that have not obtained the results we were expecting. Finally, we
outline other directions that we believe could further lower the adoption
barrier of the method.
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1 Introduction

One of the seven myths that Hall listed in his well-known paper [27] is that “formal
methods are unacceptable to users”. Bowen and Hinchey discussed seven more
myths [19] and, among these, they reported the lack of tool support as another
myth. However, as formal method community, we have to admit that there is a
part of truth in each myth: formal methods can be sometimes difficult to use and
not accessible to average users. On one hand, this is due to the intrinsic complex-
ity of the methods and, therefore, some level of required expertise is unavoidable.
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On the other hand, however, the methods are hard to use because of lack of a
user-friendly support. Hall himself, while dispelling the method, recognized that
designers should “make the specification comprehensible to the user” [27], and
Bowen and Hinchey recognized that more effort must be spent on tool support [19].

The Abstract State Machines (ASMs) formal method [18] is a state-based
formal method that is usually claimed to be usable, since a practitioner can
understand ASMs as pseudo-code or virtual machines working over abstract
data structures. However, from our long time experience in using the method
and in teaching it, we realized that there are some aspects of the method that
can prevent from using it in the most fruitful way.

In 2006, we started developing the ASMETA framework, with the aim of
building a set of tools around the ASM method. While developing validation
and verification techniques for the method, we kept usability as one of our lead-
ing principles. This was also motivated by the fact that, in addition to us, the
primary users of the framework are our students to which we teach ASMs. As
most of them are not naturally attracted by formal methods, we wanted to build
a framework that could assist them in using the ASM method and would lower
the adoption barriers of the method. In particular, we declined usability in three
more concrete driving principles:

– smoothness: the framework should be usable with as less effort as possible.
The user should not care about technical details that can be hidden and
automatized;

– understandability: the framework should help in understanding the model
itself and the results of its validation and verification;

– interoperability: the different tools of the framework should be integrated as
much as possible, such that the user can inspect the results of one tool with
another tool without any effort. As an example, the counterexamples of a
model checker should be re-executable by the simulator.

In this paper, we describe how the different tools/techniques of ASMETA
try to fulfil these principles.

The paper is structured as follows. Section 2 briefly introduces the ASM
method, and Sect. 3 gives a general overview of the ASMETA framework.
Section 4 describes how we addressed usability at the modeling, validation, and
verification levels. Then, Sect. 5 critically reviews our efforts and outlines other
directions that could further increase the usability of the framework. Finally,
Sect. 6 reviews some related work, and Sect. 7 concludes the paper.

2 Abstract State Machines

Abstract State Machines (ASMs) [18] are an extension of FSMs, where unstruc-
tured control states are replaced by states with arbitrary complex data.

ASM states are algebraic structures, i.e., domains of objects with functions
and predicates defined on them. An ASM location, defined as the pair (function-
name, list-of-parameter-values), represents the ASM concept of basic object
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asm HemodialysisGround

signature:
enum domain Phases = {PREPARATION | INITIATION | ENDING}
controlled phase: Phases

definitions:
macro rule r run preparation =
phase := INITIATION

macro rule r run initiation =
phase := ENDING

macro rule r run ending =
skip

’

macro rule r run dialysis =
par
if phase = PREPARATION then
r run preparation[]

endif
if phase = INITIATION then
r run initiation[]

endif
if phase = ENDING then
r run ending[]

endif
endpar

main rule r Main = r run dialysis[]

default init s0: function phase = PREPARATION

Fig. 1. Example of ASM model

container. The couple (location, value) represents a memory unit. Therefore,
ASM states can be viewed as abstract memories.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments of
the form loc := v, where loc is a location and v its new value. They are the basic
units of rules construction. There is a limited but powerful set of rule construc-
tors to express: guarded actions (if-then, switch-case), simultaneous parallel
actions (par), sequential actions (seq), nondeterminism (existential quantifica-
tion choose), and unrestricted synchronous parallelism (universal quantification
forall).

An ASM computation (or run) is, therefore, defined as a finite or infinite
sequence S0, S1, . . . , Sn, . . . of states of the machine, where S0 is an initial state
and each Sn+1 is obtained from Sn by firing the unique main rule which in turn
could fire other transitions rules. An ASM can have more than one initial state.
It is also possible to specify state invariants.

During a machine computation, not all the locations can be updated. Indeed,
functions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read and written by the machine).
A further classification is between basic and derived functions, i.e., those coming
with a specification or computation mechanism given in terms of other functions.

ASMs allow modeling any kind of computational paradigm, from a single
agent executing parallel actions, to distributed multiple agents interacting in a
synchronous or asynchronous way. Moreover, an ASM can be nondeterministic
due to the presence of monitored functions (external nondeterminism) and of
choose rules (internal nondeterminism). Figure 1 shows a simple example of an
ASM model (the ground model of the haemodialysis case study [4]).
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Fig. 2. The ASM development process powered by the ASMETA framework

3 ASMETA

The ASM method is applied along the entire life cycle of software development,
i.e., from modeling to code generation. Figure 2 shows the development process
based on ASMs.

The process is supported by the ASMETA (ASM mETAmodeling) frame-
work1 [11] which provides a set of tools to help the developer in various
activities:

– Modeling: the system is modeled using the language AsmetaL. The user is
supported by the editor AsmEE and by AsmetaVis, the ASMs visualizer which
transforms the textual model into a graphical representation. The refinement
process can be adopted in case the model is complex: the designer can start
from the first model (also called the ground model) and can refine it through
the refinement steps by adding details to the behavior of the ASM. The
AsmRefProver tool checks whether the current ASM model is a correct refine-
ment of the previous ASM model.

– Validation: the process is supported by the model simulator AsmetaS, the
animator AsmetaA, the scenarios executor AsmetaV, and the model reviewer
AsmetaMA. The simulator AsmetaS allows to perform two types of simulation:
interactive simulation and random simulation. The difference between the
two types of simulation is the way in which the monitored functions are
chosen. During interactive simulation the user provides the value of functions,
while in random simulation the tool randomly chooses the value of functions
among those available. AsmetaA allows the same operation of AsmetaS, but
the states are shown using tables. AsmetaV executes scenarios written using
the Avalla language. Each scenario contains the expected system behavior
and the tool checks whether the machine runs correctly. The model reviewer
AsmetaMA performs static analysis in order to check model quality attributes
like minimality, completeness, and consistency.

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/
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– Verification: properties are verified to check whether the behavior of the
model complies with the intended behavior. The AsmetaSMV tool supports
this process in terms of model checking.

– Testing: the tool ATGT generates abstract unit tests starting from the ASM
specification by exploiting the counterexamples generation of a model checker.

– Code generation: given the final ASM specification, the Asm2C++ automat-
ically translates it into C++ code. Moreover, the abstract tests, generated by
the ATGT tool, are translated to C++ unit tests.

The framework has been applied to the formal analysis of different kinds
of systems: a landing gear system [9], a haemodialysis device [4], self-adaptive
systems [14], cloud systems [12], etc.

4 How We Have Addressed Usability in ASMETA

In this section, we describe how we have targeted usability when developing the
ASMETA framework. First of all, in order to obtain an integrated framework
in which the different tools can be used together, we developed all the tools as
eclipse plugins2.

In the following, we overview the techniques of the framework that have
improved it according to the three driving principles (i.e., smoothness, under-
standability, and interoperability), rather than purely improvements in terms
of functionality of the framework. In the following sections, we focus on the
three main phases of a formal development process: modeling, validation, and
verification.

4.1 Modeling

The first step of the development process is model definition. On the top of
the original parser and editor [26], we introduced a technique that provides
a better visualization of the model (so improving the understandability), and
another technique that automatically checks for common errors (so improving
the smoothness of use).

Visualization. When a model is particularly complex, exploring it can become
difficult, and so the developer does not have a proper understanding of the whole
structure. In order to improve the exploration of the structure of an ASM model,
in [5], we introduced the graphical visualizer AsmetaVis. The basic visualization
permits to show the syntactical structure of the ASM in terms of a tree (similar
to an AST); the notation is inspired by the classical flowchart notation, using
green rhombuses for guards and grey rectangles for rules. The leaves of the tree
are the update rules and the macro call rules. For each macro rule in the model,

2 The update site is http://svn.code.sf.net/p/asmeta/code/code/stable/asmeta upd
ate/.

http://svn.code.sf.net/p/asmeta/code/code/stable/asmeta_update/
http://svn.code.sf.net/p/asmeta/code/code/stable/asmeta_update/
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(a) Basic visualization (b) Semantic visualization

Fig. 3. Visualizer AsmetaA – visualization of the ASM model shown in Fig. 1

there is a tree representing the definition of the rule; double-clicking on a macro
call rule shows the tree of the corresponding macro rule. Figure 3a shows the
basic visualization with AsmetaVis (starting from rule r run dialysis) of the
ASM model shown in Fig. 1.

In this case, all the macro rules are shown (i.e., the user has selected all the
call rules). Note that the visualization is particularly useful when the model is
big, as the user can decide which rules to visualize.

Control states ASMs [18] are a particular class of ASMs in which there is a
function (called phase function) that identifies the current control state; this can
be understood as a mode of the system. A control state is an abstraction of a set
of ASM states having the same value for the phase function. The main rule of a
control state ASM is a parallel of conditional rules checking the value of the phase
function: in this way, the evolution of the machine depends on the current mode.
The model in Fig. 1 is an example of control state ASM. A control state ASM
naturally induces an FSM-like representation, where each state corresponds to
one value of the phase function. Since such class of ASMs occur quite frequently,
we implemented in AsmetaVis also a semantic visualizer that is able to visualize
the FSM-like representation of a control state ASM. The visualization consists
in a graph where control states are shown using orange ellipses. The semantic
visualization of the ground model is shown in Fig. 3b. The initial control state
is identified by the PREPARATION phase; from there, the system moves to the
INITIATION phase by executing rule r run preparation; then, it moves to the
ENDING phase by executing rule r run initiation. In the ENDING phase, rule
r run ending is executed, but this does not modify the phase. Note that this
visualization turned out to be quite useful, as it allows to get an understanding
of the system evolution without the need of simulating the model.

Automatic Model Review. Due to a low familiarity of the formal method,
during the development of a formal model, the developer can introduce different
types of errors: domain specific ones (i.e., a wrong implementation of the system
requirements), and non-domain specific ones that depend on the wrong usage
of the method. In order to capture the former category of errors, domain spe-
cific properties derived from the requirements need to be verified; for the latter
category, instead, automatic techniques can be devised.
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(a) Selection of the desired meta-properties

if gears != RETRACTED then
switch doors

...
case OPEN:

switch gears
//ERROR: It should be ”gears := RETRACTED”
case RETRACTING: gears := EXTENDED
...

MP6: Every controlled location can take
any value in its codomain
Function gears does not take the values
{RETRACTED} of its domain.

(b) Example of error found by MP6

Fig. 4. Model reviewer AsmetaMA

Based on our experience in modeling with the ASM method and in teaching
it to students, we noticed that one of the main modelling (i.e., non-domain
specific) errors is related to the computational model of the ASMs, which is
based on parallel execution of function updates. If not properly guarded, they
could lead to inconsistent results by simultaneously updating the same location
to two different values (this is know as inconsistent update [18]). Such problem
is usually difficult to observe by a manual review of the code, and it is usually
only discovered during simulation.

Another problem that we observed frequently with our students is that, due
to wrong rule guards, some transition rules can never be executed.

As a minor problem, we also observed that our students tend to write over-
specified models containing unnecessary functions (that are never used); these
could be either really unnecessary, and so removed, or they should be used in
some rule that has not been implemented yet.

On the base of the previously described experience, in [7], we proposed the
AsmetaMA tool that performs automatic review of ASMs. The tool checks whether
the model contains typical errors that are usually done during the modeling
activity using ASMs (suitable meta-properties specified in CTL are checked with
the model checker AsmetaSMV [6]). Figure 4a shows the selection of the available
meta-properties in the tool.

For example, MP1 checks that no inconsistent update ever happens, and
MP7 that all the model locations are used somewhere in the model. Model
reviewer has been extremely helpful also in our modeling of complex case stud-
ies. For example, Fig. 4b shows an error that we were able to automatically
find when developing the model of a landing gear system [17]: function gears
should become RETRACTED when it is RETRACTING, but we wrongly updated it
to EXTENDED. The meta-property MP6, that checks that each location assumes
any possible value, allowed to (indirectly) spot this error.

4.2 Validation

One of the first analysis activities that is performed while writing a formal model
is validation to check that the model reflects the intended requirements. The
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Insert a boolean constant for auto_test_end:
true
<State 0 (monitored)>
auto_test_end=true
</State 0 (monitored)>
<State 1 (controlled)>
alarm(DF_PREP)=false
alarm(SAD_ERR)=false
alarm(TEMP_HIGH)=false
dialyzer_connected_contr=false
error(DF_PREP)=false
error(SAD_ERR)=false
error(TEMP_HIGH)=false
phase=PREPARATION
prepPhase=CONNECT_CONCENTRATE
preparing_DF=false
signal_lamp=GREEN
</State 1 (controlled)>
Insert a boolean constant for conn_concentrate:
true
<State 1 (monitored)>
conn_concentrate=true
</State 1 (monitored)>
<State 2 (controlled)>
alarm(DF_PREP)=false
alarm(SAD_ERR)=false
alarm(TEMP_HIGH)=false
dialyzer_connected_contr=false
error(DF_PREP)=false
error(SAD_ERR)=false
error(TEMP_HIGH)=false
phase=PREPARATION
prepPhase=SET_RINSING_PARAM
preparing_DF=true
signal_lamp=GREEN
</State 2 (controlled)>

(a) Textual (b) With AsmetaA

Fig. 5. Simulation

main validation technique of the ASMETA framework is simulation, in which
inputs are interactively provided to the model by the user who can then check
the produced state. Figure 5a shows two steps of the textual simulation (using
the simulator AsmetaS [26]) of the second refined model of the haemodialysis
case study [4].

In this case, the user sets the value of monitored functions auto test end
and conn concentrate; the main functions of interest that the user wants to
observe are phase and prepPhase. However, as shown by this small example,
at every step, the whole state is printed, and checking that the simulation is as
expected may become difficult as the state size grows. In order to tackle this
issue and improve the understandability of the simulation traces, we developed
the graphical animator AsmetaA that allows to select which functions to show,
provides dialog boxes to select the values of monitored functions, and highlights
the functions that have changed value in the new state. Figure 5b shows the
visual simulation of the previous example, in which only the functions of interest
have been selected (in the top half of the window).

4.3 Verification

The framework supports verification by model checking with the AsmetaSMV
tool [6]. The tool translates an AsmetaL model to a model of the model checker
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−− specification AG ((gears = RETRACTING & handle = DOWN) −>
AX gears = EXTENDING) is false

−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
−> State: 1.1 <−
gears = EXTENDED
handle = DOWN
doors = CLOSED

−> State: 1.2 <−
handle = UP

−> State: 1.3 <−
doors = OPENING

−> State: 1.4 <−
doors = OPEN

−> State: 1.5 <−
gears = RETRACTING
handle = DOWN

−> State: 1.6 <−
gears = EXTENDED

(a) Original counterexample

scenario lgsGMfromCex.test

load LGS GM.asm

set handle := UP;
step
check doors=OPENING;

set handle := UP;
step
check doors=OPEN;

set handle := UP;
step
check doors=OPEN;
check gears=RETRACTING;

set handle := DOWN;
step
check doors=OPEN; check gears=EXTENDED;

(b) Counterexample in Avalla

Fig. 6. Reproduction of AsmetaSMV counterexamples

NuSMV3, performs the verification with NuSMV, and translates the output back
in terms of AsmetaL locations. We tried to improve the usability of this tool in
different directions.

Smoothness of Use. First of all, the model checker is transparent to the user
who interacts with only one tool: (i) (s)he can specify the properties directly in
the AsmetaL model using the AsmetaL syntax, (ii) the invocation of NuSMV
is done directly only with the framework, (iii) and the output is captured and
pretty-printed in terms of AsmetaL locations.

Reproducibility of Counterexamples. In model checking, when a property that
should hold is falsified, the model must be fixed in order to satisfy the property
(unless the property itself is wrong). To assist the developer in this activity,
we developed a translator from the model checker counterexamples to Avalla
scenarios. Avalla scenarios allow to describe simulation sequences by providing
commands to set the values of monitored functions, to perform a step of simu-
lation, and to check that the output is as expected; the AsmetaV tool is able to
read Avalla scenarios and execute them using the simulator AsmetaS. By trans-
lating a counterexample in an Avalla scenario, the developer, while debugging
the model, can rerun it as many times as needed, till the wrong behaviour is
removed from the model. In this way, we achieved interoperability of the tools,
and a better understandability of the verification results. Figure 6 shows the
counterexample of a property for the landing gear system checking that when
the gears are retracting and the handle is pushed down, the gears must start
extending.

The violation occurred in a preliminary version of the model (as explained
in Sect. 4.1). Figure 6b shows the Avalla translation of the counterexample.

3 http://nusmv.fbk.eu/.

http://nusmv.fbk.eu/
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macro rule r changeOrganization($c in Camera) =
par
let ($getMasterCameraOCself = getMaster($c)) in
let ($prevGetMasterCameraOCself = prev($getMasterCameraOCself)) in
par
r setMaster[$prevGetMasterCameraOCself]
if not newSlave($prevGetMasterCameraOCself, $c) then
newSlave($prevGetMasterCameraOCself, $c) := true

endif
endpar

endlet
endlet
change master($c) := false

endpar

(a) Without flattener

macro rule r changeOrganization($c in Camera) =
par
r setMaster[prev(getMaster($c))]
if not newSlave(prev(getMaster($c)), $c) then
newSlave(prev(getMaster($c)), $c) := true

endif
change master($c) := false

endpar

(b) With flattener

Fig. 7. AsmetaSMV – models suitable for model checking

Supporting a Large Class of ASMs. ASMs can describe infinite state systems;
however, for model checking, only finite state ASMs having finite domains are
admissible. While this limitation is unavoidable, when we originally proposed
the tool, we had to impose further restrictions on the class of ASMs that could
be translated. Indeed, the AsmetaL language provides a powerful language that
allows to describe complex systems in a concise way. While this is advantageous
from a modeling point of view, it complicates the mapping to target languages
such as NuSMV that have much simpler notations. Some constructs of the ASM
formalism are indeed difficult to translate in the target notation, and, although
possible, we did not implement such translations because too complex. For exam-
ple, originally we did not support variable arguments in functions; if the user
wanted to use them, (s)he had to write the model as shown in Fig. 7a (taken
from [14] where we made the formalization of a self-adaptive system), where the
function arguments are made explicit by means of a let rule.

This turned out to be a quite strong limitation; indeed, we noticed that our
students were used to write quite compact and elegant models at first, but then
this constituted a problem when they had to do model checking, as they had
to refactor the ASM model in unnatural ways. Therefore, in [13] we introduced
a tool that flattens the ASM before being translated to NuSMV; the flattened
ASM is a kind of normal form that only contains parallel, update, and choose
rules. Such kind of ASM is supported by AsmetaSMV; in this way, we have been
able to enlarge the class of models supported by the tool, so allowing a smoother
use of the model checker. Figure 7b shows a model equivalent to the one in
Fig. 7a, in which functions are freely used as function arguments: this can be
supported by the new version of AsmetaSMV extended with the flattener. Note
that we could have achieved this also trying to modify directly the translation
from ASM to NuSMV; however, not only this would have been difficult, but it
would have improved only AsmetaSMV. The introduction of the flattener, instead,
improved the capabilities of different other tools of the ASMETA framework that
perform translations to other languages, namely a mapping to SPIN for test case
generation [25], to SMT for proof of refinement correctness [8,10], and to C++
code [16].
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5 Lessons Learned

We here provide a more critical overview of our efforts in targeting usability in
the ASMETA framework. Before, we discuss which tools turned out to be useful
and those that, instead, were not successful as expected. Then, we outline some
of the ongoing and future efforts that should further increase the usability of the
framework.

5.1 Critical Review of Previous Efforts

We should say that not all the techniques we applied for improving the usability
of ASMETA have been equally successful. We started developing the visualizer
AsmetaVis while we were developing the formal specification of a haemodialysis
device [4]; indeed, the model was so big that we needed a better way to visualize
its structure than the textual model. Although this was extremely helpful for us,
it is not used very frequently by our students. The reasons could be different.
First of all, the models they develop are not usually too big, and usually they
can already have an overview of the model by scrolling once or twice the textual
representation. Moreover, students are already used to code and it could be that
they do not feel the need of such visualization facilities. We still believe that the
visualizer has some potentials for communicating the model structure; however,
we need further investigation with different stakeholders (other than students)
less accustomed to code.

Among the tools that we introduced to improve the method usability, the
animator AsmetaA has been one of the most successful. Indeed, reading long sim-
ulation traces has always been annoying both for us and our students; first, small
models can already have tens of locations and their listing can be long; second,
if the listing of a state is long, understanding what has changed between two
states is not trivial. The animator solved these issues by allowing to customize
which locations to show, and by highlighting those that have been changed.

As we discussed in Sect. 4.3, the introduction of the flattener allowed to
enlarge the class of ASMs that could be model checked; the users can now write
the ASM model as they wish, with any degree of nesting and compactness.
While this is a clear improvement, it also introduced an unexpected drawback.
Since the users have a lot of freedom in writing the model, they do not consider
anymore that this will be translated for model checking and, therefore, often they
write models so complicated that then their verification does not scale. From the
experience with our students, we noticed that, when they were constrained by
the limitation of the tool (e.g., they could not use functions as argument of
other functions), they tended to write simpler models that scaled better. Our
observation is that a too high-level notation could detach the user from the
computational complexity of verification tasks; therefore, there is the need for
some approaches that give the idea of the model complexity: these could be
inspired by code metrics as cyclomatic complexity, cohesion, etc.

Being ASMETA an academic tool developed for research, most of the tools
have been originally developed as complement of some research work. As such,
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the implementation usually reached the point in which the research result was
evident and could be published; due to deadline pressure, the usability of the tool
was sometimes sacrificed. This was the case for the AsmetaSMV tool for which
we originally restricted the class of ASMs that could be translated. We believe
that, as research community, we have to promote initiatives that incentive the
production of tools not only innovative from the research point of view, but also
usable. Artefacts evaluations, now applied by major conferences as CAV and
TACAS, are good initiatives going in this direction.

5.2 Ongoing Efforts and Future Work

As explained before, the visualizer AsmetaVis is not used too much because
some users (as our students) are accustomed to code. However, there are still
problems in managing large models. One solution could be to improve the textual
editor by allowing folding/unfolding facilities as those available in main IDEs for
programming languages.

CoreASM is the other major framework for ASMs [24]; ASMETA and Core-
ASM are somehow complementary, as CoreASM mainly provides support for
model debugging, while ASMETA more focuses on simulation-based validation,
and automated verification. Being able to write models that are compatible with
both frameworks would highly increase the usability of the ASM method, as a
user could use all the available tools. As an attempt in this direction, in [3] we
proposed a uniform syntax that should be accepted by both frameworks, so that
a designer can use all the available tools for ASMs. However, such integration
(that is still ongoing) is not trivial, as there are different aspects that need to
be merged (e.g., AsmetaL is typed, while CoreASM is not). We believe that the
effort spent for this integration is worthy, as standard notations are usually ben-
eficial for the tools that adopt them, as demonstrated by the DIMACS notation
for SAT solvers and by SMT-LIB for SMT solvers.

Model refinement [1] is one of the principles of the ASM method [18], as of
other methods as B [2] and Z [21]. It consists in developing models incrementally,
from a high-level description of the system to more detailed ones, by adding, at
each refinement step, design decisions and implementation details. The ASM
notion of correct refinement is based on the correspondence of abstract and
refined runs; in the framework, we provide an SMT-based tool [8] that is able to
prove a particular kind of refinement correctness. However, the framework does
not help the designer in deciding what to refine and does not provide support
for documenting the refinement decisions; although doing a good refinement
depends on the modelling skills of the developer, we believe that a proper tool
support could help in obtaining more meaningful refinement steps. For example,
we could allow the user to specify which abstract rule is refined in which refined
rule(s); this would also help in performing more tailored refinement proofs, as we
would exactly know what needs to be related in the SMT-based proof. Moreover,
this would also improve incremental test generation techniques that combine
refinement and conformance testing [15].
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6 Related Work

Due to the lack of space, a complete survey on usability in formal methods is not
possible. We only refer to some approaches that have achieved usability using
approaches similar to those we proposed.

The formal method community seems to recognize the importance of having
visualization techniques (similar to our visualizer AsmetaVis) [23,35,41], and
there are positive success stories showing that the use of these visualization
techniques makes the use of formal methods feasible also for non-experts [35],
and also helps in teaching formal methods [34].

Some approaches perform model visualization [22,29] (similar to our basic
visualization in AsmetaVis), while others provide a visual representation of the
model execution (or model animation) [32,33]. Among these, ProB [32] is one of
the most successful tools; it performs animation of B models, and can also be
used for error and deadlock checking (similar to our model reviewer AsmetaMA),
and test-case generation.

Other approaches use UML-like notation as modeling front-end. UML-B [39]
uses the B notation as an action and constraint language for UML, and defines
the semantics of UML entities via a translation into B. In a similar way, in [36],
transforming rules are given from UML models to Object-Z constructs. In the
method SPACE and its supporting tool Arctis [31], services are composed of
collaborative building blocks that encapsulate behavioral patterns expressed as
UML 2.0 collaborations and activities.

Regarding model review, different approaches have been proposed for differ-
ent formal methods. They all automatize some checks that are usually performed
manually by human reviewers; Parnas, in a report about the certification of a
nuclear plant, observed that “reviewers spent too much of their time and energy
checking for simple, application-independent properties which distracted them
from the more difficult, safety-relevant issues” [37]. Approaches for automatic
model review have been proposed, e.g., for Software Cost Reduction (SCR) mod-
els [28], software requirements specifications (SRS) [30], and UML [38].

7 Conclusions

The paper presented our efforts in addressing usability in the ASMETA frame-
work, and a critical review of what has been more successful and what less.

Note that all our conclusions are only based on our experience; properly
assessing the usability of a method/technique would need user studies that, how-
ever, are difficult and costly to conduct. Moreover, we defined usability according
to our understanding, and not relying on notions of usability provided by the
Human-Computer Interaction community [20,40]; as future work, it would be
interesting to investigate which of those concepts also apply to our framework
and which, instead, we are not targeting.

Moreover, all our observations come from the use of the framework by us
and by our students; we do not know what would work and what wouldn’t in an
industrial context.
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2 Commissariat à l’Énergie Atomique et aux Énergies Alternatives,

17 Rue des Martyrs, 38054 Grenoble Cedex, France
{olivier.debicki,suzanne.lesecq}@cea.fr

Abstract. Reviews of various kinds are an established part of system
development, but rely on the vigilance and thoroughness of the human
participants for their quality. The use of formal methods as part of the
toolkit deployed during review can increase those elements of depend-
ability that formal methods do best to support. A methodology that
proposes that formal techniques are used alongside conventional system
construction practices during review is introduced. These can reduce the
human burden of ensuring review quality, even if the coupling between
the formal and conventional strands is not itself formally enforced.

The approach advocated was inspired by experience of the use of for-
mal methods in the INSPEX Project. This project targets the creation
of a minaturised smart obstacle detection system, to be clipped onto a
visually impaired or blind (VIB) person’s white cane, that would give
aural feedback to the user about obstacles in front of them. The increas-
ing complexity of such systems itself invites the use of formal techniques
during development, but the hardware challenges preclude the applica-
tion of textbook top-down formal methods. The use of formal methods
in INSPEX is ad hoc, and the methodology proposed is an abstraction
from the practical experience.

1 Introduction

Reviews of various kinds have been part and parcel of system development
methodologies since systems of more than a trivial size began to be conceived.
To the extent that reviews and inspections engage with the details of system
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Fig. 1. A selection of potential INSPEX applications.

functionality, they rely on the vigilance and thoroughness of the human partici-
pants to ensure the quality of the review results in terms of delivering a reliable
outcome. But since human vigilance is a fallible attribute, while a good review
outcome encourages belief in the system’s dependability, it does not guarantee
it. The use of formal methods as part of the toolkit deployed during reviews can
increase those elements of dependability that formal methods do best to support.

In this paper, a methodology that proposes that formal modelling and veri-
fication activities should take place alongside conventional system construction
practices is introduced. When this is done, the insights from the formal strand of
the work must be reconciled with the insights from the conventional strand. But
since formal techniques can enforce such aspects as consistency and completeness
very effectively, when this approach is pursued, the human burden of ensuring
these via reviews and inspections is reduced, even if the coupling between the
formal and conventional strands is not itself formally enforced.

The approach advocated was inspired by experience of the use of formal meth-
ods in the INSPEX Project. This project targets the creation of a minaturised
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smart obstacle detection system, in turn, inspired by the sensor constellations
and their supporting software that underpin the intelligence of contemporary
automated vehicle driving systems. While such a system can have many poten-
tial applications—see Fig. 1, which illustrates a selection of potential use cases
for an INSPEX-like system—the specific goal of INSPEX is the creation of a
TRL4 prototype device to clip on to a visually impaired or blind (VIB) person’s
white cane. This would give aural feedback to the user about obstacles in front
of them, in order that the risks of collisions, and of accidents, can be dimin-
ished. The increasing complexity of such multi-sensor systems creates challenges
for ensuring their correct operation, inviting the introduction of formal tech-
niques to help maximise system dependability. Still, the preponderant challenge
to building such systems resides at the hardware end of the development, and
this impedes the routine application of top-down formal methods, resulting in an
ad hoc approach to the use of formal techniques in INSPEX. The methodology
proposed in this paper is an abstraction from this practical experience.

The rest of this paper is as follows. The next two sections focus on
INSPEX, illuminating the background to our proposal. Thus, Sect. 2 overviews
the INSPEX VIB system, and Sect. 3 discusses the INSPEX design approach, and
the areas in which formal techniques were deployed during the development. We
concentrate on the issue that provided the inspiration for our proposed method-
ology, and on how formal modelling and verification evolved de facto into a
rigorous code inspection technique. The abstract methodological framework we
propose is described in Sect. 4, which may be read without reference to the earlier
sections if desired. Sect. 5 concludes.

2 The INSPEX VIB System

Fig. 2. The complete INSPEX system
for the VIB use case.

Given the trend in sensors towards
smaller, lighter and more power efficient
devices, the INSPEX concept envisages
a plethora of possible applications for a
smart device that is truly capable of fine
grained 3D spatial awareness. A range of
these is indicated in Fig. 1.

As stated earlier, the INSPEX Project
itself focuses on the VIB use case. Figure 2
shows the complete INSPEX system for
this use case from the user’s perspective.
The complete system consists of three
modules. There is the mobile detection
device which contains the main sensors
(of which more shortly). There is a pair
of open air earbuds which transmit a bin-

aural audio representation of the environment sensed by the detection unit to
the user. And there is a smartphone. This receives the information from the
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detection unit, information about the user’s head orientation from the earbuds,
and other helpful signals from any relevant smart beacons that there might be
in the surroundings, and computes an audio signal depicting this information to
be presented to the user, which is then sent to the earbuds via Bluetooth.

Fig. 3. The architecture of the INSPEX VIB system.

The detection unit is the
module that is fixed to a
VIB person’s white cane. Its
architecture is shown in the
left part of Fig. 3. It contains
the sensors that generate the
data needed for the rest of
the system. The chief among
these comprise a short range
LiDAR, a long range LiDAR,
a wideband RADAR, and
a MEMS ultrasound sensor.

Besides these there are the support services that they need, namely an energy
source unit, environmental sensors for ambient light, temperature and humidity,
an inertial measurement unit (IMU) and a generic embedded platform (GEP).
The latter gathers all the data generated and performs all the computations
needed to support all the other devices mentioned.

The main sensors are subject to significant development and minaturisation
by a number of partners in the INSPEX Project. The short range LiDAR is
developed by the Swiss Center for Electronics and Microtechnology (CSEM)
and the French Alternative Energies and Atomic Energy Commission (CEA).
The long range LiDAR is developed by the Tyndall National Institute Cork and
SensL Technologies, while the wideband RADAR is also developed by CEA. The
MEMS ultrasound sensor is from STMicroelectronics (STM). Cork Institute of
Technology (CIT) design the containing enclosure and support services.

The smartphone that performs the processing needed to convert the geomet-
rical information provided by the detection unit into an aural signal, needs to
take into account the movement of the user’s head, this being independent from
the movement of the white cane. So the binaural earbuds contain an IMU sensor
to detect movement, and this information is transmitted to the smartphone. The
earbud system is designed by French SME GoSense. Similar remarks regarding
movement apply to the main detection unit which also contains an IMU sensor.
The smartphone takes all of this into account in computing an aural image which
is stationary in 3D space, thus enabling meaningful perception of obstacle loca-
tion by the user. Figure 3 shows all the contributing elements and the Bluetooth
connections between modules.

Of course, the idea for the INSPEX VIB system did not come out of thin air.
A number of white cane add-ons are already available on the market, for example
[20,23,26]. The INSPEX system is more complex though, and utilises more sen-
sors, in order to give users more complete and more precise information, and this
is the source of the added complexity of INSPEX, compared with these earlier
systems.
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3 The INSPEX Design Approach and the Role of Formal
Methods in INSPEX

INSPEX is, first and foremost, a hardware systems integration project. Without
working hardware, the project achieves nothing. So the overwhelming emphasis
in the project is on overcoming the physical challenges in bringing the equipment
to life—everything from the detailed properties of the sensors and their physical
signals, to the minaturisation of the constituent devices to the extent possible,
to the movement of these signals and their mutual isolation, to the significant
software challenges of a design of such complexity, to the properties of the main
INSPEX device container, with its need for robustness and durability under a
variety of weather conditions while at the same time permitting each sensor to
transmit its signal and receive the corresponding reflection.

If formal approaches are to be used to help control the complexity of such an
undertaking (a decision taken early in INSPEX), some methodological novelty is
going to be unavoidable compared with the familiar way that such techniques are
applied in practice [1,4,7,13]. One consequence of this was that it was not clear
at the outset what the best strategies for applying formal techniques in INSPEX
would be. In the end, the most useful approach turned out to be to use Event-B
with its Rodin toolkit [2,22]. This conveniently supported formal modelling and
verification. Some use was also made of Blast [6] and of PRISM [18]. Below, we
outline the areas of the project upon which it was decided to focus the use of
formal techniques, and we elaborate one area, the sensor reading pathway, which
spurred the conception of a methodologically distinct use of formal technologies
as a formalised contributor to development review.

3.1 Modelling INSPEX Power Management

Given that the main INSPEX device is intended for the maximum possible
minaturisation and portability, striving for the minimum possible expenditure
of power is a clear necessity. Accordingly, one strand of the INSPEX Project
entailed the development of a power management strategy, in order to eke out
the capacity of the power supply system to the greatest degree possible.

If we are candid, the sheer challenge of bringing the various not-off-the-shelf
hardware components that form the core of the INSPEX prototype to an ade-
quate level of development, is sufficiently taxing that switching everything on and
having it working demonstrably is itself considered a resounding success. Nev-
ertheless, as the system progresses towards a commercial product, sophisticated
tuning of power use will become important, so design of a power management
strategy was included as a strand of the INSPEX development.

In a complex system such as INSPEX, each sensor and subsystem has its
own power consumption characteristics. But an exclusive focus on the individual
subsystems risks paying too little attention to issues of global coordination. For
this reason, a higher level perspective towards power management was adopted,
which made it an ideal candidate for predicting power consumption behaviour
using modelling via formal techniques.
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The approach used for the modelling work centred on Event-B and its Rodin
toolkit [2,22], the latter an being outcome of the RODIN [21], DEPLOY [9]
and ADVANCE [3] projects. PRISM [18] was used to handle the quantitative
aspects. Being targetted at future needs, the power management work was much
closer to a textbook formal development, and thus of less interest for this paper.

3.2 Modelling and Verification of the Sensor Readings Pathway

In contrast to the power management work, the handling of the data from the
sensors is not only mission critical (without it the hardware does not work at
all), but complex (because of the optimisations used), and it also relies on preex-
isting code (because the relevant software is an outgrowth of code used in earlier
projects, as well as containing portions for future deployment). The complexity
of this subsystem warranted the employment of formal techniques to improve
assurance. However, a pure top-down approach to formal modelling and verifi-
cation was not practical.

The information from the sensors is gathered by the acquisition software.
This accepts interrupts from the short and long range LiDARs, the RADAR,
the MEMS (ultrasound) and the IMU (inertial measurement unit). These need
to be timestamped so that the freshness of the data can later be taken into
account. At regular intervals, the available fresh data is packaged and transmit-
ted to the fusion software. The fusion software then uses an approach to fusion
based on Bayesian estimation [15] to compute an occupation grid, which is an
estimate of which sections of the 3D space in front of the user are occupied by
obstacles. While conventional techniques for data fusion [14] are computationally
too intensive for a minaturised application like INSPEX, in [10] there is a much
more lightweight approach to the occupation grid problem that makes it suit-
able for adoption in INSPEX. The granularity of the estimate that is obtained
is constrained by the quality of the information received, by the bandwidth of
the Bluetooth connection to the smartphone, by many pragmatic hardware and
architectural considerations, and by the computational power available. More-
over, the detailed operation of the data fusion algorithm is a tightly protected
commercial secret of CEA,1 so only the most basic information about its input
interface is available.

Thus the sensor readings acquisition software is complex, it is concurrent
(because all the sensors involved act concurrently and with varying levels of
reliability), and it must cope with a wide range of timescales (the LiDARs
and RADAR act almost instantaneously, while by comparison, the ultrasound
takes orders of magnitude longer to respond). On the one hand, this makes it a
prime candidate for scrutiny via formal techniques with the aim of reinforcing
its dependability. On the other, it raises interesting methodological questions
regarding quite how one might go about doing that.

1 It remains a secret, not withstanding the IP protection provisions of the INSPEX
Project’s Grant Agreement, Consortium Agreement, and even bilateral software
access and nondisclosure agreements between consortium partners.
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The way this challenge was approached involved an eclectic mix of top-down
and bottom-up elements. When the task was started, there was already in exis-
tence a large body of code, developed conventionally. It was clear that an under-
standing of this had to be gained before much progress could be made. So at the
outset, there was a lot of informal discussion regarding the purpose of the code
and its main constituents. This yielded enough information to enable some ini-
tial formal modelling to take place, but was not yet precise enough that detailed
refinement would be productive in creating models that accurately reflected the
reality of the code (as opposed to merely embodying the imagination of the
model’s creators regarding desirable lower level properties of the code).

To go further, the code itself had to be examined in detail. Facing up to a large
body of C code that embodies the elements mentioned above is a considerable
challenge. The implementation level code is replete with a large amount of low
level detail that is not directly pertinent to the concerns of high level correctness.
And quite apart from that, the scenario being described begs the question: what
exactly does high level correctness amount to?

In a textbook style formal methods aware development milieu, there is some
process that captures the requirements, sharpens the focus to a specification,
after which a formal development proceeds in stages, eventually resulting in
implementation code. Some of the earier phases of this are captured in docu-
mentation of one kind or another.

In a hardware centred project such as INSPEX, the focus being so much on
the hardware has the following consequence. The hardware constrains (at a very
low level of abstraction) what the software can do to such an extent that little
documentation is produced. In essence, the low level code defines itself. And so,
from a higher level viewpoint, correctness criteria have to be elicited from the
code via a combination of: understanding the code, abstracting from relevant
parts of the code, reflection about the code, and reconciling the conclusions
evinced from this process with what ‘makes sense’ in the context of what is
known about the application and its context. Not unnaturally, all of this takes
quite some time.

The fruits of this activity can be summarised as follows. There are some
relatively self-evident high level properties, stating for example that sensors have
to be OFF before they can be switched ON, and vice versa. These are easy
to model and verify without much deep investigation. Beyond that, comes the
recognition that the software maintains a buffer in which sensor data is recorded.
Saying that there is a buffer (a familiar notion) does not elaborate exactly how
that buffer is used. In the INSPEX context, the following facts pertinent to the
buffer have to be taken into account.

Messages from the various sensors (LiDARs, RADAR, MEMS US, IMU, etc.)
arrive at the Generic Embedded Processor (GEP) and are inserted into the
buffer. To be useful in terms of the 3D objective of the application, they have
to be associated with a time and orientation. Timing can be handled by the
real time clock of the GEP, while orientation is inferred from the IMU. But the
IMU is a separate sensor, sending its data at time points different from those at
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which the other sensors send. To mitigate this, a consecutive pair of IMU data
messages are used as brackets, within which the data messages which arrive from
other sensors and which are timestamped with values between the timestamps
of the two IMU brackets are aggregated into a ‘frame’, and this frame is the
basic unit which is passed to the fusion software. Obviously, what has just been
described goes well beyond what is one’s first thought on hearing the word
‘buffer’, and presents a non-trivial undertaking for the formal modelling and
verification activity, especially considering that the devices involved are subject
to failures of various kinds and the system has to be robust against these.

It should be clear already that what was involved in adding the assurance
obtainable via verification to the sensor readings acquisition software entailed a
deep analysis of the existing code, and contemplation of how its high level pur-
pose could be formalised. Thus, the formal modelling and verification amounted
de facto to a sophisticated kind of code inspection, and this is what has inspired
us to make the more abstract methological proposal in the remainder of this
paper.

4 Formal Modelling and Verification as Rigorous Review
Technology

In this section we abstract from, and extrapolate, our experience with INSPEX
described in the preceding sections, and we present an approach to the use of
formal modelling and verification as an adjunct to conventional approaches to
system development with an emphasis on the use of formal techniques as a
review technology. The latter aspect intersects with existing ideas on reviews,
both formal and less formal, that have been around for a number of decades.

The first point to note is that we are aiming at development methodologies
that do not wish to, or do not have the resources to, or are unwilling to, adapt
their main development path to accommodate the exigencies of a fully formalised
development strategy. Nevertheless they recognise that formal approaches can
yield benefits in terms of improved dependability, and wish to gain what benefits
they can from a cooperative relationship with formal techniques.2 In this context,
we must assume that the formal work that is to take place is supported by
resources separate from those that support the existing practices.

The fact that we are concerned with development practices that are specif-
ically not led by formal development considerations, implies that we cannot be
too prescriptive about how the formal and conventional practices might work
together. Therefore, a considerable degree of flexibility is needed in how formal
techniques might fit alongside existing conventional techniques. However, we can
infer the following.
2 In the case of INSPEX, it was the lack of resources that prevented a greater integra-

tion with formal techniques. It would have necessitated a considerable investment
of time and manpower, far beyond the resources of the project, to evolve the exist-
ing practices of firmware and hardware development to bring them closer to formal
approaches.
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Since the conventional techniques are specifically not formal, the connection
between the formal and conventional sides must be human mediated. For this
to be possible, the formal side must replicate some of what the conventional
side does; otherwise, there would be no sensible point of comparison, no bridge,
between the two sides.

The latter point is the focus of costs and benefits. The costs are obvious:
the additional resources that must be found to support the formal work. The
benefits are to be found in the independent scrutiny that a formal reappraisal
of the relevant elements of the conventional work brings. Independent scrutiny
of any kind is widely recognised as being beneficial, even if its benefits are often
hard to quantify, and that, far beyond purely technical considerations.

The approach outlined has its strengths and weaknesses too. An obvious
strength is the much greater control over consistency and completeness that a
formal, mechanically checked definition of a system possesses, when compared
with a purely conventionally developed counterpart. An equally obvious weak-
ness though, lies in the fact that the formally defined model is the translation
of a human interpretation of some conventionally developed counterpart, and
therefore, its reliability is wholly dependent on the reliability of the human inter-
pretation. Part and parcel of our proposal then, is that the human interpretation
of the conventional system model is likely to be more reliable than human per-
formed consistency and completeness checking of the same conventional system
model, based on the presumption that consistency and completeness checking are
detailed, bureaucratic activities, better done by machines, whereas reinterpreta-
tion of a system model from a different technical perspective suits the abilities of
the human imagination better. This observation has the potential to turn what
is a perceived weakness, partly at least, into a strength also.

4.1 Reviews

The role of formal techniques within conventional development, as suggested
heretofore, is to reappraise the conventional development, casting a diverse per-
spective on it, with the aim of improving its overall integrity. This brings it close
to the traditional role played by reviews of one kind or another. We turn to this
issue now.

No activity of any scale can come to a successful conclusion without an
appropriate degree of oversight as it proceeds. The construction of a complex
artifact such as a digital system is no exception, and for the oversight to be
effective, it has to engage sufficiently with the actual technical details of the
project.3 Thus reviewing of technical progress has always been around, one way
or another.

3 The hazards of not engaging with the technical details sufficiently are well illustrated
in [25], which describes how the original management of the Crossrail Project in the
UK failed to stay in close touch with the technical progress (and problems), resulting
in sudden announcements of delays of two or more years, and budget overruns of
billions of GBP.
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The idea of formalising the structure of reviews, especially reviews of the
code in large software projects, was pioneered by Fagan [11,12], whose proposals
aimed to maximise the effectiveness of the reviewing process by formalising the
process in a way that made the best use of the review’s human participants,
in particular, paying attention to the limitations of human attention span, etc.
Fagan’s ideas gained widespread traction in the mainstream [8,16,17,24], and
different kinds of review were developed to suit different stages of development
and different kinds of project: e.g. requirements reviews, design reviews, as well
as code reviews. Different levels of rigour for the reviewing process also emerged,
ranging from a structured discussion with a wide range of stakeholders in an
informal walkthrough, to much more formalised processes involving a strictly
defined team of participants each of which engages in a precisely defined role
within the review, which itself takes place within tightly constrained time limits
and procedural norms. The article [19] contains an interesting discussion about
the world of reviews of different kinds.

Since the use of formal techniques as described above is intended to bring
increased dependability to an otherwise conventional development process via
the oversight that a formal reformulation can bring, and the use of formally
structured reviews has the same aim via the oversight that the review process
imposes, it is natural to try to blend the two approaches. That is the aim of the
proposal of this paper.

To blend the two ideas, for the sake of definiteness, we have in mind a rel-
atively formally structured review process, but in fact, this is not obligatory.
The essence of our proposal is that formal techniques be used to reappraise the
appropriateness of the conventionally developed system—reviews are a conve-
nient means of crystalising the conclusions of such a process.4

A relatively formally structured review will have a number of formal roles,
with at minimum the following. There is a moderator who ensures that when
the review meeting is convened, it flows smoothly, and does not get stalled, or
distracted by side issues. There is a recorder who focuses on ensuring that an
accurate record of the review process is maintained, but who takes no active
part in the proceedings. After that there are a number of technical personnel
concerned with different perspectives on the system being developed, as suits
the situation. In the next sections, we look at how this plays out at the require-
ments, design, and implementation levels. However, in keeping with allowing the
approach to be adaptable to different kinds of development scenarios, we do not
assume, at the lower levels, that the corresponding higher level activities have
necessarily taken place.

4.2 The Requirements Level Process

At a high level requirements review, the technical personnel will range from
stakeholder representatives to high level designers. The fact that a requirements
4 In INSPEX, formal reviews of this kind were not constituted as such. Instead the

conclusions of the modelling and verification work were captured in reports that
were delivered to the conventional developers.
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level review is conceivable, implies that a significant amount of requirements level
documentation is envisaged to exist. In this context, we can propose a process
incorporating formal technical elements as follows:

– As well as the stated technical personnel, there is an individual competent
in formal modelling and verification technologies, referred to below as the
FM-tech.

– Part way though the requirements definition process, preliminary require-
ments documents are released to the FM-tech, who begins building high
level models. These may be built in any suitable formalism. Model based
approaches are often closest to design and implementation paradigms, but
if the requirements are mostly of a behavioural type, then temporal logic
formalisms may be more useful.

– If inconsistencies or omissions are detected during model building by the FM-
tech, these are queried and resolved as they arise.

– At the completion of the requirements definition process, the final set of
requirements documents are released to the FM-tech, who completes model
building and summarises findings in a report.

– The requirements review takes place in the standard manner. During this,
the FM-tech reports findings resulting from the formal model building. Issues
to be resolved are documented, for followup post-review. A criterion for sat-
isfactory resolution is consistency between the final requirements documents
and the formal models (insofar as the informal nature of the former permits).

Following the above process encourages achieving as much completeness at the
requirements level at the earliest possible opportunity, yet without abandoning
traditional requirements activities completely. Lack of precision in requirements
is often bewailed in commentary on the system development activity as a major
source of system defects. In [1,2], as well as many other places (especially works
discussing the deployment of the B-Method), the necessity of completely rewrit-
ing the requirements documents before any formal development can begin is
ruefully repeated. But even if formal development from the requirements is not
envisaged, requirements documentation that enjoys a demonstrable level of con-
sistency and completeness will help to ensure a smooth development process.

4.3 The Design Level Process

After the requirements definition process (or even without there having been
such a process, if the requirements are intuitively well enough understood by the
system designers), system design can proceed with some precision. As before, the
fact that a design review is envisaged at all, implies the creation of appropriate
amount of design level documentation. Focusing on the review process again, the
technical personnel involved will cover a range of concerns, but probably will not
include stakeholders in the same way. A process incorporating formal technical
elements can then be proposed as follows:
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– As before, there is an FM-tech (or perhaps more than one) involved.
– Part way though the design definition process, preliminary documentation

is released to the FM-tech who begins building intermediate level models.
These ought to be characterised as refinements of the corresponding high
level models (provided such high level models have been created earlier).
However, due to possible lack of precision at a higher level, refinement might
only become possible after some alteration of the high level models. In such
cases reconsideration of consistency with high level requirements should take
place, and the relevant issues should be documented.

– At the completion of the design process, the final set of design documents
are released to FM-tech, who completes model building and refinement, and
summarises findings in a report.

– The design review takes place in the standard manner. During this, the FM-
tech reports findings resulting from the formal modelling and refinement.
Issues to be resolved are documented, for followup post-review. A criterion
for satisfactory resolution is thoroughgoing consistency, top to bottom.

For many system types, where there have been well understood precursor sys-
tems developed by the same teams, design is the most likely starting point for
development. For such systems the design stage is the earliest stage at which the
kind of formal scrutiny proposed in this paper becomes possible.

4.4 The Implementation Level

Regardless of whether the activities at requirements or design level have, or have
not taken place, the corresponding review processes at implementation level are
always possible in principle. This is because the implementation level definition
of any system is always a formal one, irrespective of whether it is one that is easily
amenable to formal analysis, or whether it addresses the system requirements
(whether clearly articulated or intuitively understood) either appropriately or
correctly. Thus, following on from design is coding and other implementation
activity, and we make a proposal in sympathy with those above, for reviewing
the code that results from the implementation process.

– As before, there is an FM-tech (or perhaps more than one) involved.
– Part way though coding, some relatively complete portions of the code are

released to the FM-tech who begins to assess consistency with earlier mod-
els, and begins application of source code analysis tools. Issues germane to
eventual consistency are documented for resolution as work progresses.

– At the completion of coding, the final code is released to the FM-tech, who
completes analysis (both human level and tool based), and summarises find-
ings in a report.

– The code review takes place. During this, as well as the usual commentary
arising from human inspection of the code, the FM-tech reports findings
resulting from reconciling the refined formal models with the code, and the
outputs from source code analysis tools. As always, issues to be resolved are
documented, for followup post-review. A criterion for satisfactory resolution
is thoroughgoing consistency, top to bottom.



Formal Modelling and Verification as Rigorous Review Technology 89

4.5 Development Processes and the Involvement of Formalism

The above proposals might easily be seen as an elaboration of a process that is
both a traditionally based waterfall process, and one that is rather costly. We
address these two points in turn.

Regarding cost, it is true that introducing formal techniques into the devel-
opment process raises costs early on. However, this has to be weighed against
cost savings later down the line when faults discovered in the field have to be
remedied, usually at a much higher cost. It is by now relatively well known
that, done in a judicious manner, formally assisted development need not cost
more, overall, than traditional development, when total system lifetime costs are
properly accounted.

Furthermore, in the review scheme we proposed above, we advocated the
involvement of the FM-tech from a relatively early stage. Although the maxi-
mum degree of independence of the FM-tech maximises also the diversity of per-
spective that the FM-tech brings to the appraisal of the system, the maximum
degree of ignorance about its details maximises also the time taken—and thus the
cost—of achieving a comprehensive and accurate review. We have advocated a
middle way: the FM-tech should have some familiarity—but not too much—with
the subject of the development, so that a healthy (but not unhealthy) degree of
skepticism can be brought to the FM-tech’s involvement.

Regarding the waterfall basis of the description, its main purpose was ped-
agogical, in that the clean separations of the various phases of development
facilitated the explanation of our proposal. We claim that our proposal can be
adapted to more agile methodologies without too much modification. In such a
more agile process, successive iterations, or sprints, could be embellished with
a lightweight review process gleaned from the above account. Perhaps the main
apparent obstacle to doing so, though, is the ill-adaptedness of formal refinement
technologies in general, to modifications of a given level of abstraction after it
is once completed—such modifications can seldom be expressed as refinements.
One approach to this is to simply redo the formal development after each such
modification—with good tool support this is unlikely to be too burdensome in
developments of modest size. An alternative approach comes through enlarging
the range of processes that a formal system model can undergo, to include the
increments of functionality typified in successive sprints. In [5] there is a proposal
for precisely such an enhancement to formal development processes, intended for
iterative development, and adapted to Event-B.

5 Conclusions

This paper takes the experience of using formal methods in the context of the
INSPEX Project, and abstracts that experience to propose an approach to the
use of formal techniques as an adjunct to conventional development processes.
In particular, is it proposed to use formal techniques as a more rigorous version
of review techniques that might form an element of conventional development
processes anyway.
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Thus the preceding sections overviewed the inspiration for INSPEX aris-
ing from within the autonomous automotive domain, and how the potential for
minaturisation and low power consumption in the sensor families used for auto-
motive autonomous navigation opens the door for a host of novel applications.
Prime among these is one that targets the desire to assist the visually impaired
and blind to navigate more safely in their environment, by providing information
about the whole of the 3D space in front of the user via an aural information
feed that can be comprehended by the VIB user.5

The adoption of formal techniques by the INSPEX Project was a consequence
of the recognition that increasing complexity of such integrated multi-sensor
systems as foreseen in INSPEX, creates an increasing risk that errors in the
design and implementation may survive into production systems undetected.
This spurs the adoption of more disciplined techniques for the development of
such systems, and one of the most robust approaches of this type involves the
introduction of formal approaches during the development process.

The fact that as a primarily hardware led project, the development route
would need to be grounded in conventional hardware design techniques to yield
results on time and within cost, entailed considerable creativity in aligning the
usual practice in the embedded field with the usual practice in the formal domain.
This enforced novelty in the application of formal technologies in INSPEX was
paramount in inspiring the idea that salient aspects of this experience could be
generalised to make them applicable more widely.

We thus outlined the use of formal techniques in INSPEX. On the one hand,
there was a basically top-down approach for the power management strategy
modelling exercise, which proceeded in a manner relatively recognisable as a
top-down methodology. On the other hand there was a much more bottom-up
approach for the verification of the sensor readings pathway, the discovery of
the relevant correctness criteria there, and their reconciliation with the existing
implementation.

The latter led to the main novel contribution of this paper, namely the pro-
posal that formal modelling and verification can be used to form a significant
addition to the power of review approaches in conventional system development.
When the unavoidably unforgiving nature of formal systems is brought into the
review process, primarily as a consistency and completeness enforcement tool,
the successful completion of the modelling and verification task confirms that
nothing essential has been left out at the given level of abstraction. This is
something that is left to the vigilance of the human reviewer in the conventional
review process, and is much harder to achieve there, given that it involves recog-
nising what has been erroneously left out, as well as recognising what might be
wrong with what has been put in.

5 The ‘first responder’ use case, shown in Fig. 1, refers especially to firefighters who
often have to work in smoke-filled environments, and thus experience issues similar
to VIB persons. It thus forms a natural follow-up to the VIB use case.
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DataMod 2019 Organizers’ Message

The 8th International Symposium From Data to Models and Back (DataMod 2019) was
held in Porto, Portugal, during 7–8 October 2019. The symposium aimed at bringing
together practitioners and researchers from academia, industry, government and non-
government organizations to present research results and exchange experiences, ideas,
and solutions for modeling and analyzing complex systems and using knowledge
management strategies, technology, and systems in various domain areas such as
ecology, biology, medicine, climate, governance, education, and social software
engineering. The Symposium received a total of 13 submissions. After a careful review
process, which involved at least three peer reviewers per submission, the Program
Committee accepted all of them, eight as regular papers for presentation at the sym-
posium and inclusion in the post-proceedings, and three as short presentation reports.
The program of DataMod 2019 was also enriched by two keynote speeches: the first,
held by Mieke Massink, entitled “Verification of Data in Space and Time”; the second,
by Ana Cavalcanti, entitled “Diagrammatic physical robot models in RoboSim”.

DataMod 2019 was a successful event thanks to the contribution of several people
involved in its organization at different levels. In particular, we are grateful to the whole
Steering Committee, and to the Organizing Committee, formed by Oana Andrei,
Antonio Cerone and Paolo Milazzo, for their assistance in the organization of the event.
We would like to thank the organizers of FM’19, and in particular the Workshop and
Tutorial Chairs, Emil Sekerinski and Nelma Moreira. We would also like to thank the
Program Committee and the additional reviewers for their work in reviewing the
papers. The process of reviewing and selecting papers was supported by EasyChair.
We thank all attendees of the symposium and hope that this event helped in sharing
ideas and establishing new collaborations.

December 2019 Vashti Galpin
Riccardo Guidotti

Mirco Nanni

Organization

DataMod 2019 - Steering Commmittee

Antonio Cerone Nazarbayev University, Kazakhstan
Jane Hillston University of Edinburgh, UK
Marijn Janssen Delft University of Technology,

The Netherlands
Stan Matwin University of Ottawa, Canada
Paolo Milazzo University of Pisa, Italy
Anna Monreale University of Pisa, Italy



DataMod 2019 - Program Committee

Oana Andrei University of Glasgow, UK
Luís Barbosa United Nations University, UNU-EGOV,

Portugal
Giovanna Broccia ISTI-CNR, Italy
Antonio Cerone Nazarbayev University, Kazakhstan
Vittorio Cuculo Université degli Studi di Milano, Italy
Ricardo Czekster University of Santa Cruz do Sul, Brazil
Giuditta Franco University of Verona, Italy
Cheng Fu University of Zurich, Switzerland
Vashti Galpin (Co-chair) University of Edinburgh, UK
Rocio Gonzalez-Diaz University of Seville, Spain
Riccardo Guidotti (Co-chair) ISTI-CNR, Italy
Tias Guns Vrije Universiteit Brussel, Belgium
Haosheng Huang University of Zurich, Switzerland
Juliana Kuster Filipe Bowles University of St Andrews, UK
Martin Lukac Nazarbayev University, Kazakhstan
Paolo Milazzo University of Pisa, Italy
Anna Monreale University of Pisa, Italy
Mirco Musolesi University College London, UK
Mirco Nanni (Co-chair) ISTI-CNR, Italy
Amedeo Napoli LORIA Nancy, CNRS, France
Laura Nenzi TU Wien, Austria
Nicola Paoletti Stony Brook University, USA
Nikos Pelekis University of Piraeus, Greece
Roberto Pellungrini ISTI-CNR, Italy
Carla Piazza University of Udine, Italy
Giuseppe Pirrò University of Rome, Italy
Gwen Salaün University of Grenoble Alpes, France
Mark Sterling Nazarbayev University, Kazakhstan
Andrea Tagarelli University of Calabria, Italy
Luca Tesei University of Camerino, Italy
Evgenij Thorstensen University of Oslo, Norway
Ludovica Luisa Vissat University of Edinburgh, UK

DataMod 2019 - Organizing Committee

Oana Andrei University of Glasgow, UK
Antonio Cerone Nazarbayev University, Kazakhstan
Paolo Milazzo University of Pisa, Italy

DataMod 2019 Organizers’ Message 95



Keynote Talks



Verification of Data in Space and Time

Mieke Massink

Consiglio Nazionale delle Ricerche - Istituto di Scienza e Tecnologie
dell’Informazione ‘A. Faedo’, CNR, Pisai, Italy

Abstract. Research data can take very many forms, but in many cases there are
interesting relations between elements of data. Such relations could be of var-
ious nature, for example causal relations, temporal relations, spatial relations or
any combination thereof, to mention a few. Reasoning about time and space and
their combination has a long history. Only more recently, reasoning about
spatial aspects of systems, that is, the properties of entities that relate to their
position, distance, connectivity and reachability in space, have received
increasing attention in computer science. We present recent results in spatial and
spatio-temporal logic, that have their origin in Modal logic and early work
dating back to McKinsey and Tarksi, and their evolution into efficient spatial
and spatio-temporal model checking methods. We illustrate these methods by
their application to various domains ranging from smart public transportation to
medical imaging. In the latter domain, data-analysis techniques, such as machine
learning, provide a popular new area of research too, opening the way for an
interesting discussion on how various methods could be used profitable in a
complementary way.



Diagrammatic Physical Robot Models
in Robosim

Ana Cavalcanti

Department of Computer Science, University of York, York, UK

Abstract. Simulation is a favoured technique for analysis of robotic systems.
Lack of standardisation and portability between simulators, however, has impact
on usability and cost of simulations. We present RoboSim, a diagrammatic tool-
independent domain-specific language to model robotic platforms and their
controllers. It can be regarded as a profile of UML/SysML enriched with time
primitives, differential equations, and a formal process algebraic semantics. In
RoboSim, a robotic platform is specified by a block diagram, which can be
linked to a data model to characterise how events, variables, and operations of
the software controller map to inputs and outputs of sensors and actuators. The
behaviours of inputs, outputs, and joints are specified by systems of differential
algebraic equations. Simulations and mathematical models for proof can be
generated automatically from RoboSim models.



Validation of a Simulation Algorithm
for Safety-Critical Human Multitasking

Giovanna Broccia1(B), Paolo Milazzo1, Cristina Belviso2,
and Carmen Berrocal Montiel2

1 Department of Computer Science, University of Pisa, Pisa, Italy
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2 Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica,
University of Pisa, Pisa, Italy
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Abstract. Multitasking has become surprisingly present in our life. This
is mostly due to the fact that nowadays most of our activities involve
the interaction with one or more devices. In such a context the brain
mechanism of selective attention plays a key role in determining the
success of a human’s interaction with a device. Indeed, it is a resource to
be shared among the concurrent tasks to be performed, and the sharing
of attention turns out to be a process similar to process scheduling in
operating systems. In order to study human multitasking situations in
which a user interacts with more than one device at the same time, we
proposed in a previous work an algorithm for simulating human selective
attention. Our algorithm focuses, in particular, on safety-critical human
multitasking, namely situations in which some of the tasks the user is
involved in may lead to dangerous consequences if not executed properly.
In this paper, we present the validation of such an algorithm against data
gathered from an experimental study performed with real users involved
concurrently in a “main” task perceived as safety-critical and in a series
of “distractor” tasks having different levels of cognitive load.

Keywords: Validation · Simulation algorithm · Human-computer
interaction · Safety-critical · Multitasking · Experimental study

1 Introduction

Nowadays we often interact with multiple devices or with a single device perform-
ing multiple tasks concurrently: keeping up several instant message conversations
at once, answering an e-mail while listening to a talk at a conference, hanging
out with social network while watching television, just to give some examples.
However, despite what most of us could believe, the multitasking performance
takes a toll on productivity and psychologists who study the mental processes
involved in multitasking have found that the human mind and brain are not
designed for doing more than one task at a time [23,25]. We cannot focus on

c© Springer Nature Switzerland AG 2020
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more than one thing at a time, what we can do is to switch from one task to
another with incredible speed, since all these tasks use the same part of the
brain [20].

One of the main resources to be shared in such multitasking contexts is the
human selective attention – a selective activity whose purpose is to focus on
one element of the environment while ignoring the others: several studies show
how attentional limitations could cause troubles while performing multitasking
[22,24,28]. According to [15], the cognitive load of each task (i.e., the amount of
cognitive resources required by each task) influences the activity of the atten-
tional mechanisms. In particular, focusing attention on a “main” task may be
impeded by a secondary “distractor” task with a high cognitive load.

Moreover, in a multitasking context, another factor influencing the atten-
tional mechanism is the fact that some tasks might be more critical than others.
If the user is performing concurrent tasks, one of which is safety-critical and the
others non-critical but characterised by a high cognitive load, such a cognitive
load could cause users to draw away their attention from the safety-critical task.

To study such kinds of problems we proposed a model of safety-critical human
multitasking (SCHM model), which describes the cognitive processes involved
in a multitasking interaction with safety-critical systems [5].

Although the proposed model is designed according with psychological lit-
erature and results from experimental psychological studies, we conducted an
experimental study with real users involved in a multitasking interaction on a
web application with a “main” critical task and a secondary “distractor” task.
Essentially, the main question we wanted to answer is:

Does the SCHM model “mirror” the task prioritisation that real users perform
in a safety-critical multitasking context?

The experiment and the analysis of the experimental data, together with the
development of a simulator in Java, allowed us to fine-tune the proposed model
and to validate it.

We will present the model and its Java implementation in Sect. 2, the exper-
imental study in Sect. 3, the design of the simulation experiments in Sect. 4 and
the results we obtained in Sect. 5.

2 Safety-Critical Human Multitasking Model

The SCHM model is a mathematical model of human selective attention used
to study situations where users concurrently interact with multiple devices and
they have to voluntary choose which task to execute next.

The model is an extension and modification of the cognitive framework pro-
posed by Cerone for the analysis of interactive systems [9]. Other related models
of human multitasking are ACT-R [1], SEEV [30], STOM [29] and the models
proposed in [19,21] (see [6] for a deeper discussion about related work).

As in that work, we describe the cognitive processes involved in HCI and
the human working memory. However, we focus on multitasking and not on the
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analysis of the interaction with single device as in [9]. Moreover, our model also
describes the limitations of the working memory, enabling us to reason about
memory overload, and includes timing features, enabling us to reason about
hazards caused by distractions.

We implemented a simplified version of the model as a Java simulator based
on the algorithm proposed in [3] in order to have quick feedback about whether
users can successfully and safely complete a given group of tasks at the same
time. The simulator models human multitasking where users are allowed to per-
form a single task on each interface, we then decide not to model the interfaces.

Moreover, we implemented the multitasking model in Real-Time Maude,
which is a rewriting logic language and tool which supports the formal specifi-
cation and analysis of real-time systems [4,6]. The Real-Time Maude framework
enables us to analyse safety-critical human multitasking through simulation and
reachability analysis.

Within the model, each task is defined as a sequence of subtasks, which in
turn are defined as a sequence of basic tasks (i.e. atomic action composing the
task which cannot further decomposed). Between two basic tasks, it is possible
to have some time, which could correspond to the time necessary to switch from
one basic task to the next, but also to the time required by the device to process
the received input and to enable the execution of the next basic task; we call
such a time delay. Moreover, each basic task is characterised by a duration and
a measure of how much it is difficult. By using such information we can compute
the cognitive load of each task, starting from the definition of the cognitive load
presented in [2]. Moreover, each task is characterised by a measure of how much
the user perceives it to be safety-critical.

We define basic tasks as follows:

j | p =⇒ a | k duration t difficulty d delay δ

where j, k are information items, p is a perception (from the user viewpoint)
about the device (interface) state, and a is an action to be performed on the
device interface.

The basic task indicates that when the interface is on state p and the user
has inside his/her working memory the information j, he/she can perform the
action a and replace the information j with the information k in his/her working
memory; such a basic task has duration t and difficulty d and it is enabled – and
thus it can be executed – if and only if the delay δ is elapsed.

For each task we compute an α-factor representing the likelihood the task
will attract the user’s attention. At each step of the interaction the user chooses
the task to be executed with a probability proportional to its α-factor. The α-
factor of a task T is described as the product of three parameters: the cognitive
load of the task (computed over the current subtask), the criticality level of the
task, and the time elapsed since the last time the task has been executed:

αT = CogLoadT × c × (waitT imeT + 1) (1)
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where:

– CogLoadT denotes the cognitive load of the task T ;
– c denotes the criticality of the task T ;
– waitT imeT denotes the time the task T has not been executed.

As already mentioned, we implemented a Java simulator whose full spec-
ification is available at http://www.di.unipi.it/msvbio/software/AttentionSim.
html.

We implemented a Java class for each element of the SCHM model:

– a BasicTask class;
– a Subtask class, containing a list of BasicTasks;
– a Task class, containing a list of Subtaskss and the criticality parameter c;
– a WorkingMemory class, modeling a (limited) working memory of a user;
– a Configuration class, which models the state of the simulation. An object

of this class contains
• a vector of Task objects, representing the concurrent tasks
• a WorkingMemory object
• variable globalClock of type Integer measuring the time elapsed from

the beginning of the execution of the tasks
– a Simulator class, where the algorithm for simulating selective attention is

specified.

The algorithm performs a main loop that essentially executes one basic task in
each iteration. The basic task to be executed is the first basic task of one of the
enabled tasks. For each of such enabled tasks, the α-factor is computed. These
α-factors are then normalized in order to obtain a probability distribution used
for the choice of the task. The first basic task of the chosen task is then executed
as follows:

– the global clock is updated with the duration of the executed basic task;
– the chosen task is marked with a timestamp tracking the last time the task

has been executed;
– the working memory is updated as specified by the executed basic task;
– the executed basic task is removed from the configuration.

If the algorithm reaches a configuration where no task is enabled, the main
loop performs an iteration where only the global clock is updated with the min-
imum value needed to reach a configuration where at least one task is enabled.

The simulation terminates when all of the tasks in its configuration are com-
pleted.

3 Experimental Study

The development of the web application for the experimental study is part of a
collaboration between computer scientists and psychologists from the University

http://www.di.unipi.it/msvbio/software/AttentionSim.html
http://www.di.unipi.it/msvbio/software/AttentionSim.html
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of Pisa (authors of this paper), which led to the definition of a set of appropriate
tasks for the validation of the proposed algorithm. We defined two separate tests:
one for evaluating the working memory (WM) performances of the participants,
and one called shared attention test where users were asked to interact with two
tasks concurrently.

3.1 Working Memory Span Tasks

Before the shared attention test, we administrate to the participants two different
working memory span tasks (WMST) – standard tasks used to measure the
performance of the working memory – in order to identify different inclinations
to multitasking.

WMST are widely used in cognitive psychology [13] since WM plays an
important role in a wide range of complex cognitive behaviours, such as compre-
hension, reasoning, and problem solving [18], and it is an important individual
variable in general intellectual ability [11,12,17].

WMST were created to require not only information maintenance, but also
the concurrent processing of additional information [8,14,27]. Such tasks involve
performing two sequential activities: one mnemonic activity which imposes the
memorisation and recall of a set of elements (such as digits or words); and one
secondary activity which imposes a processing operation (e.g. comprehending
sentences, verifying equations, or enumerating an array of shapes). Participants
are asked to see or hear a sequence of elements spaced by a processing operation.
At the end of each trial they have to recall the sequence correctly (which means
recall the correct elements and in the correct order), with increasingly longer
sequences being tested in each trial (from two to five elements per trial).

We administrate two different WM span tasks: the reading span task (RST)
[14], and the operation span task (OST) [27]1. In both, a sequence of numbers of
variable length (from 2 to 5 numbers) is presented on the screen; each number is
spaced by a sentence (RST) or an equation (OST) to evaluate. When all numbers
are presented to the users, they have to recall the numbers in the exact order
they were presented. We administrate 3 test repetitions for each sequence length:
in total 12 repetitions for both RST and OST.

As regards the procedure for measuring the WM capacity, different scoring
procedures are available in the literature [13]; we use the partial-credit unit
scoring (PCU), namely the mean proportion of elements within a test that were
recalled correctly. The PCU for each user is computed as follows:

PCU =

∑N
i=1

bi
ai

N

where N is the number of items, bi the number of elements correctly recalled,
and ai the number of elements to recall.

1 Available at http://pages.di.unipi.it/milazzo/AppSpans/.

http://pages.di.unipi.it/milazzo/AppSpans/
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3.2 Shared Attention Test

As regards the shared attention test2, we defined two tasks, (i) a main and critical
one, and (ii) a secondary distracting task (with different levels of cognitive load):

i As shown in Fig. 1, in the main task users visualise on the screen a chain of 9
rings and a black pellet which randomly moves left and right along the chain.
Every time the task starts, the black pellet is on the central green ring and
moves randomly every second. Users are asked to avoid that the black pellet
reaches one of the red rings at the two ends of the chain, by pushing two
buttons on the screen which move the pellet in the two directions: if they do
not succeed, the task fails.

ii In the secondary distracting task (shown in Fig. 2), users visualise on the
screen a sequence of boxes and a keyboard. At cyclic intervals, a letter appears
inside a box; letters appear one by one until all boxes are full.
Users have to find and push on the keyboard the letter corresponding to the
one inside the box indicated by the arrow, until all the letters are inserted
in the same order they were presented. Every time they have to insert a new
letter (i.e. the previous letter has been successfully inserted and the next one
has appeared) the keyboard changes.
Such activity has a total duration expressed through a timeout, visualised by
a decreasing number and a black progress bar. Once the timeout expires the
task is concluded: if the user did not succeed in inserting all the letters, the
task is considered failed, otherwise the task succeeds.

Fig. 1. Main critical task. (Color figure online)

Fig. 2. Secondary distracting task.

2 Available at http://pages.di.unipi.it/milazzo/AppSpans2/.

http://pages.di.unipi.it/milazzo/AppSpans2/
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The tasks are presented on two separate tabs of the same window: users can see
only one of the two tabs at a time, and they can switch from one to another by
pushing the space bar. So, the user has to perform the two tasks concurrently
by interleaving them. Both tasks have to be completed successfully.

The secondary task is instantiated with different levels of cognitive load. In
order to do this, three different parameters of the secondary task are varied: the
number of letters to insert (letters), the number of keys composing the keyboard
(keys), and the total duration of the task (duration). As regards the letters, we
define three kinds of task where users have to insert 2 letters, 4 letters, and
8 letters, respectively; as regards the keys, we define a task where users should
search for the right letter in a single keyboard (i.e. the number of keys composing
the keyboard is equal to the number of letters to be inserted), and a kind of task
where they have to search for the letter in a double keyboard (i.e. the number
of keys is twice as the number of letters to be inserted); as regards the duration,
it can be either 18, 22, or 26 s.

Summing up, we have 18 different levels of CL for the secondary task, and
the web application administrates 3 test repetitions for each level (presented
randomly). In total, users have to perform 54 test repetitions. Accordingly to the
definition of the α-factor (see Eq. 1) each task has a different α value depending
on its cognitive load, its criticality and the time the task has not been chosen
by the user.

3.3 Participants

The definition of the experimental study has been submitted to the ethical com-
mittee of the University of Pisa, which authorised the administration of the
test. To take part in the experimental study, participants were asked to sign an
informed consent form and a consent for the processing of personal data.

We performed two test sessions taking care that the environment, the pro-
vided equipment, and the test timetable were the same in both sessions. Exclu-
sion criteria for the participants were cognitive functions disorders and drug
consumption with an effect on such functions. Participation has been voluntary
and without any incentive; participants were free to abandon the test at any
time.

In total, 26 participants took part in the experimental study: mother-tongue
Italian, of both sexes (60% men, 40% women), aged between 18 and 40 years,
and with a normal visual acuity (or corrected by lenses).

3.4 Data Collection

WM Span Tasks. The web application is able to collect users’ answers for
both WM span tasks for each item, and it is thus able to compute the PCU for
the OST task and for the RST task. From such data, we can compute the total
PCU score for each participant, calculated as the mean of the scores of both
tasks. Total PCU values go from a minimum of 0.35 to a maximum of 0.97.
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Shared Attention Test. For the shared attention test, the web application is
able to track every user action, and it is thus able to compute the number of
errors for the main task and for the secondary task, as well as the time users
pass on the main task and on the secondary task.

In order to explore correlations between the users’ PCU and their multitask-
ing performance – which would be consistent with the relevant psychological
literature – we divide PCU values into 3 intervals and we divide participants
into 3 different groups:

1. lowPCU : user total PCU ≤ 0.80;
2. mediumPCU : 0.80 < user total PCU ≥ 0.90;
3. highPCU : user total PCU > 0.90;

In Table 1 we show, for all users whose PCU is in a given interval, the average
time to find and push the right letter on the keyboard for each level of cognitive
load (number of letters to find and keybord size). We notice that the higher the
PCU, the faster participants find and push the correct letter. On the other hand,
from the collected data the total duration of the secondary task seems to have
no influence on the time required by the user to find and push the letter on the
keyboard. Hence, we didn’t group users on this parameter while computing the
average times shown in Table 1.

Table 1. Average time to find and push the correct letter for each PCU group and
each combination of number of letters (nL) and number of keys (nK ) in the keyboard.

2L 2K 2L 4K 4L 4K 4L 8K 8L 8K 8L 16K

lowPCU 1.257 1.4 1.528 1.843 1.538 1.931
mediumPCU 1.197 1.262 1.466 1.711 1.421 1.665
highPCU 1.042 1.175 1.2 1.471 1.291 1.572

As regards the time spent on the main task and on the secondary task, from
data we can deduce how much each participant perceives as critical the main
task with respect to the secondary task. We call criticality the percentage of
time a user stays on the main task with respect to the secondary task. In order
to check if the less a user perceives the main task as critical (i.e. the criticality is
lower), the more he/she fails in such task, we divide the criticality values (which
vary from 48% to 66%) into 2 groups: the first groups values up to 57%, the
second groups values higher than 58%. We then compute the average number
of errors for each of these groups, and we find that the more the main task is
perceived as critical, the less the users fail in it: 3,36 errors on average for the
low criticality group and 1,8 errors on average for high criticality group. Since we
observed this correlation, we decided to keep these two groups of users separated
in the analysis, by identifying 2 additional subgroups that we call lowCriticality
and highCriticality.

Therefore, we consider, overall, 6 different groups of users, by considering the
3 PCU groups and the 2 criticality subgroups, that are:
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1. lowPCU – lowCriticality
2. lowPCU – highCriticality
3. mediumPCU – lowCriticality
4. mediumPCU – highCriticality
5. highPCU – lowCriticality
6. highPCU – highCriticality

4 Simulation Experiments

For each group devised above, and for each level of cognitive load of the sec-
ondary task, we implement a different simulation experiment. Parameters of
these simulations have been estimated through data fitting.

Main Task. As regards the main critical task (i.e. the one where users are asked
to avoid that the black pellet reaches one of the two red rings), we implement
it as a sequence of basic tasks, whose duration is set to 1 and difficulty is set
to 0.1. We implement the same task for each PCU group, and two variants of
the task for each criticality subgroup: for highCriticality we set the criticality
of the task to 40, for lowCriticality we set it to 4.

Secondary Task. As explained in Sect. 3.2, in the secondary task, a letter
appears inside the white boxes at a specific time: the total duration of the task
is divided by the number of letters to insert, and such measure gives us the
interval of time between the appearance of a letter and the next one. Therefore,
the secondary task could be defined as follows:

noinfo | letter1 ⇒ findL1 | noInfo duration t difficulty d delay δ1
...

noinfo | lettern ⇒ findLn | noInfo duration t difficulty d delay δn

where:

– n is the number of letters to insert, and thus the number of basic tasks
composing the secondary task;

– findLi represent the action of finding and pushing in the keybord the i − th
letter appeared;

– ti is the duration of the action findLi, set as the average duration for a
given combination of number of letters and keys, according to the duration
presented in Table 1;

– di is the difficulty of the action findLi, which we set to 6;
– δi denotes the time which has to elapse so that the letter appears, namely the

interval of time between the appearance of two letters minus the duration ti.



108 G. Broccia et al.

Actually, the appearance of a letter in the secondary task is independent of the
previous letter, which means that each letter in a sequence appears as soon as
the given time interval has passed, whether the previous letter has been correctly
inserted or not. Instead, the task presented above, implies that the delay δi of
each basic task (namely of each letter) starts elapsing as soon as the basic task
becomes the first one of the current subtask, which means that by modelling the
secondary task in that way, the appearance of a letter would wait for the correct
insertion of the previous letter.

We thus decided to model a different task for each letter to be inserted in
the secondary task, namely to divide the unique task presented above into n
different tasks:

infoi | letteri ⇒ findLi | infoi+1 duration t difficulty d′ delay δ′
i

In this way, each delay of each task represents the time which has to elapse from
the beginning of the simulation of the interaction with the secondary task in
order that the letter appears.

Each task composing the secondary task shares a memory. In this way it is
possible to ensure that all tasks are executed in the right order: each task has
to put inside the memory the information to be retrieved by the next task to
be executed so that a task cannot be carried out until the previous task has not
been accomplished (i.e. letters have to be inserted in the correct order).

Moreover, the difficulties of each task are computed in order to ensure that
the cognitive load of each task is equal to the one of the unique task presented
above.

Simulation Settings. In total, we implemented 108 different tests for each
combination of PCU levels (3), levels of cognitive load (18), and level of criticality
(2). For each of these combinations, we performed 1000 simulations and we
computed the average value for the time to complete the simulated secondary
task and the maximum time the simulated main task is ignored.

It is worth to note that the simulated tests are approximation of the real
users performance. For instance, by modelling the secondary task as a single
basic task where the user finds and push the right letter in the keyboard, we
cannot simulate the case where a user goes backward and forward from the main
task to the secondary task, just to check if the next letter appeared. Hence, in
the real data we subtracted such time from the time passed on the secondary
task, and we added it to the time passed on the main task.

5 Results

We performed 1000 simulations for each of the 6 groups presented above. Namely
during a simulation are executed 18 different tests (one for each level of cognitive
load of the secondary task), where the main task has a given criticality according
to which of the 2 criticality subgroups we are simulating, and the secondary task
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has precise durations and difficulties according to which of the 3 PCU groups we
are simulating. We performed each simulation in order to check if the “simulated
users” behave as the real users. In particular, we observed:

1. If the time passed on the main task with respect to the time passed on the
secondary task is equal to that observed in the data;

2. If the number of errors in the main task follows the same distribution of the
one observed in the data;

3. If the number of errors in the secondary task follows the same distribution of
the one observed in the data.

The time passed on the main task respect to the time passed on the secondary
task is what we called criticality in Sect. 3.4.

As regard the main task, we know that it fails as soon as the black pellet
reaches one of the red rings, and we know that the minimum number of steps
for the pellet to reach a red ring (starting from the green one) is 4 steps; the
longer such a task is ignored by the user, the higher is the probability to fail it.
We thus consider the maximum wait time of the main task – namely the longest
time it has been ignored – as a measure of the probability to fail it: the higher
is the maximum wait time, the higher is the probability.

On the other hand, for the secondary task we consider the time its last basic
task has been executed and we compare such time with the total duration of
the task: the higher is the difference between such two values (i.e. the former is
greater than the latter), the higher is the probability that the secondary task
has failed.

Fig. 3. Time on task T1 for simulated and real users.

Regarding the number of errors observed from data, it is worth to note that
it is particularly low and it can be subject to statistical noise. Therefore, we
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concentrate more on the criticality and as regards the errors (for both the main
task and the secondary task) we analyse if the simulated trend is similar to the
real trend.

Criticality. As regards the criticality, we compute the percentage of time the
simulated test has passed on the main task. We compute the average of such
measures for the entire simulation, for each of the six groups.

As shown in Fig. 3, the time the simulated users pass on the main task is very
close to the time real users pass on the main task: the level of approximation
varies from −0.2% to +3.3%.

Tasks Fails. As regards the errors on the main task, we compute the average
of the maximum wait time for the main task of the entire simulation, for each
of the six groups, and we compare such measures with the average number of
errors for each of the six group.

Fig. 4. Average number of errors for the main task (T1) and average wait time when
varying PCU.

As shown in Fig. 4 the probability to fail the main task decreases as the
level of PCU increases, as well as the number of errors which decreases as the
users’ PCU increases. The probability to fail the main task decreases as well as
the criticality increases, and such trend is observed also in the data. Finally, as
shown in Fig. 5, the probability of fail and the average number of errors decrease
for each of the six groups as the PCU decreases and the criticality passes from
low to high.

Regarding the errors on the secondary task, we subtract the final duration of
the secondary simulated task to the total duration of the task and we compute
the average of such measures for the entire simulation, for each of the six groups.

Also in this case, we notice a decrease of the probability of errors in the
secondary task when the PCU level increases, and a growth in the probability
of errors when the criticality increases. We observe the same trend in the data.
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Fig. 5. Average number of errors for the main task (T1) for each group and average
wait time for simulated tasks for each group.

Concluding, it is worth to note that the small sample size and the approxi-
mation of the simulation are factors to be taken into account when analysing the
results obtained. However, such results agree with the data gathered from the
experimental study, for both the probability of fails in both tasks and the time
passed on the main task. We, thus, consider our algorithm and, in particular,
SCHM model capable to produce relevant results, according to the behaviour of
real users in a safety-critical human multitasking context.
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Abstract. Formal verification ensures the absence of design errors in a
system with respect to system’s requirements. This is especially impor-
tant for the control software of critical systems, ranging from automatic
components of avionics and spacecrafts to modules of distributed banking
transactions. In this paper, we present a verification support framework
that enables automatic extraction of a concurrent system’s requirements
from the technical documentation and formal verification of the system
design using an external or built-in verification tool that checks whether
the system meets the extracted requirements. Our support approach also
provides visualization and editing options for both the system model and
requirements. The key data components of our framework are ontological
descriptions of the verified system and its requirements. We describe the
methods used in our support framework and we illustrate their work for
the use case of an automatic control system.

Keywords: Ontology · Information extraction · Formal verification ·
Requirement engineering · Formal semantics

1 Introduction

Our long-term goal is a comprehensive approach to support practical formal
verification of safety-critical concurrent systems. Such approach should include
understandable representations of both concurrent systems and their require-
ments (graphical and in a limited natural language), as well as tools for editing
these representations and navigating over them. Also a support for information
extraction is necessary because of large volumes of technical documentation,
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 114–130, 2020.
https://doi.org/10.1007/978-3-030-54994-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54994-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-54994-7_9


An Ontology-Based Approach to Support Formal Verification 115

especially for legacy software systems. The use of practical formal verification
methods should greatly improve quality assurance for safety-critical systems.

Various tools for specification and verification support have been suggested
for different kinds of safety-critical systems. A commercial requirement engineer-
ing tool for embedded systems Argosim [25] allows software engineers to test the
systems and perform inconsistency checking for requirements, but formal verifi-
cation and information extraction are not supported. Software Cost Reduction
toolset [32], Model Based Systems Engineering [27], RoboTool [14] are used for
development, simulation and formal verification in avionics, space-crafts, robots
and other control systems, but they do not use information extraction. SEVA [13]
extracts information from natural language queries and can reason about system
requirements, but no formal verification is offered. An approach to both infor-
mation extraction and formal verification is suggested in [20], but it is restricted
to a very special application field.

Our approach to supporting formal verification is based on patterns, because
many requirements on real-world systems have recurring formulations with sim-
ilar properties. Systems for supporting the development and verification of
requirements based on patterns are an active topic of research [1,15,17,19,21,22].
Patterns are parameterized expressions in natural language that describe typical
requirements for the behaviour of a system. Usually, parameters of patterns are
system events or their combinations. For example, in pattern “The event Restart
will occur”, Restart is a parameter. The key property of patterns is that they
have precisely-defined formal semantics. Patterns make it easier for developers
to specify and verify typical system requirements. The drawback of the current
support systems is that they offer only manual formulation of requirements and
description of its formal semantics, sometimes with visualization. The first app-
roach to employ an ontology as a knowledge organization method for patterns
[22] does not yet use all benefits of the ontological knowledge representation.

Our envisaged advantage over the state-of-the-art approaches is that our
framework supports a user-friendly, integrated strategy for the quality assur-
ance of concurrent systems using a flexible tool that supports model extraction,
correction, and verification, together with textual explanation and visualiza-
tion of requirements. In particular, our support framework offers the following
functionality: 1) constructing the model of a concurrent system and the system
requirements by extracting information about them from technical documenta-
tion and/or using development tools and/or using information from experts via
questionnaires, 2) generating typical requirements from the internal description
of this extracted/constructed model, 3) representing the extracted/constructed
requirements in a mathematical, linguistic and graphical manner, and editing
these representations, 5) checking the integrity and consistency of the model’s
and requirements’ representations, 6) translating the model representation into
the input language of a suitable verifier. A special feature in our framework is
automatic generation of requirements both from technical documentation and
from the internal description of the concurrent system model, which consider-
ably simplifies the work of requirement engineers. However, due to the linguistic
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ambiguities in technical documentation, a correction of extracted requirements
and models is usually required; it is accomplished using the editors of our system.

In comparison to the state-of-the-art support systems, we suggest flexible cus-
tomization of system components in four aspects. This flexibility is based on the
intensive use of ontologies for representing knowledge about concurrent systems
and their requirements, and especially on the formal semantics of these ontolo-
gies. First, due to the formal semantics, we can apply various methods of mod-
el/requirements extraction and construction taking into account various methods
of formal verification. Second, it is possible to address various kinds of concurrent
systems: from telecommunication protocols to cyber-physical systems, by defin-
ing the corresponding formal semantics for system models: finite/abstract state
machines, hybrid systems, probabilistic automata [2,11], etc. Third, to specialize
system descriptions for a particular subject domain we can use ontology axioms
and rules. Forth, the requirements semantics also can be customised by choosing
appropriate logics: LTL, CTL, PLTL [2], etc. The ontological representations
allows us to check the integrity and consistency of a model and requirements’
descriptions; it also naturally supports the term consistency between them.

The current configuration of our support framework uses an ontology-driven,
rule-based approach to information extraction [5], labelled transition systems
as formal semantics for concurrent models [9], and logics LTL, CTL and their
real-time extensions as formal semantics for requirements [7].

The following Sect. 2 outlines our framework for supporting practical formal
verification as a whole. Section 3 describes our ontology-driven methods used for
information extraction, and illustrates them with a use case of a bottle-filling
system. Section 4 defines the Requirement and Process Ontologies used for the
internal representation of systems and their requirements. Sections 5–7 describe
the methods used for processing requirements. Section 8 discusses our current
framework’s limitations that we plan to address in future work.

2 The Framework for Supporting Formal Verification

Figure 1 shows an overview of our framework for supporting formal verifica-
tion of concurrent systems that automatically extracts and generates system
requirements. The key components of the framework are the Process Ontology
[9] and the Requirement Ontology based on patterns [7]. We use ontologies for
an internal representation of concurrent systems and their requirements, because
ontologies are convenient for systematizing knowledge, and they facilitate for-
mulating and checking non-trivial consistency properties. Moreover, there are
several well-developed tools for creating, editing and checking ontologies [26,29].
In our case, the contents of ontologies are descriptions of a particular concurrent
system model and the requirements it must meet. These data must be acquired
by Data Acquisition modules and then verified by Data Verification modules.
After expert analysis of verification result, we can make corrections to particular
development artefacts, such as high-level requirements and specifications, design
specifications, software code, etc.
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Fig. 1. The framework for supporting formal verification

Data Acquisition. System and requirement descriptions can be extracted from
technical documentation containing development artifacts or constructed using
concurrent software development tools (e.g. IBM Rhapsody [30]). These descrip-
tions can be refined by domain experts via answering questions from ontology-
based questionnaires. For populating the ontologies, we use our Information
Extraction System [4–6] described in Sect. 3. The extracted requirements can be
extended with typical requirements, automatically generated from the ontologi-
cal description of the system (see Sect. 5). The descriptions of the system model
and the requirements are the basis for formal verification.

Data Verification. The extracted description of the system model and its
requirements may be incomplete or incorrectly constructed due to insufficiency
of information presented in technical documentation or incorrect software devel-
opment process. The Ontological Consistency procedure verifies the integrity
and consistency of the constructed instances of the Process and Requirement
Ontologies. In addition, as a rule, a large number of requirements are formu-
lated for concurrent systems. Therefore, for the Requirement Ontology, it is also
reasonable to check the semantic consistency of a requirement set using stan-
dard ontological methods. The output of these checking procedures are sets of
incorrectly constructed entities of the considered concurrent system, as well as
incorrectly formulated or inconsistent requirements. This procedure, described
in Sect. 6, executes a simple pre-checking, before time-consuming formal verifica-
tion. To formally verify a system, we choose a suitable verifier taking into account
the formal semantics of the ontology-based requirement representation. If such a
verifier is available, we translate the ontological description of the system into the
model specification input language of the verifier, and the requirements’ descrip-
tion is translated into the input language of the verifier (usually, this language
is some temporal logic). If no suitable verifier is available, then our framework
exploits the special verification algorithms for specific patterns.

Requirement Processing. Let us sketch the ontology processing activities
necessary for the framework operation described in Sect. 7. Dealing with require-
ments involves representing them in three ways. The mathematical representa-
tion as formulas of some logic enables formal verification. The current formal
representation is LTL and CTL with real-time extensions. The language and
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graphical representations both help a requirement engineer to understand for-
mal representations. Due to the ambiguity of the natural language, it is possi-
ble that the extracted and generated requirements may not meet the engineer’s
expectations, and manual corrections are required. These corrections can use the
editors for ontology representations, as well as the editors for formal, language
and graphical representations.

In this paper, we do not consider methods for the formal verification module
and ontology-based questionnaires. In the following sections, we describe in more
detail the main ontologies and other parts of our framework.

3 The Information Extraction System

Figure 2 shows the general scheme of our information extraction system that
takes technical documentation as input and searches for concepts and relations
to populate the Process and Requirement Ontologies as described below. We use
a rule-based, multi-agent approach to implement this system [5].

Fig. 2. The information extraction and ontology population system

The process of information extraction includes the preliminary (lexical) step
and the main (ontological) step. At the lexical step, the system constructs a text
model that includes the terminological, thematic, and segment coverings of the
input text. The terminological covering is the result of lexical text analysis that
extracts the terms of a subject domain from the text and forms lexical objects
using semantic vocabularies. The segment text covering is a division of the input
text into formal fragments (clauses, sentences, paragraphs, headlines, etc.) and
genre fragments (document title, annotation, glossary, etc.). The thematic cov-
ering selects text fragments of a particular topic. The construction of a thematic
covering is based on the thematic classification methods. At the lexical step, the
system constructs objects that represent instances of concepts and relations of
the domain ontology from the lexical objects. Our system uses the ontology pop-
ulation rules which are automatically generated from lexico-syntactic patterns
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formulated by experts taking into account the ontology and language of a sub-
ject domain. Each lexico-syntactic pattern describes a typical situation for the
subject area in terms of specific subject types of objects in the situation. These
lexico-syntactic patterns constrain morphological, syntactic, genre, lexical, and
semantic characteristics of the objects. The outputs of modules of disambigua-
tion [4] and co-reference resolution [6] are used to choose the best version of text
analysis for populating the ontology with a consistent set of instances of subject
domain concepts and relations found in the input text.

To implement the described extraction technology for analyzing concurrent
systems and their requirements, we create a knowledge base that includes: 1) a
genre model of the input text for constructing segments, 2) a semantic dictio-
nary, and 3) lexico-syntactic patterns for the subject domain. We illustrate this
approach below, using the subject domain of automatic control systems (ACS).

We consider Technical Documentation (TD) as a set of documents used for
the design, creation and use of any technical objects. TDs have strong genre fea-
tures: they do not contain figurative expressions, evaluative adjectives, almost
no adverbs, the natural language ambiguity is compensated by the use of pre-
viously defined terms, etc. For this genre, we mark out sub-genre Purpose (the
description of the system and its elements with respect to goals and functions)
and sub-genre Scenario (the description of sequences of actions of automatic
processes and the corresponding input and output states of the system). The
detection of these genre fragments is based on a set of lexical markers which
indicate that these sub-genres are located in the headings of the text.

