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Abstract. We study the distributed decision problem related to check-
ing distance-k coloring, defined as color assignments to the nodes such
that every pair of vertices at distance at most k must receive distinct
colors. While checking the validity of a distance-k coloring only requires
�k/2� rounds in the Local model, and a single round in the Congest
model when k ≤ 2, the task is extremely costly for higher k’s in Con-
gest—there is a lower bound of Ω(Δk/2) rounds in graphs with maxi-
mum degree Δ. We therefore explore the ability of checking distance-k
coloring via distributed property testing. We consider several farness cri-
teria for measuring the distance to a valid coloring, and we derive upper
and lower bounds for each of them. In particular, we show that for one
natural farness measure, significantly better algorithms are possible for
testing distance-3 coloring than for testing distance-k coloring for k ≥ 4.

Keywords: Distributed property testing · Graph coloring ·
Distributed decision

1 Introduction

We study problems related to checking whether a given distance-k coloring is
proper, in the distributed Congest model. A valid (or proper) distance-k color-
ing of a graph G = (V,E), for k ≥ 1, is a coloring of each node v with integer cv so
that any two nodes u, v of distance at most k are colored differently, i.e., cu �= cv.
This is equivalent to the usual vertex coloring of the graph Gk = (V,Ek), where
two nodes are adjacent if they are within distance k in G.

Classical distance-1 colorings have been extensively studied in distributed
computing as a tool of breaking symmetry. Let us denote by n the number
of nodes, by m the number of edges, and by Δ the maximum degree of G.
For the core problem of finding a (Δ + 1)-coloring, there is a simple folklore
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O(log n)-round randomized algorithm, and recent polylog(n)-round determinis-
tic algorithm by Bamberger, Kuhn and Maus [4] that works in Congest (lever-
aging the recent breakthrough of Rozhoň and Ghaffari [35]). The correspond-
ing distance-2 coloring questions has recently been addressed in [25], where an
O(log Δ log n)-round randomized algorithm is given that uses Δ2 + 1 colors, as
well as a polylog(n)-round deterministic algorithm that uses (1 + ε)Δ2 colors,
for any ε > 0. This opens the question about distance-k coloring problems, for
k ≥ 3, which appear considerably harder.

Why Distance-k Coloring? Distributed distance-k colorings are interesting for
various reasons. They appear naturally when constant-round randomized algo-
rithms are derandomized using the method of conditional expectation [22]. They
also appear in certain models of wireless models, where senders must be suffi-
ciently separated, to limit interference. More abstractly, we can view distance-k
coloring problems as a way of studying communication capacity constraints on
nodes, where communication must go through intermediate relays. Given that
distance-2 colorings can be efficiently computed, distance-3 colorings appear to
lie at the frontier of what can be solved efficiently by distributed algorithms.

Deciding Distance-k Coloring. Given the apparently challenging task of finding
an efficient distance-3 coloring, a natural question that arises is if we can at least
check that a given coloring is valid. We can quickly dispose of that hope, as there
is an easy reduction to Set Disjointness that shows that verifying a distance-k
coloring requires Ω(Δ�(k−1)/2�) rounds in Congest. We provide a proof of this
fact, for completeness, in Appendix A. Observe that the question is trivially
answered in �k/2� rounds of the Local model.

Testing Distance-k Coloring. Distributed property testing is a relaxation of dis-
tributed decision, where we seek a Congest algorithm that can distinguish
whether the given graph satisfies a given property (e.g., having a distance-k col-
oring), or is far from having such a property. The most common notion for this
is ε-farness in the sparse model, when the addition or deletion of up to ε · m
arbitrary edges to/from the graph G = (V,E) does not result in the property
being satisfied. This notion is renamed ε-edge in this paper, so as to avoid con-
fusion as we use alternative notions of being far to a valid coloring. Distributed
algorithms testing a property (here distance-k coloring) are compared according
to the error rate ε(r) they can tolerate if restricted to r rounds, or equivalently,
the round complexity r(ε) to distinguish between legal instances and instances
ε-far from being legal.

