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Preface

The present book is a collection of papers of leading Russian scientists devoted to
the description and simulation of dynamics and strength of materials and durability
of systems. The problems arising from the operation of machines and systems under
multifactorial influences are considered. The design and experimental assessment
of the processes of deformation, the development of damage, the destruction of
materials and structures are studied. For given loading history, the appearance of
macroscopic material discontinuities are determined. The fundamental dependences
on the strain rates of the ultimate characteristics of strength, dynamics, etc., are
formulated.

When modeling, the significant influence on the rate of the processes of
deformation, accumulation of damage, fracture, and such factors as the type of
deformation trajectory should be taken into account. In addition, the temperature
change, the stress state, the history of the stress state changes, etc., are considered.
In the framework of damage mechanics, the mechanisms of degradation of the
initial strength properties of structural materials under various conditions of
thermo-force loading are studied. The kinetics of the stress–strain state in the
corresponding places of structural elements is introduced in the theoretical models
and simulations. The numerical experiments are based on variational-difference and
finite element technologies. The correctness of the simulations are proofed by
experiments.

The results of numerical modeling of the processes of visco-plastic deformation
of structural elements are presented for several applied problems. Together with
elements of the analysis of the current state of the experimental, theoretical, and
numerical studies of the behavior of materials under quasi-static, cyclic, and
dynamic loading, the development and implementation of new simulation methods
are presented. The identification and verification of mathematical models of
deformation, damage and fracture of structural materials is carried out including
experimental methods of high-speed deformation based on the Kolsky method.

The problems of basic experiments related to identification of the material
parameters and functions used material models are discussed. The study of the
processes of deformation and fracture of structural materials is carried out from the
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perspective of an experimental-theoretical approach. Finally, applications are pre-
sented including not only mechanical loading, but also the influence of the tem-
perature regimes, etc. Considering the scale factor multiscale approaches are
applied.

The editors hope that the readers of this book can get an excellent insight into
actual theoretical, numerical and experimental research results of Russian scientists
working in the field of mechanics.

Magdeburg, Germany Holm Altenbach
Gdańsk, Poland Victor A. Eremeyev
Nizhny Novgorod, Russia
June 2020

Leonid A. Igumnov
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Chapter 1
Practical Methods for Fatigue
Characteristics Assessing Based
on the Monotonic Diffusion Distribution
Under Random Censorship Conditions

Levon V. Agamirov, Vladimir L. Agamirov, and Vladimir A. Vestyak

Abstract The article offers practical methods for processing the results of fatigue
testing of materials and failure of structural elements under conditions of random
censorship. A monotonic diffusion distribution is considered as the basic probability
distribution of a random value of durability until a critical state is reached, a feature
of the physical model of which is the justification of the process of irreversible
destruction of mechanical systems. The methods under consideration are aimed at
obtaining quick and effective estimates, eliminating the need to use complex equa-
tions of maximum likelihood for repeatedly censored sampling sets. It is shown that
in the field of high durability and low fracture probabilities, the use of the traditional
log-normal distribution leads to significant errors in the estimation of quantiles. In
these cases, it is recommended to use the proposed models. The adequacy of the
proposed approaches was verified by the Monte Carlo method, which showed good
agreement between the experimental and calculated parameters.

Keywords Fatigue testing · Monotonic diffusion · Probabilistic model · The
Monte Carlo method · Bootstrap modeling · Quantile method
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1.1 Introduction

Studies on the structural materials resistance to fatigue failure show that the use of
normal or log-normal distributions in the fatigue characteristics dispersion models
often leads to errors in the distribution parameters estimation [1, 5–7, 9, 14, 19, 20,
22, 23, 26, 29] especially, when evaluating quantile (gamma-percent) values of dura-
bility and endurance limits. These errors are significantly noticeable when testing at
low levels of variable stresses amplitudes due to themanifestation of threshold values
[26], which require the use of three-parameter distributions. From a mathematical
point of view, their use is extremely undesirable due to the need for a significant
increase in the volume of the sample population. One way to solve this problem is
to use probabilistic models based on the physical processes of damage accumula-
tion in structural materials, as well as leading to the failure of machine parts and
structural elements. To this end, to solve the problems, in this paper, we consider
the monotonic diffusion distribution model (inverse normal or DM distribution). It is
known that the mechanical system degradation process due to the fracture processes
irreversibility (mechanical wear, low-cycle and high-cycle fatigue) is considered to
be a continuous diffusion type Markov wear process with independent increments,
whose implementations are monotonous [17, 18, 27, 28].

In [8, 13, 18], it is noted that the diffusion distribution better describes the exper-
imental data compared with two-parameter models. It is important that the shape
parameter of this distribution is the variation coefficient. This is a stable character-
istic of durability and endurance, often determined a priori based on mass fatigue
tests [26]. For example, in [28] a table of variation coefficient values for various
technical means is given in Table 1.1.

The results analysis of an operational damage to aircraft full-scale structural
elements is complicated by the formation of repeatedly censored samples [2, 3,
8, 13, 14], which are formed because of determining the critical structural element
operating time that has reached or not a critical state at the time of technical inspec-
tion. Randomly censored samples can also be formed during fatigue tests of mate-
rials, components of engines, aggregates and airframes of aircraft when the object

Table 1.1 Variation
coefficients values of the
basic destruction processes

Type of destruction Variation coefficients

Static destruction 0.05–0.15

Fatigue

Low cycle 0.15–0.40

Multi-cycle 0.40–1.00

Contact 0.40–1.20

Wear

Mechanochemical 0.20–0.50

Abrasive 0.40–1.00

Aging 0.40–1.00
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due to the time limit does not reach a critical state and is removed from testing.
Maximum likelihood estimates (MLEs) in case of a repeatedly censored sample
are generally determined from a rather complex nonlinear equation system [3, 4].
As practice shows, the solution of such systems causes significant mathematical
difficulties associated with their bulkiness, as well as a number of local extrema in
minimized functions, etc. This leads to the fact that stable solutions are obtained only
for large volumes and small degrees of sample censorship. They also significantly
depend on the initial approximations. Hence, it is not possible to use the least squares
method in the classical formulation [15, 16], because the mathematical expectations
and the order statistics covariance matrix for the DM distribution are uncertain. In
this regard, this paper proposes some alternative estimation methods applicable in a
small and censored sample. The adequacy of the solutions is checked by the Monte
Carlo method.

1.2 Statistical Estimation Methods of a Randomly
Censored Sample Parameters Based on the Monotonic
Diffusion Distribution

A statistical properties’ complete list and estimates of the DM distribution are
described in [8, 12, 13, 18, 27, 28].Here,wegive only the simplest andmost necessary
formulas for further exposition.

The density of the DM distribution is determined by the equation:

f (x) = a + x

2γ x
√
2πax

· e− (a−x)2

2γ 2ax , (1)

where a and γ are distribution parameters. The distribution function is determined
by the equation:

F(x) = �

(
x − a

γ
√
ax

)
, (2)

�(z) is the Laplace integral. The P-level distribution quantile is given by the
equation:

xp = a ·
⎛
⎝1 + γ 2z2p

2
+ γ z p

√
1 + γ 2z2p

4

⎞
⎠, (3)

where z p is the P-level quantile of the normalized normal distribution.
The expected value and variance are determined from the equations:
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M(x) = a · (
1 + γ 2/2

)
, (4)

D(x) = a2γ 2 · (
1 + 5γ 2/4

)
. (5)

DMdistributionmoment estimates are obtained fromEqs. (4), (5) by the formulas:

â = 5x2 − s2

4x +
√
x2 + 3s2

(6)

γ̂ =
⎡
⎣2 ·

(
x
√
x2 + 3s2 + s2 − x2

)
5x2 − s2

⎤
⎦

0.5

, (7)

x =
∑n

i=1 xi
n

, s2 =
∑n

i=1 (xi − x)2

n − 1
, (8)

where n is sample size; x ,s2 are sample mean and variance. If the shape parameter
a priori value is known, the estimate of which can be the variation coefficient, then
the estimate of the scale parameter is determined by the formula:

â = 1∑n
i=1 i

·
n∑

i=1

i · xi ·
⎛
⎝1 + γ 2z2pi

2
+ γ z pi

√
1 + γ 2z2pi

4

⎞
⎠, (9)

where z pi is quantile of the normalized normal distribution corresponding to the
estimate probability of a ith failure P̂i = i/(n + 1).

In [21], the following equationwas substantiated for the lower confidence estimate
xlow (with confidence probability β) of the kth order statistic in a sample with volume
n and distribution function F(x)

F(xlow) = k

k + (n − k + 1) · f2(n−k+1),2k;β
, (10)

where f2(n−k+1),2k;β is quantile of β-level F-Fisher distributions with degrees of
freedom 2(n− k+ 1) and 2k. Upper confidence estimate xup of the kth order statistic:

F(xup) = k

k + (n − k + 1)/ f2k,2(n−k+1);β
. (11)
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1.2.1 Bootstrap Method

In this paper, to apply the discussed abovemathematicalmodels in randomly censored
samples, we propose the formation of an equivalent (“quasi-complete”) sample based
on the initial one censored by using random number bootstrap modeling [10] in a
range limited by observable ordinal statistics. To this end, the Monte Carlo method
was used to simulate a complete sample (based on the diffusion distribution), inwhich
objects that did not reach a critical state were formed randomly by modeling evenly
distributed random numbers in a given range. The proportion of such objects ranged
from 0 to 50% with sample sizes of 10, 15, 20, and 40. The censored observations
were then replaced by randomly selected observations from the same sample that
reached a critical state. Subsequently, the sample is sorted, and an equivalent “quasi-
complete” sample is formed, the parameters ofwhichwere determined usingmoment
estimates (6)–(8). Confidence intervals for the quantiles of the distribution were
determined by twomethods. The firstmethod consisted in assessing confidence limits
xlow and xup for ordinal statistics (10), (11). However, this approach has a significant
limitation associatedwith the probability level dependence on the observationvolume
(as noted above, the probability estimate for the ith order statistics was determined
as P̂i = k/(n + 1)). This method allows us to estimate the confidence region for the
empirical distribution function, but it makes prediction in the low-probability region
difficult when assigning a resource to critical parts and structural elements of aircraft.
In this regard, an approximate estimate of confidence limits is proposed, obtained on
the basis of the well-known equation for the quantile variance:

D
(
x̂ p

) = P̂ · (1 − P̂)

(n − r) · f 2(x̂ p)
, (12)

xup,low = x̂ p + zβ,1−β ·
√
D

(
x̂ p

)
, (13)

where D
(
x̂ p

)
is the quantile estimate variance; x̂ p , f 2(x̂ p) are determined byEqs. (1),

(3) by replacing the parameters a, γ with their moment estimates; zβ,1−β is the
quantile of the normalized normal distribution for a given confidence probability; β,
r are the numbers of censored observations.

1.2.2 Quantile Method

The quantile method is to approximate the empirical distribution function P̂i by a
theoretical law, the parameter estimates of which minimize the objective function:

[
�

(
xi − â

γ̂
√
âxi

)
− P̂i

]2

→ min. (14)
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Given random censorship, in (14), xi are the observations values that have reached
the object’s critical state. In this case, the empirical distribution function P is esti-
mated in accordance with a nonparametric technique for multiple-censored sample,
the calculation algorithm of which is considered in detail in [2, 3, 11, 24]. Confidence
boundaries for the distribution quantiles are determined by Eqs. (10)–(13) from the
obtained parameter estimates. Along with simplicity, this method has an obvious
computational drawback, consisting in the need to apply a particular minimization
procedure. In this work, the deformable polyhedron method was used as such a
procedure. The initial approximations were moment estimates (6)–(8), calculated
from observations without taking into account censored values. In this method, the
calculation duration is increased many times, which is especially critical for multiple
simulations. However, for estimating the parameters, the method is quite applicable.
Especially, taking into account the obvious range limitation of possible functional
values (14), the probabilities lie in the range from 0 to 1. This allows us to quickly
find the optimal estimates â, γ̂ by means of “fines,” whose value range also has
limitations like x1 < â < xn, 0 < γ̂ < γmax.

1.2.3 Monte Carlo Model Testing

To test the proposed models, statistical modeling was done with multiple (up to 2000
times) test repetitions. In each of the tests, the parameters of equivalent samples were
estimated usingEqs. (6), (7) and the confidence level probability usingEqs. (10), (11).
The P-level distribution quantile corresponded to the first-order statistics depending
on the test volume from 10 to 40. Some simulation results are presented in Table 1.2.
The calculation results showed good convergence for the shape and scale parameters
up to 5% relative errors. A slightly larger error of up to 7% was observed in the esti-
mation of confidence probabilities for distribution quantiles. Approximate formulas
(12), (13) for confidence boundaries give a slightly larger error (up to 10%) for
the confidence side (i.e., in the margin along the width of the confidence interval).
The quantile method (14) in the simulation showed results close in accuracy, but
significantly inferior in terms of calculation time.

1.2.4 Statistical Processing of Test Results

Logarithmically normal distribution, often distorts the real picture of scattering of
fatigue properties of materials and structural elements real fatigue properties disper-
sion. Moreover, it does not correspond to the fatigue physical model at low load
levels due to the manifestation of cycle sensitivity threshold. Alternatively, in order
to illustrate the use of DM distribution for processing fatigue tests, a fatigue test
statistical analysis of samples with stress concentration varying degrees of VT3-1
titanium alloy was done [25] (Table 1.3), characterized by a very large dispersion in
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Table 1.2 Statisticalmodeling results of a randomly censored sample from themonotonic diffusion
distribution with following input data: parameter a = 1.0; shape parameter γ = 0.4, two-sided
confidence coefficient β = 0.9; â, γ̂ parameter estimates; n is the sample size; h = r/n is the degree
of censorship; r is the number of censored sample elements

h/n 10 15

â γ̂ β̂ â γ̂ β̂

0 0.9959 0.4110 0.9225 0.9991 0.4074 0.9500

0.1 1.0109 0.4008 0.9135 1.0154 0.3998 0.9270

0.2 1.0234 0.3995 0.9025 1.0255 0.3982 0.9155

0.3 1.0288 0.3954 0.8685 1.0226 0.3956 0.8975

0.4 1.0397 0.3880 0.8445 1.0395 0.3862 0.8765

0.5 1.0414 0.3846 0.8430 1.0407 0.3892 0.8700

h/n 20 40

â γ̂ â γ̂ â γ̂

0 0.9989 0.4028 0.9505 0.9997 0.4037 0.9650

0.1 1.0142 0.3982 0.9390 1.0125 0.3998 0.9635

0.2 1.0216 0.3972 0.9180 1.0230 0.3950 0.9570

0.3 1.0304 0.3910 0.9105 1.0341 0.3913 0.9540

0.4 1.0391 0.3899 0.9005 1.0435 0.3906 0.9395

0.5 0.9989 0.4028 0.9505 0.9997 0.4037 0.9650

durability. The table provides estimates of average values lg N , standard deviations
slg N of the durability logarithm for different levels of variable stress amplitudes in
a symmetric cycle, as well as moment estimates â, γ̂ of the monotonic diffusion
distribution. Censored observations in this case are absent. The table shows that
the shape parameter of the diffusion distribution can reach a value of 1.47, which
generally does not contradict the data in Table 1.1. The last two rows of Table 1.3
present the 0.01 level durability quantile estimates calculated by diffusion [Eq. (3)]
and logarithmically normal N̂0,01 = 10lg N−2,326·slg N models, respectively. In all cases
where the durability exceeds 106 cycles and slg N is greater than 0.4, there is a signifi-
cantly underestimated quantile value calculated by the log-normal model. Figure 1.1
in coordinates P̂ (empirical probability)—N /â (relative durability) shows a gener-
alized distribution function. The calculated curve in Fig. 1.1 is obtained from the
combined sample.

1.3 Conclusion

A method is proposed for estimating the parameters of the monotonic diffusion
distribution under random censorship conditions, which is based on the “quasi-
complete” sample formation using mixed bootstrap modeling. A quantile method
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Table 1.3 Durability N (in cycles) of smooth and notched samples of titanium alloy VT3-1, ασ—
theoretical stress concentration coefficient, σ a—stress amplitude of a symmetrical cycle

ασ 1.0 1.4 1.9 2.36

σa , MPa 450 350 270 215 250 200

1 233,884 278,612 95,060 1,588,547 44,668 833,681

2 397,192 1,183,042 99,083 1,999,862 154,882 1,213,389

3 414,954 2,466,039 100,000 2,999,163 163,305 1,432,188

4 425,598 2,630,268 107,895 3,303,695 223,357 3,318,945

5 635,331 3,539,973 125,893 3,396,253 268,534 3,357,376

6 674,528 3,899,420 137,088 3,899,420 405,509 11,194,379

7 799,834 4,487,454 144,877 6,295,062 434,510 12,560,300

8 1,196,741 7,961,594 162,181 10,690,549 500,035 23,604,782

9 2,202,926 8,570,378 236,048 13,708,818 1,114,295 25,118,864

10 2,786,121 11,994,993 250,035 16,788,040 1,264,736 50,003,454

11 4,295,364 14,454,398 20,183,664 1,482,518 62,230,029

12 5,888,437 14,689,263

13 12,676,519 15,922,087

14 16,255,488 38,018,940

15 17,060,824

16 27,605,779

17 28,444,611

lg N 6.3800 6.7246 5.1386 6.7377 5.5542 6.8747

slg N 0.7259 0.5558 0.1555 0.3926 0.4674 0.6822

â 3,440,019 5,824,387 135,597 5,630,365 386,731 9,847,388

γ̂ 1.473819 1.091297 0.388233 0.860298 0.920511 1.264102

DM − N̂0,01 251,421 699,621 56,526 965,095 60,143 933,119

Log − N̂0,01 49,149 270,272 59,837 667,711 29,302 194,046

Fig. 1.1 Empirical
distribution function of the
titanium alloy VT3-1 relative
durability with varying
degrees of stress
concentration and stress
amplitudes. P̂ , empirical
probability. N /â, relative
durability
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based on the empirical distribution function nonparametric estimation during censor-
ship is also proposed. It is shown that, as a first approximation, scale parameter
moment estimates and the diffusion distribution shape in both cases are effective. An
approximate method for constructing a confidence region for distribution quantiles
is also proposed. The models were tested by the Monte Carlo method, and it showed
satisfactory convergence between the experimental and calculated estimates.

In order to illustrate the method, a statistical analysis of the fatigue test results
is done for a titanium alloy with significant dispersion of the fatigue properties
characteristics. It is shown that for large durability and scattering, a significant error
is observed in the estimation of the quantile calculated by the logarithmically normal
model. This can lead to unjustified underestimation of the resource during strength
calculations. In this regard,we recommendusing themonotonic diffusion distribution
to predict the fatigue test results in the region of low loads and probabilities.
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Chapter 2
Earthquakes and Cracks of New Type
Complementing the Griffith–Irwin’s
Crack

Vladimir A. Babeshko, Olga V. Evdokimova, and Olga M. Babeshko

Abstract The paper is devoted to the issue on the existence of a new type of cracks,
complementing the Griffith–Irwin cracks. These cracks explain one of the mecha-
nisms of fracture of brittle solids, consisting in the appearance of a singular concen-
tration of contact stresses in converging lithospheric plates. The main difference
between the Griffith–Irwin cracks and the cracks of new type is that the Griffith–
Irwin cracks have a smooth boundary with an apex angle of 180°. Griffith explained
their formation as the result of continuous deformation of an unbounded plate with
an elliptical cavity into a cavity with rectilinear lateral boundaries resulting from
compression of the elliptical cavity from the sides. There are smooth curves at the
apices of the cavity. Cracks of new type are formed as a result of compression from
the sides of a rectangle instead of an ellipse. The result is a cavity with a piecewise-
smooth boundary and an apex angle equal to zero. The study was conducted under
the assumption of the absence of friction in the contact area of the lithospheric plates
with the base in the first case and the presence of only tangential contact stresses
in the second case. In addition, it has been shown that numerous studies of wedge-
shaped cavities turning into cracks when the wedge angle tends to zero give rise to
a Griffith crack and cannot generate a cracks of new type.
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2.1 Introduction

The discovery of the starting earthquakes and the study of their properties under
different conditions of contact of lithospheric plates with a deformable base showed
the identity of medium fracture processes in the zones of convergence of lithospheric
plates on the Conrad discontinuity. The problems of contact of lithospheric plates
with a base in the absence of friction, small vertical effects, which can be neglected,
and strong horizontal effects were considered earlier. The presence of vector of
tangential stresses in the contact zone was taken into account. In all these cases, by
the convergence of the lithospheric plates, a singular concentration of contact stresses
was detected. Only the case of the full adhesion contact of lithospheric plates with
a deformable base in the presence of both vertical and horizontal effects remained
unexplored. The results of this study are published in this article. The obtained results
also show the occurrence of singular features in contact stresses by full proximity
of the ends of lithospheric plates. This result made it possible to put forward the
assumption that when the ends of lithospheric plates are close, but there is no inter-
action between them, a cracks of new type is created, the banks of which are the ends
of the converged lithospheric plates. However, there was a doubt that the reason for
such behavior of contact stresses in the zone of converged lithospheric plates may
be a simplified model of lithospheric plates described by two-dimensional Kirch-
hoff plates on a three-dimensional base. Authors have investigated the formulated
boundary problem for a block structure consisting of three-dimensional lithospheric
plates on a three-dimensional base in [1] and the existence of the cracks of new type
have been confirmed again. The question of the possibility of emergence of cracks
of a new type when considering wedge-shaped cavities when the wedge angle tends
to zero remains open. The assumption is justified by the fact that the wedge-shaped
cavity has, like the crack of a new type, a piecewise-smooth boundary andmay remain
in the crack formed. In this article, based on the previously obtained and recognized
study results of transition of the wedge-shaped cavity into a crack, made in [2], it is
proved that in the limit. there is a Griffith–Irwin crack with a smooth boundary and
an apex angle of 180°. This fact fully proves the existence of the cracks of new type
in the zone of convergence of lithospheric plates which have not been previously
described. The authors analyzed the number of publications on cracks of the various
scientists [2–59] including the last of time, but the information about the cracks of
new type have not detected.

The wedge-shaped cavities considered in this publication with angles of various
sizes down to zero. However, many researchers of the Russian scientists did not
get into the review because of the language barrier. Therefore, the fundamental
monograph N. F. Morozov built a rigorous mathematical theory of cracks [48] which
is absent in the review. The review did not get great articles V. P. Matveenko who
developed a numerically analytical method for studying singularities in pyramids
and cones [6, 7, 33, 34, 38, 39]. Also the review does not include interesting studies
on the selection of singularities in trihedral angles and cracks by E. V. Glushkov and
N. V. Glushkova [4, 5, 16–19], as well as a paper by one of the authors of this article
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who was among the first to investigate singular features in a trihedral wedge and
crack [60]. Perhaps, it is for this reason that some mutual misunderstanding in the
theory of cracks often occurs.

The analysis of the origin of the Griffith cracks, described by their discoverer, is
quite easy to compare with the cracks of new type. Griffith studied cracks by taking
a plate with a cavity in the shape of an ellipse, a circle, in particular [20]. Then, he
used a smooth continuous mapping and “squeezed” the cavity on the sides until it
took the shape of a slit-like crack, Fig. 2.1. At the top of the crack, the boundary
remained rounded and smooth, as in an ellipse with an apex angle of 180°. In order to
obtain the shape of cracks of the new type we need to follow the algorithm that led to
the starting earthquake, that is, we should bring together the ends of the lithospheric
plates. We can also follow the technique used by Griffith, taking a rectangular cavity
instead of a cavity in the form of an ellipse. The rectangle has a non-smooth boundary
due to the corners. Then, we should compress it continuously from the sides until it
takes the shape of a slit, Fig. 2.2. The angle at the top of such a slit is zero. As the last
of the considered problems showed, fracture of such a crack occurs in the same way
as in the case of starting earthquakes, that is, it differs from the process of fracture of
the Griffith–Irwin cracks. A more detailed study of the cracks of the new type made
it possible to reveal the relation that determines the possibility of their fracture. The
study showed that the cracks of the new type are more susceptible to fracture than

Fig. 2.1 It is the Griffith’s model of virtual compressing of the ellipse or the cercal in the direction
of the thick arrows till the crack will be appeared. Thin arrows represent the stresses action on the
shores of the crack. The Griffith’s crack has the smooth boundary

Fig. 2.2 To get the crack of new type, it is enough to replace the ellipse or the cercal by the rectangle
in the Griffith’s model. The crack of new type has the piece-smooth boundary
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those of Griffith–Irwin. It is possible that by the fracture of brittlematerials the cracks
of new type arise in the first stage after dislocations. Then, these cracks are fractured
and either turn into the Griffith–Irwin cracks or completely destroy the material.

2.2 Rigid Contact of the Lithosphere Plates with the Base

The lithospheric plates are assumed to be semi-infinite Kirchhoff plates in the form
of half-planes, the boundaries of which are parallel to each other at the distance of
2θ, θ ≥ 0. The mechanical properties of each plate are assumed to be different. Let
us consider that coordinate axes lie in the plane of the plates, and axis is directed
along the external normal to the base, [61–63]. Let us consider the statics of plates,
which are horizontal in the plane and rigidly coupled to the base, Fig. 2.3. Then, the
equations of the boundary value problem for plates can be written in the form

Rb(∂x1, ∂x2)ub − sb(x1, x2) = 0, b = l, r (2.1)

Eachplate is considered as amanifoldwith an end face,whereub = {u1b, u2b, u3b}
is the displacement vector of the plate points along the horizontal u1b, u2b and vertical
u3b directions of the median surface; b = l for the left plate and b = r for the right
one. The following notation is used:

sb(x1, x2) =
∥
∥
∥
∥
∥
∥

−ε5bs1b(x1, x2) 0 0
0 −ε5bs2b(x1, x2) 0
0 0 ε53bs3b(x1, x2)

∥
∥
∥
∥
∥
∥

, snb(x1, x2)

= (tnb + gnb)

Rb(∂x1, ∂x2)ub

Fig. 2.3 Scheme of toward motion of the lithospheres plates which have infinite width and semi-
infinite length. The thicknesses of the upper plates are hb and lower is H. The red arrows mean the
external actions on the plates
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=

∥
∥
∥
∥
∥
∥
∥
∥
∥

(
∂2

∂x21
+ ε1b

∂2

∂x22

)

u1b
(

ε2b
∂2

∂x1∂x2

)

u2b 0
(

ε2b
∂2

∂x1∂x2

)

u1b
(

∂2

∂x22
+ ε1b

∂2

∂x21

)

u2b 0

0 0
(

∂4

∂x41
+ 2 ∂2

∂x21

∂2

∂x22
+ ∂4

∂x42

)

u3b

∥
∥
∥
∥
∥
∥
∥
∥
∥

(2.2)

The Fourier transform of the differential part of system of Eq. (2.1) has the form

Rb(−iα1 − iα2)Ub =
∥
∥
∥
∥
∥
∥

(

α2
1 + ε1bα

2
2

)

U1b (ε2bα1α2)U2b 0
(ε2bα1α2)U1b

(

α2
2 + ε1bα

2
1

)

U2b 0
0 0 −(

α2
1 + α2

2

)

U3b

∥
∥
∥
∥
∥
∥

Ub = Fub, Gb = Fgb, Tb = Ftb
ub = {u1b, u2b, u3b}, gb = {g1b, g2b, g3b}, tb = {t1b, t2b, t3b}

Here, the normal stresses t3b and g3b act on the plate from above and below,
respectively. Similarly, the stresses g1b, g2b and t1b, t2b have the tangential direction,
g2b and t2b denote the unit normal vectors to the end faces of the lithospheric plates.
The following notations are used, cf. [61–63]:

Ub = F2ub, Gb = F2gb, Tb = F2tb, b = l, r

Mb = −Db1

(
∂2u3b
∂x22

+ vb
∂2u3b
∂x21

)

, Db1 = Db

H 2
, Db2 = Db

H 3

Qb = −Db2

(
∂3u3b
∂x32

+ (2 − vb)
∂3u3b

∂x21∂x2

)

, u3b,
∂u3b
H∂x2

Db = Ebh3b
12

(

1 − v2
b

) ; ε53b = 12
(

1 − v2
b

)

H 4

Ebh3b
; ε−1

6 = (1 − v)H

μ
;

ε1b = 0.5(1 − vb); ε2b = 0.5(1 + vb); ε5b = 1 − v2
b

Ebhb
;

g1b = μ0b

(
∂u1b
∂x3

+ ∂u3b
∂x1

)

; g2b = μ0b

(
∂u2b
∂x3

+ ∂u3b
∂x2

)

;

μ0b = μb

H
; x3 = 0; g = {g1b, g2b}

Here, denote ∂u3b
H∂x2

the angle of rotation of lithospheric plates on the borders
around the axis ox1, Mb the bending moments of the ends of lithospheric plates; Qb

the crosscutting forces of the end of lithospheric plates; μb is the shear modulus; vb
is the Poisson ratio; Eb is the Youngmodulus, hb is the thickness of lithosphere plate;
H is the thickness of basal crust of the Earth; gb are the contact stress, horizontal,
g1b, g2b and vertical g3b vectors, acting tangentially and normally to the boundary
of the base in the domains �b; tb they are the external stress, horizontal, t1b, t2b and
vertical t3b vectors, acting tangentially and normally to the plates in the domains
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�b; Here, denote F2 ≡ F2(α1, α2), F1 ≡ F1(α1) are the two-dimensional and one-
dimensional operators of the Fourier transform, respectively. The expressions for the
normal Nx2 and tangential Tx1x2 stress components to the median plane at the end
faces of the plates are given by the relations

Tx1x2 = ε7

(
∂u2
∂x1

+ ∂u1
∂x2

)

, Nx2 = ε8

(
∂u2
∂x2

+ ν
∂u1
∂x1

)

,

ε7 = E

2(1 + ν)H
, ε8 = E

(1 − ν2)H

The deformable base is describe by the following model

u(x1, x2) = ε−1
6

1

4π2

∞∫

−∞

∫

K(α1, α2)G(α1, α2)e
−i〈α,x〉dα1dα2,

x ∈ �l , x ∈ �r , x ∈ �θ, 〈α, x〉 = α1x1 + α2x2

�l(|x1| ≤ ∞; x2 ≤ −θ), �r (|x1| ≤ ∞; θ ≤ x2), Ωθ(|x1| ≤ ∞;
− θ ≤ x2 ≤ θ)

K = ‖Kmn‖, m, n = 1, 2, 3, K(α1, α2) = O(A−1), A =
√

α2
1 + α2

2 → ∞
ε−1
6 = (1 − ν)H

μ
, G(α1, α2) = F2(α1, α2)g

Here, g is the vector of tangential and normal stresses at the plate boundary. The
matrix functions K (α1, α2) are referred to as the symbols of the system of integral
equations, and some type of them are given in [55]. For example, for an elastic layer
with a fixed lower face in the static case, this system has the form

gl(x1, x2) = σ1l(x1, x2)(−x2 − θ)−0,5+iγ + σ2l(x1, x2)(−x2 − θ)−0,5−iγ , x2 < −θ,

gr (x1, x2) = σ1r (x1, x2)(x2 − θ)−0,5+iγ

+σ2r (x1, x2)(x2 − θ)−0,5−iγ , x2 > θ γ > 0

M(u) = (1−ν)(3−4ν)(sinh4u+4u)

u2� , N (u) = 2sinh2u
u3cosh2u ,

P(u) = − (1−2ν)(3−4ν)sinh22u−4u2

u �(u)
,

K (u) = (1−ν)(3−4ν)(sinh4u−4u)

�(u)
,

�(u) = u
[

(3 − 4ν)sinh22u + 4u2 + 4(1 − ν)2
]

, u =
√

α2
1 + α2

2

Matrix (2.2) of the boundary value problem is block diagonal. It consists of the
second-order matrix on the diagonal, representing a matrix operator or a vector oper-
ator, as well as a non-diagonal scalar operator. Since the operators are independent,
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this makes it much easier to study the boundary value problem at the stage of external
analysis by applying results of [61–63].

2.3 External Analysis of the Boundary Value Problem

The boundary value problems for each block are set in a topological space induced
by a three-dimensional euclidean space. After that, they are reduced to functional
equations by applying the Stokes formula in the topological space. Let us present
the functional equations corresponding to the above-listed operators of the boundary
value problem. The functional equations of the scalar operator have the form [61–63]

R3b(−iα1,−iα2)U3b ≡ (α2
1 + α2

2)
2U3b = −

∫

∂�b

ω3b+S3b(α1, α2)

S3b(α1, α2) = ε53bF2(α1, α2)(t3b + g3b), b = l, r

ω3b are the external forms and have the following expressions for the left (l) and
right (r) lithospheric plates

ω3l = ei〈α,x〉
{

−
[
∂3u3l
∂x32

− iα2
∂2u3l
∂x22

− α2
2
∂u3l
∂x2

+ iα3
2u3l

+2
∂3u3l

∂x21∂x2
− 2iα2

∂2u3l
∂x21

]

dx1+
[
∂3u3l
∂x31

− iα1
∂2u3l
∂x21

−α2
1
∂u3l
∂x1

+ iα3
1u3l

]

dx2

}

,

ω3r = −ei〈α,x〉
{

−
[
∂3u3r
∂x32

− iα2
∂2u3r
∂x22

− α2
2
∂u3r
∂x2

+ iα3
2u3r

+2
∂3u3r

∂x21∂x2
− 2iα2

∂2u3r
∂x21

]

dx1+
[
∂3u3r
∂x31

− iα1
∂2u3r
∂x21

−α2
1
∂u3r
∂x1

+ iα3
1u3r

]

dx2

}

The matrix functional equations of the boundary value problem for the vector
case have the following form for each plate:

R12b(−iα1b,−iα2b)U12b = −
∫

∂�b

ω12b+S12b(α1b, α2b), U12b = {U1b,U2b},

ω12b = {ω1b, ω2b}, S12b(α1b, α2b) = −ε5bF2(α1b, α2b)(gb + tb), b = l, r.

S12b(α1b, α2b) = {S1b, S2b}
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R12b(−iα1b,−iα2b)= −
∥
∥
∥
∥

(α2
1b + ε1bα

2
2b) ε2bα1bα2b

ε2bα1bα2b (α2
2b + ε1bα

2
1b)

∥
∥
∥
∥

Here, ωb is the external representation of a vector

ω1l = −ei〈α,x〉
{

−
(

ε1l
∂u1l
∂x2

+ ε2l
∂u2l
∂x1

− iε1lα2u1l

)

dx1

+
(

∂u1l
∂x1

− iα1u1l − iε2lα2u2l

)

dx2

}

,

ω2l = −ei〈α,x〉
{

−
(

ε2l
∂u1l
∂x1

+ ∂u2l
∂x2

− iα2u2l

)

dx1

+
(

ε1l
∂u2l
∂x1

− iε1lα1u2l − iε2lα2u1l

)

dx2

}

,

ω1r = ei〈α,x〉
{

−
(

ε1r
∂u1r
∂x2

+ ε2r
∂u2r
∂x1

− iε1rα2u1r

)

dx1

+
(

∂u1r
∂x1

− iα1u1r − iε2rα2u2r

)

dx2

}

,

ω2r = ei〈α,x〉
{

−
(

ε2r
∂u1r
∂x1

+ ∂u2r
∂x2

− iα2u2r

)

dx1

+
(

ε1r
∂u2r
∂x1

− iε1rα1u2r − iε2rα2u1r

)

dx2

}

.

Let us apply an external analysis [61–63] for these functional equations, including
the factorization of the coefficient of the functional equation (matrix-function or
function), the calculation of Leray residue forms, the assembly of pseudo-differential
equations, the extraction of the necessary equations from the boundary equations,
and the solving of the latter. The obtained solutions are introduced into the external
forms of the functional equations of each plate. Then, they are matched with a base,
forming a new topological space, called the factor-topological one. Applying the
approach described in detail in the above studies, we arrive at the Wiener–Hopf
matrix functional equation

Gl(α1, α2) = G−(α1, α2), Gr (α1, α2) = G+(α1, α2)

MG+ = G− + V + K−1
1 Uθ , M = K−1

1 K2,

K1 = ε−1
6 K − εl R

−1
l , K2 = εr R

−1
r − ε−1

6 K

V = K−1
1

⎛

⎝R−1
l

∫

∂Ωl

ωl + R−1
r

∫

∂Ωr

ωr − εl R
−1
l Tl − εr R

−1
r Tr

⎞

⎠, Uθ = F2Pθu(x1, x2)
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which, apart from the presence of unknowns G±(α1, α2) also contains their func-
tionals as unknowns of the form G±(α1, α2±). The latter have to be subsequently
determined from a certain system of algebraic equations [61–63]. These articles
report methods of determining the functionals entering into external forms. In order
to study the regularities of solving the functional equation, the factorization approach,
presented in [55], was used. The study of the properties of the solutions of this matrix
functional equationmade it possible to obtain new results, alongwith those described
in [61–63].

In the case when the end faces of the plates are at the distance 2θ, (θ > 0), the
contact stresses at the end faces of the plates have the form [55]

gl(x1, x2) = σ1l(x1, x2)(−x2 − θ)−0,5+iγ + σ2l(x1, x2)(−x2 − θ)−0,5−iγ , x2 < −θ,

gr (x1, x2) = σ1r (x1, x2)(x2 − θ)−0,5+iγ + σ2r (x1, x2)(x2 − θ)−0,5−iγ , x2 > θ γ > 0

Vectors σ1l , σ1r are continuous in both parameters. The parameter γ is determined
by the mechanical characteristics of the base. For example, for case under consid-
eration, we have γ = arcth 1−2v

2(1−v)
where ν is the Poisson ratio of the base material

[55].
When the end faces of the plates are at a zero spacing that θ = 0, the contact

stresses have the form

gl(x1, x2) → σ4l(x1, x2)x
−1
2

gr (x1, x2) → σ4r (x1, x2)x
−1
2 (2.3)

The scheme of behavior of Earth’s surface in the area of epicenter is shown in
Fig. 2.4.

On the presented engraving are the consequences of the possible earthquake in
1884 when the Earth’s crust movements occur in all three directions.

Fig. 2.4 External actions on the plates can cause such displacements of the surface of Earth in the
epicenter of earthquake
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Fig. 2.5 Such movements of the Earth’s surface may have occurred during the earthquake of
December 22, 1884, in Andalusia. The crack has length of 3 kilometers

2.4 On the Properties of Wedge-Shaped Cavities
and Griffith’ Cracks

In review of papers on singularities in wedge-shaped domains [53, 54], the cases of
wedge-shaped cavities degenerating into cracks when the wedge angle tends to zero
are considered. The opinion is expressed that in the process of such transformation
cracks of a new type are also formed. Below it is shown that this opinion is erroneous.
In all cases of transformation of the wedge-shaped cavity into a crack when the angle
tends to zero only, the Griffith crack is obtained.

We use the results of one of these papers [2] Fig. 2.6. It applied an unquestioned
rigorousmathematical approach and obtained the values of singularities in the neigh-
borhood of the vertex of the cavity and the resulting crack when the angle is zero.
Let us write the integral equation of a semi-infinite crack in dimensionless form and
use the singularity in the neighborhood of the top of crack calculated in this paper.
Thus, we obtain

0∫

−∞
k(x − ξ) f (ξ)dξ = q(x), −∞ < x ≤ 0

k(x) = 1

2π

∞∫

−∞
K (u)e−iuxdu,
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Fig. 2.6 Calculated in [2], the indices λ of the singularities of the stresses rλ−1 in the material
arising from the approach from the right to the top of the wedge-shaped cavity, the figure on the
left, and to the crack, the figure on the right. It is λ = 0.5 for the crack when equal modules of
Young E1 = E2

Here, q(x) are the stresses acting on the shores of the cracks; f(x) are the behavior
of the shores of the crack which determines the shape of the crack; K(u)—Fourier
transform of the kernel of an integral equation. We assume that the crack shores are
symmetric and the same stresses act on both shores. The integral equations have the
same appearance in the case of crack Griffith and of a crack of new type. For the
sake of simplicity, consider the case of the same material for each semi-plane. In the
present form, the kernel of an integral equation is a generalized function since the
analytic function K(u) is growing

K (u) = |u|[(1 + O(u−1 )], |u| → ∞

In the static case, we assume that the function K(u) has no zeros and poles on the
real axis [55]. Considering the result of article [2], shown in Fig. 2.6, we find that
the stresses approaching the top of crack on the right that is, for, x → 0, x > 0
described by function

ψ(x) → c1
1√
x
, 0 < x < ∞, c1 = const.

Its Fourier transform has the form

∞∫

0

ψ(x)eiuxdx → c1

√

π i

u
, −∞ < u < ∞

We assume that it is given continuously differentiable function q(x) ∈ L(−∞, 0)
By the Lebesgue–Riemann theorem, its Fourier transforms decrease at infinity.
Then
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Q(u) =
0∫

−∞
q(x)eiuxdx = 1

iu
q(0) − 1

iu

0∫

−∞
q ′(x)eiuxdx → O

(

u−1
)

, |u| → ∞

Let us continue an integral equation on the entire axis, we have

0∫

−∞
k(x − ξ) f (ξ)dξ = q(x) + ψ(x), −∞ < x < ∞

Applying the Fourier transform to integral equation on the whole axis, we obtain
a functional equation of the form

K (u)F(u) = Q(u) + �(u), F(u) =
0∫

−∞
f (x)eiuxdx, �(u) =

∞∫

0

ψ(x)eiuxdx

From here, we find

F(u) = Q(u) + �(u)

K (u)

or

f (x) = 1

2π

∞∫

−∞

Q(u) + �(u)

K (u)
e−iuxdu

The derivative has an expression

f ′(x) = − i

2π

∞∫

−∞
u
Q(u) + �(u)

K (u)
e−iuxdu

A simple analysis of the integral under such conditions for given functions allows
us to prove the continuity of the derivative everywhere, except for the point x = 0
which has the property of

f ′(x) = c2((−x)−1/2), x < 0, x → 0, c2 = const

This means that the tangent at the apex of the horizontal crack occupies a vertical
position. Integrating this relation into the neighborhood of zero, taking into account
the continuity of the derivative, on the interval −∞ < x < 0, we conclude that the
function f(x) is smooth, without top of crack, and behaves at zero as
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f (x) → c3
√−x, x < 0, x → 0 c3 = const

This means that the shores of the crack are continuous converge, having a smooth-
shaped crack of Griffith.

Thus, a Griffith crack is obtained, despite the fact that it originated from a cavity
with a piecewise-smooth boundary. The latter means that in the considered papers
[53, 54], cracks of a new type did not appear and were not described by anyone.

The assumption that cracks of a new type arise in the case of development of a
wedge-shaped cavity in such a way that it penetrates a multi-layered elastic medium,
perpendicularly running into layers, is also erroneous. This follows from the results
of the study of a similar problem in the remarkable monograph by Morozov [48].
Based on the results obtained in this monograph, we again come to the above integral
equation with a slight correction.

2.5 Conclusions

Thus, studying the method block element earthquake prediction as well as hidden
defects in the bodies with coatings, the authors suddenly discovered the existence of
the cracks of a new type. They complement theGriffith–Irwin’s cracks. The existence
of cracks of new type expends the understanding of the processes of destruction of
media and materials. In seismology, it allows to give a new explanation to foreshocks
and aftershocks. Considering the hierarchy of Griffiths–Irwin cracks and the cracks
of new type, it can be assumed that after dislocations, the first cracks of the new type
appear, which have a piecewise-smooth boundary and are destroyed earlier then the
Griffith–Irwin cracks with a smooth boundary. Currently, the study of cracks of new
type is continuing, and possibly, their new properties will be revealed.
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Chapter 3
Optimal Attenuation of Transverse
Vibrations for a Cantilever Beam

Dmitry V. Balandin and Egor V. Petrakov

Abstract The multi-criteria problem of transverse vibrations attenuation of a
cantilever beam is considered by the active and passive damping methods. The math-
ematical model of beam is provided by Bernoulli–Euler’s hypotheses with the linear
viscosity. Perturbation acting on the beam belongs to a class L2 of functions. The
beam mode is described by Krylov functions. The normal form method is used to
convert to the main coordinates. A model of active vibration isolation applied along
the entire length of the cantilever beam and amodel connected to a vertical base at one
point were constructed. The beam model connected to a viscoelastic base within the
passive vibration isolation is considered. The task of transverse vibrations attenuation
is a state feedback control problemwith two controlled outputs. Two criteria are intro-
duced, namely the maximum beam deflection and the control force. The generalized
H2 norm is used as ameasure of functional evaluation in the synthesis of optimal regu-
lators. The search for optimal feedback is based on the use of linear matrix inequal-
ities and efficient algorithms for solving, implemented in the MATLAB package.
Synthesis of Pareto-optimal control is implemented on the basis of Germeyer convo-
lution. The optimal values of the functional under distributed and concentrated forces
are given with respect to two criteria for active and passive damping methods. The
paper includes a comparison of vibration isolation for different attenuation methods.
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3.1 Introduction

Theproblemof reducing vibration affectsmany areas of engineering, instrumentation
and construction. The urgency of the problem increases due to the increase in the
size of structures, increasing influence of external disturbance. In modern structures
inexpediently dampen vibrations, changing the geometry and materials of the object,
as the design is often becomes economically inefficient. New effective methods of
vibration protection involve changing the mass or stiffness of vibration isolation.
The principle of vibration isolation is widely used in the protection of buildings and
structures from seismic effects. Often, the vibration isolating application is located
between the foundation and the building.

Vibration isolation systems are represented by various structures of supports,
which have a given value of stiffness and viscosity. Vibration isolation is described
by passive and active types of damping [1].

There are connected methods of vibration protection for nearby buildings. As
space in big cities is limited, buildings located close to each other are connected
by damping devices [2–10], thereby reducing the response of buildings to seismic
impacts. A striking example of such buildings is the Triple Towers in Tokyo [11, 12].
Damping devices can be located along the entire height of the building or in separate
areas or points.

There is no complete understanding in choosing the best type of attenuation, at
moment. The authors [13] suggest using semi-active or passive damping for strong
resonant vibrations instead of active damping, because the problem of stability is
very important for active damping methods. If the active damping method is used
incorrectly, the active forces control can amplify vibration. The authors [14] consider
that passive vibration systems of attenuation are unacceptable due to low efficiency
or exceeding the permissible weight, and active vibration damping implemented by
actuators is more effective.

3.2 Mathematical Model

Consider a cantilever beam lying on elastic foundation subject to some perturbation.
Active (Fig. 3.1a, b) and passive (Fig. 3.1c) attenuation of vibrations of a cantilever
beam lying on elastic foundation with uniformly distributed control along the length
(Fig. 3.1a, c) and control at one point (Fig. 3.1b) is investigated.

Suppose the mass and dimension of the base are so much greater than the mass
and dimensions of the beam that the effect of the beam on the base is negligible.
The values of two criteria providing optimal vibration attenuation (the level of the
control force and the maximum deflection of the beam) are estimated. Suppose the
mass and dimensions of the base are so much greater than the mass and dimensions
of the beam that the effect of the beam on the base is negligible.
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Fig. 3.1 Attenuation of a cantilever beam: a active uniformly distributed control along the length,
b active damping at one point; c passive uniformly distributed control along the length

Bernoulli–Eulermodel is adopted to describe the transverse vibrations of the beam
with internal friction (linear model of Kelvin–Voigt viscosity). Thus, the equation of
transverse vibrations of the beam is described:

∂2ω

∂t2
+ a2

(
∂4ω

∂x4
+ ϑ0

∂5ω

∂x4∂t

)
= − u0

ρA
+ v0(t) (3.1)

where ω = ω(x, t) is deflection of the beam, a2 = E I/ρA, E is Young’s modulus of
elasticity, I is the secondmoment of area, ρ is the density, and A is the cross-sectional
area of the beam. ϑ0 = ϑ

a2 is coefficient of internal viscosity, u0 is the control of
system, and v0(t) is the acceleration acting on the base (function belonging to class
L2). The dynamic system (3.1) contains six constant parameters E, I, ρ, A, ϑ and l
(beam length). After the introduction of dimensionless variables

ω′ = ω

l
, x ′ = x

l
, t ′ = a

l2
t, u = l3

E I
u0, v(t

′) = l3

a2
v0(t)

dynamic system (3.1) is converted (hereafter the strokes are omitted) into

ω̈ + βK ω̇ + Kω = −u + v(t ′) (3.2)

where K = ∂4

∂x4 is the differential operator of the fourth degree, β = aϑ0/ l2 is
dimensionless damping coefficient of the system. If the control uses a sensor installed
at x1, the control is written as:

u = θ(1)ω
(
x ′
1

) + θ(2)ω̇
(
x ′
1

)
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where θ(1), θ (2) is the feedback coefficients in the displacement and velocity. To bring
the Eq. (3.2) to the main coordinates (relative to the time function), the methods of
separation of variables (Fourier method) and normal forms are used:

ω(x, t) =
∞∑
i=1

Xi (x)Ti (t),

1∫
0

Xi X jdx =
{
1, i = j
0, i �= j

,

1∫
0

K Xi X jdx =
{

λ4
i , i = j
0, i �= j

(3.3)

where Xi is shape function and λi is eigenvalue. The shape functions and eigenvalues
are found from the boundary conditions for a cantilever beam: X (0) = 0, X ′(0) =
0, X ′′(1) = 0, X ′′′(1) = 0.

Shape functions are described using Krylov functions. A detailed study of the
eigenvalues λ and the shape functions X for a cantilever beam is given in [15].
Conversion of Eq. (3.2) to the main coordinates leads to the ratio:

T̈i + βλ4
i Ṫi + λ4

i Ti = −
1∫

0

Xi (u − v(t))dx (3.4)

3.3 Two-Criterion Problem

To solve the control problem, the first m-eigenmodes of the beam are used and the
equation of motion in matrix form is written for them:

Ṫ =
(
0mxm Imxm

−	4 −β	4

)
T + Buθ

(0)T + Bvv(t) (3.5)

where T = (
T1 . . . Tm, Ṫ1 . . . Ṫm

)T
is state vector, 	 = diag(λ1 . . . λm) is diagonal

matrix of eigenvalues, and Bu, Bv are the vectors of the control and perturbation. To
control a distributed system: Bu = Bv. This is the problem of control theory, i.e.
searching for linear state feedback:

Ṫ = AT + Buu + Bvv

z1 = CT

z2 = Du
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u = θ(0)T (3.6)

where z1, z2, C and D are measurable outputs as to both the criteria and the
corresponding matrices of outputs. In practical implementation, feedback regula-
tors are subject to a variety of technological requirements (e.g., relative stability,
damping decrement, stiffness and damping of the actuator controller). The most
important practical requirement is the limitation of the resource of control and its
implementation [16].

The problem of damping the vibrations of the cantilever beam on an elastic base
is transformed into a two-criterion problem. At the output of the system, the level
of the control force and the maximum deflection of the beam are considered. Both
values are inversely dependent. It is necessary to minimize both criteria:

(J1(θ), J2(θ)) → min

3.4 Solution of Two-Criterion Problem

Often, the search for linear feedbacks in the state space is associated with the canon-
ical representation of the controlled object and the construction of a modal control
that provides the given eigenvalues (modes) of the matrix of a closed system. The
construction of the modal control is reduced to finding the characteristic polynomial
of matrix A, choosing the canonical basis and solving a system of linear equations.

At the same time, an alternative way of synthesis of stabilizing regulators is
possible, based on the application of the theory of linear matrix inequalities and
effective algorithms for their solution implemented in the MATLAB package [17].

For linear matrix inequalities, Pareto-optimal control laws are synthesized using
the Germeyer convolution [18, 19]:

Jα(θ) = max

{
J1(θ)

α
; J2(θ)

1 − α

}
, α ∈ (0, 1) (3.7)

The output vectors of the dynamic system (3.7) are converted to the form: Cα =
C/α, Dα = D/1 − α.

The generalized H2 norm is used to minimize the functional of Jα , and linear
matrix inequalities for the formulation of the problem (3.7) have the form:

(
AY + Y AT + Bu Z + ZT BT

u Bv

BT
v −I

)
< 0,

(
Y CT

α

Cα α2γ 2

)
≥ 0,

(
Y ZT DT

α

DαZ (1 − α)2γ 2

)
≥ 0 (3.8)
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where Z = θY and Y = X−1 is inverse Lyapunov matrix. The values of the criteria
minimizing the functional (3.8) are found from the expressions:

J1 = ∥∥Hz1v

∥∥
g2

= sup
v∈L2

|z1|g∞
‖v‖2 = λ

1
2
max

(
CYCT

)

J2 = ∥∥Hz2v

∥∥
g2

= sup
v∈L2

|z2|g∞
‖v2‖ = λ

1
2
max

(
DθY θT DT

)

3.5 Numerical Results

Analysis of the solution of the system of Eqs. (3.5) using the MATLAB software
package shows that the curves for 4–10 modes coincide with the curves for 2 and 3.
Curves for the first, second, and third modes are shown in Fig. 3.2.

Since thefirst threemodes of vibration are sufficient to describe the set of solutions,
the functional for only the first three modes of vibration is considered in further
studies.

In the case of a concentrated control force, the mathematical model (3.2) is
described by the equation:

ω̈ + βK ω̇ + Kω = −uδ(x − x0) + v(t)

where x0 is the point with the concentrated control force applied. This paper deals
with the case where the control force is applied to the middle of the beam. The
problem with a concentrated control force is of practical interest, and it is easier to
use a point dynamic active control for attenuation oscillations [20]. The features of
the choice of the point of application of the concentrated control force are not studied
here.

Fig. 3.2 Optimal Pareto-sets for active uniformly distributed control along the length
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Fig. 3.3 Optimal Pareto-sets for the different methods of attenuation

The optimal passive and active vibration attenuation for a cantilever beam with
a viscoelastic coupling with a vertical fixed platform, described by the equation, is
found by the method of linear matrix inequalities,

ω̈ + Cω̇ + Kω = −K ′
sω − D′

sω̇

Here

K ′
s = l4Ks

E I
, D′

s = l2Ds

ρA

are dimensionless stiffness and damping coefficients. The relations between J1 and
J2 criteria minimizing the Jα(θ) functional for different attenuation methods are
shown in Fig. 3.3. The solution was found using the MATLAB package.

The analysis of Fig. 3.3 shows that the best result is obtained by using distributed
attenuation. The difference between the result of the use of passive and active
damping is negligible. The active concentrated force in the middle of the beam is the
simplest method of applying vibration protection, but the least effective compared to
distributed vibration attenuation. The following is an assessment of the efficiency of
damping the beam vibrations at some external perturbation, belonging to the class
L2, and described by the equation:

ω̈ + Cω̇ + Kω = v(t)

Vibration record of violent vibrations and the results of active and passive damping
are shown below in Fig. 3.4.

Analysis of vibration time history shows that the effect of the use of both passive
and active vibration damping. It should be noted that the difference between the
result of the use of passive and active damping is negligible.
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Fig. 3.4 Vibration time history for the different methods of attenuation

3.6 Conclusion

The system of active and passive damping of vibrations of cantilever beam lying on
an elastic foundation is considered. To solve the problem, two connected criteria are
introduced: the level of the control force and the maximum deflection of the beam.
The results of passive and active control of vibration damping of the cantilever beam
using a distributed vibration damper and an active concentrated control force are
analyzed. Analysis of the results showed that the active concentrated force in the
middle of the beam is the simplest method of applying vibration protection, but the
least effective, compared with distributed damping, and the difference between the
result of the use of passive and active distributed damping is negligible. It should be
noted that taking into account the difference in technological, energy and financial
costs for active and passive systems, the choice of one or another of them, taking
into account efficiency, remains open.
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Chapter 4
Numerical Study of the Mutual Influence
of Nearby Buried Structures Under
Seismic Influences

Valentin G. Bazhenov and Nadezhda S. Dyukina

Abstract Models, methods, algorithms, software tools have been developed to
describe the basic laws of the behavior of buried structures under seismic influ-
ences, taking into account gravity and nonlinear effects of contact interaction with
the ground and reducing computational costs to an acceptable level. The proposed
methods ofmodeling non-reflective boundary conditions and restoration of the vibra-
tion effect on the surface of the experimental accelerogram can significantly reduce
computational costs. The gravity field necessary for adequate description of seismic
oscillations ofmassive structures is taken into account after damping procedure of the
kinetic energy of the computational domain. The developed computational methods
are used to study the mutual influence of two different nearby buried structures under
seismic influences. A method of reducing the mutual influence of nearby structures
by sand dumping is considered. The numerical simulation of seismic isolation is
carried out taking into account the granularity and elastic–plastic properties of sand.
A complex nonlinear relationship between the vibrations of structures, the distance
between them and the presence or absence of sandy seismic isolation is shown.

Keywords Numerical simulation · Contact interaction ·Mutual influence · Nearby
buried structures · Seismic vibrations · Seismic isolation

4.1 Introduction

Numerical simulation of seismic vibrations of large-sized buried structures is carried
out at the design stage and is a necessary element for assessing the seismic resistance
of nuclear power plants and other large industries [7, 14, 25, 27]. The complexity
of such calculations is related to the consideration of the soil adjacent to the buried
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structure: assumption the soil as a system of visco-elastic constraints [6, 8, 17, 20, 26]
requires theoretical justification; the introduction an array of adjacent soil described
by finite elements into the calculations significantly increases the complexity of
the task [15, 18, 19, 22]. Earlier, the authors proposed a mathematical model and
numerical method for solving problems of interaction of a buried structure with
the ground under seismic influences, taking into account the nonlinear effects of
contact interaction with the ground, the field of gravity, and reducing computational
costs to an acceptable level [9, 11]. Due to the high rate of propagation of seismic
waves in the ground, the results of the research can be influenced even by large
objects that are significantly remote [10, 12, 13, 21, 28]. The developed computational
methods are used to analyze the mutual influence of two buried structures; the series
of computational experiments shows how the seismic vibrations of structures depend
on the distance between them and their sizes [4]. If the project does not allow placing
structures at a considerable distance from each other, eliminating unwanted mutual
influence, the device between the structures of the damping layer can solve the
problem [16, 24]. A series of computational experiments on seismic vibrations of
two nearby structures separated by a seismic insulating layer was carried out. A
complex relationship between the behavior of structures, the fact of the presence or
absence of seismic isolation between them and the distance is established.

4.2 Mathematical Model and Numerical Technique

The variational approach [1, 2, 23] is used to describe deformations of bodies within
the framework of the continuum mechanics hypothesis. To describe the motion
of continuums in Lagrangian variables in a fixed Cartesian coordinate system, the
equations following from the variational principle of power balance are applied:

¨

Ω

(
1

2
σi, j

(
δu̇i, j + δu̇ j,i

) + ρüiδu̇i − ρ fiδu̇i

)
dΩ −

∫
G

pi δu̇idS −
∫
G

qi δu̇idS = 0

Here σi, j are the stress tensor components, u̇i are the velocities, pi , qi are the
components of the surface load and contact pressure, fi are the components of the
mass force per unit mass (i = x, y, z). Contact interaction with friction is described
in the local coordinate basis associated with the contact surface, the conditions of
non-penetration along the normal to the contact surface and based on the condition
of dry friction-tangentially.

The soil medium massif is modeled by a rectangular parallelepiped, homoge-
neous in its characteristics or consisting of areas of homogeneity. The authors have
developed and used non-reflecting boundary conditions on the lateral surfaces of
the array, allowing reducing the horizontal dimensions of the calculated area. At
the lower boundary of the soil mass, velocity components are set, recovered from
the experimental accelerogram set on the surface by a special technique [9], which
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allows compensating for multiple re-reflections of seismic waves from the lower
boundary—thus reducing the vertical dimensions of the soil mass. The numerical
solution of the defining system of Eqs. (1) under the given initial and boundary
conditions is based on the variational-difference method of discretization by spatial
coordinates and the explicit scheme of integration by time [2]:

(u̇α)
k+1/2
j = (u̇α)

k−1/2
j + (Fα)kj

�t k+1/2

(M)kj
, (uα)k+1

j = (uα)kj + (u̇α)
k+1/2
j �t k+1

�t k+1 = t k+1 − t k,�t k+1/2 = 1

2

(
�t k+1 + �t k

); α = x, y, z

Here, Fj is the generalized forces acting on the node j,M is the mass in the node
j.

The described methods of the solution, algorithms of modeling of contact interac-
tion and afield of gravity are realized in the certifiedprogramcomplex “Dynamica-3.”
Parallelization of algorithms allowed reducing computational costs and increasing
the efficiency of calculations.

The authors substantiate the feasibility of modeling sufficiently hard soils in
seismic problems by an ideally elastic continuous medium. For soft soil bases—
sands and clays—a transversal isotropic model is proposed, taking into account soil
compaction with depth [11].

4.3 Analysis of the Mutual Influence of Seismic Vibrations
of Two Nearby Structures

In the numerical study of the mutual influence of nearby structures, the structures
of the pumping station and the reactor compartment buried into the soil at 9 m were
considered. The variants were considered when the distance between the structures
(the pumping station and the reactor compartment) was: (a) L = ∞, (b) L = 48 m,
(c) L = 80 m, (d) L = 120 m, (e) L = 200 m. Mechanical characteristics of structures
and soil are given in Table 4.1. The seismic effect was given as the seismogram
components corresponding to an earthquake with magnitude 6.

Table 4.1 Characteristics of structures and soil

Geometrical and mechanical characteristics Dimensions

Pumping station 24 × 24 × 19 1.4 × e + 10 8400 802.7

Reactor compartment 64 × 64 × 75 1.4 × e + 10 8400 802.7

The top layer of soil H = 50 4.5 × e + 7 9.64 2030

The bottom layer of soil H = 250 3.6 × e + 9 78,000 2030
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Analysis of changes in the maximum mutual displacements of the walls of
structures and soil [4] allowed to draw the following conclusions:

• Mutual influence of seismic vibrations of structures gives different effects for
different buildings;

• For a larger reactor structure is characterized by a decrease in the intensity of the
oscillations with increasing distance L;

• As the distance L increases, the roll of less overall construction of the pumping
station changes to the opposite one;

• On horizontal mutual displacement are more affected by ripple effects from shear
reflected waves;

• Vertical displacements are more influenced by the sediment of a nearby building
and associated with changes in the properties of a certain volume of adjacent soil;

• The distance between structures less than their overall dimensions is critical and
leads to a progressive roll of structures toward each other over time.

4.4 Influence of Seismic Isolation Between Structures
on Their Mutual Influence During Seismic Impact

The influence of seismic isolation between structures on the results of calculations
is analyzed. As a seismic isolation was considered sand backfill, thickness 8 m,
equidistant from the structures and buried at the same depth with them. The elastic–
plasticmodel ofGrigoryan’s [5] soft soil environmentwith specification of functional
dependences according to features of the considered problem is applied for modeling
of sand dumping. According to this model, compression to p* and discharge of the
soil medium are described by different dependencies. The initial compression is
characterized by less stiffness than the subsequent loading after unloading. Since
the pressure in the soil does not exceed 10 MPa during the propagation of seismic
waves, the deformation processes in the sand are satisfactorily described by the linear
dependences [5], different for the processes of compression (above the achieved
density) and unloading.

Geometric and mechanical parameters of structures and soil layers assumed the
same values as in calculationswithout backfilling.Mechanical characteristics of sand
seismic insulation: elastic constants K = 1.6 × 109 N/m,G = 320 MPa, density ρ =
2000 kg/m3. The view of the computational domain covered by the finite-difference
grid is shown in Fig. 4.1. Non-reflecting boundary conditions were modeled at the
lateral boundaries of the soil mass, and vertical displacement velocities were set at
the lower boundary of the lower soil layer:

u̇z(x, y, −300, t) =
{
0, t < 4 s
1, t ≥ 4 s
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Fig. 4.1 View of the computational domain covered by a finite-difference grid

Mutual horizontal and vertical displacements of walls of constructions and soil
for cases of the presence and absence of seismic insulating backfill were analyzed. A
complex relationship between the behavior of structures, the fact of the presence of
seismic isolation between them and the distance are established. As an example, the
mutual horizontal (Fig. 4.2) and vertical (Fig. 4.3) displacements of the right wall of
the pumping station and the soil for L = 48 m, L = 80 m and L = 129 m are given.
Figures 4.4, 4.5, 4.6 and 4.7 show the maximum mutual displacements of the right
and left walls of structures for cases with and without a seismic insulating layer. It
can be seen that the right wall of the pumping station and the left wall of the reactor
compartment have more significant displacements, which confirms the presence of
mutual influence of closely located structures.

Difference of vertical displacements related to the displacements of the mass
center (Fig. 4.8) was calculated for the reactor compartment as:

Fig. 4.2 Mutual horizontal displacement of the right wall of the pumping station and the soil
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Fig. 4.3 Mutual vertical displacement of the right wall of the pumping station and the soil

Fig. 4.4 Maximal mutual horizontal displacements of the reactor compartment depending on the
distance between the structures

�Uz = uleftz − urightz

Umass center
z

,

for the pumping station as

�Uz = urightz − uleftz

Umass center
z

.

Since �Uz in the Fig. 4.8 take mostly positive values, we can say that a nearby
structure increasing the seismic activity. Also, Fig. 4.8 clearly shows that the seismic
isolation between the structures reduces the pitching of a smaller overall structure.
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Fig. 4.5 Maximal mutual vertical displacements of the reactor compartment depending on the
distance between the structures

Fig. 4.6 Maximal mutual horizontal displacements of the pumping station depending on the
distance between the structures

4.5 Conclusion

For a larger structure, the distance from other structures (L) is more important than
the presence of a seismic insulating layer between the structures. If the distance
between the structures is larger than the overall dimensions of the building base, the
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Fig. 4.7 Maximal mutual vertical displacements of the pumping station depending on the distance
between the structures

Fig. 4.8 Difference of vertical displacements related to the displacements of the mass center

further increase L, as well as the presence of seismic isolation, does not significantly
affect the result of calculations. The described method of seismic protection was
ineffective for the less overall structure of the pumping station at L < 120. The
conducted computational experiments did not reveal a stable seismic insulating effect
from sand dumping. Thus, seismic isolation has a negative impact on the less massive
structure of the pumping station and has a slight positive impact on the more massive
structure of the reactor compartment. Note that passive seismic isolation is often
unstable [3, 16]. Therefore, the effectiveness of the applied vibration protection for
each case should be selected and justified individually.
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Chapter 5
Dynamic Deformation and Failure
Criterion of Cylindrical Shells Subjected
to Explosive Loading

Valentin G. Bazhenov, Alexander A. Ryabov, Vladimir I. Romanov,
and Evgeny E. Maslov

Abstract The results of numerical and experimental investigations are presented
in the paper for impulse loading of cylindrical shell of constant thickness subjected
to shock wave of spherical charge explosion of different trinitrotoluol equivalent
(TNT). Numerical simulations are conducted with use of LOGOS software, devel-
oped at Russian Federal Nuclear Center VNIIEF. Validity of the numerical results is
supported by closeness to the results of full-scale tests. Different failure criteria of
shell dynamic strength are analyzed in the paper. Limiting deformations obtained in
experiments with specimens for two-axial stress state is not an unequivocal criterion
of strength of shell subjected to explosion loading. Specific power of deformation
can be used as numerically–experimentally confirmed energy criteria of strength of
cylindrical shell. Critical value is N*

p = 22 W/mm3 for investigated shell.

Keywords Cylindrical shell · Explosive loading · Elastic–plastic deformations ·
Dynamic failure criterion

5.1 Introduction

A problem of dynamic strength of engineering containment objects subjected to
shock waves is very important to ensure safety of structures in atomic power engi-
neering, chemical industry, in other ecologically dangerous plants and in scientific
explosive experiments. Selection of reliable failure criteria of dynamic strength is
one of the most important points in this problem.
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Some results of experimental and numerical investigations are presented in [1–17]
for a problem of dynamic strength of structure elements: rings, cylindrical and spher-
ical shells under explosive loading. In [5] based on many experiments in explosive
loading of spherical and cylindrical vessels, it is suggested to use specific work of
surface forces at rupture of material. In the general case, specific work depends on
unsoundness ofmaterials, temperature, strain rate andon theother factors,whichhave
not been quite investigated yet. Grady [3] also suggests energy criteria of dynamic
strength, and it is supposed that surface destruction of structure is caused by the
part of kinetic energy. Criteria of critical plastic strains is developed in [6, 7] for
thin wall vessels which are destroyed in the range of large plastic deformations. But
experiments with explosive loading of spherical shells [15] with constant internal
radius and different thickness show that there is no any regularity with critical failure
strains. So, it should be noted that critical strains can be considered only as a low
level of dynamic failure strength criteria of spherical shells loaded by internal explo-
sion. Curran [1] notes that under explosive loading of shells during a high strain rate,
process of dynamic plastic flow is transformed from isothermal to adiabatic one. In
some cases, emitted heat is concentrated in thick zones located along maximal shear
stresses volumes, and it flows to high rise of plasticity. But practical application of
suggested model, which includes formation of adiabatic shearing volumes, is not
possible at present time because of absence of needed experimental data.

Authors of the monograph [16] came to a conclusion that, possibly at present
time, promising investigations of dynamic strength criterions of structures subjected
to impulse loading are those which are based on the conception of mechanics
[8, 18] of damaged continuum. This approach allows to analyze a deformation
process including degradation of mechanical properties of a material and collec-
tion of damages up to getting by damage function its critical level ω = 1. In dynamic
deformations of plastic materials, damage function ω can be used on the basis of
scheme of linear summation of damages [4]:

ω(μ) =
μ∫

0

dμ

μ∗(σi j (μ)
) ,

where μ—variable which characterizes a process of elastic–plastic deformation,
μ*—limiting value of this variable corresponding to failure of material with fixed
stress state, described by stress tensor σ ij. In a general case, for getting μ*, one can
use some strength criterion of structural materials such as:

f
(
σi j , εi j

) = 0.

At this, strength criterion should take into account the influence of stress status,
strain rate and temperature on to distraction, and it should have the required degree
of experimental confirmation. It is noted in [14] that in spite of reached results and
collected experience, there are not quite enough scientific data for theoretical general
conclusion of dynamic strength of the structures subjected to explosive loading. The
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purpose of this article is continuation of investigations of explosive deformations
of cylindrical shell for getting well-funded numerical–experimental criterions of
dynamic strength.

5.2 Statement of Problem and Defining Relations

The problem is considered for dynamic loading of steel cylindrical shell of constant
thickness subjected to explosion of spherical charge located in the center of cross
section in axis of the shell. Dynamic deformations of the shell are described according
to the Lagrange approach [4]. There are two coordinate systems: The first one is a
general coordinate system, X = [X1X2X3], and the second one is a local coordinate
system, x = [x1x2x3], with directional cosines ni j :

xi = ni j X j , i, j = 1, 3 (5.1)

Strain rates in the local ε̇i j and in general basis ėi j connected by the following
relations:

ε̇i j = nimn jk ėmk, (5.2)

Kinematic relations are described in velocities and defined in current statemetrics:

ėi j = (U̇i, j + U̇ j,i )/2, (i, j = 1, 3) Xi = Xi | t=0 +
t∫

0

U̇i dt, (5.3)

where displacements Ui in general coordinate system X.
The equation of motion is written in the form of the variation principle of balance

of virtual powers of work [17].

∫

Ω

σi jδε̇i j dV +
∫

Ω

ρÜiδU̇i dV =
∫

Γ p

PiδU̇i dγ +
∫

Γ p

Pq
i δU̇i dγ,

(
i, j = 1, 3

)

(5.4)

where σi j—components of stress tensor, ρ—density, Pq
i —contact pressure, Pi—

distributed load, Ω—volume of structure, 0413q—contact surface, Gp—surface of
external pressure is applied, δε̇i j , δU̇i—variations of strain rate ε̇i j , and U̇i at the
surface with given boundary conditions δU̇i = 0.

The components of stress rate deviator σ̇ ′
i j = σ̇i j + Ṗδi j and elastic parts of strain

rate deviator components
(
ėei j

)′ = ėi j − ėδi j/3− ė pi j are connected based on Hooke’s

law in the current state metrics.
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DJσ
′
i j = 2G

(
ėei j

)′
, DJσ

′
i j = σ̇ ′

i j − ω̇ikσ
′
i j − ω̇ jkσ

′
ik,

Ṗ = −K ėe, Ṗ = −σ̇i i/3, ė = ėeii , ė
p
ii = 0 (5.5)

where K ,G—moduli of dilatation and shearing, P—pressure, DJ—Jaumann deriva-
tive, describing rotation of continuum particle as rigid body, δi j—Kronecker’s
symbol. Rates of plastic strains are defined with associated flow rule:

ė pi j = λ̇σ ′
i j , σ

′
i jσ

′
i j = 2

3σ
2

i (æ), (5.6)

where σi = σi (æ)—dependence of effective stress on Odkwist parameter at mono-
tonic loading. Solving of Eqs. (5.1)–(5.6) is conducted on the basis of space
discretization by finite element method and explicit scheme of integration in time
realized in LOGOS software [19].

Blasting of high-explosive charge, explosion products flying-off, transmission of
shock wave and impact on to the shell are considered as axis-symmetrical task on
basis of Euler approach and is simulated in LOGOS software as well. Van Leer
numerical method of second order is used for solving gas-dynamic problem. Noted
processes are simulated in air volume, restricted by cylindrical shell and opened at
both ends.

5.3 Experimental and Numerical Results and Analysis

Deformation properties of low-alloy structural steel 09G2S (GOST standards 19281–
73 and 19281–89) have been experimentally investigated [20–23]with several tens of
cylindrical tube and some other types of specimens under different (tension, torsion,
internal pressure) static and dynamic loads up to a level of strain rates of 800 s−1.
Experiments show that engineering, conditional, logarithmic and true stress–strain
curve, obtained by method suggested in [23], are close to each other up to the level
of effective strain εi~ 7%. In the range of large strains, engineering and true stress–
strain curve differ from each other and strongly depend on stress state. Dynamic
properties of steel’s deformation start to appear with strain rates more than 500 s−1.
Experimental tests indicate that limiting, failure strains are strongly depended on
stress state. Figure 5.1 demonstrates dependences of limiting effective strains [εi] on
parameter of stress state P [24].

Experimental results in engineering strains are marked as circlets in Fig. 5.1 curve
«1» corresponds to conditional and curve «2» to true stress–strain curve. Experiments
show that in pure shearing (P= 0), destruction of material appears with engineering
strains of [εi] ~ 60%, in axial tension (P = 0,6), [εi] ~ 25…30%, and in two-axial
tension (P= 0,8), engineering and true stress–strain curve are close to each other and
do not exceed εi ~ 4…5%. In two-axial tensions, destruction of the tube specimens
is realized as longitudinal crack, Fig. 5.2.
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Fig. 5.1 Limiting strains depend on stress state factor P

Fig. 5.2 Destroyed tube
specimens

The experimental tests also show that local thinning of tube and cylindrical spec-
imens appears before failure, demonstrating instability of deformation process. If
we suppose the instability of deformation process is a failure criterion according to
Consider criteria [18, 24–26] so experiments demonstrate that in two-axial stress
state destruction of tube specimens takes place at effective strain level [εi] ~ 3.6%.
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Fig. 5.3 Circumferential strains of shell

Let us consider dynamic deformation of cylindrical shell of constant thickness
h, R/h ~ 20, L/R ~ 4 (R—radius, L—length of the shell) subjected to explosion of
spherical charges of different power (from M1 to M4 = 2.6M1 kg TNT), located
in middle cross section on the shell axis. Dependences of maximal circumferential
strains of shells from time above the center of explosion are presented in Fig. 5.3.

Validity of computationalmodeling is confirmed by closeness of numerical curves
(solid lines) and experimental curves, recorded with different measuring equipment
in the tests with explosion of charges of masses M3= 1.9M1 (curve 3) M4= 2.6M1

kg TNT (curve 4). Maximal strain rates do not exceed 150 s−1 in all cases of
explosive loadings. Analysis of numerical results shows that in explosion of M1,
maximal circumferential strain (curve 1) reaches level of εmax~ 0.5…0.6% on tmax~
0.5…0.6 ms. With increasing explosive material mass to M2 = 1.5M1, maximal
deformation (curve 2) rises to εmax~ 1.0…1.1% at tmax~ 0.9…1.1 ms. With M3=
1.9M1, maximal circumferential strain (curve 3) reaches εmax~ 1.8% at tmax~ 1.4 ms.
All the shells keep its integrity in all experimentswith explosion in the range of explo-
sive material masses fromM1 to M3. On blast with explosive massM4= 2.6M1, the
shell is destroyed at level of circumferential strain εd~ 1.4% (small cross in curve 4)
on td~ 0.57 ms and continues to be deformed, reaching maximal level of deforma-
tions εmax~ 3.4% in numerical simulations as well as in experiment. With explosion
of M4= 2.6M1, destruction of the shell in form of longitudinal crack with bifurca-
tions on the both ends, Fig. 5.4, happens in conditions of two-axial tension stress
state, P= 0.82 at the stage of active deformation of the shell up to t ~ 0.75 ms.

Calculations and experiments demonstrate that with explosion of M3= 1.9M1,
maximal circumferential strains exceed critical level of strain εd~ 1.4%, and shell
keeps its integrity. Experimentally defined level of critical strain εd with cylindrical
shell is also significantly below than limiting levels of deformations experimentally
defined on specimenswith deformational criteria, calculatedwith engineering strains
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Fig. 5.4 Destroyed cylindrical shell

[εi] ~ 4…5% and with Consider criteria, calculated with true strains [εi] ~ 3,6%. So,
limiting deformation is not a simple criterion of dynamic strength of cylindrical shell.

Specific power of deformation of shell in themost loaded point on external surface
of the shell above the center of explosion is presented in Fig. 5.5. Destruction of the
shell is marked by small cross on curve «4» with explosion ofM4 = 2.6M1. Specific
power of deformation reaches level of N*

p= 22 W/mm3 in the moment of destroying
of the shell. Many numerical and experimental investigations confirm that steel shell
keeps its strength if the level of specific power of deformation does not exceed N*

p.
Thus, specific power of deformation can be considered as energy criteria of

dynamic strength of shell reflecting structural and deformational properties of the
material in conditions of two-axial stress state.

Fig. 5.5 Specific power of deformation
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5.4 Conclusions

According to numerical results and experimental data, it is necessary to point out the
following:

1. Limiting deformations obtained in experiments with specimens for two-axial
stress state is not an unequivocal criterion of strength of shell subjected to
explosion loading.

2. Specific power of deformation can be used as numerically–experimentally
confirmed energy criteria of strength of cylindrical shell. Critical value is N*

p

= 22 W/mm3 for investigated shell.
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Chapter 6
Plasticity of Materials with Additional
Hardening Exposed to Cyclic Loading

Valentin S. Bondar and Dmitry R. Abashev

Abstract This paper presents mathematical models of elastoplastic strain of addi-
tionally isotropically hardened materials exposed to simple (proportionate) and
complex (disproportionate) cyclic loading. It uses a simplified version of the plas-
ticity theory, which is a particular version of the theory of inelasticity. This version is
a single-surface combined-hardening flow theory. The paper presents the results of
calculation- and experiment-based analysis of elastoplastic strain and fatigue destruc-
tion of materials subjected to a variety of disproportionate cyclic loads. Complex
loadingprocesses, effects of additional isotropic hardening, anddestructionprocesses
are adequately described by a single, rather simple version of the plasticity theory,
which is where the advantage of the herein presented mathematical models lies.

Keywords Plasticity · Non-proportional cyclic loading · Additional hardening ·
Fatigue destruction · Non-proportionality parameter

6.1 Introduction

Up until the 1980s, plasticity theory and its defining equations were evolving calmly
[1]. Surprises were encountered first when experimental research [2–24] into dispro-
portionate (complex) cyclic loadingof some stainless steels discovered a considerable
hardening that wasmore than twice that observed in proportional cyclic loading. This
phenomenon, later dubbed additional isotropic hardening, could not be described by
any theory.

The effect was first described by [2–6]. The approach was taken further by [7–9,
11, 18, 19, 22–27]. However, each paper had a different parameter to respond to the
disproportionate loads. Kadashevich [28] gives some thoughts on the parameters of
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disproportionality, while [29] try to justify and substantiate the choice of a single
disproportionality parameter. Papers [30, 31] present the best-substantiated choice
of a single disproportionality parameter based on the criteria for alignment with the
effects of disproportionate loading observed experimentally; the equations for these
effects are presented as well.

This paper dwells upon mathematical modeling of these phenomena using a
version of single-surface plastic flow theory with combined hardening. The loading
surface displacement is described by the Novozhilov–Chaboshe model that implies
the total displacement is a total of displacements, each of which has its own evolu-
tionary equation. The first evolutionary equation that describes Type I displace-
ments is the Ishlinky–Prager equation. The Type II displacement equation is the
Amstrong–Frederick–Kadashevich equation. TheNovozhilov–Chaboshe hypothesis
coupled with the Ishlinsky–Prager and Amstrong–Frederick–Kadashevich equa-
tions are equivalent to a three-termed evolutionary equation used in the theory of
inelasticity [30].

Kinetic equations of damage accumulation are presented herein and use the work
of Type II backstresses on the field of plastic strain as the value of energy spend to
damage the material. The paper presents the results of calculation- and experiment-
based analysis of elastoplastic strain and fatigue destruction of materials subjected
to a variety of disproportionate cyclic loads.

6.2 Mathematical Modeling of Elastoplastic Strain

It uses a simplified version of the plasticity theory [31–33], which is a particular
version of the theory of inelasticity [30]. This version is a single-surface combined-
hardening flow theory. Its applicability is limited to small strains of initially isotropic
metals at temperatures that entail no phase transformations, at such strain rates where
dynamic and rheological effects are negligible. Consider the materials that showcase
additional isotropic hardening when exposed to disproportionate cyclic loading.

Below is a summary of the basic equations for this plasticity theory version.

1. ε̇i j = ε̇ei j + ε̇
p
i j

2. ε̇ei j = 1
E

[
σ̇i j − ν

(
3σ̇0δi j − σ̇i j

)]

3. f
(
σi j

) = 3
2

(
si j − ai j

)(
si j − ai j

) − C2 = 0

4. Ċ = qεε̇
p
u∗, ε̇

p
u∗ =

(
2
3 ε̇

p
i j ε̇

p
i j

)1/ 2
, qε = qε0+qεA, qε0 = dCp

dε
p
u∗
, qεA = θA(CA − C),

θA = (1 − A)θ0 + Aθ1, CA = (1 − A)C0 + AC1, C0 = Cp + d0
(
Cmax − Cp

)
,

C1 = d1Cp, A = 1 −
(
ṡi j ėi j
σ̇u ε̇u

)2
, σ̇u = (

3
2 ṡi j ṡi j

)1/ 2, ε̇u = (
2
3 ėi j ėi j

)1/ 2

5. ȧi j = 2
3gε̇

p
i j +

(
2
3gεε

p
i j + gaai j

)
ε̇
p
u∗, g = Ea + βσa , gε = βEa , ga = −β



6 Plasticity of Materials with Additional Hardening … 59

6. ε̇
p
i j = d f

dσi j
λ̇ = 3

2

s∗
i j

σ ∗
u
ε̇
p
u∗, s∗

i j = si j − ai j , σ ∗
u =

(
3
2 s

∗
i j s

∗
i j

)1/ 2
, ε̇

p
u∗ = 1

E∗
3
2

s∗
i j σ̇i j

σ ∗
u
,

ε̇
p
u∗ = 3G

E∗+3G

s∗
i j ε̇i j

σ ∗
u
, E∗ = qε + g + gεε

p∗
u + gaa∗

u , ε
p∗
u = s∗

i j ε
p
i j

σ ∗
u
, a∗

u = 3
2

s∗
i j ai j
σ ∗
u

7. σ ∗
u < C ∪ ε̇

p
u∗ ≤ 0 − elastic, σ ∗

u = C ∩ ε̇
p
u∗ > 0 − plastic

8. ω̇ = αω
α−1
α

a(2)
i j ε

p
i j

WA
, α = (

σa
/
a(2)
u

)nα , a(2)
u =

(
3
2a

(2)
i j a

(2)
i j

) 1
2
, a(2)

i j = ai j − 2
3 Eaε

p
i j

WA = (1 − A)W0 + AW1, ω = 1 − destruction

Here, ε̇i j , ε̇ei j , ε̇
p
i j are the tensors of elastic, total, and plastic strain rates; ei j is the

strain deviator; σi j , si j , s∗
i j , ai j are the stress tensor, stress deviator, active stress

deviator, and backstreses deviator; ε p
u∗ is the accumulated plastic strain;ω is damage.

This version of the plasticity theory closes with the following material functions
to be defined experimentally:

E, ν are the elastic parameters;
Eao, β, σa are the parameters of anisotropic hardening;
Cp

(
ε
p
u∗

)
is the function of isotropic hardening;

W0 is the energy of destruction in case of proportional loading;
nα is the nonlinearity of the damage accumulation process (equals 1.5 for nearly
any structural steel or alloy);
θ0, θ1, d0, d1 are the absolute values of additional isotropic hardening and
softening;
W1 is the energy of destruction in case of disproportionate loading.

The first ten material functions can be found by testing under the conditions of
proportional uniaxial stress state. The basic experiment in this case uses the following
data:

• elastic parameters found conventionally;
• tensile plastic strain diagram;
• tense plastic strain diagram after pre-compression;
• data on single-block and dual-block cyclic tension and compression at a constant

span of plastic strain: number of pre-destruction cycles and maximum cycle-
specific stress as a function of the number of cycles.

The remaining five material functions can be found by testing using dispro-
portionate cyclic loading. The basic experiment in this case uses the following
data:

• maximum stress intensity diagram for the cycle σumax as a function of
accumulated plastic strain ε

p
u∗ in case of proportional cyclic loading;

• diagram σumax
(
ε
p
u∗

)
for disproportionate loading along a circular strain path

until additional hardening stabilizes, followed by proportional cyclic loading until
softening stabilizes;

• data on the fatigue destruction caused by disproportionate cyclic loading along
the circular strain trajectories of different radii.
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Bondar [30]; Bondar et. al. [32] details upon identifying the material functions
from the basic experiment data. The same papers present the material functions for
the steels considered herein.

All papers [2–13, 16, 18–24] that seek to describe the effect of additional isotropic

hardening use the disproportionality parameter proposed by [2–6] A = 1−
(

ε̇
p
i j ṡi j

ε̇
p
u∗ σ̇u

)2
,

which corresponds to the squared cosine of the angle between the vectors of plastic
strain and stress rates. Korotkikh and Makovkin [26]; Makovkin [27] proposes a

disproportionality parameter A = 1 −
(
2
3

ε̇
p
i j ėi j

ε̇
p
u∗ ε̇u

)2
that equals the cosine of the angle

between the plastic strain rate and strain rate vectors. As shown in [31], these param-
eters alone cannot describe the core pattern of additional isotropic hardening, which
is that additional hardening increases when the material is exposed to cyclic loading
along the circle-shaped strain paths of increasing radii. These parameters are basi-
cally not affected by the radii and will return the same value of additional hard-
ening regardless of the radius. Kadashevich and Mosolov [25] offered the parameter

A = 1−
(
ėi j ṡi j
ε̇u σ̇u

)2
, which equals the cosine of the angle between the strain rate vector

and the stress rate vector; this parameter has been [29, 31] proven to match the
patterns of additional isotropic hardening and hence its usage for the mathematical
modeling of elastoplastic disproportionate cyclic strain.

6.3 Additional Isotropic Hardening in Case
of Disproportionate Cyclic Loading

Consider the hardening processes first, i.e., processes where the strain paths follow
in the order of increasing loading disproportionality, i.e., cross to square to circle to
circles of greater radii. This will correspondingly increase the additional hardening
along the paths. Figures 6.1 and 6.2 present the experimental results [2, 5, 6, 20,
21] as circles as well as the calculated results as solid curves for loading along such
trajectories. Experimentation used thin-walled tubular specimens of 316 stainless
steel subjected to axial force and torque (P andM are experiments), where the axial
and shear strainweremeasured at room temperature. In Fig. 6.2, Curve 1 corresponds
to a calculation adjusted for additional hardening; Curve 2 corresponds to a non-
adjusted calculation. Additional isotropic hardening results in more than double
hardening. Figure 6.1 shows a cross-hardening effect: additional hardening occurs
first, followed by slow softening when the proportional cyclic loading is changed
from alternating torsion to tensile–compressive loading. Note that, at greater radii
(Fig. 6.2), loading becomes ever more disproportionate, which results in greater
additional hardening, although the path of strain has its curvature reduced. Thus, not
only the curvature of the strain path, but also the location of the path with respect
to the origin (the zero stress–strain state) determines the complexity of the loading
process.
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Fig. 6.1 316 stainless steel. Additional isotropic hardening induced by proportional and dispro-
portionate loading along strain paths of increasing disproportionality

Fig. 6.2 316 stainless steel. Additional isotropic hardening induced by disproportionate cyclic
loading along circular paths of increasing radii
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Fig. 6.3 316 stainless steel. Additional isotropic hardening and softening induced by proportional
and disproportionate loading along strain paths of increasing and decreasing disproportionality

Next, consider the loading processes, in which softening follows hardening.
Figure 6.3 shows the calculated (solid curve) and experimental [2, 5, 6] (circles)
results for a very complex cyclic loading process.

Here, additional hardening increases with disproportionality as the material is
loaded along the following trajectories: a beam, an eight-stage path, a four-stage path,
a two-stage path, a single-stage path, a square, and a circle. Further loading along
a squared, a single-stage, a two-stage, a four-stage, and an eight-stage trajectories
results in softening, as the disproportionality decreases.

The analytical and experimental research of additional hardening and fatigue
destruction induced by disproportionate cyclic loading (tension–compression or
alternating torsion) used 304 stainless steel at room temperature. Figure 6.4 shows
the calculated results as solid curves and experimental data [34] as checkmarks,
dark and bright circles, dark triangles, diamonds, and squares; these data apply
to fatigue destruction whether caused by proportionate or disproportionate cyclic
loading. Figure 6.4 shows the pathes of cyclic-load strains.
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Fig. 6.4 304 stainless steel. Fatigue destruction induced by proportionate and disproportionate
cyclic loading

Analysis of experimental and calculation data shows that given the same span of
strain, disproportionate cyclic loads inflict greater damage than their cyclic counter-
parts, and the longevity might be reduced by an order of magnitude. Figure 6.5 shows
how additional hardening affects the fatigue destruction in disproportionate cyclic
loading. Curve 4 corresponds to a calculation adjusted for additional hardening;
Curve 5 corresponds to a non-adjusted calculation. Dark circles show the experi-
ment data per [34]. As shown in Fig. 6.5, non-adjustment for additional hardening
and destruction energy as a function of disproportionality may result in overesti-
mating or underestimating the projected longevity compared to the actual longevity
of a material that exhibits that property.

Figures 6.6, 6.7 and 6.8 show the adjustment for additional isotropic hardening;
they show cyclic diagrams with (thick curves) or without (thin curves) adjustment
for additional hardening. Experimental results per [34] are shown as bright circles.

There is significant quantitative difference between the adjusted and non-adjusted
cyclic diagrams while they fit well from the qualitative standpoint.

6.4 Conclusions

Complex loading processes, effects of additional isotropic hardening, and destruc-
tion processes are adequately described by a single, rather simple version of the
plasticity theory, which is where the advantage of the herein presented mathematical
models lies. There are far less materials functions (11 parameters and 1 function in



64 V. S. Bondar and D. R. Abashev

Fig. 6.5 304 stainless steel. How adjustment for additional isotropic hardening affects fatigue
destruction

Fig. 6.6 304 stainless steel. How additional isotropic hardening affects the cyclic diagram when
straining along a double-square trajectory
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Fig. 6.7 304 stainless steel. How additional isotropic hardening affects the cyclic diagram when
straining along a square path

Fig. 6.8 304 stainless steel. How additional isotropic hardening affects the cyclic diagram when
straining along a circular path
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this case; 9 parameters and 1 function without destruction) than there are material
functions and parameters closing the today’s theories. Besides, the basic experiment
and the material function identification method for the considered version of the
plasticity theory are well-defined, relatively simple, and easy to use. Experiment-
vs-calculation comparison proves the proposed mathematical modeling approach
accurate and reliable.
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Chapter 7
Dynamic Compressibility of Birch Under
Various Types of Stress-Strain State

Anatoly M. Bragov, Andrey K. Lomunov, and Tatiana N. Yuzhina

Abstract The results of dynamic compression tests of air-dry birch samples across
the fibers are presented. Dynamic tests were carried out on an installation with a split
Hopkinson bar according to the Kolsky method at strain rates of ~2000 s−1 at normal
temperature. Dynamic diagrams of deformation are obtained for uniaxial stressed
and uniaxial strained states, as well as for a some intermediate state (deformation in
the birch board array). Comparison of deformation diagrams for different types of
stress-strain state shows a significant effect of the type of stress-strain state on the
behavior of the material under study. Using the obtained diagrams, some mechanical
characteristics of the material are determined.

Keywords Wood · Birch · Dynamic compression ·Model ·Multicycle load

7.1 Introduction

In order to carry out a reliable numerical analysis of the designed designs of trans-
port containers for transporting hazardous substances, usingwood as components that
dampen shock loads, reliablemathematicalmodels are required that take into account
its complex multicomponent structure. To obtain appropriate models, a large-scale
study of the anisotropy of the physico-mechanical properties of wood for various
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types of stress-strain state is necessary. Wood models of deformation and destruc-
tion are now actively developing for numerical simulation of the behavior of techni-
cally complex structures incorporating wood elements. An analysis of the literature
showed that wood is a complex natural polymer composite material with porosity
and pronounced anisotropy of mechanical characteristics. A significant effect of the
strain rate on the deformation and strength characteristics of wood is also noted.

Another important feature of the behavior of wood is a significant difference in
behavior depending on the type of stress state. Thus, the deformation of the southern
yellow pine under tension and shear is brittle, while the deformation diagram under
compression has a plastic section [1].

Among other light materials, the tree has a high ability to absorb energy, since it
can collapse up to 70–80% of its original height under compression [2–5]. For the
construction field, a static load is usually assumed, and therefore, only quasistatic
data and strength values are required. However, for applications such as impact
strength [2, 5], the dependence of the dynamic properties of wood on the strain rate
is required. In order to use efficiently wood in these applications, its corresponding
characteristic in dynamic load mode is of paramount importance.

The behavior of birch under compression across the fibers is investigated at room
temperature for various types of stress-strain states.

7.2 Material and Specimen

To study the dynamic properties of birch, samples were cut out from a plank across
the fibers. To do this, tablets with a diameter of 20 mmwere cut from an air-dry birch
plank of 10 mm thick using a diamond crown, and birch plates 80× 80× 10 mm in
size were prepared.