The main component of the knowledge base of our information extraction
system is a semantic dictionary. The system of lexico-semantic characteristics in
the dictionary provides the connection of subject vocabulary with the ontology
elements. For the ACS subject domain, we define the following lexical-semantic
classes of lexical units in the dictionary:

– the vocabulary for the names of entities (objects, substances, technical
devices and their parts, software products and their components);

– the vocabulary for naming situations:
• state predicates (absence, be, contain),
• event predicates for representing automatic processes and actions (move,

rotate, feed, warm up, turn on, stop),
• functional predicates (used for, provide),
• mental predicates (control, measure, monitor, determine);

– the parametric vocabulary:
• the names of qualitative/quantitative parameters (e.g., level, position),
• the numbers and units of measurement, lexical names of reference scores

(e.g., low/high, given position),
• the predicates of quantitative change (e.g., fall, grow, normalize, etc.);

– the reference designation:
• as proper names (e.g., Large Solar Vacuum Telescope – LSVT),
• as unique numeric identifiers for designating referents of objects (e.g.,

temperature is measured by sensor (12)).
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For constructing the lexico-syntactic patterns for descriptions of technological
processes, we define the following types of situations: 1) actions leading the
system or its components into enabled/disabled state; 2) activity characteristics
for the functionality of the system or its components; 3) states of the values of
quantitative or qualitative parameters; 4) processes for changing the parameters
of system elements; and 5) information transfer processes. Most of situations and
lexical names described in the TD texts are universal. Therefore, the generated
lexico-syntactic patterns can be used for a large class of technical objects. Our
developed methods are focused on the analysis of a linear text, however, after
small changes, they can be applied to tables or TD schemas with language labels.

Illustrative Example. Let us illustrate our ontology-based approach to sup-
port formal verification with a system documentation text taken from [18].
This technical documentation describes the work of a bottle-filling system and
includes several requirements on the system. We use two lexico-syntactic pat-
terns shown in Fig. 3 to extract an ontology object corresponding to a sensor
from the following text: “Two sensorsarg1 are also attached to the tank
to readarg2 the fluid levelarg3 information.” With terms and ontology
objects arg1, arg2, and arg3, satisfying the syntactical Condition, the Sensor-
Construct1-pattern creates an object of class Process with predefined attribute
values following the ACS-ontology structure, as explained in the next section.
The SensorFeatures pattern evaluates the attribute values of this sensor object
using only the ACS-ontology structure without the input text.

Fig. 3. Example: the lexico-syntactic patterns for extracting objects for “sensors”

4 The Ontologies

We consider an ontology as a structure that includes the following elements: (1) a
finite, non-empty set of classes, (2) a finite, non-empty set of data attributes and
relation attributes, and (3) a finite, non-empty set of domains of data attributes.
Each class is defined by a set of attributes. Data attributes take values from
domains, and relation attributes’ values are instances of classes. An information
content of an ontology is a set of instances of its classes formed by taking par-
ticular values of their attributes. In our case, the input data for populating the
Process and Requirement Ontologies is technical documentation.

We represent the classes of our ontologies, their properties and axioms using
the system Protégé [29] with the OWL language [28] and the SWRL language
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[31]. These properties and axioms define the rules for checking the correctness of
attribute values. Using the SWRL rules, we define the conditions used in Protégé
for checking the correctness and consistency of ontological descriptions by the
Hermit inference engine [26].

The Process Ontology. The Process Ontology [9] is used for an ontological
description of a concurrent system by a set of its instances. We consider a concur-
rent system as a set of communicating processes that are described by the class
Process and are characterized by: 1) their type for a subject-domain description
(e.g. sensor, controller); 2) sets of local and shared variables; 3) a list of actions
on these variables which change their values; 4) a list of channels for the process
communication; and 5) a list of communication actions for sending messages.
The process variables (class V ariable) and constants (class Constant) take val-
ues in domains from a set consisting of basic types (Booleans, finite subsets of
integers or strings for enumeration types) and finite derived types. Initial con-
ditions of the variable values can be defined by comparison with constants. The
actions of the processes (class Action) include operations over variables’ values.
The enabling condition for each action is a guard condition (class Condition) for
the variable values and the contents of the sent messages. The processes can send
messages via channels (class Channel) under the guard conditions. The commu-
nication channels are characterized by the type of reading messages, capacity,
and modes of writing and reading. Currently, we define the Process Ontology
formal semantics as a labelled transition system [9].

The classes of the Process Ontology are universal: they do not take into
account the features of a subject domain. In order to describe specific-domain
process ontology, we use ontology axioms and SWRL-rules. In the next subsec-
tion, we give an example of an SWRL-rule which restricts the Process Ontology
for typical elements of automatic control systems (ACS), such as simple and
complex sensors, controllers, actuators and the controlled object.

The ACS Process Ontology. The SWRL-rules impose the following restric-
tions on sensors. Sensors must read the observed values from the variables shared
with the controlled object and they cannot change it. They have outgoing chan-
nels connecting them with controllers and communication actions for sending
messages to the controllers. There is at least one controller and a shared vari-
able associated with each sensor. Simple sensors have no local variables and
actions: they can observe exactly one variable shared with the controlled object
and send the observed value unchanged to controllers. Complex sensors can pro-
cess observable and local variables to produce output for controllers.

Controllers, actuators and controlled objects are also restricted by the corre-
sponding SWRL-rules. Controllers and actuators must not have shared variables.
Controllers must have output channels connecting them with other controllers
and actuators, and input channels connecting them with sensors and actuators.
Actuators must have output channels connecting them with controllers and the
controlled object, and input channels connecting them with controllers. There
must be at least one sensor and at least one actuator connected with a con-
troller via input and output channels, respectively. There must be at least one
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controller and controlled object connected with an actuator through input and
output channels, respectively. A controlled object must be connected with actu-
ators by input channels. There must be at least one shared variable, one sensor
and one actuator associated with a controlled object.

The following SWRL rule establishes the existence of a connection between
a sensor and a single controller in an automatic control system:

Process(?p)^Process(?q)^type(?p,Sensor)^type(?q,Controller) ->
Channel(?c)^channels(?p, ?c)^channels(?q, ?c)

In [8], we describe ontology axioms and SWRL-rules for ACS in detail.
The lexico-syntactic patterns that extract information have to follow the

restrictions mentioned above. In particular, for the bottle-filling system from
[18] the patterns in Fig. 3 generate the sensor-process with name id1 shown in
Fig. 4 that has to send the observable value of the fluid level to the controller-
process named Cont via channel Cont id1. The attribute values in bold capital
letters correspond to particular words in the input text, and other attribute
values are generated automatically using the subject domain restrictions without
direct text correspondence. For our text, a single controller-process is created at
the beginning of model extraction automatically. Other lexico-syntactic patterns
produce the actuator-process id2 for the bottom valve that must be closed when
the fluid level is low. This closing action is controlled by the controller-process
that sends to id2 the Off -message when the sensor id1 reports the low fluid
level. Sending communication actions are in ComActs-attributes and receiving
communication actions are in Actions-attributes.

Fig. 4. Example: the processes of the bottle-filling system

The Requirement Ontology. Let us define how requirements are described
by specification patterns. Requirements are expressed using standard Boolean
connections of five basic patterns defining the appearance of certain events which
can be considered as a particular combination of parameter values of the model.
These patterns are: Universality (the event always takes place), Existence (the
event will occur sometime), Absence (the event will never occur), Precedence
(one event surely precedes another), and Response (one event always causes
another). The patterns and their events can be constrained by eventual, time,
and quantitative restrictions. Requirements expressed by these patterns have
formal semantics as formulas of temporal logics LTL, CTL and their real-time
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variants [2] with temporal operators over events specified as Boolean combina-
tions of propositions. These semantics unambiguously express requirements, and
they precisely define the corresponding verification method.

Using ontologies for organizing a set of system requirements makes it possible
to accurately systematize knowledge about them due to a hierarchical structure
of concepts and relations. With our approach to the system requirements’ pre-
sentation, the user can rely on a small set of class attributes to describe a wide
range of properties of concurrent systems. This variability in expressing require-
ments is important, because for the same system it is necessary to specify both
simple, easily verifiable properties (e.g. reachability), and complex properties
that depend on the execution time of the system components. The possibility
to formulate such different properties within a single formalism increases the
quality of support for the development of complex systems as it covers the entire
picture of the system requirements. Moreover, the ontological representation of
a set of requirements enables its consistency checking. The output of our system
of information extraction is a content of a certain ontology of a subject domain.

Our Requirement Ontology [7] organizes the existing systems of specification
patterns [3,12] into unified structure and contains 12 classes and 17 relations
between them. This ontology is designed to specify the requirements of system
models described by the Process Ontology. Events of such systems occur in
discrete time and the processes are completely dependent on the observed system
states (including the current time), but may be non-deterministic.

In Fig. 5, the instance id1 of the Requirement Ontology is produced by
our IE-system from the following text fragment: ‘‘Both the bottle-filling
and the heating operations are prohibited when the fluid is pumped to
the filler tank’’ [18]. The formal semantic of this requirement are given by the
LTL formula G(id3.Local.On → id2.LocalOff ∧id4.Local.Off ), where id3 and
id4 are identifiers for the inlet valve and the heating steam valve, respectively.
The other requirement gen id1 is automatically generated by the Requirement
Extraction Module described in the next section.

Fig. 5. Example: the requirements for the bottle-filling system

5 The Requirement Extraction

The task of the requirement extraction is to prompt the requirement engineer
to formulate requirements expressed by patterns, because important require-
ments expressing the correct behavior of the system are not always explicitly
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defined in the technical documentation using the actions and variables of the
system processes. The generated requirements use variables and events of the
extracted (constructed) system; the process ontology is the input of the extrac-
tion procedure. This procedure explores the ontological description of the pro-
cesses to find in the attribute values the events of interest whose satisfiability
and appearance order can affect correctness. Such events are: changing the val-
ues of shared variables, sending/receiving messages, etc. The requirements may
be subject-independent or subject-dependent. In any concurrent system, the fol-
lowing communication properties can be formulated:

– every sent message will be read (or overwritten) (Response);
– every message that has been read was sent before (Precedence);
– every guard condition for actions and communication actions must be satisfied

in some system execution (Existence with Branching time).

For example, in Fig. 5, the right requirement for the bottle filling system gen id1
says that there is at least one point in at least one system execution when the
bottom valve is open. Its formal semantic is CTL formula EFid2.Local.Off.

The subject-specific requirements deal with the specifics entities of the sub-
ject domain, hence the extraction method must be customized to the subject
area. For example, the typical requirements for ACS are as follows:

– the controller will send a control signal to the actuator (Existence);
– the actuator will send a modifying signal to the controlled object (Existence);
– the values captured by the sensor do not exceed its range (Universality).

Based on the found events, the requirements are formed as specially marked
instances to populate the Requirement ontology. After population, the require-
ment engineer can change these instance requirements by adding eventual, time
and quantitative restrictions, using the editors, or remove these requirements.

6 The Ontological Consistency

The extracted descriptions of concurrent processes and requirements may be
incomplete due to insufficient information in the technical documentation. The
integrity and consistency checking procedures inspect the correctness of the con-
structed ontology instances, i.e., the integrity of the Process and Requirement
Ontologies, taking into account the default attribute values. Both ontologies
are described in the OWL language of the Protégé system, with the ontology
constraints formulated by axioms and SWRL-rules, hence, it is possible to use
standard tools for inference ontology processing, e.g., Hermit.

For the Process Ontology, we can check the general integrity properties: def-
initeness of variables in processes, manipulation of only visible variables and
channels, mandatory execution of any actions, the interaction with the environ-
ment through channels or shared variables, etc. For ontologies of subject domain
systems, specific constraints described by axioms and SWRL-rules must also be
checked. Some constraints for the ACS ontology are described in Sect. 4.
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The integrity of the Requirement Ontology mainly concerns the definiteness
of all attribute values for class instances. For example, an instance of class Order
must contain two events as the values of the attributes of the ordered events.
Besides the descriptive integrity, it is also necessary to check semantic integrity,
since a large number of requirements are usually formulated for concurrent sys-
tems, both from technical documentation and by the Extract Requirement pro-
cedure. Formal verification of these requirements is a rather time-consuming
process. The Ontological Consistency procedure executes pre-checking the sim-
ple consistency of these requirements. Since an ontology is just a declarative
description of a subject domain, it is only possible to check the compatibility
of requirements whose semantics do not have nested temporal operators. For
more complex requirements, including, e.g., time restrictions, it is reasonable to
leave consistency checking for standard formal verification tools. The following
SWRL-rule restricts the inconsistent pair of requirements:

Proposition p holds always (Universality) vs.
Proposition p will be false sometime (Existence):

Occurence(?f) ^ kindPat(?f,Univ) ^ Prop(?p) ^ PatS1(?f,?p)^
Occurence(?g) ^ kindPat(?f,Exis) ^ Prop(?q) ^ PatS1(?f,?q)^
ProOp(?q,Neg) ^ ProSub1(?q,p) -> Answ(?a)^ res(?a,Error1)

In [10], we describe the approach to checking requirement in detail. The
Ontological Consistency procedure reports to the requirement engineer about
the instances that do not satisfy the ontology constraints.

7 The Representation Modules and Editors

This section describes three ways of requirement representation in our system.

The Formal Semantic Representation. For using formal verification meth-
ods, requirements for concurrent systems must be presented as logic formulas.
Since currently we focus on model checking, the formal semantics for instances
of the Requirement ontology are expressed by formulas of temporal logics. The
FSR-procedure translates the requirement instances into LTL or CTL formulas.

The translation takes several steps for determination:

1) determine whether time is branching or linear;
2) determine the requirement pattern;
3) determine the temporal/quantitative restrictions of the requirement/events;
4) compute the formula using the results of the previous steps, such that

the resulting formula corresponds to the requirement without eventual con-
straints;

5) determine the eventual constraints;
6) compute the formula using the results of the previous steps, such that the

resulting formula corresponds to the requirement with eventual constraints.

The translation grammar is highly context-sensitive. Hence, for calculat-
ing formulas, the procedure uses mainly the tables of formulas’ dependence
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Fig. 6. A fragment of the translation table for Response requirements

on the restrictions and several analytic rules. The fragment of the table for
Order requirements on Fig. 6 illustrates three variants of formal semantics of the
Response requirement. The first columns of the table characterize the presence
of duration D, periodic P , and quantitative Q restrictions on the requirement
pattern itself (subscript w), p-event (subscript p), and q-event (subscript q). The
time delay of the first occurrence of p or q events using Tp or Tq, respectively,
can be taken into account. The last column contains a graphical, language, and
formal presentation of the Responce requirement for the following combination
of restrictions: 1) an absence of restrictions (zero in each column), 2) the restric-
tion on the number of repetitions of proposition q (number z in column Qq), and
3) the restriction on the periodicity of proposition q (number z in column Pq).

The Language Representation. The requirements represented as instances of
the Requirement Ontology or logic formulas are usually difficult to understand.
The LR-procedure provides a natural language description of requirements. It
translates instances of the Requirement Ontology into statements in natural
language using a limited set of terms (e.g., “always”, “never”, “repetitions”,
etc.). The translation grammar for this procedure is low context-sensitive. Hence,
for formulating language expressions, the procedure uses mainly analytic rules.
The language statements for the Response requirement are shown in Fig. 6.

The Graphical Representation. Due to the ambiguity of natural language,
the language representations of requirements may be poly-semantic, and, at
the same time, their unambiguous formal semantics may be hard to read. For
smoothing the ambiguity of the first representation and the low readability of
the second, the GR-procedure translates a requirement instance into a graphi-
cal representation which is a representative segment of a linear path (for linear
time) or a fragment of a computation tree (for branching time) with the depicted
events of the requirement. For this visualization, the procedure uses the tables of
formulas with the restrictions and analytic rules equally. We develop a method
for translating the requirements with linear time into a graphical representation
in ASCII format. Examples of the translation are shown in the table in Fig. 6.

Due to the incomplete formalization of technical documentation, the correct
extraction of a concurrent system and its requirements cannot be fully auto-
matic. The requirement engineers must be provided with the editors for the data
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components of the verification process. For the Process and Requirement Ontolo-
gies written in the OWL-language, there exist editors, in particular, Protégé.
However, for getting more visibility for the Process Ontology, we plan to develop
an editor based on the semantic markup ontology [8]. It will present the processes
in a tabular form as instances of classes with the corresponding constraints of
the domain, and it will visualize the scheme of data flows between processes.

The instances of the Requirement Ontology can be modified by the editor
that combines four editing methods depending on the representation type:

– Ontology: changing the values of class attributes within axiomatic constraints.
– Formulas: changing the syntax elements of a formula within the given pat-

terns.
– Language: the limited natural language is used.
– Graphic: the set of patterns for events ordering on a line or in a tree is

provided.

All representations should be visible in the same window (the formula and the
text are usually not long). Changes in one of the representations affect the others.

8 Conclusion

In this paper, we propose an ontology-based support framework for verification of
safety-critical concurrent systems. Our approach has the following advantages.
First, a flexible customizing extraction/construction for systems and require-
ments with respect to various methods of formal verification is provided by for-
mal semantics of ontological representation of concurrent systems and require-
ments. Second, a variability of verification methods becomes possible due to the
customization of formal semantics defined both for the ontological representation
of systems and ontological representation of requirements. Third, these formal
semantics give the base for checking the integrity and consistency of systems and
requirements. Simple requirement consistency checking makes applying formal
verification methods easier. Fourth, comprehensible formulation of requirements
in our framework is provided by using several requirement representations: the
ontological representation, the formal representation as logic formulas, the rep-
resentation in a limited natural language, and the graphic representation. The
customizable tools for viewing, editing, and navigating over these representa-
tions help the requirement engineers to deal with requirements. Currently, we
use a rule-based, ontology-driven information extraction approach [5], labelled
transition systems as formal semantics for concurrent models [9], and logics LTL,
CTL and their real-time extensions as formal semantics for requirements [7].

There are two main directions for future work: improving and implementing
the internal components of our support framework, and customizing the variable
external components.

Internal Components. Extending the Process and Requirement Ontologies
with new classes will allow us to capture a wider set of formal semantics, includ-
ing semantics with real numbers and probabilities. For the Requirement Ontol-
ogy, we plan to introduce the dependability relation and automatic methods for
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detecting it. We will extend the set of requirement patterns that can be gener-
ated from the Process Ontology with possible general correctness requirements.
We will study the possibilities to enrich the set of requirement patterns that can
be checked for consistency with ontology means. We also will develop a seman-
tic markup of classes of the Process Ontology for customizing it to a specific
subject domain. The Requirement Extraction, Integrity and Consistence, and
Representation procedures will also be implemented.

External Components. We will develop new semantics for the Process Ontol-
ogy, in particular, hyperprocesses [23], abstract state machines [11], and Markov
decision processes [16]. We work on designing new methods of translation to
the Process Ontology from various formalisms of concurrent system descriptions
(e.g., Reflex [24]), to improve our approach. We will customize our information
extraction methods for important concurrent systems’ subject domains, in par-
ticular, for automatic control systems. These methods will also be adopted for
tables and diagrams in technical documentation.
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Abstract. By and large, current visual attention models mostly rely,
when considering static stimuli, on the following procedure. Given an
image, a saliency map is computed, which, in turn, might serve the pur-
pose of predicting a sequence of gaze shifts, namely a scanpath instanti-
ating the dynamics of visual attention deployment. The temporal pattern
of attention unfolding is thus confined to the scanpath generation stage,
whilst salience is conceived as a static map, at best conflating a number
of factors (bottom-up information, top-down, spatial biases, etc.).

In this note we propose a novel sequential scheme that consists of a
three-stage processing relying on a center-bias model, a context/layout
model, and an object-based model, respectively. Each stage contributes,
at different times, to the sequential sampling of the final scanpath. We
compare the method against classic scanpath generation that exploits
state-of-the-art static saliency model. Results show that accounting for
the structure of the temporal unfolding leads to gaze dynamics close to
human gaze behaviour.

Keywords: Saliency model · Visual attention · Gaze deployment ·
Scanpath prediction

1 Introduction

Background. The unfolding of visual attention deployment in time can be
captured at the data level by eye-tracking the observer while scrutinising for a
time T a scene, either static or dynamic, under a given task or goal. Figure 1
(left panel) summarises the process.

The raw gaze trajectories can be subsequently parsed in a discrete sequence
of time-stamped gaze locations or fixations (rF1 , t1), (rF2 , t2), · · · , a scanpath,
where the displacement from one fixation to the next might occur as a quick
jump/flight (saccade) or through the smooth pursuit of a moving item in the
scene. Further, by collecting the fixations of S subjects on the i-th stimulus,
an attention map or heat map can be computed in the form of a 2D empirical
fixation distribution map, say MD(i)

T . At the model level, given a stimulus and an
initial gaze point, attentive eye guidance entails answering the question: Where
to Look Next? In a nutshell, the “Where” part concerns choosing what to gaze at
c© Springer Nature Switzerland AG 2020
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- features, objects, actions - and their location; the “Next” part involves how we
gaze at what we have chosen to gaze, that is directly affected by factors such as
context [36], spatial biases [34], affect and personality [17] and crucially brings
in the unfolding dynamics of gaze deployment.

Fig. 1. Gaze data recording via eye-tracking and modelling. Given a stimulus (image
I), the observer’s gaze trajectory is sampled and recorded. Raw data are parsed and
classified in fixations sequences (scanpaths). Collecting fixations from all subjects the
2D empirical fixation distribution MD is estimated. On the model side, for the same
stimulus a saliency map S is derived; if available, a gaze shift model can be exploited for
sampling scanpaths based on S. The overall model performance is routinely evaluated
by comparing either the model-generated saliency map S with the empirical MD map
(light blue two-head arrows) and/or, albeit less commonly, by confronting the model-
generated scanpaths {r̃F (1), r̃F (2), · · · }, with the actual ones {rF (1), rF (2), · · · }.

More formally, a computational model of visual attention deployment should
account for the mapping from visual data of a natural scene, say I (raw image
data, either a static picture or a stream of images), to the scanpath

I �→ {rF1 , t1; rF2 , t2; · · · }. (1)

When dealing with static stimuli (images) such mapping boils down to the fol-
lowing (cfr. Fig.1, right panel)

1. Compute a saliency map S, i.e.,

I �→ S; (2)
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2. Use S to generate the scanpath,

S �→ {rF (1), rF (2), · · · }, (3)

where we have adopted the compact notation (rFn
, tn) = rF (n).

In its original formulation [21], the “saliency map” S is a topographic repre-
sentation indicating where one is likely to look within the viewed scene, that is
S(r) ≈ P (r | F(I)), where F(I) are low-level features computed from image I.
In a sense, it can be considered the modelling counterpart of the fixation den-
sity map MD(i)

T . Notice that, in recent years, computer vision efforts to achieve
benchmarking performance have resulted in the heuristic addition of high-level
processing capabilities to attention models, which are still referred to as salience
models [9–13]. As a matter of fact, the term “saliency” now stands for any image-
based prediction of which locations are likely to be fixated by subject guided by
either low- or high-level cues [29].

Challenges. Despite of the original purpose behind steps 1 and 2, i.e. computing
the mapping in Eq. 1, it is easily recognised by overviewing the field [9–11,33],
that computational modelling of visual attention has been mainly concerned
with stage 1, that is calculating salience S. As to stage 2, it is seldom taken into
account: as a matter of fact, it is surmised that S is per se predictive of human
fixations. Thus, saliency models to predict where we look have gained currency
for a variety of applications in computer vision, image and video processing and
compression, quality assessment.

Under such circumstances, a crucial and often overlooked problem arises:
saliency maps do not account for temporal dynamics. In current practice, saliency
models are learned and/or evaluated by simply exploiting the fixation map on
an image as “freezed” at the end of the viewing process (i.e, after having col-
lected all fixations on stimulus along an eye-tracking session). The temporal
pattern of attention unfolding, whether considered, is thus confined to the scan-
path generation stage (Eq. 3), whilst salience S is conceived as a static map,
at best simultaneously conflating a number of factors (bottom-up information,
top-down, spatial biases, etc.) In simple terms, the unfolding of visual attention
does not unfold.

Our Approach. In an earlier communication [7], it has been shown that the
evolution of the empirical fixation density MD(i)

t within the time interval [t0, T ]
from the onset of the stimulus i up to time T , provides a source of information
which is richer than that derived by simply considering its cumulative distribu-
tion function

∫ T

t0
MD(i)

t dt. By resorting to a simulation of scanpath generation
from empirical fixation densities collected at different stages of attention unfold-
ing, it was possible to show that:

(i) the scanpaths sampled in such way considerably differ from those generated
by a static attention map;

(ii) “time-aware” scanpaths exhibit a dynamics akin to that of actual scanpaths
recorded from human observers.
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More precisely, those analyses [7] were based on sequentially computing, from
empirical data, three different fixation density maps MD(i)

tk
, within the time

interval [t0, T ], k = 1, 2, 3 with tk < tj , for k < j, thus with time delays Dk =
tk−t0. Each map was used to sample the partial scanpath related to that specific
time window.

In the work presented here, we operationally take into account such temporal
aspects of attention deployment (Sect. 2). In brief, we provide a “time-aware”
model that addresses the three stages described above by exploiting a center bias
model, a context model and an object model whose output maps are sequentially
used to sample gaze shifts contributing to the final scanpath (cfr. Fig. 2, below)

We show (Sect. 3) that in such way the model-based sampling of gaze shifts,
which simulates how human observers actually allocate visual resources onto
the scene (i.e., the scanpath), departs from that achieved by classic modelling
relying on a unique static saliency map (Eqs. 2 and 3), and it exhibits the features
noticed in preliminary analyses based on empirical data [7].

2 A Model for Time-Aware Scanpath Generation

Recent work by Schutt et al. [32] has considered the temporal evolution of the
fixation density in the free viewing of static scenes. They have provided evidence
for a fixation dynamics which unfolds into three stages:

1. An initial orienting response towards the image center;
2. A brief exploration, which is characterized by a gradual broadening of the

fixation density, the observers looking at all parts of the image they are inter-
ested in;

3. A final equilibrium state, in which the fixation density has converged, and
subjects preferentially return to the same fixation locations they visited dur-
ing the main exploration.

In [7] it has been shown that by estimating from eye-tracking data the empiri-
cal fixation distribution MD(i)

k at each temporal stage described above and using
it to sample a partial scanpath Rt

(s,i)
k , k = 1, 2, 3, eventually the “time-aware”

scanpath Rt(s,i) = {Rt
(s,i)
1 ,Rt

(s,i)
2 ,Rt

(s,i)
3 } more closely resembles human scan-

paths than scanpaths classically obtained from the final attention map.
The main goal of this note is thus to outline a model to substantiate such

results. In brief, the scheme we propose consists of a three-stage processing where
the dynamics described by Schutt et al. [32] basically relies on: 1) a center-bias
model for initial focusing; 2) a context/layout model accounting for the broad
exploration to get the gist of the scene; an object-based model, to scrutinise
objects that are likely to be located in such context. The output of each model
is a specific map, guiding, at a that specific stage, the sequential sampling of a
partial scanpath via the gaze shift model. The three-stage model is outlined at a
glance in Fig. 2. The overall model dynamics can be described as follows. Given
the i-th image stimulus at onset time t0:
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Fig. 2. The proposed three-stage model. The “time-aware” scanpath Rt(s,i) =
{Rt

(s,i)
1 ,Rt

(s,i)
2 ,Rt

(s,i)
3 }, for each “artificial observer” s viewing the i-th stimulus, is

obtained from the three partial scanpaths. These are sampled by relying on the three
maps computed via the center bias, context and object models, respectively. Each
model m is activated at a delay time Dm, while inhibiting the output of model m− 1,
so that the gaze model operates sequentially in time on one and only map. Empirical
data collection is organised as outlined in Fig. 1. Here, the overall model performance
is assessed by comparing the model-generated scanpaths {r̃F (1), r̃F (2), · · · }, with the
actual ones {rF (1), rF (2), · · · }.

For all stages k = 1, 2, 3
Step 1. At time delay Dk, compute the model-based map M(i)

k

Step 2. Based on M(i)
k , generate “subject” fixations via the gaze shift model

r(s,i)F (n) = f(r(s,i)F (n − 1),M(i)
k ):

M(i)
k �→ {r̃(s,i)F (mk−1 + 1), · · · , r̃(s,i)F (mk)} = Rt

(s,i)
k , (4)

Eventually, collect the “time-aware” scanpath Rt(s,i) = {Rt
(s,i)
1 ,Rt

(s,i)
2 ,

Rt
(s,i)
3 }.

For what concerns scanpath sampling, as proposed in [7], we exploit the
Constrained Levy Exploration (CLE [3]) model, that has also been widely used
for evaluation purposes, e.g., [24,38].

More specifically we consider the following model components to compute
the maps M(i)

k , k = 1, 2, 3.

2.1 Center Bias

Many studies [31,37] of attentional selection in natural scenes have observed that
the density of the first fixation shows a pronounced initial center bias caused by
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a number of possible factors: displacement bias of an image content (known as
photographer bias), motor bias (related to the experiment protocol) as well as
physical preferences in orbital position. In this study the center bias is modelled
with a bidimensional Gaussian function located at the screen center with variance
proportional to the image size, as shown in the first column of Fig. 5.

2.2 Context Model

Behavioural experiments [30] on scene understanding demonstrated that humans
are able to correctly identify the semantic category of most real-world scenes
even in case of fast and blurred presentations. Therefore, objects in a scene are
not needed to be identified to understand the meaning of a complex scene. The
rationale presented in [30], where a formal approach to the representation of
scene gist understanding is presented, was further developed in [42] addressing
scene classification via CNNs. The models were trained on the novel Places
database consisting of 10 million scene photographs labelled with environment
categories. In particular, we exploited the WideResNet [39] model fine-tuned on
a subset of the database consisting of 365 different scene categories. The context
map, therefore, is the result of the top-1 predicted category Class Activation Map
(CAM) [41]. CAM indicates the discriminative image regions used by the network
to identify a particular category and, in this work, simulates the exploration
phase during which observers look at those portions of the image which are
supposed to convey the relevant information for the scene context understanding.

In Fig. 3 is shown an example extracted from the dataset adopted in Sect. 3,
where a bowling alley is correctly identified by the network when focusing on
the bowling lanes.

(a) Scene, predicted as ”bowling alley” (b) Context map

Fig. 3. Components of the context map. In (a) is shown the Class Activation Map of a
scene correctly identified as “bowling alley”, while in (b) the corresponding considered
context map
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2.3 Object Model

The last stage to the realisation of the final scanpath accounts for the convergence
of fixations on relevant objects.

It is worth noting that the relevance of an object is in principle strictly
related to a given task [33]. The study presented here relies on eye-tracking data
collected from subjects along a free-viewing (no external task) experiment and
the sub-model design reflects such scenario. However, even under free-viewing
conditions, it has been shown that at least faces and text significantly capture
the attention of an observer [14]. Clearly, when these kinds of object are missing,
other common objects that might be present within the scene become relevant.

In order to obtain a realistic object map we exploited three different sub-
frameworks implementing face detection, text detection and generic object seg-
mentation, respectively. The output of each detector contributes, with different
weight, to the final object map.

More specifically, the face detection module relies on the HR-ResNet101 net-
work [20] that achieves state-of-the-art performance even in presence of very
small faces. This extracts canonical bounding box shapes that identify the regions
containing a face. An example of the face detection phase is provided in Fig. 4a.

(a) Faces (0.5) (b) Objects (0.4) (c) Text (0.1)

(d) Object map

Fig. 4. Components of the object map: (a) shows the result of the face detector module;
(b) the result of the object segmentation; (c) text detection result. In brackets, the
weights of each component, in terms of contribution to the final object map (d).
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The generic object detection component is implemented via Mask R-CNN
[18,19]. The latter capture objects in an image, while simultaneously generating
a high-quality segmentation mask for each instance. The CNN is trained on the
COCO dataset [27], that consists of natural images that reflect everyday scene
and provides contextual information. Multiple objects in the same image are
annotated with different labels, among a set of 80 possible object categories,
and segmented properly. Figure 4b shows an example, where all persons present
in the image, as well as traffic lights and cars are precisely identified and seg-
mented. The text detection component is represented by a novel Progressive
Scale Expansion Network (PSENet) [26], which can spot text with arbitrary
shapes even in presence of closely adjacent text instances. An example of text
detection result is shown in Fig. 4c.

3 Simulation

Dataset. The adopted dataset is the well-known MIT1003 [22], that consists
of eye tracking data (240 Hz) recorded from NS = 15 viewers during a free-
viewing experiment involving 1003 natural images. The stimuli were presented
at full resolution for 3 s. The raw eye tracking data were classified in fixations
and saccades by adopting an acceleration threshold algorithm [22].

Evaluation. As described in Sect. 2, we generated four different maps for each
image Ii of the dataset. Three of these are the results of the adopted sub-models:
center bias, context and object. The latter is obtained by combining the outputs
of the three detectors: faces, text and common objects. The first two are the most
relevant cues [14] and we empirically assigned weights 0.5 and 0.4, respectively,
while weighting 0.1 the object segmentation result. The final object map is later
normalised to deal with possible lacks of any of the three components.

The comparison was carried out with the state-of-the-art static saliency
model DeepGaze II [23]. This is based on deep neural network features pre-
trained for object recognition. The model is later fine-tuned on the MIT1003
dataset and the center bias is explicitly modelled as a prior distribution that is
added to the network output. The prior distribution is the result of a Gaussian
kernel density estimation over all fixations from the training dataset.

All the considered saliency maps are convolved with a Gaussian kernel with
σ = 35 px (corresponding to 1dva for the MIT1003 dataset). Figure 5 shows
examples of the generated maps.

These were used to support the generation of NS = 15 scanpaths for both
the proposed and DeepGaze II approach, via the CLE gaze shift model1 [3]. The
number of fixations generated for each subject is sampled from the empirical
distribution of the number of fixations performed by the human observer over
each stimulus. Furthermore, in the proposed model, the switching time from the
center bias map to the context map is set to 500 ms, while the permanence of the
second map is equal to 1000 ms and the sampling of fixations from the object

1 Code available at https://github.com/phuselab/CLE.

https://github.com/phuselab/CLE
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map is done for 1500 ms. In terms of delay time Dm, each model m is activated
at Dm = {0, 500, 1000} ms, while inhibiting the output of model m − 1.

Figure 6 shows CLE generated scanpaths, compared against the actual set
of human scanpaths. The examples show how considering the context in the
exploration of a scene and the precise detection of salient high-level objects,
leads to scanpaths that are closer to those resulting from human gaze behaviour,
than scanpaths generated via the classic saliency map. In particular, the first two
rows of Fig. 6 show how the contribution of the context map reflects the human
exploration of the background, rather than focusing only on faces. The third row
shows an example where DeepGaze II gives high relevance to low-level features
that are not salient for human observers. In the following row it can be noticed
how during the exploration phase all the faces are relevant, even when these are

Center Bias Context Object DeepGaze II

Fig. 5. Example of different maps generated for five images extracted from MIT1003
dataset. From left to right: the center bias, the context map and the object map,
superimposed on the original stimulus; the saliency map resulting from saliency model
DeepGaze II.
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Ours DeepGaze II Ground truth

Fig. 6. Examples of scanpaths for the images considered in Fig. 5. Left to right: 15
model-generated scanpaths, from the proposed method, 15 model-generated scan-
paths from the DeepGaze II saliency map, 15 scanpaths from actual human fixation
sequences (ground-truth). Different colours encode different “observers”, either artifi-
cial or human.

not faced towards the observer. Finally, as regards text, the last example shows
how the whole text region is relevant and not just individual portions of it.
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To quantitatively support such insights, the generated scanpaths have been
evaluated on each image of the dataset by adopting metrics based on Scan-
Match [16] and recurrence quantification analysis (RQA, [2])2.

ScanMatch is a generalised scanpath comparison method that overcomes the
lack of flexibility of the well-known Levenshtein distance (or string edit method)
[25]. A similarity score of 1 indicates that the sequences are identical while a
score of 0 indicates no similarity. One of the strengths of this method is the
ability to take into account spatial, temporal, and sequential similarity between
scanpaths; however, as any measure that relies on regions of interest or on a
regular grid, it suffers from issues due to quantisation.

Differently, RQA is typically exploited to describe complex dynamical sys-
tems. Recently [2] it has been adopted to quantify the similarity of a pair of
fixation sequences by relying on a series of measures that are found to be useful
for characterizing cross-recurrent patterns [1]. Since we are interested in whether
two scanpaths are similar in terms of their fixations sequence, we adopted the
determinism and center of recurrence mass (CORM) figures of merit. The deter-
minism provides a measure of the overlap for a sequence of fixations considering
the sequential information. The CORM is defined as the distance of the center of
gravity of recurrences from the main diagonal in a recurrence plot; small values
indicate that the same fixations from the two scanpaths tend to occur close in
time.

Results. All the generated scanpaths belonging to our approach and DeepGaze
II have been evaluated against human scanpaths for each image. Table 1 reports
the average values over all the “observers” related to the same images in the
dataset. To quantify the intra-human similarity, an additional measure resulting
from the comparison of ground truth scanpaths with themselves is provided.

It must be noted that, in case of DeepGaze II, the adopted model is fine-
tuned exactly on the same dataset adopted for testing. Although this clearly
introduces bias on the results, it can be seen how the proposed approach
outperforms the model without center bias in all three considered metrics.
When comparing with the “center bias-aware” model, the ScanMatch result
of our approach is worse. In this case, the DeepGaze II output benefits from the
addition of a prior distribution estimated over all fixations from the test dataset.

Table 1. Average values (standard deviations) of the considered metrics evaluated
over all the artificial and human “observers” related to the same images in the dataset.

ScanMatch Determinism CORM

DeepGazeII w/o CB 0.34 (0.10) 41.16 (16.23) 19.09 (6.21)

DeepGazeII w/ CB 0.41 (0.07) 50.34 (13.04) 16.39 (4.22)

Ours 0.36 (0.06) 54.47 (6.54) 13.75 (2.65)

Ground truth 0.45 (0.05) 59.72 (7.64) 10.02 (2.11)

2 An implementation is provided at https://github.com/phuselab/RQAscanpath.

https://github.com/phuselab/RQAscanpath
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4 Conclusive Remarks

Preliminary results show that the “time-aware” scanpaths sampled by taking
into account the underlying process of visual attention as unfolding in time
considerably differ from those generated by a static attention map; further, they
exhibit a dynamics akin to that of scanpaths recorded from human observers.

The model presented here and results so far achieved, albeit simple and pre-
liminary, respectively, bear some consequences. On the one hand, it may suggest
a more principled design of visual attention models. A similar perspective has
been taken, for instance, in video salience modelling, e.g. [8,15]; nevertheless,
static image processing and recognition task could benefit from resorting to
dynamics [35]. It is worth noting that the embedding of explicit gaze shift gen-
eration is an essential constituent of the model. Too often the design of visual
attention models boils down to that of a saliency model. There are of course
exceptions to such questionable approach. Le Meur and colleagues [24] have pro-
posed saccadic models as a framework to predict visual scanpaths of observers,
where the visual fixations are inferred from bottom-up saliency and oculomo-
tor biases incorporated by gaze shift dynamics are modeled using eye tracking
data (cfr. Fig. 1). Yet, there is a limited number of saccadic models available,
see [24] for a comprehensive review; generalisation to dynamic scenes have been
presented for instance in [6,28]. Also, a “salience free” approach is feasible [40],
where steps 2 and 3 can be performed without resorting to an initial salience rep-
resentation, In [40] generic visual features are exploited via variational techniques
under optimality constraints. In this case too a salience map can be obtained
a posteriori from model-generated fixations [40], but it is just instrumental for
comparison purposes [40]. In a similar vein, the maps at the heart of our method
do not rely on the concept of saliency as classically conceived. Here, to keep
things simple, we have relied on the baseline CLE gaze shift model [3]; yet, one
could resort to more complex models, e.g. [4,5].

On the other hand, our approach suggests that fine-grained assessment and
benchmarking of models, as surmised in [32], needs to be aware that a static
saliency map might not be as predictive of overt attention as it is deemed to
be. It is clear that the temporal evolution of the empirical fixation density [7],
or its modelling counterpart as proposed here, provides a source of information
that is richer than that derived by simply considering its cumulative distribution
function at the end of the process.
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Abstract. As Nietzsche once wrote “Without music, life would be a
mistake” (Twilight of the Idols, 1889.). The music we listen to reflects our
personality, our way to approach life. In order to enforce self-awareness,
we devised a Personal Listening Data Model that allows for capturing
individual music preferences and patterns of music consumption. We
applied our model to 30k users of Last.Fm for which we collected both
friendship ties and multiple listening. Starting from such rich data we
performed an analysis whose final aim was twofold: (i) capture, and
characterize, the individual dimension of music consumption in order
to identify clusters of like-minded Last.Fm users; (ii) analyze if, and
how, such clusters relate to the social structure expressed by the users in
the service. Do there exist individuals having similar Personal Listening
Data Models? If so, are they directly connected in the social graph or
belong to the same community?.

Keywords: Personal data model · Online social network · Music

1 Introduction

Music consumption is one of the activities that better reflects human personality:
each one of us has her own tastes and habits when talking about music. In recent
history, the World Wide Web revolution has deeply changed the way music enters
in our daily routine. Online giants like Spotify, iTunes, SoundCloud have made
huge accessible catalogs of music products to everybody everywhere.

We propose a Personal Listening Data Model (PLDM ) able to capture
the characteristics and systematic patterns describing music listening behav-
ior. PLDM is built on a set of personal listening: a listening is formed by the
song listened, the author of the song, the album, the genre and by the listening
time. PLDM summarizes each listener behavior, explains her music tastes and
pursues the goal of providing self-awareness so as to fulfill the Delphic maxim
“know thyself”.
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However, listening music is not only an individual act but also a social one.
This second nature of music consumption is the stone on which several online
services pose their grounds. Among them, one of the most famous is Last.Fm. On
such platform, users can build social ties by following peer listeners. The social
network that arises from such a process represents highly valuable information.
On such structure, artists/tracks/album adoptions give birth to a social-based
recommender system in which each user is exposed to the listening of her friends.

It has been widely observed how homophily [19,26] often drives implicitly
the rising of social structures encouraging individuals to establish ties with like-
minded ones. Does music taste play the role of social glue in the online world?
To answer such a question, we combine individual and group analysis, and we
propose a way to characterize communities of music listeners by their preferences
and behaviors.

The paper is organized as follows. Section 2 surveys works related to personal
data model and Last.Fm online social network. Section 3 describes our model for
analyzing musical listening and the relationship with friends. In Sect. 4 are pre-
sented the individual and social analysis performed on a dataset of 30k Last.Fm
users. Finally, Sect. 5 summarizes conclusion and future works.

2 Related Work

The analysis of music listening is becoming increasingly valuable due to the
increasing attention the music world is receiving from the scientific community.
Several works have analyzed data regarding online listening in order to model
diffusion of new music genres/artists, as well as to analyze the behaviors and
tastes of users. In [24] the authors identified through factor analysis three pat-
terns of preference associated with liking for most types of Rock Music, general
Breadth of Musical Preference, and liking for Popular Music. Also [25] examined
individual differences in music preferences, and preferences for distinct music
dimensions were related to various personality dimensions. In [6] was proposed
a music recommendation algorithm by using multiple social media information
and music acoustic-based content. In [4], the authors, studied the topology of the
Last.Fm social graph asking for similarities in taste as well as on demographic
attributes and local network structure. Their results suggest that users connect
to “online” friends, but also indicate the presence of strong “real-life” friend-
ship ties identifiable by the multiple co-attendance of the same concerts. The
authors of [22] measured different dimensions of social prominence on a social
graph built upon 70k Last.Fm users whose listening were observed for 2 years.
In [23] was analyzed the cross-cultural gender differences in the adoption and
usage of Last.Fm. Using social media data, the authors of [21] designed a mea-
sure describing the diversity of musical tastes and explored its relationship with
variables that capture socioeconomic, demographics, and traits such as openness
and degree of interest in music. In [32] is shown how to define statistical models
to describe patterns of song listening in an online music community. In [13] is
shown how the usage of a personal listening data model (also exploited in this
work) can provide a high level of self-awareness and to enable the development
of a wide range of analysis exploited here with social network analysis measures.
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The access to this huge amount of data generates novel challenges. Among
them, the need to handle efficiently individual data is leading to the development
of personal models able to deal and summarize human behavior.

These data models can be generic or specific with respect to the type of data.
In [20] is described openPDS, a personal metadata management framework that
allows individuals to collect, store, and give fine-grained access to their metadata
to third parties. [31] described My Data Store a tool that enables people to
control and share their personal data. My Data Store has been integrated in [30]
into a framework enabling the development of trusted and transparent services.
Finally, in [1] is proposed that each user can select which applications have to be
run on which data enabling in this way diversified services on a personal server.
The majority of works in the literature focus their attention on the architecture
of the personal data store and on how to treat data sharing and privacy issues.
The main difference between the personal data model proposed and those present
in the literature is that our model focuses in obtaining an added value from the
personal data through the application of data mining techniques.

In this work, we propose to apply the methodological framework introduced
in [16] for mobility data to analyze personal musical preferences. An application
of this approach in mobility data and transactional data can be found in [11,17,
29]. Moreover, in [14] is shown haw the network component becomes fundamental
to leverage the power of the analysis from the personal level to the collective
ones. User experience in online social media services, however, is composed not
only of individual activities but also of interactions with other peers. The role of
social communities and friendship ties is, for sure important to understand the
factors that drive the users’ engagement toward an artist/product. In order to
assess the strength of social influence measures based on homphily [19] and on
common interests have long been applied in social networks. For instance, the
structure of ego-networks and homophily on Twitter was studied in [3] where the
authors investigated the relations between homophily and topological features
discovering a high homophily w.r.t. topics of interest. The authors of [2] exploited
homophily in latent attributes to augment the users’ features with information
derived from Twitter profiles and from friends’ posts. Their results suggest that
the neighborhood context carries a substantial improvement to the information
describing a user. To the best of our knowledge, this work is the first attempt to
define a data model able to capture musical listening behavior and to use it to
analyze the relationships in the social network.

3 Personal Listening Data Model

In this section, we formally describe the Personal Listening Data Model. By
applying the following definitions and functions, it is possible to build for each
user a listening profile giving a picture of her habits in terms of listening.

Definition 1 (Listening). Given a user u we define Lu = {〈time-stamp, song,
artist, album, genre〉} as the set of listening performed by u.
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Fig. 1. A listening l = {〈time-stamp, song, artist, album, genre〉} is a tuple formed
by the time-stamp indicating when the listening was performed, the song listened,
the artist which played the song, the album the song belongs to and the genre of the
artist.

Each listening l (see Fig. 1) is an abstraction of a real listening since a song
can belong to more than a genre and can be played by more than an artist1.
However, we can assume this abstraction without losing in generality.

From the set of listening Lu we can extract the set of songs Su, artists Au,
albums Bu and genres Gu for each user. More formally we have:

– Su = {song|〈·, song, ·, ·, ·〉 ∈ Lu}
– Au = {artist|〈·, ·, artist, ·, ·〉 ∈ Lu}
– Bu = {album|〈·, ·, ·, album, ·〉 ∈ Lu}
– Gu = {genre|〈·, ·, ·, ·, genre〉 ∈ Lu}

Besides the sizes of these sets, a valuable summary of the user behavior can be
realized through frequencies dictionary indicating the support (i.e. the relative
number of occurrences) of each feature of the listening.

Definition 2 (Support). The support function returns the frequency dictio-
nary of (item, support) where the support of an item is obtained as the number
of occurring items on the number of listening.

sup(X,L) = {(x, |Y |/|L|)|x ∈ X ∧ Y ⊆ Ls.t.∀l ∈ Y, x ∈ l}

We define the following frequency dictionaries: su = sup(Su, Lu), au =
sup(Au, Lu), bu = sup(Bu, Lu), gu = sup(Gu, Lu), du = sup(D,Lu) and
tu = sup(T,Lu) where D = {mon, tue, wed, thu, fri, sat, sun} contains the days
of weeks, and T = {(2-8], (8-12], (12-15], (15-18], (18-22], (22-2]} contains the
time slots of the day (i.e. early and late morning, early and late afternoon, early
and late night).

These dictionaries can be exploited to extract indicators.

Definition 3 (Entropy). The entropy function returns the normalized entropy
in [0, 1] of a dictionary x. It is defined as:

entropy(X) = −
n∑

i=1

P(xi) logb P(xi)/ logb n

1 The choice of describing a listening with these attributes is related to the case study.
Additional attributes can be used when available from the data. We highlight that
listening means that the song was played and not necessarily entirely listened.
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The entropy tends to 0 when the user behavior with respect to the observed
variable is systematic, tends to 1 when the behavior is not predictable. These
indicators are similar to those related to shopping behavior described in [10,12].
We define the entropy for songs, artists, albums, genres, days and time-slots as
esu = entropy(gu), eau

= entropy(au), ebu = entropy(bu), egu = entropy(gu),
edu

= entropy(du) and etu = entropy(tu).
A pattern we consider is the top listened artist, genre, etc.

Definition 4 (Top). The top function returns the most supported item in a
dictionary. It is defined as:

top(X) = argmax
(x,y)∈X

(y)

We define the top for songs, artists, albums and genres as ŝu = top(su), âu =
top(au), b̂u = top(bu) and ĝu = top(gu).

Moreover, we want to consider for each user the set of representatives, i.e.
significantly most listened, subsets of artists, albums, and genres.

Definition 5 (Repr). The repr function returns the most representative sup-
ported items in a dictionary. It is defined as:

repr(X) = knee
(x,y)∈X

(y)

The result of repr(X) contains a set of preferences such that their support is
higher than the support of most of the listening done with respect to other artists,
albums, and genres. For example if user u has gu = {(rock, 0.4), (pop, 0.3), (folk,
0.1), (classic, 0.1), (house, 0.1)}. Then the result of repr(gu) will bet {(rock, 0.4),
(pop, 0.3)}. This result is achieved by employing a technique known as “knee
method” [28] represented by the function knee(·). It sorts the vector according
to the supports, and it returns as most representative the couples with support
greater or equal than the support corresponding to the knee in the curve of the
ordered frequencies. We define the most representative for songs, artists, albums
and genres as s̃u = repr(su), ãu = repr(au), b̃u = repr(bu) and g̃u = repr(gu).
Obviously we have ĝu ⊆ g̃u ⊆ gu that holds also for songs, albums and artists.

Finally, in order to understand how each user is related with her friends in
terms of preferences we define the set of friends of a user u as fu = {v1, . . . , vn}
where ∀vi ∈ U, vi ∈ fu. The ego-network of each user u is modeled by fu.

By applying the definitions and the functions described above on the user
listening Lu we can turn the raw listening data of a user into a complex per-
sonal data structure that we call Personal Listening Data Model (PLDM). The
PMDL characterizes the listening behavior of a user by means of its indicators,
frequencies and patterns.
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Definition 6 (Personal Listening Data Model). Given the listening Lu we
define the personal listening data model as

Pu = 〈|Lu|, |Su|, |Au|, |Bu|, |Gu|, indicators

esu , eau
, ebu , egu , edu

, etu , indicators

su, au, bu, gu, du, tu, frequencies

ŝu, âu, b̂u, ĝu, patterns

s̃u, ãu, b̃u, g̃u, patterns

fu〉 friends

It is worth to notice that, that according to the procedures followed in [15,18],
the PLDM can be extracted by following a parameter-free approach.

4 LastFM Case Study

In this section, we discuss the benefits derivable from using PLDM while ana-
lyzing the data extracted from a famous music-related online social network:
Last.Fm. In Last.Fm people can share their own music tastes and discover new
artists and genres on the bases of what they, or their friends, like. In such a
service, each user produces is characterized by two elements: the social structure
it is embedded in and her own listening. Through each listening, a user expresses
a preference for a certain song, artist, album, genre, and take place in a certain
time. Using Last.Fm APIs2 we retrieved the last 200 listening, as well as the
social graph G = (U,E), of about 30, 000 users resident in the UK3. For each
user u ∈ U , given the listening Lu we calculated her PLDM Pu. Using such indi-
vidual model, we then performed a two-stage analysis aimed at: (a) describing
how Last.Fm users can be characterized, Sect. 4.1, and (b) analyzing if, and how,
the Last.Fm social structure reflects homophily behaviors, Sect. 4.2.

4.1 Who I Am? PLDM Analysis

The first analysis we report is related to the indicators of the PLDMs {Pu}
extracted. In Fig. 2 are reported the distributions of the number of users which
have listened a certain number of songs |Su|, artists |Au|, albums |Bu| and genres
|Gu|. The first distribution is right-skewed with most of the users who have
listened to about 140 songs (this implies that some tracks have been listened
more than once). On the other hand, the other distributions are left-skewed: a
typical user listened to about 60 artists, 70 albums and 10 genres.

Figure 3 depicts the distributions of the entropy. It emerges that users are
much more systematic with respect to the listening time (day of week and time of
2 http://www.last.fm/api/, retrieval date 2016-04-04.
3 The code, along with the ids of seed users used in this study, is available at https://

github.com/GiulioRossetti/LastfmProfiler. The complete dataset is not released to
comply with Last.fm TOS.

http://www.last.fm/api/
https://github.com/GiulioRossetti/LastfmProfiler
https://github.com/GiulioRossetti/LastfmProfiler
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Fig. 2. Distributions of the number of songs |Su|, artists |Au|, albums |Bu| and genres
|Gu| respectively. The black vertical lines highlight the means.

Fig. 3. Distributions of entropy for artists eau , genre egu , day of week edu and time of
day etu respectively. The black vertical lines highlight the means.

the day) than with respect to what they listen to. This behavior is in opposition
to what happens in shopping [10]. Apparently, since the artist and genre entropy
are right-skewed, it seems that most of the users are not very systematic with
respect to the genre or to the artist. This can indicate that it is very unlikely
that it exists a unique prevalence towards a certain artist or genre.

In Fig. 4 (left), we observe the heat-map of the correlations among the indica-
tors. Some of them like |Au|, |Bu|, |Gu| are highly correlated4 (cor(|Au|, |Bu|) =
0.8569, cor(|Gu|, |Bu| = 0.6358)): the higher the number of artists or genres,
the higher the number of albums listened. Other interesting correlations are
cor(|Bu|, egu) = −0.3275 and cor(|Bu|, eau

) = 0.5483. Their density scatter plots
are reported in Fig. 4 (center, right): the higher the number of albums listened,
the lower the variability with respect to the genre and the higher the variability
with respect to the artists. From this result, we understand that a user listening
to many different albums narrows its musical preferences toward a restricted set
of genres and that it explores these genres by listening to various artists of this
genre and not having a clear preference among these artists.

A user can get benefit from a smart visualization of the PLDM indicators
obtaining a novel level of self-awareness of her listening behavior. For instance, a
user could discover that is listening to a great variety of artists but that they all
belong to the same genre and that she always listens to them following the same
pattern of songs. A possible reaction could be to start her new listening with an
unknown artist belonging to a different genre to enlarge her musical knowledge
and discover if she really dislikes certain genres or just had never the occasion to
listen to them. Moreover, due to the continuously growing size of the personal

4 The p-value is zero (or smaller than 0.000001) for all the correlations.
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Fig. 4. (left) Correlation matrix; (center-left) Scatter density plots of number of albums
|Bu| versus genre entropy egu and (center-right) versus artists entropy eau ; (right)
Storage for the model.

raw listening dataset, the PLDM can be recalculated in different time windows
so that the user can observe changes and/or stability in the listening profile.

PLDM Efficiency, Storage Analysis. We report in Fig. 4(right) the box-
plots of the storage occupancy of the data model PLDMs (left) and for the raw
listening (right). The storage required by the data model is typically one third
of the storage required by the raw data. Moreover, the storage space of the data
model will not grow very much when storing more listening because the number
of possible genres, artists, albums, songs is limited, while the number of listening
grows continuously. Thus, an average storage of 0.01Mb together with a compu-
tational time of max 5 s per user guarantees that the PLDM could be calculated
and stored individually without the need for central service.

Frequency and Patterns Analysis. When dealing with music listening data,
it is common to identify users by looking only to their most listened genre/artist.
In order to prove that this assumption does not represent the users’ preferences
properly, we exploit the knowledge coming from the frequency vectors. We ana-
lyze the frequency vectors au, gu, the top listened âu, ĝu, and the most repre-
sentative ãu, g̃u. In order to simplify the following discussion, we will refer to
the sets ãu and g̃u equivalently as x̃ and to the artists and genres contained in
such sets as preferences. In Fig. 5 is depicted the result of this analysis for the
genre (top row) and artist (bottom row)5.

The first column shows the distribution of the number of users with respect
to the number of representative genres |g̃u| and artists |ãu|. In both cases, the
smallest value is larger than 1, indicating that each user has more than a pref-
erence. On the other hand, a large part of all the genres and artists listened are
removed when passing from x to x̃. Indeed, the mean for the genres passes from
10 to 3, the mean for the artist passes from 60 to 10.

The second column in Fig. 5 illustrates the distribution of the number of
users with respect to the maximum difference in frequencies between the listening
preference obtained as max(x̃) − min(x̃). Both for genres and artists, the mode

5 The analysis of bu have similar results (not reported due to lack of space).
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Fig. 5. Frequencies analysis for genre (left) and artist (right). First row : distribution
of number of users w.r.t the number of representative preferences. Second row : distri-
bution of number of users w.r.t the maximum difference in frequencies between the
listening preference. Third row : distribution of number of users w.r.t the support given
by the representative preferences. Last row : density scatter plot between the repre-
sentative preferences support and the ratio of their number on the number of all the
possible artists or genres.

of this value is close to zero. This proofs that the highest preferences are similar
in terms of listening for the majority of the users.

The third column shows the distributions of the users with respect to the
most listened artist support mas and most listened genre support mgs given
by mas = v|(a, v) = âu and mgs = v|(g, v) = ĝu respectively, versus the rep-
resentative artist support ras and representative genre support rgs given by
ras = sum(v|(a, v) ∈ ãu) and rgs = sum(v|(g, v) ∈ g̃u). From these distribu-
tions is evident the increase of the support when are considered, not only the
preferred, but also all the representative preferences.

The last column reports a density scatter plot between the representative
preferences support (rgs and the ras) and the ratio of their number on the
number of all the artists or genres listened, i.e. |ãu|/|Au| and |g̃u|/|Gu| respec-
tively. Since the higher concentration of the points is tends to be around 0.2 with
respect to the x-axis and around 0.5 with respect to the y-axis we have that for
most of the users it is sufficient a limited number of preferences (but more than
one) to reach a very high level of support. This concludes that each user can be
described by a few preferences that highly characterize her.

Finally, it is interesting to observe how the total support of the users and
consequently the ranks of the top ten artists and genres change when the prefer-
ences in |g̃u| and |ãu| are considered instead of those in |ĝu| and |âu|. We report
in Table 1 the top ten of the top listened genres and artists and the top ten
of the most representative genres and artists with the users support, i.e., the
percentage of users having that genre or artist as ĝu or âu, and g̃u or ãu. We can
notice how for the two most listened genres (rock and pop) there is a significant
drop in the total support, vice-versa the other genres gain levels of support. The



“Know Thyself” How Personal Music Tastes Shape the Last.Fm 155

overall rank in the genre top ten is not modified very much. On the other hand,
a completely new rank appears for the artists with a clear redistribution of the
support out of the top ten. This last result is another proof that the user’s pref-
erences are systematic, but they are not towards a unique genre or artist, while
they are towards groups of preferences.

Table 1. Top ten of the top listened ({ĝu}, {âu}) and most representative ({g̃u}, {ãu})
genres and artists with corresponding support.

{ĝu} sup {âu} sup {g̃u} sup {ãu} sup

1 Rock 53.86 The Beatles 0.75 Rock 13.41 David Bowie 0.29

2 Pop 19.64 David Bowie 0.72 Pop 9.73 Arctic Monkeys 0.26

3 Hip Hop 5.05 Kanye West 0.56 Hip Hop 5.16 Radiohead 0.24

4 Electronic 2.21 Arctic Monkeys 0.54 Inide Rock 4.39 Rihanna 0.24

5 Folk 2.03 Rihanna 0.51 Folk 4.31 Coldplay 0.23

6 Punk 1.74 Lady Gaga 0.48 Electronic 4.26 The Beatles 0.22

7 Inide Rock 1.65 Taylor Swift 0.47 Punk 4.07 Kanye West 0.21

8 Dubstep 0.90 Radiohead 0.43 House 2.63 Muse 0.19

9 House 0.85 Muse 0.38 R&B 2.53 Florence 0.19

10 Metal 0.84 Daft Punk 0.37 Emo 2.11 Lady Gaga 0.19

4.2 Who Are My Friends? PLDM, Network and Homophily

So far, we focused on describing how individual users can be characterized by
their listening patterns; however, sometimes self-awareness by itself is not suffi-
cient to realize who we are. In order to understand where we are positioned with
respect to the mass or with respect to our friends, we need to compare ourselves
with them and to calculate the degree of the differences.

Given two users u, v ∈ U it is possible to calculate the similarity between
them by comparing their PLDMs Pu and Pv. By exploiting the previous result,
we decided to compute two distinct families of similarities:

– music-taste similarity: computed on the most representative music prefer-
ences, e.g. g̃u, instead of complete frequency dictionaries for artist, album
and genre;

– temporal similarity computed on the day/timeslot frequency dictionaries.

We can analyze the similarity among two users by using the cosine similarity
function among their frequency dictionaries: for example given g̃u and g̃v for u
and v, we measure their similarity as cos(gu, gv) = gu∗gv

||gu||||gv|| .
To understand if, and how, friendship ties affect the listening behavior and

users’ homophily we calculated the similarities among all the pairs of users in U
(we call this set A), and we compared these distributions with the ones obtained
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by filtering out the nodes that are not directly connected in the social graph.
Figure 6 reports the distribution between pairs of users for artist, album, genre,
day, and time-slot. Quite surprisingly, we can observe nearly exactly the same
distributions6 when considering all the pairs in A or just the friends (F ). This
means that users’ ties in Last.Fm social network are not driven by a special
listening behavior: the friends in the users’ ego-networks are a sample of all the
users inscribed to the system. Another interesting result is that genre, day and
time-slot distributions are “reverse tilde” �-shaped. There is a peak of pairs
which are not similar at all (similarity equals to zero), and a growing trend of
pairs of users which are more and more similar up to another peak of quite similar
use: just a few couples are identical. On the other hand, the distributions for
artists are long-tailed, while those for album are U-shaped with a peak between
most similar and a peak between most different.

Fig. 6. Distributions between all the pairs of users A and between users which are
friends F for artists, albums, genres, days and time-slots (from left to right).

Fig. 7. (left) Boxplots of ego-network indicators μ and σ for album, genre, day and
time-slots; (right) Community Discovery results.

Ego-Networks and Homophily. According to [2,9], we decided to character-
ize each user with respect to her listening behavior and the listening behavior of
her friends. We described the ego-network and the homophily of each user (for
each analyzed feature) through two additional indicators μ and σ. We indicate
with μ the inter-quartile mean and with σ the standard deviation of the cosine
similarity calculated on the Last.Fm friends fu of a given user u. The higher is
μ, the more homophilous is u with her friends w.r.t. a certain variable X (where

6 The Pearson correlations ranges in [0.96, 0.99], p-value � 1.0e−60.
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X can be the genre, album, etc.). The higher is σ, the more various is the simi-
larity between u and her friends fu w.r.t. a certain variable X. Figure 7 depicts
the boxplots of μ (left) and σ (right) for album, genre, day and time-slot. We
indicate with cos(X, fu) the cosine of a certain variable X calculated between
user u and her friends fu. Most of the users have a low μ indicator for the album,
but many users have quite high μ indicators for the genre, day and time-slot.
The variability σ is in line with the previous indicator: the higher the similarity,
the higher the variability of the features.

Segmentation Analysis. By exploiting the previous indicators μ and σ we
investigate the existence of different groups of listeners with respect to their
listening taste compared with those of their friends. We applied the clustering
algorithm K-Means [28] by varying the number of clusters k ∈ [2, 50]. By observ-
ing the sum of squared error [8] we decided to select 8 as the number of clusters.
In Fig. 8 are described the normalized radar charts representing the centroids
and the size of the clusters.

Cluster D is the cluster with the lowest indicators. It contains the users
who are not very similar to their friends. If we observe the left part of the
radars representing clusters B and G, we can notice that they are comparably
pronounced in terms of users having friends with similar listening behavior (time-
slot, day and genre). However, cluster G has also a great variety with respect
to these features. On the contrary, cluster C contains only users having a great
variability but not significant similarity in preferences with their friends. Clusters
E, F and H have variability very low and are complementary in terms of μs. The
first one contains users similar w.r.t. time-slot and genre, the second one users
similar w.r.t. day and time-slot, the last one users similar w.r.t genre and day.

Fig. 8. Radar charts for the centroids of the clusters extracted on the indicators of
friendship homophily based on PMDLs.
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Finally, cluster A, the smallest one, contains users who are similar w.r.t album
besides genre, day and time.

Once identified clusters of similar users, we analyzed if their characterization
reflects on the network structure: are community formed by users belonging to
the same cluster? To achieve this goal we design a three-step approach:

1. partitioning of the social graph G = (U,E) in mesoscale topologies by apply-
ing a community discovery;

2. labeling of each node within a community with the identifier of the cluster it
belongs to;

3. evaluating the level of purity of each community as the relative support of
the most shared node label.

Among various community discovery algorithms, we decided to adopt a state-
of-art bottom-up approach: Demon [7]. Demon works on the assumption that,
in a social scenario, communities emerge from the choices of individuals: each
Last.Fm user directly chooses her friends, and the community she belongs to
is implicitly described by this bottom-up wiring pattern. Demon extract micro-
communities starting from the ego-network graph of each user and then recom-
bines them in order to identify stable and dense mesoscale structures without
suffering the so-called “scale problem” that affects other approaches based on
modularity (e.g., Louvain [5]). Moreover, the chosen algorithm has proven to be
one of the best solutions while the final task was to identify network substruc-
tures able to bound homophilic behaviors [27].

By applying Demon we obtained 2160 communities. Most of the communities
are pure with respect to the clustering labels. Indeed 30% of the communities
are perfectly pure and 60% of the communities have a purity higher than the
0.67 (see Fig. 7 (center-right)). We compared this result against a random model
obtained through 100 random permutations of the clustering labeling in the com-
munities. The line represents the average of these simulations. Even though the
shape of the distribution is similar, high levels of purity are not reached for a
considerable portion of the communities. Thus, in general, the users in a com-
munity tend to belong to the same cluster. This result lets us conclude that,
even if each user has its own peculiar profile, it tends to be surrounded by peers
that share similar behavior with respect to the listening tastes compared with
those of her friends. Communities are not composed by users that necessarily
listen to the same artist/album/genre or that use the service during the same
day/time-slot. Conversely, they group together users having the same degree of
erratic behaviors. What emerges is that service usage drives people to connect.
For example, users that like to listen to various genres tend to surround them-
selves with people with high music preference entropy (maybe to maximize the
exposure to novelty). Vice-versa, users that like to listen to few genres tend to
surround themselves with friends with music taste narrowed towards specific
genres (maybe to deeply explore various artists of those genres) As highlighted
by Fig. 7 (right) this result is not affected by the size of the community even
though it seems that for larger communities the purity tends to 0.5.
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5 Conclusion

The endless growth of individual data is requiring efficient models able to store
information and tools for automatically transforming this knowledge into a per-
sonal benefit. In this paper, we have presented the Personal Listening Data
Model (PLDM). The PLDM is designed to deal with musical preferences and
can be employed for many applications. By employing the PLDM on a set of
30k Last.Fm users we endorsed the potentiality of this data structure. We have
shown how our modeling approaches can be used to increase the self-awareness
of Last.Fm users enabling for a succinct description of music tastes as well as
service usage habits. We have discussed how the indicators composing the PLDM
can be exploited to produce a user segmentation able to discriminate between
different groups of listeners. Finally, we studied the correlations among the seg-
ments identified and the modular structure of the Last.Fm social graph. From
this last analysis clearly emerges that Last.Fm users tend to cluster, in the net-
work sense, with peers having a similar degree of music entropy and/or similar
temporal listening behaviors. In the future, we would like to implement a real
web service where a user can provide his Last.Fm username and a personal
dashboard exploiting all the features contained in the PLDM, as well as her sim-
ilarity to her friends, is shown. The dashboard would allow self-awareness and
self-comparison with other users, with similar users or with the user’s friends.
In this way, a user could enlarge his musical experience, try novel tracks, and
increase her musical education because knowledge comes from listening.
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of music-listening sessions in social media. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 1019–1028. ACM (2010)

https://doi.org/10.1007/s13278-016-0397-y
https://doi.org/10.1007/s13278-016-0397-y
https://doi.org/10.1007/978-3-319-18491-3_20
https://doi.org/10.1007/978-3-319-18491-3_20


Gender Recognition in the Wild with
Small Sample Size - A Dictionary

Learning Approach

Alessandro D’Amelio(B) , Vittorio Cuculo , and Sathya Bursic

Dipartimento di Informatica, University of Milan, Milan, Italy
{alessandro.damelio,vittorio.cuculo,sathya.bursic}@unimi.it

Abstract. In this work we address the problem of gender recognition
from facial images acquired in the wild. This problem is particularly dif-
ficult due to the presence of variations in pose, ethnicity, age and image
quality. Moreover, we consider the special case in which only a small
sample size is available for the training phase. We rely on a feature rep-
resentation obtained from the well known VGG-Face Deep Convolutional
Neural Network (DCNN) and exploit the effectiveness of a sparse-driven
sub-dictionary learning strategy which has proven to be able to repre-
sent both local and global characteristics of the train and probe faces.
Results on the publicly available LFW dataset are provided in order to
demonstrate the effectiveness of the proposed method.

Keywords: Facial gender recognition · Sparse dictionary learning ·
Deep features · Soft biometrics

1 Introduction

Human gender recognition is a problem of soft biometrics that has gained a
lot of attention in the recent years. In particular the problem of recognizing
gender from human faces is typically used in applications like human computer
interaction, image retrieval, surveillance, market analysis or for the improvement
of traditional biometric recognition systems, moreover, has gained popularity
due to large availability of face datasets. In the past few years a lot of research
has been carried on, mainly focusing on the problem of gender recognition from
faces in a constrained setting (e.g. frontal images, controlled lighting conditions,
absence of occlusions). However in order to produce applications that can be used
in every day situations (e.g. web pages, webcam, mobile devices) it’s necessary
to build models which are able to deal with face images in an unconstrained
setting; this includes images with occlusions, facial expressions, variation of pose
and lighting condition and low resolution images. In the most recent literature,
this problems have been addressed using both hand crafted features and Deep
Learning and in particular Deep Convolutional Neural Networks (DCNN). In
this work we propose a method for the classification of gender from facial images
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acquired in an unconstrained setting and when only few examples are available
for the training phase. The paper is organized as follows: in the next section we
give a brief review of the related work and the state of the art. In Sect. 3 a detailed
description of the proposed algorithm is provided. In Sect. 4 experimental results
of the proposed method on a benchmark dataset are presented with related
discussion.

2 Related Work

The problem of gender recognition from face images has been addressed in many
works in the recent literature [12], however most of those focus on datasets
acquired in a controlled environment, that is out of the scope of the present
investigation. To a first approximation, the methods for gender recognition in
the wild follow two distinct paths: in one case, a standard classification pipeline
is adopted and the dataset is divided in training and test sets. For each image
a feature extraction procedure is implemented followed by a machine learning
method stated as a binary classification model, eventually preceded by a dimen-
sionality reduction or feature selection module. In this category falls the work of
Dago-Casas et al. [7] in which Gabor features are extracted and the classifica-
tion step is carried out using a linear SVM. In order to deal with the imbalance
of classes a weighted SVM model is adopted for classification. Shan [16] used
Boosted Locally Binary Pattern as features for the classification with a SVM
with RBF kernel, while Tapia et al. [17] adopted a feature selection algorithm
based on mutual information and fusion of intensity, shape and texture features
as input for an SVM classifier. However, both used a subset of the LFW dataset
[10] composed of 4500 males and 2943 females, excluding images that did not
contain near frontal faces. The second group of methods concerns those who
exploit the deep learning for the classification of gender. In [2], Afifi et al. rely
on the combination of isolated and holistic facial features used to train deep con-
volutional neural networks followed by an AdaBoost-based score fusion to infer
the final gender class. In [15] a Deep Multi-Task Learning Framework called
HyperFace is proposed; gender recognition is presented as one of the tasks and
is carried out by fusion of different DCNN features (each of which has been
trained for a specific task) via a multi-task learning algorithm which exploits
the synergy among the tasks to boost up the performances.

3 Proposed Method

The proposed method relies on the construction of highly discriminative dictio-
naries of deep features. Each training (gallery) or test image is first processed
using standard image augmentation techniques. For each of those images, the
feature characterization from the VGG-Face Net is computed. In the training
step only a small subset of images is retained to build the gallery. A sparse-
driven sub-dictionary learning strategy is then adopted to build the dictionary.
Probe faces are classified via sparse recovery on the learnt dictionary. The overall
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schema of the model is sketched in Fig. 1. At training stage (red route), each
augmented face image (Sect. 3.1) is passed through the VGG-Face DCNN and
according to the associated label, the obtained feature may be selected to ini-
tialize the corresponding sub-dictionary (male or female) prior to the learning
stage (Sect. 3.3). At testing stage (blue route) the probe face image, after aug-
mentation and feature extraction, is classified through sparse recovery on the
learnt dictionary (Sect. 3.4).

OMP

Face Augmented VGG-Face CNN

Dictionary Learning

OMP Classifier

Probe
Face

Face
Gallery

Gender

Train
Test

Fig. 1. Pipeline of the model.

3.1 Augmented DCNN Features

In order to build a dictionary we need to find a feature representation that can
be suitable for the discrimination of certain characteristics of human faces. In
this work we decided to exploit the effectiveness of Deep Convolutional Neural
Networks and in particular the popular architecture VGG-Face Net [13]. Given
that we set up the problem to have a small sample size approach, it would be
impossible to train a DCNN from scratch; conversely we use a pre-trained net-
work as feature extractor by feeding images into the VGG-Face and taking the
output of the network truncated at the last fully connected layer. It is worth
noticing that original VGG-Face architecture was trained to recognize face iden-
tities with no explicit information about the gender. Moreover there is no overlap
between the test dataset and the one used to train the VGG-Net. As pointed
out in [5], an augmentation stage which relies on standard image transformations
(e.g. flipping, random crops, rescalings) is beneficial for the recognition accuracy.
Moreover, adopting augmentation techniques delivers some advantages: first by
cropping, scaling and flipping faces at different levels we are able to extract both
local and global characteristics for the problem at hand. Secondly, this leads to
an increase of the number of training images, thus allowing to have a smaller
sample size for the gallery. The augmented feature extraction procedure is car-
ried out by applying to each image the same set of transformations (9 crops, 4
scales, 2 flips), thus producing L = 72 transformations. For each “augmented”
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image, a feature characterization is extracted using the VGG-Face Net, which
delivers a 4096 dimensional feature vector.

3.2 Sparse Representation of DCNN Features

It is assumed that every feature representation of each augmented face image
from class i can be recovered from the linear combination of the training data
from that class: yi,j = xi,1vi,1 + xi,2vi,2 + ... + xi,ni

vi,ni
, where yi,j ∈ IRm is

the j-th feature vector for the generic augmented face image and x values are
the coefficients corresponding to the training data samples for class i. In other
words we assume that the feature representation of a given face image with a
certain gender can be approximated by linearly combining the features belonging
to other images of the same gender. Following this idea, we can represent every
generic feature vector yj associated to a new test image as:

yj = Dxj (1)

Here D is commonly referred to as the dictionary which is, in general, a
matrix where each column is a feature vector associated to a training example.
From now on, j index will be omitted unless needed. Assume to select ni training
data samples for the i-th class, where each data sample is represented by a vector
vi,j of m elements. These vectors are then used to construct the columns of
matrix Ai:

Ai = [vi,1,vi,2, ...,vi,ni
] (2)

In the specific scenario adopted here, we have two classes, so i ∈ {♂, ♀},
ni = qi ∗K where qi is the number of images from the i-th class selected to join
the gallery (this number is chosen to be reasonably small and equal for both
classes, so q♂ = q♀) and K << L is the number of augmented features to keep
in the dictionary for every training image. Each feature vector of 4096 elements
is reduced dimensionally using Principal Component Analysis (PCA) in order
to retain 95% of the variance. The concatenation of the Ai matrices yields the
dictionary:

D = [A♂,A♀] ∈ IRm×n (3)

Where m is the result of the dimensionality reduction step and n = n♂+n♀.
The solution of the linear equation (1) boils down to the problem of solving
an under determined system given that the matrix D is a m × n matrix with
m < n. The “common way” of solving this kind of systems is by defining an
optimization problem of the form: minx J(x) s.t. y = Dx.

The form of J(x) governs the kind of solutions we may obtain. If we choose
J(x) to be the squared Euclidean norm ‖x‖22, then the solution to the optimiza-
tion problem can be obtained in closed form by x = D†y which is the standard
least-squares solution, where D† is the pseudo-inverse of the matrix D. However
this kind of solution is not suitable for the problem of recognition. In fact, we
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wish to obtain the sparsest solution in order to “select” only those atoms of the
matrix D that correspond to the correct class at hand. In practice, if we have a
probe image containing, say, a female face, we (ideally) wish to recover a solution
for the vector x in which the support of x is non-zero only at the columns of D
that belong to A♀.

In order to yield the sparsest solution for x, an L0 norm is chosen for J(x):
minx ‖x‖0 s.t. y = Dx. Moreover, when at most k atoms are sufficient to
represent the sample y, the previous problem can be rewritten as in the following:

y = Dx s.t. ‖x‖0 ≤ k (4)
Since data in real applications often contains noise, the model appearing in

the previous equation is somewhat unrealistic. Thus, it is reasonable to revise
such exact model introducing a noise assumption:

min
x

‖Dx − y‖22 s.t. ‖x‖0 ≤ k (5)

Finding a solution to this optimization problem is an NP-Hard problem, but
approximations can be found using approximate algorithms [18].

3.3 Sparse Sub-dictionary Learning

In this section we aim at building class specific sub-dictionaries of the form of
Eq. 2 able to capture the sparsity patterns for the gender classification problem.
In the vein of [6], this can be achieved by learning such sub-dictionaries to well
represent face characteristics through the sparse vectors x. To this end the sparse
dictionary learning problem can be defined as follows:

min
X,D

‖DX − Y‖2F s.t. ‖xu‖0 ≤ k, ‖du‖2 = 1 (6)

where Y = [y1, ...,yq] ∈ IRm×q is the data matrix obtained by concatenating
column-wise all the q = (q♂+q♀)×L training feature vectors and similarly, X =
[x1, ...,xq] ∈ IRn×q is the matrix of the corresponding sparse representations.
There is no closed form solution for the problem defined by Eq. 6 in the same way
as there isn’t for the problem of Eq. 5. However, this can be heuristically solved
by adopting the well-established alternating optimization scheme consisting in
repeatedly executing these two steps until a stop condition is met:

– Sparse coding: solve problem (6) for X, fixing the dictionary D
– Dictionary update: solve (6) for each Ai separately, fixing Xi, then build the

new dictionary as in Eq. 3

At the very first step, the dictionary D may be initialized by randomly select-
ing training feature vectors; the sparse coding step can then be solved resorting
to standard sparse approximation algorithms like [1] or [14] as well as for the
dictionary update rule that can be casted into different forms (e.g. [3,8,9]).

In this work we exploit the well established Orthogonal Matching Pursuit
(OMP) [14] and K-SVD [3] algorithm for the sparse coding and dictionary update
steps, respectively.
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3.4 Classification via Sparse Recovery

The problem of recognizing the gender of a new probe subject can be casted to
the recovery of the sparsest solution of a linear system. In particular, given a
dictionary D, of the form of Eq. 3, and a new probe image I, the augmentation
step is computed yielding L transformed images (Il). The feature extraction is
then performed via the VGG-Face DCNN. For each augmented feature vector,
the PCA projection computed in the dictionary learning phase is applied, thus
obtaining L = 72 (9 crops × 4 scales × 2 flips) feature vectors (yl). For each of
the obtained yl, the sparse recovery on the learnt dictionary D is computed using
OMP, following Eq. 5. The solutions have the following form: xl =

[
x
l,♂;xl,♀

]
;

for each xl vector (l ∈ {1, ..., 72}), the number of non-zero elements in x
l,♂ and

xl,♀ is counted and classification is performed by majority voting.

4 Experimental Results

The effectiveness of the method is assessed on the Labeled Faces in the Wild
(LFW) dataset [10]. This dataset contains more than 13000 images of 5749 dif-
ferent subjects acquired in uncontrolled conditions. The pose, illumination, and
expression variations, together with the possible presence of partial occlusions
and disguised faces make the gender recognition problem challenging.

The original release of the LFW dataset does not contain gender labels, how-
ever Afifi et al. [2] used an estimation method for the gender label based on the
first name of the subjects; the obtained labels where then reviewed three times to
completely eliminate any incorrect labels. Besides the difficulties outlined in the
previous paragraph, the LFW dataset adds another hitch to the gender recog-
nition problem, namely a huge imbalance between the two classes. In particular
the dataset is composed by 10268 examples for the male category and only 2966
for the female one. For what concerns the cardinality of the gallery, we conducted
3 experiments using q♂ = q♀ = [50, 100, 200], in order to asses the importance of
the size of the gallery on the classification accuracy. In other words, among the
13234 images of the dataset, only, 50, 100 or 200 are in turn selected from the
male and female category respectively and used for training, while all the others
are used for test. We experimentally set K = 5, that is for every gallery image,
5 feature vectors out of the 72 are randomly chosen to join the appropriate sub-
dictionary, prior to the learning phase. All the three experiments are repeated
10 times each. In each trial the set of images to be put in gallery is selected by
uniformly sampling 50, 100 or 200 images from both classes. This ensures that
in each trial the model potentially has a different set of images, identities, occlu-
sions and ethinicities in gallery, while maintaining the distribution of males and
females constant. For each trial a learning and testing phase is executed and the
results are averaged. In Table 1 mean results are displayed alongside comparison
with state of the art methods on LFW proposed in literature. Precision, recall
and F1-measure are reported if available.

As shown in the table, the method proposed here yields comparable results
with other models in the literature. Notably, by augmenting the size of the
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Table 1. Experiments on LFW dataset and comparisons. For each method we report
the accuracy, precision, recall and F1 measure. The cardinality of the two classes is
shown in brackets. For the proposed method the number of images per class that
compose the gallery is put in curly brackets

Method Accuracy Precision Recall F1-measure

Our {50} (10268 m 2966f) 91.73 80.57 91.23 85.57

Our {100} (10268 m 2966f) 94.43 84.71 95.10 89.60

Our {200} (10268 m 2966f) 95.13 86.10 94.42 90.06

Gabor+W-SVM (10129m 2959f) [7] 92.96 94.10 89.05 91.50

Boosted LBP+SVM (4500 m 2943f) [16] 94.81 – – –

LBP+SVM (4500 m 2943f) [17] 98.01 – – –

AFIF 4 [2] 95.98 – – –

HyperFace [15] 94.00 – – –

gallery, both the accuracy and the F1-measure increase, reaching results that
sensibly outperform those in [7] in terms of accuracy. Among the other methods
outlined, [7] is the method that uses the biggest subset of LFW; in fact, many
of the analyzed models act on a subset of the LFW dataset by rejecting images
for which face detection fails; we believe that this would lead to exclude from
the analysis the most challenging images. Moreover in some works the most
numerous class is sub-sampled in order to obtain a class balanced dataset. To
the best of our knowledge, the method proposed in [7] is the only one that clearly
provides results for the whole LFW dataset on the gender recognition problem.

5 Conclusions

In this work a method for the classification of gender from facial images in
the wild is proposed. The method exploits the effectiveness of the sparse-driven
sub-dictionary learning strategy on DCNN features formerly presented in [6].
The experimental results show that the proposed method is able to deal with
variations in pose, lighting, occlusions, facial expressions and ethnicity while
using a training set (gallery) with a small sample size. The results obtained
are comparable with the state of the art on the LFW dataset, despite the huge
difference in the cardinality of both the training set and the test set used. In
future work, we plan to explicitly inquire the impact of specific hurdles (facial
expressions, occlusions, etc.) by relying on appropriate datasets [4,11].

References

1. Adamo, A., Grossi, G., Lanzarotti, R., Lin, J.: Sparse decomposition by iterating
lipschitzian-type mappings. Theoret. Comput. Sci. 664, 12–28 (2017)

2. Afifi, M., Abdelhamed, A.: Afif4: Deep gender classification based on adaboost-
based fusion of isolated facial features and foggy faces. arXiv preprint
arXiv:1706.04277 (2017)

http://arxiv.org/abs/1706.04277


Gender Recognition in the Wild with Small Sample Size 169

3. Aharon, M., Elad, M., Bruckstein, A., et al.: K-SVD: an algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process.
54(11), 4311 (2006)

4. Boccignone, G., Conte, D., Cuculo, V., Lanzarotti, R.: Amhuse: a multimodal
dataset for humour sensing. In: Proceedings of the 19th ACM International Con-
ference on Multimodal Interaction, pp. 438–445. ACM (2017)

5. Bodini, M., D’Amelio, A., Grossi, G., Lanzarotti, R., Lin, J.: Single sample face
recognition by sparse recovery of deep-learned LDA features. In: Blanc-Talon, J.,
Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS,
vol. 11182, pp. 297–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01449-0 25

6. Cuculo, V., D’Amelio, A., Grossi, G., Lanzarotti, R., Lin, J.: Robust single-sample
face recognition by sparsity-driven sub-dictionary learning using deep features.
Sensors 19(1), 146 (2019)
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Abstract. Mobile applications for language learning (MALL) is a field
that is at large dominated by translation-based learning approaches.
Moreover, MALL feature a number of common practices that may not
effectively address learning or may even increase the number of user
errors. In this tool paper, we introduce a language learning application
equipped with instrumentation code to collect data about user behavior
and use such data in different ways. The most obvious use is to provide
statistics and patterns of learning of the users, which can be used by
users to adjust their learning approaches and by researchers to study
learning processes and attitudes. For the benefit of the user collected
data can be also exploited to drive the synthesis of exercises that best
suit the user’s language level and learning approach and are not likely
to cause usability errors.

The main use of the application is, however, as a tool for research
purposes. In fact, it is a tool for testing new forms of exercises and their
combination on samples of users, thus providing valuable information for
research in language learning as well as supporting the software develop-
ment process of new MALL. Finally, an additional feature of the tool is
the conversion of the collected data into a formal description of the user’s
behaviour to be used for formal verification and validation purposes.

Keywords: Mobile applications · Language learning · Usability ·
Instrumentation code

1 Introduction

A large variety of mobile applications for language learning (MALL) has been
developed during the last years. Such applications are very appealing to the large
public and mostly inexpensive, at least in their freeware and shareware versions.
Since they can be easily used anytime and anywhere in very short sessions of just
a few minutes, they appear to many users as a panacea to learn new languages
effortlessly.

Work partly funded by Seed Funding Grant, Project SFG 1447 “Formal Analysis and
Verification of Accidents”, University of Geneva, Switzerland.

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 170–185, 2020.
https://doi.org/10.1007/978-3-030-54994-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54994-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-54994-7_13


Instrumented Language Learning Application for Usability and Learning 171

However, although the effectiveness of such applications has not been studied
systematically, the sparse studies on their usability and learning effectiveness
seem to agree on the following issues:

– these applications can only be used as a secondary tool in learning a new
language, i.e. the user cannot gain a reasonable fluency in a new language
using only MALL tools [10];

– the opportunity to learn more new languages simultaneously using MALL cre-
ates its own unique set of challenges, that are not present in traditional learn-
ing, e.g. increased rate of confusion of grammar and/or vocabulary among the
languages [3];

– the core issue is the translation-based learning approach, which provides little
grammatical support [6,9,10].

However, since most research is based on self-reported user feedback, it could
potentially be unreliable [5].

The main aim of our work is to empirically identify best linguistic and appli-
cation design approaches that lead to learning effectiveness of language learning
applications. For this purpose we have developed a MALL tool that includes
instrumentation code to collect data on user behaviour and performance as well
as analysis features for the visualisation and exploitation of such data. All exam-
ples in this paper refer to an English speaker learning the Kazakh language.

Data exploitation is carried out with two aims. First the way lessons are
delivered is adapted to the characteristics and the progresses of the user. This is
achieved by the data-driven synthesis and sequentialisation of exercises that best
foster the user’s language level and learning approach. The aim is to avoid the
usability errors that have been found to be a commonplace for the considered
user. Second, by collecting data on the effectiveness of exercises and different
exercise sequences, in terms of the number and type of errors made by the
user, the application will be able to provide valuable information for research
and software development purposes. This includes information on usability and
learning-related errors. In terms of data exploitation, an important feature of our
application is the automatic conversion of collected data into a formal description
of the user’s behaviour to be used for verification and validation purposes.

In terms of data visualisation, the application can provide statistics and
patterns of learning of the users. Some of these forms of visualisation can be
observed by the users with the aim of adjusting their learning approaches. Other
can be observed by researchers to study learning processes and attitudes.

The rest of the paper is structured as follows. Section 2 illustrates some of
the review work carried out to compare various MALL as well as to analyse in
depth some of the most popular MALL. Contextually, the section also provides a
general background on MALL. Section 3 presents the architecture of our instru-
mented MALL. Sections 4, 5 and 6 illustrate the implementation components:
database, web interface and mobile application, respectively. Section 7 evaluates
mobile applications in terms of usability and their functionalities for analysing
learning effectiveness. Finally, Sect. 8 presents the current implementation status
and concludes the paper, also proposing possible future work.



172 A. Aibassova et al.

2 MALL Literature Review

Gangaiamaran and Pasupathi [6] review a wide range of different applications.
They partition them into three main categories, depending on the addressed
learners:

– primary learners, i.e. children 3–11 years old;
– secondary learners, i.e. teenagers 12–17 years old;
– tertiary learners, i.e. university students and adults.

For each category, the authors select a number of applications that they have
considered the best, and list them in a comparative table together with basic
information, such as the name and a description.

Although Gangaiamaran and Pasupathi’s work is merely descriptive, with lit-
tle or no exploratory attempts, some general information can be gathered from
the tables. Devices running on iOS, such as iPhone and iPad have a larger num-
ber of high-quality apps in comparison with Android devices. This is especially
noticeable in the primary learners category, which is quite diverse in terms of
the study topics. Vocabulary and speaking skills are widely represented in the
secondary learners category. However, only one of the considered applications
focuses on grammar. The tertiary learners category adds focus on pronuncia-
tion, but still seems to lack applications that work on grammar intensively. The
obvious conclusion of this work is that listening is the only skill that can be best
developed via the use of mobile applications.

Lai and Zheng [8] provide the results of a survey and interview study held
in Hong Kong on a sample size of 256 people. All participants were of Chinese
descent, and 77% of them were females. The study focuses on the way students
use their mobile devices for studying in their free time, and draw a number of
important conclusions:

– Mobile devices can significantly improve the personalisation of the study, but
are not necessarily as good in terms of authenticity, e.g increasing participa-
tion in target language communities, and connectivity, e.g connection with
native speakers or peer learners.

– Social interaction appears to be a big obstacle for both authenticity and
connectivity measures, with participants reporting uncertainty when using
unknown languages both in personal or public spaces.

– Smart-phones are mostly considered to be leisure devices, unlike laptops or
personal computers, but are used effectively to fill in “pockets of time” with
activities such as watching short videos, studying during travel, or conversa-
tions on-the-go. Therefore, participants did tend to choose specific tools for
different tasks.

– Time of device usage for language learning averaged between 1 and 3 hours
per week.

Nushi and Eqbali [9] focus on the features of the most popular language appli-
cation, Duolingo [1]. Duolingo is an application that actively uses the translation
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aspect of learning, with most exercises focusing on this aspect. Although such
an approach can be effective, it actually has a major limitation. It addresses
effectively only those people who are fluent in the supposedly known language
for which the course is designed. For example, English users have a selection of
16 languages to learn, while Spanish ones have only 6. Duolingo provides five
types of exercises for its users:

– translation exercises, either writing the translation or choosing words among
a given set to compose the translation;

– matching exercises, selecting the appropriate figure and associated word to
learn for a given word in the known language;

– pairing exercises, pairing words from a list of mixed words belonging to the
two languages;

– speaking exercises, orally repeating a sentence presented in the language to
learn;

– listening exercises, either writing or composing the sentence heard in the
language to learn.

Only the last type of exercise does not involve translation.
One major aspect of the Duolingo is “gamifying” the experience through a

system of rewards for completing daily goals, and inclusion of competition via
XP points gained when finishing each lesson. Duolingo has social-media features,
such as connecting with friends and competing with them, which can be encour-
aged by receiving notifications when some of the friends scores more points than
the user. Notifications are a major part of the application, being sent also when
users do not meet their daily goals. Such notification tend to use coercive lan-
guage.

Nushi and Eqbali point out multiple problems with the application in terms
of its teaching techniques, mostly in terms of limitations:

– users are not provided with grammar explanations, and have to figure them
out by themselves;

– many words are introduced without information about their meanings or
without pronunciation;

– a lot of sample sentences and the synthetic voice that is used to read them
can be off-putting and unnatural.

They conclude that the application does not provide a complete learning expe-
rience by itself, although it can be helpful to a certain extent.

Nushi and Eqbali conducted a similar study for 50Languages, another pop-
ular application in the MALL category [10].

3 System Architecture

Our MALL tool supports the synthesis of exercises and their delivery modalities,
as featured by various existing MALL, including the ones considered in Sect. 2.
In this way approaches used by distinct MALL can be emulated and compared
in terms of their usability and learning effectiveness.
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The system we have developed consists of two parts:

– a front-end comprising
• an Android application, and
• a web interface.

– a back-end comprising a database and the APIs for data collection, storage,
data analytics, data presentation, client control and data exploitation.

The interaction between such components is shown by the UML sequence dia-
gram in Fig. 1.

Fig. 1. Application sequence diagram.

The development of the front-end has been carried out using Android NDK
for the Android app and HTML/CSS/JS web tools for the web interface. The
back-end part of the system comprises a NoSQL Firebase realtime database to
store all data necessary for the application.

The Android application serves the purpose of teaching the language as well
as recording the data. The web interface is used for designing the delivery of
exercises and the display of analytic data. The types of the exercises that are
illustrated in this paper are chosen from the most popular language learning
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applications such as Duolingo and Rosetta Stone. The web interface supports
the possibility of choosing from different variants in the exercise presentation.
For example, Duolingo matching exercises consist always in the selection of a
figure and the associated word to learn to be matched with a given word in the
known language. Our application can provide several variants of this exercise.
One variant is given in Fig. 5(c), where the choice is between words in the
language to learn to be matched with just one figure with no word in the known
language. The design of such variants is carried out using the web interface.

Section 4 describes in details the kind of data that can be stored and col-
lected. Sections 4, 5 and 6 highlight the system functionalities, including exercise
classification, user functionality and data analytics and exploitation.

4 Database and Analytics

The system uses the Firebase NoSQL realtime database. This choice was moti-
vated by several factors. First, it is easy to integrate Firebase with the Android
application. Second, NoSQL provides a more flexible framework, which was cru-
cial during the development process, when there were frequent changes to the
specification of the overall system and its functionality. Third, Firebase offers
unique tools like authentication and database manipulation through the usage
of additional functions. This was essential in developing the research-oriented
features of the tool.

The database stores:

– exercises, as shown in Fig. 2(a);
– personal user data;
– user exercise history, as shown in Fig. 2(b);
– analytical data, as shown in Fig. 2(c).

Figure 2(a) contains the information of two exercises of the same type (BS, i.e. fill
in the Blank Space as type field) in which the user has to choose the right, among
four possible alternatives, to insert in the missing part of a sentence (question).
The subject field defines the grammatical topics covered, i.e. the language skills
this exercise is aimed at training. Values for this field in the example considered
in this paper are V for ‘Vocabulary’, P for ‘Pronouns’ and N for ‘Number’ (i.e.
singular vs. plural).

All data used for data analytics are stored in the database in the form of user
exercise history. For example, the information in Fig. 2(b), contains: correctness
of the given exercise answer (value 0 in the example means that the answer
was wrong), subject of the exercise (P for pronouns), type (TS, i.e. Translate
Sentence), and time taken to complete the exercise (4848 ms).

This data is then analysed using Firebase cloud functions, which allow devel-
opers to host any custom JavaScript functions on Firebase servers. These func-
tions retrieve and transform data to create new statistical data then stored back
in the database. Three category of statistical data are stored in the database:



176 A. Aibassova et al.

Individual user data comprise success/failure rate of exercises (SFRate), num-
ber of total exercises completed (allExCount), number of exercises completed
with mistakes (mistOverall) and number of mistakes for each subject. An
example is given in Fig. 2(c).

(a) Storage of exercises (b) Exercise history

(c) User statistics

Fig. 2. Database contents
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Population data comprise the same kinds of data as for individual user data,
but for the entire population of users.

