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Abstract. A temporal graph G = 〈G1, ..., GL〉 is a sequence of graphs
Gi ⊆ G, for some given underlying graph G of order n. We consider the
non-strict variant of the Temporal Exploration problem, in which
we are asked to decide if G admits a sequence W of consecutively crossed
edges e ∈ G, such that W visits all vertices at least once and that each
e ∈ W is crossed at a timestep t′ ∈ [L] such that t′ ≥ t, where t is
the timestep during which the previous edge was crossed. This variant
of the problem is shown to be NP-complete. We also consider the hard-
ness of approximating the exploration time for yes-instances in which
our order-n input graph satisfies certain assumptions that ensure explo-
ration schedules always exist. The first is that each pair of vertices are
contained in the same component at least once in every period of n steps,
whilst the second is that the temporal diameter of our input graph is
bounded by a constant c. For the latter of these two assumptions we

show O(n
1
2 −ε)-inapproximability and O(n1−ε)-inapproximability in the

c = 2 and c ≥ 3 cases, respectively. For graphs with temporal diameter
c = 2, we also prove an O(

√
n log n) upper bound on worst-case time

required for exploration, as well as an Ω(
√

n) lower bound.

1 Introduction

Given a connected, undirected graph G of order n, an O(n) upper bound on the
length of a minimal walk that explores G (i.e., visits in an arbitrary order, all
v ∈ V (G) at least once) can be easily obtained by considering the length of an
Euler tour around a spanning tree of G. The situation is altered considerably
if we allow for the edge-set of the graphs in our input space to change over the
course of some discretised time period, assuming that the vertex set remains
constant at each point in this period. Such graphs have in recent years been
referred to as temporal, dynamic or time-varying, and indeed it is known that
there exist infinitely many graphs G of this sort that are connected at each point
in time, and such that their exploration requires Ω(n2) moves (where a move can
consist of traversing an edge, or waiting at the current vertex), where n = |V (G)|
[8]. Due in large part to the frequency at which highly dynamic networks arise
in the modelling of practical, real-life situations, an effort to better understand
temporal graph models, along with the various optimisation problems defined
upon them (e.g., the exploration problem considered here), has been made in
recent years. For a more detailed introduction to the concept of temporal graphs
and related combinatorial problems the reader is referred to [17].
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Much of the existing work regarding temporal graph exploration sees a tem-
poral graph defined as a length-L sequence of static graphs G = 〈G1, ..., GL〉,
where each Gi has the same vertex set as some given underlying graph G, but
can have an edge set that is a proper subset of E(G). The Temporal Explo-
ration problem (TEXP for short) then asks that, given a temporal graph G
and some prespecified start vertex s ∈ V (G), we compute a foremost exploration
schedule starting from s – a sequence of edges crossed during strictly increasing
timesteps (equivalently, at most one edge can be crossed per timestep), such
that all vertices are visited at least once and that the timestep in which the last
unvisited vertex is reached is minimal.

In this paper, we relax the condition that edges in a feasible exploration
schedule must be crossed during strictly-increasing timesteps, and allow for any
number of edges to be crossed in each step. Such a scenario arises for example in
delay-tolerant networks [20]. Such networks tend to be disconnected at any time,
and the speed at which the network topology changes is often much slower than
the speed at which messages can be transmitted. Therefore, a mobile agent could
visit any network node in its current connected component before the topology
changes. It is clear that allowing for an agent to make an arbitrary number of
moves across edges in a single time step alters the nature of the exploration
problem considerably. In particular, it no longer makes sense to restrict our
input space to always-connected graphs, since a trivial bound of a single step
can be obtained by employing the same Euler tour-based technique that can be
used to explore any static graph. As such, it is more natural to assume that a
given input graph G consists of a number of disjoint components in each step.
This, however, means that we cannot always guarantee that, for arbitrary G
and start vertex s ∈ V (G), G admits an exploration schedule starting at s.
Given that we relax the requirement that edges be crossed in strictly-increasing
timesteps, we dub the problem of deciding, in this model, whether or not a
given temporal graph G admits an exploration schedule Non-Strict TEXP,
showing it to be NP-complete in general. We then consider two seemingly natural
assumptions regarding the connectivity of the vertices which, when satisfied by
our input graph, ensure that exploration is always possible. The first of these
(which we name pairwise vertex-togetherness) posits that every pair of vertices
will be contained in the same component at least once every n steps, where
n is the graph’s order – we prove O(n1−ε)-inapproximability in this case. The
second assumption insists that every pair of vertices in our input graph are able
to reach one another in at most a constant c many steps. We note that this is
equivalent to insisting that our input graph have temporal diameter bounded by
a constant c (using the natural adaptation of the definition of temporal diameter
from [19] to the non-strict model). For the latter assumption an obvious O(n)
upper bound on exploration time exists, and we show that when c ≥ 3 this bound
is in fact tight. For c = 2, we prove upper and lower bounds of O(

√
n · log n)

and Ω(
√

n) respectively, leaving just a Θ(log n) factor’s gap between the two.
Amongst other things, we also consider the hardness of approximating optimal
solutions for the cases of temporal diameter 2 and ≥3, and lower bounds showing
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O(n
1
2−ε) inapproximability in the former case and O(n1−ε) inapproximability in

the latter are provided (where n is the order of the input graph).