1.1 Summary of Main Results

We consider several measures of distance from a valid coloring to define various
notion of ε-farness, deduce their relationship, and bound the efficiency of testing
distance-k colorings in Congest under these measures. As examples of such
measures, we consider ε-edge, where deleting up to εm edges cannot result in a
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valid distance-k coloring, and ε-middle, where there exist more than εm paths
of length at most k − 2 between two nodes with distinct neighbors of the same
color. We present the following results:

1. An algorithm for any constant k ≥ 3, with round complexity O(1/ε), for
all our measures but ε-middle. We provide a matching lower bound for any
algorithm under two of our considered measures.

2. An improved algorithm for distance-3 colorings under the ε-middle measure.
The round complexity is O(ε−3/2m−1/2), for ε ≥ m−1/3. We prove a matching
lower bound, and as well as an ˜Ω(ε−1) lower bound for distance-4. This shows
that distance-4 is strictly harder than distance-3.

3. A communication complexity lower bound of Ω̃(ε−1(εm)−1), for any k ≥ 3,
under the ε-edge measure.

The results suggest that distance-3 colorings are easier to test than for larger
distances. This reinforces the role of distance-3 coloring on the frontier of what
is computable efficiently in Congest.

1.2 Related Work

Property testing has an extensive history in the sequential setting [23]. Dis-
tributed property testing was recently introduced by Brakerski and Patt-Shamir
[6], and subsequently revisited and formalized more broadly by Censor-Hillel
et al. [8]. As in the centralized setting, different variants of farness can be con-
sidered, but most of the efforts on distributed property testing has been carried
out in the sparse model, that is, the model of this paper, where farness is mea-
sured by the fraction of the number of edges that must be added or removed for
satisfying the property under consideration. In this framework, most previous
work has been dedicated to checking the absence of a specific graph pattern (e.g.,
a cycle Ck, or a clique Kk, for some k ≥ 3) as a subgraph of the actual net-
work [12,18,20]. To our knowledge, this paper is the first to consider distributed
testing proper distance-k coloring.

More generally, distributed property testing falls into the wide class of dis-
tributed decision problems, initially motivated by fault-tolerant distributed com-
puting [2,3,28]. Since these early works, there has been a large body of work on
distributed decision, with a range of models—see [13] for a survey. The closest to
ours are local decision [15,17], and local verification [17,19,24,31]. In both cases,
the nodes perform a constant number of rounds of communication before reach-
ing a decision. Distributed property testing is a relaxed version of randomized
distributed local decision, as nodes are not bounded to detect illegal instances
that are “close to be legal”. In distributed verification, every node is also sup-
plied with a certificate string, and the collection of certificates is supposed to
form a distributed proof that the instance is legal. Distributed property test-
ing performs in absence of such certificates. Recently, distributed verification
has been extended to distributed interactive proofs [30,33], involving interac-
tions between the nodes and a powerful centralized oracle. Such mechanisms are
obviously much more powerful than distributed property testing.
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Overall, distributed property testing offers a tradeoff between simplicity (no
need of certificates, nor of any interactions with an external entity), and effi-
ciency (configurations that are “slightly” illegal may not be detected). It is thus
an appealing lightweight alternative to complex mechanisms for distributed sys-
tems that can tolerate to be slightly faulty. This is typically the case of wireless
systems, which are able to tolerate a certain level of interference, as long as these
interferences do not exceed a certain threshold.

2 Model and Definitions

The input of our algorithms is a graph G, and a proposed coloring C = (cv)v∈V .
Given an underlying distance metrics between solutions, we say that a solution is
ε-far from being correct (or valid, or legal) if it is of distance at least ε from any
valid solution for G. We seek a Congest protocol running on G to distinguish
valid solutions from ε-far solutions. The protocol should have 1-sided error:

If C is valid, then, with probability 1, all nodes output “yes”.
If C is ε-far from being valid, then, with probability at least 2/3, some
node outputs “no”.

We explore different types of solution distances. In particular, we can divide
them into two types: distance to a graph for which the given solution is valid,
and distance to a valid solution for the given graph. We call two distinct nodes
with the same color at distance at most k a bad pair, and call a path connecting
a bad pair a bad path.