Table 7.1 shows the data [6] on themechanical properties of birchwith a density of
0.62 g/cm3 and humidity of 9%. The designations of the axes and planes of symmetry
correspond to the designations adopted in Fig. 7.1.

When testing wood under uniaxial deformation, the samples were placed between
the ends of the measuring bars in a jacket restricting the radial deformation of the
sample during its longitudinal compression. Like measuring bars, the jacket of the
original configuration [7] was made of high-strength aluminum alloy.

Table 7.1 The mechanical properties of birch

Er, MPa Et, MPa Ea, MPa Grt, MPa Gat, MPa Gar, MPa μtr/μrt μat/μta μra/μar

1126 629 16,600 192 1043 1095 0.38
0.78

0.470
0.018

0.034
0.490
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Fig. 7.1 Axes and planes of symmetry of the elementary volume of wood

7.3 Method of Investigation

To test of air-dry birch samples, the installation [8, 9] was used. Its operation is based
on the Kolsky method [10] with a split Hopkinson pressure bar (SHPB) as the main
measuring tool (Fig. 7.2). This figure also shows the main parametric dependences
of the method for determining stress, strain, and strain rate in a sample.

The Kolsky method is based on the one-dimensional theory of the propagation
of elastic waves in long thin bars. Traditionally, a system for testing under uniaxial
compression consists of two long bars (loading and supporting) with sufficiently
high yield strength as well as a thin sample in the form of a tablet located between
their ends. Using a compact gas gun, an elastic compression pulse with amplitude
proportional to the velocity of the impactor is excited in the loading bar.

Fig. 7.2 Scheme of the experimental setup for compression tests
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When approaching the sample, this pulse, due to the difference in acoustic
impedances of the materials of the bars and the sample, is separated: part of the
pulse is reflected from the interface and propagates back into the loading bar by
a tensile wave, while the other part passes through the sample into the supporting
bar by a compression wave. Assuming uniformity of the stress-strain state of the
sample along its axis (due to the long duration of the loading pulse compared to the
travel time of the wave along the length of the sample), based on these pulses using
the formulas of the Kolsky method, we can determine the parametric dependences
of development of the stress σ(t), strain ε(t), and the strain rate ε̇(t) in the sample
during the test and further, after synchronization, eliminating the time as a parameter,
construct a diagram of the deformation of the sample in the form of dependences
σ(ε) and ε̇(ε).

During the tests, traditional waveforms were obtained, on which two beams were
recorded: from the first (loading) measuring bar (upper beam) and from the second
(supporting) measuring bar (lower beam). An example of such an oscillogram is
shown in Fig. 7.3a. In this case, both the incident εI (t) and reflected εR(t) pulses are
recorded and marked with markers on the upper beam, while the pulse εT (t) passing

Fig. 7.3 Conventional pulse registration in measuring bars in wood testing
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through the sample is recorded on the lower beam. Figure 7.3b shows the same pulses
in the synchronization mode with the addition of the total pulse εR + εT . It is clearly
seen that the reflected and transmitted pulses do not return to the “zero” line after
the end of the loading process, i.e., the process of unloading a wood sample has a
very long duration.

In addition, it is clearly seen that the amplitude of the reflected pulse is significant
(up to 80% of the amplitude of the incident wave). The reason for this fact is the very
large difference in the acoustic impedances ρC of the measuring bars and the sample.
This reflected pulse propagates to the end face of the firstmeasured bar and is reflected
from this free end (since there is no contact with the striker) again as a compression
wave. This secondary wave loads the sample again, and its significant part is reflected
again, etc. [9]. Thus, the sample undergoes many load-unload cycles with a gradually
decreasing amplitude. The pause between cycles is equal to the propagation time of
the pulse along the first bar back and forth. The oscillogram gives some idea of this
process (Fig. 7.4), obtained with a slower scan of the oscilloscope.

It is clearly seen that the sample during one test is loaded many times, getting a
certain deformation in each cycle. When a traditional recording, only the main first
loading cycle is measured, whereas subsequent cycles are ignored. This is the reason
that, when testing materials with a low acoustic impedance, the calculated residual
deformation obtained as a result of processing pulses of only one first load cycle
(during traditional registration) does not coincidewith the actual residual deformation
measured with relatively intact samples.

As noted above, the study of the behavior of materials under cyclic loading is a
very urgent problem, since in a real situationwith high-speed exposure onto elements
of various structures it is quite possible a repeatedly cycle loadings due to reflections
and wave interference. Therefore, it is of interest to record such additional cycles of
loading the sample and construct the corresponding dynamic diagrams.

Fig. 7.4 Initial strain pulses during registration of additional loading cycles of the sample
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In order to be able to carry out tests during cyclic loading of samples and to record
repeated loading cycles in the course of one experiment, it is necessary to exclude
the return of the compression wave εt transmitted through it from the rear end of
the support bar to the sample, which can affect the loading process in subsequent
cycles and distort the recording of subsequent loading cycles. For this, the length of
the support bar should be increased in comparison with the length of the loading bar
as many times as the loading cycles are supposed to be recorded. The registration
time of the test process should be accordingly increased. Figure 7.5 shows the wave
pattern of pulses in the measuring bars when registering three loading cycles [9].

To implement tests of samples under the condition of volumetric stress state and
uniaxial deformation, the tested sample was located into a rigid jacket [11, 12]. It
should be noted that the sample was placed in a jacket with a small gap between
its lateral surface and the inner surface of the jacket equal to ~0.1 mm; therefore, a
stress-strain state close to volume occurred only after eliminating this gap. Prior to
deletion of the gap, as will be shown below, the behavior of the sample in the jacket
was similar to the behavior of the sample during testing without restrictions on its
radial deformation, i.e., under uniaxial stress state.

In addition to the two indicated types of tests under uniaxial stress state and
uniaxial deformation, a test cycle was conducted at some intermediate stress-strain

Fig. 7.5 Wave pattern of pulses in the SHPB during the registration of three loading cycles
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state, when the material itself played the role of the confining jacket. In this case, a
wooden plate 80× 80× 10mm in size was placed between the ends of themeasuring
bars with a diameter of 20 mm and was subjected to dynamic compression. Such
local loading of the wood massive is similar to its loading in a real design; however,
the stiffness of the material restricting the radial widening is small, and at large load
amplitudes, the material surrounding the compressible zone is destroyed, and the
restriction effect is lost. But the confining effect is manifested, in contrast to the test
mode in the jacket, from the very beginning of loading.

7.4 Results and Discussion

A cycle of dynamic testing of birch samples was carried out under compression
across the fibers at normal temperature under various types of stress-strain state.
In each mode, 3–5 tests were carried out, the results of which were averaged. The
amplitude of the loading wave, which is directly proportional to the velocity of the
impactor, determined the strain rate at which the samples were deformed.

The samples in the form of tablets tested under uniaxial stress state are shown
in Fig. 7.6a. The destruction of such samples was accompanied by spallation on the
lateral surface and splitting along the fibers.

Samples tested in a rigid confining jacket were compressed under uniaxial defor-
mation. Samples that retained visible integrity under loading, when removed from
the jacket, disintegrated into fragments.

In addition to samples in the form of tablets, tests were carried out on rectangular
plates cut from a board. The characteristic appearance of such fragments after the test
is shown in Fig. 7.6b. Each fragment was tested twice. Deformation of a fragment
of the board was characterized by crushing of fibers in the transverse direction in

Fig. 7.6 Birch samples after the test. a In the form of tablets. b As a fragment of the board
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the contact zone of the fragment and the measuring bars. The fragment destruction
occurred in the unloading waves in the direction perpendicular to the fiber direction.

As mentioned earlier, due to the small acoustic impedance ρC of the wood, the
sample is subjected to a large number of loading cycles with gradually decreasing
amplitude, and its plastic deformation reaches a large value. The use of measuring
bars with a length of 1.5 and 3 m made it possible to register three cycles of the
sample load in one experiment and accurately determine in which loading cycle the
sample fracture occurred.

As a result of tests for each mode, parametric dependences σ(t), ε(t) and ε̇(t)
were obtained, and as well as stress-strain curves σ(ε) with corresponding histories
of changes in the strain rate ε̇(ε).

Figure 7.7 shows a set of obtained averaged diagrams as a result of tests without
a jacket in the condition of uniaxial stress state, whereas Fig. 7.8 shows a similar set
during compression in the rigid jacket under the condition of uniaxial deformation.
Next, a similar set of averaged diagrams obtained by loading a sample in the form
of a fragment of a board (combined stress-strain state) is shown in Fig. 7.9.

Each figure shows the obtained parametric curves for three-cycle loading and the
resulting diagrams σ(ε) and ε̇(ε). Histories of changes in the strain rate are shown
in the lower part of the graphs by dashed lines, and the corresponding axis is located
on the right. As indicated above, the process of unloading the sample has a long
duration, and it is not possible to register it completely with the existing length of
the measuring bars.

Fig. 7.7 Diagrams of deformation of birch under compression in the condition of uniaxial stress
state (without jacket)
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Fig. 7.8 Diagrams of deformation of birch under compression in the condition of a uniaxial
deformed state (in a jacket)

Fig. 7.9 Diagrams of deformation of birch under compression in the condition of a combined
stress-strain state (fragment of a board)
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Fig. 7.10 Comparison of the
dynamic compressibility of
birch under different types of
stress-strain state

As can be seen, when birch is compressed across the fibers under the condition of
a uniaxial stress state, the stress amplitude during repeated cycles decreases slightly,
moreover further compression of the material occurs with a gradually decreasing
value of the obtained deformation in each subsequent cycle. When the wood is
compressed in the board massive, on the contrary, the stress amplitude during
repeated cycles increases, but the degree of deformation obtained in each subse-
quent cycle also decreases. When a sample is compressed in a jacket (under the
condition of uniaxial deformation), the stress amplitude in the second loading cycle
increases, but it decreases in subsequent cycles. The degree of deformation achieved
with three registered loading cycles for any type of stress-strain state is 40–45%.
In further cycles, the samples receive additional deformation, but it is impossible to
register these cycles.

An analysis of the obtained three-cycle pulses and in tests with any type of stress-
strain state allowed us to conclude that during the three registered load cycles, the
sample did not fail, and therefore, it was destroyed in subsequent load cycles, which
cannot be registered.

Figure 7.10 shows a comparison of the strain diagrams for the three studied
modes of stress-strain state. The dashed lines at the bottom of the graphs show
the corresponding curves of the strain rate.

It is clearly seen that during compression across the fibers, the behavior of birch
under the condition of a uniaxial stress state is similar to ideal plasticity: the material
receives a certain degree of deformation during each compression cycle (25, 17 and
10%) at almost constant stress amplitude. When testing samples in a rigid confining
jacket, due to the presence of a small gap (~0.1 mm) between the side surface of
the specimen and the inner surface of the jacket, the state of uniaxial deformation
occurs only when the deformation reaches ~10%, and before this deformation, the
material behaves similarly to the uniaxial stress condition. After eliminating this gap,
a significant increase in the stress developed in the sample is observed, due to the
limitation of its lateral deformation. In the third loading cycle, a stress increase is not
observed due to insufficient amplitude of the loading wave in this cycle. Under the
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condition of a combined stress-strain state (compression of a board fragment), the
influence of a wood massive that limits the lateral widening of the sample causes an
intense increase of stress from the very beginning of loading in the first load cycle,
whereas in subsequent cycles the amplitude of the achieved stress is less than under
uniaxial deformation.

Thus, the behavior of birch during loading of sampleswith the transverse direction
of the fibers strongly depends on the type of stress-strain state, which should be taken
into accountwhen identifying themodel ofwoodused in a layeredprotective structure
subject to dynamic loads.

7.5 Conclusions

Using the Kolsky method, samples of air-humidity birch were tested at strain rates
of ~2000 s−1. To assess the influence of the type of stress-strain state on the behavior
of the material, in addition to samples in the form of tablets, rectangular fragments
of the board were tested, as well as samples in a rigid jacket that impeded the radial
widening of the sample. To assess the effect of the loading history on the behavior
of birch during high-speed deformation, tests were carried out with registration of
additional loading cycles. According to the test results, the modules of the load and
hardening branches, the conditional yield strength and the energy absorption of the
material are determined.

In the case of free widening of the sample in the radial direction, there is a lack
of strain hardening in the first loading cycle. In subsequent cycles, hardening is
negligible. The stress-strain curves of birch when tested both in the form of tablets
in a jacket and fragments of a board are characterized by a noticeable increase in
the modulus of the hardening branch with increasing strain. It can be noted that the
behavior of the material in the case of testing a fragment of the board is intermediate
between the case of free widening of the sample in the radial direction and the case
under volumetric stress state and uniaxial deformation.

In the case of testing samples in the form of tablets, the effect of preliminary
deformation on the modulus of the load branch is negligible. At the same time, a
decrease in the value of the conditional yield strength in subsequent cycles was noted,
which is apparently caused by the accumulation of damage.

When testing samples in a rigid jacket, an increase in the modules of the load and
hardening branches was noted in subsequent loading cycles, which is apparently due
to the limitation of the radial widening of the sample. In this case, the highest value
of the conditional yield strength was observed in the second loading cycle.

Tests of board fragments were characterized by a decrease in the values of the
modules of the load branches in subsequent loading cycles, which may be caused
by the accumulation of damage in the load-unloading waves in the entire fragment
massive. As in the case of testing specimens in a rigid jacket, the highest value of
the conditional yield strength was observed in the second loading cycle.
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The obtained experimental results will serve as the basis for the subsequent
identification of the model of deformation and destruction of wood.
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Chapter 8
On Description of Fast Diffusion
in a Coupled Multicomponent System
with Microstructure Within the
Framework of the Thermodynamics
of Irreversible Processes

Dmitry Dudin and Ilya Keller

Abstract We consider a model of quasi-static coupled processes of diffusion,
viscoelastic deformation, chemical reactions, and microstructure evolution at con-
stant temperatures for which the physical and geometric relations are linear. A one-
dimensional model problem is posed in which the equilibrium equations are satisfied
automatically. The introduction of small spatial perturbations in the nonlinear system
of equations of the model leads to an eigenvalue problem, the solution of which gives
the spectrum of relaxation times and the corresponding eigenvectors. The introduc-
tion of the microstructure evolution and elastic properties leads to two corresponding
branches of relaxation times. Asymptotic expressions for the interdiffusion coeffi-
cients are obtained for infinitely small and large wavelengths. Depending on the ratio
of the characteristic elastic, thermal energy, and microstructure energy, fast or slow
diffusion occurs in the system. These types of diffusion accompany the usual thermal
diffusion and viscous relaxation. Non-classical diffusion processes are controlled by
the microstructure gradient and (or) the mean stress gradient value.

Keywords Fast diffusion · Interdiffusion · Coupled processes · Rheological
processes · Microstructure · Metal alloys · Perturbation method

8.1 Introduction

To ensure reliability indicators of modern machines and mechanisms, it is required
to study the coupled processes of diffusion mass transfer, chemical reactions, and
microstructure evolutions with accompanying viscoelastic deformations in multi-

D. Dudin
Perm National Research Polytechnic University, Perm, Russia
e-mail: dmitryovj@yandex.ru

I. Keller (B)
Institute of Continuous Media Mechanics of the UB RAS, Perm, Russia
e-mail: kie@icmm.ru

© Springer Nature Switzerland AG 2021
H. Altenbach et al. (eds.), Multiscale Solid Mechanics,
Advanced Structured Materials 141,
https://doi.org/10.1007/978-3-030-54928-2_8

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54928-2_8&domain=pdf
mailto:dmitryovj@yandex.ru
mailto:kie@icmm.ru
https://doi.org/10.1007/978-3-030-54928-2_8


82 D. Dudin and I. Keller

component metal alloys. Such processes occur, for example, when the surface of a
machine part is treated with carbonation or nitriding to protect against wear, fatigue,
and cracking. The problem of predicting the durability of turbine parts under the
combined influence of aggressive media, high temperatures, and mechanical loads
remains relevant [4]. Authors of the paper [10] have experimentally studied the
decomposition of an Al-12%Mg solid solution under developed plastic deforma-
tions. The application of a large shear action in Bridgman anvils for 300 seconds
leads to complete decomposition (homogenization) of the solid solution. The pos-
sibility of describing this decomposition as an abnormally fast diffusion (9 orders
of magnitude faster than the self-diffusion rate) in a coupled mechanodiffusion sys-
tem with a microstructure within the framework of thermodynamics of irreversible
processes is a non-trivial open question that requires some research.

One of the models of a multicomponent structurally in homogeneous medium
is proposed by Knyazeva [5–7]. Wilmanski builds a model of mixing in pore-
viscoelastic bodies taking into account the evolution of porosity [12]. To study cou-
pled diffusion and rheological processes, Stephenson [11] and later Brassart et al.
[1] used a one-dimensional problem that allows a homogeneous stationary solution.
Further by perturbing unknown variables, they obtained dependences of relaxation
times on the perturbation wavelength that allowed to exhaustively study the physics
of the process in asymptotic cases.

The model presented in this paper is based on the phenomenological model Bras-
sart et al. [1] which describes the associated quasi-static diffusion and rheological
processes in an isotropic isothermal two-component medium. We generalize this
model to the case of a three-component medium with reversible chemical reactions,
elastic properties, and microstructure evolution. In order to study the relaxation of
small spatial perturbations, a one-dimensional model problem is posed. The physi-
cal and geometric relations of the model are represented as linear dependency that
is sufficient within the analysis used. We study the asymptotics of the eigenvalue
problem corresponding to the relaxation of perturbations by a diffusion or viscous
mechanism. The spectrum of interdiffusion coefficients is qualitatively investigated
depending on the thermodynamic parameters.

8.2 Extended Brassart Model

We consider a three-component isotropic continuous medium that consists of the
particles A, B, AB characterized by atomic concentrations CA, CB, CAB per unit of
material volume in the reference configuration. A reversible chemical reaction is
permitted according to the chemical equation

νAA + νBB � νABAB,

where νA, νB < 0, νAB > 0 are the stoichiometric coefficients of reactants and prod-
uct of a chemical reaction; A, B, AB are the chemical formulas of the components.
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In the medium, microstructure may occur over time and it is determined by the
scalar microstructural variable H per unit of material volume in the reference con-
figuration.

8.2.1 Strain Tensor and Its Components

It is assumed that geometrically linear processes occur in the medium. They are
described by a small strain tensor ε consisting of elastic εe and viscous εv parts

ε = εe + εv. (8.1)

Each of these tensors are represented by the sum of the mean and deviatoric
components

ε = 1

3
εmI + e, εe = 1

3
εemI + ee, εv = 1

3
εvmI + ev. (8.2)

Denote the swelling ratio Ω

Ω
(
CA,CB,CAB, ε

e
m

) = 1 + εm (8.3)

dependent on the concentration of atoms and volume elastic deformation. It is
assumed that this variable is homogeneous function of degree one of concentrations

Ω = VA (ξA, ξB)CA + VB (ξA, ξB)CB + VAB (ξA, ξB)CAB + εem, (8.4)

where VA, VB, VAB are the partial volumes; ξA = CA/(CA + CB + CAB),
ξB = CB/(CA + CB + CAB) are the composition variables. Equations (8.3), (8.4)
determine the swelling ratio of thematerial that occurs due to changes concentrations
and elastic deformations. Differentiating (8.3) and (8.4) in time leads to

Ω̇ = ∂Ω

∂CA
ĊA + ∂Ω

∂CB
ĊB + ∂Ω

∂CAB
ĊAB + ε̇em,

Ω̇ = V̇ACA + V̇BCB + V̇ABCAB + VAĊA + VBĊB + VABĊAB + ε̇em. (8.5)

The condition of compatibility of these equations gives

VA = ∂Ω

∂CA
, VB = ∂Ω

∂CB
, VAB = ∂Ω

∂CAB
,

V̇ACA + V̇BCB + V̇ABCAB = 0, (8.6)

which coincides with the expressions obtained in [1] written without elastic defor-
mations for a two-component medium.
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8.2.2 Helmholtz Free Energy

The free energy is assumed by the following function

ψ = ψ
(
Ci,H , εe

)
,

ψ =
∑

k∈Ψ

Fmix
k (ξA, ξB)Ck + ψH (Ci,H ) + ψe(Ci,H , εe), (8.7)

where Ψ = {A,B,AB}, Fmix
k characterize the mixing energy, ψH is the free micro-

structural energy, andψe is the free elastic energy. Differentiating (8.7) in time gives

ψ̇ =
∑

k∈Ψ

(
Ḟmix
k Ck + Fmix

k Ċk + ∂ψH

∂Ck
Ċk + ∂ψe

∂Ck
Ċk

)

+∂ψH

∂H
Ḣ + ∂ψe

∂H
Ḣ + ∂ψe

∂εe
: ε̇e,

ψ̇ =
∑

k∈Ψ

∂ψ

∂Ck
Ċk + ∂ψ

∂H
Ḣ + ∂ψ

∂εe
: ε̇e (8.8)

The compatibility condition of Eq. (8.8) has the following form

Fk = ∂ψ

∂Ck
= Fmix

k + ∂ψH

∂Ck
+ ∂ψe

∂Ck
, k ∈ Ψ = {A,B,AB} ,

FH = ∂ψ

∂H
= ∂ψH

∂H
+ ∂ψe

∂H
, Fe = ∂ψe

∂εe
= ∂ψ

∂εe
, (8.9)

where Fk , k ∈ Ψ are the mixing partial energies; FH is the microstructural partial
energy; and Fe is the elastic partial energy.

8.2.3 Thermodynamic Inequality

According to the second law of thermodynamics, the free Helmholtz energy of an
isolated system does not increase

∫

V

ψ̇dV +
∫

S

(μAJA + μBJB + μABJAB) · NdS −
∫

V

σ : ε̇ΩdV ≤ 0, (8.10)

where μk , k ∈ Ψ are the chemical potentials; Jk , k ∈ Ψ are the diffusion fluxes; σ
is the Cauchy stress tensor; S and V are surface and volume of a body in the reference
configuration.
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The conservation equations of atoms are written as

dCk

dt
= −∇ · Jk + Pk , k ∈ Ψ, (8.11)

where Pk , k ∈ Ψ is the production of component k during evolution of a chemical
reaction.

Applying the divergence theorem to (8.10) with (8.11) gives

∫

V

(

Ωσ : ε̇ − ψ̇ +
∑

k∈Ψ

(
μk Ċk − Jk · ∇μk − Pkμk

)
)

dV ≥ 0. (8.12)

The microstructural variable satisfies a balance equation without conductive term

dH

dt
= PH , (8.13)

where PH is the production of the microstructural variable.
Taking into account (8.8), (8.9) and (8.13), we localize (8.12) to any arbitrary

volume of material that gives

Ωσ : ε̇ +
∑

k∈Ψ

(
(μk − Fk)Ċk − Jk · ∇μk − Pkμk

) − FHPH − Fe : ε̇e ≥ 0. (8.14)

Given σ : ε̇ = σmε̇m + s : ė and (8.1) where the Cauchy stress tensor is repre-
sented by the expansion into the mean and deviatoric parts σ = σmI + s the thermo-
dynamic inequality (8.14) takes the form

∑

k∈Ψ

((
μk − Fk

Vk
+ σm

)
VkĊk

Ω
− Jk · ∇μk

Ω
− Pk

Ω
μk

)

− FH
PH

Ω
+ s : ėv

+ s : ėe + σmε̇em − Fe : ε̇e

Ω
≥ 0.

(8.15)

Further, we write down the thermodynamic inequality in the terms of the
current configuration following [1]. We enter the following definitions in the current
configuration: concentrations ck , Ck = ckΩ , k ∈ Ψ , diffusion flows
Jk · ∇μk = Ωjk · ∇̂μk , k ∈ Ψ , production of microstructure pH = PH/Ω , produc-
tion of particles during a chemical reaction pk = Pk/Ω = νk ξ̇ , k ∈ Ψ , where ξ̇

is the rate of chemical reaction, the rate of volumetric insertion ik = VkĊk/Ω =
Vkċk + ckVk∇̂ · v, k ∈ Ψ , the chemical affinity A = ∑

νkμk . Expression (8.15) is
rewritten as
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∑

k∈Ψ

((
μk − Fk

Vk
+ σm

)
ik − jk · ∇̂μk

)
− FHpH − Aξ̇ + s : ėv

+ s : ėe + σmε̇em − Fe : ε̇e

Ω
≥ 0.

(8.16)

Physical relations describing dissipative and conservative processes must satisfy
(8.16).

8.2.4 Partial Energies and Elastic Equations

In the absence of irreversible processes, (8.16) degenerates into equality

s : ėe + σmε̇em − 1

Ω
Fe : ε̇e = 0. (8.17)

Taking into account the small deformations, the expression for the elastic strain
energy ψe can be written as:

ψe = Gee : ee + 1

2
Kεe2m , (8.18)

where G is the shear modulus, K is the bulk modulus. Further we assumed that G =
const and K = const.

Substituting (8.18) with (8.9) into equality (8.17) leads to the relation

(
s − 2Gee

) : ėe + (
σm − Kεem

)
ε̇em = 0. (8.19)

The independence of a volume velocity and shear elastic strains means the validity
of the generalized Hooke law

s = 2Gee, σm = Kεem. (8.20)

Following [2] for the case of a three-component medium under the assumption
of an ideal mixing of particles, we can write expressions for the mixing energies as

Fmix
k = kT

(
ξn (Vn − Vk) + ξj

(
Vj − Vk

)

Vm
+ ln

ξkV 0
k

Vm

)

, (8.21)

where the indexes can take values k = A, j = AB, n = B or k = B, j = AB, n = A
or k = AB, j = B, n = A; Vk = Vk(ξA, ξB), k ∈ Ψ are the partial volumes; Vm =
ξAVA + ξBVB + ξABVAB is the mean partial volume; ξAB = 1 − ξA − ξB is the number
fraction of species AB; V 0

A = VA(1, 0), V 0
B = VB(0, 1), V 0

AB = VAB(0, 0); k is the
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Boltzmann constant; and T is the absolute temperature. The assumption of an ideal
mixing of particles is strong and is used here solely for the reason of its simplicity.

In the vicinity of the equilibrium state

ψH ≈ fH (H − H0)
2

2
−

∑

k∈Ψ

fk
(
Ck − C0

k

)
(H − H0), (8.22)

where fA, fB, fAB, fH > 0. Using the condition of small deformations and cAVA +
cBVB + cABVAB = 1 following from (8.4), we write with precision to constants

∂ψH

∂H
= fHh − fAcA − fBcB − fABcAB,

∂ψH

∂Ck
= −fkh, k ∈ Ψ, (8.23)

where h = H/Ω is the microstructural variable in the current configuration. Using
(8.9) the thermodynamic inequality is finally wrote down

Fk = Fmix
k − fkh, FH = fHh − fAcA − fBcB − fABcAB, k ∈ Ψ. (8.24)

The constants fA, fB, fAB provide an energy connectivity of the model.

8.2.5 Dissipative Equations

We denote scalar thermodynamic flows J s
1 = iA, J s

2 = iB, J s
3 = iAB, J s

4 = pH , J s
5 =

ξ̇ and corresponding scalar thermodynamic forces X s
1 = (μA − FA)/VA + σm,

X s
2 = (μB − FB)/VB + σm, X s

3 = (μAB − FAB)/VAB + σm, X s
4 = −FH , X s

5 = −A.
Similarly we denote vector and tensor flows Jv1 = jA, Jv2 = jB, Jv3 = jAB, Jt = ėv

and corresponding forces Xv
1 = −∇̂μA, Xv

2 = −∇̂μB, Xv
3 = −∇̂μAB, Xt = s. The

thermodynamic inequality (8.16) with (8.17) and the accepted designations has the
form

∑5
k=1 J

s
k X

s
k + ∑3

k=1 X
v
k · Jvk + Xt : Jt ≥ 0. Taking into account the principles

of Curie and Onsager, a particular solution of this thermodynamic inequality is found
in a quasi-linear form.

For shear flow kinetics, the rheology of a linearly viscous Newtonian fluid is
accepted

s = 2ηėv, (8.25)

where η is the coefficient of shear viscosity. According to (8.20) and (8.25), the
Maxwell rheological model is accepted for the deviatoric part of the stress tensor s
in the absence of other processes.

To satisfy the inequality
∑3

k=1 X
v
k · Jvk ≥ 0, wewrite the diffusion kinetics without

regard to the cross connections

jk = −ckMk∇̂μk , k ∈ Ψ, (8.26)
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where Mk ≥ 0, k ∈ Ψ are the mobility coefficients. For scalar thermodynamic
forces, quasi-linear solvingof inequality

∑5
k=1 J

s
k X

s
k ≥ 0has the formX s

i = ∑5
k=1 βik

J s
k . Therefore, the kinetics of a chemical reaction is described by the equation

A = −βξ ξ̇ − βHξpH −
∑

k∈Ψ

βξk ik . (8.27)

Similarly, the kinetics of microstructure is written as

FH = −βHpH − βHξ ξ̇ −
∑

k∈Ψ

βHk ik . (8.28)

The last scalar constituative equation provides the connection of diffusion and
rheological kinetics as well as the evolution of microstructure and kinetics of a
chemical reaction

μk − Fk

Vk
+ σm = βk ik + βξk ξ̇ + βHkpH , k ∈ Ψ. (8.29)

To satisfy inequality (8.16), the coefficient matrix β must be positively defined.
Coefficients βk , βξk , βHξ , βHk , k ∈ Ψ are called the volumetric viscosities.

8.2.6 Balance Equations

To close the constitutive equations (8.20), (8.21), (8.24)–(8.29), three balance equa-
tions are written. In the current configuration, mass balance equations are

dck
dt

+ ck∇̂ · v = −∇̂ · jk + νk ξ̇ , k ∈ Ψ. (8.30)

Furtherwewrite the balance equation formicrostructural variablewithout conductive
term in the current configuration

dh

dt
+ h∇̂ · v = pH . (8.31)

The last balance equation is the equilibrium equation which is written without taking
into account the small inertial term

∇̂ · σ = 0. (8.32)

System of equations (8.20), (8.21), (8.24)–(8.32) with the relationship
∑

ckVk =
1 is a nonlinear statement of the coupled diffusion equations with accompanying
rheological and chemical processes and microstructure evolution.
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8.3 Analysis of the Relaxation of Spatial Perturbations

8.3.1 Model Problem

In order to study the relaxation of small spatial perturbations described by the coupled
equations, the model problem [1, 11] is considered. The following assumptions are
made:

• Particles can only diffuse along a spatial coordinate x

ck = ck(x, t), k ∈ Ψ. (8.33)

• All components of the total strain tensor are zero except of

εxx = ε(x, t) �= 0. (8.34)

• The components of the stress tensor are zero except of

σyy = σzz = σ(x, t) �= 0. (8.35)

• Microstructural changes can only pass along x:

h = h(x, t). (8.36)

With the using hypotheses (8.33)–(8.36) to equations (8.20), (8.21), (8.24)–(8.32),
we give a simpler nonlinear one-dimensional statement of the problem which allows
to effectively apply the perturbation method. The equilibrium equation (8.32) is
satisfied identically by virtue of condition (8.35).

8.3.2 Field Equations

The nonzero components of the elastic and viscous strain deviator are written
as eexx = 2

3 (ε
e − ε⊥), eeyy = eezz = − 1

3 (ε
e − ε⊥) and evxx = 2

3 (ε
v + ε⊥), evyy = evzz =

− 1
3 (ε

v + ε⊥), that is given with ε = εe + εv, (8.34) and the definition ε⊥ = εeyy =
εezz = −εvyy = −εvzz . Similarly, the nonzero components of the deviatoric part of stress
tensor are sxx = −σm, syy = szz = 1

2σm. Further with using (8.20) and (8.25) expres-
sions are defined εe = (1/(3K) − 1/(3G)) σm, ε⊥ = (1/(3K) + 1/(3G)) σm, ε̇v =
− (1/(3K) − 1/(3G)) σ̇m − 3/(4η)σm, ε̇vm = − (1/K + 3/(4G)) σ̇m − 3/(4η)σm,
ε̇ = −3σ̇m/(4G) − 3σm/(4η). The last equation is written in terms of the velocity
v(x, t) of the medium material points along the spatial coordinate x
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∂v

∂x
= − 3

4G

∂σm

∂t
− 3σm

4η
. (8.37)

Because the velocity v is a small value we accept d/dt ≈ ∂/∂t.
From the solution analysis of the coupled diffusion problem with chemical reac-

tions and viscoelastic deformations of a three-component medium, it follows that
chemical reactions do not affect on the fast interdiffusion coefficient. Therefore,
the diffusion problem for a two-component viscoelastic medium with microstruc-
ture evolution is considered further. Field equations (8.21), (8.24), (8.26), (8.30) and
(8.31) take the form of

∂ck
∂t

+ ck
∂v

∂x
= −∂jk

∂x
, ik = Vk

∂ck
∂t

+ ckVk
∂v

∂x
, k ∈ Ψ 1 = {A,B}, (8.38)

∂h

∂t
+ h

∂v

∂x
= pH ,

∂v

∂x
= − 3

4G

∂σm

∂t
− 3σm

4η
, jk = −ckMk

∂μk

∂x
, k ∈ Ψ 1, (8.39)

Fmix
k = kT

(
ξj(Vj − Vk)

Vm
+ ln

ξkV 0
k

Vm

)
, {k, j} ∈ Ψ 2 = {A,B; B,A}, (8.40)

Fk = Fmix
k − fkh, FH = fHh − fAcA − fBcB, k ∈ Ψ 1. (8.41)

They are closed by the material equations (8.28), (8.29) with βHξ , βξk = 0 and∑
ckVk = 1.

8.3.3 Perturbation Method

The above system of coupled nonlinear equations has a homogeneous stationary
solution

σm(x, t) ≡ 0, h(x, t) ≡ h0, cA(x, t) ≡ c0A, cB(x, t) ≡ c0B, (8.42)

which corresponds to some equilibrium state.
The spectrum of relaxation times is determined using the perturbation method

according to which the system of coupled equations is linearized in the neighborhood
of the state (8.42). From the solution of a nonlinear homogeneous stationary problem,
it follows h0 = (fAc0A + fBc0B)/fH . Further we assume βk = β, βHk = βHi, k ∈ Ψ 1.
As a result, we get a system of three linear differential equations with constant
coefficients which at β, βiH ≡ 0 has the form
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1

φ0
A

∂φA

∂t
− 3

4G

(
∂σm

∂t
+ Gσm

η

)

−kTΞ
MA

φ0
A

Vm

VB

∂2φA

∂x2
+ MAVA

∂2σm

∂x2
+ fAMA

∂2h

∂x2
= 0,

1

φ0
B

∂φA

∂t
+ 3

4G

(
∂σm

∂t
+ Gσm

η

)
+ kTΞ

MB

φ0
B

Vm

VA

∂2φA

∂x2

−MBVB
∂2σm

∂x2
− fBMB

∂2h

∂x2
= 0,

∂h

∂t
− 3h0

4G

(
∂σm

∂t
+ Gσm

η

)

+
(
fB
VB

− fA
VA

)
φA

βH
+ fH

βH
h = 0,

where φA = cAVA is the volume fraction of species A, Ξ = (VAφ
0
A + VBφ

0
B)/Vm.

In the vicinity of a homogeneous stationary solution (8.42), perturbations are
superimposed on the unknown variables

φA(x, t) = φ0
A + φ̂ exp

(− t
τ

)
sin

(
2πx
λ

)
,

σm(x, t) = σ̂ exp
(− t

τ

)
sin

(
2πx
λ

)
,

h(x, t) = h0 + ĥ exp
(− t

τ

)
sin

(
2πx
λ

)
, (8.43)

where φ̂, σ̂ , ĥ ∈ R,
∣
∣∣φ̂

∣
∣∣ ,

∣
∣σ̂

∣
∣ ,

∣
∣∣ĥ

∣
∣∣ 
 1, τ is the relaxation time, λ is the wavelength

of the perturbation. The imposed thermodynamic constraints provide the real value
of eigenvalues and eigenvectors.

Substituting relations (8.43) into a linearized system of equations leads to an
eigenvalue problem whose solution is characterized by three branches τ = τk(λ)

and the corresponding eigenvectors uk . Nonzero components of the eigenvector for
a given λ characterize the presence of the influence of the corresponding process on
the system relaxation behavior. If uk1 �= 0, the relaxation process is influenced by
the diffusion kinetics. If uk2 �= 0, it is influenced by the stress state and if uk3 �= 0,
the kinetics of microstructure influences on the relaxation process. The perturbation
method technique allows to study the physics of relaxation processes in coupled
systems depending on various factors without resorting to numerical analysis.

8.3.4 Relaxation Times of Perturbations and Their
Asymptotes

Dependencies τ = τk(λ), k = 1, 2, 3 are obtained but they are not given here
because of their bulkiness. Further reasoning is carried out under the assumption
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Fig. 8.1 Relaxation times
spectrum of the coupled
system depending on
perturbation wavelength

that the Lyapunov stability condition fulfills. The plot ln τ = ln τk(ln λ), k = 1, 2, 3
at β, βHi ≡ 0 is shown in Fig. 8.1. Diffusive and viscous behavior in the coupled
system is observed in the asymptotic cases at λ → 0 and λ → ∞.

The diffusion asymptote corresponds to the sloping line with a tangent equal to 2
in Fig. 8.1 and the model

∂up

∂t
= Dp

∂2up

∂x2
,

where up is the corresponding eigenvector andDp is the coefficient defined by depen-
dence τp(λ). This coefficient in coupled systems is called interdiffusion coefficient
[1, 3, 8, 9]. The viscous asymptote corresponds to the horizontal line in Fig. 8.1 and
the model

∂up

∂t
= −up

τp
,

where up is the corresponding eigenvector and τp is the coefficient defined by depen-
dence τp(λ).

The volumetric viscosities β, βHi control the relaxation process at λ → 0 that
leads to the appearance of viscous horizontal asymptotes in the small neighborhood
of λ = 0. For λ → ∞, these viscosities do not influence on perturbation relaxation
in any way. Further we assume that β, βHi ≡ 0.

For τ = τ1(λ) at λ → ∞, the stress gradient does not affect on the diffusion flows
of the components in any way but the interdiffusion coefficient equals to

D∞
1 = kTΞ(MAξ

0
B + MBξ

0
A) +

(
fB
VB

− fA
VA

)
φ0
Aφ

0
B

fH
(MAfA − MBfB), (8.44)

where Ξ = (VAφ
0
A + VBφ

0
B)/Vm. The eigenvector is u∞

1 = (φ̂∞
1 , 0, ĥ∞

1 ). The coef-
ficient (8.44) corresponds to the sequential connection of diffusion structural ele-
ments. If MA  MB, the rate of interdiffusion is determined by the fastest compo-
nent A. According to (8.44), a change in the microstructure can both accelerate and
slow down the process of interdiffusion at long-wave perturbations. In the case of
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low energy coupling h0fk 
 kT , k ∈ Ψ 1, the expression (8.44) is reduced to the
Darken’s interdiffusion coefficient [3].

If the characteristic thermal kT and elastic GVm energies are comparable, the
interdiffusion coefficientsD0

2,D
0
3 have a complex dependence on the microstructure,

elastic, and diffusion properties of the system and therefore, they are not given here.

The corresponding eigenvectors have the form u0
2,3 =

(
φ̂0
2,3, σ̂

0
2,3, ĥ

0
2,3

)T
. If GVm 

kT , the interdiffusion coefficients

D0
2 = kTΞMAMBVm

(
4G
3 + fHh20

)

4G
3 (MAVAφ

0
A + MBVBφ

0
B) + h0(fAMAφ

0
A + fBMBφ

0
B)

, (8.45)

D0
3 = 4G

3
(MAVAφ

0
A + MBVBφ

0
B) + h0(fAMAφ

0
A + fBMBφ

0
B), (8.46)

at that D0
3  D0

2. Here, diffusion flows are moderated by stress and microstructure
density gradients. So (8.46) predicts much faster homogenization of components
then conventional diffusion mechanism. The coefficient (8.46) is determined by the
sequential connection of the diffusion structural elements and (8.45) is defined by
their parallel connection. If MA  MB, then the rate of diffusion is limited by the
slow component B. For h0fk 
 GVm, k ∈ Ψ 1, the expression (8.45) is reduced to
the Nazarov-Gurov interdiffusion coefficient [8, 9]. In nanostructured metal alloys,
there is a large energy coupling h0fk  GVm, k ∈ Ψ 1 that allows to overwrite (8.45)
and (8.46) in the following form

D0
2 = kTΞMAMBVmfHh0

fAMAφ
0
A + fBMBφ

0
B

, D0
3 = h0

(
fAMAφ

0
A + fBMBφ

0
B

)
. (8.47)

The interdiffusion coefficients (8.47) are determined only by the microstructure
energy.

For λ → 0, kT  GVm, the interdiffusion coefficients are

D0
2,3 = kTΞ

2
(MAξ

0
B + MBξ

0
A) + h0

2
(fAMAφ

0
A + fBMBφ

0
B)

∓1

2

√
(kTΞ(MAξ

0
B + MBξ

0
A) + h0(fAMAφ

0
A + fBMBφ

0
B))

2 − 4kTMAMBΞVmfHh20.

Although the coefficients G and η are lacked in D0
2,3, the stress gradient affects on

mass transfer. Additionally assuming a small energy coupling h0fk 
 kT , k ∈ Ψ 1,
we have

D0
2 =

(
4G

3
+ fHh

2
0

)
MAMBVm

MAξ
0
B + MBξ

0
A

, (8.48)

D0
3 = kTΞ(MAξ

0
B + MBξ

0
A), (8.49)
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where D0
2 
 D0

3 that characterizes slow interdiffusion. The coefficient (8.48) corre-
sponds to the parallel connection of the Fick bodies.

Asymptotes of the second and the third branches at λ → ∞ are characterized by
viscous relaxation times

τ∞
2 = βH

fH
, τ∞

3 = η

G

with the corresponding eigenvectorsu∞
2 = (0, 0, ĥ∞

2 )T,u∞
3 = (0, σ̂∞

3 , 0)T , i.e., there
is not coupling processes here.

For asymptote of the first branch at λ → 0, the viscous relaxation time

τ 0
1 = 3kT

4G

βH (VAφ
0
A + VBφ

0
B)

(
4G
3 + fHh20

)

kTfH (VAφ
0
A + VBφ

0
B)

(
1 + 3βH

4η h20

)
−

(
fB
VB

− fA
VA

)2
φ0
Aφ

0
B

(8.50)

exists with the eigenvector u0
1 = (φ̂0

1 , σ̂
0
1 , ĥ01)

T . Although the rate of relaxation in
(8.50) does not depend on the diffusion characteristics of the system, the concentra-
tions of substances relax to an equilibrium state through diffusion flows.

8.4 Conclusion

The perturbation method is applied to a one-dimensional nonlinear problem based
on a model of coupled quasi-static rheological and diffusion processes with elas-
tic properties and changes in the microstructure in a two-component medium. It
gives a spectrum of relaxation times of small spatial perturbations and correspond-
ing eigenvectors that allow to analyze possible physical processes in asymptotic
cases. The sloping asymptotes of relaxation times can be compared with the inter-
diffusion coefficients. The simplest of them conforms to a sequential or parallel
connection of diffusion structural elements. Horizontal asymptotes are controlled
by the viscous properties of the medium. Mathematical analysis of the problem is
effectively carried out with using computer algebra systems. This techniquewas used
earlier by Stephenson [11] and Brassart et al. [1] for models of coupled diffusion and
rheological processes.

The presence of changes in the microstructure as well as elastic deformations sig-
nificantly affected the rate of diffusion.When the characteristicmicrostructure energy
and the characteristic elastic energy significantly exceed the characteristic thermal
energy, the fast interdiffusion is realized. The fast interdiffusion occurs together with
the conventional thermal interdiffusion and the viscous relaxation. In the opposite
case, when the characteristic thermal energy significantly exceeds the characteristic
elastic energy and the microstructure energy, a slow interdiffusion occurs. Fast and
slow diffusion flows are determined by the gradient of the microstructural parameter
and the mean stress value.
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Chapter 9
Linear and Nonlinear Problems of Wave
Resistance to the Movement of Objects
Along Elastic Guides

Vladimir I. Erofeev, Sergey I. Gerasimov, Elena E. Lisenkova,
Alexey O. Malkhanov, and Vladimir M. Sandalov

Abstract Thework is devoted to the study ofwave resistance to themovement of the
load along a flexible guide lying on a linearly elastic foundation or on a nonlinearly
elastic foundation. In the case of a rigid type of nonlinearity, the frequency of trans-
mission and critical speeds of movement of the load are determined, when passing
through which the picture of wave formation changes qualitatively. At the source
frequency lying in the reject band, the constant component of the wave resistance
is found and its dependence on the speed of the load is investigated. The problem
of an elastic guide experiencing a moving object, as a dynamic controlled system,
is posed and solved. The general patterns inherent in the waves propagating in one-
dimensional elastic systems are revealed. The local laws of energy transfer and wave
momentum are given in the case when the Lagrangian of the elastic system depends
on the generalized coordinates and their derivatives up to the second order inclusive.
It is shown that in a reference frame moving with a phase velocity, the ratio of the
energy flux density to the wave pulse flux density is equal to the phase velocity. It is
established that for systemswhose dynamic behavior is described by linear equations
or nonlinear with respect to an unknown function, the ratio of the average values of
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the energy flux density to the wave pulse density is equal to the product of the phase
and group wave velocities.

Keywords Flexible guide · Nonlinear elastic foundation · Wave · Moving load ·
Wave resistance

9.1 Introduction

The movement of loads along elastic guides has traditionally been given much atten-
tion by researchers [1–15]. This interest is associated with a wide range of practical
applications. The problem itself arose more than 150 years ago when applied to
the problems of bridge dynamics [16]. In the nineteenth century, the corresponding
problems were solved in a quasistatic approximation, without taking into account
the inertial properties of the elastic system. From the perception of the dynamics of
elastic systems, these problems in the first third of the twentieth century began to be
solved by Krylov [17] and Timoshenko [18]. They proposed to replace the action
of a moving system with a moving force that reflects in the appearance in the right
side of the equation of dynamics of the elastic system the Dirac delta function. All
subsequent successes of the theory and its technical applications were largely due to
this approach (see, for example, [1–3, 5]).

The drawback of the Krylov–Timoshenko approach is that, replacing the moving
systemwith amoving force, we are obliged tomake a number of, generally speaking,
unsubstantiated assumptions, which are usually the following:

• The magnitude of the force is assumed to be known (e.g., equal to the weight of
the moving system).

• Its direction is perpendicular to the unperturbed surface of the elastic guide.
• Law of motion along the elastic guide is assumed to be known.
• Width of the zone of the moving contact is also assumed to be known.

In the early 1980s, A.I. Vesnitsky and his school proposed an approach [13, 19]
that made it possible for the first time to physically and mathematically correctly
formulate the problems of self-consistent motion of distributed elastic and concen-
trated systems, which moves along the latter. This problem statement allows to reject
the above assumptions and do not replace them with others.

The new approach led to a new look at the problem, revealing two fundamen-
tally important factors that were not previously taken into account: the presence of
convective (inertial) forces and pressure forces of elastic waves in a moving contact.
Rayleigh [20] and Nikolai [21] pointed out the existence of the latter. Considering
these factors not only made it possible to clarify the previously existing theory of
forced oscillations and resonance in elastic structures carrying moving loads, but
also opened up solutions to a number of other urgent problems. Among them are
sliding and rolling resistance due to wave formation; collision of bodies taking into
account slippage; stability of systems moving along elastic guides; motion of bodies
under the influence of wave pressure.
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9.2 Resistance to the Movement Along an Elastic Load
Guide with Its Own Degrees of Freedom

The appearance of wave resistance to the movement of loads is directly related to
the emission of elastic waves. This issue was studied in [19, 22], where constant or
variable sources of forces were used as loads. Below, we consider the resistance to
the movement of the load (crew), which has its own degrees of freedom, along the
elastic guide. A string lying on an elastic basement acts as a guide. Let us suppose
that crew represents two elastically connectedmassesM andm, located one above the
other. The movement of the crew happens by the law x = �(t). Let us also suppose
that vertical displacement of the upper mass M is defined by the function y(t), and
similar displacements of the lower mass are always equal to the deflections of the
string u(x, t) in the points of its contact x = �(t) with the crew 0u(t), i.e.,

1u(�(t), t) = 2u(�(t), t) = 0u(t), (9.1)

The equations of motion of such a system can be written in the following form:

utt − c20uxx + ω2
∗u = 0,

ÿ + �2
0

(
y −0 u

) = P0e
i(�t+φ),

0ü + ω2
0

(
0u − y

) = μ
[
c20ux + �̇ut

]+ Q0e
i�t , (9.2)

m�̈ = −
[
1

2
ρu2t + 1

2
Nu2x − 1

2
ku2 + ρ�̇utux

]
+ R (9.3)

supplemented with conditions given at infinity:

∣∣vu(x, t)
∣∣ < W < ∞, x → ±∞, 1S/1h < �̇, 2S/2h > �̇

which guarantees the absence of any other sources, including at infinity. Here,
c0 = √

N/ρ—the speed of wave propagation in a string without taking into
account the basement, ω∗—lowest string vibration frequency due to elastic base,
�0 = √

k0/M, ω0 = √
k0/m—partial vibration frequencies of the object, deter-

mined without taking into account the influence of the string, μ = ρ/m ρ—linear
string density, �—the frequency of forcing impact, Q0 = q01/m, P0 = q02/M , q01,
q02—driving force amplitudes, applied to the lower and upper masses, respectively,
φ—phase shift, S/h—energy transfer velocity [21], h—energy density, S—energy
flux density. Square brackets mean the difference between the limit values to the
right and left of the contact point.

Equation (9.3) describes the movement of the crew along the string under the
action of an external force R and the longitudinal component of the reaction force
from the side of the guide (wave pressure forces [19])
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Fpr = −
[
1

2
ρu2t + 1

2
Nu2x − 1

2
ku2 + ρ�̇utux

]
.

Consequently, moving at a constant speed (�̇ = V = const), the crew experiences
resistance to movement from the side of the elastic system with force

F = −Fpr =
[
1

2
ρu2t + 1

2
Nu2x − 1

2
ku2 + ρVutux

]
. (9.4)

We will search for functions that describe the steady-state forced oscillations of
the system in the form

vu(x, t) = v A exp
{
i
(
vωt −v kx

)}
, y(t) = B exp(i�t).

We obtain the following exact solution to problem (9.1)–(9.3) depending on the
speed of the crew.

When V < V∗ = c0
√
1 − (�/ω∗)2, 0 ≤ � < ω∗, thewave numbers and frequen-

cies of the waves to the left and right of the moving source are complex. Conse-
quently, the field of transversal displacements is localized near the crew decreases
with distance growth:

u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

A exp

(
−ω∗

√
V 2∗ − V 2

(
c20 − V 2

)−1
(V t − x)

)
cos

(
�
(
c20 t − V x

)(
c20 − V 2

)−1 + ψ1

)
, x < V t

A exp

(
−ω∗

√
V 2∗ − V 2

(
c20 − V 2

)−1
(x − V t)

)
cos

(
�
(
c20 t − V x

)(
c20 − V 2

)−1 + ψ1

)
, x > V t

,

A = �A�
−1,

�A =
√
P2
0 ω4

0 + 2Q0P0ω2
0

(
�2

0 − �2
)
cosφ + Q2

0

(
�2

0 − �2
)2

,

� = −ω2
0Ω

2 + (Ω2
0 − Ω2

)(−Ω2 + 2μω∗
√
V 2∗ − V 2

)
,

ψ1 = 2arctg

(
�A − Q0

(
�2

0 − �2
)− P0ω2

0 cosφ

P0ω2
0 sin φ

)

.

Oscillation of the uppermass of the crew is describedwith the help of the function:

y(t) = �B�−1 cos(�t + ψ),

�B =
{

P2
0

(
ω2
0 − �2 + 2μω∗

√
V 2∗ − V 2

)2
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+2P0Q0�
2
0

(
ω2
0 − �2 + 2μω∗

√
V 2∗ − V 2

)
cosφ + Q2

0�
4
0

}1/2
,

ψ = 2arctg

⎛

⎝
�B − Q0�

2
0 − P0

(
ω2
0 − �2 + 2μω∗

√
V 2∗ − V 2

)
cosφ

P0
(
ω2
0 − �2 + 2μω∗

√
V 2∗ − V 2

)
sin φ

⎞

⎠.

Note that the amplitudes of the oscillations of masses M and m can take both
unlimited and zero values, i.e., for them in the range of parameters V < V∗ =
c0
√
1 − (�/ω∗)2 resonance and antiresonance phenomena are possible. From the

above formulas, it follows that unlimited displacements are achieved at speeds

V =
√√√
√V 2∗ − �4

(
ω2
0 + �2

0 − �2
)2

4μ2ω2∗
(
�2

0 − �2
)2 < V∗.

The absence of fluctuations in the lower mass of the crew is possible in the
following cases:

• Transverse force does not act on the upper mass of the crew P0 = 0, and the
frequency of the force on the lower one coincides with the natural frequency of
the upper mass � = �0.

• Reduced amplitudes of forces acting on both masses are related by the relation
P0
Q0

= ±�2−�2
0

ω2
0

.

The upper sign corresponds to the situation when there is no phase shift between
the forces (φ = 0) and � > �0, and the bottom—φ = π and � < �0.

Dynamic damping of fluctuations in the upper mass of the crew occurs, for
example, in the case when the transverse force does not act on the lower mass
Q0 = 0, and the crew moves at a speed

V =
√

V 2∗ − �4

4μ2ω2∗
< V∗.

The deflection profile of the string is symmetrical with respect to moving crew
with velocity V < V∗, as a result, the constant component of the wave resistance
force is zero.

In all other cases, the constant component of the resistance to movement is
nonzero. This is due to the asymmetry of the profile of the deflection of the guide due
to the excitation ofwaves, the frequencies andwave numbers ofwhich are determined
by the formulas

ω1,2 =
c20� ± V

√
V 2ω2∗ − c20ω

2∗ + �2c20

c20 − V 2
,
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k1,2 =
V� ±

√
V 2ω2∗ − c20ω

2∗ + �2c20

c20 − V 2
.

When V∗ < V < c0 (0 ≤ � < ω∗), the so-called deceleration emission occurs
when a stationary source does not excite waves, since � < ω∗, but moving at a
speed V > V∗, begins to excite them which leads to the appearance of the breaking
effect. One of the excited waves (high-frequency) runs in front of the source, and the
other (low-frequency) follows him. As a result, after finding the amplitudes of these
waves, the deflection function will have the form:

u(x, t) =
{
A cos(ω1t − k1x + ψ1)when x < V t
A cos(ω2t − k2x + ψ1)when x > V t

. (9.5)

Here,

A = �A�
−1,

�A =
√
P2
0 ω4

0 + 2Q0P0ω2
0

(
�2

0 − �2
)
cosφ + Q2

0

(
�2

0 − �2
)2

,

� =
{(

ω2
0 + �2

0 − �2
)2

�4 + 4μ2ω2
∗
(
�2

0 − �2
)2(

V 2 − V 2
∗
)}1/2

,

ψ1 = 2arctg
�A� − (α1γ + β1δ)

β1γ − α1δ
.

The following law guides the oscillations of the upper mass:

y(t) =
√

α2 + β2�−1 cos(�t + ψ),

where

α1 = Q0
(
�2

0 − �2
)+ P0ω

2
0 cosφ,

β1 = P0ω
2
0 sin φ,

γ = −(ω2
0 + �2

0 − �2)�2,

δ = 2μω∗
(
�2

0 − �2
)√

V 2 − V 2∗ ,

ψ = 2arctg

√
α2 + β2� − (αγ + βδ)

βγ − αδ
,

α = Q0�
2
0 + (ω2

0 − �2
)
P0 cosφ − 2μω∗

√
V 2 − V 2∗ P0 sin φ,
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β = (ω2
0 − �2

)
P0 sin φ + 2μω∗

√
V 2 − V 2∗ P0 cosφ.

Since when V∗ < V in the system, there is the radiation of energy and,
consequently, its loss, this leads to a limitation of resonance peaks.

Substituting (5) into (4), and averaging over the object oscillation frequency, we
obtain the expression for the constant component of the wave resistance force

〈F〉 = ρ�Vω∗
√
V 2 − V 2∗ �2

A(
c20 − V 2

)
�2

. (9.6)

When 0 ≤ � < ω∗, V > c0, unlike the previous case, both waves run after the
source, followed by it, and the solutions will look like:

u(x, t) =
{
A{cos(ω1t − k1x + ψ1) − cos(ω2t − k2x + ψ1)}, x < V t
0, x > V t

,

A = �A�
−1,

�A =
{
Q2

0

(
�2

0 − �2
)2 + 2P0Q0ω

2
0

(
�2

0 − �2
)
cosφ + P2

0 ω4
0

}1/2
,

� = 2
(
�2

0 − �2)μω∗
√
V 2 − V 2∗ ,

ψ1 = 2arctg

(
P0ω2

0 sin φ − �A(
�2

0 − �2
)
Q0 + P0ω2

0 cosφ

)

,

y(t) = P0
(
�2

0 − �2
)−1

cos(�t + φ).

Note that this also includes the case corresponding to the Vavilov–Cherenkov
effect [23], when the waves are excited by a source of zero frequency (Ω = 0),
moving at supercritical speed (V > c0).

The average value of the wave resistance to motion is:

〈F〉 =
ρ
{
Q2

0

(
�2

0 − �2
)2 + 2P0Q0ω

2
0

(
�2

0 − �2
)
cosφ + P2

0 ω4
0

}

4μ2
(
V 2 − c20

)(
�2

0 − �2
)2 . (9.7)

Let us introduce dimensionless variables:

V̄ = V

c0
, Ω̄ = �

μc0
, Ω̄0 = �0

μc0
, ω̄0 = ω0

μc0
, ω̄∗ = ω∗

μc0
, F̄ = μ2c20〈F〉

Q2
0ρ

Figure 9.1a, b depicts the dependences of the constant component of the forcewave
resistance versus crew speed at various ratios between parameter values ω̄∗, Ω̄0, ω̄0
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Fig. 9.1 Dependences of the constant component of the force wave resistance

characterizing the elastic-inertial properties of the string and the crew. Here, for
certainty, ω̄0 < Ω̄0, and the value of ω̄∗ varies in the plane

(
V̄ , Ω̄

)
.

For the soft basement ω∗ <

√
ω2
0 + �2

0, there are possible two situations: ω∗ <

�0, ω∗ > �0. If ω∗ < Ω0 <

√
ω2
0 + Ω2

0 at velocities V∗ < V < c0, there is a single
frequency for which it is characteristic that if the frequency of external influence
does not exceed it, then there is a falling section (Fig. 9.1a) on the characteristic
of the dependence of the wave resistance on the speed of the crew, indicating the
possible existence of instability [23]. When this frequency is exceeded, the incident

section in the region V∗ < V < c0 is absent (Fig. 9.1b). If �0 < ω∗ <

√
ω2
0 + �2

0,
then there are two frequencies (there is no incident section on the characteristic if the
frequency of the external influence falls in the interval between these frequencies).

With a sufficiently rigid basement ω∗ >

√
ω2
0 + �2

0, there are three such.
In case � > ω∗ when 0 ≤ V < c0, the usual Doppler effect takes place, namely

a moving source emits one wave along its course with a frequency ω1 > � and one
in the opposite direction with a frequency ω2 < �.

The increase of the speed of the crew V > c0 leads to the fact that both waves
propagate behind the object, in the region x < V t , which corresponds to the so-called
complex Doppler effect.

Determining the constant component of thewave resistance force of themovement
of the crew, we obtain

〈F〉 =

⎧
⎪⎪⎨

⎪⎪⎩

ρΩV
√

V 2ω2∗+Ω2c20−c20ω
2∗
{
Q2

0(Ω
2
0−Ω2)

2+2P0Q0ω
2
0(Ω

2
0−Ω2) cosφ+P2

0 ω4
0

}

(c20−V 2)
{
(Ω4−Ω2Ω2

0−Ω2ω2
0)

2+4μ2(Ω2
0−Ω2)

2
(V 2ω2∗+Ω2c20−c20ω

2∗)
} V < c0

ρ
{
Q2

0(Ω
2
0−Ω2)

2+2P0Ω0ω
2
0(Ω

2
0−Ω2) cosφ+P2

0 ω2
0

}

4μ2(V 2−c20)(Ω
2
0−Ω2)

2 V > c0

.

(9.8)

The dependence corresponding to Formula (9.8) is shown in Fig. 9.2.
The frequency Ω = Ω0 and velocity V = c0 are resonant values, accompanied

by unlimited growth of F. Neglecting the transverse force acting on the upper mass at
the speed of the object V > c0, the average value of the resistance to movement does
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Fig. 9.2 Dependences of the
constant component of the
force wave resistance

not depend on the frequency of the source Ω and natural frequency of oscillations
of the upper mass of the crew Ω0, and similar to resistance to movement of the load,
the action of which is characterized by a transverse force.

9.3 Some General Relations for Waves Propagating
in One-Dimensional Elastic Systems

Let us consider one-dimensional elastic systemwith the density of Lagrange function
λ(x, t, u, ux , ut , uxx , uxt ). The Lagrangian function depends on generalized coor-
dinates u(x, t) = {U1(x, t), . . . ,Un(x, t)}, and its derivatives up to the second order
inclusively. This is the case, for example, to describe the beams of Bernoulli–Euler
and Rayleigh models [2]. Let us suppose that the function λ twice continuously
differentiable by the totality of its arguments. We calculate the partial derivative with
respect to time t:

∂λ

∂t
= λt +

n∑

j=1

(
λUjU jt + λUjxU jxt + λUjtU jtt + λUjxxU jxxt + λUjxtU jxtt

)
. (9.9)

Let us denote λt the derivative on time which explicitly included.
With the help of the equations of vibration of the elastic system [23]

λUj − ∂

∂x
λUjx − ∂

∂t
λUjt + ∂2

∂x2
λUjxx + ∂2

∂x∂t
λUjxt = 0, j = 1, . . . , n (9.10)

which are the followed from the stationary condition of the action integral in the
absence of non-potential forces acting on the system, and identities

Ujt
∂

∂t
λUjt ≡ ∂

∂t

(
UjtλUjt

)−UjttλUjt

U jt
∂

∂x
λUjx ≡ ∂

∂x

(
UjtλUjx

)−UjtxλUjx
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Ujt
∂2

∂x∂t
λUjxt ≡ ∂

∂x

(
Ujt

∂

∂t
λUjxt

)
− ∂

∂t

(
UjxtλUjxt

)+UjxttλUjxt

U jt
∂2

∂x2
λUjxx ≡ ∂

∂x

(
Ujt

∂

∂x
λUjxx −UjxtλUjxx

)
+UjxxtλUjxx

we transform equality (9.9) to the energy transfer equation

∂W

∂t
+ ∂S

∂x
= −λt (9.11)

where

W (x, t) =
n∑

j=1

(
UjtλUjt +UjxtλUjxt

)− λ (9.12)

S(x, t) =
n∑

j=1

{
Ujt

(
λUjx − ∂

∂x
λUjxx − ∂

∂t
λUjxt

)
+UjxtλUjxx

}
(9.13)

W (x, t)—Hamilton function density (energy density) [13].
For the stationary system (λt = 0) in the absence of non-potential forces, relation

(9.11) expresses the law of energy change in an element of a distributed system due
to its flow through the boundaries of the element. Thus, the value S(x, t) should be
considered as the wave energy flux density.

In the general case, the energy transfer equation has the form

∂W

∂t
+ div S = −λt (9.14)

The S—The energyflux density, often called theUmov–Poynting vector, iswidely
used in continuum mechanics and electrodynamics [13, 24, 25] to describe wave
processes.

For non-stationary systems, when the right-hand side of Eqs. (9.13) and (9.14) is
nonzero, it is possible to change (increase or decrease) the wave field energy due to
the work of external forces that change the parameters of the system.

In order to obtain the equations of transfer of the wave pulse, we differentiate the
Lagrangian with respect to the spatial coordinate x:

∂λ

∂x
= λx +

n∑

j=1

(
λUjU jx + λUjxU jxx + λUjtU jxt + λUjxxU jxxx + λUjxtU jxxt

)
,

where λx—the derivative on x variable which explicitly included. Using Eqs. (9.10)
and grouping the terms into an equation of divergence type, we obtain
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∂p

∂t
+ ∂T

∂x
= λx (9.15)

Here,

p(x, t) = −
n∑

j=1

(
UjxλUjt +UjxxλUjxt

)
(9.16)

T (x, t) = λ −
n∑

j=1

{
Ujx

(
λUjx − ∂

∂x
λUjxx − ∂

∂t
λUjxt

)
+UjxxλUjxx

}
(9.17)

where p(x, t)—wave pulse density, T (x, t)—wave pulse flux density [5].
If the parameters of the system clearly depend on the coordinate, as, for example,

in a bar of variable cross section, then the right-hand side of Eq. (9.15) is nonzero.
This indicates the possibility of a change (amplification or attenuation) of the wave
pulse in an inhomogeneous system. Equations (9.11) and (9.15) express the local
laws of change in energy and wave momentum in a one-dimensional distributed
system. To obtain global laws, it is necessary to integrate these equations over the
size of the system.

Note that in the literature, there ismore often a differentway of obtaining the equa-
tions of energy transfer and wave momentum, namely by multiplying the equations
of motion (9.10) by Ujt and Ujx , respectively [3]. The result will not change.

In the future, we will consider Uj = U (x, t). Let us multiply the energy flux
density by Ux , energy density by Ut and summarize them. Further, multiplying the
ratio thus obtained byUx and using the expressions for the density of the wave pulse
and its flux, we will have

Ux (Ux S +UtW ) +Ut (UxT +Ut p) = (UxUxt −UtUxx )
(
UxλUxx +UtλUxt

)

(9.18)

If the Lagrangian of an elastic system contains derivatives of generalized coordi-
nates of only the first order, then relation (9.18) is simplified and its right-hand side
vanishes.

For a harmonic wave with parameters slowly varying in time and space
(quasiharmonic wave)

U (x, t) = A(εx, εt) exp[i(ωt − kx)] + c.c.

where A(εx, εt)—complex amplitude, ω—frequency, k—wave number, c.c.—
complex conjugate expression, (iωA)−1∂A/∂t ~ (−ik A)−1∂A/∂x ~ ε << 1, and
right side of Eq. (9.18) vanishes, due to the fact that for the given approximation
UxUxt −UtUxx = 0. In this case, relation (9.10) can be rewritten in the form

S − vphW

ω
= T − vph p

k
, or S − vphW = vph

(
T − vph p

); vph = ω

k
(9.19)
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The second equality (9.19) can be interpreted in such a way that in a reference
frame moving with a phase velocity, the energy flux carried by the wave is related
to the density of the momentum flux through the phase velocity. Indeed, setting in
Eqs. (9.11) and (9.15) x ′ = x − vpht , t ′ = t , thus if we turn into a moving system
coordinate with the speed vph, we can see that the density of energy and momentum
fluxes will be, respectively, equal S − vphW and T − vph p.

As examples, consider the equations

Utt − c20Uxx + ω2
∗U = 0, ρFUtt + I EUxxxx + hU = 0 (9.20)

The first of these describes oscillations with an additional restoring force propor-
tional to the displacement U (x, t), in particular, transverse vibrations of a string
lying on a linear elastic foundation; in quantum field theory, this equation is known
as the Klein–Gordon equation [11]. In the framework of the Bernoulli–Euler model,
the second Eq. (9.20) describes the bending vibrations of a beam lying on a linear
elastic foundation, where ρF—linear density, I E—bending stiffness of the beam,
h—elastic coefficient of the basement.

Lagrangians λwhich correspond to these examples are defined with the relations:

λ = (U 2
t − c20U

2
x − ω2

∗U
2
)
/2, (9.21)

λ = (ρFU 2
t − I EU 2

xx − hU 2
)
/2. (9.22)

Substituting expression (9.22) into Eqs. (9.12), (9.13), (9.16), (9.17), we obtain

W (x, t) =(U 2
t + c20U

2
x + ω2

∗U
2
)
/2, S(x, t) = −c20UxUt ,

p(x, t) = −UxUt , T (x, t) = (U 2
t + c20U

2
x − ω2

∗U
2)/2. (9.23)

For a wave packet slowly varying in space and time, we have:

U ∼ a cos(ψ + φ); a = |A|, φ = arg A. (9.24)

Values of energy, momentum densities and their fluxes neglecting the derivatives
of a and φ have the following form:

W ∼ {c20k2 + ω2
∗ − c20k

2 cos 2(ψ + φ)
}
a2/2,

S ∼ {1 − cos 2(ψ + φ)}c20ωka2/2,
p ∼ {1 − cos 2(ψ + φ)}ωka2/2,
T ∼ {c20k2 − (ω2

∗ + c20k
2
)
cos 2(ψ + φ)

}
a2/2

Here, we account that ∂ψ/∂t = ω, ∂ψ/∂x = −k, and frequency ω and the wave
number k are connected through dispersion equation ω2 = c20k

2 +ω2∗, which follows
from the first Eq. (9.20).
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Calculating the expressions corresponding to the left and right sides of the first
equality (9.19), we verify the validity of the equalities:

S − vphW

ω
= T − vph p

k
= −ω2∗a2

2k
.

In the case of a beam, the values obtained as a result of: (1) substituting expression
(9.23) into relations (9.12), (9.13), (9.16), (9.17), and then into relation (9.24), (2)
neglect the derivatives of slowly varying a, φ, ω and k, (3) with the help of the
dispersion equation following from the second Eq. (9.20)

ρFω2 = I Ek4 + h, (9.25)

thus:

W ∼ (I Ek4 + h
)
a2/2, S ∼ I Eωk3a2,

p ∼ ρF{1 − cos 2(ψ + φ)}ωka2/2,
T ∼ {2I Ek4 − ρFω2 cos 2(ψ + φ)

}
a2/2. (9.26)

From these relations, it follows that:

(
S − vphW

)
/ω = (T − vph p

)
/k = (I Ek3 − h/k

)
a2/2.

Within the framework of the assumptions made, we calculate the period averages
of the energy flux density and wave pulse density

〈S〉 = I Eωk3a2 〈p〉 = ρFωka2/2. (9.27)

By the definition of the group velocity, we have vgr = dω
dk , and then from the

(9.25), it follows vgr = 2I Ek3/ρFω. From relations (9.27), we find that

〈S〉
〈p〉 = vgr vph . (9.28)

This expression is also valid for transverse vibrations of the string described by
the first Eq. (9.20).

We consider a one-dimensional distributed system with stationary and homoge-
neous parameters, whose Lagrangian has the form

λ = α1U
2
t + α2U

2
xt − β1U

2 − β2U
2
x − β3U

2
xx − γ1U

4 − γ2U
4
x − γ3U

4
xx . (9.29)

Substituting expression (9.29) into Eqs. (9.10), we find that in the absence of
distributed losses and sources, the oscillations of the distributed system will be
described by the equation
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α1Utt − α2Uxxtt − β2Uxx + β3Uxxxx + β1U + 2γ1U
3 − 6γ2U

2
x Uxx

+ 12γ3U
2
xxxUxx + 6γ3U

2
xxUxxxx = 0. (9.30)

The constant coefficients included here are determined through the parameters
of the distributed system,U (x, t)—generalized coordinate, which, for example, has
the meaning of transverse or longitudinal displacements, or a twist angle, depending
on which vibrations are considered.

For example, if α1 = ρF/2, α2 = ρ J/2, β3 = E J/2, γ2 = 5EF/8, β1 = β2 =
γ1 = γ3 = 0, andU (x, t)—transverse displacement of the midline of the beam, then
Eq. (9.30) describes the bending vibrations of the beam in the Rayleigh model [23]
(Bernoulli–Euler beam, when α2 = 0) with geometric nonlinearity. Here F—the
square of the cross section, J—axial moment of inertia of the section, E—elasticity
module, ρ—the density of the material.

If α1 = ρ I0/2, α2 = ρ Iφ/2, β2 = μIk/2, β3 = E Iφ/2, γ2 = μIφ/4, β1 =
γ1 = γ3 = 0, where I0—polar moment of inertia, Ik—moment of inertia during
torsion, Iφ—moment of twist, and U (x, t)—angle of rotation of the cross section,
then Eq. (9.30) is an equation of torsional vibrations of a rod with cubic nonlinearity.

Similarly, by setting the corresponding values of the coefficients of Eq. (9.30),
one can obtain from it a large set of technical and refined theories of transverse,
longitudinal and torsional vibrations of homogeneous rectilinear rods, both in the
linear approximation and taking into account cubic nonlinearity.

When deriving Eq. (9.30), it was assumed that a one-dimensional distributed
system is infinite. Such idealization is permissible if optimal damping devices are
located at its boundaries, i.e., the parameters of the boundary fixing are such that
disturbances incident on it will not be reflected. Based on exact solutions of model
problems for elastic systems, it was substantiated [19] the existence of matched end
dampers of various types of vibrations that do not produce reflected disturbances in
the system. This allows us to consider model (9.30) without taking into account the
boundary conditions and consider vibrations propagating in the system as traveling
elastic waves.

Note that the consideration of joint, for example, bending-torsional or
longitudinal-bending vibrations of the rods in the framework of Eq. (9.30) is not
possible and requires specifying the Lagrangian of an even more general form than
(9.29).

In accordance with Eq. (9.30), the frequency ω and the wave number k are
connected through the relation:

(
α1 + α2k

2
)
ω2 = β3k

4 + β2k
2 + β1 + 3

(
γ1 + γ2k

4 + γ3k
8
)|U0|2/2, (9.31)

which is the so-called nonlinear dispersion equation,U0—the wave amplitude. It can
also be obtained by varying the amplitude of the averaged Lagrangian [25].

In the case of a linear system (γ1 = γ2 = γ3 = 0), the account of coefficient β1

leads to the presence of an area of non-transmission, when waves in the system can
propagate only starting from frequencies > ω∗, and besides
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ω∗ =
⎧
⎨

⎩

√
β1/α1 when β1/α1 < β2/α2{
2

[√
α21β2

3 + α2β3(α2β1 − α1β2) − α1β3

]
+ α2β2

}
/α21 when β1/α1 > β2/α2

In a system with “rigid” nonlinearity (γ1 > 0), the area of non-transmission
increases, and with “soft” (γ1 < 0)—decreases.

From the relation (9.31), it follows that the phase vph = ω
k and group vgr = dω

dk
velocities depend on the wave amplitudeU0. Of course, strictly speaking, the concept
of group velocity is valid until the packet is distorted, i.e., for relatively small time
intervals and for signals with a narrow spectral range [25].

We express the energy density, energy flux density, wave pulse density and wave
pulse flux density through the generalized coordinate and the first and second deriva-
tives of it. The average values of these quantities over the wave period will have the
form:

〈W 〉 = (β1 + β2k
2 + β3k

4 + 9
(
γ1 + γ2k

4 + γ3k
8
)|U0|2/8

)|U0|2,
〈S〉 = ωk

(−α2ω
2 + 2β3k

2 + β2 + 3k2
(
γ2 + 2γ3k

4
)|U0|2/2

)|U0|2,
〈p〉 = ωk

(
α1 + α2k

2
)|U0|2,

〈T 〉 = (−α2ω
2k2 + 2β3k

4 + β2k
2 + 3

(
γ1 + 5γ2k

4 + 9γ3k
8
)|U0|2/8

)|U0|2.
(9.32)

These expressions, neglecting second-order derivatives (α2 = β3 = γ3 = 0),
consistent with the expressions obtained on the basis of the averaged variational
principle [25].

The value of the ratio of the wave energy flux density to the energy density
determines the magnitude of the energy transfer rate [3], i.e.,

ven = 〈S〉
〈W 〉 , (9.33)

and the transfer velocity of the wave pulse

vimp = 〈T 〉
〈p〉 . (9.34)

If γ j → 0, ( j = 1, 2, 3), then from expressions (9.33)–(9.34) with the dispersion
equation taken into account, we obtain the known result 〈S〉 = νgr〈W 〉, 〈T 〉 = νgr〈p〉,
and consequently, ven = vimp = νgr. In this regard, the group velocity is interpreted
as the rate of energy transfer by the wave field. It can be seen that, in the presence
of nonlinearity in this approximation, the energy and wave momentum transfer rates
differ from the group velocity.

As was established above, in a reference frame moving with a phase velocity, the
ratio of the average values of the density of energy fluxes and the wave pulse is equal
to the phase velocity of the wave:
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〈S〉 − vph〈W 〉
〈T 〉 − vph〈p〉 = vph.

The relation can be rewritten in the following form:

〈S〉 − vph〈W 〉
ω

= 〈T 〉 − vph〈p〉
k

=
(

−α2ω
2k + β3k

3 − β1

k
− 3

8

(
3γ1
k

− γ2k
3 − 5γ3k

7

)
|U0|2

)
|U0|2

In conclusion, we note that for average values〈S〉 and 〈p〉, relation (9.28) remains
the same for all systemswhose dynamic behavior is described by linear equations and
nonlinear with respect to the unknown function. To verify this, just put γ2 = γ3 = 0.

9.4 Resistance to the Movement of the Load Along a Guide
Lying on a Nonlinear Elastic Basement

When studying the dynamic behavior of one-dimensional elastic systems under the
action of moving loads, they most often use a string or a beam lying on a linear
Winkler base as guides [10, 17]. An exception is the work [26], where the uniform
motion of a constant load on a string lying on a nonlinear elastic foundation was
considered. The analysis of the problem in [26] was carried out using the phase
plane. It was found that in the case of rigid nonlinearity of the elastic base, there are
no qualitative differences with the linear case. Based on this, we solve the problem
of resistance to the uniform movement of the load along a guide lying on a nonlinear
elastic foundation, using the procedure that is usually used for linear systems.

Let us suppose that the influence of the load is characterized with the help of
vertical variable force P(t) = 1

2 P0 exp(i�t) + c.c. with frequency �, amplitude P0
(c.c.–complex conjugate quantity) moving at a constant velocity V. The motion of a
constant load is obtained by simple degeneration at � → 0. As a guide model, we
choose a string, transverse vibrations U (x, t) which are described by the density of
the Lagrange functions λ = 1

2

(
ρU 2

t − NU 2
x − h0U 2 − 1

2h1U
4
)
, where ρ and N—

linear density and string tension, nonlinearity parameter h1 is a small addition to the
rigidity of the basement h0 ≥ 0. Depending on the sign h1, we have a system with
either “hard” (h1 > 0), either with a “soft” (h1 < 0) type of nonlinearity.

According to [11], the formulation of the boundary value problem in this case
will have the form

ρUtt − NUxx + h0U + h1U
3 = 0, (9.35)

U (V t − 0, t) = U (V t + 0, t) = U (V t, t) = U0(t), (9.36)
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[NUx + ρVUt ]
V t−0
V t+0 = P(t), (9.37)

|U (x, t)| < W < ∞, x → ∞,

S/h〈V when x〈V t, S/h〉V when x〉V t (9.38)

Relations (9.36) determine the conditions of continuity, (9.37)–the balance of
forces on amoving boundary x = V t , (9.38)—conditions specified at infinity (which
guarantees the absence of any other sources), under R(t)we assume the force neces-
sary to maintain a uniform law of motion, S/h—energy transfer rate [13, 19], h—
energy density, S—energy flux density. Square brackets mean the difference between
the limit values, the values in them.

Considering the process of excitation of vibrations in the string to be steady, the
solution of problem (9.35)–(9.36) on the left ( j = 1) and on the right ( j = 2) from
the load we will look in the form

U (x, t) = 1

2
A j exp

{
i
(
ω j t − k j x

)}+ c.c., (9.39)

where A j—complex amplitude, ∂A j

∂t /
(
iω j A j

)
~ ∂A j

∂x /
(−ik j A j

)
~ ε << 1, and

frequenciesω j and wave numbers k j are determined from the system of equations
(index j is omitted)

{−ω2 + c20k
2 + ω2∗ + μ2∗|A|2 = 0

ω − kV = Ω
. (9.40)

Here c0 = √
N/ρ—the speed of wave propagation in a string without taking into

account the basement, ω∗ = √
h0/ρ—lowest vibration frequency of the string due

to the presence of a linear elastic base,μ∗ = √|h1|/2ρ. The first of the equations of
system (9.40) is a nonlinear dispersion equation, which for h1 → 0 degenerates into
the dispersion equation for transverse waves in a string on a linear Winkler base, and
the second is a kinematic invariant [13, 19].

Taking into account the linear elastic base, as is known [13, 19], leads to the
presence of a transmission region [27], when waves in the system can propagate,
starting from frequencies ω > ω∗. In a system with hard nonlinearity, the area of
non-transmission increases and, with soft, it decreases. In the future, wewill consider
only a system with a hard type of nonlinearity and a situation where the frequency
of the source lies in the bandwidth.

Note that if the frequency of the source lies in the transmission band, then the
stationary wave source does not emit, but moving at a certain speed V > V∗, it begins
to radiate them. Such radiation is usually called deceleration emission, and the speed
V∗, upon transition through which the picture of wave formation changes critically
[13, 19].
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Fig. 9.3 Dependence of
speed on frequency

For a string on a linearly elastic foundation, the frequency source � < ω∗ will
emit waves at speed V > V∗ = c0

√
1 − (�/ω∗)2 [13, 19].

For a string lying on a nonlinear base, studies have shown that the critical velocity
depends not only on the frequency, but also on the amplitude of the forcing effect
and the nonlinearity parameter

V∗∗ =
⎧
⎨

⎩
c20

(
1 − �2

ω2∗

)
− μ2∗P2

0

2ω4∗ρ2
+ μ∗P0

ω2∗ρ

√

c20
�2

ω2∗
+ μ2∗P2

0

4ω4∗ρ2

⎫
⎬

⎭

1/2

Figure 9.3 is shown the qualitative dependence of speed on frequency, taking into
account (solid line) and in the absence (dashed line) the nonlinearity parameter. It
can be seen that in a system with a rigid type of nonlinearity of the elastic base,

the critical velocity V** and skip rate ω∗∗ =
√

ω2∗ + μ1P0
c0ρ

higher than neglecting
nonlinearity.

From the solution of problem (9.35)–(9.38) for� < ω∗, it follows that the average
value of the wave resistance force has the form

〈R〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, V < V∗∗

ΩV P0

√√√
√
c20Ω2−

(
c20−V 2

)
ω2∗−

√
(
c20Ω2−

(
c20−V 2

)
ω2∗
)2−

(
c20−V 2

)μ2∗P20
ρ2

2
√
2
(
c20−V 2

)3/2
μ∗

, V∗∗ < V < c0

∣∣
∣∣
∣∣
∣

ρ

16
(
V 2−c20

)2
μ2∗

⎧
⎨

⎩

(
c20Ω2 +

(
V 2 − c20

)
ω2∗
)
√
(
c20Ω2 +

(
V 2 − c20

)
ω2∗
)2 +

(
V 2 − c20

)μ2∗P20
ρ2

−
∣
∣∣
∣∣
−
(
c20Ω2 +

(
V 2 − c20

)
ω2∗
)2 +

(
V 2 − c20

)μ2∗P20
ρ2

, V > c0

Corresponding to this formula, dependence in dimensionless variables P̄0 = P0
ρc20

,

V̄ = V
c0
, Ω̄ = Ω

ω∗ , μ̄∗ = μ∗c0
ω2∗

, R̄ = 〈R〉
ρc20

is depicted in Fig. 9.4. The graph is plotted

with the following parameter values P̄0 = 0.2, Ω̄ = 0.6, μ̄∗ = 0.1.
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Fig. 9.4 Dependence of
resistance force on velocity

Velocities close to c0 = √
N/ρ impossible since for V → c0 resistance to move-

ment 〈R〉 → ∞. According to calculations, the resistance to movement increases
sharply not only when → c0

(
V/c0 → 1, R̄ → ∞), but also when the speed of the

load moves V to critical. Moreover, if in the absence of nonlinearity 〈R〉 → ∞when
V → V∗, then taking into account the nonlinearity of the elastic base leads to the
fact that for V = V∗∗, the resistance force is finite, although there is a gap of the first
kind (Fig. 9.4).

It can be assumed that the stability of uniform motion is possible, i.e., excitation
of longitudinal load oscillations. The fact is that the pressure of the waves creates a
braking force, which, as calculations show, has a falling section of the characteristic
(Fig. 9.4). In such a section, according to the canons of the theory of oscillations
[27], dynamic friction is negative and a self-oscillating regime can occur.

9.5 Stabilization of Transverse Vibrations of a Mass
Moving Along a String

Below, we consider the introduction of control to stabilize the lateral vibrations of
an object moving along an elastic string. That is, the statement is carried out and the
problem of an elastic guide (string) carrying a moving object (mass) is carried out
as a dynamic controlled system.

Consider the mass m, moving with a speed V along an endless string (Fig. 9.5):
The system of equations describing the transverse vibrations of the string, mass,

as well as the corresponding boundary conditions is :
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Fig. 9.5 A mass moving
along an endless string

∂2u

∂t2
− c20

∂2u

∂x2
= 0, (9.41)

m
d2u0
dt2

=
[
N

∂u

∂x
+ ρ

dl

dt

∂u

∂t

]

x=l(t)

, (9.42)

[u(x, t)]x=l(t) = u(�(t) + 0, t) − u(�(t) − 0, t) = 0, (9.43)

u0(t) = u(�(t) − 0, t) = u(�(t) + 0, t), (9.44)

�(t) = V t, (9.45)

lim|x |→∞
|u(x, t)| < ∞. (9.46)

c0 =
√

N

ρ
, (9.47)

F(u0) = αu0 + β
du0
dt

(9.48)

Here, u(x, t), u0(t)—functions describing lateral deviations of the string and
mass, x = �(t)—the law of mass motion in the longitudinal direction (in our case
�(t) = V (t), N—string tension, ρ—string density.

It is known that the dynamics of the string-mass systemwill have a fundamentally
different character depending on the velocity V . In case when V < c0, the constant
deflection of the string at the point of contact with the mass propagates at a constant
velocity V together with the mass. This case is not of particular interest.

The casewhen themass velocity exceeds thewave velocity in a string is interesting
by wave radiation due to the Vavilov–Cherenkov effect. We will assume that the
waves arising as a result of the supersonic motion of the mass in the longitudinal
direction excite its transverse vibrations, which can grow unlimitedly. To damp the
transverse vibrations of the mass, we introduce an external force F(u0), under the
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assumption that it linearly depends on the transverse movement of the mass and on
the speed of this movement. Let us find the parameters α and β of the external force
F(u0) to suppress the instability effect. Then, Eq. (9.42’) takes the form

m
d2u0
dt2

=
[
N

∂u

∂x
+ ρ

dl

dt

∂u

∂t

]

x=l(t)

+ F(u0), (9.42’)

The transverse vibrations of the string and mass will be sought in the form

u(x, t) = Aei(ωt−kx), u0(t) = Bei�t . (9.49)

Substituting solutions in (9.41) in this form, we obtain the dispersion equation:

ω2 − c20k
2 = 0, (9.50)

We supplement this equation with a kinematic invariant expressing the condition
for the equality of phases at the contact point:

ω − kV = �, (9.51)

The solution of the kinematic problem (9.50)–(9.51) allows for a visual graphic
interpretation. On the plane (k, ω), the dispersion Eq. (9.50) determines some curves
(in this case, straight lines), and the kinematic invariant (9.51) corresponds to a
straight line, the slope of which is determined by the speed of movement (Fig. 9.6):

As can be seen from Fig. 9.6, in this case, two traveling waves are excited,
propagating behind the mass and traveling in different directions.

Solving Eqs. (9.50) and (9.51) together, we obtain:

Fig. 9.6 Dispersion law and
the kinematic invariant of
problem (9.41)–(9.45)
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k1 = �

c0 − V
,

k2 = − �

c0 + V
(9.52)

Next, we consider the case when the transverse oscillations of the mass increase.
This is possible if we assume that in solution (9.52), Im(�) < 0. Then, for the
supercritical velocity V > c0, we get:

Im(k1) > 0,

Im(k2) > 0 (9.53)

Using the condition of finiteness of the magnitude of the transverse movements of
the string at infinity, we take the following: Awavewith awave number k1 propagates
behind the mass to the positive direction of the axis, and with k2—behind (x < V t)
to the negative direction of the axis. Thus, the transverse movement of the string
behind the mass will be composed of u1(x, t) and u2(x, t), which have the following
form:

u1(x, t) = A1e
i(ω1t−k1x),

u2(x, t) = A2e
i(ω2t−k2x), u−(x, t) = u1 + u2, (9.54)

where ω j can be found from (9.47) after the substitution of the corresponding k.
In the front of the mass, there is no disturbance:

u+(x, t) = 0.

Note that a wave propagating in the positive direction of the axis does not decay at
infinitywhen conditions (9.53) are satisfied, i.e., condition (9.46)will not be satisfied.
We turn here to the statement of the problem of finding the parameters of an external
force F(u0) for suppression of the oscillations of the mass. It turns out that if we
find proper values for parameters α and β, thereby translating the imaginary part of
the mass oscillation frequency Im(�) from the negative half-plane to the positive,
we will automatically achieve the fulfillment of condition (9.46).

Let us differentiate condition (9.43) with respect to time, we obtain

[
∂u

∂x
· dl
dt

+ ∂u

∂t

]

x=l(t)

= 0, (9.55)

Then, it follows

[
∂u

∂t

]

x=l(t)

= −dl

dt

[
∂u

∂x

]

x=l(t)

. (9.56)
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Taking into account (9.45), relation (9.42) will take the form:

m
d2u0
dt2

= (N − V 2ρ
)[∂u

∂x

]

x=l(t)

+ αu0 + β
du0
dt

, (9.57)

Substituting the found displacements of the string and mass, we obtain

−mB�2 = i
(
N − V 2ρ

)
(A1k1 + A2k2) + αB + iβB�, (9.58)

or, taking into account condition (9.44), which can be rewritten in the form

A1 = A2 = B, (9.59)

where A1—the amplitude of the wave which propagates in front of the mass, A2—the
amplitude of the wave propagating behind the mass, and the expression of the wave
numbers in terms of the mass oscillation frequency, relation (9.48) can be rewritten
in the form

−m�2 = i
(
N − V 2ρ

)( �

c0 − V
− �

c0 + V

)
+ α + iβ�, (9.60)

or

m�2 + i(β + 2Vρ)� + α = 0. (9.61)

Thus, the problemof damping the growingoscillations is reduced to the problemof
finding the parametersα andβ, tomake the condition Im(�) ≥ 0 true. Ifwe substitute
� = −�, the problem can be reduced to searching for the above parameters such
that the complex polynomial

m�2 − i(β + 2Vρ)� + α = 0 (9.62)

would be stable, i.e., Im(�) < 0.
To solve this problem, it is convenient to use the Hermite–Hurwitz criterion. For

polynomial (9.62), the Hermite–Hurwitz matrix has the form:

M =

⎡

⎢⎢
⎣

m 0 α 0
0 −(β + 2Vρ) 0 0
0 m 0 α

0 0 −(β + 2Vρ) 0

⎤

⎥⎥
⎦ (9.63)

According to theHermite–Hurwitz criterion, for the stability of polynomial (9.62),
it is necessary and sufficient that a series composed of determinants:

�0 = m,
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�2 =
∣∣∣∣
m 0
0 −(β + 2Vρ

)
∣∣∣∣,

�4 =

∣
∣∣∣∣∣
∣∣

m 0 α 0
0 −(β + 2Vρ

)
0 0

0 m 0 α

0 0 −(β + 2Vρ

)
0

∣
∣∣∣∣∣
∣∣

should be alternating. Where do we get:

−m(β + 2Vρ) < 0,−m(β + 2Vρ)2α > 0, (9.64)

or

β > −2Vρ, α < 0 (9.65)

Thus, the introduction of an external force F(u0), whose parameters are in the
region determined by relations (9.65) it is possible to suppress mass oscillations, and
at the same time, to satisfy conditions (9.46) for the string. Physically, the appearance
of a stabilizing force similar to F(u0) is equivalent to introducing a visco-elastic
element for the mass.

9.6 Conclusions

Thus, it has been studied the phenomenon of wave resistance for a load (crew), which
has its own degrees of freedom, and moves along an elastic guide. The problem has
been considered in linear and nonlinear formulations. In order to avoid undesirable
effects, the results, which have been obtained in this research, should be taking into
account when constructing systems consisting of a moving load along the elastic
guides like high-speed trains, pantographs, etc.

Acknowledgements The work was supported of the Russian Science Foundation (project No.
20-19-00613).

References

1. Filippov, A.P.: Vibrations ofDistorted Systems.Mashinostroenie,Moscow (1970). (in Russian)
2. Filippov, A.P., Kokhmanyuk, S.S., Vorobyov, Y.S.: The Impact of Dynamic Loads on Structural

Elements. Naukova Dumka, Kiev (1974). (in Russian)
3. Fryba, L.: Vibrations of Solids and Structures Under Moving Loads. Noordhoff International

Publishing, Groningen (1972)



9 Linear and Nonlinear Problems of Wave Resistance … 121

4. Ivanchenko, I.I.: Dynamics of Transport Facilities: High-Speed Mobile and Shock Loads.
Nauka, Moscow (2011). (in Russian)

5. Kokhmanyuk, S.S., Yanyutin, V.G., Romanenko, L.G.: Oscillations of Deformable Systems
Under Pulsed and Moving Loads. Naukova Dumka, Kiev (1980). (in Russian)

6. Krylov, V.V. (ed.): Ground Vibrations from High-Speed Railways: Prediction and Mitigation.
ICE Publishing, London (2019)

7. Krylov, V.V. (ed.): Noise and Vibration from High Speed Trains. Thomas Telford Publishing,
London (2001)

8. Krysov, S.V.: Forced Vibrations and Resonance in Elastic Systems with Moving Loads. GSU,
Educational Guidance, Gorky (1985). (in Russian)

9. Metrikine, A.V., Verichev, S.N., Vostrukhov, A.V.: Fundamental Trasks of High-Speed Land
Transport. Lambert Academic Publishing, Saarbrücken (2014). (in Russian)

10. Suiker, A.S.J.: TheMechanical Behaviour of BallastedRailwayTracks. Delft Univ. Press, Delft
(2002)

11. Verigo, M.F., Kogan, A.Y.: The Interaction of the Track and Rolling Stock, Transport, Moscow
(1987) (in Russian)

12. Veritcev, S.N.: Instability of a Vehicle Moving on an Elastic Structure. Delft Univ. Press, Delft
(2002)

13. Vesnitsky, A.I.: Waves in Systems with Moving Boundaries and Loads. Fizmatlit, Moscow
(2001). (in Russian)

14. Vostroukhov, A.V.: Three-Dimensional Dynamic Models of a Railway Track for High-Speed
Trains. Delft Univ. Press, Delft (2002)

15. Wulfert, A.R.M.: Wave Effects Interacting With Moving Objects. Delft Univ. Press, Delft
(1999)

16. Panovko, Y.G., Gubanova, N.I.: Stability and Vibrations of Elastic Systems. Nauka, Moscow
(1967). (in Russian)

17. Krylov, A.N.: Vibration of Ships. ONTI, Moscow (1936). (in Russian)
18. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering, 5th edn.

