
Andrea Werneck Richa
Christian Scheideler (Eds.)

LN
CS

 1
21

56

27th International Colloquium, SIROCCO 2020
Paderborn, Germany, June 29 – July 1, 2020
Proceedings

Structural Information
and Communication
Complexity

Lecture Notes in Computer Science 12156

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andrea Werneck Richa •

Christian Scheideler (Eds.)

Structural Information
and Communication
Complexity
27th International Colloquium, SIROCCO 2020
Paderborn, Germany, June 29 – July 1, 2020
Proceedings

123

Editors
Andrea Werneck Richa
Computer Science, CIDSE
Arizona State University
Tempe, AZ, USA

Christian Scheideler
Department of Computer Science
Paderborn University
Paderborn, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-54920-6 ISBN 978-3-030-54921-3 (eBook)
https://doi.org/10.1007/978-3-030-54921-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-54921-3

Preface

The papers in this volume were presented at the 27th International Colloquium on
Structural Information and Communication Complexity (SIROCCO 2020) which was
supposed to be held from June 29 to July 1, 2020, in Paderborn, Germany. However,
due to the Corona virus pandemic, it took place virtually at the same time.

SIROCCO is devoted to the study of the interplay between structural knowledge,
communication, and computing in decentralized systems of multiple communicating
entities. Special emphasis is given to innovative approaches leading to better under-
standing of the relationship between computing and communication.

This time, we had 41 submissions, where 39 of them were regular papers and 2 were
brief announcements. Each submission was reviewed by at least three Program
Committee (PC) members with the help of external reviewers, and the committee
decided to accept 19 submissions as regular papers. In addition to these, this volume
includes invited papers from two keynote speakers and their co-authors. We accepted
four of the contributed submissions as brief announcements; while these do not appear
in these proceedings, they had short presentations at the conference. Of the regular
papers, “Ants on a Plane” by Abhinav Aggarwal and Jared Saia received the Best Paper
Award, and “Local Gathering of Mobile Robots in Three Dimensions” by Michael
Braun, Jannik Castenow, and Friedhelm Meyer auf der Heide won the Best Student
Paper Award.

We would like to thank the authors who submitted their work to SIROCCO this year
and the PC members and subreviewers for their valuable and insightful reviews and
comments. We would also like to thank the keynote speakers Petra Berenbrink,
Mohsen Ghaffari, and Jared Saia for their insightful talks, and Amos Korman for his
featured talk as the recipient of the 2020 SIROCCO Innovation in Distributed Com-
puting Prize. The SIROCCO Steering Committee, chaired by Magnús M. Halldórsson,
provided help and guidance throughout the process. The EasyChair system was used to
handle the submission of papers and to manage the review process. Without all of these
people it would not have been possible to produce these proceedings and the great
conference program.

June 2020 Andrea Werneck Richa
Christian Scheideler

Laudatio: 2020 SIROCCO Prize for Innovation
in Distributed Computing

It is a pleasure to award the 2020 SIROCCO Prize for Innovation in Distributed
Computing to Amos Korman. Amos has been one of the main contributors to
distributed network computing since the early 2000s, with outstanding contributions to
informative labeling schemes and dynamic networks, as witnessed by his SIROCCO
papers [1, 5]. With Shay Kutten and David Peleg, he is the initiator of the whole field of
proof-labeling schemes, an elegant and powerful mechanism for the design of
fault-tolerant distributed algorithms, including self-stabilizing algorithms, which
experienced significant developments since the conference version of their seminal
paper [2] appeared in PODC 2005.

However, the Award Committee wishes to award the prize for another radically
innovative line of research that Amos launched in 2010. This research aims at using
tools from distributed algorithms design and analysis to the study of biological
ensembles, such as ant colonies, schools of fish, cellular systems, flocks of birds, etc. Its
guiding principle is that, by modeling the behaviors of biological ensembles using tools
from distributed computing, one can derive bounds on the capabilities of each
individual in these ensembles, regarding communication and computation abilities. In
2012, Amos Korman published his first two contributions in this field [3, 4], on
collaborative search with implications for biology. These papers had a great impact on
the distributed computing community, opening wide avenues for research.

In 2013, Amos with his colleagues set up the Workshop on Biological Distributed
Algorithms (BDA). Since then, this workshop has been organized yearly, and
successfully gathered computer scientists and biologists interested in computational
aspects of biological systems. Hence, not only did Amos author influential papers, but
also he was at the origin of the set up of an entire community of scientists.

Showing the impact of distributed computing not only on the theory and practice of
artificial systems (networks, distributed systems and architectures, etc.), but also on
other disciplines, is an important contribution to augmenting the visibility of this field
of research. Amos has been one of the pioneers in noticing the importance of
distributed computing for life sciences.

We award the 2020 SIROCCO Prize for Innovation in Distributed Computing to
Amos Korman for his pioneering contributions to distributed computing methods for
system biology.

The 2020 Award Committee1

Shantanu Das Aix-Marseille University, France
Andrzej Pelc (Chair) Université du Qubec en Outaouais, Canada
Boaz Patt-Shamir Tel Aviv University, Israel

1 We wish to thank the nominators for the nomination and for contributing heavily to this text.

Zvi Lotker Ben-Gurion University of the Negev, Israel
Michel Raynal Irisa, France
Jukka Suomela Aalto University, Finland

Selected Publications Related to Amos Korman’s Contribution:

1. Amos Korman and Shay Kutten:
“Labeling Schemes with Queries”
SIROCCO 2007: 109–123.

2 Amos Korman, Shay Kutten, and David Peleg:
“Proof Labeling Schemes”
Distributed Computing 22(4): 215–233 (2010).

3 Ofer Feinerman and Amos Korman:
“Memory Lower Bounds for Randomized Collaborative Search and Applications to
Biology”
DISC 2012: 61–75.

4. Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sébastien Sereni:
“Collaborative Search on the Plane without Communication”
PODC 2012: 77–86.

5. Ofer Feinerman and Amos Korman:
“Clock Synchronization and Estimation in Highly Dynamic Networks: An Infor-
mation Theoretic Approach”
SIROCCO 2015: 16-30.

6. Amos Korman and Yoav Rodeh:
“Parallel Search with No Coordination”
SIROCCO 2017: 195–211.

7. Ofer Feinerman and Amos Korman:
“The ANTS problem”
Distributed Computing 30(3): 149–168 (2017).

8. Lucas Boczkowski, Amos Korman, and Emanuele Natale:
“Minimizing Message Size in Stochastic Communication Patterns: Fast
Self-Stabilizing Protocols with 3 bits”
Distributed Computing 32(3): 173–191 (2019).

viii Laudatio: 2020 SIROCCO Prize for Innovation in Distributed Computing

Organization

Program Committee Chairs

Andrea Werneck Richa Arizona State University, USA
Christian Scheideler Paderborn University, Germany

Program Committee

Petra Berenbrink University of Hamburg, Germany
Borzoo Bonakdarpour Iowa State University, USA
Yuval Emek Technion, Israel
Shantanu Das Aix-Marseille University, France
Thomas Erlebach University of Leicester, UK
Panagiota Fatourou University of Crete, Greece
Olga Goussevskaia Federal University of Minas Gerais, Brazil
Taisuke Izumi Nagoya Institute of Technology, Japan
Valerie King University of Victoria, Canada
Frederik Mallmann-Trenn King’s College London, UK
Lata Narayanan Concordia University, Canada
Calvin Newport Georgetown University, USA
Rotem Oshman Tel Aviv University, Israel
Matthew Patitz University of Arkansas, USA
Maria Potop-Butucaru Sorbonne University, LIP 6, France
Andrea Werneck Richa

(Co-chair)
Arizona State University, USA

Peter Robinson City University of Hong Kong, Hong Kong, China
Christian Scheideler

(Co-chair)
Paderborn University, Germany

Stefan Schmid University of Vienna, Austria
Nodari Sitchinava University of Hawaii at Manoa, USA
Jara Uitto Aalto University, Finland
André van Renssen The University of Sydney, Australia
Roger Wattenhofer ETH Zurich, Switzerland
Maxwell Young Mississippi State University, USA

Subreviewers SIROCCO 2020

Klaus-Tycho Förster
Joshua Daymude
Daniel Warner
Orr Fischer

Jan Studený
Anissa Lamani
Soumyottam Chatterjee
Hirotaka Ono

Satoshi Takabe
Orr Fischer
Joshua Daymude
Cristina Gava
Martin P. Seybold
William K. Moses Jr.
John Pfeifer
Daniel Hader
Omer Wasim
Milutin Brankovic
Othon Michail
Michael Feldmann
Christina Kolb
Eric Severson
Alexander Setzer

Damien Imbs
Josef Widder
Sampson Wong
Trent Rogers
Debasish Pattanayak
Giuseppe Antonio Di Luna
Cristina Gava
Jérémie Chalopin
Ulrich Schmid
Daniel Hader
Hung Viet Le
Kristian Hinnenthal
Yukiko Yamauchi
Patrick Eades

x Organization

Contents

Invited Papers

Network Decomposition and Distributed Derandomization (Invited Paper) . . . 3
Mohsen Ghaffari

Resource Burning for Permissionless Systems (Invited Paper) 19
Diksha Gupta, Jared Saia, and Maxwell Young

Mobile Robots

ANTS on a Plane . 47
Abhinav Aggarwal and Jared Saia

Local Gathering of Mobile Robots in Three Dimensions 63
Michael Braun, Jannik Castenow, and Friedhelm Meyer auf der Heide

Improved Lower Bounds for Shoreline Search . 80
Stefan Dobrev, Rastislav Královič, and Dana Pardubská

Guarding a Polygon Without Losing Touch . 91
Barath Ashok, John Augustine, Aditya Mehekare, Sridhar Ragupathi,
Srikkanth Ramachandran, and Suman Sourav

Dynamic Graphs

Random Walks on Randomly Evolving Graphs. 111
Leran Cai, Thomas Sauerwald, and Luca Zanetti

Non-strict Temporal Exploration . 129
Thomas Erlebach and Jakob T. Spooner

Exploration of Time-Varying Connected Graphs with Silent Agents 146
Stefan Dobrev, Rastislav Královič, and Dana Pardubská

Network Communication

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks. . . 165
Vicent Cholvi, Paweł Garncarek, Tomasz Jurdziński,
and Dariusz R. Kowalski

Stateless Information Dissemination Algorithms . 183
Volker Turau

Multi-agent Systems

Cops and Robbers on Dynamic Graphs: Offline and Online Case 203
Stefan Balev, Juan Luis Laredo Jiménez, Ioannis Lamprou,
Yoann Pigné, and Eric Sanlaville

Black Virus Decontamination of Synchronous Ring Networks by Initially
Scattered Mobile Agents . 220

Nikos Giachoudis, Maria Kokkou, and Euripides Markou

The Power of Global Knowledge on Self-stabilizing Population Protocols . . . 237
Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim,
and Toshimitsu Masuzawa

Phase Transition of a Non-linear Opinion Dynamics
with Noisy Interactions . 255

Francesco d’Amore, Andrea Clementi, and Emanuele Natale

Communication Complexity

Distributed Testing of Distance-k Colorings . 275
Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin

Communication Complexity of Wait-Free Computability in Dynamic
Networks . 291

Carole Delporte-Gallet, Hugues Fauconnier, and Sergio Rajsbaum

Distance Labeling Schemes for K4-Free Bridged Graphs 310
Victor Chepoi, Arnaud Labourel, and Sébastien Ratel

Game Theory

Multi-winner Election Control via Social Influence 331
M. Abouei Mehrizi and Gianlorenzo D’Angelo

Network Creation Games with Local Information and Edge Swaps 349
Shotaro Yoshimura and Yukiko Yamauchi

The Value of Information in Selfish Routing . 366
Simon Scherrer, Adrian Perrig, and Stefan Schmid

Author Index . 385

xii Contents

Invited Papers

Network Decomposition and Distributed
Derandomization (Invited Paper)

Mohsen Ghaffari(B)

ETH Zurich, Zurich, Switzerland
ghaffari@inf.ethz.ch

Abstract. We overview a recent line of work [Rozhoň and Ghaffari
at STOC 2020; Ghaffari, Harris, and Kuhn at FOCS 2018; and Ghaf-
fari, Kuhn, and Maus at STOC 2017], which proved that any (locally-
checkable) graph problem that admits an efficient randomized distributed
algorithm also admits an efficient deterministic distributed algorithm,
thereby resolving several central and decades-old open problems in dis-
tributed graph algorithms. We present a short and self-contained version
of the proofs, and conclude by discussing several related questions that
remain open.

This article accompanies a keynote talk of the author at the Interna-
tional Colloquium on Structural Information and Communication Com-
plexity (SIROCCO) 2020. The writing is based on [24,28,45] and pri-
marily targets non-experts.

Keywords: Distributed graph algorithms · Derandomization ·
Network decomposition · LOCAL model

1 Introduction

Understanding the gap between the power of randomized and deterministic
algorithms is one of the fundamental questions in the theory of computation.
Instances of this question have been studied extensively in various settings, e.g.,
the P vs BPP question in centralized computation, the NC vs RNC question in
parallel computation, the L vs RL in log-space bounded computation, etc.

For over three decades, a similar question remained open for distributed graph
algorithms, and various special cases of it were at the center of the community’s
research. Here, we briefly review the recent work that resolved this question [24,
28,45], and we outline some of the related problems that remain open.

The Model. We consider a standard synchronous message-passing model for
distributed computing on a network, often referred to as the LOCAL model
[36,37]. The network is abstracted as an n-node undirected graph G = (V,E).

We acknowledge support from the European Research Council (ERC), under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No.
853109).

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-54921-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_1

4 M. Ghaffari

There is one processor on each network node. The processors can communicate
with each other in synchronous rounds, where per round each processor/node can
send one message to each of its neighbors in G. In the basic version of the model,
we assume no upper bound on the message sizes. A variant, called the CONGEST
model [44], allows only O(log n)-bit messages. At the very beginning, nodes do not
know the topology of the graph G, except for knowing their own neighbors, and
potentially estimates of some global parameters, e.g., a (polynomially-tight) upper
bound on the network size n = |V |. In the deterministic version of the model, we
also assume that the nodes have unique identifiers, typically of O(log n)-bit length.
At the end of the algorithm, each node should know its own part of the output,
e.g., if we are coloring the vertices of G, each processor should know its own color.
Finally, the focus is on the communication and thus we measure mainly the round
complexity, i.e., the number of rounds until all nodes terminate. That is, the model
allows the processors to perform arbitrary computation in between the rounds,
given the information that they have.

Thanks to the relaxations on the message size and computation, the model
admits a clean mathematical interpretation: all that a node can compute in r
rounds, for any value r, is exactly functions of the information initially in nodes
within its distance r. That is, for instance, any deterministic r-round algorithm is
exactly a mapping from r-hop neighborhood topologies to the output. Hence, in
this sense, determining the round complexity of a graph problem in the LOCAL
model characterizes the locality of that problem.

Deterministic vs Randomized—State of the Art. In a spirit similar to
viewing centralized algorithms with poly(n) time complexity as efficient, or par-
allel algorithms with poly(log n) time complexity as efficient, in distributed graph
algorithms, it has become standard to consider algorithms with poly(log n) round
complexity as efficient.

Starting in the 1980s, it was discovered that several key problems admit
efficient randomized algorithms in the LOCAL model. For instance (Las Vegas)
randomized algorithms1 with O(log n) round complexity were presented for prob-
lems such as maximal independent set, maximal matching, (Δ+1)-vertex color-
ing, and (2Δ−1) edge coloring [1,35,39]. Shortly after, and naturally, researchers
asked whether these problems admit also efficient deterministic distributed algo-
rithms. A prominent example is Linial’s famous open question2 about the Maxi-
mal Independent Set (MIS) problem [36,37], where he asked “can it [MIS] always
be found [deterministically] in polylogarithmic time?” Important progress was
made in the work of Awerbuch, Goldberg, Luby, and Plotkin [3] and the follow
up by Panconesi and Srinivasan [43], which led to deterministic algorithms with
complexity 2O(

√
logn). This is a complexity much better than any polynomial in

1 These are algorithms that always output a correct solution, and they terminate
within the promised time bound with high probability, i.e., with probability at least
1 − 1/nc for a desirably large fixed constant c > 1.

2 For instance, it was called “probably the most outstanding open problem in the area”,
by Barenboim and Elkin [9].

Network Decomposition and Distributed Derandomization (Invited Paper) 5

n but still much higher than the desired poly(log n) bound. Over the years, there
was progress on efficient deterministic algorithms for a number of these problems,
e.g., maximal matching [19,33], relaxations of vertex coloring with larger num-
ber of colors [8], and edge coloring [20,29,31,34]. However, several problems—
notably including MIS and (Δ+1) vertex coloring—remained open, with the best
known complexity remaining at the aforementioned 2O(

√
logn) bound. See also

the book of Barenboim and Elkin [9, Open Problems Chapter], which highlights
a number of such open problems (as of 2013).

Deterministic vs Randomized—Generalized Question. Generalizing
these, one can ask a much broader question [28]: Is it the case that, in the
LOCAL model, the class of all locally-checkable problems that admit an efficient
randomized algorithm (known as P-RLOCAL) is equal to the class of all locally
checkable problems that admit an efficient deterministic algorithm (known as
P-LOCAL)? In short, this is to ask whether

P-LOCAL ?= P-RLOCAL

As mentioned above, we interpret efficient algorithms as those with poly(log n)
round complexity. Also, locally-checkable means graph problems for which a
proposed solution can be checked deterministically in constant rounds, as defined
by Naor and Stockmeyer [41], or even poly(log n) rounds. If the solution is invalid,
at least one node should know. Notice that all the problems mentioned above
are locally checkable, e.g., in vertex coloring, it suffices if each node compares
its colors with just its neighbors, which can be done in one round. Also, we note
that this restriction to locally-checkable problems is necessary, as otherwise the
answer is clearly negative and there are problems that have even zero round
randomized algorithms and no efficient deterministic algorithm3.

Motivations. The above deterministic vs randomized question is a central prob-
lem in the area. In fact, the 2013 book of Barenboim and Elkin [9] even goes
on to assert that “Perhaps the most fundamental open problem in this field is to
understand the power and limitations of randomization”. Similar to its counter-
parts in other computational settings, this question is motivated by complexity-
theoretic considerations as well as practical desires for deterministic guarantees.
But besides these standard reasons, there is also a modern motivation, which is
unique to the distributed setting, as we review next.

A 2016 result of Chang et al. [13] showed that to improve the randomized
algorithms for several key problems– MIS, vertex coloring, etc–we provably need
faster deterministic algorithms. Concretely, they showed that the randomized
complexity of any problem on n-node graphs is at least its deterministic com-
plexity in

√
log n-node graphs. Considering the state of the art randomized

algorithms, this showed that any faster randomized algorithm would imply a
faster deterministic algorithm. So, even if we are interested in only randomized

3 For instance, the problem of marking (1 ± o(1))
√

n) nodes can be solved in zero
rounds randomized and needs Ω̃(

√
n) rounds deterministically. Cf. [24, Sect. 7.2].

6 M. Ghaffari

algorithms, we need to understand and improve deterministic algorithms. See
[13,15,45] for quantitative statements for various problems.

Resolution. The question mentioned above was recently resolved in affirma-
tive [24,28,45], proving that P-LOCAL=P-RLOCAL. That is, any locally check-
able problem that admits an efficient randomized algorithm also admits an effi-
cient deterministic algorithm. Concretely, this came in two parts: (A) The work
in [24,28] showed that obtaining a poly(log n)-round deterministic algorithm for
network decomposition (a classic problem that we will review soon) would imply
P-LOCAL=P-RLOCAL, and (B) the work in [45] provided a poly(log n)-round
deterministic algorithm for network decomposition.

Implications and Applications. The above result lead to poly(log n)-round
deterministic algorithms for several well-studied graph problems, and thus
resolved a number of central open problems in distributed graph algorithms.
Just the network decomposition algorithm of [45], on its own, solved several
special cases: for instance, it implies a poly(log n) round algorithms for MIS—
thus resolving Linial’s question—and Δ + 1 coloring. These algorithms can be
extended also to the CONGEST model, with O(log n)-bit messages [7,12,45].
With the general derandomization P-LOCAL=P-RLOCAL, the list goes much
further, and includes problems such as Lovász Local Lemma and its complexity-
theoretic implications, packing and covering integer linear programs, defective
and frugal coloring, forest decomposition, low out-degree edge orientations, span-
ners, etc. We refer the interested reader to [45, Sect. 3] for a coverage of these
corollaries, as well as implications for massively parallel computation.

Roadmap. In the following sections, we first start with a warm up that allows us
to organically introduce the concept of network decomposition and how they help
for distributed algorithms. We then present (a weaker variant of) the efficient
deterministic network decomposition algorithm of [45] in Sect. 3, and discuss the
derandomization method of [24,28] in Sect. 4. These two sections provide a short
and self-contained proof of P-LOCAL=P-RLOCAL. In the last section, we discuss
several related problems that remain open.

2 Warm Up: MIS and Network Decomposition

Here, as a warm up, we discuss the MIS problem and its randomized algorithm
and then, we explain how we naturally arrive at the concept of network decompo-
sition, as introduced by Awerbuch et al. [3], starting with the goal of an efficient
deterministic distributed MIS algorithm.

The MIS Problem. The Maximal Independent Set (MIS) problem asks for
selecting a subset S ⊆ V of vertices such that no two nodes in S are adjacent
(independence), and moreover we cannot add any more node to S, i.e., any node
v ∈ V \ S has a neighbor in S (maximality).

Randomized Algorithm. There is a simple and celebrated4 O(log n)-round
randomized algorithm for MIS from the 1980 s, due to Luby [39] and Alon,
4 See the Dijkstra prize of 2016, and its citation.

Network Decomposition and Distributed Derandomization (Invited Paper) 7

Babai, and Itai [1]. We start with an empty S and iteratively add independent
vertices to it. Per iteration, each (remaining) node v picks a real random number5

rv ∈ [0, 1] and then we add to S all nodes v that have a number strictly larger
than all of their neighbors. We then remove all the (newly added) nodes of S and
their neighbors from V , and proceed to the next iteration. The analysis shows
that the algorithm terminates with high probability in O(log n) iterations, as
per iteration half of the remaining edges are removed in expectation. See [46].

Deterministic Algorithm and Introducing Network Decomposition. If
we were in the easy case of a small diameter network—i.e., if the network graph G
has diameter D that is at most poly(log n)—then we could solve the MIS problem
via a simple topology-gathering approach: we would collect the topology of the
entire network, including the node identifiers and all the edges between them,
into one leader node in O(D) rounds, then compute an MIS there via the simple
sequential greedy MIS algorithm, and finally broadcast the computed MIS set to
all nodes in O(D) rounds. The interesting case is when G has a large diameter.

Wishfully thinking, if we could partition say at least half of the nodes
into non-adjacent and vertex-disjoint clusters, each of diameter at most D =
poly(log n), then we could also compute an MIS of all the nodes in these clusters
by repeating the above strategy in each cluster. Since clusters are non-adjacent,
they can compute their independent sets simultaneously, all in parallel. Then,
we would remove all these clustered vertices from the network, as well as all
non-clustered vertices that are adjacent to a node in the computed indepen-
dent set. This way, we would have removed at least 1/2 of the vertices of the
graph. So, by repeating the same procedure log n times, each time clustering at
least half of the remaining nodes into non-adjacent and vertex-disjoint clusters
of diameter at most D and performing topology-gatherin in each cluster, we
would at the end obtain an MIS of the entire graph. This would have complexity
O(D log n) = poly(log n), i.e., it would be an efficient deterministic algorithm
for MIS.

The only missing piece in the above wishful thinking is this: where do we get
such a nice clustering? This is basically what we call network decomposition, as
introduced first by Awerbuch, Goldberg, Luby, and Plotkin [3], and as we define
formally next. Before that, it is worth commenting that, even though the above
approach is in the LOCAL model and uses large messages for topology gathering,
one can use network decomposition to solve MIS and Δ + 1 vertex coloring also
in the CONGEST model [7,12,45].

Defining Network Decomposition. A network decomposition with C colors
and D diameter is a partitioning of the vertices into disjoint clusters, each colored
with a color from {1, 2, . . . , C}, such that each cluster has diameter at most D
and any two adjacent clusters—i.e., two clusters that contain adjacent vertices—
have different colors.

In the above wishful thinking, in each iteration, we would get the clusters
of one color of the network decomposition. Each cluster would have diameter

5 A number with O(log n) bits of precision would also suffice.

8 M. Ghaffari

at most D. And since we repeat log n times, our decomposition would have
C = log n colors.

A subtlety worth point out is in the definition of the diameter for each cluster.
If we define the diameter of a cluster as the maximum distance of any of its two
vertices in the subgraph induced by the nodes of the cluster, this is known as a
strong-diameter network decomposition. In contrast, if we define the diameter
of the cluster as the the maximum distance of any of its two vertices in the
original graph G (i.e., when the path is allowed to exit the cluster), this is
known as a weak-diameter network decomposition. For the applications in the
LOCAL model, e.g., as exemplified above for the MIS problem, even the version
with weak-diameter is sufficient.

Known Results about Network Decomposition. It is well-known that
every n-node graph admits a network decomposition with C = log n colors
and D = log n strong-diameter, and there is a simple sequential algorithm to
build such a decomposition (often called ball-carving) [4]. A randomized algo-
rithm of Linial and Sak computes a decomposition with these parameters but
weak-diameter in O(log n) rounds of the LOCAL model, and it can be changed
to a poly(log n)-round algorithm that computes a decomposition with these
parameters and strong-diameter, using a transformation of Awerbuch et al. [2].
Recently, Elkin and Neiman [17] presented an adaptation of the randomized app-
roach of [40], which computes a strong-diameter network decomposition with
the above ideal bounds in O(log2 n) rounds of the CONGEST model. On the
deterministic side, a classic LOCAL-model deterministic algorithm of Panconesi
and Srinivasan computes a decomposition with C = log n colors and D = log n
strong-diameter in 2O(

√
logn) rounds [43], which itself was an improvement on the

2O(
√
logn log log n) round algorithm of Awerbuch et al. [3]. This 2O(

√
logn) round

complexity remained the state of the art for over 25 years, until the efficient
deterministic distributed construction of [45], which we discuss next.

3 Efficient Deterministic Network Decomposition

Now, we discuss the efficient deterministic algorithm of [45] for constructing a
network decomposition. We discuss only a weaker variant with C = O(log n) col-
ors and weak-diameter D = poly(log n). Two remarks are in order: (A) It is well-
known how to improve these to the ideal bound of O(log n) and strong-diameter,
with only a poly(log n) factor increase in the round complexity. See [2,45]. (B)
This weaker statement is still sufficient for poly(log n)-round deterministic algo-
rithms in the LOCAL model, e.g., for MIS and the efficient derandomization that
we discuss in the next section.

Algorithm Outline. We describe an algorithm that finds a partial clustering
that clusters at least half of the vertices into non-adjacent clusters each with
weak-diameter at most D = O(log3 n). Applying this once gives the clusters
of the first color of the decomposition. This is what we call one iteration. By
repeating the algorithm for log n iterations, each time on the remaining nodes,
we get the log n colors of the decomposition.

Network Decomposition and Distributed Derandomization (Invited Paper) 9

Outline of One Iteration. The iteration starts with a trivial clustering where
each node is one cluster. Unfortunately, in this clustering, all edges are bad, i.e.,
they connect two different clusters. We adjust the clusters gradually, growing or
shrinking them appropriately, such that at the end no bad edge remains.

The iteration has b phases, where b = O(log n) denotes the number of bits
in the identifiers. Each phase corresponds to one bit. The objective is that, at
the end of iteration i, there should be no (bad) edge connecting two clusters
whose identifiers (the identifier of the original node in the cluster) differ in the i
least significant bits. Hence, at the very end, after phase i = b, there is no edge
connecting two different clusters.

Each Phase. In the first phase, we call a cluster (and its nodes) red if the least
significant identifier bit is 1 and blue otherwise. Generally, in phase i, we call a
cluster (and its nodes) red if the ith least significant identifier bit of the cluster
is 1 and blue otherwise (completely forgetting the colors of the previous phases).
Each phase is made of O(log2 n) steps. Per step, each red node proposes to join
an arbitrarily chosen neighboring blue cluster, if there is one. A blue cluster
either accepts all the request, which happens when the number of request is at
least a 1/(2b) factor of the number of nodes in the cluster, or it denies all of
them. A red node whose request is denied is killed (and loses its color). When
a vertex v is killed, it will not be clustered in this iteration. A red node whose
request is accepted becomes blue and joins the accepting cluster, and adopts the
identifier of that cluster as its own cluster identifier. A red node who did not
make a request, as it did not have a blue neighbor, remains in its cluster as a
red node, for this step. Notice the asymmetry as the red nodes act individually
whereas blue clusters act as a cluster. As mentioned, we perform this procedure
for O(log2 n) steps, and then proceed to the next phase, which has a new coloring,
based on the next (cluster) identifier bit.

Analysis–the First Phase. Let us start with the first phase. We observe two
properties: (A) per step that a blue cluster accepts requests, its size grows by
at least a (1 + 1/(2b)) factor. Hence, the cluster can grow at most O(b log n) =
O(log2 n) steps in this phase, as beyond that it would have more than n vertices.
Hence, all blue clusters stop growing within O(log2 n) steps. After O(log2 n)
steps, i.e., at the end of the first phase, there is no edge between a red cluster
and a blue cluster. (B) The first time that a blue cluster denies the requests, it
will never grow again in this phase, because all adjacent nodes are either blue or
killed (and thus uncolored for the rest of this iteration). When the cluster stops
growing, it kills a number of red nodes up to at most a 1/(2b) fraction of the
number of (blue) nodes in this cluster. Hence, overall in this phase, at most a
1/(2b) fraction of nodes are killed.

Analysis–All Phases. Generalizing these observations, we now argue the three
properties of this construction, for all phases:

– No bad edges left: Generalizing observation (A) above, we can argue, with
an induction, that at the end of the ith phase, we have no (bad) edge between
clusters whose IDs differ in the i least significant bits. Therefore, after all the
b phases, no bad edge remains and the clusters are non-adjacent.

10 M. Ghaffari

– At most half killed: Per phase, we kill at most a 1/(2b) fraction of the
nodes. Hence, the fraction of nodes that are not killed during b phases—i.e.,
remain clustered—is at least (1 − 1/(2b))b ≥ 1/2.

– Small cluster diameter: Finally, the weak-diameter of each cluster grows
by additive O(1) per step of each phase, and thus by additive O(log2 n) per
phase. Hence, even after all the b = O(log n) phases, the weak-diameter is
at most O(log3 n). This also allows us to perform each one step in at most
O(log3 n) rounds, as each blue cluster can aggregate the number of requests
and decide to accept or deny them all.

4 Distributed Derandomization

In the warm up section, we used network decomposition to solve MIS determinis-
tically. We basically simulated the sequential greedy MIS algorithm, by working
through the colors of the decomposition. We now discuss an approach of [24,28]
that generalizes this and obtains an efficient distributed derandomization for all
locally checkable problems, thus proving P-LOCAL=P-RLOCAL.

Theorem 1. P-LOCAL=P-RLOCAL

Proof (Proof Sketch). Consider a locally checkable problem P for which any
solution can be checked deterministically in p(n) ∈ poly(log n) rounds. Let A be a
randomized algorithm that solves P with high probability—i.e. with probability
at least 1 − 1/nc for a constant c > 1—in r(n) ∈ poly(log n) rounds. We exhibit
a deterministic algorithm that solves P in r′(n) ∈ poly(log n) rounds.

Considering algorithm A and the local checkability of P, we thus have an
algorithm A′ with round complexity R(n) = p(n) + r(n) where each node v,
besides its output to problem P, checks its p(n)-hop neighborhood and sets an
indicator variable fv ∈ {0, 1} equal to 1 if and only if one of the conditions of
P is violated. Hence, the event

(∀v ∈ V, fv = 0
)

deterministically indicates that
the outputs provide a correct solution for problem P. Moreover, E[

∑
v∈V fv] ≤∑

v∈V 1/nc = n/nc < 1.

A Sequential Deterministic Local Algorithm for P. First, let us devise a
certain sequential and local algorithm (formally, an SLOCAL-model algorithm in
the terminology of [28]) for P via a simple method of conditional expectation.
Consider an arbitrary ordering of the vertices u1, u2, . . . , un. We examine the
vertices one by one, according to this order. When examining vertex u1, we fix
its randomness in algorithm A′ in a way that the conditional expectation of the
E[

∑
v∈V fv] does not increase. Notice that u1 influences fv only for nodes v in its

R(n)-hop neighborhood. Thus, we can fix the randomness of u1 by reading only
its 2R(n)-hop neighborhood. We similarly fix the randomness of all other nodes.
Each time, when examining vertex ui, we read the 2R(n)-hop neighborhood of
ui, including the randomness already fixed there, and then we fix the randomness
of ui in a manner that the conditional expectation of the E[

∑
v∈V fv] does not

increase. As a result, we have a deterministic sequential algorithm for which it

Network Decomposition and Distributed Derandomization (Invited Paper) 11

still holds that E[
∑

v∈V fv] < 1. Since we have a deterministic algorithm and∑
v∈V fv must be a non-negative integer, this means

∑
v∈V fv = 0. That is,

this sequential algorithm deterministically solves P. Moreover, this sequential
algorithm is local in the sense each value is determined by examining just a
small neighborhood around it.

A Distributed Deterministic LOCAL algorithm for P. Now, we describe a
deterministic distributed LOCAL algorithm that simulates the above determinis-
tic sequential local algorithm, using network decomposition. This is fairly similar
to how we simulate the sequential greedy process for computing the MIS in the
LOCAL model, using network decomposition.

Concretely, first compute a network decomposition of the graph G2R(n)—
where we connect any two vertices with distance at most 2R(n). This can be
done in R poly(log n) = poly(log n) rounds, using the network decomposition
of the previous section. Then, we examine the colors of this network decom-
position one by one. When examining one color, each cluster works separately,
and aggregates the R(n)-hop topology around the cluster, including the already
fixed randomness in that neighborhood. Then, the cluster simulates the above
sequential process to fix the randomness of the nodes of the cluster. All clusters
of the same color can work simultaneously, as the indicator variables fv that
they influence are disjoint—since the clusters of the same color are more than
2R(n) hops apart and each influences at most R(n)-hops far. �	

5 Open Problems

We have seen a poly(log n)-round algorithm for network decomposition in the
LOCAL model. We also discussed that in the LOCAL model, efficient algorithms
do not need randomness, for locally checkable problems, at least in the stan-
dard (coarse-grained) interpretation of efficiency as poly(log n) round complex-
ity. More concretely, there is an efficient distributed derandomization method,
which shows that any poly(log n)-round randomized LOCAL algorithm for any
problem whose solution can be checked deterministically in poly(log n) rounds
of the LOCAL model can be transformed to a poly(log n)-round deterministic
LOCAL algorithm for the same problem. These two results have numerous impli-
cations and corollaries, and resolve several central open problems in distributed
graph algorithms. See [45, Sect. 3]. In this last section, we discuss some of the
related problems that remain open. Of course, this is by no-means exhaustive;
we focus on questions that closely relate to the material discussed in this article.

5.1 Open Problems: LOCAL Model

? Fine-Grained Polylogarithmic Complexity. Now that the coarse-grained
version of the deterministic vs. randomized question is resolved, we can look into
the problem in a more fine-grained way. Concretely, an obvious question is to
improve the complexity of the network decomposition and obtain a smaller expo-
nent in the poly-logarithm. The algorithm of Rozhoň and Ghaffari [45] has an
O(log7 n) round complexity in the LOCAL model. As an ideal target, we can ask

12 M. Ghaffari

Open Problem 1. Is there a deterministic LOCAL model algorithm with round
complexity O(log2 n) for computing a network decomposition with O(log n) colors
and O(log n) cluster diameter?

A similar fine-grained question can be asked about a number of other central
problems whose best known solution relies on network decomposition, e.g., MIS,
(Δ + 1)- coloring, Lovász Local Lemma, etc. Indeed, some of these might be
more plausible ground for faster algorithms, because their algorithm does not
necessarily need to build on network decomposition.

Open Problem 2. Is there a deterministic LOCAL model algorithm with round
complexity O(log n) for the maximal independent set problem? If not, how about
for (Δ + 1) vertex coloring?

The algorithm of Rozhon and Ghaffari [45] for MIS and Δ + 1 coloring has an
O(log7 n) round complexity in the LOCAL model.

We note that even for the simplification of the MIS problem to the maximal
matching problem (e.g., the special case of MIS on line graphs), currently the
best known algorithm, due to Fischer [18,19], has complexity O(log2 Δ log n) =
O(log3 n). Notably, this is one of the classic problems for which the best known
solution does not rely on network decomposition. Maximal matching might be
a better starting point for addressing Open Problem 2. See also [25,31,34] for
some other problems with poly(log n) deterministic round complexity, for which
the best known solution does not depend on network decomposition and there
is room for improvement in poly-logarithmic bound.

Most notably, the gap for the coloring problem is much wider. While for MIS
and maximal matching, deterministic algorithms cannot go much further below
an O(log n) round complexity, thanks to a recent Ω(log n/ log log n) lower bound
of Balliu et al. [5], for the (Δ + 1) coloring, there is no such obstacle known and
(significantly) sublogarithmic complexities are plausible. The best known lower
bound for the round complexity of (Δ+1) coloring remains at Ω(log∗ n) [36,37],
even when restricted to deterministic algorithms.

Finally, one can view this fine-grained deterministic vs. randomized complex-
ity through a complexity landscape lens and ask the following:

Open Problem 3. What is the largest gap possible between the deterministic
and randomized complexity of a locally checkable problem, in n-node graphs?

Results of [45], as discussed in previous section, show that the gap is
always at most O(log7 n). On the other hand, there are problems with an
Ω(log n/ log log n) factor gap. For instance, the sinkless orientation problem
has randomized complexity Θ(log log n) [11,31] and deterministic complexity
Θ(log log n) [13,31]. This gap was also lifted recently to higher complexities, by
Balliu et al. [6], who showed locally checkable problems with Θ(log log n · log n)
randomized complexity and Θ(log2 n) deterministic complexity. To the best of
our knowledge, this Ω(log n/ log log n) gap remains the largest known separation.

? Low-Diameter Ordering. An issue with using network decomposition (for
MIS, Δ + 1 coloring, etc) is that, even if we can construct it very fast—e.g.,

Network Decomposition and Distributed Derandomization (Invited Paper) 13

in O(log n) rounds, as provided by a variant of the randomized algorithm of
Linial and Saks [38]—still using the decomposition in the standard way requires
Ω̃(log2 n) rounds. Here, Ω̃ suppresses log log n factors. The reason for the lower
bound is as follows. In the standard way, we process the color classes one by one
and then spend time proportional to the maximum cluster diameter per color
class. As pointed out by Linial and Saks [38], in a decomposition with k col-
ors, the cluster diameter has to be at least Ω(logk n)—simply because there are
graphs of chromatic number below 2k and girth Ω(logk n) and a better cluster
diameter would contradict the chromatic number, since each lower diameter clus-
ter is a forest and admits a 2-coloring. They also prove that in such a decomposi-
tion, the cluster-diameter is also at least Ω(n1/k) [38, theorem 3.1]. Considering
the possibilities of k yields the aforementioned Ω̃(log2 n) lower bound6.

One way of going around this issue, and approaching an O(log n) complex-
ity, is to use a different helper tool for transforming sequential local algorithms
to distributed LOCAL model algorithms. A concrete suggestion, closely related
to network decomposition, is the low-diameter ordering problem introduced by
Ghaffari, Kuhn, and Maus [28]. A d-diameter ordering is a numbering of the ver-
tices with distinct values such that for any path with monotonically increasing
numbers, the weak diameter is at most d. One can see that given a d-diameter
ordering, we can solve for instance MIS in O(d) rounds of the LOCAL model. Net-
work decompositions with O(log n) colors and O(log n) cluster diameter imply
an O(log2 n)-diameter ordering: set the numbering for each node v to be the
tuple (colorv, IDv), and use lexicogrpahic comparisons. But this remains the best
known. Already understanding the best existential bound on the low-diameter
ordering—e.g., whether there is always an ordering with O(log n) diameter—is
interesting. More generally, we can ask the following:

Open Problem 4. What is the best existential bound for low-diameter order-
ing, i.e., what is the smallest function d(n) such that any n-node graph admits
a d(n)-diameter ordering? Also, is there a distributed algorithm with complexity
O(d(n)) to build such an ordering?

? Shared Randomness. Stepping back from the above fine-grained ques-
tions, a closely related coarse-grained question is worth emphasizing: While we
now have a reasonable understanding of the power of private randomness, a sim-
ilar questions can be asked (and remains open, to the best of our knowledge)
regarding shared randomness in distributed graph algorithms.

Open Problem 5. Is there an efficient distributed mechanism for removing
shared randomness from algorithms? Concretely, consider an arbitrary locally

6 One particular question, related to this topic, that remains open to the best of our
knowledge is that of computing a minimal coloring, that is, a coloring where each
node with color i has a neighbor with color j for every j < i. With randomized
network decomposition [38], we can compute such a coloring in O(log2 n) rounds,
with high probability. This remains the best known algorithm for minimal coloring.
The problem has an Ω(log n/ log log n) round lower bound [21].

14 M. Ghaffari

checkable problem P, whose solution can be checked deterministically in O(1)
rounds, and such that P admits a randomized LOCAL-model algorithm with
shared randomness with a poly(log n) round complexity in any n-node graph.
Can we solve P deterministically in poly(log n) rounds of the LOCAL model?

A somewhat related note: one can see, via a simple application of the proba-
bilistic method that generalizes a classic argument of Newman [42] for two-party
protocols, that we need at most O(log n) bits, if any, of shared randomness in
distributed algorithms7. See also [27] for other related observations.

5.2 Open Problems: CONGEST Model

? Strong Diameter Decomposition in the CONGEST Model. The net-
work decomposition algorithm of [45] also works in the CONGEST model with
poly(log n) round complexity, where per round each node can send only O(log n)
bits to each neighbor. The provided structure has clusters with weak-diameter
poly(log n), meaning that any two vertices of the same cluster are within dis-
tance poly(log n), according to distances in the base graph. In the LOCAL model,
this can be refined to a strong-diameter network decomposition: O(log n)-colored
clusters, each inducing a subgraph with diameter O(log n) [45]. In the CONGEST
model, that question remains open.

Open Problem 6. Devise a poly(log n)-round deterministic algorithm in the
CONGEST model that computes a strong-diameter network decomposition with
poly(log n) parameters, that is, clusters colored with poly(log n) colors, where
adjacent clusters have different colors, and such that the subgraph induced by
each cluster has diameter poly(log n).

We note that while this strong-diameter decomposition question remains open,
the algorithm of [45] provides something functionally close to it, which appears
to be sufficient for all known applications of network decomposition in the
CONGEST model. In particular, for each cluster, the algorithm provides also
a Steiner tree where the vertices of the cluster are terminal nodes. These Steiner
trees have poly(log n)-diameter and each edge of the graph appears in at most
poly(log n) Steiner trees. This way, we can perform communications such as
broadcast/convergecast in different clusters simultaneously, via their Steiner
tree, with only a poly(log n) round complexity overhead. However, having a
strong-diameter network decomposition, as described in Open Problem 6, would
be more desirable, at least aesthetically (even if there is no extra application).

? Usage in Shattering in the CONGEST Model. Another extra property
to desire for network decomposition in the CONGEST model has to do with
their usage in the shattering framework [10,22,23] and the length of the iden-
tifiers. The algorithm of [45] assumes that nodes have O(log n)-bit identifiers.

7 This was observed in conversations with Fabian Kuhn.

Network Decomposition and Distributed Derandomization (Invited Paper) 15

In the LOCAL model, one can relax this much further and allow even S-bit iden-
tifiers where log∗ s = poly(log n), see [45, Remark 2.10]. However, that extension
does not work in the CONGEST model (one can relax to S = poly(log n) bits,
paying proportionally in the round complexity). In the shattering framework,
[10,22,23], after running some randomized algorithm, we are left with connected
components, each of which has only N = O(log n) nodes (or poly(Δ) log n nodes,
with some extra ruling set property, which allows us to move to a case similar
to the case with O(log n) nodes). This opens the road to running on each com-
ponent a deterministic algorithm with complexity poly(log N) = O(log log n),
as would be suggested by [45]. However, there is a catch: The network decom-
position algorithm assumes O(log N)-bit identifiers on N -node graphs and we
have only N -bit identifiers (inherited from the basic problem, before shattering).
Hence, we cannot directly apply the algorithm of [45], in the CONGEST model.8

Open Problem 7. Consider a CONGEST model with S-bit identifiers, for
S = Ω(log n), and O(S)-bit messages. Can we devise a poly(log n)-round deter-
ministic CONGEST model algorithm for network decomposition with poly(log n)
parameters, so long as log∗ S ≤ poly(log n) or even just S ≤ n.

Without resolving this, or finding a way around it, it is unclear how to obtain
CONGEST-model randomized algorithms that enjoy from the new poly(log n)-
round deterministic network decomposition, and have a poly(log log n) round
complexity in the part after shattering. As of now, to the best of our knowl-
edge, the state of the art randomized MIS algorithm in the CONGEST model
remains at complexity O(log Δ

√
log log n + 2O(

√
log log n) [30] and the state

of the art randomized (Δ + 1)-coloring in the CONGEST model remains at
complexity O(log Δ + 2O(

√
log log n) [23]. Both of these have terms that are

clearly remnants of the 2O(
√
logn)-complexity network decomposition [23,43].

And they have clear gaps to the corresponding LOCAL-model bounds, which are
O(log Δ + poly(log log n)) [22] and poly(log log n) [14,15], respectively.

? Simpler MIS Algorithms, without Derandomization. As noted before,
the network decomposition algorithm of [45] works also in the CONGEST model
and when put together with the CONGEST-model deterministic MIS algorithm of
Censor-Hillel et al. [12], leads to a poly(log n)-round deterministic MIS algorithm
in the CONGEST model. However, there is still one extra property to desire.
The algorithm of [12] is far from simple and works by fixing the randomness of
the randomized algorithm of [22], bit by bit, via conditional expectation (after
observing that pairwise independence is sufficient per round, which implies that
we need to fix only O(log n) bits): concretely, one uses a pessimistic estimator
on the expected number of bad events, if we set the bit to be either 0 or 1, and
then we choose the bit that does not increase the estimator, via gathering the
two values over the entire network. This also requires the nodes to perform some
8 If the CONGEST model was relaxed to allow O(log2 n)-bit messages, this issue would

go away as then we could perform a renaming in each component similar to [45,
Remark 2.10], since all relevant identifiers would fit in one message.

16 M. Ghaffari

complex expectation calculations, based on the identifiers of their neighbors and
the remaining space of randomness.

Given that MIS is a simple and natural problem, one can hope to see a more
direct deterministic algorithm for MIS in the CONGEST model, that does not rely
in this way on derandomizing some randomized algorithm. Hopefully, this could
also provide a simpler and more practical deterministic algorithm. Note that it
suffices to solve the problem in low-diameter graphs, with diameter poly(log n),
as this can then be extended to all graphs via network decomposition.

In this direction, one concrete result worth mentioning, and perhaps a start-
ing point for algorithmic ideas, is something that can be obtained via a classic
PRAM algorithm of Goldberg and Spencer [32]. This is simple and combinato-
rial algorithm. It appears9 that one can obtain a distributed poly(log n)-round
deterministic MIS by following this approach, using O(Δ2 +log n)-bit messages.
This is still much less than the message size needed in the topology-gathering
approach (as described in Sect. 2), in graphs with reasonably small degrees.

We also note that there are also similar efficient deterministic CONGEST-
model algorithms for other problems, including Δ + 1 coloring (and even
degree + 1 list coloring), and dominating set and set cover approximations. See
[45, Corollary 3.17 & 3.18] and [16,26]. All of these rely on explicit derandom-
ization of some randomized algorithm. Having a more direct algorithm could be
valuable.

Acknowledgement. I am grateful to David Harris, Fabian Kuhn, Yannic Maus, and
Václav Rozhoň for the joint work in [24,28,45] and discussions.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast network decompositions and
covers. J. Parallel Distrib. Comput. 39(2), 105–114 (1996)

3. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition
and locality in distributed computation. In: Proceedings of 30th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 364–369 (1989)

4. Awerbuch, B., Peleg, D.: Sparse partitions. In: Proceedings of 31st IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 503–513 (1990)

5. Balliu, A., Brandt, S., Hirvonen, J., Olivetti, D., Rabie, M., Suomela, J.: Lower
bounds for maximal matchings and maximal independent sets. In: Proceedings of
the Symposium on Foundations of Computer Science (FOCS) (2019)

6. Balliu, A., Brandt, S., Olivetti, D., Suomela, J.: How much does randomness help
with locally checkable problems? In: Proceedings of the Symposium on Principles
of Distributed Computing (PODC), pp. to appear, arXiv:1902.06803 (2020)

7. Bamberger, P., Kuhn, F., Maus, Y.: Efficient deterministic distributed coloring
with small bandwidth. In: Proceedings of the Symposium on Principles of Dis-
tributed Computing (PODC), pp. to appear, arXiv:1912.02814 (2020)

9 This should be taken with a grain of salt; we have not checked the details thoroughly.

http://arxiv.org/abs/1902.06803
http://arxiv.org/abs/1912.02814

Network Decomposition and Distributed Derandomization (Invited Paper) 17

8. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylog-
arithmic time. In: Proceedings of 29th Symposium on Principles of Distributed
Computing (PODC), pp. 410–419 (2010)

9. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent
developments. Synthesis Lect. Distrib. Comput. Theory 4(1), 1–177 (2013)

10. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM 63(3), 1–45 (2016)

11. Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: Pro-
ceedings of the Symposium on Theory of Computation (STOC), pp. 479–488 (2016)

12. Censor-Hillel, K., Parter, M., Schwartzman, G.: Derandomizing local distributed
algorithms under bandwidth restrictions. In: Proceedings of the Symposium on
DIStributed Computing (DISC) (2017)

13. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the LOCAL model. In: Proceedings of
57th IEEE Symposium on Foundations of Computer Science (FOCS) (2016)

14. Chang, Y.J., Li, W., Pettie, S.: An optimal distributed (Δ+1)-coloring algorithm?
In: Proceedings of 50th ACM Symposium on Theory of Computing (STOC) (2018)

15. Chang, Y.J., Li, W., Pettie, S.: Distributed (Δ+1)-coloring viaultrafast graph shat-
tering. SIAM J. Comput. 49(3), 497–539 (2020)

16. Deurer, J., Kuhn, F., Maus, Y.: Deterministic distributed dominating set approx-
imation in the congest model. In: Proceedings of the Symposium on Principles of
Distributed Computing (PODC), pp. 94–103 (2019)

17. Elkin, M., Neiman, O.: Distributed strong diameter network decomposition. In:
Proceedings of the Symposium on Principles of Distributed Computing (PODC)
(2016)

18. Fischer, M.: Improved Deterministic Distributed Matching via Rounding. In: Pro-
ceedings of the Symposium on DIStributed Computing (DISC), pp. 1–15 (2017)

19. Fischer, M.: Improved deterministic distributed matching via rounding. Distrib.
Comput. 1–13 (2018)

20. Fischer, M., Ghaffari, M., Kuhn, F.: Deterministic distributed edge-coloring via
hypergraph maximal matching. In: Proceedings of the Symposium on Foundations
of Computer Science (FOCS) (2017)

21. Gavoille, C., Klasing, R., Kosowski, A., Kuszner, �L., Navarra, A.: On the complex-
ity of distributed graph coloring with local minimality constraints. Netw. Int. J.
54(1), 12–19 (2009)

22. Ghaffari, M.: An improved distributed algorithm for maximal independent set.
In: Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 270–277
(2016)

23. Ghaffari, M.: Distributed maximal independent set using small messages. In: Pro-
ceedings of the Symposium on Discrete Algorithms (SODA), pp. 805–820 (2019)

24. Ghaffari, M., Harris, D., Kuhn, F.: On derandomizing local distributed algorithms.
In: Proceedings of the Symposium on Foundations of Computer Science (FOCS),
pp. 662–673 (2018)

25. Ghaffari, M., Hirvonen, J., Kuhn, F., Maus, Y., Suomela, J., Uitto, J.: Improved
distributed degree splitting and edge coloring. In: Proceedings of the Symposium
on DIStributed Computing (DISC) (2017)

26. Ghaffari, M., Kuhn, F.: Derandomizing distributed algorithms with small messages:
Spanners and dominating set. In: 32nd International Symposium on Distributed
Computing (DISC 2018) (2018)

18 M. Ghaffari

27. Ghaffari, M., Kuhn, F.: On the use of randomness in local distributed graph algo-
rithms. In: Proceedings of the Symposium on Principles of Distributed Computing
(PODC), pp. 290–299 (2019)

28. Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph
problems. In: Proceedings of the Symposium on Theory of Computation (STOC),
pp. 784–797 (2017)

29. Ghaffari, M., Kuhn, F., Maus, Y., Uitto, J.: Deterministic distributed edge-coloring
with fewer colors. In: Proceedings of the Symposium on Theory of Computation
(STOC), pp. 418–430 (2018)

30. Ghaffari, M., Portmann, J.: Improved network decompositions using small mes-
sages with applications on mis, neighborhood covers, and beyond. In: 33rd Inter-
national Symposium on Distributed Computing (DISC 2019) (2019)

31. Ghaffari, M., Su, H.H.: Distributed degree splitting, edge coloring, and orientations.
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2505–2523. Society for Industrial and Applied Mathematics (2017)

32. Goldberg, M., Spencer, T.: Constructing a maximal independent set in parallel.
SIAM J. Discrete Math. 2(3), 322–328 (1989)

33. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. SIAM J. Discrete Math. 15(1), 41–57 (2001)

34. Harris, D.G.: Distributed local approximation algorithms for maximum matching
in graphs and hypergraphs. In: Proceedings of the Symposium on Foundations of
Computer Science (FOCS), pp. 700–724 (2019)

35. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal
matching. Inf. Process. Lett. 22(2), 77–80 (1986)

36. Linial, N.: Distributive graph algorithms - global solutions from local data. In:
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp.
331–335 (1987)

37. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

38. Linial, N., Saks, M.: Low diameter graph decompositions. Combinatorica 13(4),
441–454 (1993)

39. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15, 1036–1053 (1986)

40. Miller, G.L., Peng, R., Xu, S.C.: Parallel graph decompositions using random
shifts. In: Proceedings of the Symposium on Parallel Algorithms and Architecture
(SPAA), pp. 196–203 (2013)

41. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

42. Newman, I.: Private vs common random bits in communication complexity. Inf.
Process. Lett. 39(2), 67–71 (1991)

43. Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and
network decomposition problems. In: Proceedings of the Symposium on Theory of
Computation (STOC), pp. 581–592 (1992)

44. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM,
Philadelphia (2000)

45. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In: Proceedings of the Symposium on The-
ory of Computation (STOC), pp. to appear, arXiv:1907.10937 (2020)

46. Windsor, A.: A simple proof that finding a maximal independent set in a graph is
in NC. Inf. Process. Lett. 92(4), 185–187 (2004)

http://arxiv.org/abs/1907.10937

Resource Burning for Permissionless
Systems (Invited Paper)

Diksha Gupta1(B), Jared Saia1, and Maxwell Young2

1 Department of Computer Science, University of New Mexico,
Albuquerque, NM, USA

{dgupta,saia}@cs.unm.edu
2 Department of Computer Science and Engineering, Mississippi State University,

Mississippi State, MS, USA
myoung@cse.msstate.edu

Abstract. Proof-of-work puzzles and CAPTCHAS consume enormous
amounts of energy and time. These techniques are examples of resource
burning: verifiable consumption of resources solely to convey information.

Can these costs be eliminated? It seems unlikely since resource burn-
ing shares similarities with “money burning” and “costly signaling”, which
are foundational to game theory, biology, and economics. Can these costs
be reduced? Yes, research shows we can significantly lower the asymp-
totic costs of resource burning in many different settings.

In this paper, we survey the literature on resource burning; take posi-
tions based on predictions of how the tool is likely to evolve; and propose
several open problems targeted at the theoretical distributed-computing
research community.

“It’s not about money, it’s about sending a message.”
The Joker [107]

1 Introduction
In 1993, Dwork and Naor proposed using computational puzzles to combat spam
email [43]. In the ensuing three decades, resource burning—verifiable con-
sumption of resources—has become a well-established tool in distributed secu-
rity. The resource consumed has broadened to include not just computational
power, but also communication capacity, computer memory, and human effort.

The rise of permissionless systems has coincided with the recent increase
in popularity of resource burning. In permissionless systems, any participant—
represented by a virtual identifier (ID) in the system—is free to join and depart
without scrutiny, while enjoying a high degree of anonymity. For example, an ID
might be an IP address, a digital wallet, or a username.

In this setting, security challenges arise from the inability to link an ID to
the corresponding user. A single malicious user may create a large number of

This work is supported by the National Science Foundation grants NSF-CNS-1816250
and NSF-CNS-1816076.
c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 19–44, 2020.
https://doi.org/10.1007/978-3-030-54921-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_2

20 D. Gupta et al.

accounts on a social media platform to wield greater influence; or present itself as
multiple clients to disproportionately consume resources provided by the system;
or inject many IDs in a peer-to-peer network to gain control over routing and
content. This malicious behavior is referred to as the Sybil attack , originally
described by Douceur [41].

Such attacks are possible because users are not “ID-bounded” in a permis-
sionless system; that is, there is no cost, and therefore no limit, to the number
of IDs that the attacker (adversary) can generate. However, the adversary is
often “resource-bounded”, even if this bound is unknown. In particular, it may be
constrained, for example, in the number of machines it controls, or total chan-
nel capacity to which it has access. Resource burning leverages this constraint,
forcing IDs to prove their distinct provenance by producing work that no single
attacker can perform.

Paper Overview. Resource burning is a critical tool for defending permission-
less systems. In support of this claim, we survey an assortment of topics: dis-
tributed ledgers, application-layer distributed denial-of-service (DDoS) attacks,
review spam, and secure distributed hash tables (DHTs). Using these examples,
we highlight how results in these different areas have converged upon resource
burning as a critical ingredient for achieving security; this is summarized in
Table 1.

Table 1. Summary of the domains surveyed, along with the corresponding resources,
and core functionality that is secured by resource burning. We also make conjectures
on the algorithmic spend rate. Here, T is the adversary’s spend rate; JG is the join rate
for good IDs; and PG is the posting rate of good IDs. We elaborate on these notions
in Sect. 2.5. The Õ notation omits polylogarithmic factors.

Domain Primary resource
consumed

Mechanism Enabled functionality Conjectured cost

Blockchains CPU CPU puzzles Distributed ledger O(
√
TJG + JG)

DHTs CPU CPU puzzles Decentralized storage
and search

Õ(
√
TJG + JG)

DDoS attacks Bandwidth/CPU Messages/CPU
puzzles

Fair allocation of server
resources

No conjecture

Review spam Human time CAPTCHAS Trusted consumer
recommendations

Õ(T 2/3 + PG)

As prelude to this survey, we predict how resource-burning may evolve, and
how systems may adapt to this technique. These predictions are distilled in four
position statements below.

Position 1. Resource burning is a fundamental tool for
defending permissionless systems.

Resource Burning for Permissionless Systems (Invited Paper) 21

PoW and CAPTCHAs have been around now for decades, persisting despite con-
cerns over scalability, resource consumption, security guarantees, and predicted
obsolescence (see discussion under Position 2 and Sect. 3). The continued prac-
tical success of resource burning aligns with theoretical justification from game-
theoretic results on “money-burning” and “costly signaling” (Sect. 2.1). Given the
increasing popularity of permissionless systems, and the need to defend them,
resource burning will likely only increase in prevalence.

Position 2. Resource burning must be optimized.

In May 2020, the annual energy consumption of Bitcoin was 57.92 terawatt-hours
of electricity per year, which is comparable to the annual electricity consump-
tion of Bangladesh; Ethereum was 7.9 terawatt-hours, comparable to that of
Angola [39]. In 2012, humans spent an estimated 150, 000 hours per day solv-
ing CAPTCHAS [114,137]. The rise of permissionless systems will likely only
increase these rates of resource burning.

On the positive side, recent theoretical results suggest that resource burning
can be analyzed and optimized just like any other computational resource [59,61].
But there is significant work needed to: (1) develop a theory of resource burning
focused on distributed security; and to (2) translate this theory into practical
resource savings.

In this paper, we discuss current theoretical work on reducing resource-
burning rates across multiple application: blockchains (Sect. 3); DHTs (Sect. 4);
application-layer DDoS attacks (Sect. 5); and review spam (Sect. 6).

Position 3. Reducing from permissionless to permis-
sioned systems is important.

Four decades of research have resulted in efficient and reliable algorithms for
permissioned networks. We should leverage these results when addressing prob-
lems in new permissionless systems. One way to do this is to develop tools, based
on resource burning, that bound the fraction of IDs controlled by the adversary
(bad IDs) in permissionless systems. In Sect. 3, we discuss results on the prob-
lem GenID, which provides this bound for static, permissionless networks; and
DefID which does so for permissionless networks with churn.

In Sects. 5 and 6, we discuss the threats posed by application-layer denial-of-
service (DDoS) attacks and review spam. Neither problem aligns perfectly with a
permissionless model. For example, servers are under administrative control, and
online review systems often require credentials for account creation. However,
these systems still remain vulnerable to malicious participants that are difficult
to identify, and who monopolize system resources. We define a hybrid system
model as one that contains both permissioned and permissionless properties.
We note that any tools designed for permissionless systems will also work for
hybrid systems. However, we would expect to be able to develop more efficient
techniques to adapt tools from permissioned systems to these hybrid systems.

22 D. Gupta et al.

Position 4. Theoretical guarantees should hold indepen-
dently of the resource burned. Research should focus on
both domain-specific and domain-generic problems.

As theoreticians, we should generalize as much as possible. Algorithms that
use resource burning should require a certain “cost” that specifies the amount
of the resource to be consumed, but should allow for that resource to be any-
thing: computation, computer memory, bandwidth, human effort, or some other
resource yet to be defined. As much as possible, theoretical results should be
stated in terms of this cost, irrespective of the resource consumed. This ensures
our theoretical results will continue to be relevant, even as underlying technolo-
gies providing verifiable resource burning may change.

Additionally, a key research focus should be on problems that generalize
across multiple domains. In this paper, we describe two examples: GenID and
DefID (Sect. 3.1). Our remaining three examples are domain-specific. We believe
it is important to work on both types of problems.

2 Background and Preliminaries
Resource burning has found application in various areas of computer security;
indeed, its use was proposed by Douceur [41] as a defense against the Sybil
attack [40,75,100,106]. However, resource burning has a broader history, with
similar ideas appearing in several other scientific domains.

In Sect. 2.1, we present this background. In Sects. 2.2, 2.3, and 2.4, we elabo-
rate on the notion of resource burning. Finally, in Sect. 2.5, we describe a general
problem model that provides a unifying set of assumptions and terminology used
throughout this document.

2.1 Game Theory, Biology and Economics
Resource burning is analogous to what is referred to as money burning in the
game theory literature. To the best of our knowledge, the first significant algo-
rithmic game theory study of money burning, due to Hartline and Roughgarden,
analyzed the use of money burning in mechanism design [61]. Their main result is
a near-optimal mechanism for multi-unit auctions, where the quantity optimized
is social welfare or the sum of utilities of all players. They also give results
showing that, under certain conditions, an auction utilizing money burning can
obtain a Ω

(
1

1+log(n/k)

)
fraction of the optimal social welfare, where the auc-

tion consists of n bidders who are bidding for k units. They conclude that “the
cost of implementing money-burning ... is relatively modest, provided an optimal
money-burning mechanism is used”.

Money burning is also known as costly signaling in the game theory literature,
and it has two main uses in this context. First, it can signal commitment to a
certain action, as is illustrated in the “lunch” game1 [29,68]. Second, it can signal

1 This is equivalent to what is referred to as the “battle of the sexes” game in [29].

Resource Burning for Permissionless Systems (Invited Paper) 23

the “type” of a player, as is in the“college” game [29]. We present these two games
below.

Lunch Game. Two friends want to eat lunch together, but the first friend
prefers option A and the second prefers option B. They each obtain payoff of
−1 if they choose different locations. If they both pick option A, they obtain
payoffs of 10 and 1 respectively. Conversely, if they both pick option B, they
obtain payoffs of 1 and 10.

Now, if the first friend verifiably burns money equal to 1 unit of utility prior
to playing the game, this signals a commitment to their preferred option, since if
they were to choose the unpreferable option, their utility would now be at most
0. Thus, they would not have played the game. In this way, a friend who burns
money can expect higher utility.

College Game. Each student is one of two types: smart or daft. Each student
is considering college and can choose either the action attend or not attend. A
smart student pays a cost of 1 (in terms of time and effort) to attend college, and
a daft student pays a cost of 3 to attend college. We assume that the decision of
the student to attend college is publicly known, but that otherwise, college has
no impact: daft students stay daft even after attending.2

An employer wants to hire smart students. If the employer hires a smart
student, their benefit is 2, and if they hire a daft student, their cost is 2. If a
student is hired by the employer, they have a benefit of 2, and if they are not
hired, they have a benefit of 0.

It is easy to verify that the following is a Nash equilibrium for this game:

◦ Smart students attend college.
◦ Daft students do not attend college.
◦ The employer hires only students that attend college.

Here, smart students all choose to attend, even though college has no intrinsic
benefit. Thus, the choice to attend college is a costly signal made by the smart
students, and college itself is an example of resource burning.

If the option to attend college were removed from the game, and the fraction
of smart students were less than 1/2, then a Nash equilibrium would be for
the employer to never hire. In this case, the overall social welfare—the sum of
expected benefits to all players—would decrease.

Biology. Costly signaling is a well-known phenomena in biology. A relevant
example from animal behavior is stotting, in which quadrupeds, such as deer
and gazelles, repeatedly jump high into the air. This is often done in view of a
predator, suggesting that stotting is a costly signal to the predator that the prey
is too healthy to catch [49]. Other examples occur in sexual-selection, where the
use of plumage, large antlers, and loud cries are a costly signal of fitness [156].

Economics. In 1912, the economist Thostein Veblen coined the term “conspic-
uous consumption” to describe costly signaling used by people to advertise both
2 On the positive side, smart students stay smart!.

24 D. Gupta et al.

wealth and leisure. For example, Veblen writes, “The walking stick serves the pur-
pose of an advertisement that the bearer’s hands are employed otherwise than in
useful effort, and it therefore has utility as an evidence of leisure” [134]. Decades
of economic studies suggest that conspicuous consumption is a critical part of
historical and modern economies [98,113,118,119,131]. For example, Sundie et
al write: “Although showy spending is often perceived as wasteful, frivolous, and
even narcissistic, an evolutionary perspective suggests that blatant displays of
resources may serve an important function, namely, as a communication strat-
egy designed to gain reproductive reward”[131].

2.2 What is Resource Burning?
We define resource burning as the verifiable consumption of a resource. In
particular, it is computationally easy to verify both the consumption of the
resource, and also the ID that consumed the resource [6]. Below we describe
several resource-burning techniques.

Proof-of-Work (PoW). PoW is arguably the current, best-known example of
resource burning. Here, the resource is computational power. Proof-of-work has
been proposed for spam-prevention [43,85,90]; blockchains [103]; and defense
against Sybil attacks [10,88].

CAPTCHAs. A completely automated public Turing test to tell computers and
humans apart, or a CAPTCHA, is a resource-burning tool where the resource
is human effort [147]. CAPTCHAs may be based around text, images, or audio;
however, several design and usability issues exist [148].

Proof-of-Space. Proof-of-space requires a prover to demonstrate utilization of
a certain amount of storage space [1,13,42,44]. This approach is foundational
for Spacemint cryptocurrency [111]. Like PoW, proof of space demonstrates the
consumption of a certain amount of a physical resource, but can require less elec-
trical power. A related proposal is “Proof of Space-Time” [102], which demands
proof of consumption of a certain amount of storage space for a certain amount
of time.

Resource Testing. Resource testing requires a prover to demonstrate utiliza-
tion of a radio channel [55,56,101].3 Consider a wireless setting where each device
has a single radio that provides access to one of several channels. Thus, an adver-
sary representing two bad IDs, but with a single device, can only listen to one
channel at a time. A base station can assign each ID to separate channels; send
a random message on one of these channels chosen randomly; and demand that
the message be echoed back by the corresponding ID. Since the adversary can
only listen to a one channel at a time, it will fail this test with probability at
least 1/2.

3 Resource burning refers to the game-theoretic money burning technique; resource
testing refers to that technique specifically applied in the wireless domain.

Resource Burning for Permissionless Systems (Invited Paper) 25

2.3 What is not Resource Burning

Proof-of-Stake (PoS) is a defense for permissionless systems, wherein security
relies on the adversary holding a minority stake in an abstract finite resource [2].
It has been proposed primarily for cryptocurrency systems (Sect. 3). When mak-
ing a group decision, PoS ensures that each ID has voting weight proportional
to the amount of cryptocurrency that ID holds. Well-known examples of such
systems are ALGORAND [54], which employs PoS to form a committee, and
Ouroboros [83], which elects leaders with probability proportional to their stake.
Hybrid approaches using both PoW and PoS exist, including one proposed for
the Ethereum system [8], and under the name “Proof of Activity” [27]. In contrast
to the above examples, PoS involves a measurement, rather than a consumption
of, a resource.

Disadvantages of Proof-of-Stake. Unfortunately, PoS can only be used
in systems where the “stake” of each ID is globally known. Thus, it seems
likely to remain relevant primarily in the domain of cryptocurrencies. More-
over, even within that community, there are concerns about proof-of-stake. To
quote researcher Dahlia Malkhi: “I think proof-of-stake is fundamentally vulner-
able . . . In my opinion, it’s giving power to people who have lots of money” [35].

2.4 Resource Burning Does Not Require Waste of the Resource
While resource burning requires verifiable consumption of a resource, it does not
necessarily require waste of that resource. For example, Von Ahn et al. [137]
developed the reCAPTCHA system which channeled human effort from solv-
ing CAPTCHAs into the problem of deciphering scanned words that could not
be recognized by computer. Their system achieved an accuracy exceeding pro-
fessional human transcribers, and was responsible for sucesssfully transcribing
hundreds of millions of words from public domain books.

In 2018, Ball et al. developed proof-of-work puzzles whose hardness is based
on worst-case assumptions [25]. These puzzles are based on the Orthogonal Vec-
tors, 3SUM, and All-Pairs Shortest Path problems, and any problem that reduces
to these problems, including deciding any graph property statable in first-order
logic. Hence, their work enables design of PoW puzzles that can be useful for
solving computational problems of practical importance.

In [126], Shoker developed proof-of-work puzzles that solve real-world matrix-
based scientific computation problems. He named this technique “Proof of
Exercise”.

All algorithms discussed in this paper are compatible with this type of “use-
ful” resource burning, where the consumption of the resource solves practical
problems. Our only requirement of the resource burning mechanism is that the
consumption of the resource be easily verifiable, which holds true for the above
results.

26 D. Gupta et al.

2.5 A General Model
We discuss broad aspects of a general model for permissionless systems. This
allows us to highlight commonalities between different application domains, while
retaining the same terminology throughout.

The system consists of virtual identifiers (IDs). An ID is good if it obeys
protocol and belongs to a unique user; otherwise, the ID is bad . Good and bad
IDs cannot necessarily be distinguished a priori.

Communication. Communication is synchronous and occurs either via point-
to-point or via a broadcast primitive. The former is typical for peer-to-peer
systems and the general client-server setting. The latter corresponds to permis-
sionless blockchains, where it is a standard assumption that a good ID may send
a value to all other good IDs within a known and bounded amount of time,
despite an adversary; for examples, see [30,52,54,92] and see [97] for empirical
justification.

Adversary. A single adversary controls all bad IDs; this pessimistically rep-
resents perfect collusion and coordination by malicious users. Bad IDs may
arbitrarily deviate from our protocol, including sending incorrect or spurious
messages. The adversary can send messages to any ID at will, and can view any
communications sent by good IDs before sending its own. It knows when good
IDs join and depart, but it does not know in advance the private random bits
generated by any good ID.

Often, the adversary is assumed to control only an α-fraction of the network
resources, for α > 0. Generally, in settings where correctness is threatened, α
must be a small constant; for example, often bounded below 1/3 or 1/4. Alter-
natively, there are settings where α can be any constant bounded away from 1;
typically, this corresponds to problems of performance (rather than correctness).

Tunable Costs. We measure cost as the amount of resource consumed. Our
model is agnostic with respect to the particular resource used. However, we
assume that it is possible to arbitrarily tune the cost. In particular, we assume
that, for any value x, an ID can be issued a challenge of difficulty x that will
require consumption of x units of whatever resource is used.

Resources such as computation, computer memory, and bandwidth have
inherently tunable costs. For CAPTCHAs, cost could be adjusted in two possible
ways. First, by adjusting the difficulty of the puzzle, by either (1) adjusting the
number of alphanumeric digits or the number of images to be classified; or (2)
adjusting the difficulty of an individual recognition task as described in the Scat-
terType CAPTCHA system [24]. Second, by adjusting the expected difficulty by
adjusting a probability of being required to solve a CAPTCHA.

Joins and Departures. Often, the system is dynamic, with IDs joining or
departing over time. There is no a priori method for determining whether a
joining ID is good or bad. Joins and departures by bad IDs may be scheduled in
a worst-case fashion, and pessimistically we often assume the adversary also has
a limited ability to schedule these events for good IDs. We will generally assume

Resource Burning for Permissionless Systems (Invited Paper) 27

a lower bound on the number of IDs in the system, and that the lifetime of the
system is polynomial in this lower bound.

Key Notation. Through out this work, let T denote the adversarial spend-
ing rate , which is the cost to the adversary over the system lifetime divided by
the lifetime of the system. Let the algorithmic spending rate , A, be the cost
to all good IDs over the system lifetime divided by the lifetime of the system.

In the blockchain and DHT problems, we let JG denote the good ID join
rate , which is the number of good IDs that join during the system lifetime
divided by the lifetime of the system. Finally, for the review spam problem, we
let PG denote the good posting rate , which is the number of posts made by
good IDs during the system lifetime divided by lifetime of the system.

2.6 Game Theoretic Analysis
For many of our problems, we can analyze the defense of a system as a two-player
zero sum game [45] as follows. There is an adversary that can choose to attack
or not, and an algorithm that can choose to defend or not. There is a system
invariant, which the algorithm seeks to protect, that has some value V . There is
a function f that gives the cost incurred when the algorithm chooses to defend
as follows: if the adversary spends T to attack, then the algorithm will spend
f(T) to defend. Thus the payoff matrix for the algorithm is given below.

Adversary
Attack ¬Attack

Algorithm Defend T − f(T) −f(0)
¬Defend −V 0

Solving this game, we get that in the Nash equilibrium, the algorithm player
will defend with probability p = V

T−f(T)+f(0)+V . Thus, the expected utility of the

game to the algorithm player will be −V f(0)
T−f(T)+f(0)+V . In many of our problems,

f(T) = f(0) + o(T), and so we obtain a value that is Θ
(

−V f(0)
T+V

)
. Smaller T

optimizes the utility for the adversary, in which case, the expected utility of the
algorithm is Θ(−f(0)).

3 Blockchains and Cryptocurrencies
A blockchain is a distributed ledger. In particular, it is a distributed data struc-
ture that stores transactions between IDs in a network. Each transaction repre-
sents flow of a resource from one ID to another. Every transaction added must be
legitimate, in the sense that the source ID owns the resource to be transferred, as
indicated by the distributed ledger, at the time of the transaction. Importantly,
transactions can only be added to the blockchain, and once added, can never be
deleted or edited.

3.1 GenID and DefID
Perhaps the current, most frequently-used application of resource-burning is for
blockchains. Permissionless blockchains are vulnerable to Sybil attacks [89]. The

28 D. Gupta et al.

next two problems use resource burning to defend against this. Recall that the
adversary controls an α-fraction of the resource that is being burned.

The GenID Problem. The problem stated below, GenID, was first defined
and studied by Aspnes, Jackson, and Krishnamurthy [11]. They proposed a solu-
tion with latency of 3 rounds, and Õ(n2) bits sent per good ID, at a burned
resource cost of O(1) per good ID.

Problem 1. GenID

Model: Initial set of IDs; n of which are good, with the rest are controlled
by an adversary.
Goal: All good IDs decide on a set of IDs S such that: (1) all good IDs
are in S; and (2) at most a O(α) fraction of the IDs in S are adversarial.

Several other solutions toGenIDhavebeenproposed in the literature [4,10,67,81].
Andrychowicz and Dziembowski described an algorithm with a latency of Θ(n)
rounds; Õ(n2) bits sent per good ID; and a burned resource cost of Õ(1) per good
ID [10]. Concurrent to this work, Katz, Miller and Shi [81] proposed another solu-
tion with similar costs. Hao et al. [67] improved on these results via using a ran-
domized leader election protocol. Their algorithm has, in expectation, a latency
of Θ

(
lnn

ln lnn

)
rounds; Õ(n) bits sent per good ID; and a burned resource cost of

Θ
(

lnn
ln lnn

)
per good ID.

The most recent work in this domain is by Aggarwal et al. [4], which requires
in expectation: O(1) latency; O(n) bits sent per good ID; and a burned resource
cost of O(1) per good ID.

It is still not known if these costs can be reduced for the general problem, or
for an “almost-everywhere” versions of the problem, where all but a o(1) fraction
of the IDs must learn S. To the best of our knowledge, there are no current
lower-bounds on the problem.

The DefID Problem. The following problem, called DefID, considers the
GenID problem in the presence of churn.

Problem 2. DefID

Model: Stream of IDs joining and leaving a network.
Goal: At most an O(α)-fraction of bad IDs in the network at any time.

A first algorithm to solve DefID was proposed in by Gupta, Saia and Young
in [58]. It required algorithmic spend rate of O(JG + T); recall that JG is the
join rate of good IDs per time step, and T is the spend rate of the adversary.
Note that this result holds without any additional assumptions. Gupta, Saia and
Young further improved this result in [59,60] to O(JG +

√
TJG), subject to two

assumptions on the join rate of good IDs, which are found to be supported by
real-world data [59].

Resource Burning for Permissionless Systems (Invited Paper) 29

Specifically, the assumptions needed are as follows. Define an epoch to be
the length of time it takes for the fraction of good IDs to change by 3/4 fraction.
First, the join rate for good IDs changes by at most a multiplicative factor
between any two successive epochs. Second, in any epoch the actual join rate for
good IDs over any “sufficiently large” period of time is within constant factors
of the join rate for good IDs over the entire epoch.

An asymptotically matching lower bound was obtained for a large class of
algorithms [59]. An open problem is to generalize this bound to all algorithms.

4 Distributed Hash Tables
Distributed hash tables (DHTs) are a popular P2P distributed data structure
[3,80,87,96,117,129] with several implementations over the years [46,128,141].
Generally, the design entails hashing attributes of a user’s machine to a key value
(or ID) in a virtual space; similarly, for data items. The various DHT construc-
tions differ in their overlay topologies, but typically IDs need only maintain state
on a small number of neighbors, and routing is possible with a small number of
messages, where small means at most logarithmic in the number of IDs in the
system.

These systems are vulnerable to attack. A bad ID that participates in routing
can drop or corrupt any message it receives. A good ID can be completely isolated
from the rest of the network if all of its neighbors are bad; this is often referred to
as an eclipse attack [63,127]. Finally, content can be compromised if bad IDs
alone are responsible for storing a particular data item. Generally, the behavior
of bad IDs is modeled by Byzantine faults. For almost two decades, there has
been a sustained interest in the design of secure DHTs that can tolerate such
attacks [135].

Byzantine Fault Tolerance in DHTs. A popular approach to tolerating bad
IDs depends makes use of groups: these are small sets of IDs, each of which have
a good majority. Intuitively, a group is used in place of an individual peer, and the
group members act by using majority action or secure multiparty computation
to coordinate actions. For example, routing can be performed robustly via all-
to-all communication between each pair of groups along the path from source to
destination. Examples of group-based DHT constructions include [21–23,48,72,
105,122,125,151].

As an alternative to using groups, bad IDs may be tolerated by employing
some form of redundant routing [32,65,74,78,82,104]. Several other results do
not explicitly apply to DHTs, although they may be compatible. For example, the
challenge of tolerating bad IDs is exacerbated in highly-dynamic P2P systems,
and there is a growing body of work in this area [14–18,57]. Self-healing networks
are another approach for achieving security, where bad IDs are identified and
evicted [84,120,121].

In all of these works, a critical assumption is that the fraction of bad IDs
is a small constant. However, given that DHTs are often permissionless, this
assumption is easily violated via a Sybil attack. Thus, while many tools have

30 D. Gupta et al.

been developed for securing DHTs against Byzantine faults, additional work is
required to limit the fraction of bad IDs in the permissionless setting.

Sybil Resistance. Several approaches have been proposed for mitigating the
Sybil attack. The influence of bad IDs can be limited via containment schemes
that leverage the network topology in structured overlays [124] and in social net-
works [7,86,99,143,152–154]. However, the information required—particularly
social networks—may not always be available.

An alternative defense is to use measurements of communication latency
or wireless signal strength to verify the uniqueness of IDs [26,38,53,91,140].
However, these techniques are sensitive to measurement accuracy.

For DHTs, an early result by Danezis et al. [37] gives a heuristic to limit the
impact of bad IDs using bootstrapping information, but unfortunately provides
no formal guarantees. Results that employ resource burning are scarce. The use
of computational puzzles in decentralized systems is explored by Borisov [31]
and Tegeler and Fu [132] as a means for identifying and excluding bad IDs from
the system. Computational puzzles are also used by Rowaihy et al. [116] to
throttle the rate of bad IDs added to a structured P2P system; however, this
does not limit their number. Arguably the best-known result is the SybilControl
scheme by Li et al. [88], which provides for a DHT construction that limits
the number of bad IDs through the use of computational puzzles. Good IDs
periodically challenge their neighbors under the Chord DHT topology [129,130],
and blacklist those who do not respond with a solution in time. Experimental
results indicate that this approach, in conjunction with limited data replication,
allows for almost all searches to succeed.

4.1 Why DefID is Not Enough
The DefID problem (Sect. 3.1) captures many of the challenges required for
secure DHTs. However, current solutions to DefID depend heavily on a means
to coordinate resource burning. The main approach is to use a committee—a
small set of IDs with a good majority—which issue resource-burning challenges.
To apply results on DefID to DHTs requires decentralizing the functionality
provided by the committee.

Additionally, while DefID always guarantees a minority of bad IDs, this is
not enough. In particular, to ensure reliable routing and protection from eclipse
attacks, group-based approaches demand that all groups have a minority of
bad IDs. Fortunately, there are already clever techniques to spread the bad IDs
uniformly across the groups. Informally, when a new ID joins a group, some IDs in
the group are evicted and resettled in random locations, and their replacements
are selected uniformly at random [21–23,57].

Unfortunately, performing such shuffling for every joining ID, even when
there are no bad IDs in the system, incurs large bandwidth costs. A major open
problem is to devise an algorithm that minimizes both bandwidth and resource-
burning costs, as a function of adversarial spend rate.

Resource Burning for Permissionless Systems (Invited Paper) 31

4.2 The Permissionless DHT Problem
Problem 3 gives our formal problem in this domain. It assumes that the adversary
controls an α < 1/3 fraction of the burnable resource. We now describe some
ideas about how to solve it.

Problem 3. A Secure DHT in the Permissionless Setting

Model: The adversary has complete control over the scheduling of joins
and departures for bad IDs and limited control for good IDs. There is no
explicit assumption that the good IDs are in the majority at all times.
Goal: A DHT that enables secure and efficient routing between any two
good IDs in the system.

Recall from Sect. 3.1 that DefID imposes a cost of O(JG +
√

TJG) on the
good IDs. Informally, a plausible extension to this result is for each group in
the DHT to act as a committee that runs an algorithm to solve DefID. In
many group-based constructions, a good ID belongs to a number of groups that
is logarithmic in the system size. Consequently, the algorithmic spend rate is
likely to increase by a logarithmic factor. This yields our conjectured bound of
Õ(

√
TJG+JG). Note that this aligns with Position 2 since costs to the good IDs

are low when the adversary expends little effort (or does not attack at all), and
grows slowly relative to the adversary’s cost when a significant attack occurs. In
the absence of a single committee that can track global information (such as the
join rate of IDs), setting the hardness of challenges is tricky, and new ideas are
needed to obtain the conjectured upper bound.

Finally, while we have focused on DHTs, new defenses for them might gen-
eralize to providing security in permissionless settings for other structured P2P
systems [12,20,47,51,62,71,158].

5 Application-Layer DDoS Attacks
A denial-of-service (DoS) attack prevents good IDs from accessing resources
of a system. A distributed denial-of-service (DDoS) attack occurs when multi-
ple bad IDs carry out a coordinated DoS attack. In an application-layer DDoS
attacks, an adversary attacks by issuing many requests for system resources,
as opposed to say swamping the network bandwidth. Here, we discuss defenses
against application-layer DDoS attacks based on resource burning.

Filtering Methods. Many DDoS defenses rely on techniques for filtering
out malicious traffic, including IP profiling [94,155]; CAPTCHAs [109,136];
capability-based schemes [9,149]4; and anomaly detection [70]. An extensive sur-
vey of defenses can be found in [157]. Unfortunately, these techniques are imper-
fect, and an adversary may bypass them by issuing traffic that appears legit-

4 Informally, this refers to a scheme where the source makes a “capability” request and,
if approved by the receiver, will then obtain prioritized service from those routers
along the path between the source and the receiver.

32 D. Gupta et al.

imate. This has led to resource-burning defenses against DDoS attacks, which
are sometimes referred to in the literature as currency-based or resource-based
schemes [139].

Resource-Burning Approaches. A number of proposed defenses require IDs
to solve puzzles before their requests for service are honored [19,76,77,112].
A challenging aspect of these proposals is the lack of a theoretically-backed
method to tune the puzzle difficulty. To address this issue, Mankins et al. [95]
propose a pricing mechanism to set the difficulty based on the service-request
type; however, the pricing functions are set by the server a priori, and may
fail as the incentives or capabilities of the attacker change over time. A dynamic
strategy to determine puzzle difficulty is given by Wang and Reiter [142]. A client
requesting service chooses the puzzle difficulty based on the effort it is willing
to expend, while the server prioritizes service according to the difficulty of the
puzzles solved. However, this approach may starve IDs with limited resources,
and requires the server to maintain state on the difficulty of the puzzles solved.
Finally, Noureddine et al. [108] employ a game-theoretic model to pre-compute
the difficulty of puzzles assuming all IDs (good and bad) are rational.

An alternative resource—communication capacity—is consumed by the
speak-up defense of Walfish et al. [138]. During an attack, it is common for
bad IDs to bombard the server with requests, using much (or all) of the data
rate available to the adversary. Speak-up encourages good IDs to respond in
kind by increasing their respective request rates. A front-end server known as a
“thinner” randomly drops requests in order to impose a manageable service load.
If the aggregate capacity of the good IDs is comparable to that of the bad IDs,
then this resource-burning scheme can allow good IDs to obtain a commensurate
amount of service.

5.1 The Application-Layer DDoS Problem
There are many similarities between the application-layer DDoS attack and the
Sybil attack. The DDoS model is not purely permissionless, since the server is
a trusted authority. However, the attacks involve IDs whose distinctness cannot
be ascertained, and where an adversary may create many bad IDs to facilitate
attacks. In this sense, the DDoS model is a hybrid of permissionless and permis-
sioned systems. Thus, it is not surprising that resource burning would be useful
to defend against DDoS attacks.

In this vein, we propose the open problem below.

Resource Burning for Permissionless Systems (Invited Paper) 33

Problem 4. Application-Layer DDoS Attacks

Model: There are n good client IDs and a good server. An adversary
controls an α-fraction of the consumable resource, and can generate any
number of bad client IDs. Client IDs can request service from the server
at any time. The server must decide which requests to service based on
its own limited resources.
Goal: The good clients obtain a 1−O(α) fraction of the service provided
by the server.

Problem 4 shares much in common with DefID (Sect. 3.1). Requests from
client IDs correspond to join events; satisfying requests corresponds to depar-
tures. Here, α need not be bounded, since we are not making a correctness
guarantee analogous to maintaining a good majority in DefID. Rather, our
new requirement concerns performance: good IDs receive a 1− O(α) fraction of
service. In this sense, Problem 3 seems strictly easier than DefID.

However, a new difficulty is heterogeneity: requests may differ in the amount
of effort required to service them. Thus, enforcing a bound on the fraction of bad
requests serviced does not ensure that the goal of Problem 4 will be met. In light
of this issue, it may be helpful to consider a weighted version of DefID, and
whether existing solutions can be extended to this more general setting. While
we are optimistic that for large T , o(T) is possible for Problem 4, a tight upper
bound is an interesting direction for future work.

6 Review Spam
Online user-generated reviews play an important role in influencing the purchas-
ing decisions of consumers. These systems are subject to manipulation where an
adversary employs multiple accounts to create fake reviews that falsely pro-
mote or disparage a product [50]; this malicious behavior is often referred to
as review spam , but also goes by other labels such as astroturfing [133] and
opinion spam [69].

Review spam threatens online retailers—such as Amazon or Walmart [33,50]—
and merchants who depend on income from online sales. While online review sys-
tems typically have some form of admission control, such as requiring credentials
for the creation of an account, this can be bypassed. For example, an attacker can
hire users that possess a sufficient online presence in order to engage in review
spam [36,66], and social-media credentials can be automatically generated [133];
examples of these attacks are described in [69,93].

In response to this threat, the research community has proposed various
strategies for detecting fraudulent reviews; these employ a range of techniques
including machine learning [34,73], anomaly detection [123,145,146], linguistic
evaluation [79,115], graph analysis [5,28,66], and many others. A comprehensive
overview of these techniques is given in [64,144,150].

34 D. Gupta et al.

Progress in this area offers the ability to classify a review as either spam
or legitimate, with some small error probability; for example, the work in [110]
achieve an accuracy of almost 90%. This classification functionality is a promising
ingredient for designing more general tools for mitigating review spam.

6.1 The Review Spam Problem
The problem of review spam largely aligns with our general model in Sect. 2.5.
While online systems often require some credentials for creating an account, this
admission control can be circumvented, and the system is effectively permis-
sionless. However, the review spam model has some novel features. IDs join the
system, but they may never formally depart. Even IDs that are regularly in use
may have periods where the corresponding user is offline. Thus, any attempt to
simultaneously challenge all IDs, in order to reveal some as bad, will fail.

On the positive side, as noted above, machine learning can now help. In
particular, we may assume a classifier that correctly classifies reviews as spam
or not with some fixed probability of error. Over a sufficiently large number of
reviews, this classifier can be used to obtain a good approximation of the current
fraction of spam reviews, and this information can be used to set the amount
of resource burning required to post a review. Our conjecture of O(T 2/3 + PG)
in Table 1 follows from a preliminary analysis that leverages a classifier in this
way. Informally, we increase the cost for posting a review when a significant
attack is ongoing—that is, many reviews are diagnosed as spam by the classifier.
Otherwise, we reset the cost to the lowest level.

We formalize the challenge of review spam as Problem 5.

Problem 5. Review Spam

Model: IDs post reviews online. A classifier labels each post as legitimate
or as spam, with some fixed error probability. Each spam post has unit
cost, reflecting its negative impact on system usability. The algorithm
can also set an arbitrary resource-burning cost for each new post, based
on the classification of past posts.
Goal: Minimize costs due to spam posts plus resource-burning costs
incurred from legitimate posts.

7 Conclusion
In this paper, we surveyed the literature on resource burning and established it as
critical a tool for securing permissionless systems. We described results from four
domains: blockchains, DHTs, application-layer distributed DDoS attacks, and
review spam. We noted shared security vulnerabilities in both permissionless and
hybrid systems, and how resource burning is well-suited for addressing common
threats.

We observed that resource burning costs are prohibitively high for most cur-
rent systems. Thus, a high-priority area for theoretical research is the design of

Resource Burning for Permissionless Systems (Invited Paper) 35

resource-burning defenses that reduce these costs. In particular, whenever pos-
sible, good IDs should spend at a rate which is asymptotically less than the
adversary when the system is under attack. To encourage research efforts, we
defined several open problems, along with conjectured upper bounds for these
problems.

Acknowledgements. We are grateful to the organizers of SIROCCO 2020 for inviting
this paper, and we thank Valerie King for helpful feedback on our manuscript.

References
1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-

bound functions. ACM Trans. Internet Technol. (TOIT) 5(2), 299–327 (2005)
2. Abraham, I., Malkhi, D.: The Blockchain Consensus Layer and BFT. Bull.

EATCS: Distrib. Comput. Column (2017)
3. Abraham, I., Malkhi, D., Dobzinski, O.: Land: stretch (1 + ε) locality-aware net-

works for DHTs. In: Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete algorithms (SODA), pp. 550–559 (2004)

4. Aggarwal, A., Movahedi, M., Saia, J., Zamani, M.: Bootstrapping public
blockchains without a trusted setup. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp. 366–368. ACM (2019)

5. Akoglu, L., Chandy, R., Faloutsos, C.: Opinion fraud detection in online reviews
by network effects. In: Seventh International AAAI Conference on Weblogs and
Social Media (2013)

6. Ali, I.M., Caprolu, M., Pietro, R.D.: Foundations, properties, and security appli-
cations of puzzles: a survey. CoRR abs/1904.10164 (2019). http://arxiv.org/abs/
1904.10164

7. Alvisi, L., Clement, A., Epasto, A., Lattanzi, S., Panconesi, A.: SoK: the evolution
of sybil defense via social networks. In: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 382–396 (2013)

8. Hertig, A.: Ethereum’s big switch: the new roadmap to proof-of-stake
(2017). urlwww.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-
of-stake/. Accessed 28 Nov 2019

9. Anderson, T., Roscoe, T., Wetherall, D.: Preventing internet denial-of-service
with capabilities. ACM SIGCOMM Comput. Commun. Rev. 34(1), 39–44 (2004)

10. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7_19

11. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
byzantine impostors. Technical report, Technical Report YALEU/DCS/TR-1332,
Yale University (2005). http://www.cs.yale.edu/homes/aspnes/papers/tr1332.pdf

12. Aspnes, J., Shah, G.: Skip graphs. In: Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 384–393 (2003)

13. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is of
the essence. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
538–557. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_31

14. Augustine, J., Molla, A.R., Morsy, E., Pandurangan, G., Robinson, P., Upfal,
E.: Storage and search in dynamic peer-to-peer networks. In: Proceedings of the
Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pp. 53–62 (2013)

http://arxiv.org/abs/1904.10164
http://arxiv.org/abs/1904.10164
www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/
www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19
http://www.cs.yale.edu/homes/aspnes/papers/tr1332.pdf
https://doi.org/10.1007/978-3-319-10879-7_31

36 D. Gupta et al.

15. Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agreement in
dynamic networks. In: Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 74–83 (2013)

16. Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine leader election in
dynamic networks. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 276–291.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5_19

17. Augustine, J., Pandurangan, G., Robinson, P., Roche, S., Upfal, E.: Enabling
robust and efficient distributed computation in dynamic peer-to-peer networks. In:
Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 350–369 (2015)

18. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and
efficient computation in dynamic peer-to-peer networks. In: Proceedings of the
Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 551–569 (2012)

19. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puz-
zles. In: Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Pro-
tocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44810-1_22

20. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data
structure for distributed environments. In: Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 318–327 (2004)

21. Awerbuch, B., Scheideler, C.: Robust random number generation for peer-to-peer
systems. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp.
275–289. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529_20

22. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. In: Proceedings
of the 18th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 318–327 (2006)

23. Awerbuch, B., Scheideler, C.: Towards scalable and robust overlay networks. In:
Proceedings of the 6th International Workshop on Peer-to-Peer Systems (IPTPS),
p. n. pag. (2007)

24. Baird, H.S., Moll, M.A., Wang, S.Y.: ScatterType: a legible but hard-to-segment
CAPTCHA. In: Proceedings of the Eighth International Conference on Document
Analysis and Recognition (ICDAR), pp. 935–939 (2005)

25. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1_26

26. Bazzi, R.A., Konjevod, G.: On the establishment of distinct identities in over-
lay networks. In: Proceedings 24th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 312–320 (2005)

27. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bit-
coin’s proof of work via proof of stake [extended abstract] y. ACM SIGMETRICS
Perform. Eval. Rev. 42(3), 34–37 (2014)

28. Beutel, A., Xu, W., Guruswami, V., Palow, C., Faloutsos, C.: CopyCatch: stop-
ping group attacks by spotting lockstep behavior in social networks. In: Proceed-
ings of the 22nd International Conference on World Wide Web (WWW), pp.
119–130 (2013)

29. Binmore, K., et al.: Playing for Real: A Text on Game Theory. Oxford University
Press, Oxford (2007)

30. BitcoinWiki: Bitcoinwiki network (2019). https://en.bitcoin.it/wiki/Network.
Accessed 28 Nov 2019

https://doi.org/10.1007/978-3-662-48653-5_19
https://doi.org/10.1007/3-540-44810-1_22
https://doi.org/10.1007/3-540-44810-1_22
https://doi.org/10.1007/11945529_20
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://en.bitcoin.it/wiki/Network

Resource Burning for Permissionless Systems (Invited Paper) 37

31. Borisov, N.: Computational puzzles as sybil defenses. In: Proceedings of the Sixth
IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 171–176
(2006)

32. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing
for structured peer-to-peer overlay networks. In: Proceedings of the 5th Usenix
Symposium on Operating Systems Design and Implementation (OSDI), pp. 299–
314 (2002)

33. CBS News, A.P.: Buyer beware: scourge of fake reviews hitting Amazon,
Walmart and other major retailers (2019). https://www.cbsnews.com/news/
buyer-beware-a-scourge-of-fake-online-reviews-is-hitting-amazon-walmart-and-
other-major-retailers/

34. Chau, D.H., Pandit, S., Faloutsos, C.: Detecting fraudulent personalities in net-
works of online auctioneers. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.)
PKDD 2006. LNCS (LNAI), vol. 4213, pp. 103–114. Springer, Heidelberg (2006).
https://doi.org/10.1007/11871637_14

35. CoinDesk: Vulnerable? Ethereum’s Casper Tech Takes Criticism at Curacao Event
(2018). https://www.coindesk.com/fundamentally-vulnerable-ethereums-casper-
tech-takes-criticism-curacao

36. Cracked: I get paid to write fake reviews for amazon (2016). https://www.cracked.
com/personal-experiences-2376-i-get-paid-to-write-fake-reviews-amazon.html

37. Danezis, G., Lesniewski-Laas, C., Kaashoek, M.F., Anderson, R.: Sybil-resistant
DHT routing. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 305–318. Springer, Heidelberg (2005). https://doi.org/
10.1007/11555827_18

38. Demirbas, M., Song, Y.: An RSSI-based scheme for sybil attack detection in
wireless sensor networks. In: Proceedings of the 2006 International Symposium
on on World of Wireless, Mobile and Multimedia Networks (WOWMOM), pp.
564–570 (2006)

39. Digiconomist: Bitcoin energy consumption index (2020). https://digiconomist.
net/bitcoin-energy-consumption

40. Dinger, J., Hartenstein, H.: Defending the sybil attack in P2P networks: taxon-
omy, challenges, and a proposal for self-registration. In: Proceedings of the First
International Conference on Availability, Reliability and Security (ARES), pp.
756–763 (2006)

41. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45748-8_24

42. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_25

43. Dwork, C., Naor, M.: Pricing via Processing or combatting junk mail. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4_10

44. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_29

45. Easley, D., Kleinberg, J., et al.: Networks, Crowds, and Markets, vol. 8. Cambridge
University Press, Cambridge (2010)

46. Falkner, J., Piatek, M., John, J.P., Krishnamurthy, A., Anderson, T.: Profiling
a million user DHT. In: Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement, pp. 129–134 (2007)

https://www.cbsnews.com/news/buyer-beware-a-scourge-of-fake-online-reviews-is-hitting-amazon-walmart-and-other-major-retailers/
https://www.cbsnews.com/news/buyer-beware-a-scourge-of-fake-online-reviews-is-hitting-amazon-walmart-and-other-major-retailers/
https://www.cbsnews.com/news/buyer-beware-a-scourge-of-fake-online-reviews-is-hitting-amazon-walmart-and-other-major-retailers/
https://doi.org/10.1007/11871637_14
https://www.coindesk.com/fundamentally-vulnerable-ethereums-casper-tech-takes-criticism-curacao
https://www.coindesk.com/fundamentally-vulnerable-ethereums-casper-tech-takes-criticism-curacao
https://www.cracked.com/personal-experiences-2376-i-get-paid-to-write-fake-reviews-amazon.html
https://www.cracked.com/personal-experiences-2376-i-get-paid-to-write-fake-reviews-amazon.html
https://doi.org/10.1007/11555827_18
https://doi.org/10.1007/11555827_18
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-48000-7_29

38 D. Gupta et al.

47. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable net-
works. In: Proceedings of the Thirteenth ACM Symposium on Discrete Algorithms
(SODA), pp. 94–103 (2002)

48. Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814.
Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_71

49. FitzGibbon, C.D., Fanshawe, J.H.: Stotting in Thomson’s gazelles: an honest
signal of condition. Behav. Ecol. Sociobiol. 23(2), 69–74 (1988)

50. Forbes: Amazon’s fake review problem is getting worse (2019). https://www.
forbes.com/sites/emmawoollacott/2019/04/16/amazons-fake-review-problem-is-
getting-worse/#f6988195f525

51. Fraigniaud, P., Gauron, P.: D2B: a de bruijn based content-addressable network.
Theoret. Comput. Sci. 355(1), 65–79 (2006)

52. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6_10

53. Gil, S., Kumar, S., Mazumder, M., Katabi, D., Rus, D.: Guaranteeing spoof-
resilient multi-robot networks. In: Proceedings of Robotics: Science and Systems,
Rome, Italy, July 2015

54. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP), pp. 51–68 (2017)

55. Gilbert, S., Newport, C., Zheng, C.: Who are you? Secure identities in ad hoc
networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 227–242. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_16

56. Gilbert, S., Zheng, C.: SybilCast: broadcast on the open airwaves. In: Proceedings
of the 25th Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pp. 130–139 (2013)

57. Guerraoui, R., Huc, F., Kermarrec, A.M.: Highly dynamic distributed computing
with byzantine failures. In: Proceedings of the 2013 ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 176–183 (2013)

58. Gupta, D., Saia, J., Young, M.: Proof of work without all the work. In: Proceedings
of the 19th International Conference on Distributed Computing and Networking
(ICDCN) (2018)

59. Gupta, D., Saia, J., Young, M.: Peace through superior puzzling: an asymmet-
ric sybil defense. In: Proceedings of the 33rd IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 1083–1094 (2019)

60. Gupta, D., Saia, J., Young, M.: ToGCom: an asymmetric sybil defense. arXiv
preprint arXiv:2006.02893 (2020)

61. Hartline, J.D., Roughgarden, T.: Optimal mechanism design and money burning.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pp. 75–84 (2008)

62. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: a
scalable overlay network with practical locality properties. In: USENIX Sympo-
sium on Internet Technologies and Systems (2003)

63. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: Proceedings of the 24th USENIX Conference on Security
Symposium, pp. 129–144 (2015)

https://doi.org/10.1007/11561071_71
https://www.forbes.com/sites/emmawoollacott/2019/04/16/amazons-fake-review-problem-is-getting-worse/#f6988195f525
https://www.forbes.com/sites/emmawoollacott/2019/04/16/amazons-fake-review-problem-is-getting-worse/#f6988195f525
https://www.forbes.com/sites/emmawoollacott/2019/04/16/amazons-fake-review-problem-is-getting-worse/#f6988195f525
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-45174-8_16
http://arxiv.org/abs/2006.02893

Resource Burning for Permissionless Systems (Invited Paper) 39

64. Heydari, A., AliTavakoli, M., Salim, N., Heydari, Z.: Detection of review
spam: a survey. Expert Syst. Appl. 42(7), 3634–3642 (2015). https://doi.
org/10.1016/j.eswa.2014.12.029. http://www.sciencedirect.com/science/article/
pii/S0957417414008082

65. Hildrum, K., Kubiatowicz, J.: Asymptotically efficient approaches to fault-
tolerance in peer-to-peer networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol.
2848, pp. 321–336. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39989-6_23

66. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: FRAUDAR:
bounding graph fraud in the face of camouflage. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pp. 895–904. Association for Computing Machinery, New York (2016).
https://doi.org/10.1145/2939672.2939747

67. Hou, R., Jahja, I., Luu, L., Saxena, P., Yu, H.: Randomized view reconciliation
in permissionless distributed systems, pp. 2528–2536 (2018)

68. Huck, S., Müller, W.: Burning money and (pseudo) first-mover advantages: an
experimental study on forward induction. Games Econ. Behav. 51(1), 109–127
(2005)

69. Hunt, K.M.: Gaming the system: fake online reviews v. consumer law. Com-
put. Law Secur. Rev. 31(1), 3–25 (2015). http://www.sciencedirect.com/science/
article/pii/S0267364914001824

70. Hussain, A., Heidemann, J., Papadopoulos, C.: A framework for classifying denial
of service attacks. In: Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIGCOMM),
pp. 99–110 (2003)

71. Jagadish, H., Ooi, B.C., Vu, Q.H.: BATON: a balanced tree structure for peer-to-
peer networks. In: Proceedings of the 31st International conference on Very Large
Data Bases (VLDB), pp. 661–672 (2005)

72. Jaiyeola, M.O., Patron, K., Saia, J., Young, M., Zhou, Q.M.: Tiny groups tackle
byzantine adversaries. In: Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, IPDPS, pp. 1030–1039 (2018)

73. Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008 Inter-
national Conference on Web Search and Data Mining, pp. 219–230 (2008)

74. Johansen, H., Allavena, A., van Renesse, R.: Fireflies: scalable support for
intrusion-tolerant network overlays. In: ACM SIGOPS Operating Systems
Review, pp. 3–13 (2006)

75. John, R., Cherian, J.P., Kizhakkethottam, J.J.: A survey of techniques to prevent
sybil attacks. In: Proceedings of the International Conference on Soft-Computing
and Networks Security (ICSNS), pp. 1–6 (2015)

76. Juels, A., Brainard, J.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS), pp. 151–165 (1999)

77. Kaiser, E., Feng, W.C.: Mod_kaPoW: mitigating DoS with transparent proof-
of-work. In: Proceedings of the 2007 ACM CoNEXT Conference, pp. 74:1–74:2
(2007)

78. Kapadia, A., Triandopoulos, N.: Halo: High-assurance locate for distributed hash
tables. In: Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS) (2008)

79. Karami, A., Zhou, B.: Online review spam detection by new linguistic features.
In: iConference 2015 Proceedings (2015)

https://doi.org/10.1016/j.eswa.2014.12.029
https://doi.org/10.1016/j.eswa.2014.12.029
http://www.sciencedirect.com/science/article/pii/S0957417414008082
http://www.sciencedirect.com/science/article/pii/S0957417414008082
https://doi.org/10.1007/978-3-540-39989-6_23
https://doi.org/10.1007/978-3-540-39989-6_23
https://doi.org/10.1145/2939672.2939747
http://www.sciencedirect.com/science/article/pii/S0267364914001824
http://www.sciencedirect.com/science/article/pii/S0267364914001824

40 D. Gupta et al.

80. Kaashoek, M.F., Karger, D.R.: Koorde: a simple degree-optimal distributed hash
table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–
107. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45172-3_9

81. Katz, J., Miller, A., Shi, E.: Pseudonymous secure computation from time-lock
puzzles. IACR Cryptol. ePrint Arch. 2014, 857 (2014). http://eprint.iacr.org/
2014/857

82. Khan, S.M., Mallesh, N., Nambiar, A., Wright, M.K.: The dynamics of salsa: a
robust structured P2P system. Netw. Protocols Algorithms 2, 40–60 (2010)

83. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63688-7_12

84. Knockel, J., Saad, G., Saia, J.: Self-healing of byzantine faults. In: Higashino,
T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS
2013. LNCS, vol. 8255, pp. 98–112. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03089-0_8

85. Laurie, B., Clayton, R.: “Proof-of-work” proves not to work. In: Proceedings of
the 3rd Annual Workshop on Economics and Information Security (WEIS) (2004)

86. Lesniewski-Laas, C., Kaashoek, M.F.: Whanau: a sybil-proof distributed hash
table. In: Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI 2010 , p. 8 (2010)

87. Li, D., Lu, X., Wu, J.: FISSIONE: a scalable constant degree and low congestion
DHT scheme based on Kautz graphs. In: Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 3, pp.
1677–1688 (2005)

88. Li, F., Mittal, P., Caesar, M., Borisov, N.: SybilControl: practical sybil defense
with computational puzzles. In: Proceedings of the Seventh ACM Workshop on
Scalable Trusted Computing, pp. 67–78 (2012)

89. Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. IJ
Netw. Secur. 19(5), 653–659 (2017)

90. Liu, D., Camp, L.J.: Proof of work can work. In: Proceedings of the 5th Workshop
on the Economics of Information Security (WEIS) (2006)

91. Liu, Y., Bild, D.R., Dick, R.P., Mao, Z.M., Wallach, D.S.: The Mason test: a
defense against sybil attacks in wireless networks without trusted authorities.
IEEE Trans. Mob. Comput. 14(11), 2376–2391 (2015)

92. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 17–30 (2016)

93. Malbon, J.: Taking fake online consumer reviews seriously. J. Consum. Policy
36(2), 139–157 (2013)

94. Malliga, S., Tamilarasi, A., Janani, M.: Filtering spoofed traffic at source end
for defending against DoS/DDoS attacks. In: Proceedings of the International
Conference on Computing, Communication and Networking, pp. 1–5. IEEE (2008)

95. Mankins, D., Krishnan, R., Boyd, C., Zao, J., Frentz, M.: Mitigating distributed
denial of service attacks with dynamic resource pricing. In: Proceedings of the
Seventeenth Annual Computer Security Applications Conference, pp. 411–421.
IEEE (2001)

96. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system
based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8_5

https://doi.org/10.1007/978-3-540-45172-3_9
http://eprint.iacr.org/2014/857
http://eprint.iacr.org/2014/857
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-03089-0_8
https://doi.org/10.1007/978-3-319-03089-0_8
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5

Resource Burning for Permissionless Systems (Invited Paper) 41

97. Miller, A., et al.: Discovering bitcoin’s public topology and influential nodes
(2015). http://cs.umd.edu/projects/coinscope/coinscope.pdf

98. Miller, G.: Spent: Sex, Evolution, and Consumer Behavior. Penguin, New York
(2009)

99. Mohaisen, A., Hollenbeck, S.: Improving social network-based sybil defenses by
rewiring and augmenting social graphs. In: Kim, Y., Lee, H., Perrig, A. (eds.)
WISA 2013. LNCS, vol. 8267, pp. 65–80. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-05149-9_5

100. Mohaisen, A., Kim, J.: The sybil attacks and defenses: a survey. Smart Comput.
Rev. 3(6), 480–489 (2013)

101. Mónica, D., Leitao, L., Rodrigues, L., Ribeiro, C.: On the use of radio resource
tests in wireless ad-hoc networks. In: Proceedings of the 3rd Workshop on Recent
Advances on Intrusion-Tolerant Systems, pp. 21–26 (2009)

102. Moran, T., Orlov, I.: Simple proofs of space-time and rational proofs of storage.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp.
381–409. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_14

103. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://
bitcoin.org/bitcoin.pdf

104. Nambiar, A., Wright, M.: Salsa: a structured approach to large-scale anonymity.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security, pp. 17–26 (2006)

105. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-
discrete approach. In: Proceedings of the 15th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA) (2003)

106. Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks:
analysis & defenses. In: Proceedings of the 3rd International Symposium on Infor-
mation Processing in Sensor Networks (IPSN), pp. 259–268 (2004)

107. Nolan, C.: The Dark Knight. Quote from the scene where the Joker sets a large
pile of money ablaze (2008)

108. Noureddine, M.A., et al.: Revisiting client puzzles for state exhaustion attacks
resilience. In: Proceedings of the 49th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), pp. 617–629 (2019)

109. Oikonomou, G., Mirkovic, J.: Modeling human behavior for defense against flash-
crowd attacks. In: Proceedings of the IEEE International Conference on Commu-
nications, pp. 1–6. IEEE (2009)

110. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by
any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies,
pp. 309–319. Association for Computational Linguistics, USA (2011)

111. Park, S., Kwon, A., Fuchsbauer, G., Gaži, P., Alwen, J., Pietrzak, K.: SpaceMint:
a cryptocurrency based on proofs of space. In: Meiklejohn, S., Sako, K. (eds.) FC
2018. LNCS, vol. 10957, pp. 480–499. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-58387-6_26

112. Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B., Hu, Y.C.: Portcullis:
protecting connection setup from denial-of-capability attacks. ACM SIGCOMM
Comput. Commun. Rev. 37(4), 289–300 (2007)

113. Penn, D.J.: The evolutionary roots of our environmental problems: toward a dar-
winian ecology. Q. Rev. Biol. 78(3), 275–301 (2003)

114. Pogue, D.: Time to kill off captchas. Sci. Am. 306(3), 23–23 (2012)

http://cs.umd.edu/projects/coinscope/coinscope.pdf
https://doi.org/10.1007/978-3-319-05149-9_5
https://doi.org/10.1007/978-3-319-05149-9_5
https://doi.org/10.1007/978-3-030-26948-7_14
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-662-58387-6_26
https://doi.org/10.1007/978-3-662-58387-6_26

42 D. Gupta et al.

115. Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review net-
works and metadata. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 985–
994. Association for Computing Machinery, New York (2015). https://doi.org/
10.1145/2783258.2783370

116. Rowaihy, H., Enck, W., McDaniel, P., La Porta, T.: Limiting Sybil attacks in
structured P2P networks. In: Proceedings of the 26th IEEE International Con-
ference on Computer Communications (INFOCOM), pp. 2596–2600 (2007)

117. Rowstron, A.I.T., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms, pp. 329–350 (2001)

118. Saad, G.: The Evolutionary Bases of Consumption. Psychology Press (2007)
119. Saad, G., Vongas, J.G.: The effect of conspicuous consumption on men’s testos-

terone levels. Organ. Behav. Hum. Decis. Process. 110(2), 80–92 (2009)
120. Saad, G., Saia, J.: Self-healing computation. In: Proceedings of the International

Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS),
pp. 195–210 (2014)

121. Saad, G., Saia, J.: A theoretical and empirical evaluation of an algorithm for
self-healing computation. Distrib. Comput. 30(6), 391–412 (2017)

122. Saia, J., Young, M.: Reducing communication costs in robust peer-to-peer net-
works. Inform. Process. Lett. 106(4), 152–158 (2008)

123. Savage, D., Zhang, X., Yu, X., Chou, P., Wang, Q.: Detection of opin-
ion spam based on anomalous rating deviation. Expert Syst. Appl.
42(22), 8650–8657 (2015). https://doi.org/10.1016/j.eswa.2015.07.019.
http://www.sciencedirect.com/science/article/pii/S0957417415004790

124. Scheideler, C., Schmid, S.: A distributed and oblivious heap. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009, Part II. LNCS, vol. 5556, pp. 571–582. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02930-1_47

125. Sen, S., Freedman, M.J.: Commensal cuckoo: secure group partitioning for large-
scale services. ACM SIGOPS Oper. Syst. 46(1), 33–39 (2012)

126. Shoker, A.: Sustainable blockchain through proof of exercise. In: 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA), pp.
1–9. IEEE (2017)

127. Singh, A., Ngan, T.W., Druschel, P., Wallach, D.S.: Eclipse attacks on overlay
networks: threats and defenses. In: Proceedings IEEE International Conference
on Computer Communications (INFOCOM), pp. 1–12 (2006)

128. Steiner, M., En-Najjary, T., Biersack, E.W.: A global view of KAD. In: Pro-
ceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp.
117–122 (2007)

129. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), pp. 149–160 (2001)

130. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003). https://doi.org/10.1109/
TNET.2002.808407

131. Sundie, J.M., Kenrick, D.T., Griskevicius, V., Tybur, J.M., Vohs, K.D., Beal,
D.J.: Peacocks, porsches, and thorstein veblen: Conspicuous consumption as a
sexual signaling system. J. Pers. Soc. Psychol. 100(4), 664 (2011)

https://doi.org/10.1145/2783258.2783370
https://doi.org/10.1145/2783258.2783370
https://doi.org/10.1016/j.eswa.2015.07.019
http://www.sciencedirect.com/science/article/pii/S0957417415004790
https://doi.org/10.1007/978-3-642-02930-1_47
https://doi.org/10.1007/978-3-642-02930-1_47
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2002.808407

Resource Burning for Permissionless Systems (Invited Paper) 43

132. Tegeler, F., Fu, X.: SybilConf: computational puzzles for confining sybil attacks.
In: Proceedings of the IEEE Conference on Computer Communications Work-
shops (INFOCOM), pp. 1–2 (2010)

133. The Guardian, G.M.: The need to protect the internet from ‘astroturfing’
grows ever more urgent (2011). https://www.theguardian.com/environment/
georgemonbiot/2011/feb/23/need-to-protect-internet-from-astroturfing

134. Thorstein, V.: The Theory of the Leisure Class: An Economic Study of Institu-
tions. BW Huebsch, New York (1912)

135. Urdaneta, G., Pierre, G., van Steen, M.: A survey of DHT security techniques.
ACM Comput. Surv. 43(2), 1–53 (2011)

136. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-
9_18

137. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008)

138. Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Shenker, S.: DDoS
defense by offense. In: Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMM), pp. 303–314 (2006)

139. Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Shenker, S.: DDoS
defense by offense. ACM Trans. Comput. Syst. (TOCS) 28(1), 3 (2010)

140. Wang, H., Zhu, Y., Hu, Y.: An efficient and secure peer-to-peer overlay network.
In: Proceedings of the IEEE Conference on Local Computer Networks, pp. 764–
771 (2005)

141. Wang, L., Kangasharju, J.: Measuring large-scale distributed systems: case of
BitTorrent mainline DHT. In: IEEE 13th International Conference on Peer-to-
Peer Computing (P2P), pp. 1–10 (2013)

142. Wang, X., Reiter, M.K.: Defending against denial-of-service attacks with puzzle
auctions. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy,
p. 78 (2003)

143. Wei, W., Xu, F., Tan, C.C., Li, Q.: SybilDefender: a defense mechanism for sybil
attacks in large social networks. IEEE Trans. Parallel Distrib. Syst. 24(12), 2492–
2502 (2013)

144. Wu, Y., Ngai, E.W., Wu, P., Wu, C.: Fake online reviews: litera-
ture review, synthesis, and directions for future research. Decis. Sup-
port Syst. 132, 113280 (2020). https://doi.org/10.1016/j.dss.2020.113280.
http://www.sciencedirect.com/science/article/pii/S016792362030035X

145. Xie, S., Wang, G., Lin, S., Yu, P.S.: Review spam detection via temporal pattern
discovery. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 823–831. Association for Computing
Machinery, New York (2012). https://doi.org/10.1145/2339530.2339662

146. Xie, S., Wang, G., Lin, S., Yu, P.S.: Review spam detection via time series pat-
tern discovery. In: Proceedings of the 21st International Conference on World
Wide Web, WWW 2012 Companion, pp. 635–636. Association for Computing
Machinery, New York (2012). https://doi.org/10.1145/2187980.2188164

147. Yan, J., El Ahmad, A.S.: Captcha robustness: a security engineering perspective.
Computer 44(2), 54–60 (2011)

https://www.theguardian.com/environment/georgemonbiot/2011/feb/23/need-to-protect-internet-from-astroturfing
https://www.theguardian.com/environment/georgemonbiot/2011/feb/23/need-to-protect-internet-from-astroturfing
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1016/j.dss.2020.113280
http://www.sciencedirect.com/science/article/pii/S016792362030035X
https://doi.org/10.1145/2339530.2339662
https://doi.org/10.1145/2187980.2188164

44 D. Gupta et al.

148. Yan, J., El Ahmad, A.S.: Usability of CAPTCHAs or usability issues in
CAPTCHA design. In: Proceedings of the 4th Symposium on Usable Privacy
and Security, SOUPS 2008, pp. 44–52. Association for Computing Machinery,
New York (2008). https://doi.org/10.1145/1408664.1408671

149. Yang, X., Wetherall, D., Anderson, T.: TVA: A DoS-limiting network architecture.
IEEE/ACM Trans. Netw. 16(6), 1267–1280 (2008)

150. Ma, Y., Li, F.: Detecting review spam: challenges and opportunities. In: 8th Inter-
national Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), pp. 651–654 (2012)

151. Young, M., Kate, A., Goldberg, I., Karsten, M.: Towards practical communication
in Byzantine-resistant DHTs. IEEE/ACM Trans. Netw. 21(1), 190–203 (2013)

152. Yu, H.: Sybil defenses via social networks: a tutorial and survey. SIGACT News
42(3), 80–101 (2011)

153. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: SybilLimit: a near-optimal social
network defense against sybil attacks. IEEE/ACM Trans. Netw. 18(3), 885–898
(2010)

154. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: SybilGuard: defending against
sybil attacks via social networks. In: Proceedings of the 2006 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communica-
tions (SIGCOMM) vol. 36, pp. 267–278, August 2006

155. Yu, S., Thapngam, T., Liu, J., Wei, S., Zhou, W.: Discriminating DDoS flows from
flash crowds using information distance. In: Proceedings of the Third International
Conference on Network and System Security, pp. 351–356. IEEE (2009)

156. Zahavi, A.: Mate selection - a selection for a handicap. J. Theor. Biol. 53(1),
205–214 (1975)

157. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor.
15(4), 2046–2069 (2013)

158. Zatloukal, K.C., Harvey, N.J.A.: Family trees: an ordered dictionary with optimal
congestion, locality, degree, and search time. In: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 308–317 (2004)

https://doi.org/10.1145/1408664.1408671

Mobile Robots

ANTS on a Plane

Abhinav Aggarwal and Jared Saia(B)

Department of Computer Science, University of New Mexico,
Albuquerque, NM, USA

{abhiag,saia.cs}@unm.edu

Abstract. In the ANTS (Ants Nearby Treasure Search) problem, mul-
tiple searchers, starting from a central location, search for a treasure.
The searchers cannot communicate and have few bits of initial knowl-
edge, called advice, when they begin the search. In this paper, we initiate
the study of ANTS in the geometric plane.

