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Abstract. Current science communication has a number of drawbacks
and bottlenecks which have been subject of discussion lately: Among oth-
ers, the rising number of published articles makes it nearly impossible to
get a full overview of the state of the art in a certain field, or reproducibil-
ity is hampered by fixed-length, document-based publications which nor-
mally cannot cover all details of a research work. Recently, several ini-
tiatives have proposed knowledge graphs (KGs) for organising scientific
information as a solution to many of the current issues. The focus of
these proposals is, however, usually restricted to very specific use cases.
In this paper, we aim to transcend this limited perspective by presenting
a comprehensive analysis of requirements for an Open Research Knowl-
edge Graph (ORKG) by (a) collecting daily core tasks of a scientist, (b)
establishing their consequential requirements for a KG-based system, (c)
identifying overlaps and specificities, and their coverage in current solu-
tions. As a result, we map necessary and desirable requirements for suc-
cessful KG-based science communication, derive implications and outline
possible solutions.

Keywords: Scholarly communication · Research Knowledge Graph ·
Design science research · Requirements analysis

1 Introduction

Today’s scholarly communication is a document-centred process and as such,
rather inefficient. Scientists spend considerable time in finding, reading and
reproducing research results from PDF files consisting of static text, tables, and
figures. The explosion in the number of published articles [12] aggravates this
situation further: It gets harder and harder to stay on top of current research,
that is to find relevant works, compare and reproduce them and, later on, to
make one’s own contribution known for its quality.
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Some of the available infrastructures in the research ecosystem already use
knowledge graphs (KG)1 to enhance their services. Academic search engines,
for instance, such as Microsoft Academic Knowledge Graph [24] or Literature
Graph [3] employ metadata-based graph structures which link research articles
based on citations, shared authors, venues and keywords.

Recently, initiatives have promoted the usage of KGs in science commu-
nication, but on a deeper, semantic level [4,32,37,48,51,54]. They envision
the transformation of the dominant document-centred knowledge exchange to
knowledge-based information flows by representing and expressing knowledge
through semantically rich, interlinked KGs. Indeed, they argue that a shared
structured representation of scientific knowledge has the potential to alleviate
some of the science communication’s current issues: Relevant research could be
easier to find, comparison tables automatically compiled, own insights rapidly
placed in the current ecosystem. Such a powerful data structure could, more
than the current document-based system, also encourage the interconnection
of research artefacts such as datasets and source code much more than cur-
rent approaches (like DOI references etc.); allowing for easier reproducibility
and comparison. To come closer to the vision of knowledge-based information
flows, research articles should be enriched and interconnected through machine-
interpretable semantic content. Jaradeh et al.’s study [37] indicates that authors
are also willing to contribute structured descriptions of their research articles.

The work of a researcher is manifold, but current proposals usually focus on
a specific use case (e.g. the above-named examples focus on enhancing academic
search). In this paper, we provide a detailed analysis of common work tasks
in a scientist’s daily life and analyse (a) how they could be supported by an
ORKG, (b) what requirements result for the design of (b1) the KG and (b2) the
surrounding system, (c) how different use cases overlap in their requirements
and can benefit from each other. Our analysis is led by the following research
questions:

1. What functionalities should be provided by ORKG interfaces?
(a) Which user interfaces are necessary?
(b) Which machine interfaces are necessary?

2. What requirements can be defined for the underlying ontologies?
(a) Which granularity of information representation is needed?
(b) To what degree is domain specialisation needed?

3. What requirements can be defined for the instance data?
(a) Which approaches (human vs. machine) are suitable to populate the KG?
(b) Which coverage of research artefacts is necessary for the instance data?
(c) Which quality is necessary for the instance data?

1 Acknowledging that knowledge graph is vaguely defined, we adopt the following def-
inition: A knowledge graph (KG) consists of (1) an ontology describing a conceptual
model, and (2) the corresponding instance data following the constraints posed by
the ontology. The construction of a KG involves ontology design and population with
instances.
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We follow the design science research (DSR) methodology [33]. In this study, we
focus on the first phase of DSR conducting a requirements analysis. The objec-
tive is to chart necessary (and desirable) requirements for successful KG-based
science communication, and, consequently, provide a map for future research.