Wiley, New York (1990)
19. Vesnitsky, A.I.: Selected Works on Mechanics. Nash Dom, Nizhny Novgorod (2010). (in

Russian)
20. Raileigh, D. Strutt, D.W.: On the pressure of vibrations. Phil. Mag. Ser. 6, 3 (15), 338–350

(1902)
21. Nicolai, E.L.: To the question of vibration pressure, Bulletin of the St. Petersburg Polytechnic

Institute. 18(1), 49–60 (1912) (in Russian)
22. Bychenkov, V.A., Krysov, S.V.:Wave resistance to rolling of a rigidwheel over 1D visco-elastic

support. Mashinovedenie 3, 60–66 (1988). (in Russian)
23. Bolotovskii, B.M., Ginzburg, V.L.: The Vavilov-Cerenkov effect and Doppler effect in the

motion of sources with superluminal velocity in vacuum. Sov. Phys. Usp. 15, 184–192 (1972)
24. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford

(1984)
25. Witham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)
26. Metrikin, A.V.: Stationary waves in a nonlinear elastic system interacting with a moving load.

Acoust. Phys. 40(4), 647–650 (1994)
27. Rabinovich, V.I., Trubetskov, D.I.: Oscillations and Waves in Linear and Nonlinear Systems.

Springer, Berlin (2012)



Chapter 10
Dispersion, Attenuation and Spatial
Localization of Thermoelastic Waves
in a Medium with Point Defects

Vladimir I. Erofeev, Anna V. Leonteva, and Ashot V. Shekoyan

Abstract This paper deals with the study of the propagation of plane longitudinal
waves in an unbounded point-defectedmedium located in a nonstationary inhomoge-
neous temperature field. The problem is considered in the self-consistent formulation
making allowance for both the influence of an acoustic wave on the formation and
movement of defects and the effect of defects on the propagation specificity of an
acoustic wave. It is shown that with no heat diffusion, the system of equations is
reduced to a nonlinear evolutionary equation, which is the formal generalization of
the Korteweg–de Vries–Burgers equation (KdVB). Using the truncated expansion
method, a specific solution of an evolutionary equation has been found in the form
of a stationary shock wave with a monotonic decrease. It is noted that dissipative
effects induced by available defects prevail over the dispersion associated with the
migration of defects in the medium. The influence of the initial temperature and type
of defects have been herein studied on the main parameters of a stationary wave such
as velocity, amplitude and width. Three limiting cases of the evolutionary equation
have been considered, and some generalizations of the known equations have been
obtained, namely the equations of Korteweg–de Vries (KdV), Burgers and Riemann.
The obtained equations as well as the generalized KdVB equation have solutions
in the form of stationary shock waves. The propagation of a harmonic wave in a
thermoelastic defective medium is herein analyzed. It is shown that the availability
of defects in the medium promotes the occurrence of the frequency-dependent dissi-
pation and dispersion. The influence of diffusion parameters and the type of defects
on the harmonic wave propagation are studied.

V. I. Erofeev (B) · A. V. Leonteva
Mechanical Engineering Research Institute of Russian Academy of Sciences, 85 Belinskogo str.,
Nizhny Novgorod 603024, Russia
e-mail: erof.vi@yandex.ru

A. V. Leonteva
e-mail: aleonav@mail.ru

A. V. Shekoyan
Institute of Mechanics of the National Academy of Sciences of the Republic of Armenia, 24B
Baghramyan Ave., Yerevan 0019, Armenia
e-mail: ashotshek@mechins.sci.am

© Springer Nature Switzerland AG 2021
H. Altenbach et al. (eds.), Multiscale Solid Mechanics,
Advanced Structured Materials 141,
https://doi.org/10.1007/978-3-030-54928-2_10

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54928-2_10&domain=pdf
mailto:erof.vi@yandex.ru
mailto:aleonav@mail.ru
mailto:ashotshek@mechins.sci.am
https://doi.org/10.1007/978-3-030-54928-2_10


124 V. I. Erofeev et al.

Keywords Thermoelastic medium · Point defects · Longitudinal wave · Stationary
shock wave · Harmonic wave · Dispersion

10.1 Introduction

When a material is exposed to the laser radiation or a stream of particles (e.g., in
ion implantation), point defects (vacancies, interstices) are formed therein [15]. The
passage of an intense longitudinal acoustic wave promotes a change in areas of
the tension and compression of energy activating the generation of point defects,
thus causing their spatial redistribution. Defects migrating through the material are
recombined at various centers. Dislocations, interstitial impurities, etc., may perform
the role of such centers.

Wave effects in ensembles of dislocations were studied in [1–3, 5, 9, 10, 18, 19]. In
[1], the problems of the elastic wave propagation in a viscothermoelastic composite
with spherical inhomogeneities were examined.

It was demonstrated in [16] that the problem on the acoustic wave propagation in
a material with point defects should be regarded as self-consistent one comprising
in addition to the dynamical equation of the theory of elasticity the kinetic equation
for the density of defects.

In [4], the interaction of a nonlinear deformation wave with the field of point
defects (vacancies, interstices) concentration was studied, which caused both the
wave scattering and changing the energy activating the generation of defects and
their spatial redistribution.

It was therewith assumed that the main processes, which determine the defect
behavior, were the generation, recombination and diffusion processes. The volume
mutual recombination of heteronymous defects was not taken into consideration.

The propagation of nonlinear longitudinal waves in a plate with an allowance
for the interaction of the longitudinal component of the medium displacements with
temperature fields and concentration of nonequilibrium atomic point defects was
studied in [14].

In [8], the effect of dislocations and point defects is studied on the spatial local-
ization of nonlinear acoustic waves propagating in materials. The effect of defects
on the spatial localization of nonlinear waves with the mutual recombination of
heteronymic defects is studied in [6]. It is shown in the said papers that vacancies
and interstitials promote the formation of spatially localized nonlinear waves.

In this paper, we consider the propagation of a plane longitudinal wave in a bound-
less medium with point defects with the formation thereof the medium temperature
changes. We suppose that defects of only one type, either vacancy or interstices,
emerge in the medium.
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10.2 Problem Statement

To obtain a self-consistent dynamic problem for a thermoelastic point-defected
medium, to equations of the theory of elasticity

ρ
∂2ui
∂t2

= ∂σi j

∂x j
(1)

and thermal conductivity

T
∂S

∂t
= κ�Θ (2)

where ui means the displacement vector components, σi j are stress tensor compo-
nents, Θ = T − T0, T0 is the initial temperature of the medium, T is the current
temperature, κ is the thermal conduction coefficient, ρ is the material density, S is
the entropy of the medium volume unit, kinetic equations should be added which
describe the change in the number of point defects per a volume unit [15]:

∂n1
∂t

= q01 + q1

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
+ D1�n1 − β1n1 − β12n2, (3)

∂n2
∂t

= q02 + q2

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
+ D2�n2 − β2n2 − β21n1. (4)

n1, n2 are herein the volume concentrations of vacancies and interstitial atoms per
a medium volume unit, respectively, q01, q02 are the rates of point defect generation
under no deformation, D1, D2 are the diffusion coefficients of vacancies and inter-
stitial atoms, respectively, β12, β21 are rates of the mutual defect recombination of
the “interstitial atoms—vacancy” and “vacancy—interstitial atoms” type, β1, β2 are
rates of recombination of defects on sinks, q1, q2 are coefficients of the deformation
and defect interaction.

The free energy per a medium volume unit appears as follows:

F = F0 + λ

2
u2ll + μ

(
uik − 1

2
δikull

)2

− d1ulln1 − d2ulln2 − γΘull

+ m1n1Θ + m2n2Θ − cp
T 2
0

Θ2 + A

2
uikuilukl + Bu2ikull

+ C

3
u3ll + q3

2
u2lln1 + q4ulln

2
1 + q5

2
u2lln2 + q6ulln

2
2 (5)

where F0 is the free energy per a medium volume unit before the perturbation, λ

and μ are Lamé constants, d1, d2 are coefficients characterizing the elastic wave and
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defect interaction, γ is the thermal coefficient,m1,m2 are coefficients characterizing
the defect and temperature change interaction, cp is the specific heat of the material,
A, B,C are Landau third-order constants, q3, q4, q5 are (as the previously introduced
q1, q2) coefficients characterizing the deformation and defect interaction.

The components of the strain uik and displacement ui tensor by correlations
allowing for the geometric nonlinearity [17]:

uik = 1

2

(
∂ui
∂xk

+ ∂uk
∂xi

+ ∂ul
∂xi

∂ul
∂xk

)
. (6)

The stresses and entropy included in (1), (2) are determined from expression (5):

σik = ∂F

∂
(

∂ui
∂xk

) , (7)

S = ∂F

∂T
. (8)

When describing the plane wave propagation along the coordinate x3, the system
(1)–(8) is transformed to:

ρ
∂2u3
∂t2

− a
∂2u3
∂x23

− βN
∂u3
∂x3

∂2u3
∂x23

= −γ
∂θ

∂x3
− d j

∂n j

∂x3
, (9)

cε

∂θ

∂t
− χ

∂2θ

∂x23
= −γ T0

∂2u3
∂x3∂t

− T0 p j
∂n j

∂t
, (10)

∂n j

∂t
= qε

∂u3
∂x3

+ Dj
∂2n j

∂x23
− β j n j (11)

where u3(x3, t) is the medium particle displacement along the coordinate x3, θ(x3, t)
is the temperature difference (θ = T − T0), T0 is the natural state temperature,
n j (x3, t) is the volume concentration of point defects of the j th type ( j = V is
for vacancies, j = i is for interstices), ρ is density, a = λ + 2μ, λ, μ are Lame

constants, cl =
√
a
/

ρ is the longitudinal wave velocity in case of no defects, βN

is the nonlinearity factor (βN = 3λ + 6μ + 2A + 6B + 2C), A, B, C are Landau
third-order modules, γ is the thermal factor, d j = (

λ + 2
3μ

)
Ω j , Ω j is the dilatation

parameter characterizing the change in the medium volume with the formation of
one point defect therein (ΩV < 0, Ωi > 0), cε is the thermal conductivity under the
constant deformation, χ is the thermal conductivity factor, p j is the thermal capacity
of the defect of type j , qε is the rate of the point defect generation with available
deformation, Dj is the defect type j diffusion factor and β j is the recombination rate
stocks of the defect of type j .
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The system of Eqs. (9)–(11) describes the propagation of a plane longitudinal
wave in the medium, both with defects of the “vacancy” type and with defects of the
“interstice” type. Systemsdiffer fromeachother by signs before the last component of
the first equation in the system. In the further analysis, the both cases are considered.

Let the thermal conductivity factor be a small value (χ = 0), then we obtain from
the second equation of the system the expression for the temperature

θ(x3, t) = −T0
cε

(
γ

∂u3
∂x3

+ p jn j

)
. (12)

Taking into account (12) the system (9), (11) may be reduced to a single equation
with respect to displacements of the medium particles u3

∂2u3
∂t2

−
((

a

ρ
+ γ 2T0

ρcε

)
+ qε

ρβ j

(
γ T0 p j

cε

− d j

))
∂2u3
∂x23

+ 1

β j

(
∂

∂t
− Dj

∂2

∂x23

)(
∂2u3
∂t2

−
(
a

ρ
+ γ 2T0

ρcε

)
∂2u3
∂x23

)

− βN

ρ

(
∂u3
∂x3

∂2u3
∂x23

+ 1

β j

∂

∂x3

(
∂u3
∂x3

∂2u3
∂x3∂t

))
+ βN Dj

ρβ j

∂2

∂x23

(
∂u3
∂x3

∂2u3
∂x23

)
= 0.

.

(13)

In Eq. (13), we introduce dimensionless values for the longitudinal displacement,
coordinate and time, respectively U = u3

/
u0, z = x3

/
X , τ = t

/
T . The equation

takes the form:

∂2U

∂τ 2
− ∂2U

∂z2
+ ∂

∂τ

(
∂2U

∂τ 2
− a1

∂2U

∂z2

)
− a2

∂2

∂z2

(
∂2U

∂τ 2
− a1

∂2U

∂z2

)

− a3

(
∂U

∂z

∂2U

∂z2
+ ∂

∂z

(
∂U

∂z

∂2U

∂z∂τ

))
+ a2a3

∂2

∂z2

(
∂U

∂z

∂2U

∂z2

)
= 0 (14)

where ai—are dimensionless parameter complexes, which looks as follows

a1 =
(
a

ρ
+ γ 2T0

ρcε

)(
a

ρ
+ γ 2T0

ρcε

+ qε

ρβ j

(
γ T0 p j

cε

− d j

))−1

,

a2 = Djβ j

(
a

ρ
+ γ 2T0

ρcε

+ qε

ρβ j

(
γ T0 p j

cε

− d j

))−1

,

a3 = β jβNu0
ρ

(
a

ρ
+ γ 2T0

ρcε

+ qε

ρβ j

(
γ T0 p j

cε

− d j

))−3/ 2
.

As characteristic values of the length and time, there are taken respectively
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X = 1

β j

√
a

ρ
+ γ 2T0

ρcε

+ qε

ρβ j

(
γ T0 p j

cε

− d j

)
, T = 1

β j

In Eq. (14), dissipative components (third-order derivatives) are conditioned
by available defects in the medium and dispersion ones (fourth-order derivatives)
by diffusion processes occurring in the medium. We assume that such diffusion
processes proceed slower than processes of the defects and an acoustic wave
interaction.

10.3 Linearized Equation

Discarding the nonlinear part of Eq. (14), we obtain the equation

∂2U

∂τ 2
− ∂2U

∂z2
+ ∂

∂τ

(
∂2U

∂τ 2
− a1

∂2U

∂z2

)
− a2

∂2

∂z2

(
∂2U

∂τ 2
− a1

∂2U

∂z2

)
= 0, (15)

which enables us to study the dispersion properties of thermoelastic waves.
Searching for the solution to Eq. (15) in the form of a traveling harmonic wave

U (z, τ ) = U0ei(ωτ−kz) + κ.c., where ω is frequency, k is the wave number, κ.c. is
the complex conjugate value, we obtain the complex dispersion equation

iω3 + (
1 + a2k

2
)
ω2 − ia1k

2ω − a1a2k
4 − k2 = 0

or

(
ω2 − a1k

2
)(
iω + a2k

2
) = (

k2 − ω2
)
, (16)

where k = k1 + ik2 is the complex wave number. The real part of the wave number
corresponds to the wave propagation and the imaginary component corresponds to
the wave attenuation during the propagation. Selecting the real and imaginary parts
in Eq. (16), we shall come to the following system of algebraic equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 + a2

(
k21 − k22

))
ω2 + 2a1k1k2ω

+ a1a2
(
4k21k

2
2 − (

k21 − k22
)2) − (

k21 − k22
) = 0

ω3 + 2a2k1k2ω
2 − a1

(
k21 − k22

)
ω

− 2k1k2
(
1 + 2a1a2

(
k21 − k22

)) = 0

. (17)

The graphs of dependences of the real and imaginary parts of the wave number
are shown in Fig. 10.1 (a1 > 0, a2 > 0). This figure shows two pairs of curves
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Fig. 10.1 Dependences
k1(ω) (1) and k2(ω) (2)

(k1(ω); k2(ω)). We consider herein only those pairs the real part of the wave number
thereof has positive values. The branch of the imaginary part k2(ω) with a hori-
zontal zero asymptote k2 = 0 corresponds to the branch of the real part curve k1(ω)

having an inclined asymptote ω − √
a1k1 = 0. Two remaining branches of the

real and imaginary parts of the wave number have different signs and a common
nonlinear asymptote in the form of quadratic parabola ω − 2a2k21,2 = 0. The imagi-

nary part branch has a cutoff on the wave number k2 = −
√

1
a1a2

. A dashed line marks

asymptotes hereinafter in the figures.
The attenuation factor dependence on the frequency γ (ω) is shown in Fig. 10.2.

The value of the attenuation factor γ = k2
k1
shows the availability (at |γ | < 1) or the

lack (at |γ | > 1) of propagating waves. The chart has two branches: a limited and an
unlimited one. The limited branch of dependence γ (ω) corresponds to a propagating
thermoelastic wave and a pair of branches k1(ω), k2(ω) with inclined and horizontal
asymptotes correspond in turn to the said limited branch. The k1(ω) dependence is
not linear.

The dependences of the phase vph = ω
k1

and group vgr = dω
dk1

velocities on the
frequencywithfixedvalues of parameters presented inFig. 10.3 show the propagating
wave dispersion. Atω = 0, the values of the phase and group velocities are congruent
and equal to unity vph = vgr = 1. At infinity, the velocity values tend to the common
value vph = vgr = √

a1 (it is shown by the dashed line in Fig. 10.3).
Equation (15) contains two positive parameters a1, a2, which characterize avail-

able defects, their type and degree of diffusion in the medium. If such defects are
vacancies, the parameter takes values 0 < a1 < 1. If defects are interstitials, the
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Fig. 10.2 Dependence γ (ω)

Fig. 10.3 Dependences
vph(ω) (1), vgr(ω) (2)

parameter may have any value within the half-interval a1 > 0. If there is no attenua-
tion to be caused by available defects in the medium, the parameter values are equal
to a1 = 1, a2 = 0.

Let us study the effect of the said parameters on the dispersion curves of a thermoe-
lastic wave. The location of the dispersion curve branches depends on the parameter
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a1 value as follows: For the parameter values within the 0 < a1 < 1 interval, the both
branches (the real and imaginary ones) of the propagating wave are in one quarter
and for a1 > 1 they are in different ones (Figs. 10.4 and 10.5). The straight line
ω = k1 is marked by a dash-dotted line in Fig. 10.4.

With the increasing parameter a1 value, the inclination angle of the real branch
asymptote decreases (Fig. 10.4), the amplitude of the attenuation factor curve first

Fig. 10.4 Dependences
k1(ω) at various values of
parameter a1 (a2 ≥ 0):
0 < a1 < 1 (solid line),
a1 = 1 (dash-dot line),
a1 > 1 (long dash line)

Fig. 10.5 Dependences
k2(ω) (1), γ (ω) (2) at various
values of parameter a1
(a2 > 0): 0 < a1 < 1 (solid
line), a1 > 1 (long dash line)
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Fig. 10.6 Dependences
vph(ω) (3), vgr(ω) (4) at
various values of parameter
a1 (a2 ≥ 0): 0 < a1 < 1
(solid line), a1 = 1 (dash-dot
line), a1 > 1 (long dash line)

drops to zero (at a1 = 1) and then increases by changing its sign (Fig. 10.5). The
ranges of the phase and group velocities are reduced to zero at an increasing parameter
value to unity. The phase velocity curve is located above the group velocity curve;
the velocity values are limited from above by unity vgr < vph < 1. At a1 = 1, the
velocity values are congruent vph = vgr = 1. Any further increase in the parameter
value promotes an increase in the velocity ranges, the group velocity curve is thereat
located above the phase velocity curve (Fig. 10.6), and the velocity values are limited
from below 1 < vph < vgr.

A change in the parametera2 value does not affect the asymptotic behavior of curve
k1(ω) but affects the behavior of curve k2(ω), which with a2 = 0 has the nonzero
asymptote k2 = 1−a1

2a1
√
a1
. With an increasing parameter a2 (0 < a1 < 1) value, the

attenuation factor value decreases across the entire frequency range (Fig. 10.7); the
values of the phase and group velocities decrease at low frequencies and increase at
high frequencies (Fig. 10.8). And at a1 > 1, on the contrary at low frequencies the
values of velocities increase and at high frequencies decrease.

In particular case, at a2 → 0 the system (17) assumes the following form

{
ω2 + 2a1k1k2ω − (

k21 − k22
) = 0

ω3 − a1
(
k21 − k22

)
ω − 2k1k2 = 0

,

and enables you to find the frequency dependences

k1 =
√
2ω

2

√√√√1 + a1ω2 +
√(

1 + ω2
)(
1 + a21ω

2
)

1 + a21ω
2

,
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Fig. 10.7 Dependences
k2(ω) (1), γ (ω) (2) at various
values of parameter a2
(0 < a1 < 1): a2 > 0 (solid
line), a2 = 0 (long dash line)

Fig. 10.8 Dependences
vph(ω) (3), vgr(ω) (4) at
various values of parameter
a2 (0 < a1 < 1): a2 > 0
(solid line), a2 = 0 (long
dash line)

k2 = −
√
2

2

(a1 − 1)ω2√(
1 + a21ω

2
)(
1 + a1ω2 +

√(
1 + ω2

)(
1 + a21ω

2
)) .
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Whence it follows that high-frequency perturbations do not have dispersion and

propagate with attenuation, which does not depend on the frequency
(
k1 = ω

a1
,

k2 = − (a1−1)
2a1

√
a1

)
, low-frequency perturbations do not have dispersion either but have

the frequency-dependent attenuation (k1 = ω, k2 = 1−a1
2 ω2).

10.4 Evolutionary Equation and Stationary Wave

Let us proceed to the moving coordinate system ξ = z − cτ , η = ετ in Eq. (14),
where c is the wave velocity earlier unknown, ε is a small parameter (ε � 1). The
choice of variables is explained by the fact that the perturbation when propagating
with the velocity c along the axis z slowly evolves in the course of time because
of the nonlinearity, dispersion and dissipation. We assume that in Eq. (14) all the
nonlinear and dissipative components are small values of the ε order, we obtain in
the first approximation on ε the evolutionary equationwith respect to the longitudinal
deformation function W = ∂U

∂ξ
:

∂W

∂η
+ (1 − a1)

2ε

∂2W

∂ξ 2
+ a2(1 − a1)

2ε

∂3W

∂ξ 3

+ a3
2ε

(
W

∂W

∂ξ
− ∂

∂ξ

(
W

∂W

∂ξ

))
= 0. (18)

From the zeroth-order approximation, the wave velocity c = 1 is determined
(measured in relative units), which is recorded in (18). The equation obtained may
be classified as theKorteweg–deVries–Burgers equationwith an additional nonlinear
component. In Eq. (18), the last component is additional as compared to the clas-
sical KdV–Burgers equation. Equation (18) comprises dissipative and nonlinear
components; therefore, the equation solution may be in the form of shock waves.

Among all possible solutions of Eq. (18), the greatest interest is solutions from
the class of stationary waves. Such waves propagate at a constant velocity and do not
change their shape in the course of propagation. The equation of stationary waves is
written as:

dW

dχ
− (1 − a1)

2εv

d2W

dχ2
− a2(1 − a1)

2εv

d3W

dχ3

− a3
2εv

(
W

dW

dχ
− d

dχ

(
W

dW

dχ

))
= 0, (19)

or, after integration,

W − (1 − a1)

2εv

dW

dχ
− a2(1 − a1)

2εv

d2W

dχ2
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− a3
2εv

(
W 2

2
− W

dW

dχ

)
= 0 (20)

where W = W (χ), χ is the running coordinate, χ = ξ − vη, v is the velocity
of a stationary wave moving in the positive direction of the coordinate axis. The
integration constant is taken as zero.

We seek the solution of Eq. (20) by the truncated expansion method described in
detail in [12, 13]. This method is used to search for the exact solutions of nonlinear
differential equations.

Since the order of the pole for the general solution is equal to unity, the solution
of Eq. (20) may be sought in the form:

W (χ) = b0Y (χ) + b1 (21)

where Y (χ) = √
B0th

(√
B0χ

)
is the solution of Riccati’s equation Y ′(χ) =

−Y 2(χ) + B0. By substituting the solution of (21) into Eq. (20) and taking into
account Riccati’s equation, we obtain a third-degree polynomial relative to Y (χ).
Putting the polynomial factors to zero, we find unknown factors:

b0 = −2a2
a3

(1 − a1), b1 = 1

a3
(1 − a1)(1 + a2), B0 = 1

4a22
(1 + a2)

2.

Simultaneously with the said factors b0, b1, B0, we find an expression for the
stationary wave velocity

v = 1

2ε
(1 − a1)(1 + a2). (22)

Only at this value of the velocity, the solution of Eq. (20) may be found by the
analytical method. The solution of (21) takes the form:

W (χ) = 1

a3
(1 − a1)(1 + a2)

(
1 − th

(
1 + a2
2a2

χ

))
. (23)

The dependency graph (23) is shown in Fig. 10.9. The analysis of functions of
the first and second derivatives (W ′(χ) and W ′′(χ)) shows their parity and oddness,
respectively. It indicates the symmetry of the function graphs of relative to the ordi-
nate and the origin of coordinates. The dependency graph W (χ) has the form of a
monotonic (steady) symmetric, with respect to the inflection point, kink. The point
of the kink symmetry is on the ordinate axis. The amplitude A and the kink width �

are equal to

A = 2

a3
(1 − a1)(1 + a2), � = 2a2

1 + a2
. (24)
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Fig. 10.9 Dependences
W (χ) (1), W ′(χ) (2),
W ′′(χ) (3) with fixed
parameter values

The phase portrait of Eq. (20) is given in Fig. 10.10. The solution of Eq. (23) is
marked in the figure with a dashed line. It can be seen in the figure that there are
two equilibrium states on the phase portrait. The examination of these equilibrium
states for stability shows that one of the equilibrium states is a “node” and the other
is a “saddle.” The motion occurs from the unstable state of equilibrium (node) (at

Fig. 10.10 Phase portrait in
plane

(
W,W ′)
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χ → −∞) to the saddle point (at χ → +∞). The solution is a shock wave similar
to a stationary shock wave of the KdV–Burgers equation [11].

The availability of an additional nonlinear component in Eq. (19) gives no rise to
the emergence of any fundamentally new solutions. Dissipative effects and disper-
sion in the medium under consideration balance nonlinear effects. The existence of
additional nonlinearity does not give any qualitative changes.

Based on physical considerations, the evolutionary Eq. (18) has a number of
particular cases that are dealt with by the authors in [7]. It is shown that only the
availability and interaction of two types of nonlinearities, one of which introduces
the dissipation into the system, makes possible the existence of a stationary shock
wave.

Let us combine the initial parameters of the problem into the following
dimensionless complexes

m1 = qεd j

aβ j
, m2 = qε p j

γβ j
, m3 = Djβ jρ

a
, m4 = β jβNu0

a

√
ρ

a

which characterize the type of defects, their diffusion in the medium, the thermal
properties of the medium volume unit and the system nonlinearity. Dimensionless
parameters ai are rewritten as follows

a1 = 1 + T0
(1 − m1) + (1 + m2)T0

, a2 = m3

(1 − m1) + (1 + m2)T0

a3 = m4

((1 − m1) + (1 + m2)T0)
3/ 2

where T0 is the dimensionless value of temperature and its characteristic value is
equal to T∗ = acε

γ 2 .
The dependences of the velocity (22), amplitude and front width (24) of the

stationary wave on the initial temperature are shown in Figs. 10.11, 10.12 and 10.13
for media with defects of the “vacancy” (1) and “interstitial” (2) types. Asymptotes
are marked in the figures with a short dash. A long dash shows the limiting case
(m1 → 0), which corresponds to infinitesimal changes in the medium volume when
one point defect is formed therein.

With an increasing value of parameter m1 in the vacancy medium, the wave
velocity and amplitude increase and the front width decreases; in the interstitial
medium, on the contrary, the wave velocity and amplitude decrease and the front
width increases.

In the vacancymedium, a stationarywave exists at anypositive temperature values,
and in the interstitialmedium, it is only at T0 > T ∗

0 , where T
∗
0 is the temperature value

there under the wave velocity and amplitude are equal to zero. At high temperatures,
T0 waves in the both media propagate at almost identical velocities



138 V. I. Erofeev et al.

Fig. 10.11 Dependences
v(T0) at m1 < 0 (1) and
m1 > 0 (2)

Fig. 10.12 Dependences
A(T0) at m1 < 0 (1) and
m1 > 0 (2)

v = m2

2ε(1 + m2)
.
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Fig. 10.13 Dependences
�(T0) at m1 < 0 (1) and
m1 > 0 (2)

10.5 Particular Cases of the Evolutionary Equation

If in Eq. (18) the dissipative term is small as compared to all the other terms of the
equation (case 1), it may be neglected and the Korteweg–de Vries equation will be
obtained with an additional nonlinear term

∂W

∂η
+ a2(1 − a1)

2ε

∂3W

∂ξ 3
+ a3

2ε

(
W

∂W

∂ξ
− ∂

∂ξ

(
W

∂W

∂ξ

))
= 0. (25)

Equation (25) has an analytical solution in the form of a stationary wave

W (χ) = a2
a3

(1 − a1)
(
1 − th

(χ

2

))
(26)

where χ , as before, is the running coordinate, χ = ξ − vη, v is the stationary wave
velocity equal to v = a2(1 − a1)

/
2ε. The solution (26) has been found by the same

method as the previously obtained solution (23). The wave profile has the shape
similar to that shown in Fig. 10.9 as a smooth jump (kink) between two values of the
longitudinal strain functionW (χ). The kink has amonotonic decrease and symmetry
with respect to the inflection point.

When examining the equilibrium states W0 = 0, W0 = 2a2
a3

(1 − a1) for stability,
we find that in one case, the characteristic equation has real roots of different signs
and it corresponds to the equilibrium state of “the saddle,” in the other case the
solution of the characteristic equation are real equal positive roots and it corresponds
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to the equilibrium state of “unstable degenerate node.” The solution for Eq. (25) is
a stationary shock wave.

It is known that the solution of the Korteweg–de Vries equation is a stationary
soliton-type wave. The movement on the phase plane occurs from the “saddle” to the
“saddle.” In this case, a stationary wave results from the interaction of the following
twomechanisms: nonlinearity and dispersion. The nonlinearity causes the steepening
of the wave profile with the further rollover (Riemann wave) and the dispersion gives
the blurring of the profile since different harmonics of thewave (frequency) propagate
at different speeds.

The solution for Eq. (25) is a stationary shock wave, which results from the inter-
action of the nonlinearity and dissipation effects notwithstanding that the equation
contains only the dispersion and nonlinear terms, and there is no dissipative term in
the equation.

It is shown from the linearized equation in respect to small perturbations(
W (χ) = W0 + W̃ (χ)

)
:

∂W̃

∂η
+ a2(1 − a1)

2ε

∂3W̃

∂ξ 3
+ a3W0

2ε

(
∂W̃

∂ξ
− ∂2W̃

∂ξ 2

)
= 0 (27)

that the dissipation in Eq. (25) is implicit. The last term in Eq. (27) is dissipative.
Thus, the additional term in (25) is dissipative and nonlinear. The availability of

this term in the equation makes possible the existence of solutions in the form of
stationary shock waves.

If in Eq. (18) the dispersion term is small as compared to all other terms of the
equation (case 2), we obtain the Burgers equation with an additional nonlinear term

∂W

∂η
+ (1 − a1)

2ε

∂2W

∂ξ 2
+ a3

2ε

(
W

∂W

∂ξ
− ∂

∂ξ

(
W

∂W

∂ξ

))
= 0. (28)

It is possible, when a2 → 0, i.e., the diffusion is very small (Dj → 0).
Equation (28)may be attributed to the generalized unperturbedBurgers equations.

As distinct from the Burgers equation [11], there is one more type of the quadratic
nonlinearity, and the both nonlinearities manifest equally themselves. Equation (28)
has a stationary solution in the form of a shock wave. Taking into account the
boundary conditions (the function at infinity has different meanings)

W (χ) =
{
W1, χ → +∞
W2, χ → −∞ (W2 > W1),

we find the solution for the equation of stationary waves

χ = 2(1 − a1 − a3W1)

a3(W2 − W1)
ln(W − W1) − 2(1 − a1 − a3W2)

a3(W2 − W1)
ln(W2 − W )
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Fig. 10.14 Dependences
W (χ) (solid line), W ′(χ)

(dash line)

where W = W (χ), χ is the running coordinate, χ = ξ − vη, the nonlinear wave
velocity is determined by the expression v = a3

4ε (W1 + W2). The profile of the
stationary shock wave W (χ) and the derivative graph is shown in Fig. 10.14. The
derivative graph is mapped into the upper half-plane and shifted along the ordinate
by W1.

Parameters of a shock wave resulting from the mutual compensation of the
nonlinearity and dissipation effects are bound by the correlation

a3A

1 − a1

(
�

2
− 1

)
= const

where A = W2 − W1 is the shock wave amplitude, � is the characteristic width of
the shock wave front. The nonlinear wave velocity depends on the wave amplitude
and width.

Let us consider the case when in Eq. (18) parameter a1 = 1 (case 3). It is possible,
if defects are interstitials (di > 0). For vacancies 0 < a1 < 1. For interstitials a1 > 0,
moreover, if the temperature effect is small, a1 >> 1.

If a1 = 1, we obtain an equation wherein there are no dissipative and dispersion
terms but nonlinear terms are preserved

∂W

∂η
+ a3

2ε

(
W

∂W

∂ξ
− ∂

∂ξ

(
W

∂W

∂ξ

))
= 0. (29)
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Fig. 10.15 Dependences
W (χ) (solid line), W ′(χ)

(dash line)

Equation (29) has an additional nonlinear term with respect to the Riemann equa-
tion. Nonlinearities are included in the equation with the same coefficients and
different signs.

Equation (29) has the solution

χ = 2

(W2 − W1)
[W2 ln(W2 − W ) − W1 ln(W − W1)]

in the form of a stationary shock wave propagating with velocity v = a3
4ε (W1 + W2)

along the coordinate χ = ξ − vη. The wave profile is shown in Fig. 10.15.
The shock wave width is a constant value, i.e., it is independent of the wave

amplitude and initial parameters of the system. In this case, the interaction of hetero-
geneous nonlinearities causes the emergence of a shock wave. The linearization of
Eq. (29) with respect to small perturbations

∂W̃

∂θ
+ b3

(
∂W̃

∂ξ
− ∂2W̃

∂ξ 2

)
W0 = 0,

shows that the second nonlinear term introduces the attenuation. This attenuation
promotes the emergence of a stationary shock wave in the system. Equation (29) has
the property of the Burgers equation notwithstanding that are no explicit dissipative
terms therein.
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10.6 Conclusion

In the thermoelastic defect-free medium in the formulation under consideration (the
lack of heat diffusion in themedium), a harmonic wave has no dispersion, its velocity
is equal to unity. In a medium with defects, this wave propagates with dispersion and
attenuation depending on the frequency.

At low frequencies close to zero, there is nearly no wave attenuation and waves
propagate at a constant speed close to unity irrespective of the type of defects or
their availability. At high frequencies, waves also propagate at a constant speed, but
it depends on the type of defects.

Low-frequency perturbations have a pronounced dispersion, and high-frequency
perturbations propagate without dispersion and losses, if there is the defect diffusion
in the system. If there is no defect diffusion, disturbances at high frequencies have a
constant attenuation value.

An increasing value of the defect diffusion coefficient enhances the decreasing
of the wave attenuation and (if defects are vacancies) the decrease in the wave prop-
agation velocity at low frequencies and an increase thereof at high frequencies. In
a medium with vacancy-type defects, the dispersion is normal, and the abnormal
dispersion may occur in a mediumwith interstitial-type defects. In interstitial media,
harmonic waves have a longer length and velocity than in a media with vacancies.

Based on the analysis of the exact analytical solution of the evolutionary equation
with respect to the displacements of the medium particles, it is shown that vacancies
and interstices promote the generation of stationary shock waves in the medium.

Nonlinear waves propagate faster in a vacancy media and have the larger ampli-
tude and the smaller width than in an interstitial media. An increase in the initial
temperature results in an increase in the stationary wave velocity, if defects are inter-
stitial, to a decrease if defects are vacancies; the amplitudes increase in the both
media, and the front widths decrease forming there at a thin shock front.

An additional quadratic-nonlinear term in the generalized equations (KdVB,KdV,
Burgers, and Riemann) displays itself as a dissipative term as it introduces the atten-
uation into the system. In case of the generalized Riemann equation, this attenuation
promotes the emergence of stationary shock waves and the lack of solitons in the
case of the generalized KdV equation.

Acknowledgements The work was carried out within the Russian state task for fundamental
scientific research for 2019-2022 (the topic No. 0035-2019-0027, the state registration No.
01201458047).
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Chapter 11
Problem Statement Options
for the Problem of the Corrosion
Processes Influence on the Delayed
Fracture of the Rod Under Creep
Conditions

Leonid V. Fomin

Abstract The relevance of choosing an adequate version of the problem statement
on the influence of corrosion processes on ensuring the safe operation of materials
and structural elements is beyond doubt. Problem statement options for the delayed
fracture of a rod stretched under creep conditions are considered. Two problem state-
ment options are suggested: taking into account the multistage propagation of the
diffusion–corrosion process throughout the entire thickness of the rod and taking
into account the conjugation of the solutions at the boundary of the corrosion layer.
To solve the problem, a mechanical-and-mathematical model has been developed,
including the modified diffusion equation, the kinetic equation for damage accumu-
lation, and the relation for the chemical interaction parameter. The parameters of this
model are determined based on the experimental dependence of the corrosion film
thickness on time. The multistage process of the corrosion layers fracture under the
influence of increasing effective stress is taken into account.

Keywords Problem statement · Delayed fracture · Corrosive medium · Modified
diffusion equation · Kinetic parameters · Chemical interaction parameter ·
Damage · Concentration · Rod

11.1 Introduction

Ensuring the safe operation of materials and structural elements subject to the influ-
ence of a corrosive medium is an important and urgent task to ensure the safety
and reliability of critical structures throughout the entire life cycle. This influence is
due to both diffusion penetration and the chemical interaction of the active medium
with the material. Of particular importance is the study of such processes during
high-temperature delayed fracture of metals under creep conditions [2–9]. In this
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regard, high-tech studies of the high-temperature strength ofmaterials and structures,
including those exposed to active media, are quite relevant. The research proposed in
this article is a continuation of the creep and long-term strength research [4] on creep
and long-term strength taking into account the corrosive interaction of an aggres-
sive medium with materials and structural elements begun at the laboratory of creep
and long-term strength of the Institute of Mechanics of Moscow State Lomonosov
University.

11.2 Aspects of Existing Models of Interaction of the Active
Medium with the Material

Today, there is a huge number and variety of models for the interaction of the active
medium with materials in the literature [7]. Due to the complexity of the phenomena
under consideration, an interdisciplinary scientific approach is used, becauseofwhich
the existing models can be divided into two large groups: physicochemical models
and phenomenological models. Research of the authors who use physicochemical
models is based on a deep atomic–molecular study of physicochemical processes in
a material when exposed to an active medium, in particular, taking into account ion
fluxes (anionic–cationic processes) and the motion of electrons involved in corrosion
processes. Because of a detailed study, the authors construct physicochemicalmodels
that relate the basic thermodynamic and physicochemical parameters of the processes
under study at a higher level than the atomic–molecular level. Thus, as a result, these
models establish a relationship between medium parameters (temperature, humidity,
chemical composition of the medium, duration of exposure, etc.) and the parameters
of the corrosion process. Physicochemical models feature strict distinctness. When
switching to other grades ofmaterial, with different shapes and sizes of cross sections
of structural elements, other parameters of the corrosivemedium, etc., the samemodel
can give essentially different results. The author of this article considers the use of
models under a phenomenological approach more promising.

The paramount importance of the fundamental approach is associated with the
construction of mathematical phenomenological models based on the constitutive
and kinetic equations and describing the processes of deformation and fracture of
structures and the processes of interaction of materials and structures with these
media. The identifications of these models, i.e., the determination of the values of
the coefficients (material parameters) in these equations and the selection of suit-
able material functions are based on the processing of experimental data, because
of solving the obtained set of equations, the behavior of structures under various
conditions is analyzed.

In order to proceed to the construction of mathematical (phenomenological)
models, it is necessary to choose phenomenological parameters, the change of which
could be observed during the experiment, or structural parameters—the so-called
kinetic parameters of the process of interaction of the material with the medium
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penetrating into it. The introduction of kinetic parameters into the model allows
describing real experimental data using the mathematical model under considera-
tion for various temperature–force loading programs. Phenomenological parame-
ters include the layer thickness of a material that has already been subjected to the
destructive influence of the medium (e.g., corrosion wear), and kinetic parameters
also, according to some authors, include the layer thickness, the parameter of corro-
sion damage, the concentration of elements of an active medium in a metal, etc.
Here it is necessary to note the universality of such models and their applicability to
engineering calculations.

11.3 The Model of Corrosion Interaction of the Active
Medium with the Material

When diffusion is accompanied by chemical reactions, the ordinary one-dimensional
diffusion equation can be modified to take this into account and becomes [1]

∂C

∂t
= D

∂2C

∂z2
− ∂S

∂t
, D = const, (11.1)

whereC = C(z, t)—the concentration of the substance penetrated into thematerial
through physical diffusion, S = S(z, t) — chemical concentration, t — time, z —
coordinate along which the active medium penetrates, andD—diffusion coefficient.

Concentration S is related to concentration C by the parameter of the chemical
interaction R, and S = RC . In the general case, these characteristics are functions
of spatial coordinates and time, in the case of the one-dimensional process under
consideration C = C(z, t), R = R(z, t), S = S(z, t). The substitution of S into
(11.1) results in:

∂C

∂t
= D

(1 + R)

∂2C

∂z2
,C = C(z, t). (11.2)

If R is small, then physical diffusion is the predominant process. And vice versa,
if R is big, then chemical interaction is the predominant process. To determine the
chemical interaction parameterR, the time dependence of the corrosionfilm thickness
δ is analyzed.

We accept the hypothesis that the rate of change of the corrosion film thickness
is proportional to the rate of change of the concentration of a substance bound by a
chemical reaction:

∂δ

∂t
= γ

∂S

∂t
, S = RC, (11.3)
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Fig. 11.1 Dependence of the oxide film thickness δ versus the test duration t of steel
10Cr15Ni9Si3Nb

where γ = const — characteristic process constant. Thus, the ratio for R can be
determined from the dependence δ(t).

As an example, there is the dependence of the corrosion film thickness on time
considered, obtained in an experiment by the Central Research Institute of Structural
Engineering “Prometey” (St. Petersburg) and published in [5]. Figure 11.1 shows
the dependence of the oxide film on the duration of testing steel 10Cr15Ni9Si3Nb
in the medium of a lead-based liquid metal coolant. The dots show the experimental
data, and the dashed lines show the approximation of the experimental data using
the dependence δ = A − B exp(−λt), where the constants have values λ = 1.5 ·
10−4 (h)−1, A = 78.00 mm, B = 77.27 mm.

In general, a corrosion layer may occur at the initial time (δ(t0 = 0) �= 0).
Taking into account the accepted approximation for δ and hypothesis (11.3), the

expression for the chemical interaction parameter has the following form:

R = λB exp(−λt)

[
γ

∂C

∂t

]−1

. (11.4)

Note that this approach can be applied to any nature and type of continuous
dependence of the development of the corrosion film thickness over time. Only the
type of approximation will change, which will lead to a different (in contrast to
(11.4)) form of the dependence of the chemical interaction parameter on time and
material constants or functions.
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11.4 The System of Delayed Fracture Equations

To solve the problem stated, a system of ratios has been developed for modeling the
influence of an active corrosive medium on the long-term strength of materials and
structural elements [2–9]. This system of equations includes a modified diffusion
equation [1], a kinetic equation for damage accumulation during creep, taking into
account the influence of an active medium, and a relation for the chemical interaction
parameter. It should be noted that the selected damage accumulation law (the second
equation of system (11.5)) takes into account the influence of both the diffusion
process and the corrosion process on damage accumulation. However, it is possible
that in the further analysis the form of damage accumulation law can be clarified or
modified.

The system of equations has the following form:

⎧⎪⎨
⎪⎩

∂C
∂t = D

(1+R)
∂2C
∂z2 ,

∂ω
∂t = B1(σ )n

(1−ω)n
(1 + aC(1 + R)),

R = λB exp(−λt)
[
γ ∂C

∂t

]−1
,

(11.5)

where σ — effective stress, C = C(z, t) — the concentration of the substance
penetrated into the material due to physical diffusion, ω = ω(z, t) — damage,
R = R(z, t) — chemical interaction parameter, D — diffusion coefficient, λ, B
—constants determined from the experimental dependence [5] of the corrosion film
thickness on time δ(t), γ — representative constant of the corrosion process, B1, n
— steady creep constants, and a — material constant determined from the long-
term strength experiments [2]. Further in the study, this system is considered in a
dimensionless form.

11.5 The Multistage Process of Delayed Fracture of the Rod

Further, the article discusses the formulation of the delayed fracture problem for a
stretchable rod under creep conditions taking into account diffusion and chemical
interaction with an active medium. A long rod of rectangular cross section with
thickness H0 and width b (whereas H0 � b) resides in a corrosive medium, the
influence of which is characterized by diffusion penetration of its elements and
corrosion interaction. Assume that relation (11.1) describes these processes. The
diffusion of the medium into the material of the considered rod under consideration
is characterized by a diffusion coefficient D, and the formation of a corrosion layer
occurs in accordance with the process which is described by relations (11.3) and
(11.4). Since H0 � b the characteristics of the medium are the same on both sides
of the rod, we consider a symmetric one-dimensional diffusion–corrosion process
along the thickness of the rod. The rod is subjected to tensile stress under creep
conditions, during which damage accumulates.
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A multistage fracture process is assumed, namely sequential destruction of the
corrosion layers on the surface, and damage accumulation occurs under the influence
of an increased effective stress at the stage of the fracture process under considera-
tion. Here, a hypothesis is introduced about a certain incubation period of time that
determines the duration of each stage of the corrosion process during which damage
accumulates. The criterion for the destruction of the corrosion layer at each stage is
the achievement by the parameter ω of a value equal to unity under the influence of
the effective stress σeff.

Thus, at the first stage:

0 < t ≤ t∗1 → σ = σeff_1 = σ0 → ω∗
1 = ω

(
t∗1 , δk1

) = 1.

At the second stage:

t∗1 < t ≤ t∗2 → σ = σeff_2 = σeff_1(
1 − 2δk1

/
H0

) → ω∗
2 = ω

(
t∗2 , δk2

) = 1

Here t∗1 and t∗2 — end times of the first and second stages of the corrosion process,
respectively, and δk1 and δk2 — respective corrosion layer values. And so forth, until
the rod is completely destroyed.

The total time to fracture of the rod t∗∗ is determined based on either of the
following two criteria.

(1) The effective stress will increase so much that the entire rod will completely
collapse because of a short-term increased load. In fact, thismeans that the effec-
tive stress reaches the short-term strength limit σ = σb|T=Ttest at the considered
high test temperature T = Ttest. In this case, the corrosion processes do not
have time to influence the destruction at the final stage. Thus, the total time to
fracture in this case t∗∗ is determined by the criteria approach.

(2) The accumulation of damage inside the entire rod has a significant effect, and
the sample will collapse when the damage level reaches the limit value ω∗∗ =
ω

(
t∗∗) = 1. Thus, the total time to fracture t∗∗ in this case is determined by the

kinetic approach.
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11.6 Problem Statement Taking into Account
the Multistage Distribution of the Diffusion–Corrosion
Process Throughout the Entire Thickness of the Rod

Dimensionless variables are introduced:

z̄ = 2z

H0
, C̄ = C

C0
, σ̄ = σ

σb
, t̄ = t · 4D0

H 2
0

, D̄ = D

D0
,

B̄1 = H 2
0 B1σ

n
b

4D0
, ā = aC0, λ̄ = λ

H 2
0

4D0
, γ1 = γ

4D0C0

H 2
0

(11.6)

where C0 — steady-state concentration on the surface, σb — short-term strength
limit, and D0— diffusion coefficient at room temperature. Taking into account the
variables (11.6), the system of Eqs. (11.5) takes the following form:

⎧⎪⎪⎨
⎪⎪⎩

∂C̄
∂ t̄ = D̄

(1+R)
∂2C̄
∂ z̄2 ,

∂ω
∂ t̄ = B̄1

(σ̄ )n

(1−ω)n

(
1 + āC̄(1 + R)

)
,

R = λB exp
(−λ̄t̄

)[
γ1

∂C̄
∂ t̄

]−1
.

(11.7)

Substitution of the third equation of system (11.7) (equation for R) into the first
equation of system (11.7) will result in the following equation:

∂C̄

∂ t̄
= D̄

∂2C̄

∂ z̄2
− λB

γ1
exp

(−λ̄t̄
)

(11.8)

A coordinate system is chosen as follows: z̄ = 0 — center of symmetry of the
rod cross section, and z̄ = 1 — outer border of the rod cross section. The initial and
boundary conditions have the form depending on the stage of the corrosion fracture
process.

(1) At the first stage of the process of corrosion fracture at 0 < t̄ ≤ t̄∗1 :

C̄(z̄, 0) = 0 — initial condition,
C̄

(
1, t̄

) = 1 — boundary condition on the outer lateral surface of the rod.
From the symmetry conditions of the diffusion process relative to the middle of

the rod cross section:

∂C̄

∂ z̄

(
0, t̄

) = 0.

The zero distribution of damage at the initial time is assumed.

ω(z̄, 0) = 0.
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The condition for the destruction of the corrosion layer δ̄k1 at the end of the first
stage t̄∗1 :

ω∗
1 = ω

(
z̄ = 1 − δ̄k1, t̄ = t̄∗1

) = 1.

The boundary of the corrosion layer δ̄k1 is determined by the equation S̄ = RC̄
characterizing the proportion of the substance that has entered into the chemical
interaction. On the part of the metal, not subject to corrosion, the concentration of a
substance associated with a chemical reaction is zero:S̄

(
1 − δ̄k1, t̄

) = 0.

(2) At the second stage of the process of corrosion fracture at t̄∗1 < t̄ ≤ t̄∗2 :

C̄
(
z̄, t̄∗1

) = C̄1 — concentration distribution along coordinate z̄ obtained at the
end of the first stage,

C̄
(
1 − δ̄k1, t̄

) = 1, t̄ > t̄∗1 — the concentration value at the new outer boundary
of the rod formed as a result of the corrosion layer fracture at the first stage,

∂C̄
∂ z̄

(
0, t̄

) = 0 — boundary condition in the middle of the rod cross section (from
the symmetry condition of the diffusion–corrosion process),

ω
(
z̄, t̄∗1

) = ω1 — damage distribution along coordinate z̄, obtained at the time t̄∗1
of the end of the first stage of corrosion fracture,

ω∗
2 = ω

(
z̄ = 1 − δ̄k1 − δ̄k2, t̄ = t̄∗2

) = 1— corrosion layer fracture δ̄k2 at the time
t̄∗2 of the end of the second stage,

S̄
(
1 − δ̄k1 − δ̄k2, t̄

) = R
(
1 − δ̄k1 − δ̄k2, t̄

)
C̄

(
1 − δ̄k1 − δ̄k2, t̄

) = 0 — condition
for determining the boundary of the corrosion layer on the side of the metal, not
subject to corrosion.

11.7 Problem Statement Taking into Account
the Conjugation of Solutions at the Boundary
of the Corrosion Layer

Equation (11.8)with an exponential term is obtained taking into account the corrosion
layer that extends from the surface into the interior of the material and considering
the approximation of the dependence of the corrosion layer thickness on time. Next,
the following problem statement is taken into account: Eq. (11.8) acts only in the
area of the corrosion layer. Therefore, this Eq. (11.8) should not be considered over
the entire thickness from 0 to 1, but only over the thickness of the corrosion layer.
This corrosion layer is called area I.

In area II, which is adjacent to area I inside the material, there are no corrosion
processes, but there is diffusive penetration of an active medium (classical parabolic
diffusion equation). At the interface between these areas, with a sufficient degree
of certainty, there can be the condition set for the equality of the concentrations of
the diffusion component of concentration C. But the equality of the derivatives of
concentrations with respect to the coordinate at the conjugation point is a condition
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whose approval requires additional analysis. The chemical component S in area I at
this boundary is obviously 0 (since there is no longer a corrosion interaction deeper
than this boundary in area II). The issue of the spread of damage across the border
of areas I and II also requires additional reflection and analysis.

Given the features of the adopted statement, there are the corresponding equations
written with initial and boundary conditions that determine the diffusion–corrosion
process under consideration.

I—area of the corrosion layer from the surface deep into the material. In this area,
there occur diffusion and chemical interaction (corrosion).

∂C̄I

∂ t̄
= D̄

∂2C̄I

∂ z̄2
− λB

γ1
exp

(−λ̄t̄
)

C̄I = C̄I
(
z̄, t̄

)

The initial and boundary conditions are as follows:

C̄I(z̄, 0) = 0,

∂C̄I
∂ z̄

(
1, t̄

) = γ̄m
[
C̄I

(
1, t̄

) − 1
]
— accepted condition of mass transfer with the

surrounding medium at the outer (z̄ = 1) boundary of the rod.

C̄I
(
ξ̄ , t̄

) = C̄II
(
ξ̄ , t̄

)
, ξ̄ = 1 − δ̄,

where ξ̄ = ξ̄
(
t̄
)
— coordinate of the border of the conjugation of areas I and II, δ̄

— surface corrosion layer at the thickness z̄ = 1.
∂C̄I
∂ z̄

(
ξ̄ , t̄

) = ∂C̄II
∂ z̄

(
ξ̄ , t̄

)
— as noted earlier, the adoption of this condition at the

interface ξ̄ between areas I and II requires additional analysis.
II—area of the material with no corrosion. In this area, only diffusion processes

occur. Areas I and II conjugate on the border with the coordinate ξ̄ .

∂C̄II

∂ t̄
= D̄

∂2C̄II

∂ z̄2

C̄II = C̄II
(
z̄, t̄

)

The initial and boundary conditions are as follows:

C̄II(z̄, 0) = 0

C̄I
(
ξ̄ , t̄

) = C̄II
(
ξ̄ , t̄

)
, ξ̄ = 1 − δ̄,

∂C̄II

∂ z̄

(
0, t̄

) = 0
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Note that the interface between areas I and II is mobile, and its coordinate ξ̄

depends on time ξ̄ = ξ̄
(
t̄
)
.

11.8 Conclusion

This studyhas as a fundamental value in the development of the kinetic theoryof creep
and long-term strength of Rabotnov [9] taking into account the influence of a corro-
sive medium, as the applied nature. It can be used in the design of composite struc-
tural elements operated in corrosive media, for example, in power and petrochemical
engineering.
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Chapter 12
Quasistatic and Dynamic Deformation
of an Asymptotically Thin Perfectly
Rigid-Plastic Spherical Layer

Dimitri Georgievskii and Ravil Shabaykin

Abstract The axisymmetric meridional flow of an incompressible perfectly rigid-
plastic medium between two concentric rough spheres, such that the outer sphere
is fixed and the surface of the inner one is uniformly expanded, is studied in the
case of a sink. Two problem statements are considered: quasistatic and dynamic. An
asymptotic integration of a boundary value problem with a natural small geomet-
ric parameter equal to the ratio of the distance between concentric spheres to the
inner radius is performed. The dynamic statement of the problem includes one more
dimensionless parameter which does not depend on time (in contrast to geometric
one) and equals to the inverse Euler number. This value is also taken much less than
one. Depending on the ratio of these parameters, i.e., at different time intervals, using
the asymptotic integration procedure, the coefficients of several principal terms in
the expansions for both velocities and stresses are obtained in analytical form.

Keywords Quasistatic and dynamic deformation · Rigid-plastic medium ·
Asymptotic integration procedure · Concentric rough spheres

12.1 Introduction

The classical Prandtl problem [17] has obtained numerous generalizations due to
its applicability in pressure metal treatment theory. For example, Prandtl solution is
generalized in Ref. [14] for the case of maximum tangential stress linear dependence
on average pressure and for the case of layer compression with tilted rough plates
as well as plates bent in the form of concentric circles. Solution of the problem
concerning shaft extrusion from compressing rough sleeve is shown in Ref. [7], and
process of plastic flow along the elastically deformable surfaces is analyzed in Ref.
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[10]. Paper [16] shows solution taking multiple layers and thermal diffusion into
account, and compressible material case is examined in Ref. [11].

Generalizations with dynamic setting should be highlighted apart from the others.
Thus, Ref. [8] states importance of inertia forces considerationwhen simulating high-
speed plastic flows. Prandtl dynamic problem analytic solution is derived in Refs.
[1, 5, 12]. Paper [6] shows problem of ideally plastic disk compression with rough
plates taking inertia forces into account. In work [18], solution of plastic theory plane
dynamic problem upon condition of power-law hardening was derived.

Detailed description can be found in studies and manuals [7, 9, 14].

12.2 The Formulation of Problem

In the spherical coordinate system (r, θ, ϕ), where θ is the polar angle, we con-
sider the axisymmetric meridional flow of an incompressible perfectly rigid-plastic
medium with a yield stress σs (the Saint-Venant flow) in the thin spherical layer

�t = {R(t) < r < R(t) + h(t); 0 ≤ θ < π; 0 ≤ ϕ < 2π} , h � R. (12.1)

The process of compression between the rigid rough spheres r = R and r = R + h
is studied. The layer �t is displaced through the sink θ = π . It is assumed that the
outer sphere is fixed, and the radial velocity V of the inner sphere surface is not
time-dependent. The kinematic impermeability boundary conditions are of the form

vr|r=R = V, vr|r=R+h = 0. (12.2)

As is well-known [15], the velocity tangential component vθ should not be specified
at the boundaries given in (12.2). In this case, the sink flow rate is equal to−4πR2V .

Now, we consider the following system of equations expressed in the spherical
coordinates and used in the theory of axisymmetric plasticity with theMises–Hencky
criterion:

−p,r + srr,r + (
srθ,θ + 3srr + srθ cot θ

)
/r = ρm

(
vr;t + vrvr,r +

(
vθ vr,θ − v2θ

)
/r

)
(12.3)

−p,θ /r + srθ,r + (
sθθ,θ + 3srθ + (srr + 2sθθ ) cot θ

)
/r

= ρm
(
vθ;t + vrvθ,r + (

vθ vθ,θ − vrvθ

)
/r

)
, (12.4)

s2rr + s2θθ + srrsθθ + s2rθ = σ 2
s ≡ τ2s , (12.5)

srr
(
vθ,θ + vr

)
/r = sθθ vr,r , srr

(
vθ,r + (

vr,θ − vθ

)
/r

) = 2srθ vr,r (12.6)
vr,r + (

2vr + vθ,θ + vθ cot θ
)
/r = 0. (12.7)

Here, ρm is medium density; p is pressure; srr , sθθ , and srθ are the stress deviator
components; and vr and vθ are the velocity components. In addition to the fulfillment
of conditions (12.2), we require that the shear stress modulus srθ be maximal in r on
the rigid spherical surfaces:
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|srθ |r=R = |srθ |r=R+h = m (θ) τs (12.8)

Here, m is the roughness of the press in use. The absolute roughness corresponds to
m = 1; in other words, in this case, the press is in the total coupling with the flowing
material.

12.3 Quasistatic Formulation

The quasistatic process is characterized by the absence of inertial terms in the motion
equations. Therefore, the right-hand parts of (12.3) and (12.4) will be zero.

Let us consider the asymptotically small geometric parameter α = h/R. Then,
we expand the six unknown functions of (12.3)–(12.7) in power series in this small
parameter. The structure of these expansions is chosen to be similar to that of the
solution to the classical Prandtl problem [9]:

vr (r, θ) = V
∞∑

k=0

αk ṽ{k}
r , vθ (r, θ) = V

∞∑

k=−1

αk ṽ
{k}
θ , (12.9)

p (r, θ) = τs

∞∑

k=−1

αk p̃{k}, sβγ (r, θ) = τs

∞∑

k=0

αk s̃{k}βγ (12.10)

Here, (β; γ ) = {(r; r), (θ; θ), (r; θ)}. The dimensionless overlined coefficients of
these series are functions of the dimensionless coordinates θ and ρ = (r − R)/h,
0 < ρ < 1. In (12.9) and (12.10), the terms α−1ṽ

{−1}
θ and α−1p̃{−1} indicate that vθ

and p tend to infinity as α → 0; the other unknowns remain finite outside the interval
π − ε < θ ≤ π .

Substituting (12.9) and (12.10) into (12.3)–(12.7) and equating the coefficients at
the first two higher powers of α, we come to the following system of equations:

p̃{−1}
,ρ = 0, ṽ

{−1}
θ,ρ = 0, −p̃{0}

,ρ + s̃{0}rr,ρ = 0, −p̃{−1}
,θ + s̃{0}rθ,ρ = 0, (12.11)

(
s̃{0}rr

)2 +
(
s̃{0}θθ

)2 + s̃{0}rr s̃
{0}
θθ +

(
s̃{0}rθ

)2 = 1, s̃{0}rr ṽ
{−1}
θ,θ = s̃{0}θθ ṽ{0}

r,ρ, (12.12)

s̃{0}rr

(
ṽ

{0}
θ,ρ − ṽ

{−1}
θ

)
= 2s̃{0}rθ ṽ{0}

r,ρ, ṽ{0}
r,ρ + ṽ

{−1}
θ,θ + ṽ

{−1}
θ cot θ = 0. (12.13)

Here, the unknown quantities are the coefficients of (12.9) and (12.10) indicated by
the superscripts {−1} and {0}. From the boundary conditions (12.2) and (12.8), it
follows that

ṽ{0}
r |ρ=0 = 1, ṽ{0}

r |ρ=1 = 0, |s̃{0}rθ |
ρ=0 = |s̃{0}rθ |

ρ=1 = m (θ) (12.14)

It is not known in advance on which sphere the value of s̃{0}rθ is equal to m or −m.
In [2], it is shown that, for the stress s̃{0}rθ , the choice of its sign is associated with
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the convexity of the profile of the velocity ṽ
{0}
r (in other words, with the sign of ṽ

{0}
r

dependent on whether the above spheres are approaching or moving apart).
System (12.11)–(12.13) with the boundary conditions (12.14) can be asymptoti-

cally integrated according to the procedure discussed in [3–6]. Applying this proce-
dure, we can represent the analytic solution to problem (12.11)–(12.13), (12.14) in
the following form for the case of compression and the sink θ = π :

ṽ
{−1}
θ = tan

θ

2
, ṽ

{0}
r = 1 − ρ, p̃{−1} = p̃{−1}

0 − 2

θ∫

0

m (ξ) dξ, (12.15)

s̃{0}rr = − sin2 θ
√

(1 − cos θ)
(
1 − cos3 θ

)

√
1 − m2 (2ρ − 1)2, (12.16)

s̃{0}θθ =
√

1 − cos θ

1 − cos3 θ

√
1 − m2 (2ρ − 1)2, s̃{0}rθ = −m (2ρ − 1) , p̃{0} = s̃{0}rr + f (θ) , (12.17)

ṽ
{0}
θ = ρ tan

θ

2
+

√
(1 − cos θ)

(
1 − cos3 θ

)

m sin2 θ

√
1 − m2 (2ρ − 1)2 + g (θ) (12.18)

The integration functions f (θ) and g (θ) can be found by considering a system under
the next degree of α. Equating the coefficients at α1, we come to the following system
of equations:

−ρp̃{−1}
,θ − p̃{0}

,θ + s̃{1}rθ,ρ + s̃{0}θθ,θ + 3s̃{0}rθ +
(
s̃{0}rr + 2s̃{0}θθ

)
cot θ = 0, (12.19)

ṽ{1}
r,ρ + 2ṽ{0}

r + ṽ
{0}
θ,θ − ρṽ

{−1}
θ,θ +

(
ṽ

{0}
θ − ρṽ

{−1}
θ

)
cot θ = 0 (12.20)

Using boundary condition (12.8), we can write
1∫

0
s̃{1}rθ,ρdρ = 0, and substituting s̃{1}rθ,ρ

from (12.19), we come to the following:

1∫

0

(
ρp̃{−1}

,θ + p̃{0}
,θ − s̃{0}θθ,θ − 3s̃{0}rθ −

(
s̃{0}rr + 2s̃{0}θθ

)
cot θ

)
dρ

= ∂

∂θ

1∫

0

(
ρp̃{−1} + p̃{0} − s̃{0}θθ −

∫ (
3s̃{0}rθ +

(
s̃{0}rr + 2s̃{0}θθ

)
cot θ

)
dθ

)
dρ = 0

(12.21)

This equation allows us to express unknown function f (θ):

f (θ) = p̃{0}
0 +

1∫

0

(∫ (
3s̃{0}rθ +

(
s̃{0}rr + 2s̃{0}θθ

)
cot θ

)
dθ − ρp̃{−1} − s̃{0}rr + s̃{0}θθ

)
dρ

(12.22)
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Similarly, using the boundary condition (12.2) and Eq. (12.20), the function g (θ)

can be found.
The solution expressed by (12.15) is valid outside the interval π − ε < θ ≤ π ;

on this interval, the values of ṽ
{−1}
θ and ṽ

{0}
θ are no more finite, and series (12.9)

are no more asymptotic. This solution is also valid outside the interval 0 < θ ≤ ε.
These validity conditions are similar to those of the classical Prandtl problem whose
solution is valid at a large distance from the boundaries and from the midsection of
the layer.

12.4 Dynamic Formulation

Now, unknown functions of (12.3)–(12.7) are time-dependent, and dimensionless
overlined coefficients of series (12.9, 12.10) are functions of the dimensionless coor-
dinates θ , ρ = (r − R)/h, 0 < ρ < 1 and τ = V t/h.

Substituting these expansions into (12.3) and (12.4) and taking vx;t = vx,αα̇ +
vx,ρ ρ̇ + vx,τ τ̇ into account with beingmindful of the fact that derivatives with respect
to time are expressed as evolutionary functions in the following manner:

α̇ = −V

h
α (α + 1) , ρ̇ = −V

h
(1 − ρ) , τ̇ = V

h
(1 + τ) , (12.23)

we come to multiplier in right-hand side equals to ρmV 2/τs. This value equals recip-
rocal of Euler number. It is supposed to be small—just as geometric parameter—but
in contrast to the latest, it does not change during compression. Thus, the process
can be divided into stages taking proposed parameters comparability into account:

Eu−1 = O
(
αβ

) = Cβαβ, Cβ = O (1) . (12.24)

For exponent β, following interval is of interest: 0 < β ≤ 2. It includes two whole-
number values β = 2 and β = 1.

12.4.1 Case β = 2

Equating the coefficients at the first, two higher powers of α give us the system
(12.11)–(12.13), and therefore, the expressions for unknowns will coincide with
(12.15)–(12.18) up to the integration constant and functions, which will now depend
on time

p̃{−1}
0 → p̃{−1}

0 (τ ) , f (θ) → f (θ, τ ) , g (θ) → g (θ, τ ) . (12.25)



160 D. Georgievskii and R. Shabaykin

Equating the coefficients at α1, we come to the following system of equations:

−ρp̃{−1}
,θ − p̃{0}

,θ + s̃{1}rθ,ρ + s̃{0}θθ,θ + 3s̃{0}rθ +
(
s̃{0}rr + 2s̃{0}θθ

)
cot θ

= C2

(
ṽ

{−1}
θ + ṽ

{−1}
θ ṽ

{−1}
θ,θ

)
, (12.26)

ṽ{1}
r,ρ + 2ṽ{0}

r + ṽ
{0}
θ,θ − ρṽ

{−1}
θ,θ +

(
ṽ

{0}
θ − ρṽ

{−1}
θ

)
cot θ = 0 (12.27)

Using the procedure described in the previous section and denoting quasistatic solu-
tion with upper index ‘qs,’ we find the expression for f (θ, τ ):

f (θ, τ ) = f qs|p̃{0}
0 →p̃{0}

0 (τ )
+ C2

(
2 ln cos

θ

2
− 1

2
sec2

θ

2

)
. (12.28)

Since Eqs. (12.20) and (12.27) coincide, the expression for function g will remain
unchanged.

12.4.2 Case β = 1

If β = 1, dynamic effects will manifest themselves in more significant terms of the
expansions. Equating the coefficients in the motion Eqs. (12.3) and (12.4) at the α0,
we come to the following system of equations:

−p̃{0}
,ρ + s̃{0}rr,ρ = C1

(
ṽ

{−1}
θ

)2
, −p̃{−1}

,θ + s̃{0}rθ,ρ = C1

(
ṽ

{−1}
θ + ṽ

{−1}
θ ṽ

{−1}
θ,θ + (1 + τ) ṽ

{−1}
θ,τ

)
.

(12.29)

The remaining equations obtained by equating the coefficients at the first two higher
powers of α will coincide with the system (12.11)–(12.13).

Similarly to the previous section, the solution will coincide with the quasistatic
one up to the integration functions, with the exception of pressure members, which
will take the following form:

p̃{−1} = p̃{−1}
0 (τ ) + C1

(
2 ln cos

θ

2
− 1

2
sec2

θ

2

)
− 2

θ∫

0

m (ξ) dξ, (12.30)

p̃{0} = s̃{0}rr − C1ρ tan2
θ

2
+ f (θ, τ ) (12.31)

Due to its bulkiness, the expressions for the function f (θ, τ ) are omitted here.
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12.4.3 Analysis of Results

The obtained solutions do not differ from quasi-static case (12.15)–(12.18) except
for pressure function in which summand Cβ

(
2 ln cos θ

2 − 1
2 sec

2 θ
2

)
appears in terms

with α−1 and α0 in modes β = 1 and β = 2 correspondingly. It rises total force
acting on the sphere from the layer side.

It is natural to require pressure on layer boundaries to coincide with atmosphere
pressure patm (it is assumed hereunder that patm is value of α0 order); however, this
summand with θ → π tends to infinity. Thus, if the layer fills the complete area, it
is impossible to fulfill this boundary condition not breaking the series asymptotic
nature in terms of Poincare [13].
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Chapter 13
Modeling of Fiber Composite Wear

Irina G. Goryacheva and Yulia Yu. Makhovskaya

Abstract A model is proposed to describe the steady-state regime of wear for a
fibrous composite material in contact with a rigid counter body. The composite
material is modeled by an elastic half-space with embedded elastic fibers arranged
parallel to each other and distributed uniformly. The fibers hardness is assumed to
be different from that of the matrix, whereas their elastic moduli are equal. Analytic
relations are obtained, and analysis is performed for the characteristics of wear (worn
surface shape, effective wear rate, contact pressure distribution) depending on the
composite structure parameters such as fiber size and density, relative hardness of the
matrix and fibers. In particular, it is shown that the effective wear rate as a function
of the fiber density increases if the fibers are harder than the matrix and decreases in
the opposite case. The results obtained can be used to control the wear resistance of
fibrous composites by choosing appropriate microstructure parameters.

Keywords Fiber composites · Worn surface shape · Effective wear rate

13.1 Introduction

Composite materials are widely used in aerospace tribological units such as disks
of aircraft brake systems made from carbon-carbon fiber composites. Such disks are
manufactured from carbon fibers distributed in a carbon matrix. To provide effective
braking process, these materials must have a high wear resistance and low wear of
the counter body.

Most of the existing theoretical studies of composite materials are aimed on
modeling their mechanical and strength characteristics based on properties of
their components and on prediction of their behavior under small strains [1, 11].
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Also, numerical methods of modeling the stress-deformation behavior of composite
materials based on mechanical characteristics of their components are developed
[6, 10, 13].

Experimental results on the wear resistance of fiber composites under various
interface conditions are presented in [2, 9, 12], where the wear rate is analyzed
depending on the load and sliding velocity.

Available theoretical models of wear of composites are focused on particular wear
mechanisms under given friction conditions [4, 14] and on analysis of the structure
effect on the wear resistance.

In the present study, a model of wear process of fiber composites is developed for
steady-state conditions. The model is used to analyze the influence of the composite
structure (fiber size and density, relative hardness of fiber and matrix materials) on
the effective wear rate of the composite material, its worn surface shape, and contact
pressure distribution in the wear process.

13.2 Model of Steady-State Wear of Fiber Composites

Consider a composite material consisting of a matrix with embedded identical fibers.
Let (x, y, z) be the coordinate system, such that the xy-plane coincides with the
contact surface of the composite material, and the z-axis is directed opposite to the
normal to this surface (Fig. 13.1). The composite material is modeled by an elastic
half-space, fibers being distributed uniformly and directed along the y-axis. The

Fig. 13.1 Surface structure of the composite material
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length of each fiber is L , the distance between fibers in the plane z = 0 in the
direction of the x-axis is a, and the fiber diameter is b.

A plane surface of a rigid counter body slides over the composite material surface
with the constant velocity V in the direction of the y-axis and wears the composite
material.

The composite material is modeled by a homogeneous elastic half-space with a
variable wear coefficient. These assumptions are based on the experimental measure-
ments of the elastic moduli and hardness of fibers and matrix of carbon-carbon fiber
composites, the results ofwhich indicate theYoung’smoduli of fiber andmatrix being
close to each other, whereas their hardness generally different from each other [8].
Since the value of hardness usually correlates with the value of the wear coefficient
[7], we consider the composite half-space to have a variable wear coefficient.

Taking into account the assumptions made above, we consider the wear contact
problem in 2D formulation in the plane y = 0. The wear coefficient is the periodic
function Kω(x) with period l: Kω(x + l) = Kω(x). The wear equation is adopted in
the form [3]:

∂ω∗(x, t)
∂t

= Kω(x)

[
p(x, t)

p∗

]α

(1)

where Kω(x) is a stepwise function determined by the equation:

Kω(x) =
{
Kω1, x ∈ [nl, a + nl]
Kω2, x /∈ [nl, a + nl]

(2)

Here Kω1 and Kω2 are the wear coefficients of matrix and fiber, respectively. The
exponent α in Eq. (1) is assumed to be the same for fibers and matrix.

The contact problem under consideration is periodic with the period l. At the
initial instant of time t = 0, contact between the composite material and the rigid
counter body is continuous and the pressure p(x, t) is distributed uniformly along
the contact surface, so p(x, 0) = P(0)/ l. x ∈ (−∞;+∞). Here P(0) is the specific
load (applied on a segment of periodicity) at the initial instant of time.During thewear
process, the contact pressure is redistributed and the surface shape of the composite
material changes. Since the counter body slides in the direction perpendicular to
the xz-plane, we neglect the influence of the shear stress on the contact pressure.
The elastic uz(x, t) and wear ω∗(x, t) surface displacements as well as the contact
pressure p(x, t) are periodic functions of the coordinate x . They are determined from
the solution of the wear contact problem for the elastic half-plane with the following
contact condition:

uz(x, t) + ω∗(x, t) = D(t) (3)

where D(t) is the approach of the contacting bodies due to wear. The elastic
displacements uz(x, t) are related with contact pressure p(x, t) by the equation [5]:
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uz(x, t) = −2
(
1 − ν2

)
πE

l∫
0
p
(
x ′, t

)
ln 2

∣∣∣∣∣sin
π

(
x ′ − x

)
l

∣∣∣∣∣dx ′ (4)

The analysis of the complete system of Eqs. (1), (3), and (4) of the wear contact
problemmakes it possible to conclude (see [3]) that there exists the steady-state solu-
tion of the problem for t → +∞ which is presented by the following relationships
for the steady-state pressure p∞(x), wear rate D∞ = dω∗/dt , and shape f∞(x) of
the worn surface:

p∞(x) =
⎧⎨
⎩

p∗
(

D∞
Kω1

)1/α
, x ∈ [nl, a + nl]

p∗
(

D∞
Kω2

)1/α
, x /∈ [nl, a + nl]

(5)

D∞ =
⎧⎨
⎩

P∞
p∗

[
aK−1/α

ω1 + (l − a)K−1/α
ω2

]
⎫⎬
⎭

α

(6)

f∞(x) = −2
(
1 − v2

)
p∗

πE
×

[(
D∞
Kω1

)1/α a∫
0
ln

(
2

∣∣∣∣∣sin
π

(
x ′ − x

)
l

∣∣∣∣∣
)
dx ′

+
(
D∞
Kω2

)1/α l∫
a
ln

(
2

∣∣∣∣∣sin
π

(
x ′ − x

)
l

∣∣∣∣∣
)
dx ′

]
(7)

where P∞ is the constant specific load in the steady-state wear process.
Note that the steady-state solution exists if the linear wear during the running-in

process is much smaller than the characteristic size of the fiber in its cross-section.
Introduce the following dimensionless parameters:

ã = a

l
, m = Kω2

Kω1
(8)

By using the Lobachevski function

L(y) = −
y∫
0
ln cos tdt, |y| ≤ π

2

Equation (7) is rewritten in the following form:

f∞(x) = 2
(
1 − v2

)
D1/α

∞ p∗l

πEK 1/α
ω2

(
m1/α − 1

) × {(1 − ã) ln 2

− 1

π

[
L
(π

2
− πx

l

)
+ L

(π

2
− π ã + πx

l

)]}
(9)

The function L(y) in Eq. (9) can be represented by the series:
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L(y) = y ln 2 − 1

2

∞∑
n=1

(−1)n−1 sin 2ny

n2
(10)

From Eqs. (6), (9), and (10) it follows that:

f∞(x) = −2P∞
(
1 − v2

)(
1 − m1/α

)
π2E

[
1 − ã

(
1 − m1/α

)]
∞∑
n=1

sin πnã

n2
cosπn

(
ã − 2x

l

)
(11)

We can calculate the values of the function (11) at the points x = 0, x = a, and
x = l:

f∞(0) = f∞(a) = f∞(l) = − P∞
(
1 − v2

)(
1 − m1/α

)
π2E

[
1 − ã

(
1 − m1/α

)]
∞∑
n=1

sin 2nπ ã

n2
(12)

To find the amplitude of the function f∞(x) defined by Eq. (11), the values of this
function are determined at the extrema points x = a/2 + kl and x = (a + l)/2 +
kl, (k = 0,±1,±2, . . .), where f ′∞(x) = 0:

f∞
(a
2

)
= −2P∞

(
1 − v2

)(
1 − m1/α

)
π2E

[
1 − ã

(
1 − m1/α

)]
∞∑
n=1

sin nπ ã

n2

f∞
(
a + l

2

)
= −2P∞

(
1 − v2

)(
1 − m1/α

)
π2E

[
1 − ã

(
1 − m1/α

)]
∞∑
n=1

(−1)n
sin nπ ã

n2

So the amplitude of the function f∞(x) can be calculated from the following
expression:

� =
∣∣∣∣ f∞

(a
2

)
− f∞

(
a + l

2

)∣∣∣∣ =
∣∣∣∣∣
4P∞

(
1 − v2

)(
1 − m1/α

)
π2E

[
1 − ã

(
1 − m1/α

)]
∞∑
n=1

sin(2n − 1)π ã

(2n − 1)2

∣∣∣∣∣
(13)

The relationship for the wear rate in the steady-state stage follows from Eq. (6)
and has the form:

D∞ = mKω1

{
P∞

p∗l
[
1 − ã

(
1 − m1/α

)]
}α

(14)

The effective wear coefficient in the steady-state stage of the wear process is
determined from Eqs. (1) and (14) as follows:

K̃ω = D∞
Kω1

(
p∗l
P∞

)α

= m[
1 − ã

(
1 − m1/α

)]α (15)
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Fig. 13.2 Scheme of a fiber lying at the surface z = 0 (a cell of periodicity)

The pressures acting upon the fibers and the matrix in the steady-state regime can
be calculated by using the equilibrium equation and the geometrical characteristics
of fibers in the matrix (Fig. 13.2). It follows from the equilibrium conditions that

P∞S = p1S1 + p2S2 (16)

Here p1 and p2 are the pressures acting upon the fibers and thematrix, respectively,
S1 = bL and S2 are the areas occupied by the fibers and matrix at the surface (in
a cell of periodicity), S is the area of a cell of periodicity, andp∞ = P∞/S is the
nominal pressure.

The following relationship between the nominal pressures and wear coefficients
of the fibers and the matrix in the steady-state regime of wear process is obtained
from Eqs. (1) and (5):

(
p1
p2

)α

= Kω1

Kω2
= 1

m
(17)

From Eqs. (16) and (17), the pressures acting upon the fibers and the matrix are
calculated as

{
p1 = P∞·S

S1+S2·m1/α

p2 = p1 · m1/α (18)

Equations (11), (14), and (18) allow us to analyze the shape of the worn
surface, wear rate, and pressure distribution in the steady-state regime of wear
process depending on the mechanical, geometrical, and strength characteristics of
the structural elements of the composite material.
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Note that the solution of the wear contact problem developed above is also valid
for any directions of relative sliding of contacting bodies under the assumption that
the shear stress does not influence the contact pressure distributions.

13.3 Calculation Results and Their Analysis

For calculations, we use the following numerical values of the geometrical and
mechanical characteristics of structural elements, which are characteristic for a
carbon-carbon fiber material:

• fiber length L = 3–10 mm,
• fiber diameter b = 5 µm (for model simplification we consider the fiber having

a square cross-section),
• Young’s modulus of the fiber and matrix E = 15 GPa, Poisson’s ratio ν = 0.35,
• power α in the wear Eq. (1) is α = 1.5.

13.3.1 Effect of the Ratio of the Wear Coefficients of Fibers
and Matrix

We use Eq. (11) to analyze the influence of the parameterm which is the ratio of wear
coefficients of fiber to matrix, on the shape of the worn surface of composite material
in the steady-state stage of the wear process. The results are presented in Fig. 13.3

Fig. 13.3 The shape of the worn surface for various values of parameter m
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Fig. 13.4 The amplitude of the worn surface shape of the composite material versus the parameter
m for two values of the nominal pressure

for a segment of periodicity x ∈ [0, l] in which the segment [0, a] is occupied by the
matrix and [a, l] by the fiber. A composite material with the fiber density b/ l = 0.2
under the nominal pressure p∞ = 0.5 MPa is considered.

The results show that the worn surface shape has the lowest amplitude, when the
wear coefficients of the fiber and the matrix are close to each other (m ≈ 1). Ifm < 1
then the level of the matrix relative to the fiber is negative (i.e., the fiber is above
the matrix). If m > 1 then the fibers lie below the level of the matrix on the worn
surface.

As follows from Eq. (13), increasing the nominal pressure p∞ leads to an increase
in the amplitude of theworn surface shape (see Fig. 13.4), the influence of the nominal
pressure increase being most significant for very small values of m.

Note that as applied to carbon-carbon fibrous composite materials, the casem < 1
corresponds to carbonized fibers whose hardness is higher than the hardness of the
carbon matrix, and the casem > 1 corresponds to graphitized fibers whose hardness
is lower than the hardness of the matrix.

13.3.2 Effect of Fiber Concentration

Equations (11) and (15) are used to analyze the influence of the fiber concentration
on the shape of the worn surface and the effective wear coefficient. Figure 13.5
illustrates the amplitude of the worn surface of the composite material depending on
the fiber density b/ l. For the results presented in Fig. 13.5 and below, the nominal
pressure is taken p∞ = 0.5 MPa.

The results indicate that reducing the surface concentration of fibers from 1 (full
surface treatment with fibers) to 0 (untreated surface of the matrix), the volume of
valleys on the worn surface first increases and then decreases to almost zero.
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Fig. 13.5 Amplitude value of the worn surface versus fiber density for various values of parameter
m

The effective wear coefficient of the composite material as a function of the fiber
density b/ l is presented in Fig. 13.6. The results indicate that in the case of fibers

Fig. 13.6 Effective wear coefficient versus fiber density b/ l for various values of parameter m
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harder than the matrix (m < 1), an increase in their surface concentration leads to
an increase in the effective coefficient of wear of the composite. In the case of the
harder matrix than fibers (m > 1), the opposite result takes place: An increase in the
fiber concentration leads to a decrease in the effective wear coefficient. Note that the
rate of this decrease is the higher, the greater the ratio m of the wear coefficients of
the matrix and fiber.

13.3.3 Effect of Fiber Length

In order to study the effect of the fiber length L on the pressure distribution between
the fibers and the matrix, the pressures p1 and p2 are also calculated from Eq. (18)
for various fiber lengths.

The values of these pressures as a function of the fiber length for the fixed fiber
density b/ l = 0.8 in composite are shown in Fig. 13.7. The results are obtained for
m = 0.1; i.e., the fiber is 10 times harder than thematrix, so it takes upon itself higher
value of the pressure. From the obtained results, it follows that the use of longer fibers
in the production of composite materials allows one to reduce the pressure acting
both on the fiber and on the matrix itself.

Fig. 13.7 Pressures acting upon fiber p1 and matrix p2 in the steady-state wear process versus
fiber length
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13.4 Conclusion

A model of wear for a fibrous composite material in the steady-state regime is
constructed. Relations are obtained for calculating the shape of the worn surface,
the effective wear rate of the composite, and the magnitude of contact pressures
acting on the fiber and matrix. The effect on these values of the parameters of the
composite microstructure is investigated. In particular, it is established that

• the worn surface shape of composite is not flat, and the depth of the valleys
strongly depends on the size and concentration of fibers as well as on the ratio of
the wear coefficients of fibers to matrix (or inverse ratio of their hardness);

• the effective wear coefficient decreases as the ratio of wear coefficients of the
fiber to matrix decreases;

• the effective wear rate as a function of the fiber concentration increases if the
fibers are harder than the matrix and decreases in the opposite case.

Analysis of the pressures acting upon the fibers andmatrix in the steady-state wear
process makes it possible to predict pulling fibers out of the matrix during wear. The
results of modeling can be used to improve the wear resistance of fibrous composites
by controlling their microstructures.

Acknowledgements The work was carried out under the financial support of the Russian Science
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Chapter 14
Shear Wave Propagation in Soft
Biological Tissues: A Comparison
of Numerical and Physical Modeling

Sergey Gurbatov, Igor Demin, Artem Lisin, Nikolay Pronchatov-Rubtsov,
and Aleksey Spivak

Abstract The paper presents the results on the physical and numerical simulation of
the propagation of a shearwave in soft biological tissues. The shearwave velocity and
Young’s modulus were experimentally determined on a Verasonics acoustic system
(Verasonics, Inc., Kirkland, WA, USA) in calibrated polymer CIRSModel 049 Elas-
ticity QA Phantom. The method of shear wave elasticity imaging (SWEI) allows
one to determine the viscoelastic characteristics of an object under investigation by
measuring the speed of a shear wave launched in a medium. The numerical analysis
of the generation of the acoustic radiation force is realized in the toolbox k-Wave.
The results of physical and numerical simulations of determining the velocity of
shear waves in soft tissues are compared.
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14.1 Introduction

Ultrasonography has been widely used for diagnosis since it was first introduced
in clinical practice in the 1970s. Based on the propagation of mechanical waves
and more particularly on high frequency compressional waves aka ultrasound, it
allows the construction of morphological images of organs but lacks a fundamental
and quantitative information on tissue elastic properties. Since then, new ultrasound
modalities have been developed, such as Doppler imaging, which provides new
information for diagnosis. Elastography was developed in the 1990’s to map tissue
stiffness, and reproduces/replaces the palpation performed by clinicians. Ultrasound
elastography techniques can be classified based on the type of the external force
that induces the tissue deformation. In general, four types of excitation sources are
used to induce the deformation in the tissue: static excitation, natural physiological
excitation, transient excitation, and harmonic excitation. For example, the shear wave
elasticity imaging (SWEI) technique was introduced by Sarvazyan et al. in 1998 [1].
In SWEI, one or more focused or unfocused ultrasound beams are applied for a short
period of time to generate tissue deformation. In turn, this deformation produces
shear waves. Next, the shear wave speed is estimated from the measured particle
displacements, and quantitative shear elasticity parameters are then obtained from the
estimated shearwave speed. In clinical practice, SWEI has been used to quantitatively
measure the stiffness of liver tissue and determine the stage of liver fibrosis. Other
clinical applications for SWEI include quantitative assessment of tissue mechanical
properties in thyroid, breast, kidney, and prostate [2, 3].

14.2 Verasonics Research System—Physical Simulation
of Shear Waves

TheVerasonics acoustic system (Verasonics, Inc., Kirkland,WA, USA) is a universal
ultrasonic device designed for prototyping and debugging various algorithms of
medical acoustics. The system allows you to work with almost any medical ultra-
sonic sensors, for example, L7-4, C5-2, and P4-2, which allows you to simulate the
algorithms of various expert commercial ultrasound systems. The main advantage of
the Verasonics system is its openness, that is, the ability to widely change the param-
eters of ultrasonic waves, for example, the number of emitted and receiving channels
from 64 to 256, the carrier frequency from 1 to 15 MHz, the ultrasound power up
to 1000 W, and program them depending on tasks and objects of research. Received
echoes are recorded by the device and are available for post-processing in the form
of arrays of numerical data. The whole scenario of sending pulses, receiving and
processing data, and imaging is programmed by the user in the MATLAB software
environment.

In the Laboratory of Biomedical Technologies, Medical Instrument Engineering,
and Acoustic Diagnostics (MedLab), Department of Acoustics, Nizhny Novgorod
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Fig. 14.1 Time diagram of the signals during the experiment

University on the Verasonics ultrasound system, the shear wave elasticity imaging
(SWEI) method was implemented [4]. This method allows one to determine the
viscoelastic characteristics of an object under investigation by measuring the speed
of a shear wave launched in a medium. For this, a focused ultrasonic “pushing”
pulse is applied to a given point, which creates a disturbance. Under the influence
of a radiation force, a shear wave begins to propagate from this point, resulting in a
displacement of particles of the medium along the path of its propagation. To track
the displacements, and hence, the propagation of the shear wave, one unfocused
“reference” pulse is sent to the pushing pulse to scan the unperturbed medium. After
a focused pulse, several unfocused “imaging” pulses, similar to the reference one,
with a certain interval, which scan the medium at the time of wave propagation, are
fed into the medium (see Fig. 14.1).

Subsequently, when processing the obtained data, the medium displacement ξ (x,
t) is recorded as a function of time t at various distances x from the focus point of
the pushing pulse. Different x values correspond to different curves. Each function
has a maximum corresponding to the front of the shear wave, due to which the time
of arrival of the front to a certain point is determined. This allows us to calculate
the shear wave velocity V, which is converted into Young’s modulus E according to
formula

E = 3ρV 2 (14.1)

where ρ is the density of soft biological tissue.
As mentioned earlier, the received echo signals are recorded by Verasonics and

are available for post-processing in the form of arrays of numerical data, which are
recorded in a separate file. This allows you to display after processing various data
necessary for the study, in contrast to commercial expert ultrasound systems, which
can only display information about shear wave velocity and Young’s modulus of the
medium. To this end, while working with the Verasonics system, several programs
were developed in the MATLAB software environment for processing source data.
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Fig. 14.2 Interface for calculating the shear wave velocity and Young’s modulus of the medium
with the output of shear wave visualization

One of the programs allows one to obtain the values of the displacement of the
medium ξ (x, t) at a given point and graphically displays the form of this function.
The following program allows you to get the values of the shear wave velocity in
the studied object. These programs are combined into an interface that combines the
functional of obtaining the medium displacement ξ (x, t) at a given point and the
shear wave velocity (see Fig. 14.2).

14.3 Numerical Simulation of Shear Waves

To numerically solve the problem of the propagation of shear waves in soft biolog-
ical tissues, the k-Wave software package for the MATLAB medium was used. It
combines the MATLAB optimization for working with matrix operations and a set
of tools that allow you to simulate the propagation medium through parameters such
as density and speed of sound in a given environment. The numerical model is based
on the transition to k-space, where spatial gradients are calculated using the FFT
scheme, and time gradients are calculated using the adjusted k-spatial difference
scheme [5].

Numerical modeling of a physical experiment allows predicting the measure-
ment result with high accuracy, and therefore, to solve the problem of computer
simulation of media with given parameters, a large number of algorithms, software
modules, and independent packages, both paid and with a free license, have been
developed. Their main difference from each other is the numerical methods used
and the approximations allowed for their application. Modern computer technology
allows calculation with high accuracy, but makes high demands on the hardware of
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the machine, so it becomes important to choose an algorithm that effectively uses
the power of computing modules with the lowest possible load, while ensuring the
necessary and sufficient accuracy.

To solve this problem, it is convenient to use k-Wave—a software package (tool-
box) for theMATLABenvironment. It combinesMATLABoptimization forworking
with matrix operations and a set of tools that allows you to simulate the propagation
medium through such parameters as the density and speed of sound in a given envi-
ronment. The combination of these factors allows us to simulate 2D and 3D spaces,
while maintaining a high computational speed. The numerical model is based on the
transition to k-space, where spatial gradients are calculated using the FFT scheme,
and time gradients are calculated using the adjusted k-spatial difference scheme.
The temporal scheme is accurate in the limit of propagation of a linear wave in a
homogeneous medium without losses and significantly reduces numerical scattering
in a more general case [6].

The solution to the problem of modeling the SWEI method can be divided into
stages, which are an analysis of the initial conditions necessary for the model to
work, and the use of these data to simulate a specific stage of the method. The first
step is to decide on the initial conditions for the simulation, i.e., the choice of the
propagation medium through the density ρ and the speed of sound in medium C.
Based on these data, a numerical simulation of the focusing of an ultrasonic beam,
which is a source of radiation force, is carried out. According to the pressure data
obtained from the simulation results, the radiation force is calculated. From this,
shear wave propagation can be modeled. The last step is to visualize the results.

The simulation subtasks involve the following steps: first, the environment in
which the simulation is performed (it can be either a linear medium or a nonlinear
space) is set, then a sensor is placed (in this case, it is a model of a standard linear
L7-4 linear sensor for ultrasound studies), and simulation of wave propagation in the
medium. In the case of a linear sensor, the emitter is a phased array of 128 elements.
Within the framework of a given numerical model, these are 128 point sources. But
to obtain a shear wave, it is necessary to focus the emitters to the point where the
wave from each emitter comes in one phase. This is achieved bymeans of a quadratic
phase incursion on each radiator; for zero, we consider the center of the sensor (see
Fig. 14.3a). To simulate a shear wave, the source is located in the region of the
focusing spot and consists of eight elements located in the shape of a rhombus (see
Fig. 14.3b).

The result of this algorithm allows you to calculate the distribution of acoustic
pressure, which allows you to evaluate the geometric dimensions of the focusing spot
and also serve as input to calculate the amplitude and velocity of the shear wave.

The shearwave velocity andYoung’smoduluswere experimentally determined on
a Verasonics system in calibrated polymer CIRS Model 049 Elasticity QA Phantom
Spherical with spheres 10 and 20 mm in diameter located at different depths. The
spheres in phantoms were of four types with different values of Young’s modulus
(Type I–IV), indicated in the accompanying documents. These elements were in
a polymer medium (matrix), the elastic characteristics of which were also known.
The advantage of phantoms is that they are made of Zerdine polymer material, the
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a b

Fig. 14.3 Implementation of steps of numerical simulation of shear waves a pressure distribution at
the stage of focusing of the ultrasonic beam, b pressure distribution during shear wave propagation

characteristics of which are independent of changes in external temperature and
applied pressure.