Our main result is an algorithm, GoldenFA, that tolerates arbitrar-
ily many crash failures caused by an adaptive adversary, and requires

no bits of advice. GoldenFA takes O
((

L + L2(t+1)
ND

)
log L

)
expected

time to find the shape, for a shape of diameter D, at distance L from
the central location, with N searchers, t < N of which suffer adversarial
crash-failures.

We complement our algorithm with a lower bound, showing that it is
within logarithmic factors of optimal. Additionally, we empirically test
GoldenFA, and a related heuristic, and find that the heuristic is consis-
tently faster than the state-of-the-art. Our algorithms and analysis make
critical use of the Golden Ratio.

Keywords: Golden Ratio · Reliability · Computational geometry ·
Natural algorithms

1 Introduction

How can multiple simple searchers best find a target? Feinerman, Korman and
others formalized this question by defining the ANTS (Ants Nearby Treasure
Search) problem, where many searchers, all starting at a central location, seek a
hidden target [9–11]. In this paper, we extend results on the ANTS problem in
two key directions. Our first extension is to consider search on a 2-dimensional
plane, rather than on a grid graph. This has two advantages for applications
involving geometric search.1 First, it allows us to more easily design search algo-
rithms for targets of different sizes and shapes. Second, it avoids the problem of
choosing the correct granularity for the grid graph. In particular, if the granular-
ity is too low, then the target may not overlap any node. But if the granularity
is too high, it places a high computational burden on the searchers.
1 Our own motivating application is drones searching for gas plumes [1,30].

With apologies to the cast and crew of the Hollywood classic Snakes on a Plane. This
work is supported by the National Science Foundation grant CNS 1816250.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 47–62, 2020.
https://doi.org/10.1007/978-3-030-54921-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_3

48 A. Aggarwal and J. Saia

Our second extension is ensuring provable robustness to adversarial failures,
without requiring communication among searchers. Importantly, our algorithm
can tolerate all but 1 searcher crashing, and the efficiency of our algorithm
decreases only linearly with the actual number of faults, even when that number
is not known in advance.

Our Model. N searchers start at a central location, called the nest. We define
a treasure to be a convex shape with ratio of diameter to width equal to a fixed
constant. Recall that the diameter of a convex shape is the largest distance
between two parallel lines that are both tangent to the boundary of the shape,
and that the width is the smallest such distance.2

A treasure of diameter D is placed adversarially at a distance L from the
nest, where L is measured from the nest to the geometric center of the treasure.
The searchers are synchronous in the sense that they all move at the same speed,
and that local computation is instantaneous. The searchers cannot communicate
with each other, and have zero bits of initial knowledge, including no knowledge
of L or D. We measure the time it takes for some searcher to first locate the
treasure. We refer to this as the search time of our algorithm. Our failure model
is based on an adaptive adversary considered in [23]. In particular, an omniscient
adversary chooses t < N searchers that suffer crash failures at times chosen by
the adversary.

We assume that every searcher has the ability to turn at angles of both π

and 2π/φ, where φ = 1+
√
5

2 is the Golden Ratio. When turning at an angle of α,
let β = 2π − α, be the remaining angle in the circle. Then to turn at an angle of
π, requires that the searcher has the ability to turn until α = β. To turn at an
angle of 2π/φ, requires that the searcher have the ability to turn until 2π

α = α
β .

1.1 Our Results

Our upper bound, summarized in the theorem below, considers N searchers
looking for a treasure of diameter D at distance L, with t < N crash failures
(See Table 1).

Theorem 1. There exists an algorithm, GoldenFA, that in the presence of
up to t < N crash failures, is able to locate a treasure of unknown diameter D,
placed adversarially at an unknown distance L from the nest, in expected search
time O

((
L + L2(t+1)

ND

)
log L

)
.

Additionally, GoldenFA requires zero bits of initial knowledge, called
advice; it is uniform in that the searchers know nothing about N , and have
no unique identifiers.

We prove lower-bounds, showing that the expected run time of GoldenFA is
within logarithmic factors of optimal among a class of spoke-based algorithms. A
spoke-based algorithm is one where the searchers only search along line segments,
where each line-segment has an end-point in the nest, the central location where
the searchers all start. See Sect. 6 for details.
2 For example, a treasure can be a circle, regular polygon, or rectangle with constant

aspect ratio.

ANTS on a Plane 49

Table 1. A comparison of GoldenFA and the algorithms by Feinerman and Kor-
man [10] (abbreviated as F&K). While the latter are not provably robust against
adversarial crash failures, GoldenFA can efficiently handle all but one searchers to
fail, even when these failures are scheduled by an adaptive adversary.

Algorithm Advice (bits) Robustness Runtime

F& K (advice) O(log log N) Not robust O
(
L + L2

N

)
for D = Θ(1)

F& K (no advice) 0 Not robust O
((

L + L2

N

)
log1+ε N

)
for

fixed ε > 0 and D = Θ(1)

GoldenFA 0 t < N O
((

L + L2(t+1)
ND

)
log L

)

Our algorithm makes use of the Golden Ratio, both to ensure robustness and
to ensure good coverage during the search. To the best of our knowledge, our
algorithm is the first for the ANTS problem that makes use of this value.

1.2 Novelty and Technical Challenges

Our upper bound makes critical use of the Golden Ratio, and the difficultly to
approximate it rationally. In particular, we can write any number as a (possibly
infinite) continued fraction [18] of the form x1 + 1

x2+
1

x3+...

, where the xi values

are all integers for i ≥ 1. The degree to which the original number is well-
approximated by a finite continued fraction depends on how large the xi values
are. For example, if x2 is large, then the absolute difference between x1 and
the original number is small; if x3 is large, then the absolute difference between
x1 + 1/x2 and the original number is small, and so forth.

When xi = 1 for all i ≥ 1, we obtain an irrational number that is most
difficult to approximate. To find this most difficult to approximate irrational
number, we set y = 1 + 1

y , and solve the resulting quadratic equation to obtain

a solution y = 1+
√
5

2 , which is the celebrated Golden Ratio φ.

Using φ to Spread-Out Spokes. In our algorithm, searchers proceed from
the nest in line segments that we call spokes. Each new spoke is oriented at arc
length φ, along the unit circle, from the previous one. The fact that φ is difficult
to approximate with a rational number has useful implications in ensuring the
angles between spokes are “well-spread”. For example, if we start at the point 0
on a unit circle, and iteratively add points by moving clockwise by arc distance
φ, then we will end up with near uniform distance between points (See Lemma 3
and [20,29]). In particular, if x spokes are added this way, then the maximum
arc length on a unit circle between neighboring spokes is O (1/x) by the Three
Gap Theorem (see Lemma 3). This allows us to locate the treasure efficiently,
when D is unknown. Interestingly, this has connections to how plants add leaves
as they grow. In particular, if the next leaf is added by moving arc length φ
along a unit circle, this ensures that leaves are well-spread, which increases their
exposure to sunlight [27].

50 A. Aggarwal and J. Saia

Using φ to Handle Failures. In our algorithm, each searcher creates the first
spoke at a random heading and then iteratively proceeds to the next spoke by
moving an arc distance φ along the unit circle (see Fig. 1). Thus, even in the
presence of t = N − 1 failures, the gaps between the spokes generated by the
single remaining searcher decrease linearly and the treasure is found. This way,
our algorithm eventually succeeds even when all but one searcher crashes.

Unknown L. Since L is unknown, we must carefully balance increasing spoke
lengths and decreasing arc lengths between spokes over time. Simple doubling of
spoke lengths over time is inefficient. Instead, our algorithm proceeds in epochs,
where in epoch i, we search along spokes of length 20, 21, . . . , 2i−1. In each epoch,
we ensure that the amount of time spent searching along spokes of length 2j is
the same for all 0 ≤ j < i. We do this by having 2i−1 spokes of length 20,
2i−2 spokes of length 21, and so on up to 20 spokes of length 2i−1 (see Fig. 2).
Additionally, the angles between these spokes is determined using the Golden
Ratio so that the angular gaps decrease linearly with the number of spokes.

1.3 Paper Organization

The rest of the paper is organized as follows. We discuss related work in Sect. 2
and some technical preliminaries in Sect. 3. We describe GoldenFA in Sect. 4
and analyze it in Sect. 5. We then give our lower bounds in Sect. 6. We provide
empirical results on GoldenFA, comparing it with existing work, in Sect. 7.
Finally, we conclude and discuss areas for future work in Sect. 8.

2 Related Work

Search is a fundamental problem in biology, where survival depends on search
for mates, prey and other resources. It is also a common problem in robotics
and mobile computing. Collective search, where multiple searchers must coordi-
nate, is a key problem in computer science, robotics and in social insects. Ant-
and bee-inspired algorithms have been particularly influential in swarm robotics
research [16,22,28].

ANTS. Feinerman, Korman et al. [9–11] introduced the ANTS problem where
multiple searchers starting from the same central location search for a treasure.
Searchers are simple in that they cannot communicate and have few bits of
initial knowledge, called advice, when they first leave the nest. Research on
this problem now extends in multiple directions including: tradeoffs between
computational resources and knowledge of searchers and the search time [7,9,24];
tradeoffs between communication and search time [3,23,25]; fault-tolerance [23];
handling asynchronous searchers [8,25]; and game theoretic analysis of rational
searchers [4]. As stated previously, our model is equivalent to that of [9–11],
except that we search for a convex treasure in the infinite plane, rather than
a single vertex on an infinite grid. We note that the paper [11], while alluding

ANTS on a Plane 51

to search on the plane, actually performs search on a two dimensional grid, by
assuming each agent has a “bounded field of view of say ε” (Sect. 2 of [11]).

There are two potential benefits to avoiding this type of discretization. First,
in some search applications, such as gas plume detection [30], there may be no
clear analogue to a bounded “field of view”. In this case, choosing ε too large
risks missing the treasure, but choosing ε too small increases computational load
on the searchers, since coordinate storage space seems to grow as Ω(log(1/ε)).
Second, searching in the geometric plane more naturally allows for consideration
of different shapes and sizes for the treasure. In many search applications, this
seems important since targets are likely to be large or to be co-located, in both
biological [2,13] and engineering systems [14,30].

Golden Ratio. Our algorithms make critical use of the celebrated Golden Ratio.
This ratio is the limit of the ratio of consecutive numbers in the Fibonacci
sequence. Fibonacci generated the sequence as an idealized model of a reproduc-
ing rabbit population assuming overlapping generations [6]. It was documented
in India many centuries earlier, and has been observed in numerous biological
systems including the arrangement of pine cones, unfurling of fern leaves, and
the arrangement of sunflower seeds that optimally fills the circular area of the
flower [27]. The Golden Ratio and Fibonacci numbers have been used in com-
puter science for various applications like obtaining optimal schedules for security
games [17], Fibonacci hashing [20], bandwidth sharing [15], data structures [12]
and game theoretic models for blocking-resistant communication [19]. See [26]
for a fascinating discussion of the history and applications of the Golden Ratio.

Crash Faults. To the best of our knowledge, work by Langner et al. [23] is
the only other result that tolerates adversarial crash failures for a problem
similar to ANTS. However, their model significantly deviates from ANTS in
that they allow communication. In particular, constant-sized messages can be
exchanged between searchers when they are both at the same location. Addi-
tionally, their searchers are much more restricted than ours in that they are
modeled by finite-state automata. They describe an algorithm that locates a
single target in O

(
L + L2/N + Lt

)
time, while tolerating t ≤ cN crash failures

for some constant c < 1. In contrast, our algorithm can handle any t < N − 1,
and does not require communication.

3 Technical Preliminaries

Let φ = (1 +
√

5)/2 denote the Golden ratio. For m ≥ 1, let Fm denote the mth

Fibonacci number, so that F1 = F2 = 1 and Fm = Fm−1 + Fm−2 for all m ≥ 3.
Given integer n, let m(n) denote the index of the largest Fibonacci number not
greater than n.

Lemma 1. For all x ≥ 1, the following properties hold:

1. �logφ x + 1� ≤ m(x) ≤ ⌈
logφ x + 2

⌉
.

2. 1
φ3x ≤ φ−m(x) ≤ 1

x .

52 A. Aggarwal and J. Saia

Fig. 1. A schematic of the gaps induced by points placed on the unit circle, following
Lemma 3. When the arc distance between successive points is φ ≡ φ−1 mod 1, then
the gaps decrease as the number of points increase.

Proof. For (1), using the fact that Fr ≤ φr−1 for all r, it holds that F�logφ x+1� ≤
φ�logφ x+1�−1 ≤ x. Similarly, since Fr ≥ φr−2 for all r, it holds that F�logφ x+2� ≥
φ�logφ x+2�−2 ≥ x. For (2), using the result obtained in (1), we obtain φ−m(x) ≤
φ−�logφ x+1� ≤ 1

x . Similarly, φ−m(x) ≥ φ−�logφ x+2� ≥ 1
φ3x . 	

We define a unit circle as a circle around the nest with circumference one.

Lemma 2. Let the treasure be oriented so that its diameter is perpendicular to
the spoke ending at the diameter midpoint. Let α be the arc length on the unit
circle made by the two spokes that are tangent to the diameter. Then,

1. α = 1
π sin−1

(
D
2L

)
; and

2. α ≥ D
2πL .

Proof. Part (1) follows by definition. Part (2) follows from the Maclaurin expan-
sion [21] of sin−1 x, from which it follows that sin−1 x ≥ x. 	

Our analysis makes use of the following lemma regarding the Three Gap
Theorem by Swierczkowski [29] (also known as the Steinhaus Conjecture) for
Golden-ratio based gaps between successive points on the circumference of a
unit circle (see Fig. 1). In this lemma, the set of points on the unit circle is
equivalent to the set of points generated by our algorithm. This holds since
φ−1 ≡ φ mod 1, because φ−1 = φ − 1. The last sentence of the lemma follows
immediately from Lemma 1(2).

Lemma 3 (Restatement of Corollary 2 from [29]). Let C be a circle of
circumference 1 and p0 be a fixed starting point on C. For k ≥ 0, let pk be the
point which makes an arc of length kφ from p0, measured clockwise. Let n ≥ 1
and Fm be the largest Fibonacci number no more than n. Then, the set of points
Pn = {p0, p1, . . . , pn} partition C into disjoint arcs, each of which has length
φ−m, φ−m+1 or φ−m+2. In particular, this implies that every disjoint arc has
length between 1

φ3n and φ2

n .

ANTS on a Plane 53

Algorithm 1: The GoldenFA Algorithm.
/* Each searcher independently performs the following steps. */

1 i ← 1;
2 while treasure not found do
3 direction ← uniformly random heading on the unit circle;
4 for j ∈ {0, . . . , i − 1} do
5 Traverse 2i−j spokes of length 2j . The first spoke is at heading

direction. Each subsequent spoke has heading that increases clockwise
by arc distance of φ, along the unit circle, from the heading of the
previous spoke.;

6 end
7 i ← i + 1;

8 end

In the rest of the paper, we will assume circular treasures but our results
hold for all convex shapes where the ratio of the diameter to the width is a fixed
constant. We assume that L is the distance from the nest to the center of the
circular treasure.

Our algorithm is designed to search in the real plane, R2. We note, however,
that it can be adapted to search in the infinite two-dimensional grid as follows.
For every spoke generated by our algorithm, create a walk on the grid that visits
every edge incident to every face in the grid that is intersected by the spoke. This
ensures that we will find any treasure that overlaps a grid vertex. Additionally,
it increases total search time by at most a constant factor.

4 GoldenFA

Algorithm 1 describes our main algorithm, GoldenFA. The algorithm proceeds
in epochs numbered iteratively starting at i = 1. In epoch number, i, each
searcher initially chooses a random initial heading direction. Then for all j,
1 ≤ j ≤ (i − 1), the searcher traverses along 2i−j spokes of length 2j . Each
spoke starts and ends at the nest. For each value of j, the first of these spokes
is at heading direction, and each subsequent spoke has heading that increases
clockwise along the unit circle at arc length of φ from the previous spoke. Thus
in epoch i, a total of

∑i−1
j=0 2i−j = 2i+1 − 1 spokes are traversed. If the treasure

is not found after these traversals, epoch i ends and epoch i + 1 begins.
Figure 2 illustrates two epochs of GoldenFA when N = 2.

54 A. Aggarwal and J. Saia

Fig. 2. A schematic of GoldenFA is shown for the spokes made by two searchers in
epochs 2 and 3 (red solid lines for searcher 1 and green dotted lines for searcher 2).
Both searchers choose a random initial heading at the beginning of every epoch. (Color
figure online)

5 Analysis

We next analyze GoldenFA and compute its runtime as a function of the
unknown parameters: treasure diameter, its distance from the nest, the number
of searchers and the number of crash failures. In the following, all log terms are
base 2.

Lemma 4. In epoch i ≥ log L, the probability that a single searcher finds the
treasure is at least α2i−(log L)−5, where α ≥ D

2πL . In any epoch i ≥ log L+log φ2

α +
1, a searcher finds the treasure with probability 1.

Proof. When i ≥ log L, there will be 2i−�log L� spokes of length at least L, where
the first of these spokes has a uniformly random orientation, and the remainder
are spread out at successive clockwise arc distances of φ. By Lemma 3, the
maximum arc length between any neighboring pair of these 2i−�log L� spokes is
φ22−i+�log L�. By Lemma 2, if any of these spokes intersect an arc of length α,
where α ≥ D

2πL , then the searcher will find the treasure. Thus, for i ≥ log L +
log φ2

α + 1, a searcher is guaranteed to find the treasure.
By Lemma 3, the minimum arc length between any neighboring pair of x

spokes is 1
φ3x . Thus, when x ≤ 1

αφ3 , all spokes are arc distance at least α apart.
If there are x such spokes of length at least L, the probability that one of these
spokes intersects the treasure is xα. To see this, imagine fixing the x spokes, and
then letting the α length arc associated with the treasure move uniformly at
random on the circumference of the unit circle. The total measure of locations

ANTS on a Plane 55

where the treasure may fall so that it intersects a spoke is then xα. Hence, when
log L ≤ i ≤ �log L� + log 1

φ3α , the probability that a single searcher finds the
treasure is at least α2i−�log L� ≥ α2i−(log L)−1.

Finally, note that for �log L�+log 1
φ3α < i < log L+log φ2

α +1, the probability
that a single searcher finds the treasure is at least 1/φ3. Thus, in this range, the
probability of finding the treasure is at least α 1

φ5 2i−�log L� ≥ α2i−(�log L�+4) ≥
α2i−(log L)−5. 	

Theorem 2. In the presence of up to t < N crash failures, GoldenFA takes
an expected number of times steps that is O

((
L + L2(t+1)

ND

)
log L

)
.

Proof. First, we consider the case where 2(t + 1) > N . By Lemma 4, when
i ≥ log L + log φ2

α + 1, all searchers will find the treasure. Thus, in this case, the
total time of GoldenFA is no more than

log L+log φ2

α +1∑
i=1

i2i = O

(
Lφ2

α
log

Lφ2

α

)
.

This is the claimed number of time steps when t = Θ(N), since α = Θ(D/L).
Next, assume that 2(t + 1) ≤ N . We first compute the expected number of

searchers that find the treasure in each epoch, and then use this expectation to
bound, for each epoch, the probability that the total number of searchers that
find the treasure is no more than the total number of faults.

For any epoch i, let Si be a random variable giving the number of searchers
that find the treasure in epoch i. By Lemma 4, and linearity of expectation, we
have that for log L ≤ i ≤ log L + log φ2

α + 1,

E(Si) ≥ Nα2i−(log L)−5,

where α ≥ D
2πL . Since each searcher finds the treasure independently, we can

use Chernoff bounds on Si (See [5], Exercise 1.1). These show that Pr(Si <
(1/2)μL) ≤ e−μL/8, where μL = Nα2i−(log L)−5 is a lower bound on the expected
value. Let

i∗ = (log L) + 5 + max
(

0, log
2(t + 1)

Nα

)
.

Then E(Si) ≥ 2(t + 1), when i ≥ i∗ and 2(t + 1) ≤ N . Thus, for i ≥ i∗,

Pr(Si < t + 1) ≤ e−Nα2i−(log L)−8
.

This bound holds even for i ≥ log L + log φ2

α + 1, since for i in that range,
Pr(Si < t + 1) = 0, since each searcher finds the treasure with probability 1.

[Jared: Page 9, 2nd to last displayed part Why do you need t+1 here?
The conclusion that the adversary cannot prevent the searchers from finding the
treasure would have been the same with t rather than t+1, would it not?]

56 A. Aggarwal and J. Saia

Let X be a random variable giving the number of epochs until more than
t searchers find the treasure. Note that Pr(X ≥ i) ≤ Pr(Si−1 < t + 1), where
Pr(S0 < t + 1) = 1. Then, we can bound the expected search time of our
algorithm as follows.

∑
i≥1

i2iPr(X ≥ i) =
∑
i≥1

i2iPr(Si−1 < t + 1)

≤
∑

1≤i<i∗
i2i +

∑
i≥i∗

i2ie−Nα2i−(log L)−8

Let S1 be the value of the first sum. Note that:

S1 =
∑

1≤i<i∗
i2i

= O

(
L log L +

(
L(t + 1)

αN

)
log

⌈
L(t + 1)

αN

⌉)

Let S2 be the value of the second sum. Note that:

S2 =
∑
i≥i∗

i2ie−Nα2i−(log L)−8

≤ 2i∗2i∗ ∑
j≥1

j2je−Nα2j+i∗−(log L)−9

≤ 2i∗2i∗ ∑
j≥1

exp
(
ln j + j ln 2 − 2j+i∗−(log L

Nα)−9
)

In the above, the second line holds by noting that for all j ≥ 1 and x ≥ 1,
(x + j)2x+j ≤ 2(x2x)(j2j), and letting x = i∗. Next, we bound the exponent:

ln j + j ln 2 − 2j+i∗−(log L
Nα)−9 ≤ ln j + j ln 2 − 2j−3

≤ −j

In the above, the first line holds since i∗ = (log L) + 5 + max
(
0, log 2(t+1)

Nα

)
≥

5 + log 2L(t+1)
Nα ≥ 6 + log L

Nα . The second line holds when j ≥ 7, since then
ln j + j ln 2 − 2j−3 ≤ −j. Hence, the infinite summation is O(1). Thus, we have
that

S2 ≤ 2i∗2i∗ ∑
j≥1

exp
(
ln j + j ln 2 − 2j+i∗−(log L

Nα)−9
)

= O

(
L log L +

(
L(t + 1)

αN

)
log

⌈
L(t + 1)

αN

⌉)

By Lemma 2, α ≥ D
2πL , so the total expected cost of GoldenFA is:

O

(
L log L +

(
L2(t + 1)

ND

)
log

⌈
L2(t + 1)

ND

⌉)
.

ANTS on a Plane 57

Finally, note that log
⌈

L2(t+1)
ND

⌉
= O(log L + log(t + 1) − log N − log D) =

O(log L), since N ≥ t + 1.
Thus, we can simplify the above to:

O

((
L +

L2(t + 1)
ND

)
log L

)
.

Note that this is tight since if the log term on the right is less than log L, it
means that L2(t+1)

ND ≤ L, in which case the first summand dominates. 	

6 Lower Bound for Spoke-Based Algorithms

We now prove a lower bound on the number of time steps that any spoke-based
algorithm must take to locate the treasure in the presence of adversarial crash
failures.

Theorem 3. In the presence of up to t < N crash failures, any spoke-based
algorithm requires Ω

(
L +

(
L2(t+1)

ND

)
log L

)
time steps to locate the treasure.

Proof. By Yao’s lemma [31], the search time of the best randomized algorithm
equals the search time of the best deterministic algorithm against a known ran-
domized adversary. Thus, we compute the search time for the best deterministic
algorithm against a known but randomized adversarial placement of the treasure.

Adversarial Strategy. Let x be a positive integer and y be an integer chosen
uniformly at random in [0, x]. Let L = 2y and L/D = 2x−y. Choose an integer z
uniformly at random in [0, L/D]. Let the treasure be an ellipse with diameter D
and an arbitrary small width. Place this ellipse so that its center is at distance
L from the nest, in the direction from the nest that is oriented at arc distance
zD
L along the unit circle. Rotate the ellipse so that its diameter is perpendicular

to the ray connecting the nest and the center of the ellipse.

Lower Bound Against This Strategy. Assume the algorithm knows the value
x; the randomized adversarial strategy above; and t, the number of faults that
will occur. The algorithm can be represented as a sequence, σ, of tuples. Each
tuple corresponds to some searcher’s first visit to a region that is a possible
treasure location. In particular, tuple (
, a) corresponds to a visit to any point
in the ellipse with center at distance
 from the nest, and orientation that is arc
length a along the unit circle centered at the nest. The tuples in σ are all sorted
by time of visit to first point in the ellipse, with ties broken arbitrarily.

First, note that there is 1 unique tuple of length 2x: (2x, 0); 2 unique tuples of
length 2x−1: (2x−1, 0) and (2x−1, 1/2); 4 unique tuples of length 2x−2: (2x−2, 0),
(2x−2, 1/4), (2x−2, 1/2), (2x−2, 3/4); and so forth. Next, observe that each unique
tuple, (
, a), appears in σ at least t + 1 times. This is necessary since each
possible ellipse must be visited by t + 1 searchers in order for the algorithm to
be robust to t adversarial faults. Finally, note that visiting any point on the

58 A. Aggarwal and J. Saia

ellipse corresponding to (
, a) requires movement of Ω(
), no matter at what
tuple, (
′, a′) the searcher visiting (
, a) was previously at. To see this, first note
that if
 =
′, then the distance travelled between these two tuples is Ω(
)
since there must be a trip to the nest between the tuples, because the algorithm
is spoke-based. Second, if
 �=
′, draw two squares centered at the nest, one
enclosing (
, a), and the other enclosing (
′, a′). Then, note that the minimum
distance between the squares is Ω(
).

The expected total distance travelled by all searchers in the algorithm is
then given as follows. Select a tuple in σ uniformly at random, and sum up the
lengths of all tuples preceding, and including, the selected tuple in σ. Let X be
the random variable giving this sum. Note that X stochastically dominates the
following random variable, X ′: Let σ′ be a sequence where each tuple in σ of the
type (
, a) is expanded to
 copies. Select a tuple uniformly at random in σ′ and
let X ′ be the index of the selected tuple.

Note that E(X ′) is half the length of σ′, and that the length of σ′ = (t+1)x2x.
Thus, E(X) ≥ E(X ′) ≥ (1/2)(t + 1)x2x. Finally, note that, since there are N
searchers, the expected search time is at least the total distance travelled by all
searchers divided by N . By linearity of expectation, the expected search time is
thus at least (t+1)x2x

2N . Since 2x = L2/D, then (t+1)x2x

2N = Ω
(

(t+1)L2 log L
ND

)
. The

lower bound is this value plus L, since no matter the values of D, N and t, the
total search time is always at least L. 	

7 Empirical Evaluation

We implement GoldenFA and algorithms from [10] to empirically evaluate
how search time changes as we increase: the ratio of the diameter of treasure
to distance to treasure (D/L); the number of searchers (N); and the fraction
of random crash failures (t/N). We compare GoldenFA to algorithms from
Feinerman and Korman in [10].

7.1 Setup

We implemented four algorithms. GoldenFA is our algorithm from Sect. 4.
F&K-Advice is Algorithm 1 from [10]; it requires O(log log N) bits of advice.
F&K-NoAdvice is Algorithm 2 from [10] with ε = .01; it requires zero bits of
advice. Since the value for ε in Algorithm 2 is not specified in [10], we conducted
experiments to determine that the setting ε = .01 performs well empirically.

GoldenFA-Heuristic is the last algorithm. In this algorithm, for epoch
i ≥ 1, there are

⌈
c(1 + α)i

⌉
spokes of length (1 + α)i, for parameters c, α > 0.

Similar to the GoldenFA, each spoke in this is at arc distance equal to the
Golden Ratio from the previous. We set c = 1.9 and α = 7, since they perform
well empirically.

In all of our experiments the treasure is a circle with diameter D. For each
data point plotted, 150 trials were run and the average search time was plotted.
The location of the treasure was kept fixed throughout all trials. The search

ANTS on a Plane 59

Fig. 3. Search time versus D/L; L = 500,
N = 1, and D is varied.

Fig. 4. Search time versus N ; L = 500
and D = 4.

time reported is time steps, where one time step is the amount of time it takes
a searcher to travel a distance of 1. All algorithms were implemented in Python
3.6, and all experiments were run on a Macbook Pro with 2.6 GHz Intel Core i7
processor and 16GB RAM.

7.2 Results

Our results show how search time changes as we vary three different values. In
particular, we include three plots giving results of experiments based on varying
(1) the ratio D/L, where D is the treasure diameter and L the distance from
the nest to the center of the treasure; (2) the number of searchers N ; (3) and
the fraction of faults t/N . In each plot, search time is the independent variable,
and it is plotted on a logarithmic scale.

Search Time versus D/L. Our first experiment tracks search time as the ratio
D/L increases. The value of L is fixed at 500, and D increases from 1 to 500.

Figure 3 shows how search time decreases as D/L increases from .1 to 1. As
the plot shows, search time decreases for all algorithms. GoldenFA-Heuristic
consistently has the best search time across values tested, with performance that
is always between 1 and 2 orders of magnitude better than all other algorithms,
when D/L is greater than about .15. Next, in performance, are GoldenFA
and F&K-NoAdvice. Initially F&K-NoAdvice has worse search time than
GoldenFA, but as D/L increases, they both trend towards roughly similar
performance. Last, in the plot is F&K-Advice, which does not decrease nearly
as much as the other algorithms as D/L increases.

It is surprising that F&K-NoAdvice performs better than F&K-Advice
as D/L increases. We conjecture this holds because (1) F&K-NoAdvice has an
algorithmic parameter (ε), while F&K-Advice has none; and (2) we optimized
this parameter based on empirical feedback.

60 A. Aggarwal and J. Saia

Fig. 5. Search time versus the fraction of
failures (t/N); L = 500, D = 4 and N =
100.

Search Time versus N . Our second
experiment tracks search time versus
the number of searchers, N . Figure 4
shows the outcome when L = 500,
D = 4, and N varies from 1 to 200.

In this plot, search time of all algo-
rithms decreases with N . GoldenFA-
Heuristic performs about 2 orders
of magnitude better than any other
algorithm, for all values of N tested.
Next comes F&K-NoAdvice, which
performs up to a factor of about 5
better than the remaining algorithms.
Finally, GoldenFA and F&K-Advice are last, with performance roughly equal
for large N .

Search Time versus t/N . Our last experiment tracks search time as the ratio
t/N increases, where t is the number of crash failures and N is the number of
searchers. In these experiments, we hold the following values fixed: L = 500,
D = 4, N = 100; and we vary t from 0 to 99. For each value of t, a random
subset of t searchers are removed after the first 100 time steps of the algorithm.
To prevent any algorithm from running forever, a hard timeout was set at 108

time steps.
The results are given in Fig. 5. Again GoldenFA-Heuristic has fastest

search time over the entire range of values tested, with performance a bit less
than an order of magnitude better than then next fastest algorithm, F&K-
NoAdvice. F&K-NoAdvice has search times which increase slowly as t/N
increases. GoldenFA comes next with a search time that increases more rapidly
with t/N . Finally, F&K-Advice comes last, with search time increasing rapidly
with t/N until it times out when t/N is roughly about .20. Our theoretical
analysis suggests that search time for GoldenFA would increase roughly linearly
with t/N . Results from this experiment suggest this is the case with slope of
approximately 10 for search time as a function of t/N .

8 Conclusion and Future Work

We have described an algorithm, GoldenFA that solves the ANTS problem
by finding a treasure that is a convex shape with any diameter D, even in the
presence of t < N crash failures. We have proven that our algorithm takes
O

((
L + L2(t+1)

ND

)
log L

)
expected search time, where L is the distance from

the nest to the treasure and N is the number of searchers. Additionally, we
have proven a near-matching lower bound on search time for a class of “spoke-
algorithms”s, which search only via line segments emanating from the nest. Our
algorithm uses the Golden Ratio to spread out search spokes uniformly, even in
the presence of many crash failures.

ANTS on a Plane 61

Several interesting problems remain including the following. Can we develop
a non-spoke-based algorithm that removes the logarithmic terms in our search
time, but is still robust to failures and does not require advice? Fibonacci spirals
are quite commonly used in nature for space-filling applications, so they may be
useful for this open problem.

Another interesting open problem is to extend our results for multiple trea-
sures with different shapes and orientations. It is possible for a treasure to have a
large L but its orientation is such that the nearest point to the nest is only Θ(1)
units away. This treasure can be located in Θ(1) time steps by searching along
a spiral around the nest. However, when rotated, this treasure can be oriented
in a way that now requires O(L2/D) time steps.

References

1. Barchyn, T.E., Hugenholtz, C.H., Fox, T.A.: Plume detection modeling of a drone-
based natural gas leak detection system. Elem. Sci. Anthropocene 7(1) (2019)

2. Beverly, B.D., McLendon, H., Nacu, S., Holmes, S., Gordon, D.M.: How site fidelity
leads to individual differences in the foraging activity of harvester ants. Behav.
Ecol. 20(3), 633–638 (2009)

3. Boczkowski, L., Natale, E., Feinerman, O., Korman, A.: Limits on reliable infor-
mation flows through stochastic populations. PLoS Comput. Biol. 14(6), e1006195
(2018)

4. Collet, S., Korman, A.: Intense competition can drive selfish explorers to optimize
coverage. In: Symposium on Parallelism in Algorithms and Architectures (SPAA)
(2018)

5. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, Cambridge (2009)

6. Dunlap, R.A.: The Golden Ratio and Fibonacci Numbers. World Scientific,
Singapore (1997)

7. Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many ants does
it take to find the food? Theoret. Comput. Sci. 608, 255–267 (2015)

8. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS problem
with asynchronous finite state machines. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 471–482. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 40

9. Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative
search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 61–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33651-5 5

10. Feinerman, O., Korman, A.: The ANTS problem. Distrib. Comput. 30(3), 149–168
(2017)

11. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the
plane without communication. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing (PODC), pp. 77–86. ACM (2012)

12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM (JACM) 34(3), 596–615 (1987)

13. Gordon, D.M.: Ants at Work: How an Insect Society is Organized. Simon and
Schuster, New York (1999)

https://doi.org/10.1007/978-3-662-43951-7_40
https://doi.org/10.1007/978-3-642-33651-5_5
https://doi.org/10.1007/978-3-642-33651-5_5

62 A. Aggarwal and J. Saia

14. Hecker, J.P., Carmichael, J.C., Moses, M.E.: Exploiting clusters for complete
resource collection in biologically-inspired robot swarms. In: International Con-
ference on Intelligent Robots and Systems IROS, pp. 434–440 (2015)

15. Itai, A., Rosberg, Z.: A golden ratio control policy for a multiple-access channel.
IEEE Trans. Autom. Control 29(8), 712–718 (1984)

16. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence.
Artif. Intell. Rev. 31(1–4), 61–85 (2009)

17. Kempe, D., Schulman, L.J., Tamuz, O.: Quasi-regular sequences and optimal
schedules for security games. In: ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1625–1644. Society for Industrial and Applied Mathematics (2018)

18. Khinchin, A.I.: Continued Fractions, vol. 525. P. Noordhoff (1963)
19. King, V., Saia, J., Young, M.: Conflict on a communication channel. In: Pro-

ceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pp. 277–286. ACM (2011)

20. Knuth, D.E.: The Art of Computer Programming, Volume 3: Searching and Sort-
ing. Addison-Wisley, Reading (1973)

21. Kreyszig, E.: Advanced Engineering Mathematics, 9th edn. Wiley, Hoboken (2008)
22. Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in

cooperative robots. Nature 406(6799), 992 (2000)
23. Langner, T., Uitto, J., Stolz, D., Wattenhofer, R.: Fault-tolerant ANTS. In: Kuhn,

F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 31–45. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45174-8 3

24. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection com-
plexity and performance when searching the plane without communication. In:
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing
(PODC), pp. 252–261. ACM (2014)

25. Lenzen, C., Radeva, T.: The power of pheromones in ant foraging. In: Workshop
on Biological Distributed Algorithms (BDA) (2013)

26. Livio, M.: The Golden Ratio: The Story of Phi, the World’s Most Astonishing
Number. Broadway Books, New York (2008)

27. Naylor, M.: Golden,
√

2, and π flowers: a spiral story. Math. Mag. 75(3), 163–172
(2002)

28. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 2

29. Świerczkowski, S.: On successive settings of an arc on the circumference of a circle.
Fundam. Math. 46, 187–189 (1958)

30. Williams, S.C.P.: Studying volcanic eruptions with aerial drones. Proc. Natl. Acad.
Sci. 110(27), 10881–10881 (2013)

31. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity.
In: Symposium on Foundations of Computer Science (FOCS), pp. 222–227. IEEE
(1977)

https://doi.org/10.1007/978-3-662-45174-8_3
https://doi.org/10.1007/978-3-540-30552-1_2

Local Gathering of Mobile Robots in
Three Dimensions

Michael Braun, Jannik Castenow(B) , and Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute and Computer Science Department, Paderborn University,
Paderborn, Germany

{braunm,janniksu,fmadh}@mail.upb.de

Abstract. In this work, we initiate the research about the Gathering
problem for robots with limited viewing range in the three-dimensional
Euclidean space. In the Gathering problem, a set of initially scattered
robots is required to gather at the same position. The robots’ capabili-
ties are very restricted – they do not agree on any coordinate system or
compass, have a limited viewing range, have no memory of the past and
cannot communicate.

We study the problem in two different time models, in Fsync
(fully synchronized discrete rounds) and the continuous time model. For
Fsync, we introduce the 3d-Go-To-The-Center-strategy and prove a
runtime of Θ

(
n2

)
that matches the currently best runtime bound for the

same model in the Euclidean plane [SPAA’11] .
Our main result is the generalization of contracting strategies (con-

tinuous time model) from [Algosensors’17] to the three-dimensional case.
In contracting strategies, every robot that is located on the global con-
vex hull of all robots’ positions moves with full speed towards the inside

of the convex hull. We prove a runtime bound of O
(
Δ · n3/2

)
for any

three-dimensional contracting strategy, where Δ denotes the diameter of
the initial configuration. This comes up to a factor of

√
n close to the

lower bound of Ω (Δ · n) which is already true in two dimensions.
In general, it might be hard for robots with limited viewing range

to decide whether they are located on the global convex hull and which
movement maintains the connectivity of the swarm, rendering the design
of concrete contracting strategies a challenging task. We prove that the
continuous variant of 3d-Go-To-The-Center is contracting and keeps
the swarm connected. Moreover, we give a simple design criterion for
three-dimensional contracting strategies that maintains the connectiv-
ity of the swarm and introduce an exemplary strategy based on this
criterion.

Keywords: Mobile robots · Local strategies · Gathering · Continuous
time

1 Introduction

We study a scenario where a distributed system of mobile entities (called robots)
is supposed to establish a certain formation, also denoted as a pattern. The robots
c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 63–79, 2020.
https://doi.org/10.1007/978-3-030-54921-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_4&domain=pdf
http://orcid.org/0000-0002-8585-4181
https://doi.org/10.1007/978-3-030-54921-3_4

64 M. Braun et al.

are scattered in a d-dimensional Euclidean space (usually the Euclidean plane)
and have to coordinate their movements in a distributed manner to reach the
desired formation. The robots’ capabilities depend on the exact model and forma-
tion problem but are typically very restricted. Usually, the robots do not agree on
a common coordinate system or compass, cannot communicate with each other
and have only limited sensing capabilities. One extensively studied coordination
problem is the Pattern Formation problem, dealing with questions such as:
Which patterns are generally formable by a set of robots? Which capabilities do
the robots need? Given a specific pattern, for which initial configurations is this
pattern formable? Interestingly, it has been proven that there are only two pat-
terns that might be formable starting in an arbitrary input configuration. These
are the patterns Point and Uniform Circle. Forming the pattern Point is
known under a more common name – the Gathering problem, which studies
the task of gathering a set of robots on the same position. Both of these prob-
lems have been extensively studied under several different assumptions, involving
the viewing range (local or global), the synchronization (synchronous or asyn-
chronous activation), the extent (robots can or cannot occupy the same position)
or the opacity of robots, to name only a few. However, most of these models have
in common that the robots operate in the two-dimensional Euclidean plane. A
natural extension would be to consider the three-dimensional Euclidean space,
where the robots have the ability to fly, such as drones, or to move underwater.
Existing results about robots in the three-dimensional Euclidean space are very
scarce, rely on strong assumptions (such as axis agreement) and do not consider
any runtime analyses of the proposed strategies. Our work initiates the study of
Gathering of robots in three-dimensions, in one of the weakest possible models
– robots do not agree on any coordinate system or compass, are oblivious (have
no memory of the past) and have only a local view.

1.1 Model and Time Notions

We consider a set R of n robots r1, . . . , rn, each of which occupies a single point
in R

3 at each time. As such, robots can neither block each other’s views nor
paths, and multiple robots are allowed to occupy the same position at the same
time. The position of robot ri at time t is denoted by pi(t). The positions of all
robots at time t, Pt =

(
p1(t), . . . , pn(t)

)
are collectively called the configuration

at time t. The Euclidean distance between points x, y ∈ R
3 is denoted as d(x, y).

For a subset of the three-dimensional Euclidean space P ⊆ R
3, d(x,P) is used

as a shorthand for miny∈P d(x, y).
The overall abilities of the robots are rather limited: They are not allowed to

communicate with each other, they are identical (they cannot be distinguished)
and are oblivious, meaning they have no memory of the past. Furthermore they
do not share a common coordinate system or orientation. Robots are only able
to observe the space around them within a limited viewing range of 1, i.e. a robot
ri can see the position of another robot rj if and only if d(pi(t), pj(t)) ≤ 1. Two
robots ri and rj with d(pi(t), pj(t)) ≤ 1 are also called neighbors. The set of all
neighbors of ri at time t is called the neighborhood of ri and is denoted as Ri(t).

Local Gathering of Mobile Robots in Three Dimensions 65

This limited viewing range can also be considered to induce a unit ball graph
UBGt = (R, Et) at time t, whose nodes consist of the robots and where the set
of edges Et contains an edge {ri, rj} if and only if d(pi(t), pj(t)) ≤ 1. This graph
is also called the visibility graph at time t. Note that the UBG is a generalization
of the two-dimensional unit disk graph (UDG) to three dimensions.

Starting from a configuration of n robots in the three-dimensional Euclidean
space that is connected at time 0, i.e. UBG0 is connected, the goal is to gather all
robots in one point. This problem will be referred to as the (three-dimensional)
Gathering problem. Note that the eventual gathering point is not predefined
and can instead be chosen by the robots at runtime. This also imposes a subgoal
during the execution of any algorithm that solves this problem: It has to be
ensured that UBGt remains connected. Otherwise, the limited viewing range of
the robots, combined with the fact that they do not share coordinate systems,
makes it impossible for any deterministic algorithm to restore connectivity and
the robots can no longer converge to the same point [1].

Througout this work, we consider two different notions of time: The fully
synchronous Fsync model and the continuous time model.

Fsync: In Fsync, all robots operate in fully synchronous Look-Compute-Move
(LCM) cycles. In the Look phase, a robot ri observes its environment, detects the
set of all visible robots Ri(t) and stores a snapshot in its local memory. Based
on this snapshot, ri computes a target point in the Compute phase. Finally, in
the Move phase, ri moves to that target point. The execution of a single LCM
cycle is also denoted as one round.

Continuous Time Model: Generally, the continuous time model can be seen
as a continuous variant of Fsync, in which robots only move an infinitesi-
mal small distance towards their target points [8]. At every point in time, the
movement of each robot ri can be expressed by a velocity vector vi(t) with
0 ≤ ‖vi(t)‖ ≤ 1, i.e. the maximal speed of a robot is bounded by 1. In contrast
to Fsync, the function pi : R>0 → R

3, representing the position of ri at time t,
is a continuous function and also called the trajectory of ri. Although the tra-
jectories are continuous, they are not necessarily differentiable because robots
are able to change their speed and direction non-continuously. However, natural
movement strategies have (right) differentiable trajectories. Thus, the velocity
vector of a robot vi : R>0 → R

3 can be seen as the (right) derivative of pi.

1.2 Our Contribution

The contribution of this paper is twofold. We consider the fully synchronous
Fsync model and the continuous time model. For Fsync, we introduce the
strategy 3d-Go-To-The-Center (3d-GTC), which is the three-dimensional
generalization of Go-To-The-Center (GTC), invented for robots operating
in the Euclidean plane [1]. The main idea of 3d-GTC is that robots move
towards the center of the smallest enclosing sphere of all robots within their
viewing radius, while ensuring that the configuration stays connected. We prove

66 M. Braun et al.

a runtime bound of Θ
(
n2

)
for 3d-GTC which matches the runtime of the two-

dimensional GTC strategy.
For the continuous time model, we generalize the class of contracting strate-

gies [10] to three dimensions. In contracting strategies, every robot that lies
on the convex hull of all robots’ positions moves always with speed 1 into a
direction that points inside or on the boundary of the convex hull. We prove
that every (three-dimensional) contracting gathering strategy gathers all robots
on a single point in time at most O (

Δ · n3/2
)
, where Δ denotes the (geomet-

ric) diameter of the initial configuration, i.e. the maximum Euclidean distance
between any pair of robots. This runtime bound differs from the runtime bound
for two-dimensional contracting strategies by a factor of

√
n. The lower bound

is Ω (Δ · n) and already holds for the two-dimensional case [10]. The main open
question is whether O (

Δ · n3/2
)

is tight or can be improved to O (Δ · n).
Note that a contracting strategy is not necessarily local. Therefore, we finally

present two local, contracting strategies. Our first example is the continuous
variant of 3d-GTC, called Cont-3d-GTC. We prove that the strategy is con-
tracting and thus gathers the robots in time O (

Δ · n3/2
)
. In addition, we present

the class of tangential-normal strategies. These strategies are local and maintain
connectivity. As an example for a strategy that is both tangential-normal and
contracting, we introduce the Move-on-Angle-Minimizer strategy.

1.3 Related Work

In this overview over related work, we focus on the Gathering problem for
synchronized robots with local visibility in the Euclidean plane. Beyond that,
we give a summary about research concerning robot coordination problems in the
three-dimensional Euclidean space. For other models and coordination problems,
which involve, among others, less synchronized schedulers or robots with a global
view, we refer the reader to the recent survey [7].

Ando, Suzuki and Yamashita introduced the GTC-strategy for fully syn-
chronous robots with local view [1]. In GTC, every robot moves in every round
towards the center of the smallest enclosing circle of all robots within its viewing
range while ensuring that the swarm remains connected. Ando et al. could prove
that GTC solves the Gathering-problem in finite time. Later on, Degener et
al. could prove a tight runtime bound of Θ

(
n2

)
for GTC [5]. By now, this is the

best known runtime bound for a strategy that solves Gathering of robots with
local visibility and without agreement on any coordinate system or compass in
Fsync.

Faster runtimes could so far only be obtained under different assumptions
– for example by introducing one-axis agreement or changing the time model.
Poudel and Sharma proved that it is possible to gather a swarm of robots with
local view in time O (Δ), where Δ denotes the diameter of the initial configu-
ration [12]. The main assumption for their strategy is that the robots agree on
one axis of their coordinate systems.

The second time model we consider in this paper is the continuous time
model, introduced by Gordon et al. [8]. In this time model robots do not operate

Local Gathering of Mobile Robots in Three Dimensions 67

in synchronized rounds but continuously observe their environment and move
while having a bounded maximal speed. Gordon et al. propose a gathering
strategy for the continuous time model. In their strategy, all robots that locally
assume that they are located on the global convex hull move with maximal speed
along the bisector formed by vectors to their neighbors along the global convex
hull. This strategy has later been called Move-On-Bisector by Degener et al.
They could also prove runtime of Θ (n) [4].

The main result of this paper is based on a more general view on continuous
Gathering strategies in the Euclidean plane – the class of contracting strategies
in which all robots that are located on the global convex hull of all robots move
with maximal speed into a direction that points inside of the convex hull [10].
Li et al. could prove a runtime of O (Δ · n) for any contracting strategy. Note
that Move-On-Bisector is also a contracting strategy but has a significantly
faster runtime than O (Δ · n). However, there are contracting strategies with a
runtime of Ω (Δ · n) [10].

In the three-dimensional Euclidean space there is so far, to the best of
our knowledge, no strategy known that solves Gathering of robots with lim-
ited viewing range. More generally, literature about robots operating in three-
dimensional spaces is very scarce. We summarize the literature briefly. In [2] the
authors show that gathering of robots in the three-dimensional Euclidean space
is possible – under the assumptions that robot have a global view but are not
transparent and that the robots agree on one axis of their coordinate systems.
Tomita et al. study a different problem – the plane formation problem [13]. In
the plane formation problem, the goal is that eventually all robots are located
on the same plane, while ensuring that no two robots occupy the same position.
The authors show that this problem is not solvable for every initial configura-
tion, give a characterization of all start configurations for which the problem is
solvable and introduce an algorithm that solves the problem for the latter set of
configurations. Yamauchi, Uehara and Yamashita generalize this result further
and study the more general Pattern Formation for synchronized robots in the
three-dimensional Euclidean space [14]. They characterize the set of all patterns
that might be formable depending on symmetries of the initial configuration.

2 Gathering in Fsync

In this section, the three-dimensional Gathering problem will be studied under
the Fsync model. The results can be considered as a generalization of those
obtained by Degener et al. [5] for the two-dimensional setting. It will be shown
that a generalization of GTC by Ando et al. [1] solves the gathering problem in
three dimensions in Θ(n2) rounds.

2.1 3D-Go-To-The-Center

The strategy 3d-Go-To-The-Center (3d-GTC) is a generalization of Go-
To-The-Center to the three-dimensional Euclidean space and is summarized

68 M. Braun et al.

Algorithm 1. 3d-Go-To-The-Center (3d-GTC)
1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: Si(t) := smallest enclosing sphere of Ri(t)
3: ci(t) := center of Si(t) � target point
4: for all rj ∈ Ri(t) do � Maintain connectivity
5: mj := midpoint between pi(t) and pj(t)
6: Bj(t) := ball with radius 1

2
and center mj

7: �j := maximum distance ri can move towards ci(t) without leaving Bj(t)

8: Li := minrj∈Ri(t) �j

9: Move towards ci(t) for a distance of Li

in Algorithm 1. A key component is the computation of a smallest enclosing
sphere (SES) of a set of points P. This is a sphere of minimal radius that contains
all points in P with the following properties:

Proposition 1 [6]. Let S be the smallest enclosing d-sphere (SES) of a point
set P ⊂ R

d. Then the center c of S is a convex combination of at most d + 1
points in P that lie on the surface of S. Especially,

1. c lies in S
2. c minimizes the maximum distance to the points in P.

Intuitively, 3d-GTC works by attempting to locally move robots closer
together. This is achieved by letting each robot ri compute the SES of its neigh-
borhood Ri(t) and then moving towards its center ci(t). Additionally, the strat-
egy follows the subgoal of maintaining connectivity of UBGt+1. This is achieved
by limiting the distance a robot ri moves towards its target ci(t), such that for
any of its neighbors rj , it stays within a distance of 1

2 of the midpoint between
the positions of ri and rj at time t. Thus, if both ri and rj perform this strat-
egy, the distance between their positions at the start of the next round t + 1
is at most 1, maintaining visibility. By the argumentation above, the following
Lemma holds.

Lemma 1. If UBG0 is connected, UBGt remains connected for all t ≥ 0.

Overall, the only difference to the original GTC strategy for two dimensions
lies in the computation of a smallest enclosing sphere in the 3D case over a
smallest enclosing circle in the 2D case. In fact, if the three-dimensional version
is applied to a configuration of robots that is coplanar with respect to some
plane h, it acts just as if the robots’ positions were projected to h and the
two-dimensional version was applied to the resulting two-dimensional subspace.
This is a result of the fact that computing a SES of a set of coplanar points is
equivalent to computing a smallest enclosing circle instead.

From this observation, we can immediately conclude that the lower bound
on the runtime of the two-dimensional version of the strategy shown by Degener
et al. [5] also applies to the three-dimensional case by simply embedding the

Local Gathering of Mobile Robots in Three Dimensions 69

two-dimensional worst-case start configuration within three-dimensional space:
In the configuration, n robots are positioned on a circle such that the distance
between two neighbors is 1. This causes the robots to only take small steps of size
O(1/n) towards the center of the circle, leading to a gathering time of Ω(n2).

Theorem 1. There is a start configuration such that 3d-GTC takes Ω(n2)
rounds to gather the robots in one point.

With a generalization of the analysis of [5], we can also prove an upper
runtime bound of O (

n2
)
. For the proof, we refer the reader to the full version

of this paper [3].

Theorem 2. Given n robots in a connected starting configuration P ∈ R
3 in

the Euclidean space, 3d-GTC gathers the robots in O(n2) rounds.

The combination of both theorems yields a tight runtime of Θ(n2).

3 Continuous Gathering

Now, we consider the Gathering problem within the continuous time model.
For the Euclidean plane, Li et al. [10] introduced the class of contracting strate-
gies. This definition can also be applied to three dimensions: Let CHt denote the
closed convex hull of the robots’ configuration Pt at time t and let Cornt denote
the vertices of CHt. The class of contracting strategies can be defined as follows:

Definition 1. In the continuous time model, a movement strategy for n robots
is called contracting if for every time t such that the cardinality of Cornt is
strictly greater than 1, every robot in Cornt moves with speed 1 in a direction
that points to CHt.

The main idea of our analysis is to project the three-dimensional configura-
tion (including the velocity vectors) to a two-dimensional plane. The projected
robots then perform something similar to a contracting strategy where they move
towards the inside of the projected convex hull with varying speeds. However,
when looking at only a single projection plane, some velocity vectors might even
have a length of 0 in the projection at some points in time (in case the projection
plane is chosen orthogonal to the velocity vector). Thus, the analysis of Li et
al. cannot be directly applied to the projection as this analysis assumes that
all robots on the convex hull move with speed 1 towards the inside. Instead, we
analyze not only one but all possible (meaningfully different) projections, since –
intuitively – for a majority of all possible projection planes, the projected length
of a velocity vector must be larger than a constant ε.

3.1 Preliminaries

The following lemma is a useful tool for the analysis of continuous strategies
stating how the distance between two robots changes over time.

70 M. Braun et al.

Lemma 2 ([9]). Consider two robots ri and rj with differentiable trajectories
at time t. Their distance d(pi(t), pj(t)) at time t changes with speed

d′(pi(t), pj(t)) = −(‖vi(t)‖ · cos βi,j(t) + ‖vj(t)‖ · cos βj,i(t)),

where βi,j(t) is the angle between vi(t) and the line segment pi(t)pj(t).

The main tool for the analysis of contracting strategies in the three-dimen-
sional Euclidean space are projections of the robots’ configuration onto a two-
dimensional plane. Let h(x) be the plane through the origin with normal vector
x and let Πx denote the orthogonal projection onto h(x). Now, given a configu-
ration P of n robots, consider their projection P̂(x) = {Πxpi(t) | pi(t) ∈ P} onto
h(x) along with the projections of their movement vectors v̂

(x)
i (t) = Πxvi(t).

Furthermore, denote the convex hull of P̂ as PCHt(x). See also Fig. 1.

Fig. 1. A configuration of robots being projected onto a plane h(x). The mapping of
the orthogonal projection Πx is illustrated by dashed lines and the projected convex
hull PCHt(x) is shown in light grey. One of the robots’ movement vectors as well as
its projection are represented by arrows.

If the robots perform a contracting strategy in the three-dimensional space,
their projections also move towards the inside of the projected convex hull
PCHt(x) since Πx is a linear transformation and therefore preserves convex-
ity. However, the lengths of the projected movement vectors v̂i(t) are going be
smaller than 1 in general. For a given projection onto a plane h(x), the mini-
mum length of the v̂

(x)
i (t) will be called the projected speed and is denoted by

εx = minri∈R ||Πxvi(t)||. Note that εx can even be 0 in case h(x) is orthogonal
to any velocity vector. The following notion of the length of PCHt(x) will be
used as a part of a progress measure for three-dimensional contracting strategies:

Definition 2. (Length) Let m1(t),m2(t), ...,mk(t)(t) be the vertices of PCHt(x)
(ordered counter-clockwise), where k(t) is the number of vertices at time t. The
length �(t,x) of PCHt(x) is defined as the sum of its edge lengths: �(t,x) =
∑k(t)

ι=1 d(mι(t),mι−1(t)), where m0 := mk(t)(t).

Local Gathering of Mobile Robots in Three Dimensions 71

Note that if the diameter of the starting configuration was Δ, the length of a
given projection can be at most πΔ (if it approximates a circle). Furthermore, if
�(t,x) = 0, then the robots have either gathered in the original three-dimensional
space or have formed a line that is parallel to x. In the latter case it only takes
further time of at most O(Δ) for the robots to gather, as those robots that form
the endpoints of the line have no choice but to move towards each other. The
following Lemma provides a statement about how the length changes over time.

Lemma 3. For time t, let h(x) be a plane with projected speed εx , such that
�(t,x) > 0 and no two robots with different positions in R

3 get projected onto
the same point on h(x). Then �′(t,x) ≤ − 8εx

n .

Proof. Because Πx is a linear transformation, each of the mι(t) (corners of
PCHt(x)) must also be the projection of one of the vertices of the original, three-
dimensional convex hull CHt. Therefore, they possess velocity vectors that point
towards the inside of CHt by the definition of a contracting strategy. Now con-
sider the projections of these velocity vectors onto h(x): Let v̂(x)

i (t) := Πxvi(t).
By assumption, we have ||v̂(x)

i (t)|| ≥ εx . Using this, it is now possible to bound
�′(t,x): Let αι(t) be the internal angle of PCHt(x) at mι(t).

Note that in general, it may happen that two corner robots of CHt got
projected onto the same point on h(x) for some x. By one of the assumptions
of the lemma, this is not true. Therefore, we know that each corner mι(t) of
PCHt(x) contains only a single robot. This means that each αι(t) is split into
two parts, β̂ι,ι−1(t) and β̂ι−1,ι(t) by mι(t)’s velocity vector v̂(x)

ι (t), such that
αι(t) = β̂ι,ι−1(t) + β̂ι−1,ι(t). Using Lemma 2, the derivative of �(t) can now be
bounded as follows: Recall that �′(t,x) =

∑k(t)
ι=1 d′(mι(t),mι−1(t)):

�′(t,x) =
k(t)∑

ι=1

d′(mι(t),mι−1(t)) (1)

=
k(t)∑

ι=1

−(||v̂(x)
ι (t)|| cos β̂ι,ι−1(t) + ||v̂(x)

ι−1(t)|| cos β̂ι−1,ι(t)
)

(2)

≤ −εx

k(t)∑

ι=1

cos β̂ι,ι−1(t) + cos β̂ι−1,ι(t) (3)

= −εx

k(t)∑

ι=1

2(αι(t) − π)2

π2
(4)

= −2εx
π2

k(t)∑

ι=1

(αι(t) − π)2 (5)

For Eq. (4) observe that for ϑ ∈ [0, 1] and α ∈ [0, π], it holds that cos(αϑ) +
cos(α(1−ϑ)) ≥ 2(α−π)2

π2 [11]. Now, the Cauchy-Schwarz inequality can be applied
along with the fact that the sum of the inner angles of a convex polygon with k
corners is (k − 2) · π.

72 M. Braun et al.

�′(t,x) ≤ − 2εx
k(t) · π2

·
(k(t)∑

ι=1

(αι(t) − π)
)2

= − 2εx
k(t)π2

· (
(k(t) − 2) · π − k(t)π

)2

= − 8εx
k(t)

≤ −8εx
n

This concludes the proof.
�
Note that this also means that �(t,x) is monotonically decreasing over time.

3.2 Proof of the Upper Bound

The main idea of the analysis is to track the lengths �(t,x) for all (meaningfully
different) projection planes h(x). Since the length of the normal vector does not
matter, it is enough to consider only vectors x of length 1. Additionally, a vector
x and its reflection about the origin −x describe the same plane. Therefore it is
enough to consider those vectors that lie on the surface of a unit hemisphere U
centered around the origin (w.l.o.g. the one above the XY -plane).

The integral of the lengths �(t,x) with respect to x on the surface of U at
time t can now be used as a measure to track the progress of a three-dimensional
gathering strategy:

L(t) =
∫∫

U

�(t,x)dA

If L(t) = 0, the robots have gathered. If one of the �(t,x) prematurely
becomes 0, then the robots are collinear and gather in further time O(Δ).

Lemma 4. L(0) ≤ 2π2Δ.

Proof. Since �(t,x) ≤ πΔ (if PCHt(x) approximates a circle), we conclude

L(0) ≤
∫∫

U

πΔdA = πΔ

∫∫

U

dA

The remaining integral part is a surface integral over a hemisphere. By observing
that the surface area of a unit hemisphere is 2π, the lemma follows.
�

The goal of the proof is to show that there is at least a constant (1 − α)-
fraction of projection planes h(x) with projected speed at least ε for some con-
stants α and ε. This can then be used to show that L(t) decreases by a constant
amount at each point in time using Lemma 3.

Now consider a projection plane h(x). If this plane has projected speed
smaller than ε at time t, then there is a movement vector vi(t), such that
∠(x,vi(t)) < sin−1 ε. We say that vi(t) blocks h(x). Conversely, given a vi(t),
we can determine the set of all the h(x) that are blocked by this vi(t):

Local Gathering of Mobile Robots in Three Dimensions 73

Fig. 2. A figure illustrating how movement vectors block areas of the unit hemisphere
U . Around each movement vector vi(t), there is a spherical cap of radius ε. Each plane
corresponding to a normal vector x lying in one of those spherical caps is blocked.

Lemma 5. At time t, the movement vector vi(t) blocks vectors from an area of
2π

(
1 − √

1 − ε2
)

on U from reaching projected speed ε.

Proof. W.l.o.g. it can be assumed that vi(t) has a positive z-component, i.e. lies
on U . Otherwise it can be reflected about the origin and it will still affect the
exact same planes.

Now consider the spherical cap of U with base radius ε and apex vi(t) and
let C be its curved surface (see Fig. 2 for an illustration). For all vectors x ∈ C,
h(x) is blocked from reaching projected speed ε. The area of C can be computed
by AC = 2πr2(1 − cos θ) = 2π(1 − cos(sin−1 ε)) = 2π(1 − √

1 − ε2)
�
Since there are n robots, the area blocked by their movement vectors is at

most n · 2π(1 − √
1 − ε2), whereas the total surface of U is 2π. If we want the

movement vectors to block only an α-fraction of U ’s surface, the ε can be chosen
accordingly:

Lemma 6. Let 0 ≤ α ≤ 1. Then for a minimum speed of ε =
√
2nα−α2

n , there
is at most an α-fraction of the surface of U that is blocked with respect to ε.

Proof. U has a surface of 2π and the robots’ movement vectors block an area of
at most n · 2π(1 − √

1 − ε2). We want to choose ε such that the following holds:

α2π = n · 2π(1 −
√

1 − ε2) ⇐⇒ ε =
√

2nα − α2

n

�
Using this lemma, it is now possible to bound the decrease of the progress

measure L(t) for a given α:

Lemma 7. For a time t ≥ 0 such that �(t,x) > 0 for all x ∈ U and 0 ≤ α ≤ 1,
then L′(t) ≤ −16π · (1 − α) ·

√
2nα−α2

n2 .

74 M. Braun et al.

Proof. Choose ε =
√
2nα−α2

n according to Lemma 6, i.e. there is only at most
an α-fraction of the surface of U that is blocked. Since Lemma 3 only applies
to those x for which no two robots get projected onto the same point, the x for
which this is the case still have to be considered. However, there is only a finite
number

(
n
2

)
of such vectors out of the uncountably many that form U and they

are only singular points on U . Therefore, they can be ignored when considering
the integral L(t). By Lemma 3, there is an (1−α)-fraction of vectors x from the
surface of U (which has size 2π) with �′(t,x) ≤ − 8ε

n = −8
√
2nα−α2

n2 . Using this,
we can bound L′(t):

L′(t) =
d

dt

(∫∫

U

�(t,x)dA
)

=
∫∫

U

�′(t,x)dA

≤ (1 − α) · 2π · −8
√

2nα − α2

n2
= −16π · (1 − α) ·

√
2nα − α2

n2

�
By choosing the α appropriately, the main result can now be obtained:

Theorem 3. A set of n robots controlled by a contracting strategy gathers in
time O (

Δ · n3/2
)

from an initial configuration with diameter Δ.

Proof. By Lemma 4, we have L(0) ≤ 2π2Δ. By Lemma 7, L(t) decreases by at
least 16π · (1 − α) ·

√
2nα−α2

n2 for a given α as long as �(t,x) > 0 for all x ∈ U .
However, if there is an x ∈ U with �(t,x) = 0, then the robots are collinear
along some line that is parallel to x and take further time O(Δ) to gather.

Now choose α = 1
2 and consider an arbitrary time t such that �(t,x) > 0

for all x ∈ U . Then L′(t) ≤ −8π 1
n3/2 . Therefore it takes time at most

(2π2Δ)/(8π 1
n3/2) = π

4Δn3/2 until L(t) is zero. This leads to a gathering time of
O (

Δ · n3/2
)

+ O(Δ) ∈ O (
Δ · n3/2

)
.
�

3.3 Continuous-3D-Go-To-The-Center

Next, a continuous version of 3d-GTC which was already presented for the
discrete time setting, will be considered as a concrete example of a contracting
strategy. The two-dimensional version of this strategy was adapted for continu-
ous time by Li et al. [11]. Compared to the discrete time version, no additional
measures have to be taken to preserve connectivity, as it can be shown that
this happens naturally in the continuous case. The strategy is summarized in
Algorithm 2.

To show that Cont-3d-GTC is contracting, it must first be verified that
connectivity of the visibility graph UBGt = (R, Et) is maintained at all times.
The same reasoning that was used in the two-dimensional case by Li et al. [11]
can also be applied here:

Lemma 8. Let R be a set of robots in the three-dimensional Euclidean space
that follows the Cont-3d-GTC strategy. If {ri, rj} is an edge in UBGt at time
t, then {ri, rj} is an edge in UBGt′ at t′ ≥ t. Thus, Cont-3d-GTC maintains
the connectivity of UBGt.

Local Gathering of Mobile Robots in Three Dimensions 75

Algorithm 2. Continuous-3d-Go-To-The-Center (Cont-3d-GTC)
1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: Si(t) := smallest enclosing sphere of Ri(t)
3: ci(t) := center of Si(t)
4: Move towards ci(t) with speed 1, or stay on ci(t) if ri is already positioned on it.

Proof. Consider a robot ri with neighborhood Ri(t) at time t. Let Qi(t) be the
intersection of the unit balls of all robots in Ri(t). Since the SES of Ri(t) can
have a radius of at most 1 and contains all robots in Ri(t), its center ci(t) must
lie in Qi(t).

Consider some neighbor rj ∈ Ri(t) of ri and assume that there is some future
point in time t′ > t, such that d(pi(t′), pj(t′)) > 1, i.e. ri and rj are no longer
neighbors. Since the movement of robots is continuous, there must be some time
t∗ ∈ [t, t′], for which d(pi(t∗), pj(t∗)) = 1.

Now let L denote the intersection of the unit balls of ri and rj at time t∗.
Any point in L is within distance at most 1 of both ri and rj . Furthermore L
is a superset of both Qi(t∗) and Qj(t∗), meaning the target points ci(t∗) and
cj(t∗) of both ri and rj also lie in L. Therefore, ri and rj can only move in the
direction of points that are in distance at most 1 from both of them, meaning
their distance can never exceed 1, creating a contradiction to the assumption
that their distance is greater than 1 at time t′.
�

It remains to show that Cont-3d-GTC is a contracting strategy. This follows
directly from Lemma 8 and Proposition 1, which states that the center of a
SES is a convex combination of the points it encloses, meaning any target point
computed by the strategy lies within the convex hull of the current configuration.

Theorem 4. Cont-3d-GTC is a contracting, local strategy and thus gathers
the robots in time O (

Δ · n3/2
)
.

3.4 Tangential-Normal Strategies

Previously, we showed a runtime bound for a relatively general class of (not nec-
essarily local) gathering strategies and introduced a concrete example in Cont-
3d-GTC. However, when designing a local strategy, additional care has to be
taken to maintain the visibility graph UBGt to successfully solve the Gather-
ing problem. It would be useful to also have a relatively simple design criterion
that ensures this property. For this purpose, we will focus on robots’ local convex
hulls and introduce the notion of tangential-normal strategies. Let CH(Ri(t))
denote the local convex hull of robot ri, i.e. the convex hull of ri’s neighbor-
hood. Furthermore, let Adjt(i) denote the set of robots that are adjacent to ri

on CH(Ri(t)) if ri lies on CH(Ri(t)) itself. The main idea is to identify those
velocity vectors that lead to a decrease in distance to all neighboring robots.
These vectors are the normal vectors of tangential planes:

76 M. Braun et al.

Definition 3. Given a convex polyhedron P ⊂ R
3 and a vertex p ∈ P . A tan-

gential plane hp w.r.t. P through p is a plane that only intersects P at the
vertex p.

Note that as long as P is actually convex, such a plane always exists and
can – for example – be obtained by taking the plane through one of the faces
adjacent to p and slightly rotating it. Based on this notion, we define the class
of tangential-normal strategies in which the corner robots of local convex hulls
move along the normal vectors of tangential planes:

Definition 4. In the continuous time model, a gathering strategy for n robots
is called tangential-normal if for every time t in which the robots have not yet
gathered, each robot ri ∈ R that is on a corner of its own local convex hull
CH(Ri(t)) moves with speed 1 along the normal vector of a tangential plane
w.r.t. CH(Ri(t)) through pi while other robots do not move.

The following lemma characterizes the normal vectors of tangential planes
and will be used to show the desired properties of tangential-normal strategies.

Lemma 9. Let pi be a corner of a convex polyhedron P and let Ei be the set of
edges of P adjacent to pi. Then a plane h through pi with normal vector n is a
tangential plane w.r.t. P if and only if for each edge e ∈ Ei, ∠(n, e) < π

2

Proof. First, note that by the convexity of P and since h only intersects with it
in pi, the entire rest of P lies on one side of h. However, if there was an edge e
with ∠(n, e) ≥ π

2 , this would mean that e lies on the opposite side of or directly
on h, both of which are contradictions to h being a tangential plane.

For the other direction of the statement, let n be a vector such that for each
edge e ∈ Ei, ∠(n, e) < π

2 . This property now immediately yields that all edges
e ∈ Ei lie on the same side of the plane h : n · (x − pi) = 0 defined by n and the
point pi, making h a tangential plane w.r.t. P through pi.
�
Theorem 5. Let R be a set of robots controlled by a tangential-normal strategy.
Then, for each pair of robots ri, rj ∈ R and time t such that {ri, rj} is an edge
in UBGt, {ri, rj} is an edge in UBGt′ for all t′ ≥ t. Thus, tangential-normal
strategies maintain the connectivity of UBGt.

Proof. Let R be a set of robots that follows a tangential-normal strategy. Con-
sider a time t and a robot ri ∈ R that lies on the corner of its own local convex
hull CH(Ri(t)) and let vi(t) be the normal vector of a tangential plane hpi

w.r.t. CH(Ri(t)). By Lemma 9, for each adjacent robot rj ∈ Adjt(i), it holds
that βi,j(t) < π

2 . Since the cosine is positive on the interval [0, π
2], Lemma 2

yields that ri contributes a strict decrease in distance to all of its neighbors. A
neighbor rj now either does not move or also contributes a decrease in distance
to ri. This also means that for each pair of robots ri and rj that can see each
other, the distance between ri and rj cannot increase, guaranteeing that the
visibility graph remains connected.
�

Local Gathering of Mobile Robots in Three Dimensions 77

Note however that while the tangential-normal property is a sufficient con-
dition for ensuring connectivity, it is not a necessary condition. In particular,
Cont-3d-GTC is not tangential-normal but is still able to maintain the con-
nectivity of the visibility graph.

3.5 Move-on-Angle-Minimizer

Next, we introduce a strategy based on the tangential-normal criterion. It is
based around the idea to find a movement vector that somehow causes a large
decrease in distance to all neighbors. Since a smaller angle causes a greater
decrease in distance (according to Lemma 2), one intuitive approach might be
to find a movement vector that minimizes the maximal angle to all neighbors on
the convex hull. To this end, the notion of an angle minimizer will be introduced.
Let V = {v1,v2, ...,vk} ⊂ R

3 be a set of vectors that lie on one side of a plane
through the origin. Then the vector x∗ = argminx∈R3 maxv i∈V ∠(x,vi) is called
an angle minimizer of V .

Now, we define a strategy in which each robot that is a corner of its local
convex hull ri moves along the angle minimizer of the edges between itself and
the robots in Adjt(i). This strategy will be called Move-on-Angle-Minimizer
and is summarized in Algorithm 3.

Algorithm 3. Move-on-Angle-Minimizer

1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: CH(Ri(t)) := Convex hull of ri’s neighborhood
3: if ri is on a corner of CH(Ri(t)) then
4: x∗ = argminx∈R3 maxrj∈Adjt(i)

∠(x, pj(t) − pi(t))
5: ri moves along x∗ with speed 1
6: else
7: ri does not move

Note that if a robot ri’s local convex hull is two-dimensional, the angle min-
imizer is identical to the angle bisector of the inner angle at ri. Therefore, this
strategy can also be viewed as a generalization of Move-on-Bisector for two-
dimensional continuous gathering [8], for which Kempkes et al. [4] could show
an optimal gathering time of Θ(n).

It will now be shown that the presented strategy is both a tangential-normal
and a contracting strategy. By Lemma 9 and the existence of a tangential plane,
we already know that there is a possible movement vector that has an angle
of less than π/2 to all neighbors on the local convex hull. Therefore, the same
must hold for x∗, immediately showing that Move-on-Angle-Minimizer is a
tangential-normal strategy.

Lemma 10. Move-on-Angle-Minimizer is a tangential-normal strategy.

78 M. Braun et al.

Computing x∗. In order to see that Move-on-Angle-Minimizer is also a
contracting strategy, we look at a method to compute the angle minimizer.

Let v̂ = v/||v|| denote the respective normalized vector of v and let V̂ =
{v̂ | v ∈ V } for a set V of vectors. Then the following holds:

Lemma 11. Let V ⊂ R
3 be a set of vectors that all lie on one side of a plane

through the origin. The center c of the smallest enclosing sphere of V̂ is an angle
minimizer of V .

Proof. Let x be a vector such that ∠(x,vi) ≤ π/2 for all vi ∈ V . Such a vector
exists, since there is a plane such that all vi lie on one side of this plane.

Now consider the normalized vectors v̂i. They lie on the surface of the unit
sphere centred on the origin. Let Cx be the minimal spherical cap centred on
the vector x such that all the v̂i lie on its surface. The vector v̂j ∈ V̂ with the
maximal angle to x lies on the edge of the base of Cx . The maximal angle can
now be computed using the radius r of Cx as ∠(x, v̂j) = sin−1 r.

Since sin−1 is monotonically increasing on the interval [0, 1], finding the angle
minimizer x∗ now amounts to finding the center c of a spherical cap with min-
imal radius, which can be achieved by computing the smallest enclosing sphere
of V̂ .
�

By applying the fact that the SES of V̂ is a convex combination of V̂
(Proposition 1), this lemma together with Lemma 10 immediately yields that
Move-on-Angle-Minimizer is also a contracting strategy.

Theorem 6. Move-on-Angle-Minimizer is a tangential-normal and a con-
tracting strategy. Thus, it gathers the robots in time O (

Δ · n3/2
)
.

References

1. Ando, H., Suzuki, Y., Yamashita, M.: Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In: Proceedings of the 1995 IEEE
International Symposium on Intelligent Control, ISIC 1995, pp. 453–460. IEEE,
August 1995. https://doi.org/10.1109/ISIC.1995.525098

2. Bhagat, S., Chaudhuri, S.G., Mukhopadhyaya, K.: Gathering of opaque robots
in 3D space. In: Proceedings of the 19th International Conference on Distributed
Computing and Networking, ICDCN 2018, Varanasi, India, 4–7 January 2018, pp.
2:1–2:10 (2018). https://doi.org/10.1145/3154273.3154322

3. Braun, M., Castenow, J., Meyer auf der Heide, F.: Local gathering of mobile robots
in three dimensions (2020). https://arxiv.org/abs/2005.07495

4. Degener, B., Kempkes, B., Kling, P., Meyer auf der Heide, F.: Linear and com-
petitive strategies for continuous robot formation problems. TOPC 2(1), 2:1–2:18
(2015). https://doi.org/10.1145/2742341

5. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: Rajaraman, R., Meyer auf der Heide, F. (eds.)
SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in
Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011 (Co-located with
FCRC 2011), pp. 139–148. ACM (2011). https://doi.org/10.1145/1989493.1989515

https://doi.org/10.1109/ISIC.1995.525098
https://doi.org/10.1145/3154273.3154322
https://arxiv.org/abs/2005.07495
https://doi.org/10.1145/2742341
https://doi.org/10.1145/1989493.1989515

Local Gathering of Mobile Robots in Three Dimensions 79

6. Elzinga, D.J., Hearn, D.W.: The minimum covering sphere problem. Manage. Sci.
19(1), 96–104 (1972). https://doi.org/10.1287/mnsc.19.1.96

7. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing. Lecture Notes in Computer
Science, vol. 11340. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-11072-7

8. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts
with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C.,
Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol.
3172, pp. 142–153. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28646-2 13

9. Kling, P., Meyer auf der Heide, F.: Continuous protocols for swarm robotics. In:
Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile
Entities, Current Research in Moving and Computing. LNCS, vol. 11340, pp. 317–
334. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7 13

10. Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.: A continuous strategy
for collisionless gathering. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A.,
Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 182–197. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72751-6 14

11. Li, S., Meyer auf der Heide, F., Podlipyan, P.: The impact of the gabriel subgraph
of the visibility graph on the gathering of mobile autonomous robots. In: Chrobak,
M., Fernández Anta, A., G ↪asieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016.
LNCS, vol. 10050, pp. 62–79. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-53058-1 5

12. Poudel, P., Sharma, G.: Universally optimal gathering under limited visibility. In:
Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 323–340. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 23

13. Tomita, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots without chirality. In: 21st International Conference on
Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, 18–20 Decem-
ber 2017, pp. 13:1–13:17 (2017). https://doi.org/10.4230/LIPIcs.OPODIS.2017.13

14. Yamauchi, Y., Uehara, T., Yamashita, M.: Brief announcement: Pattern formation
problem for synchronous mobile robots in the three dimensional euclidean space. In:
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 447–449 (2016). https://doi.
org/10.1145/2933057.2933063

https://doi.org/10.1287/mnsc.19.1.96
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-540-28646-2_13
https://doi.org/10.1007/978-3-540-28646-2_13
https://doi.org/10.1007/978-3-030-11072-7_13
https://doi.org/10.1007/978-3-319-72751-6_14
https://doi.org/10.1007/978-3-319-53058-1_5
https://doi.org/10.1007/978-3-319-53058-1_5
https://doi.org/10.1007/978-3-319-69084-1_23
https://doi.org/10.4230/LIPIcs.OPODIS.2017.13
https://doi.org/10.1145/2933057.2933063
https://doi.org/10.1145/2933057.2933063

Improved Lower Bounds for Shoreline
Search

Stefan Dobrev1, Rastislav Královič2(B), and Dana Pardubská2

1 Slovak Academy of Sciences, Bratislava, Slovakia
Stefan.Dobrev@savba.sk

2 Comenius University in Bratislava, Bratislava, Slovakia
{kralovic,pardubska}@dcs.fmph.uniba.sk

Abstract. Shoreline search is a natural and well-studied generalisation
of the classical cow-path problem: k initially co-located unit speed agents
are searching for a line (called shoreline) in 2 dimensional Euclidean
space. The shoreline is at (a possibly unknown) distance δ from the
starting point O of the agents. The goal is to minimize the competitive
ratio Tδ

δ
, where Tδ is the worst case (over all possible locations of the

shoreline at distance δ) time until the shoreline is found.
Upper bounds conjectured to be optimal have been established for

all k ≥ 1[4], however lower bounds have been severely lacking. Recent
paper [1] showed an improved lower bound for k = 2 and gave the first
non-trivial lower bounds for k ≥ 3. While for k ≥ 4 the lower bounds
match the best known upper bounds, that is not the case for k < 4.

In this paper we improve the lower bound for k = 2 from 3 to
(1 +

√
3 + π/6) ≈ 3.2556, and for k = 3 from

√
3 to 2. These lower

bounds apply for known δ, matching the corresponding upper bounds.
In fact, for k = 3 our lower bound matches the upper bound for unknown
δ as well.

We achieve these results by employing a novel simple virtual colouring
technique, allowing us to transform the problem of covering the (uncount-
ably many) points of the circle of radius δ (whose tangents represent all
possible shorelines at distance δ) to a combinatorially much simpler prob-
lem of finding the shortest path from the centre to three specific tangents
of this circle.

1 Introduction

Searching is one of the fundamental problems of computer science, with numer-
ous real life applications. A wide variety of models have been investigated, con-
sidering all kinds of search space, searchers, their power and multiplicity, as well
as different cost functions. One of the very natural variants (motivated e.g. by
motion planning in operations research) is a search in 2 dimensional space by
one or more search agents: There is an object (finite shape, circle, line, . . . , we
will call it the target) to be found at an unknown location in the 2D space. The

Research supported by VEGA 1/0601/20.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 80–90, 2020.
https://doi.org/10.1007/978-3-030-54921-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_5

Improved Lower Bounds for Shoreline Search 81

search agents are initially collocated at the origin O. We are looking for a set of
fixed trajectories, one for each agent, each starting at O, such that the length of
the trajectory hitting the target is minimized in the worst case (w.r.t. target’s
location). A natural way to evaluate the quality of the search strategy is com-
petitive analysis, i.e. dividing the search time by the best possible search time if
the location of the target was known, i.e. by the distance δ of the target from
the origin.

In this paper, we limit ourselves to one of the simpler targets, namely to lines.
A simplified version of the problem (searching for a line of unknown slope but
at a known distance away) has it roots in 50’s: It was first proposed by Bellman
[7] and solved by Isbell [14]. The general case of unknown δ was introduced by
Baeza-Yates [4] in late 80’s. Upper bounds conjectured to be optimal for all k ≥ 1
soon followed. However, similarly as for its 1D variant (the notorious cow-path
problem), establishing lower bounds has proved to be much more difficult. In
fact, until recently, there have been no lower bounds for k > 2 and only very
weak lower bounds for k = 1 and k = 2.

This paper has been inspired by [1], where the authors present strong lower
bounds for k ≥ 2, in fact matching the upper bounds for k ≥ 4. Of particular
interest was the hint that there might exist possibility to improve upon the (old,
and previously conjectured optimal) upper bound for k = 3.

1.1 Our Contribution

The case of k = 3: Improving the lower bound from
√

3 [1] to 2, matching the
upper bound from [4] and disproving the hypothesis that this upper bound can
be improved. In addition to the bound being stronger, our proof is also quite a
bit simpler than the proof in [1].
The case of k = 2: We start by improving the lower bound from 3 to

√
10 using a

very simple proof. We subsequently improve the lower bound to (1+
√

3+π/6) ≈
3.2556, matching the upper bound from [4] for the case of known δ.

In fact, all our lower bounds apply for known δ. As the tight lower bounds
have been known for k = 1 and k ≥ 4, this closes the case of known δ.

We achieve these results by employing a novel simple virtual colouring tech-
nique, allowing us to transform the problem of covering the (uncountably many)
points of the circle (whose tangents represent all possible shorelines at distance
δ) to a combinatorially much simpler problem of finding the shortest path from
the centre to three specific tangents of this circle.

1.2 Related Work

Search theory has a long and rich history; just skimming the vast search litera-
ture is way beyond of scope of this paper. As such, we will focus on result most
relevant to the topic of this paper. Even the much narrower field of continuous
searching in 2D space has its roots in 50’s, motivated by motion planning and
operations research. Even the simplest continuous search problem – finding a

82 S. Dobrev et al.

point on an unlimited line by a unit-speed agent, when the location and direc-
tionet of the sought point is unknown (the so-called cow-path problem) and the
search time should be optimized w.r.t. to the point’s distance from the agent’s
origin – has inspired spirited research over the decades. The fruits of this work
have been summarized in numerous surveys, e.q. [8,10,11]; see also [9] for a
newest one with focus on group search and evacuation. In fact, several books
have been devoted to the underlying mathematical theory, with [2,3] being the
most relevant and influential.

The problem of searching for a line of arbitrary slope in 2D plane at a known
(i.e. unit) distance away was first posed by Bellman [7]. The problem was solved
by Isbell [14], showing that the optimal worst case distance walked by a single
robot is U1 = 1 + 7π/6 +

√
3 ≈ 6.3972. Gluss [12] investigated randomized

algorithms minimizing the statistical expectation of the distance travelled, as
well as the problem of finding a circle of known radius and known distance
[13]. The latter can be seen as a generalization of the shoreline problem, which
corresponds to the case when the radius of the circle goes to infinity. The problem
of finding a circle of known radius r is motivated by a problem of finding a
point/object visible from a distance r.

The generalized version for unknown distance to the line was first considered
by Baeza-Yates [5]. The authors assume one searcher, but deal with numerous
variants of the model, starting with the 1D case (cow-path problem), progress via
multi-ray cow-path problem and then investigate various 2D models (e.g. limiting
the searcher to move only in axis-parallel directions, considering the shoreline to
be axis-parallel, as well as the general shoreline problem we consider here). For
the general shoreline problem, an upper bound based on a logarithmic spiral is
presented, with a competitive ratio of 13.81.

The results for shoreline search were generalized to multiple searchers in [4].
The authors were interested not only in optimal time, but also in optimal total
distance traveled. They made an interesting observation that for two agents, the
total distance traveled is optimized by an asymmetric algorithm. Regarding the
optimal time, they showed an upper bound (let us call it U2) of 1 +

√
3 + π/6 ≈

3.2556 for two searchers searching for a line at a known distance δ away, as
well as an upper bound of ≈ 5.2644 (based on two equally-spaced logarithmic
spirals) for unknown δ. For k ≥ 3 searchers, they proposed a simpler algorithm:
each agent moves away from the origin along the equally separated rays. The
competitive ratio of this algorithm is 1/ cos π

k .
These upper bounds have stood the test of time and have been conjectured

optimal. However, for a long time, only few (and rather weak) lower bounds have
been proven. For k = 1, Isbell [14] proved the optimality of U1 for known δ, while
for k = 2 a rather weak lower bound of 1.5593 was shown by Baeza-Yates [5].
Decades later, Langetepe [17] proved a lower bound of 12.5385 for the case of
axis-parallel shoreline, however his proof is limited to spiral-based trajectories.
The paper also provides a matching upper bound, improving upon the previous
upper bound of 12.5406 by Jez [15]. In [16], the optimality of spiral search is
shown for a related problem of searching for a point in plane, in which a point is

Improved Lower Bounds for Shoreline Search 83

found if it lies on the line segment connecting the agent’s current position with
the O.

The lack of lower bounds has been recently ameliorated by Georgeu et al.
[1], where they showed a lower bound of

√
3 for k = 3, a lower bound of 3 for

k = 2, as well as lower bound of 1 cos π
k for k ≥ 4. This closed the gap between

the upper and lower bounds for k ≥ 4, as well as significantly reduced them for
k = 2 and k = 3.

2 Lower Bounds

Consider a ring R of radius 1 centered at O. Assume each agent i has a unique
colour ci. Let T be the time when the shoreline has been found. Let πi be the
path/trail of the agent i from time 0 to time T inclusively, and let pi(t) denote
the position of agent i at time t ∈ [0, T].

Let us assign the colours to points of R as follows:

– whenever pi(t) is on R, colour it ci

– whenever pi(t) is outside R, draw the tangents from pi(t) to R. Let x and y
be the two points of R where these tangents touch R. Assign colour ci to x
and y (Fig. 1).

O

pi(t)

x

y

R

δ

πi

Fig. 1. Colouring R. (Color figure online)

Note that some points of R might not have any colour, while others might
have several. Furthermore, as the agent’s trajectory is continuous and the time
domain is a closed set, the points of colour ci also form a closed set.

Lemma 1. If there is an uncoloured point r of R then there exists a line at
distance 1 which has not been located by the agents.

Proof. The tangent of R at r is the shoreline that the agents did not find. ��
Let S ⊆ R. We say that a trajectory (or a set of trajectories) covers S iff

every point of S is assigned a colour using the above technique.
Hence, in order to show the lower bound on the time needed to find the

shoreline, it is sufficient to show a lower bound on time needed to cover the
whole circle R by the multiple agents. The key to our lower bounds is a technique
to further reduce this problem to the much simpler problem of covering only
constant number of specific points by a single agent.

84 S. Dobrev et al.

2.1 Three Agents

Lemma 2. If 3 agents locate every line at distance 1 from O, then there exist
two points x and y on R holding an angle of 2π/3 with O and having the same
colour.

Proof. First, because the sets of the same colour are closed and (by Lemma 1)
no point is uncoloured, either all points of R are of the same colour (and the
lemma holds), or there exists a point x having two colours (w.l.o.g. c1 and c2).
Consider now the points y and z at an angle 2π/3 from x. Either one of them
has colour c1 or c2, in which case it forms an equal-coloured pair with x, or both
of them have colour c3, forming equal-coloured pair themselves. ��

O

x

y

z

y′

tx

ty

t′y

π
3
π
3

π
3

π
6

u

v

v′

Fig. 2. |Ouv| = |Ouv′| > |Oz| (Color figure online)

Now we are ready to prove the lower bound for k = 3.

Theorem 1. Any three agent algorithm for locating the shoreline at known dis-
tance 1 from the origin needs at least 2 time units.

Proof. By Lemma 2 there are two points x and y on R forming an angle 2π/3
and having the same colour ci. Let tx and ty be the tangents touching R at x
and y, respectively. Then the agent i must have, during its travel, touched both
tx and ty, otherwise x and y would not have received their colour.

What is the shortest path agent i could have taken to touch both tx and ty?
W.l.o.g. assume that i touched tx not later than it touched ty. Let t′y be the
reflection of ty over tx. Then the length of this shortest path is the same as the
length of the shortest path from O to t′y while not crossing t′y before crossing tx
(refer to Fig. 2). Since ∠xOy = 2π/3, ∠y′zO = π/2 and therefore the shortest
such path is a straight line from O to z. As

Improved Lower Bounds for Shoreline Search 85

|Oz| =
1

cos ∠xOz
=

1
cos π/3

= 2

the theorem follows. ��

2.2 Two Agents

Lemma 3. If 2 agents locate every line at distance 1 from O, then there are
three equal-color points x, y, z on R with ∠xOy = ∠yOz = π/2.

O x0

x1

x2

x3

O x0

x1

x2

x3

Fig. 3. Two colours for four points. (Color figure online)

Proof. For the same reason as in Lemma 2, either all points of R are of the same
colour (and the lemma holds), or there must exist a point x0 which has both
colours. Consider the other three points, equally separated by π/2. Let’s name
them x1, x2 and x3 in counterclockwise order (see Fig. 3). If x1 and x3 are of the
same colour, then x3, x0, x1 are the sought set. If they are different, one of them
(say xi) must have the same colour as x2. Then x2, xi and x0 (not necessarily
in that order) form the sought set. ��
Theorem 2. Any two agent algorithm A for locating the shoreline at known
distance 1 takes time at least

√
10 ≈ 3.1623.

O x

y

z

tx

ty

tz

t′z

Fig. 4. Optimal trajectory to touch tx, ty and tz. t′
z is a reflection of tz by tx. (Color

figure online)

86 S. Dobrev et al.

Proof. Using the same arguments as before, there must be an agent that starts
at O and touches tx, ty and tz. ty cannot be the first tangent touched by πb,
as the shortest such path would be of length more than 2 +

√
2 > U2, violating

the optimality of πb. Due to symmetry, w.l.o.g. we may assume that πb touches
tx before touching tz. It is easy to verify that the shortest such trajectory is
depicted in Fig. 4, and that its length is

√
12 + 32 =

√
10. ��

The lower bound of Theorem2 does not match the best known upper bound
U2 = (1 +

√
3 + π/6) ≈ 3.2556 [4]. This is so because Theorem 2 aims to be as

simple as possible, at the cost of the strength of the bound.
In the rest of this subsection we present a tighter analysis that matches the

upper bound (Fig. 5).

x

y

z

u

π
6

tx

ty

tz

tu

O

π
6

u′

z′ x′

π
6

Fig. 5. The upper bound for k = 2 shown as solid path. The dashed path is the shortest
trajectory from x′ to z′ that covers the arc uu′. (Color figure online)

In order to simplify presentation, we assume the agents have colours blue
and red (their paths are πb and πr), and x, y and z are blue.

Let u and u′ be the two points on R at an angle π
6 from y. Note that u is

the point where the path of the upper bound by Baeza-Yates starts to follow R.
We first deal with the case that all points on the arc between u and u′ are

blue:

Lemma 4. The shortest trajectory πb covering the arc uu′ while touching tx, ty
and tz is the blue line corresponding to the upper bound by Baeza-Yates [6] and
is of length U2 = (1 +

√
3 + π/6) ≈ 3.2556.

Proof. Using the same arguments as in Theorem 2 we may assume that πb

touches tx before touching ty or tz. The rest of the proof is based on the ideas
from [6] and [4]:

First, note that πb is convex, as any shortcut via the non-convex part would
shorten it, violating the assumption of its optimality [6]. Let x′ and z′ be the
lowest points where πb touches tx and tz, respectively. Applying Lemma 3.1 from
[6] (to a rotated and shifted setting where x′ and z′ lie on the horizontal axis

Improved Lower Bounds for Shoreline Search 87

with x′ to the right of z′, so that preconditions of this Lemma are satisfied)
directly yields that the shortest path from x′ to z′ while covering the arc uu′ is
the upper convex envelope π′ of x′, z′ and the arc uu′. Let d(π′) be the length
of this path. In order to find the shortest πb, it suffices to find x′ and z′ such
that |Ox′| + d(π′) is minimized.

As πb touches tx first, x′ lies below y, therefore y ∈ πb. Hence, the posi-
tions of z′ and x′ can be optimized independently. z′ is obviously optimized by
going perpendicularly from y to tz, while the optimal position of x′ has been
determined in [4] to be given by ∠xOx′ = π/6, yielding d(πb) = U2. ��

The remaining case is that of arc uu′ containing a point that is not blue.

Definition 1. Let a, b and c be three distinct points on R. We say that the
triangle abc is BalancedRight (or, in short, BRT) iff

– ∠aOb = π
2

– min(∠bOc,∠aOc) ≥ 2π
3

We will need the following technical Lemma:

Lemma 5. If 	abc is a BRT then the shortest path starting at O and touching
ta, tb and tc (not necessarily in that order) is longer than U2.

Proof. Let πxyz denote the shortest path starting at O and touching tx, ty and
tz, in that order. We have to show that |πxyz| > U2 for every ordering of ta, tb
and tc.

Let txy denote a reflection of ty over tx and txyz denote a reflection of txz

over txy (refer to Fig. 6). Then πxyz corresponds to the shortest path from O to
txyz, while crossing tx before crossing ty or tz, then crossing txy before crossing
txz and finally touching txyz. In some cases (πabc and πbca), πxyz is the shortest
line from O to txyz, while in other cases (πcab and πcba, πacb) it has to go to the
intersection of txy and txz as the shortest line from O to txyz would cross txz

before txy. Finally, in the case of πbac it has to make a detour to avoid crossing
ty before tx.

Note that thanks to a rather small range of positions c can be in the BRT,
the shortest paths in Fig. 6 are representative of what happens in any BRT
(observe that as the BRT becomes more symmetric, πabc and πbac are getting
closer, while πacb starts to resemble πbca).

Let h(c) denote the distance from c′ to a′b′ (the height of the 	a′b′c′). We
will show that for each of these πxyz it holds that |πxyz| > 1 + h(c): As at least
1 is needed to exit the triangle abc, it is sufficient to show that in each case the
length of the path outside 	a′b′c′ (lets call this external length) is at least h(c).

– for πbac, the external length is exactly h(c)
– for πcab and πcba this is straightforward from the definition of h(c)
– for πabc and πacb the external length is longer than the external length of

πbac = h(c)
– for πbca the external length is longer than |a′c′′| > h(c).

88 S. Dobrev et al.

a b

c

tc

ta

tb

tca

tac

tcb

tcba

tcab

tbc

tba

tbac = tabc = tacb

tbca

πcab

πcba

πacb

πabc

πbac

πbca

tab

π
3

π
6

a′

b′

c′

O
c′′

Fig. 6. All the shortest paths starting at O and touching ta, tb and tc (Color figure
online)

Hence, it is sufficient to show that h(c) > U2 − 1. h(c) is minimized when c
is in the extreme position for BRT, i.e. when ∠bOc = 2π

3 . In such case,

h(c)
|a′c′| = sin

π

3
=

√
3

2

hence

h(c) =
√

3|a′c′|
2

|a′c′| = |a′b| + |bc′| = 1 + cot
π

6
= 1 +

√
3

Combining this yields h(c) =
√
3(1+

√
3)

2 ≈ 2.336. As U2 ≈ 3.2556, the Lemma
holds. ��

Improved Lower Bounds for Shoreline Search 89

Note that the sharp inequality in Lemma5 does not contradict the upper bound
of U2: The upper bound is achieved when the arc uu′ is fully coloured blue, while
Lemma 5 deals with the case that there is a red point in this arc.

x

y

z

u

O

π
6

u′

π
6

π
2

2π
3

2π
3

a b

crcl
c

r1

r2 s1

s2

π
6

π
6 π

3

π
3

O π
6

Fig. 7. Left: BRT, right: existence of a monochromatic BRT. (Color figure online)

Lemma 6. Let x,y and z be three blue points given by Lemma 3 and let u and
u′ be two points at angle π

6 from y. If there exists a red point in the arch uu′

then there exists a monochromatic BRT.

Proof. Let points r1, r2, s1 and s2 be located according to Fig. 7, right. If any of
the points of r1, r2, s1, s2 are blue, then they form a blue BRT either with xy or
with yz. Hence, r1, r2, s1 and s2 are red. Therefore, r1s1 form a red BRT with
any red point on the arch uy while r2s2 form a red BRT with any red point on
the arch yu′. As, by assumption, there is a red point in the arch uu′, the lemma
follows. ��

Combining Lemma 4 with Lemmas 5 and 6 directly yields.

Theorem 3. Any two agent algorithm A for locating the shoreline at known
distance 1 takes time at least U2, i.e. the symmetric algorithm from Fig. 3 of [4]
is time optimal.

3 Conclusions

In this paper, we have closed the last gaps for the case of known δ, as well as
for k = 3 and unknown δ. However, the gaps for k = 1 and k = 2 and unknown
δ remain open.

We are hopeful that the techniques and insight from this paper will prove
useful in closing or at least narrowing those gaps as well.

90 S. Dobrev et al.

More generally, many variants of the shoreline problem are wide open: One
can consider different costs (average case, the sum of traveled distances, need for
every agent to reach the shoreline – the evacuation problem), as well as differ-
ent models of agents (e.g. of different speed, possibly faulty, perhaps memory-
limited) or the search space (discrete grids, graphs).

References

1. Acharjee, S., Georgiou, K., Kundu, S., Srinivasan, A.: Lower bounds for shoreline
searching with 2 or more robots. In: OPODIS (2019)

2. Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.: Search
Theory: A Game Theoretic Perspective. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-6825-7

3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer,
Boston (2006). https://doi.org/10.1007/b100809

4. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. 5(3),
143–154 (1995)

5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching with uncertainty
extended abstract. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318,
pp. 176–189. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19487-
8 20

6. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching with uncertainty
(technical report 239). Indiana University, Computer Science Department (1988)

7. Bellman, R.: A minimization problem. Bull. AMS 62(3), 270 (1956)
8. Benkoski, S.J., Monticino, M.G., Weisinger, J.R.: A survey of the search theory

literature. Naval Res. Logist. (NRL) 38(4), 469–494 (1991)
9. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Floc-

chini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Enti-
ties. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019)

10. Dobbie, J.M.: A survey of search theory. Oper. Res. 16(3), 525–537 (1968)
11. Gal, S.: Search games. In: Wiley Encyclopedia of Operations Research and Man-

agement Science (2010)
12. Gluss, B.: An alternative solution to the “lost at sea” problem. Naval Res. Logist.

Q. 8(1), 117–122 (1961)
13. Gluss, B.: The minimax path in a search for a circle in a plane. Naval Res. Logist.

Q. 8(4), 357–360 (1961)
14. Isbell, J.R.: An optimal search pattern. Naval Res. Logist. Q. 4(4), 357–359 (1957)
15. Jeż, A., �Lopuszański, J.: On the two-dimensional cow search problem. Inf. Proc.