Exercise data comprise success/failure rate for every type of exercise and for
every subject on which the exercises focus.

5 Web Application and Research-Oriented Functionalities

The web application has a limited use for language learners (whom we call
users). They may use it just to view their own individual statistics (individual
user data).

(a) Create and upload exercises (b) Output CSP code

Fig. 3. Database input ad output

It is instead an essential interface for the researcher. It implements the fol-
lowing functionalities:

– creation and upload of exercises, as shown in Fig. 3(a);
– generation of a formal specification format from the user’s exercise history,

as shown in Fig. 3(b);
– presentation of statistical data in form of charts and diagrams as shown in

Fig. 4;
– set the strategy for delivering the exercises.

Setting appropriate strategies for delivering the exercises is an essential func-
tionality for the researcher. The simplest setting is a random sequentialisation
of the exercises. The researcher can also manually control the presentation and
sequentialisation of the exercises
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Fig. 4. Visual data display

– by choosing the presentation form, for example whether or not to add the
word to learn to the figure in a matching exercise;

– by forcing or preventing a pair of exercise types to occur consecutively.

This first control may be used to empirically evaluate which presentation form
may lead to more mistakes in general or with specific users. The second control
allows the researcher to emulate approaches used by a specific, existing MALL,
in order to compare them, or to analyse the learning process in general terms,
for example by identifying interferences between questions.

5.1 Formal Analysis

Our tool may also generate a formal specification from the user’s exercise history
to be used for formal verification and validation purposes. Following the approach
by one of the authors [4], the tool generates CSP (Communicating Sequential
Processes) [7] code to be used within the PAT (Process Analysis Toolkit) [2]. For
example, the web page in Fig. 3(b) produces a CSP representation of data on
user interaction, in which we consider all errors apart from vocabulary mistakes
(‘Vocabulary’ is the only unchecked type of mistake). The generated CSP code
shown in Fig. 3(b) concerns three users: the first does not make any mistake of
the selected types, the second makes one ‘Spelling’ mistake (Smistake) and the
third a ‘Number’ mistake (Nmistake).

Users perceive, focus and act in different ways while interacting with a MALL.
For example, considering Duolingo, in translation exercises to the known lan-
guage the sentence in the language to learn is presented simultaneously in writ-
ten and audio modality. In this case, there are two alternative categories of
users with two distinct cognitive profiles: focussing on the audio modality and
focussing on the written modality. It would be interesting to understand whether,
in general, such a user’s cognitive profile has a correlation with the level reached
by the user in the learning language. Although the user’s level can be assessed
by our MALL tool, assessing the cognitive profile is challenging. Interviewing
user is not helping since focussing on a specific modality is a form of implicit
attention, of which the user is normally unaware. Moreover, using special tech-
nologies, such as an eye-tracking system, does not provide a definite answer: the
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user may actually read the sentence while the attention mechanism selects the
audio information and discharges the written information, so that only the read
information progresses to mental processing.

Both the MALL system and user’s cognitive profiles may be formally speci-
fied using CSP [4] and composed in parallel to produce a constrained model of the
system. The CSP process that fomalises real data on the interaction of user at a
specific level in the language to learn (i.e. beginners or advanced), which is auto-
matically generated by our tool, can be then composed with the constrained sys-
tem model. The formal verification of a temporal logic property that characterises
the MALL system functional correctness against such a further constrained CSP
model may then be used to validate a research hypothesis such as “A learner at an
advanced level in the foreign language always focuses on the hearing modality.”

6 Mobile Application

The mobile application runs on Android NDK and implements different lesson
functionalities, several types of exercises and data collection features. Although
the full plan is to cover written sentence construction and comprehension, listen-
ing comprehension and spoken sentence construction, the current implementa-
tion does not include any audio functionalities. Therefore lessons and exercises
are restricted to the written form.

Researchers are registered through the system setting and have special access
rights, which allow them to use the full functionality of the web interface. Users,
instead, have to register through the authentication page of the mobile applica-
tion and they can only access their own individual statistical data using the web
interface. Researchers may also register as users through the mobile interface.

When users first register in the system, using their email addresses, a unique
token and entry in the database are created to be used in order to match the data
that is being sent by the application from this specific account. Authentication
through Firebase creates learner profiles that are used to track their progress,
using encrypted email-password pairs. At registration, users are also asked to
self-rate themselves in the language they intend to learn. This rating is recorded
in the system and used to assign a beginner, intermediate or advanced level to
the user, in order to present the user with exercises appropriate for that level.

Depending on the setting, random or controlled, defined by the researcher as
explained in Sect. 5, lessons can be

adaptive users are presented with exercises appropriate for their levels, which
are chosen at random from the pool in the database, and their performance is
tracked and contributes to change their ratings and, as a result, their levels;

controlled the exercise sequences are controlled by the researcher, but the user’s
performance does not affect rating and level.

The current implementation of our tool features one kind of learning practice

word learning in which the user is presented with a number of pictures of
objects or a concept representations together the words that express them in
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the language to learn (grouped in lessons characterised by topics of increasing
difficulties), as shown in Fig. 5(b) where the Kazakh word means ‘mother’;

and the following kinds of exercises:

word matching whose purpose is to recall the words learned previously, rein-
force them and verify whether the user knows them, as shown in Fig. 5(c);

filling in the blank space whose purpose is to recall words in context;
sentence translation whose purpose is to test the user’s ability to build full

sentences and which may be skipped if the user does not feel confident.

Learning practice and exercises are normally combined together in lessons but,
for research purposes, may also be used as stand-alone.

All lesson practices and exercises are stored in the database as the user pro-
gresses. Information on user performance is recorded by the application, and is
stored in the database following the structure shown in Fig. 2(b). The application
requires internet connection to function properly.

7 Evaluation

The tool was evaluated in terms of usability and in terms of its functionalities
for analysing learning effectiveness. We have evaluated our application using
convenience samples of university students as users.

7.1 Usability

The sample consisted of 15 subjects with the following levels in Kazakh language:
6 native/advanced speakers, 3 intermediate level speakers, and 6 beginner level
speakers. The users were asked to test the application for around 10 min, going
through most of the functionalities, starting from the registration process and
ending with language lessons. The whole process was monitored and the inter-
view process was carried out in an informal manner with the addition of some
guiding questions. Moreover, the respondents were given a chance to request
clarifications about questions.

All subjects in the sample underwent adaptive lessons, finished multiple
lessons, and were further interviewed by one of the researchers. The interview
process consisted of ranking questions and a free feedback part. Ranking ques-
tions aimed at evaluating the application’s usability, intuitiveness, and overall
design on a scale from 1 to 10. Questions were as follows:

1. How easy it is for you to use the language learning application?
2. Does the visual presentation of the application have any distracting details

that, while not confusing you, might create a distraction?
3. How do you rate the visual appeal of the application?

Users found the application to be both usable and useful. Average ratings for
the three questions were 8.27, 8.67 and 7.00, respectively. Standard deviations
were 0.80, 1.29 and 1.07, respectively.
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(a) Login (b) Word learning

(c) Matching exercise (d) Translation exercise

Fig. 5. Mobile application screenshots
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Common critiques from the feedback part included:

– loading time issues and minor bugs;
– repeated and easy questions;
– poor exercise input checking, e.g. accepting only one of the possible correct

answers in translation exercises.

7.2 Learning Effectiveness

The sample consisted of 20 subjects. Purpose of this small scale evaluation was
to test the approach of using the tool for evaluating learning effectiveness. This
evaluation made use of controlled lessons. The test was successful in identifying
some common patterns in the user’s behaviour:

1. immediately after matching the correct singular word with the given picture
(vocabulary-type exercise, as in Fig. 6(a)), users were very prone to make a
mistake in the matching exercise that followed immediately, if this required
them to find a plural form of the same word (number-type exercise, as in
Fig. 6(b)).

2. translation exercises have gathered significantly more mistakes than any other
type of exercise;

(a) Vocabulary (b) Plural

Fig. 6. Matching exercises
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3. after learning a new word through a learning practice, some users still made
mistakes while testing the same word.

We can interpret such common patterns respectively as follows:

1. users tended to click on the singular form as soon as they saw it, without
actually trying to discern the difference between exercises.

2. translation exercises should be presented only when the learner has acquired
sufficient confidence, with the granted option of skipping the exercise, without
this affecting the performance score;

3. users did not focus enough during learning practice and this shows that learn-
ing practice needs to be more engaging.

8 Conclusion and Future Work

We have introduced a tool capable to emulate a variety of MALL approaches,
collect data on the user interaction and performance, present the collected data
in a visual format, convert such data into a formal representation to be used in
formal analysis, and exploit the data to drive the synthesis and sequentialisation
of exercises. The tool is not just another MALL. In fact, it is not intended
for teaching languages but, instead, as a research tool. In this respect, it can
emulate approaches used by distinct MALL in order to compare their learning
effectiveness.

More generally, the tool may contribute to learning theory through the anal-
ysis of learning processes. In Sect. 5.1 we have seen how the tool may be used
to validate a research hypothesis on cognitive approaches to learning. Finally, in
Sect. 7.2 we have illustrated the use of the tool to identify interferences between
questions.

In the current implementation of the system

– audio functionalities are not included and lessons and exercises are restricted
to the written form;

– adaptive lessons are limited to changing the user’s rating and levels.

Concerning the implementation, our proposals for future work in the short term
include:

1. add audio functionalities in order to analyse interference between audio and
written presentation either when they are merged through a multimodal pre-
sentation or when they occur in sequence;

2. perform the analysis proposed at Item 1 using a formal methods approach as
the one described in the previous work of one of the authors [4];

3. exploit the collected data on the user’s performance not only to adapt the
delivered exercises to the user’s rating and level but also to automatically
adjust the presentation of the exercises and their sequentialisation in such a
way to prevent the errors that are a commonplace for that user and maximise
learning effectiveness.
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The future work proposed at Item 3 involves the definition of appropriate mea-
sures to characterise learning effectiveness. This is a non-trivial task due to the
difficulty in detecting the underlying causes of user errors. For instance, if a users
is prone to do mistakes with a specific exercise, this may be due either to the
fact that the user is weak in the subject of that exercise or that the exercise
is inappropriate for the user’s attitude or learning approach. In the former case
learning effectiveness may improve by intensifying the use of that exercise. In
the latter case, instead, removing that exercise would be the best strategy.

If we consider again the sequence of the two exercises in Fig. 6(a) and 6(b),
the error might be actually due to the fact that the user has not masterised the
rule to form the plural of nouns. In our testing, the recurrence of such a mistake
was frequent only when the two exercises were in a sequence. This suggests that
the error was caused by an interference between the two exercises. Although this
is likely to be true in most cases, such a sequence of exercises would actually
be beneficial during the stage when the user has not masterised the formation
of plural yet. In such a situation, the automatic control of the sequentialisation
could force the sequentialsation during the learning phase of plural formation
and could prevent it during the reinforcement phase. In this context, the use of
our MALL tool would be twofold: first to realise the automatic control described
above, then to collect and analyse data on the effectiveness of such a strategy.

Currently the database is populated only with lessons and exercises for teach-
ing the Kazakh language with the Cyrilic writing systems to English speakers.
Considering other language is just a matter of further populating the database.
This is obviously a time-consuming task, which requires a lot of human resources
and high expertise in linguistic, languages and language learning. This future
work is therefore part of our long term plans.

Finally, a more extensive evaluation of the system is needed, both in terms
of usability and learning effectiveness. In particular, it is essential to test our
MALL tool on a large number of real users of various demographic groups.
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1 Introduction

In this paper we present an analytical process to explore the performances of
questions included in the tests submitted to the students applying to several
Italian Universities.

We evaluate the performance of each question based on the outcomes of
the answers it received within the tests. From these performances we want to
highlight outliers and anomalies. We followed two approaches:

– Visualization-based approach:
• Analysis of the distributions of the proportion of right answers for
each question in relation to the level of difficulty provided by the domain
experts.
• Analysis of the joint distributions of the proportions of correct, wrong
and not given answers in relation to the corresponding difficulty level.

– Data-mining approach:
• Cluster analysis on performance indicators, compared with the rule-
based approach.
• Market basket analysis on co-occurrences of questions within the tests

The analytical tasks listed above were implemented and integrated within
a system that supports the users in the exploration of the performance of each
question and the detection of anomalous performances of questions. We have
designed a process that, starting from every single answer to each question
in each test, evaluate a series of indicators (described in Sect. 4.2), performs
unsupervised analysis on such aggregations, and visualizes the results on a user-
friendly web-based dashboard. The analyst can browse the analytical results by
filtering on different dimensions: year, period of the year, topic of the test, dis-
cipline of the test. Items classified as anomalies are highlighted and flagged, and
they can also be downloaded as .csv file for external analysis.

The data is provided by CISIA1 (Consorzio Interuniversitario Sistemi Inte-
grati per l’Accesso), a non-profit consortium formed by public universities. Cur-
rently, CISIA consortium counts 45 Universities and the Conferences of Engi-
neering, Architecture and Sciences, CUIA - the Italian University Architecture
Conference, the CopI - Conference for Engineering and Con.Scienze - National
Conference of Presidents and Structure Directors University of Science and Tech-
nology.

The Consortium is open to the participation of all Italian universities; among
the different statutory purposes, the main is to organize and coordinate the
orientation activities for the access to the universities. CISIA organizes and
provides access to admittance entry tests for students in many universities of the
Consortium. For those faculties with a restricted number of admitted students,
these tests are used as selection and ranking tools. These tests have two main
purposes:

1 http://www.cisiaonline.it.

http://www.cisiaonline.it
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– for students enrolling the test, they provide a self-assessment of their prepa-
ration and aptitude to undertake the chosen discipline of studies;

– for the faculties and departments, the tests give a view of the actual skills
and preparation of the students, allowing the management to prepare specific
orientation and integrative training activities.

CISIA tests are currently available for six areas: Engineering, Economics,
Pharmacy, Sciences, Humanities, and Agriculture.

The analytical tool is already deployed within CISIA consortium and it
improved the inspection on the questions by enabling new detection mechanism,
both the visual-based and the data-driven one.

2 Related Work

The measurement and assessment of individual or collective performances are the
starting steps to improve the quality of offered services, to enhance professional
skills, to assess responsibility for results, integrity and transparency of the actions
carried out.

Proper assessment requires a variety of methods; no single approach can test
the whole of the performance. Designing assessment programs and selecting the
best instruments for each purpose is not easy [1].

Many approaches can be used to design methods for evaluating performance
and detecting anomalies [2], starting from a-priori defined indicators or using a
completely data-driven approach, or a combination of the two. The advantage
of the latter is that using one or more indicators it is possible to:

– Overcome personal judgment on measuring the performance
– Create a system that allows confrontation over time
– Construct a system that scales on large numbers

The measures and the approaches to measure performance are, obviously,
strictly related to the field of evaluation: when evaluating scientific productivity
the focus is on the metric h − index also with all the limitation that this index
has [3] or when measuring performance in sports (like soccer) measures like Pass
Shot Value (PSV) or PlayeRank [4] have been used.

In the field of performance evaluation using tests, the focus has mainly been
on the results of the test (students for an exam, Student Test Scores to Measure
Teacher Performance [5]), but for those who build the tools there is the need
to evaluate how the test performs or better how the single items composing the
test perform.

In this work, we propose two approaches for identifying anomalies in the
behaviors of the different items composing a test.

The first method (the visualization-based approach) has been used as a start-
ing point using simple proportions, and to give also to a non-expert audience the
possibility to immediately understand the results. As stated in [6] “The basic idea
of visual data exploration is to present the data in some visual form, allowing the
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human to get insight into the data, draw conclusions, and directly interact with
the data”. The advantage of this technique is to create a meaningful abstraction
of the data, rather than trying to visualize it all at once [7].

The second method, a data-driven approach, using clustering analysis has
been chosen to group data into classes with very similar characteristics (i.e.
performances), with the scope of identifying homogeneous groups of questions
and pinpointing groups with anomalous behavior. An implementation of the k-
means algorithm (optimized for one-dimensional space) has been chosen given
its ability to group items with the same performance in homogeneous groups
[8,9,16].

At the same time, the possibility of having combinations of questions with
the same outcome was tested using a market basket analysis algorithm. The
intuition behind this choice is that if two or more questions compare together
and have the same result (right, wrong or not answered question), they probably
measure the same “skill”: the extraction of these rules can also help in identify-
ing strange behaviors in the questions. Generally, this algorithm is mainly used
for transactional data (i.e. the supermarket register) to identify set(s) of items
purchased together [10], but it can be successfully used also on different kind of
data (i.e. crash data [11]).

The results deriving from these analyzes have all been reported on a visual
dashboard, to obtain an exhaustive and quick overview of the results obtained,
simplify the interpretative work by parts of the domain experts and allow com-
parisons between different areas and different years. Through visualization, in
fact, the results of data processing are made more accessible, straightforward,
and user-friendly [12]. The choice of a dashboard is supported by the fact that, as
stated in [13], “compared to visualization modalities for presentation and explo-
ration, dashboards bring together challenges of at-a-glance reading, coordinated
views, tracking data and both private and shared awareness”. Furthermore, the
integration of data mining and information visualization techniques has received
a lot of attention, given its ability to filter and extract valuable patterns and to
provide a better understanding of the final results [14].

3 Problem Statement

CISIA Online Test (acronym TOLC) is a tool for orientation and assessment of
the knowledge required for access to the Study Programs of Italian Universities,
which can be used to select students for access. TOLC is an individual test,
different from student to student, automatically composed for each student by a
software. The software follows a set of rules (defined a priori by CISIA experts)
to guarantee that all the tests generated are equivalent in terms of the level
of difficulty. This means that in each TOLC there are a series of questions on
different subjects with different level of difficulty. Thus it is crucial to have tests
with comparable difficulties. CISIA has developed a methodology to provide a
human-based classification of difficulty levels for each question and they exploit
such labeling to compose equivalent individual tests.
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The objective of our system is to provide an inspection platform where ana-
lysts may evaluate the labeling and the behavior of each question. The perfor-
mance of a question is the outcomes of the answers of the students in terms
of the number of correct or wrong answers. When a student has doubts for a
specific question, she can decide to provide no solution: a missing answer has a
small penalty in the final grade, but there is a higher penalty in case of a wrong
answer.

The basic strategy consists in the exploitation of the a priori level of dif-
ficulty of a question to define an expected performance: questions classified as
“easy” should have a high proportion of right answers, while questions labeled
as “difficult” should have a higher proportion of wrong answers.

The analytical system should automatically ingest the answers of the students
and evaluate the classification of the level of difficulty of each question. The
results of this analysis are made available with a visual interface to explore the
performances of every single question during the time.

4 Analytical Process

The analytical process is organized in two macro steps (see Fig. 1): first, data
is collected, aggregated and analyzed; secondly, the results are organized and
optimized for fast interaction and visualization.

Fig. 1. The schema of the process.

4.1 Data Loading and Indicators Extraction

The ETL (Extraction, Transformation, Load) phase is designed to incrementally
update the performance indicators described below. Starting from the raw data
(first box in Fig. 1), the answers to each question in each test are collected
and saved in a “working database”. These data do not arrive in real-time since
CISIA performs internal checks and assessment. Regularly, we can consider an
update every week. The results of the tests are saved into a working area within
a DBMS, where the analytical process is executed.
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In analyzing the data, the robustness of the calculated indicators is taken into
account. For instance, if a new question appears, results in terms of performance
are calculated (and shown) only if the new question was administered a sufficient
number of times.

At the moment of writing, data are related to the last six years (2014–2018).
Table 1 reports the number of tests taken by students in different disciplines.

Table 1. Number of tests administered online.

2014 2015 2016 2017 2018

Biology 7,259

Economics 5,144 10,382 14,365 21,463 33,184

Pharmacy 3,871 6,706

Engineering 16,526 30,048 35,981 51,013 55,449

Science 13,748

4.2 Performance Indicators

To have a data-driven criterion to measure the performance of every single ques-
tion, we defined a series of indicators that summarized the performance of the
questions in terms of correct, incorrect and not given answers. To represent the
three possible outcomes for each question, we defined a new attribute, namely
R3, which get values −1, 1, or 0, respectively for a wrong answer, a right answer,
a not-given answer. From this attribute, we derive three new indicators: PR, the
proportion of correct answers2; PW, the proportion of wrong answers3; PNA,
the proportion of not answered questions4. The attributes have been calculated
for each year and for each type of TOLC (e.g. engineering, economics, etc.).

We also define a series of derivative indicator, computed based on the previous
ones. The first indicator Perf1 provides a measure of the performance of the
answers given, ignoring the cases when no answer was given.

Perf1 =
sum(R3)

count(R3 = −1) + count(R3 = 1)

The second performance indicator Perf2, instead, takes into account the
answers not given. This value is always less than or equal to Perf1.

Perf2 =
sum(R3)
count(R3)

2 PR = count(R3 = 1)/count(R3).
3 PW = count(R3 = −1)/count(R3).
4 PNA = count(R3 = 0)/count(R3).



192 M. Natilli et al.

By introducing a simplification of the R3 attribute into two levels (naming it
R2, where R2 = 1 if the answer is correct, while R2 = 0 if the answer is wrong
or not given) it is possible to obtain an additional performance indicator.

PerfR2 =
sum(R2)
count(R2)

The last performance indicator gives equal weight both to wrong and to not
given answer, namely zero.

5 Performance Evaluation Through Anomaly Detection

Two different methods have been developed to highlight anomalous performance
behaviors. The first method exploits visualization technique to compare outliers
with the expected performance of questions on the basis of the level of difficulty,
such that, easy questions should have a more significant proportion of right
answers, while a higher level of wrong answers is expected for difficult questions.
The second method uses data mining methods to identify groups of questions
with similar performance and then compare these with the classification applied
by the experts. In both approaches, the objective is to highlight those question
whose classification needs to be revised.

5.1 Visualization-Based Anomaly Detection

The visual approach we propose is based on the visualization of the expected
behavior of each question based on the level of difficulty. We implemented two
possible strategies.

With the first one, in collaboration with the domain experts, we have identi-
fied a set of intervals for each level of difficulty. Figure 2 shows the values of PR
for which an anomalous behavior should be highlighted. For example, an easy
question with a low value of PR should be inspected to check if it should be
classified as more difficult.

Fig. 2. Anomaly detection using the values of the PR indicator

This approach has a significant limitation: it considers only the PR indica-
tor. However, difficult questions may produce two different behaviors: a high
proportion of wrong answers and not-answers.
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To overcome this problem, we introduce second strategy, a visualization based
on Ternary Plots. This visualization allows a very effective representation of the
behavior of each question, with a concurrent comparison of three indicators.
This is a visual chart used mainly in geology to present proportions of soils or
terrains.

This visualization is based on visual space determined by three axes: we map
our indicators (PW, PR, PNA) to each axis. The triangle that is defined by these
axes contains those points whose sum of values is constant (in our case 1). Each
attribute interval is represented on one side of the triangle. Figure 3(a) shows
an example of a visual representation of a set of questions. Each point is located
accordingly to its indicator values and its color represents the level of difficulty
assigned a priori. The vertexes of the triangle are annotated with the label of
the three indicators: those points closer to one vertex have a high value of the
corresponding indicator. In details:

– the attribute PR decreases from the top vertex (value=1) in the direction
that goes from that vertex to the bottom left corner (value=0);

– the attribute PW decreases from the lower-left corner (value=1) in the direc-
tion that goes from that vertex to the opposite side, the lower right corner
(value=0);

– the attribute PNA decreases from the bottom right corner (value=1) in the
direction that goes from that vertex to the top vertex.

In the example in Fig. 3(a), we can notice a dark red point (meaning a
difficult question) with a very high proportion of right answers (it is close to
vertex PR): this question should be checked to verify the correct classification.

Fig. 3. Joint distribution of PR, PW and PNA (a) and anomaly detection (b) using a
ternary plot

Each vertex, therefore, corresponds to the value 1 of a variable and the 0 of
the other variables. To know the values of “Correct”, “Wrong” and “Not given”
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relating to any point of the ternary diagram, it is necessary to draw from this
point 3 lines that are parallel to the 3 sides of the triangle: the intersections of
these lines with the sides of the triangle provide the values sought for each of
the three variables, as shown in Fig. 4.

Fig. 4. Reading a ternary plot

When the number of questions is high, it may be difficult to identify anoma-
lous points based on the color and position. Thus, we have developed a filter
interface to visually highlight relevant points on the basis of a set of rules. These
rules take into account the distribution of the three indicators for all the ques-
tions. For example, Fig. 3(b) shows an example of detection that follows the
following rules:

1. If the question was classified as “very easy” or “easy” and the value of the
PW (wrong) is greater than the value corresponding to 75th percentile of the
distribution of the PW (right-tail of the distribution) then the question could
be more difficult;

2. If the question was classified as “very easy” or “easy” and the value of the
PNA is greater than the value corresponding to the 75th percentile of the
distribution of the PNAs (right-tail of distribution) then the question may be
unclear;

3. If the application was classified as “very difficult” or “difficult” and the PR
value is greater than the value corresponding to the 75th percentile of the PR
distribution (right-tail distribution) then the question could be easier

The visual interface allows to dynamically change the value of the percentile
threshold (as described in details in Sect. 7). The result of the filter is represented
visually with the same color schema (mapping the level of difficulty) and with a
new set of symbols:

↑ up-arrow: the question probably should be classified as more difficult;
↓ down-arrow: the question probably should be classified as more easier;
× cross: the question is not very clear.
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5.2 Data Mining Anomaly Detection

In this section, we present a data-driven approach to explore the whole dataset
of answers, without relying on the definition of thresholds from the analysts or
domain experts.

Cluster Analysis. We exploit cluster analysis to group questions with sim-
ilar performance into clusters. We adopt k-means [15], a partitioning cluster
algorithm that allows subdividing a set of objects into k groups based on their
attributes. A centroid or midpoint identify each cluster. The algorithm follows
an iterative procedure. Initially, it creates k partitions and assigns the entry
points to each partition either randomly or using some heuristic information.
Then calculate the centroid of each group. It then constructs a new partition by
associating each entry point with the cluster whose centroid is closest to it. Then
the centroids for the new clusters are recalculated and so on until the algorithm
converges. Each question within the clustering is represented as a combination
of the Perf indicators defined in Sect. 4.2. Given the possibility to the analyst to
focus on one of the indicators at a time, we used an optimized implementation
of k-means for uni-dimensional points: ck-means [16]. This algorithm performs
better in the case in which each object has a single attribute5. We tested both
algorithms and we stated that their performances are comparable for our case
study. In our final implementation we adopted the ck-means algorithm. The k
was chosen using the elbow method: a series of clustering runs on the dataset
for a range of values of k (k from 1 to 20), and for each value of k the sum
of squared errors (SSE) was calculated. According to the SSE distribution, we
set k = 5. This number of clustering also allows an indirect comparison with
the level of difficulties of the questions (see Sect. 7 for an example). The basic
idea here it that grouping data data into classes with very similar characteristics
(i.e. performances) allows the identification of similar groups of questions and
permits to pinpoint groups with anomalous behavior.

Pattern Mining Analysis. Pattern mining analysis is a technique of analysis
used primarily in marketing that analyzes the buying habits of customers in retail
sales, finding associations on different products purchased, to obtain rules of
association between products purchased together. In our domain, we use frequent
items analysis [10] to verify how frequently questions with similar behavior in
terms of answers occur together. We want to check if in the composition of each
test there is bias and two different questions repeatedly occur in many tests.

In the proposed application, a test can be seen as a transaction (a basket
of goods) composed of many items (questions) and it would be analyzed to
search if a particular combination tends to co-exist. We are interested only in
the extraction of the frequent itemsets and in the verification that their support
is below a statistical expected probability of co-occurrence. From the analysis,
5 We used the Python implementation published in https://github.com/llimllib/

ckmeans.

https://github.com/llimllib/ckmeans
https://github.com/llimllib/ckmeans
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we assessed that there no itemset overly represented. Thus the construction of
the tests (in terms of the composition of questions) is done in a fair manner.

6 Visual Dashboard

All the analytical processes were organized into a visual dashboard, where the
domain experts can formulate a hypothesis and dynamically explore the dataset
through a set of filters, to be able to identify anomalies in the performance
of the questions. The filter allows selecting specific subdimensions according
to year, the period of the year, disciplines, topics. Figure 5 shows a schematic
organization of the section with a description of the actual web application.

Fig. 5. The web-page schema.

The filters are organized in the top of the window and they are always visible
to show the current active selection. A first section presents the various distri-
bution of the data (performance indicators, distributions over year, trends of
indicators, etc.)

The second part of the dashboard presents the interface for the outlier anal-
ysis, using both the visualization-based approach or the data-driven approach.
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The data-driven approach contains a cross-table to compare the results from
the clustering analysis with the labels assigned a priori to the questions: in the
diagonal of the matrix there are the questions that have a behavior similar to
the expected one, while in the corners of the matrix the anomalies are present.
It is possible to select, from a drop-down menu, the performance indicator to be
used for the cluster analysis. For both sections, a selection of a set of outliers
also produces an analytical table with all the attributes of the selected questions,
with the possibility to download a .csv table for further investigations.

7 Test Case

We describe here a typical analytical task that can be performed on the platform.
We omit the discussion of the visual exploration of the distributions and trends
and focus on the outlier detection task.

The second section of the dashboard has two tools dedicated to this analysis:
a visual-based approach and a cluster-based method. We present here a case
study using both methods. Figure 6 shows the resulting ternary plots after the
commit of a filter. On the right, we selected three percentile thresholds for PR,
PW, and PNA: the value of the 75th percentile of PR is used as a threshold
to select those on the right side of the distribution. Since these questions are
classified as easy (green color of the markers) and they have a large proportion
of correct answers, the system suggests to check these questions to increase their
level of difficulty. In the example, the question with ID 1234 (the id as been
obfuscated to protect the original data, the indicators are real) has a PR value
very low: this question should be classified as difficult, for example.

We repeat a similar analysis using cluster analysis. Figure 6 (left) shows the
result of the selection of the cell in the cross table corresponding to cluster 0
and level of difficulty very easy. The selection highlight six questions. Among
these six questions, there is the same question with ID 1234 that we discovered
before.

It worth noting how the two approaches yield to different (but comparable)
results. By comparing the two groups of points in the two charts, there is a
subset of questions (4 questions in the central part of each ternary plot) that
are in common in the two selections, but there are different questions in the
remaining parts of the two charts. This is due to the fact that the first method
(on the right) takes into account only the PR indicator, while the other method
(on the left) exploit the Perf2 indicator.

The choice between the two methods depends on the specific need of the
experts: using the visual approach the performance of a question is seen through
an index at a time (PR, PW or PNA) while, using cluster analysis, we work on
a composite indicator that takes into account the three proportions together.



198 M. Natilli et al.

Fig. 6. An example of outlier detection using cluster analysis (left) and visualization-
based approach (right).

8 Conclusion

In this paper we presented an analytical platform to evaluate the performance
and anomaly detection of tests for admission to public universities in Italy. The
process of analysis followed two different approaches: a visualization-based app-
roach, where a set of rules provided by the domain experts are represented to
create a visual highlight of candidate outliers; a data-driven approach where a
clustering-based method is used to partition the set of questions into groups to
be compared with the a priori classification of the level of difficulties.

The analytical results are made available to the users through a dynamic
dashboard, where the user may set a filter to explore subdimension of the data,
accordingly to the values of the year, the period of the year, the discipline and
the topic.

The analytical tool is already deployed within CISIA consortium and it
improved the inspection on the questions by enabling new detection mechanism,
both the visual-based and the data-driven one. The system is being extended
with specific analysis on the subtopics (for example considering “physics of fluid”
rather than the general topic “physics”).
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Abstract. Computer systems have grown in complexity to the point
where manual inspection of system behaviour for purposes of malfunc-
tion detection have become unfeasible. As these systems output volumi-
nous logs of their activity, machine led analysis of them is a growing need
with already several existing solutions. These largely depend on having
hand-crafted features, require raw log preprocessing and feature extrac-
tion or use supervised learning necessitating having a labeled log dataset
not always easily procurable. We propose a two part deep autoencoder
model with LSTM units that requires no hand-crafted features, no pre-
processing of data as it works on raw text and outputs an anomaly score
for each log entry. This anomaly score represents the rarity of a log event
both in terms of its content and temporal context. The model was trained
and tested on a dataset of HDFS logs containing 2 million raw lines of
which half was used for training and half for testing. While this model
cannot match the performance of a supervised binary classifier, it could
be a useful tool as a coarse filter for manual inspection of log files where
a labeled dataset is unavailable.

Keywords: Deep learning · Anomaly detection · Log file

1 Introduction

Today’s computer systems in commercial environments are frequently complex
and distributed and work on large data throughput. For any part of such a
system, be it networking, program execution, machine performance, etc., there
is the occurrence of process anomalies and most of these systems generate and
keep logs which are intended to be analysed for detecting malfunctions. The
commercial systems usually are intended to operate incessantly and reliably
with failure to do so having potential to incur costs for the organization. The
process of analyzing them has been historically manually done. However, given
the scale of these systems the problems that present are that system behaviour
may be too complex for a single human to understand and that the systems may
generate logs on the order of gigabytes per hour making it infeasible for human
comprehension and human anomaly detection [5].

This gave rise to demand for automated log anomaly detection. The problem
has been addressed in literature by first performing feature extraction and then
c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 200–207, 2020.
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applying a linear machine learning model such as PCA, logistic regression or a
linear SVM. In this project we propose a two-part model of deep autoencoders
that require minimal raw log file preprocessing and detect both anomalous log
content and anomalous temporal evolution of logs. The paper is organised as
follows: in the next section we review recent approaches to the problem, in
Sect. 3 we present in detail our approach, following which the experiment and
results are presented and discussed.

2 Related Work

Traditionally log anomaly detection has had three basic steps: log parsing, which
turns unstructured text into structured data; feature extraction, where the text
is transformed into a numerical feature vector; and anomaly detection, where
a machine learning algorithm is applied to classify log events as anomalous or
normal execution [5].

The approaches to the log parsing step can loosely be divided into clustering
based and heuristic based. The clustering based approach parts from calculat-
ing distances between logs first and then clustering them into groups using the
calculated distance. Heuristic based instead count word occurrences in logs for
each position and then frequent words in the positions are selected as event can-
didates. As an example of clustering based parsing, in [3] the authors separate
the changing and constant parts of log messages by first using empirical rules
(eg. a regular expression to identify IP addresses), and then by token clustering.
A different approach for log message clustering as described in [7] is called the
IPLoM Algorithm and pertains to the class of heuristic approaches which are
said to perform better than clustering based.

Among the machine learning algorithms that have been applied to the prob-
lem are logistic regression, decision tree and SVM of supervised models, and
clustering, PCA and invariant mining of unsupervised models. Results indicate
that supervised methods achieve performance levels not reachable with unsu-
pervised methods. Also, the performance of the supervised methods are mostly
similar with SVM giving greatest and decision tree giving lowest performance,
while among unsupervised methods invariant mining gives notably superior per-
formance to other unsupervised methods [5].

Recently, deep learning has been also applied to the problem. Du et al. [2]
proposed an LSTM deep neural network to model system logs as a natural
language sequence with the purpose of allowing the model to automatically learn
log patterns from normal execution, and detect anomalies when log patterns
deviate from the model trained on log data under normal execution. For parsing
the logs from unstructured text into log keys they used a method similar to [3], ie.
a clustering based approach. The results reported outperform all other anomaly
detection methods not based on deep learning models. In parallel with supervised
deep learning, unsupervised deep learning methods have started being used for
anomaly detection. Thus, Tuor et al. [9] developed an online unsupervised deep
learning approach to detect anomalous network activity from system logs in



202 S. Bursic et al.

real time outperforming PCA, SVM and isolation forest models. They use a
deep neural network (DNN) composed of LSTM units trained to predict the
following event in a sequence of events, similar to [2]. Finally, in [1] and [11]
the authors used deep autoencoders to detect anomalies by looking at input
reconstruction errors. In the former [1], they applied it to assessing the behaviour
of high performance computing systems while in the latter [11], they used it for
finding anomalies in multivariate time series data such as those encountered in
industrial production systems.

3 Proposed Method

3.1 Model Architecture

The goal of this work is to develop a model requiring minimal raw log preprocess-
ing that is capable of detecting both anomalous message content and anomalous
temporal evolution of log messages. We follow the work of [8] in developing a
deep autoencoder for text. They used a multilayer LSTM to map input sequences
to a vector of fixed dimensionality, after which another multilayered LSTM to
decode the target sequence from the vector. They achieve then state of the art
on English to French translation tasks and furthermore introduce using bidirec-
tional models to counter the problems of performance on long sequences.

A property of this model is that it learns to map an input sequence of variable
length to a fixed length vector in an embedding space. In this work, the approach
of [8] provides an opportunity to not have to preprocess log files in any elaborate
manner, thus making the model suitable to any type of log file with the only cost
being that of training the model. The second part of the model is another LSTM
autoencoder that has the purpose of detecting anomalies. Following the work of
[1] and [11], we suppose that after training an autoencoder is able to reconstruct
better those inputs of which it has been exposed to more during training and vice
versa. Finally, using a numerical measure of the distance between the inputs to
the second part of the model and their reconstruction at its output an anomaly
score is obtained.

The full definition of the model is the following, also represented in Fig. 1:
first the autoencoder embedding log messages is trained on log text (without
timestamp) to learn a fixed dimensional embedding of the log messages. After
training the decoder is discarded and the autoencoder for detecting anomalies
is trained taking as input the embeddings of the message and the numerical
timestamp of the message. Finally, a distance measure between the inputs and
outputs is calculated and an input is considered anomalous if its distance mea-
sure lies above an appropriately chosen threshold. While the anomaly detection
autoencoder is the same approach that [1] and [11] had, and the message embed-
ding autoencoder comes from the work of [8], the innovation of this work comes
from the model not imposing requirements on the log message structure and
not requiring preprocessing of the log messages which ensures generality and
applicability to any type of logs.
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Fig. 1. Schema of the model architecture

3.2 Implementation and Model Training

The dataset used to train and evaluate the proposed model came out of a work of
Xu et al. [10] where they mined console logs to detect system runtime problems
by parsing them. Combining source code analysis based on C printf statements
with information retrieval and after extracting features from the parsed logs,
they detect operational problems using machine learning. The dataset contains
11 million lines of Hadoop File System logs and is furthermore labeled which
will provide a measure of performance for the model. An example of a log entry
from the dataset would be:

081109 204453 34 INFO dfs.FSNamesystem: BLOCK*
NameSystem.addStoredBlock: blockMap updated: 10.250.11.85:50010 is
added to blk 2377150260128098806 size 67108864

The date and time format is “DDMMY Y hhmmss” with D representing day,
M month, Y year, h hour, m minute and s second, respectively.

After separating the date and time, all non-alphanumeric characters are
replaced by whitespace and whitespace is inserted between single digit numbers.
Furthermore, all multi digit numbers are considered as separate tokens, eg. the
number “67108864” from the previous example becomes “6 7 1 0 8 8 6 4”. This
is done because it is not practical that all numbers, which are frequently variable
for a type of log message, be a part of the vocabulary for the text autoencoder.
As per how the network encoding text is constructed, all words in the dataset
during preprocessing are put into a vocabulary and assigned a numerical value.
Making multi digit numbers that are a log variable part of the vocabulary would
constrain the model only to those numbers seen during training. Separating the
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numbers by whitespace makes the model consider them as separate tokens and
allows the model to easily encode numerical values in log messages.

Only a subset of the dataset has been considered, totaling 2 million lines
which was further divided into 50% of training data and 50% of test data. The
peculiarity of this problem in general and the dataset at hand is the strongly
uneven class distribution where there approximately 3% of anoumalous data in
the dataset.

The text encoder network is trained with the hyperparameters shown in
Table 1. These values have been found experimentally. The vectors output by

Table 1. Log message embedding
network parameters

Parameter Value

Word embedding size 200

LSTM units 100

Initial learning rate 0.01

Batch size 64

Dropout keep probability 0.75

Training epochs 4

Table 2. Anomaly detection network
parameters

Parameter Value

LSTM units 64

Batch size 64

Dropout keep probability 0.8

Training epochs 4

the text encoder are then fed as input into the anomaly detection network for
training that takes also the cosine transform of the percentage of the seconds
passed for that day. The expression transforming the time is thus

f(t) = cos
(

2π
t

86400

)
(1)

with t being the seconds from midnight at which the log event occurred. The aim
here is of normalizing the data around zero as deep neural network training has
been shown to behave better when inputs are normalized around zero [6]. This
transformation of time removes any possibility of detecting inter-day seasonal
patterns in the data and hence the model is geared toward detecting short-term
anomalies. There are other ways of transforming inputs of cyclical nature to feed
into a neural network. Most notably, the corresponding cosine transform could
have also been included which would have provided more precise information of
the time of day. Also, the same transform could have been included for the day of
month and month. However, given that the frequency of log message generation
is high, all other temporal information is considered less relevant and discarded
for simplicity. The cost function used for training is the MSE function and the
experimentally found training parameters for the anomaly detection network can
be found in Table 2. The reconstruction error on the anomaly detection network
is calculated using an L1 distance of the inputs and their reconstruction.
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4 Experimental Results

On Fig. 2 anomaly values for 1 million lines of the test dataset are plotted. Several
outliers where the anomaly value is strongly above the mean are particularly
interesting. However, most of the values lie within a particular band which could
potentially necessitate careful choice of threshold. If the threshold were chosen
too low there could be a lot of false positives, and if chosen too high there could
be a lot of false negatives.

Fig. 2. Test anomaly scores Fig. 3. ROC curve for the test dataset

As the dataset is labeled the problem can be considered a binary classification
problem with the classes being anomalous and not anomalous for any log mes-
sage. For this reason we can consider techniques usually applied for evaluating
binary classifier performance.

The ROC curve for the test dataset can be seen in Fig. 3 with AUC equal to
0.59. The value isn’t high indicating that the classifier doesn’t perform well. This
can be supported by visual inspection of the curve showing poor class separation,
especially at higher values of FPR and TPR. Regardless, the importance of
precision and recall relative one to another can be considered inherent to the
problem at hand. This has been considered a critique of the F-measure as a
commonly used binary classifier quality indicator [4].

A plot of precision, recall and F-score for the test dataset can be seen in Fig.
4. The plot shows the maximum of F-score at a threshold level of 62, after which
precision rises rapidly and recall falls rapidly.

The values of true positives, true negatives, false positives and false negatives
at eight different threshold values are presented in Table 3. A consistently high
level of false negatives can be noticed meaning that the largest part of anomalies
will be left out by the model. This is also supported by the recall curve parting
from a value of around 0.6 for a low threshold value with the precision being
low. This could possibly indicate that certain erroneous events are indeed fairly
common. However, at higher threshold values the false positives fall faster than
the true positives which is also supported by the rapidly rising precision in Fig. 4.
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Fig. 4. A plot of precision (red), recall
(green) and F-measure (blue) on the test
dataset for threshold values between 25
and 106 (Color figure online)

Table 3. True positives, true nega-
tives, false positives and false negatives
for eight different threshold values.

Thresh TP TN FP FN

27 17279 473614 493378 12244

37 14395 630785 336207 15128

47 10035 789325 177667 19488

57 6185 899853 67139 23338

67 1435 960561 6431 28088

77 1195 966663 329 28328

87 1169 966940 52 28354

97 1083 966955 37 28440

This is in line with what can be seen on Fig. 2 as there are outliers which have
an anomaly score vastly higher than the average. As supported by the values in
Table 3 most of these outliers seem to be anomalies. Given the above, a potential
use for this kind of model is as a coarse filter for human inspection of log files
of high enough frequency such that human inspection of the whole stream is
infeasible. By choosing higher threshold values (for example at 77), while most
anomalies won’t be detected, the anomalies with the highest anomaly values will,
and the precision will be high. This means that if all values which the model
will classify as anomalous are given to a human for inspection most of them
indeed will be. One might consider that optimizing for recall rather than preci-
sion might be more adapt for application as a filter for manual inspection, but
the fundamental ceiling on recall of the approach is that the definition of anoma-
lous here is that which occurs rarely. While the choice of optimal threshold isn’t
directly addressed here, in potential applications several approaches might be
taken depending on the problem at hand. Firstly, a validation dataset could be
used with manual choice of threshold. Secondly, the threshold can be dynami-
cally changed and optimized by the user based on experience and circumstances.
Thirdly, any number of statistical measures can be adopted as a threshold, such
as the mean plus n standard deviations.

5 Conclusions

In this work we proposed a two-part unsupervised deep learning model for detect-
ing anomalies in system log files. The model is composed of two autoencoders
with LSTM units of which one is applied to text as per the work of [8], and the
other that takes the text embeddings and a temporal value as input and serves
to detect anomalies. Using a publicly available labeled dataset of HDFS logs,
experimental results show that at most thresholds recall is low but at higher
thresholds precision is high showing that most errors aren’t detected by the
model at higher thresholds, but those detected are mostly errors. The properties
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of the model being it doesn’t require any log preprocessing or feature extraction
and works on generic log data, a potential use could be as a filter for human
inspection for anomaly detection in systems generating logs with high frequency.
The results presented in this note represent a preliminary proof of concept and
in future work we plan to provide a more exhaustive experimental part.
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The first Formal Methods for Autonomous Systems (FMAS) workshop was held as a
satellite event at the 3rd World Congress on Formal Methods, on the 11th of October
2019 in Porto. Autonomous systems are highly complex and they present unique
challenges for formal methods. They can act without human intervention, and are often
embedded in a robotic system, so they can interact with the real world. As such, they
can be described as safety-critical, cyber-physical, hybrid, and real-time systems.

The aim of FMAS was to bring together leading researchers, who are tackling the
unique challenges of autonomous systems using formal methods, to present recent and
ongoing work. We were interested in the use of formal methods to specify, model, or
verify autonomous or robotic systems; in whole or in part. We were also interested in
hearing about successful industrial applications and potential future directions for this
emerging application of formal methods.

FMAS 2019 encouraged submission of both long and short papers. We received six
long papers and one short paper, by authors in Australia, Brazil, Czech Republic,
France, Germany, and the UK. After a thorough reviewing process, we accepted four
long papers, and one short paper, for presentation at the workshop. After the workshop,
the presented papers underwent a second round of reviewing for acceptance into this
LNCS proceedings.

In addition to the paper presentations, FMAS hosted two invited speakers and a
discussion session. Claudio Menghi was invited to talk about his collaborations with
industrial partners, which involved developing approaches for specification and veri-
fication of missions. Kristin Y. Rozier was invited to talk about her work on developing
on-board runtime verification for a variety of resource-constrained autonomous sys-
tems, including aerial and space systems. The workshop’s final session was a panel
discussion, featuring the invited speakers and Michael Fisher as panellists. This session
was well-received and involved participation from the entire audience.

We would like to thank our invited speakers, Claudio Menghi and Kristin Y.
Rozier; the authors of the submitted papers; our programme committee, for their
reviews; and all of the attendees of FMAS 2019. Our thanks are also owed to the
wonderful conference volunteers, who helped us throughout the workshop; and the
friendly staff of the Vincci hotel, our hosts.
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Formal Methods Meet Autonomous Systems:
A Journey on A Two-Year Research

Collaboration with Industry

Claudio Menghi

SnT Centre, University of Luxembourg, Luxembourg
claudio.menghi@uni.lu

Autonomous — and Robotic — Systems are made of collaborating computational
elements that adapt their behaviors and take autonomous decisions depending on the
physical environment in which they are deployed. Formal methods provide
mathematically-based techniques for the specification and development of software and
hardware systems. The adoption of formal methods by the industry developing
autonomous and robotic systems is, however, still slow.

This talk reports on a two-year research collaboration with industry focused on
applying formal method techniques in the development of autonomous systems. First,
it discusses the main challenges and results achieved in the definition of specification
patterns for robotic missions [5, 7], a project in collaboration with PAL Robotics [3]
and BOSCH [1]. Mission specification patterns provide logic-based solutions for
recurrent specification problems where developers have to define the desired behavior
of a robotic application (a.k.a missions). Then, it discusses a procedure for generating
online test oracles from logic-based formulations of functional requirements of
autonomous systems [6], a project in collaboration with Luxspace [2] and QRA Corp
[4]. The procedure has been evaluated on an industrial satellite system model. Finally,
the talk presents a set of challenges and opportunities that emerged from the two-year
journey of collaboration with industry.
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Runtime Reasoning that Really Flies

Kristin Y. Rozier

Iowa State University, USA

Real-time, on-board runtime reasoning about system safety and security is required for
autonomous systems, including most everything that flies: aircraft, spacecraft, satel-
lites, and the robotic systems therein. The field of runtime verification (RV) is vast, and
quickly growing, yet when it comes to real-life autonomous systems, current RV
capabilities just don’t fly. There is a dearth of RV tools that can operate within the
constraints of real-life embedded operations that limit the system instrumentation,
space, timing, power, weight, cost, operating conditions, and other resources. Even
when we devise tools for embedded operation, RV must first clear the tall hurdles of
input specifications, validation, verification, and flight certification. We highlight case
studies where RV has recently risen to the occasion of reasoning on-board real-life
autonomous systems, such as Unmanned Aerial Systems and NASA’s Robonaut2, and
examine the way up from here. What will it take for RV to really take off?
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Road Junction Rules on an Autonomous
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Abstract. The design of autonomous vehicles includes obstacle detec-
tion and avoidance, route planning, speed control, etc. However, there
is a lack of an explicitely representation of the rules of the road on
an autonomous vehicle. Additionally, it is necessary to understand the
behaviour of an autonomous vehicle in order to check whether or not it
works according to the rules of the road. Here, we propose an agent-based
architecture to embed the rules of the road into an agent representing the
behaviour of an autonomous vehicle. We use temporal logic to formally
represent the rules of the road in a way it should be possible to capture
when and how a given rule of the road can be applied. Our contributions
include: i. suggestion of changes in the rules of the road; ii. representation
of rules in a suitable way for an autonomous vehicle agent; iii. dealing
with indeterminate terms in the Highway Code.

Keywords: Agent · Autonomous vehicles · Temporal logic · Rules of
the road

1 Introduction

Usually, the design of current control software in autonomous vehicle does not
explicitely implement the rules of the road. Here, we propose an architecture,
where an agent represents the behaviour of an autonomous vehicle and temporal
logic is used to formally specify a subset from the rules of the road. With this,
we aim to formally verify that an agent endowed with the rules of the road
actually respects the flow of traffic without any sort of conflicts, inconsistency
or redundancies in the use of the rules.

Autonomous Vehicles and the Rules of the Road: One can easily enumerate pos-
sible advantages the deployment of autonomous vehicles may bring to cities, e.g.
reduce indices of traffic congestion, driver inactivity, and also the number of
accidents [11]. With this in mind, several companies have been working towards
the goal of launching (fully) autonomous vehicles on our roads on a daily basis.
c© Springer Nature Switzerland AG 2020
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Predictions as to when (fully) autonomous vehicles will appear on our roads vary
(e.g., [2] and [16]), but it expected to be within the next 5 years. However, there
are plenty of questions which should be addressed in order to have these vehicles
driving safely on the roads. The design of an autonomous vehicle must consider
obstacle detection and avoidance, route planning, safety, speed control, etc. But,
how about the road rules: is an autonomous vehicle behaviour adapted to the
road rules? Prakken mentions in [15], that his work seems one of the first towards
the comprehension of how an autonomous vehicle design should be established
in accordance with the road rules. Nevertheless, Prakken’s approach is a concep-
tual approach without addressing either implementation or formal verification.
Previously [1], we have presented the first steps towards the formalisation of
the rules of the road. In [17], Vellinga also discusses the necessity to understand
how the road rules should be adapted into an autonomous vehicle. The author
presents road rules from California (USA), the UK and the Netherlands.

In the UK, the government has also shown concern about the regulation of
autonomous vehicles. That is why the Law Commission in the UK has released
(Nov. 2018) a consultation paper in order to review the regulatory framework for
the safe deployment of autonomous vehicles [12]. In this review, different topics
are addressed, including the Highway code which is responsible for determining
the so-called Rules of the Road in the UK. This set of rules establishes how one
should use the road for overtaking, road junctions, pedestrian crossing, and so
on [8]. Moreover, in June 2019, the Law Commission made available a summary
of the responses concerning the aforementioned consultation paper [12]. Among
the presented topics we highlight the adaption of the road rules, which according
to the document should address the following issues (among others):

1. Apply analogue driving rules into a digital highway code (Sect. 6.1 in [12]).
2. Struggle to determine a digital highway code that sets precise rules for every

instance. In the document, it is mentioned that: “is impossible to predict
all future scenarios in advance. . . it is not desirable nor realistic to ask
developers to deterministically prescribe the behaviour of automated driving
systems in advance for every scenario” (Sect. 6.5 in [12]).

3. Establish a forum on the application of road rules to autonomous vehicles,
some possible scenarios which should be considered are (Sect. 6.7 in [12]):
(a) interpretation of indeterminate terms in legislation and in the Highway

code, e.g., road users should take extra care, or there is a safe gap large
enough.

(b) identify possible additions to the Highway code to resolve conflicts involv-
ing autonomous vehicles. As mentioned in [12] (footnote 7 on page 12),
usually conflicts are resolved through human communication. As an exam-
ple, a human driver may use hand and arm gestures to give way for
another human driver in a road junction.

Autonomy, Agents and Formal Verification: According to Herrmann et al. [11]
an automated vehicle includes several stages of automation, where there is a
person in the loop, at least in order to handle specific traffic scenarios, e.g. an
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emergency situation. On the other hand, in an autonomous vehicle, a person is
out of the loop and the system is responsible for all driving tasks everywhere and
at all times. For the sake of clarity, in our paper we use the term autonomous
vehicle to represent the vehicle modelled in our system, which indeed is described
by means of an intelligent agent [18]. An intelligent agent can be easily used
to represent the behaviour of an autonomous vehicle, as we have previously
presented in [9], where an agent is endowed with strategies to avoid obstacles in
a simulated environment.

Agent-based modelling is a suitable approach to represent high-level deci-
sions of an autonomous system. As illustrated by Marks, in [13], there are sev-
eral layers in an autonomous vehicle stack. Here we are mainly concerned with
the Reasoning and Decision Layer. As a result, the low-level layers, like Sensor,
Localization and Control layers are out of our scope. Moreover, an agent pro-
gramming approach is indeed a reasonable technique when we take into account
the code complexity for vehicles. In 2010, some vehicles had ten million software
lines of code (SLOC). In 2016, the SLOC number has increased to around 150
million [4]. Thus, agent-oriented programming could be seen as a suitable app-
roach for the high-level decisions of an autonomous vehicle. Usually, a program
written in an agent programming language has fewer lines than (the same pro-
gram written) in other general-purpose languages and also an agent language is
a good choice for prototyping.

In our work we use the Gwendolen agent programming language [6] in order
to implement a BDI (Belief-Desire-Intention) agent [3] to capture the behaviour
of an autonomous vehicle. By using Gwendolen, we can also take advantage
of the Model Checking Agent Programming Language (MCAPL) framework [7],
where the Agent Java Path Finder (AJPF) model checker can be used to formally
verify the behaviour of an intelligent agent. When comparing to other techniques,
like machine learning, by using a model checking agent-based architecture, we
intend to avoid the so-called black box problem [5], i.e. the lack of transparency
to control and understand the decision-making process. Notice that by doing
the formal verification of a Gwendolen agent is possible to give the explicit
reasons that the agent has used to select a given decision.

BDI Agent: An agent program language which implements a BDI agent usually
has the following structure for an agent plan:

trigger_event : guard <- body

Where a given agent may have different plans in order to achieve a certain
goal. Using our translation we may establish the following mapping:

– Goal is determined by the specific road junction rule.
– The trigger_event is given by a new belief or a goal.
– The guard is defined by a set of beliefs.
– The body is represented as a set of actions.
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Contributions: Our major goal is the proposal of an agent-based architecture
in order to embed the rules of the road in an agent representing the high-level
decisions of an autonomous vehicle. With this in mind, we point out the following
questions: i. How can we handle the use of ambiguous terms in the road rules,
when embedding these rules into an autonomous vehicle? ii. How can we formally
verify the behaviour of an autonomous system endowed with the rules of the
road? iii. By having a simple and direct mapping of the Highway code into a
digital highway code, can we say it is enough to have an autonomous vehicle
driving safely on the roads? Notice that here we only address the first question.

In this paper, we extend the formalisation proposed in [1] by setting up a
language and a grammar for the road junction rules together with an agent-
based architecture capable of capturing the behaviour of an autonomous vehicle
in an urban traffic environment. Moreover, we establish a translation of road
junction rules written in Temporal logic into a BDI agent plan. As an instance
of our architecture, we present the formalisation and implementation of a given
road rule from the UK Highway Code.

2 Road Junction Rules: Language and Grammar

In this section we present the so-called RoR language and grammar created to
represent the Rules of the Road. The RoR language is used in the next section
to formalise the Rules of the Road. We intend that our language should be
expressive enough to represent the rules of the road (specifically the road junction
rules), but also as simple as possible. As it follows we present the operators,
terms, and actions from the RoR language, which is based on Linear Temporal
Logic (LTL) [10].

2.1 Operators and Constants

– Operators from LTL:
– ∧, ∨, →, ¬.
– �, ♦, ◦, ∪.
– where:

– �: always
– ♦: eventually
– ◦: next
– ∪: until

– Constants: True, False.

2.2 Terms: Agent and Objects

Terms in the RoR language are used together with actions. We have two kinds
of terms: Agent and Objects.

– Agent (Ag) defines the agent who has an active role in a given action (and
road junction rule).
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– Objects (Obj) represents the different objects that can be used in an action to
represent the elements of a given road junction rule. There are four different
kinds of objects. The first three concrete and the last is an abstract object:

Space: establishes the environment where a given road rule occurs.
Dynamic: determines the dynamic objects used in a rule that are situated
in an environment.
Static: defines the static objects used in a rule that are situated in an
environment.
Abstract: represents the abstract notions which are related to a road rule.

As it follows, we present the Agent and Objects in the RoR language.

Agent

– Autonomous Vehicle: represents an intelligent agent conducting the vehicle.
Abbreviation: AV.

Objects

– Concrete Space Objects

Junction: a junction between two or more roads. Abbreviation: JC.
Road: a road that usually has a single traffic direction. Abbreviation: RO.
Main Road: the main road has both traffic directions. Abbreviation: MR.
Lane: a road or the main road may be divided by two or more lanes.
Abbreviation: LA.
Filter Lane: a filter lane is a special lane used to guide the driver to turn
in a road. Abbreviation: FL.
Central Reservation: a central reservation on a dual carriageway is used by
a car to wait for the safe moment to cross a road. Abbreviation: CR.
Box Junction: a box junction has criss-cross yellow lines painted on the
road. Abbreviation: BJ.
Box Junction at Signalled Roundabouts: Similar to Box Junctions, but with
signalled roundabouts. Abbreviation: BJS.

– Concrete Dynamic Objects

Road User: a road user can be any of the following, another vehicle, pedes-
trians, cyclists, motorcyclists, powered wheelchairs, mobility scooters or
horse rider. Abbreviation: RU.
Long Vehicles: a long vehicle can be a bus, a lorry or a truck. Abbreviation:
LV.

– Concrete Static Objects

Stop sign or Solid white line across the road: both are signs which means
that you should stop at a junction. Abbreviation: ST.
Give way sign or Triangle marked on the road: both are signs which means
you should give way to traffic. Abbreviation: GW.
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Broken white lines across the road: also means to give way traffic, but when
you are emerging from a junction on the main road. Abbreviation: BWL.
Traffic light: a Traffic light which may have a Green, Red or Amber light.
Abbreviation: TL.
Green Light: on a traffic light. Abbreviation: GL.
Amber Light: on a traffic light. Abbreviation: AL.
Red Light: on a traffic light. Abbreviation: RL.
Advanced stop line: some signal-controlled junctions have advanced stop
lines to allow cycles to be positioned ahead of other traffic. Additionally,
an Advanced stop line has two lines marking its area, the so-called: First
White Line and Second White Line. Abbreviation: AD.
First White Line. Abbreviation: FWL.
Second White Line. Abbreviation: SWL.
Mirrors: a driver is supposed to use the mirrors of his vehicle to observe
the traffic. Abbreviation: MI.

– Abstract Objects

Safe Gap: usually when turning on a junction a driver is supposed to verify
if there is a Safe Gap for the vehicle on the road. Abbreviation: SG.

∗ NB: for the sake of simplicity of RoR language, it is used SG to
represent not only the previous description, but also any situation
where the AV needs to take extra care when turning on any kind of
junction, crossing roads, crossing a box junction, waiting in a lane
for turning right or left, among others. That is why SG is used in
several road junction rules.

Blind Spot: when waiting to cross the main road it may be necessary to
check for blind spots. Abbreviation: BS.
Possible Collision: in some very specific rules some exceptions are allowed
but if and only if a collision may occur in a given road junction environ-
ment. Abbreviation: PC.
Oncoming Traffic: in some scenarios, it might be necessary to look for
oncoming traffic in a corresponding environment. Abbreviation: OT.
Behind: when preparing to turn into a junction it is necessary to look
behind (possibly using the mirrors) for oncoming traffic. Or the driver
can also be turning right behind another vehicle which is also turning
right in the same junction. Abbreviation: BH.
Front: the driver can turn right in front of another vehicle which is also
turning right at the same junction. Abbreviation: FR.
Both Directions: when waiting to cross the main road it may be necessary
to watch out for traffic in both directions on the main road. Abbreviation:
BD.

2.3 Actions

Definition 1 (Action). An Action is given by an action name followed by one
of two different tuples (with three or two elements) and optional pre and post-
conditions:
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<pre> action name (t1, t2, t3) <post>

– where,
t1 is an Agent.
t2 is a Concrete Space Object.
t3 can be a Concrete Static or Dynamic Object; or an Abstract Object; or
it can be empty.
<pre> some actions require the so-called pre-conditions which should be
satisfied for a given action to be applied. We use flags (True or False)
to represent a given pre-condition from an action, True means the action
can be applied, False means the action should not be applied.
<post> similarly there are the so-called post-conditions which represent
the application result from a given action. True means the action has been
successfully achieved, False means the action has not been successfully
achieved.

Notice pre and post-conditions are both optional since not every rule demands
this sort of additional context related to the effect of a rule application.

<pre> action name (t1, t2) <post>

– where,
t1 can be a Concrete Static or Dynamic Object; or an Abstract Object.
t2 is a Concrete Space Object.

List of Actions. We have defined the following list of action names:

stop, wait, give-way, cross, enter, exit,
turn-right, turn-left, give-right-signal, give-left-signal,
exists, overtake, turn-keep-left-lane, watch.

Example of Actions. We present four examples of different kinds of actions.

enter(AV,JC)

• the action enter is given by a tuple with two elements: AV represents an
Autonomous Vehicle Agent and JC represents a Concrete Space Object,
the Junction. This action can be read as: “an AV is supposed to enter
when it is at the Junction”.

watch(AV,JC,RU)

• the action watch is given by a tuple with three elements: AV and JC
represent the same elements from previous action, and RU represents a
Concrete Dynamic Object, the Road User. This action can be read as: “an
AV is supposed to watch out for Road Users, when it is at the Junction”.

cross(RU,JC) <False>
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• the action cross is given by a tuple with two elements and a post-
condition: RU represents a Concrete Dynamic Object, the Road User; and
JC a Concrete Space Object, the Junction. The flag “False” is used as a
post-condition. This action can be read as: “A Road User is supposed to
cross, when it is at a Junction. According to the post-condition, there is
no Road User crossing at the Junction”.

exists(SG,JC) <True>

• the action exists is also given by a tuple with two elements and a post-
condition: SG represents an Abstract Object, the Safe Gap; and JC rep-
resents the Junction. The flag “True” is used as a post-condition. This
action can be read as: “A Safe Gap is supposed to exist, and it is at the
Junction. According to the post-condition, there is indeed a Safe Gap at
the Junction”.

2.4 Grammar

As it follows we present the grammar for RoR language. The grammar is defined
to represent the road junction rules and it is presented using Extended Backus-
Naur Form (EBNF) style [14].

road_junction_rule = context"->" result ;
context = "�" [op_unary] action { op_binary [op_unary] action } ;

result = ["♦"] [op_unary] action |
["♦"] [op_unary] action op_binary [op_unary] ["♦"] action ;

op_binary = "∧" | "∨" | "∪" ;
op_unary = "¬" | "◦" ;
action = ["<"pre">"] action_name tuple ["<"post">"] ;

– Notice that in this EBNF style grammar the following notation is used:
= represents definition.
; represents termination.
[ ... ] represents optional.
{ ... } represents repetition.
" ... " represents terminal string.

The grammar determines that a road junction rule has a context, followed
by the “→” operator and terminated by a result. A context always starts with
the operator “�” followed by at least one action. While a result may have the
“♦” operator with a single action, or a pair of actions.

3 Formalising the Road Junction Rules

The UK Highway code presents the road rules [8]. Here, we address a subset
representing the road junction rules. This subset comprises 14 rules which deal
with stop signs, traffic lights, turning right and left, crossroads and also watching
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out for a road user. As an example, we show rule 1701, which establishes the
requirements for a driver to enter or wait at a road junction. As it follows, a
fragment of rule 170 is described as seen in [8]. Next, a formal representation
is given using LTL.

– Rule 170 from Road Junction Highway Code:
• You Should watch out for road users (RU) (cyclists, motorcyclists, powered

wheelchairs/mobility scooters and pedestrians).
• watch out for pedestrians crossing a road junction (JC) into which you

are turning.
• look all around before emerging2. Do not cross or join a road until there

is a safe gap (SG) large enough for you to do so safely.
– Rule 170: represented in LTL, when the autonomous vehicle (AV) may enter

the junction (JC):

� (watch(AV, JC, RU) ∪ cross(RU, JC) <False> ∧
exists(SG, JC) <True>) → ♦enter(AV, JC)

• Rule 170 - description: it is always the case that the AV is supposed
to watch for any road users ( RU) at the junction ( JC) until there are no
road users crossing the junction ( JC) and also there is a safe gap ( SG).
As a result, at some time the AV may enter the junction.

4 From a Road Junction Rule Towards a BDI Agent Plan

In this section, we describe how the formalisation presented in Sect. 3 can be
used in the translation towards BDI agent plans. Through such a translation,
we intend to better bridge the gap between the rules of the road and the agent
implementation. Additionally, this translation could be used as a first step in the
implementation of these rules in a BDI agent programming language different
from Gwendolen.

Our translation process is executed through different cases according to the
possible actions used to describe the road junction rules.

Here <pre> and <post> are used as an effect on the given action. In the
case of a pre-condition it indicates there is a previous belief that should be
satisfied for the given action to be applied. In the case of a post-condition, the
application of the action will result in a new belief. Thus, both pre and post-
conditions represent beliefs when translated into BDI plans, as shown in the
following definitions.

<pre> action name (t1, t2, t3) <post>

1 LTL representation of road junction rules: https://github.com/laca-is/SAE-RoR.
2 For the sake of clarity of the rules of the road language, we choose to use the term
enter as an action which represents not only a driver entering a road junction, but
also emerging from a road junction to another road.

https://github.com/laca-is/SAE-RoR
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<pre> action name: the action becomes a belief for the agent.
t1 as an Agent is translated as an agent.
t2 as a Space Object is translated as a belief from the environment.
t3 as an Abstract or Static or Dynamic Object is translated as a belief
from the environment.
<post> action name: the action result becomes a belief for the agent.
action name: is the own action which should be part of the body plan in
the agent.

<pre> action name (t1, t2) <post>

<pre> and <post> will be translated in the same way of the previous case.
t1 as an Abstract or Static or a Dynamic Object is translated as belief
from the environment.
t2 as a Space Object is translated as a belief from the environment.
action name: is the own action which should be part of the body plan in
the agent.

Now, to illustrate the translation, we show an example using the Rule 170,
previously seen in Sect. 3.

– The Goal is given by Rule 170, which is to enter at the junction.
– From the four actions written in the formalisation of Rule 170, we extract the

following elements, which will be used to create different agent plans with the
corresponding trigger events, guards, and body plans.

– We consider that a LTL rules of the road is a flow of actions when translated
into agent plans:

• The flow of action starts with those actions from the “Context” (see
Grammar at Subsect. 2.4), action-1 will obtain new beliefs (from the
agent environment) that will be used as guards for action-2 ; action-2
will obtain new beliefs used as guards for action-3 ; this goes on until the
“Result” action, which can use all beliefs obtained by previous actions.

– Our translation target is the BDI structure (trigger event, guards, body)
previously seen in Sect. 1.

– First action (from the Context):
watch(AV, JC, RU)

AV is the Agent.
JC is a belief at Junction from the environment.
RU is a belief there is a road user.
watch is the action watch implemented in the environment.

• Translation target:

enter-junction : (empty) <- watch
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the trigger event is named enter-junction, this is the AV-agent goal (this
same trigger event is used for all plans).
since this is the first action (in the flow of actions), there is no beliefs obtained
from the environment, that is the reason the guards are empty.
watch is the action used in the body of agent plan (all following actions will
be used similarly).

– Second action (from the Context):
cross(RU, JC) <False>

RU is a belief there is a road user.
JC is a belief at Junction from the environment.
cross(RU, JC) <False> is a belief related to RU and JC that there is
no road user crossing at the junction.
cross is the action cross implemented in the environment.

• Translation target:
enter-junction : JC <- cross

now, the second action (cross) has obtained a belief (JC - Junction) from
the environment, which is used as guard in the plan.

– Third action (from the Context):
exists(SG, JC) <True>

SG is a belief on safe gap from the environment.
JC is a belief at Junction from the environment.
exists(SG, JC) <True> this flag has effect in the action and in both
elements from the tuple, thus we say: “there is a new belief that exists a
Safe Gap at the Junction.”
exists is the action exists implemented in the environment

• Translation target:
enter-junction : JC, RU <- exists

next, the third action (exists) still has the same previous guard (JC) and
obtains a new belief (RU, there is no road user), used as a second guard
in the agent plan.

– Fourth action (from the Result):
enter(AV, JC)

AV is the Agent.
JC is a belief at Junction from the environment.
enter is the action enter implemented in the environment.

• Translation target:
enter-junction : JC, RU, SG <- enter

at last, the “Result” action (enter) keeps the previous guards and adds
a third one, SG (Safe Gap), obtained from the third action application.

Notice that when implementing the agent plans in Gwendolen (as next
section will present), we have changed some details in the code, but only to have
a clear BDI syntax code. The main target objects obtained from the translation
are all used in the agent BDI plans.
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5 Simulated Automotive Environment for the Rules of
the Road

Our proposed architecture (see Fig. 1) is named SAE-RoR (Simulated Automotive
Environment for the Rules of the Road).

In Fig. 1, the semantics of the arrows represent data. The road junction rules
are formally represented using a grammar. With this representation we are able
to embed the rules into a Gwendolen agent and also formally verify related
properties written in LTL using AJPF. Moreover, the agent updates its beliefs
from perceptions obtained from the Urban Traffic Environment. This will deter-
mine the set of plans that should be executed and sends back to the environment
the corresponding actions, e.g. watch and enter (a road junction).

As an example of a property that could be formally verified is given below
(in natural language):

“It is always the case that when there is a road user crossing a road junction
and/or there is no safe gap at the junction, then the AV-agent will not
enter the junction.”

Notice that our intention is not simply checking this property considering the
rule 170, but also verify it according to the whole set of road junction rules.
In a way we could check if there is any conflict, inconsistency or redundancies
among the road junction rules.

Code 1.1 presents a fragment of our AV-agent, which implements a subset
of plans from rule 170, and is responsible for achieving the goal of entering a
road junction (as seen in Sect. 3).

Listing 1.1. AV-agent plans for Rule 170

: I n i t i a l Goals :

want en t e r junc t i on [ ach i eve ]

: Plans :

+! want en t e r junc t i on [ ach i eve ] : { B to watch (X,Y) } <−
watch (X,Y) ;
+! want en t e r junc t i on [ ach i eve ] : { B junc t i on } <−
ch e ck c r o s s (X,Y) ;
+! want en t e r junc t i on [ ach i eve ] : { B junct ion ,
B road use r (X,Y) } <− wait , give way , ch e ck c r o s s (X,Y) ;
+! want en t e r junc t i on [ ach i eve ] : { B junct ion ,
B no road use r (X,Y) } <− check sa f e gap (X,Y) ;
+! want en t e r junc t i on [ ach i eve ] : { B junct ion ,
B no road use r (X,Y) , B sa f e gap (X,Y) } <− ente r ;

Notice the AV-agent has a sequence of five plans representing the stages of
rule 170.
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Fig. 1. SAE-RoR Architecture

1. When the agent believes that it should watch for something in the environ-
ment (represented by (X,Y )), then it should watch out for road users.

– want-enter-junction is the agent goal it should be achieved.
– (X,Y) represents a position in the environment; the agent receives per-

ceptions placed at this position.
– B in Gwendolen stands for an agent Belief.
– watch(X,Y) is an action taken by the agent, which has an effect in the

environment (notice that all actions have some effect in the environment).
2. When the agent believes that it is at the junction, it should check if there is

a road user crossing the junction.
– check-cross(X,Y) is an action taken by the agent.

3. When the agent believes that it is at the junction and there is a road user
crossing it, then it shoud wait, give way and check the junction again.

– wait, give-way are actions taken by the agent.
4. When the agent believes that it is at the junction and there is no road user

crossing it, then it needs to check for a safe gap.
– check-safe-gap(X,Y) is an action taken by the agent.

5. When the agent believes that it is at the junction, there is no road user
crossing it, and there is a safe gap, then it may enter the junction.

– enter is an action taken by the agent.
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6 Final Remarks

We have proposed an agent-based architecture which represents the rules of the
road (a subset including the road junction rules) from the UK Highway Code.
The rules are formalised using LTL and implemented in a Gwendolen agent.
Notice that it is an ongoing work and we intend to produce a complete imple-
mentation and formal verification of the road junction rules in a forthcoming
work, where we will use the MCAPL model checker in order to formally verify
the behaviour of the AV-agent.

The Highway Code uses different terms to represent the same sort of concepts.
An example can be given with the Safe Gap term (an Abstract Object as seen in
Subsect. 2.2), which indeed is used as a meaning for different terms in the rules
of the road. This sort of abstraction is necessary to create a language simple
enough and suitable for an AV-agent.

Some rules from the Highway Code overlap each other. An example is the
rules 175 and 176, both of which handle traffic lights scenarios. With the LTL
formalisation it is possible to analyse such rules and find out that the desired
outcome for a digital highway code should include a new rule which combines the
main elements from rules 175 and 176. This is suggested because an AV-agent
requires consistent and non-ambiguous information in order to build the agent
plans (which includes beliefs and actions).

With the SAE-RoR architecture we shall be able to answer the three ques-
tions previously presented in the first section: i. Use a (formal) grammar and
LTL to represent the objects and actions from the Highway Code in order to
deal with ambiguity issues. ii. Apply model checking with AJPF in order to
formally verify the behaviour of the AV-agent, in a way one can check the agent
acts according to the expected flow of traffic without conflicts, inconsistency or
redundancies when using the rules of the road. iii. The direct mapping of the
Highway code into a digital version of it does not seem to be enough because
some rules may overlap (e.g., rules 175 and 176) and also the AV-agent requires
(in some scenarios) additional road context in order to implement a decision-
making process. (Notice that we intend to properly answer questions ii and iii
in a forthcoming work.) Indeed, as mentioned in [13], the road context can be
used, for example, to determine when a vehicle is nearby a school at a specific
time, then it should watch out for children. As future work, we aim to include
in our architecture a component responsible for perceiving and extracting the
relevant road context in a way that the AV-agent can obtain a new set of beliefs
from the road junction rules plus a given road context.
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Abstract. Ensuring pedestrian-safety is paramount to the acceptance
and success of autonomous cars. The scenario-based training and testing
of such self-driving vehicles in virtual driving simulation environments
has increasingly gained attention in the past years. A key challenge is the
automated generation of critical traffic scenarios which usually are rare
in real-world traffic, while computing and testing all possible scenarios is
infeasible in practice. In this paper, we present a formal method-based
approach CriSGen for an automated and complete generation of critical
traffic scenarios for virtual training of self-driving cars. These scenarios
are determined as close variants of given but uncritical and formally
abstracted scenarios via reasoning on their non-linear arithmetic con-
straint formulas, such that the original maneuver of the self-driving car
in them will not be pedestrian-safe anymore, enforcing it to further adapt
the behavior during training.

Keywords: Autonomous driving · Formal methods · Critical scenarios

1 Introduction

Scenario-based training and testing of autonomous vehicles in driving simulators
gained quite some attention recently. In fact, from an ethical perspective, syn-
thesizing critical traffic scenarios in order to virtually train self-driving cars to
perform pedestrian-safe (pedestrian collision avoiding) navigation suggests itself.
Such scenarios are usually rare in real-world traffic and computing all possible
scenarios for extracting unsafe ones is infeasible in practice. This challenge is
addressed by various approaches to automated traffic scenario generation based
on formal methods [1,4,8,13] or evolutionary and deep learning methods [14,19].
However, none of these generation approaches take known safe maneuvers of the
self-driving car in given scenarios into account in order to determine critical
traffic scenarios.

To this end, we developed a novel formal method-based approach CriSGen
for an automated, complete generation of critical traffic scenarios for virtual
training of self-driving cars. Critical scenarios are determined as close variants
of given but uncritical maneuver and scenario abstraction via formal reasoning
c© Springer Nature Switzerland AG 2020
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on non-linear arithmetic constraint formulas with free parameters, such that
the original maneuver of the self-driving car in them will not be pedestrian-safe
anymore.

The remainder of the paper is structured as follows. A brief overview of the
approach is given in Sect. 2, while its formal analysis techniques are described in
more detail in Sect. 3. An illustrative example is provided in Sect. 4, and related
work is summarized in Sect. 5 before we conclude in Sect. 6.

2 CriSGen Overview

The overall approach of CriSGen is illustrated in Fig. 1. An autonomous car
operates in a virtual driving simulation environment such as OpenDS [5] and uti-
lizes some learning technique for pedestrian-safe maneuver training. In each sim-
ulated traffic scenario, the adaptive car control determines its maneuver actions
in terms of acceleration and steering, and is supposed to update its action policy
based on feedback from the simulation environment such as whether it nearly
misses or even hits a pedestrian. The automated generation of critical traffic
scenarios by CriSGen can be triggered at any time, in particular in cases where
the self-driving car appears to behave pedestrian-safe for some time period. The
CriSGen process starts with transforming both the car maneuver action in
the considered (uncritical) traffic scenario into a formal model and the scenario
itself into a formal abstraction by replacing some of its concrete values with
free parameters such that it represents a whole range of variants of the origi-
nal scenario. These formal models together with a suitable unsafe-property (cf.
Sect. 3.1) are then automatically analyzed (cf. Sect. 3.2) to obtain a non-linear
arithmetic constraint formula which reflects all those scenario variants that must
be considered critical for the given maneuver of the car. Geometrically, what we
obtain this way is a collection of regions in n-dimensional space (where n is

Fig. 1. Overview of the CriSGen approach for critical scene generation
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the number of free parameters) such that each point in any of these regions
represents a valuation of the parameters that makes the maneuver unsafe. The
original scenario is represented as a single point in this n-dimensional space and
lies outside any of the unsafe regions. CriSGen then selects points in the unsafe
regions that are as close as possible, i.e. geometrically near to the original sce-
nario (cf. Sect. 3.3). In other words, we translate and compose the abstracted
scenario together with the original maneuver into some sort of hybrid automa-
ton. A forward reachability analysis with respect to some suitable unsafety prop-
erty (“hitting pedestrians”) ends up in a constraint formula whose solutions are
exactly the representatives of critical scenarios. In the final instantiation steps, a
whole bunch of critical scenarios are obtained which are returned to the scenario
manager of the driving simulator for challenging the car.

Our implementation setting for CriSGen employs OpenDS [5] as a virtual
driving simulator and HyLEAP [17] for adaptive maneuver training of the car
in OpenDS. For reachability analysis one might adapt systems like PVS [12] or
TLA+ [15]. Instead, CriSGen makes utilizes the general-purpose computer alge-
bra system REDUCE, in particular, its module redlog [6], to perform quantifier
elimination on non-linear arithmetic constraint formulas. For instance, given
that a > 0, the quantifier-free equivalent of ∃x ax2 + bx + c ≤ 0 is b2 ≥ 4ac
[7]; redlog determines the projections of complex constraint formulas onto the
set of variables of interest, for example the parameters introduced by traffic sce-
nario abstractions. In the remainder of this paper, whenever we speak of the
quantifier-free equivalent of a (quantified) constraint formula we mean redlog’s
quantifier elimination output when called with this constraint formula.

3 CriSGen: Formal Models and Analysis

3.1 Formal Models of Maneuver and Scenario

The formal analyses by CriSGen require formal models of car maneuvers,
(abstracted) traffic scenarios, the composition of these models and an unsafe-
property to be analyzed. In the following, we assume traffic scenarios with a
single pedestrian, though the approach is not restricted to that.

Abstracted Scenario. We assume a two-dimensional grid upon which the
pedestrian and the autonomous vehicle move. Each point on this grid is called a
position, and the movements of pedestrians are described in sequences of posi-
tions together with a scalar velocity as1

(x0, y0)
v0−→ (x1, y1) −→ . . . −→ (xi, yi)

vi−→ (xi+1, yi+1) −→ . . .

In the original scenario all the x’s, y’s, and v’s are concrete numbers, while in
the next step we relax this and produce abstracted variants of this scenario with
1 OpenDS scenarios are described in specific XML files from which such behaviors can

be extracted.
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the help of what we called Abstraction Modifiers. These are operators that can
be applied to a given scenario (that may be already partially abstracted):

1. Replace a waypoint component with a (fresh) parameter (with or without
propagation)

2. Replace a segment velocity with a (fresh) parameter
3. Split a segment (thus adding a waypoint and a parameter)
4. Double a waypoint

The application of an Abstraction Modifier has an instance, i. e. an instantia-
tion of the free parameters, that is behavior equivalent to the original behavior.
Regarding propagation, let us consider the simple scenario (0, 0) 1−→ (0, 1) 1−→
(10, 1), and suppose that we want to replace the y-component of the second
waypoint with parameter c. Without propagation this ends up with the result
(0, 0) 1−→ (0, c) 1−→ (10, 1) as one might have expected. With propagation, how-
ever, would consider the y-component of the third waypoint as a function of the
abstracted one. In the example this means that the two y-components should
remain equal, i. e. we end up with (0, 0) 1−→ (0, c) 1−→ (10, c).

Splitting of a segment can be formulated in terms of quantifier elimination.
For instance, to split a segment (1, 2) 1−→ (2, 5) we determine the quantifier-free
equivalent of ∃λ (0 ≤ λ ≤ 1∧a = 1+λ∧b = 2+3λ) which is 1 ≤ a ≤ 2∧b = 3a−1.
The split segment therefore is (1, 2) 1−→ (a, 3a−1) 1−→ (2, 5), where 1 ≤ a ≤ 2. Of
course, this also works in cases where parameters have already been introduced.
For example, splitting the segment (1, 2) 1−→ (3, p), where p is a parameter,
results in the split segment (1, 2) 1−→ (a, 1

2 (ap − 2a − p + 6)) 1−→ (3, p) with
1 ≤ a ≤ 3. A scenario modification is then defined as the successive application
of several such Abstraction Modifiers.

Formal Model of Abstracted Scenario. Let (px, py) denote the pedestrian’s
position (x and y component) with both values being functions over time, such
that the respective velocity components are the first derivatives of px and py

denoted by ṗx and ṗy. These components have to be specified in order to be
able to describe the reachable positions of the pedestrian within a phase of the
scenario. Since the pedestrian walks from (xi, yi) to (xi+1, yi+1) with velocity
vi (a scalar), we have that v2

i = ṗ2x + ṗ2y. Besides, the pedestrian takes the
same time to cross the distance xi+1 − xi as the distance yi+1 − yi: the ratio
(xi+1 − xi)/(yi+1 − yi) is the same as the ratio ṗx/ṗy, and so ṗy (xi+1 − xi) =
ṗx (yi+1−yi) holds. This does not yet uniquely describe the velocity components.
In order to make sure that the velocities have the correct sign we also add
ṗx (xi+1 − xi) ≥ 0 and ṗy (yi+1 − yi) ≥ 0. Together, all these (in)equations fully
describe the pedestrian’s continuous dynamics.

Next, we have to make sure that the pedestrian completes the current seg-
ment as soon as she reaches (xi+1, yi+1), and that she passes through each
point of the line segment while walking. This gives rise to the following seg-
ment invariant: If xi+1 ≥ xi it suffices to add the invariant px ≤ xi+1
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(and analogously for the y-component). Similarly, if xi+1 ≤ xi then the invariant
px ≥ xi+1 would do. However, we can avoid such a case distinction if we declare
px (xi+1 − xi) ≤ xi+1 (xi+1 − xi) and py (yi+1 − yi) ≤ yi+1 (yi+1 − yi) as our
phase invariant. Obviously, if the distance is positive then the differences cancel
out and if it is negative they cancel out but also reverse the inequality sign. The
two lower implications capture the marginal cases where the pedestrian moves
straight in the y-direction (x-direction respectively).

Definition 1 (Specification of pedestrian dynamics and invariant for
segment i). Let segment i of an abstracted scenario be (xi, yi)

vi−→ (xi+1, yi+1).
Let Δx = xi+1 − xi and Δy = yi+1 − yi We define pedestrian p dynamics dynp

i

and invariant invp
i for segment i as follows:

dynp
i =

⎡
⎢⎢⎣

v2
i = ṗ2x + ṗ2y ∧ vi ≥ 0 ∧

ṗx Δx ≥ 0 ∧
ṗy Δy ≥ 0 ∧
Δx ṗy = Δy ṗx

⎤
⎥⎥⎦ invp

i =

⎡
⎢⎢⎣

p′
x Δx ≤ xi+1 Δx ∧

p′
y Δy ≤ yi+1 Δy ∧

xi+1 = xi → p′
x = px ∧

yi+1 = yi → p′
y = py

⎤
⎥⎥⎦

With these definitions we can imagine an (hybrid) automaton-like representa-
tion of the translation of an abstracted scenario as a sequence of nodes each
representing one segment Segi with continuous dynamics dynp

i , invariant invp
i

and transition guards px = xi+1, py = yi+1. Informally, the reachability seman-
tics defines the set of reachable states, in this case the pedestrian’s positions, for
each of the segments (cf. Sect. 3.2).

Formal Model of Maneuver. The virtually simulated autonomous car out-
puts a maneuver description that starts with an initial position (α, β) together
with an initial x, y-velocity (μ0, ν0) followed by a sequence of maneuver events
each accompanied with a τ that expresses the duration of the current state of
movement. A typical maneuver would thus be:

((α, β), (μ0, ν0))
τ0−→ e1(n1)

τ1−→ e2(n2)
τ2−→ e3(n3)

τ3−→ . . .

where each ei(ni) denotes one of the maneuver events from below

de-/accelerate by n: De-/Increase velocity while keeping the direction
steer left/right by φ: φ might be in degrees or radians, velocity remains

constant

In the course of driving these car dynamics change from (μj , νj) to (μj+1, νj+1)
depending on the current maneuver event. Thus, for modelling the maneuver,
we determine the – as we call it – velocity sequence as follows:

(μ0, ν0), (μ1, ν1), (μ2, ν2), (μ3, ν3), . . .

(μ0, ν0) is already given in the maneuver description. Having (μj , νj), the next
velocity vector (μj+1, νj+1) depends on the maneuver event ej+1(nj+1). In case
of a steering event, we simply multiply by the rotation matrix, i e.,

(
μj+1

νj+1

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

) (
μj

νj

)
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Otherwise, ej+1(nj+1) is a de-/acceleration event. In this case, (μj+1, νj+1) is
uniquely characterized by the quantifier-free equivalent of

∃ old, new

⎡
⎢⎢⎣
old2 = μ2

j + ν2
j ∧ old ≥ 0 ∧

new2 = μ2
j+1 + ν2

j+1 ∧ new = old + nj+1 ∧
μj νj+1 = μj+1 νj ∧
μj μj+1 ≥ 0 ∧ νj νj+1 ≥ 0

⎤
⎥⎥⎦

The top four in-/equations express the change in velocity, the fifth guarantees
that the absolute value of the direction is kept constant, and the final two equa-
tions make sure that the velocities are not reversed2. With these definitions the
characterization of the car’s continuous dynamics and invariant for phase j – in
the sequel denoted by Phj – becomes

dync
j =

[
ċx = μj ∧ ċy = νj ∧ ṫ = 1

]
invc

j = [ t′ ≤ τj ]

In terms of hybrid automata, we obtain again a sequence of nodes, each respon-
sible for a maneuver phase with continuous dynamics dync

j , invariant invc
j and

transition annotations t = τj , t
′ = 0. The formal model of a maneuver in terms

of hybrid automata (with reachable state semantics defined in Sect. 3.2) can
therefore be described as in Fig. 2.

Ph0

ċx = μ0

ċy = ν0

ṫ = 1

t ≤ τ0

Ph1

ċx = μ1

ċy = ν1

ṫ = 1

t ≤ τ1

Phj

ċx = μj

ċy = νj

ṫ = 1

t ≤ τj

t = τ0 t′ = 0 t = τ1 t′ = 0

Fig. 2. Hybrid automaton for maneuvers.

Composition of Formal Models of Scenario and Maneuver. Given
an abstracted scenario (x0, y0)

v0−→ (x1, y1)
v1−→ . . . and a maneuver

((α, β), (μ0, ν0))
τ0−→ e1(n1)

v0−→ . . . with velocity sequence (μ0, ν0), (μ1, ν1), . . .,
we obtain the pedestrian’s (hybrid) automaton and the car’s maneuver (hybrid)
automaton as described above. There are no synchronization labels involved, nor
are there any cycles. The composition of these two hybrid automata is therefore
straightforward: Its nodes are the cross-products (Segi × Phj) of the scenario
and the maneuver nodes, the continuous dynamics and the invariants are the

2 This disallows maneuvers in which a car drives slowly by, say, 1 m/s, and deceler-
ates by 2 m/s, thus reversing its motion direction. Reversing the sense of direction
should be described by decelerating to a stop and a further deceleration for driving
backwards.
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conjunction of the local dynamics and invariants, and the transitions are the
local transitions from the local automata, i. e. two outgoing transitions for each
node.

Safety Property. Pedestrian avoidance serves as a unique safety property to
be satisfied by the self-driving car. To this end, the pedestrian hit area of the
car is defined in terms of the car’s position and direction. A maneuver is called
safe if there is no point in time where a pedestrian’s position lies within the
car’s hit area. Let the car’s position and velocity vector be (cx, cy) and (ċx, ċy),
respectively. One vector perpendicular to the sense of direction is (ċy,−ċx) and

the car’s speed is
√

ċ2x + ċ2y, which we abbreviate to α. For checking the safety

of the pedestrian’s position, we extend the car’s position (cx, cy) by at most
±3 (meters, say)3 in the sense of direction, which is normalized to (ċx, ċy)/α,
and at most ±1 perpendicular to the sense of direction, which is normalized to
(ċy,−ċx)/α. After minor simplifications, we finally end up with: The position
(px, py) is inside the car’s hit area (during node Segi × Phj) iff (px, py, cx, cy) ∈
Hit(i×j) where

Hit(i×j) = ∃λ1, λ2, α

⎡
⎢⎢⎣

α2 = ċ2x + ċ2y ∧ α ≥ 0 ∧
−1 ≤ λ1 ≤ 1 ∧ −3 ≤ λ2 ≤ 3 ∧
α cx − α px = λ1 ċy + λ2 ċx ∧
α cy − α py = λ2 ċy − λ1 ċx

⎤
⎥⎥⎦

with ċx = μj and ċy = νj . Obviously, this safety property changes from phase to
phase of the composed automaton, since velocities and directions of participants
vary from phase to phase, and the safety property depends on these values.

3.2 Formal Analysis of Abstracted Scenarios and Maneuvers

For the formal assessment of given maneuvers with respect to abstracted scenar-
ios we define what we understand by the set of reachable states and how these
are represented. Therefore let us assume that we have an abstracted scenario

(x0, y0)
v0−→ (x1, y1)

v1−→ . . .
vi−1−→ (xi, yi)

vi−→ (xi+1, yi+1)
vi+1−→ . . .

and a maneuver

((α, β), (μ, ν)) τ0−→ e1(n1)
τ1−→ e2(n2)

τ2−→ e3(n3)
τ3−→ . . .

Since the continuous dynamics change from node to node in the composition we
consider the set of reachable states as the union of the sets of reachable states

3 The units do not really matter as long as they are kept consistent throughout the
specification.
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for the various composed nodes. In each such node the respective velocities are
considered constant, therefore let

Reach =

⎡
⎣

δ ≥ 0 ∧ t′ = t + δ ∧
p′

x = px + δ ṗx ∧ p′
y = py + δ ṗy ∧

c′
x = cx + δ ċx ∧ c′

y = cy + δ ċy

⎤
⎦

This together with the local continuous dynamics and invariant gives rise to the
following definition of the set of reachable states.

Definition 2 (Reachable States for Node Segi ×Phj). Let vars =
{
px, py,

ṗx, ṗy, cx, cy, ċx, ċy, t, δ
}
. Then the set of reachable states in node Segi × Phj,

States(i×j), is uniquely determined by (the quantifier-free equivalent of)

States(i×j) = ∃ vars
[
Init(i×j) ∧ Dyn(i×j) ∧ Reach ∧ Inv(i×j)

]

where Dyn(i×j) = dynp
i ∧ dync

j and Inv(i×j) = invp
i ∧ invc

j . For Init(i×j) see
below.

In fact, according to the definitions of Dyn(i×j), Inv(i×j), and Reach the con-
straint States(i×j) talks about parameters and primed variables only. For con-
venience, we rename these variables to their unprimed versions4.

States(i×j) = States(i×j)[px/p′
x][py/p′

y][cx/c′
x][cy/c′

y][t/t′]

The above definition requires Init(i×j), the constraint that describes the initial
states for node Segi × Phj . These depend on the reachable states of “earlier”
nodes where the transition guards hold.

Definition 3 (Initial States for Node Segi × Phj). Given an abstracted
scenario (x0, y0)

v0−→ (x1, y1)
v1−→ . . .

vi−1−→ (xi, yi)
vi−→ (xi+1, yi+1)

vi+1−→ . . . and a
maneuver ((α, β), (μ, ν)) τ0−→ e1(n1)

τ1−→ e2(n2)
τ2−→ e3(n3)

τ3−→ . . . with derived
velocity sequence (μ0, ν0), (μ1, ν1), (μ2, ν2), (μ3, ν3), . . . we define

Init(0×0) = [px = x0 ∧ py = y0 ∧ cx = α ∧ cy = β ∧ t = 0]

Init(0×(j+1)) =
[∃t {States(0×j) ∧ t = τj} ∧ t = 0

]

Init((i+1)×0) =
[
States(i×0) ∧ px = xi+1 ∧ py = yi+1

]

Init((i+1)×(j+1)) =

⎡
⎣
States(i×(j+1)) ∧ px = xi+1 ∧ py = yi+1

∨
∃t {States((i+1)×j) ∧ t = τj} ∧ t = 0

⎤
⎦

Finally, after having determined the reachable states (for node Segi × Phj) and
having found the hit area (also for node Segi × Phj), the constraint describing
unsafe states is as follows.

4 This can trivially be described as a quantifier elimination problem.
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Definition 4 (Unsafe States for Node Segi ×Phj). Given States(i×j) and
Hit(i×j), the unsafe states for node Segi ×Phj are defined as the quantifier-free
equivalent of

Unsafe(i×j) = ∃px, py, cx, cy, t
[
States(i×j) ∧ Hit(i×j)

]

Each of the Unsafe-constraints contains no variable at all, and not all of them
are simply true or false. In general, they still contain constraints over the
parameters that had been introduced by Abstraction Modifiers. Algorithm3.1
summarizes the forward-reachability mechanism defined above. Note that the
nested for-loop guarantees that the constraint predicates are determined just-in-
time.

Algorithm 3.1: ForwardReachability(Abstr.Scenario,Maneuver)

Critical ← false

for i ← 0, 1, 2, . . .