The shear wave velocity is calculated based on the position of the pressure peak
characterizing the location of the wavefront. In Fig. 14.4 shows an example of
calculating the shear wave velocity using the formula

V = S/t,

where S is the distance between the peaks determined for two times t1 and t2

S = (S2 − S1)/2, and t = t2 − t1.

Table 14.1 presents a comparisonof the results of numerical andphysicalmodeling

Fig. 14.4 Shear wave velocity determination by wavefront position
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Table 14.1 Shear wave
velocity (m/s)—comparison
of physical and numerical
simulations

CIRS phantom Numerical
simulations (K-wave)

Physical simulations
(verasonics)

Background 4.17 2.68

I 1.84 1.34

II 2.07 1.81

III 4.85 3.46

A comparison of the results shows that the higher the concentration of the polymer
substance in the phantom, the closer the results of numerical and physical modeling.
In addition, the results of numerical simulations are consistently larger than physical
ones. This effect occurs due to the strong heterogeneity of the studied physical
environment.
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Chapter 15
On the Complex Dynamics of Nonlinear
Systems with Viscous and Dry Friction
with Memory

Leonid A. Igumnov, Vladimir S. Metrikin, and Natalya S. Starodubrovskaya

Abstract A dynamical system consisting of a pair of bodies in frictional contact
is considered. One of the bodies moves with a constant velocity, whereas the other
is attached to a fixed support. The friction force is assumed as a sum of two fric-
tion forces: dry friction and viscous friction. The coefficient of the static friction is
represented in the form of a piecewise linear function of the duration of the stick
phase, whereas the coefficient of the kinetic friction is assumed to be constant. The
qualitative structure of the phase space is studied in detail with qualitative methods,
depending on the values of the coefficients of viscous friction and relative rest fric-
tion. The study is focused on the effect of the coefficients of viscous and dry friction.
It is proven that the dynamical regime that include the stick phase occur only in
certain parameter ranges. The mapping function is derived analytically and is shown
to be a piecewise continuous function of the stick phase. The main regimes of peri-
odic and stochastic motions are obtained by a semi-analytical method. The bifurca-
tion diagrams are employed in order to study these regimes under various system
parameters.
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15.1 Introduction

It is known that in most cases, friction forces play a purely damping role. Due to
their effect, free vibrations decay, amplitudes of forced vibrations decrease, stability
regions expand, etc. However, for a whole number of dynamical systems, these
forces act as a destabilizing factor, i.e., even small friction forces in the system
give rise to unstable equilibrium. Friction-induced self-oscillatory systems (FSS)
can be referred to this kind of systems. Friction-induced self-oscillations are the
most spread type of mechanical self-oscillations connected with instability of the
friction process at relatively low sliding velocities. Ishlinsky and Kragelsky [1] was
the first to draw attention to this fact, and then followed by numerous studies of
both national and foreign researchers such as [2, 7, 11–13] and foreign researchers
[3–6, 10]. In their works, [7, 11–13] considered the fundamental fact that mechanical
relaxation oscillations of bodies in frictional contact were caused by the elasticity
of the system and increasing friction force due to increase in duration of the stick
phase. This phenomenon was called “friction with memory.” The analysis of FSS
of the Coulomb–Amonton model of friction with and without memory showed that
in the latter case, there exist only friction-induced self-oscillations [8]. Dry friction
forces with memory give rise to both arbitrarily complex periodic motion regimes
with a great number of sick intervals and stochastic self-oscillations [7, 11–13].

15.2 Equation of Motion

A physical system consisting of a body of mass m, located on a rough belt moving
at a constant velocity V0, is considered. The body is secured with a rigidity spring k
to a fixed support (Fig. 15.1). In the following, it is assumed that the kinetic friction
coefficient is constant, whereas the coefficient of static friction is, in accordance
with the hypothesis by Ishlinsky and Kragelsky [1], a piecewise linear function of
the duration tk of the stick phase of the process; the latter is equal to.

Fig. 15.1 Scheme of the
vibration mechanism
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Fig. 15.2 Coefficient of
static friction as a function of
the duration of stick phase

The equations of motion of the system with stick and slip intervals can be written
in the form

mẍ = −kx − f∗Psgn(ẋ − V0) + α1(ẋ − V0), ẋ �= V0, (15.1)

k|x | ≤ f (tk)P, ẋ = V0, (15.2)

where P is body weight, f∗ and f (tk) are coefficients of kinetic friction and static
friction, respectively; α1 > 0 is viscous friction coefficient. The coefficient of kinetic
friction is assumed to be constant, whereas the coefficient of static friction, in accor-
dance with [1], is a piecewise linear function of the duration tk of stick phase of the
body and the belt and equals to

f (tk) =
{
f∗ + ( f ∗ − f∗)tk/t∗, 0 < tk < t∗,
f ∗, tk ≥ t∗.

(15.3)

Figure 15.2 presents f (tk) dependence.
We introduce dimensionless variables τ = ε∗t/t∗, ξ = kx/( f∗P) and parameters

ε∗ = ( f ∗ − f∗)/ f∗, θ = V0

√
mk/( f∗P) and α̃1 = α1/

√
mk. Then, Eqs. (15.1, 15.2)

will have the form

ξ̈ = −ξ − sgn(ξ̇ − θ) + α̃1(ξ̇ − θ), ξ̇ �= θ, (15.4)

|ξ | ≤ 1 + ε(τk), ξ̇ = θ, (15.5)

where ε(τk) = ( f (t∗τk/ε∗) − f∗)/ f∗ is dimensionless characteristic of the coeffi-
cient of static friction. It can be easily seen that by virtue (15.3) we have ε(τk) ={

τk, 0 < τk < ε∗,
ε∗, τk ≥ ε∗.
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15.3 Qualitative Study of the Phase Space Structure

The qualitative form of splitting of the phase plane trajectory ξ, ξ̇ of Eq. (15.4) is
studied. The phase plane is divided by the straight line ξ̇ = θ into two subspaces
ξ̇ > θ and ξ̇ < θ , each of them having their own equation of motion, namely

ξ̈ = −ξ − 1 + α̃1
(
ξ̇ − θ

)
, ξ̇ > θ (15.6)

and

ξ̈ = −ξ + 1 + α̃1
(
ξ̇ − θ

)
, ξ̇ < θ. (15.7)

Considering the behavior of the trajectories in the vicinity of this straight line,
it can be shown that on the straight line ξ̇ = θ , there exists a segment of sliding
motions |ξ | ≤ 1, ξ̇ = θ .

The dynamic system (15.6, 15.7) has a unique equilibrium state A(1 − α̃1θ, 0),
which is an unstable focus at 0 < α̃1 < 2 and an unstable node at α̃1 ≥ 2. After
having fixed θ , we trace the change in phase portrait of this system with increasing
α̃1. For sufficiently small α̃1, the system (15.6, 15.7) has two stitched limit cycles:
unstable L1 and stable L2, consisting of an arc CB of the half-path γ1 and a segment
of sliding motions BC (Fig. 15.3).

With increasing α̃1, half-paths γ1 and γ2 are getting closer and for some α̃1 = α̃
(1)
1 ,

they coincide. For α̃1, arbitrarily close to α̃
(1)
1 , α̃1 > α̃

(1)
1 , half-path γ1 intersects the

Fig. 15.3 Qualitative form of the phase trajectories of the system (15.6, 15.7) for sufficiently small
α̃1
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Fig. 15.4 Qualitative form of phase trajectories of the system (15.6, 15.7) for α̃1, arbitrarily close
to α̃

(1)
1 , α̃1 > α̃

(1)
1

straight line ξ̇ = θ , α-limit set of the half-path γ2 is equilibrium state A (Fig. 15.4).
With a further increase in α̃1, half-paths γ1 and γ3 are getting closer and for some
α̃1 = α̃

(2)
1 , they coincide. Cross-linked limit circle L2 here does not contain the

segment of sliding motions.
With increasing α̃1, unstable limit cycle L1 contracts, whereas stable limit circle

L2 expands. Let us denote by α̃
(3)
1 the bifurcation value of the parameter α̃1, which

corresponds to merging the above limit cycles. Note that α̃(3)
1 ≥ α̃

(2)
1 . Suppose α̃

(3)
1 >

α̃
(2)
1 (the case α̃

(3)
1 = α̃

(2)
1 is considered similarly). For α̃1, arbitrarily close to α̃

(2)
1 ,

α̃1 > α̃
(2)
1 , half-path γ3 by α-limit set tends to the equilibrium state A, whereas half-

space γ1 by ω-limit set has stitched limit cycle L2 (Fig. 15.5). Unstable and stable
stitched limit cycles L1 and L2 for α̃1 = α̃

(3)
1 merge into a semi-stable limit cycle.

For α̃1 > α̃
(3)
1 half-path γ1 tends to infinity at t → +∞ (Fig. 15.6). The equilibrium

state A for α̃1 ≥ 2 is an unstable node (Fig. 15.7).
Table 15.1 presents numerically obtained the above values α̃

(1)
1 , α̃(2)

1 and α̃
(3)
1 as a

function of the parameter θ .

15.4 Constructing a Mapping Function

It is assumed that for −τk < τ < 0, the body and the belt are at stick phase, whereas
for τ = 0, we have ξ = ξ0, ξ0 = 1 + ε(τk), ξ̇ = θ . According to the nature of the
trajectory splitting of the phase space in Eq. (15.4) for various parameter values α̃1,
the image point moving along the positive half-path from a starting point M(ξ0, θ)

hits the segment of sliding motions only when 0 < α̃1 < α̃
(2)
1 , 0 < ε∗ < ε̃∗,
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Fig. 15.5 Qualitative form of phase trajectories of the system (15.6, 15.7) for α̃1, arbitrarily close
to α̃

(2)
1 , α̃1 > α̃

(2)
1

Fig. 15.6 Qualitative form of phase trajectories of the system (15.6, 15.7) at α̃1 > α̃
(3)
1
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Fig. 15.7 Qualitative form of phase trajectories of the system (15.6, 15.7) at α̃1 > 2

Table 15.1 Mechanical
properties of birch θ α̃

(1)
1 α̃

(2)
1 α̃

(3)
1

0.1 1.1666 1.2086 1.2086

0.15 1.0322 1.0964 1.0964

0.2 0.9264 1.0106 1.0106

0.25 0.839 0.9412 0.9412

0.5 0.5526 0.7136 0.71437999

0.75 0.392 0.5772 0.579545

1 0.2908 0.4814 0.4865501

1.25 0.223 0.4092 0.41786898

1.5 0.1754 0.3524 0.36507279

1.75 0.1412 0.3062 0.32334483

2 0.1156 0.2684 0.2896595

2.25 0.0962 0.2368 0.26198

2.5 0.0812 0.21 0.23887697

2.75 0.0692 0.1872 0.21936009

3 0.0598 0.1678 0.20267789

ε̃∗ = ξ ∗ − 1, where ξ ∗ is the abscissa of the intersection point of the cross-linked
limit cycle L1 with half-line ξ > 1, ξ̇ = θ . Further, we assume that 0 < α̃1 < α̃

(2)
1 ,

0 < ε∗ < ε̃∗.
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At τ > 0 the body moves at a lower velocity than that of the belt (ξ̇ < θ) and
its moving ends at τ = τ1, when ξ̇ = θ for the first time. The Eq. (15.7) with initial
conditions τ = 0, ξ = ξ0, ξ̇ = θ can be written in the form

ξ = 1 − α̃1θ + exp(α̃1τ/2)

⎡
⎣(ξ0 − 1 + α̃1θ) cos

√
4 − α̃2

1

2
τ

+ 2θ − α̃1(ξ0 − 1 + α̃1θ)√
4 − α̃2

1

sin

√
4 − α̃2

1

2
τ

⎤
⎦.

Then for velocity ξ̇ , we have

ξ̇ = exp(α̃1τ/2)

⎡
⎣θ cos

√
4 − α̃2

1

2
τ − α̃1θ + 2(ξ0 − 1)√

4 − α̃2
1

sin

√
4 − α̃2

1

2
τ

⎤
⎦.

By assuming τ = τ1, ξ(τ1) = ξ1, ξ̇ = θ equations considered, we obtain the
following relations in order to determine the values τ1 and ξ1, respectively.

exp

(
α̃1τ1

2

)⎡
⎣θ cos

√
4 − α̃2

1

2
τ1 − α̃1θ + 2(ξ0 − 1)√

4 − α̃2
1

sin

√
4 − α̃2

1

2
τ1

⎤
⎦ = θ, (15.8)

ξ1 = 1 − α̃1θ + exp

(
α̃1τ1

2

)⎡
⎣(ξ0 − 1 + α̃1θ) cos

√
4 − α̃2

1

2
τ1

+2θ − α̃1(ξ0 − 1 + α̃1θ)√
4 − α̃2

1

sin

√
4 − α̃2

1

2
τ1

⎤
⎦.

It can be easily seen that τ̃1 < τ1 < τ̃2,

τ̃1 = 2√
4 − α̃2

1

⎛
⎝π + arctg

θ

√
4 − α̃2

1

α̃1θ + 2(ξ0 − 1)

⎞
⎠,

τ̃2 = 2√
4 − α̃2

1

⎛
⎝2π − arctg

(ξ0 − 1)
√
4 − α̃2

1

2θ + α̃1(ξ0 − 1)

⎞
⎠.

Figure 15.8a presents graphical solution of the Eq. (15.8). (In this figure, the
function
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Fig. 15.8 a Function graph z = z1(τ ). b Function graph z = z2(τ )

exp(α̃1τ/2)

⎡
⎣θ cos

√
4 − α̃2

1

2
τ − α̃1θ + 2(ξ0 − 1)√

4 − α̃2
1

sin

√
4 − α̃2

1

2
τ

⎤
⎦

is denoted by z1(τ )).
An instantaneous change in the slip direction at the moment τ = τ1 occurs

if ξ1 < −1. Suppose that this inequality holds. In the subsequent time interval
τ1 < τ < τ1 + τ2 (the point ξ = ξ2, ξ̇ = θ corresponds to the value τ = τ1 + τ2), the
body moves at a higher velocity than that of the belt (ξ̇ > θ). According to (15.6)
by virtue of the initial conditions τ = τ1, ξ = ξ1, ξ̇ = θ , we obtain
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ξ = −1 − α̃1θ + exp(α̃1(τ − τ1)/2)

⎡
⎣(ξ1 + 1 + α̃1θ) ∗ cos

√
4 − α̃2

1

2
(τ − τ1)

+2θ − α̃1(ξ1 + 1 + α̃1θ)√
4 − α̃2

1

sin

√
4 − α̃2

1

2
(τ − τ1)

⎤
⎦,

ξ̇ = exp(α̃1(τ − τ1)/2)

⎡
⎣θ cos

√
4 − α̃2

1

2
(τ − τ1)

− α̃1θ + 2(ξ1 + 1)√
4 − α̃2

1

sin

√
4 − α̃2

1

2
(τ − τ1)

⎤
⎦.

Substituting τ = τ1 + τ2, ξ = ξ2, ξ̇ = θ into equations considered, we derive

exp

(
α̃1τ2

2

)⎡
⎣θ cos

√
4 − α̃2

1

2
τ2 − α̃1θ + 2(ξ1 + 1)√

4 − α̃2
1

sin

√
4 − α̃2

1

2
τ2

⎤
⎦ = θ, (15.9)

ξ2 = −1 − α̃1θ + exp(α̃1τ2/2)

⎡
⎣(ξ1 + 1 + α̃1θ) cos

√
4 − α̃2

1

2
τ2

+ 2θ − α̃1(ξ1 + 1 + α̃1θ)√
4 − α̃2

1

sin

√
4 − α̃2

1

2
τ2

⎤
⎦.

The value τ2 satisfies the inequality: τ̃3 < τ2 < τ̃4, where

τ̃3 =

⎧⎪⎨
⎪⎩

2√
4−α̃2

1

(
π − arctg

(ξ1+1)
√

4−α̃2
1

2θ+α̃1(ξ1+1)

)
, ξ1 ≤ −1 − 2θ

α̃1
,

− 2√
4−α̃2

1

arctg
(ξ1+1)

√
4−α̃2

1

2θ+α̃1(ξ1+1) , −1 − 2θ
α̃1

< ξ1 < −1,

τ̃4 =

⎧⎪⎨
⎪⎩

2√
4−α̃2

1

(
π + arctg

θ
√

4−α̃2
1

α̃1θ+2(ξ1+1)

)
, ξ1 ≤ −1 − α̃1θ

2 ,

2√
4−α̃2

1

arctg
θ
√

4−α̃2
1

α̃1θ+2(ξ1+1) , −1 − α̃1θ
2 < ξ1 < −1.

Figure 15.8b presents graphical solution of the Eq. (15.9) for−1− α̃1θ/2 < ξ1 <

−1, 0 < α̃1 ≤ √
2. (In this figure, the function
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exp

(
α̃1τ

2

)⎡
⎣θ cos

√
4 − α̃2

1

2
τ − α̃1θ + 2(ξ1 + 1)√

4 − α̃2
1

sin

√
4 − α̃2

1

2
τ

⎤
⎦

is denoted by z2(τ )). Note that instantaneous change in the slip direction at the
moment τ = τ1 + τ2 occurs if ξ2 > 1.

Subsequent slip intervals with the lower or higher velocity than that of the belt
are investigated in the same way. This investigation at the ith stage (i = 1, 2, 3, · · · )
leads to two relations, one of which determines time τi of the stage considered,

exp(α̃1τi/2)

⎡
⎣θ cos

√
4 − α̃2

1

2
τi − α̃1θ + 2(ξi−1 ∓ 1)√

4 − α̃2
1

sin

√
4 − α̃2

1

2
τi

⎤
⎦ = θ,

whereas the other determines the coordinate value ξi

ξi = ±1 − α̃1θ + exp(α̃1τi/2)

⎡
⎣(ξi−1 ∓ 1 + α̃1θ) cos

√
4 − α̃2

1

2
τi

+2θ − α̃1(ξi−1 ∓ 1 + α̃1θ)√
4 − α̃2

1

sin

√
4 − α̃2

1

2
τi

⎤
⎦

(the upper sign corresponds to i = 2n − 1, whereas the lower corresponds to i =
2n, n ∈ N ). Slipping at the ith stage herein exists if |ξi−1| > 1, i = 1, 2, 3, · · · .

Suppose that −1 < ξ j (τk) < 1( j = 1, 2, 3, · · ·). Then, after j slip phase at the
moment τ = τ̄ , τ̄ = ∑ j

i=1 τi , the stick phase begins. At this stage by virtue of (15.5),
we have

ξ = ξ j (τk) + θ(τ − τ̄ ). (15.10)

The stick phase ends at τ = τ̄ + τk+1 when ξ = 1 + ε(τk+1). Substituting the
given values of time and coordinates into Eq. (15.10), we obtain an implicit relation
connecting times τk and τk+1 of successive intervals of relative rest

ψ(τk+1) = ϕ(τk), ψ(τ) = θτ − ε(τ ),

ϕ(τ ) = 1 − ξ j (τ ), −1 < ξ j (τ ) < 1, j = 1, 2, 3, · · · . (15.11)

Let ξ (i)(i = 1, 2, 3, · · · ) be the sequence of abscissas of the intersection points
of the half-path γ3 with half-line ξ > 1, ξ̇ = θ . Depending on the parameter ε∗,
the considered half-path either does not have common points with the interval 1 <
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Fig. 15.9 a Dependences ψ(τ), ϕ(τ) at α̃1 = 0.14, θ = 1.7, ε∗ = 4.7. bDependences ψ(τ), ϕ(τ)

at α̃1 = 0.155, θ = 1.7, ε∗ = 4.7

ξ < 1 + ε∗, ξ̇ = θ of the half-line ξ > 1, ξ̇ = θ , or intersects it in a finite number
of points with abscissas ξ (1), ξ (1), . . . , ξ (k), k ≥ 1. It is easily shown that in the first
case, the function ϕ(τ) is continuous, whereas in the second case it is piecewise
continuous. Discontinuity occurs at the points τ (i) = ξ (i) − 1, and ϕ

(
τ (i) − 0

) = 0,
ϕ
(
τ (i) + 0

) = ϕ(0)
(
i = 1, k

)
. The dependences ψ(τ) and ϕ(τ) at α̃1 = 0.14,

θ = 1.7, ε∗ = 4.7 (α̃1 = 0.155, θ = 1.7, ε∗ = 4.7) are presented in Fig. 15.9a,
b by dash-dotted and solid lines, respectively. Figure 15.9a depicts dependences for
α̃1 < α̃

(1)
1 , whereas Fig. 15.9b for α̃1 > α̃

(1)
1 .

The mapping function (15.11) specifies the point mapping of the half-line, with
the exception of the discontinuity points τ (i),i = 1, k (if any) into the half-line. For
α̃1 = 0 this function coincides with mapping function [7]. Note that for θ < 1 point
mapping (15.11) has the only simple able fixed point τ ∗

j , satisfying the inequality
τ ∗
j > ε∗ and determined by the relation τ ∗

j = (
1 − ξ j (ε

∗) + ε∗)/θ ( j = 1, 2, 3, · · · ).
The specified point corresponds to j/2 reverse periodicmotion regimeswith duration
of the slip phase τ ∗

j , j = 1, 2, 3, · · · [11].

15.5 Numerical Results

As the image point moving along the positive half-path from a starting pointM(ξ, θ),
1 ≤ ξ < ξ ∗, always hits (for selected α̃1 and ε∗) the segment of sliding motions, the
investigation of the dynamics of the system considered can be reduced to studying
the sequence properties τk(k = 1, 2, 3, · · · ) of the duration of the stick phase. Since
for any element of this sequence there must exist a successor, then it is necessary
to define point mapping (15.11) in discontinuity points τ (i), i = 1, k (if any). We
assume that 0 ≤ ϕ

(
τ (i)

) ≤ ϕ(0)
(
i = 1, k

)
. The bifurcation diagrams were plotted

using so defined mapping function.
Figures 15.10 and 15.11 show bifurcation diagrams plotted against belt velocity
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Fig. 15.10 Bifurcation
diagram by θ for ε∗ = 3,
α̃1 = 0.05

Fig. 15.11 Bifurcation
diagram by θ for ε∗ = 3,
α̃1 = 0.11

θ for ε∗ = 3 and α̃1 = 0.05, α̃1 = 0.11 respectively. In these figures, the values
of θ parameter ranged from 0.9 to 2.5 are plotted on the abscissa axis, whereas the
values of the duration of the stick phase are plotted on the ordinate axis. It is clearly
shown that due to an increase in the belt velocity or dependence on the parameter α̃1,
either a period-doubling process occurs leading to a chaotic motion [9] (Fig. 15.10),
or there exist only periodic motions of the system with one or several stick phases
(Fig. 15.11). Figures 15.10 and 15.11 show that the increase of θ leads to the reduction
of the duration of the stick phase in the periodic regimes of motion. The increase of
the coefficient of the viscous friction results in the disappearance of the stochastic
regimes of motion.
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Figures 15.12, 15.13 and 15.14 show bifurcation diagrams plotted against belt
velocity θ , 0.9 ≤ θ ≤ 2.5, for α̃1 = 0.15 and for various parameter values ε∗.
Figure 15.12 corresponds to the value ε∗ = 2, whereas Figs. 15.13, 15.14 to the
values ε∗ = 4 and ε∗ = 5, respectively. For ε∗ = 2 depending on the parameter
θ , the system exhibits periodic motion regimes with one or two times of relative
rest of the body and the belt. With increasing ε∗(ε∗ = 4, ε∗ = 5), stochastic motion
regimes occur, which turn into periodic motion regimes with one prolonged stop due
to further increase in belt velocity. With an increase in ε∗(ε∗ = 4, ε∗ = 5) stochastic
movements arise.

Figures 15.15 and 15.16 show bifurcation diagrams for the viscous friction coef-

Fig. 15.12 Bifurcation
diagram by θ for
α̃1 = 0.15, ε∗ = 2

Fig. 15.13 Bifurcation
diagram by θ for
α̃1 = 0.15, ε∗ = 4
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Fig. 15.14 Bifurcation
diagram by θ for
α̃1 = 0.15, ε∗ = 5

Fig. 15.15 Bifurcation
diagram for α̃1 at ε∗ = 4,
θ = 1.2

ficient α̃1 (plotted on the abscissa axis), 0 ≤ α̃1 ≤ 0.2, for ε∗ = 4 and θ = 1.2,
θ = 1.6, respectively. These figures show that the parameter α̃1 affects the dynamics
of the system. When α̃1 is small, the increase of the velocity of the belt leads to the
transformation of the periodic regimes with a few stick phases per period (Fig. 15.15)
into the stochastic regimes of motion (Fig. 15.16). With increasing α̃1, the consid-
ered motion regimes are interrupted by periodic motions with one (θ = 1.2) or with
several (θ = 1.6) stick regimes of the body and the belt.

Figures 15.17, 15.18 and 15.19 show bifurcation diagrams for the parameter ε∗
(plotted on the abscissa axis), 0 ≤ ε∗ ≤ 6, for α̃1 = 0.07 and θ = 1.2, θ = 1.5
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Fig. 15.16 Bifurcation
diagram for α̃1 at ε∗ = 4,
θ = 1.6

Fig. 15.17 Bifurcation
diagram for ε∗ at α̃1 = 0.07,
θ = 1.2

and θ = 1.8 respectively. These figures show that for all values of the parameter
ε∗ within the range determined by the belt velocity θ , the system exhibits periodic
motion regimeswith one relative rest of the body and the belt.With the increase of ε∗,
and depending on θ (see Figs. 15.17, 15.18, 15.19), one observes the period-doubling
process that results in chaos. The higher the velocity of the belt, the smaller ε∗, which
corresponds to the transition to chaos. Note that with increasing belt velocity, the
interval of the values of the parameter ε∗ corresponding to the stochastic motion
regimes of the system, expands.

Figures 15.20, 15.21 and 15.22 present bifurcation diagrams plotted against the
parameter ε∗, 0 ≤ ε∗ ≤ 6, for θ = 1.7 and various values of the parameter α̃1.
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Fig. 15.18 Bifurcation
diagram for ε∗ at
α̃1 = 0.07, θ = 1.5

Fig. 15.19 Bifurcation
diagram for ε∗ at
α̃1 = 0.07, θ = 1.8

Figure 15.20 corresponds to the value α̃1 = 0.06, whereas Figs. 15.21 and 15.22 to
the values α̃1 = 0.12 and α̃1 = 0.16, respectively. For α̃1 = 0.06 depending on the
parameter ε∗, there exist either periodic motion regimes with one or several stick
phases of the body and the belt or stochastic motion regimes. With increasing α̃1.
(α̃1 = 0.12, α̃1 = 0.16) stochastic motions disappear and periodic motions with one
or two stick phases are observed.
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Fig. 15.20 Bifurcation
diagram for ε∗ at θ = 1.7,
α̃1 = 0.06

Fig. 15.21 Bifurcation
diagram for ε∗ at
θ = 1.7, α̃1 = 0.12

15.6 Conclusion

The main results of the present work are as follows:

• The structure of the phase space of the vibration system consisting of a pair of
bodies in frictional contact with account for viscous-dry friction with memory is
studied in detail using the methods of qualitative theory of dynamical systems on
a plane.

• It is shown for the first time that the regimes that include the stick phase are
possible only in certain parameter ranges.
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Fig. 15.22 Bifurcation
diagram for ε∗ at θ = 1.7,
α̃1 = 0.16

• Themain transitions between periodic and stochastic motion regimes are revealed
depending on the system parameters.

Acknowledgements This work was supported by a grant of the Russian Science Foundation (16-
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Chapter 16
Experimental Studies of Elastic–Plastic
Deformation of Structural Materials
Under Conditions of Triaxial Loading

Leonid A. Igumnov, Sergey Ye. Vlasov, Dmitry A. Kazakov,
Dmitry V. Zhegalov, and Ivan A. Modin

Abstract The behavior ofmetal tubular specimens under combined tension–torsion,
torsion–compression and internal torsion pressures is studied experimentally. The
tests are necessary for obtaining experimental data in order to study loss of stability
and deformation of elastic–plastic shells caused by large deformations under complex
stress conditions loaded along multi-link broken polygonal deformation trajectories,
as well as for assessing the role of deformation anisotropy. In order to conduct
tests under complex stress conditions (internal pressure loading in combination with
other types of loading), the testing equipment was modified. Equipment of the test
complexwith a system for loadingof tubular specimenswith internal pressure ensures
the conditions for achieving destructive stresses, caused by both internal pressure
and torsion with tension. The Zwick/Roell Z100 testing machine equipped with the
system generating internal pressure in hollow specimens makes it possible to expand
significantly the types of tests on determining deformation and strength characteris-
tics of materials. The results can be used to verify mathematical models and program
codes for the numerical study of the processes of elastic–plastic deformation and
loss of stability of shells of revolution under complex loading.
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Keywords Experiment · Complex stress–strain state · Elastoplastic deformation of
a material · Tubular sample · Internal pressure · Anisotropy

16.1 Introduction

The processes of elastic–plastic deformation, loss of stability due to large deforma-
tions can be studied in detail in experiments on complex loading (beam, multi-link
broken lines and spatial deformation trajectories). In the experiments, the test tubular
specimen is simultaneously subjected to tension–compression, alternating torsion
and loading by internal pressure [4, 7, 10, 13]. The loading device and measuring
systems were finalized based on the universal testing machine Zwick/Roell Z100 of
Lobachevsky University. This enables simultaneous loading of the test tubular spec-
imen by tension–compression, alternating torsion and internal pressure. The geom-
etry of the working part and the heads of both solid and tubular specimens have been
elaborated for complex loading tests. The experiments on complex combined loading
in tension–compression, torsion and internal pressure are presented. The university
actively uses both experimental studies of materials and numerical modeling of the
studied objects [1–3, 5, 6, 8, 9, 11, 12, 14, 15].

16.2 Test Equipment Modernization

The testing machine Zwick/RoellZ100 allows one to conduct both tension–compres-
sion experiments and experiments on alternating torsion. The control unit is equipped
with TestXpert II software that provides changes in axial loading rates and alternating
torque in a wide range. The system has laser channels for simultaneous measure-
ment of longitudinal displacements and twist angle of the specimen working part
and a channel for determining transverse deformation with the help of a digital video
camera.

A universal hydraulic unit Zwick/Roell with an internal pressure control system
was employed to create internal pressures in the specimens installed in the hydraulic
grips of the Z100 testing machine and to conduct complex loading tests according to
the (p-q) test program. The unit ensures a maximum pressure of 480 bar and a flow
rate of 3.6 l/min. Thus, the hydraulic unit of Z100 testing machine is supplemented
by a system that operates in a blind (dead end) mode for internal pressure loading of
hollow specimens.

A system for fixing the specimens in the grips of the testing machine has been
elaborated. The specimen and grips have square cross section (Fig. 16.1) on which
a special sleeve of identical internal cross section is mounted. The end of the spec-
imen has an internal thread necessary for tensile loading of a specimen. For internal
pressure test, an intermediate-shaped sleeve with an end groove and a sealing ring is
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Fig. 16.1 Scheme of tubular specimen

inserted between the specimen end and hydraulic grips of the testing machine. From
hydraulic unit, oil flows into internal cavity of the specimen through a sleeve side
hole.

In experiments on loading by internal pressure, the internal cavity of a specimen
is filled with oil. The maximum pressure generated by the pump within the chosen
loading scheme reaches 480 kg/cm2, which is sufficient enough to cause failure of
specimens made of various materials with wall thickness of up to 1.0 mm. A char-
acteristic feature of the specimen design is a pronounced working part and smooth
transition to a gripping part, which minimizes the effect of stress concentrators [7].

16.3 Experimental Investigation

An experimental study of deformation processes of metal tubular specimens made of
12X18H10T steel under combined loading in tension–torsion and internal pressure
was carried out on the modified test complex Z100. Longitudinal and transverse
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deformations, twist angle are recorded directly on the specimen working part with a
laser extensometer base of 60 mm.

Test 1. The deformation of cylindrical shell under sequential tension–torsion
loading.

The shell has the following geometric dimensions: the working part of 100 mm
length, the outer diameter of 30 mm, the inner diameter of 28 mm, 1 mm wall
thickness and cross-sectional area of 364.24 mm2. One end of the shell is rigidly
fixed, while the second moves with a constant velocity of 3 mm/min until elongation
of the shell is reached�l= 28.4 mm, l11 = 30.9% (time 570 s, Fig. 16.2a). Then, the
shell is unloaded, and its free end twists at a constant angular velocity of 30/min until
the loss of stability occurs and an explicit form of wave formation on the specimen
appears (Fig. 16.2b). The values of axial force, torque, elongation and twist angle as
a function of time are shown in Fig. 16.2.

Test 2. Deformation of a cylindrical shell under sequential loading by internal
pressure and torsion.

The shell with the following geometric dimensions was used in the test: the
working part of 100 mm length, the outer diameter of 26.9 mm, the inner diameter
of 28 mm, 0.8 mm wall thickness and cross-sectional area of 289.38 mm2.

The shell is subjected to step loading with internal pressure of 100, 150, 200,
250 and 300 bar (point 1 of Fig. 16.3a), followed by unloading to 0 bar (point 2 of
Fig. 16.3a). Then, one end of the shell is rigidly fixed, the second is twisted with a
constant angular velocity until the specimen exhibits loss of stability under torsion
(Fig. 16.3b).

Values of internal pressure, torque, twist angle, changes in the outer diameter and
working length of the specimen as a function of time are shown in Fig. 16.3.

Test 3. Loss of stability of a cylindrical shell under proportional loading in
compression–torsion.

The shell has the following geometric dimensions: the working part of 100 mm
length, the outer diameter of 29.6 mm and the inner diameter of 28 mm, 0.8 mmwall
thickness and cross-sectional area of 289.38 mm2. One end of the shell is rigidly
fixed, the other moves and twists at a constant axial velocity of 1 mm/min and
angular velocity of 10°/min.

Figure 16.4 shows the values of axial force, elongation, torque and twist angle as
a function of time.

16.4 Conclusion

In order to conduct tests under complex stress conditions (internal pressure loading
in combination with other types of loading), the testing equipment was modified.
Equipment of the test complex with a system for loading of tubular specimens with
internal pressure ensures the conditions for achieving destructive stresses, caused
by both internal pressure and torsion with tension. The Zwick/Roell Z100 testing
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Fig. 16.2 Test 1
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Fig. 16.3 Test 2
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Fig. 16.3 (continued)

machine equipped with the system generating internal pressure in hollow speci-
mens makes it possible to expand significantly the types of tests on determining
deformation and strength characteristics of materials.

The behavior of metal tubular specimens under combined tension–torsion,
torsion–compression and internal torsion pressures is studied experimentally. The
tests are necessary for obtaining experimental data in order to study loss of stability
and deformation of elastic–plastic shells caused by large deformations under complex
stress conditions loaded along multi-link broken polygonal deformation trajectories,
as well as for assessing the role of deformation anisotropy.

The results can be used to verify mathematical models and program codes for the
numerical study of the processes of elastic–plastic deformation and loss of stability
of shells of revolution under complex loading.
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Fig. 16.4 Test 3
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Fig. 16.4 (continued)
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Chapter 17
Evaluating Fatigue Life of Structures
Under Thermocyclic Loading

Leonid A. Igumnov, Ivan A. Volkov, and Sergey Ye. Vlasov

Abstract The issue of evaluating strength and service life is discussed as applied to
structures, the performance properties ofwhich are characterized bymulti-parametric
non-stationary thermal–mechanical effects. The main degradation mechanisms of
structural materials (metals and their alloys) are considered. The main requirements
to mathematical models describing fatigue damage accumulation are formulated.
In the framework of mechanics of damaged media (MDM), a mathematical model
is developed that describes thermoplastic deformation and fatigue damage accu-
mulation under combined low-cycle and high-cycle fatigue. The model consists of
three interrelated parts: relations that define thermocyclic plastic behavior of the
material with account for its dependence on the failure process; evolutionary equa-
tions describing the kinetics of damage accumulation; and a strength criterion of
the damaged material. A version of the constitutive relations of thermoplasticity is
based on the concept of the yield surface and the gradientality principle of the plastic
strain rate vector to the yield surface at the loading point. These relations describe the
major effects of the cyclic plastic deformation of the material for arbitrary complex
loading trajectories. This version of kinetic equations of fatigue damage accumu-
lation is based on a scalar damage parameter and energy principles and considers
the main effects of nucleation, growth, and merging of microdefects under arbitrary
complex loadings. A generalized form of the evolutionary equation for the fatigue
damage accumulation under low-cycle and high-cycle fatigue is proposed. The crit-
ical damage value is used as the strength criterion of the damaged material. The
effect of the distillate droplet impingement frequency on thermocyclic fatigue life
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of the heated pipe is numerically analyzed on the basis of the developed version
of the constitutive relations of MDM. The numerical results of the fatigue damage
accumulation under thermal pulsation are in good agreement with experimental data.
It is shown that the proposed MDM model qualitatively, with the accuracy required
for practical calculations, describes the experimental results and can effectively eval-
uate thermocyclic fatigue damage accumulation in structural alloys under combined
multiaxial nonproportional thermal–mechanical loading.

Keywords Modeling · Stress–strain state · Plasticity · Thermal loading ·
Mechanics of damaged medium · Damage accumulation · Fatigue life · Failure ·
Service life

17.1 Introduction

The general trend in the development of structures and machines of modern mechan-
ical engineering is characterized by an increase in their performance parameters, by
a decrease in metal consumption due to design optimization and application of novel
high-strength materials as well as by increase in relative share of non-stationary
loading regimes. At the same time, the requirements to reliability and accident-free
life of both entire structures and their separate elements are becoming tougher. As a
result, the reliable evaluation of service life of newly designed objects and prediction
of the individual residual life of existing structures have become crucial tasks in
designing new structures and machines.

Sudden strength malfunctions of structural elements result from uncontrolled
degradation of initial strength properties of structural materials due to damage accu-
mulation under the effect of various physical fields. Due to locality of degradation
processes, service life of structural elements is determined by the service life of their
most hazardous zones with the highest rates of degradation processes.

A solution to this problem is possible only if the methodology for monitoring
the service life is implemented [1, 2]. This methodology aims at controlling the
individual worked out service life of each hazardous zone of the most loaded struc-
tural elements, as well as individual material damage of these zones according to
the known actual strain history based on mathematical modeling of degradation
processes using modern models and methods of mechanics of damaged medium and
fracture mechanics (FM) [3–8, and references therein].

The calculated values of material damage degree in accessible zones, estimated
by modeling, must be updated using periodic nondestructive testing of the material
behavior in accessible zones by modern physical methods during facility shutdowns
or maintenance [1, 7]. None of the attempts to quantitatively relate the damage
to a change of a measurable physical parameter (magnetic permeability, electrical
resistance, hardness, elasticity moduli, etc.) made it possible to obtain the results
which could be used in calculations.
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Therefore, another approach has been developed on the basis of a macroscopic
parameter characterizing thematerial damage degree at themacro-level. In general, it
should be a second or higher rank tensorΩi jkl as a function of stress–strain state (SSS)
history. However, due to the lack of necessary experimental data, a scalar parameter
ω is selected, in most cases, as a measure of damage degree. This parameter varies
from its initial state ω0 that corresponds to undamaged material to its limit value ω f ,
at which macrocrack nucleation of a certain size in a given volume of the material
occurs [7].

By now, a large number of constitutive relations describing the processes of
damage in a material have been developed. However, most of them are focused only
on certain loading regimes and are not related to specific equations of deformation
processes. Therefore, these equations cannot reflect damage accumulation as a func-
tion of SSS history, temperature, and strain rate. In fact, the history of viscoplastic
deformation (the form of the deformation trajectory, the nature of the temperature
change, the type of stress state, the history of its change, etc.) significantly affects
the rate of damage accumulation.

The deformation due to thermal–mechanical loading is determined by the physico-
mechanical and strength characteristics of structuralmaterials as a functionof temper-
ature, the presence of temperature deformation limitations, and the ratio of mechan-
ical and temperature strain rates. As frequencies and cycle phases of temperature
variations and mechanical strain tensor components as a rule do not coincide, non-
isothermal cyclic loading is generally irregular, nonproportional, and multiaxial and
is accompanied by rotation of the main areas of the stress–strain tensors [9, 10].

Fatigue life due to thermal–mechanical loading decreases because of additional
degradation mechanisms that are not observed under isothermal loading (a change
in the structure of the material, additional deformation aging, and increased envi-
ronmental influence). Under thermocyclic loading conditions, material durability is
significantly affected by the variation rate of load and temperature and by total dura-
tion of the loading cycle. Thus, under thermocyclic fatigue loading conditions, the
number of cycles to failure is no longer sufficient characteristic of the fatigue life
and time to failure is to be accounted for.

In the present work, in the framework of MDM, a mathematical model of MDM
is developed that describes fatigue damage accumulation in structural materials
(metals and their alloys) under multiaxial stressed states and arbitrarily complex
regimes of combined thermal–mechanical loading. This version of constitutive rela-
tions describes fatigue life of polycrystalline structural alloys due to material degra-
dation by the mechanism of low- and high-cycle fatigue (taking into account their
cross-effect). A developed version of the constitutive relations of MDM is used to
assess the fatigue life of structures under thermocyclic loading [11].
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17.2 The Model of Damaged Media for Evaluating Fatigue
Life of Structural Alloys Under Low- and High-Cycle
Fatigue

The model of damaged medium consists of three interrelated parts:

• the relations of thermoplastic material behavior with account for the failure
process;

• the evolutionary equations describing the kinetics of fatigue damage accumula-
tion;

• the strength criterion of the damaged material.

(a) The constitutive relations of plasticity

The constitutive relations of plasticity are based on the following basic assumptions
[9, 10]:

• The material of the medium is initially isotropic and free of damage (anisotropy
due to strain processes is only accounted for, while anisotropy of elastic properties
due to damage processes is not accounted for).

• The components of strain tensor ei j and strain rates ėi j include elastic eei j , ė
e
i j and

plastic parts epi j , ė
p
i j , i.e., reversible and irreversible components.

• The initial yield surface for various temperatures is described by a von Mises-
type surface. The evolution of the yield surface is described by the variation of its
radius Cp and the displacement of its center ρ

p
i j .• The surface of “microplastic” load having at the initial instant of time a common

center with the von Mises surface and a constant radius Cm is introduced in the
stress space.

• The body changes its volume elastically.
• Scalar parameter ω—damage degree

(
ωo ≤ ω ≤ ω f

)
is the only structural

parameter characterizing material damage degree at the macro-level.
• The effect of the accumulated damage degree on the deformation process of the

material is considered by introducing effective stresses.
• The processes characterized by small deformations are considered.

In the elastic region, the relation between spherical and deviatoric components of
stress and strain tensors and their rates is established by Hooke’s law:

σ = 3κ[e − α(T − T0)], σi j = 2Ge′e
i j ,

σ̇ = 3κ
(
ė − α̇T − αṪ

) + κ̇

κ
σ, σ̇ ′e

i j = 2Gė′e
i j + Ġ

G
σ ′
i j , (17.1)

where T is temperature, T0 is initial temperature, κ(T ) is the bulk modulus, G(T )

is the shear modulus, and α(T ) is the coefficient of linear thermal expansion of the
material.
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The von Mises yield surface is introduced to describe the effects of monotonic
and cyclic deformation [9, 10]:

Fp = Si j Si j − C2
p = 0, Si j = σ ′

i j − ρ
p
i j , (17.2)

To describe the material degradation under high-cycle fatigue, a surface of
“microplastic” loading is introduced in the stress space:

Fm = Si j Si j − C2
m = 0, Si j = σ ′

i j − ρi j ,Cm = √
2/3σ f = const, (17.3)

where σ f is fatigue limit of the material.
To describe complex cyclic deformation regimes in the stress space, a cyclic

“memory” surface is introduced. The equation of the “memory” surface is:

Fρ = ρ
p
i jρ

p
i j − ρ2

max = 0, (17.4)

where ρmax is maximal for the loading history value of modulus ρ
p
i j .

For the temperature range T where annealing effects are insignificant, isotropic
hardening (evolution Cp) is assumed to consist of three types: monotonic, cyclic,
and associated with a change in temperature T. For the yield surface radius, the
evolutionary equation has the form [9, 10]:

Ċ p = [
qx H

(
Fρ

) + a
(
Qs − Cp

)
Γ

(
Fρ

)]
χ̇p + q3Ṫ , (17.5)

Cp = C0
p +

t∫

0

Ċ pdt, χ̇ =
(
2

3
ė pi j ė

p
i j

)1/2

, χp =
t∫

0

χ̇pdt, χpm =
t∫

0

χ̇pH
(
Fρ

)
dt,

(17.6)

qx = q2AΨ1 + (1 − A)q1
AΨ1 + (1 − A)

, Qs = Q2AΨ2 + (1 − A)Q1

AΨ2 + (1 − A)
, 0 ≤ Ψ ≤ 1, i = 1,

(17.7)

A = 1 − cos2 θ, cos θ = nei j n
s
i j , n

e
i j = ė′

i j
(
ė′
i j ė

′
i j

)1/2 , nsi j = Si j
(
Si j Si j

)1/2 , (17.8)

H
(
Fρ

) =
{
1, Fρ = 0 ∧ ρi j ρ̇i j > 0
0, Fρ < 0 ∨ ρi j ρ̇i j ≤ 0

}
, Γ

(
Fρ

) = 1 − F
(
Fρ

)
, (17.9)

whereq1, q2, q3 aremodules of isotropic hardening corresponding to themonotonous
radial loading paths (q1), to a 90° kink of the deformation trajectory (q2), and to
temperature variationof the yield surface radius (q3);a is a constant defining stabiliza-
tion process rate of the hysteresis loop shape of cyclic deformation; Qs is stationary
value of the yield surface radius for the given ρmax and T ; χ are lengths of plastic
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strain trajectories of thematerial under cyclic andmonotonic loading;C0
p initial value

of the yield surface radius [9, 10].
The first member of Eq. (17.6) describes isotropic hardening as a result of mono-

tonic plastic deformation (H
(
Fρ

) = 1 and Γ
(
Fρ

) = 0), the second member is
responsible for cyclic hardening of the material (H

(
Fρ

) = 0 and Γ
(
Fρ

) = 1), and
the third one is responsible for the change of the yield surface radius with temper-
ature. In general, Eq. (17.6) describes the local anisotropy of plastic hardening as a
function of the parameter A, characterizing the deviation of the loading vector from
the normal to the yield surface at the loading point. Operators H

(
Fρ

)
and Γ

(
Fρ

)

make it possible to automatically separate the processes of monotonous and cyclic
deformation.

Hereinafter, for any value B, enclosed in angle brackets 〈〉, the following
conditions are held

〈B〉 =
{
B at B > 0
0 at B ≤ 0

We postulate that the evolution of an internal variable ρi j has the form:

ρ̇i j = ρ
p
i j + ρm

i j , ρi j =
t∫

0

ρ̇i jdt,, (17.10)

ρ
p
i j = f

(
χpm

)[
g1ė

p
i j − g2ρ

p
i j χ̇p

]
+ g3ρ

p
i j

〈
Ṫ

〉 + ρ̇∗
i j , , (17.11)

f
(
χpm

) = 1 + k1
(
1 − e−k2χpm

)
,

ρ̇∗
i j = g4ė

p
i j H

(
Fρ

) − g5ρ
∗
i j χ̇pΓ

(
Fρ

)〈cosβ〉, (17.12)

〈cosβ〉 = ρ̇
p
i jρ

∗
i j

(
ρ̇
p
i j ρ̇

p
i j

)1/2(
ρ∗
i jρ

∗
i j

)
1/2

, g3 = 1

g1

(
∂g1
∂T

− g1
g2

∂g2
∂T

)
, (17.13)

ρ̇m
i j = g6ė

m
i j − g7ρ

m
i j χ̇m, χ̇m =

(
2

3
ėmi j ė

m
i j

)1/2

, χm =
t∫

0

χ̇mdt, (17.14)

where g1, g2, g3, g4, g5, g6, g7, k1 and k2 are experimentally determined material
parameters.

In Eq. (17.10), the first term describes evolution of ρi j , associated with the
initiation of macroscopic plastic deformations epi j , and the second one describes
microplastic deformations emi j .

In Eq. (17.11), the first and second terms of the equation describe the anisotropic
part of strain hardening; the third term is responsible for the variation of ρ

p
i j due to

change in temperature T, and the fourth one for anisotropic hardening associated
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with unilateral accumulation of plastic deformation. Weight factor f
(
χpm

)
allows

describing evolution of ρ
p
i j under block cyclic deformation.

For both non-symmetric hard and soft cyclic loadings, due to terms
ρ̇∗
i j , Eq. (17.11) describes setting and ratcheting of the cyclic plastic hysteresis loop.

At g3 = g4 = g5 = k1 = 0 using (17.11), we obtain a special case of equation—the
Armstrong–Fredericks–Kadashevich equation.

ρ̇
p
i j = g1ė

p
i j − g2ρ

p
i j χ̇p, , (17.15)

To describe the behavior of the “memory” surface, it is necessary to formulate an
evolution equation for ρmax:

ρ̇
p
max =

(
ρ
p
i j ρ̇

p
i j

)
H

(
Fρ

)

(
ρ
p
mnρ

p
mn

)1/2 − g2ρ
p
maxχ̇p − g3ρ

p
max

〈
Ṫ

〉
(17.16)

Gradient laws govern the tensor components of macroplastic epi j and microplastic
emi j strain rates:

ė pi j = λpSi j , (17.17)

ėmi j = λmSi j , (17.18)

At the stage of the development of defects scattered over the volume, the effect
of damage degree on the material physico-mechanical properties is observed. This
effect can be taken into account by introducing effective stresses [7]:

σ̃ ′
i j = F1(ω)σ ′

i j = G

G̃
σ ′
i j = σ ′

i j

(1 − ω)
[
1 − (6K+12G)

(9K+8G)
ω

] , (17.19)

σ̃ = F2(ω)σ = κ

κ̃
σ = σ

4G(1 − ω)/(4G + 3κω)
, (17.20)

where G̃, κ̃ are effective moduli of elasticity defined by McKenzie formulas [7].
Effective variable ρ̃i j is determined in a similar way:

ρ̃i j = F1(ω)ρi j , (17.21)

(b) Evolutionary equation of fatigue damage accumulation

In order to formulate damage evolution equations, we use an approach based on
relationship between ω˙ velocities and some strain-dependent mechanical parame-
ters, the critical value of which defines complete failure of the elementary bulk of a
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material. An energy approach is considered to be the most effective for solving this
problem [1, 7, 8, 12–16].

In [17], V. V. Novozhilov showed that at low-cycle fatigue, the energy, spent on the
defect formation under unsteady elastoplastic deformation, correlates fairlywell with
the work of microstress tensor ρ

p
i j on plastic strains epi j . In [16], V. T. Troshchenko

suggested a failure criterion for multi-cycle fatigue processes, which establishes a
relationship between the total scattered elastic strain energy and the number of cycles
to failure and proves itself to be good for a wide range of structural steels.

In the present work, to describe the process of fatigue life of structural materials
(metals and their alloys) due to degradation under combined low- and high-cycle
fatigue loading, we therefore postulate the following energy relation

Ẇ = ρ
p
i j ė

p
i j + ρm

i j ė
m
i j ,W =

∫ (
ρ
p
i j ė

p
i j + ρm

i j ė
m
i j

)
, (17.22)

Using (17.22) as the damage energy relation enables us to obtain the general-
ized equation for fatigue damage accumulation due to material degradation by the
mechanisms of low- and high-cycle fatigue (with account for their interaction). In
addition, there is no need in simulating the process of damage summation by the
mechanisms of low- and high-cycle fatigue. Thus, the construction of a generalized
model of fatigue damage accumulation is becoming feasible.

Multiaxial stress state significantly affects the fatigue life of a material, and this
effect is manifested in two ways: the effect of the multiaxiality itself under propor-
tional loading (when all the strain tensor components change proportionally with
respect to one parameter) and the effect of rotation of the main stress tensor areas
(when the stress components change out of phase). Experimental and theoretical
data on the effect of loading multiaxiality show a significant effect of “bulk” stress
state β = σ

/
σu on fatigue life of the material, characterized by the intensity of the

stress tensor σu and by its spherical (hydrostatic) component σ [4]. Summarizing the
data available in the literature, it can be argued that the rate of damage accumulation
depends on the “bulk” stress state, characterized by some function f1(β): ω̇ increases
at β > 0 and decreases at β < 0. At β = 0 (pure shear), the normalized function
f1(β) should be equal to 1.
The effect of nonproportional loading, under which the components of the stress–

strain tensors change out of phase (the main tensor areas rotate), and the stress and
plastic strain tensors are not coaxial, is as follows [18–22]:

• The shape of the strain path is a parameter that significantly affects the fatigue
life.

• Structural materials exhibit complex cyclic behavior under multiaxial nonpropor-
tional loading conditions—additional cyclic hardening or softening.

• Under nonproportional cyclic loading, the criterion of equivalent strains or strain
intensity is other than equivalence criterion and may lead to nonconservative
evaluations.
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Summarizing the above results, the general structure of an evolutionary equation
of the damage accumulation in elementary volume of the material with account for
combined low- and high-cycle fatigue can have the following form:

ω̇ = f1(β) f2(ω) f3(W ) f4
(
Ẇ

)
, (17.23)

where functions f j , j = 1, . . . , 4 account for: bulk stress state ( f1(β)), level of
accumulated damage ( f2(ω)), accumulated relative damage energy, spent on defect
nucleation (( f3(W ))), and the change rate of damage energy

(
f4

(
Ẇ

))
.

In (17.23):

f1(β) = exp(β), f2(ω) =

⎧
⎪⎨

⎪⎩

0, W ≤ Wa

ω1/3(1 − ω)2/3, W > Wa ∧ ω ≤ 1/3
3√16
9 ω−1/3(1 − ω)−2/3, W > Wa ∧ ω > 1/3

,

(17.24)

f3(W ) = W − Wa

W f − Wa
, f4

(
Ẇ

) = Ẇ

W f − Wa
, (17.25)

whereWa is the damage energy at the end of the nucleation stage of scattered defects
andW f is the energy corresponding to a macroscopic crack nucleation. The duration
of the microdefect nucleation phase will be related to the value of parameter Wa .

When the size of microdefects becomes comparable with the average distance
between them, the process of merging begins (breakage of the remaining continuous
spaces between the defects). In the present paper, a detailed model of merging of
cavities was not constructed, but to account for this process, a kinetic equation (due
to f2(ω)) was formulated so that, when the damage degree reaches the value of
ω = 1

/
3, the dependence ω̇ = f2(ω) accounts for the avalanche-like increase of

the damage degree.

(c) Strength criterion of the damaged material

By integrating evolutionary equation of damage accumulation (17.23) along with
constitutive relations of thermal viscoplasticity (17.1)–(17.21) for the known loading
history, one can obtain conditions for macrocrack nucleation (failure criterion).

For the criterion of the end of the growth phase of scattered microdefects, we
assume the condition when the damage degree ω reaches its critical value:

ω = ω f ≤ 1, (17.26)



222 L. A. Igumnov et al.

17.3 Investigation Results

Results presented in [21] for modeling thermal fatigue on 12X18H10T steel pipe
surface with a temperature of T = 310 °C and falling distillate droplets of T =
20 °C with a frequency of 1, 2, and 3 Hz are compared with the experimental results
obtained in OJSC “NPO CKTI” [11]. In the experiment, the pipe diameter in the
zone of droplet impingement was 63mm andwall thickness of 3 mm (Fig. 17.1). The
parameters of fatigue crack nucleation and growth were controlled using ultrasonic
and eddy current methods.

After N = 9.3 × 106 thermal cycles, thin sections were fabricated and metallo-
graphic studies were carried out, which revealed 85–1873 µm cracks coming from
the surface of the tubular specimen.According to the ultrasonic signals, at a frequency
of 1 Hz, cracks get fixed after N ≈ 1 × 106 cycles and in accordance with the eddy
current method, after N ≈ 2 × 106 cycles.

The problem of evaluating the fatigue life of a cylindrical shell under thermocyclic
loading was numerically solved in two stages:

• solution of non-stationary problem based on the heat equation [23];
• evaluation of the fatigue life of a pipe subjected to block thermocyclic loading

under inhomogeneous stress conditions.

At the first stage, the pipe was heated up to T = 310 °C with internal pressure
raised up to ~10 MPa. Thereafter, the droplet impingement process at a temperature
of T = 20 °C and frequency of 1, 2, and 3 Hz was simulated on a pipe surface, heated
up to T = 310 °C. Using the ANSYS software, unsteady thermal state of the cooling

Fig. 17.1 Finite element model of fragment of the pipe around the zone of droplet impingement
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Fig. 17.2 Results of numerical analysis of change in the temperature field at time t = 0.25

product was investigated with account for the thermocycle parameters. A numerical
analysis of the temperature field of an object on a perforated surface showed that
the temperature field is not uniform over the pipe thickness (Fig. 17.2 shows the
temperature field at time t = 0.25 s).

At the second stage, the problem of evaluating the thermocyclic fatigue life of the
pipe was numerically solved using the calculated temperature fields of the object and
constitutive relations of MDM. The physico-mechanical characteristics and param-
eters of MDM model for 12X18H10T steel at temperatures of 20, 150, and 350 °C
are shown in Tables 17.1, 17.2, and 17.3.

Figures 17.3 and 17.4 show the intensity distribution of plastic strains, Figs. 17.5
and 17.6 the distribution of stress intensity, and Figs. 17.7 and 17.8 the damage
degree of the perforated fragment of the pipe surface for the droplet impingement
frequency of 1 and 3 Hz, respectively.

The analysis of the calculation of SSS kinetics and damage degree showed that
the outer surface of the pipe central part is the most stressed area. The temperature T
and components of the total strain tensor ei j were determined for the central part of
the droplet impingement based on the results of three-dimensional calculations for
several initial cycles. The history of temperature T and components of total strain
tensor ei j for the droplet impingement frequency of 1 and 3 Hz is shown in Figs. 17.9
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Table 17.1 Physico-
mechanical characteristics
and parameters of MDM
model

Characteristics Temperature T

20 °C 150 °C 350°C

K, MPa 162,500 154,500 142,500

G, MPa 75,000 71,300 65,800

α, 1/degree 0.0000166 0.0000171 0.0000175

Co
p , MPa 191 168 152

Cm , MPa 50 40 36,5

g1, MPa 20,850 15,670 13,900

g2 296 278 270

g4, MPa 0 0 0

g5 0 0 0

g6, MPa 400,000 300,750 266,150

g7 8000 7511 7292

k1 0 0 0

a 5 5 5

Wa , mj
/
m3 0 0 0

W f , mj
/
m3 6650 6110 5786

Table 17.2 Monotonous isotropic hardening modulus q1, MPa (q2 = 0)

T = 20 °C

χp 0 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.4

q1 −4219 −952 1495 1369 1454 1272 1235 824 0

T = 150 °C

χp 0 0.003 0.006 0.009 0.012 0.015 0.023 0.3 0.4

q1 2500 2150 1450 1150 1050 950 300 0 0

T = 350 °C

χp 0 0.003 0.004 0.006 0.007 0.008 0.010 0.3 0.4

q1 4400 4000 3200 2500 2100 1500 1000 0 0

Table 17.3 Cyclic isotropic hardening modulus Q1(ρmax), MPa (Q2 = 0)

T = 20 °C

ρmax 0 74 105 113 147

QS 195 217 230 273 300

T = 150 °C

ρmax 0 50 81 96 150

QS 168 195 204 227 230

T = 350 °C

ρmax 0 32 55 66 100

QS 152 210 221 248 250



17 Evaluating Fatigue Life of Structures Under Thermocyclic Loading 225

Fig. 17.3 Intensity distribution of plastic strains at the moment of stabilization of the plastic
hysteresis loop for the droplet impingement frequency of 1 Hz

and 17.10, respectively.
The obtained histories of temperature T and the components of the total strain

tensor ei j are used to calculate the process of thermoplastic deformation and fatigue
damage accumulation prior to fatigue macrocrack nucleation in the spot zone of the
material (Fig. 17.1).

Figures 17.11, 17.12, 17.13, and 17.14 depict the cyclic hysteresis loops σ11 ∼ e11
(Figs. 17.11 and 17.12) and σ22 ∼ e22 (Figs. 17.13 and 17.14) for the most loaded
zones at the droplet impingement frequency of 1 and 3 Hz, respectively.

Figures 17.15 and 17.16 depict loading trajectories at the droplet impingement
frequency of 1 and 3 Hz for the central point, respectively. The type of graphs shows
the presence of rotation of the main areas of stress–strain tensors (changes in the
components of the stress–strain tensors are disproportional) and misalignment of
stress tensors, microstress tensors, and total and plastic strain tensors.

The numerical calculations showed a sharp rise in the stress tensor components
σ11, σ22, σ33 at a cold droplet of T = 20 °C falling on a heated pipe surface (T =
310 °C), and the stress state is being close to triaxial tension. Then, stresses σ11,
σ22, σ33 decrease to negative values as a result of heating of droplet impingement
zone due to the heated pipe material around the zone. This cyclic process occupies
approximately a hundredth of the total duration of the droplet impingement cycle.
The stress–strain state remains practically unchanged until the next droplet falls.
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Fig. 17.4 Intensity distribution of plastic strains at the moment of stabilization of the plastic
hysteresis loop for the droplet impingement frequency of 3 Hz

The analysis of the deformation process shows its unsteady thermoplastic char-
acter at a frequency of 1, 2, and 3 Hz. A sharp “surge” (mainly hydrostatic tension) of
the normal components of the stress tensor is observed when a cold droplet falls on
a hot surface. With heating, the stress spots tend to zero and thereafter take negative
values due to the initial plastic tension of the spot material at droplet impingement.

Integration of evolutionary equations of fatigue damage accumulation (17.23)–
(17.25) at the most loaded point allows us to study the effect of the droplet impinge-
ment frequency on the thermocyclic fatigue life of the material of the heated pipe.
Numerical resultswere comparedwith experimental data [11]. The calculation results
and their comparison with the available experimental data are shown in Fig. 17.17
and Table 17.4. Figure 17.17 shows the value of damage degree ω as a function
of the number of loading cycles for the droplet impingement frequency of 1, 2, and
3Hz. The calculated number of cycles to crack nucleation in the droplet impingement
zone (seeTable 17.4) correlates qualitatively and quantitativelywith the experimental
results.

Ultrasonic and eddy current methods for nondestructive detection of growing
cracks in the droplet impingement zone in terms of their reflectivity area record the
onset of cracking and their confident fixation.
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Fig. 17.5 Distribution of stress intensity at the moment of stabilization of the plastic hysteresis
loop for the droplet impingement frequency of 1 Hz

17.4 Conclusion

The reliability of the damaged mediummodel [7, 8] has been assessed by comparing
the computational results with the experimental data available in the literature
on thermal fatigue life of heated pipe surface in the zones of distillate droplet
impingement.

The reliability of the developed constitutive relations of MDMmodel for thermal
fatigue and the possibility of their effective use for assessing the thermocyclic fatigue
of materials and structures are proven by using the method of numerical modeling
and comparing the obtained results with experimental data.
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Fig. 17.6 Distribution of stress intensity at the moment of stabilization of the plastic hysteresis
loop for the droplet impingement frequency of 3 Hz

Fig. 17.7 Distribution of the damage degree at the moment of macroscopic crack nucleation for
the droplet impingement frequency of 1 Hz
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Fig. 17.8 Distribution of the damage degree at the moment of macroscopic crack nucleation for
the droplet impingement frequency of 3 Hz

Fig. 17.9 History of temperature and components of the strain tensor at the spot zone of the pipe
central part for the droplet impingement frequency of 1 Hz
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Fig. 17.10 History of temperature and components of the strain tensor at the spot zone of the pipe
central part for the droplet impingement frequency of 3 Hz

Fig. 17.11 Cyclic hysteresis loops σ11 ∼ e11 at the spot zone of the pipe central part for the droplet
impingement frequency of 1 Hz
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Fig. 17.12 Cyclic hysteresis loops σ11 ∼ e11 at the spot zone of the pipe central part for the droplet
impingement frequency of 3 Hz

Fig. 17.13 Cyclic hysteresis loops σ22 ∼ e22 at the spot zone of the pipe central part for the droplet
impingement frequency of 1 Hz
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Fig. 17.14 Cyclic hysteresis loops σ22 ∼ e22 at the spot zone of the pipe central part for the droplet
impingement frequency of 3 Hz

Fig. 17.15 Loading trajectory at the spot zone of the pipe central part for the droplet impingement
frequency of 1 Hz
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Fig. 17.16 Loading trajectory at the spot zone of the pipe central part for the droplet impingement
frequency of 3 Hz

Fig. 17.17 Value of damage degree as a function of the number of loading cycles for the droplet
impingement frequency of 1, 2, and 3 Hz



234 L. A. Igumnov et al.

Table 17.4 Number of
cycles to macroscopic crack
nucleation

Distillate drop
frequency, Hz

Number of cycles to macrocrack nucleation

Numerical calculations Experiment

1 1,152,330 1,179,700

2 2,207,560 2,359,400

3 10,848,633 10,267,900
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Chapter 18
Large Deflections and Stability
of Low-Angle Arches and Panels
During Creep Flow

Rashit A. Kayumov and Farid R. Shakirzyanov

Abstract The problem of deformation and buckling of a low arch or a panel is
considered taking into account creep flow and finiteness of displacements. A tech-
nique is proposed that makes it possible to simplify the solution of the problem by
using the Lagrangian approach as applied to deformation of creep flow. It is believed
that buckling occurs instantly and resiliently. To find the critical load at each time
step, an analogy is used between the stress states of a straight rod and an arch. An
example of calculating the parameters of the stress-strain state and critical time for
a circular arch using the theory of flow is given. Based on numerical experiments,
some questions of convergence are investigated both from the time step and from the
degree of discretization of an arc.

Keywords Low arch · Creep flow · Stability · Large deflections.

18.1 Introduction

A lot of works, in particular, [1–21] have been devoted to the tasks of bending
and stability of thin-walled elements of constructions during creep flow. One of the
statements of the stability tasks is to study the process (deformation approach), in
which, under a given fixed load, the body changes its shape so that at some point
in time tcr a new shape becomes such that the body loses stability with a pop, i.e.
resiliently. There is an instant jump from one equilibrium state to another. In this
formulation, the tasks are considered in [4, 17]. As noted in [6], the application of
this method is associated with significant difficulties. Therefore, a number of other
methods have been proposed. For example, a dynamic approach was proposed in
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[19], a quasistatic method—in [12]. In addition to such statements of creep flow
stability tasks, other statements are also known, for example, those given in [3].
In particular, in his work [3] Gerard considers such a state to be critical in which
the total deformation is equal to the Euler critical deformation. Although there is
no rigorous justification for this approach, it gives, as noted in [28], a satisfactory
agreement with the experiment. According to the concept, proposed by Shenley [25],
the critical stress is calculated by the Euler formula, in which an elastic modulus is
replaced by a tangent modulus, which is determined for the given critical time by an
isochronous creep flow curve in the axes σ − ε.

To simplify the analysis of the constructions’ behavior, taking into account creep
flow, the elastic part of deformation is often neglected [6]. In particular, in the work
[5] this is done when studying the process of bulging of a compressed rod with
initial curvature. We note that in the theory of plasticity the solution of the tasks
of determining the deformed state of a body, taking into account large deflections
and even large deformations in a rigidly plastic formulation, can be obtained quite
simply using the Lagrange approach (see, for example, [7]), according to which
the problem of the limit equilibrium theory is solved at each step of the process
parameter (according to the rigid-plastic scheme). We find the ultimate load, the
speeds of displacements of each point, then based on them we determine small
additional displacements, and after that we find a new body configuration. The same
approach can also be applied in the creep flow tasks [6], since in the both cases the
work of inelastic deformations completely dissipates. However, in the creep flow
tasks to find the speeds of creep flow deformations we have to know a stress field.

18.2 Calculation Procedure

In the tasks of stability loss in an elastic way it is no longer possible to solve the
tasks taking into account an elastic part of the deformations, and both elastic and
inelastic deformations must be determined at each moment of the time. If the task is
statically definable, then this is not difficult. In this paper, a combined approach is
used to study the process of deformation and buckling of the constructions with large
deflections in the presence of creep flow. Namely, at each time interval, the previous
state is considered to be the initial one due to the fact that all the energy of creep flow
deformation dissipates. The stress state is determined for a body of a new configura-
tion according to the linear theory of elastic deformations We will demonstrate this
approach by the example of a gentle arch (panel). Let us note that with cylindrical
bending of the panel, the task becomes one-dimensional and coincides within the
accuracy of notations with the task about the arch. And the difference is that instead
of bending stiffness EJ cylindrical stiffness D = Eh3/12(1 − ν2) should be used,
instead of the tensile stiffness EA should be used K = Eh/(1 − ν2), by concentrated
force it is necessary to mean a load q distributed according to the line. Further on we
will use the notations EJ and EA.
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Fig. 18.1 Arch under the action of a centrally applied force

In addition, for simplicity we will consider an arch (panel) formed by two bearing
layers and a medium soft layer, using the Kirchhoff-Love hypothesis. It is assumed
that the entire load is perceived only by the outer layers. A similar scheme was used
in the work [5] to analyze the stability of a compressed rod with initial irregularities
under creep flow.

Let us consider a pivotally supported arch (panel) under the action of a centrally
applied force P (Fig. 18.1).

The equilibrium equations of a cut off part of the panel have the following form:

σ1haH

2
− σ2haH

2
= Nf (x) − P

2
x, (18.1)

σ1ha + σ2ha = −N . (18.2)

HereH is a distance between the gravitational centers of the cross-sections of the
outer layers.

In view of the flatness, we can assume that N = const. Then from (18.1), (18.2)
we can find σ1, σ2, expressing them in terms of N :

σ1 = (2N · f (x) − P · x − NH )
1

2haH
, (18.3)

σ2 = (−2N · f (x) + P · x − NH )
1

2haH
. (18.4)

At the first step, we will solve an elastic task in the linear formulation, assuming
that the displacements are small (in the case of considerable deflections the solution
given in [10] can be used; for the distributed load see the work [11]).

Let us find a bending moment

M = −σ1ahH

2
+ σ2ahH

2
. (18.5)
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In the case of an elastic task we have a relation between the deflection w and the
bending moment in the following form:

M = EJ
∂2w

∂x2
. (18.6)

Therefore

w = 1

EJ

x∫

0

⎛
⎝

x∫

0

M dx

⎞
⎠ dx + C1x + C2. (18.7)

The constants C1 and C2 are determined from the conditions of fastening and
symmetry:

w(0) = 0,
dw(b)

dx
= 0. (18.8)

Hence,

C2 = 0, C1 = − 1

EJ

b∫

0

M dx. (18.9)

Knowing σ1, σ2 longitudinal deformation at the central point of a cross-section
of the arch can be found:

ε = σ1 + σ2

E
= −N

EA
. (18.10)

On the other part

ε = du

dx
− w

r
. (18.11)

Here r is a radius of curvature of the arch. Therefore

u =
x∫

0

w

r
dx +

x∫

0

εdx =
x∫

0

w

r
dx − N

EA
x. (18.12)

To determine N we use the following symmetry condition

u(b) = 0. (18.13)

Substituting here (18.12) we obtain the expression for N :

N = EA

b

b∫

0

w

r
dx. (18.14)
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Thus, for the case of small displacements, the solution of the elastic task is known,
which means that the stress field σ1, σ2 is known too. In the case of large displace-
ments, as noted above, it is also possible to obtain an analytical solution, although
more cumbersome (see in [10]).

Next, we move on to solving the task of finding the field of the speeds of creep
flow deformations. Let us consider the case of the theory of flow, namely the simplest
version, in the following form:

ξ̇1 = Bσ1|σ1|m, ξ̇2 = Bσ2|σ2|m. (18.15)

Here ξ̇1, ξ̇2 are the speeds of deformations at the central points of the cross-sections
of the outer layers.

In the future, wewill neglect an elastic part of the deformations. Then it is possible
to connect ξ̇1, ξ̇2 with an additional deflection wc, caused by a creep flow, by the
following relation

ξ̇1 = −d2ẇc

dx2
H

2
+ ξ̇ , (18.16)

ξ̇2 = d2ẇc

dx2
H

2
+ ξ̇ , (18.17)

where ξ̇ is a speed of deformation at the central point of the cross-section. From
(18.16), (18.17) we find:

d2ẇc

dx2
= ξ̇2 − ξ̇1

H
, ξ̇ = ξ̇1 + ξ̇2. (18.18)

Therefore, we can express ẇc and ξ̇ in terms of stress. We get from (18.15):

d2ẇc

dx2
= B(σ2|σ2|m − σ1|σ1|m)/H . (18.19)

Then

ẇc = B

H

x∫

0

⎛
⎝

x∫

0

(σ2|σ2|m − σ1|σ1|m)dx

⎞
⎠ dx + C3x, (18.20)

ξ1 = B(σ1|σ1|m + σ2|σ2|m)/2. (18.21)

The constant C3 again found from the symmetry condition:

∂ẇc(b)

∂x
= 0.
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Then

C3 = − B

H

b∫

0

(σ2|σ2|m − σ1|σ1|m)dx.

Let us express ε̇c in terms of u̇cand ẇc

ε̇c = du̇c

dx
− ẇc

r
, (18.22)

u̇c =
x∫

0

ξ̇dx +
x∫

0

ẇc

r
dx + D. (18.23)

The constant of integration D is found from the symmetry condition, too:

u̇c(b) = 0. (18.24)

Since all the energy, spent on deformation of the creep flow, dissipates, and elastic
deformations are much smaller than inelastic, then we can assume that in a new
configuration of the body there are no residual stresses caused by deformations of
the creep flow. Then a new configuration can be easily found by assuming

f new(x) = f (x) + ẇc(x)�t, (18.25)

χnew = x + u̇c(x)�t. (18.26)

After this, it is necessary to approximate the obtained curve according to some
nodal points.

Suppose that before the start of the process there were K nodes on the curve
f = f (x), whose coordinates are denoted by xk , fk . Then the new coordinates of the
nodes will receive the values determined by the relations (18.25), (18.26):

f newk = fk + ẇc(xk)�t, (18.27)

xnewk = xk + u̇c(xk)�t. (18.28)

From them the new functions f new(x), rnew(x) can be found by approximation
over a certain system of functions ϕk(x)

f new(x) =
K∑

k=1

fkϕk(x), (18.29)
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rnew(x) ∼= d2f new

dx2
. (18.30)

Let us immediately load the arch with the strength P and find elastic deformations
and displacements, stresses σ1, σ2 and force N .

18.3 Stability Assessment

With some new configuration, at some point in time tcr the arch can lose stability by
clapping. To find this time, we apply the following algorithm. At each time step after
determining the function f new(x) the critical strength Pcr can be found, for example,
according to the simplified method [23]. At the moment of stability loss, the arch
loses stability regarding the form depicted in Fig. 18.2. The critical force Ncr can be
calculated approximately by the Euler formula:

Ncr = π2EJ

(μl)2
= π2EJ

b2
. (18.31)

In the center of the arch at the point of inflexion the bending moment is equal to
zero. Then the equilibrium equation of the left side of the arch will take the following
form:

(Pcr/2)b − Ncrf
new(b) = 0. (18.32)

From relation (18.32) we obtain the critical load

Pcr = 2π2EJ

b3
f new(b). (18.33)

If at the given moment in time t we get Pcr < P, then it means that there has been
a loss of stability, and this time can be taken as critical tcr.

An arch can lose not only stability, but also strength, since the stresses σ1, σ2, as
a rule, increase due to the flattening of the arch. Therefore, it is necessary to check
not only its stability, but also the strength of the bearing layers. In our case, this is
done quite simply by checking the conditions

Fig. 18.2 At the moment of
stability loss



244 R. A. Kayumov and F. R. Shakirzyanov

|σ1| ≤ σcmp, |σ2| ≤ σcmp, σ2 ≤ σstr.

where σstr, σcmp are the strength limits of the material of the layers regarding stretch-
ing and compression. Besides, if there are restrictions on deflections, the operating
time of the panel can be limited by the condition

w(b) ≤ w0,

where w0 is an allowable deflection of the panel.

18.4 Calculation Example

Examples of numerical experiments conducted for various statements of the problems
of creep and loss of stability of panels, rods, arches and shells can be found in [22–29].

Let us present the results of numerical experiments for a gentle circular arch, for
which the following geometric parameters were used:

a/h = 10, H/h = 10, b/h = 100, f /h = 25.

Figure18.3 shows the deformed states of a gentle circular arch at various points
in time. Figure18.4 shows the values of the dimensionless critical load P̃cr = Pcr ·
104/(Eah) for the deformed state depending on the time. From a comparison with
the current dimensionless load P̃textcr = Pcr · 104/(Eah) = 30 the critical time tcr can
be found, upon reaching which there is a stability loss in an elastic way. Figure18.5
shows the maximum compressive stress σ̃1 = σ1 · 105/(Ea2h2). In all these figures,
some of the curves (green) represent solutions in the case when a fourth-degree
polynomial is used to approximate the curve y = f (x), and the others—for the case
of use of a sixth-degree polynomial.We can see that the difference in time between the
achievement of any values regarding voltage and critical loads is small (about 3%).
The pictures of the arch deformation at different points in time are also quite close.
Figure18.6 shows the values of the parameters of the stress-strain state (referred to
their values at the maximum number of time steps), depending on the number of time
steps. We can also see that a degree of convergence is quite good. If we consider that
the solution is approximate, then we can conclude that it is enough to use a not very
small time step.

18.5 Conclusion

To solve creep flow tasks at large displacements a simplified Lagrange approach
was used, according to which the geometry is recalculated only on the basis of
deformations of creep flow. It is also assumed that the elastic deformations and
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Fig. 18.3 Forms of a gentle
initially circular arch at
various points in time. The
upper line is an original
form, the green lines—in the
case of approximating the
curve y = f (x) a
fourth-degree polynomial,
red lines—in the case of
using a sixth-degree
polynomial

Fig. 18.4 Values of
dimensionless critical load
P̃cr = Pcr × 104/(Eah) for a
deformed arch depending on
the time (lower green line is
a value of the constant acting
dimensionless load
P̃ = P × 104/(Eah) = 30

Fig. 18.5 Values of
maximum compressive
dimensionless stress
σ̃1 = σ1 × 105/(Ea2h2)
depending on the time
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σ
σ

Fig. 18.6 Values of parameters of the stress-strain state (referred to their values at the maxi-
mum number of time steps) depending on the number of time steps (the curves from top to bot-
tom: relative critical time t̄cr = tcr/tcr(n=350), the lower one is a relative deflection in the center
w̄creep = wcreep/wcreep(n=350), caused by a creep flow, the third one from above is a relative max-
imum compressive stress σ̄1 = σ1/σ1(n=350), the blue one is a relative maximum stretching stress
σ̄2 = σ2/σ2(n=350), the lowest is a relative elastic deflection in the center w̄elast = welast/welast(n=350)

displacements, caused by them, are small. This allows us to solve a linearly elastic
task for a new geometry at every step. Then, based on the stresses, we have found,
the speeds of creep flow deformations are calculated, with the help of which some
small displacements caused by a creep flow of the material are determined over a
short period of time. The proposed approach is especially convenient when using
the finite element method. The analysis of the numerical experiments shows that the
method used allows us to obtain not only a stress-strain state of the body, but also to
evaluate the time after which a loss of its strength occurs. To assess stability of the
body, it is necessary to apply some standard methods for determining a critical load
for the elastic body, but in a new configuration.

The proposed approach is demonstrated on the task of bending and buckling
of a flat three-layer arch, in which only the outer layers are bearing. A study of the
calculation results at various values of the time step shows, that themethod converges
quickly and allows a satisfactory description of the structure behavior taking into
account a creep flow even when using a large step. However, when approaching a
critical state, it is better to reduce the time step. This can be done in proportion to
how the elastic maximum displacements increase compared to the initial ones. It is
expected that small quantities (in this work—tension stresses and elastic deflection)
are more sensitive to the time step, but they are of little significance when calculating
the strength and stiffness of the body under consideration.

In addition, the analysis of the results of numerical experiments has shown that
an increase in the accuracy of approximation of the deformed body configuration
leads to an increase in the degree of convergence of the SSS parameters of the body
depending on the number of time steps.
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Chapter 19
Elliptic Boundary Layer in Shells
of Revolution Under Normal Edge
Shock Loading

Irina V. Kirillova and Leonid Yu. Kossovich

Abstract The present paper is aimed to construction the asymptotic theory of the
elliptic boundary layer in shells of revolution under normal edge shock loading.
Asymptotic equations of this boundary layer are derived in the small vicinity of the
surface Rayleigh wave front. First of all the problem for normal edge shock loading
is reduced to the problem for surface shock loading by constructing the particular
solution, satisfying only the boundary conditions on the shell edge. Asymptotic solu-
tion of the governing equations for addition problem is obtained by using the Lourye
symbolic approach and the front asymptotic near the surface Rayleigh wave front.
The symbolic solution allows us to derive governing equations of the boundary layer.
The behaviour of this boundary layer along the thickness is defined by elliptic equa-
tions and the boundary conditions on the faces are defined by hyperbolic equations,
characterizedwavemotion on these faces. Considered component together with early
constructed ones allows describe solution for transient waves in all parts of the phase
plane.

Keywords Shell of revolution · Asymptotic theory · Shock loading · Rayleigh
wave · Lourye symbolic approach · Boundary layer

19.1 Introduction

Asymptotic theory of non-stationary wave propagation in thin elastic shells of rev-
olution at edge shock loading is described in [10, 18]. This theory is used the non-
stationary separation scheme into components with different variability and dynam-
icity indices. Therewas considered two types of edge shock loadingwhich, according
to [23], refer to the cases of tangential longitudinal and bending longitudinal loading.

Irina V. Kirillova (B) · Leonid Yu. Kossovich
Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russian Federation
e-mail: president@info.sgu.ru

Leonid Yu. Kossovich
e-mail: nano-bio@info.sgu.ru

© Springer Nature Switzerland AG 2021
H. Altenbach et al. (eds.), Multiscale Solid Mechanics,
Advanced Structured Materials 141,
https://doi.org/10.1007/978-3-030-54928-2_19

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54928-2_19&domain=pdf
mailto:president@info.sgu.ru
mailto:nano-bio@info.sgu.ru
https://doi.org/10.1007/978-3-030-54928-2_19


250 I. Kirillova and L. Yu. Kossovich

Here, the non-stationarywave solutions are generated bymeans of themembrane and
bending components (low-frequency approximations, corresponding to the compo-
nents of a solution on the base of the Kirchhoff-Love shell theory), the Saint-Venant
quasi-static boundary layer, quasi-plane and quasi-antiplane high-frequency, short
wave components and two types of boundary layers: the boundary layer of hyper-
bolic type in the vicinity of dilatational and shear wave fronts and the boundary layer
of parabolic type in the vicinity of the quasi-front, which is corresponded to the front
of membrane waves on the base of Kirchhoff-Love theory. This research completely
defines not only asymptotic theory of transient waves in elastic shells of revolution,
but also gives the basis for investigation of transient waves in bodies of arbitrary
form [5, 27, 29, 30] and shells with complicated properties of material (anisotropic,
viscoelastic) [2–5, 28–30].

To complete construction of asymptotic nonstationary theory in third case of
shock edge loading (NW type) there where investigated solutions in small vicinity
of the Rayleigh surface wave front. Consideration of this SSS (stress-strain state)
began with analyzing the non-stationary SSS in the case of Lamb problem for the
semi-plane [11]. This result was used to construct the asymptotical components of
solutions for transient waves in plates and shells. There was constructed approximate
equations for elliptic type boundary layer in the vicinity of the Rayleigh wave front
as for plate and for cylindrical shells at shock surface loading and for shock edge
loading [19–21].

Equations for the elliptic boundary layer in shells of revolution at normal shock
surface loading were constructed in [17]. This component together with the bending
component on the basis of low-frequency approximation, the Saint-Venant quasi-
static boundary layer, the quasi-plane high frequency short wave component and the
hyperbolic boundary layer in the vicinity of the shear wave front allows construct
solutions for transient waves in all parts of the phase plane. Such asymptotical repre-
sentation completely corresponds to the description ofwave strain transient processes
analysed in [1, 23] by numerical methods.

Analysis of non-stationary SSS in a small vicinity of the Rayleigh surface wave
front in the Lamb problem for the semi-plane allows to consider wave motion in
different complicated constructions [6–9, 12–16, 24–26, 31].

Present paper is devoted to extend the approach of [17] on the case of transient
waves in semi-infinite shells of revolution at shock edge loading. This paper is be
organised as follows. The problem formulation is given in Sect. 19.2. Section 19.3
describes constructing of a particular solution, which is satisfied the boundary con-
ditions only on the edge. With the help of this particular solution the problem for the
semi-infinite shell of revolution is reduced to the problem for the infinite shell and
it could be used methods [17] for describing the solution in a small vicinity of the
Rayleigh wave fronts. Governing equations of the elliptic boundary layer are derived
in Sect. 19.4.
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19.2 Statement of the Problem

Consider a shell of revolution (see Fig. 19.1), where α is a parameter of the merid-
ian arc on the midsurface, θ is the angular coordinate, z is the distance from the
midsurface along the normal.

Denote stresses and displacements as σij and vi (i, j = 1, 2, 3), consequently. Con-
sider the following boundary conditions on the shell faces:

σ33 = σ13 = 0, z = ±h (19.1)

and on the edge (α = 0), which define axisymmetric case of the SSS:

σ13 = IH (t), v1 = 0, α = 0, (19.2)

where h is the shell halfthickness, t is time, I is the amplitude of the load, H (t) is
Heaviside unit function. We consider the homogeneous initial conditions

vi = ∂vi
∂t

= 0 (i = 1, 2, 3) at t = 0. (19.3)

Now we delate the scale of the independent variables, setting

ξ = α

h
, ζ = z

h
, τ = tc2

h
, c2 =

√
E

2ρ(1 + ν)
, (19.4)

where E, ν, ρ are the Young’s modulus, Poisson’s ratio and mass density of the body;
c2 is the distortionwave speed.We assume also that differentiation with respect to the
dimensionless variables ξ and τ does not change the asymptotic order of unknown
quantities. Then the dimensionless equations in displacements can be written as
follows

Fig. 19.1 Shell of revolution
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∂ξ 2

+ ∂2v1
∂ζ 2

+ 1
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− ∂2v1
∂τ 2

+ η
ζ

R1

(
−æ−2 ∂2v1

∂ξ 2
+ ∂2v1

∂ζ 2
− ∂2v1

∂τ 2
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)
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1
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+ 1
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1

R2

)
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1
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+ ∂2v3
∂ξ 2

+ æ−2 ∂2v3
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− ∂2v3
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+ η
ζ
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(
−∂2v3

∂ξ 2
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−η
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+ η
B′
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(19.5)

and

σ11 = E

2(1 + ν)æ2h

(
∂v1
∂ξ

+ ν

1 − ν

∂v3
∂ζ

+ η

(
− ζ

R1

∂v1
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+ ν

1 − ν

B′

B
v1
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(

1
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+ ν

1 − ν

1

R2

)
v3
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, (19.6)

σ33 = E

2(1 + ν)æ2h

(
ν

1 − ν

∂v1
∂ξ

+ ∂v3
∂ζ

+ η

(
− ν

1 − ν

ζ

R1

∂v1
∂ζ

+ ν

1 − ν

B′

B
v1 + ν

1 − ν

(
1

R1
+ 1

R2

)
v3

))
,

σ13 = E

2(1 + ν)h

(
∂v1
∂ζ

+ ∂v3
∂ξ

− η

(
v1
R1

+ ζ

R1

∂v3
∂ξ

))
,

where B is the distance from the axis of revolution, devided by R. R is the typical
radius of curvature of the midsurface, Ri (i = 1, 2) are the principal curvature radii
of the midsurface.

Similarly to the case of surface loading [17] we consider our SSS as short-wave
SSS and represent it as combination of symmetric and antisymmetric parts. Analysis
[17] shows that the symmetric part of SSS is asymptotical main and governing
equations can be written in the following form

æ−2 ∂2v1
∂ξ 2

+ ∂2v1
∂ζ 2

+ 1

1 − 2ν

∂2v3
∂ξ∂ζ

− ∂2v1
∂τ 2

+ ηæ−2B
′

B

∂v1
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= 0,

1
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∂ξ∂ζ

+ ∂2v3
∂ξ 2

+ æ−2 ∂2v3
∂ζ 2

− ∂2v3
∂τ 2

+ η

(
1

1 − 2ν

B′

B

∂v1
∂ζ

+ B′

B

∂v3
∂ζ

)
= 0,

(19.7)
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σ11 = E

2(1 + ν)æ2h

(
∂v1
∂ξ

+ ν

1 − ν

∂v3
∂ζ

+ η
ν

1 − ν

B′

B
v1

)
,

σ33 = E

2(1 + ν)æ2h

(
ν

1 − ν

∂v1
∂ξ

+ ∂v3
∂ζ

+ η
ν

1 − ν

B′

B
v1

)
,

σ13 = E

2(1 + ν)h

(
∂v1
∂ζ

+ ∂v3
∂ξ

)
. (19.8)

19.3 Particular Solution

Construct particular solution of Eq. (19.7), which satisfy only boundary conditions
(19.2) on the edge and denote it by the index “0”. To do it we apply simplest asymp-
totic method of solution decomposition and represent the solution in the following
form

v(0)
1 = 0, v(0)

3 = −I
∞∑
n=1

Fn(ξ0)(τ0 − ξ0)
nH (τ0 − ξ0), (19.9)

where Fn(ξ0) are the sought for functions, dimensionless variables are defined as
ξ0 = α/R, τ0 = tc2/R and R is a typical radius of curvature of the midsurface.

Substituting (19.9) into (19.7), we obtain the following equations for Fn

2
dFn

dξ0
+ B′

B
Fn = 1

n

(
d2Fn−1

dξ 2
0

+ B′

B

dFn−1

dξ0

)
. (19.10)

Solution of equation (19.10) has the form

Fn = Cn√
B

+ 1

2n
√
B

ξ0∫
0

1√
B

d

dξ0

(
1

B

dFn−1

dξ0

)
dξ0, (19.11)

where Cn are constants. Then taking into account boundary conditions (19.2) we
obtain the particular solution as follows:
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v(0)
1 = 0, v(0)
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]
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]
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B
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2n
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B
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0
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B

d
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(
1

B

d�n−1

dξ0

)
dξ0, n ≥ 2. (19.12)

Represent the solution of the initial problem in the form

SSS = SSS(0) + SSS(1) (19.13)

with the boundary conditions for SSS(1) on the edge and surface

∂v(1)
3

∂α
= 0, v(1)

1 = 0, α = 0, (19.14)

σ
(1)
33 = 0, σ

(1)
13 = −S, z = ±h.

The expression for S defined as

S = ±I

[√
B(0)

B
+

∞∑
n=2

(n�n − �′
n−1(τ0 ∓ ξ0)

n−1)

]
H (τ0 ∓ ξ0), (19.15)

where the signs “∓” and “±” correspond to the regions α > 0 (top one) and α < 0
(lower one).

Boundary conditions (19.14) show that the deformed edge section remains recti-
linear and perpendicular to the axis ξ . Hence, if an infinite shell with a symmetric
(with respect to the axis ζ ) loading is taken, as shown in Fig. 19.2, deformation of
each symmetric parts is equivalent to deformation of the considered semi-infinite
shell. Therefore, it is possible to pass on to investigating the equivalent problem for
the semi-infinite shell.
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Fig. 19.2 Equivalent problem for semi-infinite shell

19.4 Elliptic Boundary Layer

Asymptotic solution of governing Eq. (19.7) can be obtained by introducing a sym-
bolic notation wich was proposed in the case of a flat layer by Lurie [22]. Let’s intro-
duce operators ∂ξ = ∂/∂ξ, ∂τ = ∂/∂τ . According to the symbolic approach devel-
oped, Eq. (19.7) have to be treated as ordinary differential equations with respect to
the independent variable ζ . In doing so the operators ∂ξ and ∂τ are considered as
algebraic quantities of the order of unity. Then solutions to considered equations can
be written as follows

v1 = ∂ξe
−i(1−ζ )α1D1 + ∂ξe

−i(1+ζ )α1D2 + β1e
−i(1−ζ )β1D3 + β1e

−i(1+ζ )β1D4,

v3 = iα1e
−i(1−ζ )α1D1 − iα1e

−i(1+ζ )α1D2 + i

(
∂ξ + η

B′

B

)
e−i(1−ζ )β1D3

− i

(
∂ξ + η

B′

B

)
e−i(1+ζ )β1D4, (19.16)

where η is the small parameter (η = h/R), Dm (m = 1, 2, 3, 4) are arbitrary param-
eters, α1 and β1 are defined by the expressions

α2
1 = ∂2

ξ − æ2∂2
τ + η

B′

B
∂ξ , β2

1 = ∂2
ξ − ∂2

τ + η
B′

B
, (19.17)

where æ2 = (1 − 2ν)/(2 − 2ν).
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Substituting operator solution (19.16) into the boundary conditions on the faces,
we obtain the following system of algebraic equations for Dm:

γ 2
1 D1 + γ 2

1 e
i2α1D2 +

(
∂ξ + η

B′

B

)
β1D3 +

(
∂ξ + η

B′

B

)
β1e
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γ 2
1 e
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1 e
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1 e
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where γ 2
1 = ∂2

ξ − ∂2
τ /2 + ηB′/B. Equations (19.18) can be simplified by neglecting

terms with multipliers ei2α1 , ei2β1 [17].
Consider big values of the time, when τ � 1, i.e. wave fronts propagate distances

much more shell thickness: τ = O(T ), T � 1. Introduce for the case ξ > 0 new
small parameter ε and variables y, τ0:

y = ξ − æRτ

ε
, τ0 = ετ, ε = 1

T
, (19.19)

where æR = cR/c2, cR is the velocity of the surface Rayleigh waves. Also introduce
new operators ∂y, ∂τ :

∂y = ∂

∂y
, ∂τ0 = ∂

∂τ0
. (19.20)

The asymptotically simplified form of Eq. (19.18) in new parameters can be
written in the form

[g∂2
y − εæR∂y∂τ0 − η

B′

B
∂y]Dm + [b∂2

y − ε
æR

b
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where a =
√
1 − æ2æ2

R, b =
√
1 − æ2

R/2, g = 1 − æ2
R/2, kc =

(
1
b2 + 1

a2 + ab
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4
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/
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)
, Bω = 2
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+ ææR
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R

− 4æR
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R

]−1

.