Lett. 109(11), 543–547 (2009)
16. Langetepe, E.: On the optimality of spiral search, pp. 1–12, January 2010
17. Langetepe, E.: Searching for an axis-parallel shoreline. Theor. Comput. Sci. 447,

85–99 (2012)

https://doi.org/10.1007/978-1-4614-6825-7
https://doi.org/10.1007/978-1-4614-6825-7
https://doi.org/10.1007/b100809
https://doi.org/10.1007/3-540-19487-8_20
https://doi.org/10.1007/3-540-19487-8_20

Guarding a Polygon Without Losing
Touch

Barath Ashok1, John Augustine1(B), Aditya Mehekare2, Sridhar Ragupathi2,
Srikkanth Ramachandran2, and Suman Sourav3

1 Indian Institute of Technology Madras, Chennai, India
augustine@iitm.ac.in

2 National Institute of Technology, Tiruchirappalli, India
3 Advanced Digital Sciences Center, Singapore, Singapore

Abstract. We study the classical Art Gallery Problem first proposed
by Klee in 1973 from a mobile multi-agents perspective. Specifically,
we require an optimally small number of agents (also called guards) to
navigate and position themselves in the interior of an unknown simple
polygon with n vertices such that the collective view of all the agents
covers the polygon.

We consider the visibly connected setting wherein agents must remain
connected through line of sight links – a requirement particularly rel-
evant to multi-agent systems. We first provide a centralized algorithm
for the visibly connected setting that runs in time O(n), which is of
course optimal. We then provide algorithms for two different distributed
settings. In the first setting, agents can only perceive relative proximity
(i.e., can tell which of a pair of objects is closer) whereas they can per-
ceive exact distances in the second setting. Our distributed algorithms
work despite agents having no prior knowledge of the polygon. Further-
more, we provide lower bounds to show that our distributed algorithms
are near optimal.

Our visibly connected guarding ensures that (i) the guards form a
connected network and (ii) the polygon is fully guarded. Consequently,
this guarding provides the distributed infrastructure to execute any geo-
metric algorithm for this polygon.

Keywords: Art gallery problem · Mobile agents · Swarm robotics ·
Visibility · Line of sight communication

1 Introduction

The Art Gallery Problem is a classical computational geometry problem that
seeks to minimize the number of guards (or agents in our context) required
to guard an art gallery (represented by a simple polygon P comprising vertices
{p1, p2, . . . , pn}). To successfully guard the gallery, every point inside the polygon

The authors are listed in alphabetical order.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 91–108, 2020.
https://doi.org/10.1007/978-3-030-54921-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_6

92 B. Ashok et al.

must be visible to at least one guard, i.e., for every point in the polygon, there
must exist at least one guard such that the segment joining the point to the guard
does not intersect the exterior of the polygon. This computational geometry
problem was first posed by Klee in 1973, and thereafter has been widely studied
over the years (see [16,26,30,31]).

In this paper, we investigate a variation of the problem called the visibly
connected art gallery problem from a distributed multi-agents perspective. We
require an optimally small number of agents (also called guards) with omni-
directional vision to navigate an unknown simple polygon with n vertices in a
coordinated manner and position themselves in its interior such that the collec-
tive view of all the agents covers the polygon. Additionally, for the connected
art-gallery problem (as in [25]), it is required that the agents maintain line-of-
sight connectivity. More precisely, the visibility graph [22,25] comprising agents
as nodes and edges between agents that are within line of sight of each other
(unobstructed by polygon edges) must be a connected graph.

The visibly connected art gallery problem was studied as early as 1993 by
Liaw et al. [22] in the centralized setting, but only for the special case of spiral
polygons. Hernandez-Penalver [19] considered simple polygons and showed that
�n/2� − 1 guards are sufficient and sometimes necessary. Pinciu [28] presented
a centralized algorithm based on iteratively processing the dual graph of the
polygon’s triangulation. Although [28] lacks the analysis, one can infer that it
runs in time linear in n, the number of vertices of the polygon. However, the
algorithm is somewhat complicated and not amenable for parallel or distributed
computing. Obermeyer et al. [25] provided a distributed algorithm that is capable
of handling polygons with holes, but unfortunately requires O(n2) rounds.

Our work is motivated by recent advancements in unmanned aerial vehicles
(UAVs), especially those capable of automated sensing (either through pho-
togrammetry or LiDAR) and communication (typically through line-of-sight
electromagnetic radio waves). Such UAVs are typically deployed into unknown
territories from which they are required to navigate, learn, and perform useful
tasks in a coordinated manner. We model these UAVs as point agents that start
from a common starting point assumed without loss of generality (w.l.o.g.) to
be p1. Agents operate in synchronous rounds during which they can look, com-
pute, communicate and move. They are required to coordinate with each other
and achieve full visibility coverage of the polygon while maintaining line-of-sight
connectivity with each other.

A connected visibility graph ensures that there exists a path between every
pair of guards. So visibly connected guards can simultaneously maintain coverage
of the polygon and execute distributed computing protocols through line of sight
communication.

Our Contributions. We begin with a description of a centralized algorithm
in Sect. 3 that takes a simple polygon P with n vertices as input and produces
a placement of at most �n/2� − 1 guards that satisfy the requirements of the
visibly connected art gallery problem. This algorithm only requires O(n) time.
Here, we introduce a notion of triplets (three connected nodes) in the weak dual

Guarding a Polygon Without Losing Touch 93

graph D (defined formally in Sect. 2). Informally, D is the graph whose nodes are
triangles of a triangulation of P and arcs connect pairs of triangles that share an
edge. We show that D can be decomposed into O(n) triplets that are connected
and cover D, and then we compute a set of visibly connected guards by placing
guards – one per triplet – positioned strategically within the triangles pertaining
to each triplet. Although Pinciu [28] has already presented an O(n) algorithm,
we believe that our algorithm is simpler and, more importantly, amenable to
parallel computing. In particular, we show that our algorithm can be adapted
to run in the PRAM model in time linear in the diameter of D.

Next, we turn our attention to distributed computing models in which the
agents are independent mobile computing entities that must interact with each
other to solve the visibly connected art gallery problem. We define two model
variants based on agents’ perception capabilities. The depth perception variant
wherein the agents can accurately perceive depth (i.e., distances) is inspired by
UAVs with LiDAR technology [23]. On the other hand, the proximity percep-
tion variant only provides the agents with relative proximity. For concreteness,
we limit the proximity perception variant to being able to sense which of any
two objects (i.e., edges or vertices of the polygon) is closer. It is inspired by
photogrammetry [1], which is cheaper and only guarantees coarser perception.

We present algorithms for both cases. The algorithm for the proximity per-
ception variant, presented in Sect. 4, operates by exploring visible territories
within the polygon (formally defined in Sect. 2). We describe two forms of explo-
ration, one in a breadth-first manner and the other in a depth-first manner. Since
the polygon structure is completely unknown to the agents, for each level of the
breadth-first exploration, the nodes must communicate to the root in order to
ensure that a sufficient number of agents are provisioned to explore that level.
Our algorithm – taking the best out of both explorations –runs in O(min(d̃2, n))
rounds. The term d̃ is a natural notion of diameter of P called minimal
v-diameter that we define formally in Sect. 4. Informally, it is the largest diam-
eter among all visibility graphs pertaining to minimal placement of connected
guards that cover all vertices in P . The candidate placements are minimal in
the sense that the removal of guards either leads to lack of coverage or loss of
connectivity.

When the agents can perceive depth, we exploit this capability to place agents
based on the medial axis of the polygon P (defined formally in Sect. 2), which is
a well-known tree-like structure that captures the “shape” of the polygon. Since
depth perception is more powerful than proximity perception, we can take the
best of all options to ensure a running time of O(min(d̃2,D2, n)) time, where
D is the (unweighted) diameter of the medial axis tree. Each of our algorithms
require at most O(n) agents for an initial placement, but a subsequent post-
processing ensures that at most �n/2� − 1 agents are placed in the polygon,
which is optimal.

To complement our complexity claims, we consider the weaker problem
wherein the robots are not required to be placed in a visibly connected guarding
position, but rather just that the entire polygon must be explored by the agents.

94 B. Ashok et al.

The exploration problem only requires that for every point in P , some agent
must have been within line of sight of that point at some time instant during
the course of the algorithm. Clearly, any solution to the visibly connected guard
placement problem will also be a solution for the exploration problem. Thus,
we focus on showing a lower bound for the exploration problem. Specifically,
we show that, for any deterministic algorithm operating on a polygon (with
d̃, D ∈ o(log n)) to even centrally coordinate Θ(n) agents to explore an initially
unknown polygon, we can construct a polygon that requires Ω(D2) (or Ω(d̃2))
communication rounds even with depth perception.

Unfortunately, due to space limitation, we have deferred some of our proofs
to the full version [2].

Related Work. The classical art gallery problem was first introduced by Klee in
1973. Chvátal [7] showed by an induction argument that �n

3 � guards are always
sufficient and occasionally necessary for any simple polygon with n vertices. Fisk
[12] proved the same result via an elegant coloring argument. Lee and Lin in [20]
proved that determining a set of minimum number of guards that can guard a
given polygon is NP-hard. Consequently, researchers have focused on approxi-
mate solutions starting from an O(log n) approximation provided by Ghosh [17]
in 1987, along with a conjecture that the problem admitted a polynomial
time constant approximation algorithm. However, Eidenbenz et al. [9] showed
that the problem was APX-hard, thereby precluding the possibility of a PTAS
unless P = NP. After several improvements over the years, in 2017, Bhattacharya
et al. [4] have reported constant factor approximation algorithms for the classical
art gallery problem as well as for several well-studied variants.

In literature, based on the different restrictions placed on the shape of the
galleries or the powers of the guards, several variations of “art gallery problems”
have been studied. See [26,30], and [31] for details.

The connected art-gallery problem was first introduced by Liaw et al. in 1993
[22], where they refer to the problem as minimum cooperative guards problem and
study it onk-spiral polygons (polygonswith amaximal chain ofk consecutive reflex
vertices, i.e., vertices with internal angle >180◦). It was also shown [22] that this
problem is NP-Hard for simple polygons but can be solved in linear time in spiral
and 2-spiral polygons (also see [29] for results on k-spiral graphs). For simple poly-
gons with n vertices, Hernández-Penalver [19] proved by induction that �n

2 � − 1
guards are always sufficient to obtain a connected guarding. Moreover, they also
show that �n

2 � − 1 guards are necessary for some polygons. The same result was
also shown by Pinciu via an elegant coloring argument in [27].

In [21], Liaw et al. relax the strong connectivity condition from [22] and
consider the case where there are no isolated vertices in the guards visibility
graph. This problem of guarded guards where the overall connectivity of the
guards visibility graph is non-essential has also been studied in [24,28].

In the distributed setting, Obermeyer et al. [25] study this problem in polygo-
nal environment with holes. They first design a centralized incremental partition
algorithm (defined therein) and from that obtain the distributed deployment
algorithm by a distributed emulation of the centralized algorithm. The authors

Guarding a Polygon Without Losing Touch 95

give a deployment of agents that is guaranteed to achieve full visibility cover-
age of the polygon with n vertices and h holes in O(n2 + nh) time, given that
there are at least �n+2h−1

2 � agents. This work closely relates to our work. While
the scope of [25] includes polygons with holes, their algorithm is not optimized
for time and their ideas lead to algorithms that require O(n2) communication
rounds even for simple polygons without holes. Notable prior works with ideas
leading to [25] can be found in [10,13–15].

Organization of the Paper. In Sect. 2, we present some preliminary defini-
tions including several geometric definitions pertaining to polygons as well as
formal definitions of the distributed computing models. In Sect. 3, we provide
a centralized algorithm to solve the visibly connected art gallery problem and
then show how to parallelize it. In Sect. 4 and Sect. 5, we present distributed
algorithms under proximity perception and depth perception, respectively. We
complement our upper bounds with a lower bound that is proved in Sect. 6. We
then conclude with some remarks and future works in Sect. 7.

2 Preliminaries

Let P be a simple polygon with n � 4 vertices; we use P to refer to the polygo-
nal region including both the interior and the boundary. In general, for a polyg-
onal region K ⊆ P , we use ∂K for the set of vertices of P that lie on the
boundary of this polygonal region. The ordered list of vertices of P are denoted
p1, p2, . . . , pn, and thus, ∂P � {p1, p2, . . . , pn}. Each open line segment connect-
ing pi to pi(mod n)+1, 1 � i � n, is denoted ei. We assume that the vertices are in
general position, i.e., (i) no three vertices are collinear, and (ii) no four vertices
are co-circular. We use the term object to refer to either a vertex or an edge.
Thus, the objects of P are {pi}i ∪ {ei}i.

We use the notation g ∈ P for some point g to indicate that g can either
be a vertex, lie on an edge, or lie in the interior of P . Two points g1 ∈ P and
g2 ∈ P are said to be in line of sight of each other if the open line segment g1g2
lies entirely within P . We use V P

g (or just Vg when P is clear from context) to
denote the visibility polygon of a point g ∈ P , which is defined as the subset
of P that contains all points that are in line of sight from g. See Fig. 1 for an
illustration.

We also borrow a useful definition from Obermeyer et al. [25] for vertex-
limited visibility polygon V̄ P

g for a point g ∈ P w.r.t. P , which is a modified
form of V P

g . Notice that V P
g could have vertices that are not vertices in P ;

call such vertices spurious vertices. To get V̄ P
g , perform the following operation

repeatedly until there are no more spurious vertices: pick a spurious vertex v with
predecessor p and successor s and crop the visibility polygon by cutting along
the line segment ps and removing the portion that lacks the point g from further
consideration. Note that either the predecessor or the successor may themselves
be spurious. In Fig. 1, note the first vertex v that is clipped has successor s that
is itself a spurious vertex. An edge that is in V̄ P

g but not in V P
g is called a gap

96 B. Ashok et al.

edge. We also define a way to crop a polygon (cf. Fig. 1). Formally, for any pair
of vertices pi and pj such that pipj lies entirely within the interior of P and
c ∈ P \pipj , we define crop(P, c, pi, pj) to be the subset of P obtained by cutting
along pipj and discarding the part that contains c.

5

1
2

3

4

g g

_

Gap
edges

Spurious
Vertices

Fig. 1. Visibility polygon (left) and vertex-limited visibility polygon (at the center).
The numbered line segments refer to one possible repeated sequence of cuts to arrive at
vertex-limited visibility polygon. The polygon on the right depicts a cropped polygon.

Definition 1. Let G = {g1, g2, . . .} be a set of points in P . We say that the
points in G guard polygon P if ∪g∈GVg = P . In this context, we call the points
in G as guards of P .

The classical art gallery problem seeks to find a smallest possible set G of
points that guard P , with variants including vertex and edge guarding.

In this paper, we consider a variant called the connected art gallery problem
that, to the best of our knowledge, was introduced first by Liaw et al. [22]. In
this variant, guards are connected in a suitable way, which we now formalize.
We define the visibility graph of a set of points G within (and with respect to)
P , denoted GP

G (or just G when clear from context) as the graph with vertex
set G. Two points in G are connected by an edge in G iff they are visible to
each other within P . A set G of points in P is said to be connected (w.r.t.
P) if GP

G is connected. In the connected art gallery problem, we are required to
compute a set G of points that guards P and the additional requirement that GP

G

is connected. It is well-known [3] that at most �n/3� guards are always sufficient
to guard any polygon with n vertices. However, this bound does not hold under
connected guarding.

Claim (consolidated from [27] and [28]). There exist orthogonal polygons with
n vertices that require at least n/2 − 2 number of connected guards even if we
only require them to guard the vertices of the polygon [28]. This bound increases
mildly to �n/2� − 1 for simple polygons with non-orthogonal edges [27].

Guarding a Polygon Without Losing Touch 97

We now define several structures associated with any polygon P . A line
segment joining two vertices is said to be a diagonal if its interior lies entirely
within the interior of P . It is easy to see that a maximal set of diagonals that
do not intersect each other decomposes the polygons into a set of n−2 triangles
called a triangulation of P [3]. A famous result by Chazelle [6] shows us how to
find such a triangulation in O(n) time. Given a triangulation T for a polygon
P , the weak dual graph DP

T (or just D when clear from context) is the graph
(or more informatively, a tree) whose nodes are the triangles in T with edges in
DP

T between pairs of triangles that share a common triangle edge. Note that the
weak dual graph is a tree where each tree node has a degree of at most 3.

Recall that, the term object refers to either a vertex or an edge of the polygon
P . We define the medial axis M of the polygon P to be the (infinite) collection
of points within P that are equidistant from at least two distinct objects of P
(see Fig. 2(iii) for an illustration).

Claim. For any simple polygon P , the medial axis is a tree whose leaves are
convex vertices of P , i.e., vertices with internal angle being less than 180◦.

Note that reflex vertices (i.e., vertices with internal angles greater than 180◦)
cannot be nodes in the medial axis tree. An edge in M is a non-empty maximal
set of points that are equidistant between the same set of objects. When the
two objects are of the same type (either both polygonal edges or both vertices),
the corresponding medial axis edge will be a straight line segment. On the other
hand, if one of the objects is a vertex and the other is a polygonal edge, the
corresponding medial axis edge will be a parabolic arc. The endpoints of medial
axis edges are the medial axis nodes or just nodes. Since the number of leaves is
at most n, we get:

Claim. The number of nodes in the medial axis of P will be O(n).

We use DP (or just D when clear from context) to refer to the unweighted
diameter of the medial axis M . More precisely, DP is the maximum number of
edges over all paths in the medial axis tree of P .

2.1 Computational Models

We focus on the connected art gallery problem in the classical sequential setting.
In this case, we assume that the sequence of vertex points (p1, p2, . . . , pn) are
given in order, say, as an array of points. However, for the connected art gallery
problem as inspired by mobile agents that operate in a spatially distributed set-
ting, we employ a distributed computing model based on the work by Obermeyer
et al. [25]. For clarity, we assume a synchronous model with time discretized into
a sequence of rounds and the agents executing a look-communicate-move cycle
in each synchronous round; local computation is interspersed between the look-
communicate-move cycles.

We assume that there are Θ(n) agents. Agents (modeling mobile robots) can
be represented as points in the plane and as a result multiple agents can be

98 B. Ashok et al.

co-located at the same point. Without loss of generality, assume all agents start
at the same vertex somewhere in P . Furthermore, agents can only move from
one vertex pi to another vertex pj provided pipj is a diagonal in P (i.e., pi and
pj have direct line of sight to each other). We assume that agents have unique
IDs from {1, 2, . . . , n}. Each agent g performs the following tasks in each round.

Look. The agent g first orients itself to start from a particular direction (in
the direction of another vertex called its orientation vertex) and perform a 360◦

clockwise sweep during which it creates a view of V P
g . The level of information

that the agent can gather depends on whether the agents have depth perception
or not. With depth perception, the view is simply the full visibility polygon
V P

g . Without depth perception, however, the view is limited to a sequence of
alternating vertices and edges (possibly gap edges) starting from its orientation
vertex. In both cases, g can also see other agents that are inside Vg.

Communicate. Two agents can communicate as long as they are visible to
each other (which includes co-located agents). Communication is via message
passing. Each agent can send at most one message to each agent that it can see.

Move. This step again differs based on whether agents can perceive depth or
not. Let us first consider the case when agents can perceive depth. Based on
the outcome of the communication and computation, each agent g chooses to
move from its current location to a new location within its current visibility
polygon. We assume that the agent – once it reaches its destination location
– can “remember” its source position in the sense that it can spot the source
location in its view after it reaches its destination. The only restriction when
agents cannot perceive depth is that they are limited to moving to vertices of
the polygon. For this reason, we always assume that agents will be on polygonal
vertices (even at the start of time) when they cannot perceive depth.

3 Centralized Sequential and Parallel Algorithms

We first present a centralized sequential algorithm for the connected art gallery
problem and then briefly show how it can be parallelized. Our approach is to
decompose the weak dual graph into a suitable set of at most �n/2�−1 connected
triplets and then assign a guard for every triplet. The high-level steps are outlined
in Algorithm 1. Consider the weak dual graph T , which is of course a tree with
maximum degree 3. Root the tree at some node r that is of degree 1. A triplet
is any set of three nodes in the tree that are connected. We now show a simple
procedure (cf. Algorithm 2 and Fig. 2(ii) for an illustration) to decompose T into
triplets. Subsequently, we will prove some properties of these triplets that will
immediately lead us to the required centralized algorithm for the connected art
gallery problem.

Lemma 1. When two triplets share at least one common node, their associated
guards can see each other.

Guarding a Polygon Without Losing Touch 99

Algorithm 1. Centralized algorithm for the connected art gallery problem.
1: Compute a triangulation T of the polygon P [6] and then compute the weak dual

graph.
2: Decompose the weak dual graph into at most �n/2�−1 triplets, i.e., groups of three

connected nodes in T , as described in Algorithm 2.
3: Each triplet corresponds to three triangles arranged in such a way that there is a

middle triangle that shares two edges, say a and b, with the other two triangles.
Placing a guard at the common vertex between a and b for every triplet is the
required solution. (See Figure 2(i) for an illustration.)

Triplets with
common node

Associated guards
can see each other

1
2

3
4

5

6 78

9
10

1112

(i) (ii)

Edge

Parabolic arc tracing points equidistant
between and .

(iii)

Fig. 2. (i) Illustrated placement of guards associated with triplets. Notice that the
guards are associated with the two triplets sharing a common node. Consequently,
they can see each other. (ii) Sequence of triplets computed at the end of each iteration
of the for loop in Algorithm 2. (iii) Medial axis of a polygon.

Algorithm 2. Algorithm to decompose T into triplets.
Require: A tree T rooted at a node r of degree 1, with max degree three, and depth

L. Note that r is assumed to be at level 0, so there are L levels from r to the
farthest leaf (inclusive).

Ensure: A collection of triplets.
1: Color all internal nodes red and all leaves orange.
2: for � ← L down to 2 (decrementing by 1 every iteration) do
3: while ∃ orange node v at level � do
4: if v has a sibling v′ that is also colored orange then
5: Form a new triplet comprising v, v′, and their common parent node p.
6: Color parent p orange.
7: Color v and v′ green.
8: else
9: Form a triplet comprising v, parent p of v, and the grandparent p′ of v.

10: Color p′ orange.
11: Color v and p green.
12: end if
13: end while
14: end for
15: if the root is not part of some triplet then
16: Form a triplet comprising the root, its child, and an arbitrarily chosen grand-

child. Color all three nodes green.
17: end if

100 B. Ashok et al.

Having presented the algorithm to solve the connected art gallery problem
in this centralized setting, we move on to analyze the algorithm. Our main focus
will be on analyzing Algorithm2. We make a series of observations formalized as
lemmas and then derive the result as a consequence. For a given set of triplets,
we define the triplets graph to be the graph with the triplets as vertices and
edges between pairs of triplets that share at least one edge. We say that the set
of triplets covers the tree T if every node is part of at least one triplet. The proof
of the following lemma is deferred to the full version.

Lemma 2. Given t is the number of nodes in T , we claim that Algorithm2

1. forms a set of triplets that covers T ,
2. guarantees that the triplets graph is connected,
3. guarantees that the number of triplets formed is at most �t/2�, and
4. runs in O(t) time.

Recalling that t = n − 2, we can conclude that the sequential algorithm runs in
O(n) time.

Finally, we remark that the algorithm described above can be implemented
in parallel specifically in the Parallel Random Access Machine (PRAM) model.
In PRAM, we have several processors that operate on a shared addressable mem-
ory space. Typically, concurrent reading (i.e., multiple processors reading a word
simultaneously) is acceptable but writing requires exclusivity (i.e., ensuring that
at most one processor can write to a word in one time step); this is the concur-
rent read exclusive write (CREW) version of PRAM. Goodrich [18] has already
shown how to triangulate P in O(log n) time under CREW PRAM. We logi-
cally assign one processor per triangle and ensure the parent-child relationship
between triangles is extended to the processors. Then, each iteration of the for
loop in Algorithm 2 (comprising several while loop iterations) can be executed
in parallel. Redundant triplets that can occur when we form triplets connecting
two orange siblings (see line number 4 in Algorithm 2). This can be avoided in
such situations by only allowing processors corresponding to the left children to
form the triplet.

Theorem 1. Supported by Algorithm2, Algorithm1 solves the connected art
gallery problem with at most �n/2� − 1 guards in time that is linear in n. More-
over, can be solved in the CREW PRAM model with at most �n/2� − 1 guards
in time that is linear in the diameter of the weak dual graph associated with the
triangulation of P .

4 Distributed Guarding with Proximity Perception

In this section, we consider the case where each agent is able to distinguish the
proximity or relative distances (without knowing the actual distances) between
the various objects associated with the polygon as well as with other agents,
etc. which are in its visibility polygon at any specified moment. Specifically,
the agents’ "look" paradigm is reflective of real-world sensing techniques where

Guarding a Polygon Without Losing Touch 101

absolute distances to objects in the scene are unavailable whilst their relative
distances can be inferred such as with photogrammetric vision in drones.

We give a distributed solution that solves the connected art-gallery problem
and runs in O(min(d̃2, n)) rounds, where d̃ is the minimal v-diameter that we
formally define later in this section. Our solution comprises two algorithms that
are executed in parallel, one in a breadth first manner and the other in a depth
first manner. Our final solution is to take the best out of both explorations. Due
to space limitation, we will describe the breadth first algorithm that runs in
O(d̃2) rounds in detail. We subsequently present a brief overview of the depth
first exploration and defer further details to the full version [2]. Finally, we
conclude with some remarks on how our algorithm can form the basis for solving
other polygon problems on P .

Assuming that the vertices and the edges defining the polygon P are in
general position, the agents start at some vertex in P , which we can assume
w.l.o.g. to be p1. The algorithm operates in phases. At the end of a particular
phase �, a subset S� of the agents have “settle” into their final positions while
establishing a connected guarding of the subset P� of the polygon. For any agent
i, its settled position is a vertex in P and is denoted si.

Moreover, the settled agents are arranged in the following hierarchical man-
ner. W.l.o.g., let the root be agent 1, settled at p1. We define the territory of
the root, i.e., agent 1, to be territory(1) � V̄ P

p1
. Every other settled agent j has

a parent agent parent(j). If agent i = parent(j), then we say that j is the child
of i denoted as child(i). Each parent agent i has one child agent j per gap edge
in its territory(i) and the child is located at one of the end points, say pa, of
a the gap edge (pa, pb). Thus, sj = pa. The other end of the gap edge pb is
denoted orient(j); intuitively, j settles at sj and orients itself towards orient(j)
for performing “look” operations.

Furthermore, territory(j) � V̄ P
sj

∩ crop(P, sparent(j), sj , orient(j)) i.e.,
territory(j) is the portion of sj ’s vertex limited visibility polygon not contain-
ing sj ’s parent and truncated by the gap edge that originated it. (See Fig. 3.)
Intuitively, each agent j is only responsible for guarding its territory(j). Notice
that by definition, territories of a parent and its child do not overlap (they share
a bordering edge that is a gap edge seen originally by the parent). Moreover,
territories of children of a given parent do not overlap as well (at most they
share a vertex) as this would imply that the polygon contains holes, i.e., it is
non-simple. For correctness, we need ∪jterritory(j) = P , which is immediate
from our algorithm.

Next, we define a territory tree to be a tree in which nodes are territories and
edges are pairs of territories that share a common diagonal (gap) edge. Let T ∗

be the set of all possible territory trees that can be achieved given all possible
options for the starting vertex p1 and all possible choice of placement of child
agents. Then, we define d as the maximum diameter of all such territory trees,
i.e., d � maxT∈T ∗ diameter(T).

Initially, S0 = {1} (w.l.o.g.), s1 = p1, and P0 is simply V̄ P
s1

. We are now ready
to present the steps to be performed within each phase �; notice that there cannot

102 B. Ashok et al.

be more than d phases to the algorithm hence, 1 � � < d. Intuitively, in each
phase � (see Algorithm 3), we incrementally construct the territories at level � of
the territory tree.

Algorithm 3. Phase � � 1 of the distributed algorithm for the connected art
gallery problem that may use more than �n/2� − 1 guards. This description
assumes phases 0 to � − 1 have completed and each agent i ∈ S�−1, � > 1,
remembers one marked vertex. (This marking scheme ensures that a child and
grandparent are not visible to one another.)
1: Every settled agent i ∈ S�−1 performs a look operation into its territory(i) and

counts the number of gap edges in its territory(i). Call this count bi. Each settled
agent i now up-casts bi to the root with intermediate settled agents aggregating
the quantities by adding up the numbers sent by their children.

2: Notice that at the end of the up-casting, the root will know the total number
b of gap edges. The root apportions b new agents and sends them to its children
according to the numbers sent by each child. Subsequently, whenever a settled agent
notices new agents reaching its position, it will apportion the agents according to
numbers sent by its children and the new agents will move to their assigned child
of the current settled agent.

3: Each settled agent i ∈ S�−1 whose territory(i) has some bi > 0 gap edges gets
exactly bi new agents. Agent i assigns each of those new agents j to an unmarked
vertex of each such gap edge and consequently, agent j marks the other vertex of
that gap edge.

Lemma 3. Repeating Algorithm3 until all levels of the territory tree are
explored, we get a distributed algorithm that, with no more than n agents, ensures
that the agents position themselves in a manner that solves the connected art
gallery problem. The round complexity is O(d2).

Now, we introduce the notion of minimal visibility connected vertex guarding
(henceforth referred to as minimal v-guarding) which is pivotal in this case for
developing algorithmic bounds on the running time. Let P be a simple polygon
with n vertices. Recall that, given a set of labelled guards G = {g1, g2, . . . , gk}
of P , we associate with G a unique graph G with a vertex set of size k such that
when two guards are visible to each other, then they are connected by an edge
in this graph G i.e., e = {i, j} ∈ E[G] ⇐⇒ gi is visible to gj . We say that G is
a minimal v-guarding or a minimal v-configuration of P whenever the following
holds, ∀v ∈ G, at least one of the following two conditions applies:

1. G − v has more than a single component.
2. The vertex guarding G−v := G\{gv} of P is incomplete, i.e., ∪g∈G−v

∂Vg � ∂P
where ∂P is the set of vertices of polygon P and ∂Vg refers to the set of vertices
of P visible from g.

Guarding a Polygon Without Losing Touch 103

Root agent
Phase 0

Phase 1

Phase 2

Fig. 3. Depicts the placement of agents and their respective territories at three levels.
The arrows point each agent into its territory.

We then define the notion of minimal v-diameter d̃ := max
τ∈M

diameter(Gτ)

where M is the set of all possible minimal v-configurations of P and Gτ denotes
the associated visibility graph of such a guarding τ from M.

In order that we may successfully compare the efficiency of our algorithms
with one another we use d̃ which is a polygonal parameter pertinent to our
guarding problem.

Lemma 4. d = O(d̃), i.e., the diameter of any territory tree on P is asymptot-
ically bounded by the minimal v-diameter of the Polygon P .

Using Lemma 3 along with Lemma 4 yields the following theorem:

Theorem 2. There exist a distributed algorithm that solves the connected art
gallery problem in O(d̃2) time using no more than n agents limited to proximity
sensing capability, where d̃ refers to the minimal v-diameter of P and n is the
number of polygon vertices.

An O(n) Round Algorithm. While most real-world polygons may have small
diameters, it is nevertheless conceivable that d̃ ∈ Ω(n) in some cases like spirals.
The algorithm that we have presented above will unfortunately require quadratic
in n number of rounds for such situations, which is undesirable. In the full version
[2], we describe a depth first procedure that only requires O(n) rounds.

Remark 1. Both the O(d̃2) algorithm and the depth first O(n) algorithm will
maintain agents connected by line of sight. So we can start both algorithms simul-
taneously. When one of them – the winner – finishes, the other can be terminated
by a terminate message that will reach all agents in at most O(min(d̃, n)).

General Problem Solving Given a Visibly Connected Guard Place-
ment. In the breadth first scenario, since the agents are settled into a visibly

104 B. Ashok et al.

connected guarding position and are aware of their respective territories in the
territory tree, they can gather at the root’s position in a bottom-up fashion.
Thus, the root, in O(d̃) rounds, can collect the views of all the agents and per-
form computation using the collective views of the agents. Similarly, taking into
account the depth first scenario, we get the following generalized theorem.

Theorem 3. Suppose P is a computationally tractable problem that takes a poly-
gon P as input and either

– outputs information in the form of bits
– or requires placing available agents in positions within P .

Then, P can be solved in our distributed context in O(min(d̃2, n)) rounds.

5 Distributed Guarding with Depth Perception

In this section, we give a distributed algorithm that solves the connected art
gallery problem in O(D2) rounds, where D is the (unweighted) diameter of the
medial axis. This algorithm’s advantage is that its running time depends on D,
which is more well-known than d̃. However, as opposed to the previous section,
in this case, agents require the ability to perceive depth. The key idea of the
algorithm here is if agents were placed on all internal nodes of the medial axis
and some specially chosen vertices, they cover the entire graph as well as remain
visibly connected.

Computing Adjacent Nodes in the Medial Axis. Imagine an agent at any
point x on the medial axis. The agent can simulate the creation of a maximal disc
at x to find the objects (vertices or edges) that determine x, i.e., the objects due
to which x is a part of the medial axis. There would be at least two such objects
that determine x. If x is determined by multiple objects (>2), it implies that
x itself is a node on the medial axis, and we can consider any two consecutive
objects determined by the look operation. For example, if a, b, c, d are 4 objects,
that determine x and are ordered in accordance with the look operation, we
consider the pairs ab, bc, cd and da only. Note that, only the consecutive object
pairs determine the medial axis edges incident at x, and hence only those are
considered.

For each pair of objects ob1 and ob2, there can only be three possible cases;
either both are vertices, both are edges, or one of them is a vertex while the
other is an edge. For all the cases, the agent at x is aware of the structure of
the medial axis from x. Thus, if both ob1 and ob2 are vertices, then the next
node of the medial axis lies on the perpendicular bisector of the line segment
(ob1, ob2). If both ob1 and ob2 are edges, then the next node of the medial axis
lies on the angle bisector of ob1 and ob2. Lastly, w.l.o.g. if ob1 is a vertex and ob2
is an edge, then the next node of the medial axis lies on the parabola determined
by ob1 and ob2. Since agents have infinite computing power and depth sensing
ability, they can progressively simulate maximal discs along the medial axis
structure (perpendicular bisector, angle bisector or parabola) until the maximal

Guarding a Polygon Without Losing Touch 105

disc encounters a new object (say ob3). The center of the maximal disc at this
instance determines the next adjacent node in the medial axis. We define the set
of new adjacent nodes obtained in phase i as Ai.

Agent Placement. As in Algorithm 3, when an already placed agent a deter-
mines its adjacent set of positions on which new agents are to be placed, then
a upcasts the request of the required number of agents up to the root (the
spot initially containing all the agents) with intermediate agents aggregating
the quantities by adding up the numbers sent by their children. The root serves
the request by assigning the required number of agents. The assigned agents
trace back the path to a and thereafter get placed in their determined spot.

Algorithm 4. An O(D2) time algorithm for the connected art gallery problem.
1: Starting from the initial given vertex v where all the agents are placed, a medial

axis point m is determined. If v is convex, then m is given by v’s adjacent node in
the medial axis. Alternatively, if v is a reflex vertex, pick the nearest visible new
object ob3 (determined by the depth sensing ability of the agents) not including v
and choose the center of the maximal disc determined v and ob3 as the point m on
the medial axis.

2: Consider m as the root. All agents are moved here.
3: Determine all the adjacent medial axis nodes from m (i.e., the set A1). \∗ This

marks the end of the first phase. Each iteration of the loop represents a subsequent
phase. The algorithm continues until the entire medial axis is uncovered. ∗\

4: for each new adjacent node x ∈ Ai−1 determined in the previous phase, that is not
a leaf node of the medial axis tree do

5: Compute set Ai (current set of new adjacent medial axis nodes of x) in parallel.

6: Place an agent at each node y ∈ Ai except when y corresponds to a convex
vertex of the polygon (leaf node of the medial axis tree).

7: if y is a part of a parabola determined by a polygon vertex and an edge and the
polygon vertex does have an agent on it then

8: Place an agent on the reflex vertex determining the parabola.
9: end if

10: end for

Lemma 5. Algorithm4 gives a visibly connected guard placement while ensuring
that the entire polygon is guarded/covered.

Theorem 4. There exists a distributed algorithm that solves the connected art
gallery problem in O(D2) time using no more than n agents, where D refers to
the medial axis diameter and n is the number of polygon vertices.

To reduce the final number of guards placed, we use similar procedure as
described in Sect. 4. This gives us the following theorem.

106 B. Ashok et al.

Theorem 5. There exists a distributed algorithm that uses no more than n
agents to compute the placement of at most �n/2� − 1 guard agents in a visibly
connected manner, when the agents have depth sensing ability. Moreover, this
algorithm takes at most O(D2) communication rounds.

6 Lower Bound

In this section, we give lower bounds for a slightly weaker polygon exploration
problem that requires for every point in P , that some agent must have been
within line of sight of that point at some time instant during the course of
the algorithm. Clearly, any solution to the visibly connected guard placement
problem will also be a solution for the exploration problem. The lower bounds
highlight the criticality of parameters like the medial axis diameter D and the
minimal v-diameter d̃ for solving the connected art-gallery problem. The main
result is summarized by the following Theorem.

Theorem 6. For every deterministic distributed guard placement algorithm A
with depth perception (resp., proximity perception) there exists a polygon P with
medial axis diameter D ∈ o(log n) (resp., with minimal v-diameter d̃ ∈ o(log n))
such that A requires Ω(D2) time (resp., Ω(d̃2) time) to place the guards even
when A is provisioned with a number of guards that is Θ(n).

We show a reduction from any instance of the well-studied tree exploration game
[8] to the problem of exploring a polygon, which our guarding problem subsumes.
We sketch our approach here and defer details to the full version [2].

1. Firstly, we embed the tree in the Euclidean plane such that no two adjacent
edges form an angle of 180◦.

2. We thicken the edges of the embedded tree and form a simple polygon.
3. With the embedding and thickening transformations, we reduce the problem

of collaborative exploration of the underlying tree to the guard placement in
the obtained polygon.

7 Conclusion and Future Works

In this paper, we have presented centralized and distributed algorithms for com-
puting a visibly connected guard placement. Crucially, our algorithms take time
that is quadratic in a couple of different notions of diameters of P , i.e., d̃ and D.
We believe that d̃ ∈ O(D), thereby obviating the need for precise depth percep-
tion, but the proof has eluded us. It would be nice to establish this formally as
this would lend to understanding the trade off between LiDAR and photogram-
metry (see [5,11] for example). We also remark that our algorithms have been
explained in the synchronous setting for the purpose of clarity, but they can be
easily extended to the asynchronous setting. Additionally, it will be interesting
to extend our works to polygons with holes or polyhedra in higher dimensions.

Guarding a Polygon Without Losing Touch 107

Acknowledgements. Barath Ashok and John Augustine were supported in part
by DST/SERB Extra Mural Grant (file number EMR/2016/00301) and DST/SERB
MATRICS Grant (file number MTR/2018/001198). Suman Sourav was supported in
part by the National Research Foundation, Prime Minister’s Office, Singapore under
the Energy Programme and administrated by the Energy Market Authority (EP Award
No. NRF2017EWT-EP003-047). Part of this work was done when Aditya Mehekare,
Sridhar Ragupathi, Srikkanth Ramachandran and Suman Sourav visited IIT Madras.
We thank Rajsekar Manokaran for pointing out LiDAR and Photogrammetry.

References

1. Aber, J.S., Marzolff, I., Ries, J.B., Aber, S.E.: Principles of photogrammetry. In:
Aber, J.S., Marzolff, I., Ries, J.B., Aber, S.E. (eds.) Small-Format Aerial Photog-
raphy and UAS Imagery, pp. 19–38. Academic Press, Cambridge (2019). (Chapter
3)

2. Ashok, B., Augustine, J., Mehekare, A., Ragupathi, S., Ramachandran, S., Sourav,
S.: Guarding a polygon without losing touch (2020). https://arxiv.org/abs/2005.
05601

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

4. Bhattacharya, P., Ghosh, S.K., Pal, S.: Constant approximation algorithms for
guarding simple polygons using vertex guards (2017)

5. Buczkowski, A.: Drone lidar or photogrammetry? Everything you need to
know. https://geoawesomeness.com/drone-lidar-or-photogrammetry-everything-
your-need-to-know

6. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput.
Geom. 6(3), 485–524 (1991). https://doi.org/10.1007/BF02574703

7. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory, Ser. B
18(1), 39–41 (1975)

8. Disser, Y., Mousset, F., Noever, A., Skoric, N., Steger, A.: A general lower bound
for collaborative tree exploration. Theor. Comput. Sci. 811, 70–78 (2018)

9. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guard-
ing polygons and terrains. Algorithmica 31(1), 79–113 (2001). https://doi.org/
10.1007/s00453-001-0040-8

10. Fekete, S.P., Kamphans, T., Kröller, A., Mitchell, J.S.B., Schmidt, C.: Exploring
and triangulating a region by a swarm of robots. In: Goldberg, L.A., Jansen, K.,
Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp.
206–217. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-
0 18

11. Filippelli, S.K., Lefsky, M.A., Rocca, M.E.: Comparison and integration of lidar
and photogrammetric point clouds for mapping pre-fire forest structure. Remote
Sens. Environ. 224, 154–166 (2019)

12. Fisk, S.: A short proof of Chvátal’s watchman theorem. J. Comb. Theory, Ser. B
24(3), 374 (1978)

13. Ganguli, A.: Motion coordination for mobile robotic networks with visibility sen-
sors. Ph.D. thesis, University of Illinois at Urbana-Champaign (2007)

14. Ganguli, A., Cortes, J., Bullo, F.: Distributed deployment of asynchronous guards
in art galleries. In: 2006 American Control Conference, p. 6, June 2006

15. Ganguli, A., Cortes, J., Bullo, F.: Visibility-based multi-agent deployment in
orthogonal environments. In: American Control Conference, July 2007

https://arxiv.org/abs/2005.05601
https://arxiv.org/abs/2005.05601
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://geoawesomeness.com/drone-lidar-or-photogrammetry-everything-your-need-to-know
https://geoawesomeness.com/drone-lidar-or-photogrammetry-everything-your-need-to-know
https://doi.org/10.1007/BF02574703
https://doi.org/10.1007/s00453-001-0040-8
https://doi.org/10.1007/s00453-001-0040-8
https://doi.org/10.1007/978-3-642-22935-0_18
https://doi.org/10.1007/978-3-642-22935-0_18

108 B. Ashok et al.

16. Ghosh, S.: Visibility Algorithms in the Plane. Cambridge University Press, Cam-
bridge (2007)

17. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Proceedings
of Canadian Information Processing Society Congress, pp. 429–434 (1987)

18. Goodrich, M.T.: Triangulating a polygon in parallel. J. Algorithms 10(3), 327–351
(1989)

19. Hernández-Penalver, G.: Controlling guards. In: CCCG, pp. 387–392 (1994)
20. Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans.

Inf. Theory 32(2), 276–282 (1986). https://doi.org/10.1109/TIT.1986.1057165
21. Liaw, B., Lee, R.C.T.: An optimal algorithm to solve minimum weakly cooperative

guards problem for 1-spiral polygons. Inf. Process. Lett. 52(2), 69–75 (1994)
22. Liaw, B.C., Huang, N.F., Lee, R.C.T.: The minimum cooperative guards problem

on k-spiral polygons. In: CCCG (1993)
23. McManamon, P.: LiDAR Technologies and Systems. SPIE Press, Bellingham

(2019)
24. Michael, T.S., Pinciu, V.: Art gallery theorems for guarded guards. Comput. Geom.

Theory Appl. 26(3), 247–258 (2003)
25. Obermeyer, K.J., Ganguli, A., Bullo, F.: Multi-agent deployment for visibility

coverage in polygonal environments with holes. Int. J. Robust Nonlinear Control
21(12), 1467–1492 (2011)

26. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press,
Oxford (1987)

27. Pinciu, V.: A coloring algorithm for finding connected guards in art galleries. In:
Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731,
pp. 257–264. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45066-
1 20

28. Pinciu, V.: Connected guards in orthogonal art galleries. In: Kumar, V., Gavrilova,
M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 886–893.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44842-X 90

29. Deogun, J.S., Sarasamma, S.: On the minimum co-operative guard problem. J.
Comb. Math. Comb. Comput. (JCMCC) 22, 161–182 (1996)

30. Shermer, T.C.: Recent results in art galleries (geometry). Proc. IEEE 80(9), 1384–
1399 (1992). https://doi.org/10.1109/5.163407

31. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational
Geometry, North-Holland, pp. 973–1027 (2000). (Chapter 22)

https://doi.org/10.1109/TIT.1986.1057165
https://doi.org/10.1007/3-540-45066-1_20
https://doi.org/10.1007/3-540-45066-1_20
https://doi.org/10.1007/3-540-44842-X_90
https://doi.org/10.1109/5.163407

Dynamic Graphs

Random Walks on Randomly Evolving
Graphs

Leran Cai, Thomas Sauerwald, and Luca Zanetti(B)

University of Cambridge, Cambridge, UK
{lc647,tms41,lz381}@cam.ac.uk

Abstract. A random walk is a basic stochastic process on graphs and
a key primitive in the design of distributed algorithms. One of the most
important features of random walks is that, under mild conditions, they
converge to a stationary distribution in time that is at most polyno-
mial in the size of the graph. This fundamental property, however, only
holds if the graph does not change over time; on the other hand, many
distributed networks are inherently dynamic, and their topology is sub-
jected to potentially drastic changes.

In this work we study the mixing (i.e., convergence) properties of
random walks on graphs subjected to random changes over time. Specif-
ically, we consider the edge-Markovian random graph model: for each
edge slot, there is a two-state Markov chain with transition probabilities
p (add a non-existing edge) and q (remove an existing edge). We derive
several positive and negative results that depend on both the density of
the graph and the speed by which the graph changes.

Keywords: Random walks · Evolving graphs · Mixing times

1 Introduction

A random walk on a network is a simple stochastic process, defined as follows.
Given an undirected graph G = (V,E), the walk starts at a fixed vertex. Then,
at each step, the random walk moves to a randomly chosen neighbor1. Due to
their simplicity and locality, random walks are very useful algorithmic primitive,
especially in the design of distributed algorithms. In contrast to topology-driven
algorithms, algorithms based on random walks usually benefit from a strong
robustness against structural changes in the network.

Random walks and related works have found various applications such as
routing, information spreading, opinion dynamics, and graph exploration [3,9].
One key property of random walks is that, under mild assumptions on the under-
lying network, they converge to a stationary distribution – an equilibrium state

1 In case of a lazy random walk, the walk would remain at the current location with
probability 1/2, and otherwise move to a neighbor chosen uniformly at random.

The second and third author acknowledge support by the ERC Starting Grant
“Dynamic March”.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 111–128, 2020.
https://doi.org/10.1007/978-3-030-54921-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_7

112 L. Cai et al.

in which every vertex is visited proportionally to its degree. The time for this
convergence to happen is called mixing time, and understanding this time is cru-
cial for many sampling and exploration related tasks. In particular, whenever a
graph has a small mixing time, also its cover time (the expected time to visit all
vertices of the graph) is small as well.

While most of the classical work devoted to understanding random walks has
focused on static graphs, many networks today are subject to dramatic changes
over time. Hence understanding the theoretical power and limitations of dynamic
graphs has become one of the key challenges in computer science [17]. Several
recent works have indeed considered this problem and studied the behavior of
random walks [2,3,10,15,21,22,24] or similar processes [4,5,8,11,14] on such
dynamic graphs, and their applications to distributed computing [2,14,24].

In this work, we study the popular evolving graph model. That is, we consider
sequences of graphs G1, G2, . . . over the same set of vertices but with a varying
set of edges. This model has been studied in, for example, [3,15,25]. Both [3]
and later [25] proved a collection of positive and negative results about the mix-
ing time (and related parameters), and they assume a worst-case scenario where
the changes to the graph are dictated by an oblivious, non-adaptive adversary.
For example, [3] proved the following remarkable dichotomy. First, even if all
graphs G1, G2, . . . are connected, small (but adversarial) changes to the station-
ary distribution can cause exponential mixing (and hitting) times. Secondly, if
the sequence of connected graphs share the same stationary distribution, i.e.,
the degrees (or relative degrees) of vertices are time-invariant, then mixing and
hitting times are polynomial. This assumption about a time-invariant stationary
distribution is crucial in the majority of the positive results in [3,25].

In contrast to [3,25], we do not impose such assumptions, but instead study
a model with incremental changes. Specifically, we consider a setting where the
evolving graph model changes randomly and study the so-called edge-Markovian
random graph G(n, p, q), which is defined as follows (see Definition 2.5 for a more
formal description). For each edge slot, there is a two-state Markov chain that
switches from off to on with probability p and from on to off with probability q.
This model can be seen as a dynamic version of the Erdős-Rényi random graph,
and has been studied in the context of information spreading and flooding [5–7].
While these results demonstrate that information disseminates very quickly on
these dynamic graphs, analysing the convergence properties of a random walk
seems to require new techniques, since degree fluctuations make the use of any
“inductive” argument very difficult – from one step to another, the distribution
of the walk could become “worse”, whereas the set of informed (or reachable)
nodes can never decrease.

In this work, we will investigate the mixing time of a random walk on such
evolving graphs. It turns out that, as our results demonstrate, the mixing time
depends crucially on the density as well as on the speed by which the graph
changes. We remark that deriving bounds on the mixing time on G(n, p, q) poses
some unique challenges, which are not present in the positive results of [3,25].
The main difficulty is that in G(n, p, q), due to the changing degrees of the

Random Walks on Randomly Evolving Graphs 113

vertices, there is no time-invariant stationary distribution, and the traditional
notion of mixing time must be adapted to our dynamic setting. Informally, what
we ask, then, is how many steps the walk needs to take before the distance to
a time-dependent stationary distribution becomes small enough. Furthermore,
in contrast to static graphs, where the distance between the distribution of the
walk and the stationary distribution can only decrease, in dynamic graphs the
distance to the time-dependent stationary distribution might increase with time.
For this reason, we also ask that the distribution of the walk remains close to
a time-dependent stationary distribution for a long enough interval of time (for
a precise definition of our notion of mixing time, see Definition 2.7). We believe
this requirement is necessary for our definition of mixing time to be useful in
potential applications.

Further Related Work. Recently, [15] analysed the cover time of so-called
“Edge-Uniform Stochastically-Evolving Graphs”, that include our model as a
special case (i.e., the history is k = 1). Their focus is on a process called “Random
Walk with a Delay”, where at each step the walk picks a (possible) neighbor and
then waits until the edge becomes present. In [15, Theorem 4], the authors also
relate this process to the standard random walk, and prove a worst-case upper
bound on the cover time. However, one of the key differences to [15] is that we
will study the mixing time instead of the cover time.

In [26], the authors analysed a continuous-time version of the edge-Markovian
random graph. However, unlike the standard random walk, they consider a
slightly different process: when the random walk tries to make a transition from
a vertex u, it picks one of the n − 1 other vertices and moves there only if the
edge is present; otherwise it remains in place. For this process, they were able to
derive very tight bounds on the mixing time and establish a cutoff phenomenon.
The same random walk was also analysed on a dynamic graph model of the
d-dimensional grid in [19,20] and, more generally, in [12].

1.1 Main Results

We study the mixing properties of random walks on edge-Markovian random
graphs G(n, p, q). In particular, we consider six different settings of parame-
ters p and q, which separates edge-Markovian models based on how fast graphs
change over time (slowly vs. fast changing), and how dense graphs in the dynamic
sequence are (sparse vs. semi-sparse vs dense).

As noted in previous works (see, e.g., [5]), a dynamic sequence sampled from
G(n, p, q) will eventually converge to an Erdős-Rényi random graph G(n, p̃) where
p̃ = p

p+q (for the sake of completeness, we give a proof of this fact in AppendixA).
We use the expected degree in such random graph, which is equal to d = (n−1)p̃,
to separate edge-Markovian models according to their density as follows:

1. Sparse d = o(log n)
2. Semi-sparse d = Θ(log n)
3. Dense d = ω(log n).

114 L. Cai et al.

Notice that the sparse regime corresponds to random graphs with density below
the connectivity threshold of Erdős-Rényi random graphs.

We further separate edge-Markovian models based on how fast they change
over time. Let δ =

(
n
2

)
p̃q+

(
n
2

)
(1− p̃)p be the expected number of changes at each

step, when starting from a stationary initial graph G0 ∼ G(n, p̃). We consider
the following two opposite regimes.

1. Fast-changing δ = Θ(dn).
2. Slowly-changing δ = O(log n).

Notice that the fast-changing regime corresponds to graphs for which a constant
fraction of edges change at each step in expectation.

Table 1. Summary of our main results (informal). See referenced theorems for the
precise and complete statements.

Fast-changing
δ = Θ(dn)

Slowly-changing
δ = O(log n)

Sparse
d ∈ [1, o(log n)]

tmix = ∞
Theorem 1.1

tmix = Ω(n)
Proposition 1.4

Semi-sparse
d = Θ(log n)

Coarse mixinga in O(log n)
Proposition 3.2

tmix = O(log n),
Theorem 1.3

Dense
d ∈ [ω(log n), n/2]

tmix = O(log n)
Theorem 1.2

aIn this regime we are not able to prove finite mixing time. However,
we show that the distribution of the walk will “flatten out” after
O(log n) steps. We refer to this behavior as coarse mixing.

The main results of our work are presented in Table 1. Here, we assume G0 is
sampled from the stationary graph distribution G(n, p̃). In the fast-changing
regime, as highlighted in RemarkA.1, this is without loss of generality. For
slowly-changing models, instead, different choices of G0 can result in drastically
different outcomes with regard to the mixing time. For ease of presentation,
we assume in Table 1 that G0 ∼ G(n, p̃), but this assumption can usually be
relaxed, and we refer to the full statement of the corresponding results for our
actual assumptions on G0.

Next, we formally state the four main results of our work. The formal defi-
nitions of mixing time for random walk on dynamic graphs will be presented in
Sect. 2.1 (see in particular Definition 2.7 and Definition 2.8). The first theorem is
a negative result that tells us that, for fast-changing and sparse edge-Markovian
graphs, random walks don’t have finite mixing time. Its proof will be presented
in Sect. 3.1.

Random Walks on Randomly Evolving Graphs 115

Theorem 1.1 (Fast-changing and sparse, no mixing). Let p = Θ(1/n)
and q = Ω(1). Then, tmix(G(n, p, q)) = ∞.

The following theorem is a positive result that establishes fast mixing time
in the dense and fast-changing regime. Its proof is presented in Sect. 3.2.

Theorem 1.2 (Fast-changing and dense, fast mixing). Let p = ω (log n/n)
and q = Ω(1). Then, tmix(G(n, p, q)) = O(log n).

The only case missing in the fast-changing regime is the semi-sparse case,
where nodes have average degree d = Θ(log n). We do not have a definitive
answer on the mixing time of random walks in such case, however, we do have
a partial result that guarantees at least that random walk distributions will be
“well spread” over a large support after O(log n) steps (we call this behavior
coarse mixing). This statement can be made formal by considering the �2-norm
of the distribution of the walk. Because of its technical nature, we defer the
formal statement to Sect. 3.2 and Proposition 3.2.

We now turn our attention to the slowly-changing regime, where at most
δ = O(log n) edges are created and removed at each step. Unlike the results for
the fast-changing regime, where the choice of the starting graph G0 does not
really affect the mixing time of a random walk (see AppendixA and Remark A.1
for a discussion), in the slowly-changing regime the choice of G0 will affect the
properties of Gt for a large number of steps t.

The following theorem shows that in the slowly-changing and dense regime,
under mild conditions on the starting graph G0 = (V,E0) (which are satisfied
for G0 drawn from the limiting distribution of dense G(n, p, q)), random walks
will mix relatively fast. We use E0(S, V \ S) to indicate the set of edges in G0

between a subset of vertices S ⊂ V and its complement, and ΦG0to indicate the
minimum conductance of G0 (see Definition 2.2).

Theorem 1.3 (Slowly-changing and dense, fast mixing). Let d =
Ω(log n), p = O(log n/n2), and q = O(log n/(dn)). Let the following assump-
tions on the starting graph G0 = (V,E0) be satisfied for large enough constants
c1, c2, c3 > 0.

(1) deg0(x) = Θ(d) for any x ∈ V ;
(2) |E0(S, V \ S)| ≥ c2 log n|S|, for any S ⊂ V with |S| ≤ c1 log n;
(3) ΦG0 ≥ c3 log d/d.

Then, tmix(G(n, p, q)) = O(log n/Φ2
G0

).

Let us briefly discuss the assumptions and results of Theorem 1.3. First of
all notice that the parameters p and q are defined so that the average degree
is d = Ω(log(n)) and the number of changes in the graph at each step is δ =
O(log(n)). Assumption (1) just requires the degree of the vertices in G0 to be
of the same order as the degree of the vertices in the limiting graph G(n, p̃).
Assumption (2) guarantees that for any small set S there are enough edges
going from S to the rest of the graph. Assumption (3) is a mild condition on

116 L. Cai et al.

the conductance of G0. The last two assumptions ensure that the conductance
of Gt will not be much lower than the conductance of G0 for a large number
of steps t. Finally, notice that O(log n/Φ2

G0
) is a classic bound for the mixing

time of a static random walk on G0. Theorem 1.3 essentially states that, if the
three assumptions are satisfied, the mixing time of a random walk on G(n, p, q)
will not be much larger. In particular, all the three assumptions are satisfied for
a starting graph G0 ∼ G(n, p̃) with p̃ = p/(p + q). Furthermore, in such case
tmix(G(n, p, q)) = O(log n). The proof of this theorem can be found in Sect. 4.1.

We conclude this section by stating our result in the slowly-changing and
dense regime. We prove a negative result: we show that the mixing time of
G(n, p, q) is at least linear in n.

Proposition 1.4 (Slowly-changing and sparse, slow mixing). Let p =
O(1/n2) and q = ω(1/(n log n)). Consider a random walk on G(n, p, q) with
starting graph G0 ∼ G(n, p̃) with p̃ = p/(p + q). Then, tmix(G(n, p, q)) = Ω(n).

2 Notation and Definitions

2.1 Random Walk and Conductance

In this section we introduce the relevant notation and basic results about Markov
chains that we will use throughout the paper. For more background on Markov
chains and random walks we defer the reader to [16].

Let G = (Gt)t∈N be a sequence of undirected and unweighted graphs defined
on the same vertex set V , with |V | = n, but with potentially different edge-sets
Et (t ∈ N). We study (lazy) random walks on G : suppose that at a time t ≥ 0
a particle occupies a vertex u ∈ V . At step t + 1 the particle will remain at the
same vertex u with probability 1/2, or will move to a random neighbor of u in
Gt. In other words, it will perform a single random walk step according to a
transition matrix Pt, which is the transition matrix of a lazy random walk on
Gt: Pt(u, u) = 1/2, Pt(u, v) = 1/(2 degt(u)) (where degt(u) is the degree of u in
Gt) if there is an edge between u and v in Gt , or Pt(u, v) = 0 otherwise.

Given an initial probability distribution μ0 : V → [0, 1], which is the distri-
bution of the initial position of the walk, the t-step distribution of a random
walk on G is equal to μt = μ0P1 · P2 · . . . · Pt. In particular, we use μx

t to denote
the t-step distribution of the random walk starting at a vertex x ∈ V . Hence
μx
0(x) = 1 and μx

0(y) = 0 for x 	= y ∈ V . Furthermore, we use πt to denote the
probability distribution with entries equal to πt(x) = degt(x)/(2|Et|) for any
x ∈ V . This distribution is stationary for Pt (i.e, it satisfies πtPt = πt) and, if Gt

is connected, it is the unique stationary distribution of Pt. If Gt is disconnected,
Pt will have multiple stationary distribution. However, unless stated otherwise,
we will consider only the “canonical” stationary distribution πt. Finally, while
any individual Pt is time-reversible (it satisfies πt(x)Pt(x, y) = πt(y)Pt(y, x) for
any x, y ∈ V), a random walk on G may not.2

2 For example, it might happen that P1 · · · Pt(x, y) > 0 while P1 · · · Pt(y, x) = 0. This
cannot happen in the “static” case where P1 = · · · = Pt = P with P reversible.

Random Walks on Randomly Evolving Graphs 117

Recall that if P is a transition matrix of a reversible Markov chain, it has
n real eigenvalues, which we denote with −1 ≤ λn(P) ≤ · · · ≤ λ1(P) = 1. If
P is the transition matrix of a lazy random walk on a graph G, it holds that
λn(P) ≥ 0. Moreover, λ1(P) < 1 if and only if G is connected.

For two probability distributions f, g : V → [0, 1], the total variation distance
between f and g is defined as ‖f − g‖TV := 1

2

∑
x∈V |f(x) − g(x)|. We denote

with ‖f‖2 =
(∑

x∈V f2(x)
)1/2 and ‖f‖∞ = maxx∈V |f(x)| the standard �2 and

�∞ norms of f . Given a probability distribution π : V → R+, we also define the
�2(π)-norm as ‖f‖2,π :=

√∑
x∈V f2(x)π(x). By Jensen’s inequality, it holds for

any f, g that 2·‖f − g‖TV ≤ ‖f − g‖2,π. The lemma below relates the decrease in
the distance to stationarity after one random walk step to the spectral properties
of its transition matrix.

Lemma 2.1 (Lemma 1.13 in [18], rephrased). Let P be the transition
matrix of a lazy random walk on a graph G = (V,E) with stationary distribution
π. Then, for any f : V → R, we have that

∥
∥
∥
∥

fP

π
− 1

∥
∥
∥
∥

2

2,π

≤ λ2(P)2
∥
∥
∥
∥

f

π
− 1

∥
∥
∥
∥

2

2,π

.

In the lemma above and throughout the paper, a division between two functions
is to be understood entry-wise, while 1 refers to a function always equal to one.
An important quantity which can be used to obtain bounds on λ2(P) is the
conductance of G, which is defined as follows.

Definition 2.2 The conductance of a non-empty set S ⊆ V in a graph G is
defined as:

ΦG(S) :=
|E(S, V \ S)|

vol(S)
,

where vol(S) :=
∑

x∈V deg(x) and E(S, V \ S) is the set of edges between S and
V \ S. The conductance of the entire graph G is defined as

ΦG := min
S⊂V :

1≤vol(S)≤vol(V)/2

|E(S, V \ S)|
vol(S)

.

The conductance of G and the second largest eigenvalue of the transition
matrix P of a lazy random walk in G are related by the so-called discrete Cheeger
inequality [1], which we state below.

Theorem 2.3 (Cheeger inequality). Let P be the transition matrix of a lazy
random walk on a graph G. Then, it holds that

1 − λ2(P) ≤ ΦG ≤ 2
√

1 − λ2(P).

Finally, we use the notation on(1) to denote any function f : N → R such
that limn→+∞ f(n) = 0. We often drop the subscript n.

118 L. Cai et al.

2.2 Dynamic Graph Models

In this section we formally introduce the random models of (dynamic) graphs
that are the focus of this work. We start by recalling the definition of the Erdős-
Rényi model of (static) random graphs.

Definition 2.4 (Erdős-Rényi model). G = (V,E) ∼ G(n, p) is a random
graph such that |V | = {1, . . . , n} and the

(
n
2

)
possible edges appear independently,

each with probability p.

We now introduce the edge-Markovian model of dynamic random graphs,
which has been studied both in the context of information spreading in networks
[5,6] and random walks [15]. This model is the focus of our work.

Definition 2.5 (Edge-Markovian model). Given a starting graph G0, we
denote with (Gt)t∈N ∼ G(n, p, q) a sequence of graphs such that Gt = (V,Et),
where V = {1, . . . , n} and, for each t ∈ N, any pair of distinct vertices u, v ∈ V
will be connected by an edge in Gt independently at random with the following
probability:

P [{u, v} ∈ Et+1 | Gt] =

{
1 − q if {u, v} ∈ Et

p if {u, v} 	∈ Et.

Notice that different choices of a starting graph G0 will induce different
probability distributions over (Gt)t∈N. In general, we try to study G(n, p, q) by
making the fewest possible assumptions on our choice of G0. Moreover, as pointed
out for example in [15], (Gt)t∈N ∼ G(n, p, q) converges to G(n, p̃) with p̃ =
p/(p + q). We leave considerations about the speed of this convergence and how
this affects our choice of G0 to AppendixA and, in particular, RemarkA.1.

2.3 Mixing Time of Random Walks on Dynamic Graphs

One of the most studied quantities in the literature about time-homogeneous
(i.e., static) Markov chains (random walks included) is the mixing time, i.e., the
time it takes for the distribution of the chain to become close to stationarity.
Formally, it is defined as follows.

Definition 2.6 (Mixing time for time-homogeneous Markov chains).
Let μx

t be the t-step distribution of a Markov chain with state space V starting
from x ∈ V . Let π be its stationary distribution. For any ε > 0, the ε-mixing
time is defined as

tmix(ε) := min{t ∈ N : max
x∈V

‖μx
t − π‖TV ≤ ε}.

A basic fact in random walk theory states that a lazy random walk on
a connected undirected graph G = (V,E) has always a finite mixing time.
In particular, if |V | = n, tmix(1/4) = O(n3). Moreover, considering a dif-
ferent ε does not significantly change the mixing time: for any ε > 0,

Random Walks on Randomly Evolving Graphs 119

tmix(ε) = O(tmix(1/4) log(1/ε)) (see, e.g., [16]). Also, it is a well-known fact
that ‖μx

t − π‖TV is non-increasing.
However, in the case of random walks on dynamic graphs, convergence to a

time-invariant stationary distribution does not, in general, happen. For this rea-
son, other works have studied alternative notions of mixing for dynamic graphs,
such as merging [23], which happens when a random walk “forgets” the ver-
tex where it started. In this work, instead, we focus on a different approach
that we believe best translates the classical notion of mixing from the static to
the dynamic case. More precisely, let us consider a dynamic sequence of graphs
(Gt)t∈N with corresponding stationary distributions (πt)t∈N. Our goal is to estab-
lish if there exists a time t such that the distribution μt of the walk at time t is
close to πt. Moreover, to make this notion of mixing useful in possible applica-
tions, we require that μs remains close to πs for a reasonably large number of
steps s ≥ t. Formally, we introduce the following definition of mixing time for
dynamic graph sequences.

Definition 2.7 (Mixing time for dynamic graph sequences). Let G =
(Gt)t∈N be a dynamic graph sequence on a vertex set V , |V | = n. The mixing
time of a random walk in G is defined as

tmix (G) = min
{
t ∈ N : ∀s ∈ [t, t +

√
n), ∀x ∈ V, ‖μx

s − πs‖TV = on(1)
}

,

where πs is the stationary distribution of a random walk in Gs, and μx
s is the

s-step distribution of a random walk in G that started from x ∈ V .

First observe we require that the total variation distance between μs and πs

goes to zero as the number of vertices increases.3 This is motivated by the fact
that the distance to stationarity, unlike in the static case, might not tend to zero
as the number of steps t goes to infinity. However, we ask that the distance to
stationarity is smaller than a threshold which decreases for larger sized graphs.
Secondly, we require that such distance remains small for

√
n steps (recall n

is the number of vertices in the graph). This is due to the fact that, for all
dynamic graph models we consider, we cannot hope for such distance to stay
small arbitrarily long. However, we believe that

√
n steps is a long enough period

of time for mixing properties to be useful in applications.
Since our goal is to study the mixing property of G(n, p, q), we now introduce

a definition of mixing time for edge-Markovian models that takes into account
the probabilistic nature of such graph sequences. Essentially, we say that the
mixing time of G(n, p, q) is t if a random walk on a dynamic sequence of graphs
sampled from G(n, p, q) mixes (according to the previous definition) in t steps
with high probability over the sampled dynamic graph sequence.

Definition 2.8 (Mixing time for edge-Markovian models). Given an
edge-Markovian model G(n, p, q), its mixing time is defined as

tmix (G(n, p, q)) = min
{
t ∈ N : PG∼G(n,p,q) [tmix (G) ≤ t] ≥ 1 − on(1)

}
.

3 We are implicitly assuming there is an infinite family of dynamic graph sequences
with increasing n.

120 L. Cai et al.

Finally, we remark that, while in static graphs connectivity is a necessary
prerequisite to mixing, random walks on sequences of disconnected dynamic
graphs might nonetheless exhibit mixing properties. Examples of this behavior
were studied in [25].

3 Results for the Fast-Changing Case

3.1 Negative Result for Mixing in the Sparse and Fast-Changing
Case

In this section we consider random walks on sparse and fast-changing edge-
Markovian graphs. In particular, we study G(n, p, q) with 0 < q = Ω(1) and
p = 1

n . Since Ω(1), by Remark A.1, we can restrict ourselves to consider the case
where G0 ∼ G(n, p̃) with p̃ = p/(p + q). We prove the following theorem.

Theorem 1.1 (Fast-changing and sparse, no mixing). Let p = Θ(1/n) and
q = Ω(1). Then, tmix(G(n, p, q)) = ∞.

The key idea behind this result is that, due to the fast-changing nature of
graphs in this model, the degrees of the nodes also change rapidly. In particular,
for a linear number of nodes such as u, there is at least one neighbor vmin in the
neighbors of u whose degree may change from one constant in round t to basically
any other constant (this also makes use of the assumption on p, ensuring that
the graph is sparse). The proof then exploits that, due to the “unpredictable”
nature of this change, the probability mass received by vmin in round t + 1 is
likely to cause a significant difference between μt+1(u) and πt+1(u). Since this
holds for a linear number of nodes u, we obtain a sufficiently large lower bound
on the total variation distance, and the theorem is established. The complete
proof will appear in the full version of the paper.

3.2 Positive Result for Mixing in the Dense and Fast-Changing
Case

In this section we analyse the mixing properties of G(n, p, q) for p = Ω(log n/n)
and q = Ω(1). Since q is large, for simplicity we will assume throughout this
section that G0 ∼ G(n, p̃), where p̃ = p

p+q (see Remark A.1 for an explanation of
why this is not a restriction). The following theorem is the main result.

Theorem 1.2 (Fast-changing and dense, fast mixing). Let p = ω (log n/n)
and q = Ω(1). Then, tmix(G(n, p, q)) = O(log n).

While in this paper we study for simplicity only lazy random walks on graphs,
to prove Theorem 1.2, however, we need to introduce simple random walks on
graphs: given a graph G = (V,E), a simple random walk on G has transition
matrix Q such that, for any x, y ∈ V , Q(x, y) = 1/deg(x) if {x, y} ∈ E, Q(x, y) =
0 otherwise. The following lemma, whose proof is the main technical part of the
section, shows that if the simple random walk on a sequence of graphs G =
(Gt)t∈N exhibits strong expansion properties, and the time-varying stationary
distribution is always close to uniform, then a lazy random walk on G will be

Random Walks on Randomly Evolving Graphs 121

close to the stationary distribution of Gt for any t large enough. Note that a
strong expansion condition on lazy random walks can never be satisfied; luckily,
we just need this strong expansion condition to hold for their simple counterpart.

Lemma 3.1. Let (Gt)t∈N be a sequence of graphs, and (Pt)t∈N (resp. (Qt)t∈N)
the corresponding sequence of transition matrices for a lazy (resp. non-lazy)
random walk. Assume there exists 1 < C = O(1) such that, for any t ≥ 1 and
any x ∈ V , 1/(C ·n) ≤ πt(x) ≤ C/n. Moreover, also assume that, for any t ∈ N,
max{|λ2(Qt)|, |λn(Qt)|} ≤ λ = o(1). Then, there exists an absolute constant C ′

such that, w.h.p., for any t ≥ C ′ log n and any starting distribution μ0,
∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

≤ 10C2(C − 1)2,

where μt = μ0P1 · · · Pt.

We now show how it can be used to derive Theorem 1.2. First recall that since
we are assuming G0 ∼ G(n, p̃), all graphs in the sequence (Gt)t∈N are sampled
(non-independently) from G(n, p̃) (see Appendix A). Furthermore, for any t ∈
N, the assumptions of Theorem 1.2 on λ2(Qt) and λn(Qt) are satisfied with
probability 1 − o(1/n2) for any graph sampled from G(n, p̃) with p̃ > 2 log n/n
by [13, Theorem 1.1]. Moreover, for p̃ = ω (log n/n), by a standard Chernoff
bound argument we can show that, with probability 1−o(1/n2), all vertices of a
graph sampled from G(n, p̃) have degree (1+on(1))np̃. This implies that, for any
t, w.h.p, the stationary distribution of Gt satisfies the assumptions of Lemma 3.1
with C = 1 + o(1), which yields Theorem 1.2.

It is natural to ask if we can relax the condition on p. Assume for exam-
ple that p, q are such that p̃ = p/(p + q) > 2 log n. By [13, Theorem 1.1], the
conditions on λ are still satisfied. However, it only holds that C = Θ(1). There-
fore, Lemma 3.1 can only establish that the �2(πt)-distance to stationarity is a
constant (potentially larger than 1). This, unfortunately, does not give us any
meaningful bound on the total variation distance. However, if the �2-distance
between two distributions μ and π is small, μ(x) cannot be much larger than
π(x). In a sense, this result can be interpreted as a coarse mixing property. This
is summarised in the following proposition.

Proposition 3.2. Let (Gt)t∈N ∼ G(n, p, q) with p/(p + q) > 2 log n/n and q =
Ω(1). Let πt be the stationary distribution of Gt. Then, there exists absolute
constants c1, c2 > 0 such that, for any starting distribution μ0 and any c1 log n ≤
t ≤ √

n + c1 log n, it holds that

P

[∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

≤ c2

]

≥ 1 − on(1).

122 L. Cai et al.

4 Results for the Slowly-Changing Case

4.1 Positive Result for Mixing in the Dense and Slowly-Changing
Case

The aim of this section is to prove the following theorem.
Theorem 1.3 (Slowly-changing and dense, fast mixing). Let d = Ω(log n),
p = O(log n/n2), and q = O(log n/(dn)). Let the following assumptions on the
starting graph G0 = (V,E0) be satisfied for large enough constants c1, c2, c3 > 0.

(1) deg0(x) = Θ(d) for any x ∈ V ;
(2) |E0(S, V \ S)| ≥ c2 log n|S|, for any S ⊂ V with |S| ≤ c1 log n;
(3) ΦG0 ≥ c3 log d/d.

Then, tmix(G(n, p, q)) = O(log n/Φ2
G0

).
We start by stating that, if the three assumptions of Theorem1.3 are satisfied,

then, for any t = O(nd log n), the conductance of Gt is not much worse than the
conductance of G0 (with high probability).

Lemma 4.1 (Conductance lower bound). Let d = Ω(log n), p = O(log
n/n2), and q = O(log n/(dn)). Assume that G0 satisfies assumptions (1), (2),
(3) of Theorem1.3. Then, there exists a constant c > 0 such that, for any t =
O(nd log n) and any vertex v ∈ V ,

P

[
degt(v) ≤ 1

2
deg0(v)

]
= O(n−4)

and
P [ΦGt

≥ c · ΦG0] = 1 − O(n−4).

The proof of this lemma proceeds as follows: for any S ⊂ V , when an edge is
randomly added or removed from the graph, we show that the probability that
|Et(S, V \S)| increases is usually larger than the probability it decreases. There-
fore, we model |Et(S, V \ S)| as a random walk on N with a bias towards large
values of |Et(S, V \ S)|, i.e., a birth-and-death chain. Using standard arguments
about birth-and-death chains, we show it is very unlikely that |Et(S, V \ S)|
becomes much smaller than |E0(S, V \ S)|. By a similar argument we also show
that the degrees of all nodes in S are approximately the same as their original
degrees in G0. This ensures that the conductance of a single set S is preserved
after t = O(dn log n) steps. We then use a union bound argument to show that,
with high probability, the conductance of the entire graph is preserved. For cer-
tain values of d, however, we cannot afford to use a union bound on all possible
sets of vertices. To overcome this, we show that only applying the union bound
for connected sets S would suffice. By bounding the number of such sets with
respect to the maximum degree in G0, we establish the lemma.

Random Walks on Randomly Evolving Graphs 123

We can now give an outline of the proof of Theorem1.3. The idea is to show
that

∥
∥
∥μt+1

πt+1
− 1

∥
∥
∥
2,πt+1

is smaller than
∥
∥
∥μt

πt
− 1

∥
∥
∥
2,πt

(unless the latter is already

very small). We do this by first relating
∥
∥
∥μt

πt
− 1

∥
∥
∥
2,πt

with
∥
∥
∥μt+1

πt
− 1

∥
∥
∥
2,πt

. More

precisely, we can use Lemma 2.1 and Lemma 4.1 to show that the latter is smaller
than the former by a multiplicative factor that depends on ΦG0 . Then, we bound
the difference between

∥
∥
∥μt+1

πt
− 1

∥
∥
∥
2,πt

and
∥
∥
∥μt+1

πt+1
− 1

∥
∥
∥
2,πt+1

. In particular, by

exploiting the fact that at each step only O(log n) random edges can be deleted
with high probability, we are able to show that

∥
∥
∥μt+1

πt+1
− 1

∥
∥
∥
2,πt+1

is not much

larger than
∥
∥
∥μt+1

πt
− 1

∥
∥
∥
2,πt

. Finally, by putting together all these argument, we

show that
∥
∥
∥μt

πt
− 1

∥
∥
∥
2,πt

is monotonically decreasing in t, at least until the walk

is mixed. This establishes the theorem.

Proof of Theorem 1.3. We establish the theorem by showing that, unless
∥
∥μt

πt
−

1
∥
∥
2,πt

is already small,
∥
∥μt

πt
− 1

∥
∥
2,πt

will significantly decrease at each step. In
particular we relate

∥
∥μt

πt
− 1

∥
∥
2,πt

to
∥
∥μt+1

πt+1
− 1

∥
∥
2,πt+1

in two steps:

(1) We lower bound the change between
∥
∥μt

πt
− 1

∥
∥
2,πt

and
∥
∥μt+1

πt
− 1

∥
∥
2,πt

;
(2) We upper bound the difference between

∥
∥μt+1

πt
− 1

∥
∥
2,πt

and
∥
∥μt+1

πt+1
− 1

∥
∥
2,πt+1

.

Step 1: The first step follows from a simple spectral argument. Indeed, by
Lemma 2.1, we have that

∥
∥
∥
∥

μt+1

πt
− 1

∥
∥
∥
∥

2

2,πt

≤ λ2
2(Pt)

∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

,

where λ2(Pt) is the second largest eigenvalue of Pt, the transition matrix of Gt.

Step 2: We now upper bound the expected difference between
∥
∥μt+1

πt
− 1

∥
∥
2,πt

and
∥
∥μt+1

πt+1
− 1

∥
∥
2,πt+1

. In the following analysis we condition on the event that
at any time t, |Et| ∈ [(1 − o(1))nd, (1 + o(1))nd] where d = (n − 1)p̃. This event
happens with probability 1 − o(1) by Lemma 4.1. Recall that

∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

=
∑

y∈V

πt(y)
(

μ(y)
πt(y)

− 1
)2

=

⎛

⎝
∑

y∈V

μ2
t (y)

πt(y)

⎞

⎠ − 1.

124 L. Cai et al.

Hence, we have that

E

[∥
∥
∥
∥

μt+1

πt+1
− 1

∥
∥
∥
∥

2

2,πt+1

−
∥
∥
∥
∥

μt+1

πt
− 1

∥
∥
∥
∥

2

2,πt

]

=
∑

y∈V

E

[
μ2

t+1(y)
(

1
πt+1(y)

− 1
πt(y)

)]

=
∑

y∈V

E

[
μ2

t+1(y)
(

2|Et+1|
degt+1(y)

− 2|Et|
degt(y)

)]

≤ 2(1 + o(1))|E|
∑

y∈V

μ2
t+1(y)E

[(
1

degt+1(y)
− 1

degt(y)

)]
(4.1)

≤ 2(1 + o(1))|E|
∑

y∈V

μ2
t+1(y)

(1 − 1
2) degt(y)

1
2 degt(y) · degt(y)

(1 − (1 − q)degt(y)) (4.2)

≤ 2(1 + o(1))
1 − o(1)

∑

y∈V

· μ2
t+1(y)

degt(y)/((1 − o(1))|E|) (1 − (1 − q)degt(y))

≤ 2(1 + o(1))
1 − o(1)

· (1 − (1 − q)degt(y))
∑

y∈V

μ2
t+1(y)
πt(y)

≤ O

(
log n

n

) (∥
∥
∥
∥

μt+1

πt
− 1

∥
∥
∥
∥

2

2,πt

+ 1

)

(4.3)

where |E| = nd and d = (n − 1)p̃. From line (4.1) to line (4.2) we upper bound
the expectation by only considering the cases where the difference is positive,
i.e., degt(y) ≥ degt+1(y). In line (4.2), by Lemma 4.1 we know degt+1(y) will not
be smaller than 1

2 ·degt(y) with probability 1−O(n−4). Moreover, the probability
1 − (1 − q)degt(y) is the probability that at least one of the edges connected to
y at time t changes at t + 1. In line (4.3), we hide unimportant constants in
the O-notation and we use the inequality (1 − q)degt(y) ≥ 1 − q · degt(y). Since
q = O(log n/(dn)) by assumption, we get O(log n/n) in line (4.3).

By combining the two steps above we have

E

[∥
∥
∥
∥

μt+1

πt+1
− 1

∥
∥
∥
∥

2

2,πt+1

−
∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

]

≤ O

(
log n

n

)(∥
∥
∥
∥

μt+1

πt
− 1

∥
∥
∥
∥

2

2,πt

+ 1

)

− (1 − λ2
2(Pt))

∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

≤ O

(
log n

n

)(

λ2
2(Pt)

∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

+ 1

)

− (1 − λ2
2(Pt))

∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

≤
(

n + log n

n
· λ2

2(Pt) − 1
) ∥

∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

+ O

(
log n

n

)

Random Walks on Randomly Evolving Graphs 125

Therefore, it holds that

E

[∥
∥
∥
∥

μt+1

πt+1
− 1

∥
∥
∥
∥

2

2,πt+1

]

≤
(

n + log n

n

)
λ2
2(Pt) ·

∥
∥
∥
∥

μt

πt
− 1

∥
∥
∥
∥

2

2,πt

+ O

(
log n

n

)
.

By Theorem 2.3 and the laziness of the walk,

Φ2
Gt

2
≤ 1 − λ2(Pt) ≤ 2ΦGt

.

Since we assume the conductance is lower bounded by O(log d/d), we have
λ2(Pt) ≤ 1 − O(log2 d/d2) and hence ((n + log n)/n)λ2

2(Pt) ≤ 1. Therefore, in
expectation, the �2 distance shrinks by a constant factor (unless it’s already small
in the first place). Therefore, by standard arguments, after O(log n/Φ2

G0
) rounds

the expected distance to πt is at most O(
√

log n/n). By Lemma 4.1, we know
this holds for poly(n) time steps. Finally, it suffices to apply Markov’s inequal-
ity and a union bound to show the expected distance is small with probability
1−O(n−4) on a polynomially long time interval as required by Definition 2.7. ��

4.2 Negative Result for Mixing in the Sparse and Slowly Changing
Case

Proposition 1.4 (Slowly-changing and sparse, slow mixing). Let p =
O(1/n2) and q = ω(1/(n log n)). Consider a random walk on G(n, p, q) with
starting graph G0 ∼ G(n, p̃) with p̃ = p/(p + q). Then, tmix(G(n, p, q)) = Ω(n).

Proof. Consider the graph G0 ∼ G(n, p̃). Notice that p̃ = o(log n/n) is well below
the connectivity threshold of Erdős-Rényi random graphs. Therefore, with high
probability, there is at least one isolated vertex in G0; call this vertex u and
assume the random walk starts from that vertex. The probability that u remains
isolated in the steps 1, 2, . . . , t is at least

(1 − p)(n−1)·t ≥ (1 − O(1/n2))(n−1)·t ≥ 1 − O(t/n).

Therefore, with at least constant nonzero probability, there exists a constant
c > 0 such that, for any t ≤ c · n, μu

t (u) = 1. Since πt(u) = 0, this implies that
‖μu

t − πt‖TV = 1. ��
Actually the proof reveals a stronger “non-mixing” property; if the random

walk starts from a vertex that is isolated in G0, then this vertex will remain
isolated for Θ(1/(np)) rounds in expectation, and in this case the random walk
did not move at all!

5 Conclusion

In this work we investigated the mixing time of random walks on the edge-
Markovian random graph model. Our results cover a wide range of different

126 L. Cai et al.

densities and speeds by which the graph changes. On a high level, these find-
ings provide some evidence to the intuition that both “high density” and “slow
change” correlate with fast mixing.

For further work, one interesting setting that is not fully understood is the
semi-sparse (d = Θ(log n)) and fast-changing (q = Ω(1) > 0) case. While we
proved that the random walk achieves some coarse mixing in O(log n), we con-
jecture that strong mixing is not possible. Another possible direction for future
work is, given the bounds on the mixing time at hand, to derive tight bounds on
the cover time. Finally, it would be also interesting to study the mixing time in a
dynamic random graph model where not all edge slots are present (similar to the
models studied in [12,15], where the graph at each step is a random subgraph
of a fixed, possibly sparse, network).

A Mixing Times for the Graph Chain of Edge-Markovian
Models

It is well known that the edge-Markovian graph model G(n, p, q) converges to an
Erdős-Rényi model G(n, p̃) where p̃ = p

p+q , which is the stationary distribution
of the original edge-Markovian model. The mixing time of the graph chain has
not been proven formally in previous works. Hence, we provide a proof for the
sake of completeness. We remark that since an edge-Markovian model is a time-
homogeneous (i.e., static) Markov chain, the classical definition of mixing time
(Definition 2.6) applies.

Theorem A.1 (Graph chain mixing time). For an edge-Markovian model
G(n, p, q), the graph distribution converges to the graph distribution of the random
graph model G(n, p̃) where p̃ = p

p+q . For any ε ∈ (0, 1), the mixing time of

the graph chain G(n, p, q) is tmix(ε) = O
(

log(n/ε)
log(1/|1−p−q|)

)
for p + q 	= 1, and

tmix(ε) = 1 if p + q = 1.

Proof. Every edge slot can be represented by a two-state (close/open) Markov
chain with transition matrix

P =
(

1 − p p
q 1 − q

)

and stationary distribution
(

q
p+q , p

p+q

)
. By using standard Markov chain argu-

ments (see, e.g., [16, Chapter 1]), the distance to the stationary distribution
shrinks at each step by a factor of |1 − p − q|, i.e.,

‖μt+1 − π‖TV ≤ |1 − p − q| ‖μt − π‖TV .

Therefore, when p + q 	= 1, the mixing time tmix(ε) of this two-state Markov
chain is O

(
log(1/ε)

log(|1−p−q|)
)

where ε < 1. For all the
(
n
2

)
edge slots, the time that all

Random Walks on Randomly Evolving Graphs 127

of them mix is O

(
log (n2)+log(1/ε)

log(|1−p−q|)

)
. When p + q = 1, instead, the graph mixes

immediately, which confirms the fact that in this regime the graph model is
equivalent to a sequence of independent graphs from G(n, p̃). ��
Remark A.1. Theorem A.1 essentially tells us that, whenever at least one
between p and q is large (e.g., Ω(1)), the graph chain quickly converges to
G(n, p̃) with p̃ = p

p+q . This suggests that for a fast-changing edge-Markovian
model G(n, p, q) with q = Ω(1), we can consider w.l.o.g. the starting graph G0

as sampled from G(n, p̃).

References

1. Alon, N., Milman, V.D.: λ1, isoperimetric inequalities for graphs, and supercon-
centrators. J. Combin. Theory Ser. B 38(1), 73–88 (1985)

2. Augustine, J., Pandurangan, G., Robinson, P.: Distributed algorithmic foundations
of dynamic networks. SIGACT News 47(1), 69–98 (2016)

3. Avin, C., Koucký, M., Lotker, Z.: Cover time and mixing time of random walks on
dynamic graphs. Random Struct. Algorithms 52(4), 576–596 (2018)

4. Berenbrink, P., Giakkoupis, G., Kermarrec, A., Mallmann-Trenn, F.: Bounds on the
voter model in dynamic networks. In: 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016). LIPIcs, vol. 55, pp. 146:1–146:15
(2016)

5. Clementi, A., Crescenzi, P., Doerr, C., Fraigniaud, P., Pasquale, F., Silvestri, R.:
Rumor spreading in random evolving graphs. Random Struct. Algorithms 48(2),
290–312 (2016)

6. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in sta-
tionary Markovian evolving graphs. IEEE Trans. Parallel Distrib. Syst. 22(9),
1425–1432 (2011)

7. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of
edge-markovian evolving graphs. SIAM J. Discrete Math. 24(4), 1694–1712 (2010)

8. Clementi, A., Silvestri, R., Trevisan, L.: Information spreading in dynamic graphs.
Distrib. Comput. 28(1), 55–73 (2014). https://doi.org/10.1007/s00446-014-0219-2

9. Cooper, C.: Random walks, interacting particles, dynamic networks: randomness
can be helpful. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS,
vol. 6796, pp. 1–14. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22212-2 1

10. Denysyuk, O., Rodrigues, L.: Random walks on evolving graphs with recurring
topologies. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 333–345. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8 23

11. Giakkoupis, G., Sauerwald, T., Stauffer, A.: Randomized Rumor Spreading in
Dynamic Graphs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E.
(eds.) ICALP 2014. LNCS, vol. 8573, pp. 495–507. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43951-7 42

12. Hermon, J., Sousi, P.: Random walk on dynamical percolation. arXiv preprint
arXiv:1902.02770 (2019)

13. Hoffman, C., Kahle, M., Paquette, E.: Spectral gaps of random graphs and appli-
cations. International Mathematics Research Notices, May 2019

https://doi.org/10.1007/s00446-014-0219-2
https://doi.org/10.1007/978-3-642-22212-2_1
https://doi.org/10.1007/978-3-642-22212-2_1
https://doi.org/10.1007/978-3-662-45174-8_23
https://doi.org/10.1007/978-3-662-43951-7_42
http://arxiv.org/abs/1902.02770

128 L. Cai et al.

14. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42(1), 82–96 (2011)

15. Lamprou, I., Martin, R., Spirakis, P.: Cover time in edge-uniform stochastically-
evolving graphs. Algorithms 11(10), 15 (2018). (Paper No. 149)

16. Levin, D.A., Peres, Y.: Markov Chains and Mixing Times. American Mathematical
Society, Providence (2017)

17. Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun.
ACM 61(2), 72 (2018)

18. Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in Markov chains.
Found. Trends Theor. Comput. Sci. 1(3), x+121 (2006)

19. Peres, Y., Sousi, P., Steif, J.: Mixing time for random walk on supercritical dynam-
ical percolation. Probab. Theory Relat. Fields 176, 809–849 (2020). https://doi.
org/10.1007/s00440-019-00927-z

20. Peres, Y., Stauffer, A., Steif, J.E.: Random walks on dynamical percolation: mixing
times, mean squared displacement and hitting times. Probab. Theory Relat. Fields
162(3–4), 487–530 (2015). https://doi.org/10.1007/s00440-014-0578-4

21. Saloff-Coste, L., Zúñiga, J.: Merging for time inhomogeneous finite Markov chains.
I. Singular values and stability. Electron. J. Probab. 14, 1456–1494 (2009)

22. Saloff-Coste, L., Zúñiga, J.: Merging for inhomogeneous finite Markov chains, Part
II: Nash and log-Sobolev inequalities. Ann. Probab. 39(3), 1161–1203 (2011)

23. Saloff-Coste, L., Zúñiga, J.: Merging and stability for time inhomogeneous finite
Markov chains. In: Surveys in Stochastic Processes, pp. 127–151. EMS Series of
Congress Reports, European Mathematical Society, Zürich (2011)

24. Sarma, A.D., Molla, A.R., Pandurangan, G.: Distributed computation in dynamic
networks via random walks. Theor. Comput. Sci. 581, 45–66 (2015)

25. Sauerwald, T., Zanetti, L.: Random walks on dynamic graphs: Mixing times,
hitting times, and return probabilities. In: 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019). LIPIcs, vol. 132, pp.
93:1–93:15 (2019)

26. Sousi, P., Thomas, S.: Cutoff for random walk on dynamical Erdos-Renyi graph.
arXiv preprint arXiv:1807.04719 (2018)

https://doi.org/10.1007/s00440-019-00927-z
https://doi.org/10.1007/s00440-019-00927-z
https://doi.org/10.1007/s00440-014-0578-4
http://arxiv.org/abs/1807.04719

Non-strict Temporal Exploration

Thomas Erlebach and Jakob T. Spooner(B)

School of Informatics, University of Leicester, Leicester, UK
jts21@leicester.ac.uk

Abstract. A temporal graph G = 〈G1, ..., GL〉 is a sequence of graphs
Gi ⊆ G, for some given underlying graph G of order n. We consider the
non-strict variant of the Temporal Exploration problem, in which
we are asked to decide if G admits a sequence W of consecutively crossed
edges e ∈ G, such that W visits all vertices at least once and that each
e ∈ W is crossed at a timestep t′ ∈ [L] such that t′ ≥ t, where t is
the timestep during which the previous edge was crossed. This variant
of the problem is shown to be NP-complete. We also consider the hard-
ness of approximating the exploration time for yes-instances in which
our order-n input graph satisfies certain assumptions that ensure explo-
ration schedules always exist. The first is that each pair of vertices are
contained in the same component at least once in every period of n steps,
whilst the second is that the temporal diameter of our input graph is
bounded by a constant c. For the latter of these two assumptions we

show O(n
1
2 −ε)-inapproximability and O(n1−ε)-inapproximability in the

c = 2 and c ≥ 3 cases, respectively. For graphs with temporal diameter
c = 2, we also prove an O(

√
n log n) upper bound on worst-case time

required for exploration, as well as an Ω(
√

n) lower bound.

1 Introduction

Given a connected, undirected graph G of order n, an O(n) upper bound on the
length of a minimal walk that explores G (i.e., visits in an arbitrary order, all
v ∈ V (G) at least once) can be easily obtained by considering the length of an
Euler tour around a spanning tree of G. The situation is altered considerably
if we allow for the edge-set of the graphs in our input space to change over the
course of some discretised time period, assuming that the vertex set remains
constant at each point in this period. Such graphs have in recent years been
referred to as temporal, dynamic or time-varying, and indeed it is known that
there exist infinitely many graphs G of this sort that are connected at each point
in time, and such that their exploration requires Ω(n2) moves (where a move can
consist of traversing an edge, or waiting at the current vertex), where n = |V (G)|
[8]. Due in large part to the frequency at which highly dynamic networks arise
in the modelling of practical, real-life situations, an effort to better understand
temporal graph models, along with the various optimisation problems defined
upon them (e.g., the exploration problem considered here), has been made in
recent years. For a more detailed introduction to the concept of temporal graphs
and related combinatorial problems the reader is referred to [17].
c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 129–145, 2020.
https://doi.org/10.1007/978-3-030-54921-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_8&domain=pdf
http://orcid.org/0000-0002-4470-5868
http://orcid.org/0000-0003-3816-6308
https://doi.org/10.1007/978-3-030-54921-3_8

130 T. Erlebach and J. T. Spooner

Much of the existing work regarding temporal graph exploration sees a tem-
poral graph defined as a length-L sequence of static graphs G = 〈G1, ..., GL〉,
where each Gi has the same vertex set as some given underlying graph G, but
can have an edge set that is a proper subset of E(G). The Temporal Explo-
ration problem (TEXP for short) then asks that, given a temporal graph G
and some prespecified start vertex s ∈ V (G), we compute a foremost exploration
schedule starting from s – a sequence of edges crossed during strictly increasing
timesteps (equivalently, at most one edge can be crossed per timestep), such
that all vertices are visited at least once and that the timestep in which the last
unvisited vertex is reached is minimal.

In this paper, we relax the condition that edges in a feasible exploration
schedule must be crossed during strictly-increasing timesteps, and allow for any
number of edges to be crossed in each step. Such a scenario arises for example in
delay-tolerant networks [20]. Such networks tend to be disconnected at any time,
and the speed at which the network topology changes is often much slower than
the speed at which messages can be transmitted. Therefore, a mobile agent could
visit any network node in its current connected component before the topology
changes. It is clear that allowing for an agent to make an arbitrary number of
moves across edges in a single time step alters the nature of the exploration
problem considerably. In particular, it no longer makes sense to restrict our
input space to always-connected graphs, since a trivial bound of a single step
can be obtained by employing the same Euler tour-based technique that can be
used to explore any static graph. As such, it is more natural to assume that a
given input graph G consists of a number of disjoint components in each step.
This, however, means that we cannot always guarantee that, for arbitrary G
and start vertex s ∈ V (G), G admits an exploration schedule starting at s.
Given that we relax the requirement that edges be crossed in strictly-increasing
timesteps, we dub the problem of deciding, in this model, whether or not a
given temporal graph G admits an exploration schedule Non-Strict TEXP,
showing it to be NP-complete in general. We then consider two seemingly natural
assumptions regarding the connectivity of the vertices which, when satisfied by
our input graph, ensure that exploration is always possible. The first of these
(which we name pairwise vertex-togetherness) posits that every pair of vertices
will be contained in the same component at least once every n steps, where
n is the graph’s order – we prove O(n1−ε)-inapproximability in this case. The
second assumption insists that every pair of vertices in our input graph are able
to reach one another in at most a constant c many steps. We note that this is
equivalent to insisting that our input graph have temporal diameter bounded by
a constant c (using the natural adaptation of the definition of temporal diameter
from [19] to the non-strict model). For the latter assumption an obvious O(n)
upper bound on exploration time exists, and we show that when c ≥ 3 this bound
is in fact tight. For c = 2, we prove upper and lower bounds of O(

√
n · log n)

and Ω(
√

n) respectively, leaving just a Θ(log n) factor’s gap between the two.
Amongst other things, we also consider the hardness of approximating optimal
solutions for the cases of temporal diameter 2 and ≥3, and lower bounds showing

Non-strict Temporal Exploration 131

O(n
1
2−ε) inapproximability in the former case and O(n1−ε) inapproximability in

the latter are provided (where n is the order of the input graph).

2 Related Work

Brodén et al. [3] considered the Temporal Travelling Salesperson Prob-
lem on a graph with n vertices that is complete in every timestep, but had
edge-costs which differed between 1 and 2 from step to step. Even when each
edge’s cost can change at most k times during the lifetime of the graph, they
showed that the problem is NP-complete, but were able to provide a (2 − 2

3k)-
approximation. Michail and Spirakis [19] showed the same problem to be APX-
hard and provided an improved (1.7 + ε)-approximation. Bui-Xuan et al. pro-
posed in [4] a number of natural objectives to consider when computing a tempo-
ral walk/path, amongst which were fastest (minimum difference between depar-
ture and arrival time) and foremost (minimum arrival time) which is consid-
ered here. Also introduced in [19] was the Temporal Exploration problem
(TEXP), by which we are asked to decide whether a given temporal graph
admits an exploration schedule. They showed that this is NP-complete when
no restrictions are placed on the input graph, and that even when the graph
is connected in every timestep, approximating foremost exploration schedules
with ratio (2 − ε) is NP-hard. Erlebach et al. [8] considered the Temporal
Exploration problem under the always-connected property introduced in [19],
improving the previously best-known inapproximability ratio to O(n1−ε). Com-
plementing the aforementioned Ω(n2) lower bound on the time needed to explore
general always-connected temporal graphs they proved a O(n2) upper bound, as
well as a number of subquadratic/superlinear upper/lower bounds for restricted
subclasses of always-connected temporal graphs. In a similar vein, Bodlaender
and van der Zanden [2] considered TEXP when the input graph has pathwidth
at most 2 in every step, showing the decision variant to be NP-complete under
these restrictions. In [1], Akrida et al. consider a variant of TEXP in which a
candidate solution must return to the vertex from which it initially departed,
focusing on the case in which the input graph has an underlying star. They
gave an O(n log n)-time algorithm deciding whether a given temporal star is
explorable or not, under the restriction that each edge of the star is present
in at most 2 or 3 time steps. In [15] and [14], the problem of temporal explo-
ration is considered on the classes of temporal graphs with underlying cycles and
cactuses, respectively. In [9], the authors prove an O(dn1.75) bound on the num-
ber of time steps required to explore any temporal graph with degree bounded
by d in each step, a considerable improvement over the previously best known
O(n2 log d

log n) bound [10]. Interestingly, the same bound can also be extended to
general always-connected graphs when restrictions are relaxed and a computed
exploration schedule is allowed to cross two edges in any given timestep – this is
owed to the fact that the square of any static graph G admits a bounded-degree
spanning tree. Notions of strict/non-strict paths which respectively allow for a
single/infinitely many edge(s) to be crossed in any given timestep have been
considered before, notably by Kempe et al. in [16] and Fluschnik et al. in [12].

132 T. Erlebach and J. T. Spooner

Various other studies related to variants of exploration/path problems in
temporal graphs have been considered. For example, the authors in [13] and
[7] consider the problem of temporal exploration from a distributed standpoint.
Casteigts et al. [6] consider a variant of the problem of finding a path between a
given pair of vertices s and t, in which there is an upper bound on the number
of timesteps that a computed path P is allowed to wait at any vertex v ∈ P
before crossing the next edge. For a more comprehensive overview of temporal
graph problems and the various temporal graph classes on which they may be
defined, the reader is referred to [5,17].

3 Graph Model and Problem Definition

Throughout the following denote by [n] the set of integers {1, 2, ..., n}, and by
[x, n] (x < n) the set of integers {x, x + 1, ..., n}. A standard way of defining a
temporal graph within the literature is as a length-L sequence of graphs G =
〈G1, ..., GL〉. Here L is the lifetime of the graph, and we require that for every
i ∈ [L], Gi is a subgraph of the underlying graph G of G. In particular, we have
that V (Gi) = V (G) and E(Gi) ⊆ E(G) for all i ∈ [L].

As was previously noted, in the context of the non-strict variant of TEXP, it
no longer makes sense to restrict our attention to the class of always-connected
graphs. Therefore, we assume that for a given temporal graph G = 〈G1, ..., GL〉,
Gi (i ∈ [L]) consists of some number ≥1 of distinct connected components.
Moreover, since any number of edges can be crossed in a given step, the edge
structure of each component no longer matters – all that is important when
attempting to compute an exploration schedule W is which component C ∈ Gi

is occupied by W in timestep i, since all v ∈ C can be explored during that
step. We can therefore, without loss of generality, use the following definition of
a non-strict temporal graph:

Definition 1 (Non-strict temporal graph, G). A non-strict temporal graph
G = 〈G1, ..., GL〉 with vertex set V := V (G) and lifetime L is an indexed sequence
of partitions Gi = {Ci,1, ..., Ci,si

}, with i ∈ [L]. For all i ∈ [L], every v ∈ V (G)
satisfies v ∈ Ci,ji for a unique ji ∈ [si].

Definition 2 (Non-strict temporal walk, W). A length-k non-strict tem-
poral walk W = C1,j1 , C2,j2 , ..., Ck,jk through a non-strict temporal graph G =
〈G1, ..., GL〉 is a sequence of components Ci,ji such that, for all i ∈ [k], Ci,ji ∈ Gi

and ji ∈ [si]. Additionally, k ∈ [L], where L is the lifetime of the graph upon
which W is defined. We also require that Ci,ji ∩ Ci+1,ji+1 	= ∅ for all i ∈ [k − 1],
so that it is ensured that the (i + 1)-th component visited by W can be reached
from the i-th component if and only if W ends step ti at a vertex that lies in
the intersection of these two components. For all i ∈ [k] we say W visits all
v ∈ Ci,ji .

A non-strict temporal walk W = C1,j1 , ..., Ck,jk around a given graph G is an
exploration schedule if and only if, for all v ∈ V (G), there exists an i ∈ [k]

Non-strict Temporal Exploration 133

such that v ∈ Ci,ji . Throughout the remainder of the paper, we may refer to
non-strict temporal graphs and non-strict temporal walks simply as graphs and
walks, respectively. Further, we might speak in terms of a mobile agent (or agent)
which we assume to be, at any timestep, following a non-strict temporal walk
around a given non-strict temporal graph in an attempt to explore it. We define
the decision version of the Non-Strict Temporal Exploration problem as
follows:

Definition 3 (Non-Strict Temporal Exploration). An instance of the
Non-Strict Temporal Exploration (NS-TEXP) problem is given as a
tuple (G, s), where G is a given non-strict temporal graph with lifetime L and
underlying graph G, and s ∈ V (G). The problem then asks that we decide whether
G admits an exploration schedule W = C1,j1 , ..., Ck,jk starting from s, i.e., such
that s ∈ C1,j1 .

If we consider only the set of yes-instances of NS-TEXP, i.e., those instances
(G, s) such that G admits an exploration schedule starting from s ∈ V (G), then
it also makes sense for us to consider optimisation variants of NS-TEXP. In
particular, we consider a variant Foremost-Non-Strict TEXP (FNS-TEXP
for short) which asks that we compute a foremost exploration schedule W =
C1,j1 , ..., Ck,jk , i.e., one for which k ≤ l for any other exploration schedule W ′ =
C ′

1,j1
, ..., C ′

l,jl
.

4 Deciding Whether Exploration Is Possible

Theorem 1. Non-Strict Temporal Exploration is NP-complete.

Proof. The problem is in NP because an exploration schedule is of polynomial
size (note that the input size is Ω(NL) for a temporal graph with N vertices and
lifetime L, while an exploration schedule has size O(NL)) and its validity may
be checked in polynomial time. To prove that the problem is NP-hard we give
a reduction from 3SAT. Let instance I of 3SAT be given by variables x1, ..., xn

and clauses c1, ..., cm. Without loss of generality, assume that no clause contains
xi and x̄i for any i. We proceed by creating a temporal graph G with vertex
set V (G) = {s} ∪ {xT

i , xF
i : 1 ≤ i ≤ n} ∪ {cj : 1 ≤ j ≤ m} and lifetime 2n.

The connected components of the graph in each step t are as follows (assume
that all unmentioned vertices in each step are disconnected in G): In step 1,
let {s, xT

1 , xF
1 } form one component. In every subsequent step 2i with i ∈ [n],

let there be a true component containing xT
i and all clause vertices cj that

correspond to a clause of I which is satisfied by setting xi = 1, as well as a false
component containing xF

i and all clause vertices cj corresponding to clauses
satisfied by setting xi = 0. In all remaining steps 2i − 1 for i ∈ [2, n], let there
be a component {xT

i−1, x
F
i−1, x

T
i , xF

i }. To complete the proof we show that there
exists a satisfying assignment for I if and only if there exists an exploration
schedule of G.

(=⇒) Since I is satisfiable, there exists a satisfying assignment α : X →
{0, 1} of boolean values to all xi ∈ X. We claim that the following produces an

134 T. Erlebach and J. T. Spooner

exploration schedule W of G: In the (2i−1)-th step (i ∈ [n]), W will be positioned
in the component containing the vertices {xT

i−1, x
F
i−1, x

T
i , xF

i } (as well as s in case
i = 1). Explore both xT

i and xF
i , finishing at xT

i if α(xi) = 1 or xF
i is α(xi) = 0.

At the start of step 2i (i ∈ [n]), W can either be in the component containing
xT

i or the one containing xF
i (depending now on the value of α(xi)), and can

explore all vertices cj in that component and move back to xT
i or xF

i .
By definition of our reduction, the cj explored by the produced walk W are

precisely those which correspond to the clauses satisfied by assignment α. Since
α is satisfying, each clause is satisfied by setting xi = α(xi) for at least one xi;
as such, W explores all vertices xT

i , xF
i and cj as required.

(⇐=) Let G be the input graph of the Non-Strict TEXP instance pro-
duced by our reduction from I. Assume that G admits an exploration schedule
W . By construction, for all j ∈ [m], moves to and from vertices cj can only be
made during steps in which they are contained within the true/false component.
Since W is an exploration schedule it must visit all cj , and so for each j there
must exist some i ∈ [n] such that W initially reaches cj within either the true or
false component of step 2i. Since each cj is placed in the true/false component
of step 2i only when xi = 1/xi = 0 satisfies the corresponding clause of I, a sat-
isfying assignment for I can be obtained by checking, for every i ∈ [n], whether
W visits the true or false component, setting xi = 1 in the former case and
xi = 0 in the latter. (Note that in steps 2i during which neither the true/false
component are visited, we can choose an arbitrary setting for xi.) ��

5 Exploration with Pairwise Vertex-Togetherness

We next consider instances of NS-TEXP for which the input graph G satisfies
the following assumption, which we refer to as pairwise vertex-togetherness:

Assumption 1 (Pairwise vertex-togetherness). All pairs of vertices u, v ∈
V (G) are contained in the same connected component at least once during every
period of N steps, where N = |V (G)|.
The following algorithm enables us to explore any graph G, with lifetime L ≥ N ,
such that G satisfies Assumption 1: Start at the specified start vertex s, and
in any of the steps 1 ≤ i ≤ N in which s is contained in the same connected
component as some currently unexplored vertices, visit those vertices and move
back to s by the end of step i. To see that this in fact produces an exploration
schedule, observe that by Assumption 1 s will be contained in the same connected
component as each v ∈ V (G) at least once during the steps 1 ≤ i ≤ N . Note
that this also implies an N -approximation algorithm for the Non-Strict TEXP
problem (consider the instance in which the graph in the first step consists of a
single connected component). In complement to this observation, we state the
following result:

Theorem 2. Even when the input graph G satisfies Assumption 1, it is NP-
hard to approximate solutions to Foremost-Non-Strict TEXP with ratio
Θ(N1−ε) for any ε > 0, where N is the order of the input graph.

Non-strict Temporal Exploration 135

Proof. Let NST = 〈G, s〉 be any instance of the Non-Strict TEXP decision
problem, obtained by performing the reduction of Theorem1 on an instance of
3SAT with n literals and m clauses. By the reduction, the graph G consists of
2n literal vertices, xT

i and xF
i (1 ≤ i ≤ n), m clause vertices cj (1 ≤ j ≤ m), and

an additional start vertex s. To reduce to FNS-TEXP from NST , we construct
an instance FNST = 〈G′, s′〉 as follows: Let V (G′) = V (G) ∪ {d1, ..., dnc}, where
the vertices d1, d2, ..., dnc are nc dummy vertices (for some constant c > 1). Let
N = |V (G′)| = 2n+m+nc, and let L = N be the lifetime of G′. The components
of G′ in each step of its lifetime are defined to be as follows: In step 1, the graph
consists of the connected component {s, d1, d2, ..., dnc}, and all clause and literal
vertices lie disconnected in their own components. In the steps t ∈ [2, 2n + 1],
the step t components of G′ are the same as the step t − 1 components of G,
and we create an additional nc components containing each of the di. During
the steps t ∈ [2n + 2, N − 1], every vertex lies in one component on its own, and
then in the N -th and final step all vertices belong to one single component.

Since, during the steps t ∈ [2n + 2, N − 1], all vertices are disconnected in
G′, it follows that no new vertices can be explored during any of these steps.
We therefore distinguish between the following two cases, showing that deciding
whether O(n) time steps suffice to explore G′ or whether Θ(nc) timesteps are
required also decides whether or not G admits an exploration schedule.

G′ can be explored in 2n + 1 steps: By construction, none of the vertices
cj , xT

i or xF
i can be reached in G′ from s until the start of the second step.

Therefore, it must be that any exploration schedule with length ≤ 2n+1 starting
at s visits all of these vertices during the steps t ∈ [2, 2n+1]. Observe now that,
by construction, the step t ∈ [2, 2n + 1] components of G′ are the step t − 1
components of G, and that these steps constitute the entire lifetime of G – from
this it follows that there must exist a valid exploration schedule of G.

Exploring G′ requires N steps: We claim that, since G′ requires N steps
to be explored completely, it must be that G admits no exploration schedule. To
see this, recall once more that the step t ∈ [2, 2n + 1] components of G′ are the
step t − 1 components of G (with each t − 1 ∈ [1, 2n]) and so it must be that
no temporal walk W starting at s in time step 1 visits all vertices by the end of
time step 2n. Otherwise, we would be in case (1) and it would have been possible
to explore G′ by the end of step 2n + 1 by visiting s and all di in step 1, then
following an exploration schedule for G in G′ during the steps t ∈ [2, 2n + 1].