2 Related Work

Brodén et al. [3] considered the Temporal Travelling Salesperson Prob-
lem on a graph with n vertices that is complete in every timestep, but had
edge-costs which differed between 1 and 2 from step to step. Even when each
edge’s cost can change at most k times during the lifetime of the graph, they
showed that the problem is NP-complete, but were able to provide a (2 − 2

3k )-
approximation. Michail and Spirakis [19] showed the same problem to be APX-
hard and provided an improved (1.7 + ε)-approximation. Bui-Xuan et al. pro-
posed in [4] a number of natural objectives to consider when computing a tempo-
ral walk/path, amongst which were fastest (minimum difference between depar-
ture and arrival time) and foremost (minimum arrival time) which is consid-
ered here. Also introduced in [19] was the Temporal Exploration problem
(TEXP), by which we are asked to decide whether a given temporal graph
admits an exploration schedule. They showed that this is NP-complete when
no restrictions are placed on the input graph, and that even when the graph
is connected in every timestep, approximating foremost exploration schedules
with ratio (2 − ε) is NP-hard. Erlebach et al. [8] considered the Temporal
Exploration problem under the always-connected property introduced in [19],
improving the previously best-known inapproximability ratio to O(n1−ε). Com-
plementing the aforementioned Ω(n2) lower bound on the time needed to explore
general always-connected temporal graphs they proved a O(n2) upper bound, as
well as a number of subquadratic/superlinear upper/lower bounds for restricted
subclasses of always-connected temporal graphs. In a similar vein, Bodlaender
and van der Zanden [2] considered TEXP when the input graph has pathwidth
at most 2 in every step, showing the decision variant to be NP-complete under
these restrictions. In [1], Akrida et al. consider a variant of TEXP in which a
candidate solution must return to the vertex from which it initially departed,
focusing on the case in which the input graph has an underlying star. They
gave an O(n log n)-time algorithm deciding whether a given temporal star is
explorable or not, under the restriction that each edge of the star is present
in at most 2 or 3 time steps. In [15] and [14], the problem of temporal explo-
ration is considered on the classes of temporal graphs with underlying cycles and
cactuses, respectively. In [9], the authors prove an O(dn1.75) bound on the num-
ber of time steps required to explore any temporal graph with degree bounded
by d in each step, a considerable improvement over the previously best known
O(n2 log d

log n ) bound [10]. Interestingly, the same bound can also be extended to
general always-connected graphs when restrictions are relaxed and a computed
exploration schedule is allowed to cross two edges in any given timestep – this is
owed to the fact that the square of any static graph G admits a bounded-degree
spanning tree. Notions of strict/non-strict paths which respectively allow for a
single/infinitely many edge(s) to be crossed in any given timestep have been
considered before, notably by Kempe et al. in [16] and Fluschnik et al. in [12].
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Various other studies related to variants of exploration/path problems in
temporal graphs have been considered. For example, the authors in [13] and
[7] consider the problem of temporal exploration from a distributed standpoint.
Casteigts et al. [6] consider a variant of the problem of finding a path between a
given pair of vertices s and t, in which there is an upper bound on the number
of timesteps that a computed path P is allowed to wait at any vertex v ∈ P
before crossing the next edge. For a more comprehensive overview of temporal
graph problems and the various temporal graph classes on which they may be
defined, the reader is referred to [5,17].

3 Graph Model and Problem Definition

Throughout the following denote by [n] the set of integers {1, 2, ..., n}, and by
[x, n] (x < n) the set of integers {x, x + 1, ..., n}. A standard way of defining a
temporal graph within the literature is as a length-L sequence of graphs G =
〈G1, ..., GL〉. Here L is the lifetime of the graph, and we require that for every
i ∈ [L], Gi is a subgraph of the underlying graph G of G. In particular, we have
that V (Gi) = V (G) and E(Gi) ⊆ E(G) for all i ∈ [L].

As was previously noted, in the context of the non-strict variant of TEXP, it
no longer makes sense to restrict our attention to the class of always-connected
graphs. Therefore, we assume that for a given temporal graph G = 〈G1, ..., GL〉,
Gi (i ∈ [L]) consists of some number ≥1 of distinct connected components.
Moreover, since any number of edges can be crossed in a given step, the edge
structure of each component no longer matters – all that is important when
attempting to compute an exploration schedule W is which component C ∈ Gi

is occupied by W in timestep i, since all v ∈ C can be explored during that
step. We can therefore, without loss of generality, use the following definition of
a non-strict temporal graph:

Definition 1 (Non-strict temporal graph, G). A non-strict temporal graph
G = 〈G1, ..., GL〉 with vertex set V := V (G) and lifetime L is an indexed sequence
of partitions Gi = {Ci,1, ..., Ci,si

}, with i ∈ [L]. For all i ∈ [L], every v ∈ V (G)
satisfies v ∈ Ci,ji for a unique ji ∈ [si].

Definition 2 (Non-strict temporal walk, W ). A length-k non-strict tem-
poral walk W = C1,j1 , C2,j2 , ..., Ck,jk through a non-strict temporal graph G =
〈G1, ..., GL〉 is a sequence of components Ci,ji such that, for all i ∈ [k], Ci,ji ∈ Gi

and ji ∈ [si]. Additionally, k ∈ [L], where L is the lifetime of the graph upon
which W is defined. We also require that Ci,ji ∩ Ci+1,ji+1 	= ∅ for all i ∈ [k − 1],
so that it is ensured that the (i + 1)-th component visited by W can be reached
from the i-th component if and only if W ends step ti at a vertex that lies in
the intersection of these two components. For all i ∈ [k] we say W visits all
v ∈ Ci,ji .