The remainder of the paper is organised as follows. Section 2 summarises
related work on research knowledge graphs, scientific ontologies and methods for
KG construction. The requirements analysis is presented in Sect. 3, while Sect. 4
discusses implications and possible approaches for ORKG construction. Finally,
Sect. 5 concludes the requirements analysis and outlines areas of future work.

2 Related Work

This section provides a brief overview of (a) existing research KGs, (b) ontologies
representing scholarly knowledge, and (c) approaches for KG construction.

2.1 Research Knowledge Graphs

Academic search engines (e.g. Google Scholar, Microsoft Academic, Semantic-
Scholar) exploit graph structures such as the Microsoft Academic Knowledge
Graph [24], SciGraph [68], or the Literature Graph [3]. These graphs interlink
research articles through metadata, e.g. citations, authors, affiliations, grants,
journals, or keywords.

To help reproducing research results, initiatives such as Research Graph [2],
Research Objects [7] and OpenAIRE [48] interlink research articles with research
artefacts such as datasets, source code, software, and presentation videos. Schol-
arly Link Exchange (Scholix) [16] aims to create a standardised ecosystem to
collect and exchange links between research artefacts and literature.

Some approaches were proposed to interlink articles at a more semantic level:
Paperswithcode.com is a community-driven effort to link machine learning arti-
cles with tasks, source code and evaluation results to construct leaderboards.
Ammar et al. [3] interlink entity mentions in abstracts with DBpedia [43] and
Unified Medical Language System (UMLS) [10], and Cohan et al. [17] extend
the citation graph with semantic citation intents (e.g. cites as background or as
used method).

Various scholarly applications benefit from semantic content representation,
e.g. academic search engines by exploiting general-purpose KGs [67], and graph-
based research paper recommendation systems [8] by utilising citation graphs
and mentioned genes. However, the coverage of science-specific concepts in
general-purpose KGs is rather low [3], e.g. the task “geolocation estimation of
photos” from Computer Vision is neither present in Wikipedia nor in CSO (Com-
puter Science Ontology) [59].

2.2 Scientific Ontologies

Various ontologies have been proposed to model metadata such as bibliographic
resources and citations [53]. Iniesta and Corcho [58] reviewed ontologies to
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describe scholarly articles. In the following, we describe some ontologies that
conceptualise the semantic content in research articles.

Several ontologies focus on rhetorical [19,30,66] (e.g. Background, Methods,
Results, Conclusion), argumentative [45,63] (e.g. claims, contrastive and com-
parative statements about other work) or activity-based [54] (e.g. sequence of
research activities) aspects and elements of research articles. Others describe
scholarly knowledge with interlinked entities such as problem, method, the-
ory, statement [15,32], or focus on the main research findings and character-
istics of research articles described in surveys with concepts such as problems,
approaches, implementations, and evaluations [25,64].

There are various domain-specific ontologies, for instance, mathematics [42]
(e.g. definitions, assertions, proofs) and machine learning [40,49] (e.g. dataset,
metric, model, experiment). The EXPeriments Ontology (EXPO) is a core ontol-
ogy for scientific experiments conceptualising experimental design, methodology,
and results [61].

Taxonomies for domain-specific research areas support the characterisation
and exploration of a research field. Salatino et al. [59] provide an overview, e.g.
Medical Subject Heading (MeSH), Physics Subject Headings (PhySH), Com-
puter Science Ontology (CSO). Gene Ontology [1] and Chemical Entities of
Biological Interest (CheBi) [21] are KGs for genes and molecular entities.

2.3 Construction of Knowledge Graphs

Automatic Construction from Text: Petasis et al. [55] provide a review on ontol-
ogy learning, that is ontology creation from text, while Lubani et al.[47] review
ontology population systems. Pajura and Singh [56] provide an overview of the
involved tasks for KG population: (a) knowledge extraction to extract a graph
from text with entity extraction and relation extraction, and (b) graph construc-
tion to clean and complete the extracted graph, as it is usually ambiguous,
incomplete and inconsistent. Coreference resolution [46] clusters different men-
tions of the same entity and entity linking [41] maps them to entities in the KG.
For taxonomy population Salatino et al. [59] provide an overview of methods
based on rule-based natural language processing (NLP), clustering and statis-
tical methods. In particular, the Computer Science Ontology (CSO) has been
populated automatically from research articles [59].