Since deciding whether or not G can be fully explored is NP-complete, it
follows from the above case analysis that it is NP-hard to approximate solutions
to Foremost Non-Strict TEXP instances in which G satisfies Assumption 1)
with ratio Θ(nc)

Θ(n) = Θ(N
c−1
c) = Θ(N1−ε), where ε = 1

c > 0 can be forced
arbitrarily close to 0 by choosing the constant c large enough. ��

6 Exploration with Bounded Temporal Diameter

One further assumption which, when satisfied, ensures that complete exploration
of a given temporal graph G is always possible (provided that the lifetime of G
is suitably long) is the following:

136 T. Erlebach and J. T. Spooner

Assumption 2 (Constant-bounded temporal diameter). For every pair
of vertices u, v ∈ V (G), u can reach v in at most c steps (for some c = O(1))
and this holds from any time step t.

An obvious upper bound on the number of steps required to fully explore any
temporal graph G of order n such that G satisfies Assumption 2 (for a constant
c), and (G, s) is a yes-instance of NS-TEXP, is c(n − 1): Starting from s, an
agent in G could repeatedly select an arbitrary unexplored vertex and move to
it in at most c steps, repeating this process n − 1 times (once for each vertex
v ∈ V (G) − {s}).

6.1 Hardness of the Decision Problem for Temporal Diameter 2

The following result is concerned with the NP-completeness of deciding instances
(G, s) of NS-TEXP in which G satisfies Assumption 2 for c = 2:

Theorem 3. Deciding Non-Strict Temporal Exploration is NP-
complete, even when restricted to instances in which the input graph G satisfies
Assumption 2 for c = 2.

Proof. The reduction is from the NP-complete problem of 3SAT restricted to
instances in which each literal occurs in at most 4 clauses, which we dub 3SAT*
[21]. Given an instance I of 3SAT* comprised of n ≥ 3 variables and m = O(n)
clauses, we proceed by constructing a non-strict temporal graph G (with lifetime
n + 3) that satisfies the connectivity assumption for c = 2, such that G is fully
explorable if and only if I is satisfiable. To do so we create 2 literal vertices xT

i

and xF
i for each variable xi of 3SAT* instance I. We then create n+3 clause copy

vertices cj,k (k ∈ [n+3]) for all m clauses of I. Finally, we create 2(2n+m(n+3))2

many connectivity vertices vi (i ∈ [2(2n+m(n+3))2]) and divide them into two
groups, the red group and the blue group, each of size (2n+m(n+3))2. In steps
1 and 2, arrange the red connectivity vertices as a 2n+m(n+3) by 2n+m(n+3)
grid, then let all rows of this grid lie in separate components during step 1, and
all columns of the grid lie in separate components during step 2. Arbitrarily set
the start vertex to be s = xT

1 . To the first row component in step 1, add the
vertices xT

i and xF
i (for all i ∈ [n]), along with all blue connectivity vertices.

Then, add each of the remaining clause vertices to a unique component (of
which there are 2n + m(n + 3) − 1 remaining). In step 2, we now arrange the
blue connectivity vertices as a 2n + m(n + 3) by 2n + m(n + 3) grid, with each
of the step 2 components initially containing one red column and one blue row.
Now, add each of the non-connectivity vertices (i.e., all literal and clause-copy
vertices) to an arbitrary component, ensuring that no component contains more
than one non-connectivity vertex (this is possible since there are 2n + m(n + 3)
such vertices and the same number of components). In all steps t ∈ [3, n+3], we
let the blue vertices alternate between being columns and rows, so that in each
step there are exactly 2n + m(n + 3) components. From step 3 onward, all red
connectivity vertices will belong to a unique but arbitrarily selected component.
All literal and clause-copy vertices should be added to one of the 2n + m(n + 3)

Non-strict Temporal Exploration 137

components in step 3. For all steps t ∈ [4, n + 3], add the literal vertex xT
t−3

to the first component, along with all clause-copies that correspond to a clause
of 3SAT* instance I satisfied by setting xt−3 = 1; to the second component,
add the literal vertex xF

t−3 alongside all clause-copies corresponding to a clause
satisfied by setting xt−3 = 0. (We will from here onward refer to the ‘first’ and
‘second’ component as the true and false component.) In any of these steps,
all remaining literal and clause-copy vertices should be assigned to an arbitrary
but unique component that are neither the true or false component of that step.
Clearly, G satisfies the c = 2 connectivity assumption, since in step 2 we have
that all 2n + m(n + 3) components contain exactly one of the red vertices in
each of the step 1 components, and for all pairs of consecutive steps i and i + 1
for i > 1, the same holds for the blue vertices. Therefore, starting in step i, it is
possible to be positioned in any step i + 1 component (and therefore reach any
vertex in at most a single step) by moving to the appropriate red/blue vertex
and waiting until the start of the next step. To complete the proof, we show that
I is satisfiable if and only if G is explorable:

(=⇒) To construct an exploration schedule of G from a satisfying assignment
for 3SAT instance I, we can use the first three steps of G’s lifetime in order to
visit all blue/red connectivity vertices, as well as the literal vertices. For the
remaining steps t ∈ [4, n + 3], visit the true component in step i if xt−3 = 1 or
the false component otherwise; this is possible due to the connectivity vertices.
It is clear, by arguments similar to those used in the proof of Theorem1, that G
is an exploration schedule since it was constructed from a satisfying assignment
for I.

(⇐=) First observe that no cj can be reached until step 2. We have n + 3
cj,k associated with the j-th clause of I; since there are only n + 2 remaining
steps it is not possible to visit all of the copies associated with the j-th clause in
steps in which they are not contained in either the true or false component (i.e.,
one per timestep). Therefore, for all j ∈ [m] there is at least one timestep in
which ≥2 cj,k are visited whilst both contained in the true or false component,
and so by construction the remaining n + 2 copies can also be visited during
that same step. Moreover, since W is an exploration schedule all cj,k ∈ V (G)
(j ∈ [m], k ∈ [n + 3]) must be visited; hence all clauses of I can be satisfied by
setting variable xt−3 = 1 if W visits the true component in step t ∈ [4, n + 3],
and xt−3 = 0 otherwise (an arbitrary setting of xt−3 suffices when neither are
visited). ��
Due to the fact that any graph G satisfying Assumption 2 for some constant
c also satisfies it for every d > c, we obtain as a corollary of Theorem 3 the
following:

Corollary 1. Deciding Non-Strict Exploration is NP-complete when
restricted to graphs satisfying Assumption 2 for any c ≥ 3.

138 T. Erlebach and J. T. Spooner

6.2 Lower Bounds on Exploration Time

The following three theorems are concerned with bounds on the amount of time
required to explore graphs G that satisfy Assumption 2 for certain values of c.
Throughout them, we consider only graphs G of order n with lifetime L ≥ c(n−1)
in order to ensure that exploration is always possible.

Theorem 4. There exists an infinite family of temporal graphs such that each
member satisfies Assumption 2 for c = 3 (and thus also for all c ≥ 3), has order
n ∈ {7, 10, 13, ...}, and requires Ω(n) time steps to be explored in its entirety.

Proof. Let n = 3m + 1 (for some m ≥ 2) be the order of the temporal graph.
Take an arbitrary u ∈ V (G), then partition V (G) − {u} into three distinct parts
X = {x1, ..., xm}, Y = {y1, ..., ym} and Z = {z1, ..., zm}. In odd steps, we define
the graph to consist of the components X ∪ {u} and {yi, zi} for all i ∈ [m]. In
even steps, it should consist of components Y ∪ {u} and {xi, zi} for all i ∈ [m].
Furthermore, we (arbitrarily) set s = x1. (An example of the construction can
be seen in Fig. 1.) One can easily check that any pair of vertices in X (Y) can
reach one another in at most 2 steps, and that vertices in X and Y are able to
reach one another in at most 3 via u. Reaching any xj ∈ X (yj ∈ Y) from any
zi ∈ Z can also be achieved in at most three steps by waiting until the next
step in which zi and xi (yi) are contained in the same component, moving to
xi (yi) in that step, and then to xj (yj) in the following step. Finally, consider
reaching any vertex zj from any vertex zi (i, j ∈ [m]), starting at some time
step t. Unless i = j, the quickest way to reach zj from zi is by first moving
to the vertex v ∈ {xi, yi} that lies in the same component as zi in the current
step. By construction, v will be contained in the same component as the vertex
v′ ∈ {xj , yj}; move to v′ from v in step t+1, finally moving to zj from v′ during
step t+2. In total this takes exactly 3 steps. Since any exploration schedule has
to visit all m = (n − 1)/3 zi at some point and reaching one from the previous
takes exactly 3 steps, it follows that any exploration schedule of G has duration
Ω(n). To complete the proof, observe that any graph that satisfies Assumption 2
for a constant b also satisfies Assumption 2 for any c > b. ��
One direct consequence of Theorem 4 is that the aforementioned c(n − 1) upper
bound on the length of exploration schedules in graphs satisfying Assumption 2
is in fact tight (asymptotically speaking) when c ≥ 3. For the case in which
c = 2, we now present a lower bound construction that requires Ω(

√
n) steps to

explore.

Theorem 5. There exists an infinite family of graphs, the members of which
satisfy Assumption 2 for c = 2, have order n ∈ {4, 9, 16, ...}, and require Ω(

√
n)

steps to be completely explored.

Proof. Let n = x2 for any x ≥ 2. We now construct a graph Gn = 〈G1, ..., GL〉,
with L = n: Partition the vertex set into x parts of size x, arbitrarily labelling
the vertices in the i-th part vi,j for j ∈ [x]. Arrange the vertices in the form of
an x by x grid, with the first row consisting of the vertices v1,1, v1,2, ..., v1,x, the

Non-strict Temporal Exploration 139

u

ZYX

u

Z X Y

Fig. 1. The construction of Theorem 4 for m = 4. The left image is the graph in odd
steps, with the graph in even steps displayed on the right. Black dashed lines mark the
vertices contained in the components of either step.

second row of vertices v2,1, v2,2, ..., v2,x, and so on and so forth (as in Fig. 2). We
refer now to the collection of vertices v1,j , v2,j , ..., vx,j as the j-th column of the
grid. Now, in every odd step i = 1, 3, 5, ..., let Gi be a partition of V (Gn) into
the rows of the grid, and in every even step i = 2, 4, 6, ..., let Gi be a partition
of V (Gn) into the columns. To see that Gn satisfies Assumption 2 (for c = 2),
notice that in any pair of consecutive steps t, t+1 with t ∈ [n− 1], an agent can
use one of those steps to change its row coordinate in the grid, and the other
step to change its column coordinate.

To complete the proof, observe that in any step each component contains
exactly

√
n vertices. From this it follows that, during a single step, at most

√
n

unvisited vertices can be visited; hence at least Ω(
√

n) steps are required of any
exploration schedule. ��

6.3 Upper Bounds on Exploration Time

The following result further concerns the case when c = 2, tightening the gap
between the trivial O(cn) upper bound and the Ω(

√
n) lower bound of Theo-

rem 5.

Theorem 6. Any temporal graph G of order n satisfying Assumption 2 for c = 2
can always be explored in O(

√
n · log n) time steps.

Proof. We first show that for any consecutive pair of steps t and t+1, G consists
of at most

√
n components in at least one of these two steps. This is immediately

obvious when each component of step t contains ≥ √
n vertices (Case 1). Hence,

we focus on the case in which at least one component of G during step t contains
at most

√
n vertices (Case 2). First, observe that in order for a graph to satisfy

Assumption 2 for c = 2 it is required that, regardless of the time step t and the

140 T. Erlebach and J. T. Spooner

currently situated vertex/connected component, an agent can be positioned in
any one of the step t + 1 components of G by the start of that same step. This
implies that the number of connected components of G in step t + 1 is bounded
from above by the size of the smallest component in step t (which by assumption
of the case, is ≤ √

n).
Now, we show how to construct an exploration schedule W with duration

O(
√

n · log n). The idea is to divide the lifetime of G into consecutive blocks
of three steps and within each, explore at least a 1√

n
fraction of the currently

unvisited vertices. More specifically, in the (3j − 2)-th step (j ≥ 1), apply the
above case analysis, taking i = 3j − 1 so that i + 1 = 3j. If Case 1 applies, let
Cmax be the component at time step 3j −1 which contains the largest number of
previously unexplored vertices, resolving ties arbitrarily. Use time step (3j−2) to
move to some vertex that is contained in Cmax in step 3j − 1 (by Assumption 2,
this is always possible), exploring all unexplored vertices contained in Cmax

during step 3j − 1. If Case 2 applies, let Cmax be the component at time step
3j which contains the largest number of previously unexplored vertices, again
resolving ties arbitrarily. In this case, wait at the current vertex until time step
3j − 1, then move to some vertex contained in Cmax, which is again possible by
Assumption 2, and explore all unexplored vertices contained in Cmax during time
step 3j. In either case, the graph consists of at most

√
n components during the

time step in which the agent is positioned in Cmax. Let U be the set of previously
unexplored vertices (which is initially the set V − {s}). The vertices in U are
distributed amongst the ≤√

n components of step 3j − 1 or 3j, and since Cmax

contains the largest number of them, it follows that |Cmax∩U | ≥ |U |√
n
, as required.

Repeat the above process, exploring at least a 1√
n

fraction of the previously
unexplored vertices in each block of 3 consecutive steps until the number of
unexplored vertices is less than 1. Since we began with n−1 unexplored vertices
(we consider s to be automatically explored), we get that after k = 3x steps
(for any x ∈ {1, 2, 3, ...}), the remaining number of previously unvisited vertices
is at most n · (1 − 1/

√
n)k. We require that n · (1 − 1√

n
)k < 1, which can be

transformed into n < (
√

n√
n−1

)k. Taking the logarithm of both sides yields

log n < k · log

(√
n√

n − 1

)
⇐⇒ k >

log n

log(1 + 1√
n−1

)
.

Since log(1 + x) > x/(1 + x) for any x > 0, it then follows that the right-hand
side of the previous inequality satisfies

log n

log(1 + 1√
n−1

)
<

log n

1√
n−1

/ √
n√

n−1

=
log n

1/
√

n
=

√
n · log n.

Hence, as soon as the number of elapsed time steps k is greater than
√

n·log n,
the number of remaining unexplored vertices is fewer than 1, and so the algorithm
requires O(

√
n · log n) steps to explore G. ��

Non-strict Temporal Exploration 141

v1,1 v1,2 v1,3 v1,4

v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4

v4,1 v4,2 v4,3 v4,4

v2,1

v1,1 v1,2 v1,3 v1,4

v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4

v4,1 v4,2 v4,3 v4,4

v2,1

Fig. 2. The construction of Theorem 5 for x = 4. The left image is the graph in odd
steps, with the graph in even steps displayed on the right. Blue dashed lines mark the
vertices contained in the components of either step. (Color figure online)

6.4 Inapproximability Results

The constructive nature of the proof of Theorem6 implies the existence of
a Θ(

√
N · log N)-approximation algorithm for instances of Foremost-Non-

Strict TEXP in which the given graph has order N and satisfies Assumption 2
for c = 2. The following result leaves only a Θ(log N) gap between the best pos-
sible ratio achievable by any approximation algorithm for this problem and the
ratio achieved by the algorithm implied by Theorem6.

Theorem 7. It is NP-hard to approximate solutions to instances of
Foremost-Non-Strict TEXP that satisfy Assumption 2 for c = 2 with
approximation guarantee O(N

1
2−ε) for any ε > 0, where N is the order of the

given graph.

Proof. Take an arbitrary instance I of 3SAT* and let G be the corresponding
instance of Non-Strict TEXP generated via the construction of Theorem 3.
Alter the construction so that there are now nb (b > 1) clause-copies correspond-
ing to each of the m clauses of 3SAT* instance I, and call the resulting graph
G′. Furthermore, let the lifetime L of G′ be ∞, and define the components of
the resulting graph G′ (of order N = 2n + mnb + 2(2n + mnb)2 = O(n2b+2)) to
be the same, during the first n + 3 steps, as the components of G (but with the
additional clause-copy vertices added to the appropriate components). During
all subsequent steps t ∈ [n + 4,∞], let the blue connectivity vertices alternate
between being arranged as the rows and columns of a 2n+mnb by 2n+mnb grid,
adding exactly one of the non-connectivity vertices (i.e., the literal/clause-copy
vertices) to each of the components formed by the blue rows/columns. Take the
red connectivity vertices and add them all to one arbitrary component in every
subsequent step.

Next, observe that, by the same reasoning used in the proof of Theorem3,
G′ admits an exploration schedule of length at most n + 3 if and only if 3SAT∗

instance I is satisfiable. As a result, if G′ cannot be fully explored by the
end of the (n + 3)-th step, then it must be that there exists one clause c in
3SAT* instance I whose corresponding clause-copy vertices have not yet all been

142 T. Erlebach and J. T. Spooner

explored. Note now that at most n+3 of these clause-copy vertices can have been
explored during the first n+3 steps, and so at least nb−(n+3) remain unexplored.
During any step t ∈ [n+4,∞], at most one of these remaining clause-copies can
be explored, and so it follows that Θ(nb) steps are required to explore them all.
This implies that deciding whether G′ can be explored in Θ(n) steps or whether
Θ(nb) steps are required also decides whether or not 3SAT∗ instance I is satisfi-
able. As such, it follows that approximating solutions to Non-Strict TEXP on
graphs satisfying Assumption 2 for c = 2 with approximation ratio strictly better
than Θ(nb)/Θ(n) = Θ(N

1
2 /n2) = Θ(N

1
2 /N

1
b+1) = Θ(N

1
2−ε′

) is NP-hard, where
ε′ = 1

b+1 and can be made arbitrarily close to 0 by choosing b large enough. The
theorem follows for any ε > 0 by forcing ε′ ≥ ε arbitrarily close to ε. ��
Theorem 8. It is NP-hard to approximate solutions to instances of
Foremost-Non-Strict TEXP by which Assumption 2 is satisfied for some
c ≥ 3 with approximation guarantee O(N1−ε) for any ε > 0, where N is the
order of the given graph.

Proof. Let I be some instance of 3SAT∗ consisting of n > 3 variables vi (i ∈
[n]) and m = O(n) clauses. We wish to construct a non-strict temporal graph
G (with lifetime L = 3|V (G)|) that satisfies Assumption 2 for c = 3 but no
d < 3, and which admits an exploration schedule of length O(n) if and only
if I is satisfiable, otherwise requiring Ω(nb) steps. To this end, we initially let
|V (G)| = N = 3mnb + 1 = O(nb+1) for some b ≥ 2. We take 2mnb of the
vertices in V (G) and partition them into equisized sets X = {x1, ..., xmnb} and
Y = {y1, ..., ymnb}; let an additional vertex be known as u. The mnb remaining
vertices will be known as the clause-copy vertices cj,k, with exactly nb of them
associated with j-th clause of I.

We now show how the components in each step of G’s lifetime are to be
arranged. In all steps t ∈ [3n] such that t 	= 3i for some i ∈ [n], if t is odd, we
place all x ∈ X and u in the same connected component, whilst the mnb vertices
y ∈ Y form a matching with the mnb clause-copy vertices (this matching can
be arbitrary, but will remain consistent in all considered steps). On the other
hand, if t 	= 3i and is even, then all v ∈ Y ∪{u} form one component, whilst the
vertices in X form a matching with the clause-copy vertices.

In all steps t ∈ [3n] such that t = 3i for some i ∈ [n], if t is odd then all
v ∈ X ∪ {u} form one connected component; let the start vertex s = xmnb .
We create one component containing the vertex y1 ∈ Y , along with all clause-
copies corresponding to the clauses of I satisfied by setting v1 = 0. To another
component, we add the vertex y2 ∈ Y , along with all clause-copies corresponding
to the clauses of I satisfied by setting v1 = 1. (In such steps, we will now refer
to the components containing y1 and y2 as the ‘true’ and ‘false’ components,
respectively.) All remaining clause-copies (i.e., those corresponding to clauses
that are satisfied by neither a 0 nor 1 setting of vi) will then form a matching
with the remaining yj (j ∈ [mnb] − {1, 2}). (Note that there are always enough
yj to ensure this is possible, since at least one clause will be satisfied by either a
0 or 1 setting of each vi, and so there can be at most (m − 1)nb clause-copies to

Non-strict Temporal Exploration 143

match with the ≤mnb −2 remaining yj .) When t is even, the components are the
same but the roles of sets X and Y are switched, so that now the components
containing x1 and x2 are respectively the true and false components. During
the steps t ∈ [3n + 1, 3N], the components alternate between being arranged as
they are in odd/even steps t′ ∈ [3n] such that t′ mod 3 	= 0, depending on the
parity of step t. It is straightforward to check that G satisfies Assumption 2 for
c = 3. Moreover, consider any pair of clause-copies starting from any time step
t ≥ 3n + 1 and observe that 3 steps are in fact required to reach one from the
other. We now demonstrate that I is satisfiable if and only if G is explorable in
at most 3n steps, showing that at least Ω(nb) steps are required otherwise.

(=⇒) By arguments similar to those used in the proof of Theorem1 we are
able to construct from a satisfying assignment α for I an exploration schedule
W of G with length at most 3n. To do so, we use the steps t ∈ [3i − 2, 3i] to
move to the true/false component in step 3i if α sets vi = 1/vi = 0, respectively.

(⇐=) By arguments similar to those used in the proof of Theorem1, we
construct an assignment α for I by setting vi = 1 if W visits the true component
during the 3i-th step, or set vi = 0 if the false component is visited (with an
arbitrary setting for vi if W visits neither). This works since, if some clause of
I had all nb of its associated copies explored separately in steps when not in
the true/false component of G, then it would take at least nb > 3n (for b ≥ 2
and n > 3) steps to visit them all, a contradiction to W ’s length being ≤3n. As
such, for every j ∈ [m] there must be an i ∈ [n] such that >1 distinct copies
associated with cj , hence by construction all copies, are visited in the true/false
component of step 3i. It follows that α must be satisfying.

Moreover, if I has no satisfying assignment then any exploration schedule W
must spend Θ(nb) steps exploring all clause copies associated with ≥1 clause of
I – otherwise there exists a schedule that visits all clause copies in a true/false
component from which we could obtain a satisfying assignment for I. As a result,
we may conclude that it is NP-hard to approximate instances of Non-Strict
TEXP which satisfy Assumption 2 for any c ≥ 3 with ratio strictly better than
Θ(nb)/3n = Θ(nb−1) = O(N

b−1
b+1) = O(N1− 2

b+1) = O(N1−ε′
), where ε′ = 2/(b +

1) can be made arbitrarily close to 0 by selecting b large enough. The theorem
follows for any ε > 0 by forcing ε′ ≥ ε arbitrarily close to ε. ��

7 Conclusion

We considered the problem of Non-Strict Temporal Exploration, a vari-
ant of the Temporal Exploration problem in which the requirement that
edges in a candidate exploration schedule are crossed at strictly increasing time-
steps is weakened, so that an edge may be crossed at a timestep greater than or
equal to the timestep in which the last was crossed. We showed that deciding
Non-Strict TEXP under these relaxed conditions is NP-complete.

The hardness of approximating solutions to Foremost-Non-Strict TEXP
when the input graphs satisfy either of two distinct vertex-connectivity assump-
tions was also considered. For order n graphs satisfying the pairwise vertex-
togetherness assumption (Assumption 1), we proved that it is NP -hard to

144 T. Erlebach and J. T. Spooner

approximate solutions with ratio O(n1−ε) for any ε > 0. For the second of these
two assumptions, which posits that every pair of vertices can reach one another
within c = O(1) steps, we proved O(n1−ε)-inapproximability and O(n

1
2−ε)-

inapproximability in the c ≥ 3 and c = 2 cases, respectively. Also shown was
that, when c = 2, the graph of any yes-instance of Non-Strict TEXP can be
explored in at most O(

√
n log n) timesteps. In complement to this, a lower bound

construction which requires of any exploration algorithm at least Ω(
√

n) steps
was described. Closing the remaining Θ(log n) gap presents an interesting direc-
tion for future work, as does the analysis of exploration time for graphs satisfying
other assumptions that ensure exploration of a graph G is always possible. For
example, one could examine the effect of some of the connectivity/reachability-
ensuring measures presented in [18] within the non-strict model; [11] and [8] also
consider temporal graphs with periodically-repeating properties whose effects
could be interesting to explore within in the model considered here.

References

1. Akrida, E.C., Mertzios, G.B., Spirakis, P.G.: The temporal explorer who returns
to the base. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 13–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6 2

2. Bodlaender, H.L., van der Zanden, T.C.: On exploring always-connected temporal
graphs of small pathwidth. Inf. Process. Lett. 142, 68–71 (2019). https://doi.org/
10.1016/j.ipl.2018.10.016

3. Brodén, B., Hammar, M., Nilsson, B.J.: Online and offline algorithms for the time-
dependent TSP with time zones. Algorithmica 39(4), 299–319 (2004). https://doi.
org/10.1007/s00453-004-1088-z

4. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003).
https://doi.org/10.1142/S0129054103001728

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

6. Casteigts, A., Himmel, A.S., Molter, H., Zschoche, P.: The computational complex-
ity of finding temporal paths under waiting time constraints. CoRR abs/1909.06437
(2019). https://arxiv.org/abs/1909.06437

7. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic
rings. In: 36th IEEE International Conference on Distributed Computing Systems
(ICDCS 2016), pp. 570–579. IEEE (2016). https://doi.org/10.1109/ICDCS.2016.
59

8. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47672-7 36

9. Erlebach, T., Kammer, F., Luo, K., Sajenko, A., Spooner, J.T.: Two moves per
time step make a difference. In: 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019). LIPIcs, vol. 132, pp. 141:1–141:14.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/
LIPIcs.ICALP.2019.141

https://doi.org/10.1007/978-3-030-17402-6_2
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1142/S0129054103001728
https://arxiv.org/abs/1909.06437
https://doi.org/10.1109/ICDCS.2016.59
https://doi.org/10.1109/ICDCS.2016.59
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.4230/LIPIcs.ICALP.2019.141
https://doi.org/10.4230/LIPIcs.ICALP.2019.141

Non-strict Temporal Exploration 145

10. Erlebach, T., Spooner, J.T.: Faster exploration of degree-bounded temporal graphs.
In: 43rd International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2018). LIPIcs, vol. 117, pp. 36:1–36:13. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.36

11. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theor. Comput. Sci. 469, 53–68 (2013). https://doi.org/10.1016/j.tcs.2012.10.029

12. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal
graph classes: a view through temporal separators. Theor. Comput. Sci. 806, 197–
218 (2020). https://doi.org/10.1016/j.tcs.2019.03.031

13. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Tight bounds on distributed
exploration of temporal graphs. In: 23rd International Conference on Princi-
ples of Distributed Systems (OPODIS 2019). LIPIcs, vol. 153, pp. 22:1–22:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.OPODIS.2019.22

14. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic
graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS,
vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09620-9 20

15. Ilcinkas, D., Wade, A.M.: Exploration of the T -interval-connected dynamic graphs:
the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 13–23. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-03578-9 2

16. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002). https://doi.org/
10.1006/jcss.2002.1829

17. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016). https://doi.org/10.1080/15427951.2016.1177801

18. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computa-
tion in possibly disconnected synchronous dynamic networks. J. Parallel Distrib.
Comput. 74(1), 2016–2026 (2014). https://doi.org/10.1016/j.jpdc.2013.07.007

19. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs.
Theor. Comput. Sci. 634, 1–23 (2016). https://doi.org/10.1016/j.tcs.2016.04.006

20. Sobin, C.C., Raychoudhury, V., Marfia, G., Singla, A.: A survey of routing and
data dissemination in delay tolerant networks. J. Netw. Comput. Appl. 67, 128–
146 (2016). https://doi.org/10.1016/j.jnca.2016.01.002

21. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discr. Appl. Math.
8(1), 85–89 (1984). https://doi.org/10.1016/0166-218X(84)90081-7

https://doi.org/10.4230/LIPIcs.MFCS.2018.36
https://doi.org/10.1016/j.tcs.2012.10.029
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.4230/LIPIcs.OPODIS.2019.22
https://doi.org/10.4230/LIPIcs.OPODIS.2019.22
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1016/j.jpdc.2013.07.007
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1016/j.jnca.2016.01.002
https://doi.org/10.1016/0166-218X(84)90081-7

Exploration of Time-Varying Connected
Graphs with Silent Agents

Stefan Dobrev1, Rastislav Královič2(B), and Dana Pardubská2

1 Slovak Academy of Sciences, Bratislava, Slovakia
Stefan.Dobrev@savba.sk

2 Comenius University in Bratislava, Bratislava, Slovakia
{kralovic,pardubska}@dcs.fmph.uniba.sk

Abstract. Exploration is a fundamental task in mobile computing. We
study the version where a group of cooperating agents is situated in
a graph, and the task is to make sure that every vertex of the graph is
visited by some agent. We consider discrete-time evolving graphs with an
adaptive adversary: the adversary observes the actions of the agents, and
can choose the graph for the next step arbitrarily with the only restriction
that it must be connected. We are interested in solving the problem
with weakest possible agents. We provide an exploration algorithm where
the agents can not interact in any way among themselves or with the
vertices (no messages, whiteboards, etc), and even don’t sense each other.
They are only aware of the others from the results of a mutual-exclusion
mechanism in the vertices. We show that 2m−n+1 agents are sufficient,
where m is the number of edges. Interestingly, m−n+1 agents are needed
even in an offline setting when they are controlled by a central entity.

We don’t know whether the algorithm achieves polynomial exploration
time. However, we provide a different algorithm that uses O(n4) agents
in a slightly stronger model (the agents can observe the number of agents
in a vertex, and their actions), but achieves the exploration time O(n9).

1 Introduction

The question how an agent can explore an unknown graph (i.e. visit all its
vertices) is one of the older computer science problems. In 1977, Rosenkrantz
et al. [21] studied graph exploration by an agent that can see the identifiers of
neighboring vertices. In fact, the paper posed a question which, in spite of much
effort, remains open till now. About the same time, exploration of graphs by
means of various types of automata (finite, pebble, counter) has been studied, e.g.
in [3]. Also, teams of cooperating automata have been considered (e.g. [4,20]).
The main question in these works is what types of graphs can be explored by
(teams of) automata of given type. Later works asked what are the memory
requirements of an agent in order to explore any given graph (e.g. [2,12,14]).
A variant of exploration where the agent has to visit all edges has also been
considered ([1,7,9,19]).

The research was supported by Slovak grant VEGA 1/0601/20.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 146–162, 2020.
https://doi.org/10.1007/978-3-030-54921-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_9

Exploration of Time-Varying Connected Graphs with Silent Agents 147

All the mentioned results require the graph to have a distinct labelling of
incident ports in every vertex. They differ in whether identifiers of vertices are
available to the agents, or possibly identifiers of the neighboring vertices as well.
Sometimes, the local port labelling is required to fulfill some global property
(e.g. the sense of direction [10]). A series of papers [8,13,16,17,22] investigates
how a properly chosen port labeling may help the exploration by a single agent.

When considering teams of agents, crucial role affecting the capabilities of the
team play the means of mutual communication and synchronization. It is thus
natural that the problem of exploration has been studied in various models:
the agents may be synchronous or asynchronous, may communicate directly,
indirectly (by means of whiteboards or tokens), or only implicitly (by means of
observing positions and/or using mutual-exclusion mechanisms in vertices), etc.
See [6] for a survey.

The problems connected with the changes of communication topology in time
have been also in the center of the research attention for a long time (e.g. [23]).
However, the various models of networks changing in time have proliferated
recently. We follow the general framework of [5], where different models pre-
sented in the literature so far have been unified under the notion of time-varying
graphs (TVG). In particular, we study what the Class 9 from [5] called constant
connected TVG: the networks evolve in discrete time steps, and there are no con-
straints on the network apart from that in every time step, the snapshot must
be a connected spanner of the underlying graph.

This model has been studied mostly for special topologies, such as rings in
[18]. The study of the problem of exploration of unknown temporal graphs has
commenced in [15], and our research is a continuation of this effort.

Contribution
We are mainly interested in the question which coordination/communication
mechanisms are crucial in the exploration of TVGs. To answer this question,
our goal is to study the agents with weakest possible communication abilities.
First, we present an exploration algorithm that can explore an unknown temporal
graph with 2m−n+1 agents, where m is the number of edges of the underlying
graph. The main difference from the previous work is that our agents are silent,
i.e. the only way an agent can be aware of the existence of other agents is when
it is denied access to a link due to the mutual exclusion mechanism. Somewhat
surprisingly, we also prove that increasing the communication abilities of the
agents doesn’t help too much, since m−n+1 agents are needed even if they are
controlled by a central authority that can observe the entire snapshot in every
time step.

Unfortunately, we don’t know much about the exploration time, since the
proof of the correctness of the exploration algorithm yields only a superexpo-
nential bound on the exploration time. However, we present another exploration
algorithm that achieves polynomial exploration time at the expense of using
more agents (O(n4) of them), and a slightly stronger model: the agents still can-
not communicate, but they can observe each other’s presence. Some technical
parts have been omitted due to space constraints.

148 S. Dobrev et al.

2 Model

We are interested in discrete-time systems of synchronous agents operating in
time-varying graphs. In order to describe our system, we have to define two
components: the evolution of the network in time, and the properties of the
agents.

We use the model of dynamic graphs according to [5]. A time-varying graph
(TVG) with discrete time (also called temporal graph or evolving graph) consists
of a graph G = (V,E) called underlying graph, and a sequence of subgraphs
SG = G0, G1, . . . , Gt, . . . such that for each t, the graph Gt = (V,Et), also called
the snapshot at time t, has Et ⊆ E. Moreover, we require that both G, and each
of the Gt’s are connected. Since we are interested in the worst-case behavior over
all feasible sequences of snapshots, the evolution of the network can be visualized
by an adversary that in each time step t observes the actions of the agents, and
selects the spanner graph Gt+1 for the next time step.

We assume that G is equipped with a local port labelling λ that satisfies the
sense of direction (see [10]), i.e. the agents can, based on the sequence of labels
of traversed links assign local labels to the vertices.

When specifying the properties of the agents, our aim is to employ the weak-
est means of communications with which we are still able to prove that explo-
ration is feasible. In fact, our agents are silent, i.e. they can communicate neither
directly, nor indirectly by whiteboards or tokens. The only form of communica-
tion is implicit by receiving feedback from the mutual-exclusion mechanism in
vertices, and in some cases by observing the number of agents in the vertex.

An agent A is an anonymous entity with local memory 1. The agents operate
in the usual look-compute-move cycle (see e.g. [11]) as follows. At the beginning
of time step t, A is located in a vertex v, and can see the local port numbers
of incident edges. The agent is also notified whether it has freshly arrived to
the vertex in the previous step, or is in the same vertex because the edge it
wanted to traverse wasn’t enabled. In this moment, A may also observe the
number of agents currently located in v. Based on local computation, A may
decide to either stay in v, or to move to some incident link. If several agents try
to move to the same link, the adversary chooses one of them to succeed, and
the rest remain in v with a notification about collision (they can still compute
in the same step in order to process the notification, but no move action can be
performed). Then, based on the actions of the agents, the adversary chooses the
next spanner Gt+1 = (V,Et+1). Suppose that in step t, A succeeded to move
along an edge e = (v, w). If e ∈ Et+1, A is transferred to w, and upon arrival
learns about the success, and about the incoming port number. If, on the other
hand, e �∈ Et+1, A stays in v, and learns about the failure.

1 If the domain of λ is of cardinality O(n), then O(n log n) bits of local memory will
always be sufficient.

Exploration of Time-Varying Connected Graphs with Silent Agents 149

3 Minimal Number of Agents

Our first concern is the smallest number of agents needed to explore a network
with an underlying graph G with n vertices and m edges. We show that 2m−n+1
agents are sufficient to explore the whole graph. We use a variation of the known
rotor-router algorithm. The original algorithm uses a counter in each vertex
that counts up to the degree. Each time an agent visits the vertex, it chooses
the outgoing link based on the counter, and increments the counter afterwards.
In [24] it was shown that a single agent can explore a static undirected graph
within O(mD) steps using this algorithm. A modification of the algorithm was
used in [15] for the exploration of time-varying graphs. However, in our case the
agents do not have access to the whiteboards in the vertices, so each of them
has to maintain a local counter for each vertex. Yet, the algorithm cannot be
viewed as an independent execution of a number of instances of the rotor-router
algorithm, since the agents located in the same vertex compete for the same set
of outgoing links, and this interaction makes the algorithm more complex. The
algorithm for an agent A is in the Algorithm 1: A maintains a local name of the
current vertex, v, and a cyclic counter cv for each vertex v. It tries to follow links
according to the rotor-router algorithm. If the link is successfully acquired, but
the corresponding edge is not present in Et+1, A tries to acquire the same link
in the next step, otherwise, it tries the cyclically following one.

Algorithm 1. Algorithm for agent A

1: if arrived from vertex w via port p then
2: increment cw (modulo deg(w))
3: update v to the local name of w’s neighbor along p
4: end if
5: try to acquire the link cv

6: if mutex failed then
7: increment cv (modulo deg(v))
8: end if

Note that in this algorithms the agents don’t need to even observe the pres-
ence of other agents, the only interaction is via the mutual exclusion mechanism.

Theorem 1. Using Algorithm1, 2m−n+1 agents are sufficient to explore any
graph, even if the adversary may choose their starting locations.

Proof. First note the following: if an agent A successfully acquired some port p
in a vertex v at time t, there will be some agent located at p in all subsequent
steps until the corresponding edge e appears in the snapshot. This follows from
the fact that if e is not in the snapshot, A tries to acquire p in the next step.
Whether it succeeds or not, there will be some agent on p in the next step.

From this observation we immediately get that if there are at least deg(v)
agents located in a vertex v at some time step t, eventually at least one of them

150 S. Dobrev et al.

leaves v. This is due to the fact that if in a time step t′ ≥ t all edges are occupied
by agents, at least one of them must leave v due to the connectivity of Gt′ . On
the other hand, if some edge is not occupied by an agent, there is a mutex failure
for some agents, and at least one of them increments its counter.

Since there are 2m − n + 1 agents, we know that there is no deadlock, i.e.
at least one agent moves every Δ steps, where Δ is the maximum degree of a
vertex. Now suppose, for the sake of contradiction, that there are some vertices
that are never visited. Let V1 be the vertices that are visited infinitely often,
and let V2 be the remaining ones. Clearly, V2 is not empty, and there are some
vertices in V2 that are never visited. Moreover, eventually all agents move in
the V1 part and no vertex from V2 is entered anymore. Consider the cut edges
between V1 and V2 from that moment. We claim that eventually all the ports
are occupied by an agent. Indeed, consider a vertex v ∈ V1 with a port p leading
to a vertex in V2. Since v is visited infinitely often, there must be an agent A
that comes here infinitely often. Every time A leaves v, it increments its counter
so eventually some agent occupies the port p.

It follows that eventually all ports leading to V2 are occupied by an agent.
However, in every time step there must be some edge e ∈ Et leading from V1 to
V2 – a contradiction. ��

On the other hand, even when the agents start from a common homebase, are
equipped with a map of the underlying graph, and an arbitrary strong communi-
cation mechanism, the required number of agents cannot be reduced significantly,
since we prove the following:

Theorem 2. When all the agents start at the homebase, m − n + 1 agents are
needed to explore all graphs even when scheduled by a global offline algorithm
that observes the states of all agents (but does not know the adversary’s choice
of future Et).

The overall idea of the proof is as follows: Fix an arbitrary DFS spanning
tree T rooted at the homebase. We describe an algorithm the adversary can use
to select the snapshots. In each time step, the adversary observes the actions of
the agents and accepts a set of edges into the next snapshot. The goal of the
adversary is to block certain agents, i.e. to not accept the edges the agents want
to traverse. In particular, the adversary tries to account one blocked agent for
each non-tree edge of T .

Let Tv denote a subtree of T rooted at v. When the context is clear, we shall
abuse the notation and refer by Tv to the whole subgraph induced by the vertices
of Tv, e.g. when we speak about non-tree edges of Tv. Since T is a DFS tree,
every non-tree edge connects a vertex with its (not necessarily direct) ancestor.
In each vertex, we classify the incident edges as parent (leading to the parent
in T , denoted as ev), child edges, up edges (edges not in T , leading to vertices
higher in T), and down edges. Let up(v) denote the set of up edges of v. Let
d(v) denote the number of non-tree edges in the subtree Tv. At any point of the
execution, we classify a vertex v as

Exploration of Time-Varying Connected Graphs with Silent Agents 151

– unexplored if v has not yet been visited by an agent,
– done if the whole subtree of Tv has already been visited,
– active otherwise.

At any given time step, let f(e) denote the total balance of the flow of
agents via the edge e up to this moment, where positive values are assigned for
downward (w.r.t. T) flow. Let l(v) be computed as l(v) =

∑
e∈{ev}∪up(v) f(e) −

d(v). If l(v) ≤ 0, we say that v is hungry. If l(v) ≥ |up(v)| + 1, we say that v
is full. For the homebase h we add a fictitious parent edge eh for which f(eh)
is the initial number of agents. We say that h is hungry if l(h) < 0, and full if
l(h) ≥ 0.

Intuitively, the adversary would like to block an agent on every non-tree edge.
In the definition of l(v), the d(v) represents the agents that entered v, but then
left to explore Tv (although there may be agents that entered Tv via some non-
tree edge that would not be accounted for in d(v)). The whole l(v) is then seen as
the excess of agents in v. In this intuition, a hungry vertex needs to receive some
agents in order to explore Tv, and a full vertex has enough agents to cover all its
up-edges. The core of the proof is to show that there are no in-between vertices:
at any moment of time, every vertex is either hungry or full. The adversary then
treats the hungry and full vertices differently: it tries to prevent agents to enter
a hungry vertex, and tries to prevent agents to leave a full vertex. It may seem
that agents leaving a hungry vertex or entering a full vertex are just a bonus
for the adversary, but if they use a non-tree edge, they could cause problems
in some other subtree, and so they have to be kept under control. That’s why
the adversary handles them in a special way: if an agent leaves a hungry vertex
(or enters a full vertex) via a non-tree edge, the edge is marked as special. In a
vertex with a special edge e, agents are permitted only over e, until the overall
flow over e zeroes-out (at which time e ceases to be special). Let us now present
the adversary’s algorithm in a more formal way.

At each time step, we classify up-edges of a vertex v as idle, outgoing and
incoming, according to the flow of agents across the edge at this time step: An
edge is idle if no agent wants to cross the edge, or two agents want to cross the
edge from different endpoints; in any case, accepting an idle edge does not change
the numbers of agents in any vertex. In each vertex v, the adversary applies the
following algorithm to select which edges from {ev} ∪ up(v) are accepted to the
next snapshot. The key part of the proof is the following lemma:

Lemma 1. Let an active vertex v become done at the end of time step t. Then
v must have been full at the beginning of round t. Furthermore, for every done
vertex v, f(ev) ≥ d(v) and f(e) ≥ 1 for every up-edge e that is fully in Tv or
exits Tv.

Note that applying Lemma1 to the homebase yields Theorem 2.

152 S. Dobrev et al.

Algorithm 2. Adversary’s algorithm at vertex v

1: accept all idle up-edges
2: accept ev if it is idle
3: if an idle edge has been accepted then
4: exit, you are done
5: end if
6: if v is unexplored then � so ev and all up-edges are incoming
7: if l(v) = 0 then � i.e. there are no non-tree edges in Tv

8: accept ev and all up edges � v becomes full and, if it is a leaf, it becomes
done

9: else
10: accept ev � v becomes active
11: end if
12: else if v is done or becomes done in the current step then
13: if v has a special edge e then
14: accept e � if e is outgoing, it might stop being special
15: else if ev and all up-edges are outgoing then � v must have been full
16: accept ev

17: else
18: accept an incoming up-edge e � e will become special
19: end if
20: else � v is active
21: if l(v) ≤ 0 then
22: if v has a special edge e then
23: accept e � if e is incoming, it might stop being special
24: else if l(v) < 0 or ev is outgoing then
25: accept ev

26: else � l(v) = 0 and ev is incoming
27: if all up-edges are incoming then
28: accept ev and all up-edges
29: else � there is an outgoing edge e
30: accept an outgoing edge e � e becomes special
31: end if
32: end if
33: else if l(v) ≥ |up(v)| + 1 then
34: if v has a special edge e then
35: accept e � if e is outgoing, it might stop being special
36: else if l(v) > |up(v)| + 1 or ev is incoming then
37: accept ev

38: else � l(v) = |up(v)| + 1 and ev is outgoing
39: if all up-edges are outgoing then
40: accept ev and all up-edges
41: else � there is an incoming edge e
42: accept an incoming edge e � e becomes special
43: end if
44: end if
45: else � this branch should never be taken!
46: end if
47: end if

Exploration of Time-Varying Connected Graphs with Silent Agents 153

The following statements serve as preparation for the proof of Lemma1. First
we establish the important invariant that each vertex is either hungry or full.

Lemma 2. If v is active, then either l(v) ≤ 0 or l(v) ≥ |up(v)| + 1. Moreover,
v can switch between the two states only in time steps where no special edge is
present.

Following is a simple observation that agents may enter an unexplored vertex
only over a tree-edge:

Lemma 3. If v is unexplored, all vertices from Tv are unexplored.

Lemma 4. If v is active and hungry, then f(ev) ≤ d(v), and f(e) ≤ 0 for all
up-edges. If v is active and full, then f(ev) ≥ d(v) + 1. Moreover, f(e) ≥ 1 for
all up-edges.

Proof. Note that 0 ≤ f(e) ≤ 1 for all non-special up-edges: non-special up-edges
are only accepted when v switches between full and hungry, and it is always in
alternating directions.

Due to Lemma 2, an active vertex v can switch from hungry to full only when
there is no special edge, l(v) = 0, and all up edges and ev are incoming. In this
case, all up-edges will have f(e) = 1, and the flow on ev is increased by 1. Since
l(v) was zero, the inflow must have been d(v), and since all f(e)’s were zero,
the whole inflow was due to f(ev). While v remains full, the invariant holds.
Situation for switching from full to hungry is symmetrical. ��

Now we are ready to prove the crucial lemma:

Proof (of Lemma 1). Let v be any vertex that becomes done at the end of time
step t. We proceed by induction on time, and the height of Tv.

If v is a leaf, the first part of the statement is trivial, since a leaf is never active:
it is either unexplored or done. Let us suppose that v has children u1, . . . , uk.

If a child ui is unexplored at the beginning of round t, then ui is a leaf. In
order to see this, suppose, for the sake of contradiction, that Tui

has more than
one vertex. By Lemma 3, all vertices of Tui

are unexplored at the beginning of
time step t. However, from the construction if follows that an unexplored vertex
is visited for the first time along the tree edge (on line 8 or 10). That means
that leaves of Tui

cannot be visited in time step t, and v is not done at the end
of step t. Hence, if ui is unexplored at the beginning of step t, it is a leaf, and
there must be an agent traversing the edge from v to ui in step t.

If a child ui is done at the beginning of step t, by induction it must have
f(eui

) ≥ d(ui), and f(e) ≥ 1 for all edges e that lead from v to Tui
.

Let a child ui be active at the beginning of step t. Since v becomes done in
step t, ui must become done, too, and by induction ui is full at the beginning of
step t. Then by Lemma 4, f(eui

) = d(ui) + 1, and f(e) ≥ 1 for all edges e that
lead from v to Tui

.
To summarize, f(e) ≥ 1 for all non-tree down-edges from v, and f(eui

) ≥
d(ui) for all tree down-edges from v. Moreover, v must have at least one child

154 S. Dobrev et al.

that is unexplored or active (otherwise v would have been done before t), and
this child must have at least one additional agent coming from v. Overall, the
down-edges from v incur outflow at least d(v)+1, which means that the up-edges
must incur inflow to v at least d(v) + 1, too. However, if v was hungry, it would
hold l(v) ≤ 0, and the inflow would be at most d(v). Due to Lemma 2, v must
be full.

Now let us show the second part of the statement. If v is leaf, line 8 must
have been performed, and so f(ev) = 1, and f(e) = 1 for all up-edges at the end
of step t. If v is active, we have just proved that v is full, and due to Lemma4
f(ev) = d(v) + 1, and f(e) ≥ 1 for all up-edges at the beginning of step t.
However, starting from step t, the code at line 12 applies: apart from special
edge (which has always positive flow), v only accepts outgoing edge ev if all the
up-edges are outgoing too. Since all vertices of Tv are done, too, by induction
on the height of the tree this can happen only when v is full, so f(ev) ≥ d(v). ��

Finally, we have to check that the adversary is correct:

Lemma 5. In each time step, the set of accepted edges forms a connected graph.

Proof. We will show that in each vertex v (other that the home base) some edge
leading up-tree T is accepted. This is sufficient to ensure connectivity.

The adversary runs Algorithm2 in each v. With the exception of the branch
on line 45, at least one edge from {ev} ∪ up(v) is always accepted. However, due
to Lemma 2, the branch on line 45 is never taken. ��

4 Polynomial Search Time

The Algorithm 1 succeeds in exploring the graph with almost optimal number
of agents. However, the proof provides only an super-exponential bound on the
number of steps needed to finish the exploration. We don’t know any better
bound, and analyzing the time complexity of Algorithm1 (at least to answer
the question whether it is always polynomial) is an interesting open question.
However, we are able to provide another algorithm which uses more agents, but
achieves a polynomial exploration time.

To simplify the presentation, we describe the algorithm in a vertex-centric
model: in every step, the decisions are not made by particular agents; instead,
each node has an independent entity that evaluates the states of the agents
present in the vertex, and selects some action for each agent. Later we show how
to modify the algorithm to the considered agent-centric model.

The basic idea of the algorithm is a simulated diffusion: The agents flow
from vertices with high number of agents towards the vertices with fewer agents.
The tricky part is to ensure such flow even when the accepted edges are decided
by the adversary. We achieve that by employing Algorithm4, and by careful
accounting scheme that shows that even if there are instances when the number
of agents in the receiver vertex exceeds the number of agents in the senders (this
can happen due to concurrency), there is overall progress.

Exploration of Time-Varying Connected Graphs with Silent Agents 155

In order to glimpse the difficulty of the task, first let us examine the following
simple algorithm:

Algorithm 3. Algorithm Threshold Flood
1: while needed do
2: if the number of agents at vertex v at least equals its degree then
3: send an agent via all incident edges
4: end if
5: end while

This is essentially a modified flooding and one would expect that such an
algorithm must always make progress. Unfortunately, this is not so, as Fig. 1
shows. Hence, a more sophisticated algorithm is needed.

a

32

0 0

a

23

0 0

Fig. 1. Livelock in Algorithm 3. The numbers near vertices correspond to the numbers
of agents. Disabled links are shown as dashed.

Let xr
v denote the number of agents in v at the beginning of round r, and

let M and T be parameters to be specified later. The algorithm proceeds in
nM -step rounds described in Algorithm4.

We first show that when a single edge is considered, the flow is always in the
direction towards the vertex with fewer agents.

Lemma 6. Let e = (u, v) be an edge such that xr
u ≥ xr

v. Then, during round r,
either

– one agent crosses from u to v and xr
u > xr

v, or
– one agent crosses from u to v and one agent crosses from v to u, or
– no agents pass between u and v

156 S. Dobrev et al.

Algorithm 4. Algorithm Diffusion at vertex v

1: for round r from 0 to T do
2: for time step i from 0 to nM − n + 1 do � i is the step number within round r
3: for each incident edge e do
4: if xr

v > nM − i and no agent has been received or successfully sent via
e in round r then

5: send an agent via e � might not succeed
6: end if
7: end for
8: end for
9: end for

Proof. Let i > nM − xr
u be the first time the edge e is enabled while u tries to

send an agent in round r. It can happen that no such i exists (i.e. e is never
enabled in round r for i > nM − xr

u), then the last case applies. Otherwise,
if i > nM − xr

v both u and v send an agent over e and, by construction, stop
sending agents over e in round r. Hence, the middle case applies. Finally, if
i ≤ nM − xr

v, then only u sends an agent over e and the first case applies, as no
other agent is sent over e in round r. ��

Lemma 6 tells us that there is no flowback of agents from vertices with low
number of agents to vertices with high number of agents. The following Lemma
shows that there is a progress:

Lemma 7. Let i be such that n − 1 < i < nM . Let V r
i = {v | xr

v ≥ i} and let
V r
i be the complement of V r

i . Let Er
i be the set of edges separating V r

i from V r
i .

If Er
i �= ∅, then during round r at least one agent crosses Er

i from V r
i to V r

i .

While Lemma 7 indicates that there is a progress in the diffusion of the
agents, it can happen that a vertex in one round receives multiple agents and
it is not immediately clear whether this process really terminates, and at what
time. In order to prove that it does terminate in polynomial time, we introduce
the following accounting: Let the overall weight Wr =

∑
v∈V wr

v, where the
weight wr

v of a node v at the beginning of round r is wr
v =

(
xr
v+1
2

)
. We shall

argue that for a suitable choice of M , the overall weight Wr decreases in each
round. Although due to Lemma6 agents are sent only from vertices with higher
weight to vertices with lower weight, a vertex may receive multiple agents, and
its weight may increase. If the parameters are not chosen properly, the overall
weight may increase as can be seen in the following example.

Example 1. Let G be a complete bipartite graph with partitions of size n/2.
Assume that at time t each vertex of one partition has k agents, while the
vertices of the other partition have k − 1 agents each, for M − n/2 ≥ k ≥ n/2.
The adversary will enable all edges at time t. Then

Wr =
(

k + 1
2

)
n

2
+

(
k

2

)
n

2

Exploration of Time-Varying Connected Graphs with Silent Agents 157

while

Wr+1 =
(

k − n/2 + 1
2

)
n

2
+

(
k + n/2

2

)
n

2
= Wr +

n3

8
− n2

4
,

i.e. the overall weight increased by n3

8 − n2

4 .

When arguing about how Wr changes over time, we distribute the weight in
a vertex at the beginning of a round among its agents: we arbitrarily order the
xr
v agents that are present in v at the beginning of round r, and assign the i-th

agent weight i. For a given round, consider a directed graph D with edges ED

indicating the transfer of agents (we consider only edges that transfer an agent
in one direction, since the edges that transfer agents in both directions have
no effect on the resulting weights). Let outv, and inv be the out- and in-degree
of v in D, respectively. In each vertex v, label the outgoing edges arbitrarily
1, . . . , outv, and the incoming edges 1, . . . , inv. This labeling defines the weight
transferred by agents as follows (see Fig. 2): let e = (u, v) ∈ ED be an edge, and
e−, e+ be the two labels near u, and v, respectively. Then the agent with weight
xr
u − e− +1 in u arrives to v at position e+ (after the outv agents already left v),

and will have weight xr
v − outv + e+.

Fig. 2. An agent transferring weight from vertex u to vertex v,

Hence, the overall weight is changed as follows:

Wr+1 = Wr +
∑

e=(u,v)∈ED

(
xr
v − outv + e+ − (xr

u − e− + 1)
)

= Wr +
∑

e=(u,v)∈ED

(xr
v − xr

u) +
∑

e=(u,v)∈ED

(
e− + e+ − 1 − outv

) (1)

In the next two lemmata, we argue about the two summands of (1):

Lemma 8. Assume that at the beginning of round r there is at least one vertex
with at least M agents, and at least one vertex with less than m agents for some
m ≥ n − 1. Then

∑
e=(u,v)∈ED

(xr
v − xr

u) ≤ −M + m.

Proof. Due to Lemma 6, xr
v−xr

u < 0 for each edge e = (u, v) ∈ ED. We construct
a specific sequence of edges to make sure the overall sum is small enough. Let

158 S. Dobrev et al.

z0 = M , and define the sequence of edges e0, e1, . . . inductively together with
a sequence of numbers z0 > z1 > . . . as follows. For each i ≥ 0 such that
zi ≥ m, let Vi = {u | xr

u ≥ zi}. Since m ≤ zi ≤ M , Vi defines a non-empty cut,
and due to Lemma 7 there is at least one edge in ED going from Vi to some
vertex v with xr

v < zi. Let zi+1 be the minimum value of xr
v among all these

vertices, and ei be the edge leading to such vertex. Then ei = (ui, vi) such that
xr
ui

≥ zi, xr
vi

= zi+1 < zi. Note that due to the minimality of each zi, xr
ui

< zi−1

(otherwise ei would have been chosen in the previous iterations), and so all the
edges ei are disjoint.

Let k be the length of the constructed sequence, i.e. the first index such that
zk < m. Then because xr

ui
≥ zi = xr

vi−1, the sum
∑k

i=0(x
r
vi

− xr
ui

) telescopes to
∑k

i=0(x
r
vi

− xr
ui

) ≤ −xr
u0

+ xr
vk

≤ −M + m. ��

Lemma 9. For large enough n,
∑

e=(u,v)∈ED
(e− + e+ − 1 − outv) ≤ n3

3 .

If the prerequisites of Lemma 8 and Lemma 9 hold, (1) can be rewritten

Wr+1 ≤ Wr +
n3

3
− M + m (2)

Lemma 10. Let M = 2n3

3 +n and let nM be the number of agents in the system.
Then after 2n5/3 + o(n5) rounds there are no unexplored vertices left.

Proof. As the total number of agents is nM , there will always be a vertex with
at least M agents. Set m = n. As long as there exists an unexplored vertex,
Lemma 8 applies and according to (2), Wr decreases each round by at least
M − m − n3/3 ≥ n3/3. As the initial weight is

(
nM+1

2

)
< (nM + 1)2/2 (all the

agents in the home base), (nM+1)2

2n3/3 = (2n4+3n2+3)2

6n3 = 2n5

3 + o(n5) rounds are
sufficient to spread the agents so that Lemma 8 does no longer apply, and all
vertices are explored. ��

As each round takes nM time steps, this yields:

Theorem 3. Let G = (V,E) be an arbitrary base graph. Then a vertex-based
algorithm that knows only n = |V |, but nothing else about G can explore any
time-varying graph based on G using 2n4

3 + n2 agents in time 4n9/9 + o(n9).

Improving the Time
In the initial presentation of Algorithm4, each round lasted nM time steps. Since
the overall number of agents in the system is nM , Lemma 6 ensures that agents
are only transferred to vertices with fewer agents. However, we only used vertices
with up to M agents in showing progress in Lemma 8, and the transfers of agents
among vertices with more than M agents were not important for our argument.
Hence, it is possible to modify the arguments as follows: make each round last
M steps instead of nM . This means that Lemma 6 does not apply if both the
vertices have more than M agents. Also, Lemma 7 will hold only for i < M .

Exploration of Time-Varying Connected Graphs with Silent Agents 159

We can modify the weighting scheme by capping the weights of the agents at M ,
i.e. Wr =

∑
v∈V wr

v where wr
v =

(
xr
v+1
2

)
if xr

v ≤ M , and wr
v =

(
M+1

2

)
+M(xr

v−M)
if xr

v > M . In the construction of the graph D we can disregard edges among
vertices with ≥M agents, since they don’t change Wr. Split the remaining edges
of ED into Es

D that lead from u with xr
u ≤ M , and Eb

D that lead from u where
xr
u > M . The contribution of an edge (u, v) ∈ Es

D into (1) is not changed, i.e.
xr
v − outv + e+ − (xr

u − e− + 1), whereas the contribution of an edge from Eb
D is

xr
v −outv +e+−M . The first summand of (1) that is dealt with in Lemma 8 then

becomes
∑

e=(u,v)∈Es
D

(xr
v − xr

u) +
∑

e=(u,v)∈Es
D

(xr
v − M). Note that the second

part is always non-positive, and the argumentation of Lemma8 is only on edges
from Es

D anyway.
The second summand of (1) that is dealt with in Lemma 9 is changed as

follows: for edges (u, v) from Es
D the contribution is the same, i.e. e− + e+ − 1−

outv, whereas for edges from Eb
D it is e+ − outv. Since the value only decreased

in comparison to D, the upper bound from Lemma9 is still valid.
Summarizing, we can simply shorten each round of Algorithm4 to M steps

without any adverse effects on the analysis, saving a factor of n in the time:

Theorem 4. Let G = (V,E) be an arbitrary base graph. Then a vertex-based
algorithm that knows only n = |V |, but nothing else about G can explore any
time-varying graph based on G using 2n4

3 + n2 agents in time 4n8/9 + o(n8).

Agent-Centric Algorithm
In Algorithm 4 there is an authority in each vertex that decides which agent goes
to which link. However, the decision is based only on the number of agents in
the vertex, the clock (i.e. ability to count which time step currently is), and the
ability to see whether some agent arrived via a given edge within the current
round. Assume now that the agents start at the same time (i.e. can count the
number of time steps), and are equipped with some means to distinguish the
multiplicity of agents in a vertex. Also, if an agent remains in a vertex (e.g.
because its chosen edge was not selected), it is notified which incident edges
were selected in the previous round, and whether agents were delivered along
them.

Consider a round r of Algorithm 4 in a vertex v. Note that only agents that
were present in v at the beginning of r participate in transmissions (agents that
arrived to v during the round just wait until next round). Moreover, for each
incident edge e, the situation is as follows: either v never sends an agent along
e (if some agent arrived from e), or v starts to transmit over e at certain time
step, and continues trying until the transmit is successful, or the round is over.

Now we adapt the algorithm to our agent-centric model. Each step of the
original algorithm will be replaced by n substeps. Let i be the first step when
v starts sending agents. All agents that were present in v from the beginning
of the round know which edges have already delivered agents, and hence they
agree on a set of edges where the algorithm must send. In the substeps of step i,
the agents try to acquire the needed links in order: At the beginning, all agents

160 S. Dobrev et al.

are free. In the j-th substep, all free agents try to acquire the j-th outgoing link.
One of them succeeds, and becomes bound to that link; all other remain free, and
continue to the next substep. Once an agent becomes bound to a certain link,
it tries to acquire that link in all subsequent substeps of all subsequent steps,
until either it succeeds in traversing the edge, or the whole round ends. Note
that once there is an agent bound to some link, no other agent tries to access
that link until the end of the whole round.

Recall the proof of Lemma 6, and consider an edge (u, v) with xr
u ≥ xr

v. If
xr
u > xr

v, then u starts sending in a sooner time step than v. During the substeps
of the step when only u is sending, u’s agents become bound to their respective
links, and the proof follows. Hence, the only way Lemma6 could be violated is
when xr

u = xr
v, and one agent passes from u to v. The only place in the analysis

where this plays role is in the proof of Lemma 8, where instead of xr
v − xr

u < 0
one has xr

v − xr
u ≤ 0. This change, however, has no effect on the actual proof.

To sum up:

Theorem 5. Let G = (V,E) be an arbitrary base graph. Then an agent-based
algorithm that knows only n = |V |, but nothing else about G can explore any
time-varying graph based on G using 2n4

3 + n2 agents in time 4n9/9 + o(n8).

Unknown n
If n is not known, the agents can’t all appear at the home base, since that would
reveal n to the agents (the number of agents is a function of n). Instead, we use
a vertex-centric model where the algorithm can request another batch of agents
at the home base until it has enough to solve the problem. Also, we suppose
that the vertex can access the states of the agents, i.e. read the messages they
contain.

The basic technique is to guess an upper bound n′ on n, use Algorithm 4
to broadcast assuming n′ > n, and verify whether all nodes have been reached.
If not, double the guess n′ and repeat the process. The verification uses two
observations:

– Let Sv denote the set of edges over which v successfully sent an agent in the
second last step of Algorithm 4 for n′, and let Rv be the set of edges of which
v received agents in the last step of this execution. The graph has been fully
explored if and only if ∪v∈V Sv = ∪v∈V Rv.

– If each vertex has at least n − 1 agents, a simultaneous broadcast to all
neighbours from each vertex does not change the number of agents in each
vertex.

Note that the algorithm can be altered in a way that every explored vertex
has at least n′ − 1 agents. When Algorithm 4 terminates in time O(n′9), each
vertex v with at least n′ − 1 agents performs n′ steps of broadcast, where the
broadcasted information is a pair (Sv, Rv). After n′ steps of broadcast, homebase
can evaluate whether the current guess n′ was correct. If not, it can require a
new batch of agents, and start another iteration.

Exploration of Time-Varying Connected Graphs with Silent Agents 161

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

2. Ambühl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with
logarithmic memory. ACM Trans. Algorithms 7(2), 17 (2011)

3. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier
to search than graphs). In: 19th Annual Symposium on Foundations of Computer
Science, Ann Arbor, Michigan, USA, 16–18 October 1978, pp. 132–142. IEEE Com-
puter Society (1978)

4. Blum, M., Sakoda, W.J.: On the capability of finite automata in 2 and 3 dimen-
sional space. In: 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October–1 November 1977, pp. 147–161. IEEE
Computer Society (1977)

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

6. Das, S.: Graph explorations with mobile agents. In: Flocchini, P., Prencipe, G.,
Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research
in Moving and Computing. LNCS, vol. 11340, pp. 403–422. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-11072-7 16

7. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory
32(3), 265–297 (1999)

8. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-
on-the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005.
LNCS, vol. 3499, pp. 127–139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11429647 12

9. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg
(2005). https://doi.org/10.1007/11561071 4

10. Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing.
Theor. Comput. Sci. 291(1), 29–53 (2003)

11. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing. LNCS, vol. 11340. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-11072-7

12. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

13. Gasieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast periodic
graph exploration with constant memory. J. Comput. Syst. Sci. 74(5), 808–822
(2008)

14. G ↪asieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,
vol. 5344, pp. 14–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-92248-3 2

15. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Tight bounds on distributed
exploration of temporal graphs. In: Felber, P., Friedman, R., Gilbert, S., Miller,
A., (eds.) 23rd International Conference on Principles of Distributed Systems
(OPODIS 2019), 17–19 December 2019, Neuchâtel, Switzerland. LIPIcs, vol. 153,
pp. 22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

16. Ilcinkas, D.: Setting port numbers for fast graph exploration. Theor. Comput. Sci.
401(1–3), 236–242 (2008)

https://doi.org/10.1007/978-3-030-11072-7_16
https://doi.org/10.1007/11429647_12
https://doi.org/10.1007/11429647_12
https://doi.org/10.1007/11561071_4
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-540-92248-3_2
https://doi.org/10.1007/978-3-540-92248-3_2

162 S. Dobrev et al.

17. Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic explo-
ration. Algorithmica 63(1–2), 26–38 (2012). https://doi.org/10.1007/s00453-011-
9518-1

18. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of
dynamic rings. Distrib. Comput. 33(1), 41–67 (2018). https://doi.org/10.1007/
s00446-018-0339-1

19. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2),
281–295 (1999)

20. Rollik, H.: Automaten in planaren graphen. Acta Inf. 13, 287–298 (1980). https://
doi.org/10.1007/BF00288647

21. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics
for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

22. Steinová, M.: On the power of local orientations. In: Shvartsman, A.A., Felber, P.
(eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 156–169. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69355-0 14

23. Tajibnapis, W.D.: A correctness proof of a topology information maintenance pro-
tocol for a distributed computer network. Commun. ACM 20(7), 477–485 (1977)

24. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003). https://doi.
org/10.1007/s00453-003-1030-9

https://doi.org/10.1007/s00453-011-9518-1
https://doi.org/10.1007/s00453-011-9518-1
https://doi.org/10.1007/s00446-018-0339-1
https://doi.org/10.1007/s00446-018-0339-1
https://doi.org/10.1007/BF00288647
https://doi.org/10.1007/BF00288647
https://doi.org/10.1007/978-3-540-69355-0_14
https://doi.org/10.1007/s00453-003-1030-9
https://doi.org/10.1007/s00453-003-1030-9

Network Communication

Optimal Packet-Oblivious Stable Routing
in Multi-hop Wireless Networks

Vicent Cholvi1(B), Pawe�l Garncarek2, Tomasz Jurdziński2,
and Dariusz R. Kowalski3

1 Department of Computer Science, Universitat Jaume I,
Castelló de la Plana, Castelló, Spain

vcholvi@uji.es
2 Instytut Informatyki, Uniwersytet Wroc�lawski, Wroc�law, Poland

3 School of Computer and Cyber Sciences, Augusta University,
Augusta, GA, USA

Abstract. Stability is an important issue in order to characterize the
performance of a network, and it has become a major topic of study in
the last decade. Roughly speaking, a communication network system is
said to be stable if the number of packets waiting to be delivered (back-
log) is finitely bounded at any one time.

In this paper, we introduce a new family of combinatorial structures,
which we call universally strong selectors, that are used to provide a
set of transmission schedules. Making use of these structures, combined
with some known queuing policies, we propose a packet-oblivious routing
algorithm which is working without using any global topological infor-
mation, and guarantees stability for certain injection rates. We show that
this protocol is asymptotically optimal regarding the injection rate for
which stability is guaranteed.

Furthermore, we also introduce a packet-oblivious routing algorithm
that guarantees stability for higher traffic. This algorithm is optimal
regarding the injection rate for which stability is guaranteed. However,
it needs to use some global information of the system topology.

Keywords: Wireless network · Routing · Adversarial queuing ·
Interference · Stability · Packet latency

1 Introduction

Stability is an important issue in order to characterize the performance of a
network, and it has become a major topic of study in the last decade. Roughly
speaking, a communication network system is said to be stable if the number of
packets waiting to be delivered (backlog) is finitely bounded at any one time. The
importance of such an issue is obvious, since if one cannot guarantee stability,

V. Cholvi—This work was partially supported by the Ministerio de Ciencia, Innovación
y Universidades grant PRX18/000163.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 165–182, 2020.
https://doi.org/10.1007/978-3-030-54921-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_10

166 V. Cholvi et al.

then one cannot hope to be able to ensure deterministic guarantees for most of
the network performance metrics.

For many years, the common belief was that only overloaded queues (i.e.,
when the total arrival rate is greater than the service rate) could generate insta-
bility, while underloaded ones could only induce delays that are longer than
desired, but always remain stable. However, this belief was shown to be wrong
when it was observed that, in some networks, the backlogs in specific queues
could grow indefinitely even when such queues were not overloaded [4,8]. These
later results aroused an interest in understanding the stability properties of
packet-switched networks, so that a substantial effort has been invested in that
area. Among the obtained results, stability of specific scheduling policies was
considered for example in [7,14,19,20]. The impact of network topologies on
injection rates that guarantee stability was considered in [18,21,22]. A system-
atic account of issues related to universal stability was given in [2].

Whereas in wireline networks a node can transmit data over any outgoing
link and simultaneously receive data over any incoming link, the situation is
different in wireless networks. Indeed, nearby wireless signal transmissions that
overlap in time can interfere with one another, to the effect that none can be
transmitted successfully. This makes the study of stability in wireless networks
more complex. As in the wireline case, a substantial effort has been invested
in investigating stability in that setting. Stability in wireless networks without
explicit interferences was first studied by Andrews and Zhang [5,6] and Cholvi
and Kowalski [16]. Chlebus et al. [13] and Anantharamu et al. [3] studied adver-
sarial broadcasting with interferences in the case of using single-hop radio net-
works. In multi-hop networks with interferences, Chlebus et al. [11] considered
interactions among components of routing in wireless networks, which included
transmission policies, scheduling policies and control mechanisms to coordinate
transmissions with scheduling. In [10], the authors demonstrated that there is no
routing algorithm guaranteeing stability for an injection rate greater than 1/L,
where the parameter L is the largest number of nodes which a packet needs to
traverse while routed to its destination. They also provided a routing algorithm
that guarantees stability for injection rates smaller than 1/L. Their approach,
however, is not accurate for studying stability of longer-distance packets; there-
fore, in this work we study how the stability of routing depends of the conflict
graph (which we will formally define later) of the underlying wireless networks,
which is independent of the lengths of the packets’ routes.

Our results. In this paper, we study the stability of dynamic routing in multi-
hop radio networks with a specific methodology of adversarial traffic that reflects
interferences. We focus on packet-oblivious routing protocols; that is, algorithms
that do not take into account any historical information about packets or carried
out by packets. Such protocols are well motivated in practice, as real forwarding
protocols and corresponding data-link layer architectures are typically packet-
oblivious.

First, we give a new family of combinatorial structures, which we call univer-
sally strong selectors, that are used to provide a set of transmission schedules.

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 167

Table 1. Summary of the paper’s results.

Routing algorithm Scheduling

policies (ALG)

Required knowledge Maximum

injection rate

USS-plus-Alg LIS, SIS NFS,

FTG

Bounds on the number of links

and on the network’s degree

O(1/(e · ΔH))

Coloring-plus-Alg LIS, SIS NFS,

FTG

Full topology O(1/ΔH)

Making use of these structures, combined with some known queuing policies
such as Longest In System (LIS), Shortest In System (SIS), Nearest From Source
(NFS) and Furthest To Go (FTG), we propose a local-knowledge packet-oblivious
routing algorithm (i.e., which is working without using any global topological
information) that guarantees stability for certain injection rates. We show that
this protocol is asymptotically optimal regarding the injection rate for which
stability is guaranteed, mainly, for Θ(1/ΔH), where ΔH is the maximum vertex
degree of the conflict graph of the wireless network.

Later, we introduce a packet-oblivious routing algorithm that, by using the
same queueing policies, guarantees stability for higher injection rates. This algo-
rithm is optimal regarding the injection rate for which stability is guaranteed.
However, it needs to use some global information of the system topology (so
called global-knowledge).

Table 1 summarizes the main results of this paper.
The rest of the paper is structured as follows. Section 2 contains the techni-

cal preliminaries. In Sect. 3, we introduce and study universally strong selectors,
which are the core components of the deterministic local-knowledge routing algo-
rithm that is developed in Sect. 4, where we show that it is asymptotically opti-
mal. In Sect. 5, we present a global-knowledge routing algorithm that guarantees
universal stability for higher traffic, we also show that it is optimal. In Sect. 6,
we extend the results obtained for the Longest-In-System scheduling policy in
Sect. 4 to other policies, mainly, SIS, NFS and FTG. This extension is based on
different technical tools, mainly, on reduction to the wired model with failures
studied in [1], in which SIS, NFS and FTG are stable. We end with some conclu-
sions and future work in Sect. 7. Some technical details and proofs can be found
in [15].

2 Model and Problem Definition

Wireless Radio Network. We consider a wireless radio network represented by
a directed symmetric network graph G = (VG, EG). It consists of nodes in VG

representing devices, and directed edges, called links, representing the fact that a
transmission from the starting node of the link could be directly delivered to the
ending node. The graph is symmetric in the sense that if some (i, j) ∈ EG then
(j, i) ∈ EG too. Each node has a unique ID number and it knows some upper

168 V. Cholvi et al.

1

2

3

4

5

6

3

4

5

6

1

2

Fig. 1. Radio network G with 4 nodes and links labeled 1–6 (up). Conflict graph H(G)
obtained from network G (down). Observe that each link i in network G corresponds
to one node i in H(G).

bounds on the number m of edges in the network and the network in-degree (i.e.,
the largest number of links incoming to a network node).1

Nodes communicate via the underlying wireless network G. Communication
is in synchronous rounds. In each round a node could be either transmitting or
listening. Node i receives a message from a node j �= i in a round if j is the only
transmitting in-neighbor of i in this round and node i does not transmit in this
round; we say that the message was successfully sent/transmitted from j to i.

Conflict Graphs. We define the conflict graph H(G) = (VH(G), EH(G)) of a net-
work G as follows: (1) its vertices are links of the network (i.e., VH(G) = EG)
and, (2) a directed edge (u, v) ∈ EH(G) if and only if a message across link
v ∈ EG cannot be successfully transmitted while link u ∈ EG transmits. Note
that, accordingly with the radio model, a conflict occurs if and only if the trans-
mitter in u is also a receiver in v or the transmitter in u is a neighbor of the
receiver in v (see Fig. 1 for an illustrative example). If network G is clear from
the context, we skip the parameter G in H(G) (i.e., we will use H). Note that,
the links in our definition are directed in order to distinguish which transmission
is blocked by which.

Routing Protocols and Transmission Schedules. We consider packet-oblivious
routing protocols, that is, protocols which only use their hardwired memory and
basic parameters of the stored packets assigned to them at injection time (such
as source, destination, injection time, route) in order to decide which packet to
send and when.

1 In which case the performance will depend on these known estimates, instead of the
actual values.

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 169

We distinguish between global-knowledge protocols which can use topological
information given as input, and local-knowledge protocols that are given only
basic system parameters such as the number of links or the network’s in-degree.

All our protocols will be based on pre-defined transmission schedules, which
will be circularly repeated—the properties of these schedules will guarantee sta-
bility for certain injection rates. These schedules will be different for different
types of protocols, due to the available information based on which these sched-
ules could be created.

Adversaries. We model dynamic injection of packets by way of an adversar-
ial model, in the spirit of similar approaches used in [4,8,10,11,13,16,22]. An
adversary represents the users that generate packets to be routed in a given radio
network. The constraints imposed on packet generation by the adversary allow
considering worst-case performance of deterministic routing algorithms handling
dynamic traffic.

Over time, an adversary injects packets to some nodes. The adversary decides
on a path a packet has to traverse upon its injection. Our task is to develop a
packet-oblivious routing protocol such that the network remains stable; that is,
the number of packets simultaneously queued is bounded by a constant in all
rounds. Since an unbounded adversary can exceed the capability of a network to
transmit messages, we limit its power in the following way: for any time window
of any length T , the adversary can inject packets (with their paths) in such a
way that each link is traversed by at most ρ · T + b packets, for some 0 ≤ ρ ≤ 1
and b ∈ N

+. We call such an adversary a (ρ, b)-adversary.

3 Selectors as Transmission Schedulers

In this section, we introduce a family of combinatorial structures, widely called
selectors [12,17], that are the core of the deterministic routing algorithm pre-
sented in Sect. 4. In short, we will use specific type of selectors to provide a
set of transmission schedules that assure stability when combined with suitable
queuing policies.

There are many different types of selectors, with the more general one being
described below:

Definition 3.1. Given integers k,m and n, with 1 ≤ m ≤ k ≤ n, we say
that a boolean matrix M with t rows and n columns is a (n, k,m)-selector if any
submatrix of M obtained by choosing k out of n arbitrary columns of M contains
at least m distinct rows of the identity matrix Ik. The integer t is referred as the
size of the (n, k,m)-selector.

In order to use selectors as transmission schedules, the parameter n is
intended to refer to the number of nodes in the network, k refers to the maxi-
mum number of nodes that can compete to transmit (i.e., k = Δ+1, where Δ is
the maximum degree of the network), and m refers to the number of nodes that
are guaranteed to successfully transmit during the t-round schedule. Therefore,

170 V. Cholvi et al.

each column of the matrix M is used to define the whole transmission schedule
of each node. Rows are used to decide which nodes should transmit at each time
slot: In the i-th time slot, node v will transmit iff Mi,v = 1 (and v has a packet
queued); the schedule is repeated after each t time slots.

Taking into account the above-mentioned approach, selectors may be used
to guarantee that during the schedule, every node will successfully receive some
messages.

A (n, k, 1)-selector guarantees that, for each node, one of its neighbors will
successfully transmit during at least 1 round per schedule cycle (that is, that
node will successfully receive at least one message). However, whereas the above
use of selectors is helpful in broadcasting (since there is progress every time any
node receives a message from a neighbor), it happens that many neighbors may
have something to send, but only one of them has something for that node.
Therefore, the above presented selector guarantees that each node will receive
at least one message, but not necessarily will receive the one addressed to it.

A (n, k, k)-selector (which is known as strong selector [17]) guarantees that
every node that has exactly k neighbors will receive a message from each one of
them. However, it has been shown that its size t = Ω(min{n, (k2/ log k) log n}).
This means that k packets will be received, but during a long amount of time.

In order to solve the above mentioned problems with known selectors, now
we introduce a new type of selectors, which we call universally strong. Namely,
a (n, k, ε)-universally-strong selector of length t guarantees that every node will
receive ε · t/k successful messages from every neighbor during t rounds. More
formally:

Definition 3.2. A (n, k, ε)-universally-strong selector S is a family of t sets
T1, . . . , Tt ⊆ [n] such that for every set A ⊆ [n] of at most k elements and for
every element a ∈ A there exist at least ε ·t/k sets Ti ∈ S such that Ti ∩A = {a}.

3.1 Universally Strong Selectors of Polynomial Size

Clearly, universally strong selectors make sense provided they exist and their
size is moderate. In the next theorem, we prove that, for any ε ≤ 1/e, there
exists a (n, k, ε)-universally-strong selector of polynomial size.

Theorem 3.1. For any ε ≤ 1/e, there exists a (n, k, ε)-universally-strong selec-
tor of size O(k2 ln n).

Proof. The proof relies on the probabilistic method.
Consider a random matrix M with t rows and n columns, where Mi,j = 1

with probability p and Mi,j = 0 otherwise. Given a row i and columns j1, . . . , jk,
the probability that Mi,j1 = 1 and Mi,j2 = · · · = Mi,jk

= 0 (i.e., that node j1’s
transmission is not interrupted by nodes j2, . . . , jk in round i) is P = p(1−p)k−1

and is maximized with p = 1/k. In further considerations, we use matrix M
generated with p = 1/k.

Given columns C = {j1, . . . , jk}, let X(C) be the number of “good” rows i
such that Mi,j1 = 1 and Mi,j2 = · · · = Mi,jk

= 0.

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 171

We will use the following Chernoff bound:

Pr[X(C) ≤ (1 − δ)E[X(C)]] ≤ exp(−E[X(C)]δ2/2)

for 0 ≤ δ ≤ 1.
Using E[X(C)] = Pt and δ = (kP − ε)/(kP), we obtain:

Pr[X(C) ≤ εt/k] ≤ exp(−Ptδ2/2).

Consider a “bad” event E such that for at least one set of columns of size at
most k, there are few good rows. More specifically, X(C) ≤ εt/k for at least one
set of columns C, where |C| = k. The probability R of event E happening fulfills
the following inequality:

R ≤ k

(
n

k

)
exp(−Ptδ2/2).

Therefore R < 1 if

exp(−Ptδ2/2) < 1/

[
k

(
n

k

)]

−Ptδ2/2 < − ln
(

k

(
n

k

))

Pt

(
kP − ε

kP

)2

/2 > ln
(

k

(
n

k

))

Let c = kP . Using
(
n
k

) ≤
(ne

k

)k

, provided c �= ε, we obtain the following:

t(c − ε)2/(2ck) > ln k + ln
(ne

k

)k

t >
[
2ck ln k + 2ck2 ln

(ne

k

)]
/(c − ε)2

Therefore, as long as 0 ≤ δ = c−ε
c ≤ 1 (so that we can use the Chernoff

bound) and ε �= c, the probability of generating a random matrix M such that
event E occurs is less than 1. Thus, there exists a matrix M such that, for every
set of k columns j1, . . . , jk, there are at least εt/k rows such that Mi,j1 = 1
and Mi,j2 = · · · = Mi,jk

= 0. Trivially, such matrix M guarantees the above
property for any set of at most k columns. Hence, M represents a (n, k, ε)-
universally-strong selector, provided that ε < c = kP . Next, we calculate which
values of ε fulfill that inequality.

Consider a sequence ai = (1 + 1/i)i. ai is known as a lower bound on the
Euler’s number e (i.e., ∀i ai < e). Note that c = kP = (1 − 1/k)k−1 = 1/ak−1 >
1/e for all k ≥ 2. This implies that any ε ≤ 1/e fulfills the requirement of δ > 0
and results in the existence of a (n, k, ε)-universally-strong selector. 	

172 V. Cholvi et al.

1. Let d = �logk n� and q = c · k · d for some constant c > 0 such that qd+1 ≥ n.
2. Consider all polynomials Pi of degree d over field [q]. Notice that there are

qd+1 of such polynomials.
3. Create a matrix M ′ of size q × qd+1. Each column will represent values Pi(x)

of each polynomial Pi for arguments x = 0, 1, . . . , q−1 (corresponding to rows
of M ′). Next, matrix M ′′ is created from M ′ as follows: each value y = Pi(x)
is represented and padded in q consecutive rows of 0s and 1s, where 1 is on y-
th position, while on all other positions there are 0s. Notice that each column
of M ′′ has q2 rows (q rows for each argument), thus M ′′ has size q2 × qd+1.

4. Remove qd+1−n arbitrary columns from matrix M ′′, creating matrix M with
exactly n columns remaining.

5. Each row of matrix M will correspond to one set Ti of a universally strong
selector Ti

q2

i=1 over the set 1, . . . , n of elements.

Fig. 2. The Poly-Universally-Strong algorithm, given parameters n and k.

3.2 Obtaining Universally Strong Selectors of Polynomial Size in
Polynomial Time

In the proof of Theorem3.1, we have introduced a family of universally strong
selectors of polynomial size. However, obtaining them by derandomizing would
be very inefficient (all the approaches we know are, at least, exponential in n).
Here, we present an algorithm, which we call Poly-Universally-Strong, that
computes universally strong selectors of polynomial size in polynomial time (they
only have slightly lower values of ε comparing to the existential result in Theo-
rem 3.1).

The algorithm, whose code is shown in Fig. 2, has to be executed by each
node in the network taking the same polynomials, so that all nodes will obtain
exactly the same matrix that defines the transmission schedule.

The next theorem shows that, indeed, it constructs a (n, k, ε)-universally-
strong selector of polynomial size with ε = 1/(4 logk n).

Theorem 3.2. Poly-Universally-Strong constructs (by using c = 2) a
(n, k, ε)-universally-strong selector of size 4 · k2 · �logk n�2 with ε = 1/(4 logk n).

Proof. First, note that two polynomials Pi and Pj of degree d with i �= j, can
have equal values for at most d different arguments. This is because they have
equal values for arguments x for which Pi(x) − Pj(x) = 0. However, Pi − Pj is a
polynomial of degree at most d, so it can have at most d zeroes. So, Pi(x) = Pj(x)
for at most d different arguments x.

Take any polynomial Pi and any k polynomials Pj still represented in M (so
excluding columns/polynomials removed from consideration in step 4). There
are at most k · d different arguments where one of the k polynomials can be
equal to Pi. So, for q − k · d different arguments, the values of the polynomial Pi

are unique. Therefore, if we look at rows with 1 in column i of matrix M (there
are q of those rows, one for each argument), at least q − k · d of them have 0s

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 173

in chosen k columns. Since there are q2 rows, so a fraction (q − k · d)/q2 of rows
have the desired property (i.e., there is value 1 in column i and value 0 in the
chosen k columns):

q − k · d

q2
=

(c − 1) · k · d

(c · k · d)2
=

c − 1
c2 · k · d

� f(c) .

Let us find the value of c that maximizes the function f . To do it, we compute
its differential

f ′(c) = (
c − 1

c2 · k · d
)′ =

1 · (c2 · k · d) − (c − 1) · k · d · 2c

c4 · k2 · d2
=

=
−c2 · k · d + 2c · k · d

c4 · k2 · d2
=

−c + 2
c3 · k · d

.

Thus, f ′(c) = 0 for c = 0 or c = 2. The value c = 2 maximizes f , giving
f(c) ≤ f(2) = 1/(4k · d) = 1/(4k · logk n).

Therefore, we can construct a (n, k, ε)-universally-strong selector with ε =
f(2) · k = 1/(4d) = 1/(4 logk n) of length 4k2 · �logk n�2 (which means that an
f(2) = 1/(4k · logk n) fraction of the selector’s sets have the desired property). 	

4 A Local-Knowledge Routing Algorithm

In this section, we introduce a local-knowledge packet-oblivious routing algo-
rithm that makes use of the family of universally strong selectors introduced in
Sect. 3 as transmission schedules (i.e., the time instants when packets stored at
each one node must be transmitted to a receiving node). As it has been men-
tioned previously, local-knowledge routing algorithms work without using any
topological information, except for maybe some network’s features that do not
require full knowledge of its topology. In our particular case, that will consists
of some upper bounds on the number of links and on the network’s degree.

The code of the proposed algorithm, which we call USS-plus-Alg, is shown
in Fig. 3. Given a graph G with a number of links bounded by m, and an in-
degree of its conflict graph H (which we denote as ΔH

in) bounded by Δ ≥ 1,
it uses a (m,Δ + 1, ε)-universally-strong selector as a schedule: assuming the
selector is represented by matrix M with t rows, each link z ∈ EG will transmit
at time i iff Mi mod t,z = 1. Notice that here each link is assumed to have an
independent queue, and therefore they will act as a sort of “nodes” (in terms of
selectors, such as it has been stated in the previous section). This means that
each individual link will have its own schedule.

4.1 The USS-PLUS-LIS Algorithm

Next, we show that the USS-plus-LIS Algorithm (i.e., the USS-plus-Alg
algorithm where Alg is the Longest-In-System scheduling policy), guarantees
stability, provided a given packets’ injection admissibility condition is fulfilled.
But first, we define what is a (ρ′, T)-frequent schedule.

174 V. Cholvi et al.

1. Choose m and Δ such that | E(G) | ≤ m and ΔH
in ≤ Δ.

2. Obtain a (m, Δ+1, ε) universally strong selector (for some value of ε) of some
length t and use it as the transmission schedule.

3. When there are several packets awaiting in a single queue, choose the packet
to be transmitted according to Alg, breaking ties in any arbitrary fashion.

Fig. 3. The USS-plus-Alg algorithm for a network G.

Definition 4.1. A (ρ, T)-frequent schedule for graph G is an algorithm that
decides which links of graph G transmit at every round in such a way that each
link is guaranteed to successfully (without radio network collisions) transmit at
least ρ · T times in any window of length T (provided at least ρ · T packets await
for transmission at the link at the start of the window).

At this point, we note that the transmission schedules provided by our uni-
versally strong selectors can be seen as (ρ, T)-frequent schedules.

We now proceed with the main result in this section.

Theorem 4.1. Given a network G, the USS-plus-LIS algorithm is stable
against any (ρ, b)-adversary, for ρ < ε

Δ+1 .

Proof. Let us take any arbitrary link z ∈ EG and consider the set of all other
links that conflict with link z, of which there are at most Δ. This means that
there exist at least ε · t/(Δ + 1) rows i in M such that Mi mod t,z = 1 and
Mi mod t,c1 = · · · = Mi mod t,cj

= 0. Therefore, at time i, link z will transmit a
message, and no link that conflicts with the link z will transmit. This guarantees
that each link will successfully transmit, at least, ε · t/(Δ + 1) messages during
any schedule of length t (i.e., we obtained a (ε/(Δ + 1), t)-frequent schedule S).
Then, we can apply the result Lemma 3 in the Appendix A in [15] to deduce
that such an algorithm is stable against any (ρ, b)-adversary, where ρ < ε

Δ+1 . 	

By using the selectors provided by the Poly-Universally-Strong algo-

rithm in USS-plus-LIS, we have the following result:

Corollary 4.1. Given a network G, the USS-plus-LIS algorithm using a uni-
versally strong selector computed by the Poly-Universally-Strong algorithm
is a stable algorithm against any (ρ, b)-adversary, for ρ < 1

4(Δ+1) logΔ+1 m .

If instead of the selectors provided by the Poly-Universally-Strong algo-
rithm, we use a selector from Theorem 3.1, we have that:

Corollary 4.2. Given a network G, there exists a universally strong selector
that, used in the USS-plus-LIS algorithm, provides a stable algorithm against
any (ρ, b)-adversary, for ρ < 1

e·(Δ+1) .

As it can be readily seen, the USS-plus-LIS algorithm for a network G
requires some knowledge of the value of the in-degree of its conflict graph H

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 175

(i.e., of ΔH
in). In order to obtain H it is necessary to gather the whole topology

of G. However, as the next lemma shows, ΔH
in can be bounded by the in-degree

of the network G (denoted ΔG).

Lemma 4.1. ΔH
in ≤ Δ2

G + ΔG − 1, provided ΔG > 0.

Proof. If ΔH
in = 0, then the lemma is trivially true. Otherwise, consider a vertex

e in H of maximum in-degree deg(e) = ΔH
in. Since ΔH

in �= 0, there is at least one
edge (e′, e) ∈ H such that, in G, e cannot successfully transmit at the same time
instant when e′ transmits. Let us denote e = (u, v) and e′ = (u′, v′), and let us
consider the different scenarios where e and e′ may conflict.

Now, we make a case analysis regarding the possible conflicts in G (note that
its in-degree is equal to its out-degree, since G is symmetric):

1. u′ = u and v′ �= v (a node u = u′ cannot transmit messages to 2 different
receivers): there are at most ΔG − 1 such links e′, given fixed link e.

2. u′ = v (if u′ transmits, it cannot listen at the same time): there are at most
ΔG such links e′, given fixed link e.

3. u′ �= u is a neighbor of v (i.e., v can hear both from u and u′): there are at most
ΔG −1 neighbors of v different than node u, and each of them has, at most, ΔG

different links. This gives Δ2
G − ΔG such links e′, given fixed link e.

Therefore, in overall there are at most (ΔG − 1) + ΔG + (Δ2
G − ΔG) =

Δ2
G + ΔG − 1 such links. 	

The previous lemma shows that USS-plus-LIS can be seen as a local-
knowledge algorithm, in the sense that it only requires some knowledge about two
basic systemparameters: the number of links and thenetwork’s in-degree. In Sect. 5
we will also look at a solution that requires some global-knowledge of G.

4.2 Optimality of the USS-PLUS-LIS Algorithm

In the next theorem, we show an impossibility result regarding routing algo-
rithms, either based on selectors or not, that only make use of upper bounds on
the number of links and on the network’s degree.2

Theorem 4.2. No routing algorithm that only makes use of upper bounds on the
number of links and on the network’s degree guarantees stability for all networks
of degree at most Δ, provided the injection rate ρ = ω(1/Δ2).

Proof. Assume, to the contrary, that there exists a routing algorithm ALG such
that, given any network of which it is aware of both its number of links and its
degree, it guarantees that there are no more than Qmax packets in the system
at all times against all adversaries with injection rate ρ = ω(1/Δ2). Note that
Qmax could be a function on ρ, n, but a constant with respect to time.
2 To be strict, it is also necessary that each node v decides whether or not to an

outgoing edge e = (u, v) should transmit at time t based on t and on the ID of node
u.

176 V. Cholvi et al.

Fig. 4. Example of a tree T (on the left) and tree T2,2 (on the right) for Δ = 3. Nodes
r and l2,2 swapped places, which means that edges (x2, r) and (x2, l2,2) (marked in
blue and red, respectively) swapped their places as well. (Color figure online)

Consider a complete Δ-regular tree T of depth 2, rooted at r. Let us denote
the nodes at distance 1 from r as xi, for i = 1, . . . ,Δ and leaves adjacent to xi

as lji for j = 1, . . . , Δ − 1. Let us generate a family F of trees Ti,j as follows:
swap the root r of T with leaf li,j of T (see Fig. 4). Note that edges (xi, r) and
(xi, li,j) swapped places, edges (xk, r) for k �= i were removed and in their place
edges (xk, li,j) appeared. Other edges, i.e., (xk, lk,a) for a = 1, . . . ,Δ − 1 and
(xi, li,b) for b �= j, remain in the same place in both T and Ti,j .

Note that edges (xk, lk,a) (for k = 1, . . . , Δ and a = 1, . . . ,Δ − 1) exist in
every tree in F ∪ {T}. Let us denote the set of these edges as E.

Consider an adversary A that, starting from round 0, injects 1 packet into
every edge outgoing from xi (for i = 1, . . . ,Δ) every 1/ρ rounds. Such adversary
is a (ρ, 1)-adversary in each tree in F ∪ {T}.

Note that each packet injected into an edge incoming into the root of a
tree T ′ ∈ F ∪ {T} cannot be simultaneously transmitted with any other packet
injected by A. In particular, it cannot be simultaneously transmitted with any
other packet on edges in E.

Consider a time prefix of length τ rounds. Consider any edge e ∈ E. Edge e is
incident to the root in some tree T ′ ∈ F ∪{T}. ALG must successfully transmit
from e in T ′ in at least ρτ − Qmax rounds during the considered prefix, since
ALG is stable. This means that all other edges in E must not transmit in those
rounds. Since there are Δ(Δ − 1) possible choices of edge e ∈ E, each choice
requiring all other edges in E not to transmit in ρτ − Qmax rounds, we get that
each edge in E must not transmit in Δ(Δ − 1) · (ρτ − Qmax) rounds and must
transmit in ρτ −Qmax rounds, for a total of Δ2 ·(ρτ −Qmax) rounds in the prefix
of length τ . For ρ = ω(1/Δ2), we can choose τ such that Δ2 · (ρτ − Qmax) > τ ,
which gives us a contradiction. 	

If we apply Theorem 4.2 to USS-plus-LIS, then our goal is to find how close
to ρ = O(1/Δ2

G) is its maximum injection rate for which it guarantees stability.
If we consider Theorem 4.1 with Δ = ΔH

in, we have that USS-plus-LIS can
be stable for ρ = O(1/ΔH

in). Furthermore, by Lemma 4.1 we know that ΔH
in can

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 177

be as large as Θ(Δ2
G). Then, we have that USS-plus-LIS guarantees stability for

ρ = O(1/Δ2
G) for all networks G, which matches the result in Theorem 4.2. This

proves that the USS-plus-LIS algorithm is asymptotically optimal regarding
the injection rate for which stability is guaranteed.

5 A Global-Knowledge Routing Algorithm

In this section, we introduce a global-knowledge packet-oblivious routing algo-
rithm, which we call Coloring-plus-Alg, that is based on using graph coloring
as transmission schedules. Such an algorithm does not take into account any his-
torical information. However, it has to be seeded by some information about the
network topology (i.e., it is a global-knowledge routing algorithm).

Next, we show that the Coloring-plus-LIS algorithm (i.e., the Coloring-
plus-Alg algorithm where Alg is the Longest-In-System scheduling policy),
guarantees stability, provided a given packets’ injection admissibility condition
is fulfilled.

Now, we proceed withe the main results in this section. But before we intro-
duce the Coloring-plus-Alg routing algorithm, we state the following fact
regarding the relationship between vertex coloring in a conflict graph, and its
use as a transmission schedule.

Fact 1 ([10]). Vertex coloring of the conflict graph H(G) using x colors is equiv-
alent to a schedule of length x that successfully transmits a packet via each
directed link of network G.

Note that every set of vertices of same color can be extended to a maximal
independent set. The resulting family of independent sets is still a feasible sched-
ule that guarantees no conflicts and is no worse than just coloring. In fact, it
may allow some links to transmit more than once during the schedule, without
increasing the length of the schedule.

Following, we show that coloring of a collision graph can be used to obtain
a transmission schedule, where each link is guaranteed to regularly transmit.

Lemma 5.1. A k-coloring of collision graph H provides a (1/k, k)-frequent
schedule.

Proof. Let us split the vertices VH of the graph H into sets V i
H for i = 0, 1, . . . , k−

1, where every vertex in V i
H is assigned the i-th color in the vertex coloring of

graph H. Each link in the graph G is represented by one vertex in VH , and
therefore each link is assigned a unique color. According to the definition of the
conflict graph H, if there is no edge (u, v) ∈ EH , then links u ∈ EG and v ∈ EG

can deliver their packets simultaneously, without a collision. Therefore, if at a
given round t only links of (t mod i)-th color transmit, then no collision occurs.
Since each link has a color i ∈ {0, 1, . . . , k − 1} assigned to it, then each link will
successfully transmit a packet once each k consecutive rounds (as far as there is
one packet waiting in its queue). 	

178 V. Cholvi et al.

1. Use optimal coloring of graph H as the transmission schedule, and repeat it
indefinitely.

2. When there are several packets awaiting in a single queue, choose the packet
to be transmitted according to Alg, breaking ties in any arbitrary fashion.

Fig. 5. The Coloring-plus-Alg algorithm for graph G.

Since χ(H)-coloring is an optimal coloring of graph H, we have the following
result.

Corollary 5.1. An optimal coloring of collision graph H provides a
(1/χ(H), χ(H))-frequent schedule.

Once we have made it clear that coloring of a collision graph can be used to
obtain a transmission schedule, the code of the Coloring-plus-Alg algorithm
is shown in Fig. 5.

5.1 The COLORING-PLUS-LIS Algorithm

Now, we show that Coloring-plus-LIS (i.e., the Coloring-plus-Alg algo-
rithm where Alg is the Longest-In-System scheduling policy), guarantees sta-
bility, provided a given packets’ injection admissibility condition is fulfilled.

Theorem 5.1. The Coloring-plus-LIS algorithm is stable provided ρ <
1/χ(H), where χ(H) is the chromatic number of the conflict graph H of the
network G.

Proof. We start the proof with referring to Corollary 5.1, which shows that color-
ing of a collision graph can be used to obtain a (1/χ(H), χ(H))-frequent schedule
C.

Let us take any ρ = 1/χ(H) − ε, for some ε > 0. We can use Lemma 3 in
the Appendix A in [15] with S = C (so, ρ′ = 1/χ(H)) to show that Coloring-
plus-LIS is stable against any (ρ, b)-adversary in the radio network model. 	

Observe that, contrary to the USS-plus-LIS protocol, the Coloring-plus-
LIS algorithm requires global-knowledge of the structure of the graph: first, to
construct H, and then to obtain its optimal coloring.

5.2 Optimality of the COLORING-PLUS-LIS Algorithm

Now, we show that the Coloring-plus-LIS algorithm is optimal regarding the
injection rate, in the sense that no algorithm can guarantee stability for a higher
injection rate that provide by it.

Theorem 5.2. No algorithm can be stable for all networks against a (ρ, b)-
adversary for ρ > 1/χ(H).

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 179

Proof. Let us consider a network graph G on n nodes that is a clique. For such
network, the collision graph H is also a clique, since each link is in conflict with
each other link. Collision graph H has n2 −n vertices and requires n2 −n colors
to be colored, i.e., χ(H) = n2 − n.

Consider a (1/χ(H) + ε, 2)-adversary for some ε > 0 that after every χ(H)
rounds injects one packet into each link (starting in round 0) and simultaneously
after each 1/ε rounds injects another packet into each link (starting in round 0).
Therefore, in any prefix of T = k · χ(H) rounds for k ∈ N, the adversary injects
(k + 1) + �T/ε� + 1 packets into each link, i.e., I = (k + �T/ε� + 2) · (n2 − n)
packets into the system.

On the other hand, since G is a clique, any algorithm can successfully trans-
mit at most 1 packet per round in the entire network. Therefore, in T = k·χ(H) =
k · (n2 −n) rounds at most k · (n2 −n) packets can be transmitted. So, at the end
of a prefix of length T , there are at least I − k · (n2 − n) = (�T/ε� + 2) · (n2 − n)
packets remaining in the system. For T approaching infinity, the number of pack-
ets remaining in the queues grows to infinity. This means that the queues are
not bounded and the algorithm is not stable. 	

5.3 Global-Knowledge Vs Local-Knowledge Routing Protocols

Regarding the Coloring-plus-LIS protocol, by the Brooks’ theorem [9], we
have that χ(H) ≤ ΔH + 1. Let indegH(e) (and outdegH(e)) denote the inde-
gree (outdegree) of node e in graph H. Recall that each edge in the network
graph was replaced by two oppositely directed links. This means that, if a
link e blocks outdegH(e) other links, then the opposite link e′ is blocked by
indegH(e′) = outdegH(e) links. Therefore, ΔH = Θ(ΔH

in). Then, Theorem 5.1
guarantees stability for ρ = O(1/ΔH

in).
On the other hand, from the result in Corollary 4.2, we have that USS-plus-

LIS can only guarantee stability for ρ = O(1/(e · ΔH
in)). This implies that, by

using the Coloring-plus-LIS protocol, it is possible to guarantee stability for a
wider range of injection rates than by using the USS-plus-LIS protocol: namely,
the injection rate for which stability is guaranteed is e times higher.

6 Extension of the Results to Other Scheduling Policies

In this section, we show that the results obtained in Sect. 5 and 4 for routing com-
bined with LIS (Longest In System) can be extended to other scheduling poli-
cies; namely, NFS (Nearest-From-Source), SIS (Shortest-In-System) and FTG
(Farthest-To-Go). Indeed, for such a scheduling policies, Theorems 6.1 and 6.2
respectively parallelize the analogous results in Theorems 4.1 and 5.1 obtained
for LIS.

Theorem 6.1. Given a network G, the USS-plus-Alg algorithm, where
Alg ∈ {NFS,SIS,FTG}, is stable against any (ρ, b)-adversary, for ρ < ε

Δ+1 .

180 V. Cholvi et al.

Proof. The proof is similar to that in Theorem4.1. The only difference is that,
instead of Lemma 3, we can apply the results in Lemma 6 for NFS, SIS and FTG
(see Appendix D in [15]) to deduce that such an algorithm is stable against any
(ρ, b)-adversary, where ρ < ε

Δ+1 . 	

Theorem 6.2. The Coloring-plus-Alg algorithm, where Alg ∈ {NFS,SIS,
FTG}, is stable provided ρ < 1/χ(H), where χ(H) is the chromatic number of the
conflict graph H of the network G.

Proof. We will reduce the packet scheduling in radio network problem to the
problem of packet scheduling in the wired failure model [1], in which these poli-
cies are known to be stable.

We start the proof with referring to Corollary 5.1, which shows that coloring
of a collision graph can be used to obtain a (1/χ(H), χ(H))-frequent schedule C.

Let us take any ρ = 1/χ(H) − ε, for some ε > 0. Now, we can use Lemma 6
with S = C (so, ρ′ = 1/χ(H)) and Alg ∈ {NFS,SIS,FTG} (with ρ′′ = 1 − ε) to
show that we can build an algorithm that is stable against any (ρ, b)-adversary
in the radio network model (see Appendix D in [15]). Note that Coloring-
plus-Alg is a special case of the algorithm built in the proof of Lemma 6 with
S = C. Therefore Coloring-plus-Alg with Alg ∈ {NFS,SIS,FTG} is stable
against any (ρ, b)-adversary in the radio network model. 	

7 Conclusions and Future Work

In this work, we studied the fundamental problem of stability in multi-hop wire-
less networks.

We introduced a new family of combinatorial structures, which we call uni-
versally strong selectors, that are used to provide a set of transmission schedules.
Making use of these structures, combined with some known queuing policies, we
propose a packet-oblivious routing algorithm which is working without using
any global topological information, and guarantees stability for certain injec-
tion rates. We show that this protocol is asymptotically optimal regarding the
injection rate for which stability is guaranteed.

Furthermore, we also introduced a packet-oblivious routing algorithm that
guarantees stability for higher traffic. We also show that this protocol is optimal
regarding the injection rate for which stability is guaranteed. However, it needs
to use some global information of the system topology.

A natural direction would be to study other classes of protocols; for instance,
when packets are injected without pre-defined routes. Universally strong selec-
tors are interesting on its own right – finding more applications for them is a
promising open direction. Finally, exploring the reductions between various set-
tings of adversarial routing could lead to new discoveries, as demonstrated in
the last part of this work.

Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks 181

References

1. Àlvarez, C., Blesa, M.J., Dı́az, J., Serna, M.J., Fernández, A.: Adversarial models
for priority-based networks. Networks 45(1), 23–35 (2005)

2. Àlvarez, C., Blesa, M.J., Serna, M.J.: A characterization of universal stability in
the adversarial queuing model. SIAM J. Comput. 34(1), 41–66 (2004)

3. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Packet latency
of deterministic broadcasting in adversarial multiple access channels. J. Comput.
Syst. Sci. 99, 27–52 (2019)

4. Andrews, M., Awerbuch, B., Fernández, A., Leighton, F.T., Liu, Z., Kleinberg,
J.M.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. J. ACM 48(1), 39–69 (2001)

5. Andrews, M., Zhang, L.: Scheduling over a time-varying user-dependent channel
with applications to high-speed wireless data. J. ACM 52(5), 809–834 (2005)

6. Andrews, M., Zhang, L.: Routing and scheduling in multihop wireless networks
with time-varying channels. ACM Trans. Algorithms 3(3), 33 (2007)

7. Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrarily low rates
in the adversarial queueing model. SIAM J. Comput. 34(2), 318–332 (2004)

8. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. J. ACM 48(1), 13–38 (2001)

9. Brooks, R.L.: On colouring the nodes of a network. Math. Proc. Cambridge Philos.
Soc. 37(2), 194–197 (1941)

10. Chlebus, B.S., Cholvi, V., Garncarek, P., Jurdziński, T., Kowalski, D.R.: Routing
in wireless networks with interferences. IEEE Commun. Lett. 21(9), 2105–2108
(2017)

11. Chlebus, B.S., Cholvi, V., Kowalski, D.R.: Universal routing in multi hop radio
network. In: Proceedings of the 10th ACM International Workshop on Foundations
of Mobile Computing (FOMC), pp. 19–28. ACM (2014)

12. Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient distributed com-
munication in ad-hoc radio networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22012-8 49

13. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple
access channel. ACM Trans. Algorithms 8(1), 5:1–5:31 (2012)

14. Cholvi, V., Echagüe, J.: Stability of FIFO networks under adversarial models: state
of the art. Comput. Netw. 51(15), 4460–4474 (2007)

15. Cholvi, V., Garncarek, P., Jurdzinski, T., Kowalski, D.R.: Packet-oblivious stable
routing in multi-hop wireless networks. ArXiv, abs/1909.12379 (2019)

16. Cholvi, V., Kowalski, D.R.: Bounds on stability and latency in wireless communi-
cation. IEEE Commun. Lett. 14(9), 842–844 (2010)

17. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks
of unknown topology. Theor. Comput. Sci. 302(1), 337–364 (2003)

18. Echagüe, J., Cholvi, V., Fernández, A.: Universal stability results for low rate
adversaries in packet switched networks. IEEE Commun. Lett. 7(12), 578–580
(2003)

19. Gamarnik, D.: Stability of adaptive and nonadaptive packet routing policies in
adversarial queueing networks. SIAM J. Comput. 32(2), 371–385 (2003)

20. Goel, A.: Stability of networks and protocols in the adversarial queueing model for
packet routing. Networks 37(4), 219–224 (2001)

https://doi.org/10.1007/978-3-642-22012-8_49
https://doi.org/10.1007/978-3-642-22012-8_49

182 V. Cholvi et al.

21. Koukopoulos, D., Mavronicolas, M., Nikoletseas, S.E., Spirakis, P.G.: The impact
of network structure on the stability of greedy protocols. Theory Comput. Syst.
38(4), 425–460 (2005)

22. Lotker, Z., Patt-Shamir, B., Rosén, A.: New stability results for adversarial queu-
ing. SIAM J. Comput. 33(2), 286–303 (2004)

Stateless Information Dissemination
Algorithms

Volker Turau(B)

Institute of Telematics Hamburg University of Technology, 21073 Hamburg, Germany
turau@tuhh.de

Abstract. Stateless protocols are advantageous in high volume applica-
tions, increasing performance by removing the load caused by retention
of session information and by providing crash tolerance. In this paper
we present an optimal stateless information dissemination algorithm for
synchronous distributed systems. The termination time is considerable
lower than that of a recently proposed stateless dissemination protocol.
Apart from a special case the new algorithm achieves the minimum pos-
sible termination time. The problem of selecting k dissemination nodes
with minimal termination time is NP-hard. We prove that unless NP= P
there is no approximation algorithm for this problem with approximation
ratio 3/2− ε. We also prove for asynchronous systems that deterministic
stateless information dissemination is only possible if a large enough part
of the message can be updated by each node.

1 Introduction

A stateless protocol is a communications protocol in which no session informa-
tion is retained by the participating nodes, i.e., communication does not depend
on one or more preceding events in a sequence of interactions. Thus, stateless
protocols do not utilize local storage. This is a big advantage in high volume
applications, increasing performance by removing the load caused by retention of
session information. In addition they provide fault tolerance after node crashes.
In this paper we focus on stateless information dissemination algorithms for
distributed systems. These algorithms distribute information initially stored at
some node to all nodes of the network in finite time. The most basic algorithm for
this purpose is the deterministic flooding algorithm for asynchronous systems.
The originator of the information sends a message containing the information
to all neighbors and whenever a node receives the message for the first time,
it sends it to all its neighbors in the communication graph. This algorithm is a
stateful algorithm, it requires each node to keep a record of which messages have
already arrived at the node. This requires storage proportional to the number
of disseminated messages per node, which is a problem for resource-constrained
devices. Furthermore, since the termination of the flooding algorithm cannot be
detected by the nodes, the storage requirements grow over time. These disad-
vantages motivate the search for stateless information dissemination algorithms.
c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 183–199, 2020.
https://doi.org/10.1007/978-3-030-54921-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_11

184 V. Turau

A way to circumvent the restrictions caused by excluding the usage of local
storage is to add session information to messages. This way session information
is permanently in transit and thus available at receiving nodes. An extreme
example is to include in the message the identifiers of all nodes that have already
received the message. This way the repeated circulation of messages in closed
loops can be intercepted. Obviously, this leads to messages of size O(n log n).
Thus, an operative definition of a stateless algorithm must also refer to the size
of messages. A stateless algorithm that is allowed to update O(f(n)) bits of a
message before forwarding is called f(n)-stateless. If no bits can be updated it
is called a truly stateless algorithm. A formal definition is given in Sect. 2.