A non-strict temporal walk W = C1,j1 , ..., Ck,jk around a given graph G is an
exploration schedule if and only if, for all v ∈ V (G), there exists an i ∈ [k]
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such that v ∈ Ci,ji . Throughout the remainder of the paper, we may refer to
non-strict temporal graphs and non-strict temporal walks simply as graphs and
walks, respectively. Further, we might speak in terms of a mobile agent (or agent)
which we assume to be, at any timestep, following a non-strict temporal walk
around a given non-strict temporal graph in an attempt to explore it. We define
the decision version of the Non-Strict Temporal Exploration problem as
follows:

Definition 3 (Non-Strict Temporal Exploration). An instance of the
Non-Strict Temporal Exploration (NS-TEXP) problem is given as a
tuple (G, s), where G is a given non-strict temporal graph with lifetime L and
underlying graph G, and s ∈ V (G). The problem then asks that we decide whether
G admits an exploration schedule W = C1,j1 , ..., Ck,jk starting from s, i.e., such
that s ∈ C1,j1 .

If we consider only the set of yes-instances of NS-TEXP, i.e., those instances
(G, s) such that G admits an exploration schedule starting from s ∈ V (G), then
it also makes sense for us to consider optimisation variants of NS-TEXP. In
particular, we consider a variant Foremost-Non-Strict TEXP (FNS-TEXP
for short) which asks that we compute a foremost exploration schedule W =
C1,j1 , ..., Ck,jk , i.e., one for which k ≤ l for any other exploration schedule W ′ =
C ′

1,j1
, ..., C ′

l,jl
.

4 Deciding Whether Exploration Is Possible

Theorem 1. Non-Strict Temporal Exploration is NP-complete.

Proof. The problem is in NP because an exploration schedule is of polynomial
size (note that the input size is Ω(NL) for a temporal graph with N vertices and
lifetime L, while an exploration schedule has size O(NL)) and its validity may
be checked in polynomial time. To prove that the problem is NP-hard we give
a reduction from 3SAT. Let instance I of 3SAT be given by variables x1, ..., xn

and clauses c1, ..., cm. Without loss of generality, assume that no clause contains
xi and x̄i for any i. We proceed by creating a temporal graph G with vertex
set V (G) = {s} ∪ {xT

i , xF
i : 1 ≤ i ≤ n} ∪ {cj : 1 ≤ j ≤ m} and lifetime 2n.

The connected components of the graph in each step t are as follows (assume
that all unmentioned vertices in each step are disconnected in G): In step 1,
let {s, xT

1 , xF
1 } form one component. In every subsequent step 2i with i ∈ [n],

let there be a true component containing xT
i and all clause vertices cj that

correspond to a clause of I which is satisfied by setting xi = 1, as well as a false
component containing xF

i and all clause vertices cj corresponding to clauses
satisfied by setting xi = 0. In all remaining steps 2i − 1 for i ∈ [2, n], let there
be a component {xT

i−1, x
F
i−1, x

T
i , xF

i }. To complete the proof we show that there
exists a satisfying assignment for I if and only if there exists an exploration
schedule of G.

( =⇒ ) Since I is satisfiable, there exists a satisfying assignment α : X →
{0, 1} of boolean values to all xi ∈ X. We claim that the following produces an



134 T. Erlebach and J. T. Spooner

exploration schedule W of G: In the (2i−1)-th step (i ∈ [n]), W will be positioned
in the component containing the vertices {xT

i−1, x
F
i−1, x

T
i , xF

i } (as well as s in case
i = 1). Explore both xT

i and xF
i , finishing at xT

i if α(xi) = 1 or xF
i is α(xi) = 0.

At the start of step 2i (i ∈ [n]), W can either be in the component containing
xT

i or the one containing xF
i (depending now on the value of α(xi)), and can

explore all vertices cj in that component and move back to xT
i or xF

i .
By definition of our reduction, the cj explored by the produced walk W are

precisely those which correspond to the clauses satisfied by assignment α. Since
α is satisfying, each clause is satisfied by setting xi = α(xi) for at least one xi;
as such, W explores all vertices xT

i , xF
i and cj as required.

( ⇐= ) Let G be the input graph of the Non-Strict TEXP instance pro-
duced by our reduction from I. Assume that G admits an exploration schedule
W . By construction, for all j ∈ [m], moves to and from vertices cj can only be
made during steps in which they are contained within the true/false component.
Since W is an exploration schedule it must visit all cj , and so for each j there
must exist some i ∈ [n] such that W initially reaches cj within either the true or
false component of step 2i. Since each cj is placed in the true/false component
of step 2i only when xi = 1/xi = 0 satisfies the corresponding clause of I, a sat-
isfying assignment for I can be obtained by checking, for every i ∈ [n], whether
W visits the true or false component, setting xi = 1 in the former case and
xi = 0 in the latter. (Note that in steps 2i during which neither the true/false
component are visited, we can choose an arbitrary setting for xi.) ��

5 Exploration with Pairwise Vertex-Togetherness

We next consider instances of NS-TEXP for which the input graph G satisfies
the following assumption, which we refer to as pairwise vertex-togetherness:

Assumption 1 (Pairwise vertex-togetherness). All pairs of vertices u, v ∈
V (G) are contained in the same connected component at least once during every
period of N steps, where N = |V (G)|.
The following algorithm enables us to explore any graph G, with lifetime L ≥ N ,
such that G satisfies Assumption 1: Start at the specified start vertex s, and
in any of the steps 1 ≤ i ≤ N in which s is contained in the same connected
component as some currently unexplored vertices, visit those vertices and move
back to s by the end of step i. To see that this in fact produces an exploration
schedule, observe that by Assumption 1 s will be contained in the same connected
component as each v ∈ V (G) at least once during the steps 1 ≤ i ≤ N . Note
that this also implies an N -approximation algorithm for the Non-Strict TEXP
problem (consider the instance in which the graph in the first step consists of a
single connected component). In complement to this observation, we state the
following result:

Theorem 2. Even when the input graph G satisfies Assumption 1, it is NP-
hard to approximate solutions to Foremost-Non-Strict TEXP with ratio
Θ(N1−ε) for any ε > 0, where N is the order of the input graph.