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for j ← 0 to i

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Init[j][i − j] ← see Definition 3

Dyn[j][i − j] ← see Definition 1

Inv[j][i − j] ← see Definition 1

States[j][i − j] ← see Definition 2

Hit[j][i − j] ← see Section 3.1

Unsafe[j][i − j] ← see Definition 4

Critical ← Critical ∨ Unsafe[j][i − j]
return (Critical)

3.3 Generating Critical Scenarios

Suppose that the scenario abstraction introduced the parameters {p1, . . . , pn}.
Now consider an n-dimensional grid with axes p1, . . . , pn. Each point in this grid
represents a variant of the abstracted scenario. The closer two such points are,
the more similar are the variants that they represent. Some of these variants
are behavior equivalent to the original scenario by definition (of the Abstrac-
tion Modifiers). Let O denote the area within this grid of the variants that are
behavior equivalent to the original scenario. Algorithm 3.1 provides us with the
constraint Critical that describes the variants that are unsafe with respect
to the original maneuver. We determine the distance between the areas O and
Critical by solving an optimization problem along the lines of [7] : The distance
between any point (a1, . . . , an) that satisfies O and any other point (b1, . . . , bn)
that satisfies Critical is greater than or equal to the minimal distance between
the two areas. Thus the quantifier-free equivalent of
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∀a1, . . . , an, b1, . . . bn O[ai/pi] ∧ Critical[bi/pi] →
√√√√

n∑
i=1

(a2
i − b2i ) ≥ d

is some constraint d ≤ min from which we can read min as the minimal distance
that we are interested in. With the computation of witnesses for the ei in

∃c1, . . . , cn, e1, . . . en O[ci/pi]∧Critical[ei/pi]∧min ≤
√√√√

n∑
i=1

(c2i − e2i ) ≤ min+ε

(where ε is a small non-negative constant5) we have finally found the most appro-
priate candidates for instantiation.

4 An Illustrative Example

Scenario and Maneuver. As an illustrative example of our formal method-
based approach to the generation of critical scenarios suppose that the simulation
engine provides CriSGen with the traffic scenario and maneuver as depicted in
Fig. 3. In this scenario, a pedestrian starts with velocity 1 (m/sec, say) at position
(0, 0) goes straight to (0, 1), and crosses the street for point (10, 1). The car’s
maneuver simultaneously starts at (3, 70) while driving downwards with velocity
0 in x-direction and velocity −10 in y-direction. Both scenario and maneuver is
summarized as follows:

(0, 0) 1−→ (0, 1) 1−→ (10, 1) ((3, 70), (0,−10)) ∞−→

Fig. 3. Original (non-critical) scenario: the autonomous car drives too slow to jeopar-
dize the pedestrian.

5 ε compensates minor differences between the computed reachable states and the
driving simulator’s behavior.
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One-Dimensional Abstraction. Consider a single abstraction, namely replac-
ing the y-component of the second waypoint by a parameter c (unrestricted) with
propagation, which ends up in the abstracted scenario

(0, 0) 1−→ (0, c) 1−→ (10, c)

By applying Algorithm3.1 to this abstraction, we obtain two Unsafe-constraints:
Unsafe(0×0) = false as expected; the pedestrian’s behavior in the initial phase
is certainly not critical (yet). The other Unsafe-constraint is more interesting:

Unsafe(1×0) = 27 ≤ 11c ≤ 53 ∨ −53 ≤ 9c ≤ −27

Accordingly, the critical region consists of two parts: One where the pedestrian
walks towards the car for some distance and then crosses the street, and another
one, where the pedestrian actually walks away from the car before crossing the
street (see Fig. 4). The ultimate goal of CriSGen is to synthesize critical sce-
narios that are possibly near the (non-critical) original traffic scenario (the circle
at position 1 in Fig. 4). For this example, values 2.5 and −3.5 are reasonable.

c

1 27/11 53/11−53/9 −27/9

Fig. 4. Unsafe (red rectangles) and original (green circle) scenarios. (Color figure
online)

As a consequence, in this simple example, CriSGen ends up with several critical
scenarios, e.g. for the values from above:

(0, 0) 1−→ (0, 2.5) 1−→ (10, 2.5) and (0, 0) 1−→ (0,−3.5) 1−→ (10,−3.5)

Two-Dimensional Abstraction. Suppose that the following abstractions are
performed: a split of the second segment, and a doubling of the (new) fourth way-
point together with an abstraction of the x-component of the newest waypoint.
This yields the abstracted scenario

(0, 0) 1−→ (0, 1) 1−→ (c, 1) 1−→ (a, 1) 1−→ (10, 1)

where a, c are restricted to 0 ≤ c, a ≤ 10. For this abstracted scenario (and
maneuver) the Algorithm 3.1 returns within about 70 m/sec

Critical = Unsafe(0×0) ∨ Unsafe(1×0) ∨ Unsafe(2×0) ∨ Unsafe(3×0)

where Unsafe(0×0) and Unsafe(1×0) are both false and

Unsafe(2×0) = 38 ≤ 10c ≤ 51 ∧ 0 ≤ a ≤ 4 ∧ 5a − 10c + 28 ≤ 0
Unsafe(3×0) = 0 ≤ a ≤ 4 ∧ −5a + 10c − 31 ≤ 0 ∧ 8 ≤ 10c − 10a ≤ 21
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These computed constraint formulas are illustrated in Fig. 5 where the lambda-
shaped red area represents the unsafe scenarios and the top left green triangle
represents the original scenario6. Note that the red area consists of two parts: The
vertical part is responsible for phase (2×0), i. e. situations where the pedestrian
is heading towards the other side of the street, but decides fairly late to return.
The more diagonal part illustrates the critical a, c-pairs for phase (3 × 0). Here
again, the pedestrian first tries to cross the street, decides pretty early to turn
but finally nevertheless returns again for the other side.

c

a

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

Fig. 5. Unsafe (red λ-shaped) and original (green triangle) scenarios. (Color figure
online)

There are several interesting points in this region that can serve as candidates
for (c, a), like (5, 3.5), (4, 3), (3, 2), (2, 1), (1, 0). For instance, the pairs (5, 3.5) and
(1, 0) result in the critical scenarios

(0, 0) 1−→ (0, 1) 1−→ (5, 1) 1−→ (3.5, 1) 1−→ (10, 1)
(0, 0) 1−→ (0, 1) 1−→ (1, 1) 1−→ (0, 1) 1−→ (10, 1)

Three-Dimensional Abstraction. Finally, let us perform some further
abstraction by replacing the pedestrian’s velocity in the final segment with a
parameter b. This leads to the abstracted scenario

(0, 0) 1−→ (0, 1) 1−→ (c, 1) 1−→ (a, 1) b−→ (10, 1)

6 Evidently, for any 0 ≤ c ≤ a ≤ 10 the corresponding instantiation is behavior
equivalent to the original scenario. Therefore the safe (green) variants form the top-
left triangle instead of a single point.
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Fig. 6. Unsafe region (red) and original region (green). (Color figure online)

After determining the various constraint formulas and after computing all the
necessary projections, CriSGen produces after about 250 m/sec the constraint
formula for Critical, which, in this example, consists of five disjunctions:

Critical =
38 ≤ 10c ≤ 51 ∧ 0 ≤ a ≤ 4 ∧ 5a − 10c + 28 ≤ 0 ∨
b > 0 ∧ b < 1 ∧ 5bc − 31b − 5c + 10 ≤ 0 ∧ 5bc − 28b − 5c + 20 ≥ 0 ∧ a = c ∨
a ≤ 4 ∧ a < c ∧ 5a − 10c + 31 ≥ 0 ∧ b > 0 ∧ 5ab + 5a − 10bc + 28b ≤ 20 ∧

5ab + 5a − 10bc + 31b − 10 ≥ 0 ∨
a ≤ 4 ∧ a < c ∧ 5a − 10c + 31 ≥ 0 ∧ b > 0 ∧

10 + 10bc − 31b ≤ 5ab + 5a ≤ 20 + 10bc − 28b ∨
0 < b < 1 ∧ 5ab − 5a − 31b + 10 ≤ 0 ∧ 5ab − 5a − 28b + 20 ≥ 0 ∧ c ≤ a

Since there are three parameters involved, the corresponding unsafe region can
be illustrated in a 3D graphic as shown in Fig. 67. There are lots of additional
interesting points in these unsafe-regions. For instance, (a, b, c) = (2.5, 0.4, 1) and
(a, b, c) = (2.4, 0.5, 2), which instantiate the abstracted scenario to the critical
scenarios

(0, 0) 1−→ (0, 1) 1−→ (1, 1) 1−→ (2.5, 1) 0.4−→ (10, 1)

and
(0, 0) 1−→ (0, 1) 1−→ (2, 1) 1−→ (2.4, 1) 0.5−→ (10, 1)

respectively.

7 Note that in this illustration the unsafe region and the original region do not inter-
sect, since cutting the area with the plane at b = 1 produces exactly Fig. 5.
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5 Related Work

To our knowledge the CriSGen approach is the first that utilizes formal reason-
ing on non-linear arithmetic constraint formulas with free parameters to synthe-
size critical scenarios for self-driving cars from previous, similar traffic scenarios
and maneuvers. Nevertheless, there exist various alternative, related approaches
for scenario generation [2,8–11,13,14,19,20].

In [8] Eggers et al. derive constraint problem classes to be solved for their
synthesis, however without showing how to solve them. Their underlying lan-
guage is based on the graphic representation of Damm et al. [4]. The graphic
components get their semantics by a translation into a first-order sorted linear
temporal logic which is interpreted in terms of the trajectories of the hybrid
automata that represent the vehicles and pedestrians. Althoff and Lutz [1] pro-
pose yet another way to automatically generate critical scenarios with the help
of formal methods. Whereas we consider a fixed maneuver in a traffic scenario
to be challenged, they try to reduce the solution space for maneuvers of the car.

For systematic testing, Frassinelli et al. [9] propose a rule-based mechanism
which confronts the autonomous car online while driving with just-in-time gen-
erated but not necessarily critical road extensions. Groh et al. [11] discuss trans-
ferring the test space into a scenario-depending representation which enables
the comparison of scenarios across test domains. Aréchiga [2] use signal tem-
poral logic and Bouton et al. [3] employ reinforcement learning together with a
model checker to ensure safety guarantees. In fact, using evolutionary comput-
ing or deep learning methods for the generation of critical scenarios is becom-
ing interesting recently such as in Wachi [14,19]. Other related work focuses
on extraction and representation of scenarios. For example, Queiroz et al. [18]
propose OpenDSL for scenario representations and Menzel et al. [16] introduce
a method to automatically generate executable scenario representations from
keyword-based descriptions. Fremont et al. [10] introduce Scenic, a scenario
specification language that allows the modeler to mutate scenarios and Yaghoubi
and Fainekos [20] determine adversaries for neural network inputs with a gradi-
ent descent approach.

6 Conclusion

In this paper, we presented a novel formal method-based approach CriSGen
for an automated and complete generation of critical traffic scenarios for virtual
training of self-driving cars. These scenarios are determined as close variants
of given but uncritical and formally abstracted scenarios via reasoning on their
non-linear arithmetic constraint formulas, such that the original maneuver of
the self-driving car in them will not be pedestrian-safe anymore, hence enforcing
it to further adapt the maneuver behavior. The approach is complete for the
considered scenario abstraction in the sense that, unlike other related methods,
it can guarantee to not overlook any of the possible scenario instances that are
critical for the original maneuver.
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Abstract. Autonomous crossing manoeuvres at intersections are espe-
cially challenging. In related work, a crossing controller for provably safe
autonomous urban traffic manoeuvres was introduced. We extend this
controller by a decentralised communication procedure that ensures fair
behaviour of the controller and also guarantees bounded liveness. We ver-
ify the correctness of our extension by an implementation and analysis
with UPPAAL Stratego.

Keywords: MLSL · Autonomous cars · Urban traffic manoeuvres ·
Fairness · Distributed controllers · Timed automata · UPPAAL
Stratego

1 Introduction

For autonomous cars, functional properties are of the utmost importance, as e.g.
in case of safety, human life is endangered. We consider the Multi-lane Spatial
Logic (MLSL) approach, where in the first paper [1], safety of autonomous high-
way lane change manoeuvres was considered. Equally focusing on safety, there
exist MLSL extensions for country roads with opposing traffic [2] and urban
traffic with intersecting roads [3]. While safety is an important property, other
functional properties for autonomous cars are of interest but have received less
attention from the research community. As e.g., safety could be achieved if the
cars do not drive at all, liveness is of interest. Liveness here means that some-
thing good, e.g. a lane change or a crossing manoeuvre, happens finally. The first
liveness approach for the MLSL approach was presented for the highway traffic
case in [4]. There, an implementation of the highway traffic controller from [1] in
UPPAAL [5] was used to certify safety, show absence of liveness in the original
controller and to introduce a live controller.

In this paper, we transfer the liveness result of [4] to the urban traffic crossing
controller in [3]. However, liveness means that something good finally happens,
which means that our crossing controller is live, even if it potentially needs a
significant amount of time for a crossing manoeuvre. Thus, we introduce fair-
ness into the crossing controller by simultaneously implementing a cooperative
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crossing procedure where the priorities of cars are communicated over broadcast
channels. With that, our controller commits crossing manoeuvres not only live,
but also within some time bound and with a fair behaviour w.r.t. other cars. As
an extension motivated by reality, we take probabilistic failures of message send-
ing into account. We implement the extended controller protocol in UPPAAL
Stratego [6] and verify correctness of the fair behaviour of our controllers.
Related work. There exist several approaches on centralised cooperative intersec-
tion management (CIM), where a road-side unit, e.g. a traffic light, acts as a
centralised scheduler (cf. [7,8]). These approaches are limited to signalised inter-
sections, whereas we use a decentralised CIM approach in this paper, where the
cars negotiate their passage through the intersection amongst each other. Thus,
we also discuss related work for decentralised CIM in the following.

A prior approach using distributed reservation was proposed based on Petri-
Net models [9]. For implementing fairness, the authors also propose priorities
depending on waiting time and velocity, and support their claims by simulation
results. However, only one car at a moment has a send-token and may thus
communicate with the other cars. Furthermore, time is not explicitly considered
with the Petri-Net models. Other approaches on traffic control without road-side
units introduce a virtual traffic light (VTL) [10,11]. For this, one of the vehicles
approaching an intersection is cooperatively selected to be the VTL leader. This
leader then again acts as a central scheduler for all cars approaching the crossing.
However, [12] points out that a problem with VTL is the leader selection, as this
a) takes some time and b) possible communication failure during the negotiation
phase may lead to a disagreement in the leader selection.

In [13], a constraint solver is used to prove the correctness of a vehicle coor-
dination protocol for intersections. They focus on the effect of parameters for
longitudinal movement, whereas we focus more on the effect of time and the
choice of probabilities for communication failure. Although uncertain communi-
cation is also possible in [13], there are no quantitative statements regarding the
choice of such parameters.

The structure of this paper is as follows. In Sect. 2, we introduce the pre-
liminaries for the urban traffic approach. Next, in Sect. 3, we give an overview
over our implementation of the crossing controller in UPPAAL Stratego and
describe our protocol for fair behaviour of the controllers, followed by UPPAAL
Stratego analysis results. We extend our approach in Sect. 4 by probabilities for
message sending failures. We conclude with an outlook on future work and a
short summary of the key contributions of our approach in Sect. 5.

2 Preliminaries

In this section, we give a brief overview of the necessary concepts from [3] and
give the formal details for the key concepts. We start with an introduction of
the model and logic for urban traffic manoeuvres in Sect. 2.1, give an overview
over the crossing controller in Sect. 2.2 and conclude with the introduction of
the underlying automaton type of the controller, automotive-controlling timed
automata (ACTA), in Sect. 2.3.
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Fig. 1. Abstract model for a 2-by-2 intersection to the left with cars A to G visible,
where ego car E plans on turning left. Car D plans to enter the intersection, as indicated
by its dashed claim on segment c2 and some part of lane 4 after the crossing. The related
graph topology describing the connections of segments is depicted to the right.

2.1 An Abstract Model for Urban Traffic Manoeuvres

To formally reason about urban traffic manoeuvres, we abstract from the real
world with an abstract model, for which we briefly explain concepts in the follow-
ing paragraphs. A picture of a running example for our model for urban traffic
which we use throughout this paper is depicted in Fig. 1.

As our model is tailored to handle traffic situations at intersections, it con-
tains a set CS of crossing segments c0, c1, . . ., where all adjacent crossing seg-
ments are grouped into intersections/crossings cr from the set P(CS) such that
we have the intersection cr := {c0, c1, c2, c3} in the example. To connect different
intersections with each other, we introduce the set L of lane segments 0, 1, . . ..
Each crossing segment and each lane segment has a finite length.

To each car, we assign a unique car identifier A,B, . . . from the set I of
all car identifiers and a real value for the position pos of its rear on a lane or
crossing segment. We use car E as the car under consideration with valuation
ν(ego) = E to refer to this car. When we are talking about an arbitrary car,
we use the identifier C. We distinguish between the reservation res(C) of a car,
meaning the space the car is actually occupying, and the claim clm(C) of a car,
indicating the space a car plans to drive on in the future. To allow for uncertain
sensors, both reservations and claims might be seen as over-approximations of
the actual space occupied by the cars. A claim is thus comparable to setting the
turn signal, e.g. see car D in Fig. 1 claiming crossing segment c2 and some space
on lane 4 behind cr, as indicated by the dashed lines.

Connections of lane and crossing segments are formalised by a directed graph
topology called urban road network N with set of nodes V built from the respec-
tive sets of lane and crossing segments: V = L ∪ CS. We consider continuous
movement on lane segments and discrete crossing segments, whereas a crossing
segment is either fully occupied by one car or empty. We only permit undirected
edges e ∈ Eu between lane segments, e.g. see the undirectedly connected lanes 6
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and 7 in Fig. 1, to allow for bi-directional overtaking manoeuvres between inter-
sections. All other types of edges in N are directed (e ∈ Ed), whereby a driving
direction for our continuous lane segments is specified. Thus, a car is allowed
to drive from lane 7 onto crossing segment c0, but not vice versa. For each car
C, we assign an infinite path pth(C) with pth : I → (Z → V), resembling its
travelling route through the urban road network. In Fig. 1, the path of car E for
turning left at the depicted crossing is given by pth(E) = 〈. . . 7, c0, c1, c2, 4, . . .〉.

Information like reservations, claims, positions pos(C) and paths pth(C) for
each car are collected in a global traffic snapshot T S. One traffic snapshot can
be considered as one snapshot of the overall traffic in N at one moment. For
instance, whenever time passes or a car claims or reserves a new lane or crossing
segment, the traffic snapshot is modified with the respective changes. However,
for reasoning about traffic manoeuvres of the ego car E, it is unrealistic and
moreover unnecessary to consider the complete traffic snapshot T S. Instead, we
only consider a finite excerpt of T S called virtual view V (E) containing the
surroundings of ego car E up to a specified horizon.

For reasoning about traffic situations in such a virtual view V (E), we use
our two-dimensional logic Urban Multi-lane Spatial Logic (UMLSL), which is an
extension of the highway logic MLSL. With a spatial formula φ = re(E) � free,
we can state that there is free space in front of the reservation of our ego car
E. We have atoms cs for representing crossing segments, re(c) (resp. cl(c)) for
a reservation (resp. claim) and u = v to compare the values of two variables
u, v ∈ Var. Further on, with � = r, we can compare the length � of a space
interval with a real value r. For instance, this is used for checking the distance
of a car to an upcoming intersection. Note that while we write res(E) for the
set of reserved segments of car E stored in the traffic snapshot T S (cf. Fig. 1),
we use re(c) as an atom in our logic UMLSL to distinguish both concepts.

Definition 1 (Syntax of UMLSL). Consider a car variable c ∈ CVar, a
real variable r ∈ RVar and general variables u, v ∈ Var. The syntax of atomic
UMLSL formulae is defined by a ::= cs | true | u = v | � = r | free | re(c) | cl(c),
whereas an arbitrary UMLSL formula φU is formalised by

φU ::= a | ¬φ | φ1 ∧ φ2 | ∃c : φ1 | φ1 � φ2 | φ2
φ1

.

We denote the set of all UMLSL formulae by ΦU.

The semantics of UMLSL formulae is evaluated over a traffic snapshot T S,
a virtual view V (E) and a variable valuation ν. For reasons of brevity, we omit
a formal semantics definition at this point.

2.2 Crossing Controller Protocol

The idea for this crossing controller goes back to the lane change controller
from [1]. Thus, we first claim an area that we want to enter (here: a part of
the intersection) and reserve it only if no potential collision is detected. An
overview over our crossing controller protocol is depicted in Fig. 2. Note that in
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q0 : ¬col(ego)
(no collision)

q1 : ca(ego)
(crossing ahead)

q2 : oc(ego)
(on crossing)

ca(ego)/claim cs (crossing ahead)

∃c : pc(c) (potential collision)
¬∃c : pc(c)/reserve cs

(no potential collision)manoeuvre finished

Fig. 2. Overview over crossing controller protocol.

this overview a lot of details, e.g. time and data constraints, are omitted. For
the detailed original controller, see [3]. Also, in Sect. 3, we discuss our extension
of adding fairness to the controller in more detail. We construct the crossing
controller from the perspective of our ego car E. Initially, we start in a safe state
c0, thus the collision check formula

col(ego) ≡ ∃c : c 
= ego ∧ 〈re(ego) ∧ re(c)〉 (1)
does not hold initially, where 〈ϕ〉 is an abbreviation for “somewhere” in the view
V (E) of ego car E holds ϕ. Whenever an intersection comes within a distance
less than dc, our crossing ahead check

ca(ego) ≡ 〈re(ego)� free<dc ∧ ¬〈cs〉� cs〉 (2)
holds and with cc() the needed crossing segments of the path pth(E) are claimed.
In formula (2), the subformula free<dc is an abbreviation for the UMLSL formula
free∧� < dc, which measures that the free space between the reservation of car E
and the intersection has a size of less than dc. After changing to the new location
c1, the controller checks whether its new claim for the intersection overlaps with
an existing claim or reservation of another car with the potential collision check

pc(c) ≡ c 
= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉. (3)
Only if there exists no potential collision, our controller may change its crossing
claim into a reservation with rc(ego) and thus enter the intersection. With that,
the on crossing check holds:

oc(ego) ≡ 〈re(ego) ∧ cs〉 (4)
Note that we do not allow lane change manoeuvres near to and on crossings.

2.3 Automotive-Controlling Timed Automata

We introduce the underlying automaton type of our controllers, automotive-
controlling timed automata (ACTA), for a better understanding of the transla-
tion of our crossing controller to an UPPAAL automaton we present in Sect. 3.
ACTA extends the widely used timed automata (TA) from [14] and moreover
the extended version of TA UPPAAL which is described in [5].

Equally as for timed automata, a core concept of ACTA is using time, i.e.
clock variables x ∈ X ranging over the continuous time domain Time = R≥0.
Additionally, we use data variables from the set D ranging over the sets of lane
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segments L, crossing segments CS and car identifiers I. We use data constraints
ϕD, similar to the clock constraints from timed automata, where with a data
constraint ϕD ≡ l = n + 1 for l, n ∈ D, we can check for the equality of two lanes.
Data variables may be set to a type respecting value with data modifications.
With these data constraints, we now introduce the possible guards and invariants
that we allow for ACTA.

Definition 2 (Guards and Invariants). With data constraints ϕD ∈ ΦD,
clock constraints ϕX ∈ ΦX and UMLSL formulae ϕU ∈ ΦU from of Definition 1,
a guard or invariant ϕ is defined by ϕ ::= ϕD | ϕX | ϕU | ϕ1 ∧ ϕ2 | true. The set
of all guards and invariants is denoted by Φ.

An example for a guard of an ACTA is x > 0 ∧ 〈re(ego) � free〉, meaning that
the valuation of a clock x is bigger than 0 and that somewhere there is free space
ahead of the reservation of the ego car.

On introducing the traffic snapshot in Sect. 2.1, we hinted that the traffic
snapshot changes, whenever new claims or reservations occur or when they are
withdrawn. These claims or reservations for lane or crossing segments are set
(resp. withdrawn) by our controllers using controller actions. We only allow for
one single controller action on each transition of an ACTA.

For instance, with the controller action cc(ego), the ego car claims all those
crossing segments it needs to pass an upcoming intersection according to its
path. With wd c(c), this crossing claim is again withdrawn, while with rc(ego),
it is converted into a crossing reservation. In all cases, the controller action also
changes the respective traffic snapshot.

An example for an ACTA is provided in Fig. 3. Note that we adapt the
broadcast communication from UPPAAL by adding data that may be sent over
the channels. For instance, with the output action finished !c depicted on the
transition from q1 to q0, the value of the variable c is sent over the channel
finished . With that, other controllers synchronising with finished !c can check
the identifier of the sending controller.

The semantics of an ACTA A, as for networks of ACTA, is given by a tran-
sition system T (A). For details on this, we refer to [3] and to Sect. 4, where we
introduce our extension of probabilistic automotive-controlling timed automata
(PACTA), including an example of their semantics.

3 Introducing Fairness into the Protocol

We now describe our adaption of the controller from [3] to a fair crossing con-
troller. By the term fairness, we mean a stronger property than liveness, where a
desirable behaviour not only happens finally, but within a reasonable time bound
t. Moreover, we require that a car waiting longer in front of an intersection gets
access to it earlier than a newly arriving car. To implement our notion of fairness,
we introduce priorities to the crossing controller protocol from Sect. 2.2.
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q0 : 〈re(c)〉 q1 : x ≤ 10

〈free〉 ∧ n > 0/ c(c, n); l := n;x := 0

x ≥ 10/finished !c; wd rc(c)

Fig. 3. A basic example for an ACTA. If the guard 〈free〉 ∧n > 0 is satisfied, a change
from q0 to q1 is possible, while executing c(c, n), l := n and resetting the clock x.
Location q1 is left after exactly 10 time units, together with sending the value of c via
channel finished and executing wd rc(c).

In this section, we first describe how we implement our abstract model in
UPPAAL in Sect. 3.1, followed by a description of the adapted UPPAAL con-
troller and a helper concept we use for the decentralised negotiation procedure
using priorities in Sect. 3.2. Lastly, we present the queries that we use to anal-
yse the fairness of our controller and give details on our verification results in
Sect. 3.3.

3.1 An Urban Traffic Model in UPPAAL

0 1

A

2

3B

4

B

5
C

6

7D c0 c1

c2Bc3

dc

Fig. 4. Reduced model for UPPAAL
implementation.

For our UPPAAL model1 we implement
a generic 2-by-2 intersection cr consisting
of road segments with each two lane seg-
ments (cf. Fig. 1). We choose this model,
as it is a common type of intersection in
urban areas and as our implementation
of the crossing protocol is generalisable
to bigger intersections (cf. Sect. 3.2). Also,
UPPAAL can only verify a limited num-
ber of extended timed automata in paral-
lel within reasonably short time. We thus
consider only those cars that are of inter-
est for our analysis with UPPAAL. For
example cars approaching cr, where the
crossing ahead check formula ca(ego) (2)
holds, or cars already on cr (cf. on crossing check oc(ego)) as those potentially
block some crossing segments for other cars. Cars driving away from cr are not
interesting, equally cars driving behind cars for which ca(ego) holds, as those
are not already allowed to claim or reserve crossing segments.

This dramatically reduces the amount of cars to be considered in our model,
whereas we consider only 4 cars, one car approaching from each of the four roads
leading to cr, see Fig. 4. We consider the following three states for our cars: a)
Away from the intersection (cf. car D in Fig. 4), b) In the crossing ahead state,
where ca(ego) holds and thus the threshold dc is crossed over (cf. cars A and C

1 Implementation available at https://doi.org/10.6084/m9.figshare.c.4649534.v2.

https://doi.org/10.6084/m9.figshare.c.4649534.v2
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in Fig. 4) and c) On the crossing, where oc(ego) holds and possibly some other
cars have to wait until a car leaves certain crossing segments (cf. car B in Fig. 4).

Fig. 5. The crossing controller CRPF(ego) that sends its priority on the transition from
q 1 to q 2. In q 2 and q 3, the controller waits for potential collisions or notifications
of helper controllers. If no potential collision exists, crossing segments are reserved and
location q 4 is entered. Always, a new path through the intersection is generated in the
beginning (transition from q init to q 0).

We allow for arbitrary turn manoeuvres through the intersection for each
car, by non-deterministically generating a path for the cars on arriving at the
intersection (right-turn, straightforward, left-turn, u-turn). Whenever one car
successfully has finished its manoeuvre, it is newly spawned in front of the inter-
section with a newly generated path through the intersection.

To implement our collision check col(ego) and potential collision pc(ego)
UMLSL formulae in UPPAAL, we simply check for intersection of claims or
reservations on the discrete crossing segments, which are represented by global
structure arrays, which fits, as our traffic snapshot T S is also a global construct.
In the next Sect. 3.2, we check for path intersection. Our implementation of the
checks crossing ahead ca(ego) and on crossing oc(ego) were motivated in the
previous paragraph with the cars’ states.

3.2 Implementation of the Controller and Helper Protocol

One of the major extensions of the crossing controller from [3] is that our new
crossing controller sends its priority for claiming its crossing segments to all
other cars on approaching an intersection via a broadcast channel. On receiving
such a message, the other cars determine whether the priority of the sender is
big enough to enter the requested crossing segments, or if their own car has a a
bigger priority for entering the intersection. For deciding this, a helper controller
is used. If a car’s request to enter a crossing was rejected, it waits for some time
before incrementing and sending its priority again.

We describe both the new crossing controller and the helper controller in the
following again from the perspective of our ego car and depict their respective
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UPPAAL automata CRPF(ego) and HPF(ego) in Figs. 5 and 6. Note that the
depicted automata comply with the UPPAAL colour coding.

Fig. 6. The helper controller HPF(ego) for priority evaluation. In q 1, two possible
actions exist: Deny or allow other cars to enter the intersection, if their respective
priority is (significantly) larger, depending on whether the own car already has an own
claim. In q 2, HPF(ego) denies requests, as its car is already on the crossing.

Crossing Controller (cf. Fig. 5). After the non-deterministic choice of a
path through the intersection on the transition from q init to q 0 and some
waiting time up to t away in q 0, CRPF(ego)’s priority is communicated via
prio[ego]! on the transition from q 1 to q 2. In q 2, CRPF(ego) waits for t time
units before claiming the needed crossing segments with the function cclaim().
This is only allowed if no potential collision exists. Otherwise, the controller
withdraws its claim, waits for some time in location q wait and only after that
increments its priority and proceeds to q 1 again. Location q 2 is also left for
location q wait if a message withdraw [ego]? is sent from CRPF(ego)’s own helper
controller HPF(ego) or a message no[ego]? is sent by some other cars’ helper
controller. After claiming the needed crossing segments and entering location q 3,
it is again checked whether a potential collision occurs or whether an incoming
message forbids CRPF(ego) from reserving crossing segments. Similarly as for
location q 2, CRPF(ego) then proceeds to location qwait . If no potential collision
occurs within t time units, CRPF(ego) reserves the previously claimed crossing
segments and enters the intersection. After the crossing manoeuvre is finished
after t cr time units, CRPF(ego) is in its initial location again, ready to spawn as
a new car with a new path in front of the intersection.

Note that on some transitions of HPF(ego) we add the internal messages
closer [ego]!, reserving [ego]! and finished [ego]! to enable it to synchronise with
CRPF(ego). This is needed, as HPF(ego) evaluates other cars’ priorities based on
the location that CRPF(ego) is in.

Helper Controller (cf. Fig. 6). If the helper controller HPF(ego) is in its initial
location, the ego car is far away from the crossing and therefore does not need
to react to other cars’ priorities. On receiving a message via the channel closer ,
HPF(ego) changes to location q 1 and must react whenever a message is received
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via the channel prio. We distinguish two cases: In the first case, only the paths of
the car sending its priority and the ego car intersect (lower-right transition). In
this case, HPF(ego) only compares its own priority with the received priority. If
the own priority is lower, withdraw [ego]! is sent, otherwise no[c]! is sent and the
car related to the variable c has to withdraw its claim. The second case (upper
transition) is that the ego car already has a claim on some crossing segments
that intersect with the path of the car that just sent its priority. In this case, it
is compared if the ego car’s priority is significantly (s) smaller than the received
priority. The intuition for this is that a claim is “worth” more than a path, as
it was set before the other car arrived. With this, only a new car with a very
high priority is allowed to enter the intersection faster than the ego car, e.g. an
emergency vehicle.

If HPF(ego) receives the message reserving [ego], meaning the ego car has
changed its claim into a reservation, it proceeds to location q 2. In this loca-
tion, HPF(ego) rejects all demands from other cars c for claiming some of ego’s
reserved crossing segments via no[c]!. If HPF(ego) receives the notification that
the crossing manoeuvre is finished, it again changes to the initial location.

3.3 Fairness Analysis of the Protocol

We use UPPAAL Stratego to examine two different types of queries. Firstly, we
use the “standard” UPPAAL queries asking whether some property is satisfied
on some (E)/ all (A) runs of the system always ([])/ eventually (<>). Secondly,
we use queries for examining the probability that some property is satisfied
among random runs of the system within some time bound.

The queries are analysed for an arbitrary car i ∈ {A,B,C,D}. We use the
following two queries; Firstly, we analyse liveness, where with the query

A <> (Observer(i).success)
with one observer automaton Observer(i) for each car i, it is determined whether
within all runs of the system the car i finally finishes a crossing manoeuvre.

With the second query, we analyse fairness with

E <> (
∨

i∈{A,B,C ,D}
Observer2 (i).bad).

Now with the help of multiple observer automata Observer2 (i), we determine
whether there exists a path on which a car with a (significantly) lower priority
intersecting with another car finishes its crossing manoeuvre first. As desired, the
first query is satisfied and the second is not. Please note that we only use 3 cars
for the model checking queries (using approximately 1.3–6.3 GB of DDR4-RAM
within 19–25 min on an i7-8550U CPU), as the verification using 4 cars was not
computable in a reasonable time (using approximately 85 GB of RAM, including
54 GB SWAP, within nearly 48 h on the same computer before aborting). For
the constants of the crossing controller we set s = 2 and the timing constants
are set to t = 1, t w = t cr = 2, and t away = 3.

For the second type of queries computing the probability with which a prop-
erty is satisfied, we first give values for some of the statistical parameters in
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UPPAAL Stratego. For the probability parameter for false negatives α we use
α = 0.01 and ε = 0.01 for the probability uncertainty parameter ε. This results
in slim confidence intervals [p− ε, p+ ε] that contain the “true” probability p for
the property with a confidence of 1−α. The remaining parameters are UPPAAL
Stratego’s default ones, and we refer the reader to [6] for more information.

Table 1. Evaluation of the query Pr [<= bt ](<> (Observer(C ).success)) with different
upper time bounds bt.

Time bound Computed interval

bt = 5 [0.31857, 0.33857]

bt = 10 [0.618562, 0.638561]

bt = 15 [0.865901, 0.885899]

bt = 20 [0.980005, 1]

q0
x ≤ 7

P1 :
c1

q2

q3

ok?m :
m ≥ n

2
3 send !〈n〉;

x := 01
3

wd c(ego, m)

Fig. 7. A PACTA P1. If the location c1 is reached, the automaton proceeds to q2 with
probability 2

3
and to q3 with probability 1

3
.

The results for time-bounded liveness for an arbitrary car C are depicted in
Table 1, where different values for the upper time bound bt are used. We use 4
cars (computable in seconds), as this type of queries only simulates the system
multiple times, which is easily computable, compared to model checking. From
Table 1, we conclude that the system becomes more live the longer we observe it.

4 Introducing Uncertainty to the Controller Protocol

One assumption of our approach regarding the communication of ACTA is that
the communication via channels never fails. This is a very strong assumption.
In this section, we therefore relax it and introduce uncertainty to the ACTA
model from Sect. 2.3 and to the protocol described in Sect. 3. We thus describe
Probabilistic ACTA (PACTA) in Sect. 4.1, extend the protocol in Sect. 4.2 and
analyse the probabilistic extension of the protocol in Sect. 4.3.
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4.1 Probabilistic ACTA

For brevity, we omit a formal definition of the syntax of PACTA and instead
introduce it using the example depicted in Fig. 7.

PACTA shares basic concepts with ACTA, such as locations and most of
the components of the transitions. Differing from ACTA are probabilistic tran-
sitions. An example for such a transition is the transition from c1 to q2 in Fig. 7,
which is chosen with a probability of 2

3 . Additionally, the value of n is sent and
the clock x is reset. Such probabilistic transitions are only allowed to have a
committed location as their source and the sum of all probabilities on outgoing
edges of such a committed location must equal 1. Sending of broadcast mes-
sages, controller actions and data modifications are still allowed on probabilistic
transitions, whereas guards and receiving a message are not allowed.

TS0, ν0, q0

TPS(P1) :

TS1, ν1, q0

TS2, ν2, q0TS5, ν5, c1

TS3, ν5, q3 TS5, ν3, q2 TS6, ν6, c1

TS4, ν2, q3 TS6, ν4, q2

1 0.25
1 0.75 1 0.51

ok?m : m ≥ n

2
3

wd c(ego, m)

1
3 send!〈n〉;

x := 0

1
ok?m : m ≥ n

1
3 send!〈n〉;

x := 0

2
3

wd c(ego, m)

Fig. 8. Excerpt of the TPS (extended labelled transition system) for P1 from Fig. 7.

For the semantics of PACTA, we use a Timed-Probabilistic-System (TPS)
[15]. We depict (an excerpt of) the (infinite) TPS that is the semantic model of
the PACTA P1 from Fig. 7 in Fig. 8. Using this semantics, we are now able to
reason about properties such as (timed) reachability of certain locations in such
a PACTA. We refer to [15] for more details on that topic.

4.2 Implementation with Uncertainties

As all transitions of ACTA are also possible in PACTA, we can use both cer-
tain and uncertain communication in them. We decided to make the communi-
cation channels prio and no uncertain and let the remaining channels remain
unchanged. The reason for this is that all other channels are for inner-vehicle
communication. We therefore assume that these communication channels are
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wired and have a failure rate near zero. In contrast to that the two channels prio
and no are for the communication between different cars, are therefore unwired
and have a significantly larger rate of failure.

Fig. 9. Original transition from Fig. 5 to the left and transition with uncertain com-
munication to the right.

Table 2. Results of the query Pr [<= bt ](<> Observer(C ).success) with different
parameters for bt and ps.

bt ps = 0.99, pf = 0.01 ps = 0.95, pf = 0.05 ps = 0.8, pf = 0.2

bt = 5 [0.316353, 0.336352] [0.315686, 0.335685] [0.31465, 0.334649]

bt = 10 [0.615449, 0.635449] [0.613901, 0.633901] [0.611239, 0.631239]

bt = 15 [0.861585, 0.881584] [0.855226, 0.875223] [0.836026, 0.856025]

bt = 20 [0.980005, 1] [0.979366, 0.999359] [0.95156, 0.971557]

We omit to depict the entire controllers again, as their basic behaviour
remains unchanged. Only transitions with output actions on the channels no
and prio change and are shown in Fig. 9. As we assume that these channels use
the same communication medium, we use the same probabilities for communi-
cation success and failure (ps resp. pf ) for both channels.

4.3 Fairness Analysis with Uncertainties

Given the probabilistic extension of the protocol, we are interested in the ques-
tion of how the properties of the protocol change. As expected, the system is
neither live nor fair anymore if message sending can fail (queries evaluated using
3 cars again). To determine the impact of lossy channels, we evaluate two queries
with different probabilities for the communication success (ps) and failure (pf )
for different time bounds bt (using 4 cars again).

The results of the query for time-bounded liveness are depicted in Table 2, the
results of the query for non-fairness in Table 3. The following two observations
from Tables 2 and 3 are especially remarkable: Firstly, and unsurprisingly, the
system becomes less live and fair the more lossy the channels used for broadcast-
ing are. Secondly, the system becomes also less live and fair the longer the time
bt we observe it (compared to the system without uncertainties). The reason for
this is that at the very start of the system run, the priorities are all 0 and it is not
that likely that one car’s priority increases much more than another car’s pri-
ority, thus communication is not that important. This observation changes over
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time when cars finish their crossing manoeuvres and start from the beginning
again, leading to more significant differences in their priorities.

Although the system becomes less live the more lossy the channels are, the
differences are not very significant compared to the fairness query. The reason
for this is that the fairness property is easier to violate: It is sufficient that
a single priority message fails to violate the fairness property. For a violation
of the liveness property, each communication for the car under consideration
within the time bound bt must fail, which is less likely than the failure of a
single communication.

Despite losing liveness and fairness on allowing lossy broadcast communica-
tion, the system still remains safe, i.e. there are never two intersecting reserva-
tions of two different cars. Thus the safety result from [3] is still preserved in
our extended crossing controller protocol. For the verification of this property in
UPPAAL, an additional upper bound on the priorities is added.

Table 3. Results of the query Pr [<= bt ](<>
∨

i∈{A,B,C ,D} Observer2 (i).bad with dif-
ferent parameters for bt and ps.

bt ps = 0.99, pf = 0.01 ps = 0.95, pf = 0.05 ps = 0.8, pf = 0.2

bt = 5 [0, 0.0199955] [0, 0.0199955] [0, 0.0199955]

bt = 10 [0, 0.0199955] [0.00219789, 0.0221855] [0.0108718, 0.0308586]

bt = 15 [0.0027273, 0.0227209] [0.0182431, 0.0382385] [0.0838251, 0.103823]

bt = 20 [0.00324724, 0.0232427] [0.0443753, 0.0643705] [0.17867, 0.19867]

5 Conclusion

Contribution. We extended the UMLSL approach for urban traffic [3] with
three key features; Liveness, fairness and communication failure. Using UPPAAL
Stratego, we implemented and analysed the extended crossing controller proto-
col, showing that a system using our controllers behaves safe, live and fair in
every situation and examined probabilities for which a car might pass an intersec-
tion within a given time bound. We furthermore showed how these probabilities
change if we allow communication channels to be lossy. As in our case commu-
nication is not strictly necessary for safety, we still preserve the proven safety
property from [3].

Future Work. We could apply our PACTA to more traffic scenarios. For
instance, in the country roads approach [2], communication with a helper car
is used. Here we could analyse how the system properties change with uncer-
tain communication channels. Also, we could use PACTA not only for intro-
ducing uncertainty to communication channels in the MLSL approach, but also
for other uncertainties, e.g. sensor uncertainty. Whenever an autonomous car
detects uncertain sensor information, it could e.g. ask an appropriate sensor
helper controller for additional information to complete a driving manoeuvre.
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In our approach, we have several strong assumptions for the considered
abstract model to allow for purely formal reasoning. In this paper, we already
weakened the strong assumption of having completely reliable communication
by introducing uncertainty to our communication channels. A second strong
assumption, we consider that all cars are autonomous and capable of communi-
cating with each other. However, in recent work [16] we examined possibilities
for our autonomous cars to cope with human controlled vehicles for the highway
traffic approach from [1]. In this case safety can no longer be fully guaranteed,
as some actions of the human driver may only be guessed.

It is also of interest to compare our approach with other approaches regarding
its efficiency. An implementation allowing more complex intersections than the
2-by-2 crossing used for our UPPAAL model in Sect. 3.1 might be helpful. A more
complex priority system where cars can increase their priority even if they are
not directly in front of the crossing might help to increase the efficiency further.
Using such a system, it might also be reasonable to examine the efficiency of
urban road networks instead of single crossings. Another point for future work
is an optimisation of our controllers, to allow for more than 3 cars in the case of
verification without probabilities (cf. Sect. 3.3).

Acknowledgements. We thank the anonymous reviewers for their helpful comments
with which we were able to improve our paper.
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Abstract. Teleo-Reactive (TR) robotic agent programs comprise se-
quences of guarded action rules clustered into named parameterised pro-
cedures. Their ancestry goes back to the first cognitive robot, Shakey.
Like Shakey, a TR programmed robotic agent has a deductive Belief Store
comprising constantly changing predicate logic percept facts, and knowl-
edge facts and rules for querying the percepts. In this paper we introduce
TR programming using a simple example expressed in the teleo-reactive
programming language TeleoR, which is a syntactic extension of QuLog, a
typed logic programming language used for the agent’s Belief Store. We
give a formal definition of the regression property that rules of TeleoR

procedures should satisfy, and an informal operational semantics of the
evaluation of a TeleoR procedure call. We then formally express key fea-
tures of the evaluation in LTL. Finally we show how this LTL formalisa-
tion can be used to prove that a procedure’s rules satisfy the regression
property by proving it holds for one rule of the example TeleoR pro-
gram. The proof requires us: to formally link a TeleoR agent’s percept
beliefs with sensed configurations of the external environment; to link
the agent’s robotic device action intentions with actual robot actions; to
specify the eventual physical effects of the robot’s actions on the envi-
ronment state.

1 Introduction

A Teleo-Reactive (TR) programmed robotic agent has a deductive Belief Store
comprising constantly changing predicate logic percept facts generated from the
latest sensor readings. The facts are updated using fresh sensor readings at an
application dependent frequency, which may be several times a second. The
percept facts are the agent’s current beliefs about the state of the robotic device
or devices it controls, and the state of the physical environment in which the
devices operate.
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Augmenting these dynamic percept facts are fixed facts about the robotic
devices and their environment, Prolog-style rules for non-percept relations, allow-
ing higher level interpretations of the percept facts. The fixed facts and rules are
the robot’s knowledge.

In this paper we introduce TR programming using a simple example expressed
in the TR subset of TeleoR [1]. TeleoR is a syntactic extension of QuLog [2], a
typed logic and functional programming language used for the agent’s percept
beliefs and knowledge.

A TeleoR procedure named p comprises a parameterised sequence of guarded
action rules rules of the form:

p(X1,..,Xk){
G1 ∼> A1
.

.

Gn ∼> An
}

proceeded by a type definition giving the required types of the parameters
X1,..,Xk. The parameters can appear in any rule of the procedure body.

A rule may contain variables other than X1,..,Xk.These are the local vari-
ables of the rule. All local variables in Ai must also appear in Gi.

Each Gi rule guard is a Belief Store query. Each Ai is either a call to a TeleoR
procedure, including a recursive call, or a tuple comprising one or more actions
for robotic devices to be executed concurrently.

When the p procedure is called, the parameter values must be ground (fully
instantiated) values. These values partially instantiate the sequence of guarded
rules of the procedure body, giving the modified rule sequence:

G′
1 ∼> A′

1

...

G′
i ∼> A′

i

...

G′
j ∼> A′

j

...

G′
n ∼> A′

n

In before/after order, the partly instantiated guard queries are evaluated one
by one against the current state of the agent’s Belief Store. This is in order to
find the first rule with a guard G′

j that is inferable from the Belief Store. This
typically further instantiates remaining variables in G′

j , and always results in a
ground A′′

j action of the rule, should A′
jnot be ground.

Rule j is fired and action A′′
j is invoked. If it is a TeleoR procedure call the

first fireable rule of this new call is found and, in turn, its fully instantiated
action invoked. Eventually a procedure will be called in which the fired rule for
the current Belief Store has robotic device actions. The Belief Store is unchanged
during the evaluation of this sequence of calls. The determined robotic device
actions are dispatched to the robotic devices. They typically result in changes
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Fig. 1. Two thread agent architecture

camera
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robot
grippers

table

Fig. 2. Top-down view of bottle collecting
robot

in the position of the robotic devices, and/or cause changes in their physical
environment that can detected by the sensor devices.

A two-thread robotic agent architecture is depicted in Figure 11 The percepts
handler atomically updates the Belief Store when a new batch of percept facts
arrives from the sensor interpretation routines. They may be batched so that
each new set of percepts gives a comprehensive view of the state of the robotic
devices and their environment.

The TeleoR evaluator thread executes some initial call to a TeleoR procedure,
this is the task procedure call. The existential closure of the partly instantiated
guard of the first rule of this procedure call is the task goal. This first rule usually
has the empty action tuple (). When such a rule is fired all currently executing
robotic actions are terminated (Fig. 2).

After each percept thread update the task call is re-evaluated to determine
if new robotic device actions need to be dispatched to the robotic devices. If the
re-evaluation results in the same robotic actions as were determined on the last
percepts update, these actions are allowed to continue.

However, the hope is that after a repetition of some initial sequence of the
same procedure calls and rule firings, eventually a call C will be fire a rule earlier
than the rule that was previously fired for C. Almost certainly the new rule firing
will result in different robotic actions being determined.

Suppose that rule i was fired last time in C. Further suppose that the robotic
actions that were executed directly or indirectly as a result of firing this rule
have brought about their intended environment changes, resulting in new sensor
readings and changed percept facts. Querying the agent’s updated Belief Store an
earlier rule j of C is now fired. TeleoR programs are written so that this normally,
eventually happens for every procedure call. The existential closure of guard G′

i

is viewed as a direct sub-goal of the existential closure of the earlier guard G′
j .

More generally, the existential closure of every rule guard of a called procedure,

1 QuLog actually has another rule type, imperative action rules for defining multi-
threaded agent behaviour. They can call primitive actions for forking threads, updat-
ing Belief Store facts and message communication. The two thread architecture is
implemented using these action rules.
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except that of the first rule, should be a direct sub-goal of the existential closure
of the partly instantiated guard of some earlier rule in the call’s rule sequence.
This is its regression property.

Example 1. Here are two TeleoR procedures, with associated type definitions
and type declarations. The goal of the first procedure is to get a mobile robot
close to something, Th. It uses of independent move and turn action names, and
a see percept name. We use the Prolog convention that variables begin with an
upper case letter or underscore.

def thing ::= bottle | drop | ...
def dir ::= left | centre | right
def dist ::= close | near | far
percept see(thing,dist,dir)
durative move(num), turn(dir,num)

tel get_close_to(thing)
get_close_to(Th){

see(Th,close,_) ∼> () % Empty tuple of actions
see(Th,near,_) ∼> approach_until(close,Th,3.0,1.0)
see(Th,far,_) ∼> approach_until(near,Th,4.5,0.5)
true ∼> turn(right,0.5) % Singleton tuple of actions
}

tel approach_until(dist,thing,num,num)
approach_until(Dist,Th,Fs,Ts){

see(Th,Dist,_) ∼> () % Th being approached is now Dist away
see(Th,_,centre) ∼> move(Fs)
see(Th,_,Dir) ∼> move(Fs),turn(Dir,Ts) % tuple of 2 actions
% Dir is left or right. move forward turning Dir to bring back into centre view.
}

The underscores in the see conditions of the first procedure, and the first rule of
the second procedure, indicate that the orientation of the seen Th is not relevant
for the action of the rule. Those in the last two rules of the second procedure
indicate that the distance is not relevant.

An example of a percept fact is see(bottle,near,centre), reporting that
the analysis of the image from a forward pointing camera of a mobile robot has
determined that a bottle of known size is near to the camera, more or less in
centre view.

The see percept gives a qualitative measure of its distance from the robot’s
on-board camera, as close, near or far, and indicates whether the seen thing
is within, or to the left or right of a central area of the camera’s field of view.

An example of a primitive action is move(3.0) which causes both drive wheels
of a mobile robot to turn at the same speed so that normally the robot will move
forward, more or less in a straight line, at the specified speed of 15 centimetres
per second.

Suppose that a task is started with a call get close to(bottle). Before
the call, let us assume that the robot is stationary near to and facing a bottle.
Analysis of the image of its forward pointing camera has resulted in the percept
see(bottle,near,centre) being in the agent’s Belief Store.
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The second rule of call get close to(bottle) will be fired with
action the procedure call approach until(close,bottle,3.0,1.0). The sec-
ond rule of this auxiliary procedure call will be fired because its guard
see(bottle, ,centre) matches the percept see(bottle,near,centre). The
rule’s action will be move(3.0). The control action start(move(3.0)) will be
sent to the mobile robot.

The durative action move(3.0) should normally, eventually result in the
mobile robot getting close to the bottle. But before that, because of wheel slip,
or because the bottle is moved, percept updates may record that the bottle
is still seen as near, but to the left or right of the camera image. When that
happens, the last rule of the approach until(close,bottle,3.0,1.0) will be
fired resulting in a control message to turn towards the bottle to bring it back
into centre view, the turn to be done in parallel with the continuing forward
move. Eventually, analysis of the robot’s camera image should result in a percept
see(bottle,close,Dir), for some direction Dir, being received by the agent,
replacing any other see percept in its Belief Store. When this happens the first
rule of the call get close to(bottle), with action () will be fired, pre-empting
the firing of the first rule of the call approach until(close,bottle,3.0,1.0).
Control messages to stop the forward move, and any accompanying turn action,
will be sent to the robot. The goal of the task call get close to(bottle) has
been achieved.

In another scenario, before the goal of getting near to the seen bottle
is achieved, the bottle may be moved by the interfering person to be
far from the robot but still in view. Suppose that immediately after
this interference, the percept see(bottle,far,right) is received, replac-
ing see(bottle,near,centre). Re-evaluation of guards of rules of the task
call get close to(bottle) will result in its rule 4 being fired with action
approach until(near,bottle,4.5,0.5).

As the percept fact see(bottle,far,right) will still be the Belief Store,
the last rule of the new approach until call will be fired and control actions

start(turn(0.5, right)) mod(move(3.0), move(4.5))

will be sent to the robot. The result is that the robot will move forward more
quickly at a speed of 4.5, with a correctional turn to the right at speed 0.5. This
is in order to get near to the bottle again, and to bring it into centre view.

Finally, suppose that whilst the robot is moving more speedily towards the
seen bottle, the bottle is moved to be near to the robot in centre view. Imme-
diately the percept see(bottle, near, centre) is received the task call will
switch to firing its second rule slowing the robot down and terminating any
correctional turn.

The above scenario descriptions illustrate another positive feature of TR and
TeleoR procedures. Not only are they declarative, with the goals and sub-goals
of tasks given as rule guards, they also automatically recover from setbacks and
take advantage of any help. The program control jumps up and down the tree of
guard goals of active procedures in response to helping or hindering exogenous
events.
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However, the main aim of this paper is to enable reasoning about the evalua-
tion of TeleoR procedure calls in a modular manner. Our contributions are: (1)
the use of linear temporal logic (LTL) to give a declarative semantics to TeleoR
procedure call evaluations and the desired regression property; (2) the explicit
decoupling of agent Belief Store state from the state of the external environ-
ment, with the consequent need to be explicit about the mapping of properties
of the environment into partial and approximate sensor data encoded as percept
facts, the need to explicitly map the agent’s robotic device action intentions into
external device actions, and the need to be explicit about the physics of the
device actions for particular environment states; (3) the illustration of the use
of (1) and (2) to verify regression properties.

The paper builds on existing work on logic programming [7] and robot
behavioural programming [5,8]. We were motivated to explore the use of LTL
for TeleoR semantics and verification by [6].

2 Key Properties of TeleoR Procedures

We now introduce the key properties of TeleoR procedures, including the struc-
tural properties, compile time-guarantees on both actions and guards, and tran-
sition semantics to enable smooth control of robotic agents.

Sub-goal Structure and Regression. The existential closures of the partially
instantiated guards, in which each local variable is existentially quantified, lie
on an implicit sub-goal tree rooted at the existential closure of the guard of the
first rule.

Definition 2. An action Aj satisfies regression iff whenever it is started when
its guard is the first inferable guard, and continued whilst this is the case, it will
eventually result in progression up the sub-goal tree of guards.

That is, eventually the guard of an earlier rule Gi, i < j, should become the first
inferable guard. Nilsson calls Gj the regression of Gi through Aj .

Guarantee of Ground Actions. When a guard query is successfully evaluated
against the Belief Store (which uses a Prolog-style evaluation) its local variables
will be given values. Compile time analysis of each guarded rule ensures that
should the guard query succeed, the rule’s action will be ground with arguments
of the required type. This is why we use typed QuLog [2] for the agent’s Belief
Store rather than Prolog. So every TeleoR procedure call action will be ground
and correctly typed, consequently any actions sent to the robotic devices, per-
haps via ROS [9], will also be fully instantiated and type correct.

Covering All Eventualities. The partially instantiated guards of a procedure
call should also be such that for every Belief Store state in which the call may
be active there will be at least one inferable guard. Nilsson calls this the com-
pleteness property of a procedure. This property holds for both of our example
procedures. For the first it trivially holds since the last rule will always be fired if
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no earlier rule can be fired. It holds for the second procedure given the two guard
contexts from which it is called in the first procedure, both of which require a
see percept to be in the Belief Store while the call is active.

Smooth Transitions Between Primitive Actions. When each new batch of per-
cepts arrives this process of finding and firing the first rule of each call with an
inferable guard is restarted. This is in order to determine, as quickly as possible,
the appropriate tuple of robotic actions in response to the new percepts. Thus,

1. actions that were in the last tuple of actions are allowed to continue, perhaps
modified,

2. other actions of the last tuple are stopped, and
3. new actions are started.

For example, if the last tuple of actions was move(4.5), turn(left,0.5) and
the new tuple is just move(3), the turn action is stopped and the move action
argument is modified to 3.

Elasticity of Complete Procedure Programs. This reactive operational semantics
means that each TeleoR procedure is not only a universal conditional plan for its
call goals, it is also a plan that recovers from setbacks and immediately responds
to opportunities. If, after a Belief Store update a higher rule of some proce-
dure call C can unexpectedly be fired, perhaps because of a helping exogenous
event, that rule will immediately be fired jumping upwards in the task’s sub-goal
tree. Conversely, an unexpected result of some robotic action, or an interfering
exogenous event, then the climb up the sub-goal tree of C’s rule guards will be
restarted from a sub-goal guard of C as all eventualities are covered.

From Deliberation to Reaction. Although not the case for our example proce-
dures initially called TeleoR procedures typically query the percept facts through
several levels of defined relations. Via procedure call actions, they eventually call
a TeleoR procedure that directly queries the percept facts and mostly has non-
procedure call actions. So, for TeleoR, the interface between deliberation about
what sub-plans to invoke to achieve a task goal, to the invoking of a sensor reac-
tive behaviour to directly control robotic resources, is a sequence of procedure
calls.

3 Temporal Logic Semantics for TeleoR Procedures

The core of our semantics is that it decouples the controller (agent program)
from the environment (see Fig. 3). This is achieved using two coupling relations
that describe how closely the internal state of an agent matches the real world.
Any actions that a robot performs are interpreted through the coupling relation
that in turn produces some physical change. In turn, the physical changes are
sampled by the robot to potentially update the Belief Store.
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TeleoR

Agent
Controller

Physical environment

Sensor environment

Action environment

actions

sensors

Fig. 3. Decomposed environment and TeleoR controller

The agent controller is defined with respect to the agent’s Belief Store,
whereas the physical environment describes how object properties change in the
real world as a result of robot actions. We typically do not model the actual
physics of any component (e.g., via differential equations). Instead, the behaviour
of the physical world is formalised as abstract assertions. This section focuses on
the agent controller; we formalise its interaction with the environment in Sect. 4.

Our formal model for the agent controller assumes that each agent generates
traces of the form:

β0 β1 β2 β3 . . .

where each βi is a Belief Store that describes the agent’s view of the world.
For any of these traces, it is possible to interpret standard LTL formulae, with
predicates that support beliefs and intentions. In particular, we admit formulae
of the form

ϕ ::= P | ¬ϕ | ϕ1 ⊕ ϕ2 | Xϕ | Gϕ | Fϕ | ϕ1Uϕ2 | ϕ1Wϕ2

where P is a Belief Store predicate and X, G, F, U and W denote the standard
next, globally, finally, until and unless modalities of linear temporal logic and
⊕ is a binary boolean operator. Examples of belief store states over which P is
evaluated are given in Sect. 4; the traces these induce are made more precise in
Definition 3. In particular, it is worth noting that they may include first-order
quantifiers.

In order to give the semantics of TR procedures we need to keep track of
which actions (both TR procedure calls and intended robot actions) are currently
being active, and which guards are currently true (and what instantiations of
variables make a given guard true). To simplify the semantics we assume the
Belief Store contains facts of the form do A to indicate that the action A is
currently active. For a given goal G, we write bel Gθ, where θ is a substitution
(instantiation of variables in G), that makes Gθ the first inferable instance of G.

Each ground instance, C, of a TR procedure call is defined as a sequence of
guarded actions instances G1 ∼> A1, G2 ∼> A2, . . . , Gn ∼> An.
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3.1 Evaluation Semantics

The following two LTL formulae give the semantics of the evaluation of call C.

G(∀1 ≤ i ≤ n, θi. do C ∧ bel Giθi∧
(∀1 ≤ j < i. ¬∃bel Gj) ⇒ fired(C, i, θi)) (Fire)

G(∀1 ≤ i ≤ n, θi. fired(C, i, θi) ⇒ do Aiθi) (Action)

Informally, if we are executing C and the i’th rule is the active (fired) rule
(because some instance of its guard is inferable from the Belief Store and no
instance of an earlier guard is inferable) then we will be executing the action Ai

with the instantiation of all of the variables in Ai determined by the inferred
instantiation θi of the rule guard.

Note that we only need to consider ground TR procedure calls as the top-
level TR procedure that we call will be ground and the θi in the above formulae
will ground the action (which may be another TR procedure call).

In general, because TR programs allow hierarchical nesting, we typically
need to repeatedly apply the above formula to determine what primitive robotic
actions will be intended for a given Belief Store. For example, if we are exe-
cuting get close to(bottle), and the Belief Store contains only the belief
see(bottle,far,left), then applying both (Fire), (Action) with

C = get close to(bottle)

will tell us that call approach until(near,bottle,4.5, 0.5) will become
active. Applying (Fire), (Action) to this procedure call then tells us that the
primitive actions move(4.5) and turn(left,0.5) will be the intended actions.

Repeated application of formulae (Fire), (Action) generates the “call stack”
starting with the initial call T and ending with a set of primitive actions. For a
given state of the Belief Store the generated call stack is unique and, in particular,
the tuple of primitive actions is unique.

3.2 Only the Latest Inferred Robotic Actions Are Intended for
Execution

As part of the semantics of TR programs we insist that the primitive actions
generated by the application of (Fire), (Action) are the only intended actions.
We formalise this with the following, where primitive actions is the set of all
possible ground primitive actions terms for some TeleoR program, and A is the
current tuple of intended actions.

G(do A ⇒ ∀ A′(A′ ∈ primitive actions ∧ A′ /∈ A ⇒ ¬do A′)) (RoboticActs)

Here ∈ is being used for both set and tuple membership.
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3.3 Regression Property

Suppose that the action Ai, where i > 1 of rule i of call C is intended to bring
about a future state of the environment E such that an instance Gjθj for j < i
of one of the guards prior to rule i can be inferred from E’s sense data percepts.

This is captured in the LTL statement:

G(∀1 < i ≤ n. do C ∧ fired(C, i, ) ⇒ F(∃1 ≤ j < i. ∃bel Gj)) (Regression)

4 TeleoR Environment

As depicted in Fig. 3, the TeleoR controller only forms part of the overall sys-
tem. More work is required to ensure that (1) intended actions have an effect
on the real-time environment; (2) that the action’s effects in the environment
bring about some physical changes; and (3) these physical changes are sensed
and mapped into new percepts for the agent. This inter-dependency between
a controller and its environment has long been studied in the control systems
and cyber-physical domains. We treat the three requirements above as envi-
ronment assumptions and express the assumptions as abstractly as possible.
We model separate assumptions that cover intended actions to robotic device
actions (outputs), physics of effects of device actions, and sensor readings to
percepts (inputs). In the context of autonomous systems, a decoupled approach
has recently been proposed by Kamali et al. [6], who describe a separation of
concerns between physical and discrete assumptions.

We describe environment assumptions in Sect. 4.1, which we formalise in
terms of TeleoR traces in Sect. 4.2. An example verification is provided in
Sect. 4.3.

4.1 Environment Assumptions

Consider, for example, an intended turn(right,0.5) action. This becomes the
robotic action to rotate the robot at a velocity of +0.5/s. Agent turn intentions
are mapped into robot rotation actions by the two rules:

∀x. do turn(right,x) 	 rot spd = x (1)
∀x. do turn(left,x) 	 rot spd = −x (2)

Here, rot spd is an environment variable recording the actual physical rota-
tional speed of the robot. On the other hand, do turn(right,x) is a belief store
assertion, stating that the robot control agent believes and intends that the
controlled robot turns to the right a speed of x. Of course, one might have envi-
ronments in which the rotational speed is less accurate (e.g., due to slippage
of the wheels). Such phenomena can be modelled by an equation of the form
∀x. do turn(right,x) 	 rot spd = x ± x ∗ 0.1 which states that the turn right
agent intention translates to an actual rotational velocity within some tolerance
bounds.



Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs 275

Recall that the semantics of a TeleoR procedure guarantees that actions are
not agent intentions unless they are the actions of the last fired rule, and that it
is possible to perform more than one action in parallel. In Example ex:aux-proc,
the second rule of approach until only determines a move. On the other hand,
the third rule determines that a move and turn should be executed together. Our
mapping of action intentions to robotic actions should also tell us what happens
when an action intention is not determined:

¬(∃x. do move(x)) 	 fwd spd = 0 (3)

Thus, by Eq. 3, if a move action is not intended by the agent, then the robot will
not be moving forward. In Example 1, assumptions (1) and (3) together ensure
that firing of the last rule of get close to causes the robot to spin on its axis.

Note that there is a difference between (3) and ∀x. do move(x) 	 fwd spd = x,
which for x = 0 gives

do move(0) 	 fwd spd = 0. (4)

The antecedent of (3) states that there is no percept fact do move(x) recorded in
the agent’s Belief Store, for any value of x, whereas the antecedent of (4) states
that the value recorded for a move intention is do move(0). In other words, for
(3), we assume the Belief Store query do move(X) returns false, whereas in (4),
the Belief Store query returns a value 0 for X. In both cases, the (physical) value
of fwd spd is required to be 0.

Given that there is a stationary bottle on the table, we require that the turn
action is such that it eventually causes the bottle to be seen. This first of all
requires a physical assumption that turning on its axis at a rate of rot spd = 0.5
is adequate for the robot to be pointing towards a bottle. We state a bottle
being in front of the robot using a predicate bot in front , which we assume holds
precisely when there is some bottle in front of the robot. An implementation may
guarantee bot in front in more than one way, e.g., as with rot spd above, may
be within certain tolerance bounds calculated using the angle of vision of the
robot’s camera, the robot’s current position and the bottle’s current position.
Thus bot in front may mean that a bottle is directly in front of the robot, or
slightly to the right or left of centre. Such details can be described by the logic,
but are ignored for the purposes of this paper.

Formally, we assume that the environment ensures the following.

G(((rot spd = 0.5 ∧ fwd spd = 0)Wbot in front) ⇒ Fbot in front) (5)

The antecedent, i.e., (rot spd = 0.5∧fwd spd = 0)Wbot in front , states that the
robot continues to rotate on its axis unless there is a bottle in front of the robot.
This alone does not guarantee progress (i.e., that bot in front holds). However,
the consequent of 5 ensures that a bottle will eventually be seen.

We note that 5 is an abstract property that encompasses a number of different
scenarios. For example, it guarantees that if there is only one bottle on the table,
then this bottle will eventually be seen, provided the robot continues to rotate at
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a velocity of 0.5π/s. This means that we assume the bottle is not moved away by
the environment (unless another bottle is placed on the table as a replacement).
If there are multiple bottles on the table, then the environment guarantees that
the robot will eventually rotate towards at least one of these (e.g., the bottles
will not all be removed from the table). Condition 5 also guarantees that if there
are no bottles on the table, then the environment eventually places at least one
bottle on the table, and given that the robot continues to spin on its axis, then
some bottle will be in front of the robot.

Finally, we require that a bot in front predicate triggers a new Belief Store
update. In particular, if there is a bottle in front of the robot, then the guard
see(bottle, , ) must become true in the Belief Store. This is formalised by the
assertions

bot in front 	 ∃x, y. bel see(bottle,x, y) (6)
¬bot in front 	 ¬∃x, y. bel see(bottle,x, y) (7)

Again, there are different levels of detail one can apply in modelling reality when
making sensor assumptions, e.g., sensor inaccuracies, timing delays etc.

Putting these together, from assumption 1, we have that the turn action
with value 0.5 induces a physical rotation; from assumption 5, we have that
a physical rotation induces that the bottle is in front of the robot; and from
assumption 6 the fact that the bottle is in front of the robot can be sensed.
Moreover, this guarantees regression, i.e., that turn causes the higher priority
guard see to become true.

4.2 TeleoR Traces

We now provide a formalisation of the ideas above for a given TeleoR program
(and its environment). First, we define an environment state to be a function
mapping from (physical) variables to values. We let Init be the set of all possible
initial environment states. A sensor assertion is a predicate of the form E	P ,
where E is a ground predicate on the environment state and P is a ground
predicate on the belief store. Given an environment state ε and belief store β,
we say E 	 P holds in (ε, β), denoted E	ε,β bel P iff (ε |= E)⇒ (β |= P ).
Similarly, an action assertion is a predicate of the form do Ai 	 E, where Ai is
an ground action. We say do Ai 	 E holds in (β, ε), denoted do Ai 	β,ε E iff
(β |= do Ai) ⇒ (ε |= E).

A TeleoR state is triple (ε, β, ε′), where ε is the environment being sensed, β
is the belief store that results from sensing ε, which includes the firing of a new
action, and ε′ is the new environment that results from firing this action.

Consistency of a TeleoR state is judged with respect to the set of sensor and
action assertions that are assumed for the program. In particular, given a set
of sensor assertions S and a set of action assertions Z, we say the TeleoR state
(ε, β, ε′) is consistent with respect to S and Z iff
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1. for each (E 	 P ) ∈ S, we have E 	ε,β P ,
2. for each (do Ai 	 E) ∈ Z, we have do Ai 	β,ε′ E, and
3. ε and ε′ are identical except for the environment variables that are changed

as a result of the updated action in β.

Definition 3. A TeleoR trace is a sequence

τ = (ε0, β0, ε
′
0), (ε1, β1, ε

′
1), (ε2, β2, ε

′
2), . . .

of TeleoR states such that ε0 ∈ Init, and each (εi, βi, ε
′
i) is consistent.

We define two projection functions πp and πe that restrict a given TeleoR trace
to the belief stores and environment states, respectively. For τ above:

πp(τ) = β0, β1, β2, β3, . . . πe(τ) = ε0, ε
′
0, ε1, ε

′
1, ε2, ε

′
2, . . .

Note that above we are considering the TeleoR trace obtained from the exe-
cution of a top-level ground TR procedure call C and so for each βi in πp(τ) we
have a corresponding set of primitive actions which are determined by repeated
uses of (Fire).

Finally, we must introduce system assumptions, which are assumptions over
TeleoR traces. Such assumptions can be used to state that environment variables
under the control of the robot are not arbitrarily modified by the environment.
System assumptions are formalised as temporal formulae over TeleoR traces.
This requires that we define predicates over TeleoR states (of the form (ε, β, ε′));
LTL operators over TeleoR traces can be readily defined by extending predicates
over TeleoR states and recursively defining the each of the LTL operators over
these predicates (as done in Sect. 3 for belief store traces). When defining pred-
icates over TeleoR states, we use unprimed and primed variables to distinguish
environment variables in ε and ε′, respectively.

4.3 Example Verification

For our running example, we use system assumptions to limit the scope of the
environment that we consider. For example, we assume that the environment
does not impede a robot’s (physical) rotation.2 Thus, for each consecutive pair
of TeleoR states in τ , i.e., τi, τi+1, the value of rot spd in the post-environment
state of τi is the same as the value of rot spd in the pre-environment state of
τi+1. This is formalised as:

∀k, l. G(rot spd ′ = k ∧ fwd spd ′ = l ⇒ X(rot spd = k ∧ fwd spd = l)) (8)

2 Of course, in reality, there are environments that could impede a robot’s motion—we
do not make any claims about correctness of our implementation for such environ-
ments. In a full development, one would need to make sure that the physical envi-
ronment in which a verified robot operates does indeed conform to any assumptions
made in the proof.
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We now return to the the procedure call get close to(bottle) in Example 1
and describe how it can be shown to satisfy the regression property when it is
executing the lowest priority rule 4 with intended action turn(right, 0.5). We
need to show that eventually a bottle will be seen in the robot environment, i.e.
bot in front, resulting in ∃x, y bel see(bottle,x,y) by 6.

Suppose
τ = (ε0, β0, ε

′
0), (ε1, β1, ε

′
1), (ε2, β2, ε

′
2), . . .

is a TeleoR trace of the program.
Consider an arbitrary index i. Assume for each belief store up to and includ-

ing βi we have bel ¬∃x, y.see(bottle,x, y). From this assumption, using equation
(Fire) and (RoboticActs), we obtain

βi |= do turn(right, 0.5) ∧ ¬∃x.do move(x).

Now, by assumptions (1) and (3) we have ε′
i |= (rot spd = 0.5 ∧ fwd spd = 0).

We now argue as follows by case analysis.

– If for some j > i, we have τj |= bot in front , then we trivially have regression,
since condition (6) ensures that this triggers the required belief store update
in τj .

– So suppose that for all j > i, τj |= ¬bot in front . Then by (7), for all j > i,
we have

βj |= ¬∃x, y.sees(bottle,x, y).

This also means (by the semantics of the program) that

βj |= do turn(right, 0.5) .

Hence, by (1) and (3), for each j > i, we have

ε′
j |= (rot spd = 0.5 ∧ fwd spd = 0).

Now, since we also have ε′
i |= (rot spd = 0.5 ∧ fwd spd = 0), by (8), we have

that for all j > i, εj |= (rot spd = 0.5 ∧ fwd spd = 0). Thus, the antecedent
of 5 is satisfied, and hence we must have τj |= bot in front for some j, which
contradicts our initial assumption.

This completes the proof and gives us the required regression result:

do get close to(bottle) ∧ fired(get close to(bottle), 4, {}) ⇒
F ∃x, y.bel see(bottle, x, y) (9)

This is an instance of the (Regression), repeated below:

G(∀1 < i ≤ n. do C ∧ fired(C, i, ) ⇒ F(∃1 ≤ j < i. ∃bel Gj))
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5 Conclusions

This paper develops an adaptation of LTL to reason about TeleoR programs that
enables reasoning over belief stores in a decoupled manner. Actions (having an
effect on the environment) and sensors (taking readings from the environment)
are modelled as assumptions linking the belief store and the environment, which
are subsequently used in system proofs. The logic also enables modelling of
purely physical assumptions and those pertaining to the system as a whole in
a straightforward manner. We apply this logic to show regression of a TeleoR
program.

This separation of concerns enables less idealised sensor information (inputs)
and robotic movements (outputs) to be modelled more easily. Such information
may also be provided by domain experts, and further refined at different stages of
development. Of course, to cater for a wider range of implementations (without
requiring proofs to be replayed), one must use specifications that are as abstract
as possible. Precisely what this entails, however, is a subject of further study.

Our ultimate aim for this work is to encode the framework in a verification
tool within a theorem proving environment. Hence, we do not consider questions
such as decidability of the logic. However, for several of the example programs we
have developed, it is possible to develop controllers that operate over discretised
approximations that result in finitely many possibilities of the belief store. For
example, for our bottle collecting robot, it is possible to record high and low
values instead of precise speeds, and record far, near and very near instead of
precise distances.

Prior work on TeleoR has focussed on addressing real-time properties [3,4]
using an interval temporal logic. The focus there has been to cope with timing
issues, including those that lead to sampling errors. Although the formalism
enables separation of properties into those of the environment (formalised by
a rely) and those of the agent (formalised by a guarantee), both are asserted
over a monolithic state containing all system variables. In contrast, this paper
presents a separation of concerns, whereby the inputs and outputs to the TeleoR
program are linked in a separate step.
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Abstract. Safe operation of Cyber-Physical Systems such as Unmanned
Aircraft Systems requires guarantees not only on the system, but also on
the mission. Following approaches that are used to produce robust Cyber-
Physical Controllers, we present the architecture of a mission definition,
verification and validation toolchain. We conclude by reporting on the
current state of the authors’ implementation of this framework.

1 Introduction

A large part of current Cyber-Physical System (CPS) development focuses on
greater automation. Systems such as heaters have sensors to enable autonomous
actions based on environment awareness, and this interaction promotes them to
CPS. The disappearance – at least, the new role – of humans in this control
loop raises questions about the dependability of these systems: critical software
must yet give guarantees in order to replace humans who are deemed error-
prone. Confidence in critical systems can be given by using formal methods and
extensive testing. Much work has already been done on verifying and validating
CPS design. It includes the verification of modules such as detect-and-avoid
devices or collision avoidance systems for aircrafts [6,10]. Formal methods play
a pivotal role in building such robust systems by giving strong guarantees about
their control.

To achieve complex operation such as Unmanned Aircraft (UA) inspections,
missions are built by composing atomic actions of the CPS. They quickly become
critical as the consequences of an ill-defined mission for systems evolving in open
areas are severe. Thus, there is a need for integrated frameworks to define these
CPS operations, that include formal verification and validation of missions. A
thorny problem of verifying and validating CPS is the physical environment.
Physical models fall short of the real environment, such as wind gusts of an unex-
pected magnitude tossing a small aircraft around. Such hazards occurs sporadi-
cally, and the CPS should be equipped for these situations to the extent that it
makes sense (probability of occurence, reaction capacity, physical integrity, cost,
etc.). The discrepency between models and actual behaviours must consequently
be monitored at runtime, potentially leading to fallback missions execution
(e.g. safely leaving a no-fly area).

c© Springer Nature Switzerland AG 2020
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We report on an architecture to define, verify, and validate missions for CPS.
It is build around an intermediate representation of the CPS and of its mission.
This toolchain is currently being developed by the authors, and was partially
demonstrated for the definition of missions with monitoring by design [13]. To
illustrate the proposed architecture, the current state of this implementation is
described in conclusion.

2 Background

Prior works exists on formal verification of CPS missions. It goes back to at
least 1997, with the Maestro language [7] that was developed for the Orccad
robotic framework. Orccad [3] (not maintained anymore) revolved a around two
key structures, Robot-Tasks and Robot-Procedures, that are analogous to what
we refer to as, respectively, actions and missions. Robot-Tasks are atomic control
laws, using continuous times and discrete events that occur at execution. Robot-
Procedures are logical composition of Robot-Tasks (sequential, loop, parallel, and
preemption). On a conceptual level, these key elements are roughly equivalent to
what we refer to as, respectively, actions and missions. The resulting robot con-
trollers were compiled in Esterel [1], formal verification was performed on the
resulting automata, and the framework offered possibilities for logical simula-
tion of the controller. Our approach differs as we stress the discrepancy between
the real and ideal execution: Robot-Tasks produce dynamics whereas actions
describe it.

Several works have introduced Model-Driven Engineering for design and
operation of CPS. They often place emphasis on having non-programmers or
non-experts as users. Verification and validation of the mission, when consid-
ered at all, is often done through simulation [5,8]. Formal verification benefits
Cyber-Physical Controllers design [11]. Unmanned Aircrafts often embed for-
mally verified geofencing devices to keep them in their assigned flying area [9,12].
Code that integrates formally verified model monitoring may be generated from
hybrid programs [2]. These works act at the V&V CPS design phase, but were
not developed for mission definition.

3 Concepts for Mission Verification

We illustrate some of the concepts needed for mission verification, using a generic
UA operating on a mission to take photos. The mission has three properties being
monitored: mission-related (proper camera angle), safety-related (no-fly areas)
geofencing, and power management. Geofencing constrains the motion of the
aircraft, and power management involves ensuring that the UA will finish the
mission before it runs out of power.

We abstract a CPS as a tuple of state variables, which represent the current
state of a system, and actions. Actions are atomic behaviours of the CPS, such
as arming (powering the vehicle), taking off, setting the velocity, etc. They are
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given as hybrid programs that, assuming prerequisites, define an ideal continu-
ous evolution of the state using differential systems (σ′ = f(σ, σ′)) and implicit
functions (f(σ) = 0). Their interpretation is twofold, depending on the posture
we adopt. The formal model uses actions as descriptions of the dynamics of the
system whereas the runtime posture considers them as fallible: the execution
may not follow the specification. For instance, the aircraft may depart from its
assigned trajectory due to wind gusts or GPS noise. These kinematics descrip-
tions are used at runtime to observe the agreement between the real execution
and the model.

A mission is built from sequential actions and monitoring control structures.
Figure 1 sums up the latter. A monitoring control structures involves a guard
and two missions. The main mission, the sequence of actions n and n + 1, is
executed as long as the guard (ϕ) is satisfied. As soon as the guard evaluates
to False, the fallback mission is triggered. This mission acts as a temporary
measure to reach a safe(r) state. In our example, the UA moves if it does not
have a good camera angle, returns to its landing point when the power level falls
below a threshold, and releases the parachute when entering a no-fly area. A
fallback mission finishes with one of the three following behaviours:
– resumes: the main mission execution carries on from where it was interrupted,

which would be the case for the camera angle adjustment scenario
– roll back : the mission execution rolls back to a previously labelled
– abort : the mission escapes the current control structure. The fallback for

power management would be followed by a landing manoeuvre, and releasing
the parachute would have no follow-up action.

... actionn−1 actionn actionn+1 actionn+2 ...

satisfy ϕ

else

roll back

resume abort

Fig. 1. Three classes of monitors depending on the fallback return point.

4 Mission Definition, Verification and Validation
Architecture

This section presents the architecture that we envision for mission definition, ver-
ification, and validation. The architecture shown is by no means an exhaustive
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view, it focuses on the direct writing of the mission, its verification and valida-
tion, and how it translates into the executed code on the real CPS. Extensions
are mentioned in Sect. 4.2.

4.1 Core Architecture

The proposed architecture is presented in Fig. 2; it revolves around an interme-
diate representation of the CPS and of its operation, which we call the Mission
Language. This modelling language enables the definition of the system and mis-
sions as introduced in Sect. 3. When the CPS is Verified and Validated, each
action has a formal specification. These specifications may be reused when defin-
ing the system in the Mission Language, or weakened: although we would first
think of them as being exactly the same, the reachable state space of an action
may be loosened, considering that some uncertainties that were neglected dur-
ing the CPS design validation must be included due to operation conditions that
were previously disregarded.

Mission Monitored
mission

Proof
obligations

Monitored
actions

SystemHybrid
programs

V&V CPS

Mission
Language

Executable
Code

Formal
Logic

Fig. 2. Core architecture of a verified and validated mission definition toolchain.

The Mission Language descriptions are translated into: (i) formal models,
with proof obligations to verify and validate the mission; (ii) executable code,
which is generated to ensure its correctness. In this paper, we focus on the formal
models.

Actions are translated into hybrid programs (of the corresponding logic e.g.
differential dynamic logic) that describe the evolution of the state variables.
The first step is to check that the mission is executable, by checking that each
action prerequisite will be satisfied (viz. that the UA will be armed and landed
when calling takeoff) and by ensuring termination (finite looping). The second
step is to verify properties (relating to safety, mission objective, etc.) that were
defined as monitor guards. For instance, we have to prove that the ideal mission
execution won’t breach the geofencing and power management constraints.

In addition to checking the correctness of the model, other proof obligations
arise such as verifying that fallback missions restore their associated guards. This
rule especially applies to the mission-related guards: the fallback movement must
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ensure a correct camera angle. Likewise, fallback missions must be verified to not
lead to greater complications by breaching higher guards. When the power level
drops lower than the threshold, the path taken to return to the home station
must still satisfy the safe geofencing.

As is usual, automatic generation of executable code from the Mission Lan-
guage models should be developed to avoid new errors being introduced at this
stage. As mentioned previously, actions are translated into monitors (cf Sect. 3).
The dynamics of the action is given by the real CPS implementation. From the
point of view of the generated action, this roughly corresponds to calling an API
function. For instance, if the flight stack of a UA implements a takeoff service,
the corresponding monitored action calls it while keeping a check on the state evo-
lution.

4.2 Extension and Contextualisation

We have presented the core of a V&V mission definition system, but many add-
ons would prove to be useful and to nicely complement this first raw architecture.
Here we present two illustrative examples: simulation and visualisation.

Complete formal verfication of complex systems rapidly becomes intractable.
To be fully comprehensive, it requires e.g. a complete formal model of the hard-
ware. Even then, there is no guarantee that a proof can be derived. Thus, to
contribute to the verification and validation process, tests in various simulation
environments (software in the loop, hardware in the loop, with fault injection)
are resorted to. Simulation integrates into the V&V mission definition architec-
ture without any hurdle as it builds on top of the executable code.

Practical operations generally involve many different players. Expertise in
various fields for not only the system and its validation (e.g. networks, for-
mal proof, multi-agent, control theory) but also for the use case (such as the
operator that has been doing the work that is being automated) need to inter-
act with the legislator, customers, and occasionally citizens. In these situations,
having supports that facilitate the communication around the mission, at the
cost of the ease to develop with these representations, comes in handy. Simu-
lated missions with physically-based renderering is a first natural way to have
non-experts involved. Another recurrent feature are high-level graphical lan-
guages that enable non-experts users to define missions (e.g. [4]). Other avenues
of research should be investigated, such as graphical rendering of the reachable
states, or immersive simulators, and remote monitoring of the mission being
executed.

5 Conclusion and Perspectives

Safe CPS operations require tools as rigorous as those used to design the sys-
tem. Following approaches that are currently under development for Cyber-
Physical Controllers, we have outlined the architecture for a mission definition
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and V&V toolchain. The authors are currently building such a framework around
a Domain-Specific Language for mission definition, Sophrosyne.

Its usage has been showcased on inspection missions [13]. Monitors were
hierarchically composed to stop the mission should too many breaches occur. The
system and its mission were compiled into (i) executable code, that was run in a
Software in the Loop simulation; (ii) a symbolic system, that produces a graph
of reachable states, exemplifying both core parts and extensions of the presented
architecture. However, missions were not formally verified. Achieving a formal
description of the rules is part of our ongoing research effort, together with the
automatic generation of corresponding hybrid programs and proof obligations.
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applying formal methods to blockchain technology.

This very first edition of FMBC attracted 20 submissions (11 long papers and 9
short papers) on topics such as verification of smart contracts or analysis of consensus
protocols. Each paper was reviewed by at least three program committee members or
appointed external reviewers. This led to a selection of 10 articles (8 long and 2 short)
that were presented at the workshop as regular talks, as well as two articles that were
presented as lightning talks. Additionally, we were very pleased to have an invited
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Abstract. The Scilla project has started in late 2017 as a 100-lines-of-code
prototype implemented in Coq proof assistant. Learning from the mistakes of
Ethereum, which had pioneered the area of blockchain-based applications (aka
smart contracts), the aim of Scilla was to provide a smart contract language,
which is expressive enough to accommodate most of the reasonable use-cases,
while allowing for scalable and tractable formal verification and analysis. As
such, Scilla has been positioned as an intermediate-level language, suitable to
serve as a compilation target and also as an independent programming frame-
work. Two years later, Scilla is now powering the application layer of Zilliqa,
the world’s first publicly deployed sharded blockchain system. Since its public
launch less than a year ago, dozens of unique smart contracts implemented in
Scilla have been deployed, including custom tokens, collectibles, auctions,
multiplayer games, name registries, atomic token swaps, and many others. In my
talk, I will describe the motivation, design principles, and semantics of Scilla,
and outline the main use cases and the tools provided by the developer com-
munity. I will also present a framework for lightweight verification of Scilla
programs, and showcase it with two automated domain-specific analyses.
Finally, I will discuss the pragmatic pitfalls of designing a new smart contract
language from scratch, and present the future exciting research directions that
are enabled by Scilla’s take on smart contract design.
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Abstract. Smart contracts are programs that run on a distributed
ledger platform. They usually manage resources representing valuable
assets. Moreover, their source code is visible to potential attackers, they
are distributed, and bugs are hard to fix. Thus, they are susceptible to
attacks exploiting programming errors. Their vulnerability makes a rig-
orous formal analysis of the functional correctness of smart contracts
highly desirable.

In this short paper, we show that the architecture of smart contract
platforms offers a computation model for smart contracts that yields
itself naturally to deductive program verification. We discuss different
classes of correctness properties of distributed ledger applications, and
show that design-by-contract verification tools are suitable to prove these
properties. We present experiments where we apply the KeY verification
tool to smart contracts in the Hyperledger Fabric framework which are
implemented in Java and specified using the Java Modeling Language.

1 Introduction

Smart contracts are programs that work in conjunction with a distributed ledger.
They automatically manage resources on that ledger. Multiple distributed ledger
platforms supporting smart contracts have been developed, most prominently
the public Ethereum blockchain. Smart contracts manage resources representing
virtual or real-world assets. Their source code is visible to potential attackers.
Therefore, they are susceptible to attacks exploiting errors in the program source
code. Furthermore, smart contracts cannot be easily changed after deployment.
They need to be correct upon deployment, and formal methods should be used
for ensuring their correctness [3].

In this paper, we describe the computational model of smart contracts, which
makes them an ideal target for deductive program verification. We discuss dif-
ferent notions of smart contract correctness, and the implications for formal
verification.

We focus on the Hyperledger Fabric [4] architecture. Fabric is a framework
for the operation of private, permission-based distributed ledger networks. Smart
contracts in Fabric can currently be written in Go, Java, and Javascript. While
our concrete verification efforts target Fabric smart contracts written in Java,
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much of the concepts can be generalized to other programming languages, and
also to other smart contract platforms.

The KeY system [1], which we used for experiments, is a deductive program
verification tool for verifying Java programs w.r.t. a formal specification. KeY fol-
lows the principle of design-by-contract, i.e., system properties are broken down
into method specifications called contracts that must be individually proven cor-
rect. Specifications for KeY are written in the Java Modeling Language [7], the
de-facto standard language for formal specification of Java programs. For ver-
ification, KeY uses a deductive component operating on a sequent calculus for
JavaDL, a program logic for Java.

In Sect. 2, we describe an abstract computational model for applications in a
distributed ledger architecture. In Sect. 3, we discuss different notions and classes
of smart contract correctness w.r.t. that model. Then, in Sect. 4, we describe how
properties from these classes can be verified in the KeY tool. Finally, we draw
some conclusions and discuss future work in Sect. 5.

2 Distributed Ledger Infrastructure and the
Computational Model

Smart contract platforms are complex systems. Their functionality is spread
across several layers and components. Some components are by necessity part of
every smart contract platform, other components are unique to certain types of
smart contract systems.

The correct behavior of a smart contract depends on all components of
the distributed ledger architecture. This includes: the implementation of the
blockchain data structure, which ensures that the shared history cannot be
changed; the consensus and ordering algorithms for creating a single view of
the system state; the cryptography modules for chain integrity and the public
key infrastructure; and the network layer, which ensures correct distribution of
transaction requests and new blocks.

If all these components work correctly, they provide an abstract computa-
tional model for the execution of smart contract applications in a distributed
ledger system. This computational model can be described as follows: a dis-
tributed ledger platform behaves like a (non-distributed) single-core machine
which takes requests (in the form of function calls) from clients. The execution
of a request (a transaction) is atomic and sequential. The machine’s storage is
a key-value database in which serialized objects are stored at unique addresses.
The storage can only be modified through client requests. The overall state of
the storage is determined entirely by the order in which requests are taken. No
assumptions can be made about the relationship between the order of requests
made by the clients and the actual order of execution. However, it can be assumed
that every request is eventually executed. All requests are recorded, even if they
do not modify the state or are malformed.
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3 Correctness of Smart Contracts

In the previous section, we have described the abstraction provided by smart con-
tract architectures: it behaves like a single-core machine operating on a database
storage and taking requests from clients. In this section, we discuss how this
abstraction is useful for applying program verification techniques and tools. We
give an overview of different classes of smart contract correctness properties and
characterize the requirements and challenges for formal analysis that each class
entails. The properties are roughly ordered by the effort required to prove them.
Existing approaches to verification of smart contracts are given as examples for
each class.

3.1 Generic Properties

Generic properties are independent of the concrete smart contract application
and its functionality, i.e., there is no need to write property specifications for
individual contracts. Typical examples of generic properties are termination for
all inputs and absence of exceptions such as null-pointer dereference.

Program properties such as termination are undecidable in general, and
proofs may be non-trivial and require heavy-weight verification tools. Never-
theless, many generic properties can be validated by syntactical methods like
type checking or simple static analysis. They are less precise than program ver-
ification and produce false alarms in case of doubt, but are still very useful in
practice. Especially in the context of Ethereum, there is a wide variety of static
analysis tools, e.g. [8,9], that can show the absence of known anti-patterns or vul-
nerabilities, like the notorious reentrance vulnerability, or inaccessible funds. For
Hyperledger Fabric, there exists a tool which statically checks a smart contract
for anti-patterns like non-determinism or local state.1

3.2 Specific Correctness Properties of Single Transactions

Correctness of a smart contract applications cannot be captured by generic
properties alone: there has to be some formal specification which expresses the
expected resp. required behavior of a program. Smart contract functions, which
are atomic and deterministic in our computational model, are the basic modules
of smart contracts (much like methods are basic components of programs), and
therefore also the basic targets for correctness verification. The specification of
a function consists of a precondition, which states what conditions the caller of
the function has to satisfy, and a postcondition expressing what conditions are
guaranteed to hold after the transaction (i.e., the function execution). In case
of smart contracts, the specification should generally treat public ledger state
and function call parameters as potentially malicious; therefore, the precondition
should make no assumptions about them, as correctness properties must hold
for all possible values.

1 https://chaincode.chainsecurity.com/.

https://chaincode.chainsecurity.com/
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Examples of specific properties of a single transaction include functional cor-
rectness statements (e.g., “the specified amount is deducted from the account if
sufficient funds are available, otherwise the account remains unchanged”) and
statements about what locations on the ledger a transaction is allowed to modify.

An approach to verification of single transaction correctness using the Why3
verification platform has been proposed [6]; our own approach using the KeY
tool is discussed in Sect. 4.

3.3 Correctness of Distributed Ledger Applications

While transactions are equivalent to individual program functions, a distributed
ledger application (DLA) is equivalent to a reactive program whose functions
can be called by external agents. Informally, a DLA is a part of a smart contract
network concerned with one specific task, like running an auction or providing
a bank service. More precisely, a DLA is the set of all transactions that can
affect a given set of storage locations (including transactions that cannot access
a storage location but are used in the calculation of the values being written).

While correctness of the component transactions is a necessary pre-requisite
for the correctness of the DLA, there are properties which inherently are proper-
ties of transaction traces. They cannot be readily expressed as correctness prop-
erties of single transactions. To break them down into a set of single-transaction
properties is a non-trivial process. Examples for this class of properties include
invariants (e.g., “the overall amount of funds stays the same” for a banking appli-
cation) and liveness properties giving the guarantee that some condition will
eventually be fulfilled. Complex properties of this kind typically are expressed
in temporal logic.

4 Verification of Smart Contracts Using the KeY Tool

In this section, we discuss verification of smart contract correctness using the
KeY tool. The abstract computational model devised in Sect. 2 is an excellent fit
for KeY because, in this setting, a distributed ledger application can be viewed as
the equivalent of a Java program where single transactions correspond to Java
methods. Thus, the KeY tool, which is designed for verifying Java programs,
can be utilized for DLA verification, requiring only minor adaptations. These
adaptations mostly concern the nature of the storage, since KeY operates on a
heap with object references, while the distributed ledger application’s storage
is a database of serialized objects. Furthermore, due to the unknown order of
execution and the fact that different agents operate within the shared program,
there cannot be any assumptions as to the contents of the storage or order of
transaction execution.

4.1 Generic Properties

The KeY tool can be used to verify any generic property. As a heavy-weight
verification tool, it is particularly useful for properties that cannot be handled
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by light-weight tools resp. that require KeY’s higher precision to avoid too many
false alarms. Examples are program termination and the absence of exceptional
behavior (the Java Modeling Language keyword normal behavior can be used
to specify that a method terminates without exception).

While constructing proofs for such properties is a non-trivial task in general,
typical smart contracts are compact and lack complex control flows. In such
settings, proofs of termination and absence of exceptions can be expected to be
found automatically by KeY, requiring none or minimal auxiliary specifications.

4.2 Chaincode Transaction Correctness

Verification of Hyperledger Fabric chaincode functions, if written in Java, is
possible in KeY. The difference between a normal Java program and our com-
putational model is in the storage: while Java programs operate on a heap, a
Fabric Smart Contract operates on an (abstracted) key-value database storing
serialized objects. In a case study [5] demonstrating how to use KeY to prove
the correctness of Hyperledger Fabric chaincode functions, this difference was
addressed by an extension of the KeY tool,2 including an axiomatisation of the
read/write interface of the Fabric ledger, a model of the ledger on a logical
level, and the introduction of abstract data types for each type of object that is
managed by the smart contract.