A recently introduced variant of the classic flooding algorithm for syn-
chronous systems that does not need to remember whether a messages has been
received is called amnesiac flooding [13,14]. In this algorithm every time a node
receives a message, it forwards it to those neighbors from which it didn’t receive
the message in the current round. In contrast to classic flooding, a node may for-
ward a message several times. Amnesiac flooding is truly stateless and avoids the
mentioned storage issues. Hussak et al. have analyzed the termination time of
amnesiac flooding with a single initiator v0 [14]. They showed that it terminates
on any finite graph; for bipartite graphs after εG(v0) rounds, i.e., one round less
than in the classic algorithm, where εG(v0) denotes the eccentricity of v0 in G.
For non-bipartite graphs amnesiac flooding requires at least εG(v0) + 1 and at
most εG(v0)+Diam(G)+1 rounds, where Diam(G) denotes the diameter of G.
The authors also provide examples showing that the bounds are sharp. Thus,
the relinquishment of the usage of storage leads to a prolonged termination time.
Amnesiac flooding was also analyzed for sets of initiators and upper resp. lower
bounds for the termination time are proved in [18].

The results of [14] and [18] show that the termination time of amnesiac flood-
ing in synchronous systems can be significantly larger then that of the classic
flooding algorithm. Hence, the question arises, whether there exists a truly state-
less flooding algorithm that has the same termination time as the classic flooding
algorithm. In asynchronous systems the requirement to store information about
received messages cannot be offhand dropped. The reason is that since messages
can be arbitrarily delayed they can arrive multiple times at a node. If a node
is oblivious of arriving messages then a message can circulate forever and the
algorithm would not terminate. Thus, deterministic truly stateless algorithms
are impossible in asynchronous systems.

In this paper we propose stateless information algorithms for synchronous
and asynchronous systems. For the synchronous case we propose a new flood-
ing algorithm ASF that has the same termination time as the classic flooding
algorithm. Apart from a special case it is optimal and significantly faster than
amnesiac flooding. In particular, for a single initiator v0 the algorithm terminates
after εG(v0) + 1 rounds for any graph G. This is an improvement by Diam(G)
compared to the result of [14]. We also analyze the case for a set S with k
initiators and prove that the algorithm terminates after dG(S, V) + 1 rounds.
Here, dG(S, V) denotes the maximal distance of a node in V to those in S.

Stateless Information Dissemination Algorithms 185

This implies that there exists a set S of initiators for which ASF terminates in
rk(G) + 1 rounds, here rk(G) denotes the k-radius of G.

We also define the stateless-flooding problem (SF problem) for synchronous
systems. An instance of this problem is given by a connected graph G = (V,E)
and a positive integer k ≤ |V |. The stateless-flooding problem is to find a subset
S of V of size k, such that algorithm ASF when started concurrently by all nodes
of S terminates in a minimal number of rounds. We prove that unless P = NP
there is no approximation algorithm for the stateless-flooding problem which has
an approximation ratio less than 3/2.

In the last section we focus on asynchronous systems. We show that no
deterministic stateless information dissemination algorithm exists that can only
update a constant number of bits of the message. We show the existence of an
algorithm that is allowed to update O(log n) bits.

2 Notation

In this paper G(V,E) is always a finite, connected, undirected, unweighted graph
with n = |V | > 2 and m = |E|. Denote by deg(v) the degree of a node v ∈ V . A
node with degree 0 is called isolated. For u, v ∈ V denote by dG(v, u) the distance
in G between v and u, i.e., the number of edges of a shortest path between v
and u. For U ⊆ V and v ∈ V let dG(v, U) = min{dG(v, u) | u ∈ U} and
dG(U, V) = max{dG(v, U) | v ∈ V }. For v ∈ V denote by εG(v) the eccentricity
of v in G, i.e., the greatest distance between v and any other node in G, i.e.,
εG(v) = max{dG(w, v) | w ∈ V }. The radius Rad(G) (resp. diameter Diam(G))
of G is the minimum (resp. maximum) eccentricity of any node of G. A node
v is called central if εG(v) = Rad(G). Let n ≥ k ≥ 1 be an integer. We call
rk(G) = min{dG(U, V) | |U | = k} the k-radius of G, i.e., r1(G) = Rad(G). Each
subset U ⊆ V with |U | = k and rk(G) = dG(U, V) is called a k-center of G.

An edge (u,w) ∈ E is called a cross edge with respect to a node v0 if
dG(v0, u) = dG(v0, w). Any edge of G that is not a cross edge with respect
to v0 is called a forward edge for v0. Furthermore, for U ⊆ V the graph induced
by U is denoted by G[U].

A synchronous distributed algorithm is executed in rounds of fixed lengths
and all messages sent by all nodes in a particular round are received in the next
round. In particular, in each round all nodes first receive messages sent in the
previous round and then send messages. An asynchronous distributed algorithm
decides immediately upon receiving a message which messages to send and to
which neighbors. Throughout the paper we assume that no messages are lost or
corrupted. We use the following definition of statelessness in this paper.

Definition 1. A synchronous information dissemination algorithm is called
truly stateless if a node decides only on the basis of the messages received in
the current round which messages to send in this round. Furthermore, nodes are
not allowed to change the content of a received message before forwarding.

186 V. Turau

The definition implies that synchronous truly stateless algorithms do not rely
on information that is stored beyond the duration of a single round. In addition,
nodes are only allowed to read the content of incoming messages, but cannot
alter the content before forwarding, e.g., they are not allowed to add information
related to the forwarding process or routing in general to outgoing messages.

Definition 2. Let f be a function from N to N. An asynchronous information
dissemination algorithm is called f(n)-stateless if a node decides only on the
basis of each received message which messages to send as a reaction. Nodes are
allowed to update up to O(f(n)) bits of a message before forwarding it.

The definition for the asynchronous case implies that the usage of local storage
for prospective decisions about method forwarding is completely excluded.

3 State of the Art

Different facets of stateless programming received a lot of attention in recent
years: MapReduce framework, monads in functional programming, and reen-
trant code [5]. Stateless protocols are very popular in client-server applications
because of their high degree of scalability. They simplify the design of the server
and require less resources because servers do not need to keep track of session
information or a status about each communicating partner for multiple requests.
In stateless protocols each message travels on it’s own without reference to any
previous message. Despite their significance for practical application, stateless
protocols have only received limited attention in theoretical research. Accord-
ing to Awerbuch et al. statelessness implies various desirable properties of a
distributed algorithm, such as: asynchronous updates and self-stabilization [2].

Motivated by the Border Gateway Protocol (BGP) Dolev et al. define a model
of stateless computation in which processors do not have an internal state, but
rather interact by repeatedly mapping incoming messages to outgoing messages
and output values [4]. The authors consider a distributed network, in which every
node receives an external input xi and nodes have to compute a global function
f(x1, . . . , xn), by repeatedly exchanging messages. Dolev et al. provide general
upper bounds on the round complexity for any function f , showing that a linear
number of rounds is sufficient to compute any function. While our work basically
uses the same model, we focus on the problem of information dissemination.

Broadcast in computer networks has been the subject of extensive research.
The survey paper [11] covers early work. In the standard flooding algorithm, each
node that receives the message for the first time forwards to it all other neighbors.
If v0 is the originating node then after εG(v0) rounds each node has received the
message. This algorithm uses 2m messages and terminates in εG(v0)+1 rounds.
These bounds hold in the synchronous and in the asynchronous case [17]. The
number of messages can be reduced if a received message is not forwarded to the
sender of the message. This has no influence on the run-time of the algorithm
and the number of messages sent is still O(m). The number of messages can be
reduced to O(n) if flooding is performed via the edges of a spanning tree only.

Stateless Information Dissemination Algorithms 187

The flooding algorithm can be generalized to the case of a set S of originating
nodes, also called initiators.

The standard flooding algorithm is a stateful algorithm. Each node needs to
maintain for each message a marker that the message has been forwarded. This
requires storage per node proportional to the number of disseminated messages.
Standard flooding is therefore of limited suitability for resource-constrained
devices as those used in the Internet of Things. A stateless version of flood-
ing was proposed by Hussak and Trehan [13]. Their algorithm – called amnesiac
flooding – works as follows: Whenever a node receives a message it forwards the
message to those neighbors from which it did not receive the message in the cur-
rent round. Amnesiac flooding has a lower memory requirement since markers
are only kept for one round. Note, that a node may forward a message more than
once. The authors prove that in synchronous networks amnesiac flooding when
started by a node v0 terminates after at most εG(v0) + Diam(G) + 1 rounds.
They also show that a node forwards each message at most twice. Amnesiac
flooding for sets of initiators was analyzed in [18].

A problem related to selecting initiators of information dissemination leading
to a minimal termination time is the k-center problem. The task of this problem
is to find a k-center of a graph [15]. The problem and many variants of it including
some approximations are known to be NP-hard [3,12]. It is shown in [18] that
choosing the nodes of a k-center for amnesiac flooding does not lead to a minimal
termination time. This observation is not true for the stateless flooding algorithm
presented in this work.

A problem related to broadcast is rumor spreading that describes the dissemi-
nation of information in networks through pairwise interactions. A simple model
for rumor spreading is to assume that in each round, each vertex that knows
the rumor, forwards it to a randomly chosen neighbor. Thus, rumor spreading
is truly stateless. For many topologies, this strategy is a very efficient way to
spread a rumor. With high probability the rumor is received by all vertices in
time Θ(log n), if the graph is a complete graph or a hypercube [7,8]. New results
about rumor spreading can be found in [16].

4 Synchronous Stateless Information Dissemination

A lower bound for the round complexity of any information dissemination algo-
rithm with k initiators is rk(G) + 1. Consider the case S = {v0} and G a cycle
with an odd number of nodes. Let v1, v2 be nodes with the maximal distance in G
to v0. The message reaches these two nodes at the earliest in round εG(v0). Since
nodes v1 and v2 do not know whether their neighbors already have received the
message they have to forward it in round rk(G)+1. The lower bound is achieved
by the classic flooding algorithm which is not stateless. This raises the ques-
tion whether truly stateless information dissemination can also be realized in
rk(G) + 1 rounds. This question will be answered affirmatively for synchronous
systems in the following.

The goal of the new flooding algorithm is to distribute information – initially
stored at the nodes of a set S – to all nodes of the network. In the first round

188 V. Turau

each node of S sends the message to all its neighbors. A node from S that
does not receive one of these messages sent in the first round sends in round
two again the message to all its neighbors. In each of the following rounds –
including round two – each node that receives a message forwards this message
to all of its neighbors from which it did not receive this message in this round.
The algorithm terminates, when no more messages are sent.

Algorithm 1 shows a formal definition of algorithm ASF. A node in S has
to retain the information that it has initiated a broadcast for one round. We
regard this as belonging to the initiation of the broadcast process and therefore
this information is available to algorithm ASF. Hence, algorithm ASF is truly
stateless. The code shows the handling of a single message m. If several different
messages are disseminated concurrently, each of them requires its own handling,
i.e., its own set M .

Algorithm 1: Algorithm ASF distributes a message in the graph G

input: A graph G = (V, E), a subset S of V , and a message m.

Round 1: Each node v ∈ S sends message m to each neighbor in G;
Round 2: Each node v ∈ S that does not receive a message in round 1 sends
message m to each neighbor in G;

Round i > 1: Each node v executes
M := N(v);
foreach receive(w, m) do

M := M \ {w}
if M �= N(v) then

forall u ∈ M do send(u, m);

To illustrate the flow of messages of algorithm ASF we consider an example
with a cycle Cn with seven nodes as depicted in Fig. 1. The top row shows the
flow of messages for the case |S| = 1. ASF terminates after four rounds in this
case. In the next two rows S consists of three nodes. The difference is that in the
second row each node in S has a neighbor in S while this is not the case in the last
row. Therefore, algorithm ASF behaves in the second row exactly as amnesiac
flooding and terminates after three rounds. In the third example the top node
does not receive a message in the first round hence it sends the message to all
neighbors in round two again. In this case the algorithm terminates after two
rounds. These examples demonstrate that the termination time of ASF highly
depends on S. This is captured by the following definition.

Definition 3. Denote by SFG(S) the number of rounds algorithm ASF requires
to terminate for graph G when started by all nodes in S. For 1 ≤ k ≤ n define

SFk(G) = min{SFG(S) | S ⊆ V with |S| = k}.

Stateless Information Dissemination Algorithms 189

Fig. 1. Three executions of algorithm ASF for different choices of S (one per row).
Nodes in S are depicted in black and the flow of messages is indicated by arrows.

For a complete graph Kn with n > 2 we have SFi(Kn) = 2 for 1 ≤ i < n,
and SFn(Kn) = 1. If Pn is a path then SFk(Pn) = �n+k−1

2k � + 1. For a cycle
graph Cn, and 1 ≤ k ≤ n we also have SFk(Cn) = �n+k−1

2k � + 1.

Lemma 1. Let G be a connected graph. Then SFk(G) = 1 if and only if k = n.

Proof. Obviously, SFn(G) = 1 for each graph G. Let SFk(G) = 1. Then there
exists S ⊆ V with |S| = k and SFG(S) = 1. Since ASF terminates after the first
round N(v) ⊆ S for all v ∈ S. Since G is connected this yields S = V and thus,
k = n. �	

4.1 Reduction to Amnesiac Flooding

In this section we prove that an execution of algorithm ASF on a graph G with
initiators S is equivalent to the execution of amnesiac flooding on a graph Ĝ with

Fig. 2. A connected graph G and a set S of initiators (depicted in black).

190 V. Turau

Fig. 3. Messages sent by algorithm ASF for the graph of Fig. 2.

initiators Ŝ. Throughout this section we will use the graph of Fig. 2 as an example.
Algorithm ASF terminates after three rounds for this graph (see Figs. 3).

4.2 Amnesiac Flooding

Before explaining the construction of Ĝ and Ŝ we recap algorithm AAF for amne-
siac flooding from [14]. Algorithm 2 shows a formal definition of algorithm AAF.

Algorithm 2: Algorithm AAF distributes a message in the graph G

input: A graph G = (V,E), a subset S of V , and a message m.

Round 1: Each node v ∈ S sends message m to each neighbor in G;
Round i > 1: Each node v executes

M := N(v);
foreach receive(w,m) do

M := M \ {w}
if M
= N(v) then

forall u ∈ M do send(u,m);

The two algorithms AAF and ASF only behave differently during the second
round. In this round nodes from S with no neighbor in S send in ASF a message
to each neighbor, whereas in AAF they do not send a message at all in the second
round. Algorithm AAF terminates after four rounds for the graph G and the set
S shown in Fig. 2, i.e., one more round than algorithm ASF. The behavior in the
first round is identical to that of ASF. Figure 4 shows the flow of messages during
the last three rounds.

Even so rk(G) + 1 is a general lower bound for information dissemination,
there are graphs, for which AAF terminates in rk(G) rounds. According to
Theorem 4 and 5 of [18] amnesiac flooding with k initiators terminates in rk(G)
rounds if and only if G is a bipartite graph G with V = V1 ∪ V2 such that G has
a k-center that is either contained in V1 or V2.

4.3 The Reduction

In this section we describe the reduction process in detail. In the light of Lemma1
we assume that |S| < n. The reduction consists of a sequence of extensions of

Stateless Information Dissemination Algorithms 191

Fig. 4. Messages sent in rounds 2, 3, and 4 by algorithm AAF for the graph of Fig. 2.

the original graph and the set of initiators. In the final stage there will be just
one initiator and the graph will be bipartite.

Let G = (V,E) and S ⊆ V . Define SI = {v ∈ S | N(v) ∩ S = ∅}, i.e., SI is
the set of isolated nodes in G[S]. Let VS = {wv | v ∈ SI} be a set of new vertices
and ES = {(v, wv) | v ∈ SI} a new set of edges.

Definition 4. Denote by Ĝ(S) be the undirected graph with node set V̂ = V ∪VS

and edge set Ê = E ∪ ES.

Furthermore, let Ŝ = S ∪VS . For the graph of Fig. 2 SI consists of a single node
only, the leftmost black node. Figure 5 shows the graph Ĝ(S).

Fig. 5. The graph Ĝ(S) for the graph G of Fig. 2. Note that in G[S] only the top left
node is isolated. Thus, only one node is added (depicted by a gray box).

Lemma 2. Let ESF be an execution of algorithm ASF on a graph G with ini-
tiators S and EAF an execution of algorithm AAF on graph Ĝ(S) with initiators
Ŝ. If a node v ∈ V sends in round i a message to a node w in ESF then node
v also sends in round i a message to w in EAF . Moreover, the length of ESF is
equal to the length of EAF .

Proof. All nodes of S send in both algorithms during the first round a message
to all their neighbors. In algorithm AAF in addition the nodes in VS also send a
message to each neighbor. Thus, each node in SI receives in the second round
of AAF a message from a node in VS and no other node. Thus, each node in SI

sends in the second round of AAF a message to each neighbor in V . This implies
that these nodes behave in the same way as for algorithm ASF. This is also true

192 V. Turau

for the nodes in S\SI . The remaining nodes in V \S also send the same messages
in round two for both algorithms.

Note that from round three on the algorithms are identical with one minor
exception. When a node v in SI receives a message it will in addition send in
algorithm AAF a message to node wv. Since v is the only neighbor of wv this
triggers no further message. These arguments also yield that the executions of
ASF on G and AAF on Ĝ(S) terminate after the same round. �	

The last lemma implies that algorithm ASF is correct, i.e., all nodes receive
the message in finite time, since algorithm AAF is correct.

In the next step of the reduction, the number of initiators is reduced to one.
This simplifies the analysis of the behavior of AAF on graph Ĝ(S) with initiators
Ŝ. Next, an auxiliary graph G(S) is introduced in two steps. Let v∗ be a new
node and define V ◦ = V̂ ∪ {v∗} and E◦ = Ê ∪ {(v∗, v) | v ∈ Ŝ}.

Definition 5. Denote by G◦(S) the undirected graph with node set V ◦ and edge
set E◦ and by F(v∗) the subgraph of G◦(S) with node set V ◦ and all edges of
G◦(S) that are not cross edges with respect to v∗.

Figure 6 shows on the left the graph G◦(S) and on the right the subgraph F(v∗)
for the graph G depicted in Fig. 2. Obviously F(v∗) is always bipartite.

v∗ v∗

Fig. 6. The new node v∗ is connected to the four nodes of Ŝ. The subgraph F(v∗)
depicted on the right contains the forward edges of G◦(S) only.

Using G◦(S) we next define the auxiliary graph G(S). This graph roughly
consists of two copies of F(v∗) with edges linking both copies. These edges are
induced by the cross edges of G◦(S).

Definition 6. Let ◦V be a copy of V̂ . Denote by G(S) the graph with node set
V ◦ ∪ ◦V and the following edges:

1. Edges of F(v∗) connecting nodes of V ◦.
2. Edges between nodes of ◦V if there exits an edge in F(v∗) between the corre-

sponding nodes in V̂ .
3. Edges (u◦, ◦w) and (w◦, ◦u) with u◦ ∈ V ◦ and ◦w ∈ ◦V if (u,w) is a cross

edge of G◦(S). Here u (resp. w) corresponds to the copies of u◦ and ◦u (resp.
w◦ and ◦w).

Stateless Information Dissemination Algorithms 193

Figure 7 demonstrates this construction for the graph G depicted in Fig. 6.
G(S) consists of 2(|V | + |SI |) + 1 nodes and 2|E| + 3|SI | + |S| edges. For each
v ∈ V ◦ we have degG◦(S)(v) = degG(S)(v).

v∗

Fig. 7. The graph G(S) for the graph G◦(S) of Fig. 6. Note that G◦(S) has three cross
edges for v∗. Therefore, there are six edges in G(S) connecting nodes in V ◦ with nodes
in ◦V (depicted as dashed lines). The numbers next to the nodes indicate the number
of the round, in which the node receives a message in execution Ev∗

AF .

Denote by Li the nodes of F(v∗) with distance i in F(v∗) from v∗. Further-
more denote by Ri the nodes of the copy of F(v∗) in G(S) that have distance i
to the copy of the node set Ŝ in ◦V . Clearly, the sets Li and Ri are independent
sets. Let VL = L0 ∪ R0 ∪ L2 ∪ R2 ∪ . . . and VR = L1 ∪ R1 ∪ L3 ∪ R3 ∪

Lemma 3. The graph G(S) is bipartite with ◦V ∪V ◦ = VL∪VR and dG(S, V) =
εG(S)(v∗) − 1.

Proof. Note that the graph F(v∗) and its copy in G(S) are bipartite. Also VL ∩
VR = ∅. For i > 0 the edges edges between nodes in V ◦ and nodes in ◦V connect
nodes in Li with nodes in Ri−1. Thus, VL and VR are independent sets and hence
G(S) is bipartite. For the last statement note that dG(v, S) = dF(v∗)(v∗, S) for
v ∈ V . �	
Lemma 4. Let EAF be an execution of algorithm AAF on graph Ĝ(S) with ini-
tiators Ŝ and Ev∗

AF an execution of algorithm AAF on graph G(S) with initiator
v∗. The length of EAF is one round less than the length of Ev∗

AF .

Proof. We show by induction on the round number i that messages sent in round
i > 1 in Ev∗

AF correspond with messages sent in round i − 1 in EAF . Let i = 2. In
the first round of Ev∗

AF node v∗ sends a message to each node of Ŝ. Nodes of Ŝ
will therefore send in the second round of Ev∗

AF a message to all their neighbors
except v∗. The construction of G◦(S) and G(S) implies that all copies of the
nodes Ŝ in ◦V receive a message. The same is true for all nodes in V ◦ that are
reachable via forward edges from nodes in S (see Fig. 7 for an example). These

194 V. Turau

messages correspond precisely to the messages sent in the first round of EAF (via
forward and cross edges). This proves the base case.

For the induction step let i > 2. G(S) is by Lemma 3 bipartite and messages
are never sent from nodes in ◦V to nodes in V ◦ only in the opposite direction.
Thus, in round i the nodes in G(S) that receive a message are exactly those in
Li ∪ Ri−2. By induction hypothesis the nodes in Ĝ(S) that receive a message
in round i − 1 are those nodes that correspond in V to the nodes in Li ∪ Ri−2.
Thus, the messages sent in round i + 1 in Ev∗

AF correspond with messages sent
in round i in EAF . This yields that the length of EAF is one round less than the
length of Ev∗

AF . �	
Theorem 1. Let G = (V,E) be a connected graph and ∅
= S ⊆ V . Algorithm
ASF is truly stateless, distributes a message stored at the nodes of S to all nodes,
and terminates after dG(S, V) + 1 rounds.

Proof. First consider the execution of algorithm AAF for graph Ĝ(S) with initia-
tors Ŝ. By Lemma 3 Ĝ(S) is bipartite. Obviously, AAF terminates for bipartite
graphs. In particular it terminates after t = εG(S)(v∗) rounds. Now Lemma 2 and
Lemma 4 yield that Algorithm ASF terminates in t − 1 rounds on graph G with
initiators S. Note that dG(S, V) = εG(S)(v∗) − 1 by Lemma 3. �	
Corollary 1. Let G be a connected graph with n > 2 and 1 ≤ k < n. Then
SFk(G) = rk(G) + 1. In particular SF1(G) = Rad(G) + 1.

This result demonstrates that ASF terminates significantly faster than amne-
siac flooding in case G is non-bipartite. AAF with single initiator v0 terminates
in this case after at most Diam(G) + εG(v0) + 1 rounds by Theorem 12 of [14].
Theorem 1 implies that ASF terminates already in εG(v0)+1 rounds. The bound
for AAF is sharp as a cycle Cn of odd length demonstrates. AAF terminates after n
rounds whereas ASF terminates already after (n+1)/2 rounds. Similar examples
can be found in case |S| > 1, e.g., in [18].

Corollary 2. ASF is a truly stateless information dissemination algorithm. Its
time complexity is optimal unless G is bipartite with V = V1 ∪ V2 such that V1

or V2 contains a k-center ASF. In this case AAF requires one round less.

As stated in Subsect. 4.1 amnesiac flooding with k initiators terminates in
rk(G) rounds if and only if G is a bipartite with V = V1 ∪ V2 and a k-center of
G is either contained in V1 or in V2. In this case, algorithm ASF still terminates
only after rk(G) + 1 rounds. The reason is that the extended behavior in round
2 in Algorithm 1 is not needed in this constellation. Thus, ASF is only optimal if
this constellation is not given (see Fig. 8 for an example). In particular, ASF is
not optimal if k = 1 and G is bipartite, in this case AAF is optimal.

4.4 Approximation Algorithm

Theorem 1 shows the strong link between the k-center problem and this problem.
This relationship immediately gives rise to an approximation algorithm for the

Stateless Information Dissemination Algorithms 195

v0 v1 v2 v3 v

v v v v v

Fig. 8. A bipartite graph for which neither V1 nor V2 contains a 2-center. The set
{v0, v8} is a 2-center with radius 2. Note that SF2(G) = 3, e.g., SFG({v0, v1}) = 3.
After removing node v9, {v0, v1} is a 2-center of the remaining graph contained in V1.
Hence, AAF (resp. ASF) terminates after 2 (resp. 3) rounds for the remaining graph.

SF problem: If S is a k-center with minimal radius then SFG(S) = SFk(G). There
exist several approximation algorithms for the k-center problem. The algorithm
of Gonzalez has a run-time of O(nk) [10]. The algorithm of Feder and Greene
requires only O(n log k) time [6]. Both algorithms achieve an approximation ratio
of 2 and this is also the best possible ratio assuming P
= NP [12]. For the SF
problem we have the following result.

Theorem 2. There exits a polynomial time approximation algorithm for the
stateless-flooding problem with approximation ratio 2 − 1/SFk(G).

Proof. Let A be any 2-approximation algorithm for the k-center problem and S
a k-center computed by A. Then d(S, V) ≤ 2rk(G). Hence

SFG(S)
SFk(G)

≤ 2rk(G) + 1
rk(G) + 1

= 2 − 1
SFk(G)

≤ 2.

There is little hope to find an approximation algorithm with approximation
ratio 3/2 − ε with ε > 0.

Theorem 3. Assuming P
= NP , there is no polynomial time algorithm achiev-
ing a factor of 3/2 − ε, ε > 0, for the stateless-flooding problem.

Proof. We will show that such an algorithm can solve the dominating set prob-
lem in polynomial time. Given a graph G = (V,E) and an integer k < n, the
dominating set problem is to decide whether there exist a set D of k nodes with
the property that each of the remaining nodes has a neighbor in D. According
to [9] this problem is NP -complete. Note that a graph G has a dominating set
of size k if and only if rk(G) = 1. Hence, by Corollary 1 G has a dominating set
of size k if and only if SFk(G) = 2.

Suppose there exists a polynomial time algorithm A that computes a subset
S of V with |S| = k such that SFG(S) ≤ (3/2 − ε)SFk(G). We will prove
that A solves the dominating set problem. First consider the case SFG(S) > 2.
Assume there exists a dominating set D of G of size k then SFk(G) = 2. Hence,
SFG(S) ≤ (3/2 − ε)SFk(G) < 3. Thus, SFG(S) ≤ 2 since SFG(S) is an integer.
Contradiction. Therefore, SFG(S) > 2 yields that there exists no dominating
set S of G of size k. On the other hand SFG(S) ≤ 2 implies rk(G) = 1 by

196 V. Turau

Corollary 1. Hence, there exists a dominating set S of G of size k. This implies
that A solves the dominating set problem. Contradiction to P
= NP . �	

5 Asynchronous Stateless Information Dissemination

The definition of a synchronous stateless algorithm inherently relies on the con-
cept of a round. It is used to define the unit of time, information can be kept by a
node. Several papers proposed a definition of the round concept in asynchronous
systems. Hussak et al. introduce what they call as the round-asynchronous model
where the computation still proceeds in global synchronous rounds but an adver-
sary can decide the delay of message delivery on any link [14]. Messages will be
eventually delivered but the adversary decides which round to deliver the mes-
sage in. The authors show with a simple example that AAF may not terminate in
this model. This argument also holds for algorithm ASF. Dolev et al. introduce
r-fair asynchronous systems [5]. Compared to the round-asynchronous model it
is assumed that messages are delivered at least r rounds after they have been
sent. Thus, 1-fair systems are precisely the synchronous systems. It is easy to see
that AAF will also not terminate in this model with r > 1. Both proposals do not
lead to a practical definition of stateless algorithm for asynchronous systems.

Coordination in asynchronous systems is not achieved via the concept of
a round but purely via events such as message arrival. An extreme definition
of statelessness would be that nodes have to react upon each incomming mes-
sage and cannot retain information between two message receptions. Such sys-
tems interact by repeatedly mapping incoming messages to outgoing messages
and output values. The computational power of this type of stateless algorithm
strongly depends on the maximal allowed size of a message. With messages of
size Ω(n log n) all state information can be encoded in a single message. Thus,
in principle it should be possible to solve all problems that are also solvable by
stateful algorithms, possibly at the cost of a high number of messages.

More interesting problems arise if only a limited part of each message can be
used to encode session information, e.g., of size O(1) or O(log n).

Theorem 4. There is no deterministic 1-stateless information dissemination
algorithm for asynchronous systems.

Proof. Assume there exists a 1-stateless information dissemination algorithm A
that can update up to d bits in each message. Let G be a graph that has a
node v0 with εG(v0) > 2d. Consider an execution of A with initiator v0. Then
there exists a message flow S: v0

m0−−→ v1
m1−−→ v2

m2−−→ . . . with nodes v0, v1, v2, . . .
and vi ∈ N(vi+1) for i ≥ 0 such that vi sends a message to vi+1 as a reaction
of receiving a message from vi−1 for i > 0 and the length of S is greater than
2d. Thus, there are two nodes vs and vt in this flow with s < t which receive
identical messages. Hence, as a reaction they also send identical messages. Thus,
S is infinite. This yields that A does not terminate. Contradiction. �	

Stateless Information Dissemination Algorithms 197

Clearly, in asynchronous anonymous networks no deterministic stateless
information dissemination algorithm exists. Hence, we assume unique identi-
fiers. According to Definition 2 an algorithm is stateless if a node decides only
on the basis of each received message which messages to send as a reaction. This
definition can be relaxed by allowing a node to include its own identifier in its
decision process. In this case we can prove the following theorem.

Theorem 5. There exists a log n-stateless information dissemination algorithm
for asynchronous systems terminating in nc+1 rounds provided each node has a
unique identifier in the range 0, . . . , nc with c ≥ 1.

Proof. We sketch a simple log n-stateless information dissemination algorithm
for a single originator. Each message consists of two values each of size O(log n).
The originator v0 sends the pair (v0.id, v0.id) to all neighbors. A node v receiving
a message (a, b) reacts as follows. If its own id is strictly larger than a it sends
(v.id, v.id) to all neighbors except the one from which the message came. If its
own id is strictly less than a and b
= 0 its sends (a, b−1) to all neighbors except
the one from which the message came. In all other cases no message is sent.

Obviously the information reaches all nodes. Assume false. Among all nodes
which are not informed by the algorithm choose v such that d(v, S) is minimal.
Let w ∈ N(v) such that d(w,S) < d(v, S). Then w is informed with a message
(a, 0) and a > w.id otherwise v would be informed. Consider a shortest path
from the node u with u.id = a to w. Since u sent the messages (a, a) the second
component was a-times decreased by nodes with an id less than a. Thus, there
must be a + 1 nodes with an id less than a. Contradiction.

To prove that the algorithm terminates consider a sequence S of nodes
v0, v1, . . ., where vi forwards a message to vi+1. Then either the first component
in each message increases or the second decreases. The first case can happen at
most n−1 times. After each such event at a node vi the second case can happen
at most vi.id times. Thus, there exists a constant C ≤ nc+1 such that S has
length at most C. Hence, the algorithm terminates in at most C rounds. �	

6 Conclusion and Future Work

We presented an optimal truly stateless information dissemination algorithm
with k initiators for synchronous systems. The algorithm terminates in rk(G)+1
rounds. We proved that unless P = NP there is no approximation algorithm for
the SF problem with an approximation ratio less than 3/2. It remains an open
problem to design a 3/2-approximation or disprove its existence.

There are also open questions related to stateless asynchronous information
dissemination. The algorithm in the proof of Theorem5 terminates in O(nc+1)
rounds, but the number of messages grows exponentially with n. It remains to
design a more efficient stateless information dissemination algorithm in this case.
Another open problem is whether Theorem4 still holds for the relaxed definition
of statelessness. Lastly, it is unknown whether there exits a deterministic f(n)-
stateless asynchronous information dissemination algorithm with f ∈ o(log n).

198 V. Turau

A well-known procedure to execute synchronous algorithms in asynchronous
systems are synchronizers. They simulate an execution of a failure-free syn-
chronous system in a failure-free asynchronous system [1]. Thus, a truly stateless
synchronizer would transform AAF into a truly stateless asynchronous informa-
tion dissemination algorithm, this contradicts Theorem4. Thus, there is no truly
stateless synchronizer. Does there exist a log n-stateless synchronizer?

References

1. Attiya, H., Welch, J.L.: Distributed Computing - Fundamentals, Simulations, and
Advanced Topics. Series on Parallel and Distributed Computing, 2nd edn. Wiley,
Hoboken (2004)

2. Awerbuch, B., Khandekar, R.: Stateless distributed gradient descent for positive
linear programs. In: Proceedings of the 40th Symposium on Theory of Computing,
pp. 691–700. ACM (2008)

3. Calik, H., Labbé, M., Yaman, H.: p-center problems. In: Laporte, G., Nickel, S.,
da Gama, F.S. (eds.) Location Science, pp. 79–92. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-13111-5 4

4. Dolev, D., Erdmann, M., Lutz, N., Schapira, M., Zair, A.: Brief announcement:
stateless computation. In: Schiller, E., Schwarzmann, A. (eds.) Proceedings of the
Symposium on Principles of Distributed Computing, (PODC), pp. 419–421. ACM
(2017)

5. Dolev, S., Kahil, R.M., Yagel, R.: Stateless stabilization bootstrap (extended
abstract). In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 180–194.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11764-5 13

6. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing, STOC 1988,
pp. 434–444. ACM, New York (1988)

7. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
In: Asano, T., Ibaraki, T., Imai, H., Nishizeki, T. (eds.) SIGAL 1990. LNCS,
vol. 450, pp. 128–137. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-
52921-7 62

8. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random
arc-lengths. Discrete Appl. Math. 10(1), 57–77 (1985)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, 1st edn. W. H. Freeman, San Francisco (1979)

10. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
ret. Comput. Sci. 38, 293–306 (1985)

11. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988)

12. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete
Appl. Math. 1(3), 209–215 (1979)

13. Hussak, W., Trehan, A.: Brief announcement: on termination of a flooding process.
In: Proceedings ACM Symposium on Principles of Distributed Computing, PODC,
New York, pp. 153–155 (2019)

14. Hussak, W., Trehan, A.: On the termination of flooding. In: Paul, C., Bläser, M.
(eds.) 37th International Symposium on Theoretical Aspects of Computer Science
(STACS). LIPIcs, vol. 154, pp. 17:1–17:13. Dagstuhl, Germany (2020)

https://doi.org/10.1007/978-3-319-13111-5_4
https://doi.org/10.1007/978-3-319-13111-5_4
https://doi.org/10.1007/978-3-319-11764-5_13
https://doi.org/10.1007/3-540-52921-7_62
https://doi.org/10.1007/3-540-52921-7_62

Stateless Information Dissemination Algorithms 199

15. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems.
I: the p-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

16. Mocquard, Y., Sericola, B., Anceaume, E.: Probabilistic analysis of rumor-
spreading time. INFORMS J. Comput. 32(1), 172–181 (2020)

17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Society
for Industrial and Applied Mathematics, Philadelphia (2000)

18. Turau, V.: Analysis of amnesiac flooding. CoRR abs/2002.10752 (2020). https://
arxiv.org/abs/2002.10752

https://arxiv.org/abs/2002.10752
https://arxiv.org/abs/2002.10752

Multi-agent Systems

Cops and Robbers on Dynamic Graphs:
Offline and Online Case

Stefan Balev1, Juan Luis Laredo Jiménez1, Ioannis Lamprou2(B),
Yoann Pigné1, and Eric Sanlaville1

1 Normandie Univ., UNIHAVRE, UNIROUEN, INSA Rouen, LITIS,
Le Havre, France

{stefan.balev,juanlu.jimenez,yoann.pigne,eric.sanlaville}@univ-lehavre.fr
2 Department of Informatics and Telecommunications,

National and Kapodistrian University of Athens, Zografou, Greece
ilamprou@di.uoa.gr

Abstract. We examine the classic game of Cops and Robbers played
on models of dynamic graphs, that is, graphs evolving over discrete time
steps. At each time step, a graph instance is generated as a subgraph of
the underlying graph of the model. The cops and the robber take their
turns on the current graph instance. The cops win if they can capture
the robber at some point in time. Otherwise, the robber wins.

In the offline case, the players are fully aware of the evolution
sequence, up to some finite time horizon T . We provide a O(n2k+1T)
algorithm to decide whether a given evolution sequence for an underly-
ing graph with n vertices is k-cop-win via a reduction to a reachability
game.

In the online case, there is no knowledge of the evolution sequence, and
the game might go on forever. Also, each generated instance is required
to be connected. We provide a nearly tight characterization for sparse
underlying graphs, i.e., with at most linear number of edges. We prove
λ + 1 cops suffice to capture the robber in any underlying graph with
n − 1 + λ edges. Further, we define a family of underlying graphs with
n−1+λ edges where λ−1 cops are necessary (and sufficient) for capture.

Keywords: Cops and robbers · Dynamic graphs · Offline · Online

1 Introduction

Cops and robbers is a classic pursuit-evasion combinatorial game played on a
graph. There are two opposing players aiming to win the game. A cop player
controlling k cop tokens and a robber player controlling one robber token. Ini-
tially, the k cops are placed at vertices of the graph. Subsequently, the robber is
also placed at a graph vertex. The two players proceed (possibly ad infinitum)
by taking turns alternately commencing with the cops. During a cops’ turn, each

This work was partially funded by the Normandy region via the ASTREOS project.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 203–219, 2020.
https://doi.org/10.1007/978-3-030-54921-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_12

204 S. Balev et al.

cop may move to a vertex adjacent to its current one; note that cops are pre-
sumed to move simultaneously. Similarly, during a robber’s turn, the robber may
move to a vertex adjacent to its current placement. The cops win, if at least one
of them manages to eventually lie at the same vertex as the robber, i.e., captures
the robber. Otherwise, the robber wins if it can indefinitely avoid capture.

Thus far, Cops and Robbers literature has focused on (several variations of)
the game taking place on static graphs. Very little is known with respect to Cops
and Robbers games taking place on dynamic graphs. In this paper, we consider
the above described Cops and Robbers game taking place in models of dynamic
graphs, otherwise referred to as temporal graphs/networks [18,27]. In our case,
a dynamic graph is represented by a (possibly infinite) sequence of subgraphs
of the same static graph, which is the underlying graph of the model. In other
words, the underlying graph evolves over a series of discrete time steps under
a set of evolution rules. In this setting, we introduce the problem of Cops and
Robbers taking place in some standard models of dynamic graphs.

Related Work. The preliminary question in mind is to compute the minimum
number of cops needed to capture the robber on some (static) graph family.

Definition 1. The cop number of a graph G, denoted c(G), is the minimum
number of cops needed to ensure that the robber is eventually captured, regardless
of the robber’s strategy.

Problems related to the cop number have been studied heavily over the last
four decades. Originally, Quillot [31], and independently Nowakowski and Win-
kler [29], characterized graphs with cop number equal to 1, otherwise referred
to as cop-win graphs. The set of (di)graphs with cop number equal to k > 1
was characterized in [13,17]. Building on these notions, a general framework for
characterizing discrete-time pursuit-evasion games was developed in [9].

There is a lot of literature regarding the cop number of specific graph classes.
Aigner and Fromme [1] proved c(G) ≤ 3 for any planar graph G. Frankl [16]
proved a lower bound for graphs of large girth. Other works include [2,15,25].

Moving onto general graphs, Meyniel conjectured
√

n cops are always suf-
ficient to capture the robber in any graph. The current state of the art is
O(n/2(1−o(1))

√
logn) proved independently in [23,32]. Yet, the conjecture remains

unresolved. On the contrary, the conjecture was proved positive for random
graphs [30]; relevant works include [6,10,24]. Finally, there exists a book cap-
turing all the activity on Cops & Robber until recently; see [8].

The computational complexity of the corresponding decision problem is also
worth a note. Given a graph G and an integer k, does c(G) ≤ k hold? Recently,
Kinnersley [21] answered the question by proving EXPTIME-completeness. With
respect to algorithmic results, for a fixed constant k, there is a polynomial time
algorithm to determine whether c(G) ≤ k [3]. Other algorithmic results include
[7] (capture from a distance), and [9] (generalized Cops and Robbers).

Cops and robbers applications are found in many fields, for example in motion
planning [33], routing [22], network security [10], and distributed computing [5].

Cops and Robbers on Dynamic Graphs: Offline and Online Case 205

Dynamic graphs, sometimes called temporal networks [27] or time-varying
graphs [12], have received a lot of attention as they capture realistic scenarios
where the underlying graph changes over time periodically or intermittently.
Several models for such constructs have been considered, for example, [11,28].

With respect to Cops and Robbers games played on dynamic graphs, we
were unaware of any work until the recent paper by Erlebach and Spooner [14].
They examine the game on edge-periodic graphs, where each edge e is present
at time steps indicated by a bit-pattern of length le used periodically and ad
infinitum as evolution rule. Let LCM(L) denote the least common multiple for
input lengths le. The paper presents a O(LCM(L) · n3) algorithm to determine
whether the graph is 1-cop-win as well as some other results on cycle graphs.

Our Results. We consider two dynamic graph models and present preliminary
results for a (classic-style) Cops and Robbers game taking place in them. At
each discrete time step of evolution, the current graph instance is fixed, then the
cops take their turn, and finally the robber takes its turn. Note that movement
may be restricted due to the possibly limited topology of each instance.

In the offline case, the cop and the robber know the whole evolution sequence
(up to some finite time horizon T) a priori. For an underlying graph with n ver-
tices, we prove that deciding whether it is cop-win can be done in time complex-
ity O(n3T); see Theorem 3. To do so, we employ a reduction to another game,
a reachability game, played now on the configuration graph (Lemma1). Our
results extend to deciding k-cop-win graphs (Corollary 1), and an exponential
time algorithm to determining the exact value of the cop-number (Corollary 2).

In the online case, no knowledge is given to the players regarding graph
dynamics. The only restriction imposed is that, at each time step, the realized
graph instance needs to be connected. We consider sparse graphs and show that
the cop number is at most λ + 1 for underlying graphs with n − 1 + λ edges; see
Theorem 4. Moreover, we demonstrate a (nearly tight) graph family where λ− 1
cops are necessary (and sufficient) to ensure cop victory; see Theorem 5.

Outline. In Sect. 2, we present introductory notions and notation on the dynamic
graph models used and on the game of Cops and Robbers played on said models.
In each of Sects. 3 and 4, we formalize our definitions for the respective model
considered: In Sect. 3, we consider the offline case, whereas in Sect. 4, we consider
the online case. In Sect. 5, we cite concluding remarks.

2 Preliminaries

Dynamic Graphs. Let G = (V,E) stand for a (static) graph to which we refer to
as the underlying graph of the model. We assume G is simple, i.e., not containing
loops or multi-edges, and connected, i.e., there exists a path between any two
vertices in G. No further assumptions are made on the topology of G. An edge
from vertex v ∈ V to vertex u ∈ V is denoted as (v, u) ∈ E, or equivalently
(u, v) ∈ E. We refer to the edges of the underlying graph as the possible edges of

206 S. Balev et al.

our model. We denote the number of vertices of G by n = |V | and the number
of its edges by m = |E|. For any vertex v ∈ V , we denote its open neighborhood
by N(v) = {u : (v, u) ∈ E} and its closed neighborhood by N [v] = N(v) ∪ {v}.
The (static) degree of v ∈ V in G is given by d(v) = |N(v)|.

The dynamic graph evolves over a sequence of discrete time steps t ∈ N. We
consider two cases with respect to time evolution. First, t = 1, 2, 3, . . . , T , that
is, t takes consecutive values starting from time 1 up to a time horizon T ∈ N

given as part of the input. In this case, we define a dynamic graph G with a time
horizon T as G = (G1, G2, . . . , GT) (Sect. 3). Second, t = 1, 2, 3, . . ., that is, we
consider the sequence of time steps t evolving ad infinitum (Sect. 4).

For any t, let Gt = (Vt, Et) be the graph instance realized at time step t,
where Vt = V and Et ⊆ E: all vertices of the underlying graph G are present at
each time step, whereas a possible edge e ∈ E may either be present/alive, i.e.,
e ∈ Et, or absent/dead, i.e., e /∈ Et at time t. For any vertex v ∈ V , we denote
by Nt(v) = {u : (v, u) ∈ Et} its available neighborhood at time t. Also, similarly
to before, let Nt[v] = Nt(v) ∪ {v} refer to the closed neighborhood at time t.

Cops and Robber on Dynamic Graphs. We play a game of Cops and Robbers
on a dynamic graph evolving under the general model defined above. There are
two players: C controlling k ≥ 1 (k ∈ N) cop tokens and R controlling one
robber token. Initially, C places its k tokens on the vertices of the underlying
graph. Notice that we allow multiple cops to lie on the same vertex. Afterward,
R chooses an initial placement for the robber. Round 0 is over. From now on, for
every t ≥ 1, first, the current graph instance Gt is fixed and, second, a round of
the game takes place. A round consists of two turns, one for C and one for R, in
this order of play. C may move any of its cops lying on a vertex v to any vertex
in Nt[v]. Note that all cops controlled by C move simultaneously during C’s turn.
After C’s turn is over, R may move the robber lying on a vertex u to any vertex
in Nt[u]. C wins the game if, after any player’s turn, the robber lies on the same
vertex as a cop. R wins if it can perpetually prevent this from happening.

A cop-strategy, respectively a robber-strategy, is a set of movement decisions
for the cops, respectively the robber. Having knowledge of all past turns, the
current positions, and the current graph instance Gt, the cops/robber decide on
a move for round t according to the rules of the game. A dynamic graph is called
k-cop-win, if there exists a cop-strategy such that k cops win the game against
any robber-strategy. For k = 1, we say that such a dynamic graph is cop-win.

3 Offline Case

In the offline case, we are given a dynamic graph G with a time horizon T ,
namely G = (G1, G2, . . . , GT), where both C and R have complete knowledge of
the evolution sequence. That is, both players are aware of Gt = (V,Et), for all
t = 1, 2, . . . , T , a priori. Let coff (G) stand for the temporal cop number (offline
case), the worst-case minimum number of cops required to capture a robber when
the whole sequence G = (G1, G2, . . . , GT) is given as input to both players. If

Cops and Robbers on Dynamic Graphs: Offline and Online Case 207

the robber is not captured within the T rounds, for any cop strategy, then the
dynamic graph is robber-win. Overall, this is a model of a Cops and Robbers
game on a time-horizon bound dynamic graph. From now on, we refer to it as the
offline model. The results presented in this section can be viewed by the reader
as an extension/completion of the work in [14] on the model of edge-periodic
graphs.

Configuration Graph. The first task we tackle in the offline model is to charac-
terize the set of given inputs (G, T), which are cop-win, i.e., one cop can always
capture the robber within the T rounds of play. To do so, we first construct a
directed configuration graph capturing the cop and robber motion on G. Then,
we can play another game, i.e., a reachability game [20] to be defined later, on
the configuration graph which corresponds to the original cop and robber game
played on G and derive our result this way. We define the directed configuration
graph as P = (S,A), where S refers to configuration states (vertices) and A to
arcs from one state to another state which is a feasible potential next state.

The vertex set S consists of all four-tuples of the form (c, r, p, t), where t ∈
{1, 2, . . . , T} indicates the time step, i.e., round of play t, p ∈ {C,R} indicates
whether it is the cop’s/robber’s turn to play, c ∈ V is the vertex/position of the
cop just before p’s turn takes place in round t, and r ∈ V is the vertex/position
of the robber just before p’s turn takes place in round t.

The arc set A contains the arcs below, for all x, y ∈ V and t ∈ {1, 2, . . . , T},
such that both the dynamics of the graph and the game moves are represented:

(1) if z ∈ Nt[x] and t ∈ {1, 2, . . . , T}, then ((x, y, C, t), (z, y,R, t)) ∈ A, and
(2) if z ∈ Nt[y] and t ∈ {1, 2, . . . , T − 1}, then ((x, y,R, t), (x, z, C, t + 1)) ∈ A

Case (1) arcs represent the cop’s turn at round t, where the cop moves within
its closed neighborhood available at time t, the robber retains its position, and,
after the cop moves, it is the robber’s turn at round t. Respectively, case (2)
arcs represent the robber’s turn at round t, where the robber moves within its
closed neighborhood available at time t, the cop retains its position, and, after
the robber moves, it is the cop’s turn, but at the next round, namely round t+1.

Let us now consider the size of P . By the definition of the states s ∈ S, it
holds for the number of vertices |S| ∈ O(n2T). Considering the set of arcs A, in
case (1), for each time step t = 1, 2, . . . , T , we get at most

(
n
2

)
choices for x, z

cop-move pairs, one per (x, z) ∈ Et ⊆ E, and at most n choices for the robber
position y ∈ V . A similar observation holds for the arcs considered in case (2).
Put together, we obtain for the number of arcs |A| ∈ O(n3T).

Before we proceed utilizing the configuration graph, let us add some auxiliary,
yet necessary, states and arcs to capture the round of initial cop and robber
placement, i.e., round 0. This way, we ensure the full correspondence of the
reachability game played on P to the cop and robber game played on G. Note
that all state and arc additions discussed hereunder do not affect the order
of magnitude of the size of P . Let S contain also the states (∅, ∅, C, 0), and
(x, ∅,R, 0), for all x ∈ V . State (∅, ∅, C, 0) captures the situation at round 0
before the cop’s turn: neither the cop nor the robber have been placed yet on V .

208 S. Balev et al.

States (x, ∅,R, 0) capture the situation at round 0 before the robber’s turn: the
cop has been placed and it is the robber’s turn to be placed. Overall, we have
added an extra n + 1 states in S. We now proceed adding the necessary arcs in
A to make the transitions from one turn to the next. For each x ∈ V , we add an
arc ((∅, ∅, C, 0), (x, ∅,R, 0)) ∈ A, that is, n extra arcs in total. For each x, y ∈ V ,
we add an arc ((x, ∅,R, 0), (x, y, C, 1)) ∈ A, that is, n2 extra arcs in total.

Reachability. We now employ the configuration graph P constructed above by
playing another two-player game on it referred to in literature as a reachability
game [4,20,26]. The goal is to define a reachability game, which corresponds
exactly to the Cops and Robbers game (offline case), and so be able to utilize
known results in this area to prove our cop-win characterization (Theorem 3).
The connection of a (classic) Cops and Robbers game to a reachability game
was first identified in [19]. Other results, in [10,17], on cop-win characterizations
employ similar tools without explicitly stating the reduction to reachability.

A reachability game is played by two players C, and R, where we maintain the
notation such that it corresponds to players in the game of Cops and Robbers.
The two players play alternately on a directed graph D = (VD, AD), where VD

is partitioned into two player-respective subsets, that is, VD = VC ∪ VR and
VC ∩VR = ∅. Moreover, VC , respectively VR, is a pairwise disjoint set of vertices,
that is, for any x, y ∈ VC , respectively x, y ∈ VR, it holds (x, y)
∈ AD and
(y, x)
∈ AD. A single token is initially placed on a vertex v ∈ VD. If v ∈ VC , then
C plays and moves the token to a vertex u ∈ VR for which it holds (v, u) ∈ AD.
Then, it is R’s turn: R chooses to move the token to a vertex w ∈ VC for which
it holds (u,w) ∈ AD. Note that either player has to move the token across an
available arc in AD. The game proceeds in this fashion for an indefinite number
of rounds. Player C wins, if the token eventually arrives to a designated target
vertex set Tar ⊆ VD. Otherwise, if for any C-strategy a vertex in Tar can
never be reached, then R wins. In a nutshell, the reachability game played on
D = (VD, AD) is defined by the tuple (VC , VR, Tar). Theorem 1 demonstrates
that the game can be decided for any input (VC , VR, Tar) and D. Moreover, by
Theorem 2, it can be decided in time linear to the size of the directed graph D.

Theorem 1 ([4,26]). Consider a reachability game (VC , VR, Tar) played on a
directed graph D = (VD, AD). VD can be partitioned into two sets WC and WR
such that, if the token is initially placed on w ∈ Wp, then there exists a winning
strategy for player p ∈ {C,R}.
Theorem 2 ([4,20]). There exists an algorithm deciding a reachability game
(VC , VR, Tar) played on a directed graph D = (VD, AD) in time O(|VD| + |AD|).

Let us now consider a reachability game taking place in our constructed
configuration graph P . In this respect, let D = P , VD = S, and AD = A. For
any (c, r, p, t) ∈ S, let (c, r, p, t) ∈ Vp where p ∈ {C,R}. Finally, let Tar =
{(x, x, p, t) | x ∈ V, p ∈ {C,R}, t ∈ {1, . . . , T}}. We can now use the just defined
sets VC , VR, Tar to prove Lemma 1 and, as a consequence, our main result for
this section, which is given in Theorem 3.

Cops and Robbers on Dynamic Graphs: Offline and Online Case 209

Lemma 1. G = (G1, G2, . . . , GT) is cop-win, if and only if, for a reachability
game (VC , VR, Tar) played on P = (S,A), where Vp = {(c, r, p, t) ∈ S | c, r ∈
V, t ∈ [T]}, for p ∈ {C,R}, and Tar = {(x, x, p, t) ∈ S | x ∈ V, p ∈ {C,R}, t ∈
[T]}, it holds (∅, ∅, C, 0) ∈ WC.

Theorem 3. Given a dynamic graph G = (G1, G2, . . . , GT) in the offline model,
we can decide if coff (G) = 1, that is, if G is cop-win, in time O(n3T).

Proof. By Lemma 1, coff (G) = 1 holds, if and only if, for a reachability game
(VC , VR, Tar) played on P = (S,A), where VC , VR, Tar are defined according to
the statement of Lemma 1, it holds (∅, ∅, C, 0) ∈ WC . By Theorem 2, we decide
whether (∅, ∅, C, 0) ∈ WC in time O(|S| + |A|) = O(n2T + n3T) = O(n3T). ��

An important remark is that, in Theorem1 [4,20], the winning strategy
derived for player p ∈ {C,R} is memoryless; see Proposition 2.18 in [26]. In
other words, it only depends on the current position of the token, and not on
any past moves. By the reduction presented in Lemma 1, the winning strategy for
the cop/robber is also memoryless, i.e., it only depends on the current positions
of the cop and the robber and the time step of evolution.

Let us conclude this part by explaining how the above framework can
be generalized, and therefore used to determine whether a dynamic graph
G = (G1, G2, . . . , GT) is k-cop-win, where k > 1. Since k cops are placed on V
throughout the game, it suffices to expand our definition of states by substituting
the cop position by a k-tuple of cop positions. That is, the state set S of the con-
figuration graph P now contains tuples of the form ((c1, c2, . . . , ck), r, p, t), where
ci, for i ∈ {1, 2, . . . , k}, denotes the location of the i-th cop in V . For the arc set,
with respect to C, we add (((c1, c2, . . . , ck), r, C, t), ((c′

1, c
′
2, . . . , c

′
k), r,R, t)) ∈ A,

if for each i ∈ {1, 2, . . . , k} it holds c′
i ∈ Nt[ci]. With respect to R, we get

(((c1, c2, . . . , ck), r,R, t), ((c1, c2, . . . , ck), r′, C, t + 1)) ∈ A, if it holds r′ ∈ Nt[r].
Again, we include auxiliary states and arcs to cater for the initial cops place-
ment. Overall, we now get |S| ∈ O(nk+1T), and |A| ∈ O(n2k+1T), since for the
dominant-in-magnitude number of C-turn arcs there exist at most n2k cop transi-
tions from (c1, c2, . . . , ck) to (c′

1, c
′
2, . . . , c

′
k). By reapplying the whole framework

with Tar = {((c1, c2, . . . , ck), r, p, t) | ci = r for some 1 ≤ i ≤ k} we conclude.

Corollary 1. Given a dynamic graph G = (G1, G2, . . . , GT) and an integer k ≥
1 in the offline model, we can decide if coff (G) ≤ k, i.e., if G is k-cop-win, in
time O(n2k+1T).

We may now run a search utilizing the result in Corollary 1 and derive an
exponential time algorithm to determine the exact value of coff (G).

Corollary 2. For some dynamic graph G, with an associated time horizon T ,
the problem of determining the exact value of coff (G) is in EXPTIME.

210 S. Balev et al.

4 Online Case

In the online case, we are given an underlying graph G = (V,E) and an indefinite
number of discrete time steps of evolution t = 1, 2, 3, . . ., that is, time evolution
may take place ad infinitum. At each time step t, an instance Gt = (Vt, Et) is
realized, where Vt = V , Et ⊆ E. The only assumption we make on the topology
of generated instances, is that we require each Gt to be connected. Note that
this a widely used assumption in several dynamic graph models that appear in
literature [11,27]. Removing this assumption could lead to trivial cases where,
for instance, the k cops or the robber lie indefinitely on isolated vertices.

Initially, the cops and then the robber place themselves on V before the
appearance of G1. In the general case, neither the cops nor the robber have any
knowledge about the evolution sequence. The cops and the robber, taking turns
in this order, make their respective moves in Gt, then Gt+1 is generated, and so
forth. Similarly to the offline case, a token at vertex v moves to a vertex in Nt[v]
(all the cops move simultaneously). Let ct(G) stand for the temporal cop number,
i.e., the worst-case minimum number of cops required to capture a robber for
an underlying graph evolving like described above. In our analysis, we consider
worst-case scenarios for the temporal cop number; a different type of analysis is
left for future work. In other words, for our bounds to follow, one may assume
the robber controls the dynamics of G to its advantage. Hence, at round t, the
robber defines instance Gt according to the aforementioned restrictions.

Preliminary Bounds. As a warm up, let us consider two special cases for the
topology of the underlying graph: a tree, and a complete graph.

Proposition 1. For any tree T , it holds ct(T) = 1.

Proposition 2. For any complete graph Kn, n ≥ 2, it holds ct(Kn) = n − 1.

The above propositions cast some intuition on the relationship between the
(static/classical) cop number c(G) and our introduced temporal cop number
ct(G). For the static case, it is easy to see that if G is either a tree or a clique
then c(G) = 1. However, in the temporal case ct(T) = 1 for a tree T , and
ct(Kn) = n−1 for any clique on n vertices. Intuitively, the denser the underlying
graph is, the more leeway there is for the robber due to worst-case dynamics.
Overall, for any graph G, ct(G) ≤ n− 1, since initially placing the n− 1 cops on
distinct vertices guarantees an edge between a cop-vertex and the robber-vertex
in G1 due to connectedness of the model. Thus, for the ratio of the two cop
numbers, we get 1 ≤ ct(G)/c(G) ≤ n − 1.

We now provide preliminary bounds on ct(·) by considering a subset of sparse
graphs, that is, underlying graphs with at most linear number of edges.

Theorem 4. For any graph G = (V,E), m = n − 1 + λ, it holds ct(G) ≤ λ + 1.

Proof. To describe the cop-winning strategy, let us define a partition of the
vertices into VC and VR such that V = VC ∪ VR and VC ∩ VR = ∅. Intuitively,

Cops and Robbers on Dynamic Graphs: Offline and Online Case 211

VC stands for the cop-secured vertices, i.e., vertices the robber will never be able
to visit, whereas VR stands for the vertices (possibly) still within the eventual
reach of the robber. More precisely, the cop strategy below builds a sequence
of partitions (VC , VR) where VC is a set of vertices the robber will never be
able to visit, VR contains the other vertices and the cardinality of VR strictly
decreases at each time step. This strategy may not be the fastest as VR may
contain unreachable vertices, but this is not required for the proof.

Consider the situation before some round t. Let T be some (arbitrary) span-
ning tree of G. We refer to the edges of T as the black edges and to any path
consisting only of black edges as a black path. We refer to all other edges, which
are exactly λ, as the blue edges. Suppose there is one cop at one extremity of
each blue edge. Note that several cops may lie on the same vertex. We refer to
these cops as the blue cops. One last cop, the black cop, is placed on some other
(blue-cop free) vertex, say x ∈ V . The robber is on a cop-free vertex, say r ∈ V .

Consider the spanning tree T : there exists a unique (black) path from x to
r. Let (x, x′) be the first edge of this path. If this edge is removed from the
black tree T , T is split into two black subtrees containing x and x′ respectively,
namely Tx and Tx′ . Then, let VC = V (Tx) and VR = V \VC = V (Tx′). Notice
that it holds r ∈ VR with this partition.

By construction, the cut associated to (VC , VR) contains exactly one black
edge, (x, x′), plus (possibly) some blue edges. Since Gt is connected for all time
steps t, at least one edge associated to the cut is present in Et. If the black edge
(x, x′) is present, then the black cop moves from x to x′ during the cops turn.
Otherwise, if only a blue edge, say (v, v′), where v ∈ VC , is present, then the
associated cop moves from v to v′ (or remains at v′ if it were already there).
Now, we swap the role of the two edges. That is, (v, v′) becomes a black edge,
and its associated cop becomes the black cop, whereas (x, x′) becomes a blue
edge, and its associated cop becomes a blue cop. By construction, the set of
black edges defines a new black spanning tree T ′: the unique black path from
v to v′ is replaced by the new black edge (v, v′). (Notice that, in the previous
swap-less case, we trivially had T ′ = T). Afterwards, the robber may move at
its turn; we still refer to its position by r. Even after the robber moves, it holds
r ∈ VR\{v′}: there is no edge the robber could use to reach VC since all cut-edges
are protected, and v′ is occupied by the black cop.

Before the next round of the game, let us now reapply the method used
to obtain the partition on Gt+1. Let x = v′ stand for the black cop’s current
position, and set T = T ′. Consider again the unique black path from x to r, and
denote by (x, x′) its first edge. By construction of T , there is a unique black path
from x to all vertices of VC . Hence, if T is split as before into two subtrees after
removing edge (x, x′), the resulting subtree Tx contains x and also all vertices
of former VC (and possibly more vertices). Then, let us set VC = V (Tx) and
VR = V \VC = V (Tx′). As there is still one cop on one extremity of each blue
edge, the vertices of VC are unreachable by the robber.

Let us now consider the very first step. We start from an arbitrary spanning
tree, denoted by T , whose edges are the black ones, the other being the blue

212 S. Balev et al.

ones. For the initial positions, let us place one cop at one extremity of each blue
edge. One last cop, the black cop, is placed on some other (blue-cop free) vertex,
say x ∈ V . Then, the robber chooses a cop-free vertex, say r ∈ V , for its initial
place. Edge (x, x′), and sets VC and VR are similarly defined, hence the vertices
of VC are unreachable by the robber. The cardinality of VR is at most n − 1.

If we inductively apply the above method for the cops, it follows that after
each round, the number of vertices of VR, which contains the vertices reachable
by the robber, is strictly decreased. It will eventually reach the value of zero and
the robber will be captured in at most n rounds. ��

The above result provides a better upper bound than the easy to see ct(G) ≤
n − 1, for sparse graphs when λ ≤ n − 3. Moreover, we demonstrate it is nearly
tight for certain graph families, see Theorem 5 in the next part of this section.

A Nearly Tight Graph Family for Sparse Graphs. We hereby consider the graph
family G = {Gλ | λ mod 2 = 1 ∧ λ ≥ 5} for sufficiently large odd values of
λ ∈ N. We define the vertex set as V (Gλ) = {v1, v2, . . . , v2λ−2, v

′
1, v

′
2, . . . , v

′
2λ−2}.

For i = 1, 2, . . . , 2λ− 2, let (vi, v(i+1) mod (2λ−2)) ∈ E(Gλ) and (vi, v
′
i) ∈ E(Gλ).

Also, for i = 1, 3, 5, . . . , 2λ − 1, let (v′
i, v

′
i+1) ∈ E(Gλ). Overall, it holds n =

|V (Gλ)| = 4λ − 4 and m = |E(Gλ)| = 2(2λ − 2) + (2λ − 2)/2 = 5(2λ − 2)/2 =
5λ − 5 = n − 1 + λ. Intuitively, Gλ is a cycle on 2λ − 2 vertices where another
λ − 1 disjoint C4-cycles are attached. An example depiction is given in Fig. 1.
Notice that Gλ becomes a tree by the removal of λ edges, for example, the λ− 1
edges (v′

i, v
′
i+1), for i = 1, 3, 5, . . . , 2λ − 1 and another edge (vj , vj+1) for some

j ∈ {1, 2, . . . , 2λ − 1}.

v1 v′
1

v2

v′
2v3

v′
3

v4

v′
4

v5

v′
5

v6

v′
6

v7v′
7

v8

v′
8

v9

v′
9

v10

v′
10

v11

v′
11

v12

v′
12

1

1

1

1

1

1

L1

L2

L3

L4

L5

L6

Fig. 1. An example initial placement of λ − 2 = 5 cops on G7.

Cops and Robbers on Dynamic Graphs: Offline and Online Case 213

Theorem 5. For any Gλ ∈ G, it holds ct(Gλ) = λ − 1.

This theorem is a direct consequence of the two lemmata that follow, which
demonstrate the corresponding (worst-case) upper and lower bound strategies.

Lemma 2. For any Gλ ∈ G, it holds ct(Gλ) ≤ λ − 1.

Proof. We present a strategy for λ − 1 cops to win against the robber under
any dynamics and/or robber strategy. Initially, the λ − 1 cops are placed as
follows: place one cop at vi for each i = 2, 6, 10, . . . , 2λ − 4 and for each i =
3, 7, 11, . . . , 2λ−3. To verify, since there are two sequences of cops using a distance
4 step, overall the number of cops is 2(2λ − 2)/4 = λ − 1. For an example
placement on G7, see Fig. 2. Then, the robber places itself at some cop-free
vertex. By symmetry of Gλ and cop placement, without loss of generality, we
assume the robber places itself on some vertex in R := {v4, v5, v

′
3, v

′
4, v

′
5, v

′
6}. In

the cop strategy we will now propose, the robber will never be able to escape
this set of vertices. Therefore, we restrict the proof to the subgraph induced
by {v2, v3, v4, v5, v6, v7, v

′
3, v

′
4, v

′
5, v

′
6}, see Fig. 3a, and will demonstrate how the

four cops in this subgraph can always capture a robber with an initial placement
within R. For all robber turns below, we assume the robber always remains
within R; by our strategy, it is impossible for the robber to move outside R since
it would mean “jumping” over a cop.

v1 v′
1

v2

v′
2v3

v′
3

v4

v′
4

v5

v′
5

v6

v′
6

v7v′
7

v8

v′
8

v9

v′
9

v10

v′
10

v11

v′
11

v12

v′
12

1

1

1

1

1

1

Fig. 2. The initial positions for cops in graph G7 ∈ G. In all figures, an integer within
a vertex stands for the number of cops currently placed on the vertex.

214 S. Balev et al.

v2v3v4v5v6v7

v′
6 v′

5 v′
4 v′

3

1111

(a) Initial positions for cops in subgraph.

v2v3v4v5v6v7

v′
6 v′

5 v′
4 v′

3

112

(b) After the first move: a cop moved
from v7 to v6.

Fig. 3. The first move of the cop strategy

The cops’ strategy is the following. Since the instance needs to be connected
at each time step, at least one edge in {(v2, v3), (v7, v6)} is available. By symme-
try, without loss of generality, let us assume the corresponding cop moves to v6,
see Fig. 3b. It suffices to prove that the cops have a winning strategy starting
from this configuration. The rest of the proof with all the necessary case analysis
is left to the reader. ��

To help us with the matching lower bound to follow, we hereby provide
some useful definitions and claims on cop movement restrictions on Gλ incurred
by worst-case dynamics. From now on, all vertex indices are assumed to be
modulo 2λ − 2. For i = 1, 2, . . . , λ − 1, let loop Li refer to the 4-cycle with
V (Li) = {v2i−1, v2i, v

′
2i−1, v

′
2i} and let its edge-set be defined as E(Li) =

{(v2i−1, v2i), (v′
2i−1, v

′
2i), (v2i−1, v

′
2i−1), (v2i, v

′
2i)}. We say that Li is cop-occupied

if at least one cop lies at some vertex in V (Li), otherwise, Li is cop-free. We say
that a cop crosses Li if, starting from vertex v2i−1 (cross-start vertex), it can
eventually arrive to vertex v2i (cross-end vertex), or vice versa. We refer to a
(counterclockwise-movement) crossing from v2i−1 to v2i as a cc-crossing and to
a (clockwise-movement) crossing from v2i to v2i−1 as a c-crossing. A cop trivially
cc-crosses Li if it already lies on v2i or v2i+1, i.e., the counterclockwise neighbor
of v2i. Respectively, a cop trivially c-crosses Li if it already lies on v2i−1 or v2i−2,
i.e., the clockwise neighbor of v2i−1. The intuition behind Proposition 3 is that,
while a number of cops crosses a loop, at least one of them must stay behind,
that is, will not be able to ever cross the loop due to worst-case dynamics.

Proposition 3. Assume we focus on a given loop Li ⊂ V (Gλ) and at most one
edge in E(Li) is not present at each time step of evolution. In the worst case, at
most ρ cops can cross Li, if ρ + 1 cops are present at the cross-start vertex.

Proof. Without loss of generality, consider loop L1 = {v1, v2, v
′
1, v

′
2} and suppose

ρ + 1 cops lie on v1 and wish to cross to v2. The dynamics of the graph evolve
as follows: for each t, if at the end of round t there is at least one cop on v1,
then (v1, v2)
∈ Et+1. Otherwise, (v′

1, v
′
2)
∈ Et+1. In other words, as long as

there is a cop on v1, the edge to v2 is blocked. The cops could take advantage
of this situation such that at most ρ of them reach v2 via the available path
v1, v

′
1, v

′
2, v2. If at any time v1 is cop-free, then the above path is blocked and

(v1, v2) is available, however no cop is there to traverse it and cross the loop.

Cops and Robbers on Dynamic Graphs: Offline and Online Case 215

The last remaining cop cannot cross since it would mean that, at some point
in time, either v1 is cop-occupied and (v1, v2) is available or v1 is cop-free and
(v′

1, v
′
2) is available, a contradiction to the specified dynamics. ��

Assume strictly fewer than λ−1 cops initially place themselves at the vertices
of Gλ. Since there are λ − 1 loops, there exists at least one cop-free loop Li.
In general, after the cops are initially positioned, Gλ can be partitioned into
alternating sequences of cop-occupied and cop-free loops Li. Let O1, . . . , Op,
respectively F1, . . . , Fp, stand for the sequences of cop-occupied, respectively cop-
free loops, where F1 is set arbitrarily, and we assume Fi is between Oi (clockwise)
and Oi+1 (counterclockwise). Moreover, for i = 1, 2, . . . , p, let |Fi| = fi and
|Oi| = oi. The cardinality p of the two sequence sets is the same, since two non-
maximal adjacent cop-occupied subsequences, i.e., with no cop-free loop between
them, form one bigger cop-occupied sequence; a similar observation holds for
cop-free sequences. By the reasoning above, it holds p ≥ 1. An example initial
placement on G7 is given in Fig. 1: The sequences of cop-occupied and cop-free
loops formed are O1 = {L6, L1, L2}, F1 = {L3}, O2 = {L4}, and F2 = {L5}.

The following proposition provides us with a necessary condition in order for
the cops to win against a robber placed on some cop-free sequence of loops. For
a sequence F = {L1, L2, . . . , Lf}, let V (F) = ∪f

i=1V (Li).

Proposition 4. Let F = {L1, L2, . . . , Lf} be a cop-free sequence of loops with
the robber lying on some vertex within V (F) not adjacent to a cop. Let Lcc,
respectively Lc, stand for the cop-occupied loop adjacent to the counter clockwise
of F , respectively to the clockwise of F . At least f +1 cops must be able to c-cross
Lcc, and another f + 1 cops to cc-cross Lc, in order for the cops to win.

Proof. In contradiction, and without loss of generality, assume at most f cops
can c-cross Lcc and f + 1 cops can cc-cross Lc. Assume Lf is counterclockwise
adjacent to Lcc, Li+1 is counterclockwise adjacent to Li for i = 1, 2, . . . , f − 1,
and Lc is counterclockwise adjacent to L1; see Fig. 4. From now on, consider
that the dynamics of the graph force the single edge connecting Lc to L1 to be
unavailable in all graph instances. Therefore, no cop from Lc can ever reach L1

in F , while each graph instance remains connected.

LcL1L2Lf−1LfLcc · · ·

Fig. 4. Loop numbering for a cop-free sequence F = {L1, L2, . . . , Lf}. Left stands for
counterclockwise direction in Gλ, respectively right for clockwise direction.

Having crossed Lcc, the f cops may all move to Lf . By Proposition 3, at
most f −1 cops can c-cross Lf . For some i ≥ 1, assume f − i cops have c-crossed

216 S. Balev et al.

Lf+1−i. Then, by Proposition 3, at most f − i − 1 = f − (i + 1) cops can c-cross
Lf+1−(i+1). Overall, by induction, at most f − i cops are able to c-cross Lf+1−i.
For i = f − 1, at most f − (f − 1) = 1 cop is able to c-cross L2.

To win, the robber has a feasible strategy to cross L1, that is, to be placed at
the vertex in L1 connected by the (always unavailable) edge to Lc as discussed
above. No cop can arrive to L1 from Lc due to the missing edge, and since at
most 1 cop can c-cross L2, no cop can ever c-cross L1. ��

Now, we are ready to show, in Proposition 5, how the robber can identify a
cop-free sequence to employ the winning strategy demonstrated in Proposition 4.

For integers i, wi, w
′
i, where 1 ≤ i ≤ λ − 1, 0 ≤ wi ≤ p − 1, 0 ≤

w′
i ≤ p − 1, let Fc(i, wi) = {Fi, Fi−1, . . . , Fi−wi

} stand for the set includ-
ing Fi and the wi cop-free sequences nearer to Fi in clockwise fashion, and
Fcc(i, w′

i) = {Fi, Fi+1, . . . , Fi+w′
i
} stand for the set including Fi and the w′

i

cop-free sequences nearer to Fi in counterclockwise fashion. In a similar man-
ner, for the cop-occupied sequences, let Oc(i, wi) = {Oi, Oi−1, . . . Oi−wi

} and
Occ(i, w′

i) = {Oi, Oi+1, . . . , Oi+w′
i
}. For a cop-occupied sequence Oi, we say that

oi = |Oi| cops (choosing one per loop in Oi) are its occupant cops. If strictly
more than oi cops lie at vertices of Oi, then this surplus of cops are referred to
as extra cops.

Proposition 5. If there exists a cop-free sequence Fi in Gλ such that at least
one of the following holds:

(a) strictly fewer than
∑

Fj∈Fc(i,wi)
fj extra cops lie within vertices in Oc(i, wi),

for all integers wi, where 0 ≤ wi ≤ p − 1,
(b) strictly fewer than

∑
Fj∈Fcc(i,w′

i)
fj extra cops lie within vertices in Occ(i +

1, w′
i), for all integers w′

i, where 0 ≤ w′
i ≤ p − 1,

then the robber wins.

Proposition 6. Assume strictly fewer than λ − 1 cops are initially placed on
Gλ. Then, there exists a cop-free sequence Fi in Gλ such that at least one of
conditions (a) and (b) in Proposition 5 holds.

Proof. Since strictly fewer than λ − 1 cops are initially placed on Gλ, and Gλ

has exactly λ − 1 loops Li, then by pigeonhole principle there exists at least one
loop with no cop on its vertices, and so at least one cop-free sequence in Gλ.

By contradiction, suppose that for every cop-free sequence Fi in Gλ (i) there
exists wi such that at least

∑
Fj∈Fc(i,wi)

fj extra cops lie within Oc(i, wi), and
(ii) there exists w′

i such that at least
∑

Fj∈Fcc(i,w′
i)

fj extra cops lie within Occ(i+
1, w′

i). Consider some cop-free sequence, say Fi1 , without loss of generality. By
(ii), there exists some (minimum-value) wi1 such that at least

∑
Fj∈Fcc(i1,wi1)

fj

extra cops lie within Occ(i1 + 1, wi1). Let Fi2 = Fi1+1+w1 be the first cop-
free sequence to the counterclockwise of Occ(i1 + 1, wi1). Then, by (ii), there
exists some (minimum-value) wi2 such that at least

∑
Fj∈Fcc(i2,wi2)

fj extra cops
lie within Occ(i2 + 1, wi2). We proceed with such statements, inductively, until

Cops and Robbers on Dynamic Graphs: Offline and Online Case 217

we reach Fil , for which there exists (minimum-value) wil such that at least∑
Fj∈Fcc(il,wil

) fj extra cops lie within Occ(il + 1, wil) and il + 1 +wil ≥ i1(mod
p). That is, we have performed a full round on Gλ. There are three cases to
consider with respect to the value il + 1 + wil .

– If il + 1 + wil = i1, then, for iz = i1, i2, . . . , il, sets Occ(iz + 1, wiz) form a
partition of the cop-occupied space in Gλ. By assumption, for each such iz,
at least

∑
Fj∈Fcc(iz,wiz)

fj extra cops lie within Occ(iz + 1, wiz). Summing it

all,
∑l

z=1

∑
Fj∈Fcc(iz,wiz)

fj =
∑p

j=1 fj extra cops lie within the cop-occupied
sequences, since ∪l

z=1Fcc(iz, wiz) contains all cop-free loops in Gλ.
– If il + 1 + wil = iy, for some y > 1, then the last interval fully covers some

already defined intervals starting at i1, i2, . . . , iy−1. In this case, for iz =
iy, iy+1, . . . il, sets Occ(iz + 1, wiz) form a partition of the cop-occupied space
in Gλ. By assumption, for each such iz, at least

∑
Fj∈Fcc(iz,wiz)

fj extra cops
lie within Occ(iz + 1, wiz). Summing it all together as in the previous case,
at least

∑l
z=y

∑
Fj∈Fcc(iz,wiz)

fj =
∑p

j=1 fj extra cops lie within the cop-
occupied sequences.

– If iy < il +1+wil < iy+1, for some y > 1, then the last interval fully contains
intervals starting at i1, i2, . . . , iy−1 and partially overlaps with interval iy. Let
il + 1 + wil = iy + x for some 1 ≤ x < iy+1 + 1 − iy. There are strictly fewer
than fiy +fiy+1+ . . .+fiy+x−1 extra cops within vertices in Oiy+1, . . . , Oiy+x,
otherwise the choice of wiy would not be minimum. As an implication, there
are at least fiy+x + . . . + fiy+wiy

extra cops within Oiy+x+1, . . . , Oiy+wiy
.

Also, by assumption, at least fil + fil+1 + . . . + f1 + . . . + fiy+x−1 extra
cops lie within vertices in Oil+1, Oil+2, . . . , O1, . . . , Oiy+x. Overall, at least
fil + fil+1 + . . . + f1 + . . . + fiy+x−1 + fiy+x + . . . + fiy+wiy

extra cops lie
within Oil+1, Oil+2, . . . , O1, . . . , Oiy+x, Oiy+x+1, . . . , Oiy+wiy

. For the rest of
the graph, for z = y + 1, . . . , l − 1, at least

∑
Fj∈Fcc(iz,wiz)

fj extra cops lie
within Occ(iz + 1, wiz). Summing it all together, at least

∑p
j=1 fj extra cops

lie within the cop-occupied sequences, since each fj is considered once in the
above calculations.

In all three cases, considering occupant guards and extra guards together, it
follows there are at least

∑p
i=1(oi + fi) = λ − 1 cops in Gλ, since the number of

loops in all the sequences is exactly the number of loops in Gλ. ��
Lemma 3. For any Gλ ∈ G, it holds ct(Gλ) ≥ λ − 1.

Proof. Follows by the combination of Propositions 5 and 6. ��

5 Conclusions

In this paper, we consider the (barely studied) topic of playing Cops and Robbers
games in models of dynamic graphs. We show how the cop number can be
computed in the offline case, where all the graph dynamics are known a priori,

218 S. Balev et al.

via a reduction to a reachability game. In the online case with a connectedness
restriction, we show a nearly tight bound on the cop number of sparse graphs.

In future, one could improve the bounds in this paper and also consider dense
graphs for online models. There exists an abundance of dynamic graph models
in literature: it would be interesting to consider them and compare among them.

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8,
1–12 (1984)

2. Andrae, T.: Note on a pursuit game played on graphs. Discrete Appl. Math. 9,
111–115 (1984)

3. Berarducci, A., Intrigila, B.: On the cop number of a graph. Adv. Appl. Math.
14(4), 389–403 (1993)

4. Berwanger, D.: Graph games with perfect information, Preprint (2013)
5. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intrud-

ers. Theor. Comput. Sci. 399, 12–37 (2008)
6. Bollobás, B., Kun, G., Leader, I.: Cops and robbers in a random graph. J. Comb.

Theory Ser. B 103(2), 226–236 (2013)
7. Bonato, A., Chiniforooshan, E., Pralat, P.: Cops and Robbers from a distance.

Theor. Comput. Sci. 411, 3834–3844 (2010)
8. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-

ican Mathematical Society, Providence (2011)
9. Bonato, A., MacGillivray, G.: Characterizations and algorithms for generalized

cops and robbers games arXiv:1704.05655 (2017)
10. Bonato, A., Pralat, P., Wang, C.: Pursuit-evasion in models of complex networks.

Internet Math. 4, 419–436 (2007)
11. Casteigts, A.: A journey through dynamic networks (with excursions). Université

de Bordeaux, Habilitation à diriger des recherches (2018)
12. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs

and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

13. Clarke, N.E., MacGillivray, G.: Characterizations of k-copwin graphs. Discrete
Math. 312, 1421–1425 (2012)

14. Erlebach, T., Spooner, J.T.: A game of cops and robbers on graphs with peri-
odic edge-connectivity. In: Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS,
vol. 12011, pp. 64–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38919-2 6

15. Fitzpatrick, S.L., Nowakowski, R.J.: Copnumber of graphs with strong isometric
dimension two. Ars Comb. 59, 65–73 (2001)

16. Frankl, P.: Cops and robbers in graphs with large girth and Cayley graphs. Discrete
Appl. Math. 17(3), 301–305 (1987)

17. Hahn, G., MacGillivray, G.: A note on k-cop, l-robber games on graphs. Discrete
Math. 306, 2492–2497 (2006)

18. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)
19. Kehagias, A., Konstantinidis, G.: Cops and robbers, game theory and Zermelo’s

early results, preprint, arXiv:1407.1647 (2014)

http://arxiv.org/abs/1704.05655
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-030-38919-2_6
https://doi.org/10.1007/978-3-030-38919-2_6
http://arxiv.org/abs/1407.1647

Cops and Robbers on Dynamic Graphs: Offline and Online Case 219

20. Khaliq, I., Imran, G.: Reachability games revisited. In: SOFTENG, pp. 129–132
(2016)

21. Kinnersley, W.: Cops and robbers is EXPTIME-complete. J. Comb. Theory Ser.
B 111, 201–220 (2015)

22. Kosowski, A., Li, B., Nisse, N., Suchan, K.: k -chordal graphs: from cops and robber
to compact routing via treewidth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Watten-
hofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 610–622. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31585-5 54

23. Lu, L., Peng, X.: On Meyniel’s conjecture of the cop number. J. Graph Theory 71,
192–205 (2012)

24. Luczak, T., Pralat, P.: Chasing robbers on random graphs: zigzag theorem. Ran-
dom Struct. Algorithms 37, 516–524 (2010)

25. Maamoun, M., Meyniel, H.: On a game of policemen and robber. Discrete Appl.
Math. 17(3), 307–309 (1987)

26. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4 2

27. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12, 239–280 (2016)

28. Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun.
ACM 61(2), 72–72 (2018)

29. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math.
43, 235–239 (1983)

30. Pralat, P., Wormald, N.: Meyniel’s conjecture holds for random graphs. Random
Struct. Algorithms 48(2), 396–421 (2016)

31. Quillot, A.: Étude de quelques problémes sur les graphes et hypergraphes et appli-
cations à la théorie des jeux à information compléte. Thése, UPMC, Paris (1980)

32. Scott, A., Sudakov, B.: A bound for the cops and robbers problem. SIAM J. Dis-
crete Math. 25, 1438–1442 (2011)

33. Sugihara, K., Suzuki, I.: On a pursuit-evasion problem related to motion coordina-
tion of mobile robots. In: 21st Annual Hawaii International Conference on System
Sciences, vol. 4, pp. 218–226 (1988)

https://doi.org/10.1007/978-3-642-31585-5_54
https://doi.org/10.1007/3-540-36387-4_2

Black Virus Decontamination
of Synchronous Ring Networks

by Initially Scattered Mobile Agents

Nikos Giachoudis1, Maria Kokkou2, and Euripides Markou1(B)

1 University of Thessaly, Lamia, Greece
{ngiachou,emarkou}@dib.uth.gr

2 Chalmers University of Technology, Gothenburg, Sweden
kokkou@student.chalmers.se

Abstract. We study the Black Virus Decontamination problem in ring
topologies for initially scattered mobile agents. In this problem a number
of mobile agents operate in a network where one of its nodes u is hos-
tile (contaminated) in the following way: when u is visited by an agent,
it is decontaminated, the agent vanishes without leaving any trace, and
all adjacent nodes of u which are unoccupied by agents are now con-
taminated. The goal is to find the minimum number of agents that can
decontaminate a given network with a black virus at an unknown loca-
tion and design a fast distributed algorithm for a certain (preferably
weak) model of mobile agents. The problem has been introduced by J.,
Cai et al in 2014 and combines details from two widely studied problems:
the Black Hole Search problem and the Intruder Capture problem.

We study here the problem for initially scattered mobile agents in
synchronous ring topologies. We prove that ten initially scattered agents
with a common chirality (i.e., agreement in a global sense of orienta-
tion) are necessary and sufficient to solve the problem. If the agents do
not have a common chirality then twelve scattered agents with distinct
identities are necessary and sufficient, while for anonymous agents the
problem is unsolvable. To the best of our knowledge these are the first
results concerning the problem for initially scattered agents.

1 Introduction

We often need to solve problems in networks where hostile entities are present
which may harm the system. Hence, models of such networks have appeared in
the literature. Especially in the distributed computing literature one such hostile
static entity which is called black hole has been extensively studied. A black hole
is a node infected by a process that destroys any incoming agent without leaving
any trace, and the goal is for a group of agents to locate the black hole within
finite time. Another type of a malicious mobile entity is the intruder. In the
intruder capture problem (also known as graph decontamination and connected
graph search) a harmful agent, called the intruder, can move in the network and

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 220–236, 2020.
https://doi.org/10.1007/978-3-030-54921-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_13

Black Virus Decontamination of Synchronous Rings by Scattered Agents 221

infect the visited nodes. The objective is for a team of mobile agents, that cannot
be harmed by the intruder, to decontaminate the network. Hence a black hole
is harmful to the mobile agents but not to other nodes of the network, while an
intruder damages nodes but not agents.

We study here a model of another hostile entity called black virus which has
been introduced by J., Cai et al in 2014. The black virus is a malicious entity
similar to a black hole which is initially located at a node u of the network and
has the following behaviour: when a mobile agent enters node u, the agent is
removed from the network without leaving any trace. The black virus spreads
to all unoccupied by agents neighbouring nodes of u, effectively expanding its
contamination over the network, but node u is now clean (decontaminated). The
goal of the Black Virus Decontamination (BVD) problem is to find the minimum
number of agents that can decontaminate a given network with a black virus
initially located at an unknown place and design a fast distributed algorithm for
a certain (preferably weak) model of mobile agents. The black virus combines
the threat of a harmful node with the need for decontamination and the ability
to infect additional nodes. In order to prevent the black virus from spreading,
the agents must occupy the node(s) where the black virus is going to spread to.
Hence the only way to clear a contaminated node and at the same time prevent
it from spreading the contamination, is to have the node visited by an agent
while at the same time all adjacent nodes are occupied by agents.

1.1 Related Work

The Black Virus Decontamination (BVD) problem combines the Black Hole
Search problem and the Intruder Capture problem. The Black Hole Search prob-
lem has been extensively studied for various topologies and communication mod-
els (e.g., in [8,9]) and a recent survey of the results on this problem can be found
in [12]. The Intruder Capture problem has been also extensively studied (e.g.,
in [2,3,13]) and a recent survey can be found in [14]. The BVD problem was
introduced in [5] where the problem was studied in specific topologies, namely
q-grids, q-tori and hypercubes. The problem was considered for a team of ini-
tially co-located mobile agents that are injected somewhere in the network and a
different solution protocol was given for each topology. The main strategy used
in the paper was the following: one agent (EA) visits a previously unexplored
node v, while another agent (LA) waits on a safe node u, incident to v. All the
already explored neighbours of v are guarded by agents. If v is not infected then
agent EA returns to u and reports that v is safe. If agent EA is destroyed, then
agent LA learns the location of the black virus and the remaining agents clean
the network. In [6] the BVD problem was studied in arbitrary networks for co-
located agents, where the agents have a map of the network. The strategy which
was used here is similar to the one that was used in [5] with the addition that
this time the agents also compute an optimal exploration sequence. Furthermore,
in [6] two types of black virus clones are considered; fertile clones, that maintain
the same capabilities as the original black virus and sterile clones that cannot

222 N. Giachoudis et al.

spread when visited by an agent. In [7] a protocol providing a distributed opti-
mal solution for arbitrary graphs and co-located agents is presented. The main
difference between [6] and [7] is that in [7] the agents have a ‘2-hop visibility’
capability instead of a map. Moreover, only the case of sterile clones is consid-
ered in [7]. In [4] the problem was considered for co-located agents in arbitrary
networks that contain multiple black viruses. The agents in [4] are provided with
a ‘2-hop visibility’ capability and both the cases of sterile and fertile clones are
investigated. The BVD problem has been also studied for co-located agents in
chordal rings in [1]. Finally the problem has been studied in [11] for co-located
agents and selected (by the algorithm) agents’ configurations for which parallel
strategies for the decontamination of the network were given. To the best of
our knowledge, the BVD problem has only been studied before for initially co-
located agents with distinct identities that cannot leave messages (or tokens) at
nodes of the network [1,4–7] and for agents with distinct identities that can be
initially placed in specific positions (i.e., selected by the algorithm) and either
cannot leave messages at nodes or they can write messages at whiteboards at
nodes [11]. The techniques presented in those papers cannot be directly used
if the agents are initially scattered in the network (i.e., at most one agent at a
node). If the agents are not initially co-located, then they cannot communicate
in the face to face communication model (until they meet at a node) and divide
duties so that to occupy all adjacent nodes of a contaminated node u before an
agent visits u. Hence, in that case the agents first need to meet which may not
be easy given the presence of the black virus and a limited knowledge about the
network. For example, four initially co-located agents with distinct identities can
easily decontaminate a synchronous ring with one black virus when the agents
agree on the orientation of the ring as follows. The agents select a direction and
move using the technique presented in [5]: one agent moves to an adjacent node
v and if this node is safe then it returns to meet the other agents that wait; then
all agents move to v. They repeat this procedure until one agent vanishes at a
node u while all other agents wait at node w, adjacent to u. The black virus
clones itself to a node z adjacent to u (node u is cleaned and w was occupied).
Then one of the remaining three agents moves to node u where it stays while the
other two agents explore the ring on the other direction using the same technique
until eventually one of the two agents visits node z while both neighbours of z
are occupied and the ring is completely decontaminated. If however the agents
are initially scattered in the ring (i.e., at most one agent at a node), then this
technique cannot be applied before the agents meet. In this paper we are inter-
ested to study the problem on the ring when the agents are initially scattered
and investigate the impact of such a scenario in the minimum number of agents
needed to decontaminate the network. In a model similar to the one described
above but for initially scattered agents we show that ten agents are necessary
and sufficient to solve the problem.

Black Virus Decontamination of Synchronous Rings by Scattered Agents 223

1.2 Model

We study the black virus decontamination problem in synchronous ring topolo-
gies. More specifically, a ring topology is an undirected graph G = (V,E) where
each vertex u ∈ V has exactly two neighbours. The nodes of the ring are anony-
mous. The ring initially contains a number of mobile agents and one black virus.
All edges incident to a node have distinct port labels, visible to an agent at the
node. These port labels are globally consistent, which means that an agent exit-
ing any node always via the same port label can eventually traverse the whole
ring. However it might happen that not all agents agree on which is the clock-
wise direction between the two directions of the ring. In such a case (using the
standard terminology) we say that the agents do not have a common chirality, or
there is no global sense of orientation. If all agents agree on the clockwise direc-
tion, we say the that the agents have a common chirality, or there is a global
sense of orientation.

The ring is synchronous meaning that an agent needs one unit of time to
traverse an edge. The time an agent needs in order to compute, communicate,
release or pick-up a token (see below) is negligible.

The mobile agents are computational entities that operate in the network
and are able to move from one node to another via the connecting edge of the
two nodes. The agents may have distinct identities taken from the set of natural
numbers and each agent knows its identity number. However, those identities
(even if they are distinct) are selected by an adversary and are not assigned by
an algorithm. Most of our negative results hold even for agents with distinct
identities. Our algorithm for agents with common chirality, although it is ini-
tially presented (for more convenience) assuming that the agents have distinct
identities, as we later describe, it can be slightly modified to work for anony-
mous agents. The agents are identical (apart from their identities when they
are distinct) and they are equipped with movable identical tokens, which they
can leave at (or pick-up from) nodes. In all our algorithms each agent has one
token. An agent can only communicate with other co-located agents (face to face
communication). More specifically, when two (or more) agents are at the same
node they can read each other’s state and identity. They cannot exchange mes-
sages. Their memory, although it is enough for reading other agents’ identities
when needed, is not related to the number of nodes of the ring and therefore for
example the agents cannot count more than a constant number of nodes. The
agents can only meet at nodes and not inside edges, i.e., two agents traversing
the same edge do not notice each other. All the agents are initially scattered
in the network (i.e., there is at most one agent at a node) and they execute
the same deterministic protocol starting at the same time. The agents do not
initially have any knowledge about the size of the ring or their configuration
(unless clearly stated).

The black virus is a malicious entity which is initially placed at an unknown
location (i.e., node) in the ring. The interaction between the agents and the black
virus is the following. When an agent decides at time t to move from a node u
to an adjacent node w where the black virus resides three events occur. At time

224 N. Giachoudis et al.

t+1 the agent vanishes without a trace, node w is cleaned, and the virus clones
itself to any neighbouring nodes of w which are unoccupied by agents at time
t + 1. If an agent tries to move to a node v and at the same time a clone of the
black virus tries to move to v, then the agent moves to v while the clone does
not. If a clone of the black virus moves to a node (unoccupied by agents) where
a clone already exists (or moves there at the same time), then the two clones
merge to one. In other words any node can contain at most one clone of the
black virus. If a token is located at a node v where the black virus spreads to,
and no agent is located at v or moves to v at the same time, then the token is
destroyed (if an agent is already at v, or moves to v at the same time then the
token survives).

The goal of the Black Virus Decontamination problem is to design an algo-
rithm which completely cleans (i.e., eliminates any black virus clones from) the
network within finite time and at least one agent survives.

1.3 Main Contributions

We first examine the problem in a synchronous ring for scattered agents with a
common chirality. We prove that a ring cannot be decontaminated by less than
ten scattered agents even if the agents have distinct identities, an unlimited
number of tokens, unlimited memory and a common chirality. We then present
an algorithm, for ten scattered agents with a common chirality, one token each
and constant memory that decontaminates any synchronous ring within O(n)
time units, where n is the number of nodes of the ring. The algorithm can be
slightly modified to work for anonymous agents. A preliminary version of those
results has appeared in the Bachelor’s Thesis of M. Kokkou [10].

Next we study the problem for scattered agents without a common chirality.
We prove that a ring cannot be decontaminated by any number of scattered
agents if the agents are anonymous and do not have a common chirality. We also
prove that it cannot be decontaminated by less than twelve scattered agents
with distinct identities and one token each if the agents do not have a common
chirality. On the positive side, we present an algorithm, for twelve scattered
agents with distinct identities (which are natural numbers) and one token each,
that decontaminates any ring within O(n2+L) time units, where n is the number
of nodes of the ring and L is the maximum identity number, even when the agents
do not have a common chirality.

Due to space limitations some proofs, figures, and formal algorithms will
appear in the full version of the paper.

2 Agents with Common Chirality

2.1 Impossibility Results

The only way to decontaminate a ring with a black virus located at a node u is
having an agent visiting node u, while the two adjacent nodes of u are occupied
by agents. Hence the problem is unsolvable by less than three agents.

Black Virus Decontamination of Synchronous Rings by Scattered Agents 225

Consider an interval of x ≥ 2 consecutive nodes (i.e., an interval of length
x − 1 ≥ 1 edges) in a ring, so that its two endpoints u, v are occupied by clones
of the virus and no node of the interval is occupied by an agent. We call such
an interval a contaminated interval (notice that any other node of the interval
apart from its endpoints could be either clean or not). Since at least one agent
has to vanish in order to decrease by one the length of the interval, and three
agents are needed to decontaminate the last infected node the following lemma
holds.

Lemma 1. Consider an interval of x ≥ 2 consecutive nodes in a synchronous
and labelled ring so that the two endpoints of the interval are occupied by clones
of the virus and no node of the interval is occupied by an agent. Then x+1 agents
with common chirality are not enough to decontaminate the interval, even if they
have distinct ids, an unlimited number of tokens, unlimited memory and know
the initial configuration on the ring (i.e., they have an exact map of the ring and
know the initial locations of all agents) and the exact location of the contaminated
interval.

An immediate consequence of Lemma 1 gives us a lower bound of 5 agents
when the location of the black virus is not initially known, even for a strong
model of agents, for all initial configurations of agents such that each node is
initially occupied by at most one agent and the initial distance between any
two agents is greater than 3 edges. In such a scenario an adversary arranges the
location of the black virus so that the first agent that moves (or one of the first
agents that move) vanishes creating a contaminated interval of 3 nodes. Hence
by Lemma 1, an additional 4 agents are not sufficient for decontaminating the
3-nodes interval.

Moving to weaker agent models we can increase the lower bound from 5 to
9 when the agents do not know their initial configuration.

Lemma 2. Nine initially scattered agents with common chirality are not enough
to decontaminate a synchronous and labelled ring consisting of n ≥ 36 nodes,
even if they have distinct ids, an unlimited number of tokens, unlimited memory
and know the size of the ring.

Proof. Suppose for the sake of contradiction that there is an algorithm A that
solves the problem in any ring consisting of n ≥ 36 nodes and for any ini-
tial configuration. Consider an initial configuration of nine scattered agents.
Initially the agents have exactly the same input apart from their identities.
Hence, any first different decisions taken by the agents have to be solely based
on their different identities. Since the identities of the agents are selected by
an adversary (from the set of natural numbers), even if they are distinct, the
agents cannot immediately use them so that to take different decisions with
respect to the direction of moving or releasing at least one of their tokens. For
example algorithm A might instruct an agent with identity li to wait for f(li)
time units before it moves, to release f ′(li) ∈ N of its tokens and to select
f ′′(li) ∈ {clockwise, counter − clockwise} direction for moving. However an

226 N. Giachoudis et al.

adversary may always select identities li so that ∀i, j, where i �= j: f ′′(li) = f ′′(lj)
and either (∀i: f ′(li) = 0) or (∀i: f ′(li) > 0). In other words, algorithm A can-
not instruct: i) one agent to release some of its tokens before its first move and
another one to release no tokens, and ii) one agent to take its first move clockwise
and another agent to take its first move counter-clockwise1.

Therefore for any two agents following algorithm A and deciding their first
move: i) either only one or both move at the same time, ii) if they move they do
it towards the same direction, and iii) they either do not release any tokens or
both of them release some tokens (although the numbers of tokens they release
might be different).

Consider the first two agents A,B which are instructed to move by Algorithm
A (if more than two move at the same time take any two of them). Agents A,B
should either simultaneously move, or one of them first moves and then, within
a finite time, a second one moves. Notice that an algorithm that does not move
a second agent within a finite time, cannot be a correct algorithm, since the
adversary can initially place the agents so that the first one immediately vanishes
and then nobody moves. As we noted before, the agents should take their first
step towards the same direction and both of them should either not release any
tokens or release at least one token.

First consider the case where the agents A,B do not move simultaneously.
Let A be the first agent that moves from node u to an adjacent node v towards
a counter-clockwise direction without loss of generality. The adversary initially
places the black virus at v and agent A vanishes along with its tokens (even if
some of them were placed at u before the agent moves). Now the contaminated
interval extends to the two neighbouring nodes u,w of v (since the adversary
can arrange so that no other agents are initially located at nodes u or w). Agent
B moves in a counter-clockwise direction within a finite time. The adversary can
select its initial position to be at the adjacent node of u different than v, and
therefore B vanishes after its move at time t along with its tokens (even if some
of them were placed at its initial position). The contaminated interval at time t
has increased to 4 nodes. A third agent should be instructed to move towards a
counter-clockwise direction either simultaneously with agent B or within a finite
time after agent B’s move. If the remaining agents have been initially placed so
that the distance between any two of them is more than 3 edges, and two of
them C,D occupy nodes at a distance of at most two edges at time t from the
endpoints of the current contaminated interval, then the first agent that moves a
distance of at least 2 edges towards one direction (there must be such an agent,
otherwise the agents will never meet other agents or tokens different than their
tokens, or approach the contaminated interval) is selected to be one of the agents
C or D and therefore vanishes. The contaminated interval increases to 5 nodes,
while the remaining agents are 6. Hence due to Lemma 1, the 6 remaining agents
cannot solve the problem.

1 In fact for any function g(li) : N → S that an algorithm A uses, where S is a finite
set, obviously the adversary can always select all identities li so that ∀i, j, where
i �= j: g(li) = g(lj).

Black Virus Decontamination of Synchronous Rings by Scattered Agents 227

Now consider the remaining case where there are at least two agents A,B
that move simultaneously at time t towards the same direction (say counter-
clockwise without loss of generality) and might release some of their tokens.
The adversary can arrange the initial positions of the agents so that agent A
vanishes along with its tokens, while the tokens that agent B had left (if any),
are vanished and B is now located next to a contaminated node. A possible
resulting configuration is shown in Fig. 1, where Δ denotes the nodes where the
agents were initially located2. Hence at time t some of the agents (at least two of
them) moved in the counter-clockwise direction and some of them did not move.
Now consider the first agent H that moves for a second time at a time t′ > t (or
one of them if more than one move for a second time at t′) either clockwise or
counter-clockwise.

Δ

Δ

Δ

Δ

Δ Δ

Δ

Δ

C

B

Fig. 1. Nine agents are initially scattered on a ring containing a black virus. This is
a resulting configuration after one agent has met the black virus. The nodes denoted
with Δ clockwise next to each agent are the initial homebases of the respective agents.
The initial homebase of agent B is now contaminated and therefore any token that
had been left there by B has disappeared.

If H does its second move clockwise then the adversary can select H = B
and the agent vanishes along with its tokens. Suppose the initial configuration
was selected so that among the remaining 7 agents, the two closest to the two
endpoints of the contaminated interval (which now has a length 4) are at a
distance y ≥ 1, while any two of the remaining agents are at a distance x ≥ 2y.
The algorithm should eventually move at least one of the remaining agents for
at least y nodes on the same direction in order to meet with another agent,
meet another agent’s token or approach the contaminated area. The agent D
that first moves such a distance can always be selected by the adversary to be
one of the agents closest to the contaminated interval in such a way that this
agent vanishes (possibly leaving many tokens), and the contaminated interval
now consists of at least 5 nodes, since the closest agent to D towards the safe

2 We remind the reader that we study the case where agents A and B first move
simultaneously (possibly together with other agents) towards the same direction. A
specific scenario where all agents moved simultaneously is shown in Fig. 1.

228 N. Giachoudis et al.

area is at a distance greater or equal to x ≥ 2y ≥ 2. In view of Lemma 1, the
remaining 6 agents cannot decontaminate the interval consisting of 5 nodes and
therefore the algorithm cannot decontaminate the network.

If H does its second move counter-clockwise then the adversary can select
H = C (that was initially located at a distance 2 clockwise from agent A) which
vanishes and the contaminated interval consists of 4 nodes. Now each of the
remaining agents can safely move clockwise until one node before its respective
initial homebase (Δ) (without reaching it) and counter-clockwise until the closer
(another agent’s) initial homebase. Notice that all those intervals do not have a
node in common. Therefore at least one agent should eventually move to a node
outside its safe area (otherwise no agent can meet any other agent or the black
virus). The first agent that moves clockwise (respectively counter-clockwise) to
a node outside its safe area is selected to be agent B (respectively the next agent
clockwise of C) and vanishes. Due to Lemma 1 the remaining 6 agents cannot
clean a contaminated interval consisting of 5 nodes.

Since in every case all agents have been initially placed so that the distance
between any two of them is no more than 4 edges, the lemma holds for any ring
consisting of n ≥ 36 nodes. ��

2.2 An Algorithm with Ten Agents

We present here an algorithm that cleans any ring using ten scattered agents
with common chirality. In order to make the presentation easier, we first describe
the algorithm for agents with distinct identities and then we discuss how this
algorithm can be modified to work with anonymous scattered agents.

Before describing the algorithm, we define the Cautious-Move procedure,
which we use in all our algorithms. This procedure is a combination of an attack-
ing and guarding action which is used by a group of at least two co-located agents
where one of them has the label ‘leader’ and the other(s) the label ‘companion’.
One of the agents (leader) of the group located at a node u at time t, moves to
an adjacent node v while the remaining agents of the group (companion) wait
at u. Hence at time t + 1 the leader agent is at v while the remaining agents of
the group are at u. In the next time unit all remaining agents of the group move
to v while the leader (if it is still alive) waits at v.

Procedure Cautious-Move(dir)
1 if leader then
2 Move 1 step dir
3 Wait(1)

4 else if companion then
5 Wait(1)
6 Move 1 step dir

7 end

Black Virus Decontamination of Synchronous Rings by Scattered Agents 229

It is easy to see that if node v was safe when the leader moved there then
all agents of the group gather at v within two time units. If there was a black
virus at v when the leader moved there, then the leader has vanished but the
virus did not spread to node u, and node v is now safe. Hence if the companion
agents do not meet the leader at node v, they can conclude that the virus was
at v. Furthermore, if v was an endpoint of a contaminated interval consisting of
at least two nodes, now its length has been decreased by one.

The main idea of the algorithm which cleans any ring using ten scattered
agents with common chirality is the following. Each agent releases its token
and moves clockwise until it finds a token. Now each agent moves back until
it meets a token (i.e., to its homebase), collects its token, and moves clock-
wise again until it finds a token. This time it waits at the node with the
token until another agent comes. Eventually at least two agents meet and
form a group. The group scans the ring, using Procedure Cautious-Move,
until it meets an infected node. Then the remaining agent of the group waits
forever at a node u (adjacent to one endpoint of the contaminated interval
or to the infected node if there is only one node infected). The rest of the
agents eventually meet each-other either at u or elsewhere and form groups
of at least two agents. Then they repeatedly scan the ring using Procedure
Cautious-Move, in order to find the other endpoint of the contaminated inter-
val (i.e., not the one adjacent to u) or to approach the infected node (if
there is only one infected node) from its other neighbour (different than u).
Hence the length of the contaminated interval constantly decreases.

The above simple algorithm exploits the fact that after the described moves
of the agents, exactly one of the agents which met the black virus and vanished,
left its token on the ring. This token will be used by the remaining agents as
a meeting point (if they do not manage to meet earlier). This idea works for
many initial configurations. It manages to place an agent at a node u, adjacent
to one endpoint of the contaminated interval, and form at least one group of
at least two agents while at most three agents have been vanished and the
contaminated interval consists of at most five nodes. The remaining seven agents
are enough to clean the contaminated interval of five nodes. However, there
are some initial configurations with agents located at adjacent nodes for which
this algorithm might lead to the loss of four agents and to the creation of a
contaminated interval consisting of six nodes. An example of such a scenario is
the following. Consider the sequence of nodes <v, x, u, y, w, z>. Suppose there
are agents initially located at nodes v, u, w, z and the black virus is located
at node y. If the agents would just release their tokens and execute the main
algorithm, then the agents which initially start at nodes u, w and z would soon
vanish with this order together with their tokens. The agent which initially starts
at node v will also eventually vanish (this one will leave its token). Since the
remaining six agents cannot decontaminate the interval of six infected nodes,
this simple algorithm is not enough. Hence we implement a procedure by which
two surviving initially adjacent agents manage to meet before they apply the
above algorithm. The algorithm takes also care of situations where an agent

230 N. Giachoudis et al.

which belongs to a group meets another agent. The complete algorithm and its
correctness analysis will appear in the full version of the paper.

Lemma 3. The black virus decontamination problem can be solved in any syn-
chronous ring consisting of n nodes within O(n) time units, using ten or more
scattered agents with common chirality, constant memory and one token each.

The algorithm above has been described for agents with distinct identities. In
the algorithm, the agents use their distinct identities in order to assign different
roles to themselves onlywhen they are co-located. It is easy tomodify the algorithm
so that it works for anonymous agents. By exploiting the fact that each node is
initially occupied by at most one agent, we can derive a mechanism that could be
used to help co-located agents to assign themselves different roles. For example, as
soon as (i.e., the first time that) two agents occupy the same node u and they are
at the same state, they may differentiate themselves according to the direction by
which they entered node u and the actions they were doing one time unit before.
Notice that if the agents entered u from the same direction and they have the same
state and they were not co-located before, then exactly one of them was moving to
u one time unit before, while the other one was already at u.

3 Agents Without Common Chirality

3.1 Impossibility Results

Suppose that the agents do not agree on the clockwise orientation of the ring.
Naturally, all impossibility results for agents with common chirality still hold. We
first show that ten initially scattered agents without common chirality cannot
solve the problem even if they have distinct identities and an unlimited number
of tokens. We then show that eleven agents with distinct identities and one token
each are also not enough. We also show that if the agents are anonymous then
they cannot solve the problem no matter how many they are and how many
tokens they have.

Lemma 4. Ten scattered agents without common chirality are not enough to
decontaminate any synchronous ring consisting of n ≥ 40 nodes, even if they
have distinct identities, an unlimited number of tokens and unlimited memory.

Proof. Consider ten scattered agents in a ring consisting of n ≥ 40 nodes. If
only one agent moves first then the adversary can select an initial configuration
so that this agent vanishes (together with all its tokens) and the nine remaining
agents have to clean a contaminated interval consisting of three nodes. Now the
adversary can select the initial locations of the next two agents that move to be
the ones adjacent to the two endpoints of the contaminated interval. The adver-
sary can also select the directions of their movements and the initial locations
of the remaining agents so that those two agents vanish along with their tokens
and the contaminated interval consists of 5 nodes. Now among the remaining
agents consider the first agent C that tries to move to a node located at least
two edges away from its initial location (clearly there must be such an agent,

Black Virus Decontamination of Synchronous Rings by Scattered Agents 231

otherwise the remaining agents will not approach the contaminated area). The
adversary can select the initial configuration so that agent C vanishes and the
contaminated interval expands to 6 nodes. In view of Lemma 1, the remaining
six agents cannot solve the problem.