Asymptotical representation of displacements and stresses in newoperators ∂y, ∂τ0

have the following form

v1 = −∂ye
ia(1+ζ )∂yD1 − ∂ye

−ia(1+ζ )∂yD2 − b∂ye
−ib(1+ζ )∂yD3 − b∂ye

−ib(1−ζ )∂yD4,

v3 = −ia∂ye
−ia(1+ζ )∂yD1 + ia∂ye

−ia(1−ζ )∂yD2 − i∂ye
−ib(1+ζ )∂yD3

+ i∂ye
−ib(1−ζ )∂yD4, (19.22)
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where operators L1,L2 are defined by the expressions
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Introduce the dilatation and shear Lame potentials, ϕ and ψ . We shall divide
them into parts, denoting with the index “1”—negative direction of the disturbance
propagation, and the positive one with the index “2”

ϕ = ϕ1 + ϕ2, ψ = ψ1 + ψ2. (19.23)

Operator representation of these potentials is defined by the following expressions

ϕm = e−ia(1±ζ )∂ξDm, ψm = e−ib(1±ζ )∂ξDm+2, m = 1, 2. (19.24)

These potential functions satisfies the elliptic equations
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under the following boundary conditions
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z = ∓h, (19.26)
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where

χ1 = h

b

∂ψ1

∂z
, χ2 = −h

b

∂ψ2

∂z
,

Bω = 2

[
æR

1 − æ2
R

+ ææR

1 − æ2æ2
R

− 4æR

2 − æ2
R

]−1

.

Displacements and stresses are described throw potential functions by the expres-
sions

v1 = h

(
∂ϕ1

∂α
+ ∂ϕ2

∂α
+ b

∂ψ1

∂α
+ b

∂ψ2

∂α

)
,

v3 = h

(
∂ϕ1

∂z
+ ∂ϕ2

∂z
+ 1

b

∂ψ1

∂z
+ 1

b

∂ψ2

∂z

)
,

σ33 = − Eh

1 + ν

(
g
∂2ϕ1

∂α2
+ g

∂2ϕ2

∂α2
+ b

∂2ψ1

∂α2
+ b

∂2ψ2

∂α2

)
,

σ13 = Eh

1 + ν

(
1

a2
∂2ϕ1

∂α∂z
+ æ2æ2

R

a2cR

∂2ϕ1

∂z∂t
+ 1

2a2
B′

B

∂ϕ1

∂z

+ 1

a2
∂2ϕ2

∂α∂z
+ æ2æ2

R

a2cR

∂2ϕ2

∂z∂t
+ 1

2a2
B′

B

∂ϕ2

∂z

+ g + æ2
R

b

∂2ψ1

∂α∂z
+ æ2

R

bcR

∂2ψ1

∂z∂t
+ 1

b

B′

B

∂ψ1

∂z

+ g + æ2
R

b

∂2ψ2

∂α∂z
+ æ2

R

bcR

∂2ψ2

∂z∂t
+ 1

b

B′

B

∂ψ2

∂z
. (19.27)

In the case ξ < 0 governing equations for our elliptic boundary layer coincide
with Eqs. (19.25)–(19.27) with the exception of expression for the stress σ13 which
is described in this case as

σ13 = Eh

1 + ν

(
1

a2
∂2ϕ1

∂α∂z
− æ2æ2

R

a2cR

∂2ϕ1

∂z∂t
+ 1

2a2
B′

B

∂ϕ1

∂z

+ 1

a2
∂2ϕ2

∂α∂z
− æ2æ2

R

a2cR

∂2ϕ2

∂z∂t
+ 1

2a2
B′

B

∂ϕ2

∂z

+ g + æ2
R

b

∂2ψ1

∂α∂z
− æ2

R

bcR

∂2ψ1

∂z∂t
+ 1

b

B′

B

∂ψ1

∂z

+ g + æ2
R

b

∂2ψ2

∂α∂z
− æ2

R

bcR

∂2ψ2

∂z∂t
+ 1

b

B′

B

∂ψ2

∂z

)
. (19.28)
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Chapter 20
Non-stationary Dynamic Problem
for Layered Viscoelastic Cylinder

Ekaterina A. Korovaytseva and Sergey G. Pshenichnov

Abstract A problem of non-stationary waves propagation in cross section of a
hollow layered linearly viscoelastic cylinder at its axisymmetric loading is consid-
ered. On the contact surfaces between the layers, the continuity conditions for the
displacement and stress vectors are accepted. The solution is constructed using the
integral Laplace transform in time with subsequent reversal. The solution in the
originals is presented in an integral form convenient for numerical implementation.
It allows studying the process of wave propagation in a multilayer cylinder with
an arbitrary number of viscoelastic coaxial layers without any simplifying assump-
tions concerning the existence of a connection between the hereditary kernels. The
results of studies performed on the basis of the constructed solution with specific
initial data are presented. These results illustrate the influence of contacting mate-
rials physical-mechanical parameters difference on the transient wave process in a
layered cylindrical body.

Keywords Dynamics of viscoelastic bodies · Piecewise homogeneous solids ·
Wave processes · Layered cylinder

20.1 Introduction

Investigation of non-stationary wave processes in solids consisting of homogeneous
linearly viscoelastic components, using analytical and numerical-analyticalmethods,
is actual. Various achievements in this field are represented, for example, in theworks
[4–8, 12, 13]. Over the last years, one of the main trends here has been carrying out
research using methods of boundary integral equations and boundary elements [1,
2]. With the help of these methods, representatives of the corresponding scientific
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school carried out a number of works concerning dynamics of piecewise homoge-
neous viscoelastic media [3, 9]. Along with this within the framework of this theme
quite a number of questions requiring investigations remain. First of all, this regards
the investigation of influence of material hereditary properties on transient wave
processes in solids with arbitrary number of homogeneous components’ boundaries
in the absence of certain relationship between hereditary kernels.

Previously, the author of this work constructed solutions of a number of non-
stationary dynamic problems for multilayer solids with plane-parallel, spherical and
cylindrical boundaries of viscoelastic homogeneous layers [10]. Hereditary kernels
were chosen in the form of finite sum of exponents. Besides, recently, the work
[11] which touched upon some general questions concerning constructing solu-
tions of dynamic problems for piecewise homogeneous linearly viscoelastic bodies
using integral Laplace transform with the following inversion has been published.
Statements concerning properties of the solutions in transforms that simplify origi-
nals construction were formulated in the work. Statements concerning relationship
between points of branching and poles of problem solution in transforms with the
spectrum of the corresponding problem of considered multicomponent body free
oscillations were proved as well. At certain conditions, a relationship between the
initial non-stationary dynamic problem and the static problem of elasticity theory, in
which long-term moduli play the role of elastic constants, was pointed out. Various
forms of solution representation in originals were discussed.

In the present work, results of transient wave processes in layered cylindrical solid
at its axisymmetric loading investigations are represented. The results are obtained
with the help of numerical realization of the corresponding initial-boundary problem
solution. This solution, compared with the constructed one in the work [10], is more
convenient for calculations. Besides, the variant of its integral form represented here
is suitable for hereditary kernels of a wider variety. In the work [11], similar problem
was used for demonstration of a special test; however, its solutionwas not represented
there. Below, we shall build on theoretical results of the work [11] when necessary.

20.2 Dynamic Problem for Layered Cylinder Statement

Let us consider dynamic problem for infinitely long hollow circular cylinder:
R0 ≤ R ≤ RN , −π < θ ≤ π , −∞ < z < +∞, (R, θ, z are cylindrical coor-
dinates), consisting of N coaxial isotropic homogeneous linearly viscoelastic layers.
We consider that at the boundaries R = Rm , (m = 1, 2, 3, . . . , N − 1) between
neighboring layers conditions of displacement vector and stress vector continuity
are fulfilled. At the initial time, the cylinder is at rest and undeformed. Its external
surface is free, and the internal surface at the moment t = 0 is subjected to influence
of uniform distributed load Q(t), which provides condition of plane deformation and
axial symmetry (Fig. 20.1).

We introduce the following dimensionless variables:
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Fig. 20.1 Cross section and
loading scheme of N-layered
cylinder

r = R
/
RN , τ = t

/
t0, r0 = R0

/
RN , rm = Rm

/
RN (m = 1, 2, . . . , N − 1),

u(n)(r, τ ) = v(n)(R, t)/RN ,

σ (n)
rr (r, τ ) = P (n)

RR(R, t)/2G(n)
0 , σ

(n)
θθ (r, τ ) = P (n)

θθ (R, t)/2G(n)
0 ,

γ (n)
s (τ ) = t0T

(n)
s (t), γ (n)

v (τ ) = t0T
(n)
v (t), n = 1, 2, . . . , N ,

Q0ψ(τ) = Q(t)/2G(1)
0 , αn = cN/cn, wn = (1 − ν

(n)
0 )/(1 − 2ν(n)

0 ),

where t0 = RN
/
cN , Q0 is dimensionless constant; v(n)(R, t), P (n)

RR(R, t), P (n)
θθ (R, t)

are radial displacement and radial and circular stresses; T (n)
s (t), T (n)

v (t), G(n)
0 ,

ν
(n)
0 are volume and shear relaxation kernels and instantaneous shear modulus and
Poisson’s ratio of the nth layer material; cn is the speed of longitudinal elastic waves
in the nth layer.

We shall suppose that for all the layers’ material conditions of creep restriction
are fulfilled.

Mathematical problem statement for the layered cylinder in dimensionless form
includes dynamics equations (where stresses are expressed through displacements):

(
1 − d̂(n)

1

) ∂

∂ r

[
∂ u(n)(r, τ )

∂ r
+ u(n)(r, τ )

r

]
− a2n

∂2u(n)(r, τ )

∂τ 2
= 0, n = 1, 2, . . . , N ,

(20.1)
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boundary conditions

σ (1)
rr (r0, τ ) = −Q0ψ(τ), σ (N )

rr (1, τ ) = 0, τ > 0 (20.2)

conditions of contact between the layers (m = 1, 2, . . . , N − 1):

u(m)(rm, τ ) = u(m+1)(rm, τ ), G(m)
0 σ (m)

rr (rm, τ ) = G(m+1)
0 σ (m+1)

rr (rm, τ ), (20.3)

and initial conditions

u(n)(r, 0) = 0,
∂u(n)

∂τ
(r, 0) = 0, (20.4)

here

σ (n)
rr (r, τ ) = wn

(
1 − d̂(n)

1

)∂ u(n)(r, τ )

∂r
+ (wn − 1)

(
1 − d̂(n)

2

)u(n)(r, τ )

r
, (20.5)

σ
(n)
θθ (r, τ ) = wn

(
1 − d̂(n)

1

)u(n)(r, τ )

r
+ (wn − 1)

(
1 − d̂(n)

2

)∂u(n)(r, τ )

∂r
,

where operators d̂(n)
1 , d̂(n)

2 and corresponding functions d(n)
1 , d(n)

2 have the form

d̂(n)
j ξ(τ ) =

τ∫

0

d(n)
j (τ − χ)ξ(χ)dχ, j = 1, 2,

d(n)
1 (τ ) = 1

3(1 − ν
(n)
0 )

[(
1 + ν

(n)
0

)
γ (n)
v (τ ) + 2

(
1 − 2ν(n)

0

)
γ (n)
s (τ )

]
,

d(n)
2 (τ ) = 1

3ν(n)
0

[(
1 + ν

(n)
0

)
γ (n)
v (τ ) −

(
1 − 2ν(n)

0

)
γ (n)
s (τ )

]
, n = 1, 2, . . . , N .

20.3 Solution Construction

Applying integral time Laplace transform to Eqs. (20.1) and relations (20.2), (20.3),
(20.5), and taking into account homogeneous initial conditions (20.4), we shall obtain
dynamics equations in transforms

[
1 − D(n)

1 (s)
] ∂

∂ r

[
∂ U (n)(r, s)

∂ r
+ U (n)(r, s)

r

]
− α2

ns
2U (n)(r, s) = 0, (20.6)
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boundary conditions

S(1)
rr (r0, s) = −Q0Ψ (s), S(N )

rr (1, s) = 0, (20.7)

and conditions of contact between the layers (m = 1, 2, . . . , N − 1):

U (m)(rm, s) = U (m+1)(rm, s), G(m)
0 S(m)

rr (rm, s) = G(m+1)
0 S(m+1)

rr (rm, s), (20.8)

along with this

S(n)
rr (r, s) = wn

[
1 − D(n)

1 (s)
]∂ U (n)(r, s)

∂ r
+ (wn − 1)

[
1 − D(n)

2 (s)
]U (n)(r, s)

r
,

(20.9)

S(n)
θθ (r, s) = wn

[
1 − D(n)

1 (s)
]U (n)(r, s)

r
+ (wn − 1)

[
1 − D(n)

2 (s)
]∂U (n)(r, s)

∂r
,

where U (n)(r, s), S(n)
rr (r, s), S(n)

θθ (r, s), Ψ (s), D(n)
1 (s), D(n)

2 (s), s ∈ C .

are correspondingly transforms of functions
u(n)(r, τ ), σ (n)

rr (r, τ ), σ (n)
θθ (r, τ ), ψ(τ), d(n)

1 (τ ), d(n)
2 (τ ).

Problem solution in transforms (20.6)–(20.9) has the form (n = 1, 2, . . . , N )

U (n)(r, s) = Q0Ψ (s)
qn(s)

α1β1(s)Z(s)

[
I1(yn) κn

1 (s) + K1(yn) κn
2 (s)

]
, (20.10)

where

yn(r, s) = rαnβn(s), βn(s) = s
√
1 − D(n)

1 (s)
, n = 1, 2, . . . , N ,

functions κn
1 (s), κn

2 (s) are determined from recurrence relations, inwhich the variable
with a smaller number is expressed through the variable with a greater number:

(
κm
1

κm
2

)
=

(
zm11 zm12
zm21 zm22

)(
κm+1
1

κm+1
2

)
, m = N − 1, N − 2, . . . , 2, 1,

here
κN
1 = −

[
wN (1 − D(N )

1 )K ′
1(βN ) + (wN − 1)(1 − D(N )

2 )
K1(βN )

βN

]
,

κN
2 = wN (1 − D(N )

1 )I ′
1(βN ) + (wN − 1)(1 − D(N )

2 )
I1(βN )

βN
,

zm11 = I1(bm2 ) ψm
12 − K1(bm1 ) ψm

21,
zm12 = −[K1(bm1 ) ψm

22 − K1(bm2 ) ψm
12],

zm21 = −[I1(bm2 ) ψm
11 − I1(bm1 ) ψm

21],
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zm22 = I1(bm1 ) ψm
22 − K1(bm2 ) ψm

11,
and also

ψm
11 = G(m)

0 βmαm

G(m+1)
0 βm+1αm+1

[
wm(1 − D(m)

1 )I ′
1(b

m
1 ) + (wm − 1)(1 − D(m)

2 )
I1(bm1 )

bm1

]
,

ψm
12 = G(m)

0 βmαm

G(m+1)
0 βm+1αm+1

[
wm(1 − D(m)

1 )K ′
1(b

m
1 ) + (wm − 1)(1 − D(m)

2 )
K1(bm1 )

bm1

]
,

ψm
21 = wm+1

(
1 − D(m+1)

1

)
I ′
1

(
bm2

) + (wm+1 − 1)
(
1 − D(m+1)

2

) I1(bm2 )

bm2
,

ψm
22 = wm+1

(
1 − D(m+1)

1

)
K ′

1

(
bm2

) + (wm+1 − 1)
(
1 − D(m+1)

2

)K1(bm2 )

bm2
,

bm1 = rmαmβm, bm2 = rmαm+1βm+1, m = 1, 2, . . . , N − 1,

Z = −
(
T1κ

(1)
1 + T2κ

(1)
2

)
,

T1 = w1(1 − D(1)
1 )I ′

1(b
0
2) + (w1 − 1)(1 − D(1)

2 )
I1(b02)

b02
,

T2 = w1(1 − D(1)
1 )K ′

1(b
0
2) + (w1 − 1)(1 − D(1)

2 )
K1(b02)

b02
, b02 = r0α1β1,

I1, K1 are imaginary argument Bessel function and Macdonald function of the first
index, and I ′

1, K ′
1 are their derivatives of corresponding argument, and also

I ′
1(y) = I0(y) − I1(y)/y, K ′

1(y) = −K0(y) − K1(y)/y.

Values of qn are determined from the relations

q1 ≡ 1, qn = δ1δ2, . . . , δn−1, n = 2, 3, ...N ,

δm = − G(m)
0

G(m+1)
0 rmβm+1αm+1

wm

(
1 − D(m)

1

)
, m = 1, 2, . . . , N − 1

We shall note that in the expressions mentioned above the values
αn , G(n)

0 , rm , r0 , wn are constants. Other values are functions of complex argu-
ment s, which is omitted here. Transforms of radial and circular stresses in the layers
are obtained using expression (20.10) and relations (20.9).

Below, we shall consider the case when the following condition is met for the
function of external load
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lim
τ→∞ ψ(τ) = 1, (20.11)

from which it follows lims→0 sΨ (s) = 1.
If Ψ (s), D(n)

1 (s), D(n)
2 (s) do not have branching points (e.g., if Ψ (s) = 1/s is

Heaviside function transform, and relaxation kernels γ (n)
s (τ ), γ (n)

v (τ ) are regular
and can be represented as finite sums of exponents), then transforms U (n)(r, s),
determined by Formula (20.10), do not have branching points in complex plain,
despite the fact that they are expressed through the functions which have branching
points. This becomes clear after a number of cumbersome computations. At the
same time, it is not necessary to carry out these computations as this fact follows
from a general statement concerning solution in transforms branching points for the
problems of considered class [11]. In this case, after asymptotic investigation of the
transform near the poles set limit points, the solution in original is written in the form
of infinite sum of residues [10].

In the case of singular kernels, the set of functions (20.10) branching points is a
conjugation of sets of functions Ψ (s), D(n)

1 (s), D(n)
2 (s) branching points. Then, for

obtaining the originals of displacements, it is convenient to use formulae

u(n)(r, τ ) = 1

2
u(n)
0 (r) + 1

π

∞∫

0

Re[U (n)(r, iω)eiω τ ]dω (20.12)

and for the stresses originals—analogous relations

σ (n)
rr (r, τ ) = 1

2
σ

(n)
0rr (r) + 1

π

∞∫

0

Re[S(n)
rr (r, iω)eiω τ ]dω, (20.13)

σ
(n)
θθ (r, τ ) = 1

2
σ

(n)
0θθ (r) + 1

π

∞∫

0

Re[S(n)
θθ (r, iω)eiω τ ]dω,

where u(n)
0 (r), σ (n)

0rr (r), σ
(n)
0θθ (r) are displacement and stresses which are the solution

of plane axisymmetric static problem of elasticity theory for the considered layered
cylinder. Then, elastic properties of the layers in static problem are determined by
long-term moduli, corresponding to viscoelastic kernels of dynamic problem. As
condition (20.11) is met for the function of external loadψ(τ), integrands in (20.12),
(20.13) do not have singularity at ω → 0.

It is important that Formulae (20.12), (20.13) are correct in a special case, when
the external load is described by Heaviside function ψ(τ) = h(τ ). Then, using the
corresponding convolution, it is easy to obtain solution at otherψ(τ), not necessarily
meeting condition (20.11). Formulae (20.12), (20.13) can be used both for regular and
singular hereditary kernels, but then at least one of the layers must possess hereditary
properties. When all the layers are linearly elastic, Formulae (20.12), (20.13) are not
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applicable; however, in this case, the originals can be obtained easily in the form of
infinite sum of residues.

Let us represent expressions for the functions u(n)
0 (r). Corresponding static

problem statement for these functions contains equations

d

d r

[
du(n)

0 (r)

d r
+ u(n)

0 (r)

r

]

= 0, r0 ≤ r ≤ 1, (n = 1, 2, . . . , N ),

boundary conditions:

σ
(1)
0rr (r0) = −Q0 σ

(N )
0rr (1) = 0,

and layers contact conditions (m = 1, 2, . . . , N − 1):

u(n)
0 (rm) = u(m+1)

0 (rm), G(m)
0 σ

(m)
0rr (rm) = G(m+1)

0 σ
(m+1)
0rr (rm),

here

σ
(n)
0rr (r) = wn[1 − D(n)

01 ]d u
(n)
0 (r)

d r
+ (wn − 1)[1 − D(n)

02 ]u
(n)
0 (r)

r
,

σ
(n)
0θθ (r) = wn[1 − D(n)

01 ]u
(n)
0 (r)

r
+ (wn − 1)[1 − D(n)

02 ]du
(n)
0 (r)

dr
,

where D(n)
01 = D(n)

1 (0), D(n)
02 = D(n)

2 (0).
The solution of this problem has the form

u(n)
0 (r) = Q0

q0n
α1β01Z0

[
r

αn

2
β0nκ

n
01 + 1

r

1

αn β0n
κn
02

]
, n = 1, 2, . . . , N ,

where

β0n(s) = 1
√
1 − D(n)

01

, n = 1, 2, . . . , N ,

constants κn
01, κn

02 are determined from recurrence relations, in which the variable
with a smaller number is expressed through the variable with a greater number:

(
κm
01

κm
02

)
=

(
z0m11 z0m12
z0m21 z0m22

)(
κm+1
01

κm+1
02

)
, m = N − 1, N − 2, . . . , 2, 1,

here
κN
01 = 1

(β0N )2

[
wN (1 − D(N )

01 ) − (wN − 1)(1 − D(N )
02 )

]
,
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κN
02 = 1

2

[
wN (1 − D(N )

01 ) + (wN − 1)(1 − D(N )
02 )

]
,

z0m11 = bm02
2 ψ0m

12 − 1
bm01

ψ0m
21 ,

z0m12 = 1
bm02

ψ0m
12 − 1

bm01
ψ0m

22 ,

z0m21 = 1
2 [bm01 ψ0m

21 − bm02 ψ0m
11 ],

z0m22 = bm01
2 ψ0m

22 − 1
bm02

ψ0m
11 ,

and also
ψ0m

11 = G(m)
0 β0mαm

2G(m+1)
0 β0m+1αm+1

[wm(1 − D(m)
01 ) + (wm − 1)(1 − D(m)

02 )],
ψ0m

12 = G(m)
0 β0mαm

G(m+1)
0 β0m+1αm+1

· 1
(bm01)

2 [(wm − 1)(1 − D(m)
02 ) − wm(1 − D(m)

01 )],
ψ0m

21 = 1
2 [wm+1(1 − D(m+1)

01 ) + (wm+1 − 1)(1 − D(m+1)
02 )],

ψ0m
22 = 1

(bm02)
2 [(wm+1 − 1)(1 − D(m+1)

02 ) − wm+1(1 − D(m+1)
01 )],

bm01 = rmαmβ0m ,
bm02 = rmαm+1β0m+1,
m = 1, 2, . . . , N − 1,
Z0 = −(T01κ

(1)
01 + T02κ

(1)
02 ),

T01 = 1
2 [w1(1 − D(1)

01 ) + (w1 − 1)(1 − D(1)
02 )],

T02 = 1
(b002)

2 [(w1 − 1)(1 − D(1)
02 ) − w1(1 − D(1)

01 )],
b002 = r0α1β01,
Values q0n are determined from the relations:

q01 = 1, q0n = δ01δ02, . . . , δ0 n−1, n = 2, 3, . . . , N ,

δ0m = − G(m)
0 wm

G(m+1)
0 rmαm+1β0m+1

(1 − D(m)
01 ), m = 1, 2, . . . , N − 1

We shall omit here expressions for σ 0(n)
rr (r), σ 0(n)

θθ (r).

20.4 Calculation Results

Let us represent some characteristic results, obtained with the help of calculations
carried out by Formulae (20.12), (20.13), in graphical form of τ -dependencies of
values, s(n)

r = G(n)
0 σ (n)

rr (r, τ )/(G(1)
0 Q0), s

(n)
θ = G(n)

0 σ
(n)
θθ (r, τ )/(G(1)

0 Q0) at fixed
points r for two-layered cylinder (N = 2, n = 1, 2). Plots in Figs. 20.2, 20.3, 20.4
and 20.5 correspond to calculations for the following initial data: r0 = 0.5, r1 = 0.7,

G(2)
0 /G(1)

0 = 1/8, ν
(1)
0 = 0.3, ν

(2)
0 = 0.33, α2 = c2/c1 = 0.64

(internal layer is much stiffer),
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Fig. 20.2 Time dependence of s(1)
r at r = 0.7

Fig. 20.3 Time dependence of s(1)
θ at r = 0.5

Fig. 20.4 Time dependence of s(1)
θ at r = 0.7
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Fig. 20.5 Time dependence of s(2)
θ at r = 0.7

γ (1)
v (τ ) = γ (2)

v (τ ) ≡ 0, γ (1)
s (τ ) = 0.3e−τ τ−0.2, γ (2)

s (τ ) = 0.5e−0.9τ τ−0.4;

time dependence of external load has the form of “smooth step” ψ(τ) = 1 − e−50τ

(τ > 0).
Hereinafter, negative stresses are compressional. From Figs. 20.3 and 20.4, it is

obvious that circular stresses in a stiffer internal layer practically do not react to
excitations brought by the waves reflected from the boundary of media, as well as
from free or loaded boundary. At the same time, at decaying amplitude of circular
stress, its time change is close to periodic one with a period corresponding to the first
eigenfrequency of free oscillations of considered cylinder in the absence of external
load (it is checked by the calculations). Radial stress, as well as circular stress on
the contact surface from the side of a softer layer, at the initial stage of transient
process, is sensitive to perturbations brought from the free or loaded boundary of
the cylinder. At the same time, their time change is also close to periodic one with
decaying amplitude.

Figures 20.6, 20.7, 20.8 and 20.9 represent the plots obtained for that same values
of r0, r1 and loadψ(τ), as the plots in Figs. 20.2, 20.3, 20.4 and 20.5, but for another
distribution of layers material properties. Thick lines correspond to the case

G(2)
0 /G(1)

0 = 8, ν
(1)
0 = 0.33, ν

(2)
0 = 0.3, α2 = c2/c1 = 1.57,

γ (1)
v (τ ) = γ (2)

v (τ ) ≡ 0, γ (1)
s (τ ) = 0.5e−0.9τ τ−0.4, γ (2)

s (τ ) = 0.3e−τ τ−0.2,

i.e., layers materials changed their places and now the external layer became stiffer.
Thin lines refer to the results for a homogeneous cylinder, when at calculations, it
was taken that:

r0 = 0.5, ν
(1)
0 = ν

(2)
0 = 0.3, G(2)

0 /G(1)
0 = 1, α2 = c2/c1 = 1,
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Fig. 20.6 Time dependence of s(1)
r at r = 0.7

Fig. 20.7 Time dependence of s(1)
θ at r = 0.5

Fig. 20.8 Time dependence of s(1)
θ at r = 0.7
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Fig. 20.9 Time dependence of s(2)
θ at r = 0.7

γ (1)
v (τ ) = γ (2)

v (τ ) ≡ 0, γ (1)
s (τ ) = γ (2)

s (τ ) = 0.3e−τ τ−0.2, ψ(τ) = 1 − e−50τ .

Now on layers contact boundary, we can observe less sensitivity of radial stress
to the perturbations from cylinder boundaries. Besides, we should mention that
compared to homogeneous material, layers existence drastically changes the char-
acter of wave process, so that compressional circular stresses appear in a softer
internal layer because of internal pressure action on a two-layered cylinder.

20.5 Conclusion

The problem solution in an integral form (20.12), (20.13) is convenient for numerical
realization. It allows investigating the process of wave propagation in multilayer
cylinderswith arbitrary number of viscoelastic coaxial layerswithout any simplifying
assumptions concerning relation between hereditary kernels. Note that the more
hereditary properties are manifested in the layers, the more effective application of
Formulas (20.12), (20.13) is. But if all the layers are linear elastic, these formulae are
not applicable, but then the solution can be obtained easily by calculating residues.

Calculation results represented above illustrate the influence of two contacting
materials physical-mechanical parameters difference on transient wave process in
cylindrical solid. The results obtained can be used not only directly for the purpose
of wave propagation in layered cylindrical structure elements investigation, but
also for testing various numerical algorithms developed for dynamics of piecewise
homogeneous solids investigation.

The work was supported by RFBR (project No. 18-08-00471-a) and RFBR and
Moscow City Government (project No. 19-38-70005 mol_a_mos).
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Chapter 21
Evaluating Contact Stresses
for an Impactor Penetrating Soil,
Accounting for Dynamic Compressibility,
Internal Friction, and Initial Strength
of the Soil

Vasily L. Kotov, Vladimir V. L. Balandin, Andrey K. Lomunov,
and Leonid A. Igumnov

Abstract Formulas for evaluating contact stresses for an impactor penetrating soil,
accounting for friction, are obtained. In analyzing dynamic deformation of soil, its
compressibility, shear resistance and initial strength are taken into account. Impact
compressibility of the medium is described based on Hugoniot’s linear adiabat.
Plastic deformation obeys the Mohr-Coulomb yield criterion with a constraint on
a maximal value of tangential stresses according to Tresca’s criterion. An earlier
obtained analytical solution of the one-dimensional problem of a cavity expanding
at a constant velocity from a point in a half-space occupied by a plastic medium is
used. A formula for determining critical pressure, minimal pressure required for the
formation of a cavity, accounting for internal pressure in the framework of Mohr-
Coulombyield criterion, is also applied,which is a generalization of a known solution
for an elastic ideally plastic medium with Tresca’s criterion. The obtained evalua-
tions of resistance to an impactor penetrating soil are based on a quadratic relation
between pressure normal to the surface of the impactor and impact velocity. Finite
expressions for coefficients of the trinomial approximation as a function of exper-
imentally determined physical-mechanical parameters of the soil—shock adiabatic
and yield strength-pressure relations—have been determined for the first time. The
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derived formulae have been verified by comparing them with already known experi-
mental data on the penetration of a steel conical impactor into frozen sandy soil. It is
shown that the difference between the numerical and experimental results is within
15%.

Keywords Soil · Strength · Internal friction · Compressibility · Spherical cavity
expansion · Mohr-Coulomb-Tresca plasticity condition · Penetration · Conical
impactor

21.1 Introduction

In the theory of high-velocity impact, special attention is paid to determining the
parameters of contact interaction of the bodies. Practical experience shows [1–5]
that a solution of the problem of spherical or cylindrical cavity expansion is a good
approximation of pressure on the contact interface between a rigid impactor and a
resisting medium. The cavity expansion problem is a classical problem of mechanics
of deformable bodies, the analysis ofwhichwas the subject of theworks byR.Hill, R.
Bishop, H. Hopkins, A. Ya. Sagomonyan, N. V. Zvolinskiy et al. There exist many
formulations of this problem, differing in the way the material compressibility is
accounted for—a linearly compressible medium [6], an incompressible medium or a
medium of limited ultimate strain [7, 8]; in the assumed yield criterion—Tresca’s [6,
9], Mohr-Coulomb’s [8], Mohr-Coulomb’s with Tresca’s constraint [7]. In [10–13],
approximations of pressure on the cavity wall as a function of its expansion velocity
were obtained for varyingmechanical characteristics of thematerial, and the obtained
solutionswere parametrically analyzed. For an incompressible elastoplasticmedium,
analytical solutions for various kinds of yield criterion were obtained.

To determine stress and velocity fields in the region of plastic deformation adjacent
to the cavity, an effective algorithm [6, 7] of numerical analysis was developed, that
makes it possible to obtain a solution of the problem with an accuracy sufficient for
practical application. Numerical solutions of the spherical cavity expansion problem
and their application to evaluating contact stresses and forces resisting penetration
of rigid bodies into soils, concretes and metals are given in [6–19]. In [20, 21], an
analytical solution of the problem was obtained, based on the assumption of incom-
pressibility of the medium behind the shockwave front. Dynamic compressibility of
a medium is characterized by the shock adiabat, and shear resistance is defined by the
Mohr-Coulomb plasticity condition. Based on the introduced analytical solution, a
methodology for evaluating forces resisting penetration of a rigid body into a soft soil
was developed [22]. Relations for the maximal force resisting penetration of a rigid
sphere and an impactor with a conical head into dry and water-saturated sand were
obtained [23]. Comparison of the analytical, numerical and experimental evaluations
of forces resisting penetration demonstrates their good qualitative and quantitative
agreement for impact velocities in the range of 50–400 m/s.
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Papers [24–26] give both experimental and theoretical data testifying to the limited
nature of yield strength of soils under high pressures. In [24] it is shown that a
nonlinear relation between yield strength and pressure, taking into account scatter
of the data and measuring inaccuracies, can be represented by a two-part broken
line—a linear relation for small pressures, as it is assumed in the Mohr-Coulomb
plasticity condition, and a constraint on the value of yield strength for high pressures,
according to Tresca’s condition. In this connection, problems of penetration of rigid
bodies into soft soils can be effectively analyzed using an analytical solution of the
problem of spherical cavity expansion in a medium with the Mohr-Coulomb-Tresca
plasticity condition [18, 23].

21.2 The Model of Cavity Expansion in a Soil Medium
with the Mohr-Coulomb-Tresca Plasticity Condition

Aone-dimensional self-similar model of a spherical cavity expanding from a point in
an infinite elastoplastic medium at constant velocityV is considered. Amathematical
model of dynamic deformation of the elastoplastic medium is defined by a system
of differential equations expressing laws of continuity and change of momentum,
which is written in spherical Euler coordinates r, φ, ϕ.

ρ

(
∂υ

∂r
+ 2

υ

r

)
= −

(
∂ρ

∂t
+ υ

∂ρ

∂r

)
,
∂σr

∂r
+ 2

(
σr − σφ

)
r

= −ρ

(
∂υ

∂t
+ υ

∂υ

∂r

)

Experimentally determined finite relations close the system of partial differential
equations

σr = f1(θ), σr − σϕ = f2(θ) (21.1)

where υ is velocity of particles of the medium, σr and σφ = σϕ are radial, circum-
ferential and meridional tensor components of Cauchy stresses (assumed positive in
compression) θ = 1 − ρ0

/
ρ is volumetric strain, ρ0 and ρ are initial and current

densities of the medium, functions f1 and f2 define the equations of state and the
plasticity condition of the medium.

Experiments [27–29] show that dynamic compressibility of many of the media
are characterized by Hugoniot’s shock adiabat in the form of linear relation:

Us = C0 + su p, (21.2)

Correlating plane shockwave velocity Us and velocity of particles behind the
wave front u p. Here, C0 corresponds to the sonic velocity in the medium under zero
pressure, and s is constant.
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Use of relation (21.2) and the Renkin-Hugoniot conditions yields a correlation
between stress σr and volumetric strain θ , which will have the form f1(θ) ≡
ρ0C2

0θ(1 − sθ)−2, where constant s characterizes ultimate compressibility of the
medium.

A solution of the problem in the plastic yield region defined by radii r = V t and
r = ct is obtained in the following assumptions:

• the medium is assumed to be rigid-plastic (elastic deformation of a soft soil
medium is neglected), i.e., the plastic yield region is adjacent to the region of
the unperturbed medium, where σr = υ = 0;

• the solution is a plastic shockwave (SW) propagating over the unperturbed half-
space;

• density ρs behind the shockwave front is assumed constant, i.e., incompressibility
behind the shockwave front is assumed, the value of ρs is a function of cavity
expansion velocity;

• propagation velocity of the plastic wave front c is equal to the propagation velocity
of the plane shockwave front, defined by Hugoniot’s linear adiabat (21.2), i.e., it
is assumed that Us ≡ c.

Such assumptions are considered to be justified for soft soils possessing relatively
low cohesion and high porosity.

Using self-similar substitution ξ = r / ct , the system of partial differential equa-
tions is reduced to a system of ordinary differential equations (ODE). The boundary-
value problem for a system of two first-order ODE’s for dimensionless velocity
U = υ/ c and dimensional stress S = σr

/
ρsc2, taking into account the above

assumptions, will assume the following form:

U ′ + 2
U

ξ
= 0,U (ξ = ε) = ε,U (ξ = 1) = θs

S′ + 2
f̃2
ξ

= (ξ −U )U ′, S(ξ = 1) = θs − θ2
s ,

where: ε = V
/
c is value of the dimensionless coordinate, corresponding to the

cavity boundary, f̃2 = f2
/

ρsc2 is dimensionless function in the elasticity condition,
the volumetric strain along the SW front will assume the value θs = (

1 − C0
/
c
)/

s,
where the stroke designates differentiation for ξ . Equation system (21.3)–(21.7),
beside dimensionless velocity U and dimensionless stress S, includes unknown
parameter c—propagation velocity of the plastic shockwave front.

The plasticity function for the Mohr-Coulomb condition, with the account of the
constraint on the maximal value of Tresca’s yield strength, has the following form:

f2 ≡
{

τ0 + μσr , 0 < σr ≤ σM ,

τM , σr > σM

where σM = (τM − τ0)
/

μ.
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An analytical solution of the problem of a spherical cavity expanding in a rigid-
plastic medium with the Mohr-Coulomb-Tresca plasticity condition in the assump-
tion of incompressibility behind the shockwave frontwas obtained in [18]. According
to the solution of [18], the stress along the cavity boundarywill be defined by equation

σ(V ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ0
μ

(
ε−2μ − 1

)
+ ρ0V

2

1−ε3

(
3

(μ−2)(2μ−1) + 2μ+1
2μ−1 ε1−2μ − μ−1

μ−2 ε4−2μ
)
, 0 < V < V0;

σM + τM ln
(

ξM
ε

)2 + ρ0V
2

1−ε3

(
3
2 − 2ε

ξM
+ ε4

2ξ4M

)
, V0 ≤ V ≤ VM ,

−2τM ln ε + ρ0V
2

1−ε3

(
3
2 − ε − ε4

2

)
, V > VM .

(21.3)

where ξ = ξM is value of the dimensionless coordinate, for which equality σr = σM

holds, V0 and VM are cavity expansion velocities defining the upper and lower limits,
respectively, of the scope of use of the Mohr-Coulomb and Tresca’s condition. To
determine the plastic wave front velocity, an approximate formula is used:

c = 3
√
sV + C0/3 (21.4)

Cavity expansion velocities VM and V0 are determined as follows. It follows from
the relations on the SW for ξ = 1 that σr = ρ0cυ = ρ0c2θ . The values of SW
velocity, volumetric strain and ε, corresponding to V = VM , will be designated as
cM , θM and εM . If cM is assumed to be defined by formula (21.4), then

cM = 3
√
sVM + C0/3, θM = ε3M = V 3

M

c3M
, σM = ρ0c

2
MθM = ρ0

V 3
M

cM

and VM will be determined from the following cubic equation:

(
τM − τ0

μ

)(
3
√
sVM + C0/3

) = ρ0V
3
M (21.5a)

Similarly, the value of cavity expansion velocity, for which equation σr (ξ = ε) =
σM holds, will be designated by V0. To determine V0, it is required to solve nonlinear
equation

τM − τ0

μ
= τ0

μ

(
1 − ε

−2μ
0

)
+ ρ0V 2

0

1 − ε30

(
3

(μ − 2)(2μ − 1)

+ 2μ + 1

2μ − 1
· ε

1−2μ
0 − μ − 1

μ − 2
· ε

4−2μ
0

)
, (21.5b)

where ε0 = V0
/
c0, c0 = 3

√
sV0 + C0/3.

According to the widely used model of local interaction (LIM), expression
(21.3) for the pressure on the cavity boundary is adopted as contact pressure in the
impactor/resisting medium interaction. A projection of the motion velocity vector of
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the impactor on the normal to an element on the surface of the body is taken as cavity
expansion velocity. Such an approach was used to evaluate forces resisting penetra-
tion of spherical and conical impactors into dry and wet sandy soils in the penetration
velocity range of 50–450 m/s, providing good agreement with the experimental data
[23].

21.3 Approximating the Stress-Velocity Relation

Analysis of expression (21.4) shows that, for zero velocity, the value of ε = V
/
c

also becomes equal to zero. At the same time, the stress on the cavity boundary
(21.3) will tend to infinity. Thus, for low velocities, expression (21.3) cannot be used
to evaluate stress.

Earlier, the issue of evaluating a minimal stress on the cavity boundary, required
for its expansion (critical pressure), was considered. The Cauchy problem was
obtained, the solution ofwhich determines critical pressure in a linearly compressible
elastic ideally plastic medium with Tresca’s [12] and Mohr-Coulomb [17] plasticity
conditions.

dσr

dξ
+ 2

τ0 + μσr

ξ
= 0, ε ≤ ξ ≤ 1, σr (ξ = 1) = 2τ0

/
3

The solution of the Cauchy problem is function σr (ξ) = 2
3τ0ξ

−2μ + τ0

(
ξ−2μ−1

μ

)
,

which, for ξ = ε, defines critical pressure.
In the present paper, it is proposed to use this critical pressure value as the value

of stress for zero velocity

σC = 2

3
τ0ε

−2μ
C + τ0

(
ε

−2μ
C − 1

μ

)
, εC = 3

√
3(1 − ν)τ0

E
(21.6a)

where E is Young modulus, ν is Poisson’s coefficient. The value of critical pressure
for μ = 0 can be found by passing to the limit μ → 0 in (21. 6a)

σC = 2

3
τ0

(
1 + ln ε−3

C

)
(21.6b)

In [17], it is shown that the approximation inaccuracy of formula (21.6) is within
6% for the values of the internal friction coefficient changing all over the admissible
range of 0 < μ < 0.75 and the initial value of yield strength changing by three
orders of magnitude in the range of 0.01 < τ0 < 10 MPa.

When the velocity tends to infinity, the value of ε < εs remains limited,
εs = s−1/ 3. Analysis of Eq. (21.3) shows that the stress on the cavity boundary
for expansion velocities V > C0 will satisfy inequality
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ρ0V
2 < σ < 1.1ρ0V

2 (21.7)

for the variation of the quantity characterizing ultimate compressibility of the soil in
a sufficiently wide range of 1 < s < 4. Thus, using (21.7), the coefficient with the
squared velocity in the trinomial quadratic stress-velocity relation can be determined.
Taking into account (21.6), the following expression, for example, is obtained:

σ(V ) = σC + 1.05ρ0V
2 (21.8a)

The constructed approximation of the normal stress-velocity relation of the form
of (21.8) approximates accurately enough stresses on the cavity boundary, both for
low and high velocities. For better agreement with (21.3), in the middle velocity
range, approximation (21.8) can be completed with a linear member. The coefficient
with a linear-velocity member can be determined using the least squares method
in the velocity range of interest. The coefficient can also be chosen based on the
condition of equality of the values of stresses for V = VM . It should be kept in
mind that, for V > VM , stresses over the entire range of plastic yield satisfy Tresca’s
criterion.

Thus, the resulting form of the sought trinomial quadratic approximation of the
stress-velocity relation will be

σ(V ) = γ + βV + αV 2 (21.8b)

γ = 2

3
τ0ε

−2μ
C + τ0

(
ε

−2μ
C − 1

μ

)
, β = −2τM ln εM

VM
,

α = ρ0

1 − ε3M

(
3

2
− εM − ε4M

2

)

where εC is determined according to Eq. (21.6), εM = VM
/(

3
√
sVM + C0/3

)
, VM is

determined by solving cubic Eq. (21.5a), using Cardano formulae, and parameter β

is assumed to be large or equal to zero.

21.4 Results of Numerical Verification

Numerical implementation of relations (21.8) is demonstrated, using an example of a
soil mediumwith the shock adiabat having parametersC0 = 1700 m/s, s = 3.4. The
parameters of the Mohr-Coulomb-Tresca plasticity condition will vary. The function
in the yield criterion will be appropriately represented as a function of pressure

f2(p) ≡
{

τ0 + kp, 0 < p ≤ pM ,

τM , p > pM
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where k = μ
/(

1 − 2μ
/
3
)
is internal friction coefficient.

Two possible choices of yield strength will be considered. In the first choice, the
maximal value of yield strength varies, τM = 20, 35 and 50 MPa, with fixed values
of τ0 = 3 MPa and k = 0.3. In the second choice, τ0 = 5 MPa and τM = 50 MPa
are fixed, while coefficient k assumes values 0.3, 0.45 and 0.6. These relations are
presented in Fig. 21.1.

Figure 21.2 shows the values of critical stress (a stress required for the cavity to
expand at a velocity close to 0) as a function of the initial value of yield strength (a) and
as a function of the internal friction coefficient (b). The exact solution was obtained
using the algorithm [6, 7] as a result of numerically solving [17] a boundary-value
problem for a system of two first-order ordinary differential equations according
to the fourth-order-accuracy Runge-Kutta method. The approximate solution was
obtained using formulae (21.6) and differs from the exact one by not more than
2–3%.

Fig. 21.1 Versions of yield
strength/Mohr-Coulomb-
Tresca pressure relations:
varied maximal value of
yield strength (a) and
internal friction coefficient
(b)
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Fig. 21.2 Critical stress on
the cavity wall as a function
of initial value of yield
strength τ0 a and as a
function of internal friction
coefficient k b an exact
solution (solid line) and an
approximation using
formulae (21.6)

For the first choice of yield strength (Fig. 21.1a), the obtained value of critical
pressure is σC = 63.5 MPa (shown by a cross in Fig. 21.2a). The values of stress are
σM = 80, 120 and 180 MPa, with the constraints on the velocity range V0 = 97.4,
144 and 194 m/s, VM = 310, 408 and 481 m/s.

For the second choice of yield strength (Fig. 21.1b), the obtained values of critical
pressure are σC = 63.5, 89.4 and 122 MPa for k = 0.3, 0.45 and 0.6, respectively
(shown by crosses in Fig. 21.2b). The values of stress are σM = 180, 130 and
117 MPa, with the constraints on the velocity range V0 = 194, 130 and 87.5 m/s,
VM = 481, 422 and 387 m/s.

Figure 21.3 shows the diagrams of stresses on the cavity wall as a function of its
expansion velocity, as obtained by using the solution of the problem of a spherical
cavity expansion in a medium with the Mohr-Coulomb plasticity condition (the
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Fig. 21.3 Stress on the
cavity wall as a function of
its expansion velocity:
k = 0.3, τM = 20 MPa
(a) and k = 0.6,
τM = 50 MPa (b)

dashed line with triangles), with Tresca’s plasticity condition for a fixed value of
yield strength, equal to τM (the dashed linewith squares), the solid line corresponding
to the quadratic approximation according to formula (8). Good agreement of the
approximation results is observed for the value of cavity expansion velocity V > VM .
The computations show that themaximal relative inaccuracy of approximation (21.8)
in the velocity range of VM < V < 10VM is within 2–3%.

It was earlier shown [23] that LIM based on the analytical solution of the spherical
cavity expansionproblem in the assumptionof incompressibility of the soil behind the
shockwave front satisfactorily describes the forces resisting penetration of cylindrical
impactors into compacted dry andwater-saturates sand soils in a general casewith the
account of the limited dependence of yield strength on pressure. However, in a limited
impact velocity range, satisfactory results can be obtained using simpler models. For
instance, in [23], good agreement was demonstrated between the experimental data
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andnumerical results for dry sand, using theMohr-Coulombyield criterion for impact
velocities from 100 to 400 m/s.

In modeling penetration resistance of water-saturated soil, the model using the
Mohr-Coulomb yield criterion satisfactorily describes the force as a function of
velocity only for impact velocities not exceeding 120 m/s. For higher impact veloci-
ties, the general model is required, that accounts for the limited dependence of yield
strength on pressure according to the Mohr-Coulomb-Tresca yield criterion. At the
same time, completely neglecting shear properties of water-saturated soils leads to
inaccuracies in evaluating the impact resistance force several times as big as that of
the experiment. Thus, nonlinear shear resistance of dry and water-saturated soil must
be taken into account in analyzing impact and penetration problems.

However, cohesion or initial strength of both dry and water-saturated soils is
a negligibly small quantity. The applicability of the LIM to determining maximal
stress resisting penetration of a conical impactor into a soil medium, accounting
for its initial strength, will be assessed by analyzing a spherical cavity expansion
problem. According to the LIM, the force resisting penetration at constant velocity
u0 of a cone with the apex angle of 2η, is defined as follows

F = (σ + τctgη)S,

where σ is normal stress, and τ is tangential stress acting on the lateral surface of
the conical impactor, S is cone basis area.

Nominal stress is determined based on formula (21.8b), where V = u0 sin η is
projection of the velocity vector onto a normal to the cone surface. Tangential stresses
for V < VM are determined based on Coulomb’s law of dry friction τ = k f σ . For
higher impact velocities, V ≥ VM , the maximal tangential stress is assumed to be
limited by the value of

τ = k f
(
γ + βVM + αV 2

M

)
.

Thus, the relation between the force resisting penetration of a steel conical
impactor into frozen soil and the velocity will be

F(V ) =
{(

1 + k f ctgη
)(

γ + βV + αV 2
)
S, V < VM ,((

γ + βV + αV 2
) + k f ctgη

(
γ + βVM + αV 2

M

))
S, V ≥ VM

(21.9)

In [30], the results of studying the processes of impact and penetration of a steel
conical impactor into frozen sandy soil, based on the inverse experiment method-
ology, using the pressure bar technique, are published. Diagrams of maximal values
of the force resisting penetration of cones with the base diameters of 10, 12 and
19.8 mm into soil as a function of impact velocities in the range of 100–400 m/s are
presented. The condition of the sandy soil specimens before freezing at a temper-
ature of −18 °C is characterized as fully water-saturated. As a result of a series
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Fig. 21.4 Maximal value of
the force resisting
penetration of a cone with
the apex angle of 30° into
frozen sand: experiment and
approximation

of numerical analyses, parameters of Grigoryan’s soil medium model were deter-
mined, that provide good agreement between the results of axisymmetric numerical
computations and experimental data.

In the present paper, similar parameters of the initial elastic portion for frozen
sand are used: Young’s modulus E = 21 GPa, Poisson’s coefficient v = 1/3 and
the parameters of the shock adiabat: C0 = 1700 m/s, s = 3.4. To approximate
the nonlinear relation between yield strength and pressure, used in the numerical
analyses of [30], the following values of the parameters of the Mohr-Coulomb-
Tresca yield criterion (cohesion, internal friction and maximal yield strength) are
used: τ0 = 16 MPa, k = 0.15, τM = 32.5 MPa, the friction coefficient being equal
to k f = 0.1.

Figure 21.4 presents maximal values of the force resisting penetration of a 10mm-
dia steel conical impactor with the apex angle of η = 30 degrees into frozen soil,
as obtained in the inverse experiment [30] and based on approximation (21.8),
(21.9). The vertical lines show a relative error of 15%. Good agreement between
the experimental and simulated results is observed in the impact velocity range of
100–400 m/s.

21.5 Conclusion

The problem of a spherical cavity expanding at a constant velocity from a point in
an infinite elastoplastic medium with the Mohr-Coulomb-Tresca plasticity condition
has been analyzed. A relation between the stress on the cavity boundary and its
expansion velocity has been obtained in the assumption if incompressibility of the
medium behind the shockwave front.
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Finite expressions for coefficients of the ‘stress-velocity’ trinomial approximation
have been obtained for the first time as a function of the experimentally determined
physical-mechanical parameters of the soil (coefficients of the stress adiabat and the
yield strength-pressure relation).

The obtained formulae have been verified by comparing them with the already
known experimental data on penetration of steel conic impactors into frozen sandy
soil. It is shown that disagreement between the computational and experimental
results is within 15%.
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Chapter 22
A Heterogeneous Medium Model and Its
Application in a Target Perforation
Problems

Alexander E. Kraus, Evgeny I. Kraus, and Ivan I. Shabalin

Abstract The cermet composite is considered as a mixture of solid materials
with a given volume concentration and joint deformation of the components. The
REACTOR software package developed at the Institute of Theoretical and Applied
Mechanics of the Siberian Branch of the Russian Academy of Sciences (ITAM SB
RAS) is used for themodeling. Various approaches to the prediction of elastic–plastic
characteristics, such as elastic moduli and yield strength, describing the behavior of
heterogeneous materials, are considered. It is shown that the mixture rule, which
approximates the value of elastic sound velocities from the volume concentration
of the components, proved itself well for the calculation of elastic moduli, while
the yield strength must be calculated through the mass concentration. The proposed
model of heterogeneous medium has been applied to solving a number of problems
on the resistance of heterogeneous and gradient barriers to impact by a hardened
striker. For barriers from various combinations of mild steel and Al2O3 ceramics at
equal volume concentrations, ballistic curves of their resistance to impact of a solid
steel core are constructed. It is shown that a layered barrier, consisting of equal in
volume plates of Al2O3 ceramics and steel, is more resistant to impact by a solid
core in comparison with other cermet barriers. In a numerical experiment, it has been
found out that heterogeneous and gradient barriers have an advantage over a two-
layer barrier (B4C ceramics + steel) in the range of encounter velocities exceeding
650m/s. A series of 2D and 3D calculations formodeling the perforation of heteroge-
neous barriers has been performed. It is shown that the resistance of heterogeneous
barriers to perforation by a solid striker is approximately at the same level. The
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heterogeneous model of ice has made it possible to explain the anomalous depen-
dence of the depth of the cavity in ice on the speed of impact with a steel cylinder,
which was discovered.

Keywords Heterogeneous medium model · Elastic moduli · Yield strength ·
Cermet composite · The REACTOR software package · Gradient barrier · Shock
adiabat

22.1 Introduction

Experimental work on the practical creation of technologies for the manufacture of
heterogeneous media with desired properties often outperforms the methods for
predicting the properties themselves. Therefore, there is a need in parallel with
conducting experiments to create mathematical models to minimize costs in experi-
ments and achieve the desired results. One such material is a heterogeneous cermet
composite based on nickel and boron carbide. So, at the ITAM SB RAS, using the
method of cold gas-dynamic spraying, a metal matrix with the addition of dispersed
particles of boron carbide is obtained. The laser energy treatment of this substrate
gives a well-mixed cermet composite [1]. The purpose of this work is to forecast the
mechanical parameters of the obtained cermet composite by numerical simulation
of the propagation of elastoplastic waves in it.

22.2 Heterogeneous Media Model

The cermet composite, consisting of a metal matrix and ceramic inclusions, has
the following geometric representation in discrete form, for example, for the two-
dimensional case. Let the composite region be divided by a difference grid, the cells
of which fill the space without gaps and overlaps. Then, a given volume of ceramic
inclusions is randomly distributed over the matrix volume (see Fig. 22.1). Using this
algorithm, it is possible to build various forms of ceramic inclusions in the metal
matrix. The examples are shown in Fig. 22.2.

Each triangular cell has its own physical and mechanical properties. When
switching from cell to cell, properties can change abruptly. At the cell boundaries,
the conditions for the joint movement of the cermet components are satisfied. Inside
the cells, the calculations are carried out in accordance with the explicit difference
scheme.

To evaluate the bulk modulus of the cermet composite, the additive mixture model
can be used [2–4]. We assume that the size of the composite grains is small enough
to substantially distort the front and amplitude of the compression wave propagating
through the cermet at a speed D. The specific volume of the mixture
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Fig. 22.1 Geometric representation of the 3D cermet composite is on the left. The cross section of
the sample is on the right, and the volumetric content of ceramics is 35%

Fig. 22.2 Ceramic inclusions: acute-angled ones on the left rounded ones on the right. The volume
concentration of ceramics is 35%

Vmix(P) =
N∑

j=1

α j Vj (P), α j = m j∑N
j=1 m j

where Vj is the specific volume of the j-th component, P is the pressure, α is the
mass concentration of the component, mj is the mass of the jth component, N is the
number of components in the mixture.

Following [5], we write the pressure in the mixture through the parameters of the
linear dependence of the velocity of the shock wave on the mass velocity, which has
the form:
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Pmix = ρ0mixC2
0mix(1 − ρ0mix/ρmix)

[1 − Smix(1 − ρ0mix/ρmix)]
2 ,

while the parameters for the mixture are related as

Dmix = C0mix + SmixUmix,

1

(C0 mixρ0 mix)2
=

N∑

j=1

α

(C0 jρ0 j )2
,

1

Smixρmix
=

N∑

j=1

α

ρ0 j S j
,

where C0mix, c0 j and Smix, Sj are the parameters in linear relation for the speed of
the shock wave.

We calculate the velocity of the body waves as

C2
B mix = ∂Pmix

∂ρmix
= ρ2

0 mixC
2
0 mix[1 + Smix(1 − ρ0 mix/ρmix)]

ρ2
mix[1 − Smix(1 − ρ0 mix/ρmix)]

2 .

Passing to the limit in expression C2
Bmix at ρmix → ρ0mix, we obtain that C2

Bmix =
C2
0mix. This shows that the velocity of the body waves is determined by C2

0 mix, i.e.,
by the accuracy of the low-speed part of the shock adiabat, where the shock wave of
small amplitude is a wave of elastic–plastic compression.

The rapid development of the production of composite and other heterogeneous
materials has necessitated a theoretical understanding of the nature of such materials
and methods for predicting the physical and mechanical properties from the prop-
erties of the components of their constituents [6–8]. On the basis of mathematical
processing of numerous experimental data and theoretical constructions, empirical
rules of mixture have been developed. Let a compression wave propagate along a
sample of materials mixture. The propagation time of the wave at distance L consists
of its propagation times in materials 1 and 2,

t = L

C
= x

C2
+ L − x

C1
.

Using the volumetric content of the second material β = x/L with a constant
cross-sectional area of the sample, we obtain

1

C
=

N∑

j=1

β j

C j
, β j = A j∑N

j=1 A j

,

where Aj is the volume of the jth component, β is the volume concentration of the
component, N is the number of components in the mixture.
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Fig. 22.3 Behavior of artificial viscosity at the front of elastic precursor and bulk compression
wave at two time moments

Given the volume concentration of component materials in the cermet, we find
the necessary sound speeds. Knowing the velocities of elastic and body waves, we
determine the elastic moduli Kmix and Gmix of the cermet:

Kmix = C2
Bmixρ0mix, Gmix = 3

(
C2

L mix − C2
Bmix

)
ρ0mix

4
.

Using the REACTOR software package [9], a one-dimensional shock wave can
be used to calculate the elastic moduli of a cermet composite. Let the composite
block, placed in the rigid sidewalls, colliding with hard surface. An elastoplastic
compression wave propagates from the rigid wall into the composite. In an explicit
difference scheme, artificial viscosityQ is used to smooth the gaps. From the change
of the artificial viscosity, one can evaluate the magnitude of the gradients at the front
of the compression waves. The elastic precursor propagates with speed CL of the
elastic longitudinal wave. Next, a plastic wave moves with speed CB of the body
waves (see Fig. 22.3).

Knowing the sequence of time intervals {ti} and the set of coordinates {xli, xbi}
of the front of the elastic and body waves, we find the average values of velocities
CL and CB :

CB i = xBi+1 − xBi
ti+1 − ti

, CBmix =
∑n

i=1 CB i

n
,

CL i = xL i+1 − xL i

ti+1 − ti
, CL mix =

∑n
i=1 CL i

n
,

where n is the number of intervals.
The REACTOR software package uses the Mises form yield strength. For a one-

dimensional elastoplastic wave, Sxy = 0; then, through the known values of the
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deviator component of the stress tensor behind the shock wave front, we find the
yield strength of the composite [10]:

Y0 =
√
3(S2xx + 2S2yy)/2.

Thus, we can write the explicit formula for calculating yield strength Y0 of the
mixture through the corresponding values of the composite components and themass
concentration:

Y0mix =
N∑

j=1

α j Y0 j ,

where Y0 j are the yield strengths of the components of the mixtures.

22.3 Ballistic Performances of Heterogeneous Plates

Themodel of heterogeneousmedium described above allows one to construct hetero-
geneous and gradient plates and to compare their ballistic resistancewith the classical
two-layer cermet plate. A gradient model of cermet barrier with direct distribution
of ceramics concentration over the volume, i.e., an obstacle in which the ceramics
concentration decreases linearly from 100% in the front layers to 0% in the back
layers of the barrier, is shown in Fig. 22.4a. Gradient barrier with inverse distribu-
tion of ceramics concentration over the volume, i.e., an obstacle in which the steel
concentration of 100% in the front layers linearly decreases to 0%, being replaced
in volume by ceramics, is shown in Fig. 22.4b. A model of heterogeneous cermet
barrier constructed by the Gaussian distribution of ceramic clusters over the volume
of steel is presented in Fig. 22.4c. A model of classical two-layer cermet plate, is
shown in Fig. 22.4d.

For numerical simulation of interaction of solid projectiles with heterogeneous
and gradient barriers, the REACTOR software package was used [9]. The cermet
components were mild steel AISI1015 and ceramics Al2O3, and solid steel 2P was
used for the projectile. The impact speed was 750 m/s. The thickness of the barriers
varied from1 to 3 cm.Based on the results of a series of calculations, it was shown that
the layered barrier, consisting of equal in volumeAl2O3 ceramic and steel plates, was
more resistant to impact compared to other cermet barriers (see Fig. 22.5). The second
by resistance to a solid core impact is the gradient barrier with direct distribution
of Al2O3 ceramics concentration over the volume. The gradient barrier with inverse
distribution of Al2O3 ceramics concentration over the volume and the heterogeneous
barrier with uniform distribution of Al2O3 ceramics concentration over the volume
have approximately the same resistance [11].
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a) b)

c) d)

Fig. 22.4 Gradient, heterogeneous, and layered barriers of mild steel and ceramics: 1—mild steel,
2—high-strength hardened steel 2P, 3—ceramics
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Fig. 22.5 Ballistic curve: dependence of the reduced residual momentum of the core on the
thickness of the barrier. ♦—layered barrier; —gradient barrier with direct distribution of Al2O3
ceramics concentration by volume; —gradient barrier with inverse distribution of Al2O3 ceramics
concentration by volume; —heterogeneous barrier with uniform distribution of Al2O3 ceramics
concentration by volume

Let us consider the dependence of the resistance of heterogeneous plates on the
concentration of Al2O3 ceramics with various shapes of ceramic inclusions. The
REACTOR software package provides for the possibility of building a cermet mate-
rial by creating three types ofmodels of heterogeneousmaterialmatrix,whichwewill
call model I, II, and III, according to Fig. 22.6: model I—cluster ceramic inclusions
combined in the neighborhood of the faces of the element, based on the probability
distribution, according to a given concentration; model II—cluster ceramic inclu-
sions combined in the neighborhood of the element nodes, based on the probability

Fig. 22.6 Examples of heterogeneous materials with various shapes of inclusions, the roman
numerals correspond to the model
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Fig. 22.7 Dependence of the limiting ballistic velocity (Ubl) of heterogeneous plates on volume
fraction (β%) of ceramics with different shapes of inclusions. —model I; —model II; —model
III

distribution, according to a given concentration; model III—single inclusions of
ceramic material based on a probabilistic normal distribution, according to a given
concentration.

A series of calculations of the plates shock loadingwasmade. The collision speeds
were in the range of 100–600 m/s. The thickness of the heterogeneous plates is L =
1.2 cm. The projectile with length of 2.2 cm and diameter of 0.4 cm was made in the
form of a core with a truncation of the lively head part made of 2P-hardened steel.

Based on a series of calculations for heterogeneous plates with various shapes
of inclusions, the dependence of the limiting ballistic velocity (the speed, at which
the plate of a given thickness ceases to withstand the load of the projectile) on the
volume fraction of ceramics in the plate was constructed (see Fig. 22.7). It is shown
that, regardless of the shape of the ceramic grain included in the steel matrix, the
limiting ballistic velocity decreases with increase in the volume fraction of ceramics.

Let B4C ceramics be used in the cermet plates. A series of calculations was made
for penetration of plates with the same weight and size parameters in the range of
meeting speeds of 400–1000 m/s. The calculation results are summarized in the form
of ballistic curves (see Fig. 22.8), which are constructed by the least squares method
according to the scattered values of the residual velocities. The scattering is due to a
random distribution of the materials over the barrier volume. At meeting speeds of
the projectile with the obstacle of less than 600 m/s, the two-layer barrier has higher
armor resistance; however, at speeds of more than 670 m/s, the advantage passes to
heterogeneous and gradient barriers [12].

We studied the resistance of barriers constructed from heterogeneous plates as
follows: a monolithic plate, a plate of two layers in contact, two plates with spacing
between them of 1.2 and 2.4 cm (see Fig. 22.9, examples of two configurations). The
calculations were performed for two cases: In the first case, the yield strength of the
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Fig. 22.8 Ballistic curves of heterogeneous, gradient, and layered barriers.Ui is the impact velocity,
Ur is the residual velocity of the projectile: —layered barrier; ♦—gradient barrier with direct
distribution of B4C ceramics concentration by volume; —gradient barrier with inverse distribution
of B4C ceramics concentration by volume; —heterogeneous barrier with uniform distribution of
B4C ceramics concentration by volume

Fig. 22.9 On the left, the barrier of heterogeneous plates in contact; on the right, the plates spaced
2.4 cm apart

projectile was increased to Y = 5 GPa (rigid projectile), and in the second case, Y =
1.9 GPa (deformable projectile).

The results of model calculations revealed rather interesting trends in the resis-
tance of heterogeneous barriers [13]. The limiting ballistic velocity for both projec-
tiles is the same and is approximately equal toUbl = 275m/s. However, the behaviors
of the residual velocity are different. For the rigid projectile, all the barrier configura-
tions demonstrate practically the same resistance with increase in the impact velocity
(see Fig. 22.10a). In the case of deformable projectile, the ballistic curves diverge
in a fan style with increase in the impact velocity, and the calculation results have
a significant spread in the residual velocity (see Fig. 22.10b). This is due to the
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Fig. 22.10 Ballistic curves of perforation of heterogeneous barriers: a a rigid projectile, b a
deformable projectile. 1—monolithic plate, 2—two-layer one with layers contact, 3—two-layer
one with layers spacing of 2.4 cm, 4—two-layer one with layers spacing of 1.2 cm

random distribution of ceramic particles over the volume of the metal, because for a
deformable projectile, the presence of ceramics in the front layers of the barrier, espe-
cially the monolithic one, leads to deformation of the head part and an increase in the
cross section, i.e., to increase in the resistance. Thin heterogeneous plates deform the
head of the projectile to a lesser extent; therefore, the scatter of the residual velocity
is much lower.

22.4 Perforation of Ice Coverings

At the ITAM SB RAS, a series of experiments was carried out on a single-stage gas
facility on penetration of steel cylinders into massive ice targets. The steel cylinders
have diameter d = 1.5 cm, height h= 1.5 cm, andmassm≈ 20 g. The ice targets have
diameter dt = 26.2 cm and height ht = 35.0 cm. The experimental results showed
an abnormal dependence of depth of the ice caverns on the speed of the incident
cylinder (see Table 22.1) [14].

Table 22.1 Results of
experiments on the
penetration of a steel cylinder
into ice barriers

The impact velocity, U m/s 191 275 285

The cavern depth, L cm 11.0 11.5 10.5
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Fig. 22.11 Statement of the
problem of a steel cylinder
collision with a
heterogeneous ice target

The study of the dynamic properties of ice shows the complexity of modeling in a
wide range of loading speeds [15, 16], where shock adiabats of ice for different ranges
ofmass velocities appearing behind the front of the shockwave are given.We assume
that for the mass velocities in the range of 200–1000 m/s, the ice behind the front of
the shockwavewill be amixture of different solid phases (see Fig. 22.11). This is also
confirmed by experimental studies [17], where a curve of volume compressibility of
ice is constructed, which has a characteristic shelf in the range 0.15 < �V/V < 0.45
of the change in ice volume. The numerical values of the strength parameters of ice,
for different authors, vary within the same order. The most suitable values are given
in [18].

The process of cavity formation in a massive ice target during the impact of a
steel cylinder was simulated in both axial two-dimensional and three-dimensional
settings. When the projectile was introduced into the surface layers of the target,
the ice was destroyed, and its fragments formed on the periphery of the projectile
were carried outside the cavity. Fragments of ice in front of the steel cylinder were
compacted and moved with it to the complete stop.

Figure 22.12 shows the results of numerical solution of the two-dimensional and
three-dimensional problems on the penetration of a steel cylinder into a barrier from
ice phase VII. In the calculations for ice phase VII, we used the shock adiabat with
parameters C0 = 1340 m/s, S = 1.4 [4]. At impact velocities U = 275, 285 m/s, the
cavity depths obtained in the calculations and experiments are in good agreement,
while at U = 191 m/s, they differ significantly. Using the parameters of the shock
adiabat for ice phase VI C0 = 388 m/s, S = 2.61 [4], the crater depth was 10.3 cm at
the impact velocity U = 191 m/s, which is in a good agreement with experimental
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Fig. 22.12 Dependence of the cavity depth L on impact velocity U: Legend: —experiment;
homogeneous ice model: �—2D simulation, —3D simulation; heterogeneous ice model: —a
mixture of ice VI and VII; dashed black line is the calculated dependence L(U) for ice phase VII,
solid one-calculated dependence for a mixture of ice phases VI and VII

data. The use of the heterogeneous ice model made it possible to reproduce with
sufficient accuracy the experimental dependence of the crater depth on the collision
velocity. The volume concentration of the ice phase VII linearly increases from its
initial value αVII = 0 at U = 190 m/s to the final value αVII = 1 at U = 300 m/s.

Consider the problem of breaking through the ice cover. Let a steel ring with
diameter of 1.92 m and thickness of 0.1 m fly with initial speed of 2000 m/s onto an
ice barrierwith thickness of 1m.Thehigh-speed ring forms an annular crater in the ice
barrier at the initial stage of interaction. The unloading of the shock wave accelerates
the central part of the ice plate, while the sprouting annular cavity separates it from
the resting barrier (see Fig. 22.13). The diameter of the knocked out hole is 2.3 m.

Figure 22.14 shows a diagram of the distribution of ice fragments outside the
knockout hole. Most of the fragments (about 98%) have a size from 0.2 to 2.5 cm,
i.e., the central body is almost completely destroyed. On the periphery of the hole,
there are larger fragments, but with a velocity vector directed outside the hole. To
ensure the removal of the entire mass of the central body, the steel ring impact at an
angle is recommended.

22.5 Conclusion

1. The additive model of the mixture is applicable only when there is reliable
accuracy of the shock adiabat in the low-velocity region;

2. The rule of mixtures based on the processing of numerous experimental data is
well suited for calculating the elastic moduli K and G.
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Fig. 22.13 Removal of the
central part from the ice plate
by a high-speed steel ring

Fig. 22.14 Distribution of
ice fragments in the space
behind the barrier. Legend: N
is the number of fragments,
η is the average linear size of
fragments
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3. To predict the yield strength of the cermet composite, approximation by mass
concentration is better suited.

4. Basedondirect numerical simulationof theprocesses of interactionbetween solid
projectiles and barriers, it is shown that a layered barrier consisting of equal in
volume Al2O3 ceramic and steel plates is more resistant to impact compared to
other cermet barriers. The second by resistance to a solid core impact is a gradient
barrier with direct distribution of Al2O3 ceramics concentration over the volume.
A gradient barrier with inverse distribution of Al2O3 ceramics concentration
over the volume and a heterogeneous barrier with uniform distribution of Al2O3

ceramics concentration over the volume have approximately the same resistance.
5. It was found out in a numerical experiment that heterogeneous and gradient

barriers had an advantage over a two-layer barrier (B4C ceramics + steel) in the
range of meeting velocities exceeding 650 m/s.

6. Model calculations of the perforation of heterogeneous barriers based on metal-
ceramics showed that for a rigid projectile, all the configurations of barriers
had the same resistance over a wide range of meeting speeds. Then, as for a
deformable striker, the ballistic curves diverge in a fan style with increase in the
speed of the meeting.

7. The heterogeneousmodel of icemade it possible to explain the anomalous depen-
dence of the depth of the ice cavity on the speed of impact by a steel cylinder,
which was discovered experimentally at the ITAM SB RAS.

Acknowledgements The study was conducted within the framework of the basic part of state task
of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS (GR No. AAAA-
A17-117030610136-3).
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Chapter 23
Panel Flutter Under Conditions of Local
Strong Viscous-Inviscid Interaction

Igor I. Lipatov and Van Khiem Pham

23.1 Formulation of the Problem

We consider the flow around a flat plate by a supersonic flow of viscous gas. The
Cartesian coordinate system is connectedwith the plate, the OX axis is directed along
the plate surface, the OY axis is normal to the surface. It is assumed that at a distance
l0 from the leading edge is a flexible portion having a length l. The following notation
is introduced for coordinates measured along the plate surface and normal to it, time,
components of the velocity vector, density, pressure, total enthalpy, viscosity coeffi-
cient: l0x, l0y, l0t/u∞, u∞u u∞v, ρ∞ρ, ρ∞u2∞ p u2∞H/2, μ∞μ, respectively. The
index ∞ refers to the dimensional parameters of the unperturbed incident flow. It is
assumed that the Reynolds number is large, but does not exceed the critical value, so
that the laminar flow regime is maintained.

Depending on the ratio of geometric parameters and the number Re, various flow
regimes are possible. The displacement thickness of the boundary layer changes
under the influence of a pressure perturbation �p � 1 and the main contribution to
this change being made by the near-wall region at low speeds [3]. With a nonlinear
effect on the near-wall flow, changes in velocity can be estimated as �u ∼ u ∼
�p1/2. This estimate is true if the influence of the viscosity forces is, to a first
approximation, insignificant.
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With nonlinear changes in velocity, the thickness of the near-wall region of
the shear flow also changes in the main term, which follows from the condi-
tion of conservation of flow. Then from the estimate for the longitudinal velocity
y ∼ εu, ε = Re−1/2, the estimate for the change in the displacement thickness
follows �y ∼ ε�p1/2. Moreover, it is significant that the main part of the boundary
layer with finite velocities makes a significantly smaller contribution to the total
change in the displacement thickness �δ ∼ ε�p, since the velocity changes here
are linear at small pressure amplitudes.

If the perturbations introduced into the external supersonic flow have the same
order of the initial pressure perturbation �p ∼ ε�p1/2/�x , then the estimate
for the pressure value directly determines the length of the perturbed flow region
�x ∼ ε/�p1/2. It follows that for all small pressure perturbations, the length of
the perturbed flow region exceeds the thickness of the boundary layer. This makes
it possible to use the Akkeret’s formula to determine the induced pressure pertur-
bation. For the condition of local strong interaction, it is assumed that the length of
the perturbed region of the flow is much less than the characteristic length of the
streamlined body l0.

The assumption of the effect of viscosity in the region of nonlinear changes of
velocity leads to well-known estimates of the theory of free interaction [3]. Below
we consider a regime for which the effect of viscosity is insignificant in the first
approximation. With small perturbations, such this regime is realized if the pressure
amplitude satisfies the inequality ε1/2 � �p � 1.

Under these conditions, 4 characteristic regions can be distinguished in the field
of the perturbed flow. The first region contains trickles of an inviscid supersonic flow;
the characteristic transverse dimension of this region is determined by its length and
the slope of the characteristics, then for finite Mach numbers y1 ∼ ε/�p1/2.

Region 2 is the main part of the boundary layer. At the bottom of this region is a
region of nonlinear perturbations of the longitudinal velocity (region 3), in which the
influence of viscosity is insignificant in the first approximation. To take into account
the effect of viscosity, it is necessary to introduce into consideration region 4, the
transverse size of which is estimated from the condition of the balance of viscosity
and inertia forces y4 ∼ ε3/2/�p1/2. It should be noted that the possibility of the
existence of the proposed flow structure depends on the existence of a continuous
flow in the local boundary layer (region 4).

The solution in region 3 can be written in the following form, based on the above
estimates

x = x3
/

ρ1/2
w a1/2β�p1/2 (23.1)

y = ρ−1/2
w a−1�p1/2y3 (23.2)

t = a−1β−1�p−1t3 (23.3)
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u(x, y, t, ε) = ρ−1/2
w �p1/2u3(x3, y3, t3) + . . . (23.4)

v(x, y, t, ε,�p) = ρ1/2
w a−1/2β�p3/2v3(x3, y3, t3) + . . . (23.5)

p(x, y, t, ε,�p) = 1
/(

γ M2
∞

) + �pp3(x3, t3) + . . . (23.6)

ρ = ρw + . . . (23.7)

where parameter a is determined from the solution for the flow in the unperturbed
boundary layer a = ∂u

/
∂yw. It should be noted that this parameter is equal

O
(
Re−1/2

)
in order of magnitude. Substitution of expressions (23.1–23.7) into the

system of Navier-Stokes equations and marginal transition Re → ∞, �p → ∞
lead to a system of equations

∂u3
∂t3

+ u3
∂u3
∂x3

+ v3
∂u3
∂y3

+ ∂p3
∂x3

= 0 (23.8)

∂u3
∂x3

+ ∂v3
∂y3

= 0 (23.9)

∂p3
∂y3

= 0 (23.10)

with boundary conditions

v3 = 0, u3 = y3, x → −∞

The solution can be found in the form u3 = y3 + A3(x3, t3)
Then we can transform Eqs. (23.8)–(23.10) to the form

∂A

∂t
+ A

∂A

∂x
+ ∂p

∂x
= 0 (23.11)

where the subscript “3” is omitted.
The physical meaning of the function A is a change in the thickness of the

boundary layer, takenwith the opposite sign. In the external flow it induces a pressure
perturbation �p = − ∂A

∂x .
We assume that either small periods of time are considered, or the separation is

suppressed in oneway or another. Under conditionswhen a part of the boundary layer
is located above the flexible surface, the total change in the displacement thickness
will be determined by the change in the thickness of the boundary layer and the
surface deformation w. Then the system of equations for two regions has the form
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�p = −∂A

∂x
+ ∂w

∂x
(23.12)

∂A

∂t
+ A

∂A

∂x
+ vw + ∂p

∂x
= 0 (23.13)

where vw is the vertical speed of the plate elements.
An equation describing the deformation of a flexible section [6, 7] should be added

to this system in order to finally obtain a closed system of equations

D
∂4w

∂x4
− M

∂2w

∂x2
+ ∂2w

∂t2
+ p(x, t) = 0 (23.14)

where w is the deflection of the plate, D = Eh3/(12(1− v2)) is the cylindrical stiff-
ness of the plate;M = M0+Mx ,M0-plate tension,Mx = Eh

2l

∫ l/2
−l/2

(
∂w
∂x

)2
dx—tension

due to plate deflection, E—Young’smodulus, h—plate thickness, v—Poisson’s ratio.
Equation (23.14) is a formula of theVonKarman’s theory. In addition, the equation

for the kinematic connection of parameters in region 3 and the plate

∂w

∂t
= vw − A

∂w

∂x
(23.15)

From (23.12–23.15), a system of equations was obtained for the deflection of a
plate and a change in the thickness of the boundary layer

{
D ∂4w

∂x4 − M ∂2w
∂x2 + ∂2w

∂t2 − ∂A
∂x + ∂w

∂x = 0
∂A
∂t + A ∂A

∂x − ∂2A
∂x2 + ∂2w

∂x2 + ∂w
∂t + A ∂w

∂x = 0
(23.16)

With boundary conditions

w(x, t = 0) = g1(x);w(x ≥ l/2, x ≤ −l/2, t) ≡ 0;
∂mw(x = ±l/2, t)

∂xm
= 0; ∂w(x, t = 0)

∂t
= g2(x);

A(x, t = 0) = g3(x),
∂A(x = ±L/2, t)

∂x
= 0 (23.17)

The region −l
/
2 ≤ x ≤ l

/
2 corresponds to the flexible section of the plate, and

the region −L
/
2 ≤ x ≤ −L

/
2 corresponds to the perturbed region of the flow.

The casem = 1 corresponds to the boundary condition of clamped panel, and the
case m = 2 corresponds to the boundary condition of simply supported panel.

In this paper, we will solve the system of Eqs. (23.16) with boundary conditions
(23.17) for dimensionless parameters D, M .

The nonlinear term in the Burgers equation A ∂A
∂x characterizes the process of

energy transfer between long waves and short waves, the nonlinear term A ∂w
∂x

corresponds to the interaction of the plate with the viscous gas flow.
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Fig. 23.1 The scheme of
elastic panel with
unperturbed incident flow

In Fig. 23.1. a scheme of elastic panel with unperturbed incident flow is given, on
the one side, a supersonic flow of viscous gas with speed U∞, and on the other side,
the gas is at rest; U∞, M∞—speed and Mach number of the unperturbed incident
flow, p∞—pressure of the unperturbed incident flow, p—pressure due to aerody-
namic forces,M0—plate tension, l—plate length, h—plate thickness,w(x, t)—plate
deflection.

23.2 Linear Stability Analysis of the System of Equations

After linearizing the system of Eqs. (23.16), we obtain a simpler system of equations

{
D ∂4w

∂x4 − M ∂2w
∂x2 + ∂2w

∂t2 − ∂A
∂x + ∂w

∂x = 0
∂A
∂t − ∂2A

∂x2 + ∂2w
∂x2 + ∂w

∂t = 0
(23.18)

Using the spectral method [1, 4, 8], we can reduce the system of linear partial
differential Eqs. (23.18) to the system of ordinary differential equations.

The system of Eqs. (23.18) can be represented as

{
DD4xw − MD2xw + ∂2w

∂t2 − D1x A + D1xw = 0
∂A
∂t − D2x A + D2xw + ∂w

∂t = 0
⎧
⎨

⎩

∂w
∂t = u
∂u
∂t = −(DD4x − MD2x + D1x )w + D1x A
∂A
∂t = −D2xw − u + D2x A
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∂

∂t

⎛

⎝
w
u
A

⎞

⎠

3n×n

=
⎡

⎣
Z I Z
Dw Z D1x

−D2x −I D2x

⎤

⎦

3n×3n

⎛

⎝
w
u
A

⎞

⎠

3n×n

(23.19)

where D1x , D2x , D4x are the differential matrices of the first, second and fourth
orders of size n × n, Z is the zero matrix of size n × n, I is the identity matrix of
size n × n, Dw = −(DD4x − MD2x + D1x )

In [4], formulas for the determination of differential matrices of the first and
second orders are shown

If n is an even number

D1x,k j =
{

0 k = j
1
2 (−1)k− j cot (k− j)h

2 k 	= j

D2x,k j =
{ − π2

3h2 − 1
6 k = j

−(−1)k− j 1
2 sin

−2 (k− j)h
2 k 	= j

h = 2π

n

If n is an odd number

D1x,k j =
{

0 k = j
1
2 (−1)k− j sin−1 (k− j)h

2 k 	= j

D2x,k j =
{ − π2

3h2 − 1
12 k = j

−(−1)k− j 1
2 sin

−1 (k− j)h
2 cot (k− j)h

2 k 	= j

D4x = (D1x )
4

h = 2π

n

the fourth-order differential matrix is calculated by the method shown in [8]. In
this paper the number of nodes n = 64, when the number of nodes is doubled, the
calculation results remain practically unchanged (Table 23.1).

Table 23.1 The eigenvalues of the matrix in (23.19) for D = 1; 2

D = 1, M = 1 iω D = 2, M = 1 iω

k 1 0.42 ± 1.69i k 1 0.39 ± 1.96i

2 0.25 ± 4.68i 2 0.23 ± 6.15i

3 0.17 ± 9.64i 3 0.15 ± 13.18i

4 0.12 ± 16.61i 4 0.117 ± 23.06i

5 0.10 ± 25.6i 5 0.094 ± 35.77i

10 0.05 ± 100.55i 10 0.047 ± 141.7i
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Using the spectral method, we can find unstable modes with the highest growth
increment for each integer wave number. We can say that there are always growing
modes for all integer wave numbers. This reasoning is also valid for all positive real
wave numbers k ≥ 1. It is clear that when using spectral methods, traveling waves
are represented as sums of harmonics whose wave numbers are integers.

w =
n/2∑

k j=−n/2

wje
−i(k j x−ωt)

A =
n/2∑

k j=−n/2

A je
−i(k j x−ωt)

n is an even number.
In Figs. 23.2 and 23.3, with an increase in the wave number, the maximum

growth increment decreases linearly, and the frequency increases according to a
quadratic law. Numerical results showed that the maximum growth increments
at small wavenumbers are greater than the maximum growth increments at large
wavenumbers. Therefore, unstable modes of long waves grow faster than unstable
modes of short waves.

23.3 Solution of the Problem in Nonlinear Mode

The system of Eq. (23.16) with boundary conditions (23.17) are solved using the
finite difference method of the third and fourth order of accuracy, built on a uniform
grid, and the second order Runge-Kutta method. The following functions and values
are selected

L = 2; l = 1; g1(x) = 0 ∀x; g2(x) = 0 ∀x;
g3(x) = A0 exp

(−25x2
); A0 = 1;m = 1; D = 10−3; M0 = 1

As the cylindrical stiffness of the plate D decreases, its oscillation becomes more
complex due to the nonlinearity of the system. This is explained by the fact that, as
the cylindrical stiffness D decreases, the term in the fourth-order derivative becomes
less important, and the nonlinear term for tension in (23.16) in the second-order
derivative plays the main role.

Using the Bubnov-Galerkin method, we can reduce the plate vibration equation
(VonKarman’s equation) to a systemof ordinary differential equations. Let us expand
the solution for deflection of the plate according to the eigenmodes of oscillation of
the plate wj (x) with unknown amplitudes A j (t)
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Fig. 23.2 The eigenvalues of the matrix in (23.19) in the complex plane for D = 1

w(x, t) =
∞∑

j=1

wj (x)A j (t)

We substitute the last expression for the deflection of the plate into Eq. (23.14) in
vacuum

D
∂4w

∂x4
− (M0 + Mx )

∂2w

∂x2
+ ∂2w

∂t2
= 0 (23.20)

where Mx = 6D
l

∫ l/2
−l/2

(
∂w
∂x

)2
dx .

Multiply (23.20) by the eigenfunction wn(x) and integrate the resulting product
in x from −l

/
2 to l

/
2. Due to the orthonormality of the eigenfunctions, we obtain

the following equation for the nth amplitude [6]
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Fig. 23.3 The eigenvalues of the matrix in (23.19) in the complex plane for D = 2

∂2An

∂t2
+ ω2

0n An + 12D
∞∑

m,k, j=1

amka jn Am Ak A j = 0 (23.21)

where

∫ (
∂4wj

∂x4
− M0

∂2wj

∂x2

)
wndx = ω2

0nδnj

∫ l/2

−l/2
wjwndx = δnj

δnj is Kronecker symbol
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a jn = 1√
2l

l/2∫

−l/2

∂wj

∂x

∂wn

∂x
dx = 1√

2l

l/2∫

−l/2

∂2wj

∂x2
wndx

It is believed that |An| � |A1| ∀ n > 1 and amn � a11 ∀m, n > 1, then in the
equation for amplitude A1 we can drop the terms that contain amplitudes with an
index above 1. Hence, the equation for A1 is written in the form

∂2A1

∂t2
+ ω2

01A1 + Ka211A
3
1 = 0 (23.22)

where K = 12D.
Equation (23.22) is a Duffing equation, we look for an approximate solution

(23.22) in the form of an asymptotic expansion of Poincare type [2]

A1 = A10 + εA11 + ε2A12 + . . .

ω2
01 = ω2 + εc1 + ε2c2 + . . . (23.23)

where ε = Ka211.
By substituting the expansion (23.23) into the Duffing Eq. (23.22) and equating

the coefficients at the same powers, we obtain the following problems for A10, A11

••
A10 +ω2A10 = 0; A10(0) = a0,

•
A10 = 0 (23.24)

••
A11 +ω2A11 + c1A10 + A3

10 = 0; A11(0) = 0,
•
A
11

= 0 (23.25)

Solution of Eq. (23.24) A10 = a0 cos(ωt).
By substituting the resulting solution (23.24) into Eq. (23.25) and using the

trigonometric identity cos(3x) = 4 cos3(x) − 3 cos(x), we obtain

••
A11 +ω2A11 + a0

(
c1 + 3a20

/
4
)
cos(ωt) + a30cos(3ωt)

/
4 = 0

We discard the secular term a0
(
c1 + 3a20

/
4
)
cos(ωt) therefore c1 = −3a20

/
4.

For the first approximation

ω2
01 = ω2 + εc1

ω =
√

ω2
01 − 3εa20

/
4

From here we get the solution of the Duffing equation in the first approximation
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A1 = a0 cos(ωt) + a30
32

cos(3ωt)

where ω =
√

ω2
01 − 3εa20

4 , ε = 12Da211.
Hence the first mode contains two harmonics with frequencies ω/2π, 3ω/2π . In

addition, it also follows from [6] that an interaction was observed between the first
two main modes of plate vibration. This confirms the reliability of the calculation of
the oscillation of the plate, as shown below.

Using the Singular Value Decomposition (SVD) [5], it was revealed that there are
8 main modes (in Fig. 23.4 and Table 23.2), and these modes contain more than 99%
of the vibrational energy of the plate.

In Fig. 23.5 and Table 23.3 the ratio of the harmonics frequencies of the first mode
f11 : f12 ≈ 1 : 3 due to cubic nonlinearity and resonance f22 : f11 : f21 : f23 : f12 :
f24 ≈ 1 : 3 : 5 : 7 : 9 : 11 due to the interaction between the first two main modes
are found.

Fig. 23.4 Normalized energy of modes (a) and 5 first normal modes (b)

Table 23.2 Normalized
energy of modes

Mode number Normalized energy of modes

1 0.628

2 0.090

3 0.074

4 0.068

5 0.061

6 0.030

7 0.019

8 0.006
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Fig. 23.5 Normalized
vibrational spectra of plate
for x = 0.1 and its first two
main modes

Table 23.3 Frequency of
harmonics of the first two
main modes

Frequency of harmonics of the
first mode

Frequency of harmonics of the
second mode

f11 6.2 f21 10.4

f12 18.6 f22 2.1

f23 14.6

f24 22.8

23.4 Conclusion

It was found that there are unstable linear modes for all positive wave numbers under
certain conditions for the cylindrical stiffness and tension of the plate. In this case,
unstable modes of long waves grow faster than unstable modes of short waves.

In the nonlinear mode, the ratio of the harmonics frequencies of the first mode
f11 : f12 ≈ 1 : 3 due to cubic nonlinearity and the ratio of the harmonics frequencies
f22 : f11 : f21 : f23 : f12 : f24 ≈ 1 : 3 : 5 : 7 : 9 : 11 due to the interaction between
the first two main modes are found.
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Chapter 24
Investigation of the Influence
of Operational Loading Regimes
on the Service Life of Nuclear Power
Plants
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Dmitry O. Reznikov, Sergey N. Pichkov, and Vladimir A. Panov

Abstract The paper presents the results of design and experimental studies of
strength and service life of NPP components subjected to multi-frequency cyclic
loading regimes. Experimental studies were carried out on laboratory specimens of
low-alloy austenitic reactor steels for a wide range of variation of frequencies and
amplitudes of cyclic stresses, as well as on models during bench life tests and on
the equipment of the reactor primary circuit during commissioning and during the
initial period of operation. In the general case, a comprehensive design and exper-
imental analysis of the initial and residual life of the equipment of nuclear power
plants are based on an analytical assessment of the conditions for the accumulation
of operational damage under various operating loading conditions, with accounting
for the corresponding constitutive laws and the kinetics of the mechanical proper-
ties of materials, as well as on the study of conditions for transition to limit states
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using criteria of strength, crack resistance and damage tolerance. The approaches to
assessment of the reduction of fatigue durability due to combined action of low- and
high-frequency harmonics of loading are described.Amodel for estimation of fatigue
damage of structural components under two-frequency loading is presented which
considers damage accumulation as a summation of damages due to static loading
plus damages due to low- and high-frequency loading. The obtained results present
the basis for the estimation of the durability of NPP components at two-frequency
loading.

Keywords Service life of NPP ·Multi-frequency cyclic loading · Accumulation of
damage · Mathematical modeling · Experimental data on durability

24.1 Introduction

The age of nuclear energy began in 1954 when the first nuclear power plant with
channel-type 5 MW reactor was put into service in Obninsk (USSR-Russia). Since
then, in the world’s leading countries (USSR-Russia, USA, Great Britain, France,
etc.), a full spectrumof newnuclear type of energy generation has appeared. By 2019,
there are ten nuclear power stations with 35 power units operating in the Russian
Federation. The total capacity of these NPP equals to 29 GW.

The studies of strength and service life of nuclear power plants carried out in
Russia and abroad form the scientific basis for development of

(1) regulatory documents on design;
(2) methods for assessment of reliability, damage tolerance and conditions of

initiation and propagation of emergencies according to risk criteria;
(3) new principles, technologies and tools for ensuring safe operation of nuclear

power plants.

The decision made by Russian (USSR) regulatory bodies to carry out a special
research program to back up standards for design of nuclear reactors was of particular
importance for the country [15, 16]. Such standards have also been developed in the
USA [1]. Subsequently, the IAEA developed the relevant international regulatory
documents [7]. Russian national standards for the design of nuclear power stations
[15, 16] include sections focused on assessment of strength and service life as well
as on the extension of the term of their safe operation.

For many years, Joint Stock Company Afrikantov OKBMechanical Engineering
andMechanical Engineering Research Institute of the Russian Academy of Sciences
have been conducting systematic computation and experimental studies of strength
and service life of load carrying components of NPP equipment with water-cooled
water-moderated energy reactor (WWER) and BN (sodium-cooled fast breeder)
reactors. Academicians F. M. Mitenkov and K. V. Frolov considered these studies
of fundamental importance in terms of the laws of elastoplastic cyclic deforma-
tion, damage accumulation and fracture under complex multi-frequency regimes of
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thermomechanical loading. These regimes are related to low-frequency cycles of
start-ups, shutdowns, power control and actuation of emergency protection systems
superimposed on high-frequency vibration cycles as well as pulses of pressure and
temperature.

Experimental studies were carried out on

(i) laboratory specimens of low-alloy austenitic reactor steels for a wide variety
of the frequencies and amplitudes of stresses;

(ii) standard models during bench service life tests and
(iii) on the equipment of the first circuit of WWER and BN reactors at the stage of

starting-up and adjustment and during the initial operation period.

On this basis, the assessments of the effect of two-frequency and multi-frequency
loading on the strength of NPP equipment were carried out. The corrections of the
standard checking calculations were made. The theory and criteria of service life
and reliability have recently been included in traditional analysis of the working
capacity of NPP equipment [8, 9, 11–14]. The main findings of the joint design and
experimental studies in this field are presented below.

24.2 Modes of Operational Loading of NPP Equipment

An analysis of the operational loading conditions of reactor components (Fig. 24.1a)
shows that along with the traditional representation of cyclic loading with sinusoidal
or triangular cycles (Fig. 24.1b) or schematization of loading by known methods, for
example, the rainflow cycle countingmethod (Fig. 24.1c), in some cases, it is possible
to describe complex loading regimes as polyharmonic processes of multi-frequency
cyclic impacts which, in turn, may after the exclusion of harmonics with small ampli-
tudes be converted to a two-frequency process (Fig. 24.1d), characterized by the
superposition of the low- and high-frequency loadings. Such loading conditions are
typical for power units. Here, low-frequency loading corresponds to stresses caused
by start-ups and shutdowns of the units, and high-frequency loading corresponds to
vibrations of hydrodynamic and aerodynamic origin. In addition, high-frequency (in
a relative sense) variable stresses in these conditions can be caused by the change
in the power of the units or by the control of the operating mode at a specific level
(Fig. 24.1e).