Non-strict Temporal Exploration 135

Proof. Let NST = 〈G, s〉 be any instance of the Non-Strict TEXP decision
problem, obtained by performing the reduction of Theorem1 on an instance of
3SAT with n literals and m clauses. By the reduction, the graph G consists of
2n literal vertices, xT

i and xF
i (1 ≤ i ≤ n), m clause vertices cj (1 ≤ j ≤ m), and

an additional start vertex s. To reduce to FNS-TEXP from NST , we construct
an instance FNST = 〈G′, s′〉 as follows: Let V (G′) = V (G) ∪ {d1, ..., dnc}, where
the vertices d1, d2, ..., dnc are nc dummy vertices (for some constant c > 1). Let
N = |V (G′)| = 2n+m+nc, and let L = N be the lifetime of G′. The components
of G′ in each step of its lifetime are defined to be as follows: In step 1, the graph
consists of the connected component {s, d1, d2, ..., dnc}, and all clause and literal
vertices lie disconnected in their own components. In the steps t ∈ [2, 2n + 1],
the step t components of G′ are the same as the step t − 1 components of G,
and we create an additional nc components containing each of the di. During
the steps t ∈ [2n + 2, N − 1], every vertex lies in one component on its own, and
then in the N -th and final step all vertices belong to one single component.

Since, during the steps t ∈ [2n + 2, N − 1], all vertices are disconnected in
G′, it follows that no new vertices can be explored during any of these steps.
We therefore distinguish between the following two cases, showing that deciding
whether O(n) time steps suffice to explore G′ or whether Θ(nc) timesteps are
required also decides whether or not G admits an exploration schedule.

G′ can be explored in 2n + 1 steps: By construction, none of the vertices
cj , xT

i or xF
i can be reached in G′ from s until the start of the second step.

Therefore, it must be that any exploration schedule with length ≤ 2n+1 starting
at s visits all of these vertices during the steps t ∈ [2, 2n+1]. Observe now that,
by construction, the step t ∈ [2, 2n + 1] components of G′ are the step t − 1
components of G, and that these steps constitute the entire lifetime of G – from
this it follows that there must exist a valid exploration schedule of G.

Exploring G′ requires N steps: We claim that, since G′ requires N steps
to be explored completely, it must be that G admits no exploration schedule. To
see this, recall once more that the step t ∈ [2, 2n + 1] components of G′ are the
step t − 1 components of G (with each t − 1 ∈ [1, 2n]) and so it must be that
no temporal walk W starting at s in time step 1 visits all vertices by the end of
time step 2n. Otherwise, we would be in case (1) and it would have been possible
to explore G′ by the end of step 2n + 1 by visiting s and all di in step 1, then
following an exploration schedule for G in G′ during the steps t ∈ [2, 2n + 1].

Since deciding whether or not G can be fully explored is NP-complete, it
follows from the above case analysis that it is NP-hard to approximate solutions
to Foremost Non-Strict TEXP instances in which G satisfies Assumption 1)
with ratio Θ(nc)

Θ(n) = Θ(N
c−1
c ) = Θ(N1−ε), where ε = 1

c > 0 can be forced
arbitrarily close to 0 by choosing the constant c large enough. ��

6 Exploration with Bounded Temporal Diameter

One further assumption which, when satisfied, ensures that complete exploration
of a given temporal graph G is always possible (provided that the lifetime of G
is suitably long) is the following:
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Assumption 2 (Constant-bounded temporal diameter). For every pair
of vertices u, v ∈ V (G), u can reach v in at most c steps (for some c = O(1))
and this holds from any time step t.

An obvious upper bound on the number of steps required to fully explore any
temporal graph G of order n such that G satisfies Assumption 2 (for a constant
c), and (G, s) is a yes-instance of NS-TEXP, is c(n − 1): Starting from s, an
agent in G could repeatedly select an arbitrary unexplored vertex and move to
it in at most c steps, repeating this process n − 1 times (once for each vertex
v ∈ V (G) − {s}).

6.1 Hardness of the Decision Problem for Temporal Diameter 2

The following result is concerned with the NP-completeness of deciding instances
(G, s) of NS-TEXP in which G satisfies Assumption 2 for c = 2:

Theorem 3. Deciding Non-Strict Temporal Exploration is NP-
complete, even when restricted to instances in which the input graph G satisfies
Assumption 2 for c = 2.

Proof. The reduction is from the NP-complete problem of 3SAT restricted to
instances in which each literal occurs in at most 4 clauses, which we dub 3SAT*
[21]. Given an instance I of 3SAT* comprised of n ≥ 3 variables and m = O(n)
clauses, we proceed by constructing a non-strict temporal graph G (with lifetime
n + 3) that satisfies the connectivity assumption for c = 2, such that G is fully
explorable if and only if I is satisfiable. To do so we create 2 literal vertices xT

i

and xF
i for each variable xi of 3SAT* instance I. We then create n+3 clause copy

vertices cj,k (k ∈ [n+3]) for all m clauses of I. Finally, we create 2(2n+m(n+3))2

many connectivity vertices vi (i ∈ [2(2n+m(n+3))2]) and divide them into two
groups, the red group and the blue group, each of size (2n+m(n+3))2. In steps
1 and 2, arrange the red connectivity vertices as a 2n+m(n+3) by 2n+m(n+3)
grid, then let all rows of this grid lie in separate components during step 1, and
all columns of the grid lie in separate components during step 2. Arbitrarily set
the start vertex to be s = xT

1 . To the first row component in step 1, add the
vertices xT

i and xF
i (for all i ∈ [n]), along with all blue connectivity vertices.