Information Extraction from Scientific Text: Nasar et al. [50] provide a survey
about scientific information extraction. Beltagy et al. [9] present benchmarks for
several datasets.

There are datasets which are annotated at sentence level for several domains,
e.g. biomedical [22,38], computer graphics [28], computer science [18], chem-
istry and computational linguistics [63]. They focus either on the rhetorical
structure in abstracts [18,22,38] or full articles [28,45], or on the argumenta-
tive structure of full articles [63]. The datasets differentiate between five and
twelve concept classes (e.g. Background, Objective, Results). On abstracts and
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full articles machine learning approaches achieve an F1 score of 83–92% [18] or
51–80% [28,44], respectively.

More recent corpora, annotated at phrasal level, aim at constructing a
fine-grained KG from scholarly abstracts with the tasks of concept extrac-
tion [5,13,31,46], relation extraction [5,29,46], and coreference resolution [46].
They cover several domains, e.g. computational linguistics [29,31]; computer
science, material sciences, and physics [5]; machine learning [46]; or a set of ten
scientific, technical and medical domains [13]. The datasets differentiate between
four to seven concept classes (like Task, Method, Tool) and between two to seven
relation types (like used-for, part-of, evaluate-for). Concept extraction, corefer-
ence resolution and relation extraction achieve an F1 score of 45–89% [5,9,13],
48% [46] and 28–50% [5,29,46], respectively, and the inter-coder agreement is
60–76% [5,13,46], 68% [46] and 60%–90% [5,29,31,46], respectively. This indi-
cates, that these tasks are not only difficult for machines but also for humans.

Manual Curation: WikiData [65] is one of the most popular KGs with seman-
tically structured, encyclopaedic knowledge curated manually by a community.
As of March 2020, WikiData comprises 80M entities curated by almost 25.000
active contributors. The community also maintains a taxonomy of categories and
“infoboxes” which define common properties of certain entity types. Paperswith-
code.com is a further community-driven effort to interlink machine learning arti-
cles with tasks, source code and evaluation results. KGs such as Gene Ontol-
ogy [1] or Wordnet [26] are curated by domain experts. Research article submission
portals such as easychair.org enforce the submitter to provide machine-readable
metadata. Librarians and publishers tag new articles with keywords and sub-
jects [68]. Virtual research environments enable the execution of data analysis on
interoperable infrastructure and store the data and results in KGs [62].

3 Requirements Analysis

As the discussion of related work reveals, existing research KGs focus on specific
use cases (e.g. improve search engines, help to reproduce research results) and
mainly manage metadata and research artefacts about articles. We envision a KG
in which research articles are interlinked through a deep semantic representation
of their content to enable further use cases. In the following, we formulate the
problem statement and describe our research method. This motivates our use
case analysis in Sect. 3.1, from which we derive requirements for an ORKG.

Problem Statement: Scholarly knowledge is very heterogeneous and diverse.
Therefore, an ontology that conceptualises scholarly knowledge comprehensively
does not (and unlikely will) exist. Besides, due to the complexity of the task, the
population of comprehensive ontologies requires domain and ontology experts.
Current automatic approaches can only populate rather simple ontologies and
achieve moderate accuracy (see Sect. 2.3). On the one hand, we desire an ontol-
ogy that can comprehensively capture scholarly knowledge and instance data with
high quality and coverage. On the other hand, we are faced with a “knowledge
acquisition bottleneck”.
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Research Method: To illuminate the above problem statement we perform a
requirements analysis. We follow the design science research (DSR) method-
ology [14,35]. The requirements analysis is a central phase in DSR, as it is
the basis for design decisions and selection of methods to construct effective
solutions systematically [14]. DSR’s objective in general is the innovative, rig-
orous and relevant design of information systems for solving important business
problems or the improvement of existing solutions [14,33]. To elicit require-
ments, we studied guidelines for systematic literature reviews [27,39,52] and
interviewed members of the ORKG team at TIB (https://projects.tib.eu/orkg/
project/team/), who are software engineers and researchers in the field of com-
puter science and environmental sciences. Based on the requirements, we elabo-
rate possible approaches to construct an ORKG, which were identified through
a literature review (see Sect. 2.3). To verify our assumptions on the presented
requirements and approaches, ORKG team members reviewed them.