Definition 1. An n-node m-edge graph G = (V,E) and a coloring of its vertices
(cv)v∈V are said to be

– ε-edge, when deleting up to εm arbitrary edges does not result in a valid
distance-k coloring.

– ε-disjoint, when there exist more than εm distinct pairs of similarly colored
vertices linked by edge-disjoint paths of length at most k.

– ε-middle, when there exist more than εm paths of length at most k−2 between
two nodes with distinct neighbors of the same color.

– ε-node, when recoloring up to εn arbitrary vertices does not result in a valid
distance-k coloring.

– ε-conflict, when more than εn vertices have the same color as one of their
distance-k neighbors.

The ε-edge measure is the classical one fromproperty testing literature [6,8,18].
The ε-disjoint measure is a variation that requires there to be many conflict pairs,
not just one vertex that conflicts with many nodes (that might not conflict between
themselves).

The ε-middle measure has the appearance of being contrived, but actually
captures the essence of the problem. In the first round, each node learns of the
colors of all its neighbors. Thus, what we really need is to somehow connect the
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Fig. 1. The relationships between our notions of distance from a valid solution as well
as our upper and lower bounds on the costs of testing for them. For two notions of
farness notion1 and notion2, an arrow from ε-notion1 to ε-notion2 indicates that a
solution that is ε-notion1 is also Ω(ε)-notion2 away from a valid solution. Dashed lines
indicate incomparability.

second node on a bad k-path to the second-to-last node, and see if the sets of
colors in their neighborhoods intersect.

The last two definitions correspond to natural measures of invalidity of col-
orings. The ε-conflict measure counts how many nodes are improperly colored
(i.e., have a same-colored distance-≤ k neighbor), while ε-node is more conser-
vative, bounding the number of recolorings needed to turn the coloring into a
valid one.

We say that a measure μ is more strict than measure μ′ if μ(G, c) =
O(μ′(G, c)), for all graphs G and colorings c. Thus, if (G, c) is ε-far in terms
of measure μ′, then it is O(ε)-far in terms of measure μ (but could be much less
far).

It is easy to see that ε-disjoint is more strict than ε-edge, and ε-node is more
strict than ε-conflict. It also holds that ε-disjoint is more strict than ε-conflict
on sparse graphs, when |E(G)| = O(|V (G)|). This is illustrated in Fig. 1, where
solid arrows are drawn from a stricter measures to a less stricter one.

We can also verify that other pairs of measures can be arbitrarily divergent.
The examples in Fig. 2 show that for any pair of measures connected by a dotted
line in Fig. 1, there is a graph where one is constant and the other is O(1/n) (or
O(1/m)), and vice versa. The same holds for the inverse direction of the solid
edges.

The property of ε-edge and ε-disjoint assignments that we shall use is that
there is a set of at least εm edges, each of which is the first edge of a bad path.
For ε-node or ε-conflict assignment, it follows from the definition that there is a
set of εn nodes that have a same-colored node within distance at most k.
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Fig. 2. Three colored graphs showing the incomparability of some of the measures
of Definition 1. A number indicates a node’s color, unnumbered nodes each receive a
color unique to them. For each graph, the second line indicates values of ε for which
the graph is (in order) ε-disjoint, ε-node, ε-edge, ε-conflict, and ε-middle. The arrows
between measure values are the same as those of Fig. 1

3 Preliminaries: Set Disjointness

The Set Disjointness problem is a two-party communication complexity decision
problem where two players each receive a subset of an universe [N ] and must
decide whether their subsets are disjoint. This problem is known to require Ω(N)
communication – as large as the players’ inputs – to solve with bounded error by
a randomized communication complexity protocol [5,29,34]. Doing a reduction
from Set Disjointness to a task in the Congest model has been a fruitful source
of lower bounds [1,9,10,21,27,36].

In this paper, we will use slight variations of the original Set Disjointness
problem. We consider a subset of the original problem, where the players have
two additional promises: that their sets are of size at most s, and that their sets’
intersection is either empty or contains at least t elements, where s and t are
two integer parameters.