In the auction example, one might want to specify the closeAuction()
method as follows:

/*@ ensures read(ID) != null ==> read(ID).closed;

@ ensures (\forall Item i \in read(ID).items;

@ i.owner_id == read(ID).highestBidderID);@*/

void closeAuction(int ID) { ... }

This JML specification is somewhat simplified for readability; the read func-
tion is an abstraction for accessing the ledger, i.e., reading and deserializing the
object at the given location. The specification states that, if the auction object
at ID is not null, then after execution of the closeAuction() method the closed
flag must be correctly set; furthermore all items in the auction must belong to
the highest bidder (as indicated by the owner id attribute). For the correctness
proof in KeY, the logical rules necessary for handling the data types stored on
the ledger (in this case, auctions, items, and participants) are created automati-
cally. The proof requires some user interaction, since the new rules have not yet
been included in the automation mechanism of the prover.

There exists a comparable approach for using KeY to verify Ethereum smart
contracts [2].

4.3 Correctness of Distributed Ledger Applications

More complex properties can be reasoned about in KeY using class invariants,
two-state invariants, and counters, thereby reducing complex properties of trans-
action traces (including temporal logic properties) to KeY’s method-modular
2 Available at https://key-project.org/chaincode.

https://key-project.org/chaincode
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approach. For example, the specification of the auction application could state
that, as long an auction is open, the items that are offered still belong to the
auctioneer:

//@ invariant (\forall Auction a; !a.closed;

(\forall item i \in a.items; i.owner_id == a.auctioneer_id));

If every bidder has to deposit the funds for their bid in the auction, the
specification could state that as long as the auction remains open, the sum of
the funds in the auction remains the same or increases, but never decreases. This
can be expressed with a history constraint:

//@ constraint \forall Auction a; !a.closed; \old(a.funds) <= a.funds;

Though this constraint can easily be expressed in the Java Modeling Language,
proving in KeY that a smart contract conforms to this specification is currently
infeasible due to the large amount of user interactions that is necessary to close
the proof, and due to the inefficiencies of our current approach regarding the
handling of reading from and writing to the ledger.

5 Conclusion and Future Work

We have outlined the setting in which deductive program verification of dis-
tributed ledger applications takes place and shown that the KeY verification
tool is suitable to prove different classes of correctness properties which are
interesting in smart contract platforms.

The extensions to KeY which enable verification of Hyperledger Fabric smart
contracts are still in a prototypical state. Further improvements are necessary
to improve scalability and enable proofs of more complex properties.
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Abstract. In this paper, we use a formal tool that performs deductive
verification on industrial smart contracts, which are self-executing dig-
ital programs. Because smart contracts manipulate cryptocurrency and
transaction information, if a bug occurs in such programs, serious con-
sequences can happen, such as a loss of money. This paper aims to show
that a language dedicated to deductive verification, called WhyML, can
be a suitable language to write correct and proven contracts. We first
encode existing contracts, using the Why3 tool, into WhyML program;
next, we formulate specifications to be proven as the absence of Run-
Time Error and functional properties, then we verify the behaviour of
the program using the Why3 system. Finally, we compile the WhyML
contracts to the Ethereum Virtual Machine (EVM). Moreover, our app-
roach estimates the cost of gas, which is a unit that measures the amount
of computational effort during a transaction.

Keywords: Deductive verification · Why3 · Smart contracts · Solidity

1 Introduction

Smart Contracts [20] are sequential and executable programs that run on
Blockchains [16]. They permit trusted transactions and agreements to be car-
ried out among parties without the need for a central authority while keep-
ing transactions traceable, transparent, and irreversible. These contracts are
increasingly confronted with various attacks exploiting their execution vulner-
abilities. Attacks lead to significant malicious scenarios, such as the infamous
DAO attack [7], resulting in a loss of ∼$60M. In this paper, we use formal
methods on smart contracts from an existing Blockchain application. Our moti-
vation is to ensure safe and correct contracts, avoiding the presence of computer
bugs, by using a deductive verification language to write, verify and compile
such programs. The chosen language is WhyML provided by an automated tool
called Why3 [12], which is a complete tool to perform deductive program ver-
ification, based on Hoare logic. A first approach using Why3 on Solidity con-
tracts (the Ethereum smart contracts language) has already been undertaken [2].
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The author uses Why3 to formally verify Solidity contracts based on code anno-
tation. Unfortunately, that work remained at the prototype level. We describe
our research approach through a use case that has already been the subject of
previous work, namely the Blockchain Energy Market Place (BEMP) applica-
tion [18]. In summary, the contributions of this paper are as follows:

1. Showing the adaptability of WhyML as a formal language for writing, checking
and compiling smart contracts.

2. Detailing a formal and verified Trading contract, an example of a more com-
plicated contract than the majority of existing contracts.

3. Providing a way to prove the quantity of gas (fraction of an Ethereum token
needed for each transaction) used by a smart contract.

The paper is organized as follows. Section 2 describes the approach from a theo-
retical and formal point of view by explaining the choices made in the study, and
Sect. 3 is the proof-of-concept of compiling WhyML contracts. A state-of-the-art
review of existing work concerning the formal verification of smart contracts is
described in Sect. 4. Finally, Sect. 5 summarizes conclusions.

2 A New Approach to Verifying Smart Contracts

2.1 Background of the Study

Deductive Approach & Why3 Tool. A previous work aimed to verify smart
contracts using an abstraction method, model-checking [18]. Despite interest-
ing results from this modelling method, the approach to property verification
was not satisfactory. Indeed, it is well-known that model-checking confronts us
either with limitations on combinatorial explosion, or limitations with invariant
generation (most frequently implicit). Thus, proving properties involving a large
number of states was impossible to achieve. This conclusion led us to consider
applying another formal method technique, deductive verification, which has the
advantage of being less dependent on the size of the state space. In this app-
roach, the user is asked to write the invariants. We chose the automated Why3
tool [12] as our platform. It provides a rich language for specification and pro-
gramming, called WhyML, and relies on well-known external theorem provers
such as Alt-ergo [10] (Alt-ergo is the only prover used throughout our study),
Z3 [15], and CVC4 [8]. Why3 comes with a standard library1 of logical theories
and programming data structures. The logic of Why3 is a first-order logic with
polymorphic types and several extensions: recursive definitions, algebraic data
types and inductive predicates.

Case Study: Blockchain Energy Market Place. We have applied our approach to
a case study provided by industry [18]. It is an Ethereum Blockchain application
(BEMP) based on Solidity smart contracts language. Briefly, this Blockchain
application aims to manage energy exchanges in a peer-to-peer way among the
1 http://why3.lri.fr/.

http://why3.lri.fr/
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inhabitants of a district as shown in Figure 1. The figure illustrates (1) & (1’)
respectively energy production (Alice) and consumption (Bob). (2) & (2’) Smart
meters provide production/consumption data to Ethereum. (3) Bob pays Alice in
ether (Ethereum’s cryptocurrency) for his energy consumption. For more details
about the application, please refer to [18].

Fig. 1. BEMP process

In our initial work, we applied
our method on a simplified version
of the application, that is, a one-to-
one exchange (1 producer and 1 con-
sumer), with a fixed price for each
kilowatt-hour. This first test allowed
us to identify and prove RTE proper-
ties (Runtime Error, e.g., integer over-
flow, division by zero, ..). The sim-
plicity of the unidirectional exchange
model did not allow the definition of
complex functional properties to show
the importance and utility of Why3. In
a second step, we extended the application under study to an indefinite number
of users, and then enriched our specifications. The use of Why3 is quite suitable
for this order of magnitude. In this second version, we have a set of consumers
and producers willing to buy or to sell energy. Accordingly, we introduced a
simple trading algorithm that matches consumers with producers. In addition
to transferring ether, users transfer crypto-Kilowatthours to reward consumers
that consume energy locally produced. Hence, the system needs to formulate and
prove predicates and properties of functions handling various data other than
cryptocurrency. For a first trading approach, we adopted, to our case study, an
order book matching algorithm [11]. Please refer to [17], the technical report,
for the complete BEMP application.

2.2 Why3 Features Intended for Smart Contracts

Library Modelling. Solidity is an imperative object-oriented programming
language, characterized by static typing2. It provides several elementary types
that can be combined to form complex types such as booleans, signed, unsigned,
and domain-specific types like addresses. Moreover, the address type has prim-
itive functions able to transfer ether (e.g., send()) or manipulate cryptocur-
rency balances (.balance). Solidity contains elements that are not part of the
WhyML language. One could model these as additional types or primitive features.
Examples of such types are uint256 and address. For machine integers, we use
the range feature of Why3 : type uint256 = <range 0 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFF... >

because it represents exactly the set of values we want to represent. Thus, Why3
firstly checks that constants written by the user are inside the bounds (machine

2 Ethereum foundation: Solidity, the contract-oriented programming language. https://
github.com/ethereum/solidity.

https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
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integers constants) and secondly automatically generates conversion functions
from machine integers to mathematical integers. Indeed it is a lot more natu-
ral and clearer to express specifications with mathematical integers, for example
with wrap-around semantic account = old account - transfer does not express that the
account loses money (if the account was empty it could now have the maximum
quantity of money).

Based on the same reasoning, we have modelled the type Int160, Uint160
(which characterizes type uint in Solidity). We also model the address type and
its members. We choose to encode the private storage (balance) by a Hashtable
having as a key value an address, and the associated value a uint256 value.
The current value of the balance of addresses would be balance[address]. In
addition, the send function is translated by a val function, which performs
operations on the balance hashtable. Moreover, we model primitive features
such as the modifier function, whose role is to restrict access to a function; it
can be used to model the states and guard against incorrect usage of the contract.
In WhyML this feature would be either an exception to raise or a precondition
to verify, depending on the function type. This notion of function type will be
explained in more detail later (see Oracle notions). Finally, we give a model of
gas, in order to specify the maximum amount of gas needed in any case. We
introduce a new type: type gas = int. The quantity of gas is modelled as a
mathematical integer because it is never manipulated directly by the program.
This part is detailed later.

It is important to note that the purpose of our work is not to achieve a com-
plete encoding of Solidity. The interest is rather to rely on the case study in our
possession (which turns out to be written in Solidity), and from its contracts, we
build our own WhyML contracts. Some primitives of Solidity seems interesting to
keep, so we chose to encode them in WhyML. Therefore, throughout the article,
we have chosen to encode only Solidity features encountered through our case
study. Consequently, notions like revert or delegatecall are not treated. Con-
versely, we introduce additional types such as order and order trading, which
are specific to the BEMP application. The order type is a record that contains
orderAddress which can be a seller or a buyer, tokens that express the crypto-
Kilowatthours (wiling to buy or to sell), and price order. The order trading
type is a record that contains seller ID; seller index, buyer ID; buyer index,
the transferred amount amount t, and the trading price price t.

Remark: In our methodology, we choose to encode some primitives of Solidity
but not all. For example, the send() function in Solidity can fail (return False)
due to an out-of-gas, e.g. an overrun of 2300 units of gas. The reason is that
in certain cases the transfer of ether to a contract involves the execution of the
contract fallback, therefore the function might consume more gas than expected.
A fallback function is a function without a signature (no name, no parameters),
it is executed if a contract is called and no other function matches the specified
function identifier, or if no data is supplied. As we chose a private blockchain
type, all users can be identified and we have control on who can write or read
from the blockchain. Thus, the WhyML send() function does not need a fallback
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Fig. 2. Link between on-chain and off-chain

execution, it only transfers ether from one address to another. The WhyML
send() function does not return a boolean, because we require that the transfer is
possible (enough ether in the sending contract and not too much in the receiving)
and we want to avoid DoS attack [3]. Indeed, if we allow to propagate errors and
accept to send to untrusted contracts, it could always make our contract fail and
revert. So we cannot prove any property of progress of our contract. In Tezos
blockchain [13], call to other contracts is postponed to after the execution of
the current contract. So another contract should not be able to make the calling
contract fail.

Encoding and Verifying Functions from the BEMP Application

Oracle Notions. Developing smart contracts often relies on the concept of Ora-
cles [1]. An oracle can be seen as the link between the blockchain and the “real
world”. Some smart contracts functions have arguments that are external to
the blockchain. However, the blockchain does not have access to information
from an off-chain data source which is untrusted. Accordingly, the oracle pro-
vides a service responsible for entering external data into the blockchain, having
the role of a trusted third party. However, questions arise about the reliabil-
ity of such oracles and accuracy of information. Oracles can have unpredictable
behaviour, e.g. a sensor that measures the temperature might be an oracle, but
might be faulty; thus one must account for invalid information from oracles.
Figure 2 illustrates the three communication stages between various systems in
the real world with the blockchain: (1) the collection of off-chain raw data; (2)
this data is collected by oracles; and finally, (3) oracles provide information to
the blockchain (via smart contracts). Based on this distinction, we defined two
types of functions involved in contracts. We noted that some functions are called
internally by other smart contracts functions “Private functions”, while others
are called externally by oracles “Public functions”. The proof approach of the
two types is different. For the private functions one defines pre-conditions and
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post-conditions, and then we prove that no error can occur and that the function
behaves as it should. It is thus not necessary to define exceptions to be raised
throughout the program; they are proved to never occur. Conversely, the public
functions are called by oracles, the behaviour of the function must take into
account any input values and it is not possible to require conditions upstream of
the call. In contrast, exceptions are necessary; we use so-called defensive proof
to protect ourselves from errors that can be generated by oracles. No constraints
are applied on post-conditions. Thus, valid data (which does not raise excep-
tions) received by a public function will satisfy the pre-conditions of the public
function that uses it, because pre-conditions are proven.

Methodology of Proving BEMP Functions. To illustrate our methodology, we
take an example from BEMP.

1 function transferFromMarket (address _to , uint _val) onlyMarket returns (bool

success) {

2 if (exportBalanceOf[market] >= _val){/* Transfer _val from market to _to*/}

3 else {success = false; Error("Tokens couldn ’t be transferred");}}

The function allows transferring val (expressing cryptokwh) from the market
to to address. The mapping exportBalanceOf[] stores balances corresponding
to addresses that export tokens. The function can be executed solely by the
market (the modifier function onlyMarket). The program checks if the market
has enough tokens to send to to. If this condition is verified, the transfer is
done. If the condition is not verified, the function returns false and triggers
an Error event (a feature that allows writing logs in the blockchain)3. This
process is internal to the blockchain, there is no external exchange, hence the
function is qualified as private. According to the modelling approach, we define
complete pre-conditions and post-conditions to verify and prove the function.
The corresponding WhyML function is:

1 let transferFromMarket (_to : address) (_val : uint) : bool
2 requires {!onlymarket ∧ _val > 0} requires {marketBalanceOf[market] ≥ _val}
3 requires {importBalanceOf[_to] ≤ max_uint - _val}
4 ensures {(old marketBalanceOf[market]) + (old importBalanceOf[_to]) = marketBalanceOf[

market] + importBalanceOf[_to]}
5 = (* The program *)

The pre-condition in line 2 expresses the modifier onlyMarket function.
Note that marketBalanceOf is the hashtable that records crypto-Kilowatthours
balances associated with market addresses, and importBalanceOf is the
hashtable that records the amount of crypto-Kilowatthours intended for the
buyer addresses. From the specification, we understand the behaviour of the func-
tion without referencing to the program. To be executed, transferFromMarket
must respect RTE and functional properties:

3 https://media.consensys.net/technical-introduction-to-events-and-logs-in-ethere-
um-a074d65dd61e.

https://media.consensys.net/technical-introduction-to-events-and-logs-in-ethere-um-a074d65dd61e
https://media.consensys.net/technical-introduction-to-events-and-logs-in-ethere-um-a074d65dd61e
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– RTE properties: (1) Positive values; a valid amount of crypto-Kilowatthours
to transfer is a positive amount (Line 2). (2) Integer overflow ; no overflow
will occur when to receives val (Line 3).

– Functional properties: (1) Acceptable transfer ; the transfer can be done, if
the market has enough crypto-Kilowatthours to send (Line 2). (2) Successful
transfer ; the transaction is completed successfully if the sum of the sender
and the receiver balances before and after the execution does not change
(Line 4). (3) modifier function; the function can be executed only by the
market (Line 2).

The following function illustrates a Solidity public function.

1 function registerSmartMeter (string m_Id , address ownerAddress) onlyOwner
{addressOf[m_Id] = ownerAddress; MeterRegistered(ownerAddress ,

m_Id);}

The function registerSmartMeter() is identified by a meter ID (m ID) and an
owner (ownerAddress). Note that all meter owners are recorded in a hashtable
addressOf associated with a key value m ID. The main potential bug in this
function is possibly registering a meter twice. When a meter is registered, the
function broadcasts an event MeterRegistered. Following the modelling rules,
there are no pre-conditions, instead, we define exceptions. The corresponding
WhyML function is:

1 Exception OnlyOwner, ExistingSmartMeter

2 let registerSmartMeter (m_ID : string) (ownerAddress : address)

3 raises {OnlyOwner→ !onlyOwner = False} raises {ExistingSmartMeter→ mem addressOf m_ID}

4 ensures {(size addressOf) = (size (old addressOf) + 1 )} ensures {mem addressOf m_ID}

5 = (*The program*)

The exception OnlyOwner represents the modifier function which restricts the
function execution to the owner, the caller function. It is not possible to pre-
condition inputs of the function, so we manage exceptional conditions during the
execution of the program. To be executed, registerSmartMeter must respect
RTE and functional properties:

– RTE properties: Duplicate record ; if a smart meter and its owner is recorded
twice, raise an exception ExistingSmartMeter (Line 3)

– Functional properties: (1) modifier function; the function can be executed
only by the owner, thus we raise OnlyOwner when the caller of the function
is not the owner (Line 3). (2) Successful record ; at the end of the function
execution, we ensure (Line 4) that a smart meter has been recorded. (3)
Existing record ; the registered smart meter has been properly recorded in the
hashtable addressOf (Line 4) using mem function.

The set of specifications of both functions are necessary and sufficient to prove
the expected behaviour of each function since we understand what each function
does without a look to the program. Moreover, this set represents the only proof
effort to verify a WhyML contract.
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Trading Contract. The trading algorithm allows matching a potential consumer
with a potential seller, recorded in two arrays buy order and sell order taken
as parameters of the algorithm. To obtain an expected result at the end of the
algorithm, properties must be respected. We define specifications that make it
possible throughout the trading process. The algorithm is a private function.
The Trading contract has no Solidity equivalent because it is a function added
to the original BEMP project. Below is the set of properties of the function:

1 let trading (buy_order : array order) (sell_order : array order) : list order_trading
2 requires {length buy_order > 0 ∧ length sell_order > 0}
3 requires {sorted_order buy_order} requires {sorted_order sell_order}
4 requires {forall j:int. 0 ≤ j < length buy_order → 0 < buy_order[j].tokens}
5 requires {forall j:int. 0 ≤ j < length sell_order → 0 < sell_order[j].tokens}
6 ensures {correct result (old buy_order) (old sell_order)}
7 ensures {forall l. correct l (old buy_order) (old sell_order) → nb_token l ≤

nb_token result}
8 ensures {!gas ≤ old !gas + 374 + (length buy_order + length sell_order) * 928}
9 ensures {!alloc ≤ old !alloc + 35 + (length buy_order + length sell_order) * 384}

10 = (* The program *)

– RTE properties: positive values; parameters of the functions must not be
empty (empty array) (Line 2), and a trade cannot be done with null or neg-
ative tokens (Lines 4, 5).

– Functional requirements: sorted orders; both orders array need to be sorted
in a decreasing way according to the price of energy (Lines 3).

– Functional properties: (1) correct trading (Lines 6); for a trading to be qual-
ified as correct, it must satisfy two properties:

• the conservation of buyer and seller tokens that states no loss of
tokens during the trading process: forall i:uint. 0 ≤ i < length sell_order →
sum_seller (list_trading) i ≤ sell_order[i].tokens. For the buyer it is equivalent
by replacing seller by buyer.

• a successful matching; a match between a seller and a buyer is qualified
as correct if the price offered by the seller is less than or equal to that of
the buyer, and that the sellers and buyers are valid indices in the array.

(2) Best tokens exchange; we choose to qualify a trade as being one of the
best if it maximizes the total number of tokens exchanged. Line 7 ensures that
no correct trading list can have more tokens exchanged than the one result-
ing from the function. The criteria could be refined by adding the desire to
maximize or minimize the total amount to pay for a trade. (3) Gas con-
sumption; line 8 ensures that the trading function will consume exactly or
less than “374 + (length buy_order + length sell_order) * 928”. 374
corresponds to the quantity of gas consumed by parts of the code that are not
dependent on parameters, and 928 parts that depends on it. The estimation
of gas consumption depends on memory allocation (line 9). As the quantity of
gas, 35 is the quantity of allocated memory for parts of the code that are not
dependent on parameters, and 384 that depends on it (see Sect. 3 for more
details on memory allocation).
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Proving the optimality of an algorithm is always challenging (even on paper),
and we needed all the proof features of Why3 such as ghost code and lemma
function. It is an important property that users of a smart contract will desire
to prove. So we believe it is worth the effort.

Gas Consumption Proof. Overconsumption of gas can be avoided by the gas
model. Instructions in EVM consume an amount of gas, and they are categorized
by level of difficulty; e.g., for the set Wverylow = {ADD, SUB, ...}, the amount
to pay is Gverylow = 3 units of gas, and for a create operation the amount
to pay is Gcreate = 32000 units of gas [20]. The price of an operation is
proportional to its difficulty. Accordingly, we fix for each WhyML function, the
appropriate amount of gas needed to execute it. Thus, at the end of the function
instructions, a variable gas expresses the total quantity of gas consumed during
the process. We introduce a val ghost function that adds to the variable gas
the amount of gas consumed by each function calling add gas.
1 val ghost add_gas (used : gas) (allocation: int): unit
2 requires {0 ≤ used ∧ 0 ≤ allocation} ensures {!gas = (old !gas) + used}
3 ensures {!alloc = (old !alloc) + allocation} writes {gas, alloc}

The specifications of the function above require positive values (Line 2). More-
over, at the end of the function, we ensure that there is no extra gas consump-
tion (Lines 2), and no extra allocation of memory (Line 3). writes specifies the
changing variables. In the trading algorithm, we can see that a lot of allocations
are performed, they are not necessary and we could change our code to only
allocate a fixed quantity of memory.

3 Compilation and Proof of Gas Consumption

The final step of the approach is the deployment of WhyML contracts. EVM is
designed to be the runtime environment for the smart contracts on the Ethereum
blockchain [20]. The EVM is a stack-based machine (word of 256 bits) and uses a
set of instructions (called opcodes)4 to execute specific tasks. The EVM features
two memories, one volatile that does not survive the current transaction and a
second for storage that does survive but is a lot more expensive to modify. The
goal of this section is to describe the approach of compiling WhyML contracts
into EVM code and proving the cost of functions. The compilation5 is done in
three phases: (1) compiling to an EVM that uses symbolic labels for jump desti-
nation and macro instructions. (2) computing the absolute address of the labels,
it must be done inside a fixpoint because the size of the jump addresses has an
impact on the size of the instruction. Finally, (3) translating the assembly code
to pure EVM assembly and printed it. Most of WhyML can be translated, the
proof-of-concept compiler (an extraction module of Why3 ) allows using alge-
braic datatypes, without nesting pattern-matching, mutable records, recursive

4 https://ethervm.io.
5 The implementation can be found at http://francois.bobot.eu/fmbc2019/.

https://ethervm.io
http://francois.bobot.eu/fmbc2019/
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functions, while loops, integer bounded arithmetic (32, 64,128, 256 bits). Global
variables are restricted to mutable records with fields of integers. It could be
extended to hashtables using the hashing technique of the keys used in Solidity.
Without using specific instructions, like for C, WhyML is extracted to garbage
collected language, here all the allocations are done in the volatile memory, so
the memory is reclaimed only at the end of the transaction. We have not for-
mally proved yet the correction of the compilation, we only tested the compiler
on function examples using reference interpreter6 and by asserting some invari-
ants during the transformation (WhyML code to EVM). However, we could list
the following arguments for the correction: (1) the compilation of WhyML is
straightforward to stack machine. (2) The precondition on all the arithmetic
operations (always bounded) ensures arithmetic operations could directly use
256 bit operations. (3) Raising exceptions are accepted only in public function
before any mutation so the fact they are translated into REV ERT opcode does
not change their semantics. (4) Only immutable datatypes can be stored in the
permanent store. Currently, only integers can be stored, it could be extended
to other immutable datatypes by copying the data to and from the store. (5)
The send function in WhyML only modifies the state of balance of the contracts,
requires that the transfer is acceptable and never fails, as discussed previously.
So it is compiled similarly to the Solidity function send function with a gas limit
small enough to disallow modification of the store. Additionally, we discard the
result. (6) The public functions are differentiated from private ones using the
attribute [@ evm:external]. The private functions do not appear in the dispatch-
ing code at the contract entry point so they can be called only internally.

The execution of each bytecode instruction has an associated cost. One must
pay some gas when sending a transaction; if there is not enough gas to execute
the transaction, the execution stops and the state is rolled back. So it is impor-
tant to be sure that at any later date the execution of a smart contract will not
require an unreasonable quantity of gas. The computation of WCET is facili-
tated in EVM by the absence of cache. So we could use techniques of [6] which
annotate in the source code the quantity of gas used, here using a function
“add gas”. The number of allocations is important because the real gas con-
sumption of EVM integrates the maximum quantity of volatile memory used.
The compilation checks that all the paths of the function have a cost smaller
than the sum of the “add gas” on it. Paths of a function are defined on the
EVM code by starting at the function-entry and loop-head and going through
the code following jumps that are not going back to loop-head. The following
code is a function that takes as parameter the size of the list to build and returns
it. Through this example, we want to show the different gas consumption and
memory allocation according to the path taken by the function (if path no
dependent on i, or else path dependent on i). Since it is a recursive function,
we need to add a variant (line 2) to prove the termination.

6 https://github.com/ethereum/go-ethereum.

https://github.com/ethereum/go-ethereum
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1 let rec mk_list [@ evm:gas_checking] (i:int32) : list int32
2 requires {0 ≤ i} ensures {i = length result} variant {i}
3 ensures {!gas - old !gas ≤ i * 185 + 113} ensures {!alloc - old !alloc ≤ i * 96 + 32}
4 = if i ≤ 0 then (add_gas 113 32; Nil)
5 else (let l = mk_list (i-1) in add_gas 185 96; Cons (0x42:int32) l)

Currently, the cost of the modification of storage is over-approximated; using
specific contract for the functions that modify it we could specify that it is less
expensive to use a memory cell already used.

4 Related Work

Since the DAO attack, the introduction of formal methods at the level of smart
contracts has increased. Static analysis tools are very common to achieve this
task. There exist several frameworks, and one of them is called Raziel. It is a
framework to prove the validity of smart contracts to third parties before their
execution in a private way [19]. In that paper, the authors also use a deduc-
tive proof approach, but their concept is based on Proof-Carrying Code (PCC)
infrastructure, which consists of annotating the source code, thus proofs can
be checked before contract execution to verify their validity. Our method does
not consist in annotating the Solidity source code but in writing the contract
in a language designed for program verification in order to tackle harder prop-
erties. With a slightly different approach, we have Oyente. It has been devel-
oped to analyze Ethereum smart contracts to detect bugs. In the corresponding
paper [14], the authors were able to run Oyente on 19,366 existing Ethereum
contracts, and as a result, the tool flagged 8,833 of them as vulnerable. Although
that work provides interesting conclusions, it uses symbolic execution, analyzing
paths, so it does not allow to prove functional properties. We can also mention
the work undertaken by the F* community [9] where they use their functional
programming language to translate Solidity contracts to shallow-embedded F*
programs. Just like [5] where the authors perform static analysis by translating
Solidity contracts into Java using KeY [4]. We believe it is easier for the user to
be as close as possible to the proof tool, if possible, and in the case of smart con-
tract the current paper showed it is possible. The initiative of the current paper
is directly related to a previous work [18], which dealt with formally verifying
BEMP’s smart contracts by using model-checking. However, because of the lim-
itation of the model-checker used, ambitious verification could not be achieved
(e.g., a model for m consumers and n producers).

5 Conclusions

In this paper, we applied concepts of deductive verification to a computer pro-
tocol intended to enforce some transaction rules within an Ethereum blockchain
application. The aim is to avoid errors that could have serious consequences.
Reproducing, with Why3, the behaviour of Solidity functions showed that Why3
is suitable for writing and verifying smart contracts programs. The presented
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method was applied to a use case that describes an energy market place allowing
local energy trading among inhabitants of a neighbourhood. The resulting mod-
elling allows establishing a trading contract, in order to match consumers with
producers willing to make a transaction. In addition, this last point demonstrates
that with a deductive approach it is possible to model and prove the operation
of the BEMP application at realistic scale (e.g. matching m consumers with n
producers), contrary to model-checking in [18], thus allowing the verifying of
more realistic functional properties.
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Abstract. Smart contracts are usually conceived for an unkonwn (and
potentially varying) number of users. From a theoretical point of view,
they can be seen as parameterized state machines with multiple entry
points, shared variables, and a message passing mechanism. To help in
their design and verification, we propose in this paper to use Cubicle, a
model checker for parameterized systems based on SMT. Our approach
is a two-layer framework where the first part consists of a blockchain
transactional model, while the second layer is a model of the smart con-
tract itself. We illustrate our technique through the simple yet prime
example of an auction. This preliminary result is very promising and
lays the foundations for a complete and automatized framework for the
design and certification of smart contracts.

Keywords: Blockchain · Smart-contracts · Model checking · MCMT

1 Introduction

The number of decentralized applications (DApps) running on top of blockchain
networks is growing very fast. According to [3], there are now more than 3,000
DApps available on the Ethereum and EOS platforms which generate over 600
thousand transactions per day for a volume of 17 million USD. These DApps
interact with the blockchain through around 4,700 smart contracts.

A smart contract is a stateful program stored in the blockchain with which
a user (human or computer) can interact. From a legal perspective, a smart
contract is an agreement whose execution is automated. As such, its revocation or
modification is not always possible and worse than that, what the code of a smart
contract does is the law . . . no matter what it may end up doing. Unfortunately,
like any program, smart contracts may have bugs. Given the potential financial
risks, finding these bugs before the origination of the contracts in the blockchain
is an important challenge, both from economic and scientific points of view.

Various formal methods have been used to verify smart contracts. In [5],
the authors present a shallow embedding of Solidity within F∗, a programming
language aimed at verification. Other similar approaches are based on deduc-
tive verification platforms like Why3 [10,12]. Interactive proof assistants (e.g.
Isabelle/HOL or Coq) have also been used for modeling and proving properties
about Ethereum and Tezos smart contracts [1,4].
c© Springer Nature Switzerland AG 2020
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A common thread here is the use of general-purpose frameworks based on
sequential modeling languages. However, smart contracts can be considered as
state machines [2,9] whose execution model, according to [13], is closer to that of
a concurrent programming language rather than a sequential one. In this context,
the use of model checking techniques becomes highly appropriate [6,11].

An important aspect of blockchains is that they are completely open. As a
consequence, smart contracts are state machines that need to be conceived for
an unknown (and potentially varying) number of users. This parameterized side
of blockchains has not previously been taken into account.

In this paper, we propose a first ad-hoc attempt to model smart contracts
into the declarative input language of Cubicle, a model checker for parameter-
ized systems based on Satisfiability Modulo Theories (SMT) techniques. In our
approach, smart contracts, as well as the transactional model of the blockchain,
are encoded as a state machine on which safety properties of interest are encoded
and verified. Our contributions are as follows:

– A two-layer framework for smart contract verification in Cubicle (Sect. 3). The
first layer is a model of the blockchain transaction mechanism. The second
layer models the smart contract itself.

– A description of how to express smart contract properties as Cubicle safety
properties using both ghost variables and model instrumentation (Sect. 4)

– A way of interpreting Cubicle error traces as part of the smart contract devel-
opment cycle (Sect. 5)

2 A Motivating Example

We illustrate our work with the example of an auction contract. The behavior
of each client i is given by the automaton A(i) in Fig. 1.

Every client starts off in state S1 where they can either bid a certain value v
and go to state S2, or close the auction and stay in S1. In S2, a client can either
withdraw their bid and end up back in S1, close the auction and stay in S2, or
try to win the auction and go to S3.

Each state transition is guarded by certain conditions to ensure that the
auction works correctly. To implement these conditions, each automaton needs
to share some variables with the other automata and be able to send or receive
messages through communication channels. The shared variables are:

– HBidder: the current highest bidder (winner)
– HBid: the above’s bid amount
– Ended: a boolean variable for whether or not an auction is over
– Owner: the person who owns the contract
– PRi: the amount a client i can withdraw,

while channels for message passing are bid, withdraw, end, win, and refundi (a
refund channel for each client i). These messages are synchronous and can have
parameters. Sending a message with parameter c on channel ch is denoted by
ch!(c), and the reception is written ch?(v).
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Fig. 1. Auction automaton A(i)

In order to better explain how the automaton works, we’ll look at states S1
and S2, and the transitions between them.

The condition to trigger the transition from S1 to S2 is given by the formula
bid?(v) ∧ v > HBid ∧ i �= HBidder ∧ ¬Ended, which should be read as follows:

– a message on channel bid is received with a value v superior to the current
HBid (v > HBid);

– the client isn’t the current winner (i �= HBidder);
– the auction is still open (¬Ended).
If these requirements are fulfilled, the transition is triggered, the client goes to
S2 and the state variables are modified in the following manner:

– PRHBidder := HBid sets the pending returns for the old winner to their old
winning bid;

– HBid := v sets the new top bid to v;
– HBidder := i sets the new winner to the client i.

Fig. 2. Refund automa-
ton R(i)

Going from S2 back to S1 works the same way.
The transition can be triggered when the condition
withdraw?∧ i �= HBidder∧PRi > 0 is true, that is when
a message on withdraw is received and the client i is
not the highest bidder and has some amount to with-
draw. When moving to S2, the variable PRi is reset
and a message refundi!(PRi) is sent. The correspond-
ing reception refundi?(v) is part of a refund automaton
R(i) run by each client, as seen in Fig. 2. The role of
this one state automaton is to accept that kind of mes-
sage and do whatever necessary to accept the refunded value v.

Finally, the global system of the auction and the clients it interacts with can
be expressed as a product of the auction automata and the refund automata

ΠiA(i) × ΠiR(i)

A client of this contract, aka the automaton, needs to be sure that certain
properties hold. These properties can be simple and visible in the transition
requirements, or they can be more complex to the point where you can’t prove
them through the requirements alone. Consider two properties:
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(a) “Each new winning bid is superior to the old winning bid”
(b) “I do not lose money”

Property (a) is easy to see as it’s the requirement v > HBid of Fig. 1. Property
(b) is less obvious as it requires not only a model of the contract itself, but also
of the underlying blockchain semantics.

3 Modeling a Smart Contract with Cubicle

Anything done by a smart contract can be traced back to its blockchain. If
HBidder is modified, that means that there was a message on channel bid with a
sufficiently large value. Not being able to trace an action back to the blockchain
implies a problem. Therefore, modeling a smart contract requires an accom-
panying model of the blockchain. We do this with the help of Cubicle, briefly
introduced in the next subsection.

3.1 Cubicle

Cubicle is an SMT-based model checker for parameterized transition systems.
For a more in-depth and thorough explanation, we refer the reader to [7,8]. In
this section, we give a quick overview of the necessary aspects of Cubicle.

Cubicle input programs represent transition systems described by: (1) a set
of type, variable and array declarations; (2) a formula for the initial states; and
(3) a set of guarded commands (transitions).

Type, Variable and Array Declarations. Cubicle has several built-in data
types, among which are integers (int), booleans (bool), and process identifiers
(proc). Additionally, the user can define enumerations. For instance, the code

type l o c a t i o n = L1 | L2 | L3
var W : l o c a t i o n
var X : i n t
ar ray Z [ proc ] : boo l

defines a type location with three constructors (L1, L2, and L3), two global
variables W and X of types location and int, respectively, and a proc-indexed
array Z. The type proc is a key ingredient here as it is used to parameterize the
system: given a process identifier i, the value Z[i] represents somehow the local
variable Z of i.

Initial States. The content of a system state is fully characterized by the value
of its global variables and arrays. The initial states are defined by an init for-
mula given as a universal conjunction of literals. For example, the following
declaration

i n i t ( i ) { Z [ i ] = Fa l s e && W = L1 }
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should be read as: “initially, for all process i, Z[i] is equal to False and W contains
L1”. (Note that the content of variable X is unspecified, and can thus contain
any value)

Transitions. The execution of a parameterized system is defined by a
set of guard/action transitions. It consists of an infinite loop which non-
deterministically triggers at each iteration a transition whose guard is true and
whose action is to update state variables. Each transition can take one or several
process identifiers as arguments. A guard is a conjunction of literals (equations,
disequations or inequations) and an action is a set of variable assignments or
array updates. For instance, the following transition

t r a n s i t i o n t r 1 ( i )
r e qu i r e s { Z [ i ] = Fa l s e }
{ W := L2 ;

X := 1 ; }
should be read as follows: “if there exists a process i such that Z[i] equals False,
then atomically assign W to L2 and X to 1”.

Unsafe States. The safety properties to be verified are expressed in their
negated form and characterize unsafe states. They are given by existentially-
quantified formulas. For instance, the following unsafe formula

unsafe ( i ) { Z [ i ] = Fa l s e && X = 1 }
should be read as follows: “a state is unsafe if there exists a process i such that
Z[i] is equal to False and X equals 1”.

Error Traces. All of the above allows Cubicle to verify a model. If it finds a
way to reach an unsafe state, an error trace is printed, such as the following

E r r o r t r a c e : I n i t −> t2 (#1) −> t3 (#3) −> unsafe [ 1 ]

This lets the user check which sequence of transitions led to the unsafe state. A
number preceded by # is a process identifier. This means that t2(#1) stands for
process 1 activating that transition. If you have multiple unsafe states declared,
the index next to unsafe lets you know which one was reached.

3.2 Blockchain Model

To model the blockchain we first need to model the elements that will constitute
transactions seen in the blockchain. Consider the transactions as the message
passing mechanism from Sect. 2.

type c a l l = Bid | Withdraw | Send | F i n i s h | None

var Cmd : c a l l
var Value : i n t
var Sender : p roc
var Recv : p roc
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The constructors of type call represent calls to smart contract entry points
(message channels). Bid, Withdraw, Finish, Send correspond to the channels bid,
withdraw, end, and refund, while None means absence of transactions. The ele-
ments of a transaction are defined by four variables:

– Cmd, the calls to an entry point;
– Value, the amount of money attached to a transaction;
– Sender, who calls the contract;
– Recv; the receiver, used in the case of Withdraw, where the contract calls a

client.

Once the elements of a transaction are declared, the next step is to model the
transaction mechanism of the blockchain. For that, we define three transitions
to simulate transactions to the three smart contract entry points.

t r a n s i t i o n c a l l b i d ( i )
r e qu i r e s { Cmd = None }
{

Cmd := Bid ;
Value := Rand . I n t ( ) ;
Sender := i ;

}

t r a n s i t i o n c a l l w i t h d r aw ( i )
r e qu i r e s { Cmd = None }
{

Cmd := Withdraw ;
Sender := i ;

}

t r a n s i t i o n c a l l f i n i s h ( i )
r e qu i r e s { Cmd = None }
{

Cmd := F i n i s h ;
Sender := i ;

}
Each transaction has a parameter i which represents the client who called

the corresponding entry point. The only requirement indicates that the contract
can’t be doing something else simultaneously (Cmd = None). The effects of
these transitions are simple: Cmd is set to the corresponding constructor (Bid,
Withdraw, or Finish, respectively) and the variable Sender is assigned to i. In
call bid, the variable Value is set to a (positive) random integer corresponding to
the amount bid by i.

Once the blockchain has been modeled, we can move on to modeling the
contract itself.
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3.3 Smart Contract Model

To model the actual contract, we need to model its variables and its func-
tions. These correspond to the state variables and the transitions from Sect. 2,
respectively.

var HBidder : p roc
var HBid : i n t
var Ended : boo l
var Owner : p roc
ar ray PR[ proc ] : i n t

The transitions from state S1 to S2 and back are modeled as Cubicle tran-
sitions. These transitions serve as entry points for our contract.

t r a n s i t i o n b id ( i )
r e qu i r e s { Ended = Fa l s e && Cmd = Bid && i = Sender

&& i <> HBidder && PR[ i ] = 0 && Value > HBid }
{

HBid := Value ;
HBidder := i ;
PR[ HBidder ] := HBid ;
Cmd := None ;

}

t r a n s i t i o n withdraw ( i )
r e qu i r e s { Cmd = Withdraw && i = Sender && PR[ i ] > 0 }
{ PR[ i ] := 0 ;

Cmd := Send ;
Value := PR[ i ] ;
Recv := i ;

}
Transition bid is called by one process, i, who has to be the Sender, but not

the current HBidder. The other requirements should be read as follows:

Ended = False: the auction is open
Cmd = Bid: the transaction in the blockchain is Bid
PR[ i ] = 0: the new bidder hasn’t previously bid
Value > HBid: the new bid is bigger than the old winning bid

The effects are simple, HBidder and HBid are set to the new values, PR for
the old winner who has now been outbid is set to his old bid value, and Cmd is
reset to None to indicate that the contract is no longer occupied.

Similarly, the requirements of transition withdraw are the following:

Cmd = Withdraw: the transaction in the blockchain is a call to withdraw
i = Sender: the process i is the one that called the function
PR[ i ] > 0: the person previously bid and was outbid by someone
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The effects of transition withdraw are slightly different since withdraw goes on
to send money to whoever called the method. The receiver is now set to i (Recv
:= i), and the value that will accompany the transaction is set to the amount
of money to be returned (Value := PR[ i ]). The pending return PR[ i ] is reset
globally for client i (PR[ i ] = 0) and Cmd is set to Send, to indicate that the
contract is calling the client’s method. The transition which Send corresponds
to can be seen below:

t r a n s i t i o n v a l u e ( i )
r e qu i r e s { Cmd = Send && Recv = i }
{ Cmd := None ; }
This transition checks that Send was in fact called (Cmd = Send), as well as

the fact that the receiver is the currently active process (Recv = i). It then resets
Cmd to None to free the contract.

4 Defining and Verifying Properties

Recall that we want to be sure of certain properties:

(a) “Each new winning bid is superior to the old winning bid”
(b) “I do not lose money”

Once defined informally, the properties need to be converted into safety proper-
ties. This is not always straightforward and might require additional information.
It is done via a two-step process consisting of (i) defining extra logical formulas
(ghost variables) and (ii) instrumenting the model with these formulas.

4.1 Ghost Variables and Model Instrumentation

Ghost variables, introduced below, do not appear in the contract’s state vari-
ables, nor do they impact the Cubicle model outside of property verification.

ar ray Out [ proc ] : i n t
ar ray I n [ p roc ] : i n t
var Old HBid : i n t

The variables Out and In are for property (b). In is an array storing how much
each client (aka process) bids, and Out stores how much they get back if/when
they call withdraw. Old HBid tracks the old highest bid for property (a). The
code below is the instrumented model. Transition withdraw has been omitted
since it is not instrumented.

t r a n s i t i o n b id ( i )
r e qu i r e s { Ended = Fa l s e && Cmd = Bid && i = Sender

&& i <> HBidder && PR[ i ] = 0 && Value > HBid}
{

HBid := Value ;
HBidder := i ;
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PR[ HBidder ] := HBid ;
Cmd := None ;
Old HBid := HBid ;
I n [ i ] := In [ i ] + Value ;

}
t r a n s i t i o n v a l u e ( i )
r e qu i r e s { Cmd = Send && Recv = i }
{ Cmd := None ;

Out [ i ] := Out [ i ] + Value ;
}
The ghost variables appear only in the action parts of the transitions. The bid

transition updates HBid to set a new highest bid value. To keep track of what the
old value was, Old HBid is set to HBid’s value. In is updated for the new bidder
with their bid value. The transition value is instrumented instead of withdraw,
since the most important action, giving the client back their money, happens
during value. It uses Out to keep track of the money that’s been returned.

The ghost variables are also part of the initial state declaration.

i n i t ( i ) { Ended = Fa l s e && HBid = 0 && Cmd = None
&& PR[ i ] = 0 && In [ i ] = 0 && Out [ i ] = 0
&& Old HBid = 0 }

That is to say, the auction hasn’t ended, there is no winning bid, the contract
isn’t doing anything, and no one has bid and subsequently withdrawn money.

4.2 Defining Properties

Once the code is instrumented, we can introduce the safety properties we want
Cubicle to check.

Property (a): New bids are higher

The first property is “Each new winning bid is superior to the old winning bid”.
This property can be easily defined by the following unsafe formula which uses
only the ghost variables Old HBid and HBid.

unsafe ( ) { Old HBid > HBid }
Checking property (a) with the above formula simply means declaring

Old HBid being superior to HBid as unsafe, but only if the model was correctly
instrumented with these variables.

Property (b): Do I lose money?

Defining this property is less obvious. While ghost variables have been introduced
to keep track of money exchanges between users and the contract, another prob-
lem is the lack of precision of the sentence. When should we check that a user
did not lose money? At the end of the auction? If so, when do we consider the
auction to really be over?

We will make these issues more concrete in the next section. In particular,
we shall explain how we arrived at the following formulation of property (b):
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unsafe ( i ) { Ended = True && i <> HBidder && PR[ i ] = 0
&& Cmd = None && Out [ i ] < I n [ i ] }

5 Interpreting Cubicle Error Traces

As stated previously, the tricky property is “I do not lose money”. The logical
implication is that if the auction is over, (Ended = True), then your Out isn’t
less than your In.

unsafe ( i ) { Ended = True && Out [ i ] < I n [ i ] }
Except Cubicle prints the following error trace:

E r r o r t r a c e : I n i t −> c a l l b i d (#1) −> b id (#1) −>
c a l l f i n i s h (#1) −> f i n i s h a u c t i o n ( ) −> unsafe

UNSAFE !

Upon further inspection, it becomes obvious why this state is reached. This is
true for every client, even the winner, who technically does lose money, so to
speak. We modify our unsafe state to the following by adding that the process
cannot be the winner (HBidder <> i).

unsafe ( i ) { Ended = True && i <> HBidder &&
Out [ i ] < I n [ i ] }

However, Cubicle still says

E r r o r t r a c e : I n i t −> c a l l b i d (#1) −> b id (#1) −>
c a l l b i d (#2) −> b id (#2) −>
c a l l f i n i s h (#1) −> f i n i s h a u c t i o n ( ) −> unsafe

UNSAFE !

as what’s missing is checking whether or not a client withdrew their bid. We
incorporate that check below.

unsafe ( i ) { Ended = True && i <> HBidder &&
PR[ i ] = 0 && Out [ i ] < I n [ i ] }

but Cubicle can still reach that state:

E r r o r t r a c e : I n i t −> c a l l b i d (#1) −> b id (#1) −>
c a l l b i d (#2) −> b id (#2) −>
c a l l f i n i s h (#1) −> f i n i s h a u c t i o n ( ) −>
c a l l w i t h d r aw (#1) −> withdraw (#1) −> unsafe

UNSAFE !

Once the smart contract has completely finished every action associated with
a function (i.e. transition), it resets Cmd to None, which we haven’t checked for.
We add that to our unsafe state.

unsafe ( i ) { Ended = True && i <> HBidder && PR[ i ] = 0
&& Cmd = None && Out [ i ] < I n [ i ] }
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The above is the correct implementation of “I do not lose money”. This time
Cubicle replies Safe

But error traces aren’t always the result of incorrectly written unsafe states.
The automaton in Fig. 1 is incorrect. Modeling its bid requirements in Cubicle
gives the following model and subsequent error trace:

t r a n s i t i o n b id ( i )
r e qu i r e s { Ended = Fa l s e && Cmd = Bid && i = Sender

&& i <> HBidder && Value > HBid}
. . .

Unsafe t r a c e : c a l l b i d (#1) −> b id (#1) −> c a l l b i d (#3) −>
b id (#3) −> c a l l b i d (#1) −> b id (#1) −>
c a l l b i d (#2) −> b id (#2) −> c a l l f i n i s h (#2) −>
f i n i s h a u c t i o n ( ) −> c a l l w i t h d r aw (#1)−>
withdraw (#1) −> v a l u e (#1) −> unsafe

UNSAFE !

This is due to the requirements in Fig. 1 for bid not matching bid’s effects on
the state variables. When a client is outbid, they can’t bid again without first
having withdrawn their old bid. This is seen in Fig. 1 when bid sets PRi to v
with = instead of +=. This means that if an old bid wasn’t withdrawn, its value
will be overwritten and the client will lose that amount. The way to fix this is
to add PRi = 0 to bid’s requirements in Fig. 1

6 Related Work

By their nature, smart contracts lend themselves well to formal verification.
Numerous approaches have been used to verify smart contracts. In [11], the
authors create a three-fold model of Ethereum smart contracts and apply model
checking in order to verify them. The authors of [9] introduce a finite-state
machine model of smart contracts along with predefined design patterns, allow-
ing developers to conceive smart contracts as finite-state machines, which can
then be translated to Solidity. Deductive verification platforms like Why3 are
used to verify specific properties of smart contracts. The authors of [10] use Why3
to verify RTE properties like integer overflow and functional properties, like the
success of a transaction. Interactive proof assistants are also used in smart con-
tract verification, such as Isabelle/HOL in [4] in order to check Ethereum byte-
code. A major trend is the focus on a specific language, most notably Solidity,
whereas we propose a more general framework, not tied to any concrete language.
Our application of parameterized model-checking allows us to address the para-
metric aspects of smart contracts and treat them as concurrent programs.
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7 Conclusion and Future Work

In this paper we proposed a two-layer framework for smart contract verification
with the model checker Cubicle. This method implements a model of the smart
contract itself and the blockchain transaction mechanism behind it. Our method
introduces a way of verifying various types of functional properties linked to a
smart contract as Cubicle safety properties. Since this is done through ghost vari-
ables and model instrumentation, it has no impact on the original smart contract
itself, meaning it is independent of any particular smart contract language, and
is therefore generalizable and usable for multiple smart contract languages. We
also describe a way of interpreting potential error traces generated by Cubicle,
and how they can aid in the development of a smart contract. An immediate line
of future work is to automate this stepwise process. We need to define an abstract
high-level language to express the properties to be checked by Cubicle. From this
language, the ghost variables will be automatically generated to instrument the
Cubicle code. Furthermore, we would also like to consider automatic translation
of Solidity or Michelson code to Cubicle.
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Abstract. Callbacks in Smart Contracts on blockchain-based dis-
tributed ledgers are a potential source of security vulnerabilities: call-
backs may lead to reentrancy, which has been previously exploited to
steal large sums of money. Unfortunately, analysis tools for Smart Con-
tracts either fail to support callbacks or simply detect and disallow pat-
terns of callbacks that may lead to reentrancy. As a result, many authors
of Smart Contracts avoid callbacks altogether, and some Smart Contract
programming languages, including Solidity, recommend using primitives
that avoid callbacks. Nevertheless, reentrancy remains a threat, due to
the utility of and frequent reliance on callbacks in Smart Contracts.

In this paper, we propose the use of type invariants, a feature of some
languages supporting formal verification, to enable proof of correctness
for Smart Contracts, including Smart Contracts that permit or rely on
callbacks. Our result improves upon existing research because it neither
forbids reentrancy nor relies on informal, meta-arguments to prove cor-
rectness of reentrant Smart Contracts. We demonstrate our approach
using the SPARK programming language, which supports type invari-
ants and moreover can be compiled to relevant blockchains.

Keywords: Callbacks · Invariants · Formal verification · Smart
contracts

1 Introduction

Smart contracts [18] are protocols that are intended to facilitate, verify or enforce
the negotiation or performance of a contract. Within a blockchain-based dis-
tributed ledger [16], smart contracts are realized by autonomous agents that
always execute specific functionality in response to defined events, such as the
receipt of a message or transaction [7]. Smart contracts make their behavior
available through public interfaces, are typically small, and have no global state.
However, their composition, especially through callbacks, leads to complex and
difficult-to-predict behavior—behavior that may be malicious, as illustrated in
the high-profile attack on the Ethereum DAO [5].

Callbacks arise when one or more of the parties interacting with a smart
contract is another smart contract: a message or transaction sent to a public
c© Springer Nature Switzerland AG 2020
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interface of the first smart contract, S1, may result in the sending of a message
or transaction to a public interface of the second smart contract, S2, and so on.
Callbacks are useful and quite common [9], but may also lead to reentrancy: a
public interface of S1 may send a message to the public interface of S2, which
may send a message back to S1 through the same public interface.

Reentrancy may lead to data-integrity violations. Data local to S1 may be
in an inconsistent state when control flow is transferred to S2. S2 then calls S1.
Upon reentry to S1, the data remains in an inconsistent state, likely violating
the assumptions under which the smart contract was judged to be correct. The
attack on the Ethereum DAO was essentially an attack based on reentrancy that
exploited inconsistent data. The chain of callbacks leading to reentrancy may be
arbitrarily long. Moreover, new smart contracts may be added to the blockchain
at any time. Thus, in general, authors of smart contracts must assume that any
potential callback may result in reentrancy. Current approaches that address this
problem focus on identifying potential callbacks with static analysis [10], use gas
limits to restrict the computation of a callback and limit recursion depth [7], or
rely on meta-arguments to prove correctness of smart contracts with external
calls [9].

However, the threat to data integrity posed by reentrancy from callbacks
or by recursion is not new and has received considerable attention by the for-
mal verification community, although not in the context of smart contracts. In
object-oriented languages, for example, callbacks are ubiquitous and play an
important role in many design patterns [8]. Likewise in procedural languages, if
the entirety of the code cannot be assumed to be available for analysis, any call
to unknown code may result in recursion. The answer presented by the formal-
verification community to address this issue is the use of invariants on critical
state. Invariants ensure that, outside of specifically identified sections of code,
data-integrity properties are always enforced.

In this paper, we apply invariants to critical data local to smart contracts
and thus derive a means to prove the correctness of smart contracts, even in the
presence of callbacks and potential reentrancy. We demonstrate our approach
using the SPARK programming language and also show that our method can
be applied in other languages that support formal verification.

2 Context

2.1 The Token Contract

A typical smart contract is the token contract. It allows sharing money or other
tokens accessed by several accounts. At its heart the token contract is a map from
accounts (identified by addresses) to the amount of tokens they have access to:

type Balances_Type is array (Address) of Natural;
Balances : Balances_Type;
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There are functions to transfer tokens between users, adding tokens to one’s
allowance, and getting tokens paid out. In the simplest case, tokens are just
ether. But note that the map above is only the contract’s view of reality and of
how many ether every user has access to. Bugs in the smart contract can cause
a deviation between the reality and the token contract’s vision of reality. For
example, it is implicit in the above definition that the token contract (which is
itself an account) holds at least as much money as the sum of the balances for
all users. If there is a bug in the smart contract, this may not actually be the
case.

2.2 Reentrancy, the Problem

A possible version of the token contract’s payout procedure looks like this:

Procedure Payout (Sender : Address; Amount : Natural) is
begin
if Balance (Sender) >= Amount then
Send (Sender, Amount);
Balance (Sender) := Balance (Sender) - Amount;

end if;
end Payout;

The Sender object is automatically filled out by the calling mechanism of
the language and corresponds to the invoking entity. We assume here that the
sender is also a smart contract, because that is the interesting case. The Send
procedure is also a primitive of the smart contract infrastructure. In the solidity
language, there are several ways to send ether, we assume here that Send sends
the money in such a way that the fallback function of the receiving contract is
triggered. We ignore discussions of gas limits here and assume that the fallback
function has as much gas available as required.

This version of the program is vulnerable to a reentrancy attack. In detail,
it works this way. The attacker creates another smart contract as follows:

1. The attacking contract first puts some small amount of money inside the
token contract using a Deposit functionality (not shown here).

2. The attacking contract calls the Payout procedure of the token contract,
setting the Sender object to the smart contract itself, using an Amount which
is less or equal to the deposited value.

3. This causes the condition in the Payout procedure to succeed and the token
contract to send money to the attacking contract;

4. Sending money triggers the fallback code of the attacking contract. The fall-
back code simply calls Payout again, with the same amount.

5. As Payout has not yet updated the internal state of the token contract, the
if- condition is still true and the token contract sends money again.

6. This again triggers the fallback code of the attacking contract.
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The recursion continues until the transaction chain runs out of gas or the
token contract doesn’t have any ether any more.

A fix for the token contract is to update the internal state before sending
any money:

Procedure Payout (Sender : Address; Amount : Natural) is
begin
if Balance (Sender) >= Amount then
Balance (Sender) := Balance (Sender) - Amount;
Send (Sender, Amount);
end if;

end Payout;

Reentrancy can still occur, but now the attacker cannot circumvent the protect-
ing condition, so he will be able only to withdraw his own balance. Of course
the Token contract is just one example of a contract that may be vulnerable to
a reentrancy attack. Any contract that calls code of unknown other contracts is
potentially vulnerable.

3 Existing Protections and Related Work

Reentrancy attacks in the Ethereum network are real and have cost a lot of
money for the victims in the past. So measures have been taken to avoid the
problem. To the best of our knowledge, these measures mostly consist of exclud-
ing reentrancy altogether (see also the section concerning related work). For
example, the most commonly used functions for transferring ether now have a
gas limit, so that the receiving contract can do only very few actions (in par-
ticular not call other contracts). However, as Grossman et al [9] show, callbacks
are used in a large number of contracts and cannot be completely avoided.

3.1 Related Work

There is a vast body of work related to data invariants in object-oriented pro-
gramming [2,13], which lead to the formulation of class invariants in JML [12].
Our work is also based on this existing research and applies it to callbacks in
smart contracts. Existing formal methods for smart contracts that address this
vulnerability simply forbid all reentrancy. This is usually achieved by only sup-
porting transfers of ether that do not trigger the fallback code of the recipient
(or specify a very small gas limit that does not allow much code execution),
or excluding the problem from the analysis. This is the case for the ZEUS sys-
tem [10], where a warning is signaled for any code that may contain reentrancy.
Bhargavan et al. [3] present an F*-based method to apply formal verification
to smart contracts. They discuss reentrancy and show that their system detects
reentrancy, but do not present any solution to the issue. Grossman et al. [9]
present the theoretical notion of effectively callback free contracts, whose state
changes, even in the presence of callbacks (or reentrancy) happen in an order
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that can also be achieved by a callback-free sequence of calls. Such callbacks are
harmless wrt. the type of reentrancy attack discussed here. Their paper mainly
concentrates on online detection of violations of this property, but they also
have a section of formal verification of a contract using Dafny [14]. However,
Dafny does not support object or class invariants, so their Dafny-verification
uses a meta-argument to remove some effects from calls that might contain call-
backs. Our method can be seen as an in-language way to show that a contract
is effectively callback free, which does not rely on meta-arguments.

4 Using SPARK Type Invariants to Deal with Callbacks

4.1 Quick Overview over SPARK

SPARK [15] is a subset of Ada [1] and targets mainly embedded applications. It
has strong support for formal verification.

Basic Annotations for Proof. SPARK has built-in support for formal verifi-
cation. One basic feature is pre- and postconditions, as well as global annotations
that can be attached to a procedure declaration:

procedure Add_In_Z (X, Y : Integer)
with Global => (In_Out => Z),

Post => (Z = Z’Old + X + Y);

Extra information can be attached to a procedure using the with keyword. This is
used to attach the information Global, which says that this procedure reads and
writes the global variable Z. Also, we attached the information Post, which says
that the new value of this variable Z is the sum of the old value of Z and the values
of X and Y (we ignore concerns of arithmetic overflow in this example). SPARK
can formally verify that functions indeed respect the attached information such
as Global and Post, similar to e.g. Dafny or Why3; in fact the formal verification
engine in SPARK is based on Why3.

Private Types. SPARK allows the user to separate a project into packages,
each package having a package specification, visible by others, and an implemen-
tation which is private to this package. The package specification can contain
so-called private types, or abstract types in other languages, where clients of the
package cannot see the actual implementation of the type, only that the type
exists:

type T is private;
...
type T is new Integer;
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Type Invariants. In SPARK, one can attach to type invariants to the imple-
mentation of a private type, for example as follows:

type T is private;
...
type T is record

A : Integer;
B : Integer;

End record
With Type_Invariant => T.A < T.B;

The idea is that type invariants must be maintained by the package. The package is
allowed to assume the type invariant on input of any of its procedures or functions,
and is allowed to temporarily break the invariant. However, it has to reestablish the
invariant whenever an object leaves the scope of the package. This can be either by
returning such an object to the caller, or by passing the object to a procedure or
function that belongs to another package. The SPARK tool can prove that type
invariants are correctly used and enforced by the package. SPARK type invariants
have many restrictions; we mostly ignore these restrictions in the paper to keep a
natural flow to the paper, but a dedicated section explains how we circumvented
them to be able to actually use the SPARK tool.

Ghost Code. Any declaration in SPARK (e.g. a type, object or procedure)
can be annotated as ghost. This means that the declaration is only used for the
purposes of verification, and does not contribute to the functionality of the code.
This property is checked by the compiler and SPARK tools. A well-defined set of
statements, such as assignments to ghost objects and calls to ghost procedures,
are considered ghost code by the compiler and removed when compiling the pro-
gram1. The following code example makes sure that the procedure Do_Some_Work
is called after calling Initialize first.

Initialized : Boolean := False with Ghost;

procedure Initialize with
Post => Initialized;

procedure Do_Some_Work with
Pre => Initialized;

procedure Initialize is
begin

... Do some initialization here ...
Initialized := True;

end Initialize;

1 The compiler can also be configured to compile the application with ghost code
enabled, which can be useful for dynamic checking of properties e.g. during unit
testing.
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4.2 Adding Annotations to the Payout Procedure

The first step to apply formal verification would be to add pre- and postcondi-
tions to the payout procedure. Here is a first attempt:

Procedure Payout (Sender : Address; Amount : Natural)
with Post =>
(for all Addr of Address =>
if Addr = Sender and then Balance’Old (Addr) >= Amount
then Balance (Addr) = Balance’Old (Addr) - Amount
else Balance (Addr) = Balance’Old (Addr));

This postcondition summarizes the naive understanding of what Payout does:
it sends a fixed amount of money to Sender, updating the Balance variable as
well. As is common in systems that are based on deductive verification, one
needs to specify also what remains unchanged. Here, Balance is only changed
for the Sender, and only when the amount is actually sent (that is, actually
available to be paid out). To prove this postcondition, we also need to explain
what Send is doing. In SPARK terms this means writing pre- and postconditions
for the Send procedure, and Global annotations. Global annotations are frame
conditions, a fundamental element of proof tools for imperative languages. They
say what global state can potentially be modified by the procedure. It turns out
Send can have quite a large effect, given that it can execute completely unknown
code. The Payout procedure might well attempt to send money to some smart
contract that was added to the blockchain at a later stage. Also we have seen
that via reentrancy, Send can even modify our own state. We don’t really care
about the state of any other smart contract here, but we do care about the state
of our own contract. So we have no choice but to annotate Send with this global
annotation:

Procedure Send (Addr : Address; Amount : Natural)
with Global => (In_Out => Balance);

At this stage, we can’t really add any information to Send in the form of a post-
condition on how it changes the state. After all, Send may call any procedure of
the token contract, via any of the public procedures or functions of the contract.

However, now there is no chance that we can prove the postcondition of
Payout, because Send can change our own state, and in an unknown way! More-
over, looking at the postcondition we wrote for Payout, it is wrong anyway, even
for the corrected code. Via reentrancy, the sender can transfer more money than
just Amount, though in the corrected version the attacker cannot exceed his bal-
ance. We need to go back to the basics and understand the difference between
the original version of Payout and the corrected one.
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4.3 Why the Fix Works

For the following, we now assume that Send contains two actions, that are exe-
cuted in this order:

1. The actual sending of ether from the sender to the recipient;
2. The execution of the fallback code of the recipient.

The issue with the original version of Payout was that in the second step, the
global state of the token contract was in an inconsistent state. The money was
already sent, but the Balance map hadn’t been updated yet. The fallback code
can be executed in this inconsistent state, and that’s why the if-condition in
Payout becomes useless. Now it is easy to see why the fix works: both the update
to the token state as well as the ether transfer have been done when calling the
fallback code. When the fallback code is executed, the state of the token contract
is consistent. While the fallback code can still cause reentrancy, there should be
no more “urprises” Grossman et al. [9] call the corrected version effectively call-
back free, because the state changes happen in such a way that they could also be
achieved by a sequential series of calls to the interface of the object, without any
reentrancy. This is not the case in the incorrect version, where the inconsistent
sequence of state changes can only be achieved via reentrancy. In SPARK, we
can model the two steps of Send as follows. We introduce ghost state for sent
tokens and wrap the Send procedure as follows:

Sent : Balances_Type with Ghost;

procedure Wrap_Send (Addr : Address; Amount : Natural) is
begin
Sent (Addr) := Sent (Addr) + Amount;
Send (Addr, Amount);

end Send;

This also requires to update the global effect of Send to include Sent. Here is
the a summary of the changes:

procedure Send (Addr : Address; Amount : Natural)
With Global => (In_Out => (Balance, Sent));

procedure Wrap_Send ... -- as above

procedure Payout (Sender : Address; Amount : Natural) is
begin
if Balance (Sender) >= Amount then
Balance (Sender) := Balance (Sender) - Amount;
Wrap_Send (Sender, Amount);
end if;

end Payout;
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4.4 The Solution in SPARK

So to prove the correctness of the corrected version, we need to:

1. Come up with a criterion for the data to be consistent;
2. Prove that the data is consistent whenever the control flow leaves the token

contract, either via a regular return statement, or via a call to other code.

For (1), concentrating only on the Payout procedure, it is enough to say that for
each address, the sum of the money sent and the balance should remain constant.
A way of saying that it stays constant is to say that it is equal to some other
quantity which stays unmodified during the whole computation. Let’s represent
this quantity by a new array K:

K : Balances_Type with Ghost;

For (2), luckily, the SPARK language already has a construct that does exactly
that. It is called a type invariant, that is a property attached to a type, that
should hold at certain points. Simply expressing the property of (1) as a type
invariant and attaching it to the right type will do exactly what we need. We
can express our invariant of the relevant data like this:

(for all A of Address => K (A) = Balance (A) + Sent (A))

That is all. We can now remove the postcondition of Payout2. The final version
can be proved by SPARK in a few seconds; the incorrect version (by switching
the two statements in the if-block) is correctly not proved, because the type
invariant cannot be established before calling Send.

4.5 Some Limitations of SPARK and Their Workarounds

As mentioned, we have described a solution which uses some features that
SPARK doesn’t actually support (but could). First, type invariants are attached
to types, while we would like to attach them to objects, or maybe to the package
itself. Then, type invariants can’t mention global objects, while the invariant we
showed mentions the three global objects Balance, Sent, and K. We can work
around these two annoyances simply by creating a record type which contains
these three variables as fields. We attach the type invariant to this type:

Type Data_Type is private;
...
type Data_Type is record

Balance : Balance_Type;
Sent : Balance_Type;
K : Balance_Type;

2 We can’t really express anything useful in the postcondition here. Any public func-
tion of the Token contract might be called via reentrancy, updating the state in a
consistent but unknown way.
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end record
with Type_Invariant =>

(for all A of Address => K (A) = Balance (A) + Sent (A));

This works well. One further limitation is that we now cannot specify the Ghost
status of Sent and K anymore, because currently Ghost status cannot be set
for individual fields of a record. But the entire record cannot be ghost, because
the Balance data is required to be present during execution. The last limitation
is that we cannot create global variables of a type which has a type invariant.
So we need to add a parameter of type Data_Type to all relevant procedures,
including the Send wand Wrap_Send procedures.

Reasoning in SPARK is strict on a per-procedure basis; this means that
adding a wrapper such as Wrap_Send potentially increases the verification effort,
as the wrapper would need annotations and separate proofs. However, local
procedures with no annotations are automatically inlined by SPARK. So we
deliberately do not add any pre- and postconditions to Wrap_Send.

4.6 Compilation of SPARK to Blockchain Virtual Machines

SPARK is a subset of Ada, so if we can compile Ada to a blockchain, we are
good. A direct compiler from Ada to (say) EVM does not exist, but various
indirect ways are possible. The easiest way is to use go from Ada to LLVM
via the gnat-llvm [4] tool. The LLVM intermediate representation can then be
translated to Solidity using Solidify, a tool that can generate Solidity code from
LLVM [11]. Finally, we can use the Solidity compiler to translate to EVM byte-
code citeEthereumFoundation.

5 Other Languages that Support Reasoning About
Callbacks

SPARK is not the only tool to have both type invariants and ghost code. We give
a non-exhaustive overview over other languages and tools that would also sup-
port this style of reasoning. Why3 [6] is a well-known research tool for formal
verification. There is ongoing work to support compilation to the EVM byte-
code [17]. Also, Why3 has support for type invariants and ghost code, although
the rules are a bit different from the ones in SPARK. One main difference is that
Why3 has no notion package encapsulation of abstract types, that is, a type in
Why3 is either abstract for everybody, or the definition of the type fully visi-
ble to everybody. So there is no notion of scope for a type invariant, and type
invariants are checked at every function boundary. We suspect that this is a bit
too restrictive for realistic contracts. Our example, if the Wrap_Send function
is inlined, should work in the same way in Why3. Similar to SPARK, the type
invariant has to be attached to a single type, so one has to introduce a record
type that holds all relevant data. The Java modeling language JML [12] has sup-
port for class invariants and ghost code, so the code shown in this paper should
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be easy to translate to JML and should work there, too. In addition, the JML
language allows to specify an effect called “everything”, which is a convenient
way to say that a call may write “any” visible object. In SPARK and Why3,
the user has to manually deduce the relevant set of objects, and annotate Send
correctly. This style of verification using type or class invariants could be sim-
ulated in a language without type invariants (such as Dafny) by repeating the
invariant as appropriate in pre- and postconditions and intermediate assertions.
But this would require a meta-argument to show that the reasoning is correct;
also it would be very error-prone. An intermediate assertion, for example, could
be omitted by accident, and the tool would not be able to detect the error.

6 Conclusion

Research in deductive verification has already tackled the issue of callbacks and
reentrancy, but to our knowledge this research had never been applied to smart
contracts. We have shown that the language feature of type invariants enables
deductive verification of smart contracts even in the presence of callbacks, includ-
ing reentrancy. This result improves upon existing research, that either excludes
callbacks, or requires a meta-argument to remove effects. Our paper has used
SPARK to illustrate the running example, but Why3 and JML have similar lan-
guage features and could also support this style of reasoning. Our conclusion is
that a language for formal verification of smart contracts should have support for
type, object or class invariants to efficiently deal with callbacks and reentrancy
issues.
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Abstract. RANDAO is a commit-reveal scheme for generating pseudo-
random numbers in a decentralized fashion. The scheme is used in emerg-
ing blockchain systems as it is widely believed to provide randomness
that is unpredictable and hard to manipulate by maliciously behav-
ing nodes. However, RANDAO may still be susceptible to look-ahead
attacks, in which an attacker (controlling a subset of nodes in the net-
work) may attempt to pre-compute the outcomes of (possibly many)
reveal strategies, and thus may bias the generated random number to
his advantage. In this work, we formally evaluate resilience of RANDAO
against such attacks. We first develop a probabilistic model in rewrit-
ing logic of RANDAO, and then apply statistical model checking and
quantitative verification algorithms (using Maude and PVeStA) to ana-
lyze two different properties that provide different measures of bias that
the attacker could potentially achieve using pre-computed strategies. We
show through this analysis that unless the attacker is already controlling
a sizable percentage of nodes while aggressively attempting to maximize
control of the nodes selected to participate in the process, the expected
achievable bias is quite limited.

Keywords: RANDAO · Rewriting logic · Maude · Statistical model
checking · Blockchain

1 Introduction

Decentralized pseudo-random value generation is a process in which participants
in a network, who do not necessarily trust each other, collaborate to produce a
random value that is unpredictable to any individual participant. It is a core pro-
cess of many emerging distributed autonomous systems, most prominently proof-
of-stake (PoS) consensus protocols, which include the upcoming Ethereum 2.0
(a.k.a. Serenity) protocol [8,11]. A commonly accepted implementation scheme
for decentralized random value generation is a commit-reveal scheme, known as
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RANDAO (due to Youcai Qian [16]), in which participants first make commit-
ments by sharing hash values of seeds, and then, at a later stage, they reveal
their seeds, which can then be used for generating the random value. In a PoS
protocol, and in particular in Serenity [11], the scheme is used repeatedly in a
sequence of rounds in such a way that the outcome of a round is used as a seed
for generating the random value of the following round. Moreover, the scheme is
usually coupled with a reward system that incentivizes successful participation
and discourages deviations from the protocol. Several other distributed protocols
have also adopted this scheme primarily for its simplicity and flexibility.

However, this approach may still be susceptible to look-ahead attacks, in
which a malicious participant may choose to refrain from revealing his seed
if skipping results in randomness that is more favorable to him. In general, a
powerful attacker may attempt to pre-compute the outcomes of (possibly many)
reveal strategies, which are sequences of reveal-or-skip decisions, and thus may
anticipate the effects of his contribution to the process and bias the generated
random number to his advantage.

While this potential vulnerability is known and has been pointed to in several
works in the literature (e.g. [4,6,7]), the extent to which it may be exploited by
an attacker and how effective the attack could be in an actual system, such as
a PoS system like Serenity, have not yet been thoroughly investigated, besides
the exploitability arguments made in [7] and [6], which were based on abstract
analytical models. While the high-level analysis given there is useful for gain-
ing a foundational understanding of the vulnerability and the potential of the
attack, a lower-level formalization that captures the interactions of the different
components of the RANDAO process and the environment could provide deeper
insights into how realizable the attack is in an actual system.

In this work, we develop a computational model of the RANDAO scheme
as a probabilistic rewrite theory [1,12] in rewriting logic [13] to formally evalu-
ate resilience of RANDAO to pre-computed reveal strategies. The model gives a
formal, yet natural, description of (possibly different designs of) the RANDAO
process and the environment. Furthermore, the model is both timed, capturing
timing of events in the process, and probabilistic, modeling randomized protocol
behaviors and environment uncertainties. Being executable, the model facilitates
automated formal analysis of quantitative properties, specified as real-valued for-
mulas in QuaTEx (Quantitative Temporal Expressions Logic) [1], through effi-
cient statistical model checking and quantitative analysis algorithms using both
Maude [9] (a high-performance rewriting system) and PVeStA [2] (a statisti-
cal verification tool that interfaces with Maude). Using the model, we analyze
two properties that provide different measures of bias that the attacker could
potentially achieve using pre-computed strategies: (1) the matching score, which
is the expected number of proposers that the attacker controls, and (2) the last-
word score, which is the length of the longest tail of the proposers list that the
attacker controls.

We show through this analysis that unless the attacker is already controlling
a sizable portion of validators and is aggressively attempting to maximize the



Statistical Model Checking of RANDAO’s Resilience 339

number of last compromised proposers in the proposers list, or what we call
the compromised tail of the list, the expected achievable bias of randomness of
the RANDAO scheme is quite limited. However, an aggressive attacker who can
afford to make repeated skips for very extended periods of time (e.g. in thousands
of rounds), or an attacker who already controls a fairly large percentage (e.g.
more than 30%) of participants in the network will have higher chances of success.

The rest of the paper is organized as follows. In Section 2, we quickly review
rewriting logic and statistical model checking. In Sect. 3, we introduce in some
detail the RANDAO scheme. This is followed in Sect. 4 by a description of our
model of RANDAO in rewriting logic. Section 5 the analysis properties and
results. The paper concludes with a discussion of future work in Sect. 6.

2 Background

Rewriting logic [14] is a general logical and semantic framework in which systems
can be formally specified and analyzed. A unit of specification in rewriting logic
is a rewrite theory R, which formally describes a concurrent system including
its static structure and dynamic behavior. It is a tuple (Σ,E ∪ A,R) consisting
of: (1) a membership equational logic (MEL) [15] signature Σ that declares the
kinds, sorts and operators to be used in the specification; (2) a set E of Σ-
sentences, which are universally quantified Horn clauses with atoms that are
either equations (t = t′) or memberships (t : s); (3) A a set of equational
axioms, such as commutativity, associativity and/or identity axioms; and (4)
a set R of rewrite rules t −→ t′ if C specifying the computational behavior
of the system (where C is a conjunction of equational or rewrite conditions).
Operationally, if there exists a substitution θ such that θ(t) matches a subterm
s in the state of the system, and θ(C) is satisfied, then s may rewrite to θ(t′).
While the MEL sub-theory (Σ,E ∪ A) specifies the user-defined syntax and
equational axioms defining the system’s state structure, a rewrite rule in R
specifies a parametric transition, where each instantiation of the rule’s variables
that satisfies its conditions yields an actual transition (see [5] for a detailed
account of generalized rewrite theories).

Probabilistic rewrite theories extend regular rewrite theories with probabilis-
tic rules [1,17]. A probabilistic rule (t −→ t′ if C with probability π) specifies a
transition that can be taken with a probability that may depend on a probability
distribution function π parametrized by a t-matching substitution satisfying C.
Probabilistic rewrite theories unify many different probabilistic models and can
express systems involving both probabilistic and nondeterministic features.

Maude [9] is a high-performance rewriting logic implementation. An equa-
tional theory (Σ,E ∪ A) is specified in Maude as a functional module, which
may consist of sort and subsort declarations for defining type hierarchies, opera-
tor declarations, and unconditional and conditional equations and memberships.
Operator declarations specify the operator’s syntax (in mixfix notation), the
number and sorts of the arguments and the sort of its resulting expression. Fur-
thermore, equational attributes such as associativity and commutativity axioms
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may be specified in brackets after declaring the input and output sorts. A rewrite
theory is specified as a system module, which may additionally contain rewrite
rules declared with the rl keyword (crl for conditional rules).

Furthermore, probabilistic rewrite theories, specified as system modules in
Maude [9], can be simulated by sampling from probability distributions. Using
PVeStA [2], randomized simulations generated in this fashion can be used to
statistically model check quantitative properties of the system. These properties
are specified in a rich, quantitative temporal logic, QuaTEx [1], in which real-
valued state and path functions are used instead of boolean state and path pred-
icates to quantitatively specify properties about probabilistic models. QuaTEx
supports parameterized recursive function declarations, a standard conditional
construct, and a next modal operator ©, allowing for an expressive language
for real-valued temporal properties (Example QuaTEx expressions appear in
Sect. 5). Given a QuaTEx path expression and a Maude module specifying
a probabilistic rewrite theory, statistical quantitative analysis is performed by
estimating the expected value of the path expression against computation paths
obtained by Monte Carlo simulations. More details can be found in [1].

3 The RANDAO Scheme

The RANDAO scheme [16] is a commit-reveal scheme consisting of two stages:
(1) the commit stage, in which a participant pi first commits to a seed si (by
announcing the hash of the seed hsi), and then (2) the reveal stage, in which the
participant pi reveals the seed si. The sequence of revealed seeds s0, s1, · · · , sn−1

(assuming n participants) are then used to compute a new seed s (e.g. by taking
the XOR of all si), which is then used to generate a random number.

In the context of the Serenity protocol [11], the RANDAO scheme proceeds
in rounds corresponding to epochs in the protocol. At the start of an epoch i,
the random number ri−1 generated in the previous round (in epoch i − 1) is
used for sampling from a large set of validators participating in the protocol an
ordered list of block proposers p0, p1, · · · pk−1, where k is the cycle length of the
protocol (a fixed number of time slots constituting one epoch in the protocol).
Each proposer pi is assigned the time slot i of the current round (epoch). During
time slot i, the proposer pi is expected to submit the pair (cpi

, spi
), with cpi

a commitment on a seed to be used for the next participation in the game (in
some future round when pi is selected again as a proposer), and spi

the seed
to which pi had previously committed in the last participation in the game (or
when pi first joined the protocol’s validator set). The RANDAO contract keeps
track of successful reveals in the game, which are those reveals that arrive in
time and that pass the commitment verification step. Towards the end of an
epoch i, the RANDAO contract combines the revealed seeds in this round by
computing their XOR si, which is used as the seed for the next random number
ri+1 to be used in the next round i + 1. To discourage deviations from the
protocol and encourage proper participation, the RANDAO contract penalizes
proposers who did not successfully reveal (by discounting their Ether deposits)
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and rewards those proposers who have been able to successfully reveal their seeds
(by distributing dividends in Ether).

4 A Rewriting Model of RANDAO

We use rewriting logic [14], and its probabilistic extensions [1,12], to build a
generic and executable model of the RANDAO scheme. The model is specified as
a probabilistic rewrite theory R = (ΣR, ER ∪AR, RR), implemented in Maude
as a system module. By utilizing different facilities provided by its underlying
formalism, the model R is both (purely) probabilistic, specifying randomized
behaviors and environment uncertainties, and real-time, capturing (dense) time
clocks and message transmission delays. Furthermore, the model is parametric to
a number of parameters, such as the attack probability, the size of the validator
set and the network latency, to enable capturing different attack scenarios.

In this section, we describe generally the most fundamental parts of the
model. A more detailed description of the model can be found in [3].

4.1 Protocol State Structure

The structure of the model, specified by the MEL sub-theory (ΣR, ER ∪ AR)
of R, is based on a representation of actors in rewriting logic, which builds on
its underlying object-based modeling facilities. In this model, the state of the
protocol is a configuration consisting of a multiset of actor objects and messages
in transit. Objects communicate asynchronously by message passing. An object
is a term of the form <name: O | A >, with O the actor object’s unique name
(of the sort ActorName) and A its set of attributes, constructed by an associative
and commutative comma operator , (with mt as its identity element). Each
attribute is a name-value pair of the form attr : value. A message destined
for object O with payload C is represented by a term of the form O <- C, where
the payload C is a term of the sort Content.

Objects. The three most important objects in the model are: (1) the blockchain
object, (2) the RANDAO contract object, and (3) the attacker object.

The Blockchain Object. This object, identified by the actor name operator bc,
models abstractly the public data maintained in a blockchain:

1 <name: bc | vapproved: VHL , vapproved -size: N,

2 vpending: VHL ’, vpending -size: N’,

3 seed: S >

The object maintains a list of validator records of all approved and participating
validators in the system in an attribute vapproved, with its current length in
the vapproved-size attribute. As new validators arrive and request to join the
system, the blockchain object accumulates these incoming requests as a growing
list of validator records in its attribute vpending, along with its current size in
the attribute vpending-size. Finally, this object maintains the seed value that
was last computed by the previous round of the game in its seed attribute.
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The RANDAO object. This object, identified by the operator r, models a RAN-
DAO contract managing the RANDAO process:

1 <name: r | status: U, balance: N, precords: PL,

2 prop -size: M, prop -ilist: IL, pnext: I >

It maintains a status attribute, indicating its current state of processing, and
a balance attribute, keeping track of the total contract balance. Moreover, the
object manages the proposers list for the current round of the game using the
attributes prop-ilist, a list of indices identifying the proposers, and precords,
a list of proposer records of the form [v(I), B] with B a Boolean flag indicating
whether the proposer v(I) has successfully revealed. Additionally, the size of the
proposers list is stored in prop-size. Finally, the object also keeps track of the
next time slot (in the current round) to be processed in the attribute pnext.

The Attacker Object. The attacker is modeled by the attacker object, identified
by the operator a:

1 <name: a | vcomp: CVL , vcomp -ilist: IL , vcomp -size: N,

2 strategy: G >

The full list of the compromised validator indices is maintained by the attacker
object in the attribute vcomp-ilist. This list is always a sublist of the active
validators maintained by the blockchain object above. Its length is maintained
in the attribute vcomp-size. Since in every round of the game, a portion of
validators selected as proposers may be compromised, the attacker object creates
compromised validator records for all such validators to assign them roles for
the round and maintains these records in its attribute vcomp. If any one of these
compromised validators is at the head of the longest compromised tail of the
proposers list, the computed reveal strategy (whenever it becomes ready during
the current round) is recorded in the attribute strategy.

The Scheduler. In addition to objects and messages, the state (configuration)
includes a scheduler, which is responsible for managing the time domain, modeled
by the real numbers, and the scheduling of message delivery. The scheduler is a
term of the form {T | L}, with T the current global clock value and L a time-
ordered list of scheduled messages, where each such message is of the form [T,M],
representing a message M scheduled for processing at time T. As time advances,
scheduled messages in L are delivered (in time-order) to their target objects, and
newly produced messages by objects are appropriately scheduled into L. The
scheduler is key in ensuring absence of any unquantified non-determinism in the
model, which is a necessary condition for soundness of statistical analysis [3].

4.2 Protocol Transitions

The protocol’s state transitions are modeled using the (possibly conditional
and/or probabilistic) rewrite rules RR of the rewrite theory R = (ΣR, ER ∪
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AR, RR). The rules specify: (1) the actions of the RANDAO contract, which are
advancing the time slot, advancing the round and processing validator reveals,
and (2) the behaviors of both honest and compromised validators. For space con-
sideration, we only list and describe the rule for advancing the time slot below,
while omitting some of the details. Complete descriptions of all the rules can be
found in the extended report [3].

The transition for advancing the time slot specifies the mechanism with which
the RANDAO contract object checks if a successful reveal was made by the
proposer assigned for the current time slot:

1 rl [RAdvanceSlot] :
2 <name: bc | vapproved -size: N, vpending -size: N’,
3 seed: S, AS >
4 <name: r | status: ready , precords: ([ VID , B ] ; CL),
5 prop -ilist: IL , pnext: K, AS ’ >
6 { TG | SL } (RID <- nextSlot(L)) ...
7 =>
8 <name: bc | vapproved -size: N, vpending -size: N’,
9 seed: S, AS >

10 if L > #CYCLE -LENGTH then
11 <name: r | status: processing ,
12 precords: ([ VID , B ] ; CL),
13 prop -ilist:
14 sampleIndexList (N + N’, #CYCLE -LENGTH , S, nilIL),
15 pnext: 1, AS ’ >
16 { TG | SL } (RID <- nextRound)
17 else
18 if L == K then
19 <name: r | status: ready ,
20 precords: ([ VID , B ] ; CL),
21 prop -ilist: IL , pnext: K, AS ’ >
22 else
23 <name: r | status: ready ,
24 precords: (CL ; [ VID , false ]),
25 prop -ilist: IL , pnext: s(K), AS ’ >
26 fi
27 insert ({ TG | SL }, [TG + 1.0, (RID <- nextSlot(s(L)))])
28 fi ... .

When the current time slot L is about to end, the message nextSlot(L) becomes
ready for the RANDAO object to consume, which initiates the process of advanc-
ing the state of the protocol to the next slot. There are three cases that need to
be considered depending on the value of L:

1. L > #CYCLE-LENGTH, meaning that the message’s time slot number exceeds
the number of slots in a round (slot numbering begins at 1), and thus, the
protocol has already processed all slots of the current round, and progressing
to the next slot would require advancing the current round of the game first.
Therefore, the RANDAO contract object changes its status to processing
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and samples a new list of proposers for the next round using the seed S that
was computed in the current round. The object resets the time slot count to
1 and emits a self-addressed, zero-delay nextRound message.

2. L == K, where K is the next-slot number stored in the RANDAO object,
which means that the slot number K was already advanced by successfully
processing a reveal some time earlier during this slot’s time window. In this
case, the state is not changed and a nextSlot(s(L)) message (with s the
successor function) is scheduled to repeat this process for the next time slot.

3. Otherwise, the slot number K stored in the object has not been advanced
before and, thus, either a reveal for the current time slot L was attempted
and failed or that a reveal was never received. In both cases, the RANDAO
object records that as a failure in the proposers record list, advances the slot
number K and schedules a nextSlot(s(L)) message in preparation for the
next time slot.

These cases are specified by the nested conditional structure shown in the rule.

5 Statistical Verification

We use the model R to formally and quantitatively evaluate how much an
attacker can bias randomness of the RANDAO process assuming various attacker
models and protocol parameters. In the analysis presented below, we assume a
95% confidence interval with size at most 0.02. We also assume no message drops
and random message transmission delays in the range [0.0, 0.1] time units (so
reveals, if made, are guaranteed to arrive on time).

5.1 Matching Score (MS)

The Matching score (MS) is the number of attacker-controlled validators selected
as proposers in a round of the RANDAO process. The baseline value for MS
(assuming no attack) is given by the expectation of a binomial random variable
X with success probability p (the probability of a validator being compromised)
in k repeated trials (k is the length of the proposers list), which is:

EX[X] = kp (1)

As a temporal formula in QuaTEx, the property MS is expressed as:

ms(t) = if time() > t then countCompromised()
else © ms(t) fi ;
eval E[ms(t0)]

(2)

ms(t) is a recursively defined path expression that uses two state functions:
(1) time(), which evaluates to the time value of the current state of the protocol
(given by the scheduler object), and (2) countCompromised(), which evaluates
to the number of compromised proposers in the current state of the RANDAO
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object. Therefore, given an execution path, the path expression ms(t) evalu-
ates to countCompromised() in the current state if the protocol run is complete
(reached the time limit); otherwise, it returns the result of evaluating itself in
the next state, denoted by the next-state temporal operator ©. The number of
compromised proposers that an attacker achieves (on average) within the time
limit specified can be approximated by estimating the expected value of the
formula over random runs of the protocol, denoted by the query eval E[ms(t0)].

200 400 600 800 1,000

0.5

1

1.5

2

2.5

3

3.5

4

Time Slots

E
xp

ec
te
d
N
um

be
r
of

P
ro
po

se
rs

p = 0.1
p = 0.2
p = 0.3

(a) MS (10x500)

200 400 600 800 1,000

0.5

1

1.5

2

2.5

3

3.5

4

Time Slots

E
xp

ec
te
d
N
um

be
r
of

P
ro
po

se
rs

p = 0.1
p = 0.2
p = 0.3

(b) MS (10x1000)

Fig. 1. The expected number of attacker-controlled proposers in the proposers list
against execution time in time slots, assuming the attacker is attempting to maximize
the number of compromised proposers. The dashed lines represent the base values (with
no active attack) computed using Eq. (1). The shaded areas visualize the expected
bias achievable by the attacker for the three different attack probabilities plotted. We
assume a proposers list of size 10, and a validator set of size (a) 10 × 500 and (b)
10 × 1000.

The analysis results for MS are plotted in the charts of Fig. 1. We use
the notation a × b to denote the fact that the length of the proposers list
(CYCLE-LENGTH) is a and that there are a total of a × b participating validators
in the configuration1. The dashed lines in the charts represent the base values
(with no active attack) computed using Eq. (1) for different attack probabilities
p, while the plotted data points are the model’s estimates.

As the charts show, the attacker can reliably but minimally bias randomness
with this strategy. This, however, assumes that the attacker is able to afford all
the skips that will have to be made in the process, since only after about 80

1 The specific values for a and b used in this section and Sect. 5.2 are chosen so that
the total size of the validator set a · b is large enough relative to the length of the
proposers list a so that the probability of picking a compromised proposer stays the
same (recall that the attack probability is fixed), while not too large to allow efficient
analysis. This has the important consequence that the analysis results obtained are
representative of actual setups (where the set of validators is much larger than that
of the proposers), regardless of the exact proportion of proposers to validators.
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rounds or so, the attacker is able to gain an advantage of about 20% (over the
baseline). Nevertheless, an attacker that already controls a significant portion of
the validators can capitalize on that to speed up his gains, as can be seen from
the p = 0.3 attacker at around 100 rounds, compared with the weaker attackers.
Furthermore, by comparing the charts in Fig. 1, we note that results obtained
for different proportions of proposers to validators are generally similar.

5.2 Last-Word Score (LWS)

This is the length of the longest attacker-controlled tail of the proposers list in
a round of the RANDAO process. We first compute a baseline value for LWS
(assuming no attack). Let a be the event of picking an attacker-controlled val-
idator, which has probability p, and b the event of picking an honest validator
b, having probability (1 − p). Let the length of the proposers list be k. A com-
promised tail in the proposers list corresponds to either a sequence of events a
of length j < k followed immediately by exactly one occurrence of event b, or
a sequence of events a of length exactly k (the whole list is controlled by the
attacker). Therefore, letting X be a random variable corresponding to the length
of the longest compromised tail, we have:

Pr[X = i] =

{
pi(1 − p) i < k

pi i = k

Therefore, the expected value of X is

EX[X] =
k−1∑
i=0

i · pi(1 − p) + k · pk (3)

We then specify the property LWS using the following formula:

lws(t) = if time() > t then countCompromisedTail()
else © lws(t) fi ;
eval E[lws(t0)]

(4)

The formula uses the state function countCompromisedTail(), which counts the
number of proposers in the longest compromised tail in the proposers list of
the current state of the RANDAO object. As before, estimating the expecta-
tion expression E[lws(t0)] gives an approximation of the expected length of the
longest compromised tail that an attacker can achieve within the specified time
limit.

The results are plotted in the charts of Fig. 2. As Fig. 2 shows, maximizing
the length of the compromised tail can result in a steady and reliable effect on
the proposers list. As the attack probability increases, the bias achieved can be
greater within shorter periods of time. For example, at around 60 rounds, the
bias achieved by a 0.1 attacker is negligible, while a 0.2 attacker is expected to
achieve 20% gains over the baseline (at around 0.32 compared with 0.25), and a
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0.3 attacker achieves 60% gains (at around 0.7 compared with 0.43). Neverthe-
less, even at high attack rates, the charts do not show strong increasing trends,
suggesting that any gains more significant than those would require applying
reveal strategies for very extended periods of time.
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Fig. 2. The expected number of attacker-controlled proposers in the proposers list
against execution time in time slots, assuming the attacker is attempting to maximize
the length of the compromised tail. The dashed lines represent the base values (with
no active attack) computed using Eq. (3). The shaded areas visualize the expected
bias achievable by the attacker for the three different attack probabilities plotted. We
assume a proposers list of size 10, and a validator set of size (a) 10 × 500 and (b)
10 × 1000.

6 Conclusion

We presented an executable formalization of the commit-reveal RANDAO
scheme as a probabilistic rewrite theory in rewriting logic. Through its specifi-
cation in Maude, we used the model to analyze resilience of RANDAO against
pre-computed reveal strategies by defining two quantitative measures of achiev-
able bias: the matching score (MS) and the last-word score (LWS), specified
as temporal properties in QuaTEx and analyzed using statistical model check-
ing and quantitative analysis with PVeStA. Further analysis could consider
other scenarios with dynamic validator sets, unreliable communication media
and extended network latency. Furthermore, the analysis presented does not
explicitly quantify the costs to the attacker, which can be an important eco-
nomic defense against mounting these reveal strategies. An extension of the
model could keep track of the number of skips, or specify a limit on these skips,
so that the success of an attack strategy can be made relative to the cost of
executing it. Finally, a holistic approach to analyzing quantitative properties of
Serenity looking into availability and attack resilience properties makes for an
interesting longer-term research direction.
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2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28
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Abstract. Bitcoin, still the most widely used cryptocurrency maintains
a distributed ledger for transactions known as the blockchain. Miners
should expect a reward proportional to the computational power they
provide to the network. Eyal and Sirer introduced seflish mining, a strat-
egy gives a significant edge in profits. This paper models the behaviour
of honest and selfish mining pools in Uppaal. Unlike earlier models in
literature, it does not assume a single view of the blockchain but does
include the presence of network delay.

Results for our model show the effects of selfish mining on the share
of profits, but more importantly the outwards observable effect on the
number of orphaned blocks. This paper compares the analysis results to
known results from literature and real-world data.

Keywords: Bitcoin · Bitcoin mining · Selfish mining · Uppaal

1 Introduction

Bitcoin [3,12] is at the time of writing the most used cryptocurrency [5] by
market capitalisation. Miners in the Bitcoin network are incentivised by the
reward that they receive for validating new blocks of transactions. Miners expect
to receive their fair share of said reward, proportional to their computational
share of the network. The Bitcoin protocol does not specify when miners must
publish their newly found blocks. The most basic strategy is to publish them
immediately after the miner finds them. This is referred to as the honest strategy.

Eyal and Sirer introduced a strategy for publishing newly found blocks called
selfish mining [9], which strategically responds to what other miners in the net-
work find and publish. They found that this strategy forces honest miners to
waste computational power.

The contribution of this paper are a Uppaal-SMC model for selfish mining.
It models a blockchain network as a network of nodes, each with their own copy of
the blockchain, and includes stochastic network delays. These aspects are absent
from the Eyal and Sirer’s models. Uppaal-SMC can then analyse the behaviour
of the network and the evolution of the blockchain over the simulation time – one
day – and compare this with historical data obtained from the real blockchain.
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In particular, how selfish mining affects the number of expected forks. This all
is achieved with a single modelling artifact.