If at least two agents move simultaneously the adversary can select the ini-
tial configuration so that two of them vanish (together with their tokens). Now
consider the next two agents that try to move to some nodes located at least
two edges away from their initial locations (clearly there must be such agents,
otherwise the remaining agents will not approach the contaminated area). The
adversary can select the initial configuration so that those agents vanish and the
contaminated interval expands to 5 nodes. In view of Lemma 1, the remaining six
agents cannot solve the problem. Notice that in all those initial configurations
that are selected by the adversary, the distance between any two agents is at
most 4 edges. ��

By selecting and analyzing a few initial configurations, we can show the
following result.

Lemma 5. For any algorithm using eleven scattered agents with distinct identi-
ties, one token each and no common chirality, there is a positive number n such
that the algorithm can not solve the problem in any synchronous ring of size at
least n.

Proof. Suppose for the sake of contradiction that there is an algorithm A that
solves the problem in every ring consisting of at least n nodes, for some n.

If at most two agents first move simultaneously the adversary selects an
initial configuration where the agents that move first simultaneously, meet the
black virus and vanish (together with their tokens) after their first step, while
the contaminated area expands to 3 nodes. Moreover the adversary can arrange
so that the remaining at most 10 agents have an initial configuration for which
in view of Lemma 4 the problem is unsolvable.

Suppose now that at least three agents first start to move simultaneously.
Similarly as explained in the proof of Lemma2, the adversary can select the
agents’ (distinct) identities so that before their first move either all agents release
their tokens or no agent releases its token.

First consider the case where no agent releases its token before its first move.
The adversary initially places one of the agents (say A) that moves first so
that this agent vanishes after its first move. Now among the remaining agents
consider the first one (say B) that makes two traversals, either traversing two
edges towards the same direction or traversing the same edge back and forth
(clearly there must be such an agent, otherwise no other agent will approach
the contaminated area). In any case and no matter whether agent B released
its token before its second move, the adversary can initially place B so that
it vanishes along with its token. Now there are 9 remaining agents and the
contaminated area consists of 4 nodes. Among the remaining agents consider
the first agent (say C) that tries to traverse at least 3 edges towards the same
direction (it is again clear that if there is no such an agent, then no other

232 N. Giachoudis et al.

agent will approach the contaminated area for a sufficiently big size of ring n).
Then the adversary can initially place agent C so that it vanishes during those
traversals (possibly leaving a token somewhere close to the contaminated area).
Similarly, there must be another agent D which also tries to traverse at least
3 edges towards the same direction. The adversary initially places agent D so
that it approaches the other endpoint of the contaminated area (i.e., not the one
where agent C had vanished). Hence, the contaminated area has been expanded
to 6 nodes, while the remaining agents are only 7 and in view of Lemma1, the
problem cannot be solved.

Finally let us analyze the remaining case where at least 3 agents start moving
simultaneously and all agents release their tokens before their first move. Algo-
rithm A should always instruct at least one of the remaining agents to move
and eventually cover a distance of at least �x

2 	 edges away from its initial loca-
tion, where x is the minimum distance between any two initial locations of the
remaining agents, otherwise no agent will meet another agent, or another agent’s
token or the contaminated area for a sufficiently big size of ring. Suppose that
when an agent meets another agent’s token at a node v by traversing an edge
(u, v), it never traverses the edge (v, w) (where u �= w). Suppose also that an
agent never comes back to its initial location. If both above conditions hold, then
the adversary can arrange a configuration so that all the remaining agents start
moving towards the same direction, they never meet other agents and each agent
is forever trapped to traverse the path between its initial location (where never
comes back after its first move) and the first node with a token (which the agent
could move it inside this path) that it meets in the direction it moves. Hence
the agents can never approach the contaminated area and solve the problem.
Therefore either an agent has to come back to its initial location, or it has to
move further when it meets a token (or both).

First suppose that algorithm A instructs an agent to move further than a
token it meets and consider the following initial configuration. One of the agents
(say A) that first moves has been initially placed by the adversary at a node u
adjacent to the black virus at node v so that it vanishes after its first move along
with its token and the interval consisting of the nodes u, v, w is contaminated.
Consider the first agent (say C) that tries to traverse at least two distinct edges
(clearly there must be such an agent, otherwise no other agent will approach the
contaminated area). Agent C has been initially placed by the adversary so that
it starts moving at the same time as A and vanishes during those traversals as
follows. If agent C visits the two nodes at distance one from its initial location the
adversary initially places agent C at a node y �= v adjacent to node w, arranging
that it first moves to a node z �= w. If agent C visits a node at distance two from
its initial location the adversary initially places agent C at node z, arranging
that it first moves to node y. Hence in any case agent C vanishes while its token
has been either destroyed or left at node z which is now adjacent to one of
the endpoints of the contaminated area which consists of nodes u, v, w, y. The
third agent that moves simultaneously with agent A is selected by the adversary
similarly as agent C and initially placed at a node x adjacent to u (instead of w)

Black Virus Decontamination of Synchronous Rings by Scattered Agents 233

or at a node p at distance two from u (instead of w). This third agent moves
and vanishes in a similar way as agent C, possibly leaving its token at node p
while the contaminated interval extends now to nodes x, u, v, w, y. Since at least
one of the remaining agents should move beyond another agent’s token that it
meets, one more agent can be initially placed and selected by the adversary to
vanish at nodes x or y. Due to Lemma 1, the remaining 7 agents cannot clean
the contaminated interval consisting of 6 nodes.

For the remaining case suppose that algorithm A never instructs an agent to
move further than a token it meets and therefore, as we argued before, it should
instruct an agent to come back to its initial location.

In the initial configuration which is selected by the adversary, agent A is
placed exactly as in the previous case. The adversary initially places an agent B
at node w. Agent B moves simultaneously with agent A and towards the same
direction. After the move the token released by agent B has been destroyed.
An agent will try to go back to its initial location either after it meets a token
or before it meets a token (i.e., after moving a number of times). If an agent
returns to its initial location only after it meets a token the adversary can initially
place the third agent D that moves simultaneously with agent A at node y and
selecting its first move towards the same direction as agents A,B. Agent D has
released its token at node y and it will not return to y before it meets another
token. Hence agent B vanishes when it returns at node w and the token at node
y is destroyed since the contaminated interval now extends to nodes u, v, w, y.
When agent D tries to return to node y is also vanished and the contaminated
interval consists of 5 nodes. In the second subcase where an agent can try to
go back to its initial location before it meets a token (i.e., returns back after
some time d), the adversary initially places agent D at a location q which is
at a distance at least d + 2 from node w and selects its movement towards the
opposite direction of the first move of agent A. Agent B will vanish (as before) at
w extending the contaminated interval to nodes u, v, w, y and eventually agent
D will vanish at node y and the contaminated interval will extend to 5 nodes
as in the previous subcase. One more agent can be initially placed and selected
by the adversary to vanish at node u. Due to Lemma 1, the remaining 7 agents
cannot clean the contaminated interval consisting of 6 nodes. ��

If the agents are anonymous then we can find initial configurations where the
agents either initially or after the first move are located at symmetric positions
and they cannot break their symmetry while they move, and they eventually
vanish.

Lemma 6. For any number of anonymous scattered agents without common
chirality there is a synchronous ring which cannot be cleaned even if the agents
have an unlimited number of tokens and unlimited memory.

Proof. Assume a ring with k anonymous agents without common chirality and
consider the starting configuration of Fig. 2 (if k is even) or Fig. 3 (if k is odd). If
the initial number of agents is even, the number of nodes of the ring is fixed (by
an adversary) as n = k+1 nodes and each node is initially occupied by one agent,

234 N. Giachoudis et al.

except the node that contains the black virus (see Fig. 2). If the initial number
of agents is odd, the number of nodes of the ring is fixed (by an adversary) as
n = k + 2 nodes and each node is initially occupied by one agent, except the
node that contains the black virus and one of the nodes incident to the black
virus (see Fig. 3). In either case, each agent has the same number of tokens and
neighbouring agents are forced by the adversary to move in different directions:
agent A1 moves clockwise and agent Ai+1 moves opposite than Ai, ∀i ≥ 1.

Δ1

Δ2

Δ3

Δ4

Δ5

Δn−1

Δn−2

Δn−3

Δn−4

Δn−5

Acw
1

Accw
2

Acw
3

Accw
4

Acw
5

Accw
n−1

Acw
n−2

Accw
n−3

Acw
n−4

Accw
n−5

Fig. 2. An initial configuration consist-
ing of n − 1 anonymous agents, where
n − 1 is an even number.

Δ1

Δ2

Δ3

Δ4

Δ5

Δn−2

Δn−3

Δn−4

Δn−5

Acw
1

Accw
2

Acw
3

Accw
4

Acw
5

Acw
n−2

Accw
n−3

Acw
n−4

Accw
n−5

Fig. 3. An initial configuration consist-
ing of n − 2 anonymous agents, where
n − 2 is an odd number.

If the initial number of agents is even, two agents, A1 and An−1, along with
their tokens are destroyed after the first step. If the initial number of agents is
odd, one agent, A1, along with its tokens is destroyed after the first step. In both
cases the resulting configuration is symmetric where each of the remaining agents
reaches a node containing the same number of tokens. The agents cannot stop
moving after finding a token, otherwise, the ring will not be cleaned. If the agents
continue moving in the same direction, two additional agents and two piles of
tokens are lost immediately and once again all the remaining agents reach the
same number of tokens. If the agents change direction and move until they find a
token, all agents return to their respective homebases and no agent is destroyed.
However, the agents cannot keep moving between any two nodes with tokens
indefinitely, otherwise the ring will not be decontaminated. Therefore, the agents
eventually have to move to a node they have not visited before. Consequently,
in any case two additional agents and two piles of tokens are destroyed, leaving
k − 4 agents, k − 4 nodes with (the same number of) tokens and five nodes that
need to be cleaned.

The resulting configuration is similar to the previous one with the difference
that there are two more nodes that need to be cleaned and two agents less.
The agents in the new configuration do not have any further knowledge of the
network and cannot move in a more effective/different way than before. Each
time the agents move to a new node, the two agents next to the two endpoints
of the contaminated interval are destroyed along with their tokens. Each time
an agent is lost, a pile of tokens is lost as well. Thus, any two agents have always

Black Virus Decontamination of Synchronous Rings by Scattered Agents 235

the same input and therefore they cannot break this symmetry and they all
eventually vanish. ��

3.2 An Algorithm with Twelve Agents

We present here an algorithm for twelve scattered agents with distinct identities
and one token each for the decontamination of any synchronous ring even when
the agents do not have a common chirality.

The main idea of the algorithm is the following. Each agent releases its token
h, selects a direction and moves until it finds a token h′. Then repeatedly bounces
back and forth between the two tokens h and h′, each time moving its own token
h towards the other token h′ until the distance between the two tokens is at most
one edge. Eventually, at least two agents meet and start to move trying to find an
endpoint of the contaminated interval using Procedure Cautious-Move. Even-
tually all surviving agents meet using the above technique and using Procedure
Cautious-Move manage to decontaminate the ring. The algorithm needs to take
care a few details:

– Before the agents execute the above algorithm they move their tokens one
step to guarantee that, apart from at most two agents that might vanish
together with their tokens, for any other agent of the remaining at least ten
agents, even if it vanishes while trying to bounce, its token is preserved.

– When two agents move their tokens closer and closer to each other and do not
meet until their tokens occupy adjacent nodes, they use their distinct labels
(natural numbers) to break ties in their movements and meet.

– When there are more than one agents at the same node they use their distinct
identities to assign different roles to themselves.

– An agent or group of agents that meets a guard (i.e., an agent adjacent to
one of the endpoints of the contaminated interval) for the first time, changes
direction.

The complete algorithm along with its correctness analysis will appear in the
full version of the paper.

Lemma 7. Twelve scattered agents with distinct identities (taken from the set
of natural numbers), constant memory and one token each can decontaminate
any n−node, synchronous, ring within O(n2 + L) time units, where L is the
maximum identity label, even when the agents do not have a common chirality.

4 Open Problems

An interesting question is whether the presented algorithms can be extended to
handle asynchronous networks. It is also interesting to investigate what is the
minimum number of scattered agents and the weakest model under which the
problem can be solved in other graph topologies.

236 N. Giachoudis et al.

References

1. Alotaibi, M.: Black virus disinfection in chordal rings. Master’s thesis, Université
d’Ottawa/University of Ottawa (2014)

2. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by
mobile agents. In: Proceedings of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 200–209. ACM (2002)

3. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intrud-
ers. Theor. Comput. Sci. 399(1–2), 12–37 (2008)

4. Cai, J., Flocchini, P., Santoro, N.: Decontamination of an arbitrary network from
multiple black viruses. In: 32nd International Conference on Computers and Their
Applications, (CATA), pp. 231–237 (2017)

5. Cai, J., Flocchini, P., Santoro, N.: Decontaminating a network from a black virus.
Int. J. Netw. Comput. 4(1), 151–173 (2014)

6. Cai, J., Flocchini, P., Santoro, N.: Black virus decontamination in arbitrary net-
works. In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P. (eds.) New Contri-
butions in Information Systems and Technologies. AISC, vol. 353, pp. 991–1000.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16486-1 98

7. Cai, J., Flocchini, P., Santoro, N.: Distributed black virus decontamination and
rooted acyclic orientations. In: 2015 IEEE International Conference on Com-
puter and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Com-
puting (CIT/IUCC/DASC/PICOM), pp. 1681–1688. IEEE (2015)

8. Cooper, C., Klasing, R., Radzik, T.: Locating and repairing faults in a network
with mobile agents. Theor. Comput. Sci. 411(14–15), 1638–1647 (2010)

9. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole
in arbitrary networks: optimal mobile agents protocols. Distrib. Comput. 19(1),
1–99999 (2006)

10. Kokkou, M.: Distributed computing - fault tolerant distributed algorithms. Bach-
elor’s thesis, University of Thessaly (2019)

11. Lin, Y.: Decontamination from black viruses using parallel strategies. Master’s
thesis, Université d’Ottawa/University of Ottawa (2018)

12. Markou, E., Shi, W.: Dangerous graphs. In: Flocchini, P., Prencipe, G., Santoro, N.
(eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 455–515.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7 18

13. Nisse, N.: Connected graph searching in chordal graphs. Discrete Appl. Math.
157(12), 2603–2610 (2009)

14. Nisse, N.: Network decontamination. In: Flocchini, P., Prencipe, G., Santoro, N.
(eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 516–548.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7 19

https://doi.org/10.1007/978-3-319-16486-1_98
https://doi.org/10.1007/978-3-030-11072-7_18
https://doi.org/10.1007/978-3-030-11072-7_19

The Power of Global Knowledge
on Self-stabilizing Population Protocols

Yuichi Sudo1(B), Masahiro Shibata2, Junya Nakamura3, Yonghwan Kim4,
and Toshimitsu Masuzawa1

1 Osaka University, Osaka, Japan
y-sudou@ist.osaka-u.ac.jp

2 Kyushu Institute of Technology, Fukuoka, Japan
3 Toyohashi University of Technology, Aichi, Japan

4 Nagoya Institute of Technology, Aichi, Japan

Abstract. In the population protocol model, many problems cannot
be solved in a self-stabilizing way. However, global knowledge, such as
the number of nodes in a network, sometimes allow us to design a self-
stabilizing protocol for such problems. In this paper, we investigate the
effect of global knowledge on the possibility of self-stabilizing population
protocols in arbitrary graphs. Specifically, we clarify the solvability of
the leader election problem, the ranking problem, the degree recogni-
tion problem, and the neighbor recognition problem by self-stabilizing
population protocols with knowledge of the number of nodes and/or the
number of edges in a network.

1 Introduction

We consider the population protocol (PP) model [2] in this paper. A network
called population consists of a large number of finite-state automata, called
agents. Agents make interactions (i.e., pairwise communication) with each other
by which they update their states. The interactions are opportunistic, that is,
they are unpredictable for the agents. Agents are strongly anonymous: they do
not have identifiers and they cannot distinguish their neighbors with the same
states. One example represented by this model is a flock of birds where each bird
is equipped with a sensing device with a small transmission range. Two devices
can communicate (i.e., interact) with each other only when the corresponding
birds come sufficiently close to each other. Therefore, an agent cannot predict
when it has its next interaction.

In the field of population protocols, many efforts have been devoted to
devising protocols for a complete graph, that is, a population where every
pair of agents interacts infinitely often. On the other hand, several works
[2,4,5,8–10,15,16,19,20] study the population represented by a general graph

This work was supported by JSPS KAKENHI Grant Numbers 17K19977, 18K18000,
18K18029, 18K18031, 19H04085, and 20H04140 and JST SICORP Grant Number
JPMJSC1606.
c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 237–254, 2020.
https://doi.org/10.1007/978-3-030-54921-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_14

238 Y. Sudo et al.

G = (V,E) where V is the set of agents and E specifies the set of interactable
pairs. Each pair of agents (u, v) ∈ E has interactions infinitely often, while each
pair of agents (u′, v′) /∈ E never has an interaction.

Self-stabilization [11] is a fault-tolerant property that, even when any tran-
sient fault (e.g., memory crash) hits a network, it can autonomously recover
from the fault. Formally, self-stabilization is defined as follows: (i) starting from
an arbitrary configuration, a network eventually reaches a safe configuration
(convergence), and (ii) once a network reaches a safe configuration, it keeps its
specification forever (closure). Self-stabilization is of great importance in the PP
model because self-stabilization tolerates any finite number of transient faults,
and this is a necessary property in a network consisting of a huge number of
cheap and unreliable nodes.

Consequently, many studies have been devoted to self-stabilizing population
protocols [4,5,7–9,12,14,16,17,19–21]. Angluin et al. [4] gave self-stabilizing pro-
tocols for a variety of problems: the leader election in the rings whose size are not
multiples of a given integer k (in particular, the rings of odd size), the token cir-
culation in rings with a pre-selected leader, the 2-hop coloring in degree-bounded
graphs, the consistent global orientation in undirected rings, and the spanning-
tree construction in regular graphs. The protocols for the first four problems use
only a constant space of agent memory, while the protocol for the last problem
requires O(logD) bits of agent memory, where D is (a known upper bound1

on) the diameter of the graph. Chen and Chen [9] gave a constant-space and
self-stabilizing protocol for the leader election in rings with arbitrary size.

On the negative side, Angluin et al. [4] proved that the self-stabilizing leader
election (SS-LE) is impossible for arbitrary graphs. In particular, it immediately
follows from their theorem that no protocol solves SS-LE in complete graphs
with three different sizes, i.e., in all of Ki, Kj , and Kk for any distinct integers
i, j, k ≥ 2, where Kl is a complete graph with size l. Cai et al. [7] proved that no
protocol solves SS-LE both in Ki and in Ki+1 for any integer i ≥ 2. In almost
the same way, we can easily observe that no protocol solves SS-LE both in Ki

and Kj for any distinct integers i, j ≥ 2. (See a more detailed explanation in
the second page of [21].) In other words, SS-LE is impossible unless the exact
number of agents in the population is known to the agents. Because Cai et al. [7]
also gave a protocol that solves SS-LE in Kl for a given integer l, the knowledge
of the exact number of agents is necessary and sufficient to solve SS-LE in a
complete graph.

In addition to [4,7,9], many works have been devoted to SS-LE. This is
because the leader election is one of the most fundamental and important prob-
lems in the PP model: several important protocols [2–4] require a pre-selected

1 In [4], D is defined as the diameter of the graph, not a known upper bound on
it. However, since we must take into account an arbitrary initial configuration, we
require an upper bound on the diameter; Otherwise, the agents need the memory
of unbounded size. Fortunately, the knowledge of the upper bound is not a strong
assumption in this case: any upper bound which is polynomial in the true diameter
is acceptable since the space complexity is O(logD) bits.

The Power of Global Knowledge on Self-stabilizing Population Protocols 239

unique leader, especially, it is shown by Angluin et al. [3] that if we have a unique
leader, all semi-linear predicates can be solved very quickly. However, we have
strong impossibility as mentioned above: SS-LE can not be solved unless the
knowledge of the exact number of agents is given to the agents. In the literature,
there are three approaches to overcome this impossibility. One approach [6,7] is
to assume that every agent knows the exact number of agents. Cai et al. [7] took
this approach for the first time. Their protocol uses O(log n) bits (n states) of
memory space per agent and converges within O(n3) steps in expectation in the
complete graph of n agents under the uniformly random scheduler, which selects
a pair of agents to interact uniformly at random from all pairs at each step.
Burman et al. [6] gave three faster SS-LE protocols than the protocol of Cai
et al. [7], also for the complete graph of n agents. These self-stabilizing protocols
in [6,7] solve not only the leader election problem but also the ranking problem,
which requires ranking the n agents by assigning them the different integers from
0, 1, . . . , n − 1. There are other two approaches to over come the impossibility of
SS-LE in the PP model. One is loose-stabilization [14,16,17,19–21], which may
deviate from the legitimate behavior even after a safe configuration is reached,
but guarantee that the expected time before the deviation occurs is sufficiently
long. The other one is to design SS-LE protocols with oracles [5,8,12].

1.1 Our Contribution

As mentioned above, if we have knowledge of the exact number of agents, we
can solve the self-stabilizing leader election in complete graphs, which we can
never solve otherwise. In this paper, we investigate in detail how powerful global
knowledge, such as the exact number of agents in the population, is to design
self-stabilizing population protocols for arbitrary graphs. Specifically, we consider
two kinds of global knowledge, the number of agents and the number of edges
(i.e., interactable pairs) in the population, and clarify the relationships between
the knowledge and the solvability of the following four problems:

– leader election (LE): Elect exactly one leader,
– ranking (RK): Assign the agents in the population G = (VG, EG) distinct

integers (or ranks) from 0 to |VG| − 1,
– degree recognition (DR): Let each agent recognize its degree in the graph,
– neighbor recognition (NR): Let each agent recognize the set of its neighbors

in the graph. Since the population is anonymous, this problem also requires
having 2-hop coloring, that is, all agents must be assigned integers (or colors)
such that all neighbors of any agent have different colors.

In addition to the above specifications, we require that no agent change its
outputs (e.g., its rank in RK) after the population converges, that is, it reaches
a safe configuration.

We denote A1 � A2 if problem A1 is reducible to A2. We have LE � RK
and DR � NR. The first relationship holds because if the agents are labeled
0, 1, . . . , |VG| − 1, LE is immediately solved by selecting the agent with label 0
as the unique leader. The second relationship is trivial.

240 Y. Sudo et al.

To describe our contributions, we formally define the global knowledge that
we consider. Define Gn,m as the set of all the simple, undirected, and connected
graphs with n nodes and m edges. Let ν and μ be any sets of positive integers
such that ν ⊆ N≥2 = {n ∈ N | n ≥ 2} and μ ⊆ N≥1 = {m ∈ N | m ≥ 1}.
Then, we define Gν,μ =

⋃
n∈ν,m∈μ Gn,m. For simplicity, we define Gν,∗ = Gν,N≥1

and G∗,μ = GN≥2,μ for any ν ⊆ N≥2 and μ ⊆ N≥1. We consider that ν and μ
are global knowledge on the population: ν is the set of the possible numbers of
agents and μ is the set of the possible numbers of interactable pairs. In other
words, when we are given ν and μ, our protocol has to solve a problem only
in the populations represented by the graphs in Gν,μ. We say that protocol P
solves problem A in arbitrary graphs given knowledge ν and μ if P solves A in
all graphs in Gν,μ.

In this paper, we investigate the solvability of LE, RK, DR, and NR for
arbitrary graphs with the knowledge ν and μ. Specifically, we prove the following
propositions assuming that the agents are given knowledge ν and μ:

1. When the agents know nothing about the number of interactable pairs, i.e.,
μ = N≥1, there exists a self-stabilizing protocol that solves LE and RK in
arbitrary graphs if and only if the agents know the exact number of agents
i.e., Gν,μ = Gn,∗ for some n ∈ N≥2.

2. There exists a self-stabilizing protocol that solves NR (�DR) in arbitrary
graphs if the agents know the exact number of agents and the exact number
of interactable pairs i.e., Gν,μ = Gn,m holds for some n ∈ N≥2 and m ∈ N≥1.

3. The knowledge of the exact number of agents is not enough to design a self-
stabilizing protocol that solves DR (�NR) in arbitrary graphs if the agents
do not know the number of interactable pairs exactly. Specifically, no self-
stabilizing protocol solves DR in all graphs in Gν,μ if Gn,m1 ∪ Gn,m2 ⊆ Gν,μ

holds for some n ∈ N≥2 and some distinct m1,m2 ∈ N≥1 such that Gn,m1 �= ∅
and Gn,m2 �= ∅.

In standard distributed computing models, generally, each node always has
its local knowledge, e.g., its degree and the set of its neighbors. In the PP model,
the agents does not have the local knowledge a priori, and many impossibility
results (e.g., the impossibility of SS-LE in complete graphs [4,7]) come from
the lack of the local knowledge. Interestingly, the third proposition yields that,
for self-stabilizing population protocols, obtaining some local knowledge (degree
recognition of each agent) is at least as difficult as obtaining the corresponding
global knowledge (the number of interactable pairs). It is also worthwhile to
mention that the PP model is empowered greatly if LE and NR are solved. After
the agents recognize their neighbors correctly, the population can simulate one
of the most standard distributed computing models, the message passing model,
if each agent maintains a variable corresponding to a message buffer for each
neighbor. Moreover, we have the unique leader in the population, by which we
can easily break the symmetry of a graph and solve many important problems
even in a self-stabilizing way. For example, we can construct a spanning tree
rooted by the leader. This fact and the above propositions show how powerful this
kind of global knowledge is when we design self-stabilizing population protocols.

The Power of Global Knowledge on Self-stabilizing Population Protocols 241

2 Preliminaries

A population is represented by a simple and connected graph G = (VG, EG),
where VG is the set of the agents and EG ⊆ VG ×VG is the set of the interactable
pairs of agents. If (u, v) ∈ EG, two agents u and v can interact in the population
G, where u serves as the initiator and v serves as the responder of the interaction.
In this paper, we consider only undirected populations, that is, we assume that,
for any population G, (u, v) ∈ EG yields (v, u) ∈ EG for any u, v ∈ VG. We
define the set of the neighbors of agent v as NG(v) = {u ∈ VG | (v, u) ∈ EG}.

A protocol P (Q,Y, T, πout) consists of a finite set Q of states, a finite set Y
of output symbols, a transition function T : Q × Q → Q × Q, and an output
function πout : Q → Y . When two agents interact, T determines their next states
according to their current states. The output of an agent is determined by πout:
the output of an agent in state q is πout(q). As mentioned in Sect. 1, we assume
that the agents can use knowledge ν and μ. Therefore, the four parameters of
protocol P , i.e., Q, Y , T , and πout, may depend on ν and μ. We sometimes write
P (ν, μ) explicitly to denote protocol P with knowledge ν and μ.

A configuration on population G is a mapping C : VG → Q that specifies the
states of all the agents in G. We denote the set of all configurations of protocol P
on population G by Call(P,G). We say that a configuration C changes to C ′ by
an interaction e = (u, v), denoted by C

P,e→ C ′, if (C ′(u), C ′(v)) = T (C(u), C(v))

and C ′(w) = C(w) for all w ∈ V \{u, v}. We also denote C
P,G→ C ′ if C

P,e→ C ′

holds for some e ∈ EG. We also say that a configuration C ′ is reachable from C
by P on population G if there is a sequence of configurations C0, C1, . . . , Ck such
that Ci

P,G→ Ci+1 for i = 0, 1, . . . , k − 1. We say that a set S of configurations is
closed if no configuration out of S is reachable from a configuration in S.

An execution of protocol P on population G is an infinite sequence of config-
urations Ξ = C0, C1, . . . such that Ci

P,G→ Ci+1 for i = 0, 1, We call C0 the
initial configuration of the execution Ξ. We have to assume some kind of fairness
of an execution. Otherwise, for example, we cannot exclude an execution such
that only one pair of agents have interactions in a row and no other pair has an
interaction forever. Unlike most distributed computing models in the literature,
the global fairness is usually assumed in the PP model. We say that an execu-
tion Ξ = C0, C1, . . . of P on population G satisfies the global fairness (or Ξ is
globally fair) if for any configuration C that appears infinitely often in Ξ, every
configuration C ′ such that C

P,G→ C ′ also appears infinitely often in Ξ.
A problem is specified by a predicate on the outputs of the agents. We call

this predicate the specification of the problem. We say that a configuration C
satisfies the specification of a problem if the outputs of the agents satisfy it in
C. We consider the following four problems in this paper.

Definition 1 (LE). The specification of the leader election problem (LE)
requires that exactly one agent outputs L and all the other agents output F .

242 Y. Sudo et al.

Definition 2 (RK). The specification of the ranking problem (RK) requires
that in the population G = (VG, EG), the set of the outputs of the agents in the
population equals to {0, 1, . . . , |VG| − 1}.
Definition 3 (DR). The specification of the degree recognition problem (DR)
requires that in the population G = (VG, EG), every agent v ∈ VG outputs
|NG(v)|.
Definition 4 (NR). The specification of the neighbor recognition problem
(NR) requires that in the population G = (VG, EG), every agent v ∈ VG

outputs a two-tuple (cv, Sv) ∈ Z × 2Z such that, for all v ∈ VG, we have
Sv = {cu | u ∈ NG(v)} and |Sv| = |NG(v)|.
Note that the second condition in the definition of NR, i.e., |Sv| = |NG(v)|,
requires that the population is 2-hop colored, that is, every two distinct neighbors
u and w of agent v must have different integers cu and cw.

Now, we define self-stabilizing protocols in Definitions 5 and 6, where we use
the definitions given in Sect. 1.1 for knowledge ν and μ and the set Gν,μ of graphs.
Note that Definition 5 is not enough if we consider dynamic problems such as
the token circulation, where the specifications must be defined as predicates not
on configurations but on executions. However, we consider only static problems
in this paper, thus this definition is enough for our purpose.

Definition 5 (Safe configuration). Given a protocol P and a population G,
we say that a configuration C ∈ Call(P (ν, μ), G) is safe for problem A if (i) C
satisfies the specification of problem A, and (ii) no agent changes its output in
any execution of P on G starting from C.

Definition 6 (Self-stabilizing protocol). For any ν and μ, we say that a
protocol P is a self-stabilizing protocol that solves problem A in arbitrary graphs
given knowledge ν and μ if every globally-fair execution of P (ν, μ) on any pop-
ulation G, which starts from any configuration C0 ∈ Call(P (ν, μ), G), reaches a
safe configuration for A.

Finally, we define the uniformly random scheduler, which has been consid-
ered in most of the works [1–3,13,16–21] in the PP model. Under this sched-
uler, exactly one ordered pair (u, v) ∈ EG is chosen to interact uniformly at
random from all interactable pairs. We need this scheduler to evaluate time
complexities of protocols because global fairness only guarantees that an exe-
cution makes progress eventually. Formally, the uniformly random scheduler
is defined as a sequence of interactions Γ = Γ0, Γ1, . . . , where each Γt is a
random variable such that Pr(Γt = (u, v)) = 1/|EG| for any t ≥ 0 and any
(u, v) ∈ EG. Given a population G, a protocol P (ν, μ), and an initial configura-
tion C0 ∈ Call(P (ν, μ), G), the execution under the uniformly random scheduler

is defined as ΞP (ν,μ)(G,C0,Γ) = C0, C1, . . . such that Ct
P (ν,μ),Γt→ Ct+1 for all

t ≥ 0. When we assume this scheduler, we can evaluate time complexities of
a population protocol, for example, the expected number of steps required to
reach a safe configuration. We have the following observation.

The Power of Global Knowledge on Self-stabilizing Population Protocols 243

Observation 1. A protocol P (ν, μ) is self-stabilizing for a problem A if and
only if ΞP (ν,μ)(G,C0,Γ) reaches a safe configuration for A with probability 1 for
any configuration C0 ∈ Call(P (ν, μ), G).

Proof. Remember that we do not allow a protocol to have an infinite number of
states. According to [2], we say that a set C of configurations is final if C is closed,
and all configurations in C are reachable from each other. We also say that a
configuration C is final if it belongs to a final set. It is trivial that protocol P is
self-stabilizing if and only if all final configurations are safe. Thus, it suffices to
show that all final configurations of P (ν, μ) are safe for A if and only if execution
Ξ = ΞP (ν,μ)(G,C0,Γ) reaches a safe configuration for A with probability 1 for
any C0 ∈ Call(P (ν, μ), G). The sufficient condition is trivial because Ξ reaches a
final configuration with probability 1 regardless of C0. We prove the necessary
condition below. Suppose that there is a final configuration C that is not safe. By
definition, C belongs to a final set C. Since C is reachable from all configurations
in C, no configuration in C is safe. Since C is closed, Ξ will never reaches a safe
configuration if C0 = C.

Due to the lack of space, we omit the proofs for a few propositions regarding
the random walk in the PP model, which are used in the proofs of the lemmas
in Sect. 3 and 4. See the preprint [22] for the complete proofs.

3 Leader Election and Ranking

The goal of this section is to give a necessary and sufficient condition to solve RK
and LE on knowledge ν, provided that μ gives no information, i.e., μ = N≥1.
For a necessary condition, we have the following lemma.

Lemma 1 ([4,7,21]). Given knowledge ν and μ, there exists no self-stabilizing
protocol that solves LE in arbitrary graphs if Gn1,∗ ∪ Gn2,∗ ⊆ Gν,μfor some two
distinct n1, n2 ∈ N≥2.

Proof. The lemma immediately follows from the fact that there exists no self-
stabilizing protocol that solves LE in complete graphs of two different sizes, i.e.,
both in Kn1 and Kn2 for any two integers n1 > n2 ≥ 2. As mentioned in Sect. 1,
Sudo et al. [21] gave how to prove this fact based on the proofs of [4,7]. ��

To give a sufficient condition, we give a self-stabilizing protocol Prank, which
solves the ranking problem (RK) in arbitrary graphs given the knowledge of
the exact number of agents in a population. Specifically, this protocol assumes
that the given knowledge ν satisfies |ν| = 1 while it does not care about the
number of interactable pairs, that is, Prank(ν, μ) works even if μ does not give
any knowledge (i.e., μ = N≥1). Let n be the integer such that ν = {n}.

If we focus only on complete graphs, the following simple algorithm [7] is
enough to solve self-stabilizing ranking with the exact knowledge n of agents:

244 Y. Sudo et al.

Algorithm 1. Prank(ν, μ)
Assumption: |ν| = 1. (Let ν = {n}.)

Variables:
idA, idT ∈ {0, 1, . . . , n − 1}
colorA ∈ {W, R, B}, colorT ∈ {R, B}, timerT ∈ {0, 1, . . . , UT }

Output function πout: idA

Interaction between initiator a0 and responder a1:
1: (a0.idT , a0.colorT , a0.timerT) ↔ (a1.idT , a1.colorT , a1.timerT)

// Execute the random walk of two tokens
2: if a0.idT = a1.idT then a1.idT ← a1.idT + 1 (mod n) endif
3: for all i ∈ {0, 1} do ai.timerT ← max(0, ai.timerT − 1) endfor

4: for all i ∈ {0, 1} such that ai.idA = ai.idT do
5: if ai.colorA = W then ai.colorA ← ai.colorT endif
6: if ai.colorA �= ai.colorT then
7: ai.idA ← ai.idA + 1 (mod n)
8: ai.colorA ← W
9: else if ai.timerT = 0 then

10: ai.timerT ← UT

11: if ai.colorA = R then ai.colorA ← ai.colorT ← B endif
12: if ai.colorA = B then ai.colorA ← ai.colorT ← R endif
13: end if
14: end for

– Each agent v has only one variable v.id ∈ {0, 1, . . . , n − 1}, and
– Every time two agents with the same id meet, one of them (the initiator)

increases its id by one modulo n.

Since this algorithm assumes complete graphs, every pair of agents in the pop-
ulation eventually has interactions. Therefore, as long as two agents have the
same identifiers, they eventually meet and the collision of their identifiers is
resolved. However, this algorithm does not work in arbitrary graphs, even if the
exact number of agents is given. This is because some pair of agents may not
be interactable in an arbitrary graph, then they cannot resolve the conflicts of
their identifiers by meeting each other.

Protocol Prank detects the conflicts between any (possibly non-interactable)
two agents by traversing n tokens in a population where each agent always has
exactly one token. This protocol is inspired by a self-stabilizing leader election
protocol with oracles given by Beauquier et al. [5], where the agents traverse
exactly one token in a population.

The pseudocode of Prank is shown in Algorithm 1. Our goal is to assign the
agents the distinct labels 0, 1, . . . , n − 1. Each agent v stores its label in a vari-
able v.idA ∈ {0, 1, . . . , n − 1} and outputs it as it is. To detect and resolve
the conflicts of the labels in arbitrary graphs, each agent maintains four other
variables idT ∈ {0, 1, . . . , n − 1}, colorA ∈ {W,R,B}, colorT ∈ {R,B}, and
timerT ∈ {0, 1, . . . , UT }, where UT is a sufficiently large Ω(mn) value and m

The Power of Global Knowledge on Self-stabilizing Population Protocols 245

is the number of interactable pairs in the population. We will explain later how
to assign UT such a value. We say that v has a token labeled x if v.idT = x.
Each agent v has one color, white (W), red (R), or blue (B), while v’s token
has one color, red (R) or blue (B), maintained by variables v.idA and v.idT ,
respectively.

The tokens always make the random walk : two agents swap their tokens
whenever two agents interact (Line 1). If the two tokens have the same label,
one of them increments its label modulo n (Line 2). Since all tokens meet each
other infinitely often by the random walk, they eventually have mutually distinct
labels (idT), after which they never change their labels. Thereafter, the conflicts
of labels among the agents are resolved by using the tokens. Let x be any integer
in {0, 1, . . . , n − 1} and denote the token labeled x by Tx. Ideally, an agent
labeled x always has the same color as that of Tx. Consider the case that an
agent labeled x, say v, meets Tx, and v and Tx have different colors, blue and
red. Then, v suspects that there is another agent labeled x, and v increases its
label by one modulo n (Line 7). The agent v, now labeled x+1 (mod n), changes
its color to white (Line 8). When v meets Tx+1 (mod n) the next time, it copies
the color of the token to its color to synchronize a color with Tx+1 (mod n). Token
Tx changes its color periodically. Specifically, Tx decreases its timerT whenever
it moves unless timerT already reaches zero (Line 3). If token Tx meets an agent
labeled x, they have the same color, and the timer of the token is zero, then they
change their color from blue to red or from red to blue (Lines 11–12). If there
are two or more agents labeled x, this multiplicity is eventually detected because
Tx makes a random walk forever: Tx eventually meets an agent labeled x with a
different color. By repeating this procedure, the population eventually reaches a
configuration where all the agents have distinct labels and the agent labeled x
has the same color as that of Tx for all x = 0, 1, . . . , n − 1. No agent changes its
label thereafter.

Note that this protocol works even if we do not use variable timerT and
color W . We introduce them to make this protocol faster under the uniformly
random scheduler. In the rest of this section, we prove the following theorem.

Theorem 1. Given knowledge ν and μ, Prank(ν, μ) is a self-stabilizing protocol
that solves RK in arbitrary graphs if ν = {n} for some integer n, regardless
of μ. Starting from any configuration C0 on any population G = (VG, EG) ∈
Gn,∗, the execution of Prank(ν, μ) under the uniformly random scheduler (i.e.,
ΞPrank(ν,μ)(G,C0,Γ)) reaches a safe configuration within O(mn3d log n + n2UT)
steps in expectation, where m = |EG|/2 and d is the diameter of G. Each agent
uses O(log n) bits of memory space to execute Prank(ν, μ).

Recall that we require parameter UT to be a sufficiently large Ω(mn) value.
If an upper bound M of m such that M = Θ(m) is obtained from knowledge
μ, we can substitute a sufficiently large Θ(mn) value for UT . Then, Prank(ν, μ)
converges in O(mn3d log n) steps in expectation. Even if such M is not obtained
from μ, e.g., μ = N≥1, we can substitute a sufficiently large Θ(n3) value for UT .
Then, Prank(ν, μ) converges in O(mn3d log n + n5) steps in expectation.

246 Y. Sudo et al.

In the rest of this section, we fix a population G = (VG, EG) ∈ Gn,∗, let
m = |EG|/2, and let d be the diameter of G. To prove Theorem 1, we define three
sets Stoken, Ssync, and Srank of configurations in Call(Prank(ν, μ), G) as follows.

– Stoken: the set of all the configurations in Call(Prank(ν, μ), G) where all tokens
have distinct labels, i.e., ∀u, v ∈ VG : u.idT �= v.idT . In a configuration in
Stoken, there exists exactly one token labeled x in the population for each
x ∈ {0, 1, . . . , n − 1}. We use notation Tx both to denote the unique token
labeled by x and to denote the agent on which this token currently stays.

– Ssync: the set of all the configurations in Stoken where proposition Qtoken(x)
def≡

VG(x) �= ∅ ⇒ (∃u ∈ VG(x) : u.colorA = Tx.colorT ∨ u.colorA = W) holds
for any x ∈ {0, 1, . . . , n − 1}, where VG(x)

def= {v ∈ V | v.idA = x}.
– Srank: the set of all the configurations in Ssync where all the agents in VG have

distinct labels, that is, ∀u, v ∈ VG : u.idA �= v.idA.

Lemma 2. The set Stoken is closed for Prank(ν, μ).

Proof. A token changes its label only if it meets another token with the same
label. Hence, no token changes its label in an execution starting from a configu-
ration in Stoken. ��
Lemma 3. Let x ∈ {0, 1, . . . , n−1}. In an execution of Prank(ν, μ) starting from
a configuration in Stoken, once Qtoken(x) holds, it always holds thereafter.

Proof. This lemma holds because (i) an agent must be white just after it changes
its label from x − 1 (mod n) to x, (ii) a white agent labeled x changes its color
only when token Tx visits it at an interaction, at which this white agent gets the
same color as that of Tx, (iii) an agent labeled x with the same color as that of
Tx changes its color only when token Tx visits it at an interaction, at which this
agent and Tx get the same new color. ��
Lemma 4. The set Ssync is closed for Prank(ν, μ).

Proof. The lemma immediately follows from Lemma 3. ��
Lemma 5. Let x ∈ {0, 1, . . . , n − 1}. In an execution of Prank(ν, μ) starting
from a configuration in Ssync, once at least one agent is labeled x, the number of
agents labeled x never becomes zero thereafter.

Proof. This lemma holds in the same way as the proof of Lemma 3. ��
Lemma 6. The set Srank is closed for Prank(ν, μ).

Proof. The lemma immediately follows from Lemmas 4 and 5. ��
The following lemma is useful to analyze the expected number of steps

required to reach a configuration in Srank in an execution of Prank(ν, μ).

The Power of Global Knowledge on Self-stabilizing Population Protocols 247

Lemma 7. Consider the following game with n players p0, p1, . . . , pn−1. Each
player always has one state in {0, 1, . . . , n−1}. At each step, an arbitrary pair of
players is selected and they check the states of each other. If they have the same
state, one of them increases its state by one modulo n. Otherwise, they do not
change their states. Starting this game from any configuration (i.e., any combi-
nation of the states of all players), there is at least one state z ∈ {0, 1, . . . , n−1}
such that no player changes its state from z − 1 (mod n) to z. The set of such
states is uniquely determined by a configuration from which the game starts.

Proof. Fix an initial configuration ψ0 = (k0, k1, . . . , kn−1), where ki represents
the number of agents in state i in the configuration. In this proof, we make
every addition and subtraction in modulo n and omit the notation “(mod n)”.
It is trivial that for any x ∈ {0, 1, . . . , n − 1}, no player changes its state from
x − 1 to x if and only if x satisfies

∑i
j=1 kx−j ≤ i for all i ∈ {1, 2, . . . , n − 1}.

Therefore, the set of states z such that no player changes its state from z − 1 to
z is uniquely determined by the initial configuration ψ0.

By the uniqueness of the above set, it suffices to show that for any execution
Ξ of this game starting from ψ0, there is a state z ∈ {0, 1, . . . , n − 1} such
that no player changes its state from z − 1 to z in Ξ. We say that a state
x ∈ {0, 1, . . . , n − 1} is filled if at least one player is in state x. By definition
of this game, once x is filled, x is always filled thereafter. If there is a state z
that is never filled in Ξ, no player changes its state from z − 1 to z. Suppose
the other case and let z be the state that is filled for the last time in execution
Ξ. By definition, when z gets filled, all the n states are filled, which yields that
all the n players have mutually distinct states at this time. Therefore, no player
never changes its state from z − 1 to z in execution Ξ. ��
Lemma 8. Starting from any configuration C0 ∈ Call(Prank(ν, μ), G), an execu-
tion of Prank(ν, μ) under the uniformly random scheduler (i.e., ΞP (ν,μ)(G,C0,Γ))
reaches a configuration in Stoken within O(mn3d log n) steps in expectation.

Proof. By Lemma 7, there exists an integer z ∈ {0, 1, . . . , n − 1} such that no
token changes its label from z − 1 (mod n) to z. Then, the number of tokens
labeled z becomes exactly one before or when all the tokens meet each other.
Since Sudo et al. [20] proved that n tokens making random walks in arbitrary
graphs meet each other within O(mn2d log n) steps in expectation, the number of
tokens labeled z becomes exactly one within O(mn2d log n) steps in expectation.
Thereafter, no token changes its label from z to z+1 (mod n). Hence, the number
of tokens labeled z + 1 (mod n) becomes one in the next O(mn2d log n) steps
in the same way. Repeating this procedure, all the tokens have distinct labels
within O(mn3d log n) steps in expectation. ��
Lemma 9. Starting from any configuration C0 ∈ Stoken, an execution of
Prank(ν, μ) under the uniformly random scheduler (i.e., ΞP (ν,μ)(G,C0,Γ))
reaches a configuration in Ssync within O(mn3) steps in expectation.

Proof. By Lemmas 2 and 3, it suffices to show that for each x ∈ {0, 1, . . . , n−1},
Qtoken(x) becomes true within O(mn2) steps in expectation in an execution of

248 Y. Sudo et al.

Prank(ν, μ) starting from C0. We have Qtoken(x) = false if and only if there exists
at least one agent labeled x and all of them have colors different from that of Tx

(i.e., the token labeled x). Even if Qtoken(x) = false in C0, Qtoken(x) becomes
true before or when Tx meets all of them. With slight modification of the analysis
in [20], we can show that Tx visits (i.e., meets) all agents within O(mn2) steps
in expectation (See the preprint [22]), from which the lemma follows. ��
Lemma 10. Assume that UT is sufficiently large Ω(mn) value. Starting from
any configuration C0 ∈ Ssync, an execution of Prank(ν, μ) under the uniformly
random scheduler (i.e., ΞP (ν,μ)(G,C0,Γ)) reaches a configuration in Srank within
O(mn3 + n2UT) steps in expectation.

Proof. By Lemmas 5 and 7, there exists an integer z ∈ {0, 1, . . . , n−1} such that
no agent changes its label from z −1 (mod n) to z. Therefore, at least one agent
is labeled z in C0. All of them get non-white color, i.e., blue or red, or get a
new label z+1 (mod n) before or when Tz meets all agents, which requires only
O(mn2) steps in expectation. (See the preprint [22].) Without loss of generality,
we assume that token Tz is red at this time. By Lemma 4, there is at least one red
agent labeled z. After that, the timerT of Tz becomes zero within O(nUT) steps
in expectation. (See the preprint [22].) In the next O(mn2) steps in expectation,
Tz meets a red agent labeled z, at which Tz and this agent changes their colors
to blue, and Tz resets its timerT to UT . It is well known that a token making
the random walk visits all nodes of any undirected graph within O(mn) moves
in expectation. Since a token decreases its timerT only by one every time it
moves, Tz meets all agents and makes each agent labeled z blue or pushes it to
the next label (i.e., z + 1 (mod n)) before its timerT reaches zero again from
UT = Ω(mn), with probability 1 − p for any small constant p, by Markov’s
inequality. This requires only O(mn2) steps in expectation. (See the preprint
[22].) Similarly, (i) the timerT of Tz becomes zero again in the next O(nUT)
steps, (ii) Tx meets a blue agent labeled z, say v, in the next O(mn2) steps, at
which Tx and v become red, and (iii) Tx meets all agents and pushes all agents
labeled z except for v to the next label in the next O(mn2) steps in expectation
and with probability 1 − p for any small constant p. Therefore, the number of
agents labeled z becomes one within O(mn2 + nUT) steps in expectation. After
that, no agent changes its label from z to z + 1 (mod n). Hence, the number
of agents labeled z + 1 (mod n) becomes one in the next O(mn2 + nUT) steps
in expectation by the same reason. Repeating this procedure, all agents get
mutually distinct labels (i.e., idA) within O(mn3 +n2UT) steps in expectation.
��
Proof (of Theorem 1). By Lemmas 8, 9, and 10, ΞPrank(ν,μ)(G,C0,Γ) reaches a
configuration in Srank within O(mn3d log n + n2UT) steps in expectation. By
Lemma 6, every configuration in Srank is a safe configuration for the ranking
problem. ��
Theorem 2. Let ν be any subset of N≥2 and let μ = N≥1. Given knowledge ν
and μ (= N≥1), there exists a self-stabilizing protocol that solves LE and RK in

The Power of Global Knowledge on Self-stabilizing Population Protocols 249

arbitrary graphs if and only if the agents know the exact number of agents i.e.,
Gν,μ = Gn,∗ for some n ∈ N≥2.

Proof. The theorem immediately follows from Lemma 1, Theorem 1, and the fact
that LE � RK. ��

4 Degree Recognition and Neighbor Recognition

Our goal is to prove the negative and positive propositions for DR and NR
introduced in Sect. 1. First, we prove the negative proposition.

Lemma 11. Let ν and μ be any sets such that ν ⊆ N≥2 and μ ⊆ N≥1. There
exists no self-stabilizing protocol that solves DR in all graphs in Gν,μ if Gn,m1 ∪
Gn,m2 ⊆ Gν,μ holds for some n ∈ N≥2 and some distinct m1,m2 ∈ N≥1 such that
Gn,m1 �= ∅ and Gn,m2 �= ∅.
Proof. Assume m1 < m2 without loss of generality. By definition, there must
exist two graphs G′ = (VG′ , EG′) ∈ Gn,m1 and G′′ = (VG′′ , EG′′) ∈ Gn,m2 such
that VG′ = VG′′ and EG′ ⊂ EG′′ . Then, there exists at least one agent v ∈ VG′′

such that its degree differs in G′ and G′′. Let δ′ and δ′′ be the degrees of v in
G′ and G′′, respectively. Assume for contradiction that there is a self-stabilizing
protocol P (ν, μ) that solves DR both in G′ and G′′. By definition, there must
be at least one safe configuration S of protocol P (ν, μ) on G′′ for DR. In every
execution of P (ν, μ) starting from S on G′′, agent v must always output δ′′

as its degree. The configuration S can also be a configuration on G′ because
VG′ = VG′′ . Since P (ν, μ) is self-stabilizing in G′, there must be a finite sequence
of interactions γ0, γ1, . . . , γt of G′ that put configuration S to a configuration
where v outputs δ′ as its degree. Since EG′ ⊂ EG′′ , γ0, γ1, . . . , γt is also a sequence
of interactions in G′′. This implies that this sequence changes the output of v
from δ′′ to δ′ starting from a safe configuration, a contradiction. ��

To prove the positive proposition, we give a self-stabilizing protocol Pneigh,
which solves the neighbor recognition problem (NR) in arbitrary graphs given
the knowledge of the exact number of agents and the exact number of interactable
pairs, that is, given knowledge ν and μ such that |ν| = |μ| = 1. In the rest of
this section, let n and m be the integers such that ν = {n} and μ = {m}.

The pseudocode of Pneigh is shown in Algorithm 2. Our goal is to let the agents
recognize the set of their neighbors. Each agent v stores its label in a variable
v.idA ∈ {0, 1, . . . , n − 1} and the set of the labels assigned to its neighbors in a
variable neighbors ∈ 2{0,1,...,n−1}. Each agent v outputs (v.idA, v.neighbors).

We use Prank as a sub-algorithm to assign the agents the distinct labels
0, 1, . . . , n − 1 and to let the n tokens make the random walk. Specifically, we
first execute Prank whenever two agents have an interaction (Line 1), substituting
a sufficiently large Θ(mn) value for UT . We do not update the variables used
in Prank in the other lines (Lines 2–17). Therefore, by Theorem 1, an execution
of Pneigh starting from any configuration reaches a configuration in Srank within

250 Y. Sudo et al.

Algorithm 2. Pneigh(ν, μ)
Assumption: |ν| = 1 and |μ| = 1. (Let ν = {n} and μ = {m}.)

Variables:
idA, idT ∈ {0, 1, . . . , n − 1} // Updated only by Prank

degreeT ∈ {0, 1, . . . , n}, sum ∈ {0, 1, . . . , 2m + 1}
resetE ∈ {0, 1, . . . , UE}, timerP ∈ {0, 1, . . . , UP }
neighbors, counted ∈ 2{0,1,...,n−1}

Output function πout: (idA, neighbors)

Interaction between initiator a0 and responder a1:
1: Execute Prank with substituting sufficiently large Θ(mn) value for UT .
2: a0.degreeT ↔ a1.degreeT

// Execute the random walk of two tokens with Prank

3: a0.resetE ← a1.resetE ← max(0, a0.resetE − 1, a1.resetE − 1)
4: if a0.resetE > 0 then a0.neighbors ← a1.neighbors ← ∅ endif

5: for all i ∈ {0, 1} do
6: ai.timerP ← max(0, ai.timerP − 1)
7: if ai.timerP = 0 then
8: (ai.sum, ai.counted, ai.timerP) ← (0, ∅, UP)
9: end if

10: ai.neighbors ← ai.neighbors ∪ {a1−i.idA}
11: if ai.idA = ai.idT then ai.degreeT ← |ai.neighbors| endif

12: if ai.idT /∈ ai.counted then
13: ai.sum ← min(2m + 1, ai.sum+ ai.degreeT)
14: ai.counted ← ai.counted ∪ {ai.idT }
15: end if
16: if ai.sum = 2m + 1 then ai.resetE ← UE endif
17: end for

O(mn2d log n) steps in expectation. Hence, we need to consider only an execution
after reaching a configuration in Srank. Then, we can assume that the population
always has exactly one agent labeled x and exactly one token labeled x for each
x = {0, 1, . . . , n − 1}. We denote them by Ax and Tx, respectively.

The agents compute their neighbors in a simple way: every time two agents
u and v have an interaction, u adds v.idA to u.neighbors and v adds u.idA

to v.neighbors (Line 10). However, this simple way to compute neighbors is
not enough to design a self-stabilizing protocol because we consider an arbitrary
initial configuration. Specifically, in an initial configuration, v.neighbors may
include u.idA for some u /∈ NG(v). We call such u.idA a fake label. To compute
v.neighbors correctly, in addition to the above simple mechanism, it suffices to
detect the existence of a fake label and reset the neighbors of all agents to the
empty set if a fake label is detected.

Using the knowledge μ = {m}, we achieve the detection of fake labels
with the following strategy. Each token Tx carries |Ax.neighbors| in a variable

The Power of Global Knowledge on Self-stabilizing Population Protocols 251

degreeT ∈ {0, 1, . . . , n} (Line 2). Whenever Tx meet Ax, the value of Tx.degreeT

is updated by the current value of |Ax.neighbors| (Line 11). Each agent always
tries to estimate

∑
v∈VG

|v.neighbors| using variables sum ∈ {0, 1, . . . , 2m + 1},
counted ∈ 2{0,1,...,n−1}, and timerP ∈ {0, 1, . . . , UP }, where UP is a suffi-
ciently large Θ(mnd log n) value. It uses timerP as a count-down timer to
reset sum and counted periodically. Specifically, an agent v decreases v.timerP

by one every time it has an interaction and resets v.sum, v.counted, and
v.timerP to 0, ∅, and UP , respectively, when v.timerP reaches zero (Lines 6–
9). Whenever agent v meets Tx such that x /∈ v.counted, v executes v.sum ←
min(2m + 1, v.sum + Tx.degreeT) and adds x to v.counted. (Lines 12–15) We
expect v.sum =

∑
v∈VG

|v.neighbors| when v meets all of T0, T1, . . . , Tn−1. If
v.sum reaches 2m+1, agent v concludes that at least one agent has a fake label,
i.e., u.neighbors �⊆ {w.idA | w ∈ NG(u)} for some u.

When the existence of a fake label is detected, we reset the neighborss of
all agents using a variable resetE ∈ {0, 1, . . . , UE}, where UE is a sufficiently
large Θ(n2) value. Specifically, when v.sum = 2m + 1 holds, v emits the error
signal by setting variable v.resetE to UE (Line 16). Thereafter, the error signal
is propagated to the whole population via the larger value propagation: when
two agents u and v meet, they substitute max(0, u.resetE − 1, v.resetE − 1)
for their resetEs. (Line3). Whenever an agent v receives the error signal, i.e.,
v.resetE > 0 holds, it resets its neighbors to the empty set (Line 4).

Thus, even if some agent has fake labels at the beginning of an execution,
the population eventually reaches a configuration where no agent has fake labels
after the occurrence of the following events: the existence of a fake label is
detected, the error signal propagates to the whole population, and all agents
reset their neighborss to the empty set. Thereafter, for any x ∈ {0, 1, . . . , n−1},
Tx eventually meets Ax, after which Tx.degreeT ≤ |NG(Ax)| always hold. Hence,
by the periodical reset of sum and counted, the population eventually reach a
configuration from which no agent emits the error signal. Thereafter, the popu-
lation will soon reach a configuration that satisfies v.neighbors = {u.idA | u ∈
NG(v)} for all v ∈ VG by the above simple computation of neighbors (Line 10).
Once it reaches such a configuration, no agent changes its neighbors.

Theorem 3. Given knowledge ν and μ, Pneigh(ν, μ) is a self-stabilizing protocol
that solves NR in arbitrary graphs if ν = {n} and μ = {m} for some integers n
and m. Starting from any configuration C0 on any population G = (VG, EG) ∈
Gn,m, the execution of Pneigh(ν, μ) under the uniformly random scheduler (i.e.,
ΞPneigh(ν,μ)(G,C0,Γ)) reaches a safe configuration within O(mn3d log n) steps
in expectation, where m = |EG|/2 and d is the diameter of G. Each agent uses
O(n) bits of memory space to execute Pneigh(ν, μ).

Proof. Define Lneigh(v) = {u.idA | u ∈ NG(v)} and define SnoFake as the set of
all configurations in Srank where no agent has a fake label in its neighbors, that
is, v.neighbors ⊆ Lneigh(v) holds for all v ∈ VG.

First, we show that execution Ξ = ΞPneigh(ν,μ)(G,C0,Γ) reaches a config-
uration in SnoFake within O(mn3d log n) steps in expectation. By Theorem 1,

252 Y. Sudo et al.

Ξ reaches a configuration C ′ in Srank within O(mn3d log n) steps in expec-
tation because UT = Θ(mn). We assume C ′ /∈ SnoFake because otherwise
we need not discuss anything. Interactions happen between all interactable
pairs within O(m log n) steps in expectation. Therefore, after reaching C ′,
Ξ reaches within O(m log n) steps in expectation a configuration C ′′ where
Lneigh(v) ⊆ v.neighbors for all v ∈ VG or a configuration where u.resetE > 0
for some u ∈ VG. In the former case,

∑
v∈V |v.neighbors| > 2m holds in C ′′

since at least one agent has one or more fake labels in its neighbors. There-
after, some agent v decreases its timerP to zero and resets it to UP in the next
O(mUP) = O(m2nd log n) ⊆ O(mn3d log n) steps in expectation. After that,
v meets all tokens within O(mnd log n) steps in expectation. (See the preprint
[22].) As a result, v.sum reaches 2m+1 and v emits the error signal. To conclude,
after Ξ reaches C ′, some agent emits the error signal, i.e., it substitutes UE for
its resetE . Since we set UE to a sufficiently large Θ(n2) value, the error sig-
nal is propagated to the whole population within O(mn) steps with probability
1−O(1/n). (See Lemma 5 in [19].) Every time an agent receives the error signal,
it resets its neighbors to the empty set. Therefore, Ξ reaches a configuration
in SnoFake within O(mn3d log n) steps in expectation.

After entering SnoFake, Ξ reaches within O(mnd log n) steps in expectation
a configuration where

∑
x=0,1,...,n−1 Tx.degreeT ≤ 2m holds; because every Tx

meets Ax within O(mnd) steps in expectation for every x ∈ {0, 1, . . . , n − 1}.
Similarly, all agents reset their sum and counted in the next O(mUP) ⊆
O(mn3d log n) step in expectation. Thereafter, no agent sees sum = 2m + 1,
hence no agent emits the error signal, after which the error signal disappears
from the population in the next O(UE ·m logm) = O(mn2 log n) steps in expec-
tation. Therefore, interactions happen between all interactable pairs in the next
O(m log n) steps in expectation, by which v.neighbors = Lneigh(v) holds for all
v ∈ VG. After that, no agent v changes v.neighbors, which yields that Ξ has
reached a safe configuration.

Each agent uses only O(n) bits: both variables neighbors and counted
require n bits and all other variables used in Pneigh require O(log n) bits. ��

5 Conclusion

In this paper, we clarified the solvability of the leader election problem, the
ranking problem, the degree recognition problem, and the neighbor recognition
problem by self-stabilizing population protocols with knowledge of the number
of nodes and/or the number of edges in a network. The protocols we gave in this
paper require exact knowledge on the number of agents and/or the number of
interactable pairs. It is interesting and still open whether ambiguous knowledge
such as “the number of interactable pairs is at most M ” and “the number of agents
is not a prime number” is useful to design self-stabilizing population protocols.

The Power of Global Knowledge on Self-stabilizing Population Protocols 253

References

1. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47666-6_38

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distrib. Comput. 21(3), 183–199 (2008)

4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. ACM Trans. Auton. Adapt. Syst. 3(4), 13 (2008)

5. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in popu-
lation protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N.,
van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-03850-6_4

6. Burman, J., Doty, D., Nowak, T., Severson, E.E., Xu, C.: Efficient self-stabilizing
leader election in population protocols. arXiv preprint arXiv:1907.06068 (2019)

7. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: on
space complexity of self-stabilizing leader election on a population protocol model.
Theory Comput. Syst. 50(3), 433–445 (2012)

8. Canepa, D., Potop-Butucaru, M.G.: Stabilizing leader election in population pro-
tocols (2007). http://hal.inria.fr/inria-00166632

9. Chen, H.-P., Chen, H.-L.: Self-stabilizing leader election. In: Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, pp. 53–59 (2019)

10. Cordasco, G., Gargano, L.: Space-optimal proportion consensus with population
protocols. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 384–
398. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_28

11. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun. ACM
17(11), 643–644 (1974)

12. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-
state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 395–409. Springer, Heidelberg (2006). https://doi.org/10.1007/
11945529_28

13. Gąsieniec, L., Stachowiak, G., Uznanski, P.: Almost logarithmic-time space opti-
mal leader election in population protocols. In: The 31st ACM on Symposium on
Parallelism in Algorithms and Architectures, pp. 93–102. ACM (2019)

14. Izumi, T.: On space and time complexity of loosely-stabilizing leader election. In:
Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 299–312. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25258-2_21

15. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determin-
ing majority in networks with local interactions and very small local memory.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 871–882. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43948-7_72

16. Sudo, Y., Masuzawa, T., Datta, A.K., Larmore, L.L.: The same speed timer in
population protocols. In: The 36th IEEE International Conference on Distributed
Computing Systems, pp. 252–261 (2016)

https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-319-03850-6_4
http://arxiv.org/abs/1907.06068
http://hal.inria.fr/inria-00166632
https://doi.org/10.1007/978-3-319-69084-1_28
https://doi.org/10.1007/11945529_28
https://doi.org/10.1007/11945529_28
https://doi.org/10.1007/978-3-319-25258-2_21
https://doi.org/10.1007/978-3-662-43948-7_72
https://doi.org/10.1007/978-3-662-43948-7_72

254 Y. Sudo et al.

17. Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.:
Loosely-stabilizing leader election in a population protocol model. Theor. Comput.
Sci. 444, 100–112 (2012)

18. Sudo, Y., Ooshita, F., Izumi, T., Kakugawa, H., Masuzawa, T.: Logarithmic
expected-time leader election in population protocol model. In: Ghaffari, M.,
Nesterenko, M., Tixeuil, S., Tucci, S., Yamauchi, Y. (eds.) SSS 2019. LNCS, vol.
11914, pp. 323–337. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34992-9_26

19. Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Loosely-stabilizing leader
election on arbitrary graphs in population protocols. In: Aguilera, M.K., Querzoni,
L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 339–354. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-14472-6_23

20. Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Loosely stabilizing leader
election on arbitrary graphs in population protocols without identifiers or random
numbers. IEICE Trans. Inf. Syst. 103(3), 489–499 (2020)

21. Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T., Datta, A.K., Larmore, L.L.:
Loosely-stabilizing leader election with polylogarithmic convergence time. Theor.
Comput. Sci. 806, 617–631 (2020)

22. Sudo, Y., Shibata, M., Nakamura, J., Kim, Y., Masuzawa, T.: The power
of global knowledge on self-stabilizing population protocols. arXiv preprint
arXiv:2003.07491 (2020)

https://doi.org/10.1007/978-3-030-34992-9_26
https://doi.org/10.1007/978-3-030-34992-9_26
https://doi.org/10.1007/978-3-319-14472-6_23
http://arxiv.org/abs/2003.07491

Phase Transition of a Non-linear Opinion
Dynamics with Noisy Interactions

(Extended Abstract)

Francesco d’Amore1(B), Andrea Clementi2, and Emanuele Natale1

1 Université Côte d’Azur, Inria, CNRS, I3S, Sophia Antipolis, France
{francesco.d-amore,emanuele.natale}@inria.fr

2 University of Rome Tor Vergata, Rome, Italy
clementi@mat.uniroma2.it

Abstract. In several real Multi-Agent Systems (MAS), it has been
observed that only weaker forms of metastable consensus are achieved,
in which a large majority of agents agree on some opinion while other
opinions continue to be supported by a (small) minority of agents. In this
work, we take a step towards the investigation of metastable consensus
for complex (non-linear) opinion dynamics by considering the famous
Undecided-State dynamics in the binary setting, which is known to
reach consensus exponentially faster than the Voter dynamics. We pro-
pose a simple form of uniform noise in which each message can change
to another one with probability p and we prove that the persistence of a
metastable consensus undergoes a phase transition for p = 1

6
. In detail,

below this threshold, we prove the system reaches with high probability
a metastable regime where a large majority of agents keeps supporting
the same opinion for polynomial time. Moreover, this opinion turns out
to be the initial majority opinion, whenever the initial bias is slightly
larger than its standard deviation. On the contrary, above the thresh-
old, we show that the information about the initial majority opinion is
“lost” within logarithmic time even when the initial bias is maximum.
Interestingly, using a simple coupling argument, we show the equivalence
between our noisy model above and the model where a subset of agents
behave in a stubborn way.

1 Introduction

We consider a fully-decentralized Multi-Agent Systems (for short, MAS) formed
by a set of n agents (i.e. nodes) which mutually interact by exchanging messages
over an underlying communication graph. In this setting, opinion dynamics are
mathematical models to investigate the way a fully-decentralized MAS is able
to reach some form of Consensus. Their study is a hot topic touching several
research areas such as MAS [11,18], Distributed Computing [4,16,25], Social
Networks [1,33], and System Biology [7,8]. Typical examples of opinion dynamics
are the Voter Model, the averaging rules, and the majority rules. Some of such

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 255–272, 2020.
https://doi.org/10.1007/978-3-030-54921-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_15

256 F. d’Amore et al.

dynamics share a surprising efficiency and resiliency that seem to exploit common
computational principles [4,16,25].

Within such framework, the tasks of (valid) Consensus and Majority Con-
sensus have attracted a lot of attention within different application domains
in social networks [33], in biological systems [23], passively-mobile sensor net-
works [2] and chemical reaction networks [12]. In the Consensus task, the system
is required to converge to a stable configuration where all agents supports the
same opinion and this opinion must be valid, i.e., it must be supported by at least
one agent in the initial configuration. While, in the Majority Consensus task,
starting from an initial configuration where there is some positive bias towards
one majority opinion, the system is required to converge to the configuration
where all agents support the initial majority opinion. Here, the bias of a config-
uration is defined as the difference between the number of agents supporting the
majority opinion (for short, we name this number as majority) and the number
of agents supporting the second-largest opinion.

Different opinion dynamics have been studied in a variety of settings [13,22],
and then used as subroutine to solve more complex computational tasks [6,15,35].

In the aforementioned applicative scenarios, it has been nevertheless observed
that only weaker forms of metastable consensus are achieved, in which the large
majority of agents rapidly achieves a consensus (while other opinions continue
to be supported by a small set of agents), and this setting is preserved for a
relatively-long regime. Models that have been considered to study such phe-
nomenon include MAS where: i) agents follow a linear dynamics, such as the
Voter model or the Averaging dynamics and ii) a small set of stubborn agents
are present in the system [31,32,37], or the local interactions are affected by com-
munication noise [29].

We emphasize that the Voter model has a slow (i.e. polynomial in the
number n of agents) convergence time even in a fully-connected network (i.e.
in the complete graph) and it does not guarantee a high probability to reach
consensus on the initial majority opinion, even starting from a large initial bias
(i.e. Θ(n), where n is the number of the agents of the system) [26]. On the other
hand, averaging dynamics requires agents to perform numerical operations and,
very importantly, to have a large local memory (to guarantee a good-enough
approximation of real numbers). For the reasons above, linear opinion dynamics
cannot explain fast and reliable metastable consensus phenomena observed in
some MAS [6,12,23].

The above discussion naturally leads us to investigate the behaviour of other,
non-linear dynamics in the presence of stubborn agents and/or communication
noise. Over a MAS having the n-node complete graph as the underlying graph,
we introduce a simple model of communication noise in the stochastic process
yielded by a popular dynamics, known as the Undecided-State dynamics. In
some previous papers [34], this protocol has been called the Third-State Dynam-
ics. We here prefer the term “undecided” since it well captures the role of this
additional state.

Phase Transition of an Opinion Dynamics with Noisy Interactions 257

According to this simple dynamics, the state of every agent can be either an
opinion (chosen from a finite set Σ) or the undecided state. At every discrete-
time step (i.e., round), every agent “pulls” the state of a random neighbor and
updates its state according to the following rule: if a non-undecided agent pulls
a different opinion from its current one, then it will get undecided, while in all
other cases it keeps its opinion; moreover, if the node is undecided then it will
get the state of the pulled neighbor.

This non-linear dynamics is known to compute Consensus (and Majority
Consensus) on the complete network within a logarithmic number of rounds [2,9]
and, very importantly, it is optimal in terms of local memory since it requires
just one extra state/opinion [30].

While communication noise is a common feature of real-world systems and
its effects have been thoroughly investigated in physics and information theory
[14], its study has been mostly focused on settings in which communication hap-
pens over stable links where the use of error-correcting codes is feasible since
message of large size are allowed; it has been otherwise noted that when interac-
tions among the agents are random and opportunistic and consists of very-short
messages, classical information-theoretic arguments do not carry on and new
phenomena calls for a theoretical understanding [7].

Our Contribution. In this work, we show that, under a simple model of
uniform noise, the Undecided-State dynamics exhibits an interesting phase
transition.

We consider the binary case (i.e., |Σ| = 2) together with an oblivious and
symmetric action of noise over messages: any sent message is changed upon
being received to any other value, independently and uniformly at random with
probability p (where p is any fixed positive constant smaller than 1/2).

On one hand, if p < 1/6, starting from an arbitrary configuration of the
complete network of n agents, we prove that the system with high probability1

(w.h.p., for short) reaches, within O(log n) rounds, a metastable almost con-
sensus regime where the bias towards one fixed valid opinion keeps large, i.e.
Θ(n), for at least a poly(n) number of rounds (see Theorem 3). In particular,
despite the presence of random communication noise, our result implies that the
Undecided-State dynamics is able to rapidly break the initial symmetry of
any balanced configuration and reach a metastable regime of almost consensus
(e.g., the perfectly-balanced configuration with n/2 agents having one opinion
and the other n/2 agents having the other opinion).

Importantly enough, our probabilistic analysis also shows that, for any
p < 1/6, the system is able to “compute” the task of almost Majority Con-
sensus. Indeed, in Theorem 1, starting from an arbitrary configuration with bias
Ω(

√
n log n),2 we prove that the system w.h.p. reaches, within O(log n) rounds,

1 An event E holds with high probability if a constant γ > 0 exists such that P(E) ≥
1 − (1/n)γ .

2 We remark that, when every agent chooses its initial binary opinion uniformly at
random, the standard deviation of the bias is Θ(

√
n).

258 F. d’Amore et al.

a metastable regime where the bias towards the initial majority opinion keeps
large, i.e. Θ(n), for at least a poly(n) number of rounds (see Theorem 1). For
instance, our analysis for p = 1/10 implies that the process rapidly reaches a
metastable regime where the bias keeps size larger than n/3.

On the other hand, if p > 1/6, even when the initial bias is maximum (i.e.,
when the system starts from any full-consensus configuration), after a loga-
rithmic number of rounds, the information about the initial majority opinion is
“lost”: in Theorem 2, we indeed show that the system w.h.p. enters into a regime
where the bias keeps bounded by O(

√
n log n). We also performed some com-

puter simulations that confirm our theoretical results, showing that the majority
opinion switches continuously during this regime (see Sect. 5 for further details).

Interestingly, in Subsect. 2.1 we show that our noise model is equivalent to a
noiseless setting in which stubborn agents are present in the system [37] (that is,
agents that never change their state): we thus obtain an analogous phase tran-
sition in this setting. The obtained phase transition thus separates qualitatively
the behavior of the Undecided-State dynamics from that of the Voter model
which is, to the best of our knowledge, the only opinion dynamics (with a finite
opinion set) which has been rigorously analyzed in the presence of communica-
tion noise or stubborn agents [31,37]: this hints at a more general phenomenon
for dynamics with fast convergence to some metastable consensus.

We believe this work contributes to the research endeavour of exploring the
interplay between communication noise and stochastic interaction pattern in
MAS. As we will discuss in the Related Work, despite the fact that these two
characteristics are quite common in real-world MAS, their combined effect is
still far from being understood and poses novel mathematical challenges. Within
such framework, we have identified and rigorously analyzed a phase transition
behaviour of the famous Undecided-State process in the presence of commu-
nication noise (or, of stubborn agents) on the complete graph.

Related Work. The Undecided-State dynamics has been originally studied
as an efficient majority-consensus protocol by [2] and independently by [5] for the
binary case (i.e. with two initial input values). They proved that w.h.p., within
a logarithmic number of rounds, all agents support the initial majority opinion.
Some works have then extended the analysis of the Undecided-State dynamics
to non-complete topologies. In the Poisson-clock model (formally equivalent to
the Population Protocol model), [20] derive an upper bound on the expected
convergence time of the dynamics that holds for arbitrary connected graphs,
which is based on the location of eigenvalues of some contact rate matrices. They
also instantiate their bound for particular network topologies. Successively, [30]
provided an analysis when the initial states of agents are assigned independently
at random, and they also derive “bad” initial configurations on certain graph
topologies such that the initial minority opinion eventually becomes the majority
one. As for the use of Undecided-State as a generic consensus protocol, [10]
recently proved that, in the synchronous uniform PULL model in which all agents

Phase Transition of an Opinion Dynamics with Noisy Interactions 259

update their state in parallel by observing the state of a random other node the
convergence time of the Undecided-State dynamics is w.h.p. logarithmic.

Notably, communication noise in random-interacting MAS appears to be a
neglected area of investigation [11,29]. Such shortage of studies contrasts with
the vast literature on communication noise over stable networks.3 More recently,
in [23], the authors consider a settings in which agents interact uniformly at
random by exchanged binary messages which are subject to noise. In detail, the
authors provide simple and efficient protocols to solve the classical distributed-
computing problems of Broadcast (a.k.a Rumor Spreading) and Majority Con-
sensus, in the Uniform-PUSH model with binary messages, in which each mes-
sage can be changed upon being received with probability 1/2 − ε. Their results
have been generalized to the Majority Consensus Problem for the multi-valued
case in [24]. When the noise is constant, [23] proves that in their noisy version of
the Uniform-PUSH model, the Broadcast Problem can be solved in logarithmic
time. Rather surprisingly, [7] and [9] prove that solving the Broadcast Problem in
the Uniform-PULL model takes linear time, while the time to perform Majority
Consensus remains logarithmic in both models.

The fact that real-world systems such as social networks fail to converge
to consensus has been extensively studied in various disciplines; formal models
developed to investigate the phenomenon include the multiple-state Axelrod
model [3] and the bounded-compromise model by Weisbuch et al. [36]; the failure
to reach consensus in these models is due to the absence of interaction among
agent opinions which are “too far apart”. A different perspective is offered by
models which investigate the effect of stubborn agents (also known as zealotry in
the literature), in which some stubborn/zealot agents never update their opinion.

Finally, several works have been devoted to study such effect under linear
models of opinion dynamics [31,32,37].

2 Preliminaries

We study the discrete-time, parallel version of the Undecided-State dynamics
on the complete graph in the binary setting [10]. In detail, there is an additional
state/opinion, i.e. the undecided state, besides the two possible opinions (say,
opinion Alpha and opinion Beta) an agent can support, and, in the absence of
noise, the updating rule works as follows: at every round t ≥ 0, t ∈ N, each
agent u chooses a neighbor v (or, possibly, itself) independently and uniformly
at random and, at the next round, it gets a new opinion according to the rule
given in Table 1.4 The definition of noise we consider is the following.

Definition 1 (Definition of noise). Let p be a real number in the interval
(0, 1/2]. When an agent u chooses a neighbor v and looks at (pulls) its opinion,

3 For stable networks, we here mean a network where communication between agents
can be modeled as a classical channel the agents can use to exchange messages at
will [14].

4 Notice that this dynamics requires no labeling of the agents, i.e., the network can
be anonymous.

260 F. d’Amore et al.

Table 1. The update rule of the USD.

u \ v Undecided Alpha Beta

Undecided Undecided Alpha Beta

Alpha Alpha Alpha Undecided

Beta Beta Undecided Beta

it sees v’s opinion with probability 1 − 2p, and, with probability p, it sees one of
the two other opinions.

For instance, if v supports opinion Alpha, then u sees Alpha with probability
1 − 2p, it sees Beta with probability p, and it sees the undecided state with
probability p. In this work, the terms agent and node are interchangeable.

Notation, Characterization, and Expected Values. Let us name C the set
of all possible configurations; notice that, since the graph is complete and its nodes
are anonymous, a configuration x ∈ C is uniquely determined by giving the
number of Alpha nodes, a(x) and the number of Beta nodes, b(x). Accordingly
to this notation, we call q(x) the number of undecided nodes in configuration x,
and s(x) = a(x) − b(x) the bias of the configuration x. When the configuration
is clear from the context, we will omit x and write just a, b, q, and s instead of
a(x), b(x), q(x), and s(x). The Undecided-State dynamics defines a finite-state
non reversible Markov chain {Xt}t≥0 with state space C and no absorbing states.

The stochastic process yielded by the Undecided-State dynamics, starting
from a given configuration, will be denoted asUndecided-State process. Once a
configuration x at a round t ≥ 0 is fixed, i.e. Xt = xt, we use the capital letters A,
B, Q, and S to refer to random variables a(Xt+1), b(Xt+1), q(Xt+1), and s(Xt+1).
Notice that we consider the bias as a(x) − b(x) instead of |a(x) − b(x)| since the
expectation of |A − B| is much more difficult to evaluate than that of A − B.

The expected values of the above key random variables can be written as
follows:

E
[
A

∣
∣ x

]
=

a

n
(a + 2q)(1 − 2p) + [a(a + b) + (a + q)(b + q)]

p

n
, (1)

E
[
B

∣
∣ x

]
=

b

n
(b + 2q)(1 − 2p) + [b(a + b) + (a + q)(b + q)]

p

n
, (2)

E
[
S

∣
∣ x

]
= s

(
1 − p + (1 − 3p)

q

n

)
, (3)

E
[
Q

∣
∣ x

]
= pn +

1 − 3p

2n

[
2q2 + (n − q)2 − s2

]
. (4)

2.1 Oblivious Noise and Stubborn Agents

We can now consider the following more general message-oblivious model of
noise. We say that the communication is affected by oblivious noise if the value
of any sent message changes according to the following scheme:

Phase Transition of an Opinion Dynamics with Noisy Interactions 261

(i) with probability 1 − pnoise independent from the value of the sent message,
the message remains unchanged;

(ii) otherwise, the noise acts on the message and it changes its value according to
a fixed distribution p = p1, . . . , pm over the possible message values 1, . . . , m.

In other words, according to the previous definition of noise (Definition 1), the
probability that the noise changes any message to message i is pnoise · pi. It is
immediate to verify that the definition of noise adopted in Theorems 1 and 2
corresponds to the aforementioned model of oblivious noise in the special case
m = 3, pnoise = p, and pAlpha = pBeta = pundecided = 1

3 .
Recalling that an agent is said to be stubborn if it never updates its state

[37], we now observe that the above noise model is in fact equivalent to consider
the behavior of the same dynamics in a noiseless setting with stubborn agents.

Lemma 1. Consider the Undecided-State dynamics on the complete graph
in the binary setting. The following two processes are equivalent:

(a) the Undecided-State process with n agents in the presence of oblivious
noise with parameters pnoise and p = (pAlpha, pBeta, pundecided);

(b) the Undecided-State process with n agents and nstub = pnoise

1−pnoise
n addi-

tional stubborn agents present in the system, of which: nstub · pAlpha are
stubborn agents supporting opinion Alpha, nstub · pBeta are stubborn agents
supporting opinion Beta, and nstub ·pundecided are stubborn agents supporting
the undecided state.

Proof of Lemma 1. The equivalence between the two processes is showed through
a coupling. Consider the complete graph of n nodes, Kn, over which the former
process runs. Consider also the complete graph Kn+nstub

, which contains a sub-
graph isomorphic to Kn we denote as K̃n. Let H = Kn+nstub

\ K̃n. The nodes
of H are such that nstub · pAlpha are stubborn agents supporting opinion Alpha,
nstub·pBeta are stubborn agents supporting opinion Beta, and nstub·pundecided are
stubborn agents supporting the undecided state. Observe that pAlpha + pBeta +
pundecided = 1, so this partition of Kn+nstub

is well defined.
The Undecided-State dynamics behaves in exactly the same way over

Kn+nstub
, with the exception that the stubborn agents never change their opinion

and that there is no noise perturbing communications between agents. Let C and
C̃ be the set of all possible configurations of, respectively, Kn and Kn+nstub

. Let
φ : Kn → K̃n be any bijective function. The coupling is a bijection f : C → C̃
such that, for any node v ∈ Kn in the configuration x ∈ C, the corresponding
node φ(v) ∈ K̃n in the configuration f(c) ∈ C̃ supports v’s opinion. Consider the
two resulting Markov processes {Xt}t≥0 over Kn and {X′

t}t≥0 over Kn+nstub
,

denoting the opinion configuration at time t in Kn and in Kn+nstub
, respectively.

It is easy to see that the two transition matrices are exactly the same, namely
the probability to go from configuration c ∈ C to configuration c′ ∈ C for Xt is
the same as that to go from configuration f(c) ∈ C̃ to configuration f(c′) ∈ C̃
for X′

t.

262 F. d’Amore et al.

Indeed, in the former model (a), the probability an agent pulls opinion j ∈
Alpha,Beta, undecided at any given round is

(1 − pnoise)
cj

n
+ pnoise · pj ,

where cj is the size of the community of agents supporting opinion j; in the
model defined in (b), the probability a non-stubborn agent pulls opinion j at
any given round is

cj + nstub · pj

n + nstub
=

cj + pnoise

1−pnoise
n · pj

n + pnoise

1−pnoise
n

= (1 − pnoise) · cj

n
+ pnoise · pj .

��
Basically, this equivalence implies that any result we state for the process

defined in (a) has an analogous statement for the process defined in (b).

Probabilistic Tools. Our analysis makes use of the following probabilistic
results. The first one is the additive form of the well-known Chernoff bound (for
an overview on the Chernoff bounds see [21] or [19]).

Lemma 2 (Additive forms of Chernoff bounds). Let X1,X2, . . . , Xn be
independent {0, 1} random variables. Let X =

∑n
i=1 Xi and μ = E[X]. Then:

(i) for any 0 < λ < n and μ ≤ μ+ ≤ n, it holds that

P
(
X ≥ μ+ + λ

) ≤ e− 2
n λ2

, (5)

(ii) for any 0 < λ < μ− and 0 ≤ μ− ≤ μ, it holds that

P
(
X ≤ μ− − λ

) ≤ e− 2
n λ2

. (6)

The next standard result states that the intersection of some polynomial
number of events, each of them holding w.h.p., is still an event which holds
w.h.p.

Lemma 3 Consider any family of events {ξi}i∈I with |I| ≤ nλ, for some λ > 0.
Suppose that each event ξi holds with probability at least 1−nη, with η > λ. Then,
the intersection ∩i∈Iξi holds w.h.p.

Proof of Lemma 3. By the union bound, Pr(∩i∈Iξi) = 1 − Pr(∪i∈I ξ̄i) ≥ 1 −∑
i∈I n−η = 1 − nλ−η ≥ 1 − n−δ, where ξ̄i denotes the negation of ξi and

δ = η−λ
2 . ��

Finally, we will use the well-known Berry-Eseen theorem. The Berry-Eseen
theorem is well treated in [28], and it gives an estimation on “how far” is the
distribution of the normalized sum of i.i.d. random variables from the standard
normal distribution.

Phase Transition of an Opinion Dynamics with Noisy Interactions 263

Lemma 4 (Berry-Eseen). Let X1, . . . , Xn be n i.i.d. (either discrete or
continuous) random variables with zero mean, variance σ2 > 0, and finite
third moment. Let Z the standard normal random variable, with zero mean
and variance equal to 1. Let Fn(x) be the cumulative function of Sn

σ
√

n
, where

Sn =
∑n

i=1 Xi, and Φ(x) that of Z. Then, there exists a positive constant C > 0
such that, for each n ≥ 1, supx∈R

|Fn(x) − Φ(x)| ≤ C/
√

n.

Remark. Due to lack of space, most of the technical proofs will be omitted,
while they are available in the full version of the paper [17].

3 Process Analysis for Biased Initial Configurations

In this section, we analyze the Undecided-State process when the system
starts from biased configurations. The following two theorems show the phase
transition exhibited by this process. We remind that our notion of noise is that
of Definition 1.

Theorem 1 (Almost Majority Consensus). Let x be any initial config-
uration having bias s(x) ≥ γ

√
n log n for some constant γ > 0, and let

ε ∈ (0, 1/6) be some absolute constant. If p = 1/6 − ε is the noise probabil-
ity, then the Undecided-State process reaches a configuration y having bias
s(y) ∈ Δ =

[
2
√

ε
1+6εn,

(
1 − 2

(
1−6ε
12

)3)
n
]
within O(log n) rounds, w.h.p. More-

over, starting from y, the Undecided-State process enters a (metastable)
phase of length Ω

(
nλ

)
rounds (for some constant λ > 0)5 where the bias remains

in the range Δ, w.h.p.

Observe that if the theorem is true, then it also holds analogously for the
symmetrical case in which s(x) ≤ −γ

√
n log n.

Theorem 2 (Victory of Noise). Let p = 1/6 + ε be the noise probabil-
ity for some absolute constant ε ∈ (0, 1/3]. Assume the system starts from
any configuration x with |s(x)| ≥ γ

√
n log n, for some constant γ > 0. Then,

the Undecided-State process reaches a configuration y having bias |s(y)| =
O(

√
n log n) in O(log n) rounds, w.h.p. Furthermore, starting from such a con-

figuration, the Undecided-State process enters a (metastable) phase of length
Ω

(
nλ′

)
rounds (for some constant λ′ > 0) where the absolute value of the bias

keeps bounded by O(
√

n log n), w.h.p.

The next subsection is devoted to the proof of Theorem 1, while we refer to
the full version for the proof of Theorem2. We here just remark that the adopted
arguments in the two proofs are similar.

Let us now consider the equivalent model with stubborn agents according
to Lemma 1, in which pnoise = 3p and pAlpha = pBeta = pundecided = 1

3 . We

5 The constant λ depends only on the values of ε and γ. The same holds for the
constant λ′ in Theorem 2.

264 F. d’Amore et al.

thus have nstub = 3p
1−3pn additional stubborn nodes, of which nstub · 1

3 = p
1−3pn

support opinion Alpha, nstub · 1
3 = p

1−3pn opinion Beta, and nstub · 1
3 = p

1−3pn
are undecided. On this new graph of n+nstub nodes, let the Undecided-State
dynamics run and call the resulting process the stub process. The next result
is an immediate corollary of the two previous theorems.

Corollary 1. Let 1
2 > p > 0 be a constant, and let the stub process start

from any configuration having bias s ≥ γ
√

n log n for some constant γ > 0. If
p < 1

6 , then, in O(log n) rounds, the stub process enters a metastable phase of
almost consensus of length Ω

(
nλ

)
for some constant λ > 0, in which the bias is

Θ(n), w.h.p. If p ∈ (16 , 1
2], then, in O(log n) rounds, the stub process enters a

metastable phase of length Ω
(
nλ′

)
for some constant λ′ > 0 where the absolute

value of the bias keeps bounded by O(
√

n log n), w.h.p.

Proof of Theorem 1. Informally, while the analysis is technically involved,
it can be appreciated from it that the phase transition phenomenon at hand
relies ultimately on the exponential drift of the Undecided-State towards the
majority opinion in the absence of noise: as long as the noise is kept within a
certain threshold, the dynamics manages to quickly amplify and sustain the bias
towards the majority opinion; as soon as the noise level reaches the threshold,
the expected increase of the majority bias abruptly decreases below the standard
deviation of the process and the ability of the dynamics to preserves a signal
towards the initial majority rapidly vanishes.

We now proceed with the formal analysis. Wlog, in the sequel, for a given
starting configuration x, we will assume a(x) ≥ b(x). Indeed, as it will be clear
from the results, if s(x) ≥ γ

√
n log n, then the plurality opinion does not change

for Ω(nλ) rounds, w.h.p., and the argument for the case b(x) > a(x) is symmet-
ric. First notice that, for any fixed ε ∈ (0, 1/6) and p = 1/6 − ε, Eqs. (3) and (4)
become

E
[
S

∣
∣ x

]
= s

(
5
6

+ ε +
1
2
(1 + 6ε)

q

n

)
, (7)

E
[
Q

∣
∣ x

]
=

3
4

(
1 + 6ε

n

)
q2 − 1 + 6ε

2
q +

5 + 6ε
12

n − 1 + 6ε

n

(s

2

)2

. (8)

The key-point to prove the first claim of the theorem is to show that, if the
bias of the configuration is less than βn (for some suitable constant β), and
the number of undecided nodes is some constant factor of n, then the bias at
the next round increases by a constant factor, w.h.p. At the same time, as long
as the bias is below βn, the number of undecided nodes in the next round is
sufficiently large, w.h.p.

Lemma 5. Let x be a configuration such that q ≥ 1−4ε
3(1+6ε)n and s ≥ γ

√
n log n

for some constant γ > 0. Then, in the next round, S ≥ s
(
1 + ε

6

)
, w.h.p.

Phase Transition of an Opinion Dynamics with Noisy Interactions 265

Proof of Lemma 5. We first notice that Eq. (7) implies E
[
S

∣
∣ x

] ≥ s (1 + ε/3).
Then, consider the events

E1 =
{

A ≤ E [A | x] − ε

12
γ
√

n log n
}

and E2 =
{

B ≥ E [B | x] +
ε

12
γ
√

n log n
}

For the additive form of Chernoff bound (Lemma2), it holds that

P
(
E1

∣
∣ x

) ≤ e− 2n log n
144n = n− 1

77 and P
(
E2

∣
∣ x

) ≤ e− 2n log n
144n = n− 1

77 .

It follows that

P
(
S ≥ s

(
1 + ε

6

) | x)
= P

(
S ≥ s

(
1 + ε

3

) − ε
6s | x)

≥ P
(
S ≥ E [S | x] − ε

6γ
√

n log n | x)

= P
(
A − B ≥ E [A − B | x] − 2 ε

12γ
√

n log n | x) ≥ P
(
EC

1 ∩ EC
2

∣
∣ x

)

= P
(
EC

1

∣
∣ x

)
+ P

(
EC

2

∣
∣ x

) − P
(
EC

1 ∪ EC
2

∣
∣ x

) ≥ 1 − 2n− 1
77 ,

where in the last inequality we bounded the probability of the union with 1. ��

We now fix β = 2
√
3ε

1+6ε and show the following bound.

Lemma 6. Let x be a configuration such that s ≤ βn. Then, in the next round,
Q ≥ 1−4ε

3(1+6ε)n, w.h.p.

Proof of Lemma 6. Since Eq. (8) has its minimum in q̄ = n
3 ,

E
[
Q

∣
∣ x

] ≥ (1 + 6ε)
n

12
− (1 + 6ε)

n

6
+ (5 + 6ε)

n

12
− (1 + 6ε)

(
β

2

)2

n

=
n

12

(
1 + 6ε − 2 − 12ε + 5 + 6ε − 36ε

1 + 6ε

)
=

1 − 3ε

3(1 + 6ε)
n.

Hence, we can apply the additive form of Chernoff bound (Lemma2), and get
Q ≥ 1−4ε

3(1+6ε)n, w.h.p. (actually, with probability 1 − exp(Θ(n))). Formally,

P

(
Q ≤ 1−4ε

3(1+6ε)n | x
)

= P

(
Q ≤ 1−3ε

3(1+6ε)n − ε
3(1+6ε)n | x

)

≤ P

(
Q ≤ E [Q | x] − ε

3(1+6ε)n | x
)

≤ e
− 2

n
ε2

9(1+6ε)2
n2

= e
− 2ε2

9(1+6ε)2
n
. ��

The two lemmas above ensure that the system eventually reaches a config-
uration y with bias s(y) > βn within O(log n) rounds, w.h.p. (see the proof of
Theorem 1). We now consider configurations in which s > βn and derive a useful
bound on the possible decrease of s.

Lemma 7. Let x be any configuration such that s ≥ γ
√

n log n for some con-
stant γ > 0. Then, in the next round, it holds that S ≥ s

(
5
6 + ε

2

)
w.h.p.

266 F. d’Amore et al.

Proof of Lemma 7. Observe that Eq. (7) implies E
[
S

∣
∣ x

] ≥ s (5/6 + ε). By the
additive form of Chernoff bound and the union bound (as we did in the proof of
Lemma 5), we get S ≥ s

(
5
6 + ε

2

)
, w.h.p. ��

Lemma 7 is used to show the metastable phase of almost consensus, which
lasts for a polynomial number of rounds and in which the bias keeps lower
bounded by 2

√
ε

1+6εn (see the proof of Theorem 1). The next two lemmas provide
an upper bound on the bias during this phase.

Lemma 8. Let x be any configuration. Then, in the next round, Q ≥ n
12 (1−6ε),

w.h.p.

Proof of Lemma 8. From Eq. (8)

E
[
Q

∣
∣ x

] ≥ 3
4

(
1 + 6ε

n

)
q2 − 1 + 6ε

2
q +

5 + 6ε
12

n − 1 + 6ε
n

(
n − q

2

)2

≥ 1
2

(
1 + 6ε

n

)
q2 +

1 − 6ε

6
n ≥ 1 − 6ε

6
n,

where we used s ≤ n − q. For the additive form of Chernoff bound (Lemma2),
we get Q ≥ 1−6ε

12 n, w.h.p. ��
Lemma 9. Let x be a configuration with q ≥ n

12 (1 − 6ε). Then, in the next
round, B ≥ (

1−6ε
12

)3
n, w.h.p.

Proof of Lemma 9. From the last term of Eq. (2), we have

E
[
B

∣
∣ x

] ≥ 1
6

(
1 − 6ε

n

)
(
q2

) ≥ n

6 · 122
(1 − 6ε)3.

The additive form of Chernoff bound (Lemma 2) implies that B ≥ (
1−6ε
12

)3
n,

w.h.p. ��
Proof of Theorem 1. Let x be the initial configuration. We now prove that the
bias keeps upper bounded by the value

(
1 − 2[(1 − 6ε)/12]3

)
n. Indeed, Lemma 8

ensures that the number of undecided nodes keeps at least n
12 (1 − 6ε), w.h.p.

Thus, applying Lemmas 3 and 9, we get that b(Xt) ≥ [(1−6ε)/12]3n, w.h.p., for
a polynomial number of rounds .

As for the lower bound of the bias, we distinguish two initial cases.

Case s(x) ≥ βn. From Lemma 7, we know that as long as the bias is of mag-
nitude Ω(

√
n log n), then it cannot decrease too fast w.h.p., namely s(Xt+1) ≥

s(Xt)(5/6 + ε/2), w.h.p. Notice that

(
5
6

+
ε

2

)2

· βn ≥ 2
√

ε

1 + 6ε
n,

Phase Transition of an Opinion Dynamics with Noisy Interactions 267

which means that, if at some round t the bias goes below the value βn, then
it remains at least 2

√
ε

1+6εn and it will not decrease below that value for at least
another round, w.h.p. Then, by Lemma6 we know that at round t+1 the number
of undecided nodes is at least 1−4ε

3(1+6ε)n, w.h.p., which means that the bias starts
increasing again each round due to Lemma 5, w.h.p., as long as it is still below βn.
Indeed, the number of undecided nodes keeps greater than 1−4ε

3(1+6ε)n as long as the
bias is below βn, w.h.p. (Lemma 6). This phase, in which the bias keeps greater
than 2

√
ε

1+6εn, lasts for a polynomial number of rounds, w.h.p. (see Lemma3);

Case γ
√

n log n ≤ s(x) < βn. Thanks to Lemma 7, in the next round, the bias is
greater than γ′√n log n, w.h.p., while the number of undecided nodes gets greater
than 1−4ε

3(1+6ε)n, w.h.p. (Lemma 6). Then, Lemmas 5 and 6 guarantee that, within
the next O (log n) rounds, the bias reaches the value βn, w.h.p. (Lemma 3), and
so the process turns to be in the first Case.

We finally remark that our analysis above shows that the polynomial length
of the metastable phase, i.e. nλ, has the exponent λ that (only) depends on the
(constant) parameters γ and ε of the considered process. ��

4 Symmetry Breaking from Balanced Configurations

In this section, we consider the Undecided-State process starting from arbi-
trary initial configurations: in particular, from configurations having no bias.
Interestingly enough, we show a transition phase similar to that proved in the
previous section. Informally, the next theorem states that when p < 1/6, the
Undecided-State process is able to break the symmetry of any perfectly-
balanced initial configuration and to compute almost consensus within O(log n)
rounds, w.h.p.

Theorem 3. Let x be any initial configuration, and let ε ∈ (0, 1/6) be some
absolute constant. If p = 1/6 − ε is the noise probability, then the Undecided-
State process reaches a configuration y having bias s toward some opin-
ion j ∈ {Alpha,Beta} such that |s(y)| ∈ Δ =

[
2
√

ε
1+6εn,

(
1 − 2

(
1−6ε
12

)3)
n
]

within O(log n) rounds, w.h.p. Moreover, once reached configuration y, the
Undecided-State process enters a (metastable) phase of length Ω(nλ) rounds
(for some constant λ > 0) where the majority opinion is j and the bias keeps
within the range Δ, w.h.p.

Outline of Proof of Theorem. 3 If the initial configuration x has bias s =
Ω(

√
n log n) then the claim of the theorem is equivalent to that of Theorem1,

so we are done. Hence, we next assume the initial bias s be o(
√

n log n): for this
case, our proof proceeds along the following main steps.

Step I. Whenever the bias s is small, i.e. o(n), we prove that, within the next
O(log n) rounds, the number of undecided nodes turns out to keep always in a
suitable linear range: roughly speaking, we get that this number lies in (n/3, n/2],
w.h.p.

268 F. d’Amore et al.

Step II. Whenever s is very small, i.e. s = o(
√

n), there is no effective drift
towards any opinion. However, we can prove that, thanks to Step I, the random
variable S, representing the bias in the next round, has high variance, i.e. Θ(n).
The latter holds since S can be written as a suitable sum whose addends include
some random variables having binomial distribution of expectation 0: so, we
can apply the Berry-Essen Theorem (Lemma 4 in the preliminaries) to get a
lower bound on the variance of S. Then, thanks to this large variance, standard
arguments for the standard deviation imply that, in this parameter range, there
is a positive constant probability that S will get some value of magnitude Ω(

√
n).

Not surprisingly, in this phase, we find out that the variance of S is not decreased
by the communication noise. We can thus claim that the process, at every round,
has positive constant probability to reach a configuration having bias s = ω(

√
n)

and q ∈ (n/3, n/2]. Then, after O(log n) rounds, this event will happen w.h.p.

Step III. Once the process reaches a configuration with s = ω(
√

n) and
q ∈ (n/3, n/2], we then prove that the expected bias increases by a constant
factor (which depends on ε). Observe that we cannot use here the same round-
by-round concentration argument that works for bias over

√
n log n (this is in

fact the minimal magnitude required to apply the Chernoff’s bounds [21]). We
instead exploit a useful general tool [10], which bounds the stopping time of
some class of Markov chains having rather mild conditions on the drift towards
their absorbing states. This tool in fact allows us to consider the two phases
described, respectively, in Step II and Step III as a unique symmetry-breaking
phase of the process. Our final technical contribution here is to show that the
conditions required to apply this tool hold whenever the communication noise
parameter is such that p ∈ (0, 1/6). This allows us to prove that, within O(log n)
rounds, the process reaches a configuration with bias s = Ω(

√
n log n), w.h.p. ��

Large Communication Noise (The Case p > 1/6 + ε). When p > 1/6 + ε,
Theorem 2 a fortiori holds when the initial bias is small, i.e. s = o(

√
n log n): thus,

we get that, in this case, the system enters into a long regime of non consensus,
starting from any initial configuration. Then, by combining the results for biased
configurations in Sect. 3 with those in this section, we can observe the phase
transition of the Undecided-State process starting from any possible initial
configuration.

Theorem 4. Let x be any initial configuration, and let ε ∈ (0, 1/3] be some
absolute constant. If p = 1/6 + ε is the noise probability, then the Undecided-
State process reaches a configuration y having bias |s(y)| = O(

√
n log n) within

O(log n) rounds, w.h.p. Furthermore, starting from such a configuration, the
Undecided-State process enters a (metastable) phase of length Ω

(
nλ′

)
rounds

(for some constant λ′ > 0) where the absolute value of the bias keeps bounded by
O(

√
n log n), w.h.p.pg

Phase Transition of an Opinion Dynamics with Noisy Interactions 269

Stubborn Agents. We conclude this section by observing that the equivalence
result shown in Lemma 1 holds independently of the choices of the noise param-
eter p ∈ (0, 1/2], and of the initial bias: the phase transition of the Undecided-
State process in the presence of stubborn agents thus holds even in the case of
unbiased configurations.

Corollary 2. Let 1
2 > p > 0 be a constant, and let the stub process start

from any initial configuration. If p < 1
6 , then, in O(log n) rounds, the stub

process enters a metastable phase of almost consensus towards some opinion
j ∈ {Alpha,Beta} of length Ω

(
nλ

)
for some constant λ > 0, in which the

absolute value of the bias is Θ(n), w.h.p. If p ∈ (16 , 1
2], then, in O(log n) rounds,

the stub process enters a metastable phase of length Ω
(
nλ′

)
for some constant

λ′ > 0 where the absolute value of the bias keeps bounded by O(
√

n log n), w.h.p.

5 Simulations

We made computer simulations with values of the input size n ranging from 210

to 217, and for noise probabilities of p = 1/12, p = 1/8, p = 1/7, and p = 1/5.
Besides confirming the phase transition predicted by our theoretical analysis, the
outcomes show this behaviour emerges even for reasonable sizes (i.e. n) of the
system. Indeed, we made the Undecided-State dynamics run for 400 rounds
for the above values of p. In the first three settings of p, we started from complete
balanced configurations (i.e. when both opinions are supported by, respectively,
n
2 agents) we found a fast convergence to the meta-stable regime of almost con-
sensus, which then did not break for all the rest of the simulation. Furthermore,
we have noticed that the symmetry is always broken when the bias is “roughly”
10

√
n log n. As for the case p = 1/5, we started from a configuration of com-

plete consensus and we observed that, within a short time, the system looses any
information on the majority opinion (say, the bias becomes less than 10

√
n log n)

Table 2. The left-hand table shows the average time to reach a meta-stable almost-
consensus phase, while the right-hand table shows the average time the bias goes below
10

√
n log n, and the number of switches.

Size n
Average times

Size n
p = 1/5

p = 1/12 p = 1/8 p = 1/7 Average time Number of switches
210 24 Failed Failed 210 1 39
211 24 39 Failed 211 4 42
212 28 41 Failed 212 7 42
213 27 53 Failed 213 10 37
214 32 52 77 214 14 38
215 32 54 88 215 18 38
216 36 57 96 216 22 44
217 39 68 103 217 27 39

270 F. d’Amore et al.

and it keeps this meta-stable phase with many switches of the majority opinion.
In the left-hand part of Table 2, we can see the average time (computed over
100 trials and approximated to the closest integer) in which the system enters
the predicted meta-stable phase of almost consensus for any value of p = 1/12,
p = 1/8, and p = 1/7, for different input sizes. We also see that, when p gets
close to 1/6, the emergent behaviour is observed only for large values of n and
some of the experiments fail. In the right-hand part of Table 2, we see the average
times in which the bias of the system goes below 10

√
n log n for different input

sizes, and the corresponding number of switches of majority opinion during the
remaining time.

6 Conclusions

While our mathematical analysis for the Undecided-State dynamics does not
directly apply to other opinion dynamics, it suggests that a general phase-
transition phenomenon may hold for a large class of dynamics characterized by
an exponential drift towards consensus configurations. Our work thus naturally
poses the general question of whether it is possible to provide a characteriza-
tion of opinion dynamics with stochastic interactions, in terms of their critical
behavior with respect to uniform communication noise.

As for the specific mathematical questions that follow from our results, our
assumption of a complete topology as underlying graph is, for several real MAS, a
rather strong condition. However, two remarks on this issue follow. On one hand,
we observe that, according to the adopted communication model, at every round,
every agent can pull information from just one other agent: the dynamic com-
munication pattern is thus random and sparse. This setting may model oppor-
tunistic MAS where mobile agents use to meet randomly, at a relatively-high
rate. On the other hand, we believe that a similar transition phase does hold
even for sparse topologies having good expansion/conductance [27]: this is an
interesting question left open by this work.

References

1. Acemoglu, D., Como, G., Fagnani, F., Ozdaglar, A.E.: Opinion fluctuations and
disagreement in social networks. Math. Oper. Res. 38(1), 1–27 (2013)

2. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

3. Axelrod, R.: The dissemination of culture: a model with local convergence and
global polarization. J. Conflict Resolut. 41(2), 203–226 (1997)

4. Becchetti, L., Clementi, A.E.F., Natale, E.: Consensus dynamics: an overview.
SIGACT News 51(1), 58–104 (2020). https://doi.org/10.1145/3388392.3388403

5. Benezit, F., Thiran, P., Vetterli, M.: Interval consensus: from quantized gossip to
voting. In: ICASSP 2009, pp. 3661–3664 (2009)

6. Boczkowski, L., Korman, A., Natale, E.: Minimizing message size in stochastic
communication patterns: fast self-stabilizing protocols with 3 bits. Distrib. Com-
put. 32, 173–191 (2018)

https://doi.org/10.1145/3388392.3388403

Phase Transition of an Opinion Dynamics with Noisy Interactions 271

7. Boczkowski, L., Natale, E., Feinerman, O., Korman, A.: Limits on reliable infor-
mation flows through stochastic populations. PLoS Comput. Biol. 14(6), e1006195
(2018)

8. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2, 656 (2012)

9. Clementi, A., Gualà, L., Natale, E., Pasquale, F., Scornavacca, G., Trevisan, L.:
Consensus needs broadcast in noiseless models but can be exponentially easier in
the presence of noise. Report, CNRS (2018)

10. Clementi, A.E.F., Ghaffari, M., Gualà, L., Natale, E., Pasquale, F., Scornavacca,
G.: A tight analysis of the parallel undecided-state dynamics with two colors. In:
MFCS 2018, pp. 28:1–28:15 (2018)

11. Coates, A., Han, L., Kleerekoper, A.: A unified framework for opinion dynamics.
In: AAMAS 2018, pp. 1079–1086 (2018)

12. Condon, A., Hajiaghayi, M., Kirkpatrick, D., Maňuch, J.: Approximate majority
analyses using tri-molecular chemical reaction networks. Nat. Comput. 19(1), 249–
270 (2019). https://doi.org/10.1007/s11047-019-09756-4

13. Cooper, C., Radzik, T., Rivera, N., Shiraga, T.: Fast plurality consensus in regular
expanders. In: DISC 2017. LIPIcs, vol. 91, pp. 13:1–13:16 (2017)

14. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

15. Cruciani, E., Natale, E., Nusser, A., Scornavacca, G.: Phase transition of the 2-
choices dynamics on core-periphery networks. In: AAMAS 2018, pp. 777–785 (2018)

16. Cruciani, E., Natale, E., Scornavacca, G.: Distributed community detection via
metastability of the 2-choices dynamics. In: AAAI 2019, Honolulu, Hawaii, United
States, January 2019

17. d’Amore, F., Clementi, A., Natale, E.: Phase transition of a non-linear opinion
dynamics with noisy interactions. Technical report (2020). https://hal.archives-
ouvertes.fr/hal-02487650

18. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among inter-
acting agents. Adv. Complex Syst. 03(01n04), 87–98 (2000)

19. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
CoRR abs/1801.06733 (2018)

20. Draief, M., Vojnovic, M.: Convergence speed of binary interval consensus. SIAM
J. Control Optim. 50(3), 1087–1109 (2012)

21. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, Cambridge (2009)

22. Natale, E.: On the computational power of simple dynamics. Ph.D. thesis, Sapienza
University of Rome (2017)

23. Feinerman, O., Haeupler, B., Korman, A.: Breathe before speaking: efficient infor-
mation dissemination despite noisy, limited and anonymous communication. Distrib.
Comput. 30(5), 339–355 (2015). https://doi.org/10.1007/s00446-015-0249-4

24. Fraigniaud, P., Natale, E.: Noisy rumor spreading and plurality consensus. Distrib.
Comput. 32, 257–276 (2018). https://doi.org/10.1007/s00446-018-0335-5

25. Ghaffari, M., Lengler, J.: Nearly-tight analysis for 2-choice and 3-majority consen-
sus dynamics. In: PODC 2018, pp. 305–313 (2018)

26. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to propor-
tionate agreement. Inf. Comput. 171(2), 248–268 (2001)

27. Hoory, S., Linial, N., Wigderson, W.: Expander graphs and their applications. Bull.
Amer. Math. Soc. (N.S) 43, 439–561 (2006)

28. Korolev, V., Shevtsova, I.: On the upper bound for the absolute constant in the
Berry–Esseen inequality. Theory Probab. Appl. 54, 638–658 (2010)

https://doi.org/10.1007/s11047-019-09756-4
https://hal.archives-ouvertes.fr/hal-02487650
https://hal.archives-ouvertes.fr/hal-02487650
https://doi.org/10.1007/s00446-015-0249-4
https://doi.org/10.1007/s00446-018-0335-5

272 F. d’Amore et al.

29. Lin, W., Zhixin, L., Lei, G.: Robust consensus of multi-agent systems with noise.
In: 2007 Chinese Control Conference, pp. 737–741, July 2007

30. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determining
majority in networks with local interactions and very small local memory. Distrib.
Comput. 30(1), 1–16 (2016). https://doi.org/10.1007/s00446-016-0277-8

31. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model.
J. Stat. Mech: Theory Exp. 2007(08), P08029 (2007)

32. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev.
Lett. 91(2), 028701 (2003)

33. Mossel, E., Tamuz, O.: Opinion exchange dynamics. Probab. Surv. 14, 155–204
(2017)

34. Perron, E., Vasudevan, D., Vojnović, M.: Using three states for binary consensus
on complete graphs. In: IEEE INFOCOM 2009, pp. 2527–2535, April 2009

35. Shimizu, N., Shiraga, T.: Phase transitions of best-of-two and best-of-three on
stochastic block models. In: DISC 2019, July 2019

36. Weisbuch, G., Deffuant, G., Amblard, F., Nadal, J.P.: Meet, discuss, and segregate!
Complexity 7(3), 55–63 (2002)

37. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opin-
ion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 19:1–19:30
(2013)

https://doi.org/10.1007/s00446-016-0277-8

Communication Complexity

Distributed Testing of Distance-k
Colorings

Pierre Fraigniaud1, Magnús M. Halldórsson2, and Alexandre Nolin2(B)

1 IRIF, CNRS and Université de Paris, Paris, France
pierre.fraigniaud@irif.fr

2 ICE-TCS, Department of Computer Science, Reykjavik University,
Reykjavik, Iceland

{mmh,alexandren}@ru.is

Abstract. We study the distributed decision problem related to check-
ing distance-k coloring, defined as color assignments to the nodes such
that every pair of vertices at distance at most k must receive distinct
colors. While checking the validity of a distance-k coloring only requires
�k/2� rounds in the Local model, and a single round in the Congest
model when k ≤ 2, the task is extremely costly for higher k’s in Con-
gest—there is a lower bound of Ω(Δk/2) rounds in graphs with maxi-
mum degree Δ. We therefore explore the ability of checking distance-k
coloring via distributed property testing. We consider several farness cri-
teria for measuring the distance to a valid coloring, and we derive upper
and lower bounds for each of them. In particular, we show that for one
natural farness measure, significantly better algorithms are possible for
testing distance-3 coloring than for testing distance-k coloring for k ≥ 4.