Then, add each of the remaining clause vertices to a unique component (of
which there are 2n + m(n + 3) − 1 remaining). In step 2, we now arrange the
blue connectivity vertices as a 2n + m(n + 3) by 2n + m(n + 3) grid, with each
of the step 2 components initially containing one red column and one blue row.
Now, add each of the non-connectivity vertices (i.e., all literal and clause-copy
vertices) to an arbitrary component, ensuring that no component contains more
than one non-connectivity vertex (this is possible since there are 2n + m(n + 3)
such vertices and the same number of components). In all steps t ∈ [3, n+3], we
let the blue vertices alternate between being columns and rows, so that in each
step there are exactly 2n + m(n + 3) components. From step 3 onward, all red
connectivity vertices will belong to a unique but arbitrarily selected component.
All literal and clause-copy vertices should be added to one of the 2n + m(n + 3)
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components in step 3. For all steps t ∈ [4, n + 3], add the literal vertex xT
t−3

to the first component, along with all clause-copies that correspond to a clause
of 3SAT* instance I satisfied by setting xt−3 = 1; to the second component,
add the literal vertex xF

t−3 alongside all clause-copies corresponding to a clause
satisfied by setting xt−3 = 0. (We will from here onward refer to the ‘first’ and
‘second’ component as the true and false component.) In any of these steps,
all remaining literal and clause-copy vertices should be assigned to an arbitrary
but unique component that are neither the true or false component of that step.
Clearly, G satisfies the c = 2 connectivity assumption, since in step 2 we have
that all 2n + m(n + 3) components contain exactly one of the red vertices in
each of the step 1 components, and for all pairs of consecutive steps i and i + 1
for i > 1, the same holds for the blue vertices. Therefore, starting in step i, it is
possible to be positioned in any step i + 1 component (and therefore reach any
vertex in at most a single step) by moving to the appropriate red/blue vertex
and waiting until the start of the next step. To complete the proof, we show that
I is satisfiable if and only if G is explorable:

( =⇒ ) To construct an exploration schedule of G from a satisfying assignment
for 3SAT instance I, we can use the first three steps of G’s lifetime in order to
visit all blue/red connectivity vertices, as well as the literal vertices. For the
remaining steps t ∈ [4, n + 3], visit the true component in step i if xt−3 = 1 or
the false component otherwise; this is possible due to the connectivity vertices.
It is clear, by arguments similar to those used in the proof of Theorem1, that G
is an exploration schedule since it was constructed from a satisfying assignment
for I.

( ⇐= ) First observe that no cj can be reached until step 2. We have n + 3
cj,k associated with the j-th clause of I; since there are only n + 2 remaining
steps it is not possible to visit all of the copies associated with the j-th clause in
steps in which they are not contained in either the true or false component (i.e.,
one per timestep). Therefore, for all j ∈ [m] there is at least one timestep in
which ≥2 cj,k are visited whilst both contained in the true or false component,
and so by construction the remaining n + 2 copies can also be visited during
that same step. Moreover, since W is an exploration schedule all cj,k ∈ V (G)
(j ∈ [m], k ∈ [n + 3]) must be visited; hence all clauses of I can be satisfied by
setting variable xt−3 = 1 if W visits the true component in step t ∈ [4, n + 3],
and xt−3 = 0 otherwise (an arbitrary setting of xt−3 suffices when neither are
visited). ��
Due to the fact that any graph G satisfying Assumption 2 for some constant
c also satisfies it for every d > c, we obtain as a corollary of Theorem 3 the
following:

Corollary 1. Deciding Non-Strict Exploration is NP-complete when
restricted to graphs satisfying Assumption 2 for any c ≥ 3.
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6.2 Lower Bounds on Exploration Time

The following three theorems are concerned with bounds on the amount of time
required to explore graphs G that satisfy Assumption 2 for certain values of c.
Throughout them, we consider only graphs G of order n with lifetime L ≥ c(n−1)
in order to ensure that exploration is always possible.

Theorem 4. There exists an infinite family of temporal graphs such that each
member satisfies Assumption 2 for c = 3 (and thus also for all c ≥ 3), has order
n ∈ {7, 10, 13, ...}, and requires Ω(n) time steps to be explored in its entirety.