Definition 2 (Gap Bounded Size Set Disjointness). Let N, s, t be three
integers such that N ≥ s ≥ t > 0, X = Y = [N ], and the players’ set of
admissible inputs Is,t ⊆ X × Y be:

Is,t = {(X,Y ) : |X| ≤ s, |Y | ≤ s, |X ∩ Y | ∈ {0} ∪ [t,+∞)}

The Gap Bounded Size Set Disjointness problem DISJN
s,t : Is,t → {0, 1} is

defined as:

DISJN
s,t(X,Y ) =

{

1 if X ∩ Y = ∅,

0 otherwise.

The standard Set Disjointness problem corresponds to the choice of parame-
ters s = N, t = 1. A commonly studied variant bounds the size of the player’s sets
but promises nothing about the intersection (t = 1). This problem is known to
have randomized communication complexity Θ(s) [26]. Computing the intersec-
tion of the two sets also has randomized communication complexity only Θ(s) [7].
Leaving the players’ sets unbounded (s = N) while keeping the promise on the
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intersection’s size also appears in the literature, referred to as the Gap Set Dis-
jointness problem [14,32]. In both cases, the lower bound is a simple consequence
of the lower bound for the standard Set Disjointness problem.

Let us denote by Rε(f) the randomized communication complexity of a prob-
lem f with error at most ε.

Lemma 1. For any constant ε ∈ (0, 1/2), Rε

(

DISJN
s,t

)

∈ Ω
(

s
t

)

Proof. Consider the DISJN/t
s/t,1 Set Disjointness problem. This is known to

require Ω (s/t) communication as the standard Set Disjointness problem
DISJs/t

s/t,1 reduces to it (it is the same problem but on a subset of its input

space). Now remark that DISJN/t
s/t,1 reduces to DISJN

s,t, as the players can con-

struct a valid input to DISJN
s,t from a DISJN/t

s/t,1 input by making t copies of
each of their set elements, which concludes the proof. ��

Our lower bounds on testing a distance-3 coloring use the DISJN
s,t problem

with parameters s ∈ Θ(m) and t ∈ Θ(εm) (Theorem 3), s ∈ Θ(m) and t ∈
Θ(εm) (Theorem 4), and s ∈ Θ(

√

m/ε) and t = 1 (Theorem 5), while our lower
bound on testing a distance-4 coloring (Theorem 6) uses parameters s = m and
t = 1. Our lower bound on verifying a distance-k coloring for an arbitrary k
(Theorem 7) uses parameters s ∈ Θ(Δ�(k−1)/2�) and t = 1. Notice that the
complexity of the Set Disjointness problem does not depend on N – the size of
the universe – but only on s and t, the sizes of the input sets and their potential
intersection.

4 Testing Distance-k Colorings

For all the measures previously introduced (Definition 1), we give upper and
lower bounds on detecting being ε-far from a solution. Our first result is a proto-
col for all measures except ε-middle, and for any constant k (Theorem 1). This
protocol is later shown to be tight for the ε-node and ε-conflict models, even for
k = 3. In the case k = 3, we give a more efficient algorithm in the ε-middle, ε-
edge and ε-disjoint models (Theorem 2). We prove that the algorithm is optimal
for the ε-middle measure (Theorem 5) and also prove an non-matching lower
bound for the ε-far and ε-disjoint measures (Theorem 3). For k = 4, we prove
an ˜Ω(ε−1) lower bound in the ε-middle model. This last lower bound is strictly
higher than the complexity of the same problem when k = 3, demonstrating
that the complexity of the problem can keep increasing as we increase k beyond
3 not just when doing verification, but also property testing.

All the lower bounds use the Set Disjointness problem (Definition 2). For a
graphical summary of the results of this section, see Fig. 1.
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4.1 A General Algorithm for Any k

We first give an algorithm that works for all values of k and all our farness mea-
sures except ε-middle. The basic building block of our algorithm is a subroutine
has each node assign a random priority to its color, and has them then broadcast
colors according to their assigned priorities. This idea of breaking symmetry by
assigning random priorities to elements of interest has appeared previously in
the literature [11,12,16].

Theorem 1. There exists a randomized Congest algorithm running in O
(

1
ε

)

rounds for testing an ε-edge distance-k coloring. By extension this also applies
to ε-disjoint, and a slight modification yields the same result for ε-node and
ε-conflict.