The two-frequency loading mode can be characterized by four load parame-
ters, namely, the high cycle stress amplitudes and frequency, and the low-cycle
stress amplitude and frequency. These parameters depend on the specific operating
conditions of the power unit [11–14] that are described in Table 24.1.

Due to the relative similarity of the general mechanisms of damage accumulation
and service life exhaustion, two types of calculations are provided for the design and
operation stages of typical NPP components (with ensuring the initial and residual
strength, service life and safety) [8–16].
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Fig. 24.1 Schematization of operating modes of loading

The total operating time τ of the analyzed components may change from 101

÷ 102 s to 108 ÷ 109 s. These components are subjected to various loading regimes
with the following ranges of the number of loading cycles N:

• 100–101 for extreme cycles (start-ups, tests, emergency shutdowns and emergency
situations);

• 102–103 for operational mode cycles (approach to operating mode, power
regulation, actuation of protection systems);

• 104–105 for operational adjustment cycles (technological cycles, regulation);
• 106–108 for operational technological cycles (technologies for maintaining rotor

rotation modes, pressure changes);
• 109–1012 for operational vibration cycles (vibration, pulsation of temperature and

pressure).

Figure 24.2 shows a detailed diagram of the change in the design loading param-
eters of highly loaded components over time τ . These parameters at the certain
moments of time reach their minimum and maximum values that determine the
ranges and amplitude values of pressure of the working medium p—pmax, pa, �p;
temperature t—tmax, tmin, ta, �t; nominal and local stresses σ—σmax, σmin, σ a or
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Table 24.1 Parameters of operating modes of the power plant

No. Loading mode Number of cycles

I Warm-up and cooling cycles

1 Planned warm-up from the room temperature to the
nominal one

100–500

2 Planned cooling from the nominal temperature to
the room one

100–500

II Energy (operational) cycles

1 Change in power from 0 to 100% with the rate of
5% per min

0–15,000

2 Change in power from 100% to 0 at the rate of 5%
per min

0-15,000

3 Power change from 50% to 100% at the rate of 15%
per min

2000–15,000

4 Power change from 100 to 50% at the rate of 15%
per min

2000–15,000

5 Stepwise increase in power by 10% in the range
0–100%

0–2000

6 Stepwise reduction of power by 10% in the range
0–100%

0–2000

7 Stepwise reduction of power by 50% in the range of
50–100%

0–200

8 Pressure fluctuations near the stationary level in the
range from 0.03 to 0.07 MPa, +2.5 °C

More than 300,000

III Ensuring safe operation

1 Shutdowns due to malfunctions of the reactor 200–400

2 Shutdowns due to turbine malfunctions 0–40

3 Hydrostatic tests 5–40

4 Leak tests 5–300

5 Functioning of the safety valve 0–200

6 Operation of the cooling system 10

strains e—emax, emin, ea. This diagram also shows the possible change in these basic
parameters at various stages of operation of the analyzed components: building-up
(B), start-up (S) and hydrotesting (HT), stationary modes (SM), power change (PC),
emergency modes (E), actuation of protection system (P), vibration (V ), shutdowns
(SD).

Changes in pressure �p, temperatures �t and the impact of vibrational loads
cause the presence of high-frequency stress amplitudes σau, which, together with the
basic loads from themain operatingmodes create two-frequency andmulti-frequency
loading regimes with frequency ratios in the range f a/f au = 101–105.
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Fig. 24.2 Diagram of changes in operational parameters of loading and stress

24.3 Mathematical Modeling of Damage Caused
by the Two-Frequency Loading Mode

When forecasting the initial cyclic design life, a diagram of cyclic strength can be
constructedwith accounting for the initial characteristics of themechanical properties
of structural materials and their changes at various stages of the life cycle [4, 8–
14]. The same diagram is also used to assess the accumulated cyclic damage, as a
rule, using the linear law of summing the component damage, which in turn varies
nonlinearly depending on the parameters and operating conditions [2–6, 8, 14].

The assessment of durability under two-frequency loading conditions can be
carried out by variousmethods [2, 3, 5, 6, 8, 9, 11–14, 17], one of thembeing amethod
for assessing the constituents of damage from individual components of such loading
mode (low frequency, high frequency and static components) with accounting for
the ratio of frequencies, amplitudes and variable asymmetries of the acting stresses
[2, 5, 6]. Another method consists in direct conduction of two-frequency tests at
a given range of load levels under the required parameters of two harmonics. This
method uses empirical relationships to determine the reduction in durability under
these conditions as compared to the durability under the equivalent single-frequency
loading [3, 5].

The degree of damage caused by the high-frequency component under two-
frequency loading is affected by both the ratio of the amplitudes of acting stresses
σ2/σ1 and the ratio of their frequencies f 2/f 1. In the region of small values of f 2/f 1, a
change in this ratio within one order of magnitude does not cause a significant change
in durability because in this case, the constituent of damage from the high-frequency
component varies insignificantly. With an increase in σ2, as well as with an extension
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of the frequency range, the ratio of the degrees of damage from both components
changes, which entails a significant change in durability [2, 3, 5, 6, 8, 17].

In the general case, the resistance to low-cycle fracture is described by the equation
of the low-cycle fatigue curve in the form [8, 9]:

ea = 1

2 · (4N )m
t
p
ln

100

100 − ψ tτ
c

+ 1

(4N )m
t
e

· S
tτ
c

Et
(24.1)

where all the characteristics of the mechanical properties of the material and the
parameters included inEq. (24.1) are defined as quantities that depend on temperature
t and loading time τ .

The total damage dΣ accumulated under low-cycle loading may be represented
as summation of fatigue dtτf and quasistatic dtτs damages: d�= dtτf + dtτs [8],

where

dtτ
f = F[ea(k), t, τ ] dtτ

s = F[e(k)
p (k), t, τ ] (24.2)

Damage accumulation under stress controlled two-frequency low-cycle loading
can also be described on the basis of linear summation of the additional component
of fatigue damage dIIf from superimposed high-frequency amplitude of stress σ 2 or
strain ea2 with variable asymmetry, with components of fatigue dIf and quasistatic ds
damage included in expressions (24.2). Then, the total damage under two-frequency
loading mode can be expressed as [2, 5, 6]:

d∑ = d I
f + d I I

f + ds (24.3)

or taking into account expressions (24.1)–(24.3), it can be rewritten as

d∑ =
NT∫

0

1

N [ea(n), t, τ ]
dn +

N ∗
T∫

0

1

N ∗[ea2, t, τ, r(n∗)]
dn∗ +

NT∫

0

en
εtτ

dn = 1.0 (24.4)

Estimation of the service life under these conditions can be performed on the basis
of expression (24.4), provided that the total damage dΣ reaches a critical value equal
to 1.0.

It is known from the experience of operation, tests and calculations that under the
conditions of two-frequency loading, especially under extreme loading conditions,
the value of durability (service life) decreases from that observed in case of single-
frequency loading which is equivalent in terms of maximum loads. This decrease
becomes more substantial when the ratio of high frequency and total strains goes up
as well as the ratio of the corresponding loading frequencies (Fig. 24.3).

Along with the described above method for estimation of durability under two-
frequency loading that is based on the criterion of summation damages which are
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Fig. 24.3 Low-cycle fatigue curves for steel 12Cr2MFA (a) and steel Cr18N10T (b) under single-
frequency (1) and two-frequency (2 and 3) low-cycle loading at the frequency ratio f 2/f 1 = 1500
and temperature t = 300 °C

expressed in termsof the deformation characteristics according to expressions (24.1)–
(24.4), the effect of reduction of the two-frequency durability N2 from the value of
the equivalent (in terms of the total load) single-frequency durability N1 can be
approximately estimated by the ratio of frequencies and amplitudes of the high-
frequency and low-frequency components of the loading process in the form [3, 5,
6]:

N1 = N2
(
f2

/
f1

)kN (ea2/ ea) or N1 = N2
(
f2

/
f1

)kN(σ ∗
a2

/
σ ∗
a ) (24.5)

where ea2 and σ *
a2 as well as ea and σ *

a are the amplitude values of high-frequency
strains and the corresponding pseudoelastic stresses (σ *

a = ea E,whereE is the elastic
modulus), as well as their total values (along with low frequency), respectively. In a
certain range of ratios of amplitudes and frequencies of the superimposed harmonics,
the decrease in durability calculated by expressions (24.5) also satisfactorily agrees
with experimental data described in the standard for power equipment design [16].

Expression (24.5) assumes a linear relationship between the logarithm of the
ratio N2/N1 and the ratio ea2/ea (σ *

a2/σ
*
a) depicted by a straight line in semiloga-

rithmic coordinates. Figure 24.4 presents theoretical lines constructed using expres-
sions (24.5) and the corresponding experimental data on the durability under single-
frequency and two-frequency loadingmodes.One can see that the straight lines corre-
sponding to the tested specimens made of 12Cr2MFA and Cr18N10T steels (solid
lines) under the strain-controlled regime of two-frequency loading with different
ratios of amplitudes of high-frequency and total low-frequency deformations (pseu-
doelastic stresses) satisfactorily correspond to the results of experiments. In this
case, the value of the durability reduction factor kN in expressions (24.5) for steel
12Cr2MFA is kN = 1.2 (line 1 in Fig. 24.4a and triangular dots), and for steel
Cr18N10T − kN = 1.9 (line 1 on Fig. 24.4b and square dots).

These values of the factor kN are determined on the basis of assumptions about the
average values of the corresponding experimental durability. If the indicated values
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Fig. 24.4 Dependences of the change in durability for various ratios of low- and high-frequency
amplitudes of pseudoelastic stresses in case of a two-frequency loading mode for steels 12Cr2MFA
(a) and Cr18N10T (b)

of kN are taken from the points that are out of the general set, i.e., with safety factor
against durability—dashed lines in Fig. 24.4a–b, then the values of the durability
decrease factor kN will be equal to 1.6 for 12Cr2MFA steel (line 2 in Fig. 24.4a) and
equal to 2.4 for Cr18N10T steel (line 2 in Fig. 24.4b). These values of the durability
decrease factor kN under two-frequency loading were used in the corresponding
calculations [5, 12, 15].

It should be noted that expression (24.5) fits well to experimental data only for
relatively small values of the ratio ea2/ea that do not exceed 0.2 ÷ 0.3. Otherwise,
the calculated values of the durability decrease turn out to be overestimated. This
requires that appropriate limitations on the use of expressions (24.5) are introduced.
Such limitations may consist of the following conditions:

• the ratio of the amplitude of the pseudoelastic high-frequency stresses σ *
a2 to the

amplitude of the corresponding total low-frequency stresses σ *
a is in the range of

0 < σ *
a2/σ

*
a< 0.3;

• the absolute value of the maximum and minimum stresses during loading with
superposition of high-frequency stresses does not exceed the value of (0.2× 10−2

Et+ σ t
0,2)• the ratio of the frequencies of the applied vibrational and main cyclic loading

f 2/f 1 does not exceed 5 × 105;
• the number of cycles with the amplitude of the superimposed high-frequency

stresses σ *
a2 according to Fig. 24.1d exceeds 10 (f 2/f 1 > 10).

The presented above assessments were performed for two steels with different
cyclic properties (cyclically softened steel 12Cr2MFA and cyclically hardened steel
Cr18N10T) at certain ratios of variable amplitudes σ *

a2/σ
*
a (ea2/ea) and fixed frequen-

cies f 2/f 1 = 1500 of harmonics according to Fig. 24.1d at a temperature t =
300 °C.

In the general case, a comprehensive analytical and experimental analysis of the
initial and residual service life of NPP equipment is based primarily
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(i) on assessing the conditions of the damage accumulation under various loading
regimes, with accounting for the corresponding constitutive equations,

(ii) and also on studying the conditions of transition to limit states with accounting
for the kinetics of mechanical properties of structural materials, criteria of
strength, crack resistance and damage tolerance.

The described above procedures for assessment of damage accumulation are
implemented using a set of criteria expressions, design equations and design char-
acteristics used to analyze and determine the normal and limit states of engineering
facilities [4, 8–14]. The set of criteria expressions includes the following:

• To evaluate static and long-term strength

FQ{ σ, e, t, τ } = FQ

{

f1

(
σ τ
y

ny
,
σ τ
u

nu
,
σ τ
l

nσ

,
eτ
c

ne
,

τc

nτ

)

, f2(m)

}

(24.6)

where FQ is the functional characterizing the dependence of stresses on the set of
force actionsQ; σ , e are stresses and strains acting in time τ at temperature t; f 1 is the
functional dependence; σ τ

y , σ
τ
u and σ τ

l are the yield strengths, ultimate strengths and
long-term strengths of the material for the given time of deformation τ, respectively;
eτ
c is the value of critical (upon failure) strain at a given time τ; ny, nu, nσ , ne, nτ are
safety factors against yielding, fracture, stress, strain and time; f 2 is the functional
(in most cases exponential) dependence of the strain hardening exponent m in the
elastoplastic region of deformation [8].

• To estimate the service life using the parameters of the number of cycles N and
time τ:

FT {σ, e, N , τ } =
{

f1

(
σa

nσ

,
ea
ne

,
Np

nN

)

f2(σy, ψc,mp,me)

}

(24.7)

where FT is the functional characterizing the dependence of the service life on the
amplitudes of stressesσ a, strains ea, number of cycles to failureNp and corresponding
safety factors, as well as the available plasticity of thematerialψc (reduction in cross-
sectional area) and the power exponent in the equation of the fatigue curve of type
(24.1) for the plastic mp and elastic components me of cyclic strain ea [8–14].

24.4 Conclusions

An analysis of the design and experimental data on durability under one-frequency
and two-frequency loading conditions to assess the influence of the amplitude–
frequencyparameters of thesemodes on cyclic durability shows that the superposition
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of the high-frequency component of cyclic deformation on the main process of low-
cycle loading leads to a decrease in cyclic durability. The higher the level of ratios
of amplitudes and frequencies of the superimposed harmonic processes, the more
substantial is the reduction of durability. As a first approximation, the estimation of
the durability reduction under these conditions can be made using both the crite-
rion expression (24.4) for summation of damages and empirical expressions (24.5),
with accounting for the certain above noted limitations regarding the ratios of the
frequencies and amplitudes of low- and high-frequency harmonics.
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Chapter 25
On the Theory of Rocking Structures
in Seismically Active Zones

Vladimir S. Metrikin, Leonid A. Igumnov, and Andrei V. Metrikine

Abstract Vibrations of a rectangular block on a rigid, horizontally vibrating plane
are analyzed in the framework of the theory of the controlled dynamical systems
(CDS). The friction force between the block and the supporting plane is assumed to
be sufficiently high for the block not to slide along the plane. Under this assumption
the block may only rotate about its vertices that are in contact with the supporting
plane. Energy loss occurs due to impact interactions of the block and the supporting
plane. The impacts are modelled using the angular velocity restitution coefficient.
Using qualitative CDS methods the controllability regions for the block to return
to any arbitrarily small vicinity of point (0, 0), corresponding to zero values of the
angular velocity are derived. Dimensions of a safe zone of the controllability region
in the phase space of the CDS are also determined. It is shown that the safe zone
decreases with the increase of the maximum value of acceleration of the plane. The
controllability regions are shown for different geometrical dimensions of the block
and the upper limit of the supporting plane acceleration.
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25.1 Introduction

A rigid rectangular block, dynamics of which is analyzed in the present paper, can be
used as a model of an ancient civil structure (arches, buildings made of large stones,
etc). Alternatively, it can model separate objects such as a railway wagon or a plane
under the action of earthquakes. The characteristic feature of themodel under consid-
eration is that it is not attached to a foundation and can exhibit rocking motion about
the contact points with the supporting structure. The issue of stabilization of such and
similar structures is of importance for seismically active zones [1–5]. Such systems
are also of interest for studying because some structures that, at first sight, seem to be
unstable (e.g., separate stone poles or elevated water reservoirs), sometimes survive
earthquakes better than apparently more stable structures. For instance, Fig. 25.1 in
[3] shows electrical facilities at Sylmar converter station destroyed during the 1971
San Fernando earthquake, and Fig. 25.2 depicts a train overturned in the 1906 Point
Reyes earthquake, San Francisco. Investigations into the rocking of a solid block on
a horizontal base were presented in [3] where accelerations of the supporting plane
were assumed to be of finite duration and represented by a block function or a single-
period sine function. Expressions for the critical acceleration magnitude leading to
the overturning of the rectangular block were obtained. The excitations considered in
[3] are unrealistic, whichmake the fundamental results obtained in [3] to be of purely
theoretical interest [6–8]. The work by Housner [3] was followed by a large number
of studies on the complex dynamics of one of the simplest artificial structures—a
rectangular block on a vibrating surface [2, 6–20]. The rocking response of the block
under the effect of a steady-state harmonic load was studied in detail in [17], where
‘hazardous’ and ‘safe’ zones in the phase space were constructed and analytical
methods were developed for determining periodic and subharmonic regimes of the
system motion. The latter study was continued in [11], were a further explanation of
the mathematical structure of the problem was offered, using the notions of the orbit
stability and Poincare’s cross-sectional surfaces. The latter study gave a thorough
insight into the rocking response to a cosine and sine acceleration pulse. These two
trigonometric pulses are physically realizable and, in a number of cases, resemble
non-parallel and faulty components of motions registered in the vicinity of the source

Fig. 25.1 System
considered (shown
schematically)
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Fig. 25.2 Controllability region

of strong earthquakes [6, 7]. Finally, there are quite recent papers [21] and [22] in
which the block response to particular acceleration signatures is studied.

In the present paper the CDS methods are employed to determine the control-
lability regions to an arbitrarily small vicinity of the point (0, 0) corresponding to
undisturbed position of the block (the body-at-rest position). The meaning of the
controllability region in the phase space is that being at a certain moment within this
region the block will necessarily return to the rest position for any earthquake signa-
ture with a prescribed maximum absolute value of the supporting plane acceleration.
The dimensions of the safe zone of the controllability region in the phase space of
the CDS are also given. It is shown that the safe zone decreases with the increase
of the maximum value of the supporting plane acceleration. Various shapes of the
controllability regions are shown for different geometrical dimensions of the block
and the upper limits of the absolute value of the supporting plane acceleration Ü (t).
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25.2 Mathematical Model

Vibrations of a rectangular rigid block positioned on a smooth horizontal surface
(Fig. 25.1) are considered.

The surface is assumed to vibrate strictly horizontally. The friction force between
the surface and the block is assumed to be sufficiently high for the block not to
slide.Under the assumptionsmade, the block can only perform rotational–vibrational
motions relative to two corner points, O and O ′, belonging to the lower side of the
block. Vibrations of the block can be unambiguously characterized by the angle θ

between the surface and the lower side of the block. The transition from roattion
about one vertex of the block to rotation about the other one occurs by way of impact
that is considered to have negligible duratoin. The energy lost in the impact is taken
into account by introducing an angular velocity restitution coefficient, 0 < r ≤ 1,
so that θ̇+ = r θ̇−, where θ̇− is the angular velocity of the block prior to the impact,
and θ̇+ is the angular velocity of the block after the impact.

Equations of motion of the block in the time intervals between the impacts can be
written in the form of the balance of angular momentum. In the frame of reference
moving together with the vibrating surface, the only force acting on the block is
gravity. Thus, equations of motion in this reference system can be written as follows:

J
d2θ

dt2
= −mg R sin(α − θ), θ > 0

J
d2θ

dt2
= +mg R sin(α + θ), θ < 0, (25.1)

equating the angular inertia of the block to the gravitational moment.
In the above equations, α = θ0 is the angle between the lateral side of the block

and the diagonal, and 2R is length of the diagonal. The mass moment of inertia J of
the block relative to points O and O ′ is expressed as

j = 4m

3
R2

To change to a fixed coordinate system, account must be taken of the force of
inertia resulting from the motion of the surface. This force acts on the center of mass
of block C, is directed contrary to the acceleration of the surface and is equal to mü.
Keeping in mind the moment of this force, the equations can be rewritten, taking into
account impact interactions of the block, as follows:

J
d2θ

dt2
= −mg R sin(α − θ) − mR

d2u

dt2
cos(α − θ), θ > 0

J
d2θ

dt2
= +mg R sin(α + θ) − mR

d2u

dt2
cos(α + θ), θ < 0

θ̇+ = r θ̇−, θ = 0 (25.2)
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The first equation in system (25.2) describes vibratory motions of the block in
the vicinity of point O. The second equation of system (25.2) describes vibratory
motions of the block in the vicinity of point O ′. The third equation of the system
describes impact on the block.

Introducing dimensionless time τ = t
√
3g/2

√
B2 + H 2 and a new variable x =

θ , Eq. (25.2) can be rewritten in the following form:

⎧
⎨
⎩
ẋ = y

ẏ =
{
sin(x + α) − u(τ ) cos(x + α),−π/2 < x < 0
sin(x − α) − u(τ ) cos(x − α), 0 < x < π/2

(25.3)

y+ = r y−, x = 0 (25.4)

where u(τ ) is an arbitrary dimensionless piecewise continuous function with the
values belonging to interval [−U,+U ], y−, y+ are velocities of the block before and
after the impact, respectively, 0 < r < 1 is the restitution coefficient characterizing
loss of energy in the impact, 0 < α < π/2, and dots over the variables imply
differentiation with respect to the dimensionless time τ .

25.3 Qualitative Study of the System

Phase space �(|x | < π/2, y, τ ) of system (25.3, 25.4) is three-dimensional in coor-
dinates x, y, τ and truncated along phase variable x. System (25.3) defines two
controllable standard dynamic systems (CDS) with Butenina’s phase constraints,
[1, 23], one in subspace �−

1 (−π/2 < x < 0, y, τ ) and another in subspace
�+

1 (0 < x < π/2, y, τ ). A standard CDS defined in �−
1 (−π/2 < x < 0, y, τ )

will be designated by (CDS−), and one defined in �+
1 (0 < x < π/2, y, τ ) by

(CDS+).
Butenina’s contact curve, [1, 23], for (CDS−) is defined by equation F =

−y cos(x + α) = 0. Taking into consideration that, for (CDS−), inequality
cos(x + α) > 0 holds, the equation of contact curve will have the form y = 0.
It is evident that F > 0(< 0) if y < 0(y > 0). A contact curve for (CDS+) is
evidently defined by the same equation as for (CDS−).

In what follows, (CDS) withU (t) = −U will be designated by (1−), and (CDS+)
with U (t) = U by (1+). It is noteworthy that dynamic systems (1−) and (1+) are
autonomous (CDS).

According to the general theory of controlled dynamic systems described in [1,
23], the following is true:

1. Trajectories of system (1−) in field F−(y > 0, x �= 0) of plane x, y, where
F < 0, are intersected by other admissible trajectories of system (25.3) in the
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negative direction (clockwise), and in field F+(y < 0, x �= 0) in the positive
direction (F > 0);

2. Trajectories of system (1+) in field F−(y > 0, x �= 0) are intersected by other
admissible trajectories of system (25.3) in the positive direction, and in field
F+(y < 0, x �= 0) in the negative direction.

Thus, in fields P−(−π/2 < x < 0) and P+(0 < x < π/2), planes x, y of the
trajectory of CDS (25.3) for u(τ ) = −U sign(y), y �= 0 and u(τ ) = U sign(y), y �=
0, extended across axis OX on continuity, are trajectories of a unilateral intersection.
All the other admissible trajectories can intersect the above trajectories only in the
negative (positive) direction.

If in CDS (25.3), it is assumed that u(τ ) = ϕ(τ), |ϕ(τ)| ≤ U , where ϕ(τ) is a
particular function of variable τ , a particular non-autonomous system of differential
equation is obtained. Each of the trajectories of this non-autonomous system, passing
across axis (x = 0, y �= 0), has on this axis a discontinuity point in the form of a
finite jump.

In view of abovementioned points (1 and 2), the following statements can be
proved to be true:

25.3.1 Statement 1

Let

(1) Trajectory l of any particular system of CDS family (25.3) for τ = t has a point
in half-band (|x | < π/2, y > 0) to the right of trajectory L− of system (1−) (to
the left of trajectory L+ of system (1+).

(2) For all τ, τ ∈ [t, T ], the arc of trajectory l lies in the abovementioned half-band.

Then, for all τ, τ ∈ [t, T ], the arc of trajectory l lies to the right of L− (to the left
of L+).

25.3.2 Statement 2

Let

(1) Trajectory l ofCDS (25.3) for τ = t has a point in half-band�−(|x | < π/2, y <

0) to the left of trajectory L− of system (1−) (to the right of trajectory L+ of
system (1+),

(2) For all τ, τ ∈ [t, T ], the arc of trajectory l lies in half-band �−.

Then, for all τ, τ ∈ [t, T ], the arc of trajectory l in �− lies to the left of L− (to
the right of L+).
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The above cross-linked autonomous systems [9, 24] are then completed by system
[1−+]([1+−]), forwhich inCDS (25.3)u(t) = −U [+U ], if y > 0; u(t) = +U [−U ],
if y < 0, |u(t)| ≤ U if y = 0.

The above statements and introduced notations lead to the next statement.

25.3.3 Statement 3

Trajectories of cross-linked autonomous systems [1−+] and [1+−] are, for CDS
(25.3), trajectories of unilateral intersection: In band (|x | < π/2, x �= 0), trajec-
tories of system [1−+]([1+−]) are intersected by other admissible trajectories of
CDS (25.3) in the negative (positive) direction.

25.3.4 Studying Special Points of the Supplementary
Autonomous Systems

In CDS (25.3), u(τ ) will be substituted for by scalar parameter μ, |μ| ≤ U . Then

⎧
⎨
⎩
ẋ = y = P(x, y)

ẏ =
{
sin(x + α) − μ cos(x + α),−π/2 < x < 0,= Q1(x, y)
sin(x − α) − μ cos(x − α), 0 < x < π/2,= Q2(x, y)

(1μ)

It follows from the first equation of system (1μ) that all the special points of
system (x �= 0) lie along axis OX. If x < 0, then x = −α + arctgμ; if x > 0, then
x = α + arctgμ.

The types of special points are defined, as is known [25], in terms of the roots of
characteristic equation λ2 − (a + d)λ + 
 = 0, where

a = P ′
x (M0) = 0, b = P ′

y(M0) = 1, c = Q′
x (M0)

=
{
cos(x0 + α)(1 + μ2), x0 < 0
cos(x0 − α)(1 + μ2), x0 > 0

,

d = Q′
y(M0) = 0,
 = ad − bc = −c = λ1λ2

λ1, λ2 are roots of the characteristic equation. Thus, in each special point of system
(1μ), on intervals −π/2− α < x < 0 and 0 < x < π/2+ α, 
 < 0. It implies that
the roots of the characteristic equation are real and have different signs, i.e., each
special point of the system in question (x �= 0) is a saddle.

The saddle of system (1−) (for which u(t) = −U ), located on interval (−π/2 −
α < x < 0) [0 < x < π/2 + α] will be designated by C−−[C−+].
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The saddle of system (1+), located on interval (−π/2 − α < x < 0) [0 < x <

π/2 + α] will be designated by C+−[C++].
The separatrix of each of the saddles, which tends to its saddle from the upper

half-surface (y > 0), will be designated, respectively, by S−−
1 , S−+

1 , S+−
1 , S++

1 . The
remaining separatrices of each of the saddles are renumbered,moving over the related
saddle in the counterclockwise direction.

25.3.5 Controllability Regions of CDS (1)

A controllability region into an arbitrarily small vicinity of point (0, 0) will be called
O-controllability region and designated by D(0). Consider the structure of region
D(0) as a function of U and parameter α.

Let 0 < α < π/4, |u(t)| ≤ U < tgα.
Then

Theorem 1 There exists region G0 containing point (0, 0) and function u(t) (admis-
sible control) translating any point of this region, in finite time, to an arbitrarily small
vicinity of point (0, 0) and retaining it in this vicinity for an arbitrarily long time.

Proof Construct region G0 containing point (0, 0), the boundary of which is formed
by:

(1) Curve �−− containing saddle C−− arcs of separatrices S−−
1 and S−−

3 located in
the band |x | < π/2;

(2) Curve�++ containing saddleC++ and arcs of separatrices S++
1 and S++

3 located
in the band |x | < π/2.

It is evident that the boundary of region G0 in the band |x | < π/2, x �= 0
is intersected by other admissible trajectories of CDS (25.3) only in the outside
direction (see statement 3).

The trajectory ofCDS (25.3), that, for τ = t0, has a point in band |x | < π/2, x �= 0
beyond region G0, for τ > t0 in a finite time will be outside the boundary of this
band (beyond G0 in band |x | < π/2 there are no points, in which ẋ2 + ẏ2 = 0). It is
noted that the diagrams of the solutions of systems (1−) and (1+) (as it follows from
Eq. (25.3)) are symmetric relative to point (0, 0). In particular, in band |x | ≤ π/2, x �=
0, pointsC−− andC++, half-separatrices S−−

4 and S++
2 and half-separatrices S−−

3 and
S++
1 are symmetric relative to point (0, 0); hence, pre-impact point of half-separatrix
S−−
4 and the post-impact point of separatrix S++

1 (point M1) coincide; the pre-impact
point of separatrix S++

2 and the post-impact point of separatrices S−−
3 (point M2)

coincide. Saddles C−− and C++ and the abovementioned half-separatrices of these
saddles are connected by points M1 and M2 into a closed-curve defining region D0,
containing point (0, 0).

Region D0 belongs to controllability region U (0, 0). In fact, for any point M0,
M0 ∈ D0 for
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u(t) =
{−U, x < 0

+U, x > 0

the half-trajectory of CDS (25.3) with its origin in point M0 has limiting point (0, 0).
If arc γ +

1 of system (1+) is drawn through point C−− to the intersection with
straight line, x = −π/2 in point O+

1 (Fig. 25.2).
Arc γ +

1 will divide the part of region G0, lying outside D0 in half-plane y > 0,
into two parts. The part that has on its boundary half-separatrix S−−

4 containing point
M1 will be designated by D1, the other one by d1. Arc (C−−M1) of separatrix S−−

4

and region D1 belong to region U (0), as, whichever point


M in region D1 or on

arc (C−−M1) is taken, the half-trajectory of system (1+) with its origin in point


M ,
with increasing τ , transfers into region D0. D0 ∈ U (0, 0); hence, D1 ∪ (C−−M1) ∈
U (0, 0).

Region d1 and arc γ +
1 belong to U (0, 0), as, whichever point of this set is taken,

the half-trajectory of system (1+) with its origin in this point, with increasing τ ,
transfers into region D1. But D1 ∈ U (0, 0), that is, d1 ∪ γ +

1 ∈ U (0, 0). For the part
of region D0, lying in half-band {0 < x < π/2, y < 0}, the proof is analogous.

25.3.6 Safe Zone of the Controllability Region

Let |u(t)| < tgα, 0 < α < π/4. Then, each of the systems (1−) and (1+) has in band
|x | < π/2, x �= 0 two special saddle points (apart from point (0, 0)), one of which
lies in the left half-plane, and the other in the right one.

Special points of system (1−)—saddle C−−(x < 0) and saddle C−+(x > 0)
Special points of system (1+)—saddle C+−(x < 0) and saddle C++(x > 0).
Separatrix S−+

1 of saddle C−+, that has a discontinuity point on axis Oy(y > 0),
intersects separatrix S+−

1 of saddle C+− in point N ∗
1 .

Separatrix S+−
3 of saddle C+−, that has a discontinuity point on axis Oy(y < 0),

intersects separatrix S−+
3 of saddle C−+ in point N ∗

3 .
Saddles C+−, C−+ and half-separatrices of these saddles with their origins in

points N ∗
1 and N ∗

3 , respectively, define in region U (0, 0) region B(0) containing
point (0, 0). Admissible trajectories of CDS (25.3), differing from the considered
‘boundary’ trajectory, can intersect the boundary of this region only in the ‘inside’
direction.

B(0) (the closure of region B(0)) is the safe zone of the controllability region for
the assigned constraints on controlling (Fig. 25.3).

The part of region U (0, 0) lying outside B(0) is a zone of risk. However, for any
point K of the zone of risk, there exists control (u = uk(t)) transferring the repre-
senting point of system (25.3) from the zone of risk to the safe zone. For U = tgα,
the safe zone disappears in point (0, 0). If |U | > tgα, then the entire controllability
region with punctured point (0, 0) is a zone of risk (Fig. 25.3).
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Fig. 25.3 Phase portrait for |u(t)| < tgα, 0 < α < π/4

In Fig. 25.2, safe zone B(0) is hatched. Anything outside B(0) in region U (0) is
a zone of risk. As was noted above, with increasing τ , only the trajectories of CDS
(25.3) that have points outside U (0, 0) a fortiori leave the limits of band |x | < π/2.
Let tgα ≤ |u(t)| < ctgα. The phase portrait of CDS (25.3) for this case is depicted
in Fig. 25.4.

For any point of region U (0, 0) (other than point (0, 0)), there exist phase
trajectories coming outside this region and arriving in point (0, 0).

Let |u(t)| = ctgα. Saddles C−− and C++ lie, respectively, in points (−π/2, 0)
and (+π/2, 0). Region U (0, 0) is defined in band |x | < π/2, x �= 0 by the arcs of
separatrices S++

1 and S−−
3 (Fig. 25.5).

There is no safe zone.
If |u(t)| > ctgα, saddles C−− and C++ lie, respectively, on intervals (−π/2 −

α;−π/2) and (π/2, π/2 + α). Due to phase constraints |x | < π/2, x �= 0, the
boundary of the controllability region is defined by: (1) half-trajectory l−1 of system
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Fig. 25.4 Phase portrait for tgα ≤ |u(t)| < ctgα

(1+) with the origin in point and 2) half-trajectory l−2 of system (1−) with the origin
in point (−π/2, 0) (Fig. 25.6).

Thus, for the case of 0 < α < π/4, the controllability region of CDS (25.3) has
been fully analyzed.

Let α = π/4. In this case, tgα = ctgα = 1. For U < 1, the boundary of region
U (0, 0) includes saddlesC−− andC++ and arcs of separatrices S−−

1 , S−−
3 , S++

1 , S++
3

lying in band |x | < π/2. In the controllability region, there exists safe zone B(0)
(see the case of 0 < α < π/4).

For U = 1, the safe zone of the controllability region disappears in point (0,
0); the boundary of the controllability region is defined by saddles C−−(−π/2, 0),
C++(+π/2, 0) and the arcs of separatrices S++

1 and S−−
3 lying in band |x | <

π/2, x �= 0.
For U > 1, the system has no special points in band |x | < π/2, x �= 0. The

boundary of region U (0, 0) is defined by negative half-trajectories l−1 (+π/2, 0) of
system (1+) and l−2 (−π/2, 0) of system (1+) (see Fig. 25.4).
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Fig. 25.5 Phase portrait for |u(t)| = ctgα

If π/4 < α < π/2, then saddles C−− and C++ lie, respectively, on intervals
(−π/2 − α;−π/2) and (π/2, π/2 + α) of axis OX. Thus, due to phase constraints
|x | < π/2, the boundary of controllability region U (0, 0) is defined by: the arc of
half-trajectory l−(+π/2, 0) of system (1+) with the end in the intersection point with
straight line x = −π/2, and the arc of half-trajectory l−0 (−π/2, 0) of system (1−)
with the end in the intersection point with straight line x = π/2 (see Fig. 25.6).

If |u(t)| < tgα, then in regionU (0, 0) there exists safe zone B(0). If |u(t)| ≥ tgα,
then the entire region U (0, 0) (except for point (0, 0)) is a zone of risk.

Remark If α → π/2, then tgα → ∞. Hence, for any u0 > 0 there will exist δ > 0,
such that, for α ∈ (π/2 − δ, π/2), tgα > u0. It implies that, for |u(t)| ≤ u0, a safe
zone in the controllability region exists for α ∈ (π/2− δ, π/2). With increasing u0,
the diameter of the controllability zone tends to 0.
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Fig. 25.6 Phase portrait for |u(t)| > ctgα

25.4 Main results

The main results of the present work are as follows:

• Using qualitative methods of CDS, controllability regions have been derived for a
rectangular block rocking on a horizontal plane due to the acceleration of the latter.
These regions are applicable to any dimensions of the block and time signatures
of the acceleration of the supporting plane provided that the absolute value of the
acceleration remains within specified bounds.

• The dimensions of the safe zone of the controllability region in the phase space
of CDS are given.

• It has been proven that the safe zone decreases with the increase of the maximum
value of the acceleration.

Acknowledgements The work was supported by a grant of the Russian Science Foundation (16-
19-10237-P).
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Chapter 26
Variational Principle and Equations
of Dynamics of Electromagnetoelastic
Shells

Anatoly S. Okonechnikov, Marina Yu. Ryazantseva,
and Dmitry V. Tarlakovskii

Abstract The boundary value problem of transient dynamics of a homogeneous
thin anisotropic electromagnetoelastic shell is constructed with consideration for
transverse normal strains, normal unit vector rotation, and variation of the electro-
magnetic field parameters along the normal vector. The piezoeffects, generalized
Ohm’s law, and Lorentz force are also taken into account. The earlier derived equa-
tions of mechanical motion and the boundary conditions at a given electromagnetic
field are used. The well-known functional for a three-dimensional body is modified
as applied to electromagnetic processes in anisotropic media. It is assumed that the
vector and scalar potentials are interrelated, which makes it possible to obtain the
wave equation for the former potential. The corresponding functional for a thin shell
is constructed using the linear approximations in the normal coordinate of the poten-
tials. The corresponding equations of electromagnetodynamics and the boundary
conditions at a given displacement field are a necessary condition for the station-
ary state of this functional. It is shown that in the particular case of an isotropic
medium, the total number of unknowns diminishes. In this case, the electromagnetic
disturbances must be normally directed.
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26.1 Introduction

There has been much research concerned with the problems of the three-dimensional
interaction between electromagnetic fields and elastic media (see, e.g., [3, 5, 26,
27]). Among these studies, we will distinguish those used in theory of thin shells,
namely devoted to variational principles and equations of electromagnetodynamics
[18, 22] and electromagnetoelasticity [19, 20, 24, 29], including those dealing with
discontinuous fields [1, 2].

The problems of electromagnetoelastic oscillations of three-dimensional bodies
of particular geometries were solved, for example, in studies [6, 8, 11] and [13, 14].
The former group of studies considers free oscillations, while the latter group deals
with transient processes.

At the same time, the problems concernedwith electromagnetoelastic processes in
thin-walled bodies are still poorly explored. Thus, in papers [9, 10], free oscillations
of plates were investigated. In the fundamental study [4], the equations and boundary
conditions for homogeneous and layered shells were constructed. For this purpose,
the variational approach was used in combination with the method of indefinite
factors. In [28], the equations of transient dynamics of a homogeneous thin elastic
anisotropic shell with account for transverse normal strain and normal unit vector
rotation are used for the same purpose. The electromagnetic part of the self-consistent
problem is obtained directly as the linear approximation in the normal coordinate
of the three-dimensional equations for an electromagnetic field. In this case, the
piezoeffects, generalized Ohm’s law, and Lorentz force are taken into account.

Below we put forward the most complete closed system of equations and the
boundary conditions of the electromagnetoelasticity of a homogeneous thin shell. The
electromagnetic field potentials are directly related, without invoking to indefinite
factors.

26.2 Problem Formulation

We will consider a homogeneous anisotropic elastic shell of constant thickness h,
whose material possesses the symmetry about its midsurface Π . As the equations
most completely describing its dynamics (with account for the normal unit vector
rotation and its transverse normal strain), we will use the initial and boundary value
problems constructed in [21].

To take account for the electromagnetic field action on the shell, we will, first,
represent the outer forces in the form of two terms (here and in what follows, the
summation over Roman indices is from 1 to 2):

q = q∗ + qe, m = m∗ + me,

q∗ = qi∗πi + q∗n, m∗ = mi∗πi + m∗n, qe = qieπi + qen, me = mi
eπi + men.

(26.1)
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Here, the subscript “e” corresponds to the electromagnetic field action on the
shell, while the other-in-nature forces are marked by the asterisks; q and m are the
vectors of distributed pressure and moments; π1 and π2 are the basis of the surface
Π given by the curvilinear coordinates ξ 1 and ξ 2 and the metric tensor gij; and n
is the unit normal vector to the outward side of this surface, co-directional with the
normal coordinate z.

The forces produced by the electromagnetic field are determined as follows:

qie =
h/2∫

−h/2

Fidz, qe =
h/2∫

−h/2

F3dz, mi
e =

h/2∫

−h/2

zFidz, me =
h/2∫

−h/2

zF3dz. (26.2)

Here, under the integral signs, there are the coordinates of the Lorentz force
which is given by formula [15–17, 22, 23, 26, 28] linearized with respect to the
initial electromagnetic field (referred to with the subscript “0”)

F = Fiπi + F3n = ρe0E + ρeE0 + c−1([j0,B] + [j,B0]) (26.3)

where E = Eiπi + E3n and B = Biπi + B3n are the vectors of the electromagnetic
field strength and magnetic induction; j = jiπi + j3n is the current density; c is the
speed of light; and ρe is the density of the charges.

Secondly, we use the generalized Hooke’s law.

σ ij = Cijkl ε̂kl + Cij33ε33 − 1

4π

(
κ ijkEk + γ ijkHk

)
,

σ i3 = 2Ci3k3ε̂k3 − 1

4π

(
κ i33E3 + γ i33H3

)
,

σ 33 = C33kl ε̂kl + C3333ε33 − 1

4π

(
κ33kEk + γ 33kHk

)
,

(26.4)

where σ ij, σ i3, σ 33, and ε̂ij, ε̂i3, ε33 are the components of the stress and strain
tensors;Hk andH3 are the coordinates ofmagneticfield strengthvectorH;Cijkl, Cij33,

Ci3k3, and C3333 are the components of the tensor of elastic constants; and κ ijk , κ ij3,

κ i33, and γ ijk , γ ij3, γ i33 are the components of the tensors of piezoelectric and piezo-
magnetic constants.

The tensors of the physical constants possess the symmetry about the midsurface:

Cijk3 = Ci3kl = Ci333 = C33k3 = 0, γ ij3 = γ 333 = 0, κ ij3 = κ333 = 0. (26.5)



350 A. S. Okonechnikov et al.

The deformations are related to the kinematic parameters of the shell as follows:

ε̂kl = εkl + zκkl, ε̂k3 = 1

2

[
θk + z

(
bnkθn + ∇kψ3

)]
, ε33 = ψ3,

εij = 1

2

(
αij + αji

)
, κij = 1

2

(
βij + βji

)
, αij = ∇iuj − bijw,

βij = ∇iψj − bijψ3 + bki αkj, −ϑi = ∇iw + bki uk , θk = ψk − ϑk ,

(26.6)

where εkl and κkl are the components of the tensors of tangential deformation and
variation in the curvature; uj and w are the tangential and normal displacements; ψi

are the angles of rotation of a normal unit vector, and ψ3 is a corresponding normal
strain; and bij are the components of the tensor of the curvature tensor of surface Π .

Here, we use the following approximation for the coordinates of the displacement
vector u = ûiπi + u3n

ûi
(
ξ 1, ξ 2, z

) = ui
(
ξ 1, ξ 2

) + zψi
(
ξ 1, ξ 2

)
,

u3
(
ξ 1, ξ 2, z

) = w
(
ξ 1, ξ 2

) + zψ3
(
ξ 1, ξ 2

)
.

Equation (26.4) is necessary for constructing physical relations using the formulas
[21]

T̂ ij =
h/2∫

−h/2

σ ijdz, M ij =
h/2∫

−h/2

zσ ijdz,

Q̂i =
h/2∫

−h/2

σ i3dz, μi =
h/2∫

−h/2

zσ i3dz, N̂ =
h/2∫

−h/2

σ 33dz

(26.7)

To obtain the explicit form of Eq. (26.7), the electromagnetic field characteristics
should be of the same approximation order in the coordinate z with the parameters of
the stress–strain state. As distinct from [28], this procedure will be performed below
like in study [4].

26.3 Functional and Electromagnetic Field Equations
for an Anisotropic Three-Dimensional Body

We will use the functional of the electromagnetic field [7, 15, 22, 23] modified as
applied to the anisotropic three-dimensional body G.

H (A, ϕ) =
t2∫

t1

(W + AG + AS) dt, t2 > t1, (26.8)
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where

W = 1

8π

∫

G

[(E,D) − (H,B)] dx,

AG =
∫

G

[
1

c
(j,A) − ρeϕ

]
dx, AS = 1

4π

∫

∂G

[Pϕ − (P,A)] dS.

(26.9)

Here, t is time;H = Hiπi + H3n andD = Diπi + D3n are the vectors of themag-
netic field strength and electric induction; A = Aiπi + A3n and ϕ are the vector and
scalar potentials; and P and P are the disturbances pre-assigned at the disturbance
boundary ∂G. We note that in the three-dimensional version, the basis may be arbi-
trary but for the uniformity of presentation we will everywhere use the basis given
by Eq. (26.1).

The potentials in Eq. (26.9) are determined by the formulas:

B = rotA, E + c−1Ȧ = −gradϕ (26.10)

while the inductions and strengths are related by the physical law.

Di = eijEj + ei3E3 + Di
ε, D3 = e3jEj + e33E3 + D3ε,

Bi = μijHj + μi3H3 + Bi
ε, B3 = μ3jHj + μ33H3 + B3ε,

Di
ε = κ ijk ε̂jk + κ i33ε33, D3ε = 2κ3j3ε̂j3,

Bi
ε = γ ijk ε̂jk + γ i33ε33, B3ε = 2γ 3j3ε̂j3.

(26.11)

where eij, ei3, e33, and μij, μi3, μ33 are the components of the tensors of dielectric
and magnetic permeabilities.

The following statement can be fairly simply proved.
Statement 1. The necessary condition for an extremum of functional (26.8) under

the conditions
δA|t=t1 = δA|t=t2 = 0, δϕ|t=t1 = δϕ|t=t2 = 0

and at a fixed current density is represented by two Maxwell equations (here and in
what follows, the dots mean time derivatives)

crot H = 4π j + Ḋ, divD = 4πρe (26.12)

together with the boundary conditions

[H, ν]|ΠH
= P, (D, ν)|ΠD

= P, A|ΠA
= A0

ϕ|Πϕ
= �, ∂G = ΠH

⋃
ΠA = ΠD

⋃
Πϕ,
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where ν is the unit vector of the outward normal to ∂G , A0 and � are some given
quantities. The surfaces ΠH and ΠA, as well as ΠD and Πϕ , intersect along a null-
measure sets.

We note that the introduction of the vector potential by the first equation (26.10)
leads to the identical satisfaction of two more Maxwell equations [25]

rot E = −c−1Ḃ, divB = 0

The system of equations (26.10), (26.11), and (26.12) must be supplemented with
one more physical relation, namely the generalized Ohm’s law, whose linearized
form is as follows [15, 23, 26–28]:

j = σE + jv, jv = σc−1 [v,B0] + ρe0v,
v = viπi + v3n, vi = u̇i + zψ̇ i, v3 = ẇ + zψ̇3,

(26.13)

where σ is the electrical conductivity coefficient.
Then, in the case of a given mechanical field, these relations form a system of 19

scalar equations in 20 unknowns, namely the coordinates of vectors H,B, j,D,E,A,
and the functions ρe, ϕ. That is not closed which is due to the fact that the potentials
are determined non-uniquely. Their relation for an anisotropic medium can be pre-
assigned in the same fashion, as it was done in [22] for the isotropic case. For this
purpose, we will use the inverse form of the physical relations following from Eq.
(26.11)

Hi = 4πβ ijBj + Hi
ε, Hi

ε = 4πqijk ε̂jk (26.14)

where β ij and qijk are the components of the tensors of magnetic and piezomagnetic
compliance related to the components of the magnetic permeability tensors and the
piezomagnetic constants, as follows (δik is the Kronecker symbol):

4πμijβjk = δik , qnkl = −γiklβ
i
n = 0. (26.15)

Here and in what follows in this section, all the Roman indices take the values 1,
2, and 3. The third-rank tensor qijk possesses the symmetry noted in Eq. (26.5).

Then, eliminating the coordinates of the vectors E, H, and B from Eqs. (26.10)
and (26.11) and taking Eq.(26.14) into account, we obtain

c−2eijÄj + ∇m
[
4π

(
εijlβlkε

kmn − β imgjn
) ∇jAn +4πβ imdivA + c−1eimϕ̇

]
= c−14π ji + c−1Ḋi

ε − εijl∇jHlε,
(26.16)

where εijl are the components of the discriminant tensor [12].
Letting now

4πβ imdivA + c−1eimϕ̇ = 0 (26.17)
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and convolving both parts of Eq. (26.16) with tensor 4πdiq, we arrive at hyperbolic
equations in the coordinates of potential A

c−2Äi = Kijmn∇j∇mAn + 4πd i
k

[
c−14π jk + c−1Ḋk

ε − εkjl∇jHlε
]
,

Kijmn = 16π2d i
qβlk

(
gqlgkmgjn − εqjlεkmn

)
.

(26.18)

Here, Eq. (26.15) is taken into account, together with the relation

4πeijdjk = δik (26.19)

Precisely, Eq. (26.17) is the required form of the relation between the potentials.
Using relations 4πeijdij = 3, 4πμijbij = 3 following fromEq. (26.19), we can bring
Eq. (26.17) into the form:

divA = −c−1aϕ̇, a = eimμim/3 , (26.20)

Now the system of Eqs. (26.10), (26.11), (26.13), and (26.20) is closed.
In the case of an anisotropic medium, an equation for the scalar potential similar

to Eq. (26.18) cannot be constructed. However, the system consisting of Eq. (26.20)
and the second equation (26.12) transformed with the use of Eqs. (26.10) and (26.11)
can be regarded as its counterpart

− c−1eij∇iȦj = eij∇i∇jϕ + 4πρe − divDε. (26.21)

In the particular case of an isotropic medium, the physical relations (26.11)
become considerably simpler

D = εE, B = μeH, eij = εgij, μij = μeg
ij. (26.22)

Hence, using Eqs. (26.15) and (26.19), we obtain that tensors β ij and d ij are also
spherical.

4πβ ij = gij/μe , 4πd ij = gij/ε .

Then tensor Kijmn in Eq. (26.18) takes the form:

εμeK
ijmn = gimgjn − glkε

ijlεkmn = gingjm.

The validity of the last equality is established by direct verification. Equations (26.18)
are transformed as follows:

c−2εμeÄ
i = gjm∇j∇mA

i + 4πμec
−1ji,
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which corresponds to the vector equation derived in [22]

Ä = c2

μeε
ΔA + 4πc

ε
j.

In the isotropic version of the medium, Eqs. (26.20) and (26.21) with account for
Eq. (26.22) take the form:

divA = −c−1εμeϕ̇, −c−1εdivȦ = εΔϕ + 4πρe.

Hence, it follows the wave equation in the scalar potential

ϕ̈ = c2

εμe
Δϕ + 4πc2

ε2μe
ρe,

which agrees with corresponding relation from [22].

26.4 Functional for the Electromagnetic Field of a Shell

To construct this functional, we will use, likewise in [21], functional (26.8) for
the three-dimensional body G occupied by the shell. The body boundary ∂G =
Π+

⋃
Π−

⋃
Πb, where Π+ and Π− are the outer and inner surfaces and Πb is the

lateral surface. Similarly to the displacement field, we will write the electromagnetic
field potentials in the linear approximation in the coordinate z:

A
(
ξ 1, ξ 2, z, t

) = Ã + Ã3n, Ã = Ãiπi,

ϕ
(
ξ 1, ξ 2, z, t

) = ϕ0
(
ξ 1, ξ 2, t

) + zϕ1
(
ξ 1, ξ 2, t

)
,

Ãi = Ai
(
ξ 1, ξ 2, t

) + zΨ i
(
ξ 1, ξ 2, t

)
, Ã3 = A3

(
ξ 1, ξ 2, t

) + zΨ3
(
ξ 1, ξ 2, t

)
.

(26.23)

In this case, likewise in [21], the covariant derivatives and the operators in Eqs.
(26.10) and (26.12) take the form:

∇iÃj = aij + zγij, ∇iÃ3 = ti + ζiz, ∇3Ãi = Ψi, ∇3Ã3 = Ψ3,

divA = A + Ψ3 + zγ, rotA = χ ij
[(
tj + ζjz − Ψj

)
πi +

(∇iAj + zBij
)
n
]
,

Bij = ∇iΨj + bki ∇kAj, gradϕ = (∇iϕ0 + z∇iϕ1) π i + ϕ1n.

(26.24)
Here

aij = ∇iAj − bijA3, γij = ∇iΨj − bijΨ3 + bki akj, ti = ∇iA3 + bki Ak ,

ζi = bki (Ψk + tk) + ∇iΨ3, Bij = ∇iΨj + bki ∇kAj,

γ = γ i
i = ∇iΨ

i − 2HΨ3 + bij∇iAj − CA3,

A = aii = ∇iAi − 2HA3, 2H = bii, K = det
(
bij

)
, C = 2

(
2H 2 − K

)
,

(26.25)
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where H and K are the mean and Gaussian curvatures of surface Π .
Using Eqs. (26.9) and (26.23)–(26.25), together with the procedure of the passage

from the triple integrals over G and the surface integrals over Π+ and Π− to the
integrals over midsurface Π and from the integral over Πb to the curvilinear integral
overΓ = ∂Π , which is standard for thin shells [21],we canwrite down the functional
components in Eq. (26.9) in the form:

8πW = −
∫∫

Π

{(
c−1Ȧi + ∇iϕ0

)
T i + (

c−1Ψ̇i + ∇iϕ1
)
M i+c−1Ψ̇3M

3

+ (
c−1Ȧ3 + ϕ1

)
T 3 + χ ij

[(
tj − Ψj

)
Hi + ζjNi + H3∇iAj + BijN3

]}
dS;

(26.26)

AG =
∫∫

Π

[
c−1

(
AiJ

i + A3J3 + ΨiK
i + Ψ3K3

) − (ϕ0Re + ϕ1Se)
]
dS (26.27)

4πAS =
∫∫

Π

(
rϕ0 + sϕ1 − riAi − siΨi − r3A3 − s3Ψ3

)
dS

+
∫

Γ

(
P(0)ϕ0 + S(0)ϕ1 − Pi

(0)Ai − Si
(0)Ψi − P3

(0)A3 − S3
(0)Ψ3

)
ds.

(26.28)

Here

T i =
h/2∫

−h/2

Didz, T3 =
h/2∫

−h/2

D3dz, M i =
h/2∫

−h/2

zDidz, M3 =
h/2∫

−h/2

zD3dz,

Hk =
h/2∫

−h/2

Hkdz,T3 =
h/2∫

−h/2

H3dz, Nk =
h/2∫

−h/2

zHkdz, N3 =
h/2∫

−h/2

zH3dz,

J i =
h/2∫

−h/2

jidz, J3 =
h/2∫

−h/2

j3dz,K
i =

h/2∫

−h/2

zjidz, K3 =
h/2∫

−h/2

zj3dz,

Re =
h/2∫

−h/2

ρedz, Se =
h/2∫

−h/2

zρedz;

(26.29)
ri = ri+ + ri−, r3 = r3+ + r3−, si = si+ + si−, s3 = s3+ + s3−,

r = r+ + r−, s = s+ + s−, ri± = Pi
∣∣
z=±h/2 , r

3± = P3
∣∣
z=±h/2 ,

si± = ± h
2 r

i±, s3± = ± h
2 r

3±, r± = P|z=±h/2 , s± = ± h
2 r±;
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Pi
(0) =

h/2∫

−h/2

Pi
∣∣
Πb
dz, Si

(0) =
h/2∫

−h/2

zPi
∣∣
Πb
dz, P3(0) =

h/2∫

−h/2

P3|Πb
dz,

S3(0) =
h/2∫

−h/2

zP3|Πb
dz,P(0) =

h/2∫

−h/2

P|Πb
dz, S(0) =

h/2∫

−h/2

z P|Πb
dz.

(26.30)

Thus, the functional of the electromagnetic field of the shell is determined by the
equality following from Eq. (26.8)

Ho

(
Ã,A3, Ψ̃ , Ψ3, ϕ0, ϕ1

)
=

t2∫

t1

(W + AG + AS) dt, Ψ̃ = Ψ iπi (26.31)

into which formulas (26.26)–(26.28) should be substituted.
It is assumed that the physical relations following from Eqs. (26.6), (26.10),

(26.11), (26.14), (26.24), and (26.29) are fulfilled

T i = h
[
κ ijkεjk + κ i33ψ3 − eij

(
c−1Ȧj + ∇jϕ0

) − ei3ϕ1
]
,

T3 = h
[
κ3k3θk − e3j

(
c−1Ȧj + ∇jϕ0

) − e33ϕ1
]
, M i = I

[
κ ijkκjk − eij∇jϕ1

]
,

M3 = I
[
κ3k3

(
bnkθn + ∇kψ3

) − e3j∇jϕ1
]
,

Hi = 4πh
[
χjmβ ij

(
tm − Ψ m

) + qijmεjm + qi33ψ3
]
,

H3 = 4πh
[
χjmβ3j

(
tm − Ψ m

) + q3j3θj + q333ψ3
]
,

Ni = 4π I
[
χjmβ ijζm + qijmκjm + qi33ψ3

]
,

N3 = 4π I
[
χjmβ3jζm + q3j3

(
bnj θn + ∇jψ3

)]
.

(26.32)

26.5 Equations of Shell Electromagnetodynamics

Statement 2. The necessary condition for an extremum of functional (26.31) under
the conditions

δÃ
∣∣∣
t=t1

= δÃ
∣∣∣
t=t2

= 0, δΨ̃

∣∣∣
t=t1

= δΨ̃

∣∣∣
t=t2

= 0,

δϕ0|t=t1 = δϕ0|t=t2 = 0, δϕ1|t=t1 = δϕ1|t=t2 = 0
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is represented by the equations

χ il
(∇iH3 + bki ∇kN3

) − χ ij
(
Hib

l
j + Nic

l
j

)
+ c−1Ṫ l + 4πc−1J l = rl,

χ il∇iN3 − χ ij
(
Nib

l
j − Hiδ

l
j

)
+ c−1Ṁ l + 4πc−1Kl = sl,

χ ij
(
∇jHi + bkj ∇kNi + c−1Ṫ3

)
+ 4πc−1J3 = r3,

χ ij∇jNi + c−1Ṁ3 + 4πc−1K3 = s3,

∇iT
i − 4πRe + 4r = 0, ∇iM

i − T3 − 4πSe + s = 0

(26.33)

and the boundary conditions

χ ij
(
H3νi + bki νkN3

)∣∣
ΓH

= Pj
(0), χ ij

(
Hiνj + bkj νkNi

)∣∣∣
ΓH

= P3(0),

χ ijνiN3

∣∣
ΓH

= Sj
(0), χ ijNiνj

∣∣
ΓH

= S3(0)

Ã
∣∣∣
ΓA

= A0, A3|ΓA
= A30, Ψ̃

∣∣∣
ΓA

= Ψ0, Ψ3|ΓA
= Ψ30,

νiT
i
∣∣
ΓD

= −P(0), νiM
i
∣∣
ΓD

= −S(0), ϕ0|ΓD
= ϕ00, ϕ1|ΓD

= ϕ10,

(26.34)

Here, ν = viπ
i is the unit normal vector to the shell surface Πb at z = 0

(on the intersection line Πb
⋂

Π = Γ ); δmi is the Kronecker symbol; ckj = bmj b
k
m;

curves ΓH and ΓA, as well as ΓD and Γϕ , intersect along a null-measure set; and
A0, A30, Ψ0,Ψ30, ϕ00, and ϕ10 are some given quantities.

To prove this statement, we will use the variational equation for this functional,
together with the following relations

4π

t2∫

t1

δWdt =
t2∫

t1

dt
∫

Π

{
δϕ0∇iT

i + δϕ1
(∇iM

i − T 3
)

+
[
χ ij

(
∇jHi + bkj ∇kNi + c−1Ṫ 3

)]
δA3 + (

χ ij∇jNi + c−1Ṁ 3
)
δΨ3

+
[
χ il

(∇iH3 + bki ∇kN3
) − χ ij

(
Hib

l
j + Nic

l
j

)
+ c−1Ṫ l

]
δAl

+ χ ij
[(

Hiνj + bkj νkNi

)
δA3 + NiνjδΨ3

+ (
H3νi + bki νkN3

)
δAj + N3νiδΨj

]}
ds;

δAG =
∫∫

Π

[
c−1

(
J iδAi + J3δA3 + KiδΨi + K3δΨ3

) − (Reδϕ0 + Sδϕ1e)
]
dS;
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4πδAS =
∫∫

Π

(
rδϕ0 + sδϕ1 − riδAi − siδΨi − r3δA3 − s3δΨ3

)
dS

+
∫

Γ

(
P(0)δϕ0 + S(0)δϕ1 − Pi

(0)δAi − Si
(0)δΨi − P3

(0)δA3 − S3
(0)δΨ3

)
ds;

The system of equations (26.33), together with the physical relations (26.32),
contains 20 equations in 28 unknowns

Ak ,A3, Ψ
i, Ψ3,T

k ,T3,Hi,H3,Ni,N3,M
k ,M3, J

k , J3,K
k ,K3,Re, Se, ϕ0, ϕ1

(26.35)
To obtain a system, which would be closed at a given displacement field, system
(26.33) should be supplemented with equations following from Eqs. (26.20) and
(26.23)–(26.25)

A + Ψ3 + c−1aϕ̇0 = 0, γ + c−1aϕ̇1 = 0

and the relations following from the Ohm’s law (26.13) and (26.29)

J i = h
{
σ

[
c−1χ ik (u̇kB03 − ẇB0k) − c−1Ȧi − gik∇kϕ0

] + ρe0u̇
i
}
,

J3 = h
[
σ

(
c−1χ ik u̇iB0k − c−1Ȧ3 − ϕ1

) + ρe0ẇ
]
,

Ki = I
{
σ

[
c−1χ ik

(
ψ̇kB03 − ψ̇3B0k

) − c−1Ψ̇ i − gik∇kϕ1
] + ρe0ψ̇

i
}
,

K3 = I
[
σc−1

(
χ ik ψ̇iiB0k − Ψ̇3

) + ρe0ψ̇3
]
.

(26.36)

26.6 Equations of Electromagnetoelasticity for an
Anisotropic Shell

The system presented above is closed by the equations of shell motion [21] which
must be supplemented with the equations for the force produced by the electromag-
netic field and the expressions for internal forces and moments following from Eqs.
(26.2)–(26.7). It is assumed that the initial electromagnetic field is independent of
the coordinate z .

With account for Eqs. (26.10), (26.23), and (26.24), the first group of these rela-
tions takes the form:

qie = h
{
c−1

[
j0kχ

ikχ lj∇lAj + j03
(
ti − Ψ i

)] − ρe0
(
c−1Ȧi + gik∇kϕ0

)}
+ ReE

i
0 + c−1χ ik (JkB03 − J3B0k) ,

mi
e = I

[
c−1 (

j0kχ
ikχ ljBlj + j03ζ

i
) − ρe0

(
c−1Ψ̇ i + gik∇kϕ1

)] + SeE
i
0

+ c−1χ ik (KkB03 − K3B0k) ,
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qe = −h
[
c−1j0i

(
ti − Ψ i

) + ρe0
(
Ȧ3 + ϕ1

)] + c−1χ ikJiB0k + ReE03,

me = −I
(
c−1j0iζ

i + ρe0Ψ̇3
) + c−1χ ikJiB0k + ReE03.

Here, we used the property of the discriminant tensor χ ikχjk = δij .
The second group of equations, with account for Equations (26.10) and (26.24),

is written as follows:

T̂ ij = h
[
Cijklεkl + Cij33ψ3 + κ ijk

(
c−1Ȧk + ∇kϕ0

)
/4π

] − γ ijkHk/4π,

M ij = I
[
Cijklκkl + κ ijk

(
c−1Ψ̇k + ∇kϕ1

)
/4π

] − γ ijkNk/4π,

Q̂i = h
[
Ci3k3θk − κ i33

(
c−1Ȧ3 + ϕ1

)
/4π

] − γ i33H3/4π,

μi = Ih
(
Ci3k3θk − κ i33c−1Ψ̇3/4π

) − γ i33N3/4π,

N̂ = h
[
C33klεkl + C3333ψ3 + κ33k

(
c−1Ȧk + ∇kϕ0

)
/4π

] − γ 33kHk/4π.

(26.37)

26.7 Equations of Electromagnetoelasticity for an Isotropic
Shell

If the shell material is isotropic, then Eqs. (26.32) and (26.37) can be considerably
simplified at the expense of the symmetry property of the tensor of elastic constants
[21] and the absence of piezoeffects [27]. In this case, Eq. (26.37) takes the form
independent of the electromagnetic field, as noted in [21], while Eq. (26.32) with
account for Eq. (26.22) is written as follows:

T i = −hε
(
c−1Ȧi + gij∇jϕ0

)
, Hi = hχjmg

ij
(
tm − Ψ m

)
/μe ,

M i = −Iεgij∇jϕ1,N
i = Iχjmg

ijζm/μe , T3 = −hεϕ1,

M3 = 0, H3 = 0, N3 = 0.

(26.38)

This reduces the number of unknowns in Eq. (26.35) by three, brings Eq. (26.33)
into a more compact form:

c−1Ṫ l + 4πc−1J l − χ ij
(
Hiblj + Niclj

)
= rl,

c−1Ṁ l + 4πc−1Kl − χ ij
(
Niblj − Hiδ

l
j

)
= sl,

χ ij
(
∇jHi + bkj ∇kNi + c−1Ṫ3

)
+ 4πc−1J3 = r3, χ ij∇jNi + 4πc−1K3 = s3,

∇iT i − 4πRe + 4r = 0, ∇iM i − T3 − 4πSe + s = 0,
(26.39)
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and, correspondingly, reduces the number of the boundary conditions (26.34).

χ ij
(
Hiνj + bkj νkNi

)∣∣∣
ΓH

= P3(0), χ ijNiνj
∣∣
ΓH

= S3(0),

Ã
∣∣∣
ΓA

= A0, A3|ΓA
= A30, Ψ̃

∣∣∣
ΓA

= Ψ0, Ψ3|ΓA
= Ψ30,

νiT i
∣∣
ΓD

= −P(0), νiM i
∣∣
ΓD

= −S(0), ϕ0|ΓD
= ϕ00, ϕ1|ΓD

= ϕ10.

(26.40)

Obviously, in this case, the following equalities must take place:

P1
(0) = P2

(0) = 0, S1
(0) = S2

(0) = 0,

In order for they be fulfilled, it is sufficient, by virtue of Eq. (26.30), to require
that the electromagnetic disturbances on the lateral surface are direct normal to it:

P|Πb
= P3|Πb

n

26.8 Conclusions

The most general boundary value problem on the transient dynamics of a homoge-
neous electromagnetoelastic shell is constructed. As a particular case, the passage
to the isotropic shell is realized. In this case, Eq. (26.39) and boundary conditions
(26.40) can be written using Eqs. (26.36) and (26.38) in the explicit form “in dis-
placements”, that is, in the kinematic parameters andpotentials of the electromagnetic
field.

Using the results obtained, we can further go over to different simplified ver-
sions of the equations neglecting the reduction, assuming the perpendicularity of the
normal unit vector to the midsurface and the constancy of the electromagnetic field
parameters with respect to the shell thickness, etc.
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Chapter 27
Research of the Destruction of Ice Under
Shock and Explosive Loads

Maxim Yu. Orlov and Yulia N. Orlova

Abstract A theoretical and experimental research of the behavior of ice destruction
under shock and explosive loads was carried out. Full-scale underwater explosive
experiments and laboratory impact experiments were performed. Especially to study
the properties of icewith explosive loads, amobile laboratory “ExplosiveDestruction
of Natural Materials” was organized. The results of the full-scale experiment of the
current year are given. Post-penetration analysis of destruction of three-layer ice
targets with a low-velocity impact is presented. Briefly, the mathematical model of
ice destruction under dynamic loads is described. The numerical method contains
a new way for isolating discontinuity surfaces of materials. The impact of an ice
cylinder on a rigid wall is modeled, which is considered as a quantitative test. The
penetration of a metal container into thick ice is quantitatively described.

Keywords Ice destruction · Shock and explosive loads · Full-scale underwater
explosive experiments · Rigid wall · Three-layer ice target · Projectile · Fracture
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DP Detonation product
DV Detonation velocity

27.1 Introduction

At present time, studies of the behavior of ice under shock and explosive loads
are extremely important. This fact is widely known and explains the development
of the northern territories, the need to increase the extraction of natural resources
in the North, the fight against ice jams on Siberian rivers, the creation of protective
structures againstmicrometeorites and somemilitary applications. Recently, the need
has arisen for the development of the Northern sea route and the extraction of natural
resources, mainly gas on the shelf. Ice has been an object of constant research since
themiddle of the last century [2, 16]. Themechanical properties of ice under dynamic
loads are investigated in [14, 26].

Therefore, it is necessary to understand the basic mechanisms and patterns of the
process of ice destruction under dynamic loads. The main difficulty is that ice is the
oldest natural material that is little studied in conditions of high-speed deformation.
There are more than 15 types of ice, some of which are of extraterrestrial nature. A
well-known fact is that the deformation of ice is accompanied by phase transitions,
ice has unique plastic properties, and its strength depends on temperature [4, 25, 27].
Mathematical models of ice destruction are still being developed. For example, in
work [5], a phenomenological model was developed for the destruction of ice upon
impact. But the model is tied to ballistic experiments.

The situation is complicated by the fact that some experimental data do not agree
with each other, which is most likely caused by the temperature of its formation.
According to the analytical reviewof [22], experimental data on the explosive loading
of ice are missing or have already become a bibliographical rarity.

The Research Institute of Applied Mathematics and Mechanics (hereinafter, RI
AMM) conducts systematic research on the destruction of ice under shock and explo-
sive loads. InOrlova [19], amathematicalmodel of ice deformation and fracture under
dynamic loads was developed. In recently research [21], a numerical method was
developed for solving tasks of ice destruction under detonation products (hereinafter,
DP). The latest innovation can be considered as a mobile laboratory “Explosive
Destruction of Natural Materials” organized on the basis of the RI AMM (here-
inafter, mobilab). Currently, the mobilab is being developed as an alternative to the
American research program ScIcExe.
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27.2 Experimental

In the current paper, numerical and experimental research of the destruction of ice
under explosive and shock loads are carried out. Experimental research deals with
full-scale experiments and laboratory impact experiments. Snow-covered ice cover
and needle ice cover were studied with mobilab. Snap-analysis of ice destruction
under DP was obtained. Full-scale experiments were conducted with the help of
KuzbasSpetsVzryv Ltd. Laboratory impact experiments were carried out on the basis
of the RIAMM and Society for Practical Bullet Shooting.

27.2.1 Mobile Laboratory «Explosive Destruction of Natural
Materials»

As mentioned earlier, ice is a poorly understood natural material. The state of art
emphasizes the lack of experimental data on the behavior of ice under explosive loads.
A few years ago, the mobile laboratory “Explosive Destruction of Natural Materials”
was organized at the Tomsk State University. The first research objects were bare
ice and natural limestone [23]. Mobilab’s main goal is to deepen the experimental
knowledge in the field of explosive destruction of ice. Currently, it has the status
of an initial project and is developing as an alternative to the ScIcExe American
research program [3]. Mobilab’s permanent partners are the Ministry of Emergency
Situations of Russia and the KuzbasSpetsVzryv Ltd.

In addition to ice, the traditional object of studywas natural limestone. In previous
research, the limestone was studied in detail under explosive loading. The shape of
the explosive crater including the state of its edge and the morphology of destruc-
tion were obtained. Emulsion explosives (hereinafter, EE), granulate explosives and
ammonite explosives and an explosive mixture (hereinafter, EM) of these compo-
nents were used. EMmaximum weight is 1000 kg of TNT. In current paper, only EE
are considered.

By means of mobilab, snow-covered ice, bare ice, ice cover like needle ice and
ice cover sandwich structures of the “Snow—Shuga—Ice” under explosive were
studied. We use Sea Ice Nomenclatura of 1974 only. The subject of the study was
the state of the ice cover after the explosion, including the diameter of the lane (or
polynya), its shape, the state of the ice edge and the morphology of ice destruction.
In Orlov et al. [20], it was possible to reveal the height and diameter of a cloud of
ice fragments after blast.
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27.2.2 Full-Scale Underwater Explosive Test

In this section, we focus on full-scale experiments. These experiments are called full-
scale underwater explosive test (hereinafter, UNDEX). Similar experiments were in
Cole [6], Zamyshlyaev and Yakovlev [29]. In this case, the blast was produced
in water under ice without an air gap. Experiments are conducted during the last
seven years on the river Tom. Four experimental sites were selected. At the first two
sites, snow-covered ice and ice cover of the sandwich structure are formed every
year. And in the last two sites, bare ice and “needle ice” are formed. This can be
explained by the peculiarities of the formation of ice not by the river, including water
current and temperature, wind, etc. In Glazyrin et al. [11], the behavior of these ice
covers subjected to explosion is described.

The research object is snow-covered ice of medium thickness (ice thickness is
approximately 70 cm). The approximate snow thickness is no more than 20 cm. The
age of this ice is not more than 125 days. The research subject was the state of ice
cover after the explosion, including the diameter of the lane (polynia) in ice, the state
of the ice edge and the morphology of ice destruction.

In all cases, the explosion was performed in water under the ice. There was no air
gap between explosives and ice. The explosive substance is EE (Emulast AS-FP-90).
The explosive charge has a cylindrical shape and a mass of 4 kg (TNT equivalent
3.25 kg). Detonation velocity is 4600 m/s (hereinafter, DV). At the time of the blast,
the explosive was located parallel to the ice cover. Water and air temperature were
4 °C. The depth of the water under the ice was approximately 5 m (hydroimpact was
excluded). The river bottom was flat. The initiation point of explosion was at the top
of EE charge. The total area of the experimental site was approximately 1000 m2.
The surface of the ice cover is smooth. There are no recurring polynya, crack and
fracture of ice.

Figure 27.1 shows a polynya in a snow-covered ice subjected to 4-kg-EE blasting.
Last year, such ice was identified as needle ice. This year the ice thickness was 65 cm.
Due to ice fragments, thewater inside the lane is almost invisible. Inside the lane, there

Fig. 27.1 One EE charge, polynya in a snow-covered ice. UNDEX’s results of 2019
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are fragments of ice of small size (≈15 cm). No large fragments of ice (≥50 cm)were
found. The shape of the ice edge could not be identified. Most likely, it had a stepped
shape. Near the edge of the ice, you can find small pieces of ice (≤ 10 cm). Initially,
they were larger. It is possible that they are debris of medium or large fragments of
ice. Radial cracks in the ice cover were also not detected. The approximate diameter
of the lane was 500 cm. This fact is predictable and corresponds to last year’s results
[11].

27.2.3 Behavior of Ice Target Subjected to Normal Impact
by Nosed Projectiles

This section outlines an experimental research of the destruction of ice under shock
loads. Post-penetration analysis of low-velocity impact of a nosed projectile with
single-layer and multilayer ice targets was performed. The low-velocity impact of
ice cylinders with AU4G aluminum targets is considered in Combescure et al. [7].
Recently, several experiments were simulated. The subject of comparison was the
morphology of the destruction of ice and the residual displacement of the aluminum
plates. According to terminology from Babkin et al. [1], this experiment can be
interpreted as a quantitative test.

In the current research, the impact resistance of a three-layer ice target was studied
experimentally. In thefirst instance, the scientific interest is the features of the destruc-
tion of ice plates, including the penetration time, the morphology of ice destruction,
etc. The research object is ice cylinder. Its dimensions are 10.5× 4.5 cm. The cylinder
was formed by freezing freshwater at a temperature of—24 °C and a freezing time
of 48 h. Projectile is a well-known bullet 57-H-181C. The initial velocity is 315 m/s.
Research subject is the condition of ice impacted to nosed projectile. In the previous
experiment, the object of the research was one ice cylinder only.

Figure 27.2 illustrates one ice cylinder before impact and a three-layer ice target
after impact. Due to the fact that the result was predictable, the results of the high-
speed shooting of the ice destruction in this subsection are not presented. Ice frag-
ments of various size, including small size (< 10mm), are clearly visible in the photo.
The projectile was not deformed. The results of this experiment almost completely
repeat the results of the previous experiment. The presence of two additional ice
cylinders in the composition of the target did not increase its impact resistance.

27.3 Model and Method

This section summarizes themathematicalmodel andmethod for numericalmodeling
ice destruction problems. A mathematical model of ice behavior during impact and
explosion is based on a complex model of continuum mechanics. The numerical
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Fig. 27.2 Ice sample and target of three-ice cylinder after impact. Scale bar represents 1 cm

method is based on the Lagrangian approach of the motion of continuous media
and is a development of the numerical method of G. R. Johnson [12]. The method
is developed by adding new calculation algorithms, include elements erosion algo-
rithm, splitting nodes algorithm, etc. Numerical modeling was carried out on a non-
commercial programpackage for solvingmodern dynamic tasks in themechanics of a
deformed solid (hereinafter,MDPMDS).According to the terminology ofGerasimov
et al. [10], such tasks should be understood as it of penetration and penetration of
impactors of complex geometry into structurally inhomogeneous targets.

27.3.1 Mathematical Model of Ice Destruction

Below is amathematicalmodel of ice destruction,which is based on a complexmodel
of continuum mechanics. The model allows to describe the processes of deforma-
tion and destruction of ice under dynamic loads, including the formation of new
free surfaces, the fragmentary destruction of materials. The governing equations are
based on the fundamental laws of conservation of mass, momentum and energy.
Ice is modeled by a single-phase medium without phase transitions with averaged
strength characteristics. The material is assumed to be elastic–plastic, compressible,
porous, taking into account the strength properties, shock-wave phenomena and joint
formation of several types of fracture. The model was tested and detailed in Orlov
[10, 19].

The elastic–plastic behavior of materials is described by the well-known Prandtl–
Reis equations and von Mises yield condition. The model is not tied to any single
equation of state. The equations of state of Walsh, Mi–Grüneisen, Tet, the Zhukov’s
wide-range equation, etc., were used. Pressure in detonation products (hereinafter,
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Fig. 27.3 Shock adiabat of
ice and water [15]

DP) is described by Landau–Stanyukovich polytropic [18]. The shock adiabat of ice
and water is shown in Fig. 27.3.

The model implemented the concept of destruction material from Tolkachev and
Trushkov [28]. The concept is based on a well-known fact that dynamic destruction
materials are accompanied by the formation of destruction like “spall” and destruc-
tion like “shift”. There may be cases when one type of destruction prevails over
another, for example, during an adiabatic shift. Therefore, when modeling fracture
materials, both typesmust be considered. In the opinion of the authors, this will allow
to model the processes of destruction most approximate to the real ones. The most
important point is that it is possible to use different failure criteria of materials.

We used the shock adiabat of ice and water in the following form:
The equation of state of ice is as follows.

P(ρ) =
(

ρ

ρ0
− 1

)(
ρ

ρ0

)

where P—hydrostatic pressure, ρ—density, B—constant.
B = 8.4 GPa, ρ0 = 0.92 g/cm3.
The equation of state for water is a polynomial.
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The pressure in the detonation products is described by the following formula.
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where D is detonation’s velocity.
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27.3.2 Numerical Method and Test Calculations

In this subsection, we focus on the numerical method. The system of equations is
solved in the two-dimensional axisymmetric statement on the basis of the Lagrangian
approach to the description of the motion of continuous media. Well-known fact is
that any Lagrangian method has serious problems with solving tasks of the deep
penetration of projectiles of complex geometry into multilayer targets. For example,
one is the penetrating of multilayer targets by nosed projectile. The problem is the
overlap of the triangulated elements [9]. To overcome this lack, the algorithm erosion
elements, algorithm splitting nodes, the algorithm for constructing the free surface
were introduced. The last algorithm will be mentioned below when modeling the
tasks of explosive destruction of the ice [22].

As said before, the numericalmethod contains a newway for isolating the surfaces
of discontinuity of materials. A similar approach to modeling the perforation tasks
developed in the work [24]. However, in the present approach, several ways of split-
ting nodes are possible. In this algorithm, it is not necessary to store any information
in the nodes as in the work [17]. It allows us to use various failure criteria of solids.
For the numerical solution of MCPMDS, this is of equal importance.

A software package has been developed for modeling of MCPMDS in the
programming language C++. The program package consists of a solver program and
a viewer program. Until today, there are more than five versions of both programs.
The following shows the capabilities of the latest version of the program package. In
research [13], an attempt was made to simulate some tasks in the Euler’s formulation
using the original computer code.

27.3.3 Test Calculations

Before numerical simulation, test calculations were carried out. As a quantitative
test, the impact of an ice cylinder on a rigid wall was simulated. This subsection
uses terminology from Fomin et al. (1998). In the scientific literature, such a test is
called the Taylor’s test. Of course, the test results are predictable. The ice will be
destroyed. The numerical results are also intended to demonstrate the capabilities of
the software package and mathematical model.

The initial velocity cylinder was varied from 50 to 150 m/s. The diameter of the
cylinder is 6.88 mm, and the height of one is 20.6 mm. A series of computational
experiments consisted of five cases. The subject of research was the relative short-
ening, equal to the ratio of the final height of the cylinder to the original height of
the cylinder.

Figure 27.4 shows ice at time 0 and 35 µs. In first case, the initial velocity is
125 m/s. Of all the cases considered, this was the penultimate. Due to the strong
fragmentation of ice, the latter case is not given here. It can be seen that the ice
cylinder is almost completely destroyed. Small ice pieces separated from the cylinder
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Fig. 27.4 Cross cection of ice cylinder—Rigid wall, t = 40 µs

in the radial direction. The bottom part of the ice cylinder is cracked but still retained
its original diameter. The height of the cylinder after the impact is difficult tomeasure,
at this point in time, it was 6.2 mm. Obviously, after some time, the ice will be broken
into small pieces. A similar picture of ice destruction is noted in Carney et al. [5].

Thus, an increase in the initial velocity leads to a decrease in the height of the
cylinder after the impact. This fact is verified experimentally and corresponds to the
physics of the process.

27.4 Deep Penetration of a Projectile into Thick Ice

This section presents simulation results. The deep penetration of metal container in
thick ice in a subsonic range of initial velocities is modeled. Projectile is a metal
container with inert filler. The walls of the metal container called a shell. The filler
imitated explosive. The container diameter is 34 cm. The height of the container was
87.7 cm. The mass of the container along with the mass of the filler is 235 kg. Filler
mass is 108.6 kg. The fill components are cement, sand, sawdust, freshwater and
water glass. Strength characteristics of simulated materials are in Orlova [19].

Ice was a 400 cm barrier. In fact, such ice rarely meets on the Siberian rivers.
Therefore, the object of study simulates sea ice. A series of numerical experiments
consisted of four cases. The cases differed only in the initial velocity, which ranged
from 150 m/s to 300 m/s. At the contact boundary of Shell − Filler and Shell − Ice,
the slip condition was specified.

The subject of the research was the time of penetration (until the complete stop
of the projectile), the diameter and depth of the impact crater in the ice, projectile’s
diameter after the impact, the gap between the filler and the shell of the projectile,
etc. The time of birth of the first foci of ice destruction, their further evolution into
ice were studied. This research does not address the problem of self-detonation.

Figure 27.5 shows the final stage of the penetrating for the last case. A fragment
of the computational domain is shown. Outside this fragment, there were practically
no destruction patterns. In front of the projectile, there is a zone of destroyed ice.
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Fig. 27.5 Case 4, time
14,015 µs, cross section of
Projectile—Ice

Therefore, it penetrated in the weakened ice. The impact crater is V-shaped. Pene-
tration depth is practically almost twice the original diameter of the projectile. The
front part of the container is deformed in the radial direction. In its bottom part, there
is a gap between the shell and the filler. The pressure in the filler did not exceed 1
GPa.

Figure 27.6 shows the dependence of the axial velocity of the bottom of the shell
on the time of penetration. Calculations are made at the control point on the axis of
symmetry for case 1. The velocity curves for the other calculation cases were similar.
The curve shows large-scale velocity oscillations. On the velocity curves for the bow
of the shell and the filler, the oscillations are not found. At 14 ms, the velocity curve
approaches zero.

The numerical results into ice are shown in Table 27.1, whereDice is parameter of
damage ice, Lk is depth of penetration of the projectile, dl is diameter of the projectile
after the penetration process, tk is time of penetration, dd is crater diameter, lz is gap
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Fig. 27.6 Plot axial velocity shell’s bottom versus penetration time

Table 27.1 Summary of the calculated parameters of the simulation of the projectile penetration
into ice

Parameters Case 1 Case 2 Case 3 Case 4

Projectile velocity V0 (m/s) 150 200 250 300

Damage of ice Dice (%) 1.120 1.946 3.285 4.254

Depth penetration Lk(cm) 56.11 94.14 128.7 162.5

Crater diameter dd (cm) 55.52 57.08 58.32 61.9

Time of penetration tk (µs) 13.042 14.510 17.270 20.15

Diameter after impact dl (cm) 34.40 36.00 38.00 40.50

Gap lz (cm) 0.25 0.25 1.15 1.50

Shortening �LShell/�LFiller 0.99/0.99 0.97/0.97 0.96/0.95 0.93/0.92

between the filler and shell, and�LShell/�LFiller is the relative shortening of the filling
and shell. It should be noted that material damage has been proposed in Glazyrin
et al. [11].

The table shows that with an increase in the initial velocity was an increase in
all the parameters, except for the gap between the filler and the shell in cases 1 and
2. The volume of ice was a little damaged. Ice fracture zone formed, usually in the
contact region “Projectile−Ice”. No foci of destruction were found near the rear
surface of ice barrier. It was found that the depth of penetration of the projectile in
the range from 56.1 to 162.5 cm increases in proportion to its initial velocity. The
time of the penetration of process exceeded themicrosecond range and reached about
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20 ms. Projectile’s penetration was accompanied by a deformation of it (shell and
filler) in the axial and radial directions. At the same time, dd crater diameter ranges
from 55.52 to 61.9 cm. It is found that at the first milliseconds gap is formed between
the shell and filler

27.5 Conclusions

The experimental and numerical studies led to the following conclusions.

1. Based on the RI AMM, a mobilab Explosive Destruction of Natural Materials
was organized. At themoment, its main goal is to snap-analysis of the behavior of
ice under explosive loads, including the state of the ice edge, the morphology of
the destruction and the diameter of the lane in the ice cover. In fact, the presence
of mobilab seriously expands the research capabilities of the research team. This
fact is of fundamental importance when studying the destruction of ice.
At least four types of ice, including snow-covered ice, bare ice, sandwich structure
ice and “needle ice”, have been studied. The maximum mass of explosives was
10 kg of TNT equivalent. The diameter of the lane (polynya) varied from 200 cm
to 800 cm. This year its diameter was 500 cm. There were differences in the
morphology of destruction.

2. The results of laboratory experiments are presented. The research object was a
three-layer ice target. Projectile is a well-known bullet 57-H-181C. There was
no air gap between the ice cylinders. The initial velocity was subsonic and was
315m/s. After the target was perforated, the projectile was not deformed. The ice
target was completely destroyed. Among the fragments of ice, fragments of ice of
medium size prevailed (sizes comparable to those of projectile). Two additional
ice layers did not increase the impact resistance of the target. The results of the
experiment turned out to be predictable and practically did not differ from the
results of the experiment of the previous year.

3. Ice is described by one of the complex models of continuum mechanics based
on fundamental conservation laws. The material is assumed to be elastic–plastic,
compressible, porous, taking into account the strength properties, shock-wave
phenomena and joint formation of several types of fracture. Ice is modeled by
a single-phase medium without phase transitions with averaged strength charac-
teristics. DP’s pressure is described by Landau−Stanyukovich polytropic. The
model implemented the concept of joint formation of fracture like spall and frac-
ture like shear. This concept is based on a phenomenological approach to the
description of destruction. Fragmentary destruction of the material is taken into
account also.

4. The systemof equations is solved in the two-dimensional axisymmetric statement
based on the Lagrangian approach to the description of the motion of continuous
media. The problem is the overlap of the triangulated elements. To overcome
this lack, the algorithm of erosion elements, algorithm of splitting nodes and the
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algorithm for constructing the free surface were introduced. According to termi-
nology [8], the numerical method contains a new way for isolating discontinuity
surfaces of materials, which does not impose serious restrictions on the solution
of MCPMDS. One quantitative test was also given.

5. Quantitatively described projectile’s penetration into the ice in the initial range of
velocity below one of sound in air. A lot of parameters of the penetration for four
cases are obtained. It was revealed that the loading process was accompanied by
radial and axial deformation of the projectile and the formation of a conical (or
V-shaped) crater into the ice. It was found that the depth of the crater increased
in direct proportion to projectile’s velocity. The volume of the destroyed ice
was insignificant. Projectile’s velocity including the bottom and the filler’s bow
changed hyperbolically. Hydrostatic pressure arising in ice can be categorized as
low (≤ 1GPa). In this paper, self-detonation was not considered.
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№ 19-08-01152.
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Chapter 28
Experimental Investigations of Failure
of Sandwich Specimens with Composite
Facing Layers Under Four-Point Bending
Conditions

Vitaly N. Paimushin, Vyacheslav A. Firsov, Sergey A. Kholmogorov,
and Maksim V. Makarov

Abstract A series of experimental studies on the four-point bending of sandwich
specimens with facing layers made of a unidirectional fiber-reinforced composite
with specified geometric and physico-mechanical characteristics with varying geo-
metric and physico-mechanical characteristics of the core was carried out. It is shown
that when using a honeycomb coremade of polymer paper, the implementation of the
shear buckling mode in the facing layers is impossible, and the failure of the sample
occurs due to the failure of the core. Specimens with stiffer cores are fail due to the
failure of compressed facing layers in the vicinity of the loading roller at stresses
comparable to the critical stresses of their buckling mode in a purely transverse-
shear form. It was established that during the loading of the specimen, a significant
increase in the mulitmodularity of the material is observed, apparently, mainly due
to the implementation and continuous change of the internal micro- and mesoscale
buckling modes of fibers and fiber bundles in areas with weakened physical and
mechanical characteristics of the binder composite in compressed facing layer.
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28.1 Introduction

Sandwich structures are widely used in the shipbuilding and aerospace industries.
As a rule, such constructions consist of two rigid outer layers, receiving tangential
stresses, and a relatively low-rigid core, receiving transverse compression stresses
and transverse shear stresses. The choice of materials for the outer layers and core
depends on the specifics of the work of sandwich structures. In aerospace industry,
as a rule, honeycomb based on light aluminum alloys or polymer paper is used. Such
cores have the highest stiffness and strength characteristics with a low weight. In
sandwich structures used in shipbuilding, porous metal cores is used. Such cores
require high toughness and high ability to absorb impact energy. Both metals and
composite materials based on glass and carbon plastics are used as materials for the
facing layers.

The failure of sandwich structures can be caused by the implementation of differ-
ent processes of deformation of their constituent elements under the loading [19, 21,
23, 24]: failure of the core due to the reaching of ultimate transverse shear stresses
formed in them [3, 6]; fatigue fractures of the core [5, 23]; peeling of the facing
layers from the core [1, 20]; reaching of ultimate transverse compressive stresses in
the core [22]; buckling of the facing layers [2, 10].

In ultralight sandwich structures, the outer layers are usually made of carbon
fiber-reinforced plastic. Unidirectional carbon plastics can have even greater tensile
strength thanhigh strength steels. Therefore, themain failure reasonof such structures
may be the buckling of the facing layers in one form or another under the conditions
of compressive stresses. In particular, in the formation of such stresses, it is possible
to realize the transverse-shear buckling mode. As is known [4, 7], when compressing
specimens from unidirectional fiber-reinforced plastics along the fibers, the values
of the transverse shear modulus can be taken as the ultimate compressive stresses.
In a series of works [11, 15], it was shown that the theoretical identification of the
shear buckling form of composite specimens under three-point bending conditions is
possible using equations based on the simple kinematic model of S. P. Timoshenko.
Thiswork is a continuation of research [11, 15] and is devoted to experimental studies
of the processes of deformation and failure of sandwich specimens with composite
facing layers during four-point bending in order to identify the possibility of realizing
a shear buckling mode in facing layers of a unidirectional fiber-reinforced plastic.

28.2 Bending of Sandwich Specimens
with Honeycomb Core

For four-point bending, the sandwich specimenswith honeycomb coremade of paper
™Nomex with thickness H = 5 mm were manufactured. Dimension of the cell in
average was t = 4 mm. Facing layers of the specimens were manufactured from
carbon tape ELUR-P and cold curing epoxy XT-118. Total length of the specimens
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Fig. 28.1 Geometrical characteristics of the specimen

was L = 210 mm, and wide b = 25 mm. Lay-up direction of facing layers is 0◦ with
respect to longitudinal axes of specimens Ox. Their average thickness is 1mm and
they consist of 8 laminas with a thickness of 0.12mm. A sketch of the specimen with
the basic geometric characteristics, the direction of the axes of the specimen, and the
direction of the axes of orthotropy of the facing layers is shown in Fig. 28.1.

Specimens were cut from a flat plate made by vacuum molding. At the first stage
of manufacturing, facing layers with lay-up sequence [0]8 were formed. Laminas
of carbon tape were molded layer-by-layer on a metal plate heated to 40◦C and
impregnated with an XT-118 cold-cured epoxy binder. Epoxy resin was mixed with
a hardener in a proportion of 5:1. After the formation of the sequence of layers, a
fabric was laid on top of the plate, absorbing excess binder and the package of layers
was covered with a vacuum film, fromwhich air was pumped out. The vacuum in the
bagwas held for 24h, duringwhich the binder completely polymerized.At the second
stage, an XT-118 binder with a thickness of about 0.5mm was applied to one of the
surfaces of the finished packet of layers, and a honeycomb was placed and covered
with the same packet of laminas on top. The package of the facing layers and the
honeycomb core was again covered with a vacuum film and in a vacuum, the binder
was polymerized within 24h. After that, the plate was cut with a diamond cutting
circular saw into the specimens. The view of the fabricated sandwich specimens is
shown in Fig. 28.2.

Four-point bending tests were carried out on an Instron ElectroPuls E10000 servo-
electric testing machine, on which a force transducer with a measuring range of
±10kN is installed. The loading process was carried out in the stroke speed con-
trol mode. The speed of the stroke during the tests was constant and amounted to
5mm/min. Bending fixtures were installed on the machine, which allow to change
the distance between the support rollers. The supporting and loading rollers had a
diameter of 10mm. Equipment with loading rollers, the distance between which
was 70mm, was mounted on the specimen from above. The specimen installation
diagram is shown in Fig. 28.3.