The next section describes related work, followed by a section on selfish
mining. Section 4 describes the Uppaal-SMC model, and Sect. 5 the results of
the analysis. Sect. 6 will conclude with a discussion of future work.

2 Related Work

Eyal and Sirer provide in [9] pseudo-code for selfish mining, along with a math-
ematical model of the forking behaviour of the blockchain, and an additional
model for the rewards. They compute the expected rewards in the steady-state,
i.e. in the long run, using a Monto-Carlo Simulation model. For this, they com-
puted a threshold for which selfish mining will increase the profit of the miner.
Below this threshold, selfish mining will incur a penalty for the selfish miner.
In contrast to this paper the use multiple modelling artifacts, assume a single
view on the public blockchain, disregards network delays, and do not consider
the number of observable forks.

Chaudary et al. used Uppaal in [8] to model majority attacks. Their paper
focuses on blockchain forking and included a detailed model of the blockchain.
In [10] the same authors present a simplified version of the model presented in
this paper to analyse a particular type of majority attack, intended to enforce a
new Bitcoin standard. Uppaal was also used by Andrychowicz et al. to verify
the security of Bitcoin contracts, and to repair several issues in the protocol [6].
These consider other type of attacks than this paper.

Sapirshtein et al. mathematically investigate bounds for which selfish min-
ing is profitable and optimize the original strategy [14]. They show that selfish
mining can be optimized, such that the threshold above which the strategy is
profitable is lower than described in the original paper [9]. Heilman et al. used
Monte-Carlo simulation to investigate eclipse attacks and proposed countermea-
sures that will reduce the chances of such attacks to succeed [11]. Neudecker
presents a full-scale simulation model of Bitcoin to study partition attacks [13].
While these paper study variations of a selfish mining, they do not discuss the
observable behavior over a day, or a comparison with real world data.

3 The Bitcoin Mining Process and Selfish Mining

Bitcoin is a distributed and decentralized cryptocurrency [3,12] with a shared
ledger of transactions which is stored in an append-only chain of blocks called the
blockchain. A block contains a group of transactions, the hash of the preceding
block, and a nonce. Since the block also includes the hash of the preceding block
it defines a chain of blocks.

Nodes in the peer-to-peer Bitcoin network run a process, known as mining,
to validate blocks of transactions, as well as to induce an order on transactions.
Validation entails finding random nonce such that the hash value of the block
falls below a certain threshold. Finding such a nonce can be considered to be
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t=85s

Block 0034 DF21

Nonce A317 3FDB

Pre 0042 E3D4
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Block 007C 11BA
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Nonce E00C 1A44

Pre 007C 11BA

Txs tx21, tx18
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Txs tx22, tx24

Miner C
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Block 0009 FF5A

Nonce 5BA7 4436

Pre 007C 11BA

Txs tx21, tx22

Miner A

…

Fig. 1. Illustration of the Blockchain as hash-chain of blocks of transactions. For sim-
plicity each block contains only two transactions.

a stochastic process with an exponential distribution, and is called the proof-
of-work challenge. The threshold is regularly updated and agreed upon by the
entire network such that a new block will be found on average every 10 min.

Figure 1 illustrates a blockchain. It starts with a block found by Miner C
at t=85s, followed by a successor found by Miner A at t=511s. Due to the
distributed nature of the network two pools may find a block at about the same
time: in the example Miner B at t=939s, and Miner A at t=942s. If Miner A
would have received the block of Miner B before it found its own, it would have
abandoned its effort and switched to the Block 001F 6A09. The example assumes
instead that Miner A found its own block first.

At this point, both blocks have been successfully mined as potential succes-
sors of Block 007 C 11BA. Miners will continue with the block they receive first,
and due to the distributed nature of the network, different pools may continue
with mining different blocks, giving rise to so-called forks. It could take some
time to resolve a fork and during that time, different views of the blockchain will
exist. Blocks that fall outside of this longest chain are called orphaned blocks.

The race in Fig. 1 is resolved as soon as the next block is found; here Block
001F 6A09. Once this happens the protocol stipulates that the blocks in the
longest chain become part of the authoritative blockchain. Only miners of blocks
in the longest chain will receive the rewards attached to mining. This incentivises
miners to adopt the longest chain, and achieve consensus.

The Bitcoin protocol [3,12] does not specify when miners must publish their
newly found blocks. The most basic strategy is to publish them immediately
after they are mined. This is referred to as the honest strategy. Eyal and Sirer
introduced a strategy for publishing newly found blocks called selfish mining [9].

Figure 2 illustrates one of the basic steps of selfish mining, intended to
increase the number of forks. In this example, Miner C finds a block at t=7s.
This block will be received by Miner A at t=8s, and by Miner B at t=11s1.
All three miners will continue mining with this block. At t=99s Miner B finds

1 Note, that in general, the network does not have access to a shared global time.
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Fig. 2. Illustration of forks as races between different blockchains in a distributed net-
work. Pool A is selfish miner, and postpones publication of a block found at t=188s until
t=202s. This example omits for simplicity the hash values, nonces, and transactions.

a block and publishes it. It will be received by Miner A and C at t=102s and
t=104s, respectively. Again all three miners will continue with this block. Up to
this point, all miners employ honest mining.

Assume that Miner A employs the selfish strategy. If it finds a block at
t=188s, it will not publish it immediately, but wait. If it receives a block by one
of the other miners – in the example a block of Miner C at t=201s – it will publish
its own block immediately, which intentionally creates a fork. The gamble is that
its own block arrives at the others miners before the block of Miner C. In the
example Miner B receives the block of Miner A before the block of Miner C,
and thus continues mining the block of Miner A. If Miner B then finds a new
block at time t=250s it will orphan the block Miner C found previously. Miner
C’s computational power from t=104s until t=252s – when it received the block
of Miner B – was effectively wasted.

The question is if this can actually be beneficial for the selfish miner. In the
example, Miner A forwent a certain reward for the block it found at t=188s to
enter a race with pool C at t=202s. This looks superficially like a disadvantageous
strategy. However, Fig. 2 describes only one step of selfish mining, namely the
step that intentionally introduces forks.

The following gives a full list of steps for the selfish miners. It assumes that
the selfish miner always mines at the end of its own private chain.
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1. The selfish miner finds a block.
(a) There is a fork, and both branches have length 1. In this case, the

selfish miner found a block to decide the race in its favour. The selfish
miner appends the block to its private chain and publishes it. The selfish
miner intends to orphan the single block in the public branch, and secure
the rewards of its own branch.

(b) Otherwise. The new block will be appended to its private chain, without
publishing it. This includes cases where the private chain is two or more
blocks ahead of the public chain.

2. The selfish miner receives a block. Provided that it actually increases
the height of the public chain, the selfish miner will proceed as follows:
(a) If there is no fork. This means the public and private chains are iden-

tical. The received block is appended to the public chain, and the public
chain is adopted as the private chain. The other miner will receive the
rewards.

(b) There is one unpublished block in the private branch. The
received block is appended to the public chain. The unpublished block
is published. This is the scenario depicted in Fig. 5.

(c) There are two unpublished blocks in the private branch. The
private chain is published. Since the public chain should still be one block
behind, this would secure all rewards in the private branch for the selfish
miner. After this, there is no fork.

(d) Otherwise. This is the case when the selfish miner is more than two
blocks in the lead. The selfish miner will publish the first unpublished
block. While the private chain is at least two blocks ahead, the public
branch and the portion of the private branch that has been published
have the same height. To other miners, a race is ongoing, even though
the selfish miner already has the blocks to decide the race in its favour.

To implement this strategy the selfish miner needs to maintain a record of
the head of the public chain, of the head of the private chain, the head of the
portion of the private chain that has been published, and the block where the
private and public chain fork. It should be noted that the public chain is the
local view that the selfish miner has of the blockchain. As discussed previously,
in general, different miners may have different views.

Eyal and Sirer have shown that a miner using selfish mining will gain more
rewards than would be proportional to their computational power, under the
assumption that the other miners use the honest strategy. This result depends
on the share α of computational power the selfish miner has in the network and
the fraction γ of miners that adopt the block of the selfish miner in case of a fork.
They discovered that selfish mining gives an increased reward if (1 − γ)/(3 −
2γ) < α. This means, for example, that if a quarter of the other nodes adopt
the block of the selfish miner, i.e. γ = 0.25, then the selfish mining strategy will
pay off if the network share satisfies α > 0.3.
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4 Uppaal Model

Uppaal-SMC is an extension of the model-checker Uppaal, and adds stochas-
tic delays and probabilistic choice to the timed automata of [7]. It provides a
specification language for probability estimation, hypothesis testing, and value
estimation.

Our Uppaal-SMC model consists of three templates: one for modelling the
behaviour of an honest miner, one for a selfish miner, and one the propagation
delay between miners. A fourth template observes the blockchain but does not
take part in the protocol. It is omitted here, but included in the published model.

Global Variables and Constants. The model includes two arrays of broadcast
channels, sendBlock[POOLS] and recvBlock[POOLS], for miners to send and
receive blocks, where POOLS is the number of miners. A block is defined as a
struct of the height, a bounded integer BlockIndex, and array rewards[POOLS].
If a miner with ID id mines a new block, it increments height and rewards[id].

Global variable syncBlock is used as an auxiliary to copy blocks between pro-
cesses. Important constants are integer PDELAY for the expected network delay,
and integer array POOL RATES[POOLS], which contains for each miner the rate at
which it finds blocks. The model uses as basic time unit 1 s; a rate of 1200 means
that a miner finds on average one block every 1200 s.

Network Links. The network link between any two miners is modelled as a one-
place buffer with delay. For any pair of IDs in and out, the model includes
one instance of the link template, depicted in Fig. 3. From the initial state it
synchronizes on channel sendBlock[in] with Pool in and copy the received block
in global variable syncBlock to its local variable blockBuffer. It then enters the
location to the right, where it synchronizes on channel recvBlock[out] with
Miner out at a rate of 1 in PDELAY seconds. This transition copies the value of
the buffer to syncBlock. If it receives another block from Miner in, it stores that
block in the buffer. Note, that the model includes for any pair of miners one
link, i.e. for a network with 10 miners, 100 links, each with its own buffer.

Honest Mining. Figure 4 shows an honest miner with ID id. It has a single
location with two edges. The first edge models mining a block. It calls method
outputBlock which increments the height of its private chain and the rewards for
itself. The other edge models receiving a block which calls method updateBlock.
It adopts the new block if it improves the height of its private chain.

Selfish Mining. The selfish miner keeps a record of four blocks: the head of the
private chain privateBlock, the head of the public chain publicBlock, the most
recently published block publishedBlock, and the block where the public and the
private chain fork, forkBlock. In addition, it uses a local Boolean publishBlock
to encodes if a block should be published.

The top-most edge models mining a block (case 1 on Page 5). It calls method
mineBlock() at a rate of 1 in POOL RATE[id] seconds, and decides whether to
publish (part of) its private chain.
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Fig. 3. Parameters of the link template are the ID of sender in and receiver out.

Fig. 4. The honest mining template has
as parameter the id of the miner.

Fig. 5. The selfish mining template has
as parameter the id of the miner.

The bottom-most edge models receiving a block (case 2 on Page 5). It syn-
chronizes on recvBlock[id], and calls updateBlock which decides whether to
append it to the private chain, or whether to publish a part of the private chain.
It sets Boolean publishBlock to true if a block should be published.

The committed location in the mining template in Fig. 5 completes the pro-
cess. If mineBlock() or updateBlock set publishBlock to false, the selfish miner
returns silently to the initial location. If publishBlock is true, outputBlock
copies the block to be published to syncBlock, and to publishedBlock and
publicBlock. Listing 1 gives the code for mineBlock() and updateBlock.

Limitations. Uppaal-SMC only facilitates exponential distributions, i.e. mem-
oryless delays. In absence of a validated network model we assumed a uniform
network with identical links. However, real or pathological networks such as a
Sybil attacks could be analysed by adjusting the individual delays, or removing
links altogether. A uniform network is not a necessity.

System Composition. The analysis in Sect. 5 uses 10 miners and 100 links. It
considers the 6 sets of network shares, as given in Table 1. The selfish miner
would be Miner A. Miner B has a share of 20% in all experiments to make
the results comparable. A share of 20% would correspond to finding a block
once every 3000 s, assuming a network rate of one block every 600 s. These rates
are simplified but still largely similar to the distribution of hash rates in the
real world [4]. Uppaal-SMC simulated each scenario 1000 times for one day
of simulation time, i.e. for 86400 s. The simulation of one single scenario takes
about 80 s on an Intel Core i5-5200 with 2 cores at 2.2 GHz.
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1 void mineBlock () {//case 1

2 i f (privateBlock.height == publicBlock.height &&

3 privateBlock.height -forkBlock.height == 1) {//case 1.(a)

4 privateBlock.height ++;

5 privateBlock.rewards[id]++;

6 outputBuffer = privateBlock;

7 forkBlock = privateBlock;

8 publishBlock = true;

9 }

10 else{ //case 1.(b)

11 privateBlock.height ++;

12 privateBlock.rewards[id]++;

13 publishBlock = false;

14 }

15 }

16

17 void updateBlock(Block newBlock) { //case 2

18 i f (newBlock.height >publicBlock.height) {

19 i f (newBlock.height >privateBlock.height){ //case 2.(a)

20 privateBlock = newBlock;

21 forkBlock = newBlock;

22 publishedBlock = newBlock;

23 publicBlock = newBlock;

24 publishBlock = false;

25 }

26 else

27 i f (newBlock.height == privateBlock.height) {//case 2.(b)

28 outputBuffer = privateBlock;

29 publishBlock = true;

30 }else //case 2.(c)

31 i f (newBlock.height == privateBlock.height -1) {

32 outputBuffer = privateBlock;

33 forkBlock = privateBlock;

34 publishBlock = true;

35 }

36 else { //case 2.(d)

37 publishedBlock .height ++;

38 publishedBlock .rewards[id]++;

39 outputBuffer = publishedBlock ;

40 publishBlock = true;

41 }

42 }

43 }

Listing 1. Essential methods of the selfish miner.

Table 1. Network shares for different scenarios. Miner A may be selfish, Miner B is
the reference miner.

Scenario A B C D E F G H I J

#1 1% 20% 20% 15% 15% 10% 10% 5% 2% 2%

#2 10% 20% 20% 15% 15% 10% 5% 2% 2% 1%

#3 20% 20% 15% 15% 10% 10% 5% 2% 2% 1%

#4 30% 20% 15% 10% 10% 5% 5% 2% 2% 1%

#5 40% 20% 10% 10% 5% 5% 5% 2% 2% 1%

#6 50% 20% 10% 5% 5% 2% 2% 2% 2% 2%
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5 Analysis Results

This section presents for a 24 h period the expected mining rewards and the
expected number of orphaned blocks. The former allows a comparison with
results by Eyal and Sirer, the latter with data obtained from the publicly avail-
able Bitcoin blockchain.

Mining Rewards. Figure 6 depicts the height and rewards for different miners.
First is the number of blocks mined over the 24 h period. It is around 144 blocks,
as expected for a network that finds on average one block every 10 min.

Not all of these blocks will become part of the longest chain. Figure 6 gives
the blockchain height and the reward of the selfish and first honest miner, reward
selfish and reward honest, respectively. Each of these three come in two versions
depending on whether it is part of the private chain of the selfish miner, or the
chain as known by the network.

These results show that as the network share of the selfish miner increases, it
decreases the height of the blockchain, and increases the rewards for the selfish
miner. For a 50% share the height is 89.4 and the reward 68.9, in the private
blockchain of the selfish miner. In the blockchain of the first honest miner –
Miner B in Table 1 – the height is only 81.7 and the reward of the selfish miner
is only 57.7. The difference is partly due to network delay, but mostly because
the selfish miner has a buffer of 7.6 unpublished blocks in its private chain.

Figure 7 translates these numbers to shares in the rewards. It also includes
the nominal share these miners should achieve; the selfish miner proportionally
to its network share, and the honest miner 20%. The results show that selfish
mining becomes profitable once the network share of the selfish miner exceeds
29.6%.

Eyal and Sirer’s define the threshold in terms of γ, the probability that other
miners adopt the block of the selfish miner above a competing block. For this
to happen two steps have to succeed: (1) the selfish miner has to receive the
competing block before the other miners, (2) the block sent by the selfish miner
in response has to arrive before the competing block. Given that all delays use
the same memoryless distribution both steps succeed with a 50% chance, giving
an overall chance of 25%. Eyal and Sirer predict a threshold of 30% for this case,
while in Fig. 7 the share of the 30% selfish miner is 29.6%.

Figure 8 shows how this evolves over 24 h for a selfish miner with a 50%
network share. Initially, the selfish miner will appear to have a share that is below
its 50% network share, as it is secretly mining blocks. As the day progresses its
share will quickly exceed 80%.

All results of this section are based on a propagation delay of 4 s. For the
expected rewards the propagation delay has little to no influence. The next
subsection discusses the effect of different propagation delays in more detail.

Orphaned Blocks. An essential aspect of selfish mining is to create forks such
that other miners waste computational resources on blocks that are bound to be
orphaned. To compare the models with data from the actual Bitcoin blockchain,



A Distributed Blockchain Model 359

0

20

40

60

80

100

120

140

160

1% 10% 20% 30% 40% 50%

#
bl

oc
ks

network share of the selfish miner

blocks
mined

private
blockchain
height
network
blockchain
height
private
reward
selfish
network
reward
selfish
private
reward
honest
network
reward
honest

Fig. 6. Height and rewards of selfish and
honest miner after 24 h.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 10% 20% 30% 40% 50%

re
w

ar
d

network share of the selfish miner

private
reward
selfish

network
reward
selfish

nominal
reward
selfish

private
reward
honest

network
reward
honest

nominal
reward
honest

Fig. 7. Share of rewards for selfish and
honest miner after 24 h.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11131517192123

sh
ar

e 
re

w
ar

ds

hours

private
reward
selfish

network
reward
selfish

private
reward
honest

network
reward
honest

Fig. 8. Share of rewards per hour for the
honest and selfish miner over 24 h.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12

#
da

ys

delay in seconds

Fig. 9. Histogram of the propagation
delays in the selected data set.

we combined the data on orphaned blocks [2] with data on propagation times
[1]. This gave 528 usable data points in the period from 18 March 2014 to
22 March 2017, i.e. days with both data on orphaned blocks and propagation
times. Figure 9 shows the distribution of days over different propagation times,
rounded to the nearest integer second. This leaves us with a reasonable data set
for propagation delays in the interval from 2 to 7 s.

Figure 10 shows the number of expected orphans if we have a network without
any selfish miner. The figure includes, for reference, the number of orphans from
the real data set, labelled real. The results show that as the delay increases, the
number of orphans increases as well. Except for the data point for 7 s, the real
data falls into the range given by the simulation.

This picture changes once we introduce a selfish miner as depicted in Fig. 11.
Even a selfish miner with only a 1% network share leads to more orphans than for
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any scenario with only honest miners or the real data. This comparison suggests
that there is no evidence in the real data of a prolonged presence of a selfish
miner with a significant network share.

6 Conclusion

This paper’s contributions are twofold: on modelling a selfish mining attack, and
on the outward effects of such an attack.

On Modelling. In [9], Eyal and Sirer provide a pseudocode algorithm for selfish
mining. The analysis uses a separate state transition model that captures the
presence and length of a fork. Based on this model they manually derived state
probabilities and expected rewards for each state. To validate the overall reward
they use Monte Carlo Simulation. Their combination of models assumes a sin-
gle view of the public chain where blocks are propagated instantly to provide
estimates of the rewards a selfish miner can expect in the long run.

This paper presented a single unified modelling artefact. It also includes
propagation delays, a block model with rewards, and a distributed blockchain.
It does not separate the pseudo-code from the transition probabilities, rewards,
and the analysis of the evolution of the network over time. This allowed an
automated analysis from the perspective of different participants, and compare
these to the theoretical results by Eyal and Sirer, as well as to real-world data.

On Selfish Mining. The analysis confirms the known result that selfish mining
becomes profitable for networks shares above 30%. The model in this paper
additionally shows that while a selfish miner may go undetected for the first few
hours, it would be obvious after that and difficult to conceal. The number of
forks is unlike anything that could occur naturally by propagation delay. Real-
world data provides no evidence of a prolonged presence of a selfish miner with
a significant network share.
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Future Work. Future work would need to investigate how to identify a short-term
attack on a blockchain. For this type of analysis, it is especially important to
distinguish between the different views of the blockchain of different participants,
as it is done in this paper. Such an analysis could consider real or pathological
network topologies, such as a Sybil attack.

Resources. All Uppaal-SMC models, simulation data and more detailed results
are available on https://wwwhome.ewi.utwente.nl/∼fehnkera/Q19.
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Abstract. The Algorand blockchain is a secure and decentralized public
ledger based on pure proof of stake rather than proof of work. At its core
it is a novel consensus protocol with exactly one block certified in each
round: that is, the protocol guarantees that the blockchain does not
fork. In this paper, we report on our effort to model and formally verify
the Algorand consensus protocol in the Coq proof assistant. Similar to
previous consensus protocol verification efforts, we model the protocol
as a state transition system and reason over reachable global states.
However, in contrast to previous work, our model explicitly incorporates
timing issues (e.g., timeouts and network delays) and adversarial actions,
reflecting a more realistic environment faced by a public blockchain.

Thus far, we have proved asynchronous safety of the protocol: two
different blocks cannot be certified in the same round, even when the
adversary has complete control of message delivery in the network. We
believe that our model is sufficiently general and other relevant properties
of the protocol such as liveness can be proved for the same model.

Keywords: Algorand · Byzantine consensus · Blockchain · Coq

1 Introduction

The Algorand blockchain is a scalable and permissionless public ledger for secure
and decentralized digital currencies and transactions. To determine the next
block, it uses a novel consensus protocol [1,3] based on pure proof of stake. In
contrast to Bitcoin [6] and other blockchains based on proof of work, where safety
is achieved by making it computationally expensive to add blocks, Algorand’s
consensus protocol is highly efficient and does not require solving cryptographic
puzzles. Instead, it uses cryptographic self-selection, which allows each user to
individually determine whether it is selected into the committees responsible
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for generating the next block. The self-selection is done independently by every
participant, with probability proportional to its stake. Private communication
channels are not needed; committees propagate their messages in public. They
reach Byzantine consensus on the next block and certify it, so that all users learn
the next block without ambiguity. That is, rather than waiting for a long time
so as to be sure that a block will not disappear from the longest chain, as in
Bitcoin, the Algorand blockchain does not fork: a certified block is immediately
final, and transactions contained in it can be relied upon right away. The Algo-
rand blockchain guarantees fast generation of blocks as long as the underlying
propagation network is not partitioned (i.e., as long as messages are delivered
in a timely fashion). The Algorand consensus protocol, its core technology, and
mathematical proofs of its safety and liveness properties are described in [1–3].

The focus of this work is to formally model and verify the Algorand con-
sensus protocol (described in [2,3]) using the Coq proof assistant. Automated
formal verification of desired properties adds another level of assurance about its
correctness, and developing a precise model to capture the protocol’s runtime
environment and the assumptions it depends on is interesting from a formal-
methods perspective as well. For example, [11] proves state machine safety and
linearizability for the Raft consensus protocol in a non-Byzantine setting, and
[7] focuses on safety properties of blockchains and, using a largest-chain-based
fork-choice rule and a clique network topology, proves eventual consistency for an
abstract parameterized protocol. Similar to previous work, we define a transition
system relation on global protocol states and reason inductively over traces of
states reachable via the relation from some initial state. We abstract away details
on cryptographic primitives, modeling them as functions with the desired prop-
erties. We also omit details related to blockchain transactions and currencies.

However, our goal and various aspects of the Algorand protocol present new
challenges. First, our goal is to verify the protocol’s asynchronous safety under
Byzantine faults. Thus, we explicitly allow arbitrary adversarial actions, such as
user corruption and message replay. Also, rather than assuming a particular net-
work topology, the Algorand protocol assumes that messages are delivered within
given real-valued deadlines when the network is not partitioned (messages may
be arbitrarily delayed and their delivery is fully controlled by the adversary when
the network is partitioned). We capture this by explicitly modeling global time
progression and message delivery deadlines in the underlying propagation net-
work. Moreover, as mentioned above, the Algorand protocol uses cryptographic
self-selection to randomly select committees responsible for generating blocks.
As mechanizing probabilistic analysis is still an open field in formal verification,
instead of trying to fully capture randomized committee selection, we identify
properties of the committees that are used to verify the correctness of the pro-
tocol without reference to the protocol itself. We then express these properties
as axioms in our formal model. Pen-and-paper proofs that these properties hold
(with overwhelming probability) can be found in [1,3].

It is worth pointing out that our approach is based on reasoning about
global states, in contrast to [8], which formally verifies the PBFT protocol under
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arbitrary local actions. While it is possible to model coordinated actions as in [8],
our model explicitly allows an adversary to arbitrarily coordinate actions (at the
network level) among corrupted users using both newly forged and valid past
messages. Finally, [10] uses distributed separation logic for consensus protocol
verification in Coq with non-Byzantine failures. Using this approach to verify
protocols under Byzantine faults is an interesting avenue of future work.

Thus far, we have proved in Coq asynchronous safety : two different blocks
can never be certified in the same round, even when the adversary has complete
control of the network. We believe that our model is sufficiently general to allow
other relevant properties of the protocol such as liveness to be proved.

2 The Algorand Consensus Protocol

In this section, we give a brief overview of the Algorand consensus protocol with
details salient to our formal model. More details can be found in [1,3,5].

All users participating in the protocol have unique identifiers (public keys).
The protocol proceeds in rounds and each user learns a certified block for each
round. Rounds are asynchronous: each user individually starts a new round
whenever it learns a certified block for its current round.

A round consists of one or more periods, which are attempts to generate
a certified block. A period consists of several steps: users propose blocks and
then vote to certify a proposal. Specifically, each user waits a fixed amount of
time (determined by network parameters) to receive proposals, and then votes
to support the proposal with the best credential, as described below; these votes
are called soft-votes. If it receives a quorum of soft-votes, it then votes to certify
the block; these votes are called cert-votes. A user considers a block certified if it
receives a quorum of cert-votes. If a user doesn’t receive a quorum of cert-votes
within a certain amount of time, it votes to begin a new period; these votes
are called next-votes. A next-vote may be for a proposal, if the user received a
quorum of soft-votes for it, or it may be open. A user begins a new period when
it receives a quorum of next-votes from the same step for the same proposal or
a quorum of open next-votes; and repeats the next-vote logic otherwise.

Committees. For scalability, not all users send their messages in every step.
Instead, a committee is randomly selected for each step via a technique called
cryptographic self-selection: each user independently determines whether it is
in the committee using a verifiable random function (VRF). Only users in the
committee send messages for that step, along with a credential generated by the
VRF to prove they are selected. Credentials are totally ordered, and the ones
accompanying proposals are used to determine which proposal to support.

Network. Users communicate by propagating messages over the network. Mes-
sage delivery is asynchronous and may be out-of-order, but delivery times are
bounded: any message sent or received by an honest user is received by all honest
users within a fixed amount of time unless the network is partitioned. (There is
no bound on message delivery time if the network is partitioned.)
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Adversary. The adversary can corrupt any user and control and coordinate cor-
rupted users’ actions: for example, to resend old messages, send any message for
future steps of the adversary’s choice, and decide when and to whom the mes-
sages are sent by them. The adversary also controls when messages are delivered
between honest users within the bounds described above, and fully controls mes-
sage delivery when the network is partitioned. The adversary must control less
than 1/3 of the total stake participating in the consensus protocol.

3 Model

Our Coq model of the protocol, which is an abstracted version of the latest Algo-
rand consensus protocol described in [2,3], is a transition system encoded as an
inductive binary relation on global states. The transition relation is parameter-
ized on finite types of user identifiers (UserId) and values (Value); the latter
abstractly represents blocks and block hashes.

User and Global State. We represent both user state and global state as Coq
records. For brevity, we omit a few components of the user state in this paper
and only show some key ones, such as the Boolean indicating whether a user is
corrupt, the local time, round, period, step, and blocks and cert-votes that have
been observed. The global state has the global time, user states and messages
via finite maps [4], and a Boolean indicating whether the network is partitioned.

Record UState := mkUState {

corrupt: bool; timer: R;

round: N; period: N; step: N;

blocks: N → seq Value;

certvotes: N → N → seq Vote;

(* ... omitted ... *)

}.

Record GState := mkGState {

network_partition: bool;

now: R;

users: {fmap UserId → UState};

msgs: {fmap UserId → {mset R * Msg}};

msg_history: {mset Msg};

}.

State Transition System. The transition relation on global states g and g’,
written g � g’, is defined in the usual way via inductive rules. For example, the
rule for adversary message replay is as follows:

step_replay_msg : ∀ (pre:GState) uid (ustate_key : uid ∈ pre.(users)) msg,

¬ pre.(users).[ustate_key].(corrupt) → msg ∈ pre.(msg_history) →
pre � replay_msg_result pre uid msg

Here, replay_msg_result is a function that builds a global state where msg
is broadcast. We call a sequence of global states a trace if it is nonempty and
g � g’ holds whenever g and g’ are adjacent in the sequence.

Assumptions. To express assumptions about committees and quorums, we intro-
duce a function committee that determines self-selected committees. For exam-
ple, the following statement says that for any two quorums (i.e., subsets of size
at least tau) of the committee for a given round-period-step triple, there is an
honest user who belongs to both quorums:
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Definition quorum_honest_overlap_statement (tau:N) :=

∀ (trace:seq GState) (r p s:N) (q1 q2:{fset UserId}),

q1 ⊆ committee r p s → #|q1| ≥ tau →
q2 ⊆ committee r p s → #|q2| ≥ tau →
∃ (honest_voter : UserId), honest_voter ∈ q1 ∧ honest_voter ∈ q2 ∧
honest_during_step (r,p,s) honest_voter trace.

Similarly, we capture that a block was certified in a period as follows (the
value 3 indicates the third step, the certvote step, in period p and round r):

Definition certified_in_period (trace:seq GState) (tau r p:N) (v:Value) :=

∃ (certvote_quorum:{fset UserId}),

certvote_quorum ⊆ committee r p 3 ∧ #|certvote_quorum| ≥ tau ∧
∀ (voter:UserId), voter ∈ certvote_quorum →
certvoted_in_path trace voter r p v.

This property is true for a trace if there exists a quorum of users selected for
cert-voting who actually sent their votes in that trace for the given period (via
certvoted_in_path, which we omit). This is without loss of generality since a
corrupted user who did not send its cert-vote can be simulated by a corrupted
user who sent its vote but the message is received by nobody.

4 Asynchronous Safety

The analysis of the protocol in the computational model shows that the prob-
ability of forking is negligible [1,3]. In contrast, we specify and prove formally
in the symbolic model with idealized cryptographic primitives that at most one
block is certified in a round, even in the face of adversary control over message
delivery and corruption of users. We call this property asynchronous safety :

Theorem asynchronous_safety : ∀ (g0:GState) (trace:seq GState) (r:N),

state_before_round r g0 → is_trace g0 trace →
∀ (p1:N) (v1:Value), certified_in_period trace r p1 v1 →
∀ (p2:N) (v2:Value), certified_in_period trace r p2 v2 →
v1 = v2.

Here, the first precondition state_before_round r g0 states that no user has
taken any actions in round r in the initial global state g0, and the second pre-
condition is_trace g0 trace states that trace follows � and starts in g0.

Note that it is possible to end up with block certifications from multiple
periods of a round. Specifically, during a network partition, which allows the
adversary to delay messages, this can happen if cert-vote messages are delayed
enough for some users to advance past the period where the first certification was
produced. However, these multiple certifications will all be for the same block.

Proof Outline. The proof of asynchronous safety proceeds by case-splitting on
whether the certifications are from the same period or different periods. For
the first and easiest case, p1 = p2, we use quorum hypotheses to establish
that there is an honest user that contributed a cert-vote to both certifications.
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Then, we conclude by applying the lemma no_two_certvotes_in_p, which
establishes that an honest user u cert-votes at most once in a period (proved
by exhaustive analysis of possible transitions by an honest node):

Lemma no_two_certvotes_in_p : ∀ (g0:GState) (trace:seq GState) u (r p:N),

is_trace g0 trace →
∀ idx1 v1, certvoted_in_path_at idx1 trace u r p v1 →
user_honest_at idx1 trace u →

∀ idx2 v2, certvoted_in_path_at idx2 trace u r p v2 →
user_honest_at idx2 trace u → idx1 = idx2 ∧ v1 = v2.

The second case (p1 �= p2) uses an invariant which first holds in the period that
produces the first certification, say, p1 for v1, and then keeps holding for all
periods of the round. The invariant is that no step of the period produces a
quorum of open next-votes, and any quorum of value next-votes must be for v1.
(Please refer to [9] for the full definitions of predicates appearing in the lemma).

5 Conclusion

We presented a model in Coq of the Algorand consensus protocol and outlined
the specification and formal proof of its asynchronous safety. The model and
the proof open up many possibilities for further formal verification of the pro-
tocol, most directly of liveness properties. Our Coq development is available on
GitHub [9] and contains around 2000 specification lines and 4000 proof lines.
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Abstract. Tezos is a blockchain launched in June 2018. It is written
in OCaml and supports smart contracts. Its smart contract language
is called Michelson and it has been designed with formal verification
in mind. In this article, we present Mi-Cho-Coq, a Coq framework for
verifying the functional correctness of Michelson smart contracts. As a
case study, we detail the certification of a Multisig contract with the
Mi-Cho-Coq framework.

Keywords: Certified programming · Programming languages ·
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1 Introduction

Tezos is a public blockchain launched in June 2018. An open-source implemen-
tation, in OCaml [16], is available [3]. Tezos is an account based smart-contract
platform with a Proof-of-Stake consensus algorithm [2]. Each account has a
balance of tokens (called tez ) and some of them, named smart contracts, can
also store code and data. A smart contract’s code is triggered when a transac-
tion is sent to the associated account. Tezos’ smart contracts language is called
Michelson.

Our long-term ambition is to propose certified code in the whole Tezos code-
base as well as certified smart contracts. The choice of OCaml as an imple-
mentation language is an interesting first step: OCaml gives Tezos good static
guarantees since it benefits from OCaml’s strong type system and memory man-
agement features. Furthermore, formally verified OCaml code can be produced
by a variety of tools such as F* [21], Coq [22], Isabelle/HOL [17], Why3 [13], and
FoCaLiZe [18]. Another specificity of Tezos is the use of formally verified cryp-
tographic primitives. Indeed the codebase uses the HACL* library [23], which is
certified C code extracted from an implementation of Low*, a fragment of F*.

This article presents Mi-Cho-Coq, a framework whose ultimate purpose is
two-sided: giving strong guarantees – down to the interpreter implementation –
related to the semantics of the Michelson language; and providing a tool able to
prove properties of smart contracts written in Michelson.
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Currently, the correspondence between Mi-Cho-Coq’s Michelson interpreter
implemented in Coq and the Michelson interpreter from a Tezos node imple-
mented in OCaml is unproven. However, in the long run, we would like to lift
this limitation by replacing the interpreter in the node with the extraction of
Mi-Cho-Coq’s interpreter. It would provide a strong confidence that all prop-
erties proven in Mi-Cho-Coq would actually hold for on-chain executions. Note
that achieving this will not only require engineering efforts, but also the approval
of Tezos token holders. Indeed, Tezos has an on-chain governance mechanism:
changes to the economic ruleset, a subset of the codebase that contains amongst
other things the Michelson interpreter, must be approved by a vote of token
holders.

In this paper we will present how Mi-Cho-Coq can be used to prove func-
tional properties of smart contracts. It is organised as follows: Section 2 gives
an overview of the Michelson smart contract language, the Mi-Cho-Coq frame-
work is then presented in Sect. 3, a case study on a Multisig smart contract is
then conducted in Sect. 4, Sect. 5 presents some related work and finally Sect. 6
concludes the article by listing directions for future work.

The Mi-Cho-Coq framework, including the Multisig contract described
in Sect. 4, is available at https://gitlab.com/nomadic-labs/mi-cho-coq/tree/
FMBC 2019.

2 Overview of Michelson

Smart contracts are Tezos accounts of a particular kind. They have private access
to a memory space on the chain called the storage of the smart contract, each
transaction to a smart contract account contains some data, the parameter of the
transaction, and a script is run at each transaction to decide if the transaction
is valid, update the smart contract storage, and possibly emit new operations
on the Tezos blockchain.

Michelson is the language in which the smart contract scripts are written.
The Michelson language was designed before the launch of the Tezos blockchain.
The most important parts of the implementation of Michelson, the typechecker
and the interpreter, belong to the economic ruleset of Tezos so the language can
evolve through the Tezos amendment voting process.

2.1 Design Rationale

Smart contracts operate in a very constrained context: they need to be expres-
sive, evaluated efficiently, and their resource consumption should be accurately
measured in order to stop the execution of programs that would be too greedy,
as their execution time impacts the block construction and propagation. Smart
contracts are non-updatable programs that can handle valuable assets, there is
thus a need for strong guarantees on the correctness of these programs.

The need for efficiency and more importantly for accurate account of resource
consumption leans toward a low-level interpreted language, while the need for

https://gitlab.com/nomadic-labs/mi-cho-coq/tree/FMBC_2019
https://gitlab.com/nomadic-labs/mi-cho-coq/tree/FMBC_2019
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contract correctness leans toward a high level, easily auditable, easily formalis-
able language, with strong static guarantees.

To satisfy these constraints, Michelson was made a Turing-complete, low
level, stack based interpreted language (à la Forth), facilitating the measurement
of computation costs, but with some high level features à la ML: polymorphic
products, options, sums, lists, sets and maps data-structures with collection
iterators, cryptographic primitives and anonymous functions. Contracts are pure
functions that take a stack as input and return a stack as output. This side-effect
free design is an asset for the conception of verification tools.

The language is statically typed to ensure the well-formedness of the stack
at any point of the program. This means that if a program is well typed, and if
it is being given a well-typed stack that matches its input expectation, then at
any point of the program execution, the given instruction can be evaluated on
the current stack.

Moreover, to ease the formalisation of Michelson, ambiguous or hidden
behaviours have been avoided. In particular, unbounded integers are used to
avoid arithmetic overflows and division returns an option (which is None if and
only if the divisor is 0) so that the Michelson programmer has to specify the
behaviour of the program in case of division by 0; she can however still explicitly
reject the transaction using the FAILWITH Michelson instruction.

2.2 Quick Tour of the Language

The full language syntax, type system, and semantics are documented in [1], we
give here a quick and partial overview of the language.

Contracts’ Shape. A Michelson smart contract script is written in three parts:
the parameter type, the storage type, and the code of the contract. A contract’s
code consists of one block of code that can only be called with one parameter,
but multiple entry points can be encoded by branching on a nesting of sum types
and multiple parameters can be paired into one.

When the contract is deployed (or originated in Tezos lingo) on the chain, it
is bundled with a data storage which can then only be changed by a contract’s
successful execution. The parameter and the storage associated to the contract
are paired and passed to the contract’s code at each execution. The execution
of the code must return a list of operations and the updated storage.

Seen from the outside, the type of the contract is the type of its parameter,
as it is the only way to interact with it.

Michelson Instructions. As usual in stack-based languages, Michelson
instructions take their parameters on the stack. All Michelson instructions are
typed as a function going from the expected state of the stack, before the instruc-
tion evaluation, to the resulting stack. For example, the AMOUNT instruction
used to obtain the amount in μtez (i.e. a millionth of a tez, the smallest token
unit in Tezos) of the current transaction has type 'S → mutez:'S meaning that
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for any stack type 'S, it produces a stack of type mutez:'S. Some instructions,
like comparison or arithmetic operations, exhibit non-ambiguous ad-hoc poly-
morphism: depending on the input arguments’ type, a specific implementation
of the instruction is selected, and the return type is fixed. For example SIZE has

the following types: bytes:'S → nat:'S
string:'S → nat:'S

set 'elt:'S → nat:'S
map 'key 'val:'S → nat:'S
list 'elt:'S → nat:'S

While computing the size of a string or an array of bytes is similarly imple-
mented, under the hood, the computation of map size has nothing to do with
the computation of string size.

Finally, the contract’s code is required to take a stack with a pair parameter -
storage and returns a stack with a pair operation list-storage:
(parameter_ty*storage_ty):[] → (operation list*storage_ty):[].

The operations listed at the end of the execution can change the delegate
of the contract, originate new contracts, or transfer tokens to other addresses.
They will be executed right after the execution of the contract. The transfers
can have parameters and trigger the execution of other smart contracts: this is
the only way to perform inter-contract calls.

A Small Example - The Vote Contract. We want to allow users of the
blockchain to vote for their favorite formal verification tool. In order to do that,
we create a smart contract tasked with collecting the votes. We want any user
to be able to vote, and to vote as many times as they want, provided they pay a
small price (say 5 tez). We originate the contract with the names of a selection of
popular tools: Agda, Coq, Isabelle and the K framework, which are placed in the
long-term storage of the contract, in an associative map between the tool’s name
and the number of registered votes (of course, each tool starts with 0 votes).

In Fig. 1a, we present a voting contract, annotated with the state of the stack
after each line of code. When actually writing a Michelson contract, development
tools (including an Emacs Michelson mode) can interactively, for any point of
the code, give the type of the stack provided by the Michelson typecheck of a
Tezos node.

Let’s take a look at our voting program: First, the description of the storage
and parameter types is given on lines 1--2. Then the code of the contract is
given. On line 5, AMOUNT pushes on the stack the amount of (in μtez) sent to
the contract address by the user. The threshold amount (5 tez) is also pushed on
the stack on line 6 and compared to the amount sent: COMPARE pops the two
top values of the stack, and pushes either −1, 0 or 1 depending on the comparison
between the value. GT then pops this value and pushes true if the value is 1.
If the threshold is indeed greater than the required amount, the first branch of
the IF is executed and FAIL is called, interrupting the contract execution and
canceling the transaction.

If the value was false, the execution continues on line 9, where we prepare
the stack for the next action: DUP copies the top of the stack, we then manipulate
the tail of the stack while preserving it’s head using DIP: there, we take the right
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1 storage (map string int); # candidates
2 parameter string; # chosen
3 code {

4 # (chosen, candidates):[]
5 AMOUNT; # amount:(chosen, candidates):[]
6 PUSH mutez 5000000; COMPARE; GT;
7 # (5 tez > amount):(chosen, candidates):[]
8 IF { FAIL } {}; # (chosen, candidates):[]
9 DUP; DIP { CDR; DUP };

10 # (chosen, candidates):candidates:candidates:[]
11 CAR; DUP; # chosen:chosen:candidates:candidates:[]
12 DIP { # chosen:candidates:candidates:[]
13 GET; ASSERT SOME;
14 # candidates[chosen]:candidates:[]
15 PUSH int 1; ADD; SOME
16 # (Some (candidates[chosen]+1)):candidates:[]
17 }; # chosen:(Some (candidates[chosen]+1)):candidates:[]
18 UPDATE; # candidates' :[]
19 NIL operation; PAIR # (nil, candidates' ):[]
20 }

(a)

{Elt "Agda" 0 ; Elt "Coq" 0 ; Elt "Isabelle" 0 ; Elt "K" 0}

(b)

Fig. 1. A simple voting contract a and an example of initial storage b

element of the (chosen, candidates) pair with CDR, and we duplicate it again.
By closing the block guarded by DIP we recover the former stack’s top, and the
following line takes its left element with CAR, and duplicates it.

On line 12, we use DIP to protect the top of the stack again. GET then
pops chosen and candidates from the stack, and pushes an option containing
the number of votes of the candidate, if it was found in the map. If it was not
found, ASSERT SOME makes the program fail. On line 15, the number of votes
is incremented by ADD, and packed into an option type by SOME.

We then leave the DIP block to regain access to value at the top of the stack
(chosen). On line 18, UPDATE pops the three values remaining on top of the
stack, and pushes the candidates map updated with the incremented value for
chosen. Finally, we push an empty list of operations with NIL operation, and
pair the two elements on top of the stack to get the correct return type.

3 Mi-Cho-Coq: A Verification Framework in Coq for
Michelson

Mi-Cho-Coq consists of an implementation of a Michelson interpreter in Coq as
well as a weakest precondition calculus à la Dijkstra [12].
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Michelson Syntax and Typing in Coq. Michelson’s type system, syntax
and semantics, as described in the main documentation, are fully formalised in
Mi-Cho-Coq.

The abstract syntax tree of a Michelson script is a term of an inductive type
which carries the script type:

Inductive instruction : list type → list type → Set :=
| NOOP {A} : instruction A A
| FAILWITH {A B a} : instruction (a :: A) B
| SEQ {A B C} : instruction A B → instruction B C → instruction A C
| IF {A B} : instruction A B → instruction A B → instruction (bool :: A) B
| LOOP {A} : instruction A (bool :: A) → instruction (bool :: A) A ...

A Michelson code is usually a sequence of instructions (SEQ), which is one of
the instruction constructors. It has type instruction stA stB where stA and stB are
respectively the type of the input stack and of the output stack.

The stack type is a list of Michelson type constructions, defined in the type

inductive:

Inductive comparable_type : Set :=
| nat | int | string | bytes | bool | mutez | address | key_hash | timestamp.

Inductive type : Set :=
| Comparable_type (a : comparable_type) | key | unit | signature | operation
| option (a : type) | list (a : type) | set (a : comparable_type)
| contract (a : type) | pair (a b : type) | or (a b : type) | lambda (a b : type)
| map (key : comparable_type) (val : type)
| big_map (key : comparable_type) (val : type).

A full contract, for a given storage type storage and parameter type params is
an instruction of type

instruction ((pair params storage) :: nil) ((pair (list operation) storage) :: nil).

Thanks to the indexing of the instruction inductive by the input and output
stack types, only well-typed Michelson instructions are representable in Mi-Cho-
Coq. This is very similar to the implementation of Michelson in the Tezos node
which uses a similar feature in OCaml: generalised algebraic datatypes.

To ease the transcription of Michelson contracts into Mi-Cho-Coq AST we use
notations so that contracts in Mi-Cho-Coq look very similar to actual Michelson
code. The main discrepancy between Michelson and Mi-Cho-Coq syntax being
that due to parsing limitations, the Michelson semi-colon instruction terminator
has to be replaced by a double semi-colon instructions separator.

The ad-hoc polymorphism of Michelson instructions is handled by adding
an implicit argument to the corresponding instruction constructor in Mi-Cho-
Coq. This argument is a structure that carries an element identifying the actual
implementation of the instruction to be used. As the argument is implicit and
maximally inserted, Coq’s type unifier tries to fill it with whatever value can fit
with the known types surrounding it, i.e. the type of the input stack. Possible
values are declared through the Coq’s canonical structures mechanism, which is
very similar to (Coq’s or Haskell’s) typeclasses.
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Michelson Interpreter in Coq. Michelson semantics is formalised in Coq as
an evaluator eval of type forall {A B : list type}, instruction A B → nat → stack A

→ M (stack B) where M is the error monad used to represent the explicit failure
of the execution of a contract, and where stack A (resp. stack B) is the type of
a stack data whose type matches A (resp. B), the list of types. As the stack is
implemented as a tuple, stack constructs a product of types. The argument of
type nat is called the fuel of the evaluator. It represents a bound on the depth of
the execution of the contract and should not be confused with Michelson’s cost
model which is not yet formalised in Mi-Cho-Coq.

Some domain specific operations which are hard to define in Coq are axioma-
tised in the evaluator. These include cryptographic primitives, data serialisation,
and instructions to query the context of the call to the smart contract (amount
and sender of the transaction, current date, balance and address of the smart
contract).

AFramework forVerifying SmartContracts. To ease the writing of correct-
ness proofs in Mi-Cho-Coq, a weakest precondition calculus is defined as a func-
tion eval precond of type forall {fuel A B}, instruction A B → (stack B → Prop) →
(stack A → Prop) that is a Coq function taking as argument an instruction and a
predicate over the possible output stacks of the instruction (the postcondition) and
producing a predicate on the possible input stacks of the instruction (the precon-
dition).

This function is proved correct with respect to the evaluator:

Lemma eval_precond_correct {A B} (i : instruction A B) fuel st psi :

eval_precond fuel i psi st <→
match eval i fuel st with Failed _ _ => False | Return _ a => psi a end.

Note that the right-hand side formula is the result of the monad transformer
of [5] which here yields a simple expression thanks to the absence of complex
effects (exceptions, state, etc.) in Michelson.

A Small Example - The Vote Contract. We give below a formal speci-
fication of the voting contract seen previously, written in pseudo-code to keep
it clear and concise. Section 4 presents a case study with a more detailed Coq
specification.

We want the contract to take into account every vote sent in a transaction
with an amount greater than 5 tez. Moreover, we want to only take into account
the votes toward an actual available choice (the contract should fail if the wrong
name is sent as a parameter). Finally, the contract should not emit any operation.

In the following specification, the precondition is the condition that must
be verified for the contract to succeed. The postcondition fully describes the
new state of the storage at the end of the execution, as well as the potentially
emitted operations. amount refers to the quantity of μtez sent by the caller for
the transaction.
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Precondition: amount ≥ 5000000 ∧ chosen ∈ Keys(storage)
Postconditions: returned operations = [ ] ∧

∀ c, c ∈ Keys(storage) ⇐⇒ c ∈ Keys(new storage) ∧
new storage[chosen] = storage[chosen] + 1 ∧
∀ c ∈ Keys(storage), c 	= chosen ⇒ new storage[c] = storage[c]

Despite looking simple, proving the correctness of the vote contract still needs
a fair number of properties about the map data structure. In particular we need
some lemmas about the relations between the mem, get and update functions,
which we added to the Mi-Cho-Coq library to prove this contract.

Once these lemmas are available, the contract can easily be proved by study-
ing the three different situations that can arise during the execution: the contract
can fail (either because the sender has not sent enough tez or because they have
not selected one of the possible candidates), or the execution can go smoothly.

4 A Case Study: The Multisig Contract

The Multisig contract is a typical example of access-control smart contract. A
Multisig contract is used to share the ownership of an account between several
owners. The owners are represented by their cryptographic public keys in the
contract storage and a pre-defined threshold (a natural number between 1 and
the number of owners) of them must agree for any action to be performed by
the Multisig contract.

Agreement of an owner is obtained by requiring a cryptographic signature
of the action to be performed. To ensure that this signature cannot be replayed
by an attacker to authenticate in another call to a Multisig contract (the same
contract or another one implementing the same authentication protocol), a nonce
is appended to the operation before signing. This nonce consists of the address
of the contract on the blockchain and a counter incremented at each call.

Michelson Implementation. To be as generic as possible, the possible actions
of our Multisig contract are:

– produce a list of operations to be run atomically
– change the threshold and the list of owner public keys

The contract features two entrypoints named default and main1. The
default entrypoint takes no parameter (it has type unit) and lets unauthenti-
cated users send funds to the Multisig contract. The main entrypoint takes as
parameters an action, a list of optional signatures, and a counter value. It checks
the validity and the number of signatures and, in case of successful authentica-
tion, it executes the required action and increment the counter.

The Michelson script of the Multisig contract is available at [9]. The code
of the default entrypoint is trivial. The code for the main entrypoint can be
divided in three parts: the header, the loop, and the tail.
1 i.e. the parameter of the contract is a sum type branching two elements, cf. Sect. 2.2.
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The header packs together the required action and the nonce and checks that
the counter given as parameter matches the one stored in the contract.

The loop iterates over the stored public keys and the optional signatures
given in parameter. It counts and checks the validity of all the signatures.

Finally the contract tail checks that the number of provided signatures is
at least as large as the threshold, it increments the stored counter, and it runs
the required action (it either evaluates the anonymous function passed in the
contract parameter and emits the resulting operations or modifies the contract
storage to update the list of owner public keys and the threshold).

Specification and Correctness Proof. Mi-Cho-Coq is a functional verifica-
tion framework. It is well suited to specify the relation between the input and
output stacks of a contract such as Multisig but it is currently not expressive
enough to state properties about the lifetime of a smart contract nor the inter-
action between smart contracts. For this reason, we have not proved that the
Multisig contract is resistant to replay attacks. However, we fully characterise
the behaviour of each call to the Multisig contract using the following specifica-
tion of the Multisig contract, where env is the evaluation environment containing
among other data the address of the contract (self env) and the amount of the
transaction (amount env).

Definition multisig spec (parameter : data parameter ty) (stored counter : N)
(threshold : N) (keys : Datatypes.list (data key))
(new stored counter : N) (new threshold : N)
(new keys : Datatypes.list (data key))
(returned operations : Datatypes.list (data operation))
(fuel : Datatypes.nat) :=

let storage : data storage ty := (stored counter, (threshold, keys)) in
match parameter with
| inl tt ⇒
new stored counter = stored counter ∧ new threshold = threshold ∧
new keys = keys ∧ returned operations = nil

| inr ((counter, action), sigs) ⇒
amount env = (0 Mutez) ∧ counter = stored counter ∧
length sigs = length keys ∧
check all signatures sigs keys (fun k sig ⇒

check signature env k sig
(pack env pack ty (address env parameter ty (self env),

(counter, action)))) ∧
(count signatures sigs >= threshold)%N ∧
new stored counter = (1 + stored counter)%N ∧
match action with

| inl lam ⇒
match (eval lam fuel (tt, tt)) with
| Return (operations, tt) ⇒
new threshold = threshold ∧ new keys = keys ∧
returned operations = operations

| ⇒ False
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end

| inr (nt, nks) ⇒
new threshold = nt ∧ new keys = nks ∧ returned operations = nil

end end.

Using the Mi-Cho-Coq framework, we have proved the following theorem:

Lemma multisig_correct (params : data parameter_ty)

(stored_counter new_stored_counter threshold new_threshold : N)

(keys new_keys : list (data key))

(returned_operations : list (data operation)) (fuel : nat) :

let storage : data storage_ty := (stored_counter, (threshold, keys)) in

let new_storage : data storage_ty :=

(new_stored_counter, (new_threshold, new_keys)) in

17 * length keys + 14 $\leq$ fuel →
eval multisig (23 + fuel) ((params, storage), tt)

= Return _ ((returned_operations, new_storage), tt) <→
multisig_spec params stored_counter threshold keys

new_stored_counter new_threshold new_keys returned_operations fuel.

The proof relies heavily on the correctness of the precondition calculus. The
only non-trivial part of the proof is the signature checking loop. Indeed, for
efficiency reasons, the Multisig contract checks the equality of length between
the optional signature list and the public key list only after checking the validity
of the signature; an optional signature and a public key are consumed at each
loop iteration and the list of remaining optional signatures after the loop exit
is checked for emptiness afterward. For this reason, the specification of the loop
has to allow for remaining unchecked signatures.

5 Related Work

Formal verification of smart contracts is a recent but active field. The K frame-
work has been used to formalise [15] the semantics of both low-level and high-
level smart contract languages for the Ethereum and Cardano blockchains. These
formalisations have been used to verify common smart contracts such as Casper,
Uniswap, and various implementations of the ERC20 and ERC777 standards.

Note also a formalisation of the EVM in the F* dependently-typed lan-
guage [14], that was validated against the official Ethereum test suite. This
formalisation effort led to formal definitions of security properties for smart con-
tracts (call integrity, atomicity, etc).

Ethereum smart contracts, written in the Solidity high-level language, can
also be certified using a translation to F* [7].

The Zen Protocol [4] directly uses F* as its smart contract language so that
smart contracts of the Zen Protocol can be proved directly in F*. Moreover,
runtime tracking of resources can be avoided since computation and storage
costs are encoded in the dependent types.

The Scilla [19,20] language of the Zilliqa blockchain has been formalised
in Coq as a shallow embedding. This intermediate language is higher-level (it
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is based on λ-calculus) but also less featureful (it is not Turing-complete as
it does not feature unbounded loops nor general recursion) than Michelson. Its
formalisation includes inter-contract interaction and contract lifespan properties.
This has been used to show safety properties of a crowdfunding smart contract.
To the best of our knowledge, no tool currently exists for interactive functional
verification of Scilla smart contracts but Scilla’s framework for writing static
analyses can be used for automated verification of some specific properties.

6 Limits and Future Work

As we have seen, the Mi-Cho-Coq verification framework can be used to certify
the functional correctness of non-trivial smart contracts of the Tezos blockchain
such as the Multisig contract. We are currently working on several improvements
to extend the expressivity of the framework; Michelson’s cost model and the
semantics of inter-contract interactions are being formalised.

In order to prove security properties, such as the absence of signature replay
in the case of the Multisig contract, an adversarial model has to be defined. This
task should be feasible in Coq but our current plan is to use specialised tools
such as Easycrypt [6] and ProVerif [8].

No code is currently shared between Mi-Cho-Coq and the Michelson eval-
uator written in OCaml that is executed by the Tezos nodes. We would like
to raise the level of confidence in the fact that both evaluators implement the
same operational semantics. We could achieve this either by proposing to the
Tezos stakeholders to amend the economic protocol to replace the Michelson
evaluator by a version extracted from Mi-Cho-Coq or by translating to Coq the
OCaml code of the Michelson evaluator using a tool such as CoqOfOCaml [11]
or CFML [10] and then prove the resulting Coq function equivalent to the Mi-
Cho-Coq evaluator.

Last but not least, to ease the development of certified compilers from high-
level languages to Michelson, we are working on the design of an intermediate
compilation language called Albert that abstracts away the Michelson stack.
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Abstract. We present a model/executable specification of smart con-
tract execution in Coq. Our formalization allows for inter-contract com-
munication and generalizes existing work by allowing modelling of both
depth-first execution blockchains (like Ethereum) and breadth-first exe-
cution blockchains (like Tezos). We represent smart contracts programs
in Coq’s functional language Gallina, enabling easier reasoning about
functional correctness of concrete contracts than other approaches. In
particular we develop a Congress contract in this style. This contract
– a simplified version of the infamous DAO – is interesting because of
its very dynamic communication pattern with other contracts. We give
a high-level partial specification of the Congress’s behavior, related to
reentrancy, and prove that the Congress satisfies it for all possible smart
contract execution orders.

Keywords: Blockchain · Coq · Formal verification · Smart contracts

1 Introduction

Since Ethereum, blockchains make a clear separation between the consensus
layer and the execution of interacting smart contracts. In Ethereum’s Solidity
language contracts can arbitrarily call into other contracts as regular function
calls. Modern blockchains further separate the top layer in an execution layer and
a contract layer. The execution layer schedules the calls between the contracts
and the contract layer executes individual programs. The choice of execution
order differs between blockchains. For example, in Ethereum the execution is
done in a synchronous (or depth first) order: a call completes fully before the
parent continues, and the parent is able to observe its result. Tezos and Scilla
use a breadth first order instead, where observing the result is not possible.

We provide1 a model/executable specification of the execution and contract
layer of a third generation blockchain in the Coq proof assistant. We use Coq’s
embedded functional language Gallina to model contracts and the execution
layer. This language can be extracted to certified programs in for example
Haskell or Ocaml. Coq’s expressive logic also allows us to write concise proofs.

1 https://gitlab.au.dk/concordium/smart-contract-interactions/tree/v1.0.
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The consensus protocol provides a consistent global state which we treat
abstractly in our formalization.

We work with an account-based model. We could also model the UTxO model
by converting a list of UTxO transactions to a list of account transactions [12].
Like that work, we do not model the cryptographic aspects, only the accounting
aspects: the transactions and contract calls.

Section 2 describes the implementation of the execution layer in Coq. In
Sect. 3 we provide a simple principled specification for the Congress. By using
such specifications one avoids having to deal with reentrancy bugs in a post-hoc
way. Section 4 discusses related and future work.

2 Implementation

2.1 Basic Assumptions

Our goal is to model execution of smart contracts. To do so we will require
some basic operations that are to be used both by smart contracts and when
specifying our semantics. We do this with a typeclass in Coq:

Class ChainBase :=

{ Address : Type;

address_countable :> Countable Address;

address_is_contract : Address → bool; ... }.

We require a countable Address type with a clear separation between addresses
belonging to contracts and to users. While this separation is not provided in
Ethereum its omission has led to exploits before2 and we view it as realistic
that future blockchains allow this. Other blockchains commonly provide this by
using some specific format for contract addresses, for example, in Bitcoin such
pay-to-script-hash addresses always start with 3.

All semantics and smart contracts will be abstracted over an instance of this
type, so in the following sections we will assume we are given such an instance.

2.2 Smart Contracts

We will consider a pure functional smart contract language. Instead of modelling
the language as an abstract syntax tree in Coq, as in [2], we model individual
smart contracts as records with (Coq) functions.

Local State. It is not immediately clear how to represent smart contracts by
functions. For one, smart contracts have local state that they should be able to
access and update during execution. In Solidity, the language typically used in
Ethereum, this state is mutable and can be changed at any point in time. It
is possible to accomplish something similar in pure languages, for example by
2 See for instance https://www.reddit.com/r/ethereum/comments/916xni/how to

pwn fomo3d a beginners guide/.

https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fomo3d_a_beginners_guide/
https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fomo3d_a_beginners_guide/
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using a state monad, but we do not take this approach. Instead we use a more
traditional approach where the contract takes as input its state and returns an
updated state which is similar to Liquidity.

Different contracts will typically have different types of states. A crowdfund-
ing contract may wish to store a map of backers in its state while an auction
contract would store information about ongoing auctions. To facilitate this poly-
morphism we use an intermediate storage type called SerializedValue. We define
conversions between SerializedValue and primitive types like booleans and inte-
gers plus derived types like pairs, sums and lists. Additionally we provide Coq
tactics that can automatically generate conversions for custom user types like
inductives and records. This allows conversions to be handled implicitly and
mostly transparently to the user.

Inter-contract Communication. In addition to local state we also need some
way to handle inter-contract communication. In Solidity contracts can arbitrar-
ily call into other contracts as regular function calls. This would once again be
possible with a monadic style, for example by the use of a promise monad where
the contract would ask to be resumed after a call to another contract had fin-
ished. To ease reasoning we choose a simpler approach where contracts return
actions that indicate how they would like to interact with the blockchain, allow-
ing transfers, contract calls and contract deployments only at the end of (single
steps of) execution. The blockchain will then be responsible for scheduling these
actions in what we call its execution layer.

With this design we get a clear separation between contracts and their inter-
action with the chain. That such separations are important has been realized
before, for instance in the design of Michelson and Scilla [9]. Indeed, a “tail-call”
approach like this forces the programmer to update the contract’s internal state
before making calls to other contracts, mitigating by construction reentrancy
issues such as the infamous DAO exploit.

Thus, contracts will take their local state and some data allowing them to
query the blockchain. As a result they then optionally return the new state
and some operations (such as calls to other contract) allowing inter-contract
communication. Tezos’ Michelson language follows a similar approach.

The Ethereum model may be compared to object-oriented programming. Our
model is similar to the actor model as contracts do not read or write the state
of another contract directly, but instead communicate via messages instead of
shared memory. Liquidity and the IO-automata-based Scilla use similar models.

The Contract. Smart contracts are allowed to query various data about the
blockchain. We model this with a data type:

Definition Amount := Z.

Record Chain := { chain_height : nat;

current_slot : nat;

finalized_height : nat;

account_balance : Address → Amount; }.
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We allow contracts to access basic details about the blockchain, like the
current chain height, slot number and the finalized height. The slot number is
meant to be used to track the progression of time; in each slot, a block can
be created, but it does not have to be. The finalized height allows contracts
to track the current status of the finalization layer available in for example the
Concordium blockchain [5]. This height is different from the chain height in that
it guarantees that blocks before it can not be changed. We finally also allow the
contract to access balances of accounts as is common in other blockchains. In
sum, the following data types model the contracts:

Record ContractCallContext :=

{ ctx_from : Address;

ctx_contract_address : Address;

ctx_amount : Amount; }.

Inductive ActionBody :=

| act_transfer (to : Address) (amt : Amount)

| act_call (to : Address) (amt : Amount) (msg : SerializedValue)

| act_deploy (amt : Amount) (c : WeakContract) (setup : SerializedValue)

with WeakContract :=

| build_weak_contract

(init : Chain → ContractCallContext → SerializedValue (* setup *)

→ option SerializedValue)

(receive : Chain → ContractCallContext → SerializedValue (* state *)

→ option SerializedValue (* message *)

→ option (SerializedValue * list ActionBody)).

Here the ContractCallContext provides the contract with information about
the transaction that resulted in its execution. It contains the source address
(ctx_from), the contract’s own address (ctx_contract_address) and the amount
of money transferred (ctx_amount). The ActionBody type represents operations
that interact with the chain. It allows for messageless transfers (act_transfer),
calls with messages (act_call), and deployment of new contracts (act_deploy).
The contract itself is two functions. The init function is used when a contract
is deployed to set up its initial state, while the receive function will be used
for transfers and calls with messages afterwards. They both return option types,
allowing the contract to signal invalid calls or deployments. The receive function
additionally returns a list of ActionBody that it wants to be scheduled, as we
described earlier. This data type does not contain a source address since it is
implicitly the contract’s own address. Later, we will also use a representation
where there is a source address; we call this type Action:

Record Action := { act_from : Address; act_body : ActionBody; }.

This type resembles what is normally called a transaction, but we make a dis-
tinction between the two. An Action is a request by a contract or external user to
perform some operation. When executed by an implementation, this action will
affect the state of the blockchain in some way. It differs from transactions since
act_deploy does not contain the address of the contract to be deployed. This
models that it is the implementation that picks the address of a newly deployed
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contract, not the contract making the deployment. We will later describe our
ActionEvaluation type which captures more in depth the choices made by the
implementation while executing an action.

The functions of contracts are typed using the SerializedValue type. This
is also the reason for the name WeakContract. This makes specifying semantics
simpler, since the semantics can deal with contracts in a generic way (rather
than contracts abstracted over types). However, this form of “string-typing”
makes things harder when reasoning about contracts. For this reason we provide
a dual notion of a strong contract, which is a polymorphic version of contracts
generalized over the setup, state and message types. Users of the framework only
need to be aware of this notion of contract, which does not contain references to
SerializedValue at all.

One could also imagine an alternative representation using a dependent
record of setup, state and message types plus functions over those types. How-
ever, in such a representation it is unclear how to allow contracts to send mes-
sages to other contracts when the blockchain itself does not have any knowledge
about concrete contracts.

2.3 Semantics of the Execution Layer

Environments. The Chain type shown above is merely the contract’s view of
the blockchain and does not store enough information to allow the blockchain
to run actions. More specifically we need to be able to look up information
about currently deployed contracts like their functions and state. We augment
the Chain type with this information and call it an Environment:

Record Environment :=

{ env_chain :> Chain;

env_contracts : Address → option WeakContract;

env_contract_states : Address → option SerializedValue; }.

It is not hard to define functions that allow us to make updates to environ-
ments. For instance, inserting a new contract is done by creating a new function
that checks if the address matches and otherwise uses the old map. In other words
we use simple linear maps in the semantics. In similar ways we can update the
rest of the fields of the Environment record.

Evaluation of Actions. When contracts return actions the execution layer
will need to evaluate the effects of these actions. We define this as a “proof-
relevant” relation ActionEvaluation in Coq, with type Environment → Action

→ Environment → list Action → Type. This relation captures the requirements
and effects of executing the action in the environment. It is “proof-relevant”,
meaning that the choices made by the execution layer can be inspected. For
example, when an action requests to deploy a new contract, the address selected
by the implementation can be extracted from this relation.
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We define the relation by three cases: one for transfers of money, one for
deployment of new contracts, and one for calls to existing contracts. To exemplify
this relation we give its formal details for the simple transfer case below:

| eval_transfer :

forall {pre : Environment} {act : Action} {new_env : Environment}

(from to : Address) (amount : Amount),

amount ≤ account_balance pre from →
address_is_contract to = false →
act_from act = from →
act_body act = act_transfer to amount →
EnvironmentEquiv new_env (transfer_balance from to amount pre) →
ActionEvaluation pre act new_env []

In this case the sender must have enough money and the recipient cannot
be a contract. When this is the case a transfer action and the old environment
evaluate to the new environment where the account_balance has been updated
appropriately. Finally, such a transfer does not result in more actions to execute
since it is not associated with execution of contracts. Note that we close the
evaluation relation under extensional equality (EnvironmentEquiv).

We denote this relation by the notation 〈σ, a〉 ⇓ (σ′, l). The intuitive under-
standing of this notation is that evaluating the action a in environment σ results
in a new environment σ′ and new actions to execute l.

Chain Traces. The Environment type captures enough information to evaluate
actions. We further augment this type to keep track of the queue of actions
to execute. In languages like Solidity this data is encoded implicitly in the call
stack, but since interactions with the blockchain are explicit in our framework
we keep track of it explicitly.

Record ChainState := { chain_state_env :> Environment;

chain_state_queue : list Action; }.

We now define what it means for the chain to take a step. Formally, this is
defined as a “proof-relevant” relation ChainStep of type ChainState → ChainState

→ Type. We denote this relation with the notation (σ, l) → (σ′, l′), meaning that
we can step from the environment σ and list of actions l to the environment σ′

and list of actions l′. We give this relation as simplified inference rules:

step-block
b valid for σ acts from users

(σ, []) → (add block b σ, acts)

step-action
〈σ, a〉 ⇓ (σ′, l)

(σ, a :: l′) → (σ′, l ++ l′)

step-permute
Perm(l, l′)

(σ, l) → (σ, l′)

The step-block rule allows the addition of a new block (b) containing some
actions (acts) to execute. We require that the block is valid for the current
environment (the “b valid for σ” premise), meaning that it needs to satisfy some
well-formedness conditions. For example, if the chain currently has height n, the
next block added needs to have height n + 1. There are other well-formedness
conditions on other fields, such as the block creator, but we omit them here
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for brevity. Another condition is that all added actions must come from users
(the “acts from users” premise). This models the real world where transactions
added in blocks are “root transactions” from users. This condition is crucial to
ensure that transfers from contracts can happen only due to execution of their
associated code. When the premises are met we update information about the
current block (such as the current height and the balance of the creator, signified
by the add block function) and update that the queue now contains the actions
that were added.

The step-action rule allows the evaluation of the first action in the queue,
replacing it with the resulting new actions to execute. This new list (l in the rule)
is concatenated at the beginning, corresponding to using the queue as a stack.
This results in a depth-first execution order of actions. The step-permute rule
allows an implementation to use a different order of reduction by permuting the
queue at any time. For example, it is possible to obtain a breadth-first order of
execution by permuting the queue so that newly added events are in the back.
In this case the queue will be used like an actual FIFO queue.

Building upon steps we can further define traces as the proof-relevant reflex-
ive transitive closure of the step relation. In other words, this is a sequence
of steps where each step starts in the state that the previous step ended in.
Intuitively the existence of a trace between two states means that there is a
semantically correct way to go between those states. If we let ε denote the
empty environment and queue this allows us to define a concept of reachability.
Formally we say a state (σ, l) is reachable if there exists a trace starting in ε and
ending in (σ, l). Generally, only reachable states are interesting to consider and
most proofs are by induction over the trace to a reachable state.

2.4 Building Blockchains

We connect our semantics to an executable definition of a blockchain with a
typeclass in Coq:

Class ChainBuilderType := {

builder_type : Type;

builder_initial : builder_type;

builder_env : builder_type → Environment;

builder_add_block (builder : builder_type) (header : BlockHeader)

(actions : list Action) : option builder_type;

builder_trace (builder : builder_type) :

ChainTrace empty_state (build_chain_state (builder_env builder) []); }.

A chain builder is a dependent record consisting of an implementation type
(builder_type) and several fields using this type. It must provide an initial
builder, which typically would be an empty chain, or a chain containing just
a genesis block. It must be convertible to an environment allowing to query
information about the state. It must define a function that allows addition of
new blocks. Finally, the implementation needs to be able to give a trace showing
that the current environment is reachable with no more actions left in the queue
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to execute. This trace captures a definition of soundness, since it means that the
state of such a chain builder will always be reachable.

Instantiations. We have implemented two instances of the ChainBuilderType

typeclass. Both of these are based on finite maps from the std++ library used
by Iris [4] and are thus relatively efficient compared to the linear maps used
to specify the semantics. The difference in the implementations lies in their
execution model: one implementation uses a depth-first execution order, while
the other uses a breadth-first execution order. The former execution model is
similar to the EVM while the latter is similar to Tezos and Scilla.

These implementations are useful as sanity checks but they also serve other
useful purposes in the framework. Since they are executable they can be used
to test concrete contracts that have been written in Coq. This involves writing
the contracts and executing them using Coq’s Compute vernacular to inspect the
results. In addition, they can also be used to give counter-examples to properties.
In the next section we will introduce the Congress contract, and we have used the
depth-first implementation of our semantics to formally show that this contract
with a small change can be exploited with reentrancy.

3 Case: Congress – A Simplified DAO

In this section we will present a case study of implementing and partially speci-
fying a complex contract in our framework.

The Congress Contract. Wang [11] gives a list of eight interesting Ethereum
contracts. One of these is the Congress in which members of the contract vote on
proposals. Proposals contain transactions that, if the proposal succeeds, are sent
out by the Congress. These transactions are typically monetary amounts sent
out to some address, but they can also be arbitrary calls to any other contract.

We pick the Congress contract because of its complex dynamic interaction
with the blockchain and because of its similarity to the infamous DAO contract
that was deployed on the Ethereum blockchain and which was eventually hacked
by a clever attacker exploiting reentrancy in the EVM. The Congress can be seen
as the core of the DAO contract, namely the proposal and voting mechanisms.

We implement the logic of the Congress in roughly 150 lines of Coq code.
The type of messages accepted by the Congress can be thought of as its interface
since this is how the contract can be interacted with:

Inductive Msg :=

| transfer_ownership : Address → Msg

| change_rules : Rules → Msg

| add_member : Address → Msg

| remove_member : Address → Msg

| create_proposal : list CongressAction → Msg

| vote_for_proposal : ProposalId → Msg
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| vote_against_proposal : ProposalId → Msg

| retract_vote : ProposalId → Msg

| finish_proposal : ProposalId → Msg.

The Congress has an owner who is responsible for managing the rules of
the Congress and the member list. By default, we set this to be the cre-
ator of the Congress. The owner can transfer his ownership away with the
transfer_ownership message. It is possible to make the Congress its own owner,
in which case all rule changes and modifications to the member list must happen
through proposals (essentially making the Congress a democracy).

Anyone can use the create_proposal and finish_proposal messages. We allow
proposals to contain any number of actions to send out, though we restrict
the actions to only transfers and contract calls (i.e. no contract deployments).
This restriction is necessary because deployments would require the state of the
Congress to contain the contracts to deploy. Since contracts are functions in our
shallow embedding this would require storing higher order state which we do not
allow in the framework. This is a downside to the shallow embedding – with a
deep embedding like [2], the code could be stored as an AST or bytes.

The rules of the Congress specify how long proposals need to be debated.
During this period, members of the Congress have the ability to vote on the
proposal. Once debated, a proposal can be finished and the Congress will remove
it from its internal storage and send out its actions if it passed.

A Partial Specification. The DAO vulnerability was in reward payout code in
which a specially crafted contract could reenter the DAO causing it to perform
actions an unintended number of times. Specifically, the attacker was able to
propose a so-called split and have the original DAO transfer a disproportionate
amount of money to a new DAO contract under his control. Congress does not
allow splits, but the same kind of bug would be possible in code responsible for
carrying out proposals.

Previous research such as [3] has focused on defining this kind of reentrancy
formally. Such (hyper-)properties are interesting, but they also rely heavily on
the benefit of hindsight and their statements are complex and hard to under-
stand. Instead we would like to come up with a natural specification for the
Congress that a programmer could reasonably have come up with, even with-
out knowledge of reentrancy or the exploit. Our goal with this is to apply the
framework in a very concrete setting.

The specification we give is based on the following observation: any transac-
tion sent out by the Congress should correspond to an action that was previously
created with a create_proposal message. This is a temporal property because
it says something about the past whenever an outgoing transaction is observed.
Temporal logic is not natively supported by Coq, so this would require some
work. Therefore we prefer a similar but simpler property: the number of actions
in previous create_proposal messages is always greater than or equal to the total
number of transactions the Congress has sent out. Our main result about the
Congress is a formal proof that this always holds after adding a block:
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Corollary congress_txs_after_block {ChainBuilder : ChainBuilderType}

prev creator header acts new :

builder_add_block prev creator header acts = Some new →
forall addr,

env_contracts new addr = Some (Congress.contract : WeakContract) →
length (outgoing_txs (builder_trace new) addr) ≤
num_acts_created_in_proposals (incoming_txs (builder_trace new) addr).

This result states that, after adding a block, any address at which a Congress
contract is deployed satisfies the property previously described. The number of
actions created in previous create_proposal messages is calculated by function
num_acts_created_in_proposals. The incoming_txs and outgoing_txs functions
are general functions that finds transactions (evaluation of actions) in a trace.
In this sense the property treats the contract as a black box, stating only things
about the transactions that have been observed on the blockchain.

This is not a full specification of the behavior of the Congress but proving
this property can help increase trust in the Congress. In particular it would
not have been provable in the original DAO contract because of the reentrancy
exploit where the DAO sent out an unbounded number of transactions. Note
also that we do not want to exclude reentrancy entirely: indeed, in the situation
where the Congress is its own owner reentrancy is required for changing rules
and the member list.

We prove the property by generalizing it over the following data:

– The internal state of the contract; more specifically, the current number of
actions in proposals stored in the internal state.

– The number of transactions sent out by the Congress, as before.

– The number of actions in the queue where the Congress is the source.

– The number of actions created in proposals, as before.

This results in a stronger statement from which the original result follows. The
key observations are that
1. When a proposal is created, the number of actions created in proposals goes

up, but so does the number of actions in the internal state of the Congress.

2. When a proposal is finished, the number of actions in the internal state goes
down, but the number of actions in the queue goes up accordingly (assum-
ing the proposal was voted for). In other words, actions “move” from the
Congress’s internal state to the queue.

3. When an outgoing transaction appears on the chain it is because an action
moved out of the queue.

Especially observation 3 is interesting. It allows us to connect the evaluation of
a contract in the past to its resulting transactions on the chain, even though
these steps can be separated by many unrelated steps in the trace.

The proof of the stronger statement is straightforward by inducting over
the trace. When deploying the Congress we need to establish the invariant
which boils down to proving functional correctness of the init function and the
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use of some results that hold for contracts which have just been deployed (for
instance, such contracts have not made any outgoing transactions). On calls to
the Congress the invariant needs to be reestablished, which boils down to prov-
ing functional correctness of the receive function. Crucially, we can reestablish
the invariant because the implementation of the Congress clears out proposals
from its state before the actions in the proposal are evaluated (the DAO was
vulnerable because it neglected to do this on splits).

4 Conclusions

We have formalized the execution model of blockchains in Coq and used our
formalization to prove formally a result about a concrete contract. Our formal-
ization of blockchain semantics is flexible in that it accounts both for depth-first
and breadth-first execution order, generalizing existing blockchains and previ-
ous work, while remaining expressive enough to allow us to prove results about
complex contracts. We showed for a Congress – a simplified version of the DAO,
which still has a complex dynamic interaction pattern – that it will never send
out more transactions than have been created in proposals. This is a natural
property that aids in increasing trust that this contract is not vulnerable to
reentrancy like the DAO.

Related Work. Both Simplicity [7] and Scilla [9] are smart contract languages
with an embedding in Coq. Temporal properties of several smart contracts have
been verified in Scilla [10], although our Congress contract is more complex than
the contracts described in that paper. We are unaware of an implementation of
such a contract in Scilla. Scilla, as an intermediate language which includes
both a functional part and contract calls, uses a CPS translation to ensure that
every call to another contract is done as the last instruction. In our model, the
high-level language and the execution layer are strictly separated.

The formalization of the EVM in F* [3] can be extracted and used to run
EVM tests to show that it is a faithful model of the EVM. However, they do
not prove properties of any concrete contracts. Instead they consider classes of
bugs in smart contracts and try to define general properties that prevent these.
One of these properties, call integrity, is motivated by the DAO and attempts
to capture reentrancy. Intuitively a contract satisfies call integrity if the calls
it makes cannot be affected by code of other contracts. VerX [8] uses temporal
logic and model checking to check a similar property. Such statements are not
hard to state in our framework given Coq’s expressive logic, and it seems this
would be an appropriate property to verify for the Congress. However, even a
correct Congress does not satisfy this property, since it is possible for called
contracts to finish proposals which can cause the Congress to perform calls.
This property could potentially be proven in a version of the Congress that only
allowed proposals to be finished by humans, and not by contracts.

Future Work. More smart contracts are available in Wang’s PhD thesis [11]
and specifying these to gain experience with using the framework will help
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uncover how the framework itself should be improved. In this area it is also
interesting to consider more automatic methods to make proving more produc-
tive. For example, temporal logics like LTL or CTL can be useful to specify
properties on traces and model checking these can be automated; see e.g. [8].

Finally, while our current framework is inspired by and generalizes existing
blockchains, there is still more work to be done to get closer to practical imple-
mentations. Gas is notoriously difficult to deal with in our shallow embedding
because tracking costs of operations can not be done automatically. However,
perhaps a monadic structure can be used here [6]. We have connected our work
with a deep embedding of a functional language [1] and explored pros and cons of
shallow and deep embeddings in that work. We plan to use this deep embedding
to explore reasoning about gas. In the other direction it is interesting to con-
sider extraction of the execution layers we have shown to satisfy our semantics
and extraction of verified contracts into other languages like Liquidity, Oak or
Solidity.

Acknowledgements. We would like to thank the Oak team for discussions.
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Abstract. As smart contracts are growing in size and complexity, it
becomes harder and harder to ensure their correctness and security. Due
to the lack of isolation mechanisms a single mistake or vulnerability in the
code can bring the whole system down, and due to this smart contract
upgrades can be especially dangerous. Traditional ways to ensure the
security of a smart contract, including DSLs, auditing and static analysis,
are used before the code is deployed to the blockchain, and thus offer
no protection after the deployment. After each upgrade the whole code
need to be verified again, which is a difficult and time-consuming process
that is prone to errors. To address these issues a security protocol and
framework for smart contracts called Cap9 was developed. It provides
developers the ability to perform upgrades in a secure and robust manner,
and improves isolation and transparency through the use of a low level
capability-based security model. We have used Isabelle/HOL to develop
a formal specification of the Cap9 framework and prove its consistency.
The paper presents a refinement-based approach that we used to create
the specification, as well as discussion of some encountered difficulties
during this process.

Keywords: Formal specification · Smart contracts · Isabelle · Security.

1 Introduction

Ethereum [6] is a global blockchain platform for decentralised applications with a
built-in Turing-complete programming language. This language is used to create
smart contracts—automated general-purpose programs that have access to the
state of the blockchain, can store persistent data and exchange transactions with
other contracts and users. Such contracts have a number of use-cases in different
areas: finance, insurance, intellectual property, internet of things, voting, and
others.

However, creating a reliable and secure smart contract can be extremely
challenging. Ethereum guarantees that the code of a smart contract would be
executed precisely as it is written through the use of a consensus protocol, which
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resolves potential conflicts between the nodes in the blockchain network. It pre-
vents malicious nodes from disrupting and changing the execution process, but
does not protect from the flaws and mistakes in the code itself. And due to the
lack of any other control on the execution of the code any uncaught mistake can
potentially compromise not only the contract itself, but also other contracts that
are interacting with it and expect a certain behavior from it.

Such flaws can be turned into vulnerabilities and cause a great harm, and there
are many examples of such vulnerabilities and attacks that exploit them [2]. Devel-
opers can ensure the security of a contract using auditing, various static analy-
sis tools [11,15], domain-specific languages [5,7], or formal verification [3]. These
are excellent tools and methods that can significantly improve the quality of the
code. But they are not so effective during the upgrades, which is a common process
for almost every sufficiently sophisticated smart contract. Upgrades are necessary
because it is the only way to fix a bug that was missed during the verification pro-
cess. However, they can also introduce their own bugs, so after each upgrade the
code needs to be verified again, which may cost a lot of time and effort.

These issues are addressed by the Cap9 framework [4]. It provides means
to isolate contracts from each other and restrict them from doing dangerous
state-changing actions unsupervised, thus greatly reducing risks of upgrades
and consequences of uncaught mistakes. Cap9 achieves this by using a low level
capability-based security model, which allows to explicitly define what can or can
not be done by any particular contract. Once defined, such capabilities, or per-
missions, are visible to anyone and can be easily understood and independently
checked, thus increasing transparency of the system.

In order to be trusted, the Cap9 framework itself needs to be formally veri-
fied. The specification of the framework must be formalised and proved, in order
to show that it is consistent and satisfies the stated properties. Then the imple-
mentation, which is a smart contract itself, must be proved to be compliant
with its specification. In this paper we are focusing only on the first part—on
developing and proving a formal specification of the Cap9 framework using the
Isabelle/HOL theorem prover [17] The paper presents a refinement-based app-
roach that we used to create the specification, and evaluates the chosen formal
method by describing encountered difficulties during this process.

The following section outlines the features and capabilities of the Cap9 frame-
work. Section 3 presents the Isabelle/HOL specification, as well as the difficulties
we have encountered and the refinement process we used to develop it. Related
work is reviewed in Section 4. The last section concludes the paper and considers
future work.

2 Cap9 Framework

The Cap9 framework achieves isolation by interposing itself between the smart
contracts that are running on top of it and potentially dangerous actions that
they can perform, including calling other smart contracts, writing to the storage
and creating new contracts. Such actions can be performed only using special
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“System Call” interface provided by the framework. Via this interface it has
complete control over what contracts can and cannot do. Each time a system
call is executed Cap9 conducts various runtime security checks to ensure that
a calling contract indeed has necessary rights to perform a requested action. It
works similar to how operating system kernels manage accesses of programs to
the hardware (like memory and CPU) and protect programs from unauthorised
accesses to each other.

In order to ensure that a contract correctly uses the system call interface and
does not perform any actions bypassing the framework its source code needs to be
verified. Cap9 does it on-chain and it checks that the source code does not con-
tain any forbidden instructions, like ones allowing to make state changes, make an
external call, or self destruct. The check is called procedure bytecode validation.
The valid code is essentially only allowed to perform local computations (those
not involving any calls or modifications of the store) and delegate calls to a spe-
cial predefined kernel address. This is a very simple property that can be ensured
by an efficient dynamic check that is performed only once upon the registration of
the newly deployed code. Once the code is validated the corresponding contract
can be registered in the framework as a procedure and thus access its features.

There are system calls available to securely perform the following actions:

– Register new procedure in the framework;
– Delete a registered procedure;
– Internally call a registered procedure;
– Write data to the storage;
– Append log record with given topics;
– Externally call another Ethereum address and/or send Ether;
– Mark a procedure as an entry procedure—one that would handle all the

incoming external calls to this contract system or organisation.

As a typical smart contract, Cap9 has access to the storage—a persistent
256 × 256 bits key-value store. A small part of it is restricted and can be used
only by the framework itself. It has a strict format and is used to store the
list of registered procedures, as well as procedure data, addresses of entry and
current procedures and the Ethereum address of the deployed framework itself.
This part is called the kernel storage. The rest of the storage is open to use by
any registered procedure either directly (in case of read) or through a dedicated
system call (in case of write).

Traditional kernels have a lot of abstraction layers between programs and
hardware. Unlike them, Cap9 exposes all the underlying Ethereum mechanisms
directly to the contracts, with only a thin permission layer between them. This
layer implements a capability-based access control, according to which in order
to execute a system call a procedure must posses a capability with an explicit per-
mission. Such capability has a strict format, which is different for each available
type of system calls.

Capabilities can be used to restrict components of a smart contract system
and thus to implement the principle of least privilege. They can also be used as
base primitives to create a custom high-level security policy model to better fit
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a particular use case. Such policy would be simple to analyze and understand,
but able to limit possible damage from bugs in the code or various malicious
actions (including replacing the code of a contract via the upgrade mechanism).

Cap9 is compatible with both EVM and Ewasm applications.

3 Formal Specification

The main goal of formalizing the interface specification of the Cap9 security frame-
work was to ensure internal consistency and completeness of its description as
well as to provide a reliable reference for all of its implementations. The reference
should eventually serve as an intermediate between the users and the developers
of any Cap9 implementation ensuring full compatibility of all further system uses
and implementations. The source specification itself is formulated as a detailed
textual description of the system interface [19], which is language-agnostic and
relies on the binary interfaces of the underlying virtual machine. Thus all the data
mentioned in the specification is given an explicit concrete bit-level representa-
tion, which is intended to be shared by all system users and implementations.

3.1 Consolidation of Low-Level Representation with High-Level
Semantics

One of the immediately arising challenges of formally verifying a system with
very explicit specifications on concrete data representation is efficiently establish-
ing a correspondence between this representation and the corresponding intended
semantics, which is used for actual reasoning about the system and therefore for
the actual proof.

A particular example in our case is the representation and the semantics of
capability subsets. Each capability of every procedure in the system logically
corresponds to a set of admissible values for some parameter configuration, such
as kernel storage address (for writing to the storage), Ethereum address and
amount of gas for external procedure call, log message with several special topic
fields etc. Each such set is composed of a (not necessarily disjoint) union of a
number of subsets, which in their turn directly correspond to some fixed rep-
resentations. A subset of writable addresses, for example, is represented as a
pair of the starting address and the length of a continuous range of admissible
addresses. Thus the entire write capability of any kernel procedure is a union of
such continuous address ranges.

But it’s important to note that while on one hand we clearly need to state the
set semantics of the write capability (as a generally arbitrary set of addresses),
in particular this is especially convenient semantics to be used for proofs of
generic capability properties, such as transitivity; on the other hand, however,
we have a clearly indicated format of the corresponding capability representation
stated in the system specification, which is not a set, but a range of storage cells
holding the bit-wise representations of the starting addresses and lengths of the
corresponding ranges.
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If we stick with the specified representation, we will be unable to efficiently use
many powerful automated reasoning tools provided with Isabelle/HOL, such as
the classical reasoner and the simplifier readily pre-configured for the set opera-
tions. However, if we just use the set interpretation, the specification on the con-
crete representation will be notoriously hard to express. Hence we likely need sev-
eral different formalizations of a notion of capability on several levels of abstrac-
tion. We actually used three representations: the concrete bit-wise representation,
the more abstract representation with the length of the range expressed as natu-
ral number (and with an additional invariant), and finally the set representation.
By using separate representations we ended up with small simple proofs for both
generic capability properties and their concrete representations.

3.2 Correspondence Relation vs. Representation Function

Eventually we decided to employ the same refinement approach with several
formalizations for the entire specification, thus obtaining two representations
of the whole system: the structured high-level representation with additional
type invariants and the low-level representation as the mapping from 32-byte
addresses to 32-byte values, i.e. the state of the kernel storage. However, using
separate representations raises a problem of efficiently establishing the corre-
spondence between them. Initially we tried a more general approach based on
the correspondence relation. Yet to properly transfer properties of the high-level
representation to the low-level one, the relation should enjoy at least two prop-
erties: injectivity and non-empty image of every singleton:

lemma rel injective: "[[s �� σ1; s �� σ2]] =⇒ σ1 = σ2"

lemma non empty singleton: "∃ s. s �� σ"

Here �� stands for the correspondence relation, σ—for the high-level rep-
resentation and s—for the concrete one. We noticed that proving the second
lemma essentially requires defining a function mapping an abstract representa-
tion to the corresponding concrete one. Thus this approach results in significant
redundancy in a sense that both the function defined for the sake of proving the
second lemma and the correspondence relation itself repeat essentially the same
constraints on the low-level representation. For a very simple example consider:

definition models :: "(word32 ⇒ word32 ) ⇒ kernel ⇒ bool" (" �� ") where
"s �� σ ≡ unat (s (addr Nprocs)) = nprocs σ"

definition "witness σ a ≡ case addr−1 a of Nprocs ⇒ of nat (nprocs σ)"

Here not only we need to repeatedly state the relationship between the value
of kernel storage at address addr Nprocs and the number of procedures reg-
istered in the system (nprocs σ) twice, but we also potentially have to define
the address encoding and decoding functions (addr and addr−1) separately and
to prove the lemma about their correspondence. We discuss our approach to
address encoding in the following section and here only emphasize the redun-
dancy arising from the approach based on the correspondence relation.
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It also worth noting that merely transferring or lifting the properties stated
for one representation to another is insufficient as we would like to also be able to
conveniently represent mixed properties such as a property specifying the result
of an operation on the high level, but also stating an additional constraint on
its concrete representation e.g. that some irrelevant bits in the representation
should be zeroed and some others remain unchanged.

At the same time, the major reason for introducing the correspondence rela-
tion instead of using a function is an inherent ambiguity of the encoding of the
high-level representation into the low-level one. However, after carefully revis-
iting the initial specification of the system we noticed that the ambiguity of
representation in our system actually arises only from the unused storage mem-
ory rather than from the presence of any truly distinct ways of representing the
same state. But this particular kind of ambiguity can be efficiently expressed
using a representation function with an additional parameter—i.e. the state of
the unused memory.

Let’s illustrate our formalization approach that is based on representation
functions on the example of Procedure Call capability. The specification of this
capability is as follows:

The capability format for the Call Procedure system call defines a range of
procedure keys which the capability allows one to call. This is defined as a base
procedure key b and a prefix s. Given this capability, a procedure may call any
procedure where the first s bits of the key of that procedure are the same as the
first s bits of procedure key b.

Here the unused space is left blank. Beforehand we strive to make the actual
formulation of the arising injectivity lemma as simple as possible by eliminating
premises of the lemma and turning them into type invariants. So we introduce
the following definitions:

typedef prefix size = "{n :: nat. n ≤ LENGTH (key)}"
definition "prefix size rep s ≡ of nat �s� :: byte" for s :: prefix size
type synonym prefixed capability = "prefix size × key"

definition — set interpretation of single write capability
"set of pref cap (sk :: prefixed capability) ≡ let (s, k) = sk in
{k ′ :: key. take �s� (to bl k ′) = take �s� (to bl k)}"

adhoc overloading rep prefix size rep — prefix size rep is now denoted as �·�
definition — low-level (storage) representation of single write capability
"pref cap rep (sk :: prefixed capability) r ≡ let (s, k) = sk in
�s� 1♦ k OR r � {LENGTH (key)..<LENGTH (word32 ) − LENGTH (byte)}"

Here the parameter r represents some arbitrary memory state being overwritten
by the representation of the capability. The binary representation of r is trun-
cated (by bit-wise conjunction with a mask) to fill the range of unused bits before
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combining it with the zero-padded representation. The value of unused memory
r is propagated across all representation functions in a composable way, so all
low-level representations are formalized with plain single-valued functions. This
approach not only allows for a simple transfer of all high-level properties to the
low-level representation, but also avoids the need in explicit definitions of the
corresponding inverse (decoding) functions. A single definition is enough to reuse
the encoding functions (along with their injectivity proofs) for the specifications
of operations that require decoding of representations:

definition "maybe inv f y ≡ if y ∈ range f then Some (the inv f y) else None"

Since we don’t verify the actual implementation of the decoding functions, this
implicit definition is sufficient and greatly simplifies proofs.

There is, though, one potential weakness in this approach in that it’s still
possible to accidentally lose some non-determinism when propagating the val-
ues of the unused memory by unintentionally identifying different values of the
additional parameters. Each occurrence of the representation function should
be provided its own separate instance of an additional parameter so that e.g.
encoding of the whole kernel storage is supplied with the whole previous state of
the store as an additional parameter rather than just a single additional default
value. To systematically guarantee absence of such losses of non-determinism we
prove additional lemmas of the form:

lemma cap rep unused : "�c� r � unused = r",

where unused is the set of unused bits and � restricts the range of bits by zeroing
out bits with indices not in the specified set. These lemmas, though, are proved
very easily for all our representation function definitions.