Keywords: Distributed property testing · Graph coloring ·
Distributed decision

1 Introduction

We study problems related to checking whether a given distance-k coloring is
proper, in the distributed Congest model. A valid (or proper) distance-k color-
ing of a graph G = (V,E), for k ≥ 1, is a coloring of each node v with integer cv so
that any two nodes u, v of distance at most k are colored differently, i.e., cu �= cv.
This is equivalent to the usual vertex coloring of the graph Gk = (V,Ek), where
two nodes are adjacent if they are within distance k in G.

Classical distance-1 colorings have been extensively studied in distributed
computing as a tool of breaking symmetry. Let us denote by n the number
of nodes, by m the number of edges, and by Δ the maximum degree of G.
For the core problem of finding a (Δ + 1)-coloring, there is a simple folklore

Pierre Fraigniaud is partially supported by ANR Projects DESCARTES, QuDATA,
and FREDDA; Magnús M. Halldórsson and Alexandre Nolin are partially supported
by Icelandic Research Foundation grant 174484-051.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 275–290, 2020.
https://doi.org/10.1007/978-3-030-54921-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_16

276 P. Fraigniaud et al.

O(log n)-round randomized algorithm, and recent polylog(n)-round determinis-
tic algorithm by Bamberger, Kuhn and Maus [4] that works in Congest (lever-
aging the recent breakthrough of Rozhoň and Ghaffari [35]). The correspond-
ing distance-2 coloring questions has recently been addressed in [25], where an
O(log Δ log n)-round randomized algorithm is given that uses Δ2 + 1 colors, as
well as a polylog(n)-round deterministic algorithm that uses (1 + ε)Δ2 colors,
for any ε > 0. This opens the question about distance-k coloring problems, for
k ≥ 3, which appear considerably harder.

Why Distance-k Coloring? Distributed distance-k colorings are interesting for
various reasons. They appear naturally when constant-round randomized algo-
rithms are derandomized using the method of conditional expectation [22]. They
also appear in certain models of wireless models, where senders must be suffi-
ciently separated, to limit interference. More abstractly, we can view distance-k
coloring problems as a way of studying communication capacity constraints on
nodes, where communication must go through intermediate relays. Given that
distance-2 colorings can be efficiently computed, distance-3 colorings appear to
lie at the frontier of what can be solved efficiently by distributed algorithms.

Deciding Distance-k Coloring. Given the apparently challenging task of finding
an efficient distance-3 coloring, a natural question that arises is if we can at least
check that a given coloring is valid. We can quickly dispose of that hope, as there
is an easy reduction to Set Disjointness that shows that verifying a distance-k
coloring requires Ω(Δ�(k−1)/2�) rounds in Congest. We provide a proof of this
fact, for completeness, in Appendix A. Observe that the question is trivially
answered in �k/2� rounds of the Local model.

Testing Distance-k Coloring. Distributed property testing is a relaxation of dis-
tributed decision, where we seek a Congest algorithm that can distinguish
whether the given graph satisfies a given property (e.g., having a distance-k col-
oring), or is far from having such a property. The most common notion for this
is ε-farness in the sparse model, when the addition or deletion of up to ε · m
arbitrary edges to/from the graph G = (V,E) does not result in the property
being satisfied. This notion is renamed ε-edge in this paper, so as to avoid con-
fusion as we use alternative notions of being far to a valid coloring. Distributed
algorithms testing a property (here distance-k coloring) are compared according
to the error rate ε(r) they can tolerate if restricted to r rounds, or equivalently,
the round complexity r(ε) to distinguish between legal instances and instances
ε-far from being legal.

1.1 Summary of Main Results

We consider several measures of distance from a valid coloring to define various
notion of ε-farness, deduce their relationship, and bound the efficiency of testing
distance-k colorings in Congest under these measures. As examples of such
measures, we consider ε-edge, where deleting up to εm edges cannot result in a

Distributed Testing of Distance-k Colorings 277

valid distance-k coloring, and ε-middle, where there exist more than εm paths
of length at most k − 2 between two nodes with distinct neighbors of the same
color. We present the following results:

1. An algorithm for any constant k ≥ 3, with round complexity O(1/ε), for
all our measures but ε-middle. We provide a matching lower bound for any
algorithm under two of our considered measures.

2. An improved algorithm for distance-3 colorings under the ε-middle measure.
The round complexity is O(ε−3/2m−1/2), for ε ≥ m−1/3. We prove a matching
lower bound, and as well as an ˜Ω(ε−1) lower bound for distance-4. This shows
that distance-4 is strictly harder than distance-3.

3. A communication complexity lower bound of Ω̃(ε−1(εm)−1), for any k ≥ 3,
under the ε-edge measure.

The results suggest that distance-3 colorings are easier to test than for larger
distances. This reinforces the role of distance-3 coloring on the frontier of what
is computable efficiently in Congest.

1.2 Related Work

Property testing has an extensive history in the sequential setting [23]. Dis-
tributed property testing was recently introduced by Brakerski and Patt-Shamir
[6], and subsequently revisited and formalized more broadly by Censor-Hillel
et al. [8]. As in the centralized setting, different variants of farness can be con-
sidered, but most of the efforts on distributed property testing has been carried
out in the sparse model, that is, the model of this paper, where farness is mea-
sured by the fraction of the number of edges that must be added or removed for
satisfying the property under consideration. In this framework, most previous
work has been dedicated to checking the absence of a specific graph pattern (e.g.,
a cycle Ck, or a clique Kk, for some k ≥ 3) as a subgraph of the actual net-
work [12,18,20]. To our knowledge, this paper is the first to consider distributed
testing proper distance-k coloring.

More generally, distributed property testing falls into the wide class of dis-
tributed decision problems, initially motivated by fault-tolerant distributed com-
puting [2,3,28]. Since these early works, there has been a large body of work on
distributed decision, with a range of models—see [13] for a survey. The closest to
ours are local decision [15,17], and local verification [17,19,24,31]. In both cases,
the nodes perform a constant number of rounds of communication before reach-
ing a decision. Distributed property testing is a relaxed version of randomized
distributed local decision, as nodes are not bounded to detect illegal instances
that are “close to be legal”. In distributed verification, every node is also sup-
plied with a certificate string, and the collection of certificates is supposed to
form a distributed proof that the instance is legal. Distributed property test-
ing performs in absence of such certificates. Recently, distributed verification
has been extended to distributed interactive proofs [30,33], involving interac-
tions between the nodes and a powerful centralized oracle. Such mechanisms are
obviously much more powerful than distributed property testing.

278 P. Fraigniaud et al.

Overall, distributed property testing offers a tradeoff between simplicity (no
need of certificates, nor of any interactions with an external entity), and effi-
ciency (configurations that are “slightly” illegal may not be detected). It is thus
an appealing lightweight alternative to complex mechanisms for distributed sys-
tems that can tolerate to be slightly faulty. This is typically the case of wireless
systems, which are able to tolerate a certain level of interference, as long as these
interferences do not exceed a certain threshold.

2 Model and Definitions

The input of our algorithms is a graph G, and a proposed coloring C = (cv)v∈V .
Given an underlying distance metrics between solutions, we say that a solution is
ε-far from being correct (or valid, or legal) if it is of distance at least ε from any
valid solution for G. We seek a Congest protocol running on G to distinguish
valid solutions from ε-far solutions. The protocol should have 1-sided error:

If C is valid, then, with probability 1, all nodes output “yes”.
If C is ε-far from being valid, then, with probability at least 2/3, some
node outputs “no”.

We explore different types of solution distances. In particular, we can divide
them into two types: distance to a graph for which the given solution is valid,
and distance to a valid solution for the given graph. We call two distinct nodes
with the same color at distance at most k a bad pair, and call a path connecting
a bad pair a bad path.

Definition 1. An n-node m-edge graph G = (V,E) and a coloring of its vertices
(cv)v∈V are said to be

– ε-edge, when deleting up to εm arbitrary edges does not result in a valid
distance-k coloring.

– ε-disjoint, when there exist more than εm distinct pairs of similarly colored
vertices linked by edge-disjoint paths of length at most k.

– ε-middle, when there exist more than εm paths of length at most k−2 between
two nodes with distinct neighbors of the same color.

– ε-node, when recoloring up to εn arbitrary vertices does not result in a valid
distance-k coloring.

– ε-conflict, when more than εn vertices have the same color as one of their
distance-k neighbors.

The ε-edge measure is the classical one fromproperty testing literature [6,8,18].
The ε-disjoint measure is a variation that requires there to be many conflict pairs,
not just one vertex that conflicts with many nodes (that might not conflict between
themselves).

The ε-middle measure has the appearance of being contrived, but actually
captures the essence of the problem. In the first round, each node learns of the
colors of all its neighbors. Thus, what we really need is to somehow connect the

Distributed Testing of Distance-k Colorings 279

ε-disjoint ε-node

ε-conflictε-edge

ε-middle

˜Θ
(

1
ε

)

(k≥3)

˜Ω
(

1
ε·εm

)

(k≥3)

˜O
(

1
ε·√εm

)

(k=3)

˜O
(

1
ε

)

(k≥4)

Θ 1
ε

√
εm

(k=3)

˜Ω
(

1
ε

)

(k=4)

Fig. 1. The relationships between our notions of distance from a valid solution as well
as our upper and lower bounds on the costs of testing for them. For two notions of
farness notion1 and notion2, an arrow from ε-notion1 to ε-notion2 indicates that a
solution that is ε-notion1 is also Ω(ε)-notion2 away from a valid solution. Dashed lines
indicate incomparability.

second node on a bad k-path to the second-to-last node, and see if the sets of
colors in their neighborhoods intersect.

The last two definitions correspond to natural measures of invalidity of col-
orings. The ε-conflict measure counts how many nodes are improperly colored
(i.e., have a same-colored distance-≤ k neighbor), while ε-node is more conser-
vative, bounding the number of recolorings needed to turn the coloring into a
valid one.

We say that a measure μ is more strict than measure μ′ if μ(G, c) =
O(μ′(G, c)), for all graphs G and colorings c. Thus, if (G, c) is ε-far in terms
of measure μ′, then it is O(ε)-far in terms of measure μ (but could be much less
far).

It is easy to see that ε-disjoint is more strict than ε-edge, and ε-node is more
strict than ε-conflict. It also holds that ε-disjoint is more strict than ε-conflict
on sparse graphs, when |E(G)| = O(|V (G)|). This is illustrated in Fig. 1, where
solid arrows are drawn from a stricter measures to a less stricter one.

We can also verify that other pairs of measures can be arbitrarily divergent.
The examples in Fig. 2 show that for any pair of measures connected by a dotted
line in Fig. 1, there is a graph where one is constant and the other is O(1/n) (or
O(1/m)), and vice versa. The same holds for the inverse direction of the solid
edges.

The property of ε-edge and ε-disjoint assignments that we shall use is that
there is a set of at least εm edges, each of which is the first edge of a bad path.
For ε-node or ε-conflict assignment, it follows from the definition that there is a
set of εn nodes that have a same-colored node within distance at most k.

280 P. Fraigniaud et al.

1

n/2

1

n/2

1 1 1

1

1

O(1/m)Ω(1) Ω(1)O(1/m) O(1/m) Ω(1) Ω(1)O(1/m) O(1/n)O(1/n) Ω(1) Ω(1) Ω(1)Ω(1)O(1/n)

Fig. 2. Three colored graphs showing the incomparability of some of the measures
of Definition 1. A number indicates a node’s color, unnumbered nodes each receive a
color unique to them. For each graph, the second line indicates values of ε for which
the graph is (in order) ε-disjoint, ε-node, ε-edge, ε-conflict, and ε-middle. The arrows
between measure values are the same as those of Fig. 1

3 Preliminaries: Set Disjointness

The Set Disjointness problem is a two-party communication complexity decision
problem where two players each receive a subset of an universe [N] and must
decide whether their subsets are disjoint. This problem is known to require Ω(N)
communication – as large as the players’ inputs – to solve with bounded error by
a randomized communication complexity protocol [5,29,34]. Doing a reduction
from Set Disjointness to a task in the Congest model has been a fruitful source
of lower bounds [1,9,10,21,27,36].

In this paper, we will use slight variations of the original Set Disjointness
problem. We consider a subset of the original problem, where the players have
two additional promises: that their sets are of size at most s, and that their sets’
intersection is either empty or contains at least t elements, where s and t are
two integer parameters.

Definition 2 (Gap Bounded Size Set Disjointness). Let N, s, t be three
integers such that N ≥ s ≥ t > 0, X = Y = [N], and the players’ set of
admissible inputs Is,t ⊆ X × Y be:

Is,t = {(X,Y) : |X| ≤ s, |Y | ≤ s, |X ∩ Y | ∈ {0} ∪ [t,+∞)}

The Gap Bounded Size Set Disjointness problem DISJN
s,t : Is,t → {0, 1} is

defined as:

DISJN
s,t(X,Y) =

{

1 if X ∩ Y = ∅,

0 otherwise.

The standard Set Disjointness problem corresponds to the choice of parame-
ters s = N, t = 1. A commonly studied variant bounds the size of the player’s sets
but promises nothing about the intersection (t = 1). This problem is known to
have randomized communication complexity Θ(s) [26]. Computing the intersec-
tion of the two sets also has randomized communication complexity only Θ(s) [7].
Leaving the players’ sets unbounded (s = N) while keeping the promise on the

Distributed Testing of Distance-k Colorings 281

intersection’s size also appears in the literature, referred to as the Gap Set Dis-
jointness problem [14,32]. In both cases, the lower bound is a simple consequence
of the lower bound for the standard Set Disjointness problem.

Let us denote by Rε(f) the randomized communication complexity of a prob-
lem f with error at most ε.

Lemma 1. For any constant ε ∈ (0, 1/2), Rε

(

DISJN
s,t

)

∈ Ω
(

s
t

)

Proof. Consider the DISJN/t
s/t,1 Set Disjointness problem. This is known to

require Ω (s/t) communication as the standard Set Disjointness problem
DISJs/t

s/t,1 reduces to it (it is the same problem but on a subset of its input

space). Now remark that DISJN/t
s/t,1 reduces to DISJN

s,t, as the players can con-

struct a valid input to DISJN
s,t from a DISJN/t

s/t,1 input by making t copies of
each of their set elements, which concludes the proof. ��

Our lower bounds on testing a distance-3 coloring use the DISJN
s,t problem

with parameters s ∈ Θ(m) and t ∈ Θ(εm) (Theorem 3), s ∈ Θ(m) and t ∈
Θ(εm) (Theorem 4), and s ∈ Θ(

√

m/ε) and t = 1 (Theorem 5), while our lower
bound on testing a distance-4 coloring (Theorem 6) uses parameters s = m and
t = 1. Our lower bound on verifying a distance-k coloring for an arbitrary k
(Theorem 7) uses parameters s ∈ Θ(Δ�(k−1)/2�) and t = 1. Notice that the
complexity of the Set Disjointness problem does not depend on N – the size of
the universe – but only on s and t, the sizes of the input sets and their potential
intersection.

4 Testing Distance-k Colorings

For all the measures previously introduced (Definition 1), we give upper and
lower bounds on detecting being ε-far from a solution. Our first result is a proto-
col for all measures except ε-middle, and for any constant k (Theorem 1). This
protocol is later shown to be tight for the ε-node and ε-conflict models, even for
k = 3. In the case k = 3, we give a more efficient algorithm in the ε-middle, ε-
edge and ε-disjoint models (Theorem 2). We prove that the algorithm is optimal
for the ε-middle measure (Theorem 5) and also prove an non-matching lower
bound for the ε-far and ε-disjoint measures (Theorem 3). For k = 4, we prove
an ˜Ω(ε−1) lower bound in the ε-middle model. This last lower bound is strictly
higher than the complexity of the same problem when k = 3, demonstrating
that the complexity of the problem can keep increasing as we increase k beyond
3 not just when doing verification, but also property testing.

All the lower bounds use the Set Disjointness problem (Definition 2). For a
graphical summary of the results of this section, see Fig. 1.

282 P. Fraigniaud et al.

4.1 A General Algorithm for Any k

We first give an algorithm that works for all values of k and all our farness mea-
sures except ε-middle. The basic building block of our algorithm is a subroutine
has each node assign a random priority to its color, and has them then broadcast
colors according to their assigned priorities. This idea of breaking symmetry by
assigning random priorities to elements of interest has appeared previously in
the literature [11,12,16].

Theorem 1. There exists a randomized Congest algorithm running in O
(

1
ε

)

rounds for testing an ε-edge distance-k coloring. By extension this also applies
to ε-disjoint, and a slight modification yields the same result for ε-node and
ε-conflict.

Proof. Consider the following basic algorithm Bfs that runs for k rounds, which
we then repeat to obtain success probability 2/3. The edges are independently
assigned a random priority (such as a random value from [|E|3], with higher
values receiving precedence). Nodes use the max of the priorities of their incident
edges as their own priority. In the initial round, each node transmits its color
(along with its ID) to all its neighbors, along with its priority. In each subsequent
round, the algorithm transmits to each neighbor the color and priority of the
two highest priority colors it received in the previous round. Effectively, the color
from a highest priority node gets forwarded along a breadth-first-search tree. If
at the end of round k, the algorithm has received a color (from another node)
that matches its own, it outputs ‘invalid’; otherwise, it outputs ‘valid’.

In an ε-edge graph, there are at least εm edges that are the first edge of a
bad path. If any of those edges receives the highest priority in a round of the
basic algorithm, a color conflict gets detected. So with probability at least ε, the
basic algorithm detects an ε-edge graph.

This basic algorithm is then repeated to increase the success probability to
at least 2/3. It suffices to repeat it t times, where t satisfies (1 − ε)t ≤ 1/3. The
time complexity is then t · k. Setting t = ln(3)/ε achieves the desired result,
yielding an O(k/ε)-round algorithm.

We can simplify and adapt this algorithm for the ε-conflict model: Each node
picks a random priority. There are now εn improperly colored nodes, and if any
of them gets selected, the coloring will be found to be invalid. The rest of the
argument is the same. ��

4.2 A Better Running Time for k = 3

Theorem 2. There exists a randomized Congest algorithm running in
O

(

1
ε·√εm

)

rounds for testing an ε-middle distance-3 coloring. By extension, this
also applies to the ε-edge and ε-disjoint measures.

Proof. Let the nodes follow the following simple algorithm Random: in the first
round, each node informs its neighbors of its color and identifier, and in k − 2

Distributed Testing of Distance-k Colorings 283

subsequent rounds, for each link a node has, it picks uniformly at random one of
the (color,ID) pair it received from its neighbors in the previous round and sends
it on this link. Any node that receives the same color twice but with a different
ID, and such that it received the pairs in two (not necessarily distinct) rounds
i and j such that i + j ≤ k, flags the coloring as invalid. This (k − 1)-rounds
protocol is repeated T times. Let us analyze the probability of success of this
protocol when k = 3.

Let σ = 4
√

m/ε. We say that an edge uv is good if min(d(u), d(v)) ≤ σ, and
bad otherwise. In an ε-middle graph, there is a set Π of edges, each of which is on
a 3-path between same-colored nodes, with |Π| ≥ εm. Observe that if a, u, v, b
is a path where a and b have the same color, then this will be detected if either
u forwards the ID of a to v or v forwards the ID of b to u. The probability p̄Pe

of non-detection along a path Pe with middle edge e = (u, v) ∈ Π is therefore
(1 − 1/d(u))T · (1 − 1/d(v))T ≤ e−T/min(d(u),d(v)). We say that a path Pe ∈ Π
is good if e is good. Let Π ′ ⊆ Π be the set of good paths. Let B be the set of
nodes with degree at least σ. There are at most

√
εm/2 nodes in B, as otherwise

the total number incidences on nodes in B would exceed 2m. Thus, there are
at most

(|B|
2

) ≤ εm/8 edges with both endpoints in B. Hence, there are at least
5εm/8 good paths in Π ′.

The probability that none of those good paths detect a conflict in the color
assignment is:

∏

P∈Π′
p̄P ≤ exp

(−T · |Π ′|
σ

)

≤ exp
(

− 5
32

T · ε3/2m1/2

)

Therefore, running the protocol for T ∈ O(ε−3/2m−1/2) is enough to solve
the problem with probability at least 2/3. ��

In particular, this protocol runs in constant time when ε ∈ Ω(m−1/3). We
give a matching lower bound later in the paper (Theorem 5). This algorithm
is also able to detect ε-edge and ε-disjoint graphs with the same running time
because of the relationships that exist between the measures, however the lower
bounds we have for these measures are weaker (Theorem 3) and do not match
our upper bound.

4.3 Lower Bounds for k ≥ 3

In this section, we prove lower bounds for the detection of ε-disjoint colored
graphs (Theorem 3), ε-node colored graphs (Theorem 4) and ε-middle colored
graphs (Theorems 5 and 6) in the Congest model. By the relationships that
exist between the separation measures of Definition 1, the lower bound on detect-
ing an ε-disjoint coloring also holds for ε-edge colorings. Similarly, the lower
bound on the detection of ε-node colorings also holds for ε-conflict colorings.

All lower bounds use the same following classical proof architecture: we take
a two-party communication complexity problem f of communication complexity
Rcc(f), and show that the players can solve an instance f(x, y) of this problem

284 P. Fraigniaud et al.

by simulating a Congest algorithm for our testing task on a graph Gx,y with
color assignment (cx,y

v)v∈V . The vertices of Gx,y are partitioned into two sets
VA and VB , and the edges are such that the colors and intraconnexions of VA’s
vertices only depend on x, and similarly with VB ’s vertices and y, while the
interconnexions between a vertices of VA and VB are fixed and therefore inde-
pendent of x and y. Let T be the number of rounds of a Congest algorithm for
the Congest task, and C the number of edges between vertices of VA and VB .
Simulating the Congest algorithm in the two-party communication complexity
model can be done in T · C · log(n) bits of communication. This last quantity
has to exceed Rcc(f), which yields that any Congest algorithm for our testing
task requires at least T ≥ Rcc(f)

C·log(n) rounds.

Theorem 3. For k ≥ 3, testing whether a distance-k coloring is ε-disjoint
requires ˜Ω

(

1
ε·(εm)

)

rounds in the Congest model.

Note that this lower bound matches neither our general upper bound (Theo-
rem 1) nor our upper bound for k = 3 (Theorem 2), leaving open the possibility
of more efficient algorithms or stronger lower bounds.

For this lower bound, we consider graphs of the form presented in Fig. 3. We
conjecture that our analysis is not tight, and that detecting whether such graphs
are ε-disjoint actually requires ˜Ω(ε−3/2m−1/2).

2εm

1
2
− ε

)

m

Fig. 3. The graph we use for our lower bound. It consists of 4 layers, with the outer
layers having

(
1
2

− ε
)
m vertices and the inner layers

√
2εm. There only exist edges

between adjacent layers, and vertices in layers 1 and 4 have degree 1, while layers 2
and 3 form a biclique. Layers 1 and 2 are randomly connected together by

(
1
2

− ε
)
m

edges, as are layers 3 and 4.

Proof. Let m be an integer and ε ∈ [

1
m , 1

2

)

. Set N = m, s =
(

1
2 − ε

)

m, t =
2εm + 3, and consider an instance of DISJN

s,t: a pair of sets (X,Y), X,Y ⊆ [m].
Let us consider the graph Gx,y = (V,E) of Fig. 3. Its vertices V are partitioned
into four layers (Vi)i∈[4]. Let Alice possess the two leftmost layers (VA = V1∪V2)
and Bob possess the two rightmost layers (VB = V3 ∪ V4). The inner layers are
of size |V2| = |V3| =

√
2εm and form a biclique (complete bipartite graph) of

2εm edges, while the outer layers are of size |V1| = |V4| =
(

1
2 − ε

)

m. Let us first

Distributed Testing of Distance-k Colorings 285

describe how the players color their vertices, before describing how they connect
the outer layers to the inner layers.

Let all of Alice’s and Bob’s vertices be initially uncolored. For each element
x ∈ X ⊆ [m], Alice picks an arbitrary uncolored vertex of V1 and colors it with
x. Bob does the same with his input set Y and the layer V4. Alice then colors
her remaining uncolored vertices with distinct even numbers from [m + 1, 2m],
while Bob colors his remaining uncolored vertices with distinct odd numbers
from [m + 1, 2m].

Then, for each vertex u ∈ V1, Alice connects it to a single vertex of V2 picked
uniformly at random. Bob similarly connects vertices of V4 to vertices of V3.

Let us now analyze the graph we constructed with respect to the Set Dis-
jointness instance we started with. If X ∩ Y = ∅, the way the players assigned
colors ensures that the graph received a valid distance-3 coloring. If |X ∩Y | ≥ t,
however, there are t pairs (u, v) ∈ V1×V4 of distinct vertices that are at distance
3 and received the same color. For each pair, there is a single length-3 path con-
necting them, and the only way those paths can share an edge is by sharing an
edge in V2 × V3. Let us prove that with high probability, more than εm of those
paths are edge-disjoint, and therefore the graph is ε-disjoint (see Definition 1).

Let S be an εm-sized subset of the 2εm edges between V2 and V3. The proba-
bility that none of those edges are directly connected to two vertices in layers V1

and V4 that received the same color is at most
(

1 − |S|
2εm

)t

= 2−t. As there are
(

2εm
εm

) ≤ 22εm such subsets S, the probability that less than εm edges of V2 × V3

are part of a length-3 path between similarly colored vertices of the outer layers
is at most 22εm−t ≤ 1

8 for our choice of t.
Since the graph the players constructed is well-colored when they received

disjoint sets, and ε-disjoint with probability ≥7/8 when they received intersecting
sets, the players can solve the Set Disjointness problem with error at most 1/4
by simulating a Congest algorithm to detect an ε-disjoint distance-3 coloring
that makes an error at most 1/8. Since there are 2εm edges between Alice’s and
Bob’s vertices, the number of rounds T of a Congest algorithm detecting an
ε-disjoint coloring with probability ≥ 7/8 satisfies:

T ≥
Rcc

1/4(DISJm
m/2,2εm)

2εm log(m)
∈ ˜Ω

(

1
ε · (εm)

)

��
Note that since a graph that is ε-disjoint from a valid solution is also ε-edge,

the lower bound also applies to testing being ε-edge. As corollary, we have that no
constant-round algorithm can detect an ε-disjoint coloring when ε ∈ o(m−1/2).

Theorem 4. For k ≥ 3, testing whether a distance-k coloring is ε-node requires
˜Ω

(

1
ε

)

rounds in the Congest model.

Proof sketch. We do another reduction from communication complexity, this
time using the graph shown in Fig. 4, and Set Disjointness instances with sets

286 P. Fraigniaud et al.

n
2
− 1

Fig. 4. The graph we use for our lower bound for the ε-node measure. It consists of
two stars of degree

(
n
2

− 1
)
, linked by their roots.

of size up to Θ(n) and intersection either empty or of size Ω(εn). The lower
bound follows from the communication complexity of this type of Set Disjointness
instance and the single edge between Alice’s and Bob’s parts of the graph. ��

Note that contrary to our previous theorem for detecting ε-disjoint colored
graphs (Theorem 3), this lower bound is tight with respect to our first algorithm
(Theorem 1).

Theorem 5. For k = 3, testing whether a distance-k coloring is ε-middle
requires ˜Ω

(

1
ε·√εm

)

rounds in the Congest model.

Note that this lower bound matches our upper bound for k = 3 (Theorem 2).
For this lower bound, we use graphs as depicted in Fig. 5.

1−ε
2

)

m

1−ε
2

m
ε

εm

Fig. 5. The graph we use for our lower bound on testing for ε-middle colorings (The-
orem 5), showing that the algorithm Random is tight for this measure and k = 3. It
consists of a central biclique between two layers of size

√
εm, and each vertex of these

layers is connected to
√

m/ε leaves in the outer layers.

Proof. Let m ∈ N and ε ∈ [

1
m , 1

2

)

. Set N = s = 1−ε
2

√

m/ε, t = 1, and consider
an instance of DISJN

s,t: a pair (X,Y) of subsets of [N]. Consider the four layer
graph Gx,y = (V,E) of Fig. 5. The vertices V2 and V3 of layers 2 and 3 form a
biclique. Every vertex of layer 2 is connected to s degree-1 vertices in layer 1,
and layers 3 and 4 are similarly connected.

Let Alice possess as VA the vertices of layers 1 and 2 and Bob possess the
rest. For any vertex v ∈ V2, let N1(v) ⊆ V1 be the vertices of layer 1 connected

Distributed Testing of Distance-k Colorings 287

to v, and similarly for any vertex v ∈ V3, consider N4(v) the vertices of layer 4
connected to v.

For each v ∈ V2, Alice colors the nodes of N1(v) with the elements of X
as colors (without repetition, leaving uncolored nodes if necessary). Bob does
the same with nodes of N4(v) for each v ∈ V3. The coloring is then completed
without creating any new distance-3 conflict, using odd large colors on Alice’s
side and even large colors on Bob’s side.

If the players received disjoint sets, the resulting graph GX,Y is well-colored.
If the sets’ intersect, however, the coloring is ε-middle, because for each pair of
vertices (u, v) ∈ V2 × V3, there exists a pair of vertices (u′, v′) ∈ N1(u) × N4(v)
that have the same color. Therefore, the players can solve their Set Disjointness
instance by simulating a Congest algorithm for detection of ε-middle colored
graphs. Since εm edges connect Alice’s and Bob’s parts of the graph, the num-
ber of rounds T of a Congest algorithm detecting an ε-middle coloring with
probability ≥ 2/3 satisfies:

T ≥
Rcc

1/3(DISJN
1−ε
2

√
m/ε,1

)

εm · log(m)
∈ ˜Ω

(

1
ε
√

εm

)

��
Finally, we prove a lower bound on testing a distance-4 coloring in the ε-

middle model. The lower bound we obtain is strictly higher than our upper
bound on the same task with distance-3, which shows that there is a clear gap
between distance-3 and distance-4 colorings.

Theorem 6. Testing whether a distance-4 coloring is ε-middle requires ˜Ω
(

1
ε

)

rounds in the Congest model.

1−ε
2

)

mεm

Fig. 6. The graph we use for our lower bound on testing for ε-middle distance-4 color-
ings (Theorem 6).

Proof sketch. This lower bound is again proved by a reduction from communica-
tion complexity, this time using the graph depicted in Fig. 6, and Set Disjointness
instances with sets of size up to Θ(m) and no promise on the size of the inter-
section. ��

288 P. Fraigniaud et al.

5 Conclusion

In this work, we studied the testing and verification of distance-k colorings in the
Congest model for k ≥ 3 and several notions of distance from a valid solution.
We showed that the testing of distance-3 colorings admits a significantly more
efficient algorithm than distance-4 for one of our measures (ε-middle), and gave
indications that it might also be the case for the other edge- and path-based
measures. The node-based measures show no such gap. Our work does not give a
full picture how the complexity of the problem evolves as k increases in the edge-
and path-based models. A first open question is finding the exact complexity of
testing in the ε-disjoint and ε-edge model: we conjecture that this complexity
matches that of our algorithm for these models, rather than that of our lower
bound or something intermediate.

Another open question is what algorithm we can design in the ε-middle model
for arbitrary k, as the Bfs algorithm does not function in it. Even tackling the
case k = 4 is of interest, potentially to match our lower bound. Finally, the
several measures we introduced to study this problem might be of independent
interest. Are there other problems for which the same measures would make
sense? A natural candidate here is testing edge-colorings.

A Verifying Distance-k Colorings in Bounded-Degree
Graphs

A.1 A matching lower bound for the natural algorithm

In a graph of maximum degree Δ, the nodes can learn their distance-�k/2�
neighborhood in O

(

Δ�k/2	−1
)

rounds in Congest. In particular, an invalid
distance-k coloring can be detected with this number of rounds in Congest,
since two nodes of distance at most k are both within a distance �k/2� of some
node. This protocol is actually close to optimal, as our next theorem shows.

Theorem 7. For k ≥ 3, the verification of a distance-k coloring requires
˜Ω

(

Δ�k/2	−1
)

rounds in the Congest model.

Δ−1

�(k−1)/2�

(Δ−1)�(k−1)/2�

Fig. 7. The graph we use for our lower bound. It consists of 2 complete (Δ − 1)-ary
trees of depth �k/2� − 1 linked at their roots.

Distributed Testing of Distance-k Colorings 289

Proof sketch. The proof again relies on embedding a Set Disjointness instance
in a graph (see Fig. 7). Here, a Set Disjointness instance with sets of size up to
Θ(Δ−�k/2	−1) and no promise on the intersection can be embedded, with a single
edge connecting Alice’s and Bob’s parts of the graph.

References

1. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lower bounds for distributed
distance computations, even in sparse networks. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 29–42. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53426-7 3

2. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application
to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)

3. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction (extended abstract). In: FOCS, pp. 268–277 (1991)

4. Bamberger, P., Kuhn, F., Maus, Y.: Efficient deterministic distributed coloring
with small bandwidth. CoRR abs/1912.02814 (2019)

5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci.
68(4), 702–732 (2004)

6. Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. Distrib.
Comput. 24(2), 79–89 (2011). https://doi.org/10.1007/s00446-011-0132-x

7. Brody, J., Chakrabarti, A., Kondapally, R., Woodruff, D.P., Yaroslavtsev, G.:
Beyond set disjointness: the communication complexity of finding the intersection.
In: PODC, pp. 106–113 (2014)

8. Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algo-
rithms for testing graph properties. Distrib. Comput. 32(1), 41–57 (2018). https://
doi.org/10.1007/s00446-018-0324-8

9. Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds
for the CONGEST model. In: DISC, pp. 10:1–10:16 (2017)

10. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: PODC, pp. 367–376 (2014)

11. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J.,
Rawitz, D.: Online set packing. SIAM J. Comput. 41(4), 728–746 (2012)

12. Even, G., et al.: Three notes on distributed property testing. In: DISC, pp. 15:1–
15:30 (2017)

13. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119
(2016). http://eatcs.org/beatcs/index.php/beatcs/article/view/411

14. Fischer, O., Gonen, T., Oshman, R.: Distributed property testing for subgraph-
freeness revisited. CoRR abs/1705.04033 (2017)

15. Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Randomized dis-
tributed decision. Distrib. Comput. 27(6), 419–434 (2014). https://doi.org/10.
1007/s00446-014-0211-x

16. Fraigniaud, P., Halldórsson, M.M., Patt-Shamir, B., Rawitz, D., Rosén, A.: Shrink-
ing maxima, decreasing costs: new online packing and covering problems. Algorith-
mica 74(4), 1205–1223 (2016). https://doi.org/10.1007/s00453-015-9995-8

17. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35:1–35:26 (2013)

https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1007/s00446-011-0132-x
https://doi.org/10.1007/s00446-018-0324-8
https://doi.org/10.1007/s00446-018-0324-8
http://eatcs.org/beatcs/index.php/beatcs/article/view/411
https://doi.org/10.1007/s00446-014-0211-x
https://doi.org/10.1007/s00446-014-0211-x
https://doi.org/10.1007/s00453-015-9995-8

290 P. Fraigniaud et al.

18. Fraigniaud, P., Olivetti, D.: Distributed detection of cycles. ACM Trans. Parallel
Comput. 6(3), 1–20 (2019)

19. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes.
Distrib. Comput. 32(3), 217–234 (2018). https://doi.org/10.1007/s00446-018-
0340-8

20. Fraigniaud, P., Rapaport, I., Salo, V., Todinca, I.: Distributed testing of excluded
subgraphs. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp.
342–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-
7 25

21. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diam-
eter in sublinear time. In: SODA, pp. 1150–1162 (2012)

22. Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local distributed algo-
rithms. In: FOCS, pp. 662–673 (2018)

23. Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16367-8

24. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

25. Halldórsson, M.M., Kuhn, F., Maus, Y.: Distance-2 coloring in the CONGEST
model. CoRR abs/2005.06528 (2020)

26. H̊astad, J., Wigderson, A.: The randomized communication complexity of set dis-
jointness. Theory Comput. 3(11), 211–219 (2007)

27. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: PODC, pp. 355–364 (2012)

28. Itkis, G., Levin, L.A.: Fast and lean self-stabilizing asynchronous protocols. In:
FOCS, pp. 226–239 (1994)

29. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

30. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp.
255–264 (2018)

31. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

32. Kuhn, F., Oshman, R.: The complexity of data aggregation in directed networks.
In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 416–431. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24100-0 40

33. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. In: SODA, pp. 1096–1115 (2020)

34. Razborov, A.A.: On the distributional complexity of disjointness. Theory Comput.
Sci. 106, 385–390 (1992). https://doi.org/10.1007/BFb0032036

35. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. CoRR abs/1907.10937 (2019)

36. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

https://doi.org/10.1007/s00446-018-0340-8
https://doi.org/10.1007/s00446-018-0340-8
https://doi.org/10.1007/978-3-662-53426-7_25
https://doi.org/10.1007/978-3-662-53426-7_25
https://doi.org/10.1007/978-3-642-16367-8
https://doi.org/10.1007/978-3-642-24100-0_40
https://doi.org/10.1007/BFb0032036

Communication Complexity of Wait-Free
Computability in Dynamic Networks

Carole Delporte-Gallet1, Hugues Fauconnier1, and Sergio Rajsbaum2(B)

1 Université de Paris, CNRS, IRIF, 75013 Paris, France
{cd,hf}@irif.fr

2 Universidad Nacional Autónoma de México, Mexico City, Mexico
rajsbaum@im.unam.mx

Abstract. We consider a wait-free dynamic network. The class of solv-
able tasks in this model is well-known, and turns out to be the same
in various similar message-passing and shared-memory models. But only
full-information protocols have been considered, which send messages
that grow with the number of rounds.

We show that for two processes, it is possible to solve any wait-free solv-
able task using mostly 1-bit messages, without incurring any cost in the
optimal number of communication rounds. We identify an additional type
of information that needs to be communicated: in some executions it is nec-
essary to send messages of log c + 1 bits, where c is the chromatic number
of the distance-2 graphs of input configurations of the two processes. But
on average, the size of messages of a k-round protocol is at most 1 + 2 log c

k

bits. Then, we show that it is possible to solve any wait-free solvable task
by exchanging only beeps, at a constant cost in terms of number of rounds.
Finally, for 3 processes, we show that messages of constant size do not suf-
fice to solve every task in an optimal number of rounds.

1 Introduction

The computational power of a distributed system depends on its communica-
tion, process relative speeds, and failure assumptions. A model’s computational
power is typically studied with respect to tasks, such as consensus. Each pro-
cess starts with a local input value, the processes communicate with each other,
and eventually each process produces an output value. The task specification is
defined in terms of a relation Δ, defining which output value assignments are
legal responses to each possible assignment of input values. A characterization
of the tasks that are solvable in an asynchronous message passing system where
at most one process may crash was initially given [3]. Another milestone was

C. Delporte-Gallet—This work was partially supported by the French ANR project
DESCARTES 16-CE40-0023-03.
H. Fauconnier—This work was partially supported by the French ANR project
FREDDA ANR-17-CE40-0013.
S. Rajsbaum—This work was partially supported by the UNAM-PAPIIT project
IN106520.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 291–309, 2020.
https://doi.org/10.1007/978-3-030-54921-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_17

292 C. Delporte-Gallet et al.

the Wait-Free Theorem (WFT), for characterizing the tasks, denoted WF , solv-
able in an asynchronous read/write shared memory system where any number of
processes may crash [15]. This paper also discovered the intimate relation with
algebraic topology. Task solvability characterizations have since been described
for many models, including models (such as iterated, non-iterated, snapshots,
immediate snapshots, some dynamic networks) that solve the same set of tasks,
WF . Also, for other more or even less powerful models (synchronous, partially
synchronous, shared-memory synchronization objects, Byzantine failures, solo-
models [21], etc), for an overview see [13].

All the task solvability characterizations considered in the literature assume a
full-information protocol, where a process keeps in its state everything it knows,
and each time it communicates with other processes, it sends its entire state.
While a full-information protocol is convenient to derive a task solvability charac-
terization, the size of the messages (or the values written to the shared-memory)
grows with the number of rounds. Thus, rounds become slower and slower, to
implement the necessary information exchange. Furthermore, the number of
rounds needed to solve a task can grow so fast, that it is undecidable if a task
has a wait-free protocol, even for three processes [10,14].

The question we raise in this paper, is what is the cost in terms of communica-
tion rounds, of have constant size messages. And related questions, such as, what
is the minimum number of bits per message, needed to encode a full-information
protocol, without incurring a cost in communication rounds?

Indeed, the known characterizations depend on the protocol being full-
information. For instance, for two processes, in an immediate snapshot model,
the views of the processes after k rounds, i.e. the protocol complex, are repre-
sented by a path of 3k edges (for each input configuration). And more generally,
for n processes, the views are a subdivided n − 1-dimensional simplex. Clearly
the structure of the protocol complex may change, for the case of non-full-
information protocols. On the other hand, it is easy to encode a full information
protocol by sending smaller messages, at the cost of extra rounds.

We initiate the study of such questions using a model that solves the same
set of tasks, WF . It is a special case of a dynamic network [4] that we call wait-
free dynamic network (which has been studied before, using full-information
protocols e.g. [1,13,20]). In the two-process case, A and B send messages to each
other in synchronous rounds, and they never fail, but in each round, either of the
two messages sent may be lost (but not both). The set of input configurations
of a task is a graph, I. We show that mostly single bit messages suffice, to solve
any task in WF , without an extra cost in the number of rounds, w.r.t. a full-
information protocol. We also identify another type of information that needs to
be exchanged, to identify the input configuration (an edge). For this, sometimes
messages of log c bits must be sent, where c is the maximum of the chromatic
number of the distance-2 graphs of I, IA, IB defined by the A-vertices and the
B-vertices, respectively. On average, the size of messages of a k-round protocol
is at most 1 + 2 log c

k bits. A consequence of this, is that with messages of 1 bit it
is possible to encode a full-information history for a given input configuration,
independently of the number of rounds of the protocol.

Communication Complexity of Wait-Free Computability 293

Furthermore, we show that it is possible to solve every two-process task in
WF without sending any bits in a beep model, where processes communicate
only by exchanging unary signals over the dynamic network. Here there is a cost
in the number of rounds, but it is still a constant (that depends on c). This
result separates iterated, round-based models such as dynamic networks, from
shared-memory models where the same register can be written several times
repeatedly; in such models it is clearly impossible to do any useful computation
with only unary signals. Yet, it is known that all these models are equivalent as
far as task computability is concerned e.g. [11,13].

Finally, we show that for more than two processes, messages of constant size
do not suffice to solve every task in an optimal number of rounds. For more than
two processes, wait-free computability inherently requires rounds with growing
information exchange. We focus on two processes because core issues appear
already here, without the need of more technical algebraic topology techniques,
needed for more than two processes. But we demonstrate that our techniques
generalize to show the impossibility result for three processes.

Related work. Communication complexity is an important sub-area of complex-
ity theory that studies the amount of communication needed for several distri-
buted parties to learn something new [19]. In the basic problem there are two
players, A, B, with input sets XA,XB , and a function f : XA × XB −→ {0, 1}.
The goal is to evaluate f , when A holds one part of the input, x ∈ XA, while
B holds the other part y ∈ XB . They communicate over a reliable channel by
alternatively exchanging messages with each other. Our dynamic network model
is similar, but with unreliable communication. Also, instead of a function, we
consider a relation, in the form of a task. Furthermore, in a task not necessarily
all combinations of pairs from XA and XB may be given as inputs to A and B,
but only those specified by a graph of initial configurations I. Finally, processes
do not need to produce the same output value. In the original communication
complexity setting every function is solvable, the question is what is the small-
est number of bits that have to be exchanged to compute f . In our distributed
setting, even central functions such as equality, defined by EQ(x, y) = 1 if and
only if x = y are not solvable. The class of tasks that are solvable in our two
processes setting is well-known [3]. The connection between epistemic knowledge
and communication complexity is studied in [17].

In the distributed computing area, the most common communication cost
measure is message complexity. Based on the observation that consensus and
leader election have the same message complexity in failure-free networks, bit
complexity was used to distinguish between the communication costs of these
tasks, using methods of communication complexity [6,7]. Bit complexity in dis-
tributed computing has been considered since then, but we are not aware of any
papers considering tasks in general, nor the wait-free setting.

There are several wait-free models that are fundamental, and equivalent
to each other, in the sense that they can solve the same set of tasks, WF .
An example of such a model (for 2 processes) is our wait-free dynamic
network, but there are others, when processes may crash, either detectable

294 C. Delporte-Gallet et al.

(synchronous models) or undetectable (asynchronous models). Our results
apply in layered models (communication-closed rounds), such as the layered
message-passing (detectable failures) and layered read-write (undetectable) mod-
els described in [13]. Other important examples are when communication is by
message passing [3], when it is by snapshot shared memory [15], and by read-
/write shared memory. Thus, some of the basic (not related to bit complexity)
results we prove here have analogues in those previously studied models.

Much work exists on dynamic networks e.g. [20], but mostly concentrating on
characterizing the sequences of graphs that allow to solve various problems, and
also often using full-information protocols. The case of two-process consensus is
studied in [9].

It has been known since early on that binary consensus can be solved using
1-bit messages, e.g. [2]. But typically solutions that try to optimize the number
of messages sent do so at the cost of larger round complexity. To reduce the
size of long messages, an encoding is used to spread them over several rounds,
e.g. [12].

Organization. In Sect. 2 we describe our framework. The first main result is in
Sect. 3, where we show that any solvable task can be solved with 1-bit message
in most executions. In Sec. 4 we describe our beep model, and the corresponding
communication complexity results. In Sect. 5 we present the 3-process impossi-
bility result, and in Sect. 6 some concluding remarks.

2 Fundamentals

The basic model is that of a dynamic network e.g. [20]. Everything in this section
is already known and can be found in [13], including additional details. Essen-
tially, the only difference is that we drop the common assumption that protocols
are full-information.

We present here the two-process case, and discuss in Sect. 5 the case of three
processes. Let A,B be process names, V in a domain of input values, V out a
domain of output values, and V local a domain of local state values. We consider
graphs whose vertices are pairs of the form (id, v), where id ∈ {A,B}, and v
belongs to either V in, V out, or V local. We say that the vertex is colored by id,
and labeled by v. The graph is chromatic if the vertices of each of its edges are
colored with different process names. Chromatic normal simple paths P will be
important, with one end vertex (A, a), colored A and the other (B, b), colored
B. We say that the boundary of P is {(A, a), (B, b)}.

2.1 Tasks

Given two graphs G and H, let σ, τ represent either a vertex, or a set of two
vertices belonging to an edge. A carrier map Φ from G to H takes each vertex
or edge σ ∈ G to a subgraph Φ(σ) of H, such that Φ satisfies the following
monotonicity property: for all σ, τ ∈ G, if σ ⊆ τ , then Φ(σ) ⊆ Φ(τ). For vertex

Communication Complexity of Wait-Free Computability 295

s, Φ(s) is a (non-empty) set of vertices, and if σ is an edge, then Φ(σ) is a graph
where each vertex is contained in an edge. Notice, that for arbitrary edges σ, τ ,
we have Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ). We say that Φ preserves names, if it sends a
vertex to a vertex of the same name.

A task for A,B is a triple (I,O,Δ), where I is a chromatic input graph
colored by {A,B} and labeled by V in; O is a chromatic output graph colored by
{A,B} and labeled by V out; Δ is a name-preserving carrier map from I to O.

The input graph defines all the possible ways the two processes can start the
computation, the output graph defines all the possible ways they can produce
an output value, and the carrier map defines which input can lead to which
outputs. Each edge {(A, a), (B, b)} in I defines a possible input configuration
where A has input value a ∈ V in and B has input value b ∈ V in. The processes
communicate with one another, and each eventually decides on an output value
and halts. If A decides x, and B decides y, then there is an output configuration
represented by an edge {(A, x), (B, y)} in the output graph, that should be in
Δ({(A, a), (B, b)}). Moreover, if A runs solo, namely without ever hearing from
B, it must decide a vertex (A, x) in Δ(A, a), and B is subject to the symmetric
constraint.

2.2 Approximate Agreement Tasks

It is remarkable that wait-free task solvability is essentially a form of approximate
agreement. Approximate agreement problems where processes are required to
compute values that are close to each other have been thoroughly studied, since
early on [8].

Given an integer k ≥ 0, the k-edge approximate agreement task for A,B has
an input graph I consisting of a single edge, {(A, 0), (B, 0)}. As we explain below,
it allows processes to decide values ε = 1

3k
apart, but the following outputs will

be more convenient later on.
The output graph O consists of a chromatic normal path of 3k edges with

boundary {(A, 0), (B, 0)}, with consecutive vertices,

(A, 0), (B, (3k − 1)/2), (A, 1), B, (3k − 3)/2), (A, 2), . . . , (B, 1), (A, (3k − 1)/2), (B, 0).

The carrier map for solo executions prevents the trivial solution where processes
always decide the same output values, while allowing any decisions when they
both see each other:

Δ((A, 0)) = {(A, 0)} ,Δ((B, 0)) = {(B, 0)} and Δ({(A, 0), (B, 0)}) = O.

An protocol solving k-edge approximate agreement can be used to solve a simi-
lar task, with the following canonical labelling: (A, 0), (B, 1), (A, 2), . . . (A, 3k−1),
(B, 3k), as follows. Once a process p has computed its �p, it performs the following
computation, to compute a canonical labeling �cp. If p = A then �cA = 2�, and if
p = B then �cB = 3k − 2�. This in turn can be used to solve ε-agreement, ε = 1

3k
,

by which processes compute values in the interval [0, 1] that are ε apart: a process
divides its output by 3k.

296 C. Delporte-Gallet et al.

Approximate agreement is the essential building block of a solution to
every solvable task, as shown in [13, Theorem 2.5.2], using the following
k-approximate agreement task with input I. A solution to this task, can
be used to solve any solvable task (the value of k depends on the spe-
cific task to be solved). The input graph I is an arbitrary chromatic input
graph colored by {A,B} and labeled by V in. The output graph O is a
k-iterated subdivision of the input graph: a collection of chromatic normal
simple paths of 3k edges, one for each {(A, a), (B, b)} ∈ I, with boundary
{(A, a0), (B, b0)}, that intersect only at their endpoints. Namely, for each input
edge {(A, a), (B, b)} ∈ I, there is a chromatic normal path Pab in O of 3k

edges, whose vertices are: (A, a0), (B, ab(3k − 1)/2), (A, ab1), . . . , (A, ab(3k −
1)/2), (B, b0), and two consecutive vertices form an edge. The carrier map is
Δ((A, a)) = {(A, a0)} ,Δ((B, b)) = {(B, b0)} , and Δ({(A, a), (B, b)}) = Pab.

We say that O is a chromatic subdivision of I, iterated k times. Each
input edge is subdivided in the output graph 3k times, Pab is a k-subdivision
of {(A, a), (B, b)}.

2.3 Dynamic Graph Model

Here is described the wait-free dynamic graph model for A,B. In Sect. 4 we
discuss the variant with beeps, and in Sect. 5 the version for three processes.

A local state is a vertex, (id, v), where id ∈ {A,B}, and v ∈ V local. A global
state is an edge {(A, a), (B, b)}, a pair of local states. We assume processes never
fail, and hence all global states consists of the states of both processes. The set
of initial states is given by an input graph I. Thus, we identify an initial local
state with an input value.

An event is a directed graph on two vertices, A, B, with at least one arc; the
set of possible events is EV = {A → B,B → A,A ↔ B}. There is an arc from
id to id′ if and only if the message sent by id arrives at id′. We assume that if
a process does not receive a message in an event (because there is no arc into
the process), the process is aware that the message was lost; namely, executions
consist of synchronous rounds.

A schedule is a sequence of events from EV . We assume all sequences of
events from EV are possible (an oblivious adversary). Recall that a dynamic
graph model is round based, and the processes never fail. An execution is an
alternating sequence of global states and events, starting in an initial global
state. Thus, we may think of a round as two consecutive global states of an
execution, together with the intermediate event. An execution is solo for A, if A
never gets a message from B, namely, if it contains only events from {A → B},
and conversely for B.

A protocol runs for k rounds. In each round a process decides the contents
of the message it sends in the next round, and its new state, as specified by its
transition relation. Thus, given an input state I ∈ I and a schedule of k events,
the execution is uniquely determined (the protocol is deterministic).

The protocol graph P after k rounds is a description of all final global
states of the protocol. It consists of edges of the form {(A, a), (B, b)}, each one

Communication Complexity of Wait-Free Computability 297

corresponding to the last global state of an execution. Thus, for each execution
there is such an edge in the protocol graph, although different executions may
correspond to the same edge.

The protocol graph has some structure, which identifies for each vertex or
each edge, from which input vertex or edge it comes from. Namely, for each
vertex (id, v) ∈ I we can associate a vertex of P, that corresponds to the final
state of id in the (unique) solo execution where process id gets no messages from
the other process (recall protocols are deterministic). Thus, there is a protocol
carrier map Ξ from I to P, defined on vertices in this way. And on edges, Ξ(e)
is equal to the union of all edges of P that correspond to executions starting in
e ∈ I. We therefore may represent a protocol as a triple (I,P, Ξ).

A protocol solves a task (I,O,Δ) if and only if there is a simplicial map
δ : P → O carried by Δ. The map δ is called the decision map, and carried by
Δ means that for each input vertex s, δ(P(s)) ⊆ Δ(s), and for each input edge
σ, δ(P(σ)) ⊆ Δ(σ).

Remark 1. To simplify the presentation, we assume that a protocol always exe-
cutes the same number of rounds, k. Similarly, each input edge is subdivided the
same number of times. But all our results hold as well for non-uniform protocols
and subdivisions, in which each edge e is subdivided ke times.

2.4 Basic Characterization

We refine the well-known task solvability result to include round optimality.
By solving a task in an “optimal number of rounds” we mean in the smallest
number of rounds, among all protocols that solve it (recall that we consider only
protocols that always execute the same number of rounds, Remark 1).

Theorem 1. A protocol that can solve k-approximate agreement on I in k
rounds (for any given k ≥ 0, and input graph I), can be used to solve any
solvable task, in an optimal number of rounds.

The idea of the proof is as follows. First, it is well-known that the protocol
graph for any k-round full-information protocol with input graph I is a subdi-
vision of I, where each edge is subdivided 3k times, e.g. [13, Fact 2.5.1]. Thus, a
k-rounds full-information protocol trivially solves the k-approximate agreement
task, and vice versa, a protocol that can solve k-approximate agreement on I in
k rounds can solve any task that the k-round full-information protocol can solve,
since the full-information protocol graph and the approximate agreement output
graph are isomorphic. If a task is solvable, it is solvable by the full-information
protocol (or equivalently, by the approximate agreement solution) see e.g. proof
of [13, Theorem 2.5.2]. Clearly, a protocol that is not full-information could
not solve the task in fewer rounds, k′, as it can be simulated (by ignoring extra
information) by a full-information protocol using the same number of rounds, k′.

In the rest of the paper we concentrate on solving k-approximate agreement,
since this is what is needed to solve any other task. We aim at doing so with the
fewest possible number of bits, with a number of rounds as close as possible to
k (it is impossible to go below k).

298 C. Delporte-Gallet et al.

3 Approximate Agreement with Few Bits

Here we describe our first main result. It is possible to solve k-approximate
agreement in k rounds on I, by sending 1-bit messages, in most executions.

3.1 Approximate Agreement on a Single Edge

We begin with the k-edge approximate agreement protocol in Fig. 1, which sends
messages of a single bit, and executes k rounds. Then we will extended it to a
general I.

In the protocol of Fig. 1, each process p ∈ {A,B} executes k rounds, to
compute a label �p. The output vertices for the task are then (A, �A), (B, �B).

In each round of the protocol, each edge is subdivided into 3 edges. Fig. 2
illustrates the way a new labelling is computed in round k, and Fig. 3 shows the
labelling of executions for the first three rounds. In Fig. 2, if A (red in the figures)
with label i does not receive a message in the round, its new label becomes 3i
(vertical line) and if it receives a message from the other process its new label
is either 3i + 1 or 3i − 1 (diagonal lines). For this, A has to distinguish between
receiving a message from its left in the path (here B with j) or, from its right
(here B with label j+1). Hence it is sufficient for A to receive a different bit from
B when the label of B is j or j+1. To ensure this property, two successive B (resp.
A) vertices in the path have to send different bits. At round r, our construct
will label the right vertex (B,m) for (A, i) such that i + m = (3r − 1)/2 (right),
and the left vertex (B,m′) such that i + m′ = (3r + 1)/2. The following lemma
implies that successive vertices corresponding to the same process send different
bits.

Lemma 1. r mod 2 = 0 iff (3r − 1)/2 mod 2 = 0 iff (3r + 1)/2 mod 2 = 1.

Let P (r) be the conjunction of the following properties:

0 ≤ �A ≤ (3r − 1)/2 (3.1)
0 ≤ �B ≤ (3r − 1)/2 (3.2)

(�B = (3r − 1)/2 − �A) ∨ (�B = (3r + 1)/2 − �A) (3.3)

Lemma 2. P (r) is true at the end of round r (0 ≤ r ≤ k).

Proof. We show by induction on r that P (r) is true at the end of the round r
with 0 ≤ r ≤ k (the round r = 0 is the initialization).
P (0) is true: At the end of the initialization �A = �B = 0 = (30 − 1)/2, thus
P (0) is true.
For 0 ≤ r < k, P (r) ⇒ P (r + 1): Let xA and xB be the values of �A and
�B resp. at the beginning of round r + 1. In round r + 1, each process p sends
(Line 4) xp mod 2. At least one of these messages is received (by definition of
the wait-free dynamic graph model), Line 5.

If A received ⊥ (no message): A executes Line 7 and then �A = 3xA. By
P (r): 0 ≤ xA ≤ (3r − 1)/2, we have 0 ≤ �A ≤ 3(3r − 1)/2. Since 3(3r − 1)/2 =
(3r+1 − 1)/2 − 1 ≤ (3r+1 − 1)/2, inequality (3.1) is true.

Communication Complexity of Wait-Free Computability 299

Code for process p

k-edge approximate agreement

Local variables:
1 � = 0

Code:
2 round r from 1 to k do
3 prop = � mod 2
4 send(prop)
5 m = receive()
6 if m = ⊥
7 then � = 3 ∗ � /*receive nothing */
8 else
9 if (prop = m and r mod 2 = 1) or (prop �= m and r mod 2 = 0)
10 then � = 3 ∗ � + 1
11 else � = 3 ∗ � − 1
12 end round
13 ouput(p, �)

Fig. 1. Solving k-edge approximate agreement with 1-bit messages, in k rounds. Each
process p ∈ {A, B} runs this code. The input vertex is (p, 0), the output vertex com-
puted is (p, �).

3i+ 1 3j3j + 13j + 23i− 1 3i

i jj + 1 i+ 1

3i+ 2 3j − 1

round k

round k + 1

Fig. 2. Execution of one round, how the labels are computed (Color figure online)

0

0

0

1 2 3 4 5 6 7 8 9 10 11 12 13 012345678910111213

0
2

0

0

0

431 1234

11

round 1

round 2

round 3

Fig. 3. Executions of the protocol in Fig. 1 for k = 3 (Color figure online)

If A received a message, A executes either Line 10 or Line 11, and the value of
�A becomes 3xA + d with d = 1 or d = −1. If xA �= 0 with P (r), 1 ≤ xA ≤ (3r −
1)/2, we have 0 ≤ �A ≤ 3(3r −1)/2+d. Since 3(3r −1)/2−1+d ≤ (3r+1 −1)/2,
inequality (3.1) is true.

If xA = 0, by P (r), xB = (3r − 1)/2. By Lemma 1, (r +1) mod 2 = 1 implies
that xB mod 2 = 0, then xA mod 2 = xB mod 2, and (r + 1) mod 2 = 0 implies

300 C. Delporte-Gallet et al.

that xB mod 2 = 1. Then xA mod 2 �= xB mod 2. Therefore the condition in
Line 9 is true and A executes Line 10, �A = 1, and inequality (3.1) is true.

In both cases, inequality (3.1) is true. Similarly, inequality (3.2) is also true.
By the induction hypothesis for P (r), we have xa + xb = (3r − 1)/2 or

xa + xb = (3r + 1)/2. By Lemma 1, the condition in Line 9 is true if and only if
xa + xb = (3r − 1)/2.

If xa + xb = (3r − 1)/2: If A receives a value from B then �A = 3xA + 1, if B
receives a value from A then �B = 3xB +1. If A and B receive a value from each
other, �A + �B = 3(xa + xb) + 2 = (3r+1 + 1)/2. If one of them does not receive
the value from the other, �A + �B = 3(xa + xb) + 1 = (3r+1 − 1)/2, proving that
Eq. (3.3) is true.

If xa + xb = (3r + 1)/2: if A receives a value from B then �A = 3xA − 1. If
B receives a value from A then �B = 3xB − 1. If A and B receive a value from
each other, �A + �B = 3(xa + xb) − 2 = (3r+1 − 1)/2. If one of them does not
receive the value from the other �A+�B = 3(xa+xb)−1 = (3r+1+1)/2, proving
Eq. (3.3). In both cases Eq. (3.3) is true.

We conclude that at the end of round r + 1, Eqs. (3.1), (3.2) and (3.3) are
true, proving P (r + 1).

By Lemma 2, the values computed �p, p ∈ {A,B}, satisfy 0 ≤ �p ≤ (3k−1)/2.
Also, in each of the 3k possible executions, distinct values are computed by A,B,
such that �B = (3k + d)/2 − �A with d = −1 or d = +1. Thus, we have the
following.

Theorem 2. The protocol in Fig. 1 solves k-edge approximate agreement in k
rounds.

The protocol is optimal in the number of rounds, by Theorem 1, taking I to
consist of a single edge.

3.2 Approximate Agreement on I
When the input graph I is arbitrary, and process A starts with input a, if there
are several possible inputs of B, which are neighbors of (A, a) in I, then A needs
to identify the input of B to know on which input edge to work with B to solve
edge approximate agreement. Except of course in the case of a solo execution,
where A does not receive any messages from B, and its output will be (A, a0).
For any x, if B considers possible that A has not received its input in the first x
rounds, its label is � = (3x−1)/2, and B must continue to try to communicate its
input in round x+1. Otherwise its input is already known by the other process,
so its label is � �= (3x −1)/2 and it does not need to send information concerning
its input. This is implemented in Line 4 of the protocol in Fig. 4.

Theorem 3. The protocol in Fig. 4 solves k-approximate agreement on I, in k
rounds.

Communication Complexity of Wait-Free Computability 301

Code for process

k-Approximate on I with (input)

Local variables:
1 � = 0

2 Iother := ⊥
Code:
3 round r from 1 to k do
4 if � = (3r−1 − 1)/2 then i = input else i = ⊥
5 prop = � mod 2
6 send(i, prop)
7 m = receive() /* if m = (i, l) then m.input denotes i and m.label denotes l */
8 if m = ⊥
9 then � = 3 ∗ � /*receive nothing */
10 else
11 if m.input �= ⊥ and Iother = ⊥ then Iother = m.input
12 if (prop = m.label and r mod 2 = 1) or (prop �= m.label and r mod 2 = 0)
13 then � = 3 ∗ � + 1
14 else � = 3 ∗ � − 1
15 end round
16 ouput(�; Iother) /*if � �= 0 then Iother �= ⊥*/

Fig. 4. Solving k-Approximate on I. Each process p ∈ {A, B} runs this code, with
initial value input. The input vertex is (p, input), the output vertex computed is
(p, input · Iother · �).

The basic proof is similar to Theorem 2, with the following additional
argument.

Lemma 3. In the protocol of Fig. 4, each process p outputs a value (�p, Iother)
s.t.

(1) �p is between 0 and (3k − 1)/2,
(2) if �p �= 0 then Iother is the colored input of the other process, and
(3) �B = (3k − 1)/2 − �A or �B = (3k + 1)/2 − �A.

Proof. Lemma 2 implies this property except for part (2). First notice that Iother
is modified at most once in Line 11. Consider process A. Let Q(r) be the following
property at the end of round r: if �A �= 0 then Iother is the colored input of the
other process. We prove Q(r), r ≥ 0, by induction.

After the initialization (round 0) �A = 0 so Q(0) is trivially true.
Assume Q(r) is true. Let xA (resp. xB) be the value of �A (resp. �B) at the

end of round r. From Q(r), if xA �= 0 then Iother is the colored input of the other
process. As Iother is modified at most once, in Line 11, it remains the input of
the other process.

If xA = 0 and �A �= 0 at the end of round r+1, then A has received a message
from B. By Lemma 2, xB = (3k − 1)/2, at Line 6, B sends its input. So Q(r) is
true and the lemma is established.

Remark 2. In the protocol of Fig. 4, at each round, a process sends a bit (prop)
and sometimes its input. It is possible to save some bits as follows: when the

302 C. Delporte-Gallet et al.

process sends its input color, it does not send prop explicitly (if there are at
least 2 colors). Since a process needs from 1 to log(c) bits to send its color, we
can code this color such that, in round r, if the process has to send its color α,
it sends (r + α) mod c.

3.3 Optimizing the Communication Complexity

In our protocol, if B considers possible that A has not received its input in the
first x rounds, B continues to try to communicate its input in round x + 1. We
first show that this is essentially necessary. Let b1, b2, . . . , bd be an enumeration
of the input values of B on edges incident to a vertex (A, a).

Theorem 4. Let d be the degree of a vertex (A, a) in I with d ≥ 2. Every k-
round k-approximate agreement protocol on I has d executions (starting in the
d edges incident on (A, a) with schedule (A → B)k), where messages of at least
log2(d+2)

2 −1 bits are sent by B at each round on average over these d executions.
At least k log2(d+2)

2 bits are sent on average over these d executions.

Proof (sketch). Let schx be the schedule (A → B)x(A ← B)(A → B)(k−x−1),
for 0 ≤ x ≤ k − 1 and k ≥ 1. We prove by induction on x ≥ 0, that B
must send a different message in every round r ≤ x + 1, for the execution
starting in {(A, a), (B, bj)} ∈ I, with schedule schx, and the execution starting
in {(A, a), (B, bi)} ∈ I, with schedule schx, for every i �= j.

For the basis, consider sch0 = (A ← B)(A → B)(k−1), and assume for
contradiction that B sends the same message in the first round, on some input,
b ∈ {b0, . . . bd} and b′ ∈ {b0, . . . bd} \ {b}. A cannot distinguish b and b′. Thus,
A cannot output a vertex (A, abx), for some x > 0, where b is the input of B.
Its only choice is then to output (A, a0). But producing (A, a0) in an execution
where A has received a message, implies that the distance from (A, a0) to (B, b0),
is less than 3k. The proof of the inductive step is similar.

We now analyze how large the message has to be. Since A has to identify the
input b of B, based on a single message by B, B has to send different messages
at round x + 1, in all the possible d input vertices (B, bj) that are neighbours of
(A, a). A naive solution would be for B to send messages of size log2 d. In this
case, the total number of bits sent in each execution with schedule (A → B)k is
k + k log2 d, because A sends messages of at least 1 bit.

However, if it is possible for B to send messages of different sizes, it can send
less bits. Namely, it is sufficient that in each round, it ensures that with different
inputs b, b′, {(A, a), (B, b)} ∈ I, {(A, a), (B, b′)} ∈ I, it sends different messages.

In this case, the size of a message varies from 1 to log2 d bits. If we consider the
d executions with schedule (A → B)k, at each round to send d different messages,
we need 2 messages of size one (0, 1), 22 message of size two (00, 01, 10, 11), etc.
We assume that d is between 2i+1−3 and 2i−2 i.e 2i−2 ≤ d ≤ 2i+1−3. Over all
the executions, the process sends at least

∑j=i−1
j=1 j2j bits, i.e 2i(i − 2) + 2 bits.

Namely, on average over these d executions at least log2(d+2)
2 − 1 per message.

Communication Complexity of Wait-Free Computability 303

And this has to be sent at each round of (A → B)k (A sends at least 1 bit per
message), thus the average number of bits over these d executions is at least
k log2(d+2)

2 .

The previous theorem is stated in terms of the vertex degree d, but actually,
a chromatic number is the more appropriate notion. Indeed, it is not necessary
for the processes to send their inputs, they need only to identify them locally.
Namely, A, with input a, does not need to know the input of B, it is sufficient
that it distinguishes the different possible inputs of B, with respect to vertex
(A, a). Consider the distance-2 graphs IA, IB with vertices colored A,B resp.
in I. The edges of IB are {(B, v), (B,w)} if there exits a vertex (A, u), adjacent
to both (B, v), (B,w) in I. Similarly for IA. Consider now a vertex coloring of
these graphs. All vertices (B, b) that are neighbors of (A, a) in I have a different
color. Hence, A with input a may deduce the input of B from this color. This
is what we call input-colors, and indeed these values are what it is necessary
to transmit. The number of input-colors may be equal to the number of input
values, e.g. when all pairs of input values are in I (a common case actually),
but it may be much less. Let c = max {chromNumb(IA), chromNumb(IB)}.
We have the following result (that can be slightly improved, see Remark 2),
assuming the protocol sends these colors instead of input values.

Theorem 5. The average number of bits sent in an execution of the protocol in
Fig. 4, over all executions, is at most 2k + 4 log c bits. Namely, messages are of
size at most 1 + 2 log c

k bits on average.

Proof. To compute the number of bits that are sent by the protocol, the two
first rounds have to be considered separately. In the first round A and B send
at most log c + 1 bits. This happens in the first round of 3k executions. In total,
2(1 + log c)3k.

We consider the label at the beginning of the round.
In the second round, A with label 0 sends 1 bit, and A with label 1 sends at

most log c + 1 bits. A with label 0 will be the second round of 3k−1 executions,
A with label 1 will be the second round of 2 · 3k−1 executions. In total 2(3k−1 +
(log c + 1) · 2 · 3k−1) = 2 · 3k + 4(log c)3k−1.

In the round i, A with label 0 will be in the i-th round of 3k−(i−1) executions,
the (3i−1−1)/2 A with other labels will be in 2·3k−(i−1) executions. A with label
(3i−1−1/2) sends at most (1+log c) bits. A with other labels sends 1 bit. In total
2(3k−(i−1)+(1+log c)·2·3k−(i−1)+(3i−1−3/2)·3k−(i−1)) = 2·3k+4(log c)3k−(i−1).

If we have at least 2 rounds we have (2·3k+2(log c)3k)+(2·3k+4(log c)3k−1)+
∑i=k

i=3(2 · 3k + 4(log c)3k−(i−1)) = 2k · 3k + (log c)(4 · 3k − 6). On average over the
3k executions, at most 2k + 4 log c bits per execution are exchanged.

4 Full-Information Protocol Using only Beeps

Here we consider the case where all messages sent by a protocol are identical:
they consist of a unary signal equal to 1. A process can decide in each round

304 C. Delporte-Gallet et al.

to send a message or not. As before, in every round, the three events EV =
{A → B,B → A,A ↔ B} are possible. Thus, the message sent by a process will
be delivered only if the corresponding delivery event is happening. Notice that
if both A and B decide to send a beep in the same round, at least one of them
receives a beep. But if only one of them sends, possibly no-one receives.

A B A B A B A B A B
0 4 1 3 2 2 3 1 4 0
0 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1 0 1

First, notice that it is possible to
solve k-edge approximate agreement
in 3k rounds, using the algorithm on
the right. The figure above it depicts
the 3 rounds, where 0 means no beep
is sent.

Now we show that every wait-free
solvable task is solvable in the strong
beep model. Furthermore, it is still
possible to solve any task with a num-
ber of rounds that is a constant away
from the optimal. An emulation in
the beep model, of the communication
exchanges between A, B in the general model, is described in Fig. 5. More pre-
cisely, assume that VA (resp. VB) is the set of possible values sent by A (resp.
by B). The emulation runs in rounds (x, y) for x ∈ VA and y ∈ VB enumerated
in some predefined order. If A has to send vA (resp. B has to send vB) in the
emulated round, A (resp. B) sends a beep at each round (vA, y) for y ∈ VB

(resp. round (x, vB) for x ∈ VA). Hence they both send beeps only in round
(vA, vB), and the beep model ensures that at least one of A and B receives a
beep. Processes that receive the bit use it in that round, and the emulated values
of received bits, (rA and rB) are set to vB for A, or to vA for B. This implies
the correctness of the emulation.

Lemma 4. The protocol of Fig. 5 emulates a communication round of the wait-
free dynamic model in which A sends vA ∈ VA and B sends VB ∈ VB, using
|VA| × |VB | rounds.

Let ca (resp. cb) be the chromatic number of the graph IA (resp. IB).

Theorem 6. The k-approximate agreement task on I is solvable in the beep
model in less than 4k · ca · cb rounds.

It is possible to improve the constant 4 in the round complexity, using the
3-round emulation technique described above. The two first rounds are special,
but after that it is possible to subdivide the edges in the middle using 3 rounds.

5 The Three-Process Case

Here we briefly discuss the case of 3 processes, A,B,C, while avoiding as much
as possible technical topology notation. The goal is only to prove that for 3
processes, there is no protocol with fixed message size, which can solve all wait-
free solvable tasks in an optimal number of rounds.

Communication Complexity of Wait-Free Computability 305

5.1 A Wait-Free Model for Three Processes

Interestingly, the impossibility happens already in the case of a single input,
which we call triangle-approximate agreement, to contrast it with the edge-
approximate agreement task.

There are several ways of generalizing our wait-
free dynamic network model from 2 to 3 processes, see
e.g. [13] or [1] (where characterizations are presented,
using full-information protocols), for the results we
want to present, it suffices to consider the set of possi-
ble communication graphs, for each round, that define
a chromatic subdivision (if a full-information protocol
is used) and hence, correspond to wait-free models.
Namely, an event is a directed graph on three vertices, A,B,C, and the events
EV for 3 processes we consider, are defined by each triangle in the figure. Notice
that the boundary for each pair of processes of the chromatic subdivision con-
sists of all events for our 2 processes model. Similarly, we have the following,
illustrated in Fig. 6, where C is depicted as a blue corner vertex, that never gets
messages from A,B.

emulation of send vA ∈ VA for process A and send vB ∈ VB for process B :
1 Code for process A
2 rA = ⊥
3 forall round (x, y) in some fixed order do
4 if (x = vA)
5 then send(beep)
6 if beep = receive() then rA = y
7 /* rA is the received message by A
8 Code for process B
9 rB = ⊥
10 forall round (x, y) in some fixed order do
11 if (y = vB)
12 then send(beep)
13 if beep = receive() then rB = x
14 /* rB is the received message by B

Fig. 5. Emulation of a round between A and B with beep-rounds.

Lemma 5. In the k-round full-information protocol, there are 3k executions,
where C runs solo. These define a normal chromatic path for A,B of length 3k,
defined by all schedules where C runs solo.

5.2 A Triangle Approximate Agreement Task for 3 Processes

The central task for three processes is k-triangle approximate agreement, where
there is a single input configuration σ = {(A, 0), (B, 0), (C, 0)} for the 3 processes
in I, and thus I consists of the simplex σ, together with all its subsets. The
output complex consists of a chromatic subdivision, iterated k times. The case
of k = 2 and k = 3 is in Fig. 6.

306 C. Delporte-Gallet et al.

Fig. 6. Chromatically subdivided 2 times (left) and 3 times (right) for 3 processes

We don’t give a formal definition of the k-triangle approximate agreement
task, the intuition can be seen from the following chromatic subdivision figures.
For the impossibility we prove, it is sufficient to define formally only one part of
this task.

We focus on one part of the output complex, O, corresponding to all the
edges by A and B, incident to the output vertex (C, 0) (blue corner), which is
the one C has to output in executions where it runs solo. In these executions, A
and B hear from C, but C never hears from them. There is a chromatic normal
path in O of 3k edges (yellow, green vertices)

PAB = (A, 0), (B, (3k − 1)/2), (A, 1), . . . , (A, (3k − 1)/2), (B, 0).

Each edge of PAB is contained in the following two triangles. For each edge e
of PAB , there is a triangle by adding the vertex (C, 0). Furthermore, for each
edge e of PAB , there is a vertex (C, e), and a triangle consisting of e together
with (C, e). The meaning is that C should produce as output (C, 0) in a solo
execution where A and B decide the values in e, but if C does get a message in
the last round of this execution, then C outputs (C, e).

5.3 The Impossibility for 3 Processes

We describe an impossibility result that shows that an optimal protocol cannot
use messages of fixed size. At the end we discuss a more general version, similar
to Theorem 4.

Consider all schedules of k rounds where C runs solo. Projecting out C, they
are isomorphic to the schedules where only A and B participate. Recall that
the full-information protocol is isomorphic to the k-edge approximate agree-
ment task, which consists of a normal chromatic subdivision of length 3k, with
boundary that we denote {(A, 0), (B, 0)} (Lemma 5).

Consider the d = 3k−1 edges where A and B get messages from each other
in the last round. For each such edge e, there are two triangles in the output
complex of the k-triangle approximate agreement task. One where C runs solo,

Communication Complexity of Wait-Free Computability 307

and another, where C gets a message from both A,B, in round k (the three get
messages from each other). Of course, in that last round, A,B cannot tell if their
messages were delivered to C or not, so they must decide the same value in both
executions.

Let us enumerate the output values of C, as e1, e2, . . . , ed, for each one of the
d = 3k−1 edges where all get messages from each other in the last round. By
definition of the task, in any execution where C runs solo, it has to decide (C, 0).
If C runs solo for k − 1 rounds, and gets messages from both A,B in round k,
then C must decide vertex (C, ei), if the values decided by A,B are in edge ei.
To see that C cannot decide (C, 0) if it has received a message, an argument
of distances similar to Theorem 4 can be used, or directly arguing in terms of
emulating a full-information protocol. It follows that A,B must send messages
that (together) allow C to distinguish d = 3k−1 different edges.

Theorem 7. Every k-round implementation of a full-information protocol for
three processes has executions where A,B send in a round messages (together)
of Ω(k) bits.

We can get a stronger version, by using an argument similar to the argument
of Theorem 4, to show that A,B must send longer and longer messages each
round. But this version suffices to show that if instead of using full-information
protocols, we use protocols that send messages of a fixed size, then there is a
k-triangle approximate agreement task that is not solvable in k rounds (while it
is solvable in k rounds using a full-information protocol).

6 Conclusions

We initiated the study of communication complexity of wait-free distributed
computing, in a two-process dynamic graph model. In addition to being simple,
this model is equivalent to other previously studied models in terms of task
computability. We showed that it is possible to implement a full-information
protocol using messages of constant size, which do not grow with the number of
rounds. Then we showed that even sending only beeps it is possible to do so, at
the cost of only a constant number of extra rounds.

Although we focused on the case of two processes, we showed that already
for three processes, messages of constant size do not suffice to solve every task
in an optimal number of rounds. To prove our main Theorem 5, we identified a
parameter that determines communication complexity lower bounds, in the form
of an information chromatic number of certain graphs related to the possible
inputs, and showed that it can mostly be attained by our protocols; this notion
seems to be implicit in many of our arguments, but further work is needed to
explore this subject.

Many interesting avenues are open to explore in future work. It would be
interesting to consider wait-free solvability in beeping models like in [5], which
are weaker than ours, because in those models, when A beeps at the same round
than B, neither knows if the other beeped. Our results for two processes apply

308 C. Delporte-Gallet et al.

directly to the iterated shared memory model [18], as in this case the mod-
els are essentially the same. Our lower bounds apply to non-iterated shared
memory versions of our model, but not our algorithms, as the simulations of
non-iterated models [11] do not try to optimize the communication complexity.
We barely touched the case of n ≥ 3 processes, much interesting work remains
to be done. It is intriguing to consider [16], where an algorithm implementing a
single-writer/multi-reader atomic register on an asynchronous message passing
system using 2-bit messages is presented.

References

1. Afek, Y., Gafni, E.: A simple characterization of asynchronous computations. The-
oret. Comput. Sci. 561, 88–95 (2015). https://doi.org/10.1016/j.tcs.2014.07.022.
http://www.sciencedirect.com/science/article/pii/S0304397514005659

2. Amdur, E.S., Weber, S.M., Hadzilacos, V.: On the message complexity of binary
byzantine agreement under crash failures. Distrib. Comp. 5(4), 175–186 (1992).
https://doi.org/10.1007/BF02277665

3. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed
1-solvable tasks. J. Algorithms 11(3), 420–440 (1990). https://doi.org/10.1016/
0196-6774(90)90020-F

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012). https://doi.org/10.1080/17445760.2012.668546

5. Casteigts, A., Métivier, Y., Robson, J.M., Zemmari, A.: Counting in one-hop beep-
ing networks. Theor. Comput. Sci. 780, 20–28 (2019). https://doi.org/10.1016/j.
tcs.2019.02.009

6. Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving
symmetry in chains and rings. J. ACM 55(1), 3:1–3:28 (2008). https://doi.org/10.
1145/1326554.1326557

7. Dinitz, Y., Solomon, N.: Two absolute bounds for distributed bit complexity.
In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 115–126.
Springer, Heidelberg (2005). https://doi.org/10.1007/11429647 11

8. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

9. Fevat, T., Godard, E.: Minimal obstructions for the coordinated attack problem
and beyond. In: 2011 International Parallel and Distributed Processing Symposium
(IPDPS), pp. 1001–1011. IEEE, May 2011. https://doi.org/10.1109/IPDPS.2011.96

10. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable. SIAM J. Com-
put. 28(3), 970–983 (1999)

11. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. In: Lu, C.,
Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 205–218.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1 17

12. Galil, Z., Mayer, A., Yung, M.: Resolving message complexity of byzantine agree-
ment and beyond. In: 36th Annual Foundations of Computer Science, pp. 724–733.
IEEE, Oct 1995. https://doi.org/10.1109/SFCS.1995.492674

13. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Elsevier-Morgan Kaufmann, San Francisco (2013). https://doi.
org/10.1016/C2011-0-07032-1

https://doi.org/10.1016/j.tcs.2014.07.022
http://www.sciencedirect.com/science/article/pii/S0304397514005659
https://doi.org/10.1007/BF02277665
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1016/j.tcs.2019.02.009
https://doi.org/10.1016/j.tcs.2019.02.009
https://doi.org/10.1145/1326554.1326557
https://doi.org/10.1145/1326554.1326557
https://doi.org/10.1007/11429647_11
https://doi.org/10.1109/IPDPS.2011.96
https://doi.org/10.1007/978-3-642-17653-1_17
https://doi.org/10.1109/SFCS.1995.492674
https://doi.org/10.1016/C2011-0-07032-1
https://doi.org/10.1016/C2011-0-07032-1

Communication Complexity of Wait-Free Computability 309

14. Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks (extended
abstract). In: Proceedings of the Twenty-ninth Annual ACM Symposium on The-
ory of Computing, STOC 1997, pp. 589–598. ACM, New York (1997). https://doi.
org/10.1145/258533.258652

15. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

16. Mostefaoui, A., Raynal, M.: Two-bit messages are sufficient to implement atomic
read/write registers in crash-prone systems. In: Principles of Distributed Comput-
ing (PODC), pp. 381–389. ACM (2016). https://doi.org/10.1145/2933057.2933095

17. Pfleger, D., Schmid, U.: On knowledge and communication complexity in distri-
buted systems. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol.
11085, pp. 312–330. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01325-7 27

18. Rajsbaum, S.: Iterated shared memory models. In: López-Ortiz, A. (ed.) LATIN
2010. LNCS, vol. 6034, pp. 407–416. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12200-2 36

19. Razborov, A.A.: Communication complexity. In: Dierk Schleicher, M.L. (ed.) An
Invitation to Mathematics, pp. 97–117. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19533-4

20. Winkler, K., Schmid, U.: An overview of recent results for consensus in directed
dynamic networks. Bull. EATCS 128 (2019). http://bulletin.eatcs.org/index.php/
beatcs/article/view/581/585

21. Yue, Y., Lei, F., Liu, X., Wu, J.: Asynchronous computability theorem in arbitrary
solo models. Mathematics 8(5), 757 (2020). https://doi.org/10.3390/math8050757

https://doi.org/10.1145/258533.258652
https://doi.org/10.1145/258533.258652
https://doi.org/10.1145/2933057.2933095
https://doi.org/10.1007/978-3-030-01325-7_27
https://doi.org/10.1007/978-3-030-01325-7_27
https://doi.org/10.1007/978-3-642-12200-2_36
https://doi.org/10.1007/978-3-642-12200-2_36
https://doi.org/10.1007/978-3-642-19533-4
https://doi.org/10.1007/978-3-642-19533-4
http://bulletin.eatcs.org/index.php/beatcs/article/view/581/585
http://bulletin.eatcs.org/index.php/beatcs/article/view/581/585
https://doi.org/10.3390/math8050757

Distance Labeling Schemes for K4-Free
Bridged Graphs

Victor Chepoi, Arnaud Labourel(B), and Sébastien Ratel

Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
{victor.chepoi,arnaud.labourel,sebastien.ratel}@lis-lab.fr

Abstract. k-Approximate distance labeling schemes are schemes that
label the vertices of a graph with short labels in such a way that the k-
approximation of the distance between any two vertices u and v can be
determined efficiently by merely inspecting the labels of u and v, without
using any other information. One of the important problems is finding
natural classes of graphs admitting exact or approximate distance label-
ing schemes with labels of polylogarithmic size. In this paper, we show
that the class of K4-free bridged graphs on n nodes enjoys 4-approximate
distance labeling scheme with labels of O(log3 n) bits.

Keywords: Bridged graphs · Distance labeling schemes

1 Introduction

A (distributed) labeling scheme is a scheme maintaining global information on a
network using labels assigned to nodes of the network. Their goal is to locally
store some useful information about the network in order to answer a specific
query concerning a pair of nodes by only inspecting the labels of the two nodes.
Motivation for such localized data structure in distributed computing is surveyed
and widely discussed in [19]. The quality of a labeling scheme is measured by the
size of the labels of nodes and the time required to answer queries. The predefined
queries can be of various types such as distance, adjacency, or routing.

In this paper we investigate distance labeling schemes. A distance labeling
scheme (DLS for short) on a graph family G consists of an encoding function
CG : V → {0, 1}∗ that gives binary labels to every vertex of a graph G ∈ G , and
of a decoding function DG : {0, 1}∗ × {0, 1}∗ → N that, given the labels of two
vertices u and v of G, computes the distance dG(u, v) between u and v in G.
For k ∈ N

∗, we call a labeling scheme a k-approximate distance labeling scheme
if given the labels of two vertices u and v, the decoding function computes an
integer comprised between dG(u, v) and k · dG(u, v).

By a result of Gavoille et al. [16], the family of all graphs on n vertices
admits a distance labeling scheme using labels of O(n) bits. This scheme is
asymptotically optimal since simple counting arguments on the number of n-
vertex graphs show that Ω(n) bits are necessary. Another important result is

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 310–327, 2020.
https://doi.org/10.1007/978-3-030-54921-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_18

Distance Labeling Schemes for K4-Free Bridged Graphs 311

that trees admit a DLS with labels of O(log2 n) bits. Quite recently, Freedman
et al. [12] obtained such a scheme allowing constant time distance queries. Several
graph classes containing trees also admit DLS with labels of length O(log2 n):
bounded tree-width graphs [16], distance-hereditary graph [14], bounded clique-
width graphs [10], or planar graphs of non-positive curvature [8]. More recently,
in [9] we designed DLS with labels of length O(log3 n) for cube-free median
graphs. Other families of graphs have been considered such as interval graphs,
permutation graphs, and their generalizations [4,15] for which an optimal bound
of Θ(log n) bits was given, and planar graphs for which there is a lower bound of
Ω(n

1
3) bits [16] and an upper bound of O(

√
n) bits [17]. Other results concern

approximate distance labeling schemes. For arbitrary graphs, Thorup and Zwick
[22] proposed (2k−1)-approximate DLS, for each integer k ≥ 1, with labels of size
O(n1/k log2 n). In [13], it is proved that trees (and bounded tree-width graphs as
well) admit (1+1/ log n)-approximate DLS with labels of size O(log n log log n),
and this is tight in terms of label length and approximation. They also designed
O(1)-additive DLS with O(log2 n)-labels for several families of graphs, including
the graphs with bounded longest induced cycle, and, more generally, the graphs
of bounded tree–length. Interestingly, it is easy to show that every exact DLS
for these families of graphs needs labels of Ω(n) bits in the worst-case [13].

Finding natural classes of graphs admitting exact or approximate distance
labeling schemes with labels of polylogarithmic size is an important and challeng-
ing problem. In this note we continue the line of research we started in [9] to inves-
tigate classes of graphs with rich metric properties, and we design approximate
distance labeling schemes of polylogarithmic size for K4-free bridged graphs.
Together with hyperbolic, median, and Helly graphs, bridged graphs constitute
the most important classes of graphs in metric graph theory [3,5]. They occurred
in the investigation of graphs satisfying basic properties of classical Euclidean
convexity: bridged graphs are the graphs in which the neighborhoods of convex
sets are convex and it was shown in [11,21] that they are exactly the graphs
in which all isometric cycles halve length 3. A local-to-global characterization
of bridged graphs was found in [6]: they are exactly the graphs whose clique
complexes are simply connected and the neighborhoods of vertices do not con-
taining induced 4- and 5-cycles. This result was rediscovered in [18], where such
graphs and complexes were called systolic. Bridged (alias systolic) graphs and
complexes have been thoroughly investigated in graph theory and in geometric
group theory. A K4-free bridged graph is a bridged graph not containing 4-cliques
(two examples are given on Fig. 1). Notice that topologically K4-free bridged
graphs are quite general: any graph of girth ≥6 may occur in the neighborhood
of a vertex of a K4-free bridged graph. The main result of this paper is the
following:

Theorem 1. The class G of K4-free bridged graphs on n vertices admits a 4-
approximate distance labeling scheme using labels of O(log3 n) bits that can be
decoded in constant time.

The remaining part of this note is organized in the following way. The
main ideas of our distance labeling scheme are informally described in Sect. 2.

312 V. Chepoi et al.

Fig. 1. Examples of K4-free bridged graphs.

Section 3 introduces the notions used in this paper. The next three Sects. 4, 5,
and 6 present the most important geometric and structural properties of K4-
free graphs, which are the essence of our distance labeling scheme. In particular,
we describe a partition of vertices of G defined by the star of a median vertex.
In Section 7 we characterize the pairs of vertices connected by a shortest path
containing the center of this star. The distance labeling scheme and its perfor-
mances are described in Sect. 8. Due to page limits, the missing proofs and the
pseudocodes are provided in the full version of the paper and in Chapter 8 of the
PhD thesis of S. Ratel [20].

2 Main Ideas of the Scheme

The global structure of our distance labeling scheme for K4-free bridged graphs
is similar to the one described in [9] for cube-free median graphs. Namely, the
scheme is based on a recursive partitioning of the graph into a star and its
fibers (which are classified as panels and cones). However, the stars and the
fibers of K4-free bridged graphs have completely different structural and metric
properties than those of cube-free median graphs.

Let G = (V,E) be a K4-free bridged graph on n vertices. The encoding
algorithm first searches for a median vertex m of G, i.e., m minimizing x �→∑

v∈V dG(x, v). It then computes a particular 2-neighborhood of m that we call
the star St(m) of m. Every vertex of G can be associated to a unique vertex
of St(m). This allows us to define the fibers of St(m): for a vertex x ∈ St(m),
the fiber F (x) of x corresponds to the set of all the vertices of G associated to
x. The set of all the fibers of St(m) constitutes a partitioning of G. Moreover,
choosing m as a median vertex ensures that every fiber contains at most the half
of the vertices of G. The fibers are not convex. Nevertheless, they are connected
and isometric, and thus induce bridged subgraphs of G. Consequently, we can
apply recursively this partitioning to every fiber, without accumulating errors on
distances at each step. Finally, we study the boundaries and the total boundary
of those fibers, i.e., respectively, the set of all the vertices of a fiber having a

Distance Labeling Schemes for K4-Free Bridged Graphs 313

neighbor in another particular fiber, and the union of every boundary of a fiber.
We will see that those boundaries do not induce actual trees but something
close that we call “starshaped trees”. Unfortunately, these starshaped trees are
not isometric. This explains why we obtain an approximate and not an exact
distance labeling scheme. Indeed, distances computed in the total boundary can
be twice as much as the distances in the graph.

We distinguish two types of fibers F (x) depending on the distance between
x and m: panels are fibers leaving from a neighbor x of m; cones are fibers
associated to a vertex x at distance 2 from m. One of our main results to obtain a
compact labeling scheme establishes that a vertex in a panel admits two “exits”
on the total boundary of this panel, and that a vertex in a cone admits an
“entrance” on each boundary of the cone (and it appears that every cone has
exactly two boundaries). The median vertex m or those “entrances” and “exits”
of a vertex u on a fiber F (x) are guaranteed to lie on a path of length at most
four times a shortest (u, v)-path for any vertex v outside F (x). It follows that,
at each recursive step, every vertex u has to store information relative only to
three vertices (m, and the two “entrances” or “exits” of u). Since a panel can
have a linear number of boundaries, without this main property, our scheme
would use labels of linear length because a vertex in a panel could have to
store information relative to each boundary to allow to compute distances with
constant (multiplicative) error. Since we allow a multiplicative error of 4 at most,
we will see that in almost every case, we can return the length of a shortest (u, v)-
path passing through the center m of the star St(m) of the partitioning at some
recursive step (to be determined). Lemmas 13 and 14 respectively indicate when
this length corresponds to the exact distance between u and v, and when it is an
approximation of the distance (up to factor 2). The case where u and v belong
to distinct fibers that are “too close” is more technical and is the one leading to
a multiplicative error of four in the worst case.

3 Preliminaries

All graphs G = (V,E) in this note are finite, undirected, simple, and connected.
We will write u ∼ v if two vertices u and v are adjacent. The distance dG(u, v)
between two vertices u and v is the length of a shortest (u, v)-path in G, and
the interval I(u, v) := {x ∈ V : dG(u, x) + dG(x, v) = dG(u, v)} consists of all
the vertices on shortest (u, v)-paths. Let H = (V ′, E′) be a subgraph of G. Then
H is called convex if I(u, v) ⊆ H for any two vertices u, v of H. The convex
hull of a subgraph H ′ of G is the smallest convex subgraph conv(H′) containing
H ′. A connected subgraph H of G is called isometric if dH(u, v) = dG(u, v) for
any two vertices u, v of H. If an isometric subgraph H of G is a cycle, we call
H an isometric cycle. The metric projection of a vertex x ∈ V on H is the set
Pr(x,H) := {y ∈ V ′ : ∀y′ ∈ V ′,dG(y′, x) ≥ dG(y, x)}. For a subset S ⊆ V , the
neighborhood of S in G is the set N [S] := S∪{v ∈ V \S : ∃u ∈ S, v ∼ u}. When
S is a singleton s, then N [s] is the closed neighborhood of s. The ball of radius
k centered at s is the set Bk(s) = {v : dG(s, v) ≤ k}. Notice that B1(s) = N [s].

314 V. Chepoi et al.

A graph G is bridged if any isometric cycle of G has length 3. As shown in
[11,21], bridged graphs are also characterized by one of the fundamental prop-
erties of CAT(0) spaces: the neighborhoods of every convex subgraph of a bridged
graph is also convex. Consequently, balls in bridged graphs are convex. Bridged
graphs constitute an important subclass of weakly modular graphs: a graph
family that unifies numerous interesting classes of metric graph theory through
“local-to-global” characterizations [5]. More precisely, weakly modular graphs are
the graphs satisfying both the following quadrangle (QC) and triangle (TC)
conditions [1,7]:

(QC) ∀u, v, w, z ∈ V with k := dG(u, v) = dG(u,w), dG(u, z) = k+1, and
vz, wz ∈ E, ∃x ∈ V s.t. dG(u, x) = k − 1 and xv, xw ∈ E.
(TC) ∀u, v, w ∈ V with k := dG(u, v) = dG(u,w), and vw ∈ E, ∃x ∈ V
s.t. dG(u, x) = k − 1 and xv, xw ∈ E.

Bridged graphs are exactly the weakly modular graphs containing no induced
cycle of length 4 or 5 [7].

A metric triangle u1u2u3 of a graph G = (V,E) is a triplet u1, u2, u3 of
vertices such that for every (i, j, k) ∈ {1, 2, 3}3, I(ui, uj) ∩ I(uj , uk) = {uj} [7].
A metric triangle u1u2u3 is equilateral if dG(u1, u2) = dG(u2, u3) = dG(u1, u3).
Weakly modular graphs can be characterized via metric triangles in the following
way: a graph G is weakly modular if and only if for any metric triangle u1u2u3

of G and any x, y ∈ I(u1, u2), the equality dG(u1, x) = dG(u1, y) holds [7]. In
particular, every metric triangle of a weakly modular graph is equilateral.

A metric triangle u′
1u

′
2u

′
3 is called a quasi-median of a triplet u1, u2, u3 if

for each pair 1 ≤ i < j ≤ 3 there exists a shortest (ui, uj)-path passing via u′
i

and u′
j . Notice that each triplet u1, u2, u3 of vertices of any graph G admits at

least one quasi-median: it suffices to take as u′
1 a furthest from u1 vertex from

I(u1, u2) ∩ I(u1, u3), as u′
2 a furthest from u2 vertex from I(u2, u1) ∩ I(u2, u3),

and as u′
3 a furthest from u3 vertex from I(u3, u1) ∩ I(u3, u2).

4 Metric Triangles and Intervals

From now on we suppose that G is a K4-free bridged graph. A flat triangle is
an equilateral triangle in the triangular grid; for an illustration see Fig. 2 (left).
The interval I(u, v) between two vertices u, v of the triangular grid induces a
lozenge (see Fig. 2, right). A burned lozenge is obtained from I(u, v) by iteratively
removing vertices of degree 3; equivalently, a burned lozenge is the subgraph of
I(u, v) in the region of the plane bounded by two shortest (u, v)-paths. The
vertices of a burned lozenge are naturally classified into boundary and inner
vertices, and border vertices classified into concave and convex corners.

We denote the convex hull of a metric triangle uvw of K4-free bridged graph
G by Δ(u, v, w) and call it a deltoid. The following two lemmas were known
before for K4-free planar bridged graphs (see for example, [2, Proposition 3] for
the first lemma) but their proofs remain the same.

Lemma 1. Any deltoid Δ(u, v, w) of G is a flat triangle.

Distance Labeling Schemes for K4-Free Bridged Graphs 315

u

v w

u
v

Fig. 2. A flat triangle (left) and a burned lozenge (right). The concave corners are in
green and convex ones are drawn in blue. The border is in red and the inner vertices
in black.

Lemma 2. Any interval I(u, v) of G induces a burned lozenge.

We now introduce starshaped sets and trees, and we describe the structure of
the intersection of an interval and a starshaped tree. Let T be a tree rooted at a
vertex r. A path P of T is called increasing if it is entirely contained on a single
branch of T , i.e., if ∀u, v ∈ P , either IT (u, r) ⊆ IT (v, r), or IT (v, r) ⊆ IT (u, r). A
subset S of the vertices of an arbitrary graph G is said to be starshaped relatively
to s ∈ S if I(s, s′) ⊆ S for all s′ ∈ S. If, additionally, any I(s, s′) induces a path,
then S is called a starshaped tree (rooted at s ∈ S).

Lemma 3. Let T be a starshaped tree of G (rooted at m), and let u ∈ V \ T .
Then I(u,m) ∩ T is contained in the two increasing paths joining m to the two
first non-degenerated convex corners of I(u,m)∩T (these corners are said to be
extremal relatively to m) (Fig. 3).

m u

Fig. 3. Another burned lozenge illustrating Lemma 3. I(u,m) ∩ T appears in blue,
and the red squares are the two extremal vertices.

5 Stars and Fibers

Let z ∈ V be an arbitrary vertex of G. Since G is bridged, N [z] is convex. Note
that for any u ∈ V \ N [z], z cannot belong to the metric projection Pr(u,N [z]).
Indeed, z necessarily has a neighbor z′ on a shortest (u, z)-path. This z′ is closer
to u than z, and it belongs to N [z]. Since G is K4-free and weakly modular, we
obtain the following property of projections on N [z].

316 V. Chepoi et al.

Lemma 4. Pr(u,N [z]) consists of a single vertex or of two adjacent vertices.

Let u ∈ V be a vertex with two vertices x, y in Pr(u,N [z]). By Lemma 4 and
triangle condition, there exists a vertex u′ ∼ x, y at distance dG(x, u) − 1 from
u. Moreover, I(u′, z) = {u′, z, x, y}. The star St(z) of a vertex z ∈ V consists of
N [z] plus all vertices x /∈ N [z] having two neighbors in N [z], i.e., all x that can
be derived by the triangle condition as above; see Fig. 4 (left) for an example.

∅

{1} {2}

{3}

{4}{5}

{6}

{1, 2} {1, 2} {1, 2}

{2, 3}

{3, 4}

{4, 5}

{5, 6}

{1, 6}

Fig. 4. Example of a star and of the encoding of the vertices of a star.

Let x ∈ St(z). If x ∈ N [z], we define the fiber F (x) of x respectively to St(z)
as the set of all vertices of G having x as unique projection on N [z]. Otherwise
(if dG(x, z) = 2) F (x) denotes the set of all vertices u such that Pr(u,N [z])
consists of two adjacent vertices v and w, and such that x is adjacent to v, w
and is one step closer to u than v and w. A fiber F (x) such that x ∼ z is called
a panel. If dG(x, z) = 2, then F (x) is called a cone. Two fibers F (x) and F (y)
are k-neighboring if dSt(z)\{z}(x, y) = k. The two following lemmas are auxiliary.

Lemma 5. A vertex u in a cone F (x) can not be adjacent to a vertex v in a
cone F (y) �= F (x). Similarly, a vertex v �= y in a panel F (y) can not be adjacent
to a vertex u in a panel F (x) �= F (y).

Lemma 6. Let F (x) and F (y) be two fibers, and let u ∈ F (x) and v ∈ F (y) be
two adjacent vertices. We set k := dG(v, y). If F (y) is a cone and if F (x) is a
panel, then dG(u, y) = dG(u, x) ∈ {k, k + 1} and x ∼ y.

Lemma 7. Fz := {F (x) : x ∈ St(z)} defines a partition of G. Any fiber F (x)
is a bridged isometric subgraph of G and F (x) is starshaped with respect to x.

Proof. The fact that Fz is a partition follows from its definition. Since any
isometric subgraph of a bridged graph is bridged, we have to prove that fiber
F (x) is starshaped and isometric. We begin by showing that F (x) is starshaped
with respect to x. For that, pick two vertices u ∈ F (x) and w ∈ I(u, x).
If F (x) is a cone, then w ∈ I(u, x) and x ∈ I(u, z) lead to w ∈ I(u, z).
This implies that w ∈ F (x). Indeed, assume that w ∈ F (y) �= F (x) and consider

Distance Labeling Schemes for K4-Free Bridged Graphs 317

two vertices u′ ∈ F (x)∩I(u,w) and w′ ∈ F (y)∩I(u,w) with u′ ∼ w′. By Lemma
6, dG(w′, x) ∈ {dG(u′, x),dG(u′, x)+1}. This contradicts that w′ ∈ I(u, x). Now,
if F (x) is a panel and w belongs to a fiber F (y) �= F (x), then F (y) has to be
a cone 1-neighboring F (x) (by Lemma 5). Consequently, y must belong to a
shortest (u, x)-path passing via w, contrary to dG(u, y) = dG(u, x).

It remains to show that each fiber F (x) is isometric. Let u and v be two
vertices of F (x). We consider a quasi-median u′v′x′ of the triplet u, v, x. Since
F (x) is starshaped by Lemma 7, the intervals I(u′, x′), I(x, x′), I(u, u′), I(v, v′),
and I(v′, x′) are all contained in F (x). Consequently, to show that u and v
are connected in F (x) by a shortest path, it suffices to show that the unique
shortest (u′, v′)-path in the deltoid Δ(u′, v′, x′) belongs to F (x). To simplify the
notations, we can assume two things. First, since I(u, u′), I(v, v′) ⊆ F (x), we
can let u = u′ and v = v′. Second, we can assume that Δ(u, v, x′) is a minimal
counterexample with I(u, v) � F (x). We define this minimality according to two
criteria: base length and height. Let w be the vertex closest to u on the (u, v)-
shortest path of Δ(u, v, x′) such that w /∈ F (x). The base length minimality
means that we suppose u adjacent to w (otherwise, we replace u by the neighbor
of w in F (x) ∩ Δ(u, v, x′)). From the structure of deltoids described in Lemma
1, we know that there exists a vertex u1 ∼ w, u at distance k − 1 from x, and
that u1 ∈ F (x). Consider the neighbor w1 of u1 in Δ(u, v, x′) at distance k − 1
from x. If w1 /∈ F (x), then we replace Δ(u, v, x′) by Δ(u1, v1, x

′), where v1 ∼ v
denotes the neighbor of v in Δ(u, v, x′) at distance k − 1 from x. This defines
the height minimality. Thus u1, w1 ∈ F (x) and, if the path between u1 and v1
leaves F (x), then we can also replace Δ(u, v, x′) by Δ(u1, v1, x

′) and apply again
the base length minimality. By iteratively applying the two criteria while it is
possible, we can assume that the deltoid Δ(u1, v1, x

′) is entirely contained in
F (x) (see Fig. 5). In particular, w1 ∈ F (x). Two cases have to be considered.
Case 1. F (x) is a panel. Then, by Lemma 5, w belongs to a cone 1-neighboring
F (y). Since dG(w, x) = k, dG(w, y) = k − 1. Moreover, by Lemma 6, we also
have that dG(w1, y) ∈ {k−1, k−2} and, since dG(w, y) = k−1, we can conclude
that dG(w1, y) = k − 1. By the triangle condition applied to w, w1, and y, there
exists a vertex t ∼ w,w1 at distance k − 2 from y. Since F (y) is starshaped,
and since t ∈ I(w, y), t ∈ F (y). This also means that dG(t, x) = k − 1. By the
convexity of the ball Bk−1(x), t must coincide with u1 or with w1 (otherwise,
the quadruplet u1, w1, w, t would induce a K4). By the minimality hypothesis,
u1 and w1 must belong to F (x), but then t ∈ F (x), leading to a contradiction.
Case 2. F (x) is a cone. Then w belongs to a panel 1-neighboring F (y), and this
case is quite similar to the previous one. By Lemma 6, dG(w, y) = dG(w, x) = k.
We thus have dG(w, y) = dG(w1, y) = k, and there exists a vertex t ∼ w,w1 at
distance k − 1 from y. Still using Lemma 6, we deduce that dG(t, x) = k − 1.
Since F (y) is starshaped, we obtain that t ∈ F (y), and from the convexity of
the ball Bk−1(x) we conclude that t = w1 or t = u1. Finally, t ∈ F (x). ��

If we choose the star centered at a median vertex of G, then the following
lemma shows that the number of vertices in every fiber is bounded by |V |/2 (the
proof is similar to the proof of [9, Lemma 8]).

318 V. Chepoi et al.

u vw

u1 v1w1

x′

x

F (x)

Fig. 5. To the proof of Lemma 7. The minimality hypothesis implies that the blue
part belongs to the fiber F (x). The proof then aims to show that the red shortest
(u, v)-path also belongs to F (x).

Lemma 8. If z is a median vertex of G, then for all x ∈ St(z), |F (x)| ≤ |V |/2.

6 Boundaries and Total Boundaries of Fibers

Let x and y be two vertices of St(z). The boundary ∂F (y)F (x) of F (x) with
respect to F (y) corresponds to the set of all vertices of F (x) having a neighbor
in F (y). The total boundary ∂∗F (x) of F (x) is the union of all its boundaries.

Lemma 9. The total boundary ∂∗F (x) of any fiber F (x) is a starshaped tree.

Total boundaries of fibers are always starshaped trees, however they are not
induced trees of G. The following result is a corollary of Lemma 9.

Corollary 1. Let x be an arbitrary vertex of St(z). Then, for every pair u, v of
vertices of ∂∗F (x), dG(u, v) ≤ d∂∗F (x)(u, v) ≤ 2 · dG(u, v).

We now describe the structure of metric projections of the vertices on the
total boundaries of fibers. We then justify that vertices in panels will have a
constant number of “exits” on their total boundaries, even if their panel admits
an arbitrary number of 1-neighboring cones. This is the purpose of Lemma 12.

Lemma 10. Let F (x) be a fiber and u ∈ V \ F (x). Then the metric projection
Π := Pr(u, F (x)) = Pr(u, ∂∗F (x)) is an induced tree of G.

Lemma 11. Let F (x) be any fiber and u ∈ V \ F (x). There exists a unique
vertex u′ in Π := Pr(u, F (x)) at minimum distance from x. Furthermore,
dG(Π)(u′, v) ≤ dG(u, u′) = dG(u, v) for all v ∈ Π.

Distance Labeling Schemes for K4-Free Bridged Graphs 319

Proof. The uniqueness of u′ follows from the fact that Π is a rooted starshaped
tree of T := ∂∗F (x), which itself is a starshaped tree rooted at x. Indeed, every
pair (a, b) of vertices of Π admits a nearest common ancestor in Π that coincides
with the nearest common ancestor in T . This ancestor has to be closer to x than
a and b (or at equal distance if a = x or b = x).

Consider a vertex v ∈ Π. The equality k := dG(u, u′) = dG(u, v) holds since
Π is the metric projection of u on F (x). Assume by way of contradiction that
dG(u′, v) ≥ k+1. Then I(v, u′) =: P is an increasing path of length at least k+1
in a starshaped tree. By the triangle condition applied to u and to every pair of
neighboring vertices of P , we derive at least k vertices. We then can show that
each of these (at least k) vertices has to be distinct from every other (otherwise,
P would contain a shortcut). We also can prove that those vertices create a path
and, by induction on the length of this new shortest path, deduce that (u, v, t)
forms a non-equilateral metric triangle, which is impossible. ��

In particular, Lemma 11 establishes that every branch of the tree Π has
depth smaller or equal to dG(u, u′).

Lemma 12. Let u be any vertex of G and let T be a starshaped tree rooted at
r ∈ V . Let u1 and u2 be the two extremal vertices with respect to r in the two
increasing paths of I(u, r) ∩ T (there are at most two of them by Lemma 3).
Then, for all v ∈ T , the following inequality holds

min{dG(u, u1) + dT (u1, v),dG(u, u2) + dT (u2, v)} ≤ 2 · dG(u, v).