The loading curves of five specimens is shown in Fig. 28.4a. The deflection of the
specimen during testing was recorded according to the stroke of the testing machine.
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Fig. 28.2 Overview of the sandwich specimens

Fig. 28.3 Installation diagram of the sandwich specimen

In this regard, the deflection on the graphs reflects the deflection of the loading rollers.
It can be seen from Fig. 28.4a that the maximum deflection for the tested specimen
lies in the range of 3–4 mm, and the ultimate load Pmax is about 0.3 kN.

Testing results and their statistical treatment are shown in Table 28.1. The magni-
tudes of ultimate stresses in the facing layers and ultimate shear stresses in the core
are also shown in Table 28.1.

Normal stresses σ bend
max calculated according to the formula

σ bend
max = Mmax

z /Wz, Mmax
z = Pmax · (l/2), (28.1)

where value of modulus of section Wz determines by expression

Wz = [(b(H + 2h)3 − bH 3)/12]/[(H + 2h)/2]. (28.2)

Shear stresses were calculated by formula of Zuravskiy. The found values σ bend
max

and τmax are also given in Table 28.1 for each specimen. It can be seen that the average
normal compressive stress σ bend

max = 71.557 MPa is much less than the ultimate com-
pressive stress σ−

1 = 529.286 MPa found for the composite based on the ELUR-P
carbon and binder XT-118 in [12]. Having studied the pattern of deformation of the
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Fig. 28.4 Loading curves of
the specimens with
honeycomb core (a
“load-deflection” curve, b
“stress-deflection” curve)

specimens (Fig. 28.5) at the stages of the load drop on the diagram, it can be seen
that the facing layers are not failed when the maximum load is reached.

Itwas established that failure of the specimens occurs due to the achievement of the
shear stress in the core of the limiting value of τ ∗

xz = 0.92MPa,whichwas established
earlier in [16] on the basis of the corresponding experiments. The experimental
average values τ ∗

xz = 1.308 MPa given in the table exceed the failure ones by 1.42
times. Based on this, we can conclude that for the specimens under study with the
above geometric and physico-mechanical characteristics of the honeycomb core and
the facing layers, failure is possible only due to the failure of the core, while the
facing layers remain very underloaded.
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Table 28.1 Testing results of the sandwich specimens

Specimen number Pmax (kN) σ bend
max (MPa) τmax (MPa)

1 −0.306 67.918 1.241

2 −0.292 64.786 1.184

3 −0.364 80.820 1.477

4 −0.354 78.501 1.435

5 −0.296 65.760 1.202

Average −0.323 71.557 1.308

Standard deviation 0.034 7.529 0.138

Variation coefficient −10.540 10.521 10.525

Fig. 28.5 Failure pattern of specimens with honeycomb core

28.3 Bending of Sandwich Specimens with Combined
Rigid Core

Based on the analysis of the results of the four-point bending tests on specimens with
a honeycomb core described above, wood (linden) was chosen as the core. Note that
in order to realize the stresses of macroscale transverse-shear buckling mode in the
facing layers, the compressive stresses in themmust reachσ−

1 = 529.286MPa. In this
case, the core should not be failed due to the achievement of ultimate shear stresses.
Ultimate shear stresses for different types of wood lie within τ ∗

xz = 8 − 11 MPa.
Such ultimate stresses make it possible to form critical compressive stresses σ−

1 =
529.286 MPa in the facing layers without failure of the core. It is known [13] that in
the region of support and loading rollers, when loading the specimen with cylindrical
rollers, there is a concentration of shear stresses. In order to avoid failure of the core
in the region of the support rollers, a fiberglass-based core was used, and the core in
the working part of the specimen between the loading rollers was made of wood. A
diagram of the specimen is shown in Fig. 28.6.
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Fig. 28.6 Geometrical parameters of the specimen with combined core

Fig. 28.7 Overall view of specimens with combined core and installation diagram

The manufacture of the specimens and four-point bending tests was carried out
according to the same scheme as the specimens with honeycomb core. Only the
center-to-center distance between the support rollers differed, which amounted to
170mm (Fig. 28.7).

The “load-deflection” curves of the three specimens are shown in Fig. 28.8a, and
the “stress-deflection” curves are shown in Fig. 28.8b. Axial normal stresses in the
facing layers were determined by formulas (28.1) and (28.2).

The test results are summarized inTable 28.2. It can be seen from it that the average
value of ultimate normal stresses is σ bend

max = 342.425 MPa, and the shear stresses at
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Fig. 28.8 Loading curves of
the specimens with
combined core (a
“load-deflection” curve, b
“stress-deflection” curve)

failure reach the value τmax = 8.762 MPa. Values σ bend
max of normal stresses were

much higher than values for bending specimens with honeycomb core. This value
τmax = 8.762MPa is almost failure for the used wood grade. Visual inspection of the
upper facing layer of the specimens showed that failure in the upper (compressed)
layer occurs at the contact area of the layer and the loading roller, while the core
does not have any signs of failure.

28.4 Bending of Sandwich Specimens with Rigid Core

Tests of the specimens with a combined rigid core showed that the failure of the
lower facing layer in the vicinity of the support rollers from the action of transverse
normal stresses do not occur. In accordance with this, it is possible to refuse to use
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Table 28.2 Testing results of the specimens with combined rigid core

Specimen number Pmax (kN) σ bend
max (MPa) τmax (MPa)

1 −1.477 292.436 7.482

2 −1.920 380.219 9.729

3 −1.791 354.620 9.074

Average −1.729 342.425 8.762

Standard deviation 0.228 45.144 1.156

Variation coefficient −13.175 13.184 13.189

a combined core in favor of using a rigid core (wood) along the entire length of the
specimen. For testing, specimens were made with rigid core made of wood along the
entire length of the specimens. The total length of the specimen was L = 250 mm,
width b = 25 mm, core thickness H = 5 mm, nominal thickness of the facing layers
h = 1 mm, the distance between the support rollers was 250mm, and between the
loading—70mm.

The loading curves of the three specimens with a rigid core are shown in Fig.
28.9a, and the “stress-deflection” curves are shown in Fig. 28.9b.

Experimental results and evaluated by formulas (28.1) and (28.2), stresses sum-
marized in Table 28.3.

The axial compressive stresses averaged over the results of tests of three specimens
turned out to be equal to σ bend

max = 282.098 MPa. This value turned out to be less than
when bending specimens with a combined core (σ bend

max = 342.425MPa) and less than
the value obtained by axial compression [12] (σ−

1 = 529.286 MPa). However, the
shear stresses τmax = 4.034 MPa with such stiffness and geometric parameters were
less than in experiments with a combined core. The values τmax obtained by bending
specimens with a uniform rigid core along the entire length exclude the failure of the
core, which makes it possible to identify the causes of the facing layers failure.

28.5 Experimental Evaluation of Stresses in Facing Layers

As you know, honeycomb core belongs to the class of transversally flexible, which
allows you to ignore the tangential stresses in the corewhen reducing the equations of
the three-dimensional theory of elasticity to one or another two-dimensional model
of sandwich shells or plates. The core used in the form of wood cannot be classified
as transversally flexible, since the wood in the specimen is oriented with fibers along
the Ox-axis (Fig. 28.1). The elastic modulus of wood along the fibers lies in the
range E1 = 10–12 GPa, while the elastic modulus of the unidirectional composite
used in experiments is E+

1 = 104.73 GPa. In this regard, the core in the form of
fibrous wood can absorb part of the bending stresses, which is impossible for the
honeycomb core. Therefore, in order to verify the validity of relations (28.1) and
(28.2) when calculating normal stresses in the specimens of the class under study,
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Fig. 28.9 Loading curves of
the specimens with rigid core
(a “load-deflection” curve, b
stress-deflection” curve)

we experimentally measured strains in the facing layers during four-point bending.
For this, BE 120-5AA (11-x) strain gauges were attached in the center of the facing
layers of one of the specimen with a homogeneous core made of wood. To take
readings, the National Instruments strain gauge station was used. A specimen with
strain gauges installed in a fixture is shown in (Fig. 28.10).

The specimen was loaded upto failure with a speed of movement of the loading
rollers of 5mm/min. The loading curves in the axes “load-axial strain” are presented
in Fig. 28.11a.

It can be seen that the ultimate strains of the compressed facing layer in the gauge
area of the specimen reach a value ε−

x = −2643μ, while the ultimate strains in the
stretched facing layer are equal ε+

x = 1914μ. It can be seen that in the composite
material under study, the elastic compressive characteristics are approximately to
28% lower than the tensile characteristics. In light of the results obtained in articles
[12, 14, 17, 18], it can be assumed that, under the conditions of the formation of
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Table 28.3 Testing results of the specimens with rigid core

Specimen number Pmax (kN) σ bend
max (MPa) τmax (MPa)

1 −1.043 292.436 4.230

2 −0.943 269.012 3.824

3 −0.999 284.847 4.049

Average −0.995 282.098 4.034

Standard deviation 0.050 11.951 0.203

Variation coefficient −5.037 4.237 5.042

Fig. 28.10 Installation of the specimen with strain gauges

compressive stresses, noticeable structural changes occur in the upper facing layer of
the specimen associated with the realization of internal micro- and mesoscale buck-
ling form of structural elements of the composite with continuous their restructuring
during loading. Using the elastic characteristics of the fibrous composite of the facing
layers E+ = 104.73 GPa and E− = 96.32 GPa, found in [12] and the relations of
Hooke’s law (due to the almost linear dependence), it is possible to determine the
axial normal stresses formed in the facing layers (Fig. 28.11b). In the compressed
facing layer, they reach σ−

x = 280.69 MPa, in the stretched σ+
x = 202.37 MPa. This

significant difference in stresses is apparently explained by the fact that significant
friction forces are formed at the contact areas of the support rollers and the lower
facing layer, which prevent free stretching of the layer under conditions of four-point
bending. However, the main reason for the nonfulfilment of equality σ+

x = σ−
x is that

during loading of the specimen, there is a significant increase in the multimodularity
of the material, mainly due, apparently, to the realization and continuous change of
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Fig. 28.11 Loading curves
of the specimen according to
the results of strain gauging

internal micro- and mesoscale buckling modes of fibers and fiber bundles in areas
with weakened physical mechanical characteristics of the binder in a compressed
facing layer [8, 9, 14, 17, 18]. The compiled equality, expressed through strains
in the form E+

x ε+
x = E−

x ε−
x , during loading can be fulfilled only if the secant mod-

ulus of elasticity E−
x entering into it will significantly decrease during loading of

the specimen while the initial value of the elastic modulus of E+ = 104.73 GPa is
retained.

28.6 Conclusion

Tests for four-point bending make it possible to exclude the formation of transverse
shear stresses in theworking part of the specimen and to realize a state of pure bending
in it. As shown by the results of experimental studies, in a sandwich specimens, the
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failure of the facing layers of fiber-reinforced plastics occurs not in the working part
of the specimen, but in the vicinity of the loading and support rollers when testing
specimen with a slightly rigid core, and in the vicinity of the loading roller when
testing specimens with a rigid core. The mathematical models of deformation known
in the mechanics of sandwich structures, based on the description of the mechanics
of deformation of the outer layers by the classical Kirhoff-Love model, do not have
a sufficient degree of accuracy and meaningfulness for a theoretical study of the
stress–strain state in the vicinity of loading and supporting rollers and identifying
the types and causes of failure. In this regard, it is necessary to construct such refined
versions of the theory of three-layer plates and shells that would take into account
the nonuniform distribution of transverse shear stresses over the thickness of the
facing layer, the physical nonlinearity of the behavior of the fiber-reinforced plastic
under shear stresses, and also the developing (transforming) multimodularity of the
fibrous composite material into conditions of tension and compression. To verify
such refined deformation models, the results of the experimental studies described
above can be used.
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Chapter 29
Sandwich Shells with Composite Facings
and a Transversally Flexible Core:
Refined Equations and Buckling Modes
of Specimens Under Four-Point
Bending Tests

Vitaly N. Paimushin, Ruslan K. Gazizullin, Natalya V. Polyakova,
and Maksim A. Shishov

Abstract In order to develop the previously obtained results for the case of medium
bending, a refined geometrically nonlinear theory of static deformation has been
developed for sandwich plates and shells with a transversely flexible core and com-
posite facings having low stiffness on transverse shear and transverse compression.
This theory is based on a refined Timoshenko shear model taking into account the
transverse compression to describe the mechanics of facings. For a transversally
flexible core, simplified three-dimensional equations of elasticity theory have been
used. These equations allow integration along the transverse coordinate with the
introduction into consideration of two two-dimensional unknown functions in the
role of which constant in thickness transverse tangential stresses are used. Based on
the generalized Lagrange variational principle, two-dimensional geometrically non-
linear equations of equilibrium as well as coupling conditions of facings with a core
via tangential displacements are constructed to describe the static deformation pro-
cess with high rates of variability of stress–strain state parameters. Based on them,
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an approximate analytical solution of the linearized problem of possible buckling
modes has been found for a sandwich beam of a symmetrical in thickness structure
under four-point bending.

Keywords Sandwich shells · Composite facings · Transversely soft core ·
Refined equations · Test specimens under four-point bending · Buckling modes

29.1 Introduction

Application of multilayer structures in different industries has led to intensive
research of methods for their calculation. As a result, a separate direction has devel-
oped in the mechanics of thin-walled structures related to the study of the problems
of mechanics of multilayer (in particular, sandwich) rods, plates, and shells. To date,
a huge number of studies [3, 5, 8, 10, 11, 13–18, 27, 28, 44, 46] devoted to both
theoretical and experimental research have been published in this area. In particular,
a review of such studies is contained in [4, 31].

The problems associated with the identification and classification of possible
buckling modes as well as the construction of appropriate mathematical models
and resolving equations for their description are one of the main areas of scientific
research in the macromechanics of laminated structures. In the scientific literature on
the mechanics of such structures, there is generally accepted classification of buck-
ling problems in which the skew-symmetric (in-phase) and symmetric (anti-phase)
buckling modes were distinguished as the main ones. Local buckling modes also
stood out as a separate group. Such modes are associated with bulging of facings
within the cells of discrete structure core (honeycomb, ribbed, etc.) or elements of
such core. Large numbers of researchers analyzed the possibility of not taking into
account the strain of the transverse compression of core, transverse shear in facings,
the momentum of the subcritical state, and other factors in the formulation of buck-
ling problems within the framework of the indicated restrictions on buckling modes.
However, in all these studies, the classical statement of buckling problems prevailed,
within the framework of which the studied refinements were introduced in the equa-
tions when describing only the perturbed state, and the unperturbed equilibrium state
of the packet was assumed to be undeformed and momentless. But, as is well known,
one of the main advantages of multilayer (in particular, sandwich) structures is their
optimality in bending. Therefore, they are used where it is impossible to avoid the
momentum of a subcritical stress–strain state. As a rule, moment zones in shells arise
near supporting attachment, in areas of rapid changes in the geometric parameters of
the shell, etc. In cases of a substantially momentary state of the laminated package,
it is possible to realize mixed buckling modes in areas where the unperturbed stress–
strain state of facings differs significantly from each other. In the general case, they
are characterized by different buckling modes of facings and the greatest amplitudes
of buckling in places of predominantly momentary subcritical state. However, the
use of the momentless assumption of the subcritical stress–strain state of the lami-
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nated package, which has become traditional in the theory of stability of laminated
plates and shells, has led researchers to formulate a number of incorrect conclusions
and basic provisions regarding both the classification of buckling modes and the
construction of the corresponding stability equations. This statement follows from
an analysis of the results of [37, 38], devoted to the formulation and solution of the
buckling problems of sandwich plates under transverse and longitudinal–transverse
bends. These studies, in turn, allowed to give an updated classification of buckling
modes and build refined stability equations [36]. In this study, in addition to the well
studied in the literature in-phase and anti-phase modes, it is a mixed buckling mode
of facings has been also included. The critical loads corresponding to this buckling
mode in the case of real conditions of fixing and loading of the facings turn out to be
significantly lower (by 2–3 times) than the critical loads corresponding to in-phase or
anti-phase buckling forms. To determine them, it is necessary to use stability equa-
tions, in which, along with transverse shear, the transverse compression of the core is
taken into account when the moment work of the facings and the moment character
of the subcritical stress–strain state of the laminated package as a whole are taken
into account [36–38].

Coverage of the main results obtained in the field of mechanics of laminated
plates and shells until 1996 was given in a review [31]. The classification of buckling
modes presented in it contains in-phase and anti-phase modes that have been studied
in detail by many authors, local mixed mode, and also the mode of shear corrugation
in the core. The latter is similar to the shear form noted in the article [36] in the
facings, but it is realized in the core as a result of the predominant formation of
transverse shear deformations. This buckling mode, as well as the mode of a shear in
the facings noted above, has not been theoretically studied in the scientific literature
for a long time. Although judging by the experimental data obtained in different
years by many researchers, it can be implemented in real structures in combination
with other modes.

In a series of studies [20, 22], it was found that the equations [36], which are
used to study mixed buckling modes and based on the “broken line” model [14, 15]
taking into account transverse compression (within the framework of this model, the
mechanics of deformation of facings were described by the classical Kirchhoff–Love
hypotheses, and for the core a linear approximation of the tangential displacements
over the thickness was chosen), are extremely simplified and only the main features
of facing buckling by mixed modes can be identified.

In this regard, for the sandwich [20, 22] and multilayer [21, 32] shells with
transversally flexible core, a refined theory of subcritical deformation and a lin-
earized theory of stability were constructed. In this theory, in contrast to [36] a large
indicator of the variability of transverse shear stresses in the core (taking place in
the zones of local buckling of facings) is allowed as well as a much more accurate
description of the stress–strain state compared to [36] due to the introduction of only
two additional required functions for each core layer. The accuracy of the equations
of this theory, as shown by subsequent studies [12] on establishing the limits of their
applicability, practically approaches the accuracy of the linearized equations of the
three-dimensional theory of elasticity in determining such integral characteristics as
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the crippling load or the frequency of free vibrations of sandwich and multilayer
structures with transversally flexible core.

It is known that composite materials are most rationally used in sandwich struc-
tures. Facings of such structures are made of composite materials, which, as a rule,
have a small transverse shear stiffness. If compression stresses are formed in them
during loading, then one of the mechanisms of their destruction is the buckling by
the transverse shear mode. This buckling mode has been studied in the mechanics of
composites in various approximations in a large number of studies [1, 2, 6, 7, 19, 23,
24, 26, 29, 30, 40, 41, 43, 45, 47]. In accordance with the results of these studies,
in order to identify the described buckling modes (their implementation is possible
only in sandwich structures with facings of fibrous composites), the construction of
the corresponding theory requires taking into account transverse shear strains in the
facings of sandwich structures.

29.2 Refined Model of Deformation of Sandwich Shells
with Transversally Flexible Core

Consider a sandwich shell with rigid composite external layers (facings) and a low-
rigidmiddle layer (core).We denote the numbers of the lower and upper facings by an
index k = 1, 2. Indicating numbers k, we put in parentheses. For the parametrization
base, we take the middle surface σ of the core. We consider that surface σ is given
by the equation r = r

(
x1, x2

) = r
(
xi

)
. We attribute the space of this layer to a

semi-orthogonal coordinate system xi, z normally connected with the surface. By
ri = ∂r/∂xi,m, we denote the basic basis vectors on σ and the unit normal vector,
respectively. In what follows, we assume that a change in the metric in the direction
of the z axis can be neglected. Thus, we identify the basis vectors for each facings
with the basis vectors ri onσ . In addition, we introduce the following notation:
z(k), z are coordinates along the normal m to the median surfaces σ(k) and σ of
each facings and the core; t(k), h are the corresponding thickness of the layers, at
that −t(k)/2 ≤ z(k) ≤ t(k)/2 (k = 1, 2) and −h/2 ≤ z ≤ h/2 ; H = t(1) + t(2) + h
is total shell thickness; aij = rirj, bij = −rimj are covariant components of the first
and second metric tensors on σ , which, by virtue of the above assumptions, are
unchanged when passing from layer to layer.

We assume that the shell is thin and non-depressed. Its boundary section is a ruled
surface formed by the movement of the vector m along some smooth curve C ∈ σ .
By n and τ , we denote the unit normal and tangent vectors on C that make up the
right-handed trihedron with vector m at each point of C.

The variants of the theory of multilayer plates and shells known in the literature
mainly differ from each other by models of the core adopted in them. To date, their
detailed analysis has been carried out by many authors, in particular, Mushtari [27,
28] and Bolotin [5]. Comprehensive reviews of deformation models of sandwich and
multilayer structural elements are contained in [4, 31]. In accordance with the results
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of [5], a core is called transversely flexible when the density of potential strain energy
U in it is calculated by the formula

�(3) = 1

2

∫∫

σ

h/2∫

−h/2

(
2σ i3εzi3 + σ 33εz33

)
dzdσ. (29.1)

This is equivalent to the adoption of assumptions σ ij ≈ 0. By virtue of these assump-
tions for cores, the equilibrium equations can be written in the form

∂σ i3

∂z
= 0,

∂σ 33

∂z
+ ∇iσ

i3 = 0, (29.2)

from which the equalities σ i3 = qi
(
x1, x2

)
and the equation

∂σ 33

∂z
+ ∇iq

i = 0 (29.3)

follows.
If we accept a refined kinematic model Timoshenko to describe the deformation

mechanics of facings, then in case of small and medium bending of the shell the
displacement vectors and components of tangential deformation tensor in facings
are determined by the formulas [9, 42]

Uz(k) = u(k)
i ri + w(k)m + z(k)

(
γ

(k)
i ri + ϕ(k)m

)
, (29.4)

ε
z(k)
ij = ε

(k)
ij + z(k)χ

(k)
ij , ε

z(k)
33 = ε

(k)
33 = ϕ(k), 2ε

z(k)
i3 = 2ε(k)

i3 + z(k)∇iϕ
(k). (29.5)

Here ε
(k)
ij , χ(k)

ij , and 2ε(k)
i3 are covariant components of tangential and bending defor-

mation tensors, as well as transverse shear vectors at the level z(k) = 0. To determine
them, it follows the expressions

2ε(k)
ij = e(k)

ij + e(k)
ji + ω

(k)
i ω

(k)
j , e(k)

ij = ∇iu
(k)
j − bijw

(k),

ω
(k)
i = ∇iw

(k) + u(k)
j bji, 2χ(k)

ij = ∇iγ
(k)
j + ∇jγ

(k)
i − bijϕ

(k),

2ε(k)
i3 = γ

(k)
i + ω

(k)
i .

(29.6)

With the accepted degree of accuracy σ ij ≈ 0 and δ
j
i − zbji ≈ δ

j
i for the stress σ 33

in the linear approximation, the following elasticity relation can be written in the
linearized approximation

σ 33 = E3ε
z
33 = E0

3
∂U3

∂z
. (29.7)
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After substituting (29.7) into equations (29.3) and integrating over z, we obtain a
following expression

U3 = W1 + zW2 − z2

2E0
3

∇iq
i, (29.8)

whereW1 andW2 are integration functions depending on coordinates x
1, x2 and time

t. Let us determine them from following coupling conditions of the core with the
facings

U3 (z = −h/2 ) = w(1) + t(1)
2

ϕ(1), U3 (z = h/2 ) = w(2) − t(2)
2

ϕ(2).

Expression (29.8) for the deflection in the core can be reduced to the form

U3 = w(1) + w(2)

2
+ z

w(2) − w(1)

h
+ 1

2E0
3

(
h2

4
− z2

)
∇iq

i

+
(
1

4
− z

2h

)
t(1)ϕ

(1) −
(
1

4
+ z

2h

)
t(2)ϕ

(2); k = 1, 2.

(29.9)

To establish the law of change in the tangential components displacements over
z in the core, we refer to the elasticity relations for σ i3. These relations in the linear
approximation within the accepted degree of accuracy can be represented in the
following approximate form (Ais is the divalent tensor of shear elastic constants)

σ i3 = qi = 2Aisεzs3 = Ais

[
∂Us

∂z
+ ∇sU3

]
. (29.10)

These expressions are valid for both small and medium bends. Substituting relations
(29.9) into relations (29.10), we obtain the differential equation

∂Ui

∂z
= disq

s − w(1)
i + w(2)

i

2
− z

h

(
w(2)
i − w(1)

i

)

+ 4z2 − h2

8E0
3

∇i∇sq
s −

(
1

4
− z

2h

)
t(1)ϕ

(1)
i +

(
1

4
+ z

2h

)
t(2)ϕ

(2)
i .

(29.11)

Here we introduced the notation for the partial derivatives as w(k)
i = ∂w(k)/∂xi and

ϕ
(k)
i = ∂ϕ(k)/∂xi ; through dis, we denote the divalent tensor of the compliance of

the core on the transverse shear. Integrating (29.11) over z, we obtain
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Ui = ui + zdisq
s − z

w(1)
i + w(2)

i

2
− z2

2h

(
w(2)
i − w(1)

i

)

+
(
4

3
z3 − h2z

) ∇i∇sqs

8E0
3

−
(
z

4
− z2

4h

)
t(1)ϕ

(1)
i +

(
z

4
+ z2

4h

)
t(2)ϕ

(2)
i ,

(29.12)
where ui are unknown two-dimensional functions. To determine them, the obtained
relations (29.12) must comply with coupling conditions via tangential displacements

u(1)
i + t(1)

2
γ

(1)
i = Ui

(
−h

2
, x1, x2, t

)
, u(2)

i − t(2)
2

γ
(2)
i = Ui

(
h

2
, x1, x2, t

)
.

(29.13)
By substituting (29.12) in (29.13), it follows the equations

μi = u(1)
i − u(2)

i − h

2

(
w(1)
i + w(2)

i

)
+ 1

2

(
t(1)γ

(1)
i + t(2)γ

(2)
i

)

+ hdisq
s − h3

12E0
3

∇i∇jq
j − h

4

(
t(1)ϕ

(1)
i − t(2)ϕ

(2)
i

)
= 0.

(29.14)

Theywill be used below in deriving the equilibriumequations and kinematic coupling
conditions of facings with the core via tangential displacements.

29.3 Equilibrium Equations and Kinematic Coupling
Conditions of Facings with a Core via Tangential
Displacements

In accordance with the core model under consideration, we assume that only facings
of the sandwich shell are loadedwith external forces.We introduce into consideration
the vectors of the given forces and moments

�(k) = �(k)
n n + �(k)

nτ τ + �(k)
m m, L(k) = L(k)

n n + L(k)
nτ τ + L(k)

m m; k = 1, 2,

applied to the boundary lines C(k) of the median surfaces σ(k) of the facings. We also
introduce the vectors of external surface forces and moments

X(k) = X i
(k)ri + X 3

(k)m, M(k) = M i
(k)ri + M 3

(k)m,

applied at points of surface σ(k). The variation of work of these forces at the corre-
sponding displacements (29.4) can be determined by the relation
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δA =
2∑

k=1

⎧
⎨

⎩

∫

C

[
�(k)

n δu(k)
n + �(k)

nτ δu(k)
τ + �(k)

m δw(k) + L(k)
n δγ (k)

n

+ L(k)
nτ δγ (k)

τ + L(k)
m δϕ(k)

]
ds +

∫∫

σ

[
X i

(k)δu
(k)
i + X 3

(k)δw
(k) + M i

(k)δγ
(k)
i

+M 3
(k)δϕ

(k)
]
dσ

}
.

(29.15)
The variation of potential stain energy of the shell can be calculated by the formula

δ� =
∫∫

σ

h/2∫

h/2

(
2σ i3δεzi3 + σ 33δεz33

)
dσdz

+
2∑

k=1

∫∫

σ

t(k)/2∫

−t(k)/2

(
σ
ij
(k)δε

z(k)
ij + 2σ i3

(k)δε
z(k)
i3 + σ 33

(k)δε
(k)
33

)
dσdz(k)

=
2∑

k=1

∫∫

σ

(
T ij

(k)δε
(k)
ij + M ij

(k)δχ
(k)
ij + 2T i3

(k)δε
(k)
i3 + T 33

(k)δϕ
(k) + M i3

(k)δϕ
(k)
i

)
dσ

+
∫∫

σ

[
cisq

sδqi + σ 33
0

(
δw(2) − δw(1) − t(1)

2
δϕ(1) − t(2)

2
δϕ(2)

)

+ h3

12E0
3

∇sq
s∇iδq

i

]
dσ,

(29.16)
obtained using following transformations of the constructed relations (29.7), (29.9)

2σ i3δεzi3 = disq
sδqi, σ 33δεz33 = E0

3ε
z
33δε

z
33

and introducing following notation

γ (k)
n = γ

(k)
i ni, γ (k)

τ = γ
(k)
i τ i, u(k)

n = u(k)
i ni, u(k)

τ = u(k)
i τ i,

T αβ

(k) =
h(k)/2∫

−h(k)/2

σ
αβ

(k)dz(k),

M iα
(k) =

h(k)/2∫

−h(k)/2

σ iα
(k)z(k)dz(k), i = 1, 2; α = 1, 2, 3; β = 1, 2, 3,

cis = hdis, σ 33
0 = E0

3

h

[
w(2) − w(1) − 1

2

(
t(1)ϕ

(1) + t(2)ϕ
(2)

)]
,
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where ni = nriandτ i = τri are the contravariant components of the vectors n, τ

with respect to the basis vectors ri; ds is an element of the length of the contour
line C.

If the kinematic relations (29.4), (29.12) are not submitted to kinematic coupling
conditions of facings with the core (29.13), then in accordance with [33] to derive
the necessary set of basic equations describing the static equilibrium of the shell a
generalized variational equation of the following form should be drawn up

δI = δIq + δA − δ� = 0. (29.17)

Here

δIq = δ

∫∫

σ

qi
[

u(1)
i − u(2)

i + t(1)γ
(1)
i

2
+ t(2)γ

(2)
i

2

+Ui (z = h/2 ) −Ui (z = −h/2 )
]
dσ.

(29.18)

The difference in (29.18) forUi is established by integrating (1.26) over z from−h/2
to h/2

Ui (z = h/2 ) −Ui (z = −h/2 ) = cisq
s − h

2

(
w(1)
i + w(2)

i

)

− h3

12E0
3

∇i∇sq
s − h

4

(
t(1)ϕ

(1)
i − t(2)ϕ

(2)
i

)
.

(29.19)

After substitution of expressions (29.15), (29.16), (29.18) into equation (29.17)
and implementation of traditional transformations taking into account (29.19), we
obtain

δI =
∫

C

{
2∑

k=1

[(
�(k)

n − T (k)
n

)
δu(k)

n + (
�(k)

nτ − T (k)
nτ

)
δu(k)

τ

+
(
�(k)

m − S̃ i
(k)ni

)
δw(k) + (

L(k)
n − M (k)

n

)
δγ (k)

n + (
L(k)
nτ − M (k)

nτ

)
δγ (k)

τ

+
(
L(k)
m − M̃ i3

(k)ni
)

δϕ(k)
]

+ h3

12E0
3

qini∇sδq
s

}
ds

−
∫∫

σ

{
2∑

k=1

[(
∇iT

ij
(k) − Si

(k)b
j
i + X̃ j

(k)

)
δu(k)

j +
(
∇i S̃

i
(k) + T ij

(k)bij

+ X̃ 3
(k)

)
δw(k) +

(
∇iM

ij
(k) − T j3

(k) + M̃ j
(k)

)
δγ

(k)
j

+
(
∇iM̃

i3
(k) + M ij

(k)bij + M̃ 3
(k) − T 33

(k)

)
δϕ(k)

]
+ μiδq

i
}
dσ = 0.

(29.20)
Here the following designations for stresses and moments are introduced(
σ(1) = −σ(2) = 1

)
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T (k)
n = T ij

(k)ninj, T (k)
nτ = T ij

(k)niτj, M (k)
n = M ij

(k)ninj, M (k)
nτ = M ij

(k)niτj,

X̃ i
(k) = X i

(k) + δ(k)q
i, M̃ i

(k) = M i
(k) + t(k)

2
qi,

X̃ 3
(k) = X 3

(k) + δ(k)σ
33
0 , M̃ 3

(k) = M 3
(k) + t(k)

2
σ 33
0 ,

S̃ i
(k) = Si

(k) + h

2
qi, Si

(k) = T i3
(k) + T ij

(k)ω
(k)
j , M̃ i3

(k) = M i3
(k) + δ(k)

ht(k)
4

qi.

Due to the arbitrary of variation of displacements δu(k)
i , δw(k), rotation angles

δγ
(k)
i , functions of compression ϕ(k), and transverse shear stresses δqi, from the

variational Eq. (29.20) twelve differential equations of the equilibrium of the facings
follow

f i(k) = ∇jT
ij
(k) − Sj

(k)b
i
j + X̃ i

(k) = 0, f 3(k) = ∇i S̃
i
(k) + T ij

(k)bij + X̃ 3
(k) = 0,

f j+3
(k) = ∇iM

ij
(k) − T j3

(k) + M̃ j
(k) = 0,

f 6(k) = ∇iM̃
i3
(k) + M ij

(k)bij + M̃ 3
(k) − T 33

(k) = 0

(29.21)

as well as two differential equations of the form

μi = 0, (29.22)

representing the kinematic coupling conditions of facings with the core via tangential
displacements. For the obtained equations on the contour C, the following boundary
conditions are formulated

T (k)
n = �(k)

n at δu(k)
n �= 0, T (k)

nτ = �(k)
nτ at δu(k)

τ �= 0,

S̃ i
(k)ni =(k)

m at δw(k) �= 0, M (k)
n = L(k)

n at δγ (k)
n �= 0,

M (k)
nτ = L(k)

nτ at δγ (k)
τ �= 0, M̃ i3

(k)ni = L(k)
m at δϕ(k) �= 0 (k = 1, 2) ,

(29.23)

qini = 0 at δ∇sq
s �= 0. (29.24)

29.4 Linearized Problem of Possible Buckling Modes of a
Sandwich Test Specimen Under Four-Point Bending

The experimental determination of the mechanical properties of composite materials
is an extremely important and integral part in the technological process of designing
andmanufacturing of structures made of suchmaterials. Themost difficult for imple-
mentation is compression tests of fiber composites. Even despite the relatively small
length of the working part of the test samples, in accordance with existing standards,
their compression tests are usually accompanied by longitudinal–transverse bending.
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Fig. 29.1 Testing schemes
for sandwich specimens
under four-point bending
(1—facings, 2—core,
3—support rod, 4—loading
rod)
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Such bending of test samples, even being very small, significantly affects the test
results. This effect is especially significant during prolonged exposure of specimens
under load.

One of the typical testing schemes for specimens under four-point bending is
shown in Fig. 29.1. Such testing is one of the typical experimental studies of sandwich
structures with rigid facings made of fibrous composites and a transversely flexible
core.

As a rule, these tests are carried out to determine limit of compressive stress
formed in the upper facing in the area of the length L of the working length a of the
test specimen. Reaching this limit, destruction occurs in the upper facing. It can be
assumed that one of the causes of such destruction is the buckling of the compressed
facings by one of the possible mode, the classification of which is given in [34–36].
As it will be shown below, the use of the equations constructed above allows one to
identify bending, bending shear, and purely shear modes of the upper facing of the
test specimen.

Let us consider a sandwich rod of a symmetric structure. The facings of this rod
have a thickness t (Fig. 29.1) and are made of a fiber composite. Fiber composite is
characterized by thickness-averaged elastic moduli E1,E3 in the directions of length
and thickness, respectively, by Poisson’s ratios ν13, ν31 = E3ν13/E1 , and transverse
shearmodulusG13 << E1.Moreover, in accordancewith previously obtained results
[25, 39], it is believed thatG13 = G13

(
εz13

)
. We assume that the core is characterized

by elastic modulus E0
3 in the direction of thickness and transverse shear modulusG0

13
in the plane xoz.

In the considered rod under four-point bending (Fig. 29.1) in the case t << h
and E0

1 ∼ E0
2 << E1 over a section of length L in the upper facings membrane,

compressive forces are formed, whereas tensile forces are formed in the lower layer.
These forces can be determined with a high degree of accuracy by the following
formula (δ(1) = −δ(2) = 1)

T 0 11
(k) = −δ(k)T0, T0 = (a − L)

2 (h + t/2 )
P. (29.25)
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When forces (29.25) are formed in facings over a section of length L, the rod
will be in pure bending conditions. Under this condition, a buckling by one of the
mode is possible in the upper facing. A study of a mixed bending buckling modes of
sandwich rods under pure bending was carried out in [22]. In these studies, refined
equations [20] were used to describe the perturbed equilibrium state of a sandwich
rod. These equations were based on the description of the stain mechanics of facings
by the classical Kirchhoff–Love model.

In contrast to [20], to describe the perturbed stress–strain state of facings, we will
further use the refined kinematic model of S.P. Timoshenko (29.4). According to
it, for displacements U (k) in the direction of the axis x and deflections W (k) in the
direction of the axes z(k), the following representations from (29.4) are taken

U (k) = u(k) + z(k)γ
(k), W (k) = w(k) + z(k)φ

(k). (29.26)

Here, u(k) and w(k) are the displacements in the directions of the axes x and z(k) of
points of the median planes of the facings, γ (k) and φ(k)are the angles of the cross
sections rotation and the transverse compression function. To describe the stain–
stress state of a transversally flexible core in accordance with the above results, it
suffices to introduce the function of transverse shear stresses q = q (x). These stresses
are constant in the direction of the axis z. Based on (29.21), this allows to compose
a system of eight linearized equations of neutral equilibrium of the form

T 11
(k),x + δ(k)q = 0,

(
T 13

(k) − δ(k)T0w
(k)
,x + h

2
q

)

,x

+ δ(k)σ
0
33 = 0,

M 11
(k),x − T 13

(k) + t

2
q = 0,

(
M 13

(k) + δ(k)
ht

4
q

)

,x

− T 33
(k) + t

2
σ 0
33 = 0,

(29.27)

where the internal forces and moments of the perturbed state introduced into con-
sideration through the sought for functions u(k),w(k), γ (k) and φ(k) are expressed by
physical dependencies

T 11
(k) = B1

(
u(k)

,x + ν31ϕ
(k)

)
, T 33

(k) = B3
(
ν13u

(k)
,x + ϕ(k)

)
,

T 13
(k) = B13

(
w(k)

,x + γ (k)
)
, σ 0

33 = E0
3

h

[
w(2) − w(1) − t

2

(
ϕ(1) + ϕ(2)

)]
,

M 11
(k) = D1γ

(k)
,x , M 13

(k) = D13ϕ
(k)
,x ,

(29.28)

B1 = E1t

1 − ν13ν31
, B3 = E3t

1 − ν13ν31
, B13 = G13t, D1 = B1t2

12
, D13 = B13t2

12
.

(29.29)
Within the framework of themodel used, the equilibrium equations (29.27) should

be supplemented by the following equation
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u(2) − u(1) − t

2

(
γ (1) + γ (2)

) + h

2

(
w(1)

,x + w(2)
,x

) + ht

4

(
ϕ(1)

,x − ϕ(2)
,x

)

− h

G0
13

q + h3

12E0
3

q,xx = 0,
(29.30)

which are a condition for the kinematic coupling conditions of facings with a core
via tangential displacements at points of z(k) = δ(k)t/2 and z = −δ(k)h/2 planes,
respectively.

We introduce the new unknowns

u(−) = u(1) − u(2), ϕ(−) = ϕ(1) − ϕ(2), w(+) = w(1) + w(2), γ (+) = γ (1) + γ (2),

u(+) = u(1) + u(2), ϕ(+) = ϕ(1) + ϕ(2), γ (−) = γ(1) − γ(2), w(−) = w(1) − w(2).

(29.31)
Then, using relations (29.28) and taking into account (29.31), Eqs. (29.27) and
(29.30) admit transformations of the form

B1
(
u(−)

,xx + ν31ϕ
(−)
,x

) + 2q = 0, D13ϕ
(−)
,xx − B3

(
ν13u

(−)
,x + ϕ(−)

) + ht

2
q,x = 0,

D1γ
(+)
,xx − B13

(
w(+)

,x + γ (+)
) + tq = 0,

− u(−) − t

2
γ (+) + h

2
w(+)

,x + ht

4
ϕ(−)

,x − h

G0
13

q + h3

12E0
3

q,xx = 0,

B13
(
w(+)

,xx + γ (+)
,x

) − T0w
(−)
,xx + hq,x = 0,

B1
(
u(+)

,xx + ν31ϕ
(+)
,x

) = 0, D13ϕ
(+)
,xx − B3

(
ν13u

(+)
,x + ϕ(+)

)

− tE0
3

h

(
w(−) + t

2
ϕ(+)

)
= 0, D1γ

(−)
,xx − B13

(
w(−)

,x + γ (−)
) = 0,

B13
(
w(−)

,xx + γ (−)
,x

) − T0w
(+)
,xx − 2E0

3

h

(
w(−) + t

2
ϕ(+)

,x

)
= 0.

(29.32)
We note that in the case under consideration, the system of formulated equations
(29.32) describes mixed buckling modes of rod’s facings. During their implementa-
tion, the largest amplitudes of the bulges should be formed at the lower compressed
facing.

Solutions of equations (29.32) will be sought in the form

u(±) = ũ(±) cos λx, w(±) = w̃(±) sin λx, γ (±) = γ̃ (±) cos λx,

ϕ(±) = ϕ̃(±) sin λx, q = q̃ cos λx,
(29.33)

where λ = nπ/L, n = 1, 2,…are the wave numbers. Substituting functions (29.33)
in equations (29.32), the dependences
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ϕ̃(+) = −bϕw̃
(−),

γ̃ (−) = − B13λD1

D1λ2 + B13
w̃(−), ũ(+) = ν31

λ
ϕ̃(+) = −ν31bϕ

λ
w̃(−),

q̃ = −cw
rq

w̃(+), γ̃ (+) = t

D1λ2 + B13
q̃ − B13λ

D1λ2 + B13
w̃(+)

= − 1
(
D1λ2 + B13

)
(
tcw
rq

+ B13λ

)
w̃(+),

ũ(−) = −aqq̃ = aqcw
rq

w̃(+), ϕ̃(−) = −bqq̃ = bqcw
rq

w̃(+)

(29.34)

as well as a system of two homogeneous equations of the form

a(−)w̃(−) + T0λ
2w̃(+) = 0, a(+)w̃(+) + T0λ

2w̃(−) = 0 (29.35)

are established. In the last expressions, the following notation is introduced

bϕ = tE0
3

h
(
B̃3 + D13λ2 + t2E0

3
2h

) , B̃3 = B3 (1 − ν13ν31) ,

a(−) = tE0
3

h
bϕ + B2

13λ
2

D1λ2 + B13
− B13λ

2 − 2E0
3

h
,

bq = htB1λ
2 − 4B3ν13

2
(
B1B̃3λ + B1D13λ3

) , cw = −
(
hλ

2
+ tB13λ

2
(
D1λ2 + B13

)

)

,

aq = htB1ν31λ
2 − 4

(
D13λ

2 + B3
)

2λ2
(
B1B̃3 + B1D13λ2

) ,

rq = aq − t2

2
(
D1λ2 + B13

) − htbqλ

4
− h

G0
13

− h3λ2

12E0
3

,

a(+) = −B13λ
2 + B2

13λ
2

D1λ2 + B13
+

(
hλ + B13λt

D1λ2 + B13

)
cw
rq

.

(29.36)

The critical value of the forceT cr
0 is determined from the condition of non-triviality

of the solutions of combined Eq. (29.35). It can be found by the following formula

T cr
0 = 1

λ2

√
a(+)a(−). (29.37)

The relation between the amplitude values of the functions w(+) and w(−) of the
following form

w̃(+) = −T cr
0 λ2

a(+)
w̃(−) = −

√
a(−)

a(+)
w̃(−) (29.38)
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allows to determine w̃(+) at a given value w̃(−). The amplitude values of other func-
tions are determined by the dependences (29.34).

The dependences

w(1) = (
w(+) + w(−)

)
/2 , w(2) = (

w(+) − w(−)
)
/2

follow from (29.31). When they are taken into account, Eq. (29.35) transforms to the
form

Table 29.1 Values of critical stresses and parameters characterizing buckling modes for rods of
various lengths L

L, mm σ ∗, MPa n∗ w̃(2)/w̃(1)

t = 1.12 mm; G13 = 459 MPa; E0
3 = 80 MPa; G0

13 = 30 MPa

50 45 2 −0.918

60 209 3 −0.575

80 209 4 −0.575

100 45 4 −0.918

120 106 5 −0.807

150 45 6 −0.918

t = 1.12 mm; G13 = 459 MPa; E0
3 = 150 MPa; G0

13 = 75 MPa

50 112 4 −0.732

60 149 5 −0.649

80 181 7 −0.576

100 112 8 −0.732

120 149 10 −0.649

150 112 12 −0.732

t = 3 mm; G13 = 459 MPa; E0
3 = 80 MPa; G0

13 = 30 MPa

50 444 5 −0.0523

60 444 6 −0.0523

80 388 1 −0.804

100 175 1 −0.938

120 443 11 −0.059

150 415 2 −0.768

t = 3 mm; G13 = 459 MPa; E0
3 = 150 MPa; G0

13 = 75 MPa

50 371 1 −0.761

60 93.5 1 −0.952

80 433 9 −0.0934

100 371 2 −0.761

120 93.5 2 −0.952

150 371 3 −0.761
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(
a(+) + T0λ

2
)
w̃(1) + (

a(+) − T0λ
2
)
w̃(2) = 0,

(
a(−) + T0λ

2
)
w̃(1) − (

a(−) − T0λ
2
)
w̃(2) = 0.

(29.39)

Taking into account (29.37) from (29.39), we can obtain the dependence between
the amplitude values of the deflections w̃(1) and w̃(2) of the following form

w̃(2) = a(+) + √
a(+)a(−)

a(+) − √
a(+)a(−)

w̃(1) = a(−) + √
a(+)a(−)

−a(−) + √
a(+)a(−)

w̃(1). (29.40)

Based on the found solution, we analyzed the feasibility of implementing the
investigated buckling modes of a rod with facings made of unidirectional carbon
fiber HSE 180 REM and a binder EDT-69NM. Such a composite material has the
elastic characteristics [25, 39]

E1 = 133GPa,E3 = 5.9GPa, ν13 = 0.29

under tension in the direction of the fibers (E1, ν13) and across the fibers (E3, ν31).
Under compression in thedirectionof thefibers, this composite has an elasticmodulus
also equal to E1 = 133 GPa, and its failure occurs when limit stress σc = 459 MPa
is reached. In accordance with the results in [39], stress σc is equal to the transverse
shear modulus G∗

13 corresponds to purely shear buckling mode of the composite
structure.

The calculations were carried out for a rod with a core thickness of h = 10 mm
and two thicknesses of the facings: t = 1.12 mm and t = 3 mm. For each of the
calculation options, two cases are considered. These cases differ in the mechanical
characteristics of the core. The numerical results obtained are shown in Table29.1
for various fixed values L, covering both short and long sections of the rod under
pure bending. The critical value of stresses in them is indicated through σ ∗ and can
be found by the formula σ ∗ = T cr

0 /t.
For a rod with its various parameters, some calculation results are shown in

Fig. 29.2–29.5 as relations σ ∗ = σ ∗ (n) (a), σ ∗ = σ ∗ (G13) (b), n∗ = n∗ (G13) (c).
Furthermore, relations between dimensionless value w̃(2)/w̃(1) and the transverse
shear modulus G13 of the facing material are also shown in Figs. 29.2, 29.3, 29.4 and
29.5d.

29.5 Conclusion

Results of the approximate solution of the linearized problemconstructed show that in
flat sandwich plates with rigid facingsmade of fibrous composites and a transversally
flexible core only bending and bending shear buckling modes can be revealed in case
of four-point bending. As can be seen from relations (a), the implementation of a
purely shear buckling modes is possible only at n → ∞. It also can be seen that there
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3 = 80 MPa, G0

13 = 30 MPa, L = 50 mm

200

300

400

σ*, MPa

10
1

10
2

10
3

10
4

n

a

100

200

300

400

σ*, MPa

0 1 2 G13, GPa0.5 1.5 2.5

b

3

4

n*

0 1 2 G13, GPa0.5 1.5 2.5

c

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

w~ (2) / w~ (1)

0 1 2 G13, GPa0.5 1.5 2.5

d

Fig. 29.3 Graphs in case of t = 1.12 mm, E0
3 = 150 MPa, G0

13 = 75 MPa, L = 50 mm



408 V. N. Paimushin et al.

450

460

470

σ*, MPa

10
1

10
2

10
3

10
4

n

a

200

300

400

500

600

σ*, MPa

0 1 2 G13, GPa0.5 1.5 2.5

b

2

4

6

8

n*

0 1 2 G13, GPa0.5 1.5 2.5

c

-0.5

-0.4

-0.3

-0.2

-0.1

w~ (2) / w~ (1)

0 1 2 G13, GPa0.5 1.5 2.5

d

Fig. 29.4 Graphs in case of t = 3 mm, E0
3 = 80 MPa, G0

13 = 30 MPa, L = 50 mm

380

400

420

440

460

σ*, MPa

10
1

10
2

10
3

10
4

n

a

100

200

300

400

500

600

σ*, MPa

0 1 2 G13, GPa0.5 1.5 2.5

b

2

4

6

n*

0 1 2 G13, GPa0.5 1.5 2.5

c

-0.8

-0.6

-0.4

-0.2

w~ (2) / w~ (1)

0 1 2 G13, GPa0.5 1.5 2.5

d

Fig. 29.5 Graphs in case of t = 3 mm, E0
3 = 150 MPa, G0

13 = 75 MPa, L = 50 mm



29 Sandwich Shells with Composite Facings and a Transversally Flexible … 409

is such a critical value G13 = G∗
13 where qualitative change in the buckling modes of

the facings occurs [see relations (b) and (d)].We should notice that a deeper andmore
meaningful study of the problem under consideration, as in [39], is possible only on
the basis of a numerical solution of the derived equations, composed taking into
account the geometrically and physically nonlinear behavior of the facing materials.
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Chapter 30
Modeling of the Operation of EHD
Devices with the Working Medium
of Complex Microstructure

Irina L. Pankratieva and Vitaly A. Polyansky

Abstract The model of a working medium of complex microstructure is used to
calculate processes in a channel of one stage of an electrohydrodynamic (EHD)
device. The flow of a multicomponent fluid consisting of neutral particles and a
small admixture of two kinds of oppositely charged ions through a plane channel
with dielectric walls is investigated. Two plane electrodes penetrable by the fluid and
exerting no hydrodynamic drag force are placed in the cross sections of the channel.
These electrodes and the space between them form a stage of an EHD device applied
to increase the pressure in the medium. It is shown that the pressure drop and the
total volume charge of the stage almost linearly depend on the applied voltage in
a certain range; however, there is a critical value beyond which a further increase
in voltage reduces the efficiency of the converter. This is due to the influence of
injection of negative ions from the cathode, which grows with increasing field and
causes redistribution of the volume charge in the interelectrode space.

Keywords Electrohydrodynamic device · Complex multicomponent fluid ·
Electric field · Volume electric charge · Pressure of the medium

30.1 Introduction

Electrohydrodynamic (EHD) devices that increase the pressure in continua of com-
plex microstructure are perspective in various technological processes such as cold
production [1]. As compared to conventional reciprocating compressors for refrig-
erators, they have a number of merits of which the most important are the absence of
moving mechanical parts and the ability of using refrigerants such as propane/butane
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gas mixtures, which are environmentally safe and thermodynamically more efficient
than halocarbons. The operation of such EHD devices is based on converting the
energy of the electric field applied to the electrodes into the internal energy of the
fluid in the electrode gap. The modeling of such energy transfer is a rather diffi-
cult problem; it is studied in the literature under the assumption that simplifies the
structure of the medium, namely in the presence of ions of only one kind (either
positive or negative), which are injected in the electrode gap from the surface of one
of the electrodes. However, the study of the operation of EHD pumps of another type,
which was carried out in [2] in the framework of the model of a medium with a more
complex microstructure, showed that the presence of oppositely charged ions in the
medium exerts essential influence on the efficiency of energy transform, especially
in the case of using non-stationary applied electric fields.

30.2 Model of the Medium

In this paper, the model of the working medium of a complex microstructure [3]
is used to calculate the processes in the channel of one stage of an EHD device.
The flow of the fluid consisting of neutral particles and a small admixture of two
kinds of oppositely charged ions through a plane channel of uniform cross section
with dielectric walls is considered. Two plane electrodes penetrable by the fluid and
exerting no hydrodynamic drag force are placed in the cross sections of the channel.
These electrodes and the space between them form a stage of an EHD device. An
electrical potential difference Fw is applied to the electrodes from an external source.
It is assumed that under the applied electric field the surface of each electrode may
inject (like-charged) ions into the electrode gap. Moreover, at the surface of each
electrode, recombination of both kinds of ions is observed. The influent is assumed
to be quasineutral and have a given concentration n0 of charge carriers. The rate of
flow of the carrying medium through the stage is also assumed to be constant.

The distributions of the fluid pressure p, the ion concentrations nm (m = 1, 2), and
the electric field strength E over the electrode gap are calculated with the use of the
non-stationary system of equations of electrohydrodynamics (30.1)–(30.3), which
includes the equation of the bulk motion of the fluid written in hydraulic approxi-
mation with regard to the linear (in velocity) friction with the channel walls with the
friction coefficient Cx (30.1), the ion continuity equations, which take into account
the convective transport of ions with the fluid velocity u, their drift in the electric field
with the ion mobility coefficients bm , diffusion with the diffusion coefficients Dm ,
and bulk electrochemical processes of dissociation with the dissociation rate w, and
recombination with the recombination coefficient α (30.2). Poisson’s equation (30.3)
for the electric potential F takes into account the volume electric charge q arising in
the electrode gap due to the motion of ions and their interaction with the electrode
surfaces.
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ρ
∂u

∂t
= −∂p

∂x
+ qE − Cxu,

∂u

∂x
= 0 (30.1)

∂n1
∂t

+ ∂

∂x
(n1U1) = w − αn1n2,

∂n2
∂t

+ ∂

∂x
(n2U2) = w − αn1n2

(30.2)

nmUm = nmu − Dm
∂nm
∂x

− sign(em)bmnm
∂F

∂x
,

εε0
∂2F

∂x2
= −q, E = −∂F

∂x
, q =

∑

m

emnm, m = 1, 2, (30.3)

e1 > 0, e2 < 0

Here, x is the space variable along the channel axis, em is the ion charge, and εε0
is the absolute dielectric permittivity of the fluid.

The boundary conditions for the concentrations of ions at the electrodes can be
obtained from the condition of balance between the fluxes of the charged particles
to the electrodes with due regard to surface electrochemical processes of ionization
and recombination [2]:

nmUm = n0u + A0m + B0mE − K0mnm,m = 1, 2, F = Fw, x = x0;
nmUm = n0u − A1m − B1mE + Kmnm,m = 1, 2, F = 0, x = x0 + L . (30.4)

Here, x0 is the coordinate of the anode, L is the distance between the electrodes,
and Aim , Bim , and Kim are the parameters of the surface electrochemical processes
of ionization and ion recombination. It is assumed that the surface ionization rate
depends linearly on the field strength. The ion transport coefficients and the rates of
the bulk and surface reactions are assumed to be parameters of the problem given
in advance. Note that when EHD flows are investigated in the framework of the
model of unipolarly charged liquid, the boundary condition is usually specified by
the equilibrium concentration of ions on the surface of the injecting electrode. In
the case of non-stationary processes caused, for example, by a pulsating voltage
applied to the electrodes, the assumption that the surface electrochemical reaction
is in equilibrium may fail to hold owing to an essential change in the distribution of
the concentrations of charged particles and the field in the vicinity of the electrode
during the pulse. The equilibrium is also violated in the case of a constant applied
potential difference when the field strength exceeds the threshold value [4] and the
ion injection switches on and in a certain range of parameters the waves of the field
strength and of the volume charge density arise in the fluid.

The problem (30.1)–(30.4) is solved numerically by the method of iterations
at each time step with a simultaneous integration of all equations involved in the
system. The initial state of the ions is the uniform distribution of the quasineutral
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concentration over the electrode gap. The external electric field applied at the initial
instant is also uniform. For a constant flow rate, the pressure drop dP across the
stage of the compressor is determined from the relation

dP = LCxu − [
E2(L , t) − E2(x0, t)

]
. (30.5)

The initial pressure drop in the absence of exposure to the electric field corresponds
to a given rate of flow of the fluid through the stage. For a constant applied potential
difference, the calculations are carried out until the distributions of the parameters
become stationary.

30.3 Discussion

Let us briefly present some results of the computational experiments performed to
study the efficiency of operation of the stage of the EHD device depending on the
values of the model parameters describing the surface and bulk electrochemical pro-
cesses.We consider a fluid with the characteristic parameters involved in the problem
which correspond to a hydrocarbon liquid of complex structure with impurity ions
that raise up the initial conductivity σ0 = 2.5× 10−11 S/m and have the same dif-
fusion coefficient D0 = 10−9 m2/s.

The pressure drop dP and the total volume electric charge Q of the electrode
gap, which are produced at the stage after the stationary state, are established and
are presented for different values of applied voltage in the dimensionless form in
Fig. 30.1. The distance between the electrodes is L = 0.005 m, the characteristic
value of the applied field strength is E0 = 5× 106 V/m. It is assumed in calculations
that the electrodes are injecting similarly charged ions and those ions of the opposite
charge on their surfaces recombine in accordance with conditions (30.4) with the
coefficients Am = 0 (i = 0, 1). The value of the coefficient B01, which characterizes
the injection of positive ions from the anode, is three times greater than that of the
coefficient B12 characterizing the injection of negative ions from the cathode.

It is seen that the dependence of the pressure drop and the total volume charge
of the electrode gap on the applied voltage Fw in a certain range is close to linear,
but as the voltage exceeds some critical value Fw cr , further increase in Fw reduces
the efficiency of the operation of the device. This is due to the effect of the injection
of negative ions from the cathode, which becomes stronger with an increase in the
field strength and causes redistribution of the volume charge over the electrode gap.
The non-monotone character of the change in the pressure drop with an increase in
voltage is also observed in the case where the injection properties of the electrodes
do not depend on the field strength. We note that in the framework of the model of a
fluid of simplifiedmicrostructurewith similarly charged ions, the calculations exhibit
a monotone growth of the pressure drop over the entire range of applied potential
differences.
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Fig. 30.1 Dependence of
the pressure drop dP (curve
1) and the volume charge Q
(curve 2) of the electrode gap
on the applied voltage

With due account taken of the volume electrochemical processes in the modeling
of the operation of the stage, the calculations show that the highest efficiency is
observed in the conditions where the process of dissociation of neutral molecules of
admixture is frozen and recombination of ions is intensively going on.

30.4 Conclusions

The pressure drop arising in the electrode gap of one stage of an EHD device in
the fluid of complex microstructure due to the interaction with the electric field is
obtained. The relation between the parameters of the problem and the dependence
of the pressure drop on the applied voltage is investigated.

It is established that the non-monotone change of the pressure drop across the
stage with an increase in voltage observed in the experiment is determined by the
influence of the injection of negative ions from the cathode, which becomes stronger
with an increase in the field strength and causes redistribution of the volume charge
over the electrode gap.
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Chapter 31
Instability of Plastic Deformation
in Metals at Low Temperatures

Georgy F. Sarafanov, Fedor G. Sarafanov, and Igor S. Pavlov

Abstract Mathematical models of serrated plastic deformation in metals at ultra-
low temperatures are developed. In the framework of the dislocation model, the
instability of the plastic flow is shown to be caused by the relay mechanism of
overcoming barriers (sub-boundaries, grain boundaries, etc.) by dislocation clusters.
Regularities of localization of plastic deformation in alloys are described on the base
of the model of interaction of dislocations with point defects. Within the scope of
the thermodynamic model, it has been analytically and numerically established that
in the range of helium temperatures, a change in the deforming stress, temperature,
and plastic strain rate acquires an irregular stochastic nature. The obtained results are
in good agreement with experimental data and can be used to construct the theory
of plastic deformation of structural metals and alloys in the region of extremely low
temperatures.

Keywords Serrated plastic deformation · Low-temperature instability ·
Dislocations · Plastic strain rate · Slip band
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31.1 Introduction

An unstable nature of plastic deformation is currently considered as a universal prop-
erty of solids that can manifest itself in a wide temperature range [1]. In crystalline
materials, it is provided by self-consistent collective motion of dislocations under
the action of external and internal stresses [3, 4, 7, 20, 22].

The plastic instability phenomena were proposed in [5, 8] to be classified taking
into account the assumed dependence τ = τ(ε, ε̇), according to which, in a linear
analysis, the relationship between stress τ , strain ε, and plastic strain rate ε̇ can be
represented in the following form:

dτ = hdε + Sdε̇ (31.1)

where h = (∂τ/∂ε)ε̇ and S = (∂τ/∂ε̇)ε are the material constants that depend,
in a general case, on stresses and a strain rate. Equation (31.1) describes a local
stress–strain state, which is identified with global properties, if the deformation of
the sample is uniform along its entire length.

According to [5, 8], the plastic instability phenomena are divided into instability
of h- and S-types. For h-type instability, sensitivity to changes in the strain rate (the
rate sensitivity S) is positive, and the rate of strain hardening, h, is less than hc—the
instability threshold value that coincides with the deforming stress τ , whereas for
S-type instability everything is vice versa: S < 0 and h > hc.

Conditions for h-instability occurrence usually correspond to the late stages of
plastic deformation, when increasing of ductility can lead to negative values of h [12].
S-type instability is most clearly manifested in alloys, when a negative dependence
of the drag force of dislocations on their velocity is observed in the field of high
temperatures.

At low temperatures, S-instability can have a dynamic dislocation nature or can be
associated with the thermoplastic instability [21]. For example, at helium tempera-
tures, the plastic deformation instability (serrated deformation) is typical for the field
of very low temperatures [20]. Its properties are determined by numerous parame-
ters related to both the deformation conditions (strain rate and temperature) and the
properties of the material (lattice type, grain size, etc.) [3, 4, 20]. Various models that
enable one describing the instability of deformable metals at low temperatures have
been proposed in a large number of works; however, some problems of interpreta-
tion and description of these phenomena remain unresolved. Models of the plastic
deformation instability in metals at low temperatures, which are provided by both
dynamic and thermodynamic mechanisms, are considered in this paper.
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31.2 The Dynamic Model

The problem of a theoretical study of unstable modes of plastic deformation can be
formulated on the basis of a set of nonlinear evolution equations of hydrodynamic
type for the density and the average velocity of continuously distributed dislocations
[23, 24]. Evolution equations for density ρa(r, t)

∂ρa

∂t
+ divρava = Φa(ρa), (31.2)

can be obtained from the compatibility equation [10] and have the formof a continuity
equation, where the local interaction of dislocations is neglected (Φa = 0). The latter
can take place if the process of plastic deformation proceeds in a certain slip band
and it is pronounced dynamic in nature. In the case of interest, the dislocation motion
equation, which determines va(r, t), has the following form

m∗
ik

dvak
dt

= ei jml j b
a
k {τ ext

mk + τ int
mk(ρa) − τ

f
mk(C j , α j )} − Fi (v

a). (31.3)

The first term in the right-hand side of Eq. (31.3) is the Peach–Köhler force per unit
length of the dislocation line, where τ ext

mk is the component of the external stress tensor
in the slip plane of dislocations; τ int

mk is the component of the tensor of long-range
internal stresses arising due to a system of distributed dislocation charges, which is
functionally dependent on ρa ; τ f

mk(C j , α j ) is the stress of dry friction that is caused
by various local obstacles distributed in space with density C j and possessing force
characteristics α j of locking; m∗

ik is the tensor of the effective mass of dislocations;
Fi (va) is the friction force.

Equations (31.2) and (31.3) are formulated in the approximation when the radius
of curvature of the dislocation lines, Rc, significantly exceeds the average distance r̄
between the dislocations. In the framework of this approximation, dislocations can
be assumed to be generally straightforward.

Wewill consider a behavior of an ensemble of dislocations in a certain slip band of
width w. Let x-axis be selected in the direction of the specified slip system. We shall
suppose that the subsystem of positive boundary dislocations (b⊥l, where l is the
unit vector tangent to the dislocation line), which are characterized by the density
ρ+(r, t) = ρ(r, t) (in equilibrium ρ0+(r, t) = ρ0), is excited. Then, the process
of plastic deformation in the selected slip band can be described by the following
equations:

m∗(
∂v

∂t
+ v

∂v

∂x
) = b{τext − τ f (C j , α j )} − F(v), (31.4)

∂ρ

∂t
+ ∂

∂x
(ρv) = 0. (31.5)
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The stress of “dry” friction τ f can be considered, as a rule, a parameter of the
problem, but if we are interested in the case of structural softening of the crystal,
then it is necessary to take into account the possible dependence of C j and α j on the
dislocation density ρ, therefore, in the general case τ f = τ f (ρ).

The set of Eqs. (31.4) and (31.5) admits a uniform stationary solution

ρ = ρ0, v = v0, (31.6)

in which v0 is determined from the condition that the right-hand side of Eq. (31.4)
vanishes

F(v0) = bτext − bτ f (ρ0) = bτ0, (31.7)

and the density ρ0 is determined from the given conditions of the crystal loading.
Taking into account that Eqs. (31.4) and (31.5) are one-dimensional, we will

further assume ρ = ρ(x, t) and v = v(x, t).
Analysis of the stability of the homogeneous stationary state (31.6) of Eqs. (31.4)

and (31.5)will be performedunder the assumptionsmade regarding τint(ρ) and τ f (ρ).
Linearizing the original system and introducing, for convenience, dimensionless
variables

n(x, t) = ρ(x, t)/ρ0 − 1, u(x, t) = v(x, t)/v0 − 1, (31.8)

one can obtain the following equations:

∂u

∂t ′
+ ∂u

∂x ′ = an − γ u, (31.9)

∂n

∂t ′
+ ∂n

∂x ′ + ∂u

∂x ′ = 0. (31.10)

Here, the dimensionless coordinates x ′ = x/t0v0, t ′ = t/t0 and parameters
τ = m∗v0/bt0, a = −τ ′

f (ρ0)ρ0/t0, γ = F ′(v0)v0/bt0 are introduced.
Under the assumption n, u ∼ exp λt ′ − ikx ′, the dispersion equation

λ2 + λ(γ − 2ik) − ik(γ + a) − k2 = 0

yields. Therefore, for the unstable curve λ+ = μ + iω it is possible to find

μ = −γ

2
+ 1

2
√
2

[
γ 2 +

√
γ 4 + 16k2a2

]1/2
, (31.11)

ω = k + ak

γ + 2μ
. (31.12)

Hence, instability (Reλ+ = μ > 0) is realized in two cases:
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γ < 0, (31.13)

a > 0, γ > 0. (31.14)

The instability of the first type (31.13) is associated with the effect of negative
friction

(
F ′(v) < 0

)
in the dynamics of dislocations and macroscopically manifests

itself as S-instability. The second instability (31.14), which has the nature of h-
instability, is caused by decreasing of the barrier drag in the slip band of dislocations,

when their density grows
(
τ ′
f (ρ0) < 0

)
.

As it follows from (31.11), instabilities (31.13) and (31.14) are realized in the
range of wave numbers 0 < k2 < ∞. The presence of harmonics with a zero wave-
length in the spectrum of unstable modes means that Eqs. (31.4) and (31.5) do not
have stationary inhomogeneous solutions in the class of continuous functions. This
difficulty can be overcome by taking into account the dislocation gas viscosity. The
introduction of viscosity can be physically explained by the fact that dislocations,
when they move, are able to pass into neighboring slip planes, transferring a dislo-
cation pulse there. As it is known, it leads to the internal friction of the gas layers
[9].

It is easy to show that taking into account in the right-hand side of Eq. (31.4)
the term ηvxx responsible for the viscosity of the dislocation gas (η is the dynamic
viscosity coefficient) leads to restriction of the spectrum of unstable modes and,
accordingly, to the regularization of the problem (see Fig. 31.1). In this case, expres-
sions (31.11) and (31.12) for the unstable branch are redefined by changing the
parameter γ (γ → γ + νk2, where ν = η/m∗v20τ is the dimensionless kinematic
viscosity coefficient).

Let us consider a model, where a negative friction instability
(
F ′
v(v) < 0

)
is real-

ized. In [2, 13], it is shown that such instability can occur inmetals at low temperatures
during the interaction of dislocations with point defects.

Fig. 31.1 Dependence of the increment of the unstable mode μ(k) on the wave number k for two
types of instabilities without account of viscosity a or with account of viscosity b in the ensemble
of dislocations



424 G. F. Sarafanov et al.

In this case, we will neglect the possible dependence of the stress of a dry friction
on the density of dislocations. Then, taking into account the term ηvxx , Eq. (31.4)
takes the form:

m∗(
∂v

∂t
+ v

∂v

∂x
) = η

∂2v

∂x2
+ bτ − F(v). (31.15)

Equation (31.15) does not depend on the density of dislocations; therefore,
linearization of Eq. (31.5) with respect to ρ under assumption |ρ − ρ0| << ρ0

yields

∂ρ

∂t
+ ρ0

∂

∂x
v = 0. (31.16)

If there are point defects in crystals that influence the motion of dislocations, they
can significantly affect the mechanical characteristics of samples. When dislocations
move, their interaction with defects leads to the appearance of dislocation vibrations;
therefore, the efficiency of energy dissipation depends on the spectrum form of these
vibrations. Themotionof a boundary dislocationwith a phonon subsystemof a crystal
containing randomly distributed point defects (vacancies and interstitial atoms) was
studied in [13]. It was shown that in this case, under the certain conditions, the
dependence of the drag force of dislocations on the velocity, F(v), can have two
extrema. Thus, the function F(v) has an N-shaped dependence, which is given by the
expression [13, 14]

F(v) = Fd + Ff = Bdv

1 + v2/v20
+ Bv, (31.17)

where Fd is the drag force due to the interaction of dislocations with point defects,
Bd is a quantity proportional to the concentration of point defects [13], Ff is the
friction force caused by phonon, magnon, or electronic dissipation mechanisms, and
B is the damping constant that substantially depends on temperature T.

It should be noted that the presence of extrema on the curve F(v) can take place
only for B(T ) < Bd [13]. For typical values of the parameters, including the disloca-
tion density ρ = 1011m−2 and the concentration of nonequilibrium point defects (per
atomic volume) n = 10−4, such values are reached for most crystals at temperatures
T < 25 K, i.e., in the field of very low temperatures [13, 14].

Further, we shall consider what dynamic effects the dependence of the drag force
(31.17) plotted on the phase plane of variables τ and v (Fig. 31.2) leads to.

The straight line τ = τ0 can cross the curve F(v) in different ways. We are
interested in the case, when the intersection occurs at three points, for example,
v1, v2 and v3 (v1 < v2 < v3). Then, Eqs. (31.15) and (31.16) have three equilibrium
states: two stable ones corresponding to the velocities v = v1 and v = v3, and one
unstable state corresponding to the velocity v = v2.
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Fig. 31.2 Phase plane for variables τ and v

In order to find stationary solutions of Eqs. (31.15) and (31.16), it is necessary
to pass to the traveling variable ξ = x − ct in functions v = v(ξ) and ρ = ρ(ξ).
Substitution of the solution in this form into (31.15) and (31.16) and integration of
Eq. (31.16) lead to the following equations:

m∗(v − c)
dv

dξ
= +η

d2v

dξ 2
+ bτ − F(v), (31.18)

ρ = v

c
ρ0. (31.19)

We shall study Eqs. (31.18) and (31.19) on the phase plane (v, W ) under the
assumption that W = dv/dξ . After excluding the variable ρ, one can obtain

η
dW

dξ
= −m∗(c − v)W − F(v), (31.20)

dv

dξ
= W. (31.21)

These equations have three fixed points on the phase plane: (v1, 0), (v2, 0), and
(v3, 0). The state (v2, 0) is the focus, and the singular points (v1, 0) and (v3, 0) are the
saddle points, through which two trajectories pass. The only stable stationary solu-
tions are described by separatrices going from a saddle to a saddle, which correspond
to certain values of the wave velocity c±.

Equations (31.20) and (31.21) can be reduced to the equation
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ηW
dW

dv
+ m∗[c − v]W + F(v) = 0, (31.22)

with the boundary conditions W (v1) = W (v3) = 0. In order to obtain results in
an analytical form, we shall suppose that v << c. Then, in the approximation
F(v) = κ(v−v1)(v−v2)(v−v3) and under assumption thatW = δ(v−v1)(v−v3),
one can find

c = c± = Vδ, (31.23)

δ = δ± = m∗

4η

(
1 ±

√
1 + 8ηκ/m∗2

)
, (31.24)

where Vδ = v2 + (δη/m∗)(v1 + v3 − 2v2).
Since the form of the wave solutions depends on parameter δ, then, as follows

from Eqs. (31.23) and (31.24), there are two types of solitary waves corresponding
to two values of δ (δ+ > 0, δ− < 0) and having different velocities c+ and c− of
the wave fronts. Let us define profiles of these wave solutions. After integration of
W = dv/dξ = δ(v − v1)(v − v3), it is possible to obtain

v(x, t) = v1 + (v3 − v1)

[
1 + C0 exp

(
zδ

x − ct

Λδ

)]−1

, (31.25)

where Λδ = |δ(v3 − v1)|−1 is the characteristic width of the wave front, zδ = ±, and
C0 is the integration constant.

From the form of solution (31.25), it follows that a wave of switching from the
state v1 to the state v3 (a softening wave) corresponds to the positive value δ = δ+,
and a wave of inverse switching from the state v3 to the state v1 (a hardening wave)
corresponds to the negative value δ = δ−. Thewidth of the front of the softeningwave
tends to zero (η → 0) for ηκ/m∗2 << 1, since in this case Λ+ ≈ 2η/m∗(v3 − v1),
whereas Λ− ≈ m∗/κ(v3 − v1) for the strengthening wave. Therefore, in this case
Λ− > Λ+.

Now, we will consider possible wave patterns arising in the framework of the
obtained solutions (31.25). Let at the initial time moment a perturbation of the field
of internal stresses τint arise in a certain area Ω of the slip band. As a result, a
velocity perturbation v(x, 0) ≈ v3 appears in Ω . Then, from the right boundary of
perturbation a softening wave will start to propagate with velocity c = c+, and from
the left boundary—a hardening wave with velocity c = c− (Fig. 31.3).

The softening wave velocity, c+, is greater than the hardening wave velocity, c−,
provided v1 + v3 − 2v2 > 0. In this case, the fronts are scattered with the relative
velocity

�c = c+ − c− =
√
1 + 8ηκ/m∗2

2
(v1 + v3 − 2v2). (31.26)
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Fig. 31.3 Localized waves of hardening (c = c−) and softening (c = c+), which arise in the field
of low temperatures during their formation from the local perturbation v(x, 0)

In this case, the propagation velocity of the front of the softening wave, under
the abovementioned assumptions (ηκ/m∗2 << 1) and according to Eqs. (31.23) and
(31.24), the softening wave front propagation velocity is equal to c+ ≈ (v1 + v3)/2
and the hardening wave front propagation velocity equals c− ≈ v2.

In the case v1+v3−2v2 < 0, a softeningwave does not arise, since it is damped by
a hardening wave. Thus, there is a certain threshold value of the flow stress τ = τc
corresponding to the condition �c = 0, below which (τ < τc) the perturbation
is damped and the deformation of the material occurs macroscopically smoothly
without the appearance of inhomogeneous wave structures.

For a threshold value of the load (τ = τc), an especial dissipative soliton can
propagate, when the leading and trailing edges of the pulse move with the same
velocity c+ = c− = v2. The width of such a soliton is determined by the conditions
of its occurrence.

For the considered initial problem, where the perturbations are given in the form
of a pulse, the boundary conditions have the form: v(±∞, t) = v1. However, for
example, under active loading of a crystal, when the plastic deformation rate is kept
constant, the boundary conditions for this problem should be given in the following
form: v(−∞, t) = v3, v(∞, t) = v1. Only the softening wave passing through the
entire crystal and creating in the low-temperature region a localized zone of plastic
strain, i.e., awaveof switchingof the plastic deformation rate from the state ε̇1 = bρv2
to the state ε̇3 = bρv = 2bρ0v23/(v3 + v1) ≈ 2bρv3 (Fig. 31.4), corresponds to these
conditions.

The initial set of equations was considered at a constant load (τ = const). In fact,
it is achieved on a special machine keeping the constant tensile rate of the metal
sample and it is described by the equation

∂τ

∂t
= G∗[ε̇0 − 1

L

L∫

0

ε̇(x, t)dx]. (31.27)
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Fig. 31.4 Wave front of the localized plastic strain wave that arises in the low-temperature region

Here, ε̇0 is the specified rate of plastic strain in the slip strip, G∗ = κh0/ζ1S is
the effective modulus of elasticity, κ is the rigidity of the “machine-sample” system,
h0 and S are, accordingly, height and cross section of the sample, L is the length of
the plastic strain zone, and ζ1 is the geometric factor of the unit order.

The plastic strain dislocation velocity containing in (31.27) is defined as a solution
of the stationary problem (31.25) for a self-made variable ξ , i.e., ε̇(x, t) = ε̇(x−vt).

In the case,when τ ∼ τc, the relative acceleration rate�c of the fronts of randomly
generated (at the boundary or in the bulk of the material) and propagating pulses is
quite small and does not lead to a noticeable variation of the integral containing in
Eq. (31.27). Therefore, a macroscopic change of a load τ does not occur. But if τ

slightly exceeds τc, then a softening effect takes place, since the deformation zone
continuously increases and the integral value grows in (31.27). In accordance with
Eq. (31.27), it leads to decreasing of the load τ and, accordingly, to decreasing of�c
up to zero. However, such adjustment occurs with some delay and, as a result, for
τ ∼ τc a pulsating regime for the softening zone of a plastic strain and load changes
τ are possible.

As it wasmentioned above, the original system has two small parameters provided
by small quantities m∗ and η, which determine the small width of the fronts of the
hardening and softeningwaves in comparisonwith the parts of the plastic strain zone.
Then, the average rate of plastic strain in the entire area (0, L p) can be approximately
expressed by the following way:

¯̇ε(t) = 1

L

L∫

0

ε̇(x − ct)dx ≈ ε̇3lr + ε̇1(L − lr )]/L, (31.28)

where the width lr of the softening zone moves with the velocity �c = dlr/dt . In
the stationary case (�c = 0, ¯̇ε(t) = ε̇0), the plastic deformation zone width lr can
be easily determined from (31.28):
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lr = L
ε̇0 − ε̇1

ε̇3 − ε̇1
. (31.29)

The plastic zone lr formed under such conditions can be divided into several
zones with the same total “flow rate” as the large zone had. Instead of one large zone
of plastic deformation with an increased rate of dislocation motion, several smaller
zones can take place. The location and the quantity of such zones are determined
by initial conditions. It should be noted that since in the general case the width L
of the plastic deformation zone is a quantity, which can be adjusted to the given
conditions of a crystal deformation, the considered mechanism can also determine
the localization process of slip of dislocations in the direction of their transverse slip;
i.e., it can create prerequisites for the deformation regime in the form of narrow lines
and slip bands.

It should be noted that, since the considered dislocation motion in the slip band
is of an over-barrier type [13, 14], then, according to hypothesis [21], this fact can
contribute to the emergence of thermally stimulated avalanches and lead to further
instability of plastic deformation—to serrated deformation.

31.3 The Thermodynamic Model

Several hypotheses have been given to explain a physical nature of serrated defor-
mation at low temperatures [19, 21]. At present, a hypothesis explaining the largest
number of experimental facts is the hypothesis of the thermal nature of jumps [21].
For example, it was found [17] that, in the range of helium temperatures and plastic
strain rates ε̇ = 10−2 −10−5, each stress jump was accompanied by an almost delta-
shaped temperature growing up to values of the order of 50 K, and the larger the jump
amplitude, the higher the temperature. Themost strict criterion for thermomechanical
instability of deformation at low temperatures was formulated in [19].

Despite the rigor of the criterion obtained in [19], description of serrated defor-
mation and the dynamics of its occurrence in this work and in some other works [16]
have not been sufficiently studied. Therefore, in the present work, within the scope
of the autowave model, we will consider the instability of plastic flow on the base of
the analysis of nonlinear dynamics of serrated deformation.

First, we shall study a model that is often used to establish a criterion for the insta-
bility of the plastic deformation during thermally activated sliding of dislocations
[15, 19, 25]. Then, for sufficiently thinmetal samples (R << L , whereR is the radius
of the cylindrical sample and L is the length of the sample), the processes of defor-
mation and thermal conductivity (inhomogeneous along the axis of the cylinder) can
be described by the following equations [15, 25]:

c
∂T

∂t
= κ

∂2T

∂x2
− 2h

R
(T − T0) + σ ε̇. (31.30)
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∂ε(t)

∂t
= ε̇, ε̇ = ν exp[−W/kBT ], (31.31)

∂σ

∂t
= G∗

⎛
⎝ε̇0 − 1

L

L∫

0

ε̇(x, t)dx

⎞
⎠. (31.32)

Here, Eq. (31.30) is a thermal conductivity equation, where T is the temperature
of the metal sample, κ is the thermal conductivity coefficient, T0 is the environment
temperature, h is the heat exchange coefficient, σ is the external stress, and c is the
heat capacity of the sample, which, like in [19], is considered as a constant value for
conveniency of analysis.

Thermal activation mode of plastic strain is characterized by Eq. (31.31), where
ε̇ is the local rate of plastic strain in deformation areas, ε is a plastic strain value,
W is the activation energy, ν is the pre-exponential multiplier, and kB is Boltzmann
constant.

Equation (31.32) determines the dynamics of the system “a sample—a loading
device” at a given constant plastic deformation rate ε̇0, where G∗ = kmL/S is the
effective module of the “sample-machine” system, km is the stiffness of the machine,
and S is the cross-sectional area of the sample. Low-temperature serrated deformation
is similar, in its external manifestations, to mechanical relaxation self-oscillations.
A necessary condition for the occurrence of relaxation oscillations in a mechanical
system is the presence of a section of negative velocity sensitivity of a friction force.
For the plastic deformation case in question, this condition is equivalent to a negative
dependenceof the deforming stress on the temperature or the strain rate. Experimental
studies of speed dependencies of deforming stress in many metals and alloys have
shown that the speed sensitivity decreases, when the temperature decreases, and
becomes negative at helium temperatures [21].

Equations (31.30)–(31.32) refer to a self-oscillating system, if the function

σ =
(
2h

νR

)
(T − T0) exp

[
W

kT

]
(31.33)

derived due to equating to zero of the right-hand side of Eq. (31.32) has a descending
section; i.e., in a certain temperature interval, the condition ∂σ/∂T < 0 is valid and,
accordingly, ∂σ/∂ε̇ = (∂σ/∂T )(∂T/∂ε̇) < 0 (as it follows from (31.50), inequality
∂ε̇/∂T > 0 is always valid).

From the condition ∂σ/∂T = 0, it is possible to obtain an equation

(
T

T0

)2

− W

kT0

(
T

T0

)
= 0, (31.34)

which roots have the form:
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Fig. 31.5 Functions σ = σ(T ) and σ = σ(ε̇) for various values of the parameter α = W/kBT

T1,2 = T0

[
α

2
±

√(α

2
− 1

)2 − 1

]
, (31.35)

where α = W/kBT0 is the parameter of a normalized activation energy.
Unifying of roots in (31.35) takes place, when α = 4, that corresponds to the

inflection point on the curve σ = σ(T ). Thus, for

α > αc = 4 (31.36)

there is N-shaped dependence σ(T ) with the section of the negative dependence of
the deforming stress on temperature (Fig. 31.5a). Besides, at the point of inflection
the critical stress is related to temperature by the relation

σc = σ(2T0). (31.37)

Since the plastic deformation rate ε̇ depends monotonically on the temperature
T, then the graph of function σ = σ(ε̇) also has N shape (Fig. 31.5b).

For further analysis, we write Eqs. (31.30)–(31.32) in a dimensionless form by
introducing dimensionless variables

u = ε̇

ν
, θ = T

T0
, τ = σ

G∗ (31.38)

and time t ′ = tν. As a result, these equations yield

dθ

dt ′
= K

∂2θ

∂x ′2 + μuτ − β(θ − 1), (31.39)

dε

dt ′
= u, u = exp

[
−α

θ

]
, (31.40)
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dτ

dt ′
= u0 −

1∫

0

udx ′. (31.41)

Here, the dimensionless parameters μ = G∗/cT0, β = 2h/cνR, u0 = ε̂0/ν, and
K = κ/cL2ν are introduced.

It is possible to show that the instability condition can be reduced to the inequality
α > 4 and it is a necessary condition, but not sufficient. A sufficient condition for
instability is location of θ = α/ ln(ν/ε̇0) in the range of values, where ∂σ/∂θ < 0,
or location of the specified strain rate ε̂0 in the range of values, where ∂σ/∂ε̇ < 0.

Let us analyze the stability of a stationary homogeneous solution of Eqs. (31.39)–
(31.41):

u = u0, θ0 = α/ ln uo, τ =
(

β

μ

)
(θ0 − 1)/u0 (31.42)

After linearization of Eqs. (31.39)–(31.41) in the neighborhood of u0 and θ0 and
under assumption u, θ, τ ∝ exp(λt + ikx), it is possible to obtain the following
dispersion equation

λ2 + (k2K + β − μτ0uθ ′)λ + μuθ ′δ(k) = 0, (31.43)

where δ(k) is the Dirac delta function and uθ ′ = αu0/θ2
0 . In Eqs. (31.39)–(31.41),

instability takes place, if Re{λ(k)} > 0 for at least one of the roots of the dispersion
equation. This inequality is valid for

τ > τc = βθ2
0

μαu0

(
1 + k2K

β

)
(31.44)

Now let us consider the properties of the solutions ofEqs. (31.39)–(31.41).Numer-
ical investigations show that the plastic flow regime is monotonic, when α < 4, but
for α > 4 there appear uniform regular fluctuations of load, temperature, and strain
(Fig. 31.6) that correspond to the limit cycle on the phase plane σ − T (Fig. 31.6a).
Moreover, if a sawtooth dependence on time takes place for the deforming stress
(Fig. 31.6b), then there are regular bursts for the temperature (Fig. 31.6c) and a
stepwise dependence for deformation (Fig. 31.6d).

Here, two remarks should be noticed. First, since the oscillations of the system
variables are homogeneous (k = 0), then condition (31.44) takes on the form

τ > τc = βθ2
0

μαu0
. (31.45)

In this case, at the inflection point τ = τc the equality θ0 = 2 is achieved, and
accordingly, at this point τ0 = β/μu0. Then, condition (31.45) can also be written
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Fig. 31.6 Phase portrait a of Eqs. (31.39)–(31.41) for α = 5.8, when the isocline T = T (ε̇0) is
located on the descending section of isocline branch σ = σ(T ) (it corresponds to Eq. 31.33) and
the dependences of applied stress σ , temperature T, and deformation ε on time (b, c, d). The graphs
have been plotted for the following parameter values: μ = 0.5, β = 1, u0 = 0.015, K = 0.01

in the form

α = W/kBT > 4. (31.46)

Inequality (31.46) coincides with the earlier obtained condition (31.36). It follows
from (31.46) that the thermomechanical instability is possible only if the average
temperature of a sample is less than

T < W/4kB ≈ 150K . (31.47)

Secondly, it is easy to show that the instability condition (31.45) for the initial
dimensional variables takes the form

σ > σc = 2hkBT 2
0

Rε̇0W
. (31.48)
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Inequality (31.48) coincides with the instability condition obtained in [19] under
the isothermal boundary conditions.

However, the solutions obtained in the framework of the model (31.30)–(31.32)
are not completely in agreement with the experimental data, as, in reality, load oscil-
lations are usually not regular, but quasi-stochastic and heterogeneous. In order to
describe this behavior, it is necessary to take into account the effect of elastic corre-
lation of neighboring deformation areas (e.g., sliding strips) [11]. As a result of this
effect, elastic perturbations σi ∼ ∂2

xxε arise and create heterogeneities of stresses
along the sample axis.

Then, the original set of equations in the correlation of deformation zones takes
the form

c
∂T

∂t
= κ

∂2T

∂x2
− 2h

R
(T − T0) + (σ + σi )ε̇. (31.49)

∂ε(t)

∂t
= ε̇, ε̇ = ν exp[−W/kBT ], (31.50)

∂σ

∂t
= G∗

⎛
⎝ε̇0 − 1

L

L∫

0

ε̇(x, t)dx

⎞
⎠. (31.51)

∂σi

∂t
= −σi

ta
+ γ1

∂2ε̇

∂x2
, (31.52)

where parameter γ1 ≈ Gd2 is a measure of elastic correlation of neighboring defor-
mation zones, d is their characteristic width, and ta is the characteristic relaxation
time of elastic perturbations.

Numerical investigation of Eqs. (31.49)–(31.52) was carried out after they had
been dimensionless. Analysis of solutions shows that irregular dynamics of the
system is mainly controlled by the parameter S = Gd2/G∗L2 of elastic correla-
tion that occurs, when its threshold value is exceeded (S > Sc = 0.045). The length
of the sample was selected equal L = 3 cm and the width of the deformation zones
d = 10µm.

In the case of small values of S, a regular mode is realized in the system similarly
to the scenario shown in Fig. 31.6.When the elastic correlation parameter (S > Sc =
0.045) grows, the mode of change of load, temperature, and plastic deformation rate
becomes irregular (Fig. 31.7).

This regime of a plastic strain and temperature variations can be most clearly
observed on the phase portrait of variables σ and T (Fig. 31.7a), where the phase
paths are unstable in a limited region. At the same time, the value of load drops
is clearly correlated with the value of temperature bursts in deformation zones that
was often observed experimentally [22]. Irregular behavior of variables σ, T, and
ε̇ presents in the phase space of these variables an attractive set of paths—strange
attractor [18], on which all the paths belonging to it are unstable (Fig. 31.8).
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Fig. 31.7 Phase portrait of Eqs. (31.49)–(31.52) for α = 5.8 on the plane of variables σ − T (a) in
dependence of applied stress σ , strain rate ε̇, and temperature T on time t (b, c, d). Graphs are
plotted for μ = 0.5, β = 1, u0 = 0.015, K = 0.01, S = 0.05, and γ = ν/ta = 0.01.

Fig. 31.8 Phase space of the system described by Eqs. (31.49)–(31.52), in which the phase paths
behave as a strange attractor
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Such a behavior is typical for stochastic systems [6]. With increase of the plastic
accommodation parameter (γ > 0.01), the oscillatory process becomes regular
again.

31.4 Conclusion

Thus, analytical and numerical analysis of the model with a heat-activated regime of
the plastic flow showed that the plastic deformationmode can become unstable under
certain conditions. Taking into account elastic correlation of neighboringdeformation
zones, there arise elastic perturbations σi ∼ ∂2

xxε leading to irregular dynamics of the
system. In this case, themode of change of load, temperature, and plastic deformation
rate becomes stochastic and presents in the phase space of these variables an attractive
set of paths—the strange attractor.
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Chapter 32
Modeling of Attenuation Processes
in Piezoceramic Bodies

Alexander S. Skaliukh

Abstract A method has been developed for determining the tangents of the loss
angles of polycrystalline ferroelectric materials, based on the hysteretic attenuation
model proposed by E. S. Sorokin and Ya. G. Panovko. A three-dimensional polar-
ization model was constructed, which allows one to find the dielectric and defor-
mation hysteresis loops at arbitrary electrical and mechanical loads. Investigations
were carried out and the functional dependences of physical modules on the residual
polarization, and deformation parameters were established. An approximation of
the hysteresis dependences by analytical functions of a special form is proposed for
small amplitudes of external impacts. Constitutive relations are obtained, similar to
the Maxwell model, from which in the case of harmonic oscillations it is possible to
calculate the tangents of the loss angles through the area of the hysteresis loops.

Keywords Tangents of the loss angles · Polycrystalline ferroelectric materials ·
Polarization model · Constitutive relations · Residual parameters ·
Approximation · Hysteresis loops · Strain tensor · Polarization vector

32.1 Introduction

The basis for modeling the oscillations of piezoelectric transducers is harmonic and
modal analysis. The frequency-dependent characteristics represent the interest and
mainly have the main goal of the study. The most preferred and informative may
be the amplitude–frequency characteristics (AFC). However, a simplified approach
related to neglecting the attenuation phenomena can lead to a discrepancy between
the calculated and experimental data. In this case, it is necessary to correct mathemat-
ical models, in particular, to take into account more subtle factors and phenomena
that affect their work. For example, if attenuation mechanisms are ignored in the
calculation model, then at the resonant frequencies the frequency response increases
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unlimitedly, while experiments show that there is no such increase. Therefore, vibra-
tion damping mechanisms are an important and interesting problem for research and
present the subject of additional research.

The attenuation mechanisms themselves have not yet been fully studied, and
the proposed mathematical models sometimes look artificially introduced or even
unfounded. This work does not pretend to be a complete study, but presents an inter-
esting approach that takes into account hysteretic attenuation, i.e., attenuation arising
from small fluctuations due to changes in irreversible parameters. It was found previ-
ously that physical modules depend on residual parameters that change, subjected to
hysteretic dependencies. However, the presence of hysteresis leads to the dissipation
of energy, and therefore, attenuation occurs, which is proportional to the area of
the hysteresis loop. Thus, the mathematical modeling of the attenuation processes is
inextricably linked with the modeling of irreversible processes polarization—depo-
larization in the three-dimensional case. And although a harmonic vibrations are
caused by small external electric and mechanical fields, the physical characteris-
tics of the material, which include elastic, piezoelectric and dielectric quantities,
being functions of residual parameters, albeit slightly, but also change in a hysteretic
manner. To describe this phenomenon, comprehensive studies were carried out in
three main directions. Firstly, a model was constructed to determine the residual
parameters, which allows finding the deformation and dielectric hysteresis loops due
to superimposed electric fields and mechanical stresses [1]. Secondly, the functional
dependences were obtained for physical modules on residual parameters [2, 3], such
as the polarization vector and strain tensor. Thirdly, approximations of nonlinear
functions were used as the approximations of a special form [4], which made it
possible to obtain constitutive relations of the type of operators of the Maxwell
model, with subsequent determination of the loss tangents. It is interesting to note
that the tangents of the loss angles are also found in [5], but in a completely different
way.