3.3 Disjointness of Addresses

Another problem arising from detailed low-level specifications of memory layout,
such as the layout of the kernel storage, is the problem of reasoning about non-
intersecting memory areas. While in the context of program verification there are
such well-known approaches to reasoning about disjoint memory footprints as
separation logic [18] and dynamic frames [12], in our context of formalizing the
specification (rather than the implementation) of the system these approaches
turned out to be both too abstract and too heavyweight. Too abstract since in
separation logic the particular concrete layout of the memory footprints is left
entirely abstract, while we needed to formalize the actual mapping of the data
structures to the mostly fixed address ranges they should occupy. Too heavy-
weight since to represent the encoding of the whole kernel state with either
separation logic or dynamic frames we would need to use some additional means
to set up the embedding of the corresponding reasoning mechanism into plain
HOL, while not having any real need in verifying code involving updates to the
system state. In our approach we simply treated kernel addresses as semantic
entities with some ascribed low-level representations (concrete values). Then fol-
lowing our general use of representation functions we defined the representation
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of addresses and its inverse. The inverse then can be directly used to specify the
storage layout and prove the injectivity of the overall encoding with minimal
effort. Here’s an illustrative example:

typedef offset = "{ n :: nat. n < 2 ˆ LENGTH (byte)}" morphisms off rep off
datatype address = Nprocs | Curr proc | Proc heap offset
definition "addr rep a ≡ case a of

Nprocs ⇒ 0x0000
| Proc heap offs ⇒ 0x0200 OR of nat (off rep offs)"

definition "addr inv ≡ maybe inv addr rep"

definition "encode σ r a ≡ case addr inv a of
Some a ′ ⇒ case a ′ of

Nprocs ⇒ of nat (nprocs σ′ OR (r a) � ...
| Proc heap offs ⇒ encode heap σ offs r

| None ⇒ r a"

Also note the filler of the unused memory r being passed over in a top-down
manner starting from the outermost representation function.

Now we move from the problems arising from the detailed low-level speci-
fication of our target system to some more general issues of formalization and
formal proofs within the Isabelle/HOL framework that we encountered during
verification.

3.4 General Isabelle/HOL Limitations

Bit-Vector Concatenation. An example of a minor, though noticeable
limitations of the simple Hindley-Milner type system employed within the
Isabelle/HOL framework is its inability to express type-level sum (and other
simple arithmetic operations), while still being able to express type-level num-
bers. For an illustration of the issue consider the following definition of bit-vector
concatenation function from the HOL-Word library that comprises an extensive
Isabelle/HOL formalization of fixed-size bit-vectors, corresponding operations
and their various properties:

definition word cat :: "
′a::len0 word ⇒ ′b::len0 word ⇒ ′c::len0 word" ...

The annotation of the form ′a::len0 constrains the type parameter ’a to
belong to the len0 type class, which has the corresponding associated operation
LENGTH(’a) returning a natural number. Thus we essentially gen type-level
numbers that can be injected into terms as natural numbers with the use of the
LENGTH operation. However, as we can see in the definition of word cat, the
result of this function has the type ’c::len0 that is generally unrelated to the
parameter types ’a and ’b. This has two basically unavoidable, but undesirable
consequences:
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– Since there is no way of further constraining the resulting parameter type
’c::len0, the function word cat is forced to be partial. Generally, there is
nothing particularly special about handling of partial functions within the
Isabelle/HOL framework, but their presence has at least one undesirable con-
sequence for formalization of system interface specifications, which we discuss
further in this section.

– Since the resulting type parameter ’c::len0 cannot be automatically inferred
from the arguments of word cat, if has to be explicitly specified. Normally,
this doesn’t lead to a significant type annotation burden since the parameter
can be propagated by type inference from some term with a known type. But
in case of consecutive (nested or chained) word cat applications, the inner
type parameters become essentially inaccessible for further type propagation
or inference and have to be specified explicitly e.g.
definition "entry proc addr ≡ word cat

(word cat (word cat (k prefix :: 32 word) (0x04 :: byte) :: 40 word)
(0 :: 192 word) :: 232 word) (0x000000 :: 24 word) :: 256 word"

This can be slightly mitigated by introducing some ad-hoc monomorphic
notation for hexadecimal numbers (e.g. syntactically reconstructing the type
annotation from the length of the input hexadecimal representation), but this
approach still quickly becomes unwieldy in practice, especially in the context of
the great available variety of Ethereum bit-vector types with various lengths.

First we propose a relatively simple remedy for the second problem. We
actually used our own definition of a concatenation function with a fixed result
type (the largest needed length of 256 bits) and parameter types of arbitrary
length that is ignored. Instead we provided the necessary length of the second
argument as an additional explicit parameter. Thus the whole issue of dealing
with lengths was shifted from the type to the term level eliminating the need
in any type-level representations altogether. This resulted in more approachable
definitions e.g.

definition "entry proc addr ≡
(k prefix :: 32 word) ��224 0x04 ��216 (0 :: 192 word) ��24 0x000000 "

Here ·��·· denotes our concatenation function. In our opinion in the lack of depen-
dent types or other expressive capabilities of the type system the use of logical
(term-level) constraints may be often preferable to some limited meta-logical
(e.g. type-level) extensions such as the use of type classes. Now we move to the
second problem.

Partiality. The presence of partial functions in the specification of an interface
of the system has a subtle undesirable property—unpredictability stemming from
the undefined results returned by the partial functions. Consider the following
very typical and general preservation lemma:

lemma preservation: "I s =⇒ I (op s a)"
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Here I is an invariant of the system and op is an operation on the system with
an argument a. Let’s imagine an example instance of this kind of lemma: Let s be
a natural number, I s be the predicate s > 0 and op correspond to the operation
s ← s+ sdiv a. Looking at the general statement of the lemma, a rather natural
interpretation of such a preservation property would be that any application of
the operation op to the system is “safe” as it preserves its invariant. However in
our particular example it’s obvious that even though the application of op with
a = 0 provably preserves the invariant, it actually has entirely unpredictable con-
sequences for the system. So specifications of operations on the system involving
partial functions may considerably mislead the reader of the specification while
remaining perfectly correct form the purely logical perspective. If the formal
specification is to serve as a formal documentation on the system this fact may
significantly undermine the value of applying the formal methodology for that
purpose. Fortunately, there are various ways to strengthen the specification to
exclude such unintuitive definitions. For our specification we additionally proved
the following injectivity-like lemmas for every operation:

lemma injectivity like: "op s a = op s b =⇒ a ˜ b"

Here ∼ denotes some notion of equivalence for arguments of the operation in a
sense that equivalent arguments produce equivalent results. In case the operation
op actually involves some non-determinism, the formulation of the lemma should
be adjusted accordingly, thus making this non-determinism explicitly exposed for
the reader. The proof of such a lemma is enough to exclude any hidden non-
determinism, since for any non-trivial equivalence relation ∼ (∃a′. a′ �∼ a) if the
op has non-deterministic result on a, op a may be arbitrarily chosen to be equal
to op a′ and the relation a ∼ a′ then cannot be established.

Dependent Products. Another limitation arising from the lack of dependent
types or other expressive type system features is inability to directly express
dependent products i.e. types of the form

∏
x::′a f(x), where f is a type-level

function on the value x of some type ′a. A typical example of a situation, where
this seems very natural is a list of pairs of the form “capability type × capabil-
ity representation” (e.g. if the value of the first member is “Write”, than the
type of the second member should be “write capability”). Such types cannot be
directly expressed within the Isabelle/HOL framework. A typical workaround is
to use injection into some universal type with additional well-formedness pred-
icates stated as preconditions to the operations or as type invariants. Here we
were able to directly reuse our representation functions for injecting different
types of capabilities into the same universal bit-level representation.

Finally it’s important to note an essential benefit of a logical framework with
a very limited type system, which is its amenability to automation using exist-
ing readily available tools such as saturation-based provers (E-prover, Vampire,
Metis) and SMT solvers (Z3, CVC4). In our experience their use within the
Isabelle framework lead to great advantages ultimately outweighing all the lim-
itations mentioned above. Overall, the formalized specification with proofs took
about 4500 lines of Isabelle based on 25 pages of the original textual description.
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4 Related Work

There are many examples of using formal methods for developing specifications
of various systems. Isabelle/HOL was used to prove functional correctness of the
seL4 operating system microkernel [13], providing a proof chain from the high-
level abstract specification of the kernel, down to the executable machine code.
The B-method was applied to create formal models of various safety-critical
railway systems [14]. A dedicated specification language for defining the high-
level abstract models was introduced in [20].

On the other hand, verification of smart contracts is almost exclusively con-
centrated on the contract implementation, omitting the separate formalisation
of their specification. It is a valid approach if the specification is simple enough,
which is not the case for the Cap9 framework.

There are several examples of formalisation of the Ethereum virtual machine:
using the K framework [9], the Lem language [10], F* [8], and Isabelle [1], which
can serve as a basis for formal verification of the contract code. Why3 platform
for deductive program verification was recently applied for writing and verifying
smart contracts [16].

5 Conclusion and Future Work

We have developed a formal specification1 of the Cap9 framework using the
Isabelle/HOL theorem prover and proved its internal consistency. To create it we
have employed a refinement approach based on representation functions, which
allowed us to efficiently use powerful automated reasoning tools provided with
Isabelle. We have found Isabelle/HOL to be suitable for developing specifications
of smart contracts, although some minor issues were identified and outlined.

The next step is formal verification of the Ewasm implementation of the
Cap9 framework for its compliance with the Isabelle/HOL specification, which
may require developing some additional tools. Other possible direction is to
develop and verify a higher level permission system that is based on the Cap9
primitives.
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Reducing the risk of human error in the use of interactive systems is increasingly
recognised as a key objective in contexts where safety, security, financial or similar
considerations are important. These risks are of particular concern where users are
presented with novel interactive experiences through the use of ubiquitous mobile
devices in complex smart environments. Formal methods are required to analyse these
interactive situations. In such complex systems analysis and justification that risk is
reduced may depend on both qualitative and quantitative models of the system.

The aim of FMIS 2019 (The 8th International Workshop on Formal Methods for
Interactive Systems) was to bring together researchers from a range of disciplines
within computer science (including Human-Computer Interaction – HCI) and other
behavioural disciplines, from both academia and industry. People interested in both
formal methods and interactive system design presented papers or attended.

The focus of the workshop included general design and verification methodologies,
which take account of models or accounts of human behaviour. Papers presented
addressed issues of how formal methods can be applied to interactive system design.
Also welcomed were papers with a focus on theory, provided a link to interactive
systems was made explicit. Application areas considered included: pervasive and
ubiquitous systems, cyber-physical systems, augmented reality, scalability and resi-
lience, mobile devices, embedded systems, safety-critical systems, high-reliability
systems, shared control systems, digital libraries, eGovernment, human-robot interac-
tion. An invited talk by Michael D. Harrison (Newcastle) reflected on the tools that are
used to support the application of formal methods to interactive systems and the
problems that hinder their accessibility, commenting on tool developments that could
lead to wider use of these techniques.

FMIS 2019, co-located with FM’19 (The 3rd World Congress on Formal Methods),
was held in Porto on October 7, 2019. The World Congress on Formal Methods is
organised every ten years by Formal Methods Europe as a platform for researchers and
practitioners from a diversity of backgrounds and schools to exchange their ideas and
share their experience. FM’19 brought together more than 30 events, between con-
ferences, workshops, tutorials, two Festschrifts, a Doctoral Symposium and an Industry
Day event.

The workshop was one of a series which aims to grow and sustain a network of
researchers interested in the development and application of formal methods and related
verification and analysis tools to interactive computing systems, providing a venue at
which specifically formal techniques, as applied to problems with the design, modelling
or implementation of interactive systems, can be presented and discussed. The previous
seven editions were: FMIS 2006 (co-located with ICFEM 2006, Macau), FMIS 2007
(co-located with HCI 2007, Lancaster), FMIS 2009 (co-located with FM 2009,
Eindhoven), FMIS 2011 (co-located with FM 2011, Limerick), FMIS 2013 (co-located
with EICS 2013, London), FMIS 2017 (co-located with APSEC 2017, Nanjing) and
FMIS 2018 (co-located with STAF 2018, Toulouse).



The reviewing for this eighth FMIS was single-blind, and each paper had three
reviewers. There were eight papers submitted, seven were given at the workshop day
and five have been further reviewed and appear in this post-workshop proceedings.
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Examples of the Application of Formal
Methods to Interactive Systems

Michael D. Harrison(B)

School of Computing, Newcastle University, Newcastle upon Tyne, UK
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http://www.ncl.ac.uk/computing/people/profile/michael.harrison

Abstract. Formal methods in interactive systems can be used to anal-
yse how systems support use with a clarity that is not possible with more
traditional development approaches. However, the processes involved are
complicated and do not fit well with those whose primary concern is user
interfaces. The paper reflects on the tools that are used and the prob-
lems that hinder their accessibility. It comments on tool developments
that could lead to wider use of these techniques. The role that exist-
ing methods and tools can play in analysing interactive systems will be
explored through concrete examples involving the use of the PVS theo-
rem proving assistant and the IVY toolset. Examples will focus on:

– the formulation and validation of models of interactive systems;
– the expression of use related requirements, particularly in the context

of usability engineering and safety analysis;
– the generation of proofs that requirements hold true and making

sense when proof fails.
Examples will be taken from existing standalone medical devices includ-
ing examples from part of a safety analysis of a device leading to product.

Keywords: Formal verification · Automated reasoning tools ·
Interactive computing systems

1 Introduction

The analysis of interactive systems using formal methods can provide benefits
in the development and analysis of interactive systems. However many of these
benefits are potential rather than actual because of the many obstacles to their
use. This is of particular significance in the context of interactive systems because
the developers and analysts of such systems may not be computer scientists.
Their focus and expertise may be the domain for which the system is to be
designed or the role of the user in understanding how such systems should be
designed. The paper explores two specific tools that support formal methods
using examples of interactive systems to illustrate some of these issues.

This exploration considers two examples both of which concern medical
devices. Medical devices are of particular interest. They are often safety crit-
ical and use related errors are a particular concern for the community. Also, the
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teams involved in their development are often small. It is common that a new
medical device is built by a research team who focus on the science associated
with the device rather than its usability. The paper explores the following issues
through the examples:

– the formulation and validation of the models that are intended to capture the
key characteristics of the use of these devices;

– the expression of use related requirements: these requirements could be for
example design heuristics or safety requirements derived from a risk log;

– the process of proving and demonstrating that a requirement holds true of
the model and, by extension, is true of the existing or intended device.

It is not intended that the paper be exhaustive in its consideration of these
issues. The examples are used to illustrate some aspects of the development and
analysis of interactive systems. The paper will be concluded by briefly consider-
ing extensions to tools that would aid their use.

2 Formal Verification of Interactive Computing Systems

Formal verification, applied to interactive computing systems, has seen consid-
erable development, mostly at the model-based level [1,6,16,27,30]. In [14] it
was argued that formal verification has a role to play in systematic usability
analysis. Criticisms of formal methods include:

1. use depends on specific knowledge of the complicated formalisms and tools
required;

2. application is limited in that they are unable to manage the scale of real
systems and consequently they tend to be used in a way that is narrow in
scope.

The advantage however is that within the focus of their use, analysis is exhaus-
tive. Use centred requirements may be identified informally by domain or human
factors experts and formulated precisely as properties that may be proved of a
formal model of the interactive system under investigation. It is envisaged that
formal analysis techniques can be used as part of the design process involving a
team who have complementary expertise. This paper uses examples of where for-
mal techniques have been used to explore what additional tools would improve
the acceptability of formal methods in the development of interactive systems.

Tools such as the IVY workbench have been shown to be applicable to real
systems [4] and to contribute to the risk analysis of an actual medical device [15].
IVY focuses on model-based analysis of interactive computing system designs,
with particular reference to aspects related to their behaviour. Other tools also
aim at supporting the analysis of these systems, each with its particular focus
(see [11] for a comparison of CIRCUS and PVSio-web).

The illustrations described in this paper and proposals that will be made can
be seen as consistent with the agenda of research in “lightweight formal methods”
(LFM). According to Zamansky et al.’s review [31] a key feature of developments
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in lightweight techniques is a focus on partial models and analyses—the ability
to use formal methods to model and analyse components of the software, for
example the control component, or in the present context, the user interface
component. Analyses can then contribute to parts of the required analysis or
program development allowing other techniques, for example testing, to be used
for other parts.

3 Tools That Are Used in the Examples

The illustrations in this paper use two toolsets: PVS which uses a theorem
proving approach and IVY which provides a front end to a model checking
approach (NuSMV [7]). By describing how the tools were used in the example,
gaps in user support will indicate the need for further tools.

3.1 PVS

The theorem proving system used in this paper is the Prototype Verification
System (PVS) [28]. It combines an expressive specification language based on
higher-order logic with a theorem proving assistant. PVS has been used exten-
sively in several application domains. A specification in PVS is expressed as a
collection of theories which consist of declarations of names for types and con-
stants, and expressions in terms of these names. Theories can be parametrised
with types and constants, and can use declarations of other theories by importing
them.

Properties of a PVS specification are expressed as named formulae declared
using the keyword THEOREM. Structural induction will often be used to prove
that a given property is an invariant of the system model. This process involves
proving a property is true of all relevant reachable states when universal quan-
tification is not possible. In the particular context of the analyses discussed in
the paper, states are reachable by user actions—a specification is described in
terms of states where the focus of their transformation is user action.

The interactive theorem prover of PVS provides a collection of powerful prim-
itive inference procedures that are applied interactively under user guidance
within a sequent calculus framework. These include propositional and quantifier
rules, induction, rewriting, simplification using decision procedures for equality
and linear arithmetic, data and predicate abstraction. Additional information
about the PVS theorem proving assistant can be found in [25].

3.2 IVY

IVY provides a front-end to the NuSMV model checker. It supports a notation
for describing models, Modal Action Logic (MAL) which is a deontic logic of
actions. The IVY tool [9] uses this notation as a front end to the NuSMV model
checker [7]. The IVY tool provides plugins that aim to ease the expression of
properties (see Fig. 1) and to interpret counter-examples that result when a
property fails (see Fig. 6). Properties are expressed in CTL [8].
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Fig. 1. Constructing guarded consistency properties

4 Models for Systems and Their Validation

In this section we consider briefly the construction of models in two contexts: the
first is when a system already exists and analysis is proceeding retrospectively,
for example to demonstrate that the system is acceptably safe; the second is
when the model is being developed during the design process for the system.

4.1 The Neonatal Dialysis Machine: An Existing System

The analysis of the dialysis machine was carried out as part of the process of
making the device ready as a product. This process has included clinical trials
but it has also involved a safety analysis of the device hardware and software. The
machine had already been used experimentally at the Royal Victoria Infirmary in
Newcastle-upon-Tyne for some time. This first example [15] is a simple illustra-
tion of a post-hoc analysis of the machine’s control component. This component
involved the use of a control table to drive the software, providing a flexible and
modifiable means of controlling the dialysis cycle and potential failures. The
controller software (depicted as a component in Fig. 2) detects and warns about
error conditions that need attention, as well as issuing hardware interrupts that
prevent the machine from behaving in a dangerous manner according to its risk
profile. All critical errors (bubbles, clots) are protected by both hardware and
software safety systems. The controller is capable of controlling the system, how-
ever the core safety of the device is in the hardware. The control table (Fig. 3)
describes the attributes of the state of the device that control the dialysis process,
as well as how the state of the device changes in response to events, including
warnings displays for example. The developers use a spreadsheet to record the
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content of the control structure. This spreadsheet was easy to convert to MAL,
a translation that was automated after an initial manual conversion (see [12]).
The control table includes 93 states and 30 events. More details of the attributes
described in the table or their values, can be found in [15].

Fig. 2. The software architecture

The use of a control table such as the one described here is common in soft-
ware development. A challenge therefore is to identify common software struc-
tures, particularly user interface structures, that can be used to facilitate the
process of model development. This approach is also discussed in Osaiweran
et al. [24]. The use of structures would enable the development of tools that aid
the instantiation of structure patterns as well as the possible development of pre-
defined properties. A tool that would offer the patterns and enable their access
would provide an important step towards the construction of formal models.

Fig. 3. A fragment of the control table
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4.2 The Pill Dispenser: A Model Under Construction

Much of our work has focussed on the development of models of existing systems.
This preoccupation arises through a desire to demonstrate that the use of formal
methods can be scaled up to real systems and used to analyse safety related use
requirements [18]. For this reason models have been produced to demonstrate
that the approach does scale. However, in another example [17], we chose to
develop a full model iteratively from an initial sketch design (Fig. 4). The ini-
tial sketch prototype and subsequent more functional prototypes were developed
using PVSio-web [21]. The logic of the transitions in the design was captured
using Emucharts (a simplified version of statecharts [13]). State transition dia-
grams are a simple way of describing, at a superficial level, the flow of a model.
The screens are specified at each node so that it is possible to use the model as
a sketch. A web animation was developed using PVSio-web to generate a first
exemplar that could be used as a stage in a user centred design process to pro-
vide a basis for techniques such as cooperative evaluation [22]. As a result of the
evaluation of the pill dispenser design a refined prototype was constructed using
PVS, providing both a more detailed prototype and also enabling the analysis of
the system with respect to properties based on usability heuristics. In the next
section more details are given of the analysis that was done on this emerging
design. The motivation for this analysis was to consider the possibility of using
formal methods as part of user centred design, discussed briefly in [17].

Fig. 4. Phase of the creation of the initial sketch design using PVSio-web.
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As is typical in user centred design, iterative evaluations lead to more and
more detail in the design. At each step PVSio-web enables the visualisation
and therefore successive evaluation. At the same time it is possible to prove
properties that enable an understanding of the plausibility of the model as well
as demonstrating that the evolving design continues to satisfy the same usability
heuristics. In this case the initial simple transition model provides a structure
that can be used as a basis for the initial more detailed PVS model.

5 Formulating Requirements as Properties

Part of modelling the device involves demonstrating that requirements are satis-
fied by the proposed design. Requirements include non-functional requirements
relating to use issues and safety requirements. The two examples illustrate how
the process of developing formalisations of suitable requirements can be sup-
ported so that a wider community might develop appropriate requirements for
their formal models.

5.1 Applying Templates: The Pill Dispenser Example

One way of helping the analyst formulate requirements is to provide templates
that can help to generate relevant properties. A user centred design process
such as the one considered in the case of the pill dispenser often involves the
consideration of usability heuristics [23] for example. Templates that aid the
process of developing these heuristics have been found useful in the pill dispenser
example, but also other examples, see [3] for IVY examples and [18] for PVS
examples.

In the case of the IVY tool, templates are offered and can be instantiated
directly with the attributes of the model using a similar plug-in to that described
in [20]. The guarded consistency template is shown in Fig. 1. The left hand side
of the display shows the templates that are available in the current version of
the IVY tool. The right hand side describes the template (in the form of a
pattern [10]) and provides the means to assign parameters that are provided
in the general form of the template, thus instantiating it as a CTL property
that can be used to check the model. The bottom of the display shows the
instantiated property (as well as other properties) that can then be checked.
Note that CTL properties may also be entered without using the templates as
an intermediary. PVS does not, as yet, provide automated support for templates
but this is planned. In the example of the pill dispenser an illustrated example
would be the guarded consistency property described in the display of Fig. 1.

The example, used for illustration in the pill dispenser, was action consistency
and is based on a PVS model. The following is the definition of action consistency
referred to in [18].
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Action Consistency

∀a ∈ Act , s ∈ S ,m ∈ MS :
guard(s,m)∧
pre filter(s,m) ϕ post filter(a(s),m) (1)

Action consistency is formulated as a property of either a single action, or
of a group of actions (they are referred to as Act) which may exhibit similar
behaviours. A relation ϕ : C × C connects a filtered state, before an action
occurs (captured by pre filter : S × MS → C), with a filtered state after the
action (captured by post filter : S × MS → C). MS refers to possible modes
that limit the validity of the filter.

In the case of the pill dispenser a quit action is designed to enable the user to
quit a sequence without affecting the key data that are being manipulated by the
device—for example, two databases that store patient and medication data. The
action consistency template can be used to prove that the quit action is consistent
in this sense. In fact this property is not true of the device as is discussed in a little
more detail in Sect. 6.2. Further details can also be found in [17].

5.2 Taking Requirements from a Risk Log: The Dialyser Example

In the case of the dialyser safety case, a risk log had already been produced
describing requirements that would mitigate potential hazards. Requirements
often involve several components of the system, for example hardware and soft-
ware components, and may be mitigated in a variety of ways, for example by
means of an operations manual or through some hardware barrier. These require-
ments were expressed in natural language. In a sense the requirements were
already instantiated, it was not appropriate to attempt to fit the requirements
to templates. A fragment of the risk log shown in Fig. 5 was used in the safety
analysis of the dialyser. The requirements that were mapped to CTL proper-
ties that could be proved of the MAL model are labelled with identifiers so
that they can be used in the safety argument. The fragment shown represents a
stage in the development where a property MAL.GENERROR has been found
to be false. As illustration we consider a different property that is a requirement
focussed entirely on the software controller. It is labelled MAL.GEN2S1 and is
a formulation expressed in the risk log as:

“During DIALYSIS, when the distal syringe is moving forwards then the
proximal syringe is necessarily moving backwards.”

The property MAL.GEN2S1 was formulated as a result of a series of meetings
between the developers and the IVY user. Through discussion a partial transla-
tion of the property was produced using a notation with which the developers
were comfortable:

If M2 in {M2Fwd} → M1 in {M1Bck}
The informal property contains no temporal dimension, and although M2Fwd
and M1Fwd are meaningful in terms of the developers’ understanding of the
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Fig. 5. Snippet of the risk log of the NIDUS device

device, the precise nature of the sets {M2Fwd} and {M1Bck} was not clear. The
two sets {M2Fwd} and {M1Bck} were then articulated by the formal analyst as
MAL definitions:

M2FWD := { M2FWDMAX, M2FWDUNUF }
M1BCK := { M1BCKMAX, M1BCKUF, M1WITHDRAW }

It was confirmed by the developers that these attribute states comprised
all those relating to forward and backward motion in the two motors. Having
defined the relevant state attributes as specified in the spreadsheet model, the
next step was to formulate a precise version of the property as a basis for the
analysis. The requirement was formulated in CTL as:

AG(Motor2 in M2FWD → Motor1 in M1BCK) (1)

This property turned out to be false and will be explored in more detail in Sect. 6.
Amongst these requirements some properties related to use. The use related

requirements had the characteristic, in this particular case, that a state of the
controller could only be reached if a state or combinations of states had happened
in the past. The controller includes a Flash attribute that has values identifying
different displays associated with warnings. For example, Flash = HEPCLOSE
is true if the display which requests that the heparin clip be closed is displayed.
There are a variety of ways in which this property can be expressed using
CTL. We chose to adopt a simple approach that had the merits of being easy
to explain although it involved some modification to the model. An attribute
was introduced hepclipopen that was true when Flash = HEPOPEN is the last
display. The attribute becomes false when Flash has values HEPCLOSE or
HEPSYRINGE . For example, the following fragment involving the Hepin action
specifies a transition to the state HEPClip. This state includes a change to the
Flash attribute Flash ′ = HEPCLOSE and therefore hepclipopen is set to false.
It is assumed therefore that the clinician will recall the last display relating to
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the opening or closing of the clip. The requirement that was under consideration
was the following:

“MAL.HEPCLIP: The user is instructed to close clip before changing
syringe, and re-open afterwards.”

The requirement was therefore expressed simply as

AG(Mode = DIALY SING → hepclipopen)

In other words (in the language of the model) if the controller reaches a mode
in which it is dialysing then the Flash display “HEPOPEN” has occurred and
has not been superseded by any display relating to the heparin clip which would
lead to a different conclusion.

The process of property development from the requirements in the risk log
is an interactive process. Each step involves agreement—the developers agree to
the formulation of the property and, as will be discussed, later scrutinise counter-
examples and identify the contexts in which the property may fail. Here support
is required to document the path from informal requirement in the risk log to
a formal property that can be proved of the model. This documentation might
involve checks that: the formal property is consistent with the natural language
description; links to counter-examples; rationale for changing the requirement.
These are not currently supported by IVY or PVS but could be.

6 Proving Properties

The final step of the paper explores the business of proof. Proof of the properties
discussed in the previous section are now considered. The first example indicates
the facilities provided by the IVY tool to visualise the results of checking a
property.

6.1 Checking Properties: The Dialysis Machine

The property described in Sect. 5.2 checks that for all states, when Motor2 is in a
forward state, then Motor1 is in a backward state. This expression of the require-
ment fails. The IVY tool provides a visualisation of a counter-example (shown in
Fig. 6). The tool offers alternative styles of visualisation (matrix as in this case
and sequence diagrams are examples) all of which indicate one path in which the
property fails. The figure shows a sequence starting from an initial state (column
1), ending at a state where the property fails (column 6). Columns indicate val-
ues held by attributes. These are named in the left hand column (i.e., column 0).
For example, the attribute Power has value ALLOW12V in column 4. Colour
is used to indicate that a state attribute has changed value between successive
states. The path indicates (as shown in the row marked main.action) that from
the initial state the device defaults (that is it takes the action acDefault) because
there are no events in the queue. This action is followed by Key2 , followed by
12voff , 12von and M1stall which leads to the state where the property fails.



Examples of the Application of Formal Methods to Interactive Systems 419

Fig. 6. Counter-example to property P1

Discussion during the risk meeting explored the implications of the sequence
and came to the conclusion that this exception was acceptably safe and could
therefore be excluded. The considered property was therefore refined by exclud-
ing this case, and the analysis continued. Several other cases were found where
the property failed. The risk analysis team considered each of these exceptions
and noted that the common property of these counter-examples was that they
occurred when the device was not in dialysis mode, hence the following property
was constructed:

AG((Motor2 in M2FWD & Mode in {DIALY SE,DIALY SING})
→ Motor1 in M1BCK)

The property formulated, as a result of this observation, is true for the model.
It should be noted that this observation about the exceptions was a problem of
formulation, the property could be expressed more simply. It could be argued
that visual inspection of the spreadsheet would have been sufficient to indicate
the problem in this particular case. However this systematic approach to finding
paths to potentially hazardous states provides an exhaustive approach. At the
same time it makes it clear to the team the circumstances in which the property
fails.

6.2 Proving Properties: The Pill Dispenser

PVS provides relatively little support for the proof of properties. In Sect. 5.1
the property, that was developed initially, assumed that the quit action never
changed the patient or meds database. The formulated theorem requires that
for all states, the state after the quit action has been applied leaves the meds
database and the patients database unchanged. The function select takes an
action and the state and produces a new state that contains the effect that the
action makes on the state. This theorem expressed below cannot be proved.

attemp_quit_consistency_thm: THEOREM FORALL (st: state):
LET st1 = select(quit , st)
IN (st `meds_db = st1 `meds_db AND st `patients_db = st1 `patients_db)
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Attempts to prove the theorem using the PVS grind function generates the
following result.

Rule? (grind)
Trying repeated skolemization , instantiation , and if-lifting ,
this simplifies to:
attempt_quit_consistency_thm .2.1 :

{-1} st!1`action(quit)
{-2} creation_success ?( mode(st!1))

|-------
{1} st!1` patients_db =

p_insert(st!1`p_current , temp_patient(st!1), patients_db(st!1))

Rule?

The counter-example indicates that when the mode of the state is the
mode that signifies successful creation (mode is creation success) the patients
database is updated. The new database includes the patient temp patient that
was generated in the preceding sequence. When a new version of the theorem is
generated which excludes this mode, the theorem is true. The question for the
analysis team is to recognise whether this exception is acceptable or whether the
design of the pill dispenser must be changed.

7 Conclusions and Future Challenges

If formal methods are to be a practical proposition in the analysis of interactive
systems then the following are required:

– models at an appropriate level of detail so that requirements can be expressed
as suitable properties while at the same providing a basis for an executable
prototype;

– tools such as PVSio-web that ease the development of prototypes that capture
precisely the model;

– the development of properties from requirements, with the ability to generate
documentation to support rationale;

– aids to proof and diagnosis of reasons for failure when properties fail.

The paper has explored some of these issues through the two examples. However
further work is required.

Support for Modelling: It seems clear that there are model patterns relating
to interactive systems. Patterns already exist at the implementation level (for
example MVC [19]) and the graphical user interface level (see, for example [29]).
Further patterns could undoubtedly be realised to, support the specification of,
for example: moving between display modes; direct manipulation; forms inter-
faces. Developing patterns can ease the process of constructing formal models,
and make the process possible with limited knowledge of formal methods. An
initial exploration of these ideas can be found in [2] where “callback”, “iter-
ator”, and “update” patterns are explored. Their work focuses on interaction
techniques rather than patterns for structures of interactive systems.
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Ease of Constructing Prototypes from Models: PVSio and PVSio-web [21] pro-
vide important steps in this direction. However further work is required to
smooth the transition between simulation tools provided by PVSio and the ren-
dering of the simulation.

Developing Properties from Requirements: The pattern approach found in IVY
may be extended, producing a larger set of patterns. The process of develop-
ing formal properties from informal requirements described in relation to the
neonatal dialysis machine can be supported by tools to aid the development of
rationale, and to provide confidence that the map from informal requirements
to formal properties preserves meaning. It could also provide documentation of
rationale for property failure and changes that result.

Supporting the Proof Process: Here work is required to make counter-examples
easier to interpret. This can be done through animation facilities, as discussed
in the context of AniMAL [5] or using PVSio-web [21]. Further support can
be provided for the construction of proof. This can be done through the use
of generic tactics [26]. The style of specification lends itself to specific kinds of
proof.
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stantial contributions to the work illustrated in this paper.
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Abstract. In this paper we present an approach for modelling human
reasoning using rewrite systems and we illustrate our approach in the
context of human behaviour using a car driving example. Reasoning
inference rules and descriptions of human activities are expressed using
the Behaviour and Reasoning Description Language (BRDL). The BRDL
model is then translated into Real-Time Maude. The object-oriented and
equational logic aspects of Maude are exploited in order to define alter-
native semantic variations of BRDL that implement alternative theories
of memory and cognition.
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1 Introduction

One of the main challenges in human-computer interaction (HCI) is that the way
humans use devices is not always consistent with the use for which such devices
have been designed and built. In fact, although a systematic exploration of the
concept of “plausible” behaviour may provide a good baseline for understanding
the interaction [5,11], some forms of “plausible” behaviour emerge only in specific
contexts and cannot be predicted a priori. Cognitive architectures [12], formal
methods [19,20] and several other approaches, including machine learning and
control theory [19], have been used to tackle this problem.

However, cognitive architectures tend to be specialised, each with a specific
scope, which is normally academic and seldom practical [12], formal methods
are “regarded as requiring too much expertise and effort for day-to-day use,
being principally applied in safety-critical areas outside academia” [19, Ch. 7,
page 187], and machine learning and control theory focus on the interaction
process rather than human behaviour. Moreover, although emulating reasoning
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is one of the main objectives of some cognitive architectures, past and current
efforts in this sense either do not consider human errors or are detached from
the practical context of human behaviour [12]. Furthermore, high-level reasoning
is not supported by control theory and, although it may emerge using machine
learning, the way it emerges cannot be explained.

Our approach builds on the Behaviour and Reasoning Description Language
(BRDL) [10] and on the use of the Maude rewrite system [16–18] to model
the dynamics of human memory and memory processes [8,9]. The semantics of
BRDL is based on a basic model of human memory and memory processes and
is adaptable to different cognitive theories. This allows us, on the one hand, to
keep the syntax of the language to a minimum, thus making it easy to learn and
understand without requiring expertise in mathematics or formal methods and,
on the other hand, to use alternative semantic variations to compare alterna-
tive theories of memory and cognition. BRDL, is equipped with the linguistic
constructs to specify reasoning goals, inference rules and unsolved problems. We
use rewrite systems [14,17] to implement such constructs. Specifically, BRDL is
translated into Real-Time Maude [16,18], thus combining human components
with the system components that model the environment in which humans
operate [9].

Real-Time Maude was used to model and analyse human multitasking by
Broccia et al. [3,4], who adopted the initial cognitive framework underlying
BRDL [8] and extended it with a number of time-related and other quantitative
aspects. In their work, basic activities (also called basic tasks [3,4,8]) incorporate
non-cognitive aspects, such as the duration and the difficulty of the task, which
are interface-dependent outcomes of the interaction process, as well as external
aspect, such as the delay in executing the basic activity, which is possibly due to
the switching from one task to another. In fact, this was an ad hoc extension for
modelling human multitasking. In contrast to Broccia et al. we model just one
time aspect within basic activities, the duration of the mental process, which
is the only time aspect characterising the basic activity. Broccia et al., instead,
neglect this time aspect.

The rest of the paper is structured as follows. Sections 2 and 3 present
overviews of Real-Time Maude and the way it models BRDL syntax, respec-
tively. Section 4 presents the Real-Time Maude implementation of the model
of human memory and memory processes that provide the dynamics of BRDL
constructs. Section 5 illustrates the rewrite rules to emulate human reasoning
and the environment in which humans operate. Section 6 concludes the paper.

2 Real-Time Maude

Real-Time Maude [16,18] is a formal modeling language and high-performance
simulation and model checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude.
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An algebraic equational specification (specifying sorts, subsorts, functions
and equations defining the functions) defines the data types in a functional pro-
gramming style. Labeled rewrite rules crl [l]: t => t′ if cond define local
transitions from state t to state t′, and tick rewrite rules crl [l]: {t} =>
{t′} in time Δ if cond advance time in the entire state t by Δ time units.

We briefly summarize the syntax of Real-Time Maude and refer to Ölveczky’s
work [16,18] for more details. Maude equational logic supports declaration of
sorts, with keyword sort for one sort, or sorts for many. A sort A may be spec-
ified as a subsort of a sort B by subsort A < B. Operators are introduced with
the op and ops keywords: op f : s1 . . . sn -> s. They can have user-definable
syntax, with underbars ‘_’ marking the argument positions. Some operators can
have equational attributes, such as assoc, comm, and id, stating that the operator
is associative, commutative and has a certain identity element, respectively. Such
attributes are used by the Maude engine to match terms modulo the declared
axioms. An operator can also be declared to be a constructor (ctor) that defines
the carrier of a sort. Equations and rewrite rules are introduced with, respec-
tively, keywords eq, or ceq for conditional equations, and rl, or crl for condi-
tional rules. The mathematical variables in such statements are declared with
the keywords var and vars, or can be introduced on the fly in a statement
without being declared previously, in which case they have the form var:sort.
An equation f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can
be applied to a subterm f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C with
attributes att1 to attn of sorts s1 to sn. An object of class C is represented as
a term < O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort
Oid, is the object’s identifier, and where val1 to valn are the current values of
the attributes att1 to attn. The state is a term of sort Configuration, and is
a multiset of objects and messages. Multiset union is denoted by an associative
and commutative juxtaposition operator, so that rewriting is multiset rewriting.

Real-Time Maude specifications are executable, and the tool provides a vari-
ety of formal analysis methods. The timed rewriting command (tfrew t in
time <= timeLimit .) simulates one of the system behaviours by rewriting the
initial state t up to duration timeLimit .

3 Behaviour and Reasoning Description Language

The Behaviour and Reasoning Description Language (BRDL) [10] originates
from and extends the Human Behaviour Description Language (HBDL) intro-
duced in previous work [8,9]. HBDL aims at the modelling of automatic and
deliberate human behaviour while interacting with an environment consisting
of heterogenous physical components. It requires reasoning and problem solving
aspects to be modelled explicitly in a procedural way, whereby the reasoning
process and the problem solution are explicitly described with the language.
BRDL, instead, is equipped with the linguistic constructs to specify reasoning
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goals, inference rules and unsolved problems. It is then the cognitive engine
that implements the language to emulate the reasoning and problem solving
processes.

BRDL is based on Atkinson and Shiffrin’s multistore model of human mem-
ory [1]. This model is characterised by three stores between which various forms
of information flow: sensory memory, where information perceived through the
senses persists for a very short time, short-term memory (STM), which has a lim-
ited capacity and where the information that is needed for processing activities
is temporarily stored with rapid access and rapid decay, and long-term memory
(LTM), which has a virtually unlimited capacity and where information is organ-
ised in structured ways, with slow access but little or no decay. A usual practice
to keep information in memory is rehearsal. In particular, maintenance rehearsal
allows us to extend the time during which information is kept in STM, whereas
elaborative rehearsal allows us to transfer information from STM to LTM [2].
We consider a further decomposition of LTM: semantic memory, which refers
to our knowledge of the world and consists of the facts that can be consciously
recalled, and procedural memory, which refers to our skills and consists of rules
and procedures that we unconsciously use to carry out tasks, particularly at the
motor level.

BRDL has a concise, appealing syntax, which is presented elsewhere [10]. In
order to show how BRDL is translated to Maude, in this section we introduce
an ASCII, verbose version of the syntax, as it is implemented in Maude. Both
HDBL and BRDL describe human behaviour through the manipulation of three
kinds of entities:

perceptions are sensed in the environment and enter human input channels;
actions are performed by the human on the environment;
cognitive information consists in the items we store in our STM, including

information retrieved from the LTM, goals, recent perceptions or planned
actions.

3.1 BRDL Entities and Cognitive Control

BRDL entities are modelled with Maude using the following sort structure.

sorts Perception Action Cognition BasicItem Item Goal .

subsorts Cognition Perception Action < BasicItem < Item .

subsort Goal < Item .

where Perception, Action and Cognition model perceptions, actions and cog-
nitive information, respectively. Sort Item models anything that can be stored
in STM and sort BasicItem is its subsort that excludes goals (from sort Goal).
All these entities may also be elements of sets that define further sorts as follows:

subsorts Perception < PerceptionSet < BasicItemSet .

subsorts Cognition < CognitionSet < BasicItemSet .

subsorts Action < ActionSet < BasicItemSet .
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subsort BasicItem < BasicItemSet .

subsorts EmptyItemSet < PerceptionSet CognitionSet ActionSet

< BasicItemSet < ItemSet .

subsort Item < ItemSet .

op none : -> EmptyItemSet [ctor] .

op _;_ : BasicItemSet BasicItemSet ->

BasicItemSet [ctor assoc comm id: none] .

op _;_ : PerceptionSet PerceptionSet ->

PerceptionSet [ctor assoc comm id: none] .

op _;_ : ActionSet ActionSet ->

ActionSet [ctor assoc comm id: none] .

op _;_ : ItemSet ItemSet -> ItemSet [ctor ditto] .

We use semicolon “;” as the general operator to add elements or subsets to a
set, starting from an empty set (none in this case).

We extend Perception to DefPerception and Action to DefAction by
including as default values noPerception and noAction to model the absence
of perception and action, respectively.

sorts DefPerception DefAction .

subsort Perception < DefPerception . subsort Action < DefAction .

op noAction : -> DefAction [ctor] .

op noPerception : -> DefPerception [ctor] .

Only relevant perceptions are transferred, possibly after some kind of processing,
to the STM using attention, a selective processing activity that aims to focus
on one aspect of the environment while ignoring others. Explicit attention is
associated with our goal in performing a task. It focusses on goal-relevant stimuli
in the environment. Implicit attention is grabbed by sudden stimuli that are
associated with the current mental state or carry emotional significance. Inspired
by Norman and Shallice [15], we consider two levels of cognitive control:

automatic control
fast processing activity that requires only implicit attention and is carried
out outside awareness with no conscious effort implicitly, using rules and
procedures stored in the procedural memory;

deliberate control
processing activity triggered and focussed by explicit attention and carried
out under the intentional control of the individual, who makes explicit use
of facts and experiences stored in the declarative memory and is aware and
conscious of the effort required in doing so.

In order to model automatic and deliberate control as well as reasoning, we
introduce the following sorts and operations.

sorts Automatism KnowledgeDomain .

op automatism : KnowledgeDomain -> Automatism [ctor] .

op goal : KnowledgeDomain BasicItemSet -> Goal [ctor] .

op infer : KnowledgeDomain -> Inference [ctor] .
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We define automatic behaviour in terms of a specific knowledge domain (sort
KnowledgeDomain and operation automatism). Automatic behaviour is driven
by the knowledge domain, which gives a focus to implicit attention.

Deliberate behaviour is driven by a goal, which not only depends on the
knowledge domain but also on a representation of the goal achievement. This
representation may be given by a combination of perceptions, actions and cog-
nitive information. For example,

– during the interaction with an ATM (automatic teller machine) with the
goal of withdrawing cash, we achieve the goal when we perform the action of
collecting the cash;

– if our goal is to switch a light on, we achieve the goal when we perceive the
light being on;

– if our goal is to solve a mathematical puzzle, we achieve the goal when the
solution is represented by the cognitive information in our STM.

Inference is driven by the knowledge domain on which we are reasoning.

3.2 Basic Activities

Human behaviour is modelled in BRDL (and HTDL) as a set of basic activities,
defined through the following sorts and operations

sorts AutomaticActivity DeliberateActivity Knowledge .

op _:_>|_-->_|>_duration_ : Automatism BasicItemSet DefPerception

DefAction ItemSet Time -> AutomaticActivity . [ctor]

op _:_>|_-->_|>_duration_ :Goal BasicItemSet DefPerception

DefAction ItemSet Time -> DeliberateActivity [ctor] .

op _:_>|-->|>_duration_ : Inference BasicItemSet

ItemSet Time -> Knowledge [ctor] .

An automatic basic activity within a given knowledge domain domain is
modelled in BRDL and HTDL as

automatism(domain) : info1 >| perception --> action |> info2 duration d

where info1 is the triggering cognitive information in the STM, perception is the
triggering perception, action is the performed action, info2 is a new cognitive
information stored in the STM, and d is the duration of the mental processing.
Symbol “>|” denotes that info1 is removed from the STM and “|>” denotes
that info2 is stored in the STM. Using derived operations (i.e. not defined as
constructors but through equations) we have the following syntactic sugar

automatism(domain) : info1 | perception -->
action |> info2 duration d

where info1 acts as a trigger but is not is removed from STM, and

automatism(domain) : info | info1 >| perception -->
action|> info2 duration d
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where the union info;info1 acts as a trigger but only info1 is removed from
STM.

A deliberate basic activity within a given knowledge domain domain is mod-
elled in BRDL and HTDL as

goal(domain, info) : info1 >| perception --> action |> info2 duration d

where info is the information denoting the achievement of the goal.
An inference within a given knowledge domain domain is modelled in

BRDL as

inference(domain) : info1 >|-->|> info2 duration d

where info1 is the premise and info2 is the consequence.
Syntactic sugar for deliberate basic activities and inferences is defined simi-

larly to automatic basic activities.
Procedural memory is modeled as the sort ProcMem, which is a set of auto-

matic basic activities

sort ProcMem . subsort AutomaticActivity < ProcMem .

op emptyPM : -> ProcMemory [ctor] .

op _;_ : ProcMemory ProcMemory -> ProcMemory

[ctor assoc comm id: emptyPM] .

Semantic memory is modeled by two sort, sort ActivMem, which is a set of
deliberate basic activities,

sort ActivMem . subsort DeliberateActivity < ActivMem .
op emptyAM : -> ActivMem [ctor] .
op _;_ : ActivMem ActivMem -> ActivMem [ctor assoc comm id: emptyASM] .

and sort InferMem , which is a set of inferences,

sort InferMem . subsort Knowledge < InferMem .
op emptyIM : -> InferMem [ctor] .
op _;_ : InferMem InferMem -> InferMem [ctor assoc comm id: emptyIM] .

3.3 Zebra Crossing Example

As an example to illustrate these forms of human behaviour and reasoning, let
us consider car driving. The knowledge domain is given by constant operation

op driving : -> KnowledgeDomain [ctor] .

Automatic control is essential in properly driving a car and, in such a context, it
develops throughout a learning process based on deliberate control. During the
learning process the driver has to make a conscious effort that requires explicit
attention. For example, the learner has to explicitly pay attention to the other
cars, the pedestrian walking on the footpath, who may be ready to walk across
the road, the presence of zebra crossings, traffic lights, road signals, etc. These are
goals that drive explicit attention. Moreover, the information gathered through
this process has to be deliberately used to achieve goals (deliberate control),
which continuously emerge while driving as a learner.

For instance, let us define perceptions, actions and cognitive information of
a driver dealing with a zebra crossing as follows:
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ops static moving ped zebra : Oid -> Perception [ctor] .

ops stop go : Action [ctor] .

ops givenWayPed waitForPed leftZebraCrossing : -> Cognition [ctor] .

The role of such constructors will be explained later in this section.
A learner’s perception of an approaching zebra crossing, normally by seeing

a road signal, either a horizontal or vertical one, triggers the storage of the
cognitive representation of this perception in STM. We may model this instance
of explicit attention as

goal(driving,zebra) : none | zebra --> noAction |> zebra duration d1

where zebra denotes the perception of the zebra crossing and occurs three times
for modelling, from left to right: the achievement of the goal of explicitly per-
ceiving the presence of the zebra crossing, the actual perception and the repre-
sentation of the perception in STM. There is no resultant action since here we
are modelling attention.

When also pedestrians ready to cross are perceived, the cognitive represen-
tation of this perception is stored in STM.

goal(driving,ped) : none | ped --> noAction |> ped duration d2

Once the cognitive representations of perceptions zebra and ped are in STM, if
the car is moving and the driver is (cognitively) aware of it (modelled by moving
in the STM), this composite mental state triggers the retrieval of the following
inference, which models the road code rule concerning zebra crossings:

inference(driving) :

moving ; zebra ; ped |-->|> goal(driving,givenWayPed) duration d3

Retrieving the rule results in adding goal goal(driving,givenWayPed) to the
STM without removing moving, zebra and ped. Such a goal dictates the pre-
scribed behaviour of giving way to pedestrians (whose achievement is denoted
by givenWaypPed). This behaviour is ‘implemented’ by the human as modelled
by the following deliberate basic activity:

goal(driving,givenWayPed) :

none | none --> stop |> waitForFree duration d4

where stop is the action of stopping the car and waitForFree denotes the
driver’s mental state of waiting for the zebra crossing to be free.

Once automaticity in driving is acquired, the driver is no longer aware of
low-level details and resorts to implicit attention to perform them (automatic
control). In general, also an expert driver always starts driving with a precise
goal in mind, which normally is that of reaching a specific destination, possibly
as a subgoal of the reason for reaching it. Although such a goal is kept in the
driver’s STM, most driving activities are carried out under automatic control,
with no need to retrieve the learned rules. Therefore, the behaviour of an expert
driver is modelled as follows:

automatism(driving) : none | zebra --> noAction |> zebra duration d1

automatism(driving) : none | ped --> noAction |> ped duration d2
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automatism(driving) :

moving ; zebra |> ped --> stop |> ped ; waitForFree duration d3

automatism(driving) :

moving ; ped |> zebra --> stop |> zebra ; waitForFree duration d3

The first two automatic activities model implicit attention, which results in the
storage of the perception of zebra crossing and pedestrians, respectively. The
last two automatic activities model the automatic reaction to the perception of
pedestrian in combination with the awareness of the presence of a zebra crossing
or the perception of zebra crossing in combination with the awareness of the
presence of pedestrian, depending on which perception occurs first.

We can note that automatic behaviour is more efficient than deliberate
behaviour for the following reasons:

– there are no goals in STM to drive explicit attention (low cognitive load);
– there is an immediate reaction to perceptions, when in the appropriate mental

state (faster reaction);
– there is no recourse to inference (decreased access to LTM).

4 Dynamics of BRDL Models

We model the structure of the human memory using the following Real-Time
Maude class.

class Human | cognitiveLoad : Nat,

shortTermMemory : TimedItemSet,

inferSemMem : InferMem,

activSemMem : ActivMem,

procMem : ProcMem .

The STM is modelled by attribute shortTermMemory with cognitiveLoad being
its current load, the semantic memory by the two attributes inferSemMem and
activSemMem and the procedural memory by the single attribute procMem.

4.1 STM Model with Real-Time Maude

The limited capacity of the STM requires the presence of a mechanism to empty
it when the stored information is no longer needed. In fact, information in the
STM decays very quickly, normally in less than one minute, unless it is reinforced
through maintenance rehearsal. To implement STM decay, we need to associate
a time to the elements of sort Item

sorts TimedItem TimedItemSet .

subsort TimedItem < TimedItemSet .

op _decay_ : Item Time -> TimedItem [ctor] .

op emptyTIS : -> TimedItemSet [ctor] .

op _;_ : TimedItemSet TimedItemSet -> TimedItemSet

[ctor assoc comm id: emptyTIS] .

op maxDecayTime : -> Time .

eq maxDecayTime = 20000 .
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Therefore the STM is modelled as an element of sort TimedItemSet, the set of
elements of sort TimedItem. A piece of information in the STM is associated with
a decay time, which is initialised to the maximum decay time (maxDecayTime,
for example set to 20000 ms) when the information is stored in the STM. Then
decay time decreases along with the passage of time. A piece of information
disappears from the STM once its decay time has decreased to 0.

Additionally, every time a goal is achieved, a process called closure may
determine a subconscious removal of information from the STM: the informa-
tion used to complete the task is likely to be removed from the STM, since
it is no longer needed. Therefore, when closure occurs, a piece of information
may disappear from the STM even before its decay time has decreased to 0.
Conversely, maintenance rehearsal resets the decay time to the maximum decay
time.

In order for a goal with BIS as parameter of sort BasicItemSet to be achieved

– the entire cognitive information included in BIS has to be in STM;
– one of the perceptions (if any) has to be the trigger of the occurring basic

activity (which may be automatic or deliberate);
– one of the actions (if any) has to be performed by the occurring basic activity.

This is implemented by operations

op removeTime : TimedItemSet -> ItemSet .

op goalAchieved : Goal ItemSet DefPerception DefAction -> Bool .

where operation removeTime removes the time from the elements of the STM
and operation goalAchieved returns true if the goal is achieved.

It is not fully understood how closure works. We can definitely say that once
the goal is achieved, it is removed from the STM. However, it is not clear what
happens to the information that was stored in STM in order to achieve the
goal. We said at the end of Sect. 3.1 that if an ATM is used with the goal of
withdrawing cash, the goal is achieved when the user collects the cash delivered
by the ATM [8]. However, old ATM interfaces (some still in activity) deliver the
cash before returning the card to the user. There is then the possibility that the
user collects the cash and, feeling the goal achieved, abandons the interaction
forgetting to collect the card. This cognitive error is known as post-completion
error [6,7,13]. It could be explained by the loss of the information that was
stored in STM, when the user inserted the card in the ATM, as a reminder to
collect the card at a later stage. In fact, such a loss of information is the result of
the closure due to the achievement of the goal when the user collects the cash.

In practice, however, a user interacting with an old ATM interface does not
always forget the card. This may be explained by assuming that the likelihood
to forget the card depends on the user’s cognitive load. Therefore we define the
following thresholds

op closureThresholdLow : -> Nat . eq closureThresholdLow = 4 .

op closureThresholdHigh : -> Nat . eq closureThresholdHigh = 6 .
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and force closure to occurs if the cognitive load is at least closureThreshold
High and prevent its occurrence if the cognitive load is less than closure
ThresholdLow. In all other cases closure may occur non-deterministically.

Finally, a piece of information may also non-deterministically disappear from
the STM when the STM has reached its maximum capacity and it is needed to
make space for the storage of new information. This is implemented by allowing
the STM to temporarily exceed its capacity, thus reaching an unstable state in
which the only applicable rule is

crl [forgetSomethingIfSTMfull] :
< H : Human | shortTermMemory : (ITEM decay NZT) ; STM,

cognitiveLoad : CL >
=>

< H : Human | shortTermMemory : STM,
cognitiveLoad : sd(CL, 1) >

if CL > stmCapacity .

where sd is the symmetric difference between natural numbers.

4.2 Model of the Environment

A specific environment with which the human interacts is defined as an object
of class

class Environment | state : TimedEnvState,

transitions : EnvTransitions .

The state attribute characterises the environment and its time aspects by means
of the following sort structure

sort EnvState .

sorts TimedEnvState ExpiringEnvState TimedEnvStateSet .

subsort EnvState < ExpiringEnvState < TimedEnvState < TimedEnvStateSet .

op _expiring‘in_ : EnvState Time -> ExpiringEnvState [ctor] .

op _expired : EnvState -> ExpiringEnvState [ctor] .

op _in‘time_ : ExpiringEnvState Time -> TimedEnvState [ctor right id: 0]

var STATE : EnvState .

eq STATE expiring in 0 = STATE expired .

op noEnvState : -> TimedEnvStateSet [ctor] .

op _;_ : TimedEnvStateSet TimedEnvStateSet -> TimedEnvStateSet

[ctor assoc comm id: noEnvState] .

where

– sort EnvState of environmental states is user-defined and application-specific;
– sort ExpiringEnvState add a life time to the environmental state;
– sort TimedEnvState add a delay time to the (possibly expiring) environmental

state.
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Note that 0 is right identity in the construction of timed environmental states
out of expiring environmental states. Thus a timed environmental state with
delay 0 is actually an expiring environmental state (with no delay). Moreover,
expiring environmental states are characterised by a postfix constructor expired
in order to determine different transitions with respect to the non-expired states.

The sort EnvTransitions models environmental transitions as follows:

sort EnvTransitions .

sort EnvTransition .

subsort EnvTransition < EnvTransitions .

op noTrans : -> EnvTransitions [ctor] .

op _-->_ : ExpiringEnvState TimedEnvState -> EnvTransition [ctor] .

op _--_-->_ : EnvState Action TimedEnvState -> EnvTransition [ctor] .

op _;_ : EnvTransitions EnvTransitions -> EnvTransitions

[ctor assoc comm id: noTrans] .

Obviously interactions ( -- --> ) are associated with actions, internal actions
( --> ) are not.

The sort EnvTransitions is populated through the user-defined, application-
specific operation

op transitions : Cid Oid -> EnvTransitions .

where Cid is a class identifier and Oid is an object identifier.
States of the environment may be observable by humans. Such observability

is modelled as

op observability : ExpiringEnvState -> PerceptionSet .

eq observability(STATE expired) = none .

eq observability(STATE expiring in NZT) = observability(STATE) .

with the rest of operation observability user-defined and application-specific.

4.3 Zebra Crossing Environment

In order to define the behaviour of the environment for the example in Sect. 3.3,
we need two environments, one to model the car behaviour and one to model
the zebra crossing behaviour. Both car and zebra crossing have a location, which
is variable for the car and fixed for the zebra crossing. They also need to have
additional state components to characterise whether the car is moving or is static
and whether the zebra crossing has pedestrians or is free.

Environment and Observability. If we assume to have only one human, one
car and one zebra crossing

ops driver1 car1 zebra1 : -> Oid [ctor] .

then the environmental state is defined as follows:
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sorts Location AdditionalState .
ops atInit atZebra atFinal : -> Location [ctor] .
ops hasPed isFree isMoving isBraking isStatic : -> AdditionalState [ctor] .
op state : Location AdditionalState -> EnvState [ctor] .

The meanings of the operations that define locations and additional state
components are obvious. An environmental state consists of a location and an
additional state.

The observability operation is defined as follows:

eq observability(state(LOC,isStatic)) = static .

eq observability(state(LOC,isMoving)) = moving .

eq observability(state(zebra1,AS)) = zebra .

eq observability(state(zebra1,isFree)) = zebra ; noPed .

eq observability(state(zebra1,hasPed)) = zebra1 ; ped .

Transition System. The environmental transition systems are defined as

class Car . subclass Car < Environment .

var C : Oid .

eq transitions(Car, C) =

(state(atInit,isMoving) --> state(atZebra, isMoving)

expiring in 1 in time 30000) ;

(state(atZebra,isMoving) -- stop(C) --> state(atZebra, isBraking)) ;

(state(atZebra,isBraking) --> state(atZebra, isStatic) in time 2000) ;

(state(atZebra,isStatic) -- go(C) --> state(atZebra, isMoving)) ;

(state(atZebra,isMoving) --> state(atFinal, isMoving)

expiring in 1 in time 30000) ;

(state(atFinal,isMoving) -- stop(C) --> state(atFinal, isBraking)) ;

(state(atFinal,isBraking) --> state(atFinal, isStatic in time 2000) .

for the car, and

class Zebra . subclass Zebra < Environment .

var Z : Oid .

eq transitions(Zebra, Z) =

(state(Z,isFree) expired --> state(Z, hasPed) expiring in 5000) ;

(state(Z,hasPed) expired --> state(Z, isFree) expiring in 20000) .

for the zebra crossing.
The timings mean that the car takes time 30000 to move between two con-

secutive locations and time 2000 to brake, being in an unstable state until
these times are elapsed and, once stable, expiring immediately (in time 1)
if not taken, and that there are pedestrian crossing every 25000 time units
(25000 = 20000 + 5000) who take time 5000 to cross.

Initial Configuration. Let us consider a driver who has already acquired a
general automatism in driving, in which implicit attention controls the storage
of information in STM, but still needs to perform inferences to apply road code
rules. The initial configuration of the overall system is
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op init : -> Configuration .

eq init = < cerone : Human |

cognitiveLoad : 2,

shortTermMemory : emptyTIS,

proceduralMemory :

(automatism(driving) : none | moving --> noAction |> moving duration 1) ;

(automatism(driving) : none | static --> noAction |> static duration 1) ;

(automatism(driving) : none | zebra --> noAction |> zebra duration 1) ;

(automatism(driving) : none | ped --> noAction |> hasPed duration 1) ;

(automatism(driving) : none | freePed --> noAction |> freePed duration 1),

knowledge :

(infer(driving) : (moving ; zebra ; hasPed) |-->|>

goal(driving,givenWayPed) duration 10) ;

(infer(driving) : (static ; zebra ; freePed) |-->|>

goal(driving,leftZebraCrossing) duration 10),

activity :

(goal(driving,givenWayPed) :

(moving ; zebra ; hasPed) | noPerception -->

stop(car1) |> waitForPed) duration 10) ;

(goal(driving,leftZebraCrossing) :

(zebra ; waitForPed) > (static ; freePed) | noPerception -->

go(car1) |> none duration 10)

>

< zebra1 : Zebra | transitions : transitions(Zebra, zebra1),

state : state(zebra1,zebraPed) expiring in 5000

>

< car1 : Car | transitions : transitions(Car, car1),

state : state(initLoc,moving)

> .

5 Rewrite Rules

At the end of Sect. 4.1 we have introduced the forgetSomethingIfSTMfull
rewrite rule. In this section we illustrate three more rewrite rules: internal,
reasoning and timePassing. Other rewrite rules not presented here involve the
automatic and deliberated activities, including special cases such as implicit and
explicit attention, which are characterised by the presence of perception and
absence of action, and cognition, which are characterised by the absence of both
perception and action. Such rules are duplicated for the closure and non-closure
cases.

5.1 Internal Action Rewrite Rule

Internal actions are modelled by the following rewrite rule.

crl [internal] :

{< E : Environment | >
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REST}
=>

{< E : Environment | state : TESTATE >

REST}
if ALL-TESTATES := fireTransitions(< E : Environment | >)

/\ TESTATE ; OTHER-TESTATES := ALL-TESTATES .

The rule makes use of the fireTransitions operation, which is defined as fol-
lows:

op fireTransitions : Configuration -> TimedEnvStateSet .

eq fireTransitions(< E : Environment |

state : ESTATE,

transitions : (ESTATE --> TESTATE) ; TRANSES > REST ) =

TESTATE ; fireTransitions( < E : Environment |

state : ESTATE,

transitions : TRANSES > REST ) .

eq fireTransitions( REST ) = noEnvState [owise] .

The fireTransitions operation returns the set of the environmental states
generated by the firing of the enabled internal transitions. In the internal
rewrite rule, such a set is assigned to variable ALL-TESTATES, which is matched
to TESTATE ; OTHER-TESTATES, thus giving the rewritten state TESTATE.

5.2 Reasoning Rewrite Rule

Reasoning is modelled by the following rewrite rule.

crl [reasoning] :

{< H : Human |

cognitiveLoad : CL,

shortTermMemory : (TIS1 ; TIS2),

inferMem : (infer(KD) : BIS >| -->|> IS duration T) ; KNOW >

REST}
=>

{< H : Human |

cognitiveLoad : card(NEW-STM),

shortTermMemory : NEW-STM,

inferMem : (infer(KD) : BIS >| -->|> IS duration T) ; KNOW >

idle(REST, T)}
in time T

if BIS == removeTime(TIS1)

/\ CL < closureThresholdHigh /\ CL <= stmCapacity

/\ NEW-STM := addTime(BIS ; IS, maxDecayTime)) ; idle(TIS2,T) .

In addition to operation removeTime introduced in Sect. 4.1, the rule makes
use of



Modelling Human Reasoning Using Real-Time Maude 439

– the addTime operation, which transforms the untimed sets BIS and IS into a
timed set to be added to the STM;

– the idle operation, which models the passage of a given time by decrementing
each element of sort TimedItemSet of the STM and, for each environment
component, the delay and expiration times of the state attribute, which is
of sort TimedEnvState, if positive.

Note that the decay time of the premises in BIS is set to the maximum decay
time because the use of BIS in the inference is an implicit maintenance rehearsal
of its timed version TIS1.

Let us consider the zebra crossing example introduced in Sects. 3.3 and 4.3.
When moving, zebra and ped are stored in the STM, the road code rule con-
cerning zebra crossing (from Sect. 4.3)

inference(driving) :

moving ; zebra ; ped |-->|> goal(driving,givenWayPed) duration d3

is retrieved, thus enabling the application of Maude reasoning conditional rule
with

BIS = moving ; zebra ; ped and IS = goal(driving,givenWayPed)

The new goal goal(driving,givenWayPed) is then added to the STM and trig-
gers the following deliberate basic activity, stored in LTM, which implement the
road code rule (from Sect. 4.3):

goal(driving,givenWayPed) :

none | none --> stop |> waitForFree duration d4

Such a rule dictates the action of stopping the car (stop) and the storage of
waitForFree in the STM.

5.3 Time Passing Rewrite Rule

crl [timePassing] :

{CONFIG}
=>

{idle(CONFIG,1)}
in time 1

if nothingEnabled(CONFIG) .

where operation nothingEnabled is defined as

op nothingEnabled enablingSTM : Configuration -> Bool .

eq nothingEnabled(CONFIG) = (fireTransitions(CONFIG) == noEnvState)

and (enablingSTM(CONFIG)) == false .

and operation enablingSTM checks whether the configuration has an object of
class Human whose STM either exceeds the maximum cognitive load or is enabling
an inference rule, an automatic basic activity or a deliberate basic activity. In
this way the timePassing rewrite rule may be applied only if no other rewrite
rule can be applied.
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6 Conclusion and Future Work

We have presented a translation of BRDL into Real-Time Maude. In previ-
ous work [8,9], a subset of BRDL, the Human Behaviour Description Language
(HBDL), was implemented using Core Maude. However, that untimed imple-
mentation was limited to automatic and deliberate behaviour powered by a very
simple, fixed short-term memory model, with a minimalist, inflexible approach
to closure and without decay. Reasoning and problem solving aspects had to be
modelled explicitly in a procedural way in a limited, unstructured environment
consisting of just one component.

BRDL, instead, is equipped with the linguistic constructs to specify reason-
ing goals, inference rules and unsolved problems. These linguistic constructs,
extensively described in our previous work [10] can be used to model human
behaviour in a natural way from the point of view of a psychologist or cogni-
tive scientist. The Real-Time Maude implementation of BRDL presented in this
paper provides an engine capable to emulate the human reasoning specified by
such constructs, but its knowledge is not needed to use BRDL. Moreover, the
object-oriented and real-time aspects of Maude allow us to overcome the limita-
tion of previous work [8] and carry out the implementation of the time aspects
envisaged in recent work [9].

Moreover, our work differentiates itself from the work by Broccia et al. [3,4]
in several respects:

– we have implemented, using Real-Time Maude, a language for the high-level,
general description of human behaviour and reasoning (BRDL), whereas the
work by Broccia et al. is restricted to the modelling and analysis of human
multitasking;

– our modelling approach clearly separate human cognition from its environ-
ment, with all interaction aspects emerging through the composition of the
human component with the operating environment, whereas the framework
developed by Broccia et al. explicitly incorporates in the human component
interaction aspects, such as task duration and difficulty, and delay due to
external constraints, such as the presence of other tasks;

– we model the duration of the mental processing, a time aspect that has not
been considered by Broccia et al.;

– Broccia et al. adopt the same minimalist, inflexible approach to closure intro-
duced in Cerone’s previous work [8], in which all cognitive information used
to achieve the goal is removed independently of the cognitive load, whereas,
in our approach, we may use and compare several forms of closure and use
thresholds on cognitive load to control the application of closure;

– our components are eager, namely the time passing rewrite rule may be
applied only if no other rewrite rule can be applied.

As future work we plan to implement BRDL problem solving constructs [10] and
use the model checking capabilities of Real-Time Maude to extend the untimed
analysis approach used in previous work [8] to the formal verification of timed
properties.
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Abstract. Our research team is specialized in human-computer systems
and their engineering, with focus on interactive software systems for aero-
nautics (from cockpits to control towers). This context stands out by the
need for certification, such as DO-178 or ED-12. Today, formal methods
are pushed forward, as one of the best tools to achieve the verification
and validation of properties, leading to the certification of these systems.

Interactive systems are reactive computer systems that process infor-
mation from their environment and produce a representation of their
internal state. They offer new rich interfaces with sophisticated interac-
tions. Their certification is a challenge, because the validation is often a
human based process since traditional formal tools are not always suit-
able to the verification of graphical properties in particular.

In this paper, we explore the scientific work that has been done in
formal methods for interactive systems over the last decade, in a sys-
tematic study of publications in the International Workshop on Formal
Methods for Interactive Systems. We describe an analytical framework
that we apply to classify the studied work into classes of properties and
used formalisms. We then discuss the emerging findings, mainly the lack
of papers addressing the formal specification or validation of perceptibil-
ity properties. We conclude with an overview of our future work in this
area.

Keywords: Interactive software · Formal methods · Verification ·
Graphical properties

1 Introduction

1.1 Aim and Scope of the Article

Interactive systems are reactive computer systems that process information
(mouse clicks, data entries, etc.) from their environment (other systems or human
users) and produce a representation (sound notification, visual display, etc.)
of their internal state [13,59]. They now have an increasingly important place
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among modern systems in various sectors such as aeronautics, space, medical
or mobile applications. These systems offer new rich human machine interfaces
with sophisticated interactions.

The preferred method for the verification and validation (V&V) of proper-
ties on interactive systems remains largely based on successive testing sessions
of prototypes, performed through various experimentations involving represen-
tative end-users. For a long time, formal methods have not been very used to the
verification of interactive properties. Indeed, historically, formal methods have
been developed for distributed and embedded systems. The first properties stud-
ied for software and computer systems concerned safety (e.g. absence of unwanted
events, boundedness) as well as program liveness (e.g. return to a given state,
deadlock freedom) [63]. The main methods used to verify and validate prop-
erties of systems are model verification by model checking [25], mathematical
proof [18], static analysis [43] and test processes driven by a formal model of the
system under tests.

However, more and more work is being done on the development of formal
methods to interactive systems. The objective is to study how these methods can
be adapted to the modelling and the verification of properties involving human
related characteristics. In particular, in the scope of critical domains such as
aeronautics, recent updates of standards used for certification strongly recom-
mend to use formal methods for the verification and validation of requirements
of new software for aircraft cockpits [72,73].

In this context, the objective of this survey is to study research activities that
have been done in formal methods for the modeling, verification and validation
of interactive systems, over the last decade. The aim is to draw a faithful pic-
ture of formalisms that are used to model interactive systems, set of properties
that are verified and formal methods applied. From this picture, the objective
is to identify strengths and weaknesses of formal approaches for interactive sys-
tems and to identify ways of improvements. More precisely, the survey highlights
several points: What interactive related properties are studied? Which ones are
more covered and which ones are least addressed? Are there formalisms that are
widely used to model systems and study their properties? Are there any new
formalisms that have emerged? Are they used on industrial critical systems or
only on small academic case studies?

1.2 Methodology

Through this survey we explore the scientific work that has been done in for-
mal methods for interactive systems over the last decade. For this purpose, we
perform a systematic study of publications from a specific workshop, the Interna-
tional Workshop on Formal Methods for Interactive Systems (FMIS). We have
selected this workshop because it covers exactly our problematic: the articles
from this workshop address issues of how formal methods can be applied to
interactive system design and verification and validation of their related proper-
ties. The workshop also focuses on general design and verification methodologies,
and takes models and human behavior under consideration. Moreover, FMIS has
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reached a critical mass that makes the analysis more significative and reliable.
It has taken place seven times from 2006 to 2018. Our study is based on an
exhaustive review of the literature from FMIS representing 43 articles.

As we focus on the formal study of properties related to the graphical scene
of interactive systems, this survey is based on a table of our choice that classifies
the work that has been done about formalisation and verification of properties
for interactive systems.

1.3 Plan of the Article

Before reviewing the work from FMIS, we present our analytical framework (2).
It is composed by definitions of properties we have sorted in different classes.
We also set up a nomenclature of formalisms that have been used for the studies
of the properties. From this basis, we propose an analytical grid that allows us
to synthesize the review. Then the 43 articles from all the FMIS workshops are
presented and analysed (3), analysis mainly directed by the studied properties
and the ways of studying them.

The Sect. 4 provides a synthesis of the review and highlights the issues in the
research of formal methods for interactive systems. Finally, the Sect. 5 concludes
the discussion and presents ongoing work related to the previously highlighted
issues.

2 Analytical Framework

The purpose of this section is to define a framework for the analysis of the
properties that have been studied for interactive systems. In order to do that,
three basic questions must be considered.

– “What properties are studied?” This question concerns the nature of proper-
ties that have been studied and is the center of our work to determine if some
properties have not been studied.

– “What formalism is being used?” This question allows us to show what for-
malisms can be used to study the properties.

– “What is the case study?” This question concerns the system used as the case
study to illustrate the use of formal methods and its particularities.

We focus on these questions in order to highlight the range of interactive
systems properties covered. It provides the means used to cover these properties.
Through this survey, we explore these questions by sorting the articles by the
properties studied and the means used to study those. We also provide the case
study used to illustrate the studies.
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2.1 Properties

As stated in the analytical framework, we firstly drive our analysis according
to the studied properties. This paper organises interactive systems properties
in four classes of our choice: user behavior [2], cognitive principles [29], human-
machine interfaces [13], security [70]. We detail these classes below.

Several articles do not directly address interactive properties and so cannot
be classified in one of these 4 classes. For these specific papers, we have defined
two additional categories:

– specification/formal definition: gather papers dealing with the formal
modeling of a system, and possibly addressing properties related to the model
itself, and not centered on the interaction.

– testing: gather papers related to the modeling of interactive systems with
the objective to generate test cases from the study of the model.

User Behavior. This user behavior class considers the properties related to
a human user. The properties from this class are about user’s actions, user’s
expectations about the system, user’s objectives and restrictions.

– A user goal is a list of sub objectives that a user has to perform to achieve
a greater objective related to the purposes of the system used. This goal can
consist on a single task or an overall use case.
“Insert the card”, “authenticate” and “choose the amount of money” are
subgoals of “withdraw money”.

– User privileges are a way to prevent a user with an unauthorized level of
accreditation to perform goals the user should not.
Example: It is only possible to access our e-mails if we are connected to our
e-mail system.

– The user interpretation can be seen as the set of assumptions of the user
about the system. It can lead users to adapt their behavior in accordance
with these assumptions.
For example, we are used to the shortcut Ctrl+C in order to copy some text.
A novice user of a terminal could use it to copy text and close the running
application because the functionality is not the same.

– The user attention is defined as the ability of the user to focus on a specific
activity without being disturbed by irrelevant informations.
This can be seen when driving a car, the driver is focused on traffic signs, on
road traffic, etc.

– The user experience concerns the knowledge of the user about the sys-
tem. This knowledge can come from a previous use of the system or a study
of the system before using it. This experience can have an impact on user
interpretation.
The example given in user interpretation also illustrates the user experience:
an experienced user of a terminal would not make mistakes with the Ctrl+C
functionality.
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Cognitive Principles. This cognitive principles class considers the properties
related to cognitive sciences. The properties from this class are about the human
user cognitive salience and load.

– The cognitive load is related to the task performed by the user and more
specifically to its complexity. It is possible to define two types of cognitive
load: intrinsic (complexity of the task) and extraneous (complexity due to the
context and distractors).
For example, a user may lose attention while interacting with too rich a
graphical scene.

– The cognitive salience represents a user’s adherence to an idea. While per-
forming an action, it depends on the action sensory salience, its procedural
cueing and the cognitive load related to the task.
A user will be more focused on an action more in line with his convictions.

Human-Machine Interfaces. In the human-machine interfaces properties
class we consider the new properties that have arrived with these new systems.
These properties are mainly specific to the problems induced by the display such
as verifying the right display of informations or being aware of the latency that
can appear between user actions and the display of informations.

– The latency is a well-known issue in rich interfaces. It concerns the delay
between interactions with an application and the return of informations from
it.
If a computer processes several actions at the same time, it will take a few
seconds to start a web browser.

– the consistency represents a system constant behavior whether for a display
or a functionality regardless the current mode of the system.
It can be seen as the use of same terminology for functions (“Exit” or “Quit”
in order to define a function “close a window”).

– The predictability is the user’s ability to predict the future behavior of the
system from its actual state and the way the user will interact with it.
When closing a word processor with an unsaved document, a user knows that
a pop-up will show to ask what to do between saving the document, canceling
the closing or closing without saving.

– ISO 9241-11 [80] defines the usability as “the extent to which a product
can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use.”
It is possible to improve the usability of an “accept/decline” window by
adding symbols related to the two notions such as � for accept and × for
decline.

– The visual perceptibility is based on different properties such as the super-
position of components, the distinction of shapes and colours.
For example, even if a red text is above a red shape, the text will not be
perceptible.
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Security. This security class considers the properties related to computer secu-
rity such as the prevention of threats and the link between the user behavior
and the possible threats.

– The integrity property states that, for a system that may be exposed to
threats, hypothesis of the user about the application are correct and the
reverse is also true.
When we log in interfaces with two text fields, if the fields username and
password are not in the expected locations, we could type the password in
the clear field.

– The threats property focuses in defining the differents threats that may be
a risk for the system.
We can note, for example, data leaking or data manipulation.

2.2 Nomenclature of Formalisms

This section will introduce formalisms and formal methods that have been used
by FMIS authors in order to formalize and apply verification techniques on the
properties defined in the last section. We will define the basic semantic and the
properties inherent to these formalisms.

Process Algebra. Baeten [7] gives the history and the definition of process alge-
bra. The author also gives examples of some formalisms from process algebra
such as Calculus of Communicating Systems (CCS) or Communicating Sequen-
tial Processes (CSP). We can resume from this paper that process algebra is a
set of algebraic means used to study and define the parallel systems behavior.

Authors from the FMIS workshop used formalisms from process algebra such
as the CWB-NC [34] syntax for the Hoare’s CSP notation [48], Language Of
Temporal Ordering Specification (LOTOS) [51], probabilistic π-calculus [61],
applied π-calculus [69], Performance Evaluation Process Algebra (PEPA) [47].

Specification Language. A specification language [71] is a formal language
that can be used to make formal descriptions of systems. It allows a user to
analyze a system or its requirements and thus to improve its design.

Authors from the FMIS workshop used specification languages such as SAL
[58], Z [79], μCharts [41], Spec# [11], Promela [49], PVS [74], Higher-Order
Processes Specification (HOPS) [36].

Refinement. A program refinement consists in the concretisation of a more
abstract description of a system. The aim of this method is to verify properties in
an abstract level of the description then to concretise this level while conserving
the verified properties. These steps have to be done until the concrete description
of the system is obtained.

Authors from the FMIS workshop used refinements processes with models
such as B-method [3] or with specification languages such as Z and μCharts.

Transition Systems. Transition systems [8] consist in directed graphs com-
posed of states, represented by nodes, and transitions, represented by edges. A
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state represents an instant in the system behavior or for a program the cur-
rent value of all the variables and the current state of the program. Crossing a
transition involves a change of state.

Authors from the FMIS workshop used transition systems formalisms such
as UPPAAL [15], Petri nets (PN) [35], ICO models [60], finite state automata
(FSA), Input/Output labeled transition system (IOLTS).

Temporal Logic. Properties to be verified are often expressed in the form of
temporal logic formulas [42]. These formulas are based on Boolean combiners,
time combiners and for some logics on path quantifiers. Authors from the FMIS
workshop used temporal logics such as computation tree logic (CTL) and linear
temporal logic (LTL) [25].

3 Review

Here, we review the state of the art of formal methods applied to interactive
systems. We consider research work that have been presented in the International
Workshop on Formal Methods for Interactive Systems.

Our aim is to present the properties that have been studied with formal
methods. From this and the questions that we asked in the Sect. 2, we base our
analysis on the grid presented in the Table 6.

This grid highlights the coverage of properties depending on the formalisms.
The categories formal definition/specification and testing are not interactive
systems properties. However, we want to present how articles address those with
formal methods. This explains the fact that there is a double vertical line in the
grid. Our work addresses the visual perceptibility property from the HMI class.
We highlight this by setting the perceptibility in italic beside the HMI class,
separated by a dashed line.

3.1 User Behavior

The Table 1 summarizes the studies of the user behavior class of properties. It
sorts the papers according to the properties studied (goals, privileges, interpre-
tation, attention, emotion and experience) and formalisms used.

User Goals. Cerone and Elbegbayan [32] define user goals in the use of a
web-based interface that features a discussion forum and a member list. Those
are defined with the CWB-NC syntax for CSP from process algebra. These
definitions allow authors to model more precisely the attended and unattended
use cases.

Rušėnas et al. [66] address the use of an authentification interface with two
textboxes (user name and password). They define user goals with the specifi-
cation language SAL through the definition of a cognitive architecture of user
behavior. It allows authors to define the actions a user can do. Rukšėnas et al. [65]
further explore the notion of user goals through their cognitive architecture.
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Table 1. Study of the user behavior class of properties in the FMIS workshops

Goals Privileges Interpretation Attention Emotion Experience

(PA) CWB-NC [32] [32]

(PA) CSP [30] [30] [30]

(PA) LOTOS [81]

(PA) PEPA [33]

(SL) SAL [65,66] [66,67]

(SL) HOPS [37]

(other) HTDL [31] [31]

ad-hoc formalism [19]

Cerone [30] bases his work on the study of two use cases: a driving user and
a user interacting with an ATM. He models the user goals with the Hoare’s
notation for describing CSP (process algebra). It allows him to study cognitive
activities such as closure.

Dittmar and Schachtschneider [37] use HOPS (specification language) models
to define user tasks and actions while solving a puzzle.

User Privileges. Cerone and Elbegbayan [32] define user privileges with the
CWB-NC syntax for CSP. Thus, authors can model wich actions logged or non-
logged users are allowed to do. This allows authors to constrain the user behavior
by adding new properties in the web interface model.

User Interpretation. Rukšėnas et al. [66] address the user interpretation of
an authentification interface. They define it with SAL through the definition
of a cognitive architecture of user behavior. It allows authors to highlight the
risk for the user of misunderstanding the interface depending on the display of
the two textboxes. Rukšėnas and Curzon [67] study the plausible behavior of
users interacting with number entry on infusion pumps. They assume that users
have their own beliefs about the incremental values. They separately model the
users behavior depending on their interpretation and the constraint on cognitive
mismatches with LTL and the SAL model checker.

User Attention and User Experience. Su et al. [81] study the temporal
attentional limitation in the presence of stimuli on stimulus rich reactive inter-
faces. The cognitive model of human operators is defined with LOTOS (process
algebra). The model of SRRI is based on studies of an AB task [39]. This work
presents simulation results focusing on the performance of the interface in user
attention.

Cerone [30] addresses user’s expectations, which relies on user attention
and user experience. He studies cognitive activities such as closure, contention
scheduling and attention activation. He models those with the Hoare’s notation
for describing CSP (process algebra).
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Cerone and Zhao [33] use the process algebra PEPA to model a three-way
junction with no traffic lights and a traffic situation. They study the user experi-
ence in driving in such junctions. They use the PEPA Eclipse plug-in to analyse
the model and determine for example the probability of possible collision.

Cerone [31] proposes a cognitive architecture for the modelling of human
behavior. This work presents the Human Task Description Language (HTDL).
He uses it to model properties related to user behavior such as the automatic
(everyday tasks) and deliberate (driven by a goal) control and the human learn-
ing, attention and experience.

User Emotion. Bonnefon et al. [19] use their logical framework, an ad-hoc
formalism, to model several emotions and the notion of trust. Among the
emotions there is joy/distress, hope/fear, satisfaction/disappointment and fear-
confirmed/relief. They also model the relation between trust and emotions.

3.2 Cognitive Principles

The Table 2 summarizes the studies of the cognitive principles class of properties.
It sorts the papers according to the properties studied (salience and load) and
formalisms used.

Table 2. Study of the cognitive principles class of properties in the FMIS workshops

Salience Load

(SL) SAL [50,65] [50,65]

(other) GUM [50] [50]

Rukšėnas et al. [65] define two cognitive principles, salience and cognitive
load. They add those to their SAL cognitive architecture. The authors also define
the link between these two principles. They illustrate these principles through
the case study of a Fire Engine Dispatch Task.

Huang et al. [50] try to see if their Generic User Model (GUM) can
encapsulate all the cognitive principles presented in the Doughnut Machine
Experiment [4].

3.3 Human Machine Interfaces

The Table 3 summarizes the studies of the HMI class of properties. It sorts the
papers according to the properties studied (consistency, predictability, latency
and usability) and formalisms used.

Consistency. Bowen and Reeves [21] use their presentation models and refine-
ment processes with Z to check the equivalence and the consistency between two
UI designs. The presentation models allow them to ensure that controls with the
same function have the same name and conversely.
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Table 3. Study of the HMI class of properties in the FMIS workshops

Consistency Predictability Latency Usability Perceptibility

(SL) SAL [56] [65,66]

(SL) PVS [45,46]

(SL/Re) µCharts [22]

(SL/Re) Z [21]

(TS) IOLTS [14]

(TL) LTL [14] [65]

(TL) CTL [27,45]

(other) Tree based WCET [54]

Beckert and Beuster [14] provide an IOLTS model of a text-based application
to guarantee consistency constraints. Their first model does not satisfy consis-
tency constraints. They refine this model in order to satisfy the consistency
constraints.

Campos and Harrison [27] provide consistency a formal definition of consis-
tency of the Alaris GP Volumetric Pump interface in CTL. The global consis-
tency includes: the role and visibility of modes, the relation between naming and
purpose of functions, consistency of behavior of the data entry keys. They also
present a part of a MAL specification of the Alarais GP infusion pump.

Harrison et al. [45] explore the consistency in the use of the soft function keys
of infusion pumps through the use of MAL models translated into PVS. They
define consistency properties with CTL and translate those into PVS theorems.

Harrison et al. [46] create a model of a pill dispenser from a specification in
PVS. They use this specification with the PVSio-web tool to study the consis-
tency of possible actions.

Predictability. Masci et al. [56] analyse the predictability of the number entry
system of Alaris GP and B-Braun Infusomat Space infusion pumps. They use
SAL specifications to specify the predictability of the B-Braun number entry
system.

Latency. Leriche et al. [54] explore the possibility of using Worst-Case
Execution-Time [64] based on trees to study the latency for interactive systems.
They also present some works that have been done with graphs of activation to
model interactive systems.

Usability. Rukšėnas et al. [66] use their user behavior model in SAL to check
usability properties of an authentification interface. They check that the property
“the user eventually achieves the perceived goal” is satisfied. Rukšėnas et al. [65]
further explore the use of their user model with SAL and LTL properties. They
check that the property “the user eventually achieves the main goal” is satisfied
in the Fire Engine Dispatch Task.

Bowen and Reeves [22] present a way of applying the specification language
μCharts and refinement processes to UI designs. They use presentation models to
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compare two UI designs and if these UI maintain usability. They also informally
describe the refinement process related to UI design.

3.4 Security

The Table 4 summarizes the studies of security class of properties. It sorts the
papers according to the properties studied (integrity, usability errors and threats)
and formalisms used.

Table 4. Study of the security class of properties in the FMIS workshops

Integrity Usability errors Threats

(SL) SAL [66]

(TS) IOLTS [14]

(TL) LTL [14]

(other) BDMP [52]

others/ad-hoc [6] [6]

Rukšėnas et al. [66] check the risk of security breach in the authentification
interface with SAL properties. This highlights the fact that user interpreta-
tion can impact the security by entering the password in the wrong textbox for
example.

Beckert and Beuster [14] produce a generic IOLTS (transition system) model
of a text-based application. They use LTL to describe the properties of compo-
nents and interpret them with IOLTS. The model is refined to guarantee integrity
and to consider the problem of multi-input (if the user enters again a data if the
system has not yet processed the last one) risking security breaches.

Arapinis et al. [6] present security properties related to the use of the MATCH
(Mobilising Advanced Technology for Care at Home) food delivery system. They
define these properties by using different formalisms such as the access control
language RW and temporal logic (LTL, TCTL, PCTL).

Johnson [52] studies security properties in terms of threats that may occur
on Global Navigation Satellite Systems (GNSS). He models GNSS with Boolean
Driven Markov Processes (BDMP) and integrate security threats to the model.

3.5 Specification/Formal Definition and Testing

The Table 5 summarizes the studies of the specification/formal definition and
testing classes. It sorts the papers according to the case (specification/formal
definition and testing) and formalisms used. This section allows us to present
different systems used as case studies.

The references concern the articles that address the formal definition or spec-
ification of systems. These articles do not cover the properties previously pre-
sented. We only present in this section these articles.
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Table 5. Study of the specification/formal definition and testing classes in the
FMIS workshops

Formal definition Testing

(PA) CSP [30]

(PA) LOTOS [10]

(PA) π-calculus [6]

(PA) Prob. π-calc [5]

(PA) PEPA [33]

(PA) TCBS’ [16]

(SL) SAL [12,56]

(SL) Spec# [75]

(SL) PVS [45,46,55,62]

(SL) Promela [26]

(SL) HOPS [37]

(SL/Re) μCharts [22]

(SL/Re) Z [21,23] [23]

(Re) B/event-B [28,40,68]

(TS) FSM [82]

(TS) UPPAAL [44]

(TS) Colored PN [76]

(TS) GTS [84]

(TS) FSA [83]

(TS) Event act. graph [54]

(TS) ICO [76]

(TL) LTL [6,26]

(TL) CTL [45]

(other) SAT [26]

(other) Mark. proc [5]

(other) MAL [27,45]

(other) GUM [50]

(other) BDMP [52]

(tool) Spec explorer [75]

(tool) FEST [75]

(tool) SMT solver [23]

(tool) PVSio web [46,62]

others/ad-hoc [6,9,17,20,30,38,77,82]

Specification/Formal Definition. We sort the articles only focused in speci-
fication/formal definition by formalism used.
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Process Algebra. Barbosa et al. [10] represent an air traffic control system with
a control tower and three aircrafts as CNUCE interactors. They use ad-hoc
formalism, a generic approach to process algebra, to define this representation.

Anderson and Ciobanu [5] builds a Markov Decision Process abstraction of
a program specification expressed with a probabilistic process algebra (using π-
calculus). The abstraction is then used to check the structure of specification,
analyze the long-term stability of the system, and provide guidance to improve
the specifications if they are found to be unstable.

Bhandal et al. [16] present the language TCBS’, strongly based on the Timed
Calculus of Broadcasting Systems (TCBS). They give a formal model of a coor-
dination model, the Comhordú system, in this language.

Specification Language. Calder et al. [26] study the MATCH Activity Monitor
(MAM), an event driven rule-based pervasive system. They model separately
the system behavior and its configuration (rule set) with Promela. They derive
Promela rules in LTL properties to check redundant rule with the model checker
SPIN.

Bowen and Hinze [20] present early stages work using presentation models
to design a tourist information system. This system displays a map on a mobile
support (smartphone).

Bass et al. [12] specify in SAL the three subsystems of the A320 Speed
Protection: automation, airplane and pilots. This interactive hybrid system has
the potential to provide an automation surprise to a user.

Masci et al. [55] specify the DiCoT’s information flow model by using PVS.
They use three modelling concepts (system state, activities, task) for this spec-
ification. The authors use the example of the London Ambulance Service to
illustrate their work.

Refinement. Cansell et al. [28] specify an interface of e-voting corresponding to
the Single Transferable Vote model without the counting algorithm. This is done
by using the B method and a refinement process.

Rukšėnas et al. [68] study the global requirements related to data entry
interfaces of infusion pumps. They use Event-B specifications and refinement
processes with the Rodin platform to specify these requirements. These refine-
ment processes allow the authors to check if the Alaris GB infusion pump number
entry specification validate the global requirements.

Geniet and Singh [40] study an HMI composed by graphical components
in form of widgets. They use the Event-B modelling language and refinement
processes to model the system and analyse its behavior.

Transition System. Harrison et al. [44] model the GAUDI system [53] with
UPPAAL. Through the UPPAAL model, the authors can explore use cases sce-
nario and check reachability properties for example.

Westergaard [84] uses game transition systems to define visualisations of
the behavior of formal models. The example of an interoperability protocol for
mobile ad-hoc networks to highlight the use of visualisations.
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Thimbleby and Gimblett [82] model the interactions possibilities with key
data entry of infusion pumps. They use FSM and specify those with regular
expressions to model the interactions.

Silva et al. [76] formally define a system and its WIMP and Post-WIMP
interactions with ICO models and colored Petri nets. These models allow them
to analyse the properties inherent to the formalisms: place transitions invariants,
liveness and fairness, and reachability.

Turner et al. [83] generate presentation models describing tasks and widgets
based interactions sequences of an infusion pump. It is composed by five buttons
(Up, Down, YesStart, NoStop, OnOff) and a display allowing interactions with
the user. They use FSA to model these sequences.

Others. Bhattacharya et al. [17] model soft keyboards (on-screen keyboards)
with scanning and use the Fitts-Digraph model [78] to evaluate the performance
of their model and the system.

Sinnig et al. [77] describe a new formalism based on sets of partially ordered
sets. They use it to formally define use cases and task models.

Dix et al. [38] use an ad-hoc formalism to model physical devices (switches,
electric kettle, etc.) logical states and their digital effects in another model.

Oladimeji et al. [62] present PVSio-web, a tool which extends the PVSio
component of PVS with a graphical environment. They demonstrate its use by
prototyping the data entry system of infusion pumps.

Banach et al. [9] consider using an Event-B model in conjunction with an
SMT solver in order to proof some invariants on a hardware based components,
dedicated to the acquisition and fusion of inputs from various sensors to a visually
impaired and blind person’s white cane (INSPEX project).

Testing. Silva et al. [75] highlight a way of testing model-based graphical user
interfaces. The testing process presented is as follows: a FSM model called Pre-
sentation Task Sets (PTS) is generated from a task model (CTT) with the
TERESA tool [57], a Spec# oracle is generated from the FSM model with their
Task to Oracle Mapping (TOM) tool, then a testing framework is used to test
the system against the oracle.

Bowen and Reeves [23] use the specification language Z for specifying a cal-
endar application. They explore the way to apply testing processes on this appli-
cation. They use their presentation and interaction models to derive tests such
as ensuring that the relevant widgets exist in the appropriate states and ensuring
that the widgets have the required behaviors.

4 Findings

Through this survey, we have explored the study of interactive systems with for-
mal methods. Several classes of properties have been studied and cover different
aspects of interactions.

The Table 6 summarizes the studies of the articles from the International
Workshop on Formal Methods for Interactive Systems that has taken place seven
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times from 2006 to 2018. It gives a distribution of the articles in our analytical
grid. We note: �: 1–5 articles; � �: 6–10 articles; � � �: 10+ articles.

Table 6. Study of interactive systems properties in the FMIS workshops

User behav. Cogn. pr.
HMI

Percept.

HMI

Others
Security Formal def. Testing

Process algebra � ��
Spec. language � � �� � ��� �
Refinement � � �
Transition systems � � � ��
Temporal logic � � � �
Other/ad-hoc � � � � �� �

High Proportion of Works on Formal Definitions and Specifications.
We highlight the high proportion of articles that address the formal definition
and the specification of interactive systems (classified in “Formal def.” column
of Table 6). Among the 43 articles from the FMIS workshops, 34 are related
to this aspect (representing approximately 80%). More than the half of those
specifically address the formal definition of properties inherent to the formalisms
used (invariant for B, reachability for transition systems, etc.).

Perceptibility Unstudied. We can note that even if several properties related
to HMI have been studied, no paper addresses perceptibility properties (cf.
“Perceptibility” column). In the FMIS workshops, we have not spotted stud-
ies addressing visual, sound or haptic based interactions.

Common Formalisms. If we look at the formalisms used (Table 5), it appears
that some are in the majority.

We can see that PVS and SAL are the most widely used specification lan-
guages. Over the 14 articles that use specification languages, we find that SAL
is the most used with 5 articles using it. PVS is also widely used with 4 articles
using it. Those two cover more than the half of the articles using specification
language.

B and event-B models are still the most used for refinement processes. 6
articles present refinement processes and half of those use B and event-B models.
We find 2 articles using Z and 1 article using μCharts.