3.1 Overview of the Use Cases

We define functional requirements with use cases [11]. A use case describes the
interaction between a user and the system from the user’s perspective to achieve
a certain goal. As a motivating scenario it also guides the design of a supporting
ontology [20].

ORKG

obtain deep
understanding

researcher

virtual research environments

article repositories e.g. DataCite

e.g. Dataset Search

e.g. GitHub

e.g. beaker.org

e.g. WikiData

e.g. Wikipedia,
TIB AV-portal

data repositories

code repositories

external knowledge bases

scholarly portals

find related work
get research field

overview

assess relevance
extract relevant

information

get recommended
articles

reproduce results

Fig. 1. UML use case diagram for the main use cases between the actor researcher, an
Open Research Knowledge Graph (ORKG), and external systems.

There are many use cases (e.g. literature reviews, plagiarism detection, peer
reviewer suggestion) and several stakeholders (e.g. researchers, librarians, peer
reviewer, practitioners) that may benefit from an ORKG. In this study, we
focus on use cases that support researchers (a) conducting literature reviews,
(b) obtaining a deep understanding of a research article and (c) reproducing
research results. A full discussion of all possible use cases of graph-based knowl-
edge management systems in the research environment is far beyond the scope of
this article. With the chosen focus, we hope to cover the most frequent, literature-
oriented tasks of scientists. Figure 1 depicts the main identified use cases, which
are described briefly in the following. Please note that we focus on how semantic
content can improve these use cases and not further metadata.

https://projects.tib.eu/orkg/project/team/
https://projects.tib.eu/orkg/project/team/
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Get Research Field Overview: Survey articles provide an overview of a particu-
lar research field, e.g. a certain research problem or a family of approaches. The
results in such surveys are sometimes summarised in structured and compara-
tive tables (an approach usually followed in domains such as computer science,
but not as systematically practised in other fields). However, once survey arti-
cles are published they are no longer updated. Moreover, they usually represent
only the perspective of the authors, i.e. very few researchers in the field. To sup-
port researchers to obtain an up-to-date overview of a research field, the system
should maintain such surveys in a structured way, and allow for dynamics and
evolution. A researcher interested in such an overview should be able to search
or to browse the desired research field. Then, the system should provide related
articles and available overviews, e.g. in a table or a leaderboard chart. While
the user interface shows tabular, leaderboards, or other visual representations
the backend should semantically represent information to allow for exploiting
overlaps in conceptualisations between research problems or fields.

Find Related Work: Finding relevant research articles is a daily core activity of
researchers. It should be possible to pose queries for related work, which can be
fine-grained or broad search intents. Systems should preferably support natu-
ral language queries as approached by semantic search and question answering
engines [6]. The system has to return a set of relevant articles.

Assess Relevance: Given a set of relevant articles the researcher has to assess
whether the articles match the criteria of interest. Usually researchers skim
through the title and abstract. Sometimes, the introduction and conclusions
have to be considered. However, this is usually cumbersome and time-consuming.
Presenting the researcher only the most important zones in the article in a
structured way can boost this process. This includes, for instance, text passages
that describe the problem tackled in the research work, the employed meth-
ods or materials, or the yielded results. Also, faceted drill-down methods based
on the properties of semantic descriptions of research approaches will empower
researchers to quickly filter and zoom into the most relevant literature.