Proof. Consider the following basic algorithm Bfs that runs for k rounds, which
we then repeat to obtain success probability 2/3. The edges are independently
assigned a random priority (such as a random value from [|E|3], with higher
values receiving precedence). Nodes use the max of the priorities of their incident
edges as their own priority. In the initial round, each node transmits its color
(along with its ID) to all its neighbors, along with its priority. In each subsequent
round, the algorithm transmits to each neighbor the color and priority of the
two highest priority colors it received in the previous round. Effectively, the color
from a highest priority node gets forwarded along a breadth-first-search tree. If
at the end of round k, the algorithm has received a color (from another node)
that matches its own, it outputs ‘invalid’; otherwise, it outputs ‘valid’.

In an ε-edge graph, there are at least εm edges that are the first edge of a
bad path. If any of those edges receives the highest priority in a round of the
basic algorithm, a color conflict gets detected. So with probability at least ε, the
basic algorithm detects an ε-edge graph.

This basic algorithm is then repeated to increase the success probability to
at least 2/3. It suffices to repeat it t times, where t satisfies (1 − ε)t ≤ 1/3. The
time complexity is then t · k. Setting t = ln(3)/ε achieves the desired result,
yielding an O(k/ε)-round algorithm.

We can simplify and adapt this algorithm for the ε-conflict model: Each node
picks a random priority. There are now εn improperly colored nodes, and if any
of them gets selected, the coloring will be found to be invalid. The rest of the
argument is the same. ��

4.2 A Better Running Time for k = 3

Theorem 2. There exists a randomized Congest algorithm running in
O

(

1
ε·√εm

)

rounds for testing an ε-middle distance-3 coloring. By extension, this
also applies to the ε-edge and ε-disjoint measures.

Proof. Let the nodes follow the following simple algorithm Random: in the first
round, each node informs its neighbors of its color and identifier, and in k − 2
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subsequent rounds, for each link a node has, it picks uniformly at random one of
the (color,ID) pair it received from its neighbors in the previous round and sends
it on this link. Any node that receives the same color twice but with a different
ID, and such that it received the pairs in two (not necessarily distinct) rounds
i and j such that i + j ≤ k, flags the coloring as invalid. This (k − 1)-rounds
protocol is repeated T times. Let us analyze the probability of success of this
protocol when k = 3.

Let σ = 4
√

m/ε. We say that an edge uv is good if min(d(u), d(v)) ≤ σ, and
bad otherwise. In an ε-middle graph, there is a set Π of edges, each of which is on
a 3-path between same-colored nodes, with |Π| ≥ εm. Observe that if a, u, v, b
is a path where a and b have the same color, then this will be detected if either
u forwards the ID of a to v or v forwards the ID of b to u. The probability p̄Pe

of non-detection along a path Pe with middle edge e = (u, v) ∈ Π is therefore
(1 − 1/d(u))T · (1 − 1/d(v))T ≤ e−T/min(d(u),d(v)). We say that a path Pe ∈ Π
is good if e is good. Let Π ′ ⊆ Π be the set of good paths. Let B be the set of
nodes with degree at least σ. There are at most

√
εm/2 nodes in B, as otherwise

the total number incidences on nodes in B would exceed 2m. Thus, there are
at most

(|B|
2

) ≤ εm/8 edges with both endpoints in B. Hence, there are at least
5εm/8 good paths in Π ′.

The probability that none of those good paths detect a conflict in the color
assignment is:

∏

P∈Π′
p̄P ≤ exp

(−T · |Π ′|
σ

)

≤ exp
(

− 5
32

T · ε3/2m1/2

)

Therefore, running the protocol for T ∈ O(ε−3/2m−1/2) is enough to solve
the problem with probability at least 2/3. ��

In particular, this protocol runs in constant time when ε ∈ Ω(m−1/3). We
give a matching lower bound later in the paper (Theorem 5). This algorithm
is also able to detect ε-edge and ε-disjoint graphs with the same running time
because of the relationships that exist between the measures, however the lower
bounds we have for these measures are weaker (Theorem 3) and do not match
our upper bound.