Proof. Let n = 3m + 1 (for some m ≥ 2) be the order of the temporal graph.
Take an arbitrary u ∈ V (G), then partition V (G) − {u} into three distinct parts
X = {x1, ..., xm}, Y = {y1, ..., ym} and Z = {z1, ..., zm}. In odd steps, we define
the graph to consist of the components X ∪ {u} and {yi, zi} for all i ∈ [m]. In
even steps, it should consist of components Y ∪ {u} and {xi, zi} for all i ∈ [m].
Furthermore, we (arbitrarily) set s = x1. (An example of the construction can
be seen in Fig. 1.) One can easily check that any pair of vertices in X (Y ) can
reach one another in at most 2 steps, and that vertices in X and Y are able to
reach one another in at most 3 via u. Reaching any xj ∈ X (yj ∈ Y ) from any
zi ∈ Z can also be achieved in at most three steps by waiting until the next
step in which zi and xi (yi) are contained in the same component, moving to
xi (yi) in that step, and then to xj (yj) in the following step. Finally, consider
reaching any vertex zj from any vertex zi (i, j ∈ [m]), starting at some time
step t. Unless i = j, the quickest way to reach zj from zi is by first moving
to the vertex v ∈ {xi, yi} that lies in the same component as zi in the current
step. By construction, v will be contained in the same component as the vertex
v′ ∈ {xj , yj}; move to v′ from v in step t+1, finally moving to zj from v′ during
step t+2. In total this takes exactly 3 steps. Since any exploration schedule has
to visit all m = (n − 1)/3 zi at some point and reaching one from the previous
takes exactly 3 steps, it follows that any exploration schedule of G has duration
Ω(n). To complete the proof, observe that any graph that satisfies Assumption 2
for a constant b also satisfies Assumption 2 for any c > b. ��
One direct consequence of Theorem 4 is that the aforementioned c(n − 1) upper
bound on the length of exploration schedules in graphs satisfying Assumption 2
is in fact tight (asymptotically speaking) when c ≥ 3. For the case in which
c = 2, we now present a lower bound construction that requires Ω(

√
n) steps to

explore.

Theorem 5. There exists an infinite family of graphs, the members of which
satisfy Assumption 2 for c = 2, have order n ∈ {4, 9, 16, ...}, and require Ω(

√
n)

steps to be completely explored.

Proof. Let n = x2 for any x ≥ 2. We now construct a graph Gn = 〈G1, ..., GL〉,
with L = n: Partition the vertex set into x parts of size x, arbitrarily labelling
the vertices in the i-th part vi,j for j ∈ [x]. Arrange the vertices in the form of
an x by x grid, with the first row consisting of the vertices v1,1, v1,2, ..., v1,x, the
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u

ZYX

u

Z X Y

Fig. 1. The construction of Theorem 4 for m = 4. The left image is the graph in odd
steps, with the graph in even steps displayed on the right. Black dashed lines mark the
vertices contained in the components of either step.

second row of vertices v2,1, v2,2, ..., v2,x, and so on and so forth (as in Fig. 2). We
refer now to the collection of vertices v1,j , v2,j , ..., vx,j as the j-th column of the
grid. Now, in every odd step i = 1, 3, 5, ..., let Gi be a partition of V (Gn) into
the rows of the grid, and in every even step i = 2, 4, 6, ..., let Gi be a partition
of V (Gn) into the columns. To see that Gn satisfies Assumption 2 (for c = 2),
notice that in any pair of consecutive steps t, t+1 with t ∈ [n− 1], an agent can
use one of those steps to change its row coordinate in the grid, and the other
step to change its column coordinate.

To complete the proof, observe that in any step each component contains
exactly

√
n vertices. From this it follows that, during a single step, at most

√
n

unvisited vertices can be visited; hence at least Ω(
√

n) steps are required of any
exploration schedule. ��

6.3 Upper Bounds on Exploration Time

The following result further concerns the case when c = 2, tightening the gap
between the trivial O(cn) upper bound and the Ω(

√
n) lower bound of Theo-

rem 5.

Theorem 6. Any temporal graph G of order n satisfying Assumption 2 for c = 2
can always be explored in O(

√
n · log n) time steps.

Proof. We first show that for any consecutive pair of steps t and t+1, G consists
of at most

√
n components in at least one of these two steps. This is immediately

obvious when each component of step t contains ≥ √
n vertices (Case 1). Hence,

we focus on the case in which at least one component of G during step t contains
at most

√
n vertices (Case 2). First, observe that in order for a graph to satisfy

Assumption 2 for c = 2 it is required that, regardless of the time step t and the
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currently situated vertex/connected component, an agent can be positioned in
any one of the step t + 1 components of G by the start of that same step. This
implies that the number of connected components of G in step t + 1 is bounded
from above by the size of the smallest component in step t (which by assumption
of the case, is ≤ √

n).
Now, we show how to construct an exploration schedule W with duration

O(
√

n · log n). The idea is to divide the lifetime of G into consecutive blocks
of three steps and within each, explore at least a 1√

n
fraction of the currently

unvisited vertices. More specifically, in the (3j − 2)-th step (j ≥ 1), apply the
above case analysis, taking i = 3j − 1 so that i + 1 = 3j. If Case 1 applies, let
Cmax be the component at time step 3j −1 which contains the largest number of
previously unexplored vertices, resolving ties arbitrarily. Use time step (3j−2) to
move to some vertex that is contained in Cmax in step 3j − 1 (by Assumption 2,
this is always possible), exploring all unexplored vertices contained in Cmax

during step 3j − 1. If Case 2 applies, let Cmax be the component at time step
3j which contains the largest number of previously unexplored vertices, again
resolving ties arbitrarily. In this case, wait at the current vertex until time step
3j − 1, then move to some vertex contained in Cmax, which is again possible by
Assumption 2, and explore all unexplored vertices contained in Cmax during time
step 3j. In either case, the graph consists of at most

√
n components during the

time step in which the agent is positioned in Cmax. Let U be the set of previously
unexplored vertices (which is initially the set V − {s}). The vertices in U are
distributed amongst the ≤√

n components of step 3j − 1 or 3j, and since Cmax

contains the largest number of them, it follows that |Cmax∩U | ≥ |U |√
n
, as required.