Extract Relevant Information: To tackle a particular research question, the
researcher has to extract relevant information from research articles. Such infor-
mation is usually compiled in written text or comparison tables in a related work
section or survey articles. For instance, for the question Which datasets exist for
scientific sentence classification? a researcher who focuses on a new annotation
study could be interested in (a) domains covered by the dataset and (b) the
inter-coder agreement. Another researcher might follow the same question but
with a focus on machine learning could be interested in (c) evaluation results and
(d) feature types used. The system should support the researcher with tailored
information extraction from a set of research articles: (1) the researcher defines
a data extraction form as proposed in systematic literature reviews [39] (e.g. the
above fields (a)–(d)) and (2) the system presents the extracted information for
the corresponding data extraction form and articles in a table.
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Get Recommended Articles: When the researcher focuses on a particular article,
further related articles should be recommended by the system, for instance,
articles that address the same research problem or apply similar methods.

Obtain Deep Understanding: The system should help the researcher to obtain a
deep understanding of a research article (e.g. equations, algorithms, diagrams,
datasets). For this purpose, the system should interlink the article with artefacts
such as conference videos, presentations, source code, datasets, etc., and visualise
the artefacts appropriately. Also text passages can be interlinked, e.g. method
explanations in Wikipedia, source code snippets implementing algorithms or
equations described in the article.

Reproduce Results: The system should provide the researcher links to all neces-
sary artefacts to reproduce research results, e.g. datasets, source code, virtual
research environments, materials describing the study, etc. Further, the system
should maintain semantic descriptions of domain-specific and standardised eval-
uation protocols and guidelines.

3.2 Knowledge Graph Requirements

The non-functional requirements for the respective use cases are discussed in the
light of the following dimensions.

1. Domain specialisation of the ontology: How domain-specific should the con-
cepts be in the ontology? Various ontologies (e.g. [13,54]) propose domain
independent concepts (e.g. Process, Method, Material). In contrast, Klam-
panos et al. [40] present a very domain-specific ontology for artificial neural
networks.

2. Granularity of the ontology: Which granularity is required to conceptualise
scholarly knowledge? For instance, the annotation schemes for scientific cor-
pora (see Sect. 2.3) have a rather low granularity, as they do not have more
than 10 classes and 10 relation types. In contrast, various ontologies (e.g
[32,54]) with more than 20–35 classes and over 20–70 relations and proper-
ties are fine-grained and have a relatively high granularity.

3. Coverage of the instance data: Given an ontology, to which extent do all
possible instances in all research articles have to be represented in the KG?
For instance, given an ontology with a class “Task”, the instance data for
that ontology would have a high coverage if all tasks mentioned in all research
articles are present.

4. Quality of the instance data: Given an ontology, which quality is necessary for
the corresponding instances? In a KG with high quality all present instances
must conform to the ontology and reflect the content of the research articles
properly, e.g. an article is correctly assigned to the task addressed in the
article, the F1 score in the evaluation results is correctly extracted, etc.

Next, we discuss the seven main use cases with regard to the required level of
ontology domain specialisation and granularity, as well as coverage and quality
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Table 1. Requirements and approaches for the main use cases. The upper
part describes the minimum requirements for the ontology (domain specialisation and
granularity) and the instance data (coverage and quality). The bottom part provides
possible approaches for manual, automatic and semi-automatic curation of the KG for
the respective use cases. “X” indicates that the approach is suitable for the use case
while “(x)” means that the approach is only appropriate with human supervision. The
left part (delimited by the vertical triple line) groups use cases suitable for manual,
and the right side for automatic approaches. Vertical double lines group use cases with
similar requirements.

Extract

relevant

info

Research

field

overview

Deep

under-

standing

Reproduce

results

Find

related

work

Recom-

mend

articles

Assess

relevance

Ontology Domain

specialisation

high high med med low low med

Granularity high high med med low low low

Instance

data

Coverage low low low med high high med

Quality high high high high low low med

Manual

curation

Maintain

terminologies

- X - - X X -

Define

templates

X X - - - - -

Fill in

templates

X X X X - - -

Maintain

overviews

X X - - - - -

Automatic

curation

Entity/relation

extraction

(x) (x) (x) (x) X X X

Entity linking (x) (x) (x) (x) X X X

Sentence

classification

(x) - (x) - - - X

Template-based

extraction

(x) (x) (x) (x) - - -

Cross-modal

linking

- - (x) (x) - - -

of instance data. Table 1 summarises the requirements for the use cases along
the four dimensions at ordinal scale. The use cases are grouped together, when
they have (1) similar justifications for the requirements, and (2) a high overlap
in ontology concepts and instances.