4.3 Lower Bounds for k ≥ 3

In this section, we prove lower bounds for the detection of ε-disjoint colored
graphs (Theorem 3), ε-node colored graphs (Theorem 4) and ε-middle colored
graphs (Theorems 5 and 6) in the Congest model. By the relationships that
exist between the separation measures of Definition 1, the lower bound on detect-
ing an ε-disjoint coloring also holds for ε-edge colorings. Similarly, the lower
bound on the detection of ε-node colorings also holds for ε-conflict colorings.

All lower bounds use the same following classical proof architecture: we take
a two-party communication complexity problem f of communication complexity
Rcc(f), and show that the players can solve an instance f(x, y) of this problem
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by simulating a Congest algorithm for our testing task on a graph Gx,y with
color assignment (cx,y

v )v∈V . The vertices of Gx,y are partitioned into two sets
VA and VB , and the edges are such that the colors and intraconnexions of VA’s
vertices only depend on x, and similarly with VB ’s vertices and y, while the
interconnexions between a vertices of VA and VB are fixed and therefore inde-
pendent of x and y. Let T be the number of rounds of a Congest algorithm for
the Congest task, and C the number of edges between vertices of VA and VB .
Simulating the Congest algorithm in the two-party communication complexity
model can be done in T · C · log(n) bits of communication. This last quantity
has to exceed Rcc(f), which yields that any Congest algorithm for our testing
task requires at least T ≥ Rcc(f)

C·log(n) rounds.

Theorem 3. For k ≥ 3, testing whether a distance-k coloring is ε-disjoint
requires ˜Ω

(

1
ε·(εm)

)

rounds in the Congest model.

Note that this lower bound matches neither our general upper bound (Theo-
rem 1) nor our upper bound for k = 3 (Theorem 2), leaving open the possibility
of more efficient algorithms or stronger lower bounds.

For this lower bound, we consider graphs of the form presented in Fig. 3. We
conjecture that our analysis is not tight, and that detecting whether such graphs
are ε-disjoint actually requires ˜Ω(ε−3/2m−1/2).

2εm

1
2
− ε

)

m

Fig. 3. The graph we use for our lower bound. It consists of 4 layers, with the outer
layers having

(
1
2

− ε
)
m vertices and the inner layers

√
2εm. There only exist edges

between adjacent layers, and vertices in layers 1 and 4 have degree 1, while layers 2
and 3 form a biclique. Layers 1 and 2 are randomly connected together by

(
1
2

− ε
)
m

edges, as are layers 3 and 4.

Proof. Let m be an integer and ε ∈ [

1
m , 1

2

)

. Set N = m, s =
(

1
2 − ε

)

m, t =
2εm + 3, and consider an instance of DISJN

s,t: a pair of sets (X,Y ), X,Y ⊆ [m].
Let us consider the graph Gx,y = (V,E) of Fig. 3. Its vertices V are partitioned
into four layers (Vi)i∈[4]. Let Alice possess the two leftmost layers (VA = V1∪V2)
and Bob possess the two rightmost layers (VB = V3 ∪ V4). The inner layers are
of size |V2| = |V3| =

√
2εm and form a biclique (complete bipartite graph) of

2εm edges, while the outer layers are of size |V1| = |V4| =
(

1
2 − ε

)

m. Let us first
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describe how the players color their vertices, before describing how they connect
the outer layers to the inner layers.

Let all of Alice’s and Bob’s vertices be initially uncolored. For each element
x ∈ X ⊆ [m], Alice picks an arbitrary uncolored vertex of V1 and colors it with
x. Bob does the same with his input set Y and the layer V4. Alice then colors
her remaining uncolored vertices with distinct even numbers from [m + 1, 2m],
while Bob colors his remaining uncolored vertices with distinct odd numbers
from [m + 1, 2m].

Then, for each vertex u ∈ V1, Alice connects it to a single vertex of V2 picked
uniformly at random. Bob similarly connects vertices of V4 to vertices of V3.