32.2 Polarization Model of Polycrystalline Ferroelectrics

The first part of the study, i.e., the polarization–depolarization model, is mainly
described in [1]. As in many models describing irreversible processes, the parame-
ters of polarization and deformation of a representative volume are divided into the
induced (reversible) and residual (irreversible) parts: P = Pe +P0, ε = εe +ε0. The
representative volume contains many domains with vectors of spontaneous polar-
ization ps, and, accordingly, with spontaneous deformations εs. Spontaneous polar-
ization vectors and spontaneous strain tensors included in a representative volume
depend on the angles φ, ψ of the local coordinate system of the unit sphere. Elec-
tric and mechanical fields can deform the walls of domains, or they can rotate these
vectors. The result of the deformation of the walls of the domains is the appearance
Pe, εe, and the result of the rotation is P0, ε0, and
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P0 = 1

N

N∑

k=1

(ps)k, ε0 = 1

N

N∑

k=1

(εs)k .

The main idea of the polarization model is to represent the general process in the
formof twocomponents parts, oneofwhichdescribes the rotations of the spontaneous
polarization vectors, and the second takes into account the energy costs of such
rotations. According to the first part, turns can be described by utmost dependencies

ε∞ =
∫ 2π
0 dφ

∫ π

0 euεs sinψ dψ
∫ 2π
0 dφ

∫ π

0 eu sinψ dψ
, P∞ =

∫ 2π
0 dφ

∫ π

0 eups sinψ dψ
∫ 2π
0 dφ

∫ π

0 eu sinψ dψ
.

According to the second part, an energy balance is compiled, in which the work
of external fields in the real process of polarization and deformation is equated to the
energy costs associated with the destruction of the mechanisms for fixing the domain
walls, plus the work of the fields to rotate the spontaneous polarization vectors. The
result is a system of equations in differentials (32.1)

dP0 = (P∞ − P0)
|dEef|
nE

, P0 = P∗
0, E = E∗,

dε0 = (ε∞ − ε0)
|d(σef)I − d(σef)III|

nσ

, ε0 = ε∗
0, σ = σ∗, (32.1)

fromwhich increments of irreversible parameters are found. The parameters included
in (32.1) are defined as follows:

u = −Eef · PS/ps
a

− σef : εS/εs

b
, a = kT

psΩcr
, b = kT

εsΩcr
,

σef = σ + β : ε0, Eef = σ + α : P0, (32.2)

where pS, εS, k, T,Ωcr—the spontaneous polarization vector, spontaneous polar-
ization tensor, Boltzmann constant, absolute temperature and atomic cell volume,
respectively; d(σef)I, d(σef)III—the largest and smallest principal values of the
tensor of increments of effective stresses. The main parameters of the model are
α, β, a, b, nE , nσ , ps, εs . For each type of ceramic, these numbers are selected from
the condition that the calculated and experimental hysteresis curves coincide, just as
in the linearHookemodelwhereYoung’smodulus and Poisson’s ratio are determined
experimentally. Once found, these characteristics become known numbers and do
not change during oscillations.

The proposed model is noteworthy in that there is no need to store information
about the position of each vector of spontaneous polarization, but it is enough to
operate only with integral characteristics: P0, ε0 which, moreover, form the physical
properties of the material.
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32.3 Dependence of Physical Modules on Residual
Parameters

The second part of the study is based on the results of [3], in which, on the basis
of the first and second principles of thermodynamics, the constitutive relations for
the induced (reversible) components of the strain tensor and the polarization vector
(32.3) are obtained:

εe = S(ε0) : σ + dT (P0) · E,

De = d(P0) : σ + ε(ε0) · E, (32.3)

and linear dependences of elastic compliance, piezoelectric modules and permittiv-
ities on residual parameters were established (32.4):

S(ε0) = S0 + K : ε0,

d(P0) = N1 · P0,

ε(ε0) = ε0 + M : ε0, (32.4)

where S0, ε0—elastic compliance and permittivity of a thermally depolarized body;
K, N1, M—some constant tensors, the components of which will be discussed
below. In the future, it is convenient to use the Voigt matrix representations, for
which it is necessary to introduce vectors

σ̂ = {σ̂1 σ̂2 . . . σ̂6}T ≡ {σ11 σ22 . . . σ12}T ; E = {E1 E2 E3}T ;
ε̂e = {ε̂1 ε̂2 . . . ε̂6}T ≡ {εe 11 εe 22 . . . εe 12}T ; De = {De1 De2 De3}T .

Then, in the system of axes, when Oz coincides with the direction of the residual
polarization vector instead of (32.3), we have the matrix relations:

εe = Ŝ(ε0) · σ + d̂T (P0) · E,

De = d̂(P0) · σ + ε̂(ε0) · E,

in which, Ŝ(ε0), d̂(P0), ε̂(ε0)—matrixes of elastic, piezoelectric and dielectric
characteristics:
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Ŝ(ε0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ŝ11 Ŝ12 Ŝ13 0 0 0
Ŝ12 Ŝ11 Ŝ13 0 0 0
Ŝ13 Ŝ13 Ŝ33 0 0 0
0 0 0 Ŝ44 0 0
0 0 0 0 Ŝ44 0
0 0 0 0 0 2(Ŝ11 − Ŝ12)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

d̂(P0) =
⎛

⎝
0 0 0 0 d̂15 0
0 0 0 d̂15 0 0
d̂31 d̂31 d̂33 0 0 0

⎞

⎠, ε̂(ε0) =
⎛

⎝
ε̂11 0 0
0 ε̂11 0
0 0 ε̂33

⎞

⎠.

(32.5)

Matrix components can be represented as

Ŝαβ = Ŝ0 αβ + kε αβ (ε0)I I I , α, β = 1, . . . , 6

d̂mn = kp mn P0, ε̂mn = ε̂omn + kε mn (ε0)I I I , m, n = 1, . . . , 3

where Ŝ0 αβ, ε̂omn—the components of the correspondingmatrices of elastic compli-
ance and permittivity in an unpolarized state. P0, (ε0)I I I—the modulus of the
residual polarization vector and the largest principal value of the residual strain
tensor. Odds included here

kε αβ = Ŝmax
αβ − Ŝ0 αβ

εsat
, kp mn = d̂max

mn

psat
, kε mn = ε̂max

mn − ε̂o mn

εsat

are determined through the maximum possible values achieved in the state of
saturation, and the values in the unpolarized state.

When considering harmonic oscillations, we assume that the external parameters,
which include the electric field and mechanical stresses, change according to the
harmonic law in time: σ = σ̃ cosωt, E = Ẽ cosωt . For large amplitudes σ̃ , Ẽ, we
will have large loops of dielectric and deformation hysteresis, and for small values
of them, small loops. Note that both large and small loops are an informative base
for further research. To begin with, we consider the large hysteresis loops shown in
Figs. 32.1 and 32.2.

Circles show possible cases of residual polarization and residual deformation
when removing external loads. (In real polarization processes, it makes no sense to
change the field cyclically: just sufficient set themaximum value, take a shutter speed
and turn off the field).When operating piezoelectric ceramic transducers, the external
electric field and mechanical stresses are low intensity; i.e., their amplitudes under
harmonic modes of oscillations do not go beyond the circles noted above. However,
even for such regimes, irreversible repolarization processes take place. In addition,
this leads to the situations depicted in Figs. 32.3 and 32.4, where, for example, the
upper point of the dielectric hysteresis loop is selected, and the right point of the
deformation hysteresis loop.
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Fig. 32.1 Dielectric loop

Fig. 32.2 Strain loop

Fig. 32.3 Small dielectric hysteresis loop in harmonic oscillations
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Fig. 32.4 Small loop of deformation hysteresis in harmonic oscillations

In future, we will be interested in the case of small amplitudes σ̃ , Ẽ. It is easy
to see that even for the case of small loops, the residual parameters P0, (ε0)I I I ,
which are in the coefficients kε αβ, kp mn, kε mn of constitutive relations will change.
Thus, the physical characteristics of the material will also change. It is known that an
electric field generates both dielectric and deformation loops of the butterfly type, and
mechanical stresses generate deformation hysteresis loops and depolarize ceramics.
In other words, in the three-dimensional case, each of the components of the electric
field vector and the stress tensor can generate the corresponding components of the
residual parameters, i.e.,

P0m = P0m(E1, E2, E3, σ11, σ22, . . . , σ12),

(ε0)I I I = (ε0)I I I (E1, E2, E3, σ11, σ22, . . . , σ12).

32.4 Approximations of Nonlinear Functions

From the matrix relations (32.3) based on (32.4), (32.5), the constitutive relations
can be represented as:

εα = (Ŝ0αβ + kε
αβ(ε0)I I I )σβ + k p

mαP0Em,

Dn = k p
nβ P0σβ + (ε̂onm + kε

nm(ε0)I I I )Em .

Let the components of the electric field and mechanical stresses change in time
according to the harmonic law: σα = σ ∗

α cosωt, E∗
n cosωt . Consider how the equa-

tions change, if small hysteresis loops occur. Due to fluctuations of small amplitude,
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the residual parameters get some increments: (ε0)I I I → (ε0)I I I +�(ε0)I I I , P0 →
P0 + �P0, which allows us to rewrite the equations in the form:

εα = (Ŝ0αβ + kε
αβ(ε0)I I I )σβ + k p

mαP0Em + kε
αβ�(ε0)I I Iσβ + k p

mα�P0Em,

Dn = k p
nβ P0σβ + (ε̂onm + kε

nm(ε0)I I I )Em + k p
nβ�P0σβ + kε

nm�(ε0)I I I Em .

It is easy to see that there remained a group of terms with instantaneous modules
and a second group appeared with increments of residual parameters. Following the
ideas of [2], we approximate these terms with the following functions:

kε
αβ�(ε0)I I Iσβ = ψαβ

√√√√1 −
(

σβ

σ ∗
β

)2

σ ∗
β ;

k p
mα�P0Em = δmα

√

1 −
(
Em

E∗
m

)2

E∗
m;

kε
nm�(ε0)I I I Em = χmn

√

1 −
(
Em

E∗
m

)2

E∗
m .

Due to the harmonic process, we have:

kε
αβ�(ε0)I I Iσβ = ψαβσ ∗

β sinωt = ψαβσ̇β;
k p
mα�P0Em = δmαE

∗
m sinωt = δmα Ėm;

kε
nm�(ε0)I I I Em = χmnE

∗
m sinωt = χmn Ėm;

After that, the constitutive relations can be represented in the form similar to the
Maxwell model:

εα = (Ŝ0αβ + kε
αβ(ε0)I I I )σβ + ψαβσ̇β + k p

mαP0Em + δmα Ėm,

Dn = k p
nβ P0σβ + δmβ σ̇β + (ε̂onm + kε

nm(ε0)I I I )Em + χmn Ėm .

and get the loss tangents:

tgγαβ = ψαβω

Ŝ0αβ + kε
αβε03

;

tgγmα = δmαω

k p
mαP0

;

tgγnm = χmnω

ε̂onm + kε
nmε03

.



32 Modeling of Attenuation Processes in Piezoceramic Bodies 447

32.5 Conclusions

The developed polarization model allows one to find small loops of dielectric and
deformation hysteresis (1) and (2). The constitutive relations for the induced compo-
nents (3) and the functional dependence of the physical modules on the residual
parameters (4) allow us to identify additional terms due to the increment of the
residual parameters. The approximation of these functions by small hysteresis loops
makes it possible to find the loss tangent for ceramic media through the parameters
of small hysteresis loops, which are previously found after a series of numerical
experiments.
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Chapter 33
Modeling of Pentamode Metamaterials
Under Dynamic Loading

Vladimir V. Skripnyak and Vladimir A. Skripnyak

Abstract The field of metamaterials has grown considerably in the last few decades
due to the advances in new manufacturing technologies. Metamaterials currently
are of interest for a wide variety of applications including damping systems. This
work is aimed to evaluate dissipative effect of pentamode metamaterials subjected to
dynamic loading. The results of numerical modeling of the mechanical behavior of
pentamode metamaterials from alpha-titanium alloys were received and compared
with available experimental data. The model of inelastic deformation and ductile
damage criterionwas used to describe the ductility of the framework ofmetamaterials
in a wide range of strain rates, temperature, and stress triaxiality. A methodology to
analyze the energy dissipation due to inelastic deformation of metamaterials at high
strain rates was presented. It was shown that the values of the energy dissipation
coefficient during uniaxial dynamic compression of the pentamode metamaterial are
1.5 times higher than for the bulk alloy counterpart.

Keywords Metamaterials · Alpha-titanium alloys · Energy dissipation · Inelastic
response

33.1 Introduction

Devices and aerospace technical objects are often subjected to intensive dynamic
impacts during operation. Development of damping materials and technologies
of their manufacturing is one of important problem for modern designs. Various
composite and porous materials are widely used in modern aerospace objects.
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In the works of Bragov et al., it was shown that in the case of pulsed mechanical
loadings, including shock impacts, porous, and frame-reinforced polymer, composite
materials exhibit higher dissipative properties compared to structural alloys [2–4].

Kadic et al. and Zadpoor in the review articles noted that dissipative effects play
a major role in the observed non-proportional stress behavior in the loading path
under cyclic loading of cellular metamaterials [11, 20]. Mohsenizadeh et al. showed
that lightweight metamaterials have higher dissipative properties compared to other
existing materials, such as open-cell metal foams [14].

The concept of mechanical metamaterials has been implemented in recent years
in additive manufacturing technologies, which has enabled to produce materials with
complex spatial micro/nano-architecture.

Extreme metamaterials produced using honeycomb grids have anisotropic defor-
mation resistance. Milton and Cherkaev showed that specific combinations may be
used tomanufacture extremematerials [13].Volumetric cells of extremematerials can
be combined to produce materials with the required elasticity tensor. Metamaterials
with two, three, four, or five small eigenvalues of the effective elastic moduli tensor
components are called bimode, trimode, quadramode, and pentamodemetamaterials,
respectively.

It was shown by Kadic and Bückmann that experimental samples of pentamode
metamaterials may exhibit the Poisson coefficient close to −1 (dilatation meta-
material) [5, 10]. The pentamodal structure of the material, proposed by Milton
and Cherkaev [12, 13] and subsequently studied by Kadic [10], Bückmann and his
colleagues [5, 6], consists of elements representing the connection of two truncated
cones with a fixed length. Ideally, the structural elements are connected to each other
in the region of their vertices and form a structure that resembles a face-centered
cubic crystalline structure. The work of Mejica and Lantad [15] substantiates the
possibility of creating pentamode metamaterials with structures of other Bravais
lattices.

Hedayati et al. [8] showed the substantial availability to produce pentamodemeta-
materials based on a titanium alloy by selective laser melting. It was shown an
availability to additively manufacture pentamode materials with a normalized mass
density ρ/ρs from 0.24 to 4.24 ± 0.02 (ρs is the mass density of the material of the
frame elements) from the Ti–6Al–4V alloy powders.

A feature of the lattice structures of pentamode materials is that the stress arising
in the elements of the lattice structure is transmitted through the vertices of the cones.
The structure of the unit cell of a pentamodemetamaterial is shown in Fig. 33.1a. The
parameters of the periodic structure and the geometric parameters of the elements
can be set in accordance with the capabilities of modern 3D printing technologies.
An increase in the diameter of the cones has a minimal effect on the rigidity of
the structure of pentamode metamaterials, but affects the mass density. As a result,
the properties of extreme pentamode metamaterials differ from the properties of
most porous materials and lattice structures, for which the dependence of the elastic
modulus on the mass density exhibit a power-law behavior.

Due to this feature of the mechanical properties of pentamode materials, they can
be used to control the dynamics of stress waves and acoustic waves [7].
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Fig. 33.1 a Model of pentamode material volume, b pentamode cell element

Of interest is the study on dissipative properties of pentamode metamaterials
subjected to pulse mechanical loadings. Pentamode metamaterials based on light
alloys can be used as mechanical dampers placed between support plates.

33.2 Simulation the Response of Metamaterial to Pulsed
Load

In thiswork,weperformednumerical studies of themechanical response of a titanium
alloy pentamodemetamaterial layer with a relative mass density ρ/ρs = 3.15% under
initial temperatures of 300 and 900 K and a pulse loading of 100 m/s. To study the
dynamic response of pentamode metamaterials with a skeleton structure based on
the alpha-titanium alloy Ti-5Al-2.5Sn (Grade 6), a numerical simulation was carried
out using finite elements technique. The model metamaterial volume had effective
dimensions of 10 mm × 4.8 mm × 5 mm, and frame elements parameters were D
= 0.4 mm, d = 0.11 mm, h = 1.6 mm. The explicit finite element LS-DYNA solver
of WB ANSYS was used to solve the boundary problem.

The average grain sizes and the relative pore volume of the framework elements
material are considered as structural factors affecting the mechanical properties of
the framework elements and the metamaterial as a whole.

To account for the indicated structural factors, constitutive relations have been
constructed on the base of micromechanical models of physical mechanisms of
inelastic deformation (thermally activated and mechanically activated dislocation
mechanisms of plasticity, twinning, the interaction of dislocations with dispersed
particles, grain boundaries, etc.). The model of mechanical behavior of the penta-
mode metamaterial includes the system of mass, momentum, and energy conserva-
tion equations, kinematic relations, elastic-viscoplastic constitutive equations of the
framework elements material, equations of the kinetics of the damage nucleation and
growth, and the fracture criterion [1, 9, 16–18].

The Gurson–Tvergaard condition was used as a yield criterion of the framework
elements material [18]:
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(
σ 2
eq

/
σ 2
ys

) + 2q1 f
∗ cosh

(−q2 p
/
2σys

) − 1 − q3
(
f ∗)2 = 0, (33.1)

where σ ys is the yield stress, p= −σ kk/3 is the pressure, σeq = √
(3/2)Si j Si j , Si j =

σi j + p δi j are components of the deviatoric stress tensor, q1, q2 and q3 are model
parameters, and f is the damage parameter of the material.

To describe the change in the stress of plastic flow in alpha-phase titanium alloys
with a hexagonal close-packed crystal lattice, the following ratio was used [1]:

σys = σs0 + C2
[
exp

(−C3T + C4T ln(ε̇eq/ε̇eq0
)]

×
{
C5(ε

p
eq)

n + C6

}[
B1 + B2T + B3T

2
]

(33.2)

where σ ys is the yield stress, σ s0, C2, C3, C4, C5, C6, n, B1, B2, B3 are coefficients

of constitutive equation, T is the temperature, ε p
eq =

√
(2/3)ε p

i jε
p
i j is the equivalent

plastic strain, ε̇eq is the equivalent strain rate, ε̇eq 0 = 1.0 ms−1.
To describe the evolution of damage (growth and nucleation of discontinuities)

and fracture of the material of frame elements of pentamode metamaterials, the
Needleman model was used [18].

The evolution of the damage parameter is described by the kinetic equations:

ḟ = ḟnucl + ḟgrowth,

ḟnucl = (
fN

/
sN

)
exp

{
−0.5

[(
ε
p
eq − εN

)/
sN

]2}
,

ḟgrowth = (1 − f )ε̇ p
kk, (33.3)

where εN and sN are the parameters that determine strain at which the void coales-
cence initiates and the standard deviation in the strain distribution corresponding to
the evolution of the void system.

Void nucleation during the plastic deformation is determined by the fN parameter.

f ∗ = f if f ≤ fc;
f ∗ = fc + ( f̄F − fc)/( fF − fc) if f > fc, (33.4)

where f̄F =
(
q1 +

√
q2
1 − q3

/
q3

)
, q1, q2 and q3 are model parameters.

The temperature increase in the plastic strain zone at high-speed deformation was
calculated in the adiabatic approximation:

T = T0 + (
0.9

/
ρsCp

)
ε
p
eq∫

0

σeq dε
p
eq, (33.5)
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where T 0 is the initial temperature in the framework elements material, ρs = 4.4 ×
10−6 kg/mm3 is the mass density of the titanium alloy Ti−5Al−2.5Sn, Cp = 458 +
0.35 T − 1.929 × 10−4 T 2 + 8.758 × 10−8 T 3 J/kg K is the specific heat capacity
of the titanium alloy Ti−5Al−2.5Sn.

To estimate the normalized Young’s modulus E/Es for a metamaterial with a
diamond-like lattice structure in [8, 21], the following relation was used:

E/Es = [√6π(3/4)2 (d/2h)4]/[1 + 1.5(d/2h)2], (33.6)

where Es is the Young’s modulus of the cell elements material and d and h are
minimal diameter and length of cell elements, respectively.

To estimate the yield strength of a metamaterial, an analytical formula was used
[21]:

σy/σys = [9π/4
√
6](d/2h)3, (33.7)

where σ y and σ ys are the effective yield stress of metamaterial and the yield stress
of the cell elements material, respectively.

The damping properties characterizing the dissipation of mechanical energy
during loading of the pentamode metamaterial with the Ti–5Al–2.5Sn titanium
alloy skeleton subjected to high-speed deformation were evaluated by the amount of
dissipated energy and the energy dissipation coefficient [19]:

�W (t) = W (t) − Wint(t), λ(t) =
t∫

0

�W (t)

W (t)
dt, (33.8)

where �W is the increment of dissipated energy, W is the work of loading force on
displacement, W int is the internal energy of the metamaterial volume, and λ is the
energy dissipation coefficient.

The specific energy W supplied to the model volume of the metamaterial under
pulse compression was calculated by:

W = 1

m0

t∫

0

F(t)u(t)dt, (33.9)

where u(t) is the displacement of the movable support of the metamaterial, F(t) is
calculated resistant force in the movable support plane,m0 = ρ0V 0 is the initial mass
of the deformable metamaterial volume, ρ0 is the initial effective mass density of the
metamaterial, and V 0 is the initial effective volume of the metamaterial.

The value of the specific internal energy of the framework structurewas calculated
by the formula:
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Wint(t) = 1

m0

∫

v

⎛

⎜
⎝

εei j∫

0

σi j dεei j

⎞

⎟
⎠dv, (33.10)

whereW int is the internal energy of deformed framework elements material, V is the
total volume of framework elements, σ ij is the stress tensor components, calculated
in the framework elements material, and dεei j is increments of the elastic stain tensor
components in the framework elements material.

The initial conditions assumed a constant initial temperature and the absence of
stresses and strains in the framework elements.

The boundary conditions were set in accordance with the loading conditions
of the model volume of the metamaterial. The model volume of the pentamode
metamaterial was placed between the upper fixed plane and the lower movable plane.
The upper boundary of the frame support was considered rigid and immovable.
Uniaxial compression of the metamaterial volume was realized when the movable
plane was displaced at a constant velocity.

The following values of the model coefficients were used in the calculations
(33.1)–(33.5): σ s0 = 0.25 GPa, C2 = 0.8 GPa, C3 = 0.0043, C4, C5, C6, n = 0.25,
B1 = 1.0, B2 = 0.000466, B3 = 2.43× 10−7, q1 = 1.0, q2 = 1.3, q3 = 1.0, εN = 0.25,
FN = 0.04, SN = 0.1, f F = 0.26, f c = 0.117. The grid convergence of the calculation
results within a few percent was provided by the choice of the discretization step of
the grid model.

33.3 Results and Discussion

The results of simulation indicate the localization of inelastic strains in the region
of the joint of the framework elements. The initial normalized mass density of the
model volume of the pentamode metamaterial ρ/ρs was 3.145%. Figure 33.2a shows

Fig. 33.2 a Calculated equivalent plastic strain at t = 0. b Reaction force under vertical uniaxial
compression at the movable plane (curves 1 and 3) and reaction force at the fixed plane (curves 2
and 4) versus time. Curves 1 and 3 correspond to the compression of the pentamode metamaterial
volume at an initial temperature of 300 K, and curves 2 and 4 correspond to compression at an
initial temperature of 900 K
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the calculated equivalent plastic strain in the framework elements of themetamaterial
compressed by 39%. Figure 33.2b shows the effective engineering stress versus engi-
neering strain under axial compression of the metamaterial model volume. Curves 1
and 3 correspond to the force acting on the movable support surface, and curves 2
and 4 to the immovable one. Curves 1 and 2 were obtained at the initial temperature
of 300 K, and curves 3 and 4 at the initial temperature of 900 K.

The calculated effective stress versus effective engineering strain diagrams are
in qualitative agreement with the experimental stress-strain diagrams of titanium
pentamode material created using selective laser melting technology [8]. The delay
in the arrival of a stress pulse to the fixed support surface is determined by the
propagation velocity of elastic waves along the metamaterial framework. The initial
stage of deformation was characterized by close to linear dependence of the force
on the relative value of compression. This has enabled to identify it as quasi-elastic
reaction and evaluate the effective values of elastic modules (Young’s modulus,
Poisson’s ratio, and shear modulus).

The value of 〈E〉/Es obtained by simulation was 2.9 × 10−5 at Es = 107 GPa, and
the value of the normalized effective yield stress σ y/σ ys was estimated as 0.00087 at
σ ys = 0.95 GPa and T = 300 K. The data obtained in the calculations are consistent
with the experimental data (〈E〉/Es = 2.74 × 10−5 and σ y/σ ys = 0.00024 at ρ/ρs

= 3.15% for pentamode material obtained by selective laser melting of a Ti–6Al–
4V powder using high-energy density laser beam [8]). When comparing the data,
the difference between normalization parameters from [8] and simulation was taken
into account, such as the values (Es = 113 GPa, σ ys = 0.9 GPa, ρs = 4.43 × 103

kg/m3) of Ti–6Al–4V were slightly differ from the corresponding parameters for the
Ti–5Al–2.5Sn alloy.

The theoretical estimation of 〈E〉/Es by Eq. (33.6) and σ y/σ ys by Eq. (33.7) were
of 0.8 × 10−5 and 1.17 × 10−4 (for the parameter d/2h = 0.034375 of pentamode
metamaterial), respectively.

The metamaterial deforms inelastically until the stability of the frame structure
elements is lost as strains within the framework reach critical values. Further defor-
mation has been accompanied by wedging of framework fragments, which result in
a temporary increase in the resistance to compression. The energy dissipation occurs
as a result of the localization of plastic strain; damage and fracture of the frame
elements (see Fig. 33.2b).

The triaxiality stress state parameter η = −p/σ eq may change significantly during
inelastic deformation.

As a result of the work dissipation on the plastic deformation, the temperature
rises in local zones of the framework elements. Figure 33.3c shows the temperature in
elements of pentamode metamaterial under uniaxial compression at vertical velocity
of 100 m/s.

The evolution of the framework structure is the cause of different values of the
dissipated work and coefficient of energy dissipation. Figure 33.4a shows calculated
values of the specificmechanical energyW over time (curves 1 and 3) and the specific
internal energyW int (curves 2 and 4) over time. Curves 5 and 6 indicate the change in
W andW int during high-speed deformation of the bulk titanium alloy Ti–5Al–2.5Sn
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Fig. 33.3 a Equivalent
stresses in the elements of
the frame of the titanium
metamaterial at the time
0.01 ms, b at the time of
0.01045 ms under uniaxial
compression of the
pentamode metamaterial
volume at 100 m/s at the
initial temperature of 300 K.
c Temperature in frame
elements at the time of
0.0104 ms

at a strain rate of 100 s−1. Figure 33.4b shows the coefficient of energy dissipation λ

versus the effective deformation 〈εyy〉 at initial temperature of 300 K (curves 1 and
2) and 900 K (curve 3).

As the initial temperature increases from 300 to 900 K, the predicted value of
the energy dissipation coefficient λ decreases from 2 to 1.5 times with increasing
compression strain of the metamaterial. The decrease in the coefficient of energy
dissipation is associated with the decrease in stresses acting in the framework
elements at higher temperature. A growth in the energy dissipation coefficient λ

along with compression degree shows nonlinear behavior.
The λ increments are predominantly caused by the dissipation of the mechanical

work due to plastic deformation in the metamaterial elements. Additional increments
of the energy dissipation are associated with the nucleation and growth of damage in
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Fig. 33.4 a Specific internal
energy of deformed
framework elements under
compression at the velocity
of 100 m/s. Curves 1, 2
correspond to W (t), and
curves 3, 4 correspond to
W int(t), respectively. b The
coefficient of energy
dissipation λ versus effective
strain 〈εyy〉 at the initial
temperature of 300 K (curves
1 and 2) and 900 K (curve 3)

the material of the framework elements. A slight increase in the energy dissipation
coefficient λ takes place due to these increments.

When bulk alloys are deformed, there are no analogs to the physical mechanisms
of wedging and compaction of fragmented elements of the metamaterial framework.

The higher values of the energy dissipation coefficient in the case of pentamode
metamaterials as compared with the value for the bulk alloy counterpart are due to
the significant difference between the specific energy W supplied to the volume of
metamaterial andbulk alloy. Thus, pentamodemetamaterials based on titaniumalloys
manufactured by selective laser melting are perspective materials for development
structures of pulsed mechanical dampers.

33.4 Conclusion

Acomputationalmodel describingmechanical response of titaniumpentamodemeta-
materials to pulse loading has been developed. The numerical simulation of the
mechanical response of a pentamode metamaterial from the Ti–5Al–2.5Sn titanium
alloy was carried out during dynamic compression at 100 m/s. Calculated normal-
ized Young modulus 〈E〉/Es and value of the normalized effective yield stress σ y/σ ys

agree with experimental data obtained by Hedayati and coworkers [9].
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A methodology to analyze the energy dissipation due to inelastic deformation of
structured materials at high strain rates was presented for metamaterials. The values
of the energy dissipation coefficient were determined for uniaxial compression of
the pentamode metamaterial with the relative mass density of 3.145% at strain rates
of ~20.8 × 103 s−1 and initial temperatures of 300 and 900 K. The values of the
energydissipation coefficient duringuniaxial dynamic compressionof the pentamode
metamaterial are 1.5 times higher than for the bulk alloy counterpart. The energy
dissipation coefficient under uniaxial compression decreases by a factor of 1.5–2
with an increase in the initial temperature from 300 to 900 K.
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Chapter 34
Deformation of Inhomogeneous Elastic
Strip

Alexander O. Vatulyan, Julia A. Morozova, and Dmitrii K. Plotnikov

Abstract In the framework of the plane problem of linear elasticity, equilibrium
of a vertically inhomogeneous elastic isotropic strip under load with arbitrary laws
of heterogeneity is considered. Using Fourier transform, canonical system of differ-
ential equations for displacements and stress components is formulated. Problems
on the action of forces (normal and tangent) on the upper boundary of the strip are
considered. Computational scheme for constructing transfer functions depending on
the parameter of the Fourier transform connecting the transformants of displace-
ments and loads for an inhomogeneous strip is presented. Computational scheme
is based on the shooting method. The symbols of the kernels of the integral equa-
tions arising in the contact problems for the strip are determined through the transfer
functions. Based on the solution of auxiliary Cauchy problems and asymptotic anal-
ysis, the properties of the transfer functions are analyzed, and behavior at zero and
infinity are investigated. Comparison with known expressions for the case of a homo-
geneous strip is carried out. A comparative analysis of the transfer functions for
various laws of heterogeneity, both continuous and containing discontinuities of the
first kind, is performed. An asymptotic analysis of the transfer functions for small
and large values of the Fourier transform parameter is carried out. Displacements of
the upper boundary of the strip for various laws of heterogeneity are built. Compar-
ison of the obtained solutions with solutions based on an approximate model of an
inhomogeneous elastic strip is carried out.

A. O. Vatulyan (B) · J. A. Morozova
Institute of Mathematics, Mechanics and Computer Science named after I.I. Vorovich, Southern
Federal University, Rostov-on-Don, Russia
e-mail: vatulyan@math.rsu.ru

J. A. Morozova
e-mail: ulia_morozova_95@mail.ru

D. K. Plotnikov
Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of
Sciences, Vladikavkaz, Russia
e-mail: dustheap@mail.ru

© Springer Nature Switzerland AG 2021
H. Altenbach et al. (eds.), Multiscale Solid Mechanics,
Advanced Structured Materials 141,
https://doi.org/10.1007/978-3-030-54928-2_34

461

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54928-2_34&domain=pdf
mailto:vatulyan@math.rsu.ru
mailto:ulia_morozova_95@mail.ru
mailto:dustheap@mail.ru
https://doi.org/10.1007/978-3-030-54928-2_34


462 A. O. Vatulyan et al.

Keywords Coating · Functionally graded material · Inhomogeneous strip ·
Asymptotic analysis

34.1 Introduction

Currently, an increasing number of composite structures, coatings, structural
elementsmade of compositematerials are being introduced into engineering practice.
Modeling of objects with significantly inhomogeneous properties requires studying
the deformation of inhomogeneous layered structures under static and dynamic loads.
One of the most popular and rapidly developing areas in the design of heterogeneous
objects is the production of functionally graded materials (FGM). FGM is a medium
whose properties change with coordinates. This is used for various purposes, for
example, to reduce the level of stress inside the structural element.

One of the most promising fields of application of FGM is the manufacture of
gradient coatings for various purposes. The application of coatings made from FGM
is widely used in the manufacture of various elements of engineering structures,
cutting tools, medical devices, and in the components of engines in aviation and
space technology. Continuous change of properties with the coating depth leads to
a decrease in stress concentration, which in turn reduces the probability of cracking
and other defects.

Monographs [7, 8] are devoted to the study of deformation for inhomogeneous
elastic bodies and construction of solutions for new problems. In [7], based on linear
elasticity, problems for structural elements whose mechanical characteristics are
continuous coordinate functions are studied.

Among the problems of heterogeneous elasticity theory, when modeling bases
and coatings, an important place is occupied by problems for the strip. The main
tool in the study of such problems is the integral Fourier transform allowing to
reduce the boundary value problems of linear elasticity to systems of ordinary linear
differential equations. Important objects in the study of such problems are transfer
functions connecting transformants of displacements and loads. Note that for an
inhomogeneous strip, these functions cannot be found explicitly but are constructed
either numerically or based on approximate models.

Problems for a homogeneous strip (including contact problems) were investigated
in [6, 11]. A detailed review of works devoted to the solution of mixed problems for
the strip can be found in [12].

The most effective analytical method for solving such problems for the strip
are asymptotic methods, in particular, the so-called large lambda method and the
“small lambda” method, which were first applied in the study of the problem for an
axisymmetric stamp and an elastic layer of relatively large thickness [20] and in the
problem of pressing a stamp into an elastic layer of relatively small thickness [3]. The
results of the further development of these works are summarized in the monograph
[21]. The symbol of the Fourier kernel of the integral equation for contact problem in
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these works is constructed explicitly and is a meromorphic function in the complex
plane that has a countable set of zeros and poles.

In monograph [2], asymptotic analysis of the problem for a homogeneous elastic
strip with small thickness is carried out. Based on this analysis, several approxi-
mate models of contact interaction for bodies with thin coatings and interlayers are
constructed.

Themonograph [4] is devoted to the development of numerical analyticalmethods
for solving static contact problems for continuously inhomogeneous media. The
kernels of the integral operators for the contact problem are constructed in two
steps. At the first step, a boundary value problem for a differential operator with a
parameter (Fourier transformparameter) is solved; at the second step, using fractional
rational and power functions, an approximation of the function obtained numerically
is constructed. In [13, 19], this approach has been expanded for multilayer structures
with inhomogeneous coating.

It is also possible to construct numerical solutions for problems on the deformation
of an inhomogeneous strip based on the finite element method.

Another way to study the deformation of inhomogeneous foundations is to
construct approximate models of an elastic body based on some hypotheses about
the structure of displacement fields. In monographs [17, 18], models of elastic bases,
including layered ones, are presented. An approximate approach is based on the
representation of the desired functions (for example, deflection in the plate bending
problem) as the multiplication of two functions, one of which is a given function of
one variable, and the other is an unknown function of the second variable. Further,
using the principle of possible displacements, a linear system of ordinary differential
equations is formulated. Based on the variational approach, the deformation of plates
and shells was studied, stability issues were investigated, models of beams, plates
and shells on an elastic base were constructed.

In [10] the basics for calculation of foundations on an elastic base, based on a
method that generalizes, the Winkler model and introduces two bed coefficients is
stated.

Vatulyan and Plotnikov [14, 15], Vatulyan et al. [15] are devoted to the develop-
ment of models of deformation for an inhomogeneous elastic strip. Models allowing
to consider arbitrary laws of heterogeneity, including discontinuous, are presented.
Transfer functions are constructed approximately in the form of fractional rational
functions of the Fourier transform parameter.

In this paper, a series of problems on the equilibrium of an inhomogeneous elastic
strip whose elastic moduli are arbitrary positive bounded functions of the vertical
coordinate (smooth or discontinuous) is presented.

34.2 Formulation of the Problem

Consider the plane deformation of an inhomogeneous isotropic elastic strip with
thickness h rigidly coupled to a non-deformable base. A rectangular coordinate
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system (x1, x3) is connected to the strip, the origin of the coordinate axes is located
on the lower border of the strip. It is assumed that the Lame coefficients of the strip
are arbitrary positive functions of the vertical coordinate x3: λ = λ(x3), μ = μ(x3).
Assuming that u1 = u1(x1, x3), u2 = 0, u3 = u3(x1, x3), a statement of the
boundary value problem is presented.

Equilibrium equations of a plane problem:

σ11, 1 + σ13, 3 = 0, σ31, 1 + σ33, 3 = 0,

Hooke’s law for an isotropic body:

σ11 = (λ + 2μ)u1, 1 + λu3, 3,

σ33 = λu1, 1 + (λ + 2μ)u3, 3,

σ13 = σ31 = μ
(
u1, 3 + u3, 1

)
,

where σi j are the stress tensor components.
The boundary conditions of the problem have the form

x3 = 0 : u1 = u3 = 0; x3 = h : σ13 = p1(x1), σ33 = p3(x1).

34.3 The Formulation of the Canonical System.
Construction of Transfer Functions

Dimensionless parameters are introduced as follows

xk = ξkh, uk = vkh, σkl = μ0tkl,
λ(x3) = μ0 f1(ξ3), μ(x3) = μ0 f2(ξ3), pk = qμ0h,

where μ0 is characteristic value of the shear modulus, for example, its average value
in the interval [0, h].

Fourier transform to a variable ξ1 is applied and the following canonical system
of differential equations for a vector Xk(β, ξ3), k = 1, . . . , 4 is formulated.

X ′
1(β, ξ3) = 1

f2(ξ3)
X3(β, ξ3) − βX2(β, ξ3),

X ′
2(β, ξ3) = 1

f1(ξ3) + 2 f2(ξ3)
(X4(β, ξ3) + f1(ξ3)βX1(β, ξ3)),

X ′
3(β, ξ3) = 4 f2(ξ3)( f1(ξ3) + f2(ξ3))

f1(ξ3) + 2 f2(ξ3)
β2X1(β, ξ3)
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− f1(ξ3)

f1(ξ3) + 2 f2(ξ3)
βX4(β, ξ3),

X ′
4(β, ξ3) = βX3(β, ξ3), (34.1)

where X1 = iU1, X2 = U3, X3 = iΣ13, X4 = Σ33, U1, U3, Σ13, Σ33 are
Fourier transforms of the displacement vector components and the corresponding
components of the stress tensor.

System (34.1) has variable coefficients and its solution cannot be found explicitly
for arbitrary laws of change in material characteristics. Note that system (34.1) can
be used to analyze the initial problem not only in the case of continuous laws of
heterogeneity, but also for discontinuous ones, which is an undoubted advantage, in
contrast to the approaches implemented in [4, 19], where smoothness of functions
characterizing heterogeneity is required.

Due to the linearity of the original boundary value problem, for convenience,
two auxiliary problems will be considered: loading by normal force and loading by
tangent force.

34.3.1 Problem 1

The first boundary value problem for the canonical system (34.1) corresponds to the
action of a normal force q1(ξ1) = 0, q3(ξ1) = δ(ξ1) in the center of the upper border.
For the components of the vector, the boundary conditions are as follows

X1(β, 0) = 0, X2(β, 0) = 0, X3(β, 1) = 0, X4(β, 1) = 1. (34.2)

When solving the canonical system of Eqs. (34.1), the shooting method is used.
Two auxiliary Cauchy problems have the following initial conditions

X (1)
1 (β, 0) = 0, X (1)

2 (β, 0) = 0, X (1)
3 (β, 0) = 1, X (1)

4 (β, 0) = 0, (34.3)

X (2)
1 (β, 0) = 0, X (2)

2 (β, 0) = 0, X (2)
3 (β, 0) = 0, X (2)

4 (β, 0) = 1 . (34.4)

Then, the desired solution of problem (34.1), (34.2) can be found
in the form of a linear combination of auxiliary problems solutions as
Xk = C1X

(1)
k + C2X

(2)
k , k = 1, .., 4 ,where C1 and C2 are unknown constants, X

(1)
k

and X (2)
k are solutions ofCauchy problems (34.1), (34.3) and (34.1), (34.4). Constants

C1 and C2 is obtained from boundary conditions (34.2), which give a linear system

C1X
(1)
3 (β, 1) + C2X

(2)
3 (β, 1) = 0,

C1X
(1)
4 (β, 1) + C2X

(2)
4 (β, 1) = 1.

Solution of this system gives a solution of problem 1.
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An important role in the analysis of displacements of the upper boundary of the
strip is played by the transfer functions K13(β) and K33(β), introduced as follows

X1(β, 1) = K13(β), X2(β, 1) = K33(β) .

It is easy to show changing in the system (34.1) β to −β, that functions Xk(β, ξ3)

satisfying conditions (34.2) possess the following symmetry

X1(−β, ξ3) = −X1(β, ξ3), X2(−β, ξ3) = X2(β, ξ3),

X3(−β, ξ3) = −X3(β, ξ3), X4(−β, ξ3) = X4(β, ξ3).

From here, one can establish the parity and oddness properties of the transfer
functions

K13(−β) = −K13(β), K33(−β) = K33(β). (34.5)

34.3.2 Problem 2

In the second boundary value problem, the boundary conditions for the canonical
system (34.1) have the form

X1(β, 0) = 0, X2(β, 0) = 0, X3(β, 1) = 1, X4(β, 1) = 0. (34.6)

These conditions correspond to the action of tangential force q1(ξ1) =
δ(ξ1), q3(ξ1) = 0 on the upper border of the strip.

To solve problem (34.1), (34.6), two auxiliary Cauchy problemswith initial condi-
tions (34.3), (34.4) are also used. The further solution is constructed similarly to the
solution of the first problem, while the linear system has the form

C1X
(1)
3 (β, 1) + C2X

(2)
3 (β, 1) = 1,

C1X
(1)
4 (β, 1) + C2X

(2)
4 (β, 1) = 0.

(34.7)

Determination of unknown constants from (34.7) gives a solution to problem 2.
Similarly to Sect. 34.3.1, it is easy to show that the transfer functions K11(β) and

K31(β) defined by the expressions

X1(β, 1) = K11(β), X2(β, 1) = K31(β)

possess the following parity and oddity properties

K11(−β) = K11(β), K31(−β) = −K31(β). (34.8)
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34.4 Asymptotic Analysis

In this section, an asymptotic analysis of the solutions of the boundary value problems
for large and small values of the Fourier transform parameter β is carried out and
some analytic estimates for arbitrary laws of non-uniformity is obtained.

Assuming that the parameter β is small, solutions of boundary value problems 1
and 2 are presented in the form of the following regular asymptotic expansions [16]

X j = X j0 + βX j1 + β2X j2 + · · · + βn X jn (34.9)

Problem 1. After substituting expression (34.9) into the original system (34.1)
and equating the coefficients with the same powers of β, boundary value problems
for determining the coefficients in the expansion (34.9) is obtained. For the problem
with normal force, coefficients in (34.9) are found in the form

X10 = 0, X20 =
ξ3∫

0

dτ

f1(τ ) + 2 f2(τ )
, X20 =

ξ3∫

0

dτ

f1(τ ) + 2 f2(τ )
,

X30 = 0, X40 = 1. (34.10)

X11 =
ξ3∫

0

(
X31(τ )

f2(τ )
− X20(τ )

)
dτ, X21 = 0,

X31 = −
ξ3∫

1

(
f1(τ )

f1(τ ) + 2 f2(τ )

)
dτ, X41 = 0.

For βn , when n ≥ 2 solutions of the corresponding boundary value problems are
determined by recurrence formulas as follows

X1n(ξ3) =
ξ3∫

0

(
X3n(τ )

f2(τ )
− X2(n−1)(τ )

)
dτ,

X2n(ξ3) =
ξ3∫

0

1

f1(τ ) + 2 f2(τ )

(
X4n(τ ) + f1(τ )X1(n−1)(τ )

)
dτ,

X3n(ξ3) =
ξ3∫

1

(
4 f2(τ ) · ( f1(τ ) + f2(τ ))

f1(τ ) + 2 f2(τ )
X1(n−2)(τ )

− f1(τ )

f1(τ ) + 2 f2(τ )
X4(n−1)(τ )

)
dτ,
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X4n(ξ3) =
ξ3∫

1

X3(n−1)(τ )dτ. (34.11)

Problem 2: For the problem of the action of the tangent force, the expansion
coefficients (34.9) are represented by the formulas

X10 =
ξ3∫

0

1

f2(τ )
dτ, X20 = 0, X30 = 1, X40 = 0. (34.12)

X11 = 0, X21 =
ξ3∫

0

(
X41(τ ) + f1(τ )X10(τ )

f1(τ ) + 2 f2(τ )

)
dτ, X31 = 0, X41 = ξ3 − 1.

Expressions for coefficients X jn when n ≥ 2 are similar to the formulas (34.11).
The result of the comparison of the transfer functions K11(β), K13(β) and K33(β),

constructed using asymptotic analysis with preservation of the expansion coefficients
up to β2 with transfer functions constructed numerically for small values β, showed
a coincidence of results when β < 0, 2 for K11(β), K13(β), when β < 0, 3 for
K33(β).

Further, the behavior of the transfer functions when |β| → ∞ is investigated.
It leads to the analysis of a boundary value problem with a small parameter for the
highest derivative. The solution to the problem is constructed in the form

X j (β, ξ3) = eS(β,ξ3)

∞∑

k=0

β−kY jk(ξ3). (34.13)

Substitution of representation (34.13) in (34.1) leads to a recurrent system of
equations with respect to Y jk(ξ3); moreover, S′(β, ξ3) is an eigenvalue of the coeffi-
cient matrix of the canonical system (34.1), whose spectrum consists of two values
β and −β with algebraic multiplicity equals 2. The multiplicity of the eigenvalues
of the coefficient matrix for the system of differential equations leads to a signifi-
cant complication of constructing a solution of the form (13) in the framework of
well-known approaches.

Analysis of the known solution of the boundary value problem for large β in
the case of a uniform strip showed that asymptotic behavior of transfer functions in
the inhomogeneous case for β > 0 can be built using a boundary layer solution in
neighborhood of ξ3 = 1 in the form

Xk(β, ξ3) = Yk(β, ξ3) exp(β(ξ3 − 1)),
Yk(β, ξ3) = Yk0(ξ3)β + Yk1(ξ3) + Yk2(ξ3)β−1 + o

(
β−1

)
.

(34.14)
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Substitution of the representation (14) into the canonical system (34.1) allows to
express vector Y components in terms of two independent functions Y10 and Y11 as
follows

Y1 = Y10 + Y11β−1 + o
(
β−1

)
,

Y2 = Y10 +
(
Y11 − 2 f ′

2
f1+ f2

Y10 − f1+3 f2
f1+ f2

Y ′
10

)
β−1 + o

(
β−1

)
,

Y3 = 2 f2Y10β + 2 f2Y11 − f2
f1+ f2

(2 f2Y10)
′ + Y31β−1 + o

(
β−1

)
,

Y4 = 2 f2Y10β + 2 f2Y11 − f1+2 f2
f1+ f2

(2 f2Y10)
′ + Y41β−1 + o

(
β−1

)
.

Functions Y31 and Y41 not given due to bulky. Satisfying the boundary conditions
(34.3) and (34.4) in problems 1 and 2, respectively, the leading termswhen β → +∞
are obtained in the form

K13(β) = c1β−1 + o
(
β−1

)
, K31(β) = −c1β−1 + o

(
β−1

)
,

K11(β) = c2β−1 + o
(
β−1

)
, K33(β) = c2β−1 + o

(
β−1

)
,

c1 = − 1
2( f1+ f2)

∣∣∣
ξ1=1

, c2 = f1+2 f2
2 f2( f1+ f2)

∣∣∣
ξ1=1

.

(34.15)

The obtained asymptotic expressions of the transfer functions are consistent with
the known asymptotics of known solutions for the case of a homogeneous strip [1].

34.5 Transfer Function Properties

The results of analytical constructions and computational experiments for problems
1 and 2 revealed some properties of the transfer functions K11(β), K13(β), K31(β)

and K33(β).

1. Using the reciprocity theorem [9], it can be shown that equality K31(β) =
−K13(β) holds for any laws of strip heterogeneity;

2. From (10) and (12), it is easy to find the values of the functions K11(β) and
K33(β) when β = 0

K11(0) =
1∫

0

dξ3
f2(ξ3)

, K33(0) =
1∫

0

dξ3
f1(ξ3) + 2 f2(ξ3)

;

3. Functions Ki j (β) are decreasing when |β| → ∞, and taking into account the
properties (34.5), (34.8) have the following character of decrease

K11(β) = c2|β|−1 + o
(
β−1

)
, K13(β) = c1β

−1 + o
(
β−1

)
,
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K33(β) = c2|β|−1 + o
(
β−1

)
.

To verify the correctness of the calculations and the operability of the proposed
scheme based on the shooting method, a comparison with the case of a uniform
strip, for which there are explicit representations of the transfer functions [1, 21],
is made. A comparative analysis showed that the transfer functions calculated using
the algorithm constructed in Sect. 34.3 coincide with the exact values of the transfer
functions accurate to 8 decimal places. Since system (34.1) at large values is a system
with a small parameter at the highest derivative, the algorithm used provides a fairly
accurate calculation of the transfer functions for the values β < 600.

34.6 Numerical Experiments

Below are some results of computational experiments for various laws of hetero-
geneity. The following laws of variation of the elastic properties of the strip are
considered

1. monotonically increasing f1(ξ3) = 3
2 + ξ3, f2(ξ3) = 1

2 + ξ3

2. monotonically decreasing f1(ξ3) = 5
2 − ξ3, f2(ξ3) = 3

2 − ξ3

3. non-monotonous f1(ξ3) = 11
6 + 2ξ 2

3 − ξ3, f2(ξ3) = 5
6 + 2ξ 2

3 − ξ3

4. piecewise constant f1(ξ3) =
{

40
17 , 0 ≤ ξ3 ≤ 0, 7
20
17 , 0, 7 < ξ3 ≤ 1

, f2(ξ3) =
{

20
17 , 0 ≤ ξ3 ≤ 0, 7
10
17 , 0, 7 < ξ3 ≤ 1

Note that the laws of heterogeneity introduced above have the same average values
on the interval [0, 1]: ∫ 1

0 f1(ξ3)dξ3 = 2,
∫ 1
0 f2(ξ3)dξ3 = 1.

In Figs. 34.1 and 34.2 are graphs of the transfer functions K11(β), K13(β) and
K33(β), numerically constructed for the laws of heterogeneity 1–4. Solid, dashed,
dash-dot and dotted lines represent graphs for laws 1–4, respectively. Note that the

Fig. 34.1 Transfer functions K11(β), K13(β) for the laws of heterogeneity 1–4
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Fig. 34.2 Transfer function
K33(β) for the laws of
heterogeneity 1–4

transfer function graphs can be divided into two groups. The graphs turned out to
be close for the laws of heterogeneity 1, 3 and 1, 4, respectively; one of the possible
reasons for this circumstance is the proximity of their values at the upper boundary
of the strip.

34.7 Calculation of Displacements of the Upper Border
of the Strip

The displacement of the upper boundary of the strip under the action of normal
(problem 1) or tangential (problem 2) force are found using the inverse Fourier
transform, formulas (34.16) and (34.17), respectively.

v1(ξ1, 1) = 1

2π i

∞∫

−∞
K13(β)e−iβξ1dβ, v3(ξ1, 1) = 1

2π

∞∫

−∞
K33(β)e−iβξ1dβ.

(34.16)

v1(ξ1, 1) = 1

2π

∞∫

−∞
K11(β)e−iβξ1dβ, v3(ξ1, 1) = − 1

2π i

∞∫

−∞
K13(β)e−iβξ1dβ.

(34.17)

The integrals in (16) and (17) are calculated by direct numerical integration.
Integration is done over the final segment [−R, R], which is divided into N sections
[ak, bk]. In each of the sections, the integral is calculated using the Filon method [5]
for oscillating functions.

In Figs. 34.3 and 34.4 graphs of displacements of the upper boundary of the strip
v1, v3 for problems 1 and 2 are presented. The laws of heterogeneity with larger
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Fig. 34.3 Displacements of the upper boundary of the strip in problem 1 for the laws of
heterogeneity 1–4

Fig. 34.4 Displacements of the upper boundary of the strip in problem 2 for the laws of
heterogeneity 1–4

values of the elastic moduli at the upper boundary of the strip give larger values of
displacements in the direction of the applied load.

In [14], an approximate model of deformation for an inhomogeneous elastic strip
is presented. The model is based on hypotheses about the nature of the components
of the displacement field in the form

u1 = ψ1(x3)u(x1), u3 = ψ3(x3)w(x1),

ψ1 = g1(x3)/g1(h), ψ3 = g3(x3)/g3(h),

g1 =
x3∫

0

1

μ
dx3, g3 =

x3∫

0

1

λ + 2μ
dx3 (34.18)

Below is a comparison of a solution constructed using a computational scheme
with an approximate solution based on a model (34.18). Figure 34.5 shows the
displacements of the upper boundary of the strip in problem 1 for the law of hetero-
geneity 1, the solid curve denotes the solution constructed by the formulas (34.17),
and the dashed curve is a solution within the model (18). There is some discrepancy
in the results in the near zone; when moving away from it, the results are close.
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Fig. 34.5 Vertical
displacement of the upper
boundary of the strip in
problem 1 for the law 1

For other laws of changing the type of heterogeneity, the results are similar.
Note that horizontal displacements are much smaller than vertical ones, and the
discrepancy between the results is very significant.

34.8 Conclusion

Study of the equilibrium of an elastic strip with inhomogeneous material proper-
ties in thickness under the action of concentrated forces is carried out. A canonical
first-order system of differential equations with variable coefficients with respect to
Fourier transforms is formulated. A computational scheme based on the shooting
method has been developed, and program for solving auxiliary Cauchy problems
for the constructed system of differential equations with parameter is developed.
Based on the developed scheme, transfer functions connecting transformants of the
displacements of upper boundary of the strip with the transformants of the applied
loads are constructed. Comparative analysis of transfer functions for various laws of
strip heterogeneity is carried out.

Based on the asymptotic analysis of the boundary value problem, approximate
expressions of transfer functions for small and large values of the Fourier transform
parameter are found.

The displacements of the upper border of the strip for various methods of concen-
trated loading are determined. The influence of the laws of strip heterogeneity on the
solution of the problem is analyzed. Comparison with applied theory is carried out.

The research had been supported by the Russian Science Foundation: project No.
18-11-00069.
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Chapter 35
Electroelastic Deformation
of a Piezoelectric FGM Coated
Half-Plane Caused by an Electrostatic
Potential Difference Applied to the Strip
Electrode on the Surface

Sergey S. Volkov, Andrey S. Vasiliev, Sergei M. Aizikovich,
and Alexandr N. Litvinenko

Abstract Solution of a new contact problem is constructed on determining the
displacements and electric induction of a piezoelectric half-planewith a piezoelectric
FGM coating during electroelastic deformation caused by the electrostatic potential
difference applied to the strip electrode on the coating surface and to the substrate. The
coating and substrate are transverselly isotropic, the axis of isotropy coincides with
the axis of polarization and is normal to the surface of the coating. Electroelastic
properties of the coating vary with depth according to arbitrary laws independent
of each other. Using integral Fourier transforms, the problem reduced to solution
of a dual integral equation, which is solved using the bilateral asymptotic method.
Approximated analytical expressions are obtained for electric induction, vertical and
horizontal displacements under the electrode. These expressions are asymptotically
exact for large and small values of the relative thickness of the coating. Specific
non-uniform distribution of the displacements is obtained which is not observed for
non-coated materials.

Keywords Piezoelectricity · Elasticity · Coatings · Functionally graded
materials · Plane deformation · Electrode · Contact mechanics

S. S. Volkov · A. S. Vasiliev (B) · S. M. Aizikovich
Don State Technical University, 1 Gagarin Sq., Rostov-on-Don 344000, Russia
e-mail: andre.vasiliev@gmail.com

S. S. Volkov
e-mail: fenix_rsu@mail.ru

S. M. Aizikovich
e-mail: saizikovich@gmail.com

A. N. Litvinenko
South Federal University, 105/42 Bolshaya Sadovaya str., Rostov-on-Don 344006, Russia
e-mail: litva@sfedu.ru

© Springer Nature Switzerland AG 2021
H. Altenbach et al. (eds.), Multiscale Solid Mechanics,
Advanced Structured Materials 141,
https://doi.org/10.1007/978-3-030-54928-2_35

475

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54928-2_35&domain=pdf
mailto:andre.vasiliev@gmail.com
mailto:fenix_rsu@mail.ru
mailto:saizikovich@gmail.com
mailto:litva@sfedu.ru
https://doi.org/10.1007/978-3-030-54928-2_35


476 S. S. Volkov et al.

35.1 Introduction

Piezomaterials are awidespread class ofmaterials that can convertmechanical energy
into electrical energy and vice versa. They find application in engineering andmicro-
electronics,where they are used as sensors, electromechanical transducers, etc. [1–4].
In this regard, interest in mathematical modeling of structural elements from piezo-
electric materials has increased. Two-dimensional contact problems were solved in
an exact analytical form: indentation by conducting and insulating punches [5, 6],
sliding contact [7], frictional sliding contact [8] and indentation of materials with
general case of symmetry of class 6 [9]. Exact solution for frictional sliding con-
tact for a magnetoelectroelastic half-plane was obtained in [10, 11]. General cor-
respondence principle between elastic and piezoelectric problems was established
for transversely isotropic homogeneous materials, in such a way that the knowledge
of an elastic solution yields fully coupled electroelastic fields for the correspond-
ing piezoelectric problem [12]. Application of these results for the interpretation of
piezoresponse force microscopy and scanning probe microscopy is discussed in [13,
14].

Functionally graded materials (FGMs) are the composite materials with proper-
ties varying continuously in one direction. FGMs are widely used as a thermal barrier
coatings [15], to improve the performance and lifetime of piezoelectric materials, to
reduce stress concentration, improve residual stress distribution, and reduce delam-
ination [16], to improve biocompatibility [17] and implant life [18], etc. Therefore,
a huge amount of research is devoted to modeling of FGMs [19–24].

Much attention is paid to study of various types of two-dimensional plane and
axisymmetric contact of piezoelectric functionally graded coatings in last decade:
frictionless indentation [25, 26], sliding frictional contact [27], fretting sliding con-
tact [28, 29], torsion [30], etc.Most of the results are obtained only for an exponential
variation of properties inside the coating. It should be also mentioned a large num-
ber of papers where the contact of homogeneous piezoelectric coatings was studied
[31–34].

Present paper continues the investigation of contact mechanics of piezoelectric
FGM coatings with arbitrary independent variation of all properties in depth of the
coating [35, 36]. New contact problem on electroelastic deformation of a piezoelec-
tric FGM coating caused by an electrostatic potential difference applied through a
strip electrode on a surface is considered. The solution is obtained in an approxi-
mated analytical form using the original semi-analytical method developed by the
authors earlier [37]. This method was effectively used before for solution of various
contact problems for FGM coatings [38, 39] and FGM interlayers [40]. Analyti-
cal expressions are obtained for the distribution of the electric induction, shear and
normal displacements on the surface. Specific non-uniform distribution of the dis-
placements is obtained which is not observed for uncoated materials.
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35.2 Contact Problem Statement

Let us consider a piezoelectric electroelastic half-plane with a functionally graded
coating of thickness H . The coating and the substrate materials are piezoelectric
transversely isotropic. Let us use the Cartesian coordinate system (x, z), the z-axis
coincides with the axis of preliminary polarization of piezoelectric material. Elastic
moduli c11, c12, c13, c33, c44, piezoelectric moduli e31, e15, e33 and dielectric perme-
abilities ε11, ε33 in the coating are described by continuously differentiable functions
of depth coordinate—c(c)

kj (z), e(c)
kj (z), ε(c)

kj (z), and are constant in the substrate—c(s)
kj ,

e(s)
kj , ε

(s)
kj . Hereinafter, indices (c) and (s) denote the characteristics corresponding to

the coating and substrate, respectively.
In the framework of linear electroelasticity, taking into account the piezoelectric

effect, the constitutive equations are:

∂σx

∂x
+ ∂τxz

∂z
= 0; ∂σz

∂z
+ ∂τxz

∂x
= 0; ∂Dx

∂x
+ ∂Dz

∂z
= 0 (35.1)

σx = c11
∂u

∂x
+ c13

∂w

∂z
+ e31

∂ϕ

∂z
(35.2)

σz = c13
∂u

∂x
+ c33

∂w

∂z
+ e33

∂ϕ

∂z
(35.3)

τxz = c44

(
∂u

∂z
+ ∂w

∂x

)
+ e15

∂ϕ

∂x
(35.4)

Dx = e15

(
∂u

∂z
+ ∂w

∂x

)
− ε11

∂ϕ

∂x
(35.5)

Dz = e31
∂u

∂x
+ e33

∂w

∂z
− ε33

∂ϕ

∂z
(35.6)

Perfect bonding is assumed on the coating-substrate interface:

z = −H : w(c) = w(s), u(c) = u(s), ϕ(c) = ϕ(s) (35.7)

z = −H : σ (c)
z = σ (s)

z , τ (c)
xz = τ (s)

xz , D(c)
z = D(s)

z (35.8)

Here, u,w are horizontal and vertical displacements; σx, σz τxz are the components
of the stress tensor;ϕ is the electrostatic potential;Dx,Dz are components of the vector
of electric induction.
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A strip electrode of width 2a is located on the surface of the coating. The elec-
trostatic potential difference ϕ0 is applied to the electrode and the infinitely distant
boundary of the substrate. Outside the electrode, the coating surface is insulated and
free from mechanical stresses:

z = 0 : τxz = 0, σz = 0,

{
ϕ = −ϕ0, |x| ≤ a
Dz = 0, |x| > a

(35.9)

z → ∞ : ϕ (x, z) , u (x, z) ,w (x, z) → 0 (35.10)

The paper addresses to the determination of displacements under the electrode
and electric induction. Let us notate distribution of electric induction on the surface:

Dz |z=0 = −ga(x), |x| ≤ a (35.11)

35.3 Dual Integral Equation and Its Solution

Fourier transforms of displacements U , W and electric potential Φ on the surface
can be written as [41]:

U (α, 0) = −2i L13(α)

E(c)
13 |α|Ga (α) , W (α, 0) = −2 L23(α)

E(c)
23 |α|Ga (α)

Φ(α, 0) = −2 L33(α)

E(c)
33 |α|Ga (α)

(35.12)

Here, Ga(α) is the Fourier transform of electric induction on the surface, Lij(α)

are the compliance functions. For them limα→0Lij (α) = E(c)
ij /E(s)

ij is fulfilled, where

E(c)
ij ,E(s)

ij are effective electroelastic moduli describing a bulk piezoelectric material

with properties corresponding to the coating surface (z = 0)—E(c)
ij or to the substrate

(z < –H )—E(s)
ij .

The calculation of the compliance functions reduces to solution of a boundary
value problem for a system of ordinary differential equations with variable coef-
ficients and is described in details earlier [42] for the more general case of the
electromagnetoelastic half-plane. It is also shown that the functions L23 and L33 are
even, while L13 is odd. The calculation of effective electroelastic moduli is described
in [5, 43].

Let us introduce the dimensionless variables:

λ = H

a
, x′ = x

a
, α′ = αa, g(x′) = ga(x

′a), L′
kj(α) = Lkj

( α

H

)
(35.13)
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Applying the integral transformations to (35.9) and taking into account the intro-
duced notations, omitting the primes, we obtain a dual integral equation:

⎧⎪⎪⎨
⎪⎪⎩

∞∫
0
G (α)

L33(λα)

α
cos (αx) dα = πE(c)

33
ϕ0

2a , |x| ≤ 1,

∞∫
0
G (α) cos (αx) dα = 0, |x| > 1.

(35.14)

Here, G(α) is the Fourier transform of the function g(x).
Using the idea of [37], we approximate the compliance functions by the following

expressions:

Lij (λα) ≈ L+
ij (λα) , L±

ij (λα) =
Nij∏
n=1

(
λ2α2 ± A2

ijn

)
(
λ2α2 ± B2

ijn

) (35.15)

Parameters (Aijn,Bijn), n=1,2,…,Nij are selected so that Aijk �= Blmn, Aijk �=Aijn,
Bijk �= Bijn and Lij(0)=L

+
ij (0).

The solution of the dual integral Eq. (35.14) has the following form [44]:

G (α) = Q

a

(
J0(α) −

N33∑
i=1

CiαJ1(α)

α2 + A2
33iλ

−2

(
A33iI0(A33iλ

−1)

λI1(A33iλ−1)
− αJ0(α)

J1(α)

))
(35.16)

Here, Q is a total electric charge on the electrode, constants Ci are determined
from the following system of linear algebraic equations:

N33∑
i=1

Ci

A2
33i − B2

33n

(
A33i

K1
(
B33nλ

−1
)
I0

(
A33iλ

−1
)

K0
(
B33nλ−1

)
I1

(
A33iλ−1

) + B33n

)
= 1

B33n
(35.17)

Here, n = 1, . . . ,N33; I0, I1 and K0, K1 are the modified Bessel functions of the first
and second kind, respectively.

After inverting the Fourier transform in (35.16), we obtain:

g (x) = Q

πa

(
1√

1 − x2
+

N33∑
i=1

Ci

(
1√

1 − x2
− A33i

λ
gcoat

(
x,

A33i

λ

)))
(35.18)

gcoat (x,A) = I0(A)

I1(A)

1∫
x

t cosh (A(t − x))√
1 − t2

dt −
1∫

x

sinh (A(t − x))√
1 − t2

dt (35.19)
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Expression (35.18) is asymptotically exact for λ → 0 and λ → ∞. The error
for an arbitrary value of λ was studied earlier for similar problems [45, 46] and it
was established that it is a quantity of the same order of magnitude as the error of
approximation of the compliance function L33.

35.4 Displacements of the Surface

Inverting the Fourier transform in (35.12) and taking into account the properties of
the evenness and oddness of the compliance functions, we rewrite the displacements
and electrostatic potential on the surface in the form of some quadratures:

u(x, 0) ≈ − 2Q

πE(c)
13

∞∫
0

G (α)

α
L+
13 (λα) sin(αx)dα

w(x, 0) ≈ − 2Q

πE(c)
23

∞∫
0

G (α)

α
L+
23 (λα) cos(αx)dα

ϕ(x, 0) ≈ − 2Q

πE(c)
33

∞∫
0

G (α)

α
L+
33 (λα) cos(αx)dα

(35.20)

We introduce dimensionless expressions:

us(x) = E(s)
13

Q
u(x, 0), ws(x) = E(s)

23

Q
w(x, 0), ϕs(x) = E(s)

33

Q
ϕ(x, 0), βij = E(s)

ij

E(c)
ij

(35.21)

Calculating the quadratures in (35.20), we obtain the expressions for the displace-
ments and electric potential under the electrode:

ϕs(x) = −d1 + 2β33

π
λ

N33∑
n=1

K0(B33nλ
−1)F33n

K1(B33nλ−1)B33n
, |x| ≤ 1 (35.22)

us(x) = − 2

π
arcsin(x) + 2β13

π
ucoat(x, λ), |x| ≤ 1 (35.23)

ws(x) = −d1 + 2β23

π
wcoat(x, λ), |x| ≤ 1 (35.24)
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ucoat(x, λ) =
N33∑
m=1

CmL
−
13(A33m)

(
Z1

(
x, A33m

λ

) − I0(A33mλ−1)
I1(A33mλ−1)

Z2
(
x, A33m

λ

))

+
N13∑
n=1

[
π
2

(
F13nI0

(B13n
λ

) − P13n
B13n

I1
(B13n

λ

))
e− B13n

λ
x+

+P13n
B13n

Z2
(
x, B13n

λ

) − F13nZ1
(
x, B13n

λ

)]
,

(35.25)

Z1 (x,A) =
1∫

x

cosh(A(t − x))√
1 − t2

dt, Z2 (x,A) =
1∫

x

t sinh(A(t − x))√
1 − t2

dt (35.26)

wcoat(x, λ) =
N33∑
m=1

CmL
−
23(A33m)

[−K0
(A33m

λ

)
cosh

(A33m
λ
x
) +

+ I0(A33mλ−1)
I1(A33mλ−1)

(
λ

A33m
− K1

(A33m
λ

)
cosh

(A33m
λ
x
))]

+
+

N23∑
n=1

((
F23nK0

(B23n
λ

) + P23n
B23n

K1
(B23n

λ

))
cosh

(B23n
λ
x
) − λP23n

B2
23n

) (35.27)

d1 = 2

π

∞∫
0

J0(α)

α
dα = ∞ (35.28)

Fijn = Πijn

(
1
B2
ijn

+
N33∑
m=1

Cm(
B2
ijn−A2

33m

)
)

,

Pijn = Πijn

N33∑
m=1

CmA33m(
B2
ijn−A2

33m

) I0(A33mλ−1)
I1(A33mλ−1)

,

Πijn =
(
A2
ijn − B2

ijn

) Nij∏
m=1,m�=n

A2
ijm−B2

ijn

B2
ijm−B2

ijn

(35.29)

Note that for a homogeneous half-plane without a coating, dimensionless dis-
placements and electric potential are determined similarly to the plane elastic contact
problem on indentation by a rigid punch and have the following form [48]:

|x| ≤ 1 : uhoms (x) = − 2

π
arcsin(x) whom

s (x) = −d1, ϕhom
s (x) = −d1 (35.30)

It is important to note that, as in the case of a homogeneous half-plane [47],
displacements and electrostatic potential are determined up to a some constant.When
determining horizontal displacements, similarly to [48], it is assumed that the center
of the electrode does not shift horizontally (deformation occurs symmetrically).

Expression (35.22) is a constant value with respect to the coordinate, which cor-
responds to the given boundary conditions. Taking into account (35.21) and (35.9), it
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can be seen that expression (35.22) defines the relationship between the electrostatic
potential difference applied to the piezoelectric material and the total electric charge
on the electrode. This ratio depends on the dimensionless coating thickness λ and is
determined to within an infinite constant d1.

35.5 Numerical Results and Discussion

Let the substrate be made of PZT-5H piezoceramics and have the properties [49]:
ε11 = 15.04 × 10−9 C

V×m , ε33 = 13 × 10−9 C
V·m , c11 = 126 GPa, c13 = 84.1 GPa,

c33 = 117 GPa, c44 = 23 GPa, e15 = 17 C
m2 , e31 = −6.5 C

m2 , e33 = 23.3 C
m2 . For

numerical illustrations for simplicity, let us consider only a homogeneous coating,
whose properties are two times greater than that of the substrate: c(c)

kj (z) = const =
2c(s)

kj , e(c)
kj (z) = const = 2e(s)

kj , ε
(c)
kj (z) = const = 2ε(s)

kj .
Let us introduce a relative value characterizing redistribution of horizontal dis-

placements in comparison with a homogeneous half-plane with properties that coin-
cide with the substrate and for the same value of the total electric charge (Q=Qhom):

urels (x) = us (x)

uhoms (x)
(35.31)

Figures35.1 and 35.2 show graphs of the quantities us(x) and urels (x) under the
electrode.

It is clear that if the distribution of urels (x) is close to constant, then the presence of a
coating has an insignificant effect on the shear displacements, since in this case, they
can be described by a homogeneous half-plane with some modified effective elastic
modulus, taking into account the properties of the coating and substrate. Figure35.2
shows that for small and medium values of λ, the distribution of urels (x) is different
from constant, which indicates that the tangential displacements for the coated half-
plane are significantly different from those for the homogeneous half-plane. Themost

Fig. 35.1 Horizontal
displacements us(x) for
various values of the relative
coating thickness λ
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Fig. 35.2 Relative
horizontal displacements
urels (x) for various values of
the relative coating
thickness λ

Fig. 35.3 Vertical
displacements relative to the
center point of the electrode
at various values of the
relative coating thickness λ

clearly redistribution of displacements is noticeable near the edge of the electrode.
For large and very small values of the parameter λ, the shear displacements reach
the limiting values corresponding to the values for the half-plane with the properties
of the coating—urels (x) (everywhere close to 0.5) and the substrate—urels (x) (close to
1 everywhere except for the vicinity of the electrode edge), respectively.

Since vertical displacements are determined to within a constant, it is convenient
to analyze the difference of displacements under the electrode with the value in the
center:

w0
s (x) = ws(x) − ws(0) (35.32)

Figure35.3 illustrates the distribution of vertical displacements for a coating.
Unlike a homogeneous half-plane without a coating the vertical displacements under
the electrode are not constant. Thedistributionof vertical displacements varies greatly
depending on the thickness of the coating. For coatingswith a large relative thickness,
the displacements at the edge exceed the displacements of the central point (the edges
of the electrode bend upward) and increase monotonically with distance from the
center of the electrode. As the coating w0

s (x) thickness increases, it tends to zero
uniformly. The maximum displacements in magnitude are observed at λ ≈ 0.5.

With decreasing the coating thickness, the displacement distribution becomes
nonmonotonic (decreases in the vicinity of the center and increases when approach-
ing the edge of the electrode), this is noticeable at λ < 0.4 for a homogeneous coating
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considered. In a certain narrow range of λ, the graphs become alternating, i.e., both
larger and smaller values are observed than at the central point, for example, at
λ = 0.3. Starting from some small value of λ (0.2 for the considered homogeneous
coating), the value ofw0

s (x) becomes negative in the entire range under the electrode,
i.e., the displacement of the central point is maximum. In this case, a point of mini-
mum displacements is observed near the edge, and as it approaches the edge of the
electrode, the valuew0

s (x) increases (the edge of the electrode bends locally upward).
With a further decreasing the coating thickness, the value of w0

s (x) becomes close to
zero everywhere, except for a narrow neighborhood near the edge of the electrode,
where a similar nonmonotonic behavior is observed, however, this region becomes
smaller by decreasing λ.

35.6 Conclusion

Analytical expressions are obtained for the distribution of surface displacements
under an electrode located on the surface of a piezoelectric FGM coating. It is shown
that the presence of a coating fundamentally changes the displacements under the
electrode. Unlike a homogeneous half-plane without a coating, for which normal
displacements under the electrode are constant, the presence of even a thin coating
leads to a non-uniform distribution of vertical displacements over the electrode,
which leads to bending of the electrode. The most redistribution of both vertical
and horizontal displacements is noticeable for thin coatings (the half-width of the
electrode is 3–10 times greater than the thickness of the coating) and near the edge
of the electrode.
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Chapter 36
Unsteady Elastic–Diffusion Vibrations
of a Simply Supported Euler–Bernoulli
Beam Under the Distributed
Transverse Load

Andrei V. Zemskov, Anatoly S. Okonechnikov, and Dmitry V. Tarlakovskii

Abstract The unsteady vibrations problem of a simply supported Euler–Bernoulli
beam under the distributed transverse load is considered. For the mathematical prob-
lem formulation, we use the system of a beam deflections equations with inner
diffusion processes. The system is obtained using the d’Alembert variational princi-
ple from a generalized elastic–diffusion problem with the nonzero diffusion fluxes
relaxation. To solve the system, the Green’s function method is used. To find the
Green’s functions, the Laplace integral transform and Fourier series expansion are
used. The Laplace transform inversion is done using residues and operational cal-
culus tables. Calculation examples are considered for a rectangular dural beam. The
beam deflections and components concentration increments are calculated in the
alloy under distributed transverse load. The influence of mass transfer and diffusion
flows relaxation on the displacement field inside the beam is analyzed.

Keywords Elastic–diffusion · Coupled problem · Unsteady problem · Green’s
function · Integral transformation · Multicomponent continuum · Euler–Bernoulli
beam

36.1 Introduction

The interaction of diffusion and stresses is the subject of long-standing experimen-
tal and theoretical studies. The first experimental confirmations of the interaction
between deformations and diffusion were obtained in the 1930s by Gorskij [14].
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Further, experimental research in this area was restarted in the middle of the 20th
century. One of the first theoretical research on the influence of the generated stresses
on the diffusion kinetics of binary solid mixtures is [17].

In the second half of the twentieth century, the theory of mass transfer in multi-
component medium under extremely general assumptions regarding the rheological
properties of the medium was developed in [12, 18, 19]. At present, the problem
of the mechanodiffusion processes analysis in continuum also remains relevant. In
this area, the range of problems under study is expanding due to the inclusion of
temperature effects [1, 6, 8, 15, 20] and electromagnetic disturbances [2, 7, 10,
16, 24]. In addition, refined mass transfer models are used that take into account
the finite propagation speed of diffusion flows. These models play an important role
in the quick unsteady processes calculations. The listed publications consider both
stationary [6, 8, 10, 16] and unsteady [1, 2, 20, 24]-related problems for a layer or
half-space, mainly in the Cartesian coordinate system.

Since real bodies have a finite size, then the problems of mechanodiffusion for
beams, plates and shells are of the greatest practical interest, asmodernworks devoted
to modeling the interaction of mechanical and diffusion fields in these bodies are [3–
5, 9, 21]. Here, the effect of diffusion processes on the permissible load of a thin
transversally isotropic shell [21], contact interaction of a rod with an elastic half-
space [5, 9] and mechanodiffusion processes in plates [3, 4] is considered too. All
these problems are solved in the stationary formulation. The formulation of problems
on unsteady elastic–diffusion vibrations of beams and plates and methods for their
solution is not available in currently known publications.

In this article, unsteady mechanodiffusion vibrations of an Euler–Bernoulli beam
are considered. The elastic–diffusion vibrations mathematical model was obtained
on the variational principles basis that is described in [22, 23]. An analytical method
is proposed for solving this problem, based on using of the Laplace integral transform
and Fourier series expansion in eigenfunctions of the elastic–diffusion problem.

36.2 Problem Formulation

We consider the beam under a distributed transverse load action. The material of
the beam is a multicomponent medium. Diffusion flows in the medium arise under
the action of internal forces. In this case, mass transfer, which causes volumetric
deformations, affects the displacement field inside the beam. For the mathematical
problem formulation, the elastic–diffusion vibrations model of an isotropic Euler–
Bernoulli beam is used (infinite speed of propagation is assumed). It is obtained by
using variational principles from the elastic–diffusion continuum model in a rectan-
gular Cartesian coordinate system [22, 23] (Fig. 36.1):
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Fig. 36.1 Figure to the problem formulation. Forces and bending moments acting upon the beam

ü′′ − ηü = uIV +
N∑

j=1

αjH
′′
j − F1, F1 = q + m′

J3
, η = F

J3
,

Ḣq + τqḦq = DqH ′′
q + �quIV + Fq+1, Fq+1 = z(q)

J3
;

(36.1)

⎛

⎝u′′ +
N∑

j=1

αjHj

⎞

⎠

∣∣∣∣∣∣
x=0

= 0, u|x=0 = 0, Hq

∣∣
x=0 = 0,

⎛

⎝u′′ +
N∑

j=1

αjHj

⎞

⎠

∣∣∣∣∣∣
x=1

= 0, u|x=1 = 0, Hq

∣∣
x=1 = 0.

(36.2)

Here, the dots denote time derivatives, and the dashes are the spatial derivatives in the
coordinate x = x1. All quantities in (36.1) and (36.2) are dimensionless. For them,
the following notation is used

xi = x∗
i

L
, u = u∗

L
, τ = ct

L
, λ = λ∗

λ∗ + 2μ∗, μ = μ∗

λ∗ + 2μ∗, C2 = λ∗ + 2μ∗

ρ
,

αq = α∗(q)

λ∗ + 2μ∗, Dq = D∗(q)

CL
, �q = m(q)D∗(q)α∗(q)n(q)

0

ρRT0CL
, τq = Cτ (q)

L
,

q = ρLq∗

λ∗ + 2μ∗, m = ρm∗

λ∗ + 2μ∗, z(q) = Lz(q)∗

C
, F = F∗

L2
, J3 = J ∗

3

L4
,

(36.3)

where t is a time; x∗
i are rectangular Cartesian coordinates; u

∗ (
x∗
1, t

)
are displacement

of the beam; L is the beam length; Hq
(
x∗
1, t

)
is the concentration increment of q-th

component in theN -componentmedium; n(q)
0 are initial concentrations;λ∗ andμ∗ are

Lame coefficients; ρ is the medium density; α∗(q) are coefficients characterizing the
medium volumetric changes due to diffusion;D∗(q) are the self-diffusion coefficients;
R is the universal gas constant; T0 is the initial temperature; m(q) is the molar mass;
τ (q) is the relaxation time of diffusion perturbations; q∗ is a transverse load density;
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m∗ is a moment density (moment per unit volume); z(q)∗ is a linear distribution of
diffusion volume source; J3 is the moment of inertia of the beam section relative to
the axis Ox3; F is the cross-sectional area.

36.3 Method of Solution

The solutions of the problem (36.1), (36.2) are represented in the form (k =
1,N + 1):

u (x, τ ) =
N+1∑

k=1

τ∫

0

1∫

0

G1k (x, ξ, τ − t)Fk (ξ, t) dξdt,

Hq (x, τ ) =
N+1∑

k=1

τ∫

0

1∫

0

G1k (x, ξ, τ − t)Fk (ξ, t) dξdt.

(36.4)

Here Gmk are the bulk Green’s functions, which satisfy the equations

G̈ ′′
1k − ηG̈1k = GIV

1k +
N∑

j=1

αjG
′′
j+1,k − δ1kδ (x − ξ) δ (τ ) ,

Ġq+1,k + τqG̈q+1,k = DqG ′′
q+1,k + �qGIV

1k + δq+1,kδ (x − ξ) δ (τ ) ,

and homogeneous boundary conditions

⎛

⎝G ′′
1k +

N∑

j=1

αjGj+1,k

⎞

⎠

∣∣∣∣∣∣
x=0

= 0, G1k |x=0 = 0, Gq+1,k

∣∣
x=0 = 0,

⎛

⎝G ′′
1k +

N∑

j=1

αjGj+1,k

⎞

⎠

∣∣∣∣∣∣
x=1

= 0, G1k |x=1 = 0, Gq+1,k
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x=1 = 0.

Applying to system (36.4), the Laplace transformwith respect to time and expand-
ing the Green’s functions into Fourier series in a variable x, we obtain

k1 (λn, s)GLs
1k (λn, ξ, s) − λ2

n

N∑

j=1

αjG
Ls
j+1,k (λn, ξ, s) = 2δ1k sin λnξ,

−�qλ
4
nG

Ls
1k (λn, ξ, s) + kq+1 (λn, s)GLs

q+1,k (λn, ξ, s) = 2δq+1,k sin λnξ,

k1 (λn, s) = (
λ2
n + η

)
s2 + λ4

n, kq+1 (λn, s) = s + τqs2 + Dqλ
2
n,

where

GL
mk (x, ξ, s) =

∫ ∞

0
Gmk (x, ξ, τ ) e−sτdτ,
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GLs
mk (λn, ξ, s) = 2

∫ 1

0
GL

mk (x, ξ, s) sin λnxdx, GL
mk (x, ξ, s)

=
∞∑

n=1

GLs
mk (λn, ξ, s) sin λnx.

The solution of this system has the following form
(
q, p = 1,N , k = 1,N + 1

)
:

GLs
1k = 2P1k (λn, s)

P (λn, s)
sin λnξ,

GLs
q+1,k = 2δq+1,k

kq+1 (λn, s)
sin λξ + 2Pq+1,k (λn, s)

Qq (λn, s)
sin λnξ.

(36.5)

Here

P (λn, s) = [(
λ2
n + η

)
s2 + λ4

n

]

(λn, s) − λ6

n

N∑

j=1

αj�j
j (λn, s) ,

Qq (λn, s) = kq+1 (λn, s)P (λn, s) ;
(36.6)

P11 (λn, s) = 
(λn, s) , Pq+1,1 (λn, s) = �qλ
4
n
q (λn, s) ,

P1,q+1 (λn, s) = λ2
nαq
q (λn, s) , Pq+1,p+1 (λn, s) = λ6

n�qαp
p (λn, s) ,
(36.7)


(λn, s) =
N∏

j=1

kj+1 (λn, s) , 
q (λn, s) =
N∏

j=1,j �=q

kj+1 (λn, s) .

The polynomial P (λn, s) has degree 2N + 2 in variable s. Then, with the help
of residue and the tables of operational calculus [11], we obtain the originals of the
functions GLs

mk in the formulas (36.5):

GS
1k (λn, ξ, s) = 2

2N+2∑

j=1

A(j)
1k (λn) e

sj(λn)τ sin λnξ,

GS
q+1,k (λn, ξ, τ ) = 2

2∑

l=1

[
δq+1,k

1 + 2τqξl (λn)
+ A(2N+2+l)

q+1,k (λn)

]
eξl(λn)τ sin λnξ

+ 2
2N+2∑

j=1

A(j)
q+1,k (λn) e

sj(λn)τ sin λnξ,

ξ1,2 (λn) = − 1 ± √
1 − 4τqDqλ2

n

2τq
, (36.8)
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where sj (λn), j = 1, 2N + 2 are zeros of polynomial P (λn, s), the coefficients

A(j)
1k (λn) are determined by the formulas

A(j)
1k (λn) = P1k

(
λn, sj (λn)

)

P′ (λn, sj (λn)
)

(
j = 1, 2N + 2, k = 1,N + 1, q = 1,N

)
,

A(j)
q+1,1 (λn) = Pq+1,1

(
λn, sj (λn)

)

P′ (λn, sj (λn)
)

(
l = 1, 2, m = 2,N + 1

)
,

A(j)
q+1,m (λn) = Pq+1,k (λn, sr (λn))

Q′
q (λn, sr (λn))

, A(2N+2+l)
q+1,m = Pq+1,k (λn, ξl (λn))

Q′
q (λn, ξl (λn))

.

(36.9)

36.4 The Transition to Diffusion Perturbations Infinite
Propagation Velocities and to Classical Problems
of the Theory of Elasticity

Since any problem mathematical formulation is ideal in comparison with real pro-
cesses, it is always necessary to use some simplifications. So, if the time interval
over which the system is considered is much longer than the relaxation time τq (the
average time the system returns to equilibrium), then the corresponding relaxation
effects can be neglected. For this, in the expressions obtained for the Green’s func-
tions (36.5) and (36.9), it is necessary to perform passage to the limit τq → 0. The
number of zeros of the polynomial P (λn, s) under condition τq → 0 is reduced
from 2N + 2 to N + 2. For additional zeros of the polynomial Qq (λn, s), we get

2N + 2 → N + 2,
kq+1 (λn, s) = s + τqs2 + Dqλ

2
n → s + Dqλ

2
n; (36.10)

ξ1 (λn)} = sN+3 (λn) = − 1 − √
1 − 4τqDqλ2

n

2τq
→ − ∞ (τq → 0), (36.11)

ξ2 (λn) = sN+4 (λn) = − 1 + √
1 − 4τqDqλ2

n

2τq
→ − Dqλ

2
n (τq → 0)

Then, formulas (36.8) are written as follows:

Gmk(x, ξ, τ ) =
∞∑

n=1

Gs
mk(λn, ξ, τ ) sin λnx,

Gs
1k (λn, ξ, s) = 2

N+2∑

j=1

A(j)
1k (λn) e

sj(λn)τ sin λnξ,
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Gs
q+1,k (λn, ξ, τ ) = 2

2∑

l=1

[
δq+1,k + A(N+2+l)

q+1,k (λn)
]
eξl(λn)τ sin λnξ

+2
N+2∑

j=1

A(j)
q+1,k (λn) e

sj(λn)τ sin λnξ,

(36.12)

where the coefficients A(j)
mk (λn) are found by formulas (36.9) taking into account the

correction equalities (36.10) and (36.11).
Assuming further in equalities (36.6), (36.7), (36.9) and (36.12) that αq = 0, we

obtain the Green’s functions for the classical elastic problem for an Euler–Bernoulli
beam

GL(el)(x, ξ, s) =
∞∑

n=1

GLs
11(λn, ξ, s) sin λnx = −2

∞∑

n=1

sin λnξ sin λnx(
λ2
n + η

)
s2 + λ4

n

.

The original of this expression with help of the tables of operational calculus is
sought [11]

G(el) (x, ξ, τ ) = −2
∞∑

n=1

γn sin γnτ sin λnξ sin λnx

λ4
n

, γn = λ2
n√

λ2
n + η

. (36.13)

36.5 Example

For the calculation, we assume that the external perturbations in equations (36.1) are
given as follows:

F1 (x, τ ) = q (x, τ )

J3
+ m′ (x, τ )

J3
= H (x)H (τ ) ,

Fq+1 (x, τ ) = z(q)

J3
= 0.

(36.14)

Then, according to (36.4), the solution of the elastic–diffusion problem (36.1) and
(36.2) has the form

u (x, τ ) =
∫ τ

0

∫ 1

0
G11 (x, ξ, τ − t)F1 (ξ, t) dξdt

= 2
∞∑

n=1

⎡

⎣
2N+2∑

j=1

A(j)
11 (λn)

∫ τ

0
H (t) esj(λn)(τ−t)dt

∫ 1

0
H (ξ) sin λnξdξ

⎤

⎦ sin λnx

= 2
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n=1

2N+2∑

j=1

[
1 − (−1)n

]
(
esj(λn)τ − 1

)
A(j)
11 (λn)

λnsj (λn)
sin λnx,
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Hq (x, τ ) =
∫ τ

0

∫ 1

0
Gq+1,1 (x, ξ, τ − t)F1 (ξ, t) dξdt

= 2
∞∑

n=1

⎡

⎣
2N+4∑

j=1

A(j)
q+1,1 (λn)

∫ τ

0
H (t) esj(λn)(τ−t)dt

∫ 1

0
H (ξ) sin λnξdξ

⎤

⎦ sin λnx

= 2
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n=1

2N+4∑

j=1

[
1 − (−1)n

]
(
esj(λn)τ − 1

)
A(j)
q+1,1 (λn)

λnsj (λn)
sin λnx.

Here s2N+3 (λn) = ξ1 (λn), s2N+4 (λn) = ξ2 (λn).
For calculation, we take the duralumin beam of length L = 10−1 and rectangu-

lar cross section h × b = 0.1L × 0.05L. We consider duralumin as two-component
material (N = 2), the physical characteristics of which [13] after applying the pro-
cedure of dimensionless (36.3) are as follows:

λ = 4.92 × 10−1, μ = 2.54 × 10−1, α1 = 1.50 × 10−4, α2 = 5.92 × 10−4,

D1 = 1.27 × 10−16,D2 = 5.02 × 10−21,�1 = 2.77 × 10−18,�2 = 5.50 × 10−23.

The dimensionless geometric characteristics of the section are as follows:

F = 5.00 × 10−3, J3 = 4.16 × 10−6.

The calculation results are presented in Figs. 36.2, 36.3 and 36.4.

Fig. 36.2 Beam deflections
u (x, τ )
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Fig. 36.3 Concentration
increment H1 (x, τ ) at a
point x = 0.5

Fig. 36.4 Concentration
increment H1 (x, τ ) at a
point x = 0.5. The solid line
is the solution of the problem
(36.1) and (36.2) at
τ (q) = 200 s, the dashed line
is the solution of the problem
(36.1) and (36.2) at
τ (q) = 100 s, the hashed line
is the solution of the elastic
problem
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As can be seen from the graphs shown in Fig. 36.4, the relaxation processes of
mass transfer affect for a relatively short period of time. Here dimensionless time
108 is corresponding to about 3 s.

To assess the effect of mass transfer on the beam stress–strain state, we use the
elastic problem solution. Using the Green’s functions (36.13) and calculating the
corresponding convolution (36.4), we obtain

u(el) (x, τ ) =
∫ τ

0

∫ 1

0
G(el) (x, ξ, τ )F1 (ξ, t) dξdt

= −2
∞∑

n=1

[∫ τ

0
H (t) sin

[
γn (τ − t)

]
dt

∫ 1

0
H (ξ) sin λnξdξ

]
γn sin λnx

λ4
n

= 2
∞∑

n=1

[
1 − (−1)n

]
(1 − cos γnτ)

sin λnx

λ5
n

.

The calculation results for various relaxation times for elastic-diffusive and elastic
vibrations of the beam are presented in Figs. 36.5, 36.6 and 36.7.

For the results, presented in Figs. 36.5, 36.6 and 36.7, it can be concluded that
the influence of both mass transfer and relaxation of diffusion fluxes on a beam
deflections in the case of a load (36.14) appears initially at a very small time interval
(Fig. 36.5). Here, the amplitude of the beam deflections can vary by several orders
of magnitude. Further, at time intervals τ ∼ 10−1 to 109, the solutions of the elastic
and elastic–diffusion problems are coincided. Starting from the time τ ∼ 109, a

Fig. 36.5 Beam deflections
u (x, τ ) at a point x = 0.5.
The solid line is the solution
of the problem (36.1) and
(36.2) at τ (q) = 200 s, the
dashed line is the solution of
the problem (36.1) and
(36.2) at τ (q) = 100 s, the
hashed line is the solution of
the elastic problem
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Fig. 36.6 Beam deflections
u (x, τ ) at a point x = 0.5.
The solid line is the solution
of the problem (36.1) and
(36.2) at τ (q) = 200 s, the
dashed line is the solution of
the problem (36.1) and
(36.2) at τ (q) = 100 s, the
hashed line is the solution of
the elastic problem

Fig. 36.7 Beam deflections
u (x, τ ) at a point x = 0.5.
The solid line is the solution
of the problem (36.1) and
(36.2) at τ (q) = 200 s, the
dashed line is the solution of
the problem (36.1) and
(36.2) at τ (q) = 100 s, the
hashed line is the solution of
the elastic problem
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noticeable phase shift of the elastic–diffusion vibrations with respect to the elastic
vibrations begins to be observed (Figs. 36.6 and 36.7). The deflection amplitude of
the beam remains constant.

36.6 Conclusions

The unsteady elastic–diffusion vibrations of an Euler–Bernoulli beam are inves-
tigated. An algorithm is proposed for constructing bulk Green’s functions. The
elastic–diffusion vibrations problemof a simply supported beamunder the distributed
transverse load action is solved. Based on the developed model and the considered
example, the interaction of the mechanical and diffusion fields is studied. Calcula-
tions using the example for the duralumin alloy show that mass transfer over time
begins to affect the displacement field inside the beam, which manifests itself only
in the form of a phase delay in the elastic–diffusion vibrations with respect to the
elastic vibrations. The relaxation of diffusion fluxes practically does not affect beam
deflections, but during relatively small time interval significantly affects the diffusion
process.

This work was supported by the Russian Science Foundation (Project No. 20-19-
00217).
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