Repeat the above process, exploring at least a 1√
n

fraction of the previously
unexplored vertices in each block of 3 consecutive steps until the number of
unexplored vertices is less than 1. Since we began with n−1 unexplored vertices
(we consider s to be automatically explored), we get that after k = 3x steps
(for any x ∈ {1, 2, 3, ...}), the remaining number of previously unvisited vertices
is at most n · (1 − 1/

√
n)k. We require that n · (1 − 1√

n
)k < 1, which can be

transformed into n < (
√

n√
n−1

)k. Taking the logarithm of both sides yields

log n < k · log

( √
n√

n − 1

)
⇐⇒ k >

log n

log(1 + 1√
n−1

)
.

Since log(1 + x) > x/(1 + x) for any x > 0, it then follows that the right-hand
side of the previous inequality satisfies

log n

log(1 + 1√
n−1

)
<

log n

1√
n−1

/ √
n√

n−1

=
log n

1/
√

n
=

√
n · log n.

Hence, as soon as the number of elapsed time steps k is greater than
√

n·log n,
the number of remaining unexplored vertices is fewer than 1, and so the algorithm
requires O(

√
n · log n) steps to explore G. ��
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v1,1 v1,2 v1,3 v1,4

v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4

v4,1 v4,2 v4,3 v4,4

v2,1

v1,1 v1,2 v1,3 v1,4

v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4

v4,1 v4,2 v4,3 v4,4

v2,1

Fig. 2. The construction of Theorem 5 for x = 4. The left image is the graph in odd
steps, with the graph in even steps displayed on the right. Blue dashed lines mark the
vertices contained in the components of either step. (Color figure online)

6.4 Inapproximability Results

The constructive nature of the proof of Theorem6 implies the existence of
a Θ(

√
N · log N)-approximation algorithm for instances of Foremost-Non-

Strict TEXP in which the given graph has order N and satisfies Assumption 2
for c = 2. The following result leaves only a Θ(log N) gap between the best pos-
sible ratio achievable by any approximation algorithm for this problem and the
ratio achieved by the algorithm implied by Theorem6.

Theorem 7. It is NP-hard to approximate solutions to instances of
Foremost-Non-Strict TEXP that satisfy Assumption 2 for c = 2 with
approximation guarantee O(N

1
2−ε) for any ε > 0, where N is the order of the

given graph.

Proof. Take an arbitrary instance I of 3SAT* and let G be the corresponding
instance of Non-Strict TEXP generated via the construction of Theorem 3.
Alter the construction so that there are now nb (b > 1) clause-copies correspond-
ing to each of the m clauses of 3SAT* instance I, and call the resulting graph
G′. Furthermore, let the lifetime L of G′ be ∞, and define the components of
the resulting graph G′ (of order N = 2n + mnb + 2(2n + mnb)2 = O(n2b+2)) to
be the same, during the first n + 3 steps, as the components of G (but with the
additional clause-copy vertices added to the appropriate components). During
all subsequent steps t ∈ [n + 4,∞], let the blue connectivity vertices alternate
between being arranged as the rows and columns of a 2n+mnb by 2n+mnb grid,
adding exactly one of the non-connectivity vertices (i.e., the literal/clause-copy
vertices) to each of the components formed by the blue rows/columns. Take the
red connectivity vertices and add them all to one arbitrary component in every
subsequent step.

Next, observe that, by the same reasoning used in the proof of Theorem3,
G′ admits an exploration schedule of length at most n + 3 if and only if 3SAT∗

instance I is satisfiable. As a result, if G′ cannot be fully explored by the
end of the (n + 3)-th step, then it must be that there exists one clause c in
3SAT* instance I whose corresponding clause-copy vertices have not yet all been
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explored. Note now that at most n+3 of these clause-copy vertices can have been
explored during the first n+3 steps, and so at least nb−(n+3) remain unexplored.
During any step t ∈ [n+4,∞], at most one of these remaining clause-copies can
be explored, and so it follows that Θ(nb) steps are required to explore them all.
This implies that deciding whether G′ can be explored in Θ(n) steps or whether
Θ(nb) steps are required also decides whether or not 3SAT∗ instance I is satisfi-
able. As such, it follows that approximating solutions to Non-Strict TEXP on
graphs satisfying Assumption 2 for c = 2 with approximation ratio strictly better
than Θ(nb)/Θ(n) = Θ(N

1
2 /n2) = Θ(N

1
2 /N

1
b+1 ) = Θ(N

1
2−ε′

) is NP-hard, where
ε′ = 1

b+1 and can be made arbitrarily close to 0 by choosing b large enough. The
theorem follows for any ε > 0 by forcing ε′ ≥ ε arbitrarily close to ε. ��
Theorem 8. It is NP-hard to approximate solutions to instances of
Foremost-Non-Strict TEXP by which Assumption 2 is satisfied for some
c ≥ 3 with approximation guarantee O(N1−ε) for any ε > 0, where N is the
order of the given graph.

Proof. Let I be some instance of 3SAT∗ consisting of n > 3 variables vi (i ∈
[n]) and m = O(n) clauses. We wish to construct a non-strict temporal graph
G (with lifetime L = 3|V (G)|) that satisfies Assumption 2 for c = 3 but no
d < 3, and which admits an exploration schedule of length O(n) if and only
if I is satisfiable, otherwise requiring Ω(nb) steps. To this end, we initially let
|V (G)| = N = 3mnb + 1 = O(nb+1) for some b ≥ 2. We take 2mnb of the
vertices in V (G) and partition them into equisized sets X = {x1, ..., xmnb} and
Y = {y1, ..., ymnb}; let an additional vertex be known as u. The mnb remaining
vertices will be known as the clause-copy vertices cj,k, with exactly nb of them
associated with j-th clause of I.