Let us now analyze the graph we constructed with respect to the Set Dis-
jointness instance we started with. If X ∩ Y = ∅, the way the players assigned
colors ensures that the graph received a valid distance-3 coloring. If |X ∩Y | ≥ t,
however, there are t pairs (u, v) ∈ V1×V4 of distinct vertices that are at distance
3 and received the same color. For each pair, there is a single length-3 path con-
necting them, and the only way those paths can share an edge is by sharing an
edge in V2 × V3. Let us prove that with high probability, more than εm of those
paths are edge-disjoint, and therefore the graph is ε-disjoint (see Definition 1).

Let S be an εm-sized subset of the 2εm edges between V2 and V3. The proba-
bility that none of those edges are directly connected to two vertices in layers V1

and V4 that received the same color is at most
(

1 − |S|
2εm

)t

= 2−t. As there are
(

2εm
εm

) ≤ 22εm such subsets S, the probability that less than εm edges of V2 × V3

are part of a length-3 path between similarly colored vertices of the outer layers
is at most 22εm−t ≤ 1

8 for our choice of t.
Since the graph the players constructed is well-colored when they received

disjoint sets, and ε-disjoint with probability ≥7/8 when they received intersecting
sets, the players can solve the Set Disjointness problem with error at most 1/4
by simulating a Congest algorithm to detect an ε-disjoint distance-3 coloring
that makes an error at most 1/8. Since there are 2εm edges between Alice’s and
Bob’s vertices, the number of rounds T of a Congest algorithm detecting an
ε-disjoint coloring with probability ≥ 7/8 satisfies:

T ≥
Rcc

1/4(DISJm
m/2,2εm)

2εm log(m)
∈ ˜Ω

(

1
ε · (εm)

)

��
Note that since a graph that is ε-disjoint from a valid solution is also ε-edge,

the lower bound also applies to testing being ε-edge. As corollary, we have that no
constant-round algorithm can detect an ε-disjoint coloring when ε ∈ o(m−1/2).

Theorem 4. For k ≥ 3, testing whether a distance-k coloring is ε-node requires
˜Ω

(

1
ε

)

rounds in the Congest model.

Proof sketch. We do another reduction from communication complexity, this
time using the graph shown in Fig. 4, and Set Disjointness instances with sets
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n
2
− 1

Fig. 4. The graph we use for our lower bound for the ε-node measure. It consists of
two stars of degree

(
n
2

− 1
)
, linked by their roots.

of size up to Θ(n) and intersection either empty or of size Ω(εn). The lower
bound follows from the communication complexity of this type of Set Disjointness
instance and the single edge between Alice’s and Bob’s parts of the graph. ��

Note that contrary to our previous theorem for detecting ε-disjoint colored
graphs (Theorem 3), this lower bound is tight with respect to our first algorithm
(Theorem 1).

Theorem 5. For k = 3, testing whether a distance-k coloring is ε-middle
requires ˜Ω

(

1
ε·√εm

)

rounds in the Congest model.

Note that this lower bound matches our upper bound for k = 3 (Theorem 2).
For this lower bound, we use graphs as depicted in Fig. 5.

1−ε
2

)

m

1−ε
2

m
ε

εm

Fig. 5. The graph we use for our lower bound on testing for ε-middle colorings (The-
orem 5), showing that the algorithm Random is tight for this measure and k = 3. It
consists of a central biclique between two layers of size

√
εm, and each vertex of these

layers is connected to
√

m/ε leaves in the outer layers.

Proof. Let m ∈ N and ε ∈ [

1
m , 1

2

)

. Set N = s = 1−ε
2

√

m/ε, t = 1, and consider
an instance of DISJN

s,t: a pair (X,Y ) of subsets of [N ]. Consider the four layer
graph Gx,y = (V,E) of Fig. 5. The vertices V2 and V3 of layers 2 and 3 form a
biclique. Every vertex of layer 2 is connected to s degree-1 vertices in layer 1,
and layers 3 and 4 are similarly connected.

Let Alice possess as VA the vertices of layers 1 and 2 and Bob possess the
rest. For any vertex v ∈ V2, let N1(v) ⊆ V1 be the vertices of layer 1 connected
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to v, and similarly for any vertex v ∈ V3, consider N4(v) the vertices of layer 4
connected to v.