Extract Relevant Information and Get Research Field Overview: The informa-
tion to be extracted from relevant research articles for a data extraction form is
very heterogeneous and depends highly on the intent of the researcher and the
research questions. Thus, the ontology has to be domain-specific and fine-grained
to offer all possible kinds of desirable information. In addition, the provided infor-
mation has to be of high quality, e.g. a provided F1 score of an evaluation result
must not be wrong. However, missing information for certain questions in the
KG may be tolerable for a researcher.
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Obtain Deep Understanding and Reproduce Results: The provided information
for these use cases has to be of high quality (e.g. accurate links to dataset, source
code, videos, articles, research infrastructures). The ontology for representing
default artefacts can be rather domain-independent (e.g. Scholix [16]). How-
ever, semantic representation of evaluation protocols require domain-dependent
ontologies (e.g. EXPO [61]). Missing information is tolerable for these use cases.

Find Related Work and Get Recommended Articles: When searching for related
work, it is essential not to miss relevant articles. Previous studies revealed that
more than half of search queries in academic search engines refer to scientific enti-
ties [67] and the coverage of scientific entities in KGs is rather low [3]. Despite
the low coverage, Xiong et al. [67] could improve the ranking of search results
by exploiting KGs. Hence, the instance data for the “find related work” use case
should have high coverage with fine-grained scientific entities. However, seman-
tic search engines employ latent representations of KGs and text (e.g. graph
and word embeddings) [6]. Since a non-perfect ranking of the search results is
tolerable for a researcher, lower quality of the instance data is acceptable. Fur-
thermore, due to latent feature representations, the ontology can be kept rather
simple and domain-independent. For instance, the STM corpus [13] proposes
four domain-independent concepts. Graph- and content-based research paper
recommendation systems [8] have similar requirements since they also leverage
latent feature representations, require fine-grained scientific entities, and non-
perfect recommendations are tolerable.

Assess Relevance: To help the researcher to assess the relevance of an article
according to her needs, the system should highlight the most essential zones in
the article to get a quick overview. The coverage and quality of the presented
information must not be too low, as otherwise the user acceptance may suf-
fer. However, it can be suboptimal, since it is acceptable for a researcher when
some of the highlighted information is not essential or when some important
information is missing. The ontology to represent essential information should
be rather domain-specific and quite simple (cf. ontologies for scientific sentence
classification in Sect. 2.3).

4 Implications for ORKG Construction

In this section, we discuss the implications for the design and construction of
an ORKG and outline possible approaches, which are mapped to the use cases
in Table 1. Based on the discussion in the previous section, we can subdivide
the use cases into two groups: (1) requiring high quality and high domain spe-
cialisation with only low requirements on the coverage (left side in Table 1),
and (2) requiring high coverage with rather low requirements on the quality and
domain specialisation (right side in Table 1). The first group requires manual
approaches while the second group could be accomplished with fully automatic
approaches. However, manually curated data can also support use cases with
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automatic approaches, and vice versa. Besides, automatic approaches can com-
plement manual approaches by providing suggestions in user interfaces.

<<Interface>>
TemplateInformationExtractor

+ getTemplate():Template
+ couldBeRelevant(a: Article): boolean
+ extractTemplateFields(p:Article):TemplateInstance

fields

Template

+ name
+ description

Field

+ name
+ description

type

values
TemplateInstance

type

FieldValue

+ value: Object
propertiesArticle

FieldType

Fig. 2. Conceptual meta-model in UML for templates and interface design for an exter-
nal template-based information extractor.

4.1 Manual Approaches

Ontology Design: The first group of use cases requires rather domain-specific and
fine-grained ontologies. We suggest to develop novel or reuse ontologies that fit
the respective use case and the specific domain (e.g. EXPO [61] for experiments).
Moreover, appropriate and simple user interfaces are necessary for efficient and
easy population.