We now show how the components in each step of G’s lifetime are to be
arranged. In all steps t ∈ [3n] such that t 	= 3i for some i ∈ [n], if t is odd, we
place all x ∈ X and u in the same connected component, whilst the mnb vertices
y ∈ Y form a matching with the mnb clause-copy vertices (this matching can
be arbitrary, but will remain consistent in all considered steps). On the other
hand, if t 	= 3i and is even, then all v ∈ Y ∪{u} form one component, whilst the
vertices in X form a matching with the clause-copy vertices.

In all steps t ∈ [3n] such that t = 3i for some i ∈ [n], if t is odd then all
v ∈ X ∪ {u} form one connected component; let the start vertex s = xmnb .
We create one component containing the vertex y1 ∈ Y , along with all clause-
copies corresponding to the clauses of I satisfied by setting v1 = 0. To another
component, we add the vertex y2 ∈ Y , along with all clause-copies corresponding
to the clauses of I satisfied by setting v1 = 1. (In such steps, we will now refer
to the components containing y1 and y2 as the ‘true’ and ‘false’ components,
respectively.) All remaining clause-copies (i.e., those corresponding to clauses
that are satisfied by neither a 0 nor 1 setting of vi) will then form a matching
with the remaining yj (j ∈ [mnb] − {1, 2}). (Note that there are always enough
yj to ensure this is possible, since at least one clause will be satisfied by either a
0 or 1 setting of each vi, and so there can be at most (m − 1)nb clause-copies to
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match with the ≤mnb −2 remaining yj .) When t is even, the components are the
same but the roles of sets X and Y are switched, so that now the components
containing x1 and x2 are respectively the true and false components. During
the steps t ∈ [3n + 1, 3N ], the components alternate between being arranged as
they are in odd/even steps t′ ∈ [3n] such that t′ mod 3 	= 0, depending on the
parity of step t. It is straightforward to check that G satisfies Assumption 2 for
c = 3. Moreover, consider any pair of clause-copies starting from any time step
t ≥ 3n + 1 and observe that 3 steps are in fact required to reach one from the
other. We now demonstrate that I is satisfiable if and only if G is explorable in
at most 3n steps, showing that at least Ω(nb) steps are required otherwise.

( =⇒ ) By arguments similar to those used in the proof of Theorem1 we are
able to construct from a satisfying assignment α for I an exploration schedule
W of G with length at most 3n. To do so, we use the steps t ∈ [3i − 2, 3i] to
move to the true/false component in step 3i if α sets vi = 1/vi = 0, respectively.

( ⇐= ) By arguments similar to those used in the proof of Theorem1, we
construct an assignment α for I by setting vi = 1 if W visits the true component
during the 3i-th step, or set vi = 0 if the false component is visited (with an
arbitrary setting for vi if W visits neither). This works since, if some clause of
I had all nb of its associated copies explored separately in steps when not in
the true/false component of G, then it would take at least nb > 3n (for b ≥ 2
and n > 3) steps to visit them all, a contradiction to W ’s length being ≤3n. As
such, for every j ∈ [m] there must be an i ∈ [n] such that >1 distinct copies
associated with cj , hence by construction all copies, are visited in the true/false
component of step 3i. It follows that α must be satisfying.

Moreover, if I has no satisfying assignment then any exploration schedule W
must spend Θ(nb) steps exploring all clause copies associated with ≥1 clause of
I – otherwise there exists a schedule that visits all clause copies in a true/false
component from which we could obtain a satisfying assignment for I. As a result,
we may conclude that it is NP-hard to approximate instances of Non-Strict
TEXP which satisfy Assumption 2 for any c ≥ 3 with ratio strictly better than
Θ(nb)/3n = Θ(nb−1) = O(N

b−1
b+1 ) = O(N1− 2

b+1 ) = O(N1−ε′
), where ε′ = 2/(b +

1) can be made arbitrarily close to 0 by selecting b large enough. The theorem
follows for any ε > 0 by forcing ε′ ≥ ε arbitrarily close to ε. ��

7 Conclusion

We considered the problem of Non-Strict Temporal Exploration, a vari-
ant of the Temporal Exploration problem in which the requirement that
edges in a candidate exploration schedule are crossed at strictly increasing time-
steps is weakened, so that an edge may be crossed at a timestep greater than or
equal to the timestep in which the last was crossed. We showed that deciding
Non-Strict TEXP under these relaxed conditions is NP-complete.

The hardness of approximating solutions to Foremost-Non-Strict TEXP
when the input graphs satisfy either of two distinct vertex-connectivity assump-
tions was also considered. For order n graphs satisfying the pairwise vertex-
togetherness assumption (Assumption 1), we proved that it is NP -hard to
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approximate solutions with ratio O(n1−ε) for any ε > 0. For the second of these
two assumptions, which posits that every pair of vertices can reach one another
within c = O(1) steps, we proved O(n1−ε)-inapproximability and O(n

1
2−ε)-

inapproximability in the c ≥ 3 and c = 2 cases, respectively. Also shown was
that, when c = 2, the graph of any yes-instance of Non-Strict TEXP can be
explored in at most O(

√
n log n) timesteps. In complement to this, a lower bound

construction which requires of any exploration algorithm at least Ω(
√

n) steps
was described. Closing the remaining Θ(log n) gap presents an interesting direc-
tion for future work, as does the analysis of exploration time for graphs satisfying
other assumptions that ensure exploration of a graph G is always possible. For
example, one could examine the effect of some of the connectivity/reachability-
ensuring measures presented in [18] within the non-strict model; [11] and [8] also
consider temporal graphs with periodically-repeating properties whose effects
could be interesting to explore within in the model considered here.
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