For each v ∈ V2, Alice colors the nodes of N1(v) with the elements of X
as colors (without repetition, leaving uncolored nodes if necessary). Bob does
the same with nodes of N4(v) for each v ∈ V3. The coloring is then completed
without creating any new distance-3 conflict, using odd large colors on Alice’s
side and even large colors on Bob’s side.

If the players received disjoint sets, the resulting graph GX,Y is well-colored.
If the sets’ intersect, however, the coloring is ε-middle, because for each pair of
vertices (u, v) ∈ V2 × V3, there exists a pair of vertices (u′, v′) ∈ N1(u) × N4(v)
that have the same color. Therefore, the players can solve their Set Disjointness
instance by simulating a Congest algorithm for detection of ε-middle colored
graphs. Since εm edges connect Alice’s and Bob’s parts of the graph, the num-
ber of rounds T of a Congest algorithm detecting an ε-middle coloring with
probability ≥ 2/3 satisfies:

T ≥
Rcc

1/3(DISJN
1−ε
2

√
m/ε,1

)

εm · log(m)
∈ ˜Ω

(

1
ε
√

εm

)

��
Finally, we prove a lower bound on testing a distance-4 coloring in the ε-

middle model. The lower bound we obtain is strictly higher than our upper
bound on the same task with distance-3, which shows that there is a clear gap
between distance-3 and distance-4 colorings.

Theorem 6. Testing whether a distance-4 coloring is ε-middle requires ˜Ω
(

1
ε

)

rounds in the Congest model.

1−ε
2

)

mεm

Fig. 6. The graph we use for our lower bound on testing for ε-middle distance-4 color-
ings (Theorem 6).

Proof sketch. This lower bound is again proved by a reduction from communica-
tion complexity, this time using the graph depicted in Fig. 6, and Set Disjointness
instances with sets of size up to Θ(m) and no promise on the size of the inter-
section. ��
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5 Conclusion

In this work, we studied the testing and verification of distance-k colorings in the
Congest model for k ≥ 3 and several notions of distance from a valid solution.
We showed that the testing of distance-3 colorings admits a significantly more
efficient algorithm than distance-4 for one of our measures (ε-middle), and gave
indications that it might also be the case for the other edge- and path-based
measures. The node-based measures show no such gap. Our work does not give a
full picture how the complexity of the problem evolves as k increases in the edge-
and path-based models. A first open question is finding the exact complexity of
testing in the ε-disjoint and ε-edge model: we conjecture that this complexity
matches that of our algorithm for these models, rather than that of our lower
bound or something intermediate.

Another open question is what algorithm we can design in the ε-middle model
for arbitrary k, as the Bfs algorithm does not function in it. Even tackling the
case k = 4 is of interest, potentially to match our lower bound. Finally, the
several measures we introduced to study this problem might be of independent
interest. Are there other problems for which the same measures would make
sense? A natural candidate here is testing edge-colorings.

A Verifying Distance-k Colorings in Bounded-Degree
Graphs

A.1 A matching lower bound for the natural algorithm

In a graph of maximum degree Δ, the nodes can learn their distance-�k/2�
neighborhood in O

(

Δ�k/2	−1
)

rounds in Congest. In particular, an invalid
distance-k coloring can be detected with this number of rounds in Congest,
since two nodes of distance at most k are both within a distance �k/2� of some
node. This protocol is actually close to optimal, as our next theorem shows.

Theorem 7. For k ≥ 3, the verification of a distance-k coloring requires
˜Ω

(

Δ�k/2	−1
)

rounds in the Congest model.

Δ−1

�(k−1)/2�

(Δ−1)�(k−1)/2�

Fig. 7. The graph we use for our lower bound. It consists of 2 complete (Δ − 1)-ary
trees of depth �k/2� − 1 linked at their roots.
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Proof sketch. The proof again relies on embedding a Set Disjointness instance
in a graph (see Fig. 7). Here, a Set Disjointness instance with sets of size up to
Θ(Δ−�k/2	−1) and no promise on the intersection can be embedded, with a single
edge connecting Alice’s and Bob’s parts of the graph.
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