However, such ontologies can evolve with the help of the community, as
demonstrated by WikiData and Wikipedia with “infoboxes” (see Sect. 2.3).
Therefore, the system should enable the maintenance of templates, which are
pre-defined and very specific forms consisting of fields with certain types (see
Fig. 2). For instance, to automatically generate leaderboards for machine learn-
ing tasks a template would have the fields Task, Model, Dataset and Score, which
can then be filled in by a curator for articles providing such kind of results in
a user interface generated from the template. Such an approach is also called
meta-modelling [11], as the meta-model for templates enables the definition of
concrete templates, which are then instantiated for articles.

Knowledge Graph Population: Several user interfaces are required to enable man-
ual population: (1) populate semantic content for a research article by (1a) choos-
ing relevant templates or ontologies and (1b) fill in the values; (2) terminology
management (e.g. domain-specific research fields); (3) maintain research field
overviews by (3a) assigning relevant research articles to the research field, (3b)
define corresponding templates and (3c) fill in the templates for the relevant
research articles.

Further, the system should also provide APIs to enable population by third-
party applications, e.g. (i) submission portals such as easychair.org during sub-
mission of an article; (ii) authoring tools such as overleaf.com during writing;
(iii) virtual research environments [62] to store evaluation results and links to
datasets and source code during experimenting and data analysis.

To encourage crowd-sourced content, we see the following options: (a) top-
down enforcement via submission portals and publishers; (b) incentive mod-
els: Researchers want their articles to be cited; semantic content helps other
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researchers to find, explore and understand an article; (c) provide public acknowl-
edgements for curators.

4.2 (Semi-)automatic Approaches

The second group of use cases require a high coverage while a rather low quality
and domain specialisation are acceptable. For these use cases, rather simple and
domain-independent ontologies should be developed or reused.

Various approaches can be used to populate an ORKG (semi-)automatically.
Methods for entity and relation extraction (see Sect. 2.3) can help to populate
fine-grained KGs with high coverage and entity linking approaches can link men-
tions in text with entities. For cross-modal linking, Singh et al. [60] propose an
approach to detect URLs to datasets in research articles automatically, while the
Scientific Software Explorer [34] interlinks text passages in research articles with
code fragments. To extract relevant information at sentence level, approaches for
sentence classification in scientific text can be applied (see Sect. 2.3). To sup-
port the curator fill in templates semi-automatically, template-based extraction
can (1) suggest relevant templates for a research article and (2) pre-fill fields of
templates with appropriate values. For pre-filling, approaches such as for natural
language inference used in leaderboard construction [36] or end-to-end question
answering [23,57] can be employed.

Further, the system should enable to plugin external information extractors,
developed for certain scientific domains to extract specific types of information.
For instance, as depicted in Fig. 2, an external template information extractor
has to implement an interface with three methods. This enables the system (1)
to filter relevant template extractors for an article and (2) extract field values
from an article.

5 Conclusions

In this paper, we have presented a requirements analysis for an Open Research
Knowledge Graph (ORKG). An ORKG should represent the content of research
articles in a semantic way to enhance or enable a wide range of use cases. We
identified literature-related core tasks of a researcher that can be supported by
an ORKG and formulated them as use cases. For each use case, we discussed
specificities and requirements for the underlying ontology and the instance data.
In particular, we identified two groups of use cases: (1) the first group requires
high-quality instance data and rather fine-grained, domain-specific ontologies,
but with moderate coverage; (2) the second group requires a high coverage,
but the ontologies can be kept rather simple and domain-independent, and a
moderate quality of the instance data is sufficient. Based on the requirements,
we have described possible manual and semi-automatic approaches (necessary for
the first group), and automatic approaches (appropriate for the second group)
for KG construction. In particular, we propose a framework with lightweight
ontologies that can evolve by community curation. Further, we have described
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the interdependence with external systems, user interfaces, and APIs for third-
party applications to populate an ORKG.

The results of our work aim to provide a holistic view of the requirements
for an ORKG and be a guideline for further research. The suggested approaches
have to be refined, implemented and evaluated in an iterative and incremental
process (see www.orkg.org for the current progress). Additionally, our paper
can serve as a foundation for a discussion on ORKG requirements with other
researchers and practitioners.
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