New Formalisms. During this analysis, we have seen some formalisms close to
the nomenclature we have set (see Sect. 2.2). But other formalisms could not be
easyly classified in one of the proposed families. We identified 8 papers that use
ad-hoc formalisms or formalisms out of the nomenclature.

In those we find, for example, the formal definition of task models and use
cases by using an ad-hoc formalism based on sets of partially ordered sets. We
also find the modelling of several physical devices with a new and ad-hoc for-
malism. Another paper presents the formal definition of different emotions by
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using an ad-hoc formalism. An article presents security properties and the dif-
ferent means (access control language RW, ProVerif’s query language, applied
π-calculus) of formalising those.

Maturity of Case Studies. A main case study is frequently presented: the
“infusion pump” system. Other systems are presented and considered as “text-
book” cases, representing more than half of the papers.

The infusion pump is a safety critical medical device and is used by 7 out of
43 articles. 3 of those study the data part of the whole system by modelling it
and validate some properties on a sub-system only. 3 other articles study the full
system. They model the final device or its specification in order to check whether
the device or its specification validate the global requirements of infusion pump.
The last article studies the possible interactions between a user and the system.
They model those in the form of interaction sequences corresponding to the
human user tasks.

This approach demonstrated the feasibility of the proposed methods but
remains limited. We note that even if an infusion pump is a safety critical system,
the studies made for this system do not necessarily address safety critical aspects.
Indeed, only 3 articles focus on the full system and its certification oriented
requirements. Only those demonstrate the scalability of the formalisms used.

16 out of 43 articles focus on “textbook” cases and address the user inter-
face part (web application, smartphone application, e-voting system, etc.). Those
allow authors to easily illustrate the use of several formal methods and the prop-
erties inherent to those. The systems are modelled, several properties, inherent to
the formalisms or to the systems, are studied. However, these articles only illus-
trate the formal methods and do not allow authors to demonstrate the potential
scalability of these formal methods.

5 Conclusion

Aim and Contribution of This Article. The aim of this article is to review
different research work on formal methods applied to interactive systems. The
overall contribution is to provide a review of the literature, 43 articles, from the
International Workshop on Formal Methods for Interactive Systems. This work-
shop took place seven times from 2006 to 2018. First we propose an analytical
framework based on a few questions. Then we present several properties of inter-
active systems and classify them. We set a classic nomenclature of formalisms.
This analytical framework is provided with an analysis grid of our own. Those
highlight the following points: formalisms used, properties studied, case study
used to illustrate the analysis. Finally, we highlight the findings and the outgoing
issues.

Discussion. Interactive systems are increasingly used in several sectors and
propose several kinds of interactions with human users. The interactions can be
from the system to the user by using sound notifications or display notifications
in order to provide information to the user about the actual internal state of
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the system. They can also be from the user to the system with many interaction
solutions such as mouse clicks, data entries with keyboards or buttons on the
system or soft keyboards and buttons on the display of the system interface. All
these interactions are source of new challenges when when the objective is to
perform the formal verification and validation of their related properties.

During the last decade, a substantial work has been done in order to study
how formalisms and methods can be applied to interactive system. A lot of
them have demonstrated that it is possible to take into account a lot of classes
of properties. High level properties such as those related to the tasks the user
may accomplish or those related to the abstract interface have been studied.
The classical formalisms relying on state and transition paradigm can be easily
used to model these elements. However, properties related to the concrete part
of the interface (involving characteristics of the graphical scene) remain largely
uncovered by studies. As we highlighted in the Sect. 4, we note that the prop-
erties related to the perceptibility have not yet been studied. This is not a real
surprise: these properties require to model characteristics of the system which
are not traditionaly handled by formal models: color of graphical objects, forms,
dimension, visibility, collision etc. Modeling them remains a big challenge.

Perspectives. Our research team works in the aeronautics sector. Thus, we
focus on interactive and critical systems related to this sector. Interfaces with a
very rich graphical scene are becoming increasingly important in aircraft cock-
pits. In this context, we develop a reactive language, Smala1, allowing us to
develop interfaces and interactions at the same level.

The issue related to visual perceptibility properties is then important in our
opinion. In Béger et al. [24] we propose elements for formalising graphical prop-
erties. We set three basic properties that compose the node of our formalism:
the display order depending on the display layer of graphical elements, the inter-
section depending on the domain of graphical elements and the colour equality.
We also present a scene graph we extract from the Smala source code. It models
interactive systems and their graphical interface in a new way. It also gives infor-
mation about graphical elements and their variables (position, colour, opacity,
etc.).

From those, we can formally define graphical requirements for an aeronautic
system specified in a standard (ED-143 [1]). The formalism defines requirements
such as the colour equality/inequality, the authorized/unauthorized positions
and the display order. The scene graph defines requirements we can not write
with our formalism such as the shape of graphical elements.

We aim at defining new graphical properties in order to express with our for-
malism requirements related to the shape and the relative positions of graphical
elements. In order to automatically validate the requirements, we want to link
our formalism to the Smala source code by using code annotations.
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Abstract. Formal modelling is now widely applied for creating models
of safety-critical interactive systems. Most approaches built so far either
focus on the user interface or on the functional part of a safety-critical
interactive system. This paper aims to apply formal methods for mod-
elling and specifying the user interface, interaction and functional aspects
of a safety-critical system in a single model using Coloured Petri Nets
(CPN). We have used CPNs because of its expressive graphic represen-
tation and the ability to simulate the system behaviour. The technique
is illustrated through a case study of the Niki T34 Infusion Pump.

Keywords: Formal modelling · Formal method integration · Coloured
Petri Nets

1 Introduction

Safety should be a central consideration in the development of safety-critical
interactive systems. There are many systems that are considered as safety-critical
interactive systems where the interaction occurs via a user or, perhaps, via an
automatic manufacturing system (production cell) where sensors are interacting
among themselves. It is very important to ensure that all these types of system
behave correctly because failure can cause significant damage to property, the
environment or even human life. Researchers have been working for many years
to solve problems or issues in safety-critical systems due to poor user interfaces or
functional errors. The use of formal methods for modelling is often recommended
as a way of raising confidence in such systems. The focus of this paper is on
user interfaces as well as the underlying system functionality of safety-critical
interactive systems.

The work here aims to apply formal methods for modelling and specifying the
user interface, interaction and functional aspects of the system in a single model.
This technique has its starting point in several formal specification techniques:
Z, Presentation Interaction Models (PIMs) and Presentation Models (PMs)
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(as for instance in [5]). From this (existing) basis we create a Coloured Petri Net
(CPN) model of a system which will have the required aspects of Z, PMs and
PIMs expressed within it. To specify safety-critical systems adequately, all three
aspects, behavioural, functional and user interface/interaction must be taken
into account, hence our investigation of the combination of models. In summary,
our plan here is to show how an existing, accepted way of formally modelling
systems via PM/PIM/Z can be re-cast in the single formalism of CPN, and then
in future, having shown the CPN models are as expressive as the PM/PIM/Z
models, we can move straight from the system to a CPN model of it.

We have chosen CPNs mainly because of the state space analysis-based meth-
ods made possible within the CPN Tool, based on support for the state space
graph and the strongly connected components graph to be automatically gener-
ated. Once we have these then functions can be written in the SML-subset avail-
able in CPN Tools which allow many useful further checking and testing mech-
anisms. Comparing this with other possibilities, there is a tool called RENEW
for Reference Nets but it does not generate the state space graph [18]. Also we
find in the literature that the Reference Net models or even Object Petri Nets
models get transformed into behaviourally equivalent CPNs for adapting CPN
analysis techniques, as mentioned in [19].

This way of investigating and model-checking properties by writing SML
functions to define a process for computing a check contrasts with the more
usual (for ProB users, for example) method of writing temporal logic statements
which are statements of properties. It may be that this more “procedural” way
of expressing properties is more attractive to “conventional” programmers, com-
pared with having to learn and then express temporal logic statements in a
“declarative” way.

The motive for doing this work is two-fold: the existing method results in
three separate models, and the drawback with this is that a lot of work is required
to do the coupling of functional behaviour with interactive elements to ensure
consistency [8,26]. Moreover, these models need to be combined in order to
verify safety properties which might relate to functional constraints, interface
constraints or both. The new technique results in a single model capturing all
three aspects and all the connections between them. So, the benefit of having
all aspects in a single model is that there is no work required to combine them
for analysis.

2 Related Work

In the early years, the main focus of formal methods was on modelling and
specifying the functional part of a system. User-interfaces and interaction were
not considered important because systems used to be very simple. But now as
the interfaces have become more complex, so their design and analysis is very
obviously important. There were some formal methods which were used to model
and verify both user-interface and interaction, for example, Jacob in [13] has used
techniques based on state transition diagrams and BNF to specify the user-
interface and Dix and Runciman in [11] focused on creating abstract models for
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user interfaces and interaction. However, formal methods for system development
and those for modelling user interfaces and interaction were considered separate.
There exists far less work on the combination of both these aspects.

The Food and Drug Administration (FDA) has been working with academic
collaborators to develop model-based engineering methods [1]. Figueiredo et al.
[2] presented the main advantages of a formal language that is able to be used
in the construction of reference models for the medical devices domain and con-
ducted a case study on a specification of a medical device. Masci et al. also
presented a case study on a generic PCA infusion pump in [21] and verified the
user-interface using the Prototype Verification System (PVS) and also formally
modelled the requirements of the interface in [23]. Campos and Harrison pre-
sented a case study on modelling and analysis of the Alaris infusion pump using
their IVY tool [9].

Petri nets form a powerful modelling language and higher level nets, like
Coloured Petri Nets, are used for modelling critical scenarios like railway systems
and other safety-critical systems [3,14]. There exist formalisms like HAMSTERS
[20] that focus on task models, and also ICOs [22] and the APEX framework
[24]. The main difference concerning ICOs is around levels of abstraction, because
they take an object-oriented view whereas we are committed to more abstract
prior models. All these studies either focus on the functional part of the system
or on the user-interface and interaction. We present a technique to combine all
aspects in a single model.

3 Coloured Petri Nets and Their Extensions

Coloured Petri Nets (CPN) is a language used for the modelling and validation of
hardware and software systems. The existing CPN Tool [16] helps in constructing
a model and performing syntax checking. Also simulations can be performed and
we can see at every step how the model is behaving. Automatic generation of
full and partial state spaces helps in analyzing and verifying the net model.

We will commence with the formal definition of Coloured Petri Nets [16].
The following are assumed to be defined: EXPR denotes the set of expressions
provided by the inscription language, i.e., CPN ML [15]. Given an expression
e ∈ EXPR, the type of e is represented by Type[e]. The set of variables in an
expression e is denoted by Var [e]. V denotes the set of (all) variables. By SMS ,
we denote the set of all multi-sets over the set S [15].

Definition 1. A Coloured Petri Net is a tuple (CS ,P ,T ,A,N ,C ,G ,E , I ) such
that [15]:

(i) CS is a finite set of non-empty types, called colour sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of directed arcs such that connect places and transitions.
(v) N is a node function. It is defined from A into P ×T ∪T ×P and shows,

for each arc, which places and transitions are connected by that arc.
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(vi) C is a colour function. It is defined from P into CS.
(vii) G is a guard function. It is defined from T → EXPR such that: ∀ t ∈ T :

Type[G(t)] = Bool ∧ Type[Var [G(t)]] ⊆ CS.
(viii) E is an arc expression function. It is defined from A into expressions such

that: ∀ a ∈ A : Type[E (a)] = C (p(a))MS ∧ Type[Var [E (a)] ⊆ CS ] where
p(a) is a place of N (a).

(ix) I is an initialization function. It is defined from P into closed expressions
such that ∀ p ∈ P : Type[I (p)] = C (p)MS .

Definition 2. A distribution of tokens on the places is called a marking. A
marking M is a function that maps each place p into a multi-set of values M (p)
representing the marking of p. The initial marking is denoted by M0.

Definition 3. The variables of a transition t is denoted, by overloading
function V , as Var [t ] ⊆ V and is defined so it consists of the free variables
appearing in the guard of t and in the arc expressions of arcs connected to t. A
binding of a transition t is a function b that maps each variable v ∈ Var [t ] into
a value b(v) ∈ Type[v ]. It is extended to expressions from EXPR in the obvious
way. The application of binding b to expression e is written e〈b〉. The set of all
bindings for t is denoted by B(t).
A binding element is a pair (t , b) where t ∈ T and b ∈ B(t).
We often write an arc expression E (a) as E (p, t) or E (t , p) when N (a) = (p, t)
or N (a) = (t , p), respectively, as a suggestive shorthand.

Definition 4. For a binding element (t,b) to be enabled in a marking M there
are two conditions to satisfy: firstly, the corresponding guard expression must
evaluate to True. Secondly, for each place p, an arc expression E (p, t) has to
be evaluated using the binding b so that E (p, t)〈b〉 ≤ M (P). This means that
for each place p there should be enough tokens there of the right form so that
transition t can remove the required number of tokens.
This means that in an enabled binding element (t,b), the multi-set of tokens
removed from an input place p when t occurs with a binding b is given by
E (p, t)〈b〉, and similarly E (t , p)〈b〉 is the multi-set of tokens added to an output
place p.

Definition 5. A step Y is a non-empty, finite multi-set of binding elements.
A step Y is enabled in a marking M iff the following property is satisfied [15]:
∀ p ∈ P :

∑

(t,b)∈Y

E (p, t)〈b〉 ≤ M (p).

When a step Y is enabled in a marking M1 it may occur, changing the mark-
ing M1 to another marking M2, defined by: ∀ p ∈ P : M2(p) = (M1(p) −∑

(t,b)∈Y

E (p, t)〈b〉) +
∑

(t,b)∈Y

E (t , p)〈b〉, which is to say that when a step hap-

pens, tokens are removed from the starting place of a transition and placed in
the ending place of that transition.
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3.1 Hierarchical Coloured Petri Nets

Hierarchical Coloured Petri Nets allow models to be divided into modules. This
allows the model to be organized into several pages. There are two ways to
interconnect these several pages: substitution transitions and fusion places [17].
In this paper we are using fusion places. Fusion places are places which are
functionally identical, so they have the same marking.

4 Presentation Model

A Presentation Model (PM) [6] describes the existence, category and behaviour
of the widgets (interactive elements) of a user interface. Widgets are categorized
using the widget categorization hierarchy given in [4]. A presentation model typ-
ically consists of several component presentation models which could be under-
stood as the states of the user interface.

Presentation models consist of two parts: declaration and definition.

〈declaration〉 ::=

WidgetName{〈ident〉}+ Category{〈ident〉}+ Behaviour{〈ident〉}∗

The declarations introduce the three sets of identifiers which can be used
within the definitions. WidgetName is a list of names of widgets. Category refers
to the description of widget categories. Behaviour shows what behaviour a widget
has associated with it (and it can be empty). Behaviours are divided into two
categories. The first is called a system behaviour (S-behaviour) which refers
to the underlying non-interactive system and the second category is called an
interactive behaviour (I-behaviour) that represents user interface functionality,
which changes things about the user interface itself, like changing screens.

A definition consists of one or more identifiers for presentation models.

〈definition〉 ::= {〈pname〉is〈pexpr〉}+ where 〈pname〉 ::=

〈ident〉 and 〈pexpr〉 ::= {〈widgetdescr〉}+

Each state of the system is described in a separate component presentation
model by the means of widget descriptions. A widget description consists of a
triple, the widget name, the category and the set of behaviours associated with
the widget. The syntax of a widget description is as follows:

〈widgetdescr〉 ::= (〈widgetname〉, 〈category〉, ({〈behaviour〉}∗))

Consider a device as shown in Fig. 1 having two buttons ON an OFF and
one Display. Pressing the ON button will display a start message and the OFF
button will switch off the device. A PM for the device is given in Table 1. The
model has three widgets and each widget falls under one of the two categories
(ActCtrl or Responder). ActCtrl is shorthand for action control. The simple
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device’s PM has one S-behaviour and two I-behaviours. In Table 1, init, ON, OFF
are three component presentation models. Each component presentation model
consists of a set of widget triples. For example, the ON component presentation
model comprises of three sets of widget triples. The first set of triples means
that the widget Display is of category Responder and has the S startmessage
behaviour associated with it. Notice that the behaviour Quit is not labelled as
an I-behaviour or S-behaviour as it is a special behaviour that terminates both
the system and the user interface.

Fig. 1. A simple device

Table 1. Presentation Model of a simple device

WidgetName Display ONButton OFFButton

Category ActCtrl Responder

Behaviour S startmessage I ON

I OFF Quit

Init is (Display, Responder, ())

(ONButton, ActCtrl, (I ON))

(OFFButton, ActCtrl, (I OFF))

ON is (Display, Responder, (S startmessage))

(ONButton, ActCtrl, ())

(OFFButton, ActCtrl, (I OFF))

OFF is (Display, Responder, ())

(ONButton, ActCtrl, (I ON))

(OFFButton, ActCtrl, (Quit))

4.1 Expressing Presentation Models in CPN

We will first look at the declaration part of a PM which introduces the three
sets of identifiers: WidgetName, Category and Behaviour . These three sets of
identifiers can be modelled in CPN by:
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colset WidgetName = with wid1 | wid2 | ... | widn ;
colset Category = with cid1 | cid2 | ... | cidn ;
colset Behaviour = with bid1 | bid2 | ... | bidn ;
colset Behaviours = list Behaviour ;

where wids are the names of the widgets, cids are the names of the category
of the widgets and bids are the names of the S-behaviours and I-behaviours
associated with the widgets.

Now we look at the definition part of the presentation model [6]. A widget
description which we call as widgetdescr is described as a tuple consisting of the
widget name, the category and the list of behaviours associated with the widget.
A widget description can be written in CPN as:

colset widgetdescr = product WidgetName * Category * Behaviours;

Consider again the example shown in Fig. 1 and Table 1. The model of this
presentation model in CPN is shown in Tables 2 and 3. Each state of the sys-
tem is described in a separate component presentation model by the means of
widgetdescr . This can be written in CPN as:

colset pmodel = list widgetdescr ;

Table 2. Presentation model declarations of the simple device in CPN

colset WidgetName = with Display |
ONButton |
OFFButton;

colset Category = with ActCtrl |
Responder;

colset Behaviour = with S startmessage |
I ON |
I OFF |
Quit;

colset Behaviours = list Behaviour;

To define the component presentation model we will use the value declaration
feature of CPN. A value declaration binds a value to an identifier. The component
presentation models for the simple device of Fig. 1 are given in CPN in Table 3.
We can now see what the states of the device are and what widgets are available
to the user in every state and what the behaviours of those widgets are. But
to understand the navigational possibilities, it is always better to have some
graphical representation. Another model, i.e., a presentation and interaction
model (PIM), is used for this purpose.
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Table 3. Presentation model definition of the simple device in CPN

val Init = [(Display, Responder, [ ]),

(ONButton, ActCtrl, [I ON ]),

(OFFButton, ActCtrl, [I OFF ])];

val ON = [(Display, Responder,

[S startmessage]),

(ONButton, ActCtrl, [ ]),

(OFFButton, ActCtrl, [I OFF ])];

val OFF = [(Display, Responder, [ ]),

(ONButton, ActCtrl, [I ON ]),

(OFFButton, ActCtrl, [Quit])];

5 Presentation Interaction Models

A presentation and interaction model (PIM) describes the transitions between
states [6]. A PIM is the combination of a presentation model and a finite state
machine (FSM). A PIM gives a formal meaning to I-behaviours given in the
presentation model. The PIM is derived by creating a single state for each of the
component presentation models and creating transitions between states based
on the relevant I-behaviours, so transitions give the meaning of I-behaviours.

Fig. 2. PIM of simple device Fig. 3. CPN model of PIM of simple device

The PIM for the simple device in Fig. 1 is given in Fig. 2. There are three
states: Init , ON and OFF . Fig. 1 show what states can be reached from a current
state via those I-behaviours.

We now look at a way of expressing all this within CPN. The number of pages
in a CPN model of a PIM is the same as the number of component presenta-
tion models in the PIM. For example, the simple device PIM shown in Fig. 1
has three component presentation models, so there are three pages in the CPN
model of this device as shown in Fig. 3. These pages represent the individual
component presentation models. The names of the places are exactly the names
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of the component presentation models. For the simple device, there are three
places: Init , ON and OFF . These places have fusion tags (in blue) named the
same as the corresponding component presentation models as shown in Fig. 3.
The component presentation model Init has two I-behaviours, which means that
from the place Init a user can go to two other states ON and OFF . The page
Init will have three places: Init , ON and OFF where Init is the current state
and ON and OFF are the states a user can go to from Init . Every place in
the model will be of one type, i.e. pmodel . The transitions give formal meaning
to the I-behaviours in the presentation model and have the same name as the
respective I-behaviours in the presentation model.

5.1 Formal Definition of CPN for Modelling PM/PIM

In this section we formalize the definition of how we represent the combination
of presentation models and presentation interaction models.

Definition 6. A non-hierarchical Coloured Petri Net for modelling a PM/PIM
combination is a tuple (PM ,K ,P ,T , I ,CS ,A,C ,G ,E ) such that:

(i) PM is a finite set of colour sets for representing presentation model dec-
larations from the PM, such that:

PM = {WidgetName,Category ,Behaviour ,Behaviours,widgetdescr , pmodel}
where

– colset WidgetName = with wid1 | wid2 | ... | widn ;
• where wids are the names of the widgets in the various component pre-
sentation models in PM.

– colset Category = with cid1 | cid2 | ... | cidn ;
• where cids are the names of the category of the widgets in the various
component presentation models in PM.

– colset Behaviour = with bid1 | bid2 | ... | bidn ;
• where bids are the names of the S-behaviours and I-behaviours associated
with the widgets.

– colset Behaviours = list Behaviour;
– colset widgetdescr = product WidgetName ∗ Category ∗ Behaviours;
– colset pmodel = list widgetdescr;

(ii) K is a finite set of constants that represents the component presentation
models by their names and is such that Type[K ] = pmodel.

(iii) P is a finite set of places, the same size as K , representing the compo-
nent presentation models where the names of the places and names of the
constants are same.

(iv) T is a finite set of transitions representing the I-behaviours of the PIM.
(v) I is an initialization function that assigns an initial marking to each place.

The initialization function I : P → EXPR assigns an initialization expres-
sion I (p) to each place p such that: I (p) = k ∈ K, i.e., I (p) can be a
constant, k, representing a component presentation model.
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(vi) CS is a finite set of non-empty types, called colour sets with PM ⊆ CS.
(vii) A is a finite set of arcs as given in Definition 1.
(viii) C is a colour function. It is defined from P into CS as given in Defini-

tion 1.
(ix) G is a guard function as given in Definition 1.
(x) E is an arc expression function such that:

• For an arc (p, t) ∈ A, connecting a place p ∈ P and a transition t ∈ T,
it is required that the arc expression E (p, t) is the constant k ∈ K which
represents the component presentation model of the place p.

Having modelled the PM/PIM combination in CPN, we now move to mod-
elling the functionality.

6 Z

Z is a formal specification language which is used to specify and model systems.
Z specifications can be recognized by the use of the schema. More detailed infor-
mation can be found in [10,25]. Z operation schemas are used to give formal
meaning to the S-behaviours of a presentation model. A Z specification for the
simple device in Fig. 1 is as follows:

This definition introduces a type MESSAGE that contains (only) a value
InitializingDevice.

MESSAGE ::= InitializingDevice

The schema SimpleDevice is the state space of the model. It says that in
each state in the state space there is one observation display which can have
a value of type MESSAGE . In its initial state, the value of the display is set
to InitializingDevice. The schema Startmessage refers to the S startmessage
behaviour of the presentation model.

SimpleDevice
display : MESSAGE

Init
SimpleDevice

display = InitializingDevice

Startmessage
ΞSimpleDevice
display ! : MESSAGE

display ! = InitializingDevice
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Now we have a Z specification that gives meaning to the S-behaviours in the
presentation model. As we will now see, instead of having three separate models,
we can actually include the S-behaviours (functionality) in the CPN model by
expressing a Z in CPN and have a single model.

6.1 Expressing Z in CPN

In this section we will explain how the kinds of Z specification [10] used in the
existing PM/PIM/Z models can be expressed in CPN using colour sets, an initial
expression and arc inscriptions. Notice that we give rules for the small subset of
Z which is adequate for our purposes. We do not need all of Z to be modelled.

Cartesian Product: It is a type consisting of ordered pairs. We can use
the product colour set of CPN to represent such Z types and can be written
in CPN as:

colset 〈z type name〉 =
product 〈colset name1〉 ∗ 〈colset name2〉 ∗ ... ∗ 〈colset namen〉;

where colset name1...colset namen are already defined colour sets which repre-
sent types in Z.

Built-in Type: Z provides a single built-in type, namely the type of integers
Z. We can write this in CPN using the integer colour set. So the declarations

colset INT = int ; var n : INT ;

will create a colour set INT which defines INT as integers, and a variable n such
that the value of n is an integer.

Power Sets: The power set operator P (giving “the set of all subsets” of a set)
is an elementary type constructor often used in Z. If we want to write such a
type in CPN, then in this work we have decided that the list colour set is used1.
The syntax for writing power sets of Z based on this decision in CPN is:

colset 〈z type name〉 = list 〈colset name〉;
Axiomatic Definition: If we have an axiomatic definition:

hours : PN

hours = 0 . . 24

This can be written in CPN as: colset hours = int with 0..24;

1 We model only systems with finite components, so modelling the power set with lists
is no restriction on our expressiveness.
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Z Schemas: Z schemas are used to specify the state space and operations of the
system. To write the declaration part of a Z schema in CPN, we use the record
colour set:

colset〈Z 〉 = record id1 : type1 ∗ ... ∗ idn : typen ;

where id1..idn are Z observations and type1..typen are their corresponding types
(which are already declared colour sets using the rules as explained above) as
they appear in the declarations of the schema we are modelling. The initialization
schema of a Z specification is represented as an initial marking in Coloured Petri
Nets. The predicate part of a schema will give us expressions on arcs of certain
transitions, as we will see later.

6.2 Formal Definition of CPN for Modelling PM/PIM/Z

Definition 7. A non-hierarchical Coloured Petri Net for modelling a
PM/PIM/Z model is a tuple (Z ,PM ,K ,P ,T , I ,CS ,A,C ,G ,E ) such that:

(i) Z is a finite set of colour sets representing the Z state schema of the
original model with declarations id1 : type1...idn : typen , such that:

Z = {type1, type2, ..typen ,Z}

where colset type1 ;.....colset typen ; colset Z = record id1 : type1∗... ∗ idn :
typen ;

(ii) PM is a finite set of colour sets representing PM declarations as given in
Definition 6.

(iii) K is a finite set of constants representing component presentation models
as in Definition 6.

(iv) P is a finite set of places such that | P |= | K | +1. The constant k in the
set K can be mapped to the place p in the set of P with the same name.
There is an additional place named Z that represents the state schema.

(v) T is a finite set of transitions representing both I-behaviours and S-
behaviours.

(vi) I is an initialization function that assigns an initial marking to each place.
(vii) CS is a finite set of non-empty types, called colour sets, with PM ⊆ CS

and Z ⊆ CS.
(viii) A is a finite set of arcs as given in Definition 6.
(ix) C is a colour function as given in Definition 6.
(x) G is a guard function as given in Definition 6.
(xi) E is an arc expression function such that:

– For an arc (p, t) ∈ A, where t is an I-behaviour transition, it is required
that the arc expression E (p, t) is the name k ∈ K which represents the
component presentation model. Similarly for a directed arc from a tran-
sition representing an I-behaviour to a place.
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– For an arc (p, t) ∈ A where p represents a state in the Z state space, and
a transition t ∈ T, representing an S-behaviour, it is required that the
arc expression E (p, t) assigns each observation name appearing in S to a
new, unique variable (say s).

7 Case Study: NIKI T34 Infusion Pump

The T34 is a compact and lightweight syringe pump used to deliver drugs.
Figure 4 shows an image of the pump. More information about the pump can be
found in [12]. There are ten widgets in the T34 infusion pump as shown in Fig. 4
: LeftFFSK, RightBackSK, OnOffButton, UpPlusSK, DownMinusSK, Display,
NoStopSK, InfoSK, YesStartSK and Timeout.

Fig. 4. Niki T34 syringe pump

There is a total of nineteen states, one
of which the pump can be in at any given
point in time which are: LoadSyringe,
Init, BatteryLevel, SetVolume, SetDu-
ration, RateSet, RateConfirm, Confirm-
Settings, StartInfusingConfirm, Infusing,
Paused, Inittwo, Resume, InfusionSta-
tus, BatteryStatus, EventLog, Change-
SetUp and TimeOut . We can, typically,
get to know this by actually experiment-
ing with the device. We might also read the user manuals, but this is not rec-
ommended since user manuals are, worryingly, notoriously unreliable [7].

7.1 Modelling T34 Pump in CPN

The declaration part of the presentation model is given in Table 4. WidgetName
is an enumeration type and represents the names of the widgets of the pump.
Category is an enumeration type that describes the categories of the widgets.
Behaviour is an enumeration type that represents a set of all behaviours. Because
of space restrictions only a few of the full set of behaviours are given here2.
Behaviours is of type list, so a widget can have more than one behaviour.
Behaviours is a list of behaviours where the names of the behaviours is taken
from the Behaviour colour set. widgetdescr is of type product. It represents a
triple (WidgetName, Category , [Behaviours]). pmodel is a list colour set and rep-
resents the component presentation model. Now we look at the definition part
of the presentation model for the Niki T34 infusion pump. As there are nineteen
states, the number of component presentation models will be the same. We give
component presentation models for LoadSyringe and Info as representative of
those for the whole T34 in Table 5.

2 See https://github.com/sapnajaidka/NikiT34-CPN-Model for complete details.

https://github.com/sapnajaidka/NikiT34-CPN-Model
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Table 4. Modelling of the presentation model declarations

colset WidgetName = with LeftFFSK | RightBackSK | OnOffButton | UpPlusSK

| DownMinusSK | Display | NoStopSK | InfoSK | Timeout

| YesStartSK;

colset Category = with ActionControl | MValResponder | System | display;

colset Behaviour = with S SyringeWarnings | S MoveActuatorFwd |
S ArmWarning | I Init | S SyringeDisplay |
S ScrollSyringeList | I SetVolume |...;

colset Behaviours = list Behaviour;

colset widgetdescr = product WidgetName * Category * Behaviours;

colset pmodel = list widgetdescr;

Table 5. CPN version of the PMs

val LoadSyringe = [(Display, MValResponder, [S SyringeWarnings]),

(InfoSK, ActionControl, [I Info]), (UpPlusSK, ActionControl, []),

(DownMinusSK, ActionControl, []), (YesStartSK, ActionControl,[]),

(NoStopSK, ActionControl, []),

(LeftFFSK, ActionControl, [S MoveActuatorFwd,S ArmWarning]),

(RightBackSK, ActionControl, [S MoveActuatorBwd, S ArmWarning]),

(OnOffButton, ActionControl, [Quit]), (Timeout, System, [I Init])];

val Info = [(Display, MValResponder, [S InfoList]),

(InfoSK, ActionControl, [S KeypadLock]),

(UpPlusSK, ActionControl, [S ScrollInfoListUp]),

(DownMinusSK, ActionControl, [S ScrollInfoListDown]),

(YesStartSK, ActionControl, [I BatteryLevel,I Init,I RateSet,I EventLog,

I ChangeSetUp]),

(NoStopSK, ActionControl, [I Init]), (LeftFFSK, ActionControl, [ ]),

(RightBackSK, ActionControl, [ ]), (OnOffButton, ActionControl, [Quit, I Init]),

(Timeout, System, [ ])];

The complete Z specification for the T34 pump can be found in3. The Z
types for the T34 pump expressed in CPN are shown in Table 6. YesNo is
declared as the enumerated colour set that can have exactly two values yes or no.
SyringeBrand is declared as enumerated colour set with one value BDPlastipak .
PerCent , millilitres, millimeters, hours and minutes are declared as integer
colour sets. Z is a record colour set with a record of all the observations of
the state schema with their corresponding types. It represents the T34 state

3 https://github.com/sapnajaidka/Niki-T34-Z-specification.

https://github.com/sapnajaidka/Niki-T34-Z-specification
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Table 6. Colour sets and variables for T34 pump

colset YesNo = with yes | no;

colset SyringeBrand = with BDPlastipak;

colset PerCent = int with 0..100;

colset millilitres= int with 0..100;

colset millimeters = int with 0..10;

colset hours = int with 0..24;

colset minutes = int with 0..59;

colset millilitresperhour = int with 0..100;

colset Z = record BC:PerCent * KP:YesNo * PL:YesNo * TL:YesNo *

BD: SyringeBrand * SS: millilitres * VL: millilitres * PP : millimeters *

SOK: YesNo * BCPOK: YesNo * SR: YesNo * VTBI: millilitres * HH: hours *

MM: minutes * IR: millilitresperhour;

schema4. As the Z operation schemas would be expressed as arc inscriptions so
we need to declare variables which could be bound to different values of their
respective colour sets during simulation. There are fifteen variables BC , KP ,
PL, TL, BD , SS , VL, PP , SOK , BCPOK , SR, VTBI , HH , MM and IR.

There are nineteen component presentation models for the Niki T34 infusion
pump, therefore, the CPN model of the pump has nineteen pages which are
interconnected by fusion places. Using the CPN Tool, we now create a model
that shows all the states with I-behaviours (which show navigational possibil-
ities representing interactivity) and S-behaviours (which represent underlying
system functionality). The resulting CPN model has all the important aspects
(functional, user-interface and interaction) of the original PM/PIM/Z expressed
within it.

The structure of the LoadSyringe page is shown in Fig. 5. The three places:
LoadSyringe, Init and Info represent the states of the system. The marking
on the place LoadSyringe shows the definition of the LoadSyringe component
presentation model which gives information about the available widgets. The
marking on the LoadSyringe page also shows that there are four S-behaviours:
S SyringeWarnings and S ArmWarning display warning messages on the screen
and S MoveActuatorBwd and S MoveActuatorFwd are the functions that move
the syringe plunger forward and backward. The Z specification5 for these S-
behaviours are not modelled here to keep the size of the state space small, so just
the fusion place Z is added to the page and represents only the Z Init schema.

4 To make the description short and easy to read we have used abbreviated names
for the Z observations. In this declaration BC stands for BatteryCharge, KP is for
KeyPadLocked , PL is for ProgramLocked , TL is for TechMenuLocked , BD is for
Brand , SS is for SyringeSize, VL is for VolumeLeft , PP is for PlungerPosition,
SOK is for SyringeOK , BCPOK is for BarrelOK ,CollarOK ,PlungerOK , SR is for
SystemReady , HH is for Hours, MM is for Minutes and IR is for InfusionRate.

5 See https://github.com/sapnajaidka/Niki-T34-Z-specification.

https://github.com/sapnajaidka/Niki-T34-Z-specification
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The component presentation model for the LoadSyringe has two I-behaviours:
I Init and I Info as shown in Table 3 and as shown by the initial marking on
that place, so there are two transitions, namely I Init and I Info. Figure 5
clearly shows that from the LoadSyringe state, the user can go to either the Init
state or Info state by firing the transitions I Init or I Info.

In Fig. 5, on the arc going into place/state Init , we have the expression Init
which tells us the relevant presentation model for this state and on the arc
going into place Info, we have the expression Info which tells us the relevant
presentation model for the state Info. If the user asks for information, i.e., if
I Info transition is fired, then the user goes to the Info state. Figure 6 shows
the structure of the Info page. The Info state shows a list of options that a
user can select to see status and change settings. There are seven places in
the Info page: Info, BatteryLevel , Init , ChangeSetUp, Eventlog , RateSet and
Z . The marking on the place Info is a token showing the definition of a com-
ponent presentation model Info which provides information about the available
widgets and tells us which button press results in what state. The marking
shows that there are five I-behaviours and four S-behaviours. As we are not
modelling the S-behaviours which just display messages on the screen, the page
Info has just one S-behaviour transition S KeyPadLocked . There are six tran-
sitions: I BatteryLevel , I ChangeSetUp, I Init , I EventLog , I RateSet and
S KeyPadLocked . These transitions give meaning to the I-behaviours and S-
behaviours given for the definition of the component presentation model Info.

If the user gives a long press to the Info button on the device, the keypad gets
locked or unlocked. This behaviour changes the value of the observation KP from
no to yes and vice-versa. In the CPN model, the transition S KeyPadLocked

Fig. 5. LoadSyringe page with Z
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represents this behaviour. There are two arcs needed to model this (going to
and from the place Z ). The arc from Z to S KeyPadLocked simply contains
assignments which set each variable to its current value (where the variables are
the ones that model the observations from the Z operation schema KeyPadLocked
where they will appear on the left of each equation in primed form). This set
of assignments “picks up” the current values of the variables ready to be used
by the second arc. This second arc, the one from S KeyPadLocked to Z , assigns
each variable to its new value, as given by the right-hand side of each equation
in the KeyPadLocked operation schema. Taken together these two arcs express
the intent of the equations in the operation schema KeyPadLocked . Users can go
to any of the five states by firing the I-behaviour transitions which will update
the markings on the corresponding places. If the value of KP is yes, i.e., if the
keypad is locked, then a user cannot go to any further possible states. For that
reason, we have a guard [KP = no] on transitions I BatteryLevel , I EventLog ,
I Init , I RateSet and I ChangeSetUp. These transitions would not be enabled
if the keypad is locked. In a similar manner we model the rest of the pages6

which are interconnected via fusion places and a user can go from one state to
another by firing the I-behaviour transitions and the operations can be observed
by firing the S-behaviour transitions.

8 Benefits of Formal Method Integration

There are several benefits accruing from using CPN and its tool and combining
what was previously done via three different formalisms (PM/PIM/Z). First,
CPNs have a simple graphical representation which is useful for illustrating the
concepts, and the CPN Tool allows us to visualize the models and structure
them in useful ways. The CPN model provides a better understanding of how
the system will behave by means of interactive simulation which provides a
way to walk through a CPN model, investigating different scenarios in detail
and checking whether the model works as expected. It is possible to observe the
effects of the individual steps directly in the graphical representation of the CPN
model. The models in CPN can be used to specify different aspects (functional or
control flow) of a system and can specify different types (concurrent, sequential
or distributed) of a system, all in one model.

When we build a Coloured Petri Nets model, any non-determinism present
can be exposed and can be corrected. The appealing graphical representation of
Coloured Petri Nets allows us to consider all the navigational possibilities in a
model. It gives a good indication of the complexity of the user-interface and its
navigation by way of the number of places and transitions. Having aspects of Z
modelled in CPN has benefits in the development process as a developer can have
a better idea of the user interface and interactivity as well as the functionality
of a modelled system.

6 See https://github.com/sapnajaidka/NikiT34-CPN-Model.

https://github.com/sapnajaidka/NikiT34-CPN-Model
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9 Conclusion and Future Work

We have used CPNs to model the user-interface and interaction of a medical
infusion pump. This shows the navigational properties of the system, but also
allows us to include the underlying system functionality in the model as well.
By means of simulation we can actually see what widgets are available and what
happens when the user interacts with them. Also we can actually see how the
behaviours change the underlying system functionality. By these means we can
check to see if the model is working as expected. If it seems that it is not then
we can look deeper and see what the flaws are in the model and what changes
should be made to make the model work correct in all situations: this is the most
important thing for safety-critical devices.

Now that we can build CPN models there are certain properties that can
be verified with the CPN’s state space analysis method. This method provides
information about the dynamic properties of a system, for example, dead tran-
sitions, and dead markings. It also gives information about the fairness and
liveness properties of a modelled system. Therefore it is possible to investigate
the behaviour of the system in sophisticated and useful ways: this includes the
safety requirements of the system. With the state space method, in conjunction
with suitable queries, it is possible to verify that queries hold, so safety require-
ments (like detecting livelocks, total reachability, desired terminal states etc.)
for safety-critical systems can be proved. In the future it would be interesting
to see if the safety properties proposed by the FDA7 can be proved using this
combined model.
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Abstract. Model-Based Testing (MBT) relies on models of a System Under Test
(SUT) to derive test cases for said system. While Finite State Machine (FSM),
workflow, etc. are widely used to derive test cases for WIMP applications (i.e.
applications depending on 2D widgets such as menus and icons), these notations
lack the expressive power to describe the interaction techniques and behaviors
found in post-WIMP applications. In this paper, we aim at demonstrating that
thanks to ICO, a formal notation for describing interactive systems, it is possible
to generate test cases that go beyond the state of the art by addressing the MBT
of advanced interaction techniques in post-WIMP applications.

Keywords: Post-WIMP interactive systems · Software testing · Model-Based
Testing

1 Introduction

Model-Based Testing (MBT) of software relies on explicit behavior models of a system
to derive test cases [28]. The complexity of deriving comprehensive test cases increases
with the inner complexity of the System Under Test (SUT) that requires description
techniqueswith an important expressive power. Themodelling of post-WIMP (Windows,
Icons, Menus and Pointers) interactive applications (i.e. applications with an interface
not dependent on classical 2D widgets such as menus and icons [29]) proves to be a
challenging activity as pointed out by [12]. For instance, when using a touch screen,
each finger down/up is a virtual input device being added or removed from the systems
at runtime and behaves in parallel with the other fingers or input devices. A modelling
technique able to describe such interactive systems must support the description of
dynamicity.

Beyond the problem of describing the SUT behavior, testing Graphical-User Inter-
face, whether it isWIMP or post-WIMP, is known to be a complex activity [9], especially
because of the unpredictability of the human behavior as well as the virtually infinite
number of possible interaction sequences. To face such difficulty, model-based testing

© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 486–502, 2020.
https://doi.org/10.1007/978-3-030-54994-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54994-7_35&domain=pdf
https://doi.org/10.1007/978-3-030-54994-7_35


Model-Based Testing of Post-WIMP Interactions 487

techniques have been developed to try to generate relevant test sequences without relying
on manual scripting or capture and replay of tester’s interactions.

The massive adoption of touch screens means advanced touch interactions (e.g.
swipe, pinch-to-zoom, etc.) gained in popularity, while most of the existing MBT tech-
niques for interactive applications are designed to deal with events performed on the
standard GUI widgets (e.g. button, combo box, etc.) [1, 9, 14, 26]. Lelli et al. [14] iden-
tified the need for newMBT techniques for post-WIMP applications by highlighting the
need for supporting ad-hoc widgets (i.e. non-standard widgets developed specifically
for the application) and advanced interaction techniques.

In this paper, we propose to build upon the work of Hamon et al. [12], which used
the ICO [19] formal modelling technique to describe post-WIMP interactive systems,
as a support to the generation of test cases for interaction techniques of post-WIMP
applications, and to demonstrate that testing can be conducted following the standard
process for Model-Based Testing proposed in [28]. As interaction techniques have to
cope with the high dynamicity of Input/Output, as well as temporal aspects, they prove
to be one of the most difficult components of interactive systems to be described. Thus,
they are the prime focus of this paper, even though we will highlight that our proposed
approach applies to other components of the interactive systems’ architecture as well.

This paper is structured as follows: Sect. 2 presents related work on the MBT of
interactive applications; Sect. 3 introduces the interaction technique onwhichwepropose
to apply the approach and itsmodelling in ICO; Sect. 4 discusses the generation of the test
cases from the ICO specification and Sect. 5 provides some comments on test execution;
Sect. 6 discusses the generalizability of the proposed approach to other components of
the SUT; Sect. 7 concludes the paper by discussing future work.

2 Related Work

The classical approaches to interactive applications testing consider that the user’s inter-
action takes place at the GUI widget level (e.g. buttons, icons, label, etc.). While it is the
case in the WIMP paradigm, this assertion cannot be used in the post-WIMP paradigm
where “at least one interaction technique is not dependent on classical 2D widgets such
as menus and icons” [29]. Consider a gesture-based (post-WIMP) drawing tool. One
may want to define (and test) whether moving two fingers on the drawing area means
zooming (pinch-to-zoom), rotating or drawing. As this may be determined by how the
user effectively moves his/her fingers (speed, angle, pressure level, delay between finger
down events, etc.), it goes beyond available standard testing techniques for widget level
interactions.

In this section, we first introduce the process ofMBT and discuss the existingModel-
Based Testing techniques for WIMP applications. We then discuss the testing of post-
WIMP applications in order to highlight challenges to overcome.

2.1 The Process of Model-Based Testing

In their Taxonomy of Model-Based-Testing Approaches, Utting et al. [28] present the
model-based testing process illustrated by Fig. 1. In this process, a model of the SUT
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is built from informal requirements or existing specification documents (Fig. 1(1)) and
test selection criteria (Fig. 1(2)) are chosen to guide the automatic test generation to
produce a test suite that fulfils the test policy defined for the SUT. These criteria are then
transformed (Fig. 1(3)) into a test cases specification (i.e. a high-level description of a
desired test case). Utting et al. [28] use the example of test case specification using state
coverage of a finite state machine (FSM). In such case, a set of test case specification
{reach s0, reach s1, reach s2…} where s0, s1, s2 are all the states of the FSM is the test
case specification.

Fig. 1. The process of Model-Based-Testing (from [28])

Once the model and the test case specifications are defined, a set of test cases is
generated with the aim of satisfying all the test case specifications (Fig. 1(4)). With the
test suite generated, the test cases are executed (eithermanually -i.e. by a physical person-
or automatically thanks to a test execution environment). This requires concretizing the
test inputs (Fig. 1(5–1)) and comparing the results against expected ones to produces a
verdict (Fig. 1(5–2)).

2.2 Model-Based Testing of WIMP Application

In software engineering, the nearly three-decades-old field [1] that addresses concerns
regarding the testing of user interfaces is called “GUI testing”. In [1] GUI testing is
defined as performing sequences of events (e.g., “click on button”, “enter text”, “open
menu”) on GUI widgets (e.g., “button”, “text-field”, “pull-down menu”). For each
sequence, the test oracle checks the correctness of the state of the GUI either after
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each event or at the end of the sequence. Since the domain is three-decade-old, it natu-
rally focused on WIMP UIs as they were the only available at the time. This focusing is
still quite present today.

Some of the research works presented in the following paragraphs do not follow
the process of MBT presented by Utting [28], but they propose relevant and inspiring
approach for WIMP application testing.

Memon et al. [16] propose a detailed taxonomy of the Model-Based techniques
employed to generate test cases in GUI testing. These techniques rely on various kinds
of models (state machine, workflow, etc.) that target mono-event-based systems (i.e.
systems on which UI events are produced directly as a result of a single action on a
widget: key typed,mouse clicked, etc.). They describe the possible test cases by checking
reachability of a node. It is important to mention that most of the techniques listed in
[16] rely on models built by reverse engineering of the SUT [23].

Another approach based on reverse engineering is the one of Morgado et al. [18] in
the iMPAcT tool. This tool uses patterns of common behavior on Android applications
to automatically test them. The tool explores the SUT checking for UI patterns using
a reverse engineering process. Each UI pattern has a corresponding testing strategy (a
Test Pattern) that the tool applies.

Bowen et al. [7] adopt the test-first development approach in which abstract tests
are built from formal specification of the system functionality (given using Z [27]) and
from a presentation model describing the interactive components (widgets) of the user
interface. These abstract test cases are used to produce JUnit and UISpec4J1 test cases.

Finally, Campos et al. [8] propose an example of approach that matches the out-
lines of the MBT-process by using task models to perform scenario-based testing of
user-interfaces coded in Java using the Synergistic IDE Toucan [15]. The conformance
between the application code and the task models is checked at runtime thanks to anno-
tations in the Java code that allow the association of methods calls to the Interactive
Input and Output Tasks. The scenarios produced from the task model are then played
automatically on the Java application.

2.3 Model-Based Testing of Post-WIMP Application

Testing post-WIMP applications requires going beyond GUI testing as mentioned by
Lelli et al. [14]. This requires considering ad-hoc widgets and complex interaction tech-
niques that cannot be performed simply as sequences of events on GUI widgets. For
instance, interactions such as gesture-based or voice command activations are not tied
to a specific GUI widget.

One of the main references in post-WIMP application testing is Malai [14] that
has been proposed as a framework to describe advanced GUI Testing. It allows the
description of interaction using Finite State Machine (FSM) with two types of end
state: terminal state and aborting state. These states are dedicated to identifying whether
the user completed the interaction or aborted it. The output actions associated with
completing the interaction (i.e. reaching its terminal state) are described in a specific
reification of tools called instruments.

1 https://github.com/UISpec4J/UISpec4J.

https://github.com/UISpec4J/UISpec4J
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However, the use of FSM limits the description of interaction techniques and should
be enhanced to support:

• The description of dynamic instantiation of physical and virtual input/output
devices: on systems with a touchscreen, the display is a physical output device and
the touch layer the physical input device. When dealing with multi-touch interaction,
a finger is a virtual device that is added/removed whenever it touches the screen or is
removed from it;

• The description of timing aspects to represent quantitative temporal evolution of the
interaction technique (available in timed-automata);

• The description of concurrent aspect to represent concurrent usage of input devices
by the user; events from these devices might be fused to produce higher-level
multimodal event [13];

• The description of dynamic user interface behavior driven by temporal events
such as animations during transition between states of the system [17];

• The description of system configurations as, for instance, using resolution scaling
on displays with high pixels densities affects the size, location and translation of the
GUI elements on screen. Beyond, this also applies to mobile and web-based UI in
which having a responsive-design behaving properly is a concern.

While advances have been made in the description of such aspect, especially in work
such as [12], there are not, to the best of our knowledge, techniques taking advantages of
them to generate tests cases for interactive applications. In the following of the paper, we
introduce and use the ICO formalism to demonstrate the need for advanced modelling
techniques for effective testing of interactive applications.

3 Modelling of a Post-WIMP Case Study Using ICO

In this section, we present an architecture for post-WIMP applications and highlight
where the interaction techniques take place. We then present the informal requirements
for the “finger clustering” interaction technique used as a case study in the remaining of
this paper. Thereafter, we introduce the formal description technique we use, ICO [19],
and present the models associated to the “finger clustering” interaction technique.

3.1 Architecture of a Post-WIMP Application

Effectively testing an interactive application requires a good understanding of its archi-
tecture and of the role of its components to select appropriate test criteria [9]. While a
detailed architecture such as MIODMIT [10] is able to describe in detail the hardware
and software components of interactive systems, we use in this paper a simpler software
architecture (inspired by ARCH [3]) for touch applications, presented in Fig. 2, to detail
the role of the component we focus on. The work presented in the remaining of this
paper is still applicable to a more complex architecture.
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Fig. 2. Example of architecture of a post-WIMP application adapted from [12].

As this paper discusses specific aspects of post-WIMP application, we do not detail
the “back-end”, or Functional Part, of the application (leftmost part of Fig. 2). The
Dialogue Part of the application shares a common role in WIMP and post-WIMP appli-
cations, i.e. translating high-level events resulting of the user interaction into invocations
on the Functional Part. The main difference between WIMP and post-WIMP applica-
tions then resides in the Window Manager that contains, from right to left, the widgets
(that share similar roles to widgets of WIMP interfaces), the Interaction Techniques, the
Logical Input Device and the Low-Level Transducer.

The Low-Level Transducer is connected to the Touch Provider (rightmost part of
Fig. 2), i.e. the driver of the touch screen. The Touch Provider produces the lowest-level
events in the input chain as they are directly derived from the touch screen behavior. The
role of the Low-Level Transducer is to handle these low-level events and to translate them
to make sense for the Window Manager logic. On touch applications, the Low-Level
Transducer creates Logical Input Devices (i.e. Fingers) with unique IDs and additional
information (coordinates, pressure level, etc.). The Logical Input Devices are added
to the Window Manager Interaction Technique(s) that will notify widgets and other
subscribers (such as a drawing panel) using high-level events when either simple (e.g.
tap) or complex (e.g. pinch) interactions are performed.

While this paper focus on the testing of the Interaction Technique, i.e. on verifying
that for a set of Logical Input Device actions, the correct high-level events are produced,
we highlight the applicability of our methods to the other components of the architecture
and on integration testing of these components.

3.2 Presentation of the “Finger Clustering” Interaction Technique

The case study we use in this paper is a multi-touch interaction technique that produces
eventswhenfingers are clustered (i.e.within a given range of each other) and de-clustered
according to the requirements presented below. These requirements are the inputs for
the MBT Process (top-right of Fig. 1):

• Clusters may either contain two or three fingers;
• Clusters of three fingers are always created in priority over clusters of two fingers (i.e.
if 4 fingers are on the screen in a range suitable for creating a cluster of 3 fingers,
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a three finger cluster will be created with a finger left alone; in no occasion such
circumstance may lead to the creation of two clusters of two fingers);

• The distance between two fingersmust be under 100 pixels to create a 2 finger clusters;
• Clusters of three fingers are created when three fingers on the screen form a triangle
with each of its edges measuring less than 100 pixels. If it happens that two fingers
of an existing cluster of 2 fingers can be part of a three fingers cluster, then the three
fingers cluster is created, removing the 2 fingers cluster.

• Clusters of 2 fingers are de-clustered whenever the distance between the 2 fingers it
contains goes over 150 pixels;

• Clusters of 3 fingers are never de-clustered because of the length of the edges of the
triangle;

• Clusters of 3 fingers are automatically de-clustered after 5 s;
• All the clusters cease to exist, producing the corresponding de-clustering event,
whenever a finger contained in this cluster is removed from the screen.

The events produced by this interaction technique are the following ones: twoFinger-
sClustered, twoFingersDeclustered, threeFingersClustered, threeFingersDeclustered.

3.3 ICO: A Formal Description Technique Dedicated to the Specification
of Interactive Systems

The ICO formalism is a formal description technique dedicated to the specification of
interactive systems [19]. It uses concepts borrowed from the object-oriented approach
(dynamic instantiation, classification, encapsulation, inheritance and client/server rela-
tionship) to describe the structural or static aspects of systems and uses high-level Petri
nets to describe their dynamic or behavioral aspects.

ICOs are dedicated to the modeling and the implementation of event-driven inter-
faces, using several communicating objects tomodel the system,where both the behavior
of objects and the communication protocol between objects are described by the Petri
net dialect called Cooperative Objects (CO). In the ICO formalism, an object is an entity
featuring four components: a cooperative object which describes the behavior of the
object, a presentation part (i.e. the graphical interface), and two functions (the activation
function and the rendering function) whichmake the link between the cooperative object
and the presentation part.

An ICO specification fully describes the potential interactions that users may have
with the application. The specification encompasses both the “input” aspects of the
interaction (i.e. how user actions affects the inner state of the application, and which
actions are enabled at any given time) and its “output” aspects (i.e. when and how the
application displays information relevant to the user).

This formal specification technique has already been applied in the field ofAir Traffic
Control interactive applications [19], space command and control ground systems [20],
interactive military [5] or civil cockpits [2].

The ICO notation is fully supported by a CASE tool called PetShop [4, 21]. All the
models presented in the following of this paper have been edited using it. Beyond, the
presented test generation techniques are part of an effort to support MBT in PetShop.
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3.4 Modeling of the Interaction Technique Using ICO

Based on the requirements provided in Sect. 3.1, we can build a model of the interac-
tion technique (step 1 of the MBT process) using ICO. Figure 4 presents this model,
which is made of places (oval shapes), transitions (rectangular shapes) and arcs. Two
communicationmeans are proposed by ICO: a unicast and synchronous communication,
represented by method calls, and a multicast asynchronous communication, represented
by event handling:

• When an ICO proposes method calls, they are each mapped into a set of three
places representing three communication ports (the service input, output and excep-
tion ports). For instance, on the top part of Fig. 4, the places called SIP_addFinger,
SOP_addFinger and SEP_addFinger are the input, output and exception ports of the
method addFinger. When this method is called (for instance, in the addFingerToInter-
action transition of Fig. 3), a token is created, holding the parameters of the invocation
and is put in place SIP_addFinger. The transitions that invoke such methods have got
a ‘I’ on the right part of their header.

• When an ICO is able to handle events, it uses special transitions called event handlers
such as transition updateFingerX in the middle-right of Fig. 4. Such transitions are
described using a set of information holding the event source, the event name, extra
event parameters and a condition that concerns the event parameters. In the exam-
ple of transition updateFingerX, the event source is fx, a value held by place FIN-
GERS_MERGED_BY_TWO, the event name is touchevent_up, the event param-
eters contain an object called info and there is no condition on the parameter. These
event handlers may handle events from outer sources or from other models. When the
event source is another model, this model contains transitions that raise events. Events
are raised using the keyword raiseEvent in the code part of the transition and an “E->”
is put in the right part of the header of the transition (see transition merge2Fingers of
Fig. 4).

The model illustrated by Fig. 4 represents the behavior of the “Finger Clustering”
Interaction Technique described in Sect. 3.2. This behavior may be divided into two
different parts according to their role:

• Managing fingers life cycle: Each finger is added or removed from the interaction
technique model. In between, their coordinates may be updated (i.e. the finger has
moved):

– Adding finger to the interaction technique is done using the method addFin-
ger, implemented using the SIP_addFinger place, addFinger transition and
SOP_addFinger place (see Fig. 4). This method is called by a transition of the
Low-Level transducer model (see Fig. 3). This invocation is made each time a
Finger is created to add it to the interaction technique. When the finger enters the
interaction technique, it is placed in the SINGLE_FINGERS place. This mechanism
allows for dynamic appearance of fingers in the interaction technique. To ease the
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rest of the discussion, we limited the number of fingers instantiated in the interac-
tion technique to 4 using the place FINGER_LIMIT. Removing this place would
remove this restriction.

– Removing or updating fingers coordinates is performed by handling events
that comes from the Low-Level transducer model (see Fig. 3). When a
touchEvent_up is received, the corresponding finger is removed from the inter-
action technique model (this is the case for instance with transition remove1 on the
left part of Fig. 4). When a touchEvent_update is received, the correspond-
ing point (associated with a finger) is updated (this is the case for instance with
transition updating1Finger on the top right part of Fig. 4).

• Detecting clusters of fingers: Each time a finger is added or removed from the
interaction technique model, or each time the coordinates of one finger is updated,
the clustering or de-clustering of fingers is computed:

– For two or three fingers, the principle is the same, supported thanks to the precon-
ditions of themergeXFingersX and unMergeXFingers transitions, that compute the
proximity of the fingers.

– The 5 s timeout for de-clustering three fingers is handled thanks to a “timed
transition” (note the [5000] - expressed in ms - line at the bottom of the
un-Merge3Fingers transition) that removes the fingers held by place FIN-
GERS_MERGED_BY_THREE.

While we are able to describe the interaction technique, the approach can be applied
to other components of the architecture. For instance, Fig. 3 presents the ICO model
of the Low-Level Transducer component of the architecture presented earlier. Note that
the addFingerToInteraction transition contains an invocation on the interaction tech-
nique. This invocation is the one associated with the SIP/SOP places in the Interaction
Technique Model. To prevent inconsistent input such as two fingers at the same location
(which is physically impossible), a test arc allows to check whether a touch down is
associated with a touch point of a finger already on the screen.

Fig. 3. ICO model for the Low-Level Transducer
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Fig. 4. ICO model for the finger clustering interaction technique.

4 Generating Test Cases from ICO Specifications

In this section, we focus on steps 2, 3 and 4 of the MBT process (see Fig. 1) applied
to our case study. We first present our test selection criteria and specification and then
present our test generation approach.
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4.1 Test Selection Criteria and Test Case Specification

Testing an interaction technique consists in verifying that, for a set of low-level input
events, the corresponding high-level event is produced so that components subscribed to
it (e.g. application dialogs or widgets) are notified with a well-formed event. This differs
from testing the application as done in the work presented in Sect. 2.2. Indeed, in these,
the events considered in the test cases are already high-level ones and the verification that
is made is that the effect on the UI is the correct one. To perform testing on the interaction
techniques requires to i) describe the sequences of actions triggering the events raised
by the interaction techniques and to ii) describe the associated events to observe on the
interaction technique.

Regarding the finger clustering interaction techniques, this means that we want to be
able to identify all the possible sequences of low-level events leading to the raising
of the “twoFingersClustered”, “threeFingersClustered”, “twoFingersDeclustered and
“threeFingersDeclustered” events in the interaction technique transitions. For illustration
purpose, we focus on the raising of the “threeFingersClustered” event.

4.2 Generating Test Cases for the Interaction Technique

To identify the relevant test cases for the raising of the “threeFingersClustered” event,
we use the reachability graph of the Petri-net. A reachability graph of a Petri-net is a
directed graph G = (V, E), where v ∈ V represents a class of reachable markings; e
∈ E represents a directed arc from a class of markings to another class of markings
[30]. Figure 5 presents the reachability graph of the interaction technique introduced
previously. In this graph, each state contains four digits symbolizing the number of
tokens contained in the places “FINGER LIMIT”, “SINGLE FINGER”, “FINGERS
MERGED BY TWO” and “FINGERS MERGED BY THREE”. For instance, the state
“4,0,0,0” at the top means that the “FINGER LIMIT” place contains 4 tokens and that
the other places are empty. We take advantage of the APT (Analysis of Petri nets and
labelled transition systems) project2 [6] to generate this graph.

As observable in Fig. 5, the reachability graph is actually a Finite State Machine
with no accepting state. Considering that the event we focus on is raised in the
“merge3FingersX” transition, we know that the event must be raised whenever a state
of the FSM having a “merge3Fingers” incoming edge is reached. Marking these states
(i.e. “1,0,0,1” and “0,1,0,1”) as accepting ones allows us to describe the actual grammar
of the test cases for the “threeFingersClustered” event. This grammar3 only misses con-
crete values for fingers coordinates. The following is an example of test case matching
this grammar expressed into Backus-Naur Form (BNF):

<testCase> ::= <addFinger> <touchEventf_update>
<addFinger> <addFinger> <touchEventf_update>
<merge3Fingers>

2 https://github.com/CvO-Theory/apt.
3 For which the regular expression can be obtained from the FSM using tools such as FSM2Regex
(http://ivanzuzak.info/noam/webapps/fsm2regex/).

https://github.com/CvO-Theory/apt
http://ivanzuzak.info/noam/webapps/fsm2regex/
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Fig. 5. Reachability graph derived from the ICO model of the interaction technique

The reachability graph we present in this case study contains values for each place
as we intentionally limited to 4 the number of fingers in the interaction technique.
However, some touch screens support more than 4 fingers and therefore one may want
to use multiple clusters of three fingers. It would be possible to remove this restriction
while still being able to apply our process by performing our analysis on a symbolic
reachability graph. Symbolic reachability graphs use variables instead of concrete values
in the states for the analysis of Petri-nets with such infinite marking, making it possible
to express infinite number of states.

To prepare the instantiation of the test scripts, wemust focus on how the required val-
ues are produced, partly supported by the model of the application. This model describes
the conditions under which the transitions are fired. In our case, it describes the con-
straints on the distance between the points, defining the values domain. When instan-
tiating the test scripts, the integration of these constraints relies on a semi-automated
support, where the values are checked at editing time. For instance, in the instantia-
tion of the grammar example proposed above, whatever the coordinates of the three
added fingers are, the distance between them must fit the precondition of the transitions
“merge3Fingers1” and “merge3Fingers2”.

5 Test Cases Execution

In this section, we discuss the execution of the test of the interaction technique, i.e. steps
5.1 and 5.2 of the MBT process. While the advances we propose are mostly related to
test cases generation, we find it important to emphasis the relevance of selecting the test
adapter appropriately and to discuss the possible ways to use our test cases.

5.1 Test Adapter Selection

Testing the interaction technique consists in verifying that for a set of input events the
corresponding high-level event is produced. Key in executing such test properly is being
able to produce an input event that is actually the event expected by the interaction
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technique as an input, i.e. an event from the low-level transducer. Assuming that we are
testing our interaction technique as part of a JavaFX application, this means producing
JavaFX Touch Events4. However, testing the interaction technique alone may prove to
be insufficient to ensure that the interaction technique will behave properly for the end-
user. Indeed, while evaluating our approach, we encountered a known issue that no touch
events are forwarded to JavaFX by most popular distributions of Linux using a GTK-
based desktop environment5. In other words, the Touch Provider of these distributions is
not producing relevant events for the Low-Level Transducer that cannot, in turn, produce
events for the interaction technique. This means that the JavaFX finger clustering cannot
be used on a Linux platform even though tests based on JavaFX Touch Event would have
indicated that the interaction technique behaves properly. Therefore, when testing touch
applications, one may want to produce Operating System-level events and to perform
integration testing of the Low-Level Transducer/Interaction Technique couple. Such
tests can be executed on the Windows platform by using the Touch Injection technology
of the Windows API6 to produce OS-level touch events as inputs. Regarding Linux, it
is worth mentioning that ARM versions of GTK are not prone to the issue presented
earlier.

5.2 Test Execution for the Interaction Technique

The execution of the tests on the SUT is an activity that is highly dependent of the
way the SUT is implemented. Overall, testing the interaction technique alone requires
i) being able to forward the event sequence of the test script to the interaction technique
and ii) being able to subscribe to the events the interaction technique produces. The
easiest way to test the interaction technique of the SUT is to do it using white-box or
grey-box testing. Indeed, in such cases, it is easy to either instrument the class of the
SUT responsible for the interaction technique or to encapsulate it in a test adapter with
which the test execution environment can interact. Then, the test execution environment
can perform the event sequence described by the test script. The role of the oracle is then
to determine whether the test passed based on whether or not it received the expected
event from the interaction technique in a timely manner.

6 Generalizability of the Approach

While this paper focused on the interaction technique component of the architecture
presented in Sect. 3.1, the ICO notation, alongside with its CASE tool Petshop, support
the modelling and the test generation for other components of the architecture, as well as
GUI Testing as defined by Banerjee et al. [1]. This section highlights the generalizability
of the modelling philosophy and of the test case generation approach. Due to space
constraint and to the highly SUT-dependent nature of the tests execution,wewill however
not develop further on test execution.

4 https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/input/class-use/TouchEvent.html.
5 https://bugs.openjdk.java.net/browse/JDK-8090954.
6 https://docs.microsoft.com/en-us/windows/desktop/api/_input_touchinjection/.

https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/input/class-use/TouchEvent.html
https://bugs.openjdk.java.net/browse/JDK-8090954
https://docs.microsoft.com/en-us/windows/desktop/api/_input_touchinjection/
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6.1 Generalizability of the Modelling Philosophy

In addition to interaction techniques, we pointed out in Sect. 3.4 that ICO can be used
to model the low-level transducer of a post-WIMP application (Fig. 3). Modelling of
Logical Input Devices (e.g. fingers) and their dynamic instantiation is covered in [12].
Moreover, [19] demonstrates that ICO allows the description of the Application (dialog
part) components, including those with dynamic instantiation of widgets, on examples
such as an Air Traffic Control (ATC) plane manager. To validate that our work is com-
patible with GUI Testing of WIMP application, we modelled the application specified
in Memon et al.’s [16] review of advances in MBT for applications with a GUI front-
end. We had no trouble describing the behavior of this WIMP application using ICO
in Petshop. Combining this with the modelling of post-WIMP interaction techniques
demonstrated herein, shows that we are able to model post-WIMP applications.

6.2 Generalizability of the Test Case Generation Approach

Thanks toMemon et al.’s review of advances inMBT [16], wewere able to verify that our
test generation approach worked for WIMP applications. Indeed, [16] presented various
models for the application it specifies, including one being a Finite State Machine. This
allowed us to verify that the reachability graph of the Petri-net was the same (name of
states aside) as the FSM in [16]. Beyond that, on applications that involve dynamicity
such as the ATC plane manager dialog, the approach fits well as each aircraft is added to
the dialog model using invocation in the same way as fingers are added to the interaction
technique presented in this paper. Yet, as the number of aircraft on the radar visualization
is virtually infinite, the use of a symbolic reachability graph is made mandatory, while
standard reachability graph can be kept for interaction techniques (as the maximum
number of touch points supported by the screen is known).

7 Conclusion and Future Work

Testing interactive applications is known to be a challenging activity, whether we con-
sider WIMP or post-WIMP applications. In this paper, we have shown that while the
testing ofWIMP applications retainedmost of the attention of researchers and practition-
ers in the field ofMBT, post-WIMP applications raise new challenges for the community.
Indeed, properly testing post-WIMP following the standard Model-Based Testing pro-
cess requires modelling techniques that are expressive enough to describe the dynamic
instantiation of virtual and physical devices, timing aspects, system configuration, etc.
Only such models allow the generation of exhaustive enough test cases.

Building on previous work on the Petri-net-based notation ICO (and its associated
CASE tool, PetShop), we showed that we are able to propose a toolchain that addresses
the need for expressive modelling techniques in order to support the generation of test
cases for post-WIMP application following the MBT process. We showed that thanks
to the mechanism supported by ICO we are able to support the high dynamicity of post-
WIMP applications for all the software components of the architecture. This expressive-
ness allows for the generation of abstract test case using a grammar derived from the
reachability graph of Petri-nets.
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As we focused on a specific component of the architecture, i.e. the interaction tech-
nique,we found that post-WIMPapplications aremore sensitive thanWIMPapplications
to the execution platform, as touch event are not always well forwarded to libraries by
operating-systems, highlighting the need for integration testing. A future extension to
our work would be to implement the generation of integration test cases into PetShop
by relying on the different artifacts allowing the communication between models.

Finally, we are currently investigating using such approach for the testing of inter-
active applications to be deployed in large civil aircraft interactive cockpits. Indeed,
following guidance from supplement DO-333 [25] on formal methods to the DO-178C
certification process [24], one may use formal specifications during the development of
such application. If a formal model of the interactive application is built for supporting
reliability arguments (e.g. “low-level requirements are accurate and consistent [24]”)
we propose to exploit that model to generate test cases from that formal specification
(as proposed by Gaudel [11]). Such process could result in more cost-effective test case
generation leveraging on available formal models. Beyond, thanks to the expressive
power of ICO, such approach could support the adoption of application offering richer
interaction techniques (e.g. animations [17] or multitouch [12]) even in safety-critical
context (e.g. brace touch [22]).
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Abstract. Feedback and feedforward are two fundamental mechanisms that sup-
ports users’ activities while interacting with computing devices. While feedback
can be easily solved by providing information to the users following the triggering
of an action, feedforward is much more complex as it must provide information
before an action is performed. Fortunettes is a generic mechanism providing a
systematic way of designing feedforward addressing both action and presentation
problems. Including a feedforward mechanism significantly increases the com-
plexity of the interactive application hardening developers’ tasks to detect and
correct defects. This paper proposes the use of an existing formal notation for
describing the behavior of interactive applications and how to exploit that formal
model to extend the behavior to offer feedforward. We use a small login example
to demonstrate the process and the results.

Keywords: Feedforward · Formal methods · Petri nets · Interactive systems
engineering

1 Introduction

Feedback and feedforward are two fundamental mechanisms supporting users’ activi-
ties while interacting with computing devices. While feedback can be easily solved by
providing information to the users following the triggering of an action, feedforward
is much more complex as it must provide information before an action is performed.
Automatic feedforward presents in a systematic way to the users what can be done
without requiring any dedicated action (e.g. greying out an interactive object that is not
available). Automatic feedforward is often available in well-designed interfaces. User-
triggered feedforward provides localized, contextual information to the users related
to the actions that they envision triggering (e.g. painting temporarily a selected object
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in yellow while hovering over the yellow button for painting objects). User-triggered
feedforward is usually not available in user interface, as it requires computing the future
state of the application (if a given action is performed) and presenting this future state
on the UI.

In [22], the authors exploit Norman’s activity theory [16] to explain the importance
and the impact of providing users with feedforward in user interfaces, especially in the
action selection phase. In poorly designed systems, that kind of user activity can be very
cumbersome especially in the upper part of the model of the activity theory (also called
semantic distance).

Figure 1 presents a typical system offering limited feedforward. In that system
(Microsoft Word) some of the commands for changing text graphical attributes do not
propose feedforward (see Fig. 1b) while others do (see Fig. 1c). Figure 1a) presents a
snapshot of MS Word software with the word Fortunettes selected and highlighted. In
that version of MSWord, when some text is selected, a contextual pop-up menu appears
next to the selected text. In Fig. 1a) the cursor has beenmoved far away from the selected
text and thus no pop-up menu is visible. In Fig. 1b) the pop-up menu is displayed and
the mouse cursor hovers over the Bold command to change the presentation of the text
to Bold. However, in that case, no feedforward is presented so it is not possible to see
how the text will be if the Bold command is performed. Surprisingly, Fig. 1c) highlights
the fact that for altering the color of the selecting text, hovering over one of the colors
displayed in the pop-up menu applies directly the hovered over color to the selected text,
thus providing users with feedforward on the color attribute of the text.

Fig. 1. Inconsistent availability of feedforward in Microsoft Word (Office 2016)

One of the questions that arises immediately is: why such a sophisticated tool as MS
Word is not offering feedforward mechanisms for all the functions or at least to all the
similar functions (e.g. changing attributes of selected text).

While, as highlighted in [9] and [22], the design of feedforward is an issue.Wewould
argue that its specification and its implementation are the key problem to solve when it
is considered as a potential function to add to the system. In that case, we would argue
that feedforward is a usability function using the pending concept of security function
[23] or safety function [12]. While a safety function can be defined as a function added
to a system to prevent undesired safety problems, we would define a usability function
as a function added to an interactive system to prevent undesired usability problems.
Within this context, feedforward can be considered as a function similar to “undo” and
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thus requires complex implementation due to its crosscutting nature [12]. This paper
argues for the use of a formal approach for the specification and the implementation of
feedforward in a systematic way. We present how the expressive power of high-level
Petri nets such as ICOs [15] can describe feedforward and how the resulting models
are amenable to verification (to identify and check properties on the system offering
feedforward). In a nutshell we propose to produce a Petri net model (called Fortune Net)
in addition to the model describing the behavior of the application. We also argue that a
formal model of the initial application can be extended in a systematic way to include
feedforward functionality, thus reducing development cost of such a usability function.

This paper is an extension of thework done in [6] to offer feedforwardmechanisms in
amore general context. Section 2 presents the foundations, interaction and one design for
the Fortunettes concept for feedforward usability function. Section 3 presents the illus-
trative example of a simple widget-based interactive application that is used throughout
the paper. Section 4 presents the Petri nets based modeling approach for modeling inter-
active applications and its application to the modelling of Fortunettes usability function.
Section 5 focusses on the formal analysis of the application model and of the Fortune
Nets ones. Section 6 concludes the paper and highlight paths for future work.

2 Fortunettes: Design, Foundations and Use

The origin of Fortunettes [6] is the need of providing feedforward about the future
state of an application. When including a feedforward usability function in the GUI,
the feedforward information does not need to be presented permanently (to avoid visual
overload and cluttering of theUI) but insteadwepropose this specific information display
to be triggered by the user on demand (when needed). In our approach, exploring the
future may be seen as a four steps process:

• Look at the present, when the user explores visually the user interface elements;
• Peek into the future, when the user is considering performing an action;
• Go to the future, when the user confirms and actually executes the considered action;
• Return to the present, when the user is no longer considering the execution of that
action.

The choice has been made of providing such feedforward at widget-level as it makes
it easier to reuse for any widget-based application. Figure 2 shows an example of this
kind of widget-level feedforward: when the user hovers over the Login button (that is
currently enabled), the button Logout and the text box (that are currently disabled),
show their future state in terms of availability (the button Logout and the textbox
will become enabled if the user clicks the button Login, while the button Login will
become disabled). With this information, the user knows that to enable the Logout
button, the Login button me be pressed first.

The main idea of Fortunettes is to provide the user with an answer to “What will
happen if I do that?”, by presenting what the result of the user action will be, before
the action is actually performed. It thus requires the widgets to be able to present their
future state in addition to their current state (enabled or disabled).



506 D. Navarre et al.

Fig. 2. Illustration of the Fortunettes concept using the case study.

As presented in [6], the user interface of the application presented in Fig. 2 is the
following:

– The application is composed of four widgets (the three buttons and a textbox),
– The current state of the widgets is displayed on the forefront, the login button is
enabled, “Logout” and “Send and Clear” ones are disabled, and the textbox is disabled
too.

– In order to present the feedforward information, users have to hover over the widget
of interest. In Fig. 2, the “login” button is hovered and the background display of
each widget presents the feedforward information showing the state of the application
if the user clicks on the login button. Current feedforward display tells the user that
“login” buttonwill be disabled, the textboxwill become enabled, “logout”will become
enabled and “Send and Clear” will remain disabled. Indeed, as the status of “Send
and Clear” will remain the same, no additional feedforward display is presented. We
follow here the parsimony principle of user interface designs.

The design choice presented here is one example of the many possible designs of
Fortunettes: every widget is decorated with borders to express its future availability (full
lines for enabled, dashed lines for disabled) and/or its future values.

This design will not be further discussed as the focus of this paper is on formal
description and engineering support. These two aspects are particularly important as
the introduction of Fortunettes increases the complexity of the development of an
application, and, by consequence its reliability.

3 Illustrative Example

We illustrate the use of the Fortunettes approach with a simple application (as illustrated
by Fig. 3) that behaves as follows: when the user is logged in, a message can be written in
the textbox or the user can log out. To ensure that the message only contains letters, the
edited text is filtered, removing any other characters (numbers, special characters…). If
the textbox is not empty, the message can be sent. Sending the message or logging out
clear the textbox.
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Fig. 3. Screen shots of the illustrative application. On the left, the user is logged out, on the right,
the user is logged in and a message is being edited and ready to be sent.

4 Modelling of Fortunettes Behavior

To support the engineering of interactive applications offering a feedforward usability
function based on Fortunettes, we propose an approach based on a formal descrip-
tion technique called Interactive Cooperative Objects (ICO). We firstly present in this
Section the formal description technique, then we present how it is possible to derive
the feedforward behavior of the application from the existing model of the application
behavior.

4.1 ICO Formal Description Technique

The ICO formalism is a formal description technique dedicated to the modeling and the
implementationof event-driven interfaces [15], using adecompositionof communicating
objects tomodel the system,where both behavior of objects and communication protocol
between objects are described by the Petri net dialect called Cooperative Objects (CO)
[4]. In the ICO formalism, an object is an entity featuring four components: a cooperative
object which describes the behavior of the object, a presentation part (i.e. the graphical
interface), and two functions (the activation function and the rendering function) which
connects the cooperative object and the presentation part.

An ICO specification fully describes the potential interactions that users may have
with the application. The specification encompasses both the “input” aspects of the
interaction (i.e. how user actions impact the inner state of the application, and which
actions are enabled at any given time) and its “output” aspects (i.e. when and how the
application displays state information that is relevant to the user).

This formal description technique has already been applied in the field of Air Traffic
Control interactive applications [15], space command and control ground systems [18],
or interactive military [3] or civil cockpits [2].

The ICO notation is fully supported by a CASE tool called PetShop [5, 19]. All
the models presented in the two next Sects. (4 and 5) have been edited, simulated and
analyzed using PetShop tool.

4.2 Principle of Fortunettes Feedforward Modelling Using ICO

As stated in Sect. 2, engineering an application with feedforward capabilities requires
to handle extra interaction events (at least three, depending on the widget type). These
events allow the user to peek into the future, to go to the future or to return to the
present, without affecting the standard behavior of the application, as the objective is
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to enhance the application (with feedforward) and not to change it. This design choice
impacts the modelling of feedforward behavior:

• The feedforward behavior of any application is modelled as an independent object
that embeds the standard behavior (as a copy), making it fully compatible with the
original application behavior. This Petri net model is called the Fortune Net as it
allows users to look into the future of the application.

• For any event handlingwithin the standard behavior, the feedforward behavior embeds
a pattern described in Petri nets (a set of places and connected transitions) that models
the exploration of the future states. The important aspect in this modelling principle
is that we exploit the behavior of the application to forecast the future states of the
application if the user decides to use feedforward function.

To illustrate these two points, we use an excerpt of the complete behavior presented
in the next Sect. (4.3) that only concerns the login action on the user interface (as
shown by Fig. 4).

Fig. 4. Excerpt from the Petri netmodel of the standard behavior of the application: event handling
of the login action. In the transition, the text on the left describes the name of the transition while
the text on the right describes the name of the event associated the transition.

In Fig. 4, the login transition is the event handler for an event called loginPer-
formed that represents the use of the button Login. When fired, this transition moves
the token from place LoggedOut ( ) to place LoggedIn, setting the state of the
application to the new state following the execution of the login (code not represented
here).

When introducing the Fortunettes view on this action, the three base actions defined
in Sect. 2 (peek into the future, go to the future and return to the present) are represented
as three extra event handlers, as shown on Fig. 5, where event handlers {FloginPer-
formed, UFloginPerformed, InFloginPerformed} are generated from the
event handler loginPerformed. In this paper, the name of the generated event han-
dlers for handling Fortunettes mode are built with the name of the corresponding event
handler, prefixed by F (that represents entering in Fortunettes mode, e.g. peek into the
future), by UF (that represents exiting the Fortunettes mode, e.g. return to the present)
and InF (that represents exiting the Fortunettes mode and go to the future).

On Fig. 5, transition f1login (event handler for FloginPerformed) represents
the action of peeking into the future of the action login. Basically, it behaves in the
same way as the original action (put a token in place LoggedIn) while the standard
behavior is still in state LoggedOut. It additionally puts a token in place flogin that
represents the entering in feedforward mode (a dedicated rendering may occur).

There are then two possibilities:

• The user decides to really perform the login action (using the login button),
producing two events: loginPerformed handled by the standard behavior (mak-
ing it going to the state LoggedIn) and InFloginPerformed handled by the
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Fig. 5. Extracted from the feedforward behavior of the application: event handling of the login
action and peek into its future.

feedforward behavior (discarding the token in place flogin, while the token in place
LoggedIn does not move, placing it in the same state as the standard behavior).

• The user decides to not perform the login action producing an event UFloginPer-
formed. The standard behavior remains in the same state while in the feedforward
behavior, the tokens from places LoggedIn and flogin are removed and a token
goes back to the place LoggedOut, making it return to its previous state (leaving
the feedforward mode).

This pattern is particularly efficient when describing a feedforward behavior for
events that do not handle values or when the widgets are simple such as button. For more
complex events, or when the underlying widgets are more complicated, this pattern has
to be modified/extended:

• When values are handled by the action of the widget, it is not always possible to
peek into the future of these values. One possible improvement is to proceed in two
steps. When entering the feedforward mode, an envisioned value must be produced
(decided at design time for instance) and when the user really performs the action,
a substitution must be done between the envisioned value and the real value. In the
feedforward behavior, this can be done by moving tokens (if it was the case in the
login example, the first token put in place LoggedIn by transition f1login would
have a design time envisioned value, and when f3login would be fired, this token
would have been removed and replaced by one holding the correct value).

• When the widget is more complex (in our case, the complexity is related to the event
production), extra event handlers may be introduced. For instance, when using a
classical textbox, one may be interested by the end of the text edition (validation) and
not by the whole process of typing in the text. In this case, in the standard behavior of
the application, the only handled event would be the last one (for instance, the event
actionPerformed of the JTextField in Java Swing). On the feedforward
behavior side, any text change may be relevant to allow the rendering of text filtering.

Fortunettes requires enhancing widgets with extra means to allow rendering feedfor-
ward states and to trigger dedicated events. In our implementation using Java Swing
widgets, we embed them within a specialized decorator, but there are many other
implementation options at widget level or at application level.
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4.3 Application of the Modeling Principle to the Illustrative Example

This Section presents the ICOmodels for both the standard application and its Fortunettes
enhancement. For each model, we present the behavioral part and the two user interface
description functions: the activation part and the rendering part.

Standard Behavior
Figure 6 presents the entire behavior of the illustrative example. It may be divided into
two parts: the upper part is dedicated to login actions and the lower part is dedicated to
the message handling.

Fig. 6. Behavior of the Login example using the ICO formal description technique.

The upper part of Fig. 6 models what has been explained in the beginning of the
Section (see Fig. 4) to introduce Fortunettes and the modelling approach, including
the complete behavior of the application i.e. its functional code (inside the transitions).
Another difference is the way back from place LoggedIn to place LoggedOut when
logging out that clears the edited message (modification of the value of the token held
by place MessageToBeSent).

The lower part of Fig. 6 is dedicated to the message editing and to send it. Sending
it (transition sendAndClear) can only occur if the message is not empty (precondi-
tion !message.isEmpty()). When it occurs, the token held by place Message-
ToBeSent is destroyed and a new token (with an empty string) is set to that place.
The message editing is represented by the transition editMessage that receives an
event called edit, and this event holds a string value called sourceMessage. This
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sourceMessage is then filtered resulting in a stringmessage that only contains char-
acters that belongs to [a-z] and [A-Z] (For instance “a1b2c3”will be transformed
into “abc”) by the execution of the function replaceAll.

Table 1 represents the activation function of the application. It relates the event pro-
duction from the application and event handlers described using ICO. When the event
occurs, the corresponding transition is fired. If the transition is not available, the corre-
sponding event source must be disabled. This part of the functioning is assumed by the
activation rendering method (last column of Table 1) that is provided by the application:
for instance, setLoginEnabled changes the enabling of the button Login.

Table 1. Activation function for the ICO model of the Login example.

User event Event handler Activation rendering

Edit editMessage setEditEnabled

Login login setLoginEnabled

Logout logout setLogoutEnabled

Send sendAndClear setSendEnabled

Table 2 represents the rendering function of the application. It relates any state change
within the application behavior to rendering methods call. For instance, when a token
enters placeMessageToBeSent, the string of thismessage is set in the text boxwidget
by calling the method showMessage.

Table 2. Rendering function for the ICO model of the Login example.

ObCS node name ObCS event Rendering method

MessageToBeSent marking_reset showMessage

MessageToBeSent token_enter showInitialMessage

Feedforward Behavior
Figure 7 illustrates how feedforward information can be displayed using Fortunettes.
Figure 8, Table 3 and Table 4 fully describe the feedforward part of the application. The
behavior presented by Fig. 8 is structured similarly to the standard behavior, the upper
part being dedicated to the login actions and the lower part, to the message editing.

This Fortune Net behaves according to the pattern explained in the previous Section
with the particularity of the filtering of the text while it is being typed in and not only at
the end of the interaction with the text box (transition f4editMessage in the lower
part of Fig. 8). This allows to present to the user what will happen to the edited value if
it is validated (e.g. press ENTER), as illustrated by Fig. 7.

Table 3 presents the activation of the feedforward behavior of the application. The
interesting part of this function is that the activation rendering is not related to the
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Fig. 7. Illustration of the text filtering while typing in feedforward mode

Fig. 8. The Fortune Net describing the feedforward behavior of the Login example using the ICO
formal description technique.

immediate availability of the events, but to their availability in the future. Therefore, it
does not directly impact the application widgets but only calls functions that have been
added to render their Fortunettes appearance. For instance, on Fig. 7, if the edited text
is validated (e.g. pressing ENTER), the button “Send and Clear” will become available
(represented by the rectangle around it, in the background).

Table 4presents the rendering functionof the feedforwardbehavior of the application.
This function first aims at making the application entering in feedforward mode (a token
enters any of the places prefixed f) or at exiting the feedforward mode (a token exits any
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Table 3. Activation function for the ICO model of the feedforward behavior of the example.

User event Event handler Activation rendering

Edit editMessage setFortunettesEditEnabled

Login login setFortunettesLoginEnabled

Logout logout setFortunettesLogoutEnabled

Send sendAndClear setFortunettesSendEnabled

of the paces prefixed by f). This function ensures too that when a new message is under
editing, it is rendered on the feedforward part of the interface (each time a token enters
the place MessageToBeSent, showFortunettesMessage is called modifying
what is rendered in the ENTER rectangle of the text box as illustrated on Fig. 7).

Table 4. Rendering function for the ICO model of the feedforward behavior of the example.

ObCS node name ObCS event Rendering method

MessageToBeSent marking_reset showFortunettesMessage

MessageToBeSent token_enter showFortunettesInitialMessage

fEditMessage token_enter startRenderFortunettes

fEditMessage token_exit stopRenderFortunettes

fLogin token_enter startRenderFortunettes

fLogin token_exit stopRenderFortunettes

fLogout token_enter startRenderFortunettes

fLogout token_exit stopRenderFortunettes

fSendAndClear token_enter startRenderFortunettes

fSendAndClear token_exit stopRenderFortunettes

This interesting joint behavior between the standard behavior of the application and
its Fortunettes ones is highlighted on Fig. 7. Indeed, when the user types some text in, it
is rendered directly in the text box while the Fortunettes rendering displays the text, as
it will appear if the validation key is pressed. In the case of the login application, we see
that all the non-textual characters will be removed and the current text “He43llo” will
appear as “Hello” in the future.

5 Formal Analysis on the Illustrative Example

This Section is dedicated to the formal analysis of the models presented above. The fact
that we produce two different models for the same application (the standard application
model and the Fortune Net) has multiple implications. First, the standard application
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models must exhibit some properties and it is important to check that they are true.
Second, the Fortune Net also needs to exhibit some properties (e.g. each time the user
triggers the “peek into the future” there must be two actions available: one to go into
that peeked future and one to come back to the current present. Third, the Fortune
Nets must implement a “similar” behavior as the standard application and thus we must
demonstrate their compatibility. For instance, it is important to demonstrate that all the
actions available in the models of the standard application are available in the Fortune
Net. This is only an example of the generic properties that have to be checked when a
feedforward usability function is added to an application.

With ICOs, as detailed in [21] and [17], there are two different techniques:

– The analysis of the underlying Petri net using results from Petri nets theory. This anal-
ysis can be performed using methods and algorithms from the Petri nets community
such as the ones presented in [14].

– The analysis of the high-level Petri net (ICO) but this requires manual demonstrations
as some of the properties are undecidable [8].

Due to space constraints, we only present here properties that are based on the
underlying Petri net model. Some interesting results demonstrate that the high-level
nature of the Petri netswith objects only reduce the availability of transitions (for instance
when they feature pre-conditions) and thus in order for the high-level Petri net to be live,
the underlying Petri net must be live [4].

5.1 Formal Analysis of the Model of the Standard Behavior (Fig. 6)

Table 5 presents the list of traps and siphons of the model in Fig. 61. In a Petri net a
siphon is a set of places that never gain tokens whatever transition is fired while a trap
is a set of places that never lose tokens [7]. The fact that all the places in the model are
both traps and siphons demonstrate that the number of tokens in the model will remain
the same as the one in the initial state i.e. two tokens (see Fig. 6).

Table 5. Siphons and Traps from the standard behavior of the application.

Siphons Traps

MessageToBeSent MessageToBeSent

LoggedIn, LoggedOut LoggedIn, LoggedOut

Table 6 analysis is based on the calculation of transition invariants and place invari-
ants. As can be seen all the places in the model belong to a place invariant which means
that the total number of tokens in the places of the models will remain the same. One
interesting piece of information is that place MessageToBeSent is a single place in a

1 The computing of the results in those tables was done using Petshop tool and are not presented
due to space constraints. How to make such computing is presented in [7].
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P-invariant. This means that whatever transition is fired the number of tokens in that
place will always be the same as the one of the initial marking. In the current example,
this means that the place MessageToBeSent will always be marked by a single token.

Table 6. Transitions and Place Invariants from the standard behavior of the application.

T-Invariants P-Invariants

1 sendAndClear 1 LoggedIn, 1 LoggedOut

1 editMessage 1 MessageToBeSent

1 login, 1 logout

In terms of behavior, transitions login and transition logout belong to the same t-
invariant which means that, if they can be made available from the initial state, there
always exists a sequence of transitions in the Petri net to make them available. Their
connection with the P-invariant {1 LoggedIn, 1 LoggedOut} (with a bounded value of
one token) demonstrates that always one of the two transition will be available and they
will never be available at the same time.

5.2 Formal Analysis of the Fortune Net (Fig. 8)

We will not detail the analysis of the Fortune Net, but it is important to check that the
properties true in the application model are still holding in the Fortune Net.

If we take as example the property of the mutual exclusion of login and logout
transitions, we can easily see in Table 7 and Table 8 that the places and the transitions
belong are also listed in siphons, traps, P-invariants and T-invariants.

Table 7. Siphons and Traps from the feedforward behavior of the application.

Siphons Traps

MessageToBeSent MessageToBeSent

LoggedIn, LoggedOut LoggedIn, LoggedOut

Of course, theFortuneNet ismore complex and should also exhibit specificproperties
related to its own semantics. A very simple but important one is that whenever the user
triggers a transition to peek into the future (name starting with f1) immediately after a
transition to come back to present (name starting with f2) and a transition to go into
the future (name starting with f3) will be available. The analysis results in Table 8
demonstrate that a Fortune Net always verifies this fundamental property (any of such
transitions is always in a T-Invariant with each other).
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Table 8. Transitions and Place Invariants from the feedforward behavior of the application.

T-Invariants P-Invariants

1 f4editMessage 1 LoggedIn, 1 LoggedOut

1 f1logout, 1 f3logout, 1 login 1 MessageToBeSent

1 f1login, 1 f2login

1 editMessage

1 f1editMessage, 1 f2editMessage

1 f1sendAndClear, 1 f3sendAndClear

1 f1sendAndClear, 1 f2sendAndClear

1 f1logout, 1 f2logout

1 login, 1 logout

1 f1login, 1 f3login, 1 logout

1 f1login, 1 f1logout, 1 f3login, 1 f3logout

1 sendAndClear

1 f1editMessage, 1 f3editMessage

1 f1login, 1 f1logout, 1 f2login, 1 f3logout, 1 login

1 f1login, 1 f2login, 1 login, 1 logout

6 Related Work

As highlighted in [20] many formal approaches to support the design, specification and
verification of interactive systems have been proposed. That book chapter highlights
four criteria to compare those approaches: 1) Modeling coverage (how much of the
interactive systems can the notation describe); 2) Properties (and their type) supported;
3) Application of the methods in which domain; 4) Scalability (is the notation able to
deal with large scale interactive systems).

With respect to the modelling need of Fortunettes, the expressive power of the nota-
tion to be used heavily depends on the interactive application itself and does not require
specific modelling power. With that respect, if the interactive application does not fea-
ture concurrent behavior, dynamic instantiation of objects and does not exhibit quantita-
tive time behavior, automata would be adequate for describing Fortunettes behavior as
demonstrated in [6]. If more complex behaviors need to be represented, more expression
power will be required. The Table 1 from the book chapter [20] would be then of great
help to select the modeling notation.

As Fortunettes feedforward concept is meant to be applied in a systematic way to all
the interactions in an interactive system, Fortune Nets need to cover all the aspects of
the interactive (from the low-level interaction technique to the functional core according
to the MIODMIT architecture [13]. We have only presented here Fortunettes at the
application level, but all the layers of the architectures should be taken into account.
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7 Conclusion and Perspectives

While research in the field of HCI focuses on adding more functionalities to the user
interface, the interaction techniques and the interactive applications to improve usability
and user experience, very little work is spent on transferring these improved interactions
to the developers of interactive systems. For instance, papers proposing bubble cursor for
improving target acquisition [10] or marking menus [11] to improve command selection
do not present means for engineering these interaction techniques in a reliable and
systematic way.

This paper has proposed an engineering method based on formal methods to support
the systematic integration of Fortunettes concepts to provide interactive application with
feedforward mechanisms. While the graphical and interaction design of Fortunettes
might be improved and could be subject of future research,we have demonstrated that the
use of a Petri nets-based approach limits the complexity of adding Fortunettes behavior
to an existing application.We have also demonstrated that a formal approach can provide
benefits in ensuring that the applicationwith the additional feedforward behavior remains
behaviorally compatible with the initial application.

The work presented in the present paper leads to extensions that should be addressed
in future work. First, the current design of Fortunettes only deals withWIMP interaction
techniques based on a set of identified widgets. While this can be seen as a strong
limitation for current user interfaces targeting at better user experience, it is important to
note that many applications are still widget-based. In some critical domains it is even not
possible to embed other types of interfaces as required by the ARINC 661 specification
standard [1] for user interfaces of cockpits of large civil aircrafts. We have previously
worked on the formal description of User Application, user interface widgets and servers
using Petri net based description [2] and that early work can directly benefit from the
work presented in the paper. This means that adding the feedforward usability function
to those user applications will result in very limited work (as the Fortune Net is built
upon the original behavior and is described with the same language) and would come
with assurance means to guarantee their correct behavior.

Second, the current behavior of Fortunettes is to offer the possibility to the user to
look only one step into the future. The model-based behavior presented in the paper
could be exploited further to look into several step or even to look at the eventual end
of the execution, as introduced in [17]. For instance it would be possible to identify a
widget (via formal analysis) that would become unavailable forever in five steps from the
current state of the application. While graphical design and interaction will be clearly
a difficult challenge, the engineering of such applications could be reachable via the
analysis of the formal models.
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