Proof. Assume that the minimum mini∈{1,2}{dG(u, ui) + dT (ui, v)} is obtained
for i = 1. Let x ∈ T be the nearest common ancestor of u1 and v. Notice that, by
Lemma 3, we know that v /∈ I(u, r), unless v = x. But we can assume that v �= x,
otherwise dG(u, v) = dG(u, u1) + dT (u1, v) would be shown already. Consider a
quasi-median u′v′r′ of the triplet u, v, r (see on Fig. 6, left). We can make the
following two remarks:

(1) Since T is a starshaped tree and I(r, v) is one of its branches, v′ necessarily
belongs to this branch. If v′ ∈ I(r, x), then v′ ∈ I(u1, r)∩I(v, r) implies that v′ =
x and that dG(u, u1) + dT (u1, v

′) + dT (v′, v) = dG(u, v). Indeed, if v′ = x, then
v′ ∈ I(u, r) (because x ∈ I(u, r)). So dG(u, u1) + dG(u1, v

′) = dG(u, v′). Also,
since T is starshaped, dG(u1, v

′) = dT (u1, v
′) and dT (v′, v) = dG(v′, v). Finally,

since v′ belongs to a quasi-median between u and v, it lies on a shortest (u, v)-
path. So dG(u, u1) + dT (u1, v

′) + dT (v′, v) = dG(u, v′) + dG(v′, v) = dG(u, v).
Therefore, we consider that v′ ∈ I(x, v).

(2) Since T is starshaped and r′ ∈ I(v, r), this implies that r′ belongs to
the branch I(v, r) of T . Since r′ ∈ I(u, r), and since I(x, v) ∩ I(u, r) = {x}, we
conclude that r′ is between r and x. Since r′ ∈ I(u′, r) ∩ I(u1, r), and u1, u

′ ∈
I(u, r), we show that dG(u, u′) + dG(u′, r′) = dG(u, u1) + dT (u1, r

′). Indeed,
u′ ∈ I(u, r′) because it belongs to a quasi-median of u, v, r ; u1 ∈ I(u, r′) by
definition, so the distance between u and r′ passing through u1 and passing
through u′ are equal : dG(u, u′) + dG(u′, r) = dG(u, u1) + dG(u1, r

′). Finally,
since T is starshaped (and r′ ∈ T), dG(u1, r

′) = dT (u1, r
′).

320 V. Chepoi et al.

Since the quasi-median u′v′r′ is an equilateral metric triangle, we have

2 · dG(u, v) ≥ dG(u, u′) + dG(u′, r′) + dT (r′, v)
= dG(u, u1) + dG(u1, r

′) + dT (r′, v)
= dG(u, u1) + dT (u1, v).

��
Stated informally, Lemma 12 asserts that if u ∈ F (x) and T := ∂∗F (x), then

the shortest paths from u to any vertex of T are “close” to a path passing via
u1 or via u2. Thus, if u stores information relative to u1 and u2, approximate
distances between u and all the vertices of T can be easily computed.

u1

x

u

vu2

r

u′

v′

r′

Pr(v, F (x))

I(u, x)

v′

x

y

u
∂∗F (x)

v

u2u1

Fig. 6. Notations of Lemma 12 (left), and illustration of the entrance and exits used
in Lemma 15 (right).

7 Shortest Paths and Classification of Pairs of Vertices

In this section, we characterize the pairs of vertices of G which are connected
by a shortest path passing via the center z of the star St(z) (Lemma 13). We
then exhibit cases for which passing via z can lead to a multiplicative factor
2 (Lemma 14). Finally, we present the worst cases where our algorithm could
make an error of at most 4 (Lemma 15). For this last case, let us point out that
our analysis might not be tight.

Lemma 13. Let F (x) and F (y) be two fibers, and let u ∈ F (x) and v ∈ F (y).
Then z ∈ I(u, v) iff F (x) and F (y) are distinct and either: (i) both are panels and
are k-neighboring, for k ≥ 2; (ii) one is a panel and the other is a k-neighboring
cone, for k ≥ 3; (iii) both are cones and are k-neighboring, for k ≥ 4;

Proof. Consider a quasi-median u′v′z′ of the triplet u, v, z. The vertex z belongs
to a shortest (u, v)-path if and only if u′ = v′ = z′ = z. In that case, let
s ∈ I(u, z) and t ∈ I(v, z) be two neighbors of z. Since z belongs to a shortest
(u, v)-path, s and t cannot be adjacent. It follows (see Fig. 7) that F (x) and

Distance Labeling Schemes for K4-Free Bridged Graphs 321

F (y) are k-neighboring with: (i) k ≥ 2 if F (x) and F (y) are both panels; (ii)
k ≥ 3 if one of F (x) and F (y) is a cone, and the other a panel; (iii) k ≥ 4 if
F (x) and F (y) are both cones.

For the converse implication, we consider the cases where z does not belong to
a shortest (u, v)-path. First notice that if F (x) = F (y), then z cannot belong to
such a shortest path because, then, dG(u, v) ≤ dG(u, x) + dG(x, v) < dG(u, z) +
dG(z, v). We now assume that F (x) �= F (y). Three cases have to be considered
depending on the type of F (x) and F (y).
Case 1. F (x) and F (y) are both panels. If z = z′, then according to Lemma 1,
x and y must be the two neighbors of z, respectively lying on the shortest (z, u′)-
and (z, v′)-paths, and x ∼ y, i.e., F (x) and F (y) are 1-neighboring. If z �= z′, we
consider a vertex z′′ ∈ I(z, z′) adjacent to z. Then z′′, x ∈ I(u, z) and, since u
belongs to a panel, z′′ = x. With the same arguments, we obtain that z′′ = y.
Consequently, F (x) = F (y), contrary to our assumption.
Case 2. F (x) is a cone, and F (y) is a panel (the symmetric case is similar). Let
x′ and x′′ denote the two neighbors of x in the interval I(x, z). If z = z′, then,
still by Lemma 1, y and x′ (or x′′) must belong to the deltoid Δ(u′, v′, z′), and
then x′ ∼ y (or x′′ ∼ y). It follows that F (x) and F (y) are 2-neighboring. If
z �= z′, we consider again a neighbor z′′ of z in I(z, z′). Since x′, x′′ ∈ I(u, z), z′′

must coincide with x′ or with x′′, say z′′ = x′. Also, z′′ = y. Consequently, F (x)
and F (y) are 1-neighboring.
Case 3. F (x) and F (y) are both cones. Let x′ and x′′ denote the two neighbors
of x in I(x, z), and let y′ and y′′ be those of y in I(z, y). Again, if z = z′, then
x′ (or x′′) and y′ (or y′′) belong to the deltoid Δ(u′, v′, z′), leading to x′ ∼ y′

and to the fact that F (x) and F (y) are 3-neighboring. If z �= z′, we consider
z′′ ∈ I(z, z′), z′′ ∼ z. By arguments similar to those used in previous cases, we
obtain that z′′ = x′ = y′ (up to a renaming of the vertices x′′ and y′′). It follows
that F (x) and F (y) are 2-neighboring. ��

z z z

xy y

u u uv v v

sx=s x=s=y t t t

(1) (2) (3)

Fig. 7. To the proof of Lemma 13.

Let x and y be two vertices of St(m) and let (u, v) ∈ F (x) × F (y). If F (x) =
F (y), then u and v are called close. If F (x) and F (y) are 1-neighboring, one
of the fibers being a panel and the other a cone, then u and v are called 1pc-
neighboring. Finally, if F (x) and F (y) are as described in Lemma 13, i.e., if
z ∈ I(u, v), then u and v are called separated.

322 V. Chepoi et al.

Lemma 14. Let u and v be two vertices which are neither close, nor 1pc-
neighboring, and nor separated. Then, dG(u, v) ≤ dG(u, z)+dG(z, v) ≤ 2·d(u, v).

Proof. We denote by F (x) and F (y) the fibers respectively containing u and v,
and we consider a quasi-median u′v′z′ of the triplet u, v, z. We have to show
that z = z′. According to Lemma 13, four cases must be considered: F (x) and
F (y) are two 1-neighboring or 2-neighboring fibers of distinct types and F (x)
and F (y) are two 2-neighboring or 3-neighboring cones.

We first assume that F (x) and F (y) are 1-neighboring, one of them being
a panel and the other a cone. If x and y belong to a shortest (u, v)-path, then
z = z′. Let us assume that this is not the case. Then there exists a cone F (w) ∼
F (x), F (y) such that I(u, v) ∩ F (w) �= ∅. We claim that, if z′ /∈ F (w), then
z = z′. Indeed, this directly follows from the fact that z′ ∈ I(u, z) ∩ I(v, z),
x /∈ I(v, z) and y /∈ I(u, z). We now show that z′ /∈ F (w). To do so, notice that
x /∈ I(v, z), y /∈ I(u, z)n and x, y ∈ I(w, z) imply that w /∈ I(u, z) ∪ I(v, z).
By the definition of u′v′z′, we have in particular that z′ ∈ I(u, z). Moreover,
z′ ∈ F (w) would lead to the contradiction w ∈ I(z′, z) ⊆ I(u, z).

We now assume that F (x) and F (y) are 2-neighboring, one of them being
a panel and the other a cone. Suppose F (y) to be the panel, and denote by x1

and x2 the two neighbors of x in I(x, z). The same way as before, we show that
z = z′. Indeed, z′ ∈ I(u, z) requires that z′ ∈ F (x) ∪ F (x1) ∪ F (x2) ∪ {z}, and
z′ ∈ I(v, z) requires that z′ ∈ F (y) ∪ {z}. We conclude that z = z′.

The same arguments as in the two previous cases allow us to establish the
result in the last two cases. ��

Let F (x) be a panel and let F (y) be a cone 1-neighboring F (x). We set
T := ∂∗F (x). Let u ∈ F (x) and v ∈ F (y). Recall that Π := Pr(v, T) induces a
tree, according to Lemma 10. The vertex v′ of Π the closest to x is called the
entrance of v on the total boundary T . Similarly, two vertices u1 and u2 such as
described in Lemma 12 are called the exits of u on the total boundary T . Confer
to Fig. 6 (right) for an illustration of the notations of this paragraph.

Lemma 15. Let u ∈ F (x) and v ∈ F (y) be two 1pc-neighboring vertices, where
F (x) is a panel and F (y) a cone. Let T , u1, u2 and v′ be such as described just
above. Then,

dG(u, v) ≤ min{dG(u, u1) + dT (u1, v
′),dG(u, u2) + dT (u2, v

′)} + dG(v′, v)
≤ 4 · dG(u, v).

The proof of Lemma 15 is more technical than previous proofs and makes
use of tools unnecessary for the main purpose of this note.

8 Distance Labeling Scheme

We now describe our 4-approximate distance labeling scheme for K4-free bridged
graphs, based on the properties obtained in previous sections.

Distance Labeling Schemes for K4-Free Bridged Graphs 323

8.1 Encoding

We begin with a brief description of the encoding of stars of median vertices a
K4-free bridged graph G = (V,E) (we explain in Section 8.2 how to use it to
decode the distances). We then describe the labels L(u) given to vertices u ∈ V
by our encoding algorithm.

Encoding of the Star. Consider a median vertex m of G and the star St(m)
of this vertex. The star-labeling of a vertex u of St(m) is denoted by LSt(m)(u).
We set LSt(m)(m) := 0 (where 0 will be considered as the empty set ∅). Each
neighbor of m takes a distinct label in the range {1, . . . ,deg(m)} (interpreted as
singletons). The label LSt(m)(u) of a vertex u at distance 2 from m corresponds
to the concatenation of the labels LSt(m)(u′) and LSt(m)(u′′) of the two neighbors
u′ and u′′ of u in I(u,m), i.e., LSt(m)(u) is a set of size 2.

Remark 1. Note that vertices of St(m) not adjacent to m do not necessarily have
unique identifiers. Moreover, this labeling of St(m) does not allow to determine
adjacency of arbitrary pairs of vertices. Indeed, adjacency queries between ver-
tices encoded by a singleton cannot be answered (such a singleton label only
tells that the corresponding vertex is adjacent to m, see Fig. 4, right).

Encoding of the K4-Free Bridged Graphs. Let u denote any vertex of G.
We describe here the part Li(u) of the label of u built at step i of the recursion by
the encoding procedure (see Enc Dist). Li(u) consists of three parts: “St”, “1st”,

324 V. Chepoi et al.

and “2nd”. The first part LSt
i contains information relative to the star St(m)

around the median m chosen in the corresponding step: the unique identifier
id(m) =: LSt[Med]

i (u) of m in G; the distance dG(u,m) =: LSt[Dist]
i (u) between

u and m; and a star labeling LSt(x)(m) =: LSt[Root]
i (u) of u in St(m) (where

x ∈ St(m) is such that u ∈ F (x)). This last identifier is used to determine to
which type of fibers the vertex u belongs, as well as the status (close, separated,
1pc-neighboring, or other) of the pair (u, v) for any other vertex v ∈ V .

The two subsequent parts, L1st
i and L2nd

i , contain information relative to the
two entrances/exists u1 and u2 of u on (i) the total boundaries of the two 1-
neighboring fibers F (w1) and F (w2) of F (x), if F (x) is a cone or on (ii) the total
boundary of F (x), if F (x) is a panel. If F (x) is a cone, then L1st

i contains (1)
an exact distance labeling L∂∗F (w1)(u1) =: L1st[rep]

i (u) of u1 in the starshaped
tree ∂∗F (w1) (the DLS described in [12], for example) and (2) the distance
dG(u, u1) =: L1st[Dist]

i (u) between u and u1 in G. If F (x) is a panel, then L1st
i

contains (1) an exact distance labeling L∂∗F (x)(u1) =: L1st[rep]
i (u) of u1 in the

total boundary of F (x) and (2) the distance dG(u, u1) =: L1st[Dist]
i (u) between

u and u1 in G. Finally, the part L2nd
i is the same as L1st

i with u2 replacing u1

(and ∂∗F (w2) instead of ∂∗F (w1) if F (x) is a cone).

8.2 Distance Queries

Given the labels L(u) and L(v) of two vertices u and v, the distance decoder (see
Distancebelow) starts bydetermining the state of the pair (u, v).Todo so, it looks
up for the first median m that separates u and v, i.e., such that u and v belong to
distinct fibers with respect to the star St(m). More precisely, it looks for the part i
of the labels corresponding to the step in which m became a median. As noticed in
[9], it is possible to find this median vertex m in constant time by adding particular
O(log2 n) bits information to the head of each label. Once the right part of label
is found, the decoding function determines that two vertices are 1pc-neighboring
if and only if the identifier (i.e., the star-label in St(m) of the fiber of one of the
two vertices u, v is included in the identifier of the other). In that case, the decod-
ing function calls a procedure based on Lemma15 (see Dist 1pc-neighboring
below). More precisely, the procedure returns

min{dG(u, u1) + dT (u1, v
′),dG(u, u2) + dT (u2, v

′)} + dG(v′, v),

where we assume that u belongs to a panel (and v belongs to a cone), where
u1, u2 and v′ are contained in the label parts L2nd

i (u) (or L1st
i (u)) and L2nd

i (v)
(or L1st

i (v)), and where the distances dT (u1, v
′) and dT (u2, v

′) are obtained by
decoding the tree distance labels of u1, u2, and v′ in T (also available in these
label parts). We also point out that we assume that L1st

i (v) always contains the
information to get to the panel whose identifier corresponds to the minimum of
the two values identifying the cone of v. In each remaining case (i.e., when u
and v are neither close, nor 1pc-neighboring), the decoding algorithm will return
dG(u,m) + dG(v,m). By Lemmas 13 and 14, this sum is sandwiched between

Distance Labeling Schemes for K4-Free Bridged Graphs 325

dG(u, v) and 2 · dG(u, v). The following procedure Dist 1pc-neighboring is
based on Lemma 15 and assumes that its first argument u belongs to a panel,
and the second v belongs to a cone.

function Dist 1pc-neighboring(Li(u), Li(v)):
dir ← 2nd ; // If L

St[Root]
i (u) = max{j : j ∈ L

St[Root]
i (v)}

if LSt[Root]
i (u) = min{j : j ∈ LSt[Root]

i (v)} then
dir ← 1st ;

v′ ← Ldir[rep]
i (v) ;

u1, u2 ← L1st[rep]
i (u), L2nd[rep]

i (u) ;
d1, d2 ← Dist Tree(v′, u1), Dist Tree(v′, u2) ;

return Ldir[Dist]
i (v) + min

{
d1 + L1st[Dist]

i (u), d2 + L2nd[Dist]
i (u)

}
;

The following algorithm Distance finds the first step where the given
vertices u and v have belonged to distinct fibers for the first time. If
they are 1pc-neighboring at this step, then Distance calls procedure Dist
1pc-neighboring. Otherwise, it returns the sum of their distances to the median
of the step.

Algorithm 2: Distance (L(u), L(v))
Input: The labels L(u) and L(v) of two vertices u and v of G
Output: A value between dG(u, v) and 2 · dG(u, v)

1 if L0(u) = L0(v) /* u = v */ then return 0 ;

2 Let i be the greatest integer such that LSt[Med]
i (u) = LSt[Med]

i (v) ;
// If u is in a panel 1pc-neighboring the cone of v

3 if LSt[Root]
i (u) � LSt[Root]

i (v) then
4 return Dist 1pc-neighboring(Li(u),Li(v)) ;
// If v is in a panel 1pc-neighboring the cone of u

5 if LSt[Root]
i (v) � LSt[Root]

i (u) then
6 return Dist 1pc-neighboring(Li(v),Li(u)) ;
// In every other case

7 return LSt[Dist]
i (u) + LSt[Dist]

i (v) ;

8.3 Correctness and Complexity

The number of recursive steps is O(log |V |) since by Lemma 8 the number of
vertices in every part is at least divided by 2. At each recursive step, the vertices
add to their label a constant number of information among which the longest
consists in a distance labeling scheme for trees using O(log2 |V |) bits. It follows
that our scheme uses O(log3 |V |) bits for each vertex.

The fact that the decoding algorithm returns distances with a multiplicative
error at most 4 directly follows from Lemmas 13 and 14 for the non-1pc-neighbors
cases and from Lemma 15 for 1pc-neighboring vertices. Those results are based
on Lemmas 11 and 12 that respectively indicate the entrances and exits to store
in total boundaries of panels. This concludes the proof of Theorem 1.

We would like to finish this paper with the following question: Does there
exist constants c and b such that any bridged graph G admits a c-approximate

326 V. Chepoi et al.

distance labeling scheme with labels of size O(logb n)? The same question can
be asked for bridged graphs of constant clique-size and for hyperbolic bridged
graphs (i.e., bridged graphs in which all deltoids have constant size).

Acknowledgment. The work on this paper was supported by ANR project DISTAN-
CIA (ANR-17-CE40-0015).

References

1. Bandelt, H.J., Chepoi, V.: A Helly theorem in weakly modular space. Discret.
Math. 160(1–3), 25–39 (1996)

2. Bandelt, H.J., Chepoi, V.: The algebra of metric betweenness ii: axiomatics of
weakly median graphs. Euro. J. Combin. 29, 676–700 (2008)

3. Bandelt, H.J., Chepoi, V.: Metric graph theory and geometry: a survey. Contemp.
Math. 453, 49–86 (2008)

4. Bazzaro, F., Gavoille, C.: Localized and compact data-structure for comparability
graphs. Discret. Math. 309, 3465–3484 (2009)

5. Chalopin, J., Chepoi, V., Hirai, H., Osajda, D.: Weakly modular graphs and non-
positive curvature. Memoirs of AMS (2019)

6. Chepoi, V.: Graphs of some CAT(0) complexes. Adv. Appl. Math. 24, 125–179
(2000)

7. Chepoi, V.: Classification of graphs by means of metric triangles. Metody Diskret.
Analiz. 45, 75–93 (1989)

8. Chepoi, V., Dragan, F.F., Vaxès, Y.: Distance and routing labeling schemes for
non-positively curved plane graphs. J. Algorithms 61, 60–88 (2006)

9. Chepoi, V., Labourel, A., Ratel, S.: Distance labeling schemes for cube-free median
graphs. In: MFCS. vol. 138, pp. 15:1–15:14 (2019)

10. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded
clique-width. Discret. Appl. Math. 131, 129–150 (2003)

11. Farber, M., Jamison, R.E.: On local convexity in graphs. Discret. Math. 66(3),
231–247 (1987)

12. Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal distance
labeling schemes for trees. In: PODC, pp. 185–194. ACM (2017)

13. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance
labeling schemes. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp.
476–487. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1 40

14. Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discret.
Math. 273, 115–130 (2003)

15. Gavoille, C., Paul, C.: Optimal distance labeling for interval graphs and related
graph families. SIAM J. Discret. Math. 22, 1239–1258 (2008)

16. Gavoille, C., Peleg, D., Pérennès, S., Raz, R.: Distance labeling in graphs. J. Algo-
rithms 53, 85–112 (2004)

17. Gawrychowski, P., Uznanski, P.: A note on distance labeling in planar graphs.
CoRR abs/1611.06529 (2016). http://arxiv.org/abs/1611.06529

18. Januszkiewicz, T., Świa̧tkowski, J.: Simplicial nonpositive curvature. Publications
Mathématiques de l’Institut des Hautes Études Scientifiques, 104(1), 1–85 (2006).
https://doi.org/10.1007/s10240-006-0038-5

19. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadel-
phia (2000)

https://doi.org/10.1007/3-540-44676-1_40
http://arxiv.org/abs/1611.06529
https://doi.org/10.1007/s10240-006-0038-5

Distance Labeling Schemes for K4-Free Bridged Graphs 327

20. Ratel, S.: Densité. Aix-Marseille Université, VC-dimension et étiquetages de
graphes (2019)

21. Soltan, V.P., Chepoi, V.: Conditions for invariance of set diameters under d-
convexification in a graph. Cybernetics 19(6), 750–756 (1983). https://doi.org/
10.1007/BF01068561

22. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51, 993–1024 (2004)

https://doi.org/10.1007/BF01068561
https://doi.org/10.1007/BF01068561

Game Theory

Multi-winner Election Control via Social
Influence

M. Abouei Mehrizi(B) and Gianlorenzo D’Angelo

Gran Sasso Science Institute, L’Aquila, Italy
{mohammad.aboueimehrizi,gianlorenzo.dangelo}@gssi.it

Abstract. The extensive use of social media in political campaigns has
motivated the recent study of election control problem in social networks.
In an election, we are given a set of voters, each having a preference list
over a set of candidates, that are distributed on a social network. The
winners of the election are computed by aggregating the preference lists
of voters according to a so-called voting rule. We consider a scenario
where voters may change their preference lists as a consequence of the
messages received by their neighbors in a social network. Specifically,
we consider a political campaign that spreads messages in a social net-
work in support or against a given candidate and the spreading follows
a dynamic model for information diffusion. When a message reaches a
voter, this latter changes its preference list according to an update rule.
The election control problem asks to find a bounded set of nodes to be
the starter of a political campaign in support (constructive problem) or
against (destructive problem) a given target candidate c, in such a way
that the margin of victory of c w.r.t. its most voted opponents is max-
imized. It has been shown that several variants of the problem can be
solved within a constant factor approximation of the optimum, which
shows that controlling elections by means of social networks is doable
and constitutes a real problem for modern democracies. Most of the lit-
erature, however, focuses on the case of single-winner elections.

In this paper, we define the election control problem in social net-
works for multi-winner elections with the aim of modeling parliamen-
tarian elections. Differently from the single-winner case, we show that
the multi-winner election control problem is NP-hard to approximate
within any factor in both constructive and destructive cases. We then
study a relaxation of the problem where votes are aggregated on the
basis of parties (instead of single candidates), which is a variation of the
so-called straight-party voting used in some real parliamentarian elec-
tions. We show that the latter problem remains NP-hard but can be
approximated within a constant factor.

1 Introduction

Nowadays, social media are extensively used and have become a crucial part
of our life. Generating information and spreading in social media is one of the

This work has been partially supported by the Italian MIUR PRIN 2017 Project
ALGADIMAR “Algorithms, Games, and Digital Markets”.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 331–348, 2020.
https://doi.org/10.1007/978-3-030-54921-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_19

332 M. Abouei Mehrizi and G. D’Angelo

cheapest and most effective ways of advertising and sharing content and opinions.
People feel free to share their opinion, information, news, or also gain something
by learning or teaching in social media; on the other hand, they also use social
media to get the latest news and information. Many people even prefer to check
social media rather than news websites.

Social media are also exploited during election campaigns to support some
party or a specific candidate. Many political parties diffuse targeted messages
in social media with the aim of convincing users to vote for their candidates.
Usually, these messages are posted by influential users and diffused on the net-
work following a cascade effect, also called social influence. There are shreds of
evidence of control election using the effect of social influence by spreading some
pieces of information, including fake news or misinformation [21]. The presi-
dential election of the United States of America is a real example. It has been
shown that on average, ninety-two percent of Americans remembered pro-Trump
false news, and twenty-three percent of them remembered the pro-Clinton fake
news [2]. There are more real-life examples that have been presented in the
literature [4,16,19,24].

This motivated the study of election control problems in social networks by
using dynamic models for influence diffusion. We are given a social network of
voters, a set of candidates, and a dynamic model for diffusion of information
that models the spread of messages produced by political campaigns. The prob-
lem asks to find a bounded set of voters/nodes to be the starter of a political
campaign in support of a given target candidate c, in such a way that the mar-
gin of victory of c w.r.t. its opponents is maximized. Each voter has its own
preference list over the candidates and the winner of an election is determined
by aggregating all preference lists according to some specific voting rule. Voters
are autonomous, however their opinions about the candidates, and hence their
preference lists, may change as a consequence of messages received by neigh-
bors. When a message generated by a political campaign reaches a node, this
latter changes its preference list according to some specific update rule. When
the campaign aims to make the target candidate win, we refer to the construc-
tive problem, while when the aim is to make c lose, we refer to the destructive
problem. This problem recently received some attention. Most of the works in
the area, however, focus on single-winner voting systems, while several scenarios
require voting systems with multiple winners, e.g., parliamentarian elections.

In this paper, we consider the problem of multi-winner election control via
social influence, where there are some parties, each with multiple candidates,
and we want to find at most B nodes to spread a piece of news in the social
network in such a way that a target party elects a large number of its candi-
dates. In this model, more than one candidate will be elected as the winner,
and parties try to maximize some function of the number of winners from their
party. We considered this problem for some well-known objective functions in
both constructive and destructive cases.

Related Work. There is an extensive literature about manipulation or control
of elections, we refer to the survey in [14] for relevant work on election control

Multi-winner Election Control via Social Influence 333

without the use of social networks. In the following, we focus on election control
problems where the voters are the nodes of a social network, which recently
received some attention.

Finding strategies to maximize the spread of influence in a network is one
of the main topics in network analysis. Given a network and a dynamic model
for the diffusion of influence, find a bounded set of nodes to be the starters of a
dynamic process of influence spread in such a way that the number of eventually
influenced users is maximized. The problem, known as Influence Maximization
(IM), has been introduced by Domingos and Richardson [12,22] and formalized
by Kempe et al., who gave a (1 − 1/e)-approximation algorithm [18] for two
of the most used dynamic models, namely Independent Cascade Model (ICM)
and Linear Threshold Model (LTM). We point the reader to the book by Chen
et al. [9] and to [18].

Wilder and Vorobeychik [25] started the study of election control by means
of IM. They defined an optimization problem that combines IM and election
control called election control through influence maximization that is defined
as follows. We are given a set of candidates, a social network of voters, each
having a preference list over the candidates, a budget B, and a specific target
candidate c�. The network allows the diffusing influence of individuals according
to ICM. When a node/voter v is influenced, it changes its preference list in such
a way that the rank of c� in the preference list of v is promoted (constructive)
or demoted (destructive) by one position. At the end of a diffusion process, the
voters elect a candidate according to the plurality rule [26]. The problem asks
to find a set of at most B nodes to start a diffusion process in such a way that
the chances for c� to win (constructive) or lose (destructive) at the end of the
diffusion are maximized. Wilder and Vorobeychik used the Margin of Victory
(MoV) as an objective function and showed that there exists a greedy algorithm
that approximates an optimal solution by a factor 1/3(1 − 1/e) for constructive
and 1/2(1−1/e) for the destructive case. The same problem has been extended to
LTM and general scoring rules [26] by Corò et al. [10,11]. They have shown that
the problem can be approximated within the same bound. A similar problem has
been studied in [13]. The authors consider a network where each node is a set of
voters with the same preference list, and edges connect nodes whose preference
lists differ by the ordering of a single pair of adjacent candidates. They use a
variant of LTM for influence diffusion and show that the problem of making
a specific candidate win is NP -hard and fixed-parameter tractable w.r.t. the
number of candidates. Bredereck and Elkind [6] considered the following election
control problem. Given a network where the influence spread according to a
variant of LTM in which each node has a fixed threshold, and all edges have the
same weight, find an optimal way of bribing nodes or add/delete edges in order
to make the majority of nodes to vote for a target candidate. A different line of
research investigates a model in which each voter is associated with a preference
list over the candidates, and it updates its list according to the majority of
opinions of its neighbors in the network [3,5,7]. All the previous works on election
control through IM consider single-winner voting systems. Multi-winner voting

334 M. Abouei Mehrizi and G. D’Angelo

systems raised recent and challenging research trends, we refer to a recent book
chapter [15] and references therein.

Our Results. We introduce the multi-winner election control problem via social
influence and show that it is NP -hard to approximate within any factor α > 0,
for two common objective functions known as margin of victory and difference
of winners using a general scoring rule. This is in contrast with the previous
work on single-winner election control through IM, in which it is possible to
approximate the optimum within a constant factor. The hardness results hold
for both constructive and destructive cases. Given the hardness result, we focus
on a relaxed version of the problem, which is a variation of straight-party vot-
ing. We show that this latter remains NP -hard but admits a constant factor
approximation algorithm for both constructive and destructive cases.

2 Multi-winner Election Control

In this section, we introduce the multi-winner election control problem. We con-
sider elections with k winners and general scoring rule as a voting system, which
includes many well-known scoring rules, such as plurality, approval, Borda, and
veto [26]. We first introduce the models that we use for diffusion of influence
and for updating the preference list of voters. Then we introduce the objective
functions for the election control problem in both constructive and destructive
cases.

Model for Influence Diffusion. We use the Independent Cascade Model (ICM) for
influence diffusion [18]. In this model, we are given a directed graph G = (V,E),
where each edge (u, v) ∈ E has a weight buv ∈ [0, 1]. The influence starts with a
set of seed nodes S and keeps activating the nodes in at most |V | discrete steps.
In the first step, all the seed nodes S become active. In the next steps i > 1, all
the nodes that were active in step i − 1 remain active, moreover, each node u
that became active at step i − 1 tries to activate its outgoing neighbors at step
i with probability buv, for each node v ∈ No

u. An active node will try to activate
its outgoing neighbors independently and only once. The process stops when no
new node becomes active. We denote by AS the set of nodes that are eventually
active by the diffusion started by the seeds S.

Model for Multi-winner Election Control. We consider a multi-winner election
in which k candidates will be elected. Let G = (V,E) be a directed social graph,
where the nodes are the voters in the election, and the edges represent social
relationships among users. The voters influence each other the same as ICM. We
consider t parties C1, C2, . . . , Ct, each having k candidates, Ci = {ci

1, c
i
2, . . . , c

i
k},

1 ≤ i ≤ t. Without loss of generality, we assume that C1 is the target party.
The set of all candidates is denoted by C, i.e. C =

⋃t
i=1 Ci. Each voter v ∈ V

has a preference list πv over the candidates. For each c ∈ C, we denote by
πv(c) ∈ {1, 2, . . . , tk} the rank (or position) of the candidate c in the preference
list of node v.

Multi-winner Election Control via Social Influence 335

Given a budget B, we want to select a set of B seed nodes that maximizes the
number of candidates in C1 who win the election after a political campaign that
spread according to ICM starting from nodes S (see next section for a formal
definition of the objective functions).1

After S, nodes in AS will change the positions of candidates in C1 in their
preferences list. In contrast, nodes not in AS will maintain their original pref-
erence list. The update rule for active nodes depends on the position of the
target candidates and the goal of the campaign, i.e., if it is a constructive or a
destructive one. We denote the preference list of node v after the process by π̃v.
If v �∈ AS , then π̃v = πv. In the following, we focus on nodes v ∈ AS .

In the constructive case, like in the model in [25], the position of the target
candidates in the list of active nodes will be decreased by one, if there is at least
one opponent candidate in a smaller rank. The candidates who are overtaken
will be demoted by the number of target candidates that were just after them.
Formally, in the constructive case, the position of the candidates after the diffu-
sion starting from seed S will change as follows. For each node v ∈ AS and for
each target candidate c ∈ C1, the new position of c in v is

π̃v(c)=
{

πv(c) − 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) < πv(c)
πv(c) otherwise,

while, for each opponent candidate c ∈ C \C1, if there exists a candidate c′ ∈ C1

s.t. πv(c′) = πv(c)+1 we have π̃v(c) = πv(c)+ |{c′′ ∈ C1 | πv(c′′) > πv(c)∧(� c̄ ∈
C \ C1 : πv(c) < πv(c̄) < πv(c′′)})| , otherwise, we set π̃v(c) = πv(c).

In the destructive case, we want to reduce the number of winners in C1 and
then each node v ∈ AS increases their position by one, if it is possible. Formally,
after S the preferences list of the candidates will change as follows. For each
node v ∈ AS and for each target candidate c ∈ C1, the new position of c in v is

π̃v(c)=
{

πv(c) + 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) > πv(c)
πv(c) otherwise,

while for c ∈ C \ C1, if there exists a candidate c′ ∈ C1 s.t. πv(c′) = πv(c) − 1
we have π̃v(c) = πv(c) − |{c′′ ∈ C1 | πv(c′′) < πv(c) ∧ (� c̄ ∈ C \ C1 : πv(c′′) <
πv(c̄) < πv(c)})|, otherwise, we set π̃v(c) = πv(c).

As an example, if there are two parties with three candidates each, and the
initial preferences list of a node is (c21, c

1
1, c

1
2, c

2
2, c

1
3, c

2
3), then if the node becomes

active its preferences list in the constructive case will be (c11, c
1
2, c

2
1, c

1
3, c

2
2, c

2
3),

i.e., all of the candidates c1i will promote, and all the overtaken candidates will
demote; while in the destructive case, it will be (c21, c

2
2, c

1
1, c

1
2, c

2
3, c

1
3), and all of

the candidates in our target party demote, and all the overtaken candidates will
promote.

The above rule for updating the preference lists is commonly used in the
literature [10,25]. In this model, we consider just one message, which contains

1 In the remainder of the paper, by after S, we mean after the diffusion process started
from the set of seed nodes S.

336 M. Abouei Mehrizi and G. D’Angelo

some positive/negative information about the target party that will affect all
the target candidates.

We consider a non-increasing scoring function f(i), 1 ≤ i ≤ |C|, such that for
all j > i > 0 we have f(j) ≤ f(i). A candidate c ∈ C gets f(πv(c)) and f(π̃v(c))
points from voter v before and after a diffusion, respectively. In other words,
each voter will reveal his preferences list, and each candidate will get some score
according to his position in the list and the scoring function. Also, we assume
w.l.o.g. that there exist 1 ≤ i < j ≤ |C| such that f(i) > f(j), i.e., the function
does not return a fixed number for all ranks. The score of a candidate c is the
sum of the scores received by all voters. The k candidates with the highest score
will be elected.

We denote by F(c, S) the expected overall score received by candidate c after
S, formally, F(c, S) = EAS

[∑
v∈V f(π̃v(c))

]
and F(c, ∅) =

∑
v∈V f(πv(c)).

Objective Functions. The objective function for the constructive election control
problem in the single-winner case is maximizing the margin of victory (MoV)
defined in [25]. Let us consider the difference between the votes for the target
candidate and those for the most voted opponent candidate. MoV is the change
of this value after S. Note that the most voted opponent before and after S
might change. The notion of MoV captures the goal of a candidate to have
the largest margin in terms of votes w.r.t. any other candidate. We extend the
above definition of MoV in the case of multi-winner election control. Since the
main goal is to elect more candidates from the target party, then we define the
objective function in terms of the number of winning candidates in our target
party before and after S.

Given a set AS of nodes that are active at the end of a diffusion process
started from S, we denote by FAS

(c) the score that a candidate c ∈ C receives if
the activated nodes are AS , and by YAS

(c) the number of candidates that have
less score than the candidate c. As a tie-breaking rule, we assume that cj

i has
priority over cj′

i′ if j < j′, or j = j′ and i < i′. In particular, the target candidates
have priority over opponents when they have the same score. Then, for each
cj
i ∈ C, i ∈ {1, . . . , k}, j ∈ {1, . . . , t}, YAS

(cj
i , S) is defined as YAS

(cj
i) =

∣
∣
∣{cj′

i′ ∈
C | FAS

(cj
i) > FAS

(cj′
i′) ∨ (FAS

(cj
i) = FAS

(cj′
i′) ∧ (j < j′ ∨ (j = j′ ∧ i < i′))}

∣
∣
∣.

For a party Ci, we define F(Ci, S) as the expected number of candidates in
Ci that win the election after S; formally,

F(Ci, S) = EAS

[
∑

c∈Ci

1YAS
(c)≥(t−1)k

]

. (1)

We denote by CB and CS
A the opponent party with the highest number of

winners before and after S, respectively. For the constructive case, the margin
of victory (MoVc) for party C1, w.r.t. seeds S, is defined as follows:

MoVc(C1, S) = F(C1, S) − F(CS
A , S) − (F(C1, ∅) − F(CB, ∅)

)
,

Multi-winner Election Control via Social Influence 337

while for the destructive case, it is defined as:

MoVd(C1, S) = F(C1, ∅) − F(CB, ∅) − (F(C1, S) − F(CS
A , S)

)
.

The Constructive (Destructive, resp.) Multi-winner Election Control problem
(CMEC (DMEC, resp.)) asks to find a set S of B seed nodes that maximizes
MoVc(C1, S) (MoVd(C1, S), resp.), where B ∈ N is a given budget.

In some scenarios, it is enough to maximize the difference between the number
of our target candidates who win the election before and after S; we call this
objective function the difference of winners (DoW), and for the constructive
case we define it as follows:

DoWc(C1, S) = F(C1, S) − F(C1, ∅).

While for the destructive model it is defined as:

DoWd(C1, S) = F(C1, ∅) − F(C1, S).

The problems of finding a set of at most B seed nodes that maximize DoWc

and DoWd, for a given integer B, are called Constructive Difference of Winners
(CDW) and Destructive Difference of Winners (DDW), respectively.

3 Hardness Results

In this section, we show the hardness of approximation results for the problems
defined in the previous section. We first focus on the constructive case and prove
that CMEC and CDW are NP -hard to approximate within any approximation
factor α > 0. Then, we show that the same results hold for DMEC and DDW.
All the results hold even when the instance is deterministic (i.e. buv = 1, for
each (u, v) ∈ E) and when t = 3 and k = 2. Note that for t = 1 the problem is
trivial and for k = 1 the problem reduces to the single-winner case.

Constructive Election Control. We first give an intuition of the hardness of
approximation proof, which is formally given in Theorem 1. Consider an instance
of the constructive case in which t = k = 2, C1 = {c11, c

1
2}, C2 = {c21, c

2
2}, and

C = C1 ∪ C2. The weight of all edges are equal to 1, that is, the diffusion is a
deterministic process. Also, assume the scoring rule is plurality, i.e., f(1) = 1,
f(2) = f(3) = f(4) = 0. Moreover, the nodes are partitioned into two sets of
equal size, V1 and V2. In the preferences lists of all nodes in V1, candidate c21
is in the first position and c11 is in the second position, while in the preferences
lists of nodes in V2, candidate c22 is in first position and c12 is in second position.
In this instance, initially party C1 does not have any elected candidate, that
is, F(c11, ∅) = F(c12, ∅) = 0, F(c21, ∅) = |V1|, F(c22, ∅) = |V2|, F(C1, ∅) = 0, and
F(C2, ∅) = 2.

Consider a diffusion process starting from seeds S that activate nodes AS

(note that, since the weights are all equal to 1, AS is a deterministic set for

338 M. Abouei Mehrizi and G. D’Angelo

any fixed S). The number of candidates that receives fewer votes than a target
candidate c1i after the diffusion process is YAS

(c1i) =
∣
∣
∣{cj′

i′ ∈ C | FAS
(c1i) >

FAS
(cj′

i′) ∨ (FAS
(c1i) = FAS

(cj′
i′) ∧ (j′ = 2 ∨ i < i′))}

∣
∣
∣.

Let us consider the case i = 1 and analyze the conditions that a seed set S
must satisfy in order to include a candidate in the above set, i.e., make c11 win.
We analyze the three other candidates cj′

i′ separately.

– If j′ = 2 and i′ = 1, then we must have FAS
(c11) ≥ FAS

(c21). Since the
preferences list of each active nodes in V1 is updated in a way that c11 moves
to the first position and c21 moves to the second position, and the active
nodes in V2 do not affect the rankings of c11 and c21, we have that FAS

(c11) =
|AS ∩V1| and FAS

(c21) = |V1 \AS |. Therefore, FAS
(c11) ≥ FAS

(c21) if and only
if |AS∩V1| ≥ |V1\AS | = |V1|−|V1∩AS |, which means that |AS∩V1| ≥ |V1|/2.

– If j′ = 2 and i′ = 2, then we must have FAS
(c11) ≥ FAS

(c22). In this case, we
still have FAS

(c11) = |AS ∩V1|, and, since c22 is moved down by one position for
each active node in V2, then FAS

(c22) = |V2\AS |. This implies that FAS
(c11) ≥

FAS
(c22) if and only if |AS ∩ V1| ≥ |V2\AS | = |V2| − |V2 ∩ AS |, which means

|AS ∩ V1| + |AS ∩ V2| ≥ |V2|.
– If j′ = 1 and i′ = 2, then we must have FAS

(c11) ≥ FAS
(c12). We again have

FAS
(c11) = |AS ∩V1|, and, since c12 is moved by one position up for each active

node in V2, then FAS
(c12) = |AS ∩ V2|. Therefore, FAS

(c11) ≥ FAS
(c12) if and

only if |AS ∩ V1| ≥ |AS ∩ V2|.
Similar conditions hold for i = 2.

In order to elect candidate c11 we should have YAS
(c11) ≥ (t − 1)k = 2, which

means, we should find a seed set that satisfies at least two of the above conditions
(or the corresponding conditions to elect c12). Note that finding a seed set S of size
at most B that satisfies any pair of the above conditions is a NP -hard problem
since it requires to solve the IM problem, which is NP -hard even when the weight
of all edges is 1 [18]. Let us assume that an optimal solution is able to elect both
candidates in C1 (e.g. by influencing |V1|/2 nodes from V1, and |V2|/2 nodes
from V2), then the optimal MoVc and DoWc are equal to 4 and 2, respectively.
Moreover, in this case CS

A = CB = C2, then MoVc(C1, S) = F(C1, S)−F(C1, ∅)+
F(C2, ∅) − F(C2, S). Since F(C2, ∅) − F(C2, S) = F(C1, S) − F(C1, ∅), i.e., for
each candidate lost by C2 there is a candidate gained by C1, then MoVc(C1, S) =
2(F(C1, S)−F(C1, ∅)) = 2DoWc(C1, S). Since F(C1, ∅) = 0, any approximation
algorithm for CDW or CMEC must find a seed set S s.t. F(C1, S) > 0 and this
requires to elect at least one candidate in C1 (see Eq. (1)), which is NP -hard. It
follows that it is NP -hard to approximate CMEC and CDW within any factor,
as formally shown in the next theorem.

Theorem 1. It is NP-hard to approximate CMEC and CDW within any factor
α > 0.

Proof. We reduce the decision version of the deterministic IM problem, to
CMEC and CDW, where deterministic refers to the weight of the edges in

Multi-winner Election Control via Social Influence 339

the graph, i.e., the weight of all edges is equal to 1. Let us define the decision
version of the IM problem as follows: Given a directed graph G = (V,E) and
budget B ≤ |V |. Is there a set of seed nodes S ⊆ V such that |S| ≤ B and
AS = V ?

Let I(G,B) be a deterministic instance of the decision IM problem (then,
using a given seed set S, we can find the exact number of activated nodes in
polynomial time). We create an instance I ′(G′, B) of CMEC and CDW, where
G′ = (V ∪ V ′, E ∪ E′). We use the same budget B for both problems. We first
investigate the case where t = 3, k = 2, and consider two different cases as
follows.

C1. If f(1) = f(2) = f(3) = a, f(4) = f(5) = f(6) = b for a, b ∈ R ∧ a > b ≥ 0,
we call this case exceptional, and do as follows.
For each v ∈ V we add one more node in V ′ and it has just one incoming
edge from v, i.e., ∀v ∈ V : v1 ∈ V ′, (v, v1) ∈ E′.
We set the preferences of all nodes v ∈ V and its new outgoing neighbor
as follows: v = (c21 � c22 � c31 � c11 � c12 � c32), v1 = (c31 � c32 � c21 � c12 �
c11 � c22) where a � b means a is preferred to b.

C2. For any non-increasing scoring function except the exceptional ones, we
call it general and do as follows.
For each v ∈ V we add three more nodes in V ′ and each of them has just one
incoming edge from v, i.e., ∀v ∈ V : v1, v2, v3 ∈ V ′, (v, v1), (v, v2), (v, v3) ∈
E′.
We set the preferences of all nodes v ∈ V and its new outgoing neighbors
as follows: v = (c21 � c11 � c31 � c22 � c12 � c32), v1 = (c22 � c12 � c32 � c21 �
c11 � c31), v2 = (c21 � c31 � c11 � c22 � c32 � c12), v3 = (c22 � c32 � c12 � c21 �
c31 � c11).

In both cases, the weight of all edges is 1, i.e., buv = 1 for all (u, v) ∈ E ∪E′.
The score of candidates before any diffusion is as follows.

C1. F(c11, ∅) = F(c12, ∅) = |V |(f(4) + f(5)) = 2b|V |, F(c21, ∅) = F(c31, ∅) =
|V |(f(1) + f(3)) = 2a|V |, F(c22, ∅) = F(c32, ∅) = |V |(f(2) + f(6)) = (a +
b)|V |. Since a > b ≥ 0, it yields that F(C2, ∅) = F(C3, ∅) = 1, F(C1, ∅) =
0, and none of our target candidates win the election.

C2. F(c11, ∅) = F(c12, ∅) = |V |(f(2)+ f(3)+ f(5)+ f(6)), F(c21, ∅) = F(c22, ∅) =
|V |(2f(1) + 2f(4)), F(c31, ∅) = F(c32, ∅) = |V |(f(2) + f(3) + f(5) + f(6)).
Since f(·) is a non-increasing function, it yields F(C2, ∅) = 2 and
F(C1, ∅) = F(C3, ∅) = 0 and none of our target candidates win the elec-
tion.

In I ′(G′, B), in both cases, all of the nodes v ∈ V ∪ V ′ become active if and
only if all of the nodes v ∈ V become active. Indeed, by definition, if V ⊆ AS ,
then for each node u ∈ V ′ there exists an incoming neighbor v ∈ V s.t. (v, u) ∈ E′

and bvu = 1, then if v is active, also u becomes active.
Suppose there exists an α−approximation algorithm called α-appAlg for

CDW (resp. CMEC) and it returns S ⊆ V ∪ V ′ as a solution. We show that,

340 M. Abouei Mehrizi and G. D’Angelo

by using the seed nodes S returned by the algorithm α-appAlg, we can find the
answer for the decision IM problem. We will show that DoWc(C1, S) > 0 (resp.
MoVc(C1, S) > 0) if and only if S activates all of the nodes, i.e., AS = V ∪ V ′.
That is DoWc(C1, S) > 0 (resp. MoVc(C1, S) > 0) if and only if the answer to
the decision IM problem is YES.

W.l.o.g., we assume S ⊆ V , because if there exists a node u ∈ S ∩ V ′, we
can replace it with the node v ∈ V s.t. (v, u) ∈ E′. Since buv = 1, this does not
decrease the value of DoWc(C1, S) or MoVc(C1, S).

We now show that if DoWc(C1, S) > 0 (resp. MoVc(C1, S) > 0), then AS =
V ∪ V ′. By contradiction, assume that S will not activate all of the nodes, i.e.,
there exists a node v in V \ AS . Then, the score of the candidates will be as
follows.

C1. F(c11, S) = F(c12, S) ≤ (a + b)(|V | − 1) + 2b, F(c21, S) = F(c31, S) ≥ (a +
b)(|V |−1)+2a, F(c22, S) = F(c32, S) = |V |(f(2)+f(6)) = (a+ b)|V |. Since
a > b ≥ 0, then none of the target candidates will be among the winners,
i.e., F(C2, S) = F(C3, S) = 1 and F(C1, S) = 0 and DoWc(C1, S) =
MoVc(C1, S) = 0.

C2. F(c11, S) = F(c12, S) ≤ (|V |−1)(f(1)+f(2)+f(4)+f(5))+(f(2)+f(3)+
f(5) + f(6)), F(c21, S) = F(c22, S) ≥ (|V | − 1)(f(1) + f(2) + f(4) + f(5)) +
(2f(1) + 2f(4)), F(c31, S) = F(c32, S) ≥ (|V | − 1)(f(3) + f(4) + 2f(6)) +
(f(2) + f(3) + f(5) + f(6)). Since f(·) is a non-increasing function, then
F(C1, S) = F(C3, S) = 0 and F(C2, S) = 2. Therefore DoWc(C1, S) =
MoVc(C1, S) = 0.

In both cases we have a contradiction. To show the other direction, if all of the
nodes become active, then the score of candidates will be as follows.

C1. For each 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3, F(cj
i , S) = (a + b)|V |. Due to the tie-

breaking rule it follows that both of our target candidates will be among
the winners, i.e., F(C1, S) = 2 and F(C2, S) = F(C3, S) = 0.

C2. F(c11, S) = F(c12, S) = F(c21, S) = F(c22, S) = |V |(f(1)+f(2)+f(4)+f(5)),
F(c31, S) = F(c32, S) = |V |(f(3) + f(4) + 2f(6)). Then, F(C1, S) = 2 and
F(C2, S) = F(C3, S) = 0.

Therefore we have DoWc(C1, S) > 0 (resp. MoVc(C1, S) > 0), and it con-
cludes the proof. The proof can be generalized for any t, k > 2, see [1]. ��

Destructive Election Control. The following theorem shows the hardness
of approximation of the destructive case. The proof is similar to that of
Theorem 1, and hence it is omitted. Note that if we consider maximizing DoWd,
the destructive case can be reduced to the constructive model. We cannot apply
the same reduction to the problem of maximizing MoVd as the opponent party
with the highest number of winners (i.e., CB, CS

A) may be different from that of
the constructive case.

Theorem 2. It is NP-hard to approximate DMEC and DDW within any factor
α > 0.

Multi-winner Election Control via Social Influence 341

4 Straight-Party Voting

Since all the variants of the multi-winner election control problems considered
so far are NP -hard to be approximated within any factor, we now consider a
relaxation of the problem in which, instead of focusing on the number of elected
target candidates, we focus on the overall number of votes obtained by the
target party. The rationale is that, even if a party is not able to (approximately)
maximize the number of its winning candidates because it is computationally
unattainable, it may want to maximize the overall number of votes, in the hope
that these are not too spread among the candidates and still leads to a large
number of seats in the parliament.

Moreover, the voting system that we obtain by the relaxation is used in some
real parliamentary elections [23], and is called of Straight-party voting (SPV)
or straight-ticket voting [8,20]. SPV was used very much until around the 1960s
and 1970s in the United States. After that, the United States has declined SPV
among the general voting; nevertheless, strong partisans are still voting accord-
ing to SPV. Interestingly, the first time that every state voting for a Democrat
for Senate also voted Democratic for president (and the same stability for Repub-
licans) was the 2016 elections of the United states [17].

Note that in this model, if we consider that the controller targets a single
candidate instead of a party and the preference lists are over candidates, then
we can easily reduce the problem to the single-winner case. The same holds if
the controller targets a party and the preference lists are over parties. Therefore,
we assume that voters have preference lists over the candidates, but since the
voting system is SPV and voters have to vote for a party, then they will cast a
vote for each party based on the position of the candidates of the party in their
preferences list, e.g., if the preferences list of a node v ∈ V is c11 � c21 � c22 � c12,
then the scores of v for party C1 will be f(1) + f(4), and f(2) + f(3) for party
C2.

Let us define Fspv(Ci, ∅) and Fspv(Ci, S) as sum of the scores obtained by
party Ci in SPV before and after S, respectively, as follows.

Fspv(Ci, ∅) =
∑

v∈V

∑

c∈Ci

f(πv(c)), Fspv(Ci, S) = EAS

[∑

v∈V

∑

c∈Ci

f(π̃v(c))
]
.

As in the previous case, we denote by CB and CS
A the most voted opponents

of C1 before and after S, respectively. We define MoVc and MoVd for SPV as

MoVspv
c (C1, S) = Fspv(C1, S) − Fspv(CS

A , S) − (Fspv(C1, ∅) − Fspv(CB, ∅)) ,

MoVspv
d (C1, S) = Fspv(C1, ∅) − Fspv(CB, ∅) − (Fspv(C1, S) − Fspv(CS

A , S)
)
.

Also, we define difference of votes for constructive (DoVc) and destructive
(DoVd) as

DoVspv
c (C1, S) = Fspv(C1, S) − Fspv(C1, ∅),

DoVspv
d (C1, S) = Fspv(C1, ∅) − Fspv(C1, S).

342 M. Abouei Mehrizi and G. D’Angelo

Theorem 3. Maximizing MoV and DoV in the constructive and destructive
SPV problems is NP-hard.

Proof. As in Theorem 1, we use the decision version of the deterministic IM
problem. Let I(G,B) be a deterministic instance of the decision IM problem.
We create an instance I ′(G′, B) of SPV , where G′ = G and B is the same budget
for both problems. Assume t = k = 2, and we are using a non-increasing scoring
function. Consider the minimum j such that 1 ≤ i < j ≤ |C| and f(i) > f(j),
i.e., j is the minimum rank that has less score than rank i = j − 1. Note that
2 ≤ j ≤ 4. We set the preferences list of each voter v ∈ V in graph G′ as follows.

C1. If j = 2. v : c21 � c11 � c12 � c22. In this case, Fspv(C1, ∅) = (f(2)+f(3))|V |.
C2. If j = 3. v : c21 � c22 � c11 � c12. In this case, Fspv(C1, ∅) = (f(3)+f(4))|V |.
C3. If j = 4. v : c11 � c21 � c22 � c12. In this case, Fspv(C1, ∅) = (f(1)+f(4))|V |.
By this preferences assignment, if all of the nodes become active after S, then
the score and DoVspv

c for party C1 will be as following.

C1. Fspv(C1, S) = (f(1) + f(2))|V |,
DoVspv

c (C1, S) = (f(1) + f(2))|V | − (f(2) + f(3))|V | = (f(1) − f(3))|V |;
and, if at least one node is not active DoVspv

c (C1, S) < (f(1) − f(3))|V |.
C2. Fspv(C1, S) = (f(2) + f(3))|V |,

DoVspv
c (C1, S) = (f(2) + f(3))|V | − (f(3) + f(4))|V | = (f(2) − f(4))|V |;

also, if at least one node is not active DoVspv
c (C1, S) < (f(2) − f(4))|V |.

C3. Fspv(C1, S) = (f(1) + f(3))|V |,
DoVspv

c (C1, S) = (f(1) + f(3))|V | − (f(1) + f(4))|V | = (f(3) − f(4))|V |;
moreover, if at least one node is not active DoVspv

c (C1, S) < (f(3) −
f(4))|V |.

Then by this reduction, we can distinguish between the case that all of the
nodes become active or not, which is the answer of IM problem. In this case,
since there are just two parties, whatever C2 looses will go for C1. Then,
MoVspv

c (C1, S) = 2DoVspv
c (C1, S), which means we also can answer to IM prob-

lem by maximizing MoVspv
c . The generalized version of this proof, t, k > 0, is

available in the extended version [1].
Regarding the destructive case, the reduction is similar to the constructive

one, except that we set the preferences of the voters s.t. at least one of the
candidates c ∈ C1 can decrease the score of C1. The same approach gets the
NP -hardness result. ��

We now give an approximation algorithm for the problems of maximizing
DoVspv

c and DoVspv
d that is based on a reduction to the node-weighted version

of the IM problem. We construct an instance of this problem where the weight
to each node v ∈ V , which is equal to the increase in the score of C1 when v
becomes active. The node-weighted IM problem can be approximated by a factor
of 1 − 1

e − ε, for any ε > 0, by using the standard greedy algorithm [18].

Multi-winner Election Control via Social Influence 343

Theorem 4. There exists an algorithm that approximates DoVspv
c and DoVspv

d

within a factor (1 − 1
e) − ε from the optimum, for any ε > 0.

Proof. We first consider the constructive case, i.e., DoVspv
c . Let us define C̄v

1 ⊆
C1 as a set of candidates in our target party whose rank is decreased if v become
active; in other words, C̄v

1 = {c ∈ C1 : ∃c′ ∈ C \C1, πv(c′) < πv(c)}. In this case,
a node v ∈ V can increase the score of C1 by

∑
c∈C̄v

1
f(πv(c) − 1) − f(πv(c)).2

Given an instance of I(G,B) of the DoVspv
c maximization problem, we define an

instance I ′(G,B,w) of the node-weighted IM problem, where w is a node-weight
function defined as w(v) =

∑
c∈C̄v

1
(f(πv(c) − 1) − f(πv(c))) , for all v ∈ V .

Given a set S of nodes, we denote by σ(S) the expected weight of active nodes in
G, when the diffusion starts from S. We will show that DoVspv

c (C1, S) = σ(S) for
any set S ⊆ V , since the standard greedy algorithm guarantees an approximation
factor of 1 − 1

e − ε, for the node-weight IM problem, for any ε > 0, this shows
the statement.

Given a set S, σ(S) can be computed as follows:

σ(S) = EAS

[
∑

v∈AS

w(v)

]

=
∑

AS⊆V

∑

v∈AS

w(v)P(AS),

where P(AS) is the probability that AS ⊆ V is the set of nodes activated by S.
By definition DoVspv

c (C1, S) = Fspv(C1, S) − Fspv(C1, ∅), where
Fspv(C1, ∅) =

∑
v∈V

∑
c∈C1

f(πv(c)) and

Fspv(C1, S) = EAS

[
∑

v∈V

∑

c∈C1

f(π̃v(c))

]

=
∑

v∈V

∑

c∈C1

EAS
[f(π̃v(c))]

=
∑

v∈V

⎛

⎝
∑

c∈C̄v
1

EAS
[f(π̃v(c))] +

∑

c∈C1\C̄v
1

f(πv(c))

⎞

⎠ ,

where the last equality is due to the fact that, a node v doesn’t change the
positions of candidates in C1 \ C̄v

1 . Let us focus on the first term of the above
formula,

2 We assume function f(·) is defined in such away that f(i−1)−f(i), for i = 2, . . . ,m,
does not depend exponentially on the graph size (e.g. it is a constant). The influence
maximization problem with arbitrary node-weights is still an open problem [18].

344 M. Abouei Mehrizi and G. D’Angelo

∑

v∈V

∑

c∈C̄v
1

EAS
[f(π̃v(c))]

=
∑

v∈V

∑

c∈C̄v
1

∑

AS⊆V

(f(πv(c) − 1)1v∈As
+ f(πv(c))1v �∈As

) P(AS)

=
∑

AS⊆V

⎛

⎝
∑

v∈AS

∑

c∈C̄v
1

f(πv(c) − 1) +
∑

v �∈AS

∑

c∈C̄v
1

f(πv(c))

⎞

⎠ P(AS).

It follows that

DoVspv
c (C1, S) =

∑

v∈V

∑

c∈C̄v
1

EAS
[f(π̃v(c)) − f(πv(c))]

∑

AS⊆V

∑

v∈AS

∑

c∈C̄v
1

(f(πv(c) − 1) − f(πv(c)))P(AS) = σ(S),

since the term related to candidates in C1 \ C̄v
1 and to nodes not in AS are

canceled out.
The destructive case is similar to the constructive one except that a node

v ∈ V can decrease the score of C1 by
∑

c∈C1:∃c′∈C\C1,πv(c′)>πv(c)
f(πv(c)) −

f(πv(c) + 1). Therefore the same approach, where the weights are set to the
above value, yields the same approximation factor for DoVspv

d . ��
In the following theorems, we show that using Theorem 4, we get a constant

approximation factor for the problem of maximizing MoV. Specifically, we show
that by maximizing DoVspv

c we get an extra 1/3 approximation factor for the
problem of maximizing MoVspv

c . For the destructive case, the extra approxima-
tion factor is 1/2. It follows that, by using the greedy algorithm for maximiz-
ing DoVspv

c and DoVspv
d , we obtain approximation factors of 1

3 (1 − 1
e) − ε and

1
2 (1 − 1

e) − ε, for any ε > 0, of the maximum MoVspv
c and MoVspv

d , respectively.

Theorem 5. There exists an algorithm that approximates MoVspv
c within a fac-

tor 1
3 (1 − 1

e) − ε from the optimum, for any ε > 0.

Proof. Let S and S∗ be the solution returned by the greedy algorithm for DoVspv
c

maximization and a solution that maximizes MoVspv
c , respectively. For each

party Ci �= C1, we denote by DoV−
c (Ci, S) the score lost by Ci after S, that is

DoV−
c (Ci, S) = F(Ci, ∅)−F(Ci, S) ≥ 0. Let αε := (1− 1

e)−ε. Since S is a factor
αε from the optimum DoVspv

c , the following holds.

Multi-winner Election Control via Social Influence 345

MoVspv
c (C1, S) = Fspv(C1, S) − Fspv(CS

A , S) −
(
Fspv(C1, ∅) − Fspv(CB, ∅)

)

= DoVspv
c (C1, S) + DoV−

c (CS
A , S) − Fspv(CS

A , ∅) + Fspv(CB, ∅)

≥ αεDoVspv
c (C1, S

∗) − Fspv(CS
A , ∅) + Fspv(CB, ∅)

(a)

≥ 1
3
αε

[
DoVspv

c (C1, S
∗) + DoV−

c (CS∗
A , S∗) + DoV−

c (CS
A , S∗)

]

− Fspv(CS
A , ∅) + Fspv(CB, ∅)

(b)

≥ 1
3
αε

[
DoVspv

c (C1, S
∗) + DoV−

c (CS∗
A , S∗) + DoV−

c (CS
A , S∗)

− Fspv(CS
A , ∅) + Fspv(CB, ∅) + Fspv(CS∗

A , ∅) − Fspv(CS∗
A , ∅)

]

=
1
3
αε

[
MoVspv

c (C1, S
∗) + DoV−

c (CS
A , S∗) + Fspv(CS∗

A , ∅) − Fspv(CS
A , ∅)

]

(c)

≥ 1
3
αεMoVspv

c (C1, S
∗) ≥

(
1
3

(

1 − 1
e

)

− ε

)

MoVspv
c (C1, S

∗),

for any ε > 0. Inequality (a) holds because, by definition, the score lost by CS
A and

CS∗
A will be added to the score of C1. Inequality (b) holds since, by definition

of CB, Fspv(CB, ∅) ≥ Fspv(CS
A , ∅) and then −Fspv(CS

A , ∅) + Fspv(CB, ∅) ≥ 0.
Inequality (c) holds because

DoV−
c (CS∗

A , S∗) − DoV−
c (CS

A , S∗)

= Fspv(CS∗
A , ∅) − Fspv(CS∗

A , S∗) − Fspv(CS
A , ∅) + Fspv(CS

A , S∗)
(d)

≤ Fspv(CS∗
A , ∅) − Fspv(CS

A , ∅),

which implies that

DoV−
c (CS

A , S∗) + Fspv(CS∗
A , ∅) − Fspv(CS

A , ∅) ≥ DoV−
c (CS∗

A , S∗) ≥ 0.

Inequality (d) holds since, by definition of CS∗
A , F(CS

A , S∗) ≤ F(CS∗
A , S∗). ��

Theorem 6. There exists an algorithm that approximates MoVspv
d within a fac-

tor 1
2 (1 − 1

e) − ε from the optimum, for any ε > 0.

Proof. Let S and S∗ be the solution returned by the greedy algorithm for DoVspv
d

maximization and a solution that maximizes MoVspv
d , respectively. For each

party Ci �= C1, we denote by DoV+
c (Ci, S) the score gained by Ci after S, that

is DoV+
c (Ci, S) = F(Ci, S) − F(Ci, ∅) ≥ 0. Let αε := (1 − 1

e) − ε. Since S is a
factor αε from the optimum DoVspv

c , the following holds.

346 M. Abouei Mehrizi and G. D’Angelo

MoVspv
d (C1, S) = Fspv(C1, ∅) − Fspv(CB, ∅) − (Fspv(C1, S) − Fspv(CS

A , S)
)

= DoVspv
d (C1, S) + DoV+

c (CS
A , S) + Fspv(CS

A , ∅) − Fspv(CB, ∅)

≥ αεDoVspv
d (C1, S

∗) + DoV+
c (CS

A , S) + Fspv(CS
A , ∅) − Fspv(CB, ∅)

(a)

≥ 1
2
αε

[
DoVspv

d (C1, S
∗) + DoV+

c (CS∗
A , S∗)

]
+ DoV+

c (CS
A , S)+

Fspv(CS
A , ∅) − Fspv(CB, ∅)

(b)

≥ 1
2
αε

[
DoVspv

d (C1, S
∗) + DoV+

c (CS∗
A , S∗) + DoV+

c (CS
A , S)+

Fspv(CS
A , ∅) − Fspv(CB, ∅) + Fspv(CS∗

A , ∅) − Fspv(CS∗
A , ∅)

]

=
1
2
αε

[
MoVd(C1, S

∗) + DoV+
c (CS

A , S) − Fspv(CS∗
A , ∅) + Fspv(CS

A , ∅)
]

(c)

≥ 1
2
αεMoVd(C1, S

∗) ≥
(

1
2

(

1 − 1
e

)

− ε

)

MoVd(C1, S
∗),

for any ε > 0. Inequality (a) holds because CS∗
A can gain at most all of the scores

lost by C1. Inequality (b) holds since we have

DoV+
c (CS

A , S) + Fspv(CS
A , ∅) − Fspv(CB, ∅)

= Fspv(CS
A , S) − Fspv(CS

A , ∅) + Fspv(CS
A , ∅) − Fspv(CB, ∅)

= Fspv(CS
A , S) − Fspv(CB, ∅),

and, by definition of CS
A , Fspv(CS

A , S) ≥ Fspv(CB, S) ≥ Fspv(CB, ∅). Inequal-
ity (c) holds because

DoV+
c (CS

A , S) − Fspv(CS∗
A , ∅) + Fspv(CS

A , ∅)

= Fspv(CS
A , S) − Fspv(CS

A , ∅) − Fspv(CS∗
A , ∅) + Fspv(CS

A , ∅)

= Fspv(CS
A , S) − Fspv(CS∗

A , ∅)

and, by definition of CS
A , Fspv(CS

A , S) ≥ Fspv(CS∗
A , S) ≥ Fspv(CS∗

A , ∅). ��

5 Conclusions and Future Work

Controlling elections through social networks is a significant issue in modern
society. Political campaigns are using social networks as effective tools to influ-
ence voters in real-life elections. In this paper, we formalized the multi-winner
election control problem through social influence. We proved that finding an
approximation to the maximum margin of victory or difference of winners, for
both constructive and destructive cases, is NP -hard for any approximation fac-
tor. We relaxed the problem to a variation of straight-party voting and showed
that this case is approximable within a constant factor in both constructive and
destructive cases. To our knowledge, these are the first results on multi-winner
election control via social influence.

Multi-winner Election Control via Social Influence 347

The results in this paper open several research directions. We plan to
study the problem in which the adversary can spread a different (construc-
tive/destructive) message for each candidate, using different seed nodes. In these
cases, a good strategy could be that of sending a message regarding a third party
(different from the target one and the most voted opponent), and our results
cannot be easily extended.

References

1. Abouei Mehrizi, M., D’Angelo, G.: Multi-winner election control via social influ-
ence. arXiv e-prints, arXiv:2005.04037, May 2020

2. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J.
Econ. Perspect. 31(2), 211–36 (2017)

3. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Minority becomes
majority in social networks. In: Markakis, E., Schäfer, G. (eds.) WINE 2015. LNCS,
vol. 9470, pp. 74–88. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48995-6 6

4. Bond, R.M., et al.: A 61-million-person experiment in social influence and political
mobilization. Nature 489, 295 (2012)

5. Botan, S., Grandi, U., Perrussel, L.: Proposition wise opinion diffusion with con-
straints. In: 4th AAMAS Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice (EXPLORE) (2017)

6. Bredereck, R., Elkind, E.: Manipulating opinion diffusion in social networks. In:
IJCAI 2017 pp. 894–900 (2017)

7. Brill, M., Elkind, E., Endriss, U., Grandi, U.: Pairwise diffusion of preference rank-
ings in social networks. In: IJCAI 2016, pp. 130–136 (2016)

8. Campbell, B.A., Byrne, M.D.: Straight-party voting: what do voters think? IEEE
Trans. Inf. Forensics Secur. 4(4), 718–728 (2009)

9. Chen, W., Castillo, C., Lakshmanan, L.V.S.: Information and Influence Propaga-
tion in Social Networks. Morgan & Claypool, San Rafael (2013)

10. Corò, F., Cruciani, E., D’Angelo, G., Ponziani, S.: Exploiting social influence to
control elections based on scoring rules. In: IJCAI2019, pp. 201–207 (2019)

11. Corò, F., Cruciani, E., D’Angelo, G., Ponziani, S.: Vote for me! Election control
via social influence in arbitrary scoring rule voting systems. In: AAMAS 2019, pp.
1895–1897 (2019)

12. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD
2001, pp. 57–66. ACM (2001)

13. Faliszewski, P., Gonen, R., Koutecký, M., Talmon, N.: Opinion diffusion and cam-
paigning on society graphs. In: IJCAI 2018, pp. 219–225 (2018)

14. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Handbook of Compu-
tational Social Choice, pp. 146–168. Cambridge University Press (2016)

15. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Multiwinner voting: a new
challenge for social choice theory. In: Endriss, U. (ed.) Trends in Computational
Social Choice, chap. 2, pp. 27–48. AI Access (2017)

16. Ferrara, E.: Disinformation and social bot operations in the run up to the 2017
french presidential election. First Monday 22(8) (2017)

17. Hershey, M.R.: Party Politics in America. Taylor & Francis, London (2017)
18. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence

through a social network. Theory Comput. 11, 105–147 (2015)

http://arxiv.org/abs/2005.04037
https://doi.org/10.1007/978-3-662-48995-6_6
https://doi.org/10.1007/978-3-662-48995-6_6

348 M. Abouei Mehrizi and G. D’Angelo

19. Kreiss, D.: Seizing the moment: the presidential campaigns’ use of twitter during
the 2012 electoral cycle. New Media Soc. 18(8), 1473–1490 (2016)

20. Kritzer, H.M.: Roll-off in state court elections: change over time and the impact
of the straight-ticket voting option. J. Law Courts 4(2), 409–435 (2016)

21. Pennycook, G., Cannon, T., Rand, D.G.: Prior exposure increases perceived accu-
racy of fake news. J. Exp. Psychol.: Gener. 147, 1865 (2018)

22. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: KDD 2002, pp. 61–70. ACM (2002)

23. Ruhl, J.M., Mcdonald, R.H.: Party Politics and Elections in Latin America. Taylor
& Francis, London (2019)

24. Stier, S., Bleier, A., Lietz, H., Strohmaier, M.: Election campaigning on social
media: politicians, audiences, and the mediation of political communication on
Facebook and Twitter. Polit. Commun. 35(1), 50–74 (2018)

25. Wilder, B., Vorobeychik, Y.: Controlling elections through social influence. In:
AAMAS 2018, pp. 265–273 (2018)

26. Zwicker, W.S.: Introduction to the theory of voting. In: Handbook of Computa-
tional Social Choice, pp. 23–56. Cambridge University Press (2016)

Network Creation Games with Local
Information and Edge Swaps

Shotaro Yoshimura1 and Yukiko Yamauchi2(B)

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka, Japan
yoshimura@tcs.inf.kyushu-u.ac.jp

2 Faculty of Information Science and Electrical Engineering, Kyushu University,
Fukuoka, Japan

yamauchi@inf.kyushu-u.ac.jp

Abstract. In the swap game (SG), selfish players, each of which is asso-
ciated with a vertex, form a graph by edge swaps, i.e., a player changes
its strategy by simultaneously removing an adjacent edge and forming a
new edge (Alon et al. 2013). The cost of a player considers the average
distance to all other players or the maximum distance to other players.
Any SG by n players starting from a tree converges to an equilibrium with
a constant Price of Anarchy (PoA) within O(n3) edge swaps (Lenzner
2011). We focus on SGs where each player knows the subgraph induced
by players within distance k. Therefore, each player cannot compute its
cost nor a best response. We first consider pessimistic players who con-
sider the worst-case global graph. We show that any SG starting from
a tree (i) always converges to an equilibrium within O(n3) edge swaps
irrespective of the value of k, (ii) the PoA is Θ(n) for k = 1, 2, 3, and (iii)
the PoA is constant for k ≥ 4. We then introduce weakly pessimistic play-
ers and optimistic players and show that these less pessimistic players
achieve constant PoA for k ≤ 3 at the cost of best response cycles.

Keywords: Network creation game · Local information · Price of
Anarchy · Dynamics

1 Introduction

Static and dynamic properties of networks not controlled by any centralized
authority attracts much attention in last two decades as self-organizing large-
scale networks play a critical role in a variety of information systems, for example,
the Internet, Peer-to-Peer networks, ad-hoc networks, wireless sensor networks,
social networks, viral networks, and so on. In these networks, participants self-
ishly and rationally change a part of the network structure to minimize their
cost and maximize their gain. Controlling such networks is essentially impossi-
ble and many theoretical and empirical studies have been conducted; stochastic

This work was supported by JSPS KAKENHI Grant Number JP18H03202.

c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 349–365, 2020.
https://doi.org/10.1007/978-3-030-54921-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_20

350 S. Yoshimura and Y. Yamauchi

network construction models such as the Barabási–Albert model were proposed,
and key structural properties such as the small world networks [21] and the
scale-free networks [3] have been discovered. Stochastic communication mod-
els such as the voting models [20], the random phone call model [13], and the
rewiring model [11] were proposed and many phase transition phenomena have
been reported. Many problems related to broadcasting, gossiping, and viral mar-
keting were also proposed [4,10,15].

In this paper, we take a game-theoretic approach to analyze dynamics and
efficiency of the network structure resulting from local reconstruction by selfish
agents. The network creation game (NCG) considers n players forming a net-
work [12]. Each player is associated with a vertex of the network, can construct
a communication edge connecting itself to another player at the cost of α, and
can remove an adjacent edge for free. The cost of a player is the sum of the
construction cost for edges and the communication cost, which is the sum of
distances to all other players in the current network, i.e., the average distance
to other players. Each player selfishly changes its strategy to minimize its cost
and the social cost of a network is the sum of all players’ costs. The Price of
Anarchy (PoA) of NCG is constant for almost all values of α [1,9,17,18], yet the
PoA is not known for some values of α. However, computing the best response
in NCG is NP-hard [12], and this fact makes the NCG unrealistic in large-scale
networks. The NCG with another type of communication cost is proposed in [9],
where the cost of a player is the maximum distance to other players. We call
this game the Max Network Creation Game (MAX-NCG) and the original NCG
the Sum Network Creation Game (SUM-NCG). However, the SUM-NCG and
the MAX-NCG ignores one of the most critical limitations in large-scale net-
works; each player cannot obtain “global” information. This type of locality is a
fundamental limitation in distributed computing, although players can neither
compute its cost nor the best response without global information.

In this paper, we focus on games in such a distributed environment where
each player cannot obtain the current strategy of all players nor have enough
local memory to store the global information. Rather, players can access only
local information. The NCG by players with local information is first proposed
in [6]. Each player can observe a subgraph of the current graph induced by the
players within distance k. We call this information the k-local information. The
players are pessimistic in the sense that they consider the worst-case global graph
when they examine a new strategy. Computing the best response for MAX-NCG
is still NP-hard because k-local information may contain the entire network. For
small k, more specifically, for 1 ≤ k ≤ α + 1, PoA = Ω(n

1+α) for MAX-NCG
and for k ≤ c 3

√
α PoA = Ω(n/k) for SUM-NCG. These results contrast global

information with local information. The SUM-NCG and MAX-NCG by players
with global trace-route based information is proposed, yet PoA = Θ(n) for some
values of α [5]. The NCG for more powerful players with k-local information
is considered in [8], where the players can probe the cost of a new strategy.
Computing the best response is NP-hard for any k ≥ 1 while there exists tree
equilibrium that achieves PoA = O(log n) and PoA = Ω(log n

k) for 2 ≤ k ≤ log n

Network Creation Games with Local Information and Edge Swaps 351

and PoA = Θ(n) for k = 1. For non-tree networks, depending on the values of
α and k, we have PoA = O(n).

The swap game (SG) restricts strategy changes to edge swaps, i.e., simultane-
ously removing an edge and creating a new edge [2]. Thus, any strategy change
does not change the number of edges in the network and the best response can
be computed in polynomial time. Additionally, when we restrict initial networks
to trees, a star achieves the minimum social cost. Above mentioned cost func-
tions were adopted and these SGs are called the SUM-SG and the MAX-SG,
respectively. The aim of SG is to omit parameter α from NCG with keeping the
essence of NCG. The authors showed that the diameter of a tree equilibrium
is two for the SUM-SG and at most three for the MAX-SG, while there exists
an equilibrium with a large diameter in general networks. Thus, PoA of a tree
equilibrium is always constant. Moreover, any SUM-SG and MAX-SG starting
from a tree converges to an equilibrium within O(n3) edge swaps while they
admit best response cycles starting from a general graph [14,16]. Consequently,
local search at players with global information achieves efficient network con-
struction for initial tree networks. The SUM-SG and MAX-SG with “powerful”
players with k-local information is investigated in [8]. For k ≥ 2, the SUM-SG
and MAX-SG starting from general networks admits best response cycles while
convergence within O(n3) moves is guaranteed for tree networks. However, to
the best of our knowledge, SG with k-local information has not been considered.

1.1 Our Results

In this paper, we investigate the convergence property and PoA of SGs by players
with local information. First, we consider pessimistic players and demonstrate
that starting from an initial tree, any SUM-SG and MAX-SG converge to an
equilibrium within O(n3) edge swaps in the same manner as [16], i.e., we present
a generalized ordinal potential function for the two games. We also show that
convergence from a general network is not always guaranteed. Then, we present
a clear phase transition phenomenon caused by the locality.
– When k = 1, 2, pessimistic players never perform any edge swap in the SUM-

SG and in MAX-SG. Any network is an equilibrium of the two games, thus
PoA = Θ(n).

– When k = 3, in the SUM-SG and MAX-SG, there exists an equilibrium of
diameter Θ(n), thus PoA = Θ(n).

– When k ≥ 4, in the SUM-SG and MAX-SG, the diameter of every equilibrium
is constant, thus PoA is constant.

We then introduce weakly-pessimistic players and optimistic players to obtain
a better PoA for k ≤ 3. A weakly pessimistic player performs an edge swap even
when its cost does not decrease. This relaxation results in a constant PoA of
the MAX-SG when k = 3 at the cost of best response cycles. An optimistic
player assumes the best-case global graph for an edge swap and this optimism
results in a constant PoA of the SUM-SG and MAX-SG for any value of k.
Consequently, the combination of k-locality for k ≥ 4 and pessimism enables
distributed construction of efficient trees by selfish players.

352 S. Yoshimura and Y. Yamauchi

1.2 Related Works

We briefly survey existing results of the NCG and SG for players with global
information. Regarding the SUM-NCG, when α ≤ n1−ε for ε ≥ 1/ log n the PoA
is O(31/ε) [9]. Thus, when n is sufficiently large, the PoA is bound by a constant.
When α > 4n + 13, the PoA is at most 3 + 2n/(2n + α) [7]. In addition, any
constant upper bound of PoA for n ≤ α ≤ 4n + 13 is not known and the best
upper bound is O(2

√
lg n) [9]. If every equilibrium is a tree, then PoA < 5 and

an interesting conjecture is that every equilibrium is a tree for sufficiently large
α [12]. Regarding the MAX-NCG, the PoA is 2O(

√
lg n) and it is constant when

α = O(n−1/2) or α > 129 [18].
Regarding the SUM-SG, there exists an equilibrium with diameter 2O(

√
lg n)

while the diameter of any equilibrium is at most two (thus, a star) if an initial
graph is a tree [2]. Regarding the MAX-SG, there exists an equilibrium with
diameter Θ(

√
n) while the diameter of any equilibrium is at most three if an

initial graph is a tree [2].

1.3 Organization

Section 2 introduces the SGs and pessimistic players with local information. We
analyze the dynamics of SGs by pessimistic players in Sect. 3 and PoA in Sect. 4.
In Sect. 5, we introduce less pessimistic players and present best response cycles
and equilibria with small diameter. Finally, we conclude this paper with open
problems.

2 Preliminaries

A swap game (SG) by players with k-local information is denoted by (G0, k),
where G0 = (V,E0) is an initial network and integer k is the size of each player’s
“visibility”. G0 is a simple undirected connected graph, where |V | = n and
|E0| = m. We say u ∈ V is adjacent to v ∈ V if edge {u, v} is an element of E.
Each player is associated with a vertex in V and the strategy of a player u ∈ V
is the set of its incident edges.

Each player can change its strategy by an edge swap, i.e., removing one
incident edge and creating a new edge. Starting from G0, a sequence of edge
swaps generates a network evolution G0, G1, G2,

Let NG(u) be the set of adjacent vertices of u ∈ V in G and dG(u, v) be the
distance between u, v ∈ V in G. When G is not connected and v is not reachable
from u, dG(u, v) = ∞. The cost of a player depends on the current graph G. We
consider two different types of cost functions, cSUM,u(G) and cMAX,u(G) defined
as follows:

cSUM,u(G) =
∑

v∈V

dG(u, v)

cMAX,u(G) = max
v∈V

dG(u, v).

Network Creation Games with Local Information and Edge Swaps 353

When G is not connected, cSUM,u(G) = ∞ and cMAX,u(G) = ∞. We call a swap
game where each player u uses cSUM,u the sum swap game (SUM-SG) and a
swap game where each player u uses cMAX,u the max swap game (MAX-SG).
When it is clear from the context, we omit the name of the game and use cu.

Each player u can access local information determined by G. Let VG,k(u)
denote the set of vertices within distance k from u in G (thus, the k-neighborhood
of u). Player u can observe the subgraph of G induced by VG,k(u) and we call
this subgraph the view of u. We say the information at u is k-local and we call
its view the k-local information of u. We assume that each player does not know
any global information such as the values of n and m.

In a transition from Gt to Gt+1, a single player performs an edge swap.
Consider the case where a player u performs an edge swap (v, w) ∈ NGt

(u) ×
(VGt,k(u)\(NGt

(u)∪{u})) in Gt. We call u the moving player in Gt. The resulting
graph is Gt+1 = (V,Et\{{u, v}}∪{{u,w}}). Note that the number of edges does
not change in a SG.

Due to local information, each player cannot compute its current cost nor
the improvement by a strategy change. We first consider pessimistic players that
consider the worst-case improvement for each possible edge swap and select one
that achieves positive improvement. A player u is unhappy if it has an edge swap
that decreases its cost in the worst-case global graph. In other words, there exists
at least one edge swap (v, w) at u that satisfies

Δu(v, w) = min
H∈Gu

(cu(H) − cu(H ′)) > 0,

where Gu is the set of simple undirected connected graphs consisting of finite
number of vertices and compatible with u’s local view, and H ′ is a graph obtained
by the edge swap (v, w) at u in H ∈ Gu. We assume that a moving player always
performs an edge swap (v, w) with Δu(v, w) > 0. When every player u is not
unhappy with respect to cSUM,u(G) in graph G, we call G a sum-swap equilib-
rium. When every player u is not unhappy with respect to cMAX,u(G) in graph
G, we call G a max-swap equilibrium. When a graph is a sum-swap equilibrium
and a max-swap equilibrium we simply call the graph swap equilibrium.

We define the social cost SC(G) of a graph G as the sum of all players’
costs, i.e., SC(G) =

∑
u∈V cu(G). Let G(n,m) be the set of simple undirected

connected graphs of n players and m edges and GSUM(n,m, k) be the set of sum-
swap equilibrium graphs of n players with k-local information and m edges. The
Price of Anarchy (PoA) of the SUM-SG is defined as follows:

PoASUM(n,m, k) =
maxG∈GSUM(n,m,k) SC(G)

minG′∈G(n,m) SC(G′)
.

In the same way, the PoA of the MAX-SG is defined for the set GMAX(n,m, k)
of max-swap equilibrium graphs of n players with k-local information and m
edges. The PoA of the SUM-SG (and MAX-SG) starting from a tree is denoted
by PoASUM(n, n − 1, k) (PoAMAX(n, n − 1, k), respectively).

A strategic game has the finite improvement property (FIP) if every sequence
of improving strategy changes is finite [19]. Thus, from any initial state, any

354 S. Yoshimura and Y. Yamauchi

sequence of finite improving strategy changes reaches an equilibrium. Monderer
and Shapley showed that a strategic game has the FIP if and only if it has a
generalized ordinal potential function. Regarding a swap game, a function Φ :
Gn,m → R is a generalized ordinal potential function if we have the following
property for every graph G ∈ Gn,m, every unhappy player u, and every edge
swap (v, w) that makes u unhappy,

cu(G) − cu(G′) > 0 ⇒ Φ(G) − Φ(G′) > 0,

where G′ is a graph obtained by the edge swap (v, w) at u. That is, any transition
in the SUM-SG and MAX-SG satisfies the above property for the moving player.

The best response of a player u in Gt is an edge swap (v, w) that maximizes
Δu(v, w). We call an evolution G0, G1, G2, . . . , Gi(= G0) a best response cycle
when each moving player in Gt performs a best response for t = 0, 1, 2, . . . , i−1.

We further introduce some notations for graph G = (V,E). For a set of
vertices V ′ ⊆ V the graph obtained by removing vertices in V ′ and their incident
edges is denoted by G \ V ′. Additionally, for a set of edges E′ ⊆ E the graph
obtained by removing edges in E′ is denoted by G \ E′. The vertex set and the
edge set of a graph G′ is denoted by V (G′) and E(G′), respectively.

3 Convergence Properties for Pessimistic Players

In this section, we investigate the dynamics of the SUM-SG and MAX-SG by
pessimistic players with local information. We first consider general settings
where the initial graph is not a tree and multiple players perform edge swaps
simultaneously. We show that the two games admit best response cycles. We
then demonstrate that when the initial graph is a tree, the SUM-SG and MAX-
SG have the FIP and converge to an equilibrium within polynomial number of
edge swaps.

3.1 Impossibility in General Settings

We first present several necessary conditions for an evolution of the SUM-SG
and MAX-SG by players with local information to reach an equilibrium. We
first present the necessary visibility for each player to change their strategies.

Theorem 1. In the SUM-SG and MAX-SG, when k ≤ 2, no player is unhappy
in an arbitrary graph. Thus, any graph is a swap equilibrium.

Proof. When k = 1, no player can perform an edge swap because VGt,1(u) \
(NGt

(u) ∪ {u}) = ∅ at any u ∈ V .
When k = 2, we first consider the SUM-SG. Assume player u is unhappy

because of edge swap (v, w) in graph G. Let G′ be the graph obtained by this
edge swap. Thus, dG(u,w) = 2 and dG(u,w) − dG′(u,w) = 1. In a worst-
case global graph, w has no adjacent vertex other than those in VG,2(u) and
the cost of u decreases by at most one by this edge swap. In G′, v must be

Network Creation Games with Local Information and Edge Swaps 355

reachable from u. There exists at least one player that is in VG,2(u) and adja-
cent to v, otherwise v is not reachable from u in a worst-case global graph.
Hence, dG(u, v) − dG′(u, v) = −1. Additionally, dG(u, x) − dG′(u, x) ≤ 0 for any
x ∈ VG,2(u) \ {v, w}. Consequently, Δu(v, w) ≤ 0 and u is not unhappy in G.

Next, we consider the MAX-SG. Assume player u is unhappy because of edge
swap (v, w) in graph G. Thus, dG(u,w) = 2 and w is the only player at distance
2 from u in VG,2(u) otherwise u is not unhappy because of the edge swap (v, w)
in G. Let G′ be the graph obtained by this edge swap. In a worst-case global
graph, w has no adjacent vertex other than those in VG,2(u) and the cost of u is
expected to be reduced to 1. By the same discussion above, v is reachable from
u in G′, however dG′(u, v) = 2. Hence, the maximum distance from u to players
in VG′,2(u) is still two, thus Δu(v, w) ≤ 0. Hence, u is not unhappy in G. �

The following theorem justifies our assumption of a single edge swap in each
transition.

Theorem 2. When k ≥ 3, if multiple players change their strategies simulta-
neously, the SUM-SG and MAX-SG admit best response cycles.

Proof. We first consider the SUM-SG. Consider a path of four players u, v, w,
and x aligned in this order. When k ≥ 3, the two endpoint players u and x
are unhappy because of the edge swap (v, w) and (w, v), respectively. If the two
players perform the edge swaps simultaneously, the resulting graph is again a
path graph, where u and x are unhappy.

The above example is also a best response cycle in the MAX-SG. �
Finally, we consider dynamics of SGs starting from an arbitrary initial graph.

Lenzner presented a best response cycle for the SUM-SG by players with global
information [16]. During the evolution, the distance to any player from a moving
player is always less than four and we can apply the result to the SUM-SG by
pessimistic players with k-local information for k ≥ 3. In addition, the edge
swaps are also best responses in the MAX-SG. Hence, we can also apply the
result to the MAX-SG by pessimistic players with k-local information for k ≥ 3.
We have the following theorem.

Theorem 3. When k ≥ 3, there exists an initial graph from which the SUM-SG
and MAX-SG admit a best response cycle.

In the following, we concentrate on the SUM-SG and MAX-SG by pessimistic
players with k-local information for k ≥ 3 starting from a tree. As defined in the
preliminary, a single player changes its strategy in each transition.

3.2 Convergence from an Initial Tree

In this section, we show that the SUM-SG and MAX-SG have the FIP. For
players with global information, generalized ordinal potential functions for the
SUM-SG [16] and MAX-SG [14] have been proposed. We can use these general-
ized ordinal potential functions for pessimistic players with local information.

356 S. Yoshimura and Y. Yamauchi

Theorem 4. If G0 is a tree, any SUM-SG (G0, k) has the FIP and reaches a
sum-swap equilibrium within O(n3) edge swaps.

Proof. We show that ΦSUM = SC(G) is a generalized ordinal potential function
for the SUM-SG irrespective of the value of k. Consider a tree Gt where an
arbitrary unhappy player u performs an edge swap (v, w) that yields a new
graph Gt+1. We have Δu(v, w) > 0.

Lenzner showed that for players with global information SC(Gt) −
SC(Gt+1) ≥ 2 holds if cu(Gt) − cu(Gt+1) > 0 [16]. Since Δu(v, w) considers
the worst case graph, cu(Gt) − cu(Gt+1) ≥ Δu(v, w) > 0 holds. Consequently,
ΦSUM is a generalized ordinal potential function for the SUM-SG.

Lenzner also showed that when the graph is a path of n vertices, ΦSUM

achieves the maximum value of Θ(n3), and if the graph is a star of n vertices,
ΦSUM achieves the minimum value of Θ(n2). Hence, the number of edge swaps
is O(n3). �

We next show the FIP of the MAX-SG. Kawald and Lenzner presented a gen-
eralized ordinal function for the MAX-SG by players with global information [14].
Their generalized ordinal function is an n-tuple of players’ costs, where the play-
ers are sorted in the descending order of their costs. We apply their function to
the MAX-SG by pessimistic players with local information.

Consider the case where an unhappy player u performs an edge swap (v, w)
in Gt and a new graph Gt+1 is formed. Graph Gt \ {{u, v}} consists of two trees
and let Gu

t be the tree containing vertex u and Gv
t be the tree containing vertex

v. We have the following two lemmas. We omit the proof of Lemma 2 due to
page restriction.

Lemma 1 [14]. Any player x ∈ V (Gu
t) satisfies cx(Gt) > cx(Gt+1).

Lemma 2. Any player y ∈ V (Gv
t) satisfies at least one of the following two

conditions; (i) there exists a player x ∈ V (Gu
t) that satisfies cx(Gt) > cy(Gt+1)

and (ii) cy(Gt) ≥ cy(Gt+1).

We define ΦMAX(G) for a graph G as an n-tuple (cu1(G), cu2(G), . . . , cun
(G))

where cui
(G) ≥ cui+1(G) for i = 1, 2, · · · , n − 1. We assume that ties are broken

arbitrarily. We then consider lexicographic ordering of n-tuples. For two n-tuples
C = (c1, c2, . . . , cn) and C ′ = (c′

1, c
′
2, . . . , c

′
n) where ci, c

′
i ∈ Z for i = 1, 2, · · · , n,

when Δ = (c1−c′
1, c2−c′

2, . . . , cn−c′
n) �= 0 and the leftmost non-zero entry of Δ is

positive, we say C is lexicographically larger than C ′, denoted by C >lex C ′. We
can demonstrate that any transition from Gt to Gt+1 satisfies ΦMAX(Gt) >lex

ΦMAX(Gt + 1). We have the following theorem.

Theorem 5. If G0 is a tree, a MAX-SG (G0, k) has the FIP and reaches a
max-swap equilibrium within O(n3) edge swaps.

Proof. We demonstrate that any transition from Gt to Gt+1 satisfies

ΦMAX(Gt) >lex ΦMAX(Gt + 1).

Network Creation Games with Local Information and Edge Swaps 357

Let u be the moving player in Gt and x be the player with the maximum cost in
Gu

t . Then, in Gv
t , there may exist a player with larger cost than cx(Gt). We sort

these players in the descending order of their costs and let y1, y2, . . . , yp be the
obtained sequence of players and yp+1, . . . , yq be the remaining players in Gv

t .
We first show that any yj (1 ≤ j ≤ p) satisfies cyj

(Gt) ≥ cyj
(Gt+1). If the

second condition of Lemma 2 holds for all y1, y2, . . . , yp, we have the property.
Otherwise, there exists yj that does not satisfy the second condition but the first
condition. However, we have cyj

(Gt) ≥ cx(Gt) and cx(Gt) > cyj
(Gt+1). This is

a contradiction and all yj satisfies cyj
(Gt) ≥ cyj

(Gt+1).
Then we consider a player v ∈ V (Gu

t) ∪ {yp+1, yp+2, . . . , yq}. By Lemma 1
and Lemma 2 such player v satisfies cv(Gt+1) < cx(Gt). Consequently, we have
|{v | cv(Gt) ≥ cx(Gt)}| > |{v | cv(Gt+1) ≥ cx(Gt)}|, and ΦMAX(Gi) >lex

ΦMAX(Gt+1).
We can bound the number of edge swaps in the same manner as [14]. �
By Theorem 4 and 5, when an initial graph is a tree, the SUM-SG and

MAX-SG by pessimistic players with local information converge to a sum-swap
equilibrium and max-swap equilibrium, respectively within O(n3) edge swaps.

4 PoA for Pessimistic Players

In this section, we analyze PoA of the SUM-SG and MAX-SG by pessimistic
players with local information. Alon et al. showed that for players with global
information, the diameter of a tree swap equilibrium is constant for the two cost
functions, thus PoA is also constant [2]. On the other hand, our results show the
clear contrast by the value of k. When k = 3, there exists a sum-swap equilibrium
of diameter Θ(n) and a max-swap equilibrium of diameter Θ(n). Thus, PoA is
Θ(n) for both games. When k ≥ 4, the diameter of any sum-swap equilibrium is
at most two and that of any max-swap equilibrium is at most three. Thus, the
PoA is bounded by a constant for both games.

In the following, we consider a path in a graph. A path P of length � is
denoted by a sequence of vertices on it, i.e., P = v0v1 . . . v�. The set of vertices
that appear on P is denoted by V (P) and the set of edges of P is denoted by
E(P). Given a tree G = (V,E) and a path P = v0v1v2 . . . v� in G, consider
the forest G′ = (V,E\E(P)) and let TG,P (vi) denote the connected component
(thus, a tree) containing vi. We consider vi as the root of TG,P (vi) when we
address the depth of TG,P (vi). The following lemma provides a basic technique
to check the existence of an unhappy player.

Lemma 3. In the SUM-SG, when k = 3, a player u in a tree G is unhappy if
and only if there exists a path P = uvw that satisfies the following two conditions;
(i) the depth of TG,P (v) is at most one, and (ii) |V (TG,P (v))| < |NTG,P (w)(w)|.
Proof. We first show that u is unhappy if the two conditions hold. Assume that
there is a path P = uvw satisfying the two conditions. See Fig. 1. Let G′ be the
graph obtained by the edge swap (v, w) at u in G. For every x ∈ V (TG,P (v)),

358 S. Yoshimura and Y. Yamauchi

dG′(u, x) = dG(u, x) + 1 and for every y ∈ NTG,P (w)(w) dG′(u, y) = dG(u, y) − 1.
By condition (i), u knows that the edge swap (v, w) increases the distance to
x ∈ V (TG,P (v)). By condition (ii), u knows that the edge swap (v, w) decreases
its cost by at least |NTG,P (w)(w)|. In the worst-case global graph, w has no
adjacent players other than NTG,P (w)(w). Hence,

Δu(v, w) = |NTG,P (w)(w)| − |V (TG,P (v))| > 0,

and u is unhappy because of this edge swap (v, w).

u v w

Fig. 1. TG,P (u), TG,P (v), and TG,P (w).

Next, we show that u is unhappy in G only if the two conditions hold. Con-
sider the case where for any path P = uvw, (i’) the depth of TG,P (v) is larger
than one, or (ii’) |V (TG,P (v))| ≥ |NTG,P (w)(w)| holds. We show that any player
u ∈ V is not unhappy. We check an arbitrary edge swap (v′, x′) at u. Thus,
v′ ∈ NG(u) and x′ ∈ VG,3(u) \ (NG(u) ∪ {u}). G must have a path between v′

and x′, otherwise the edge swap (v′, x′) disconnects the players. If u cannot see
this path, in the worst case global graph, v′ is not reachable from u. Hence, G
contains a path uv′w′x′ or uv′x′.

If G contains a path uv′w′x′, the edge swap (v′, x′) satisfies dG(u, x′) −
dG′(u, x′) = 2, dG(u, v′) − dG′(u, v′) = −2, and dG(u,w′) − dG′(u,w′) = 0. The
worst-case global graph for the edge swap (v′, x′) is a graph where x′ is not
adjacent to any other vertex in V (G) \ VG,3(u). Thus, Δcu(v′, x′) ≤ 0. Hence, u
is not unhappy with respect to the edge swap (v′, x′).

If G contains a path P ′ = uv′x′ and condition (i’) holds, there exist vertices
v′
1, v

′
2 ∈ TG,P ′(v′) that form a path uv′v′

1v
′
2. In the worst case global graph for

the edge swap (v′, x′), v′
2 has many children whose distance from u increases by

one in G′. Hence, Δcu(v′, x′) ≤ 0 and u is not unhappy with respect to the edge
swap (v′, x′).

If G contains a path P ′ = uv′x′ and condition (ii’) holds, in the worst-case
global graph for the edge swap (v′, x′), the number of players whose distance
from u decreases by one with the edge swap (v′, x′) is |NTG,P (w)(w)| and the
number of players whose distance from u increases by one is lower bounded by
|V (TG,P (v))|. Thus, Δcu(v′, x′) ≥ |NTG,P (w)(w)| − |V (TG,P (v))| ≤ 0 holds and
player u is not unhappy with respect to the edge swap (v′, x′).

Consequently, u is not unhappy with respect to any edge swap. �
We present a sum-swap equilibrium of diameter Θ(n). We define a tree TS(p)

with a spine path of length p as follows: For i = 1, 2, · · · , p, Hi is a tree, where

Network Creation Games with Local Information and Edge Swaps 359

ai has four children bi, ci, di, and ei. For i = 0, p + 1, Hi is a tree rooted at ai

with three children bi, ci, and di. TS(p) is a tree defined by

V (TS(p)) =
p+1⋃

i=0

V (Hi)

E(TS(p)) =
p+1⋃

i=0

E(Hi) ∪ {{a0, e1}, {ep, ap+1}} ∪
p−1⋃

i=1

{{ei, ei+1}}.

Figure 2 shows TS(7) as an example.

Fig. 2. TS(7)

For each u ∈ V (TS(p)) (p ≥ 3), any path P = uvw does not satisfy the
two conditions of Lemma 3. Thus, every player is not unhappy and TS(p) is
a sum swap equilibrium. The social cost in TS(p) is Θ(n3). Since a star is a
sum-swap equilibrium with the minimum social cost, the PoA of TS(p) is Θ(n).
By adding extra vertices to some ai of TS(p), we obtain a sum-swap equilibrium
of diameter Θ(n) for any n ≥ 13. We have the following theorem.

Theorem 6. When n ≥ 13 and k ≤ 3, PoASUM(n, n − 1, k) = Θ(n).

We now demonstrate that when k ≥ 4, sum-swap equilibrium for pessimistic
players with k-local information achieves the same PoA as that with global
information. We first show the following lemma.

Lemma 4. In an arbitrary tree G whose diameter is larger than two, there exists
a path P = vabw that satisfies the following two conditions; (i) |VGT,P (a),2(a)| ≤
|VGT,P (b),2(b)|, and (ii) the depth of TG,P (a) is at most two.

Proof. We prove the lemma by induction. There exists at least one path of length
at least three in G. We choose a path P = vabw arbitrarily. Let da and db be
the depth of TG,P (a) and TG,P (b), respectively.

(Base Case). Consider the case where max{da, db} ≤ 2. Let Prev = wbav.
The two paths P and Prev satisfies the second condition and either P or Prev

satisfies the first condition. Thus, the statement holds when max{da, db} ≤ 2.

(Induction Step). Assume the statement holds when max{da, db} ≤ d − 1 for
d ≥ 3. Consider the case where max{da, db} = d. Without loss of generality,

360 S. Yoshimura and Y. Yamauchi

Fig. 3. Induction step of Lemma 4.

we assume da = d ≥ 3. Hence, there exists at least one path P ′ = aa′b′w′ in
TG,P (a). See Fig. 3. Let da′ and db′ be the depth of TG,P ′(a′) and TG,P ′(b′),
respectively. Clearly, da > da′ and da′ > db′ hold and the statement holds by
the induction hypothesis. �

By Lemma 4, in any graph G whose diameter is larger than two there exists
an unhappy player.

Theorem 7. When G0 is a tree and k ≥ 4, any sum-swap equilibrium is a star
and PoASUM(n, n − 1, k) = 1.

Proof. Assume that there exists a sum-swap equilibrium G whose diameter is
larger than two. By Lemma 4, there exists a path P = vabw that satisfies the
two conditions. Hence, v is unhappy because

Δcv(a, b) ≥ |VTG,P (b),2(b)| + 1 − |VTG,P (a),2(a)| > 0.

This is a contradiction and G is not a sum-swap equilibrium. Hence, the diameter
of a sum-swap equilibrium is smaller than or equal to two and we have the
statement. �

Consequently, the “visibility” of pessimistic players has a significant effect
on the PoA of the SUM-SG. We then demonstrate that this is also the case for
the MAX-SG.

The tree shown in Fig. 4 is a max-swap equilibrium for k = 3. By adding inner
vertices (with its child), we have the similar equilibrium for any even n ≥ 6. For
odd n ≥ 6, we attach an extra player to an inner vertex and obtain a max swap
equilibrium.

Since the star graph is an max-swap equilibrium with the minimum social
cost, we have PoA = Θ(n). We have the following theorem.

Theorem 8. When n ≥ 6 and k = 3, PoAMAX(n, n − 1, k) = Θ(n).

We now demonstrate that when k ≥ 4, any MAX-SG by pessimistic players
with k-local information achieves the same PoA as that of players with global
information. The following lemma shows that in any tree of diameter larger than
three, there is at least one unhappy player.

Network Creation Games with Local Information and Edge Swaps 361

Fig. 4. A max-swap equilibrium of 16 players.

Lemma 5. In any tree G whose diameter is larger than three, there exists a
path P = vabcw that satisfies the following two conditions; (i) P starts from a
leaf v, and (ii) the depth of TG,P (a) is at most one.

Proof. There exists at least one path of length at least four in G. We arbitrarily
choose a path P = vabcw that starts from some leaf v. If the depth of TG,P (a)
is smaller than two, the statement holds. If the depth of TG,P (a) is larger than
one, choose a leaf v′ in TG,P (a) and its parent vertex, say a′. There exists at
least one path P ′ = v′a′b′c′w′ and P ′ satisfies the second condition. �
Theorem 9. When G0 is a tree and k ≥ 4, the diameter of any max-swap
equilibrium is at most three and PoAMAX(n, n − 1, k) ≤ 3/2.

Proof. Assume that there exists a max-swap equilibrium G whose diameter is
larger than three. By Lemma 5, there exists a path P = vabcw such that v is
a leaf and the depth of TG,P (a) is at most one. Player v is unhappy because
Δcv(a, b) ≥ 1. This is a contradiction and G is not a max-swap equilibrium.
Thus, the diameter of any max-swap diameter is at most three.

Because a equilibrium with the minimum cost is a star, the PoA is bounded
by 3/2. �

5 Swap Games with Non-pessimistic Players

We demonstrated that when k = 2, 3, the PoA for pessimistic players is Θ(n) in
the SUM-SG and MAX-SG. In this section, we introduce less pessimistic players
to obtain smaller PoA for these cases. We consider two types of non-pessimistic
players: A player u is weakly pessimistic if u is unhappy when there exists an
edge swap (v, w) at u such that Δcu(v, w) ≥ 0.

A player u is optimistic if its Δcu(v, w) is defined as

Δcu(v, w) = max
H∈Gu

(cu(H) − cu(H ′)),

where H ′ is a graph obtained by an edge swap (v, w) at u in H ∈ G.
Weakly pessimistic players and optimistic players do not perform any edge

swap in the SUM-SG and MAX-SG when k = 1. However, weakly pessimistic
players change their strategies when k = 2. However, when k > 2, weakly pes-
simistic players cause a cycle of edge swaps from an initial path graph: Let
P = u0u1u2 . . . be a path of n (≥ 2k) weakly pessimistic players with k-local
information. In the SUM-SG and MAX-SG, player uk is unhappy because of the
edge swap (uk−1, u0). However after uk performs this edge swap, the graph is

362 S. Yoshimura and Y. Yamauchi

uk−1uk−2 . . . u0ukuk+1 . . . un and uk is again unhappy because of the edge swap
(u0, uk−1). By selecting uk forever, the graph never reach an equilibrium.

We now consider a more restricted round robin scheduling. In a round-robin
scheduling, players have a fixed ordering and at each time step a moving player is
selected according to this ordering. Consider n players u1, u2, . . . , un and let the
subscript i indicate the order of player ui. In G0 if u1 is unhappy, u1 is selected
as the moving player. Otherwise, we check u2, u3, . . . until we find an unhappy
player. Thus, the unhappy player with the smallest order, say j, is selected as a
moving player. In G1 if uj+1 is unhappy, uj+1 is selected as the moving player.
Otherwise, we check uj+2, uj+3, . . . until we find an unhappy player. If un is
selected in Gt, the check start with u1 in Gt+1. We show that there exists a best
response cycle from an initial tree.

Theorem 10. When k ≥ 3, for weakly pessimistic players with k-local infor-
mation, there exist infinitely many trees from which the SUM-SG and MAX-SG
admit best response cycles under the round-robin scheduling.

Proof. We present an initial tree G0 for the SUM-SG by n = 2m + 3 weakly
pessimistic players u1, u2, . . . , u2m+3 (m = 2, 3, . . .). The players are divided
into two subtrees rooted at u2m+3 and u2m+2, respectively; u2m+3 has m + 1
leaves u1, u3, . . . , u2m+1 and u2m+2 has m leaves u2, u4, . . . , u2m. Additionally,
G0 contains an edge connecting u2m+3 and u2m+2. See Fig. 5 for n = 9.

Fig. 5. An example of G0 for nine players. The two inner vertices are u9 with four
leaves (u1, u3, u5, and u7) and u8 with three leaves (u2, u4, and u6).

In G0, u1 is unhappy because of the edge swap (u2m+3, u2m+2); u2m+3 and
u2m+2 have m leaves except u1. When u1 performs this edge swap, a new graph
G1 is formed, where u2m+3 has m leaves and u2m+2 has m + 1 leaves. In G1,
u2 is unhappy because of the edge swap (u2m+2, u2m+3). When u2 performs this
edge swap, a new graph G2 is formed, where u2m+3 has m + 1 leaves and u2m+2

has m leaves. In this way, the leaves of a graph keep on changing their parent
under the round robin scheduling. The seesaw game continues until G2m where
u2m+3 has m leaves with even subscripts and u2m+2 has m + 1 leaves with odd
subscripts. Player u2m+2 is not unhappy in G2m; the only possibility is an edge
swap (u2m+3, u2�) for some � ∈ {2, 4, . . . ,m}, but it increases its cost. Player
u2m+3 is not unhappy in G2m with the same reason. Player u1 is unhappy in
G2m, and the leaf players start the seesaw game again.

This cycle is also a best response cycle in the MAX-SG. �
Next lemma shows the PoA for weakly pessimistic players with 2-local infor-

mation. We omit the proof due to page restriction.

Network Creation Games with Local Information and Edge Swaps 363

Lemma 6. In the SUM-SG and MAX-SG by weakly pessimistic players with 2-
local information, a player u is unhappy if and only if there is a path uvw where
the degree of v is two.

By Lemma 6, a graph is a swap equilibrium if it does not have any vertex
of degree two. The graph shown in Fig. 4 is a swap equilibrium with diameter
Θ(n). We have the following theorem.

Theorem 11. For weakly pessimistic players with 2-local information, when
n ≥ 4, PoASUM(n, n − 1, 2) = Θ(n) and PoAMAX(n, n − 1, 2) = Θ(n).

We then present the PoA of the SUM-SG by weakly pessimistic players with
3-local information in the same manner as Theorem 6. For i = 1, 2, · · · , p, H ′

i is
a tree in which ai has five children bi, ci, di, ei, and fi. For i = 0, p + 1, H ′

i is
a tree rooted at ai with four children bi, ci, di, and ei. Then TS′(p) is is a tree
defined by

V (TS(p)) =
p+1⋃

i=0

V (Hi)

E(TS(p)) =
p+1⋃

i=0

E(Hi) ∪ {{a0, f1}, {fp, ap+1}} ∪
p−1⋃

i=1

{{fi, fi+1}}.

Figure 6 shows TS′(7) as an example.

Fig. 6. TS′(7)

Theorem 12. For weakly pessimistic players with 3-local information, when
n ≥ 16, PoASUM(n, n − 1, 3) = Θ(n).

When a pessimistic player u is unhappy in graph G, u is unhappy in G when
u is a weakly pessimistic player. By Theorem 7, we have the following theorem.

Theorem 13. When k ≥ 4, for weakly pessimistic players with k-local informa-
tion, the diameter of a sum-swap equilibrium is at most two and PoASUM(n, n−
1, k) = 1.

On the other hand, the diameter of any max-swap equilibrium is smaller than
three for weakly pessimistic players with 3-local information.

364 S. Yoshimura and Y. Yamauchi

Theorem 14. When k ≥ 3, for weakly pessimistic players with k-local informa-
tion, the diameter of a max-swap equilibrium is at most two and PoAMAX(n, n−
1, k) = 1.

We omit the proof due to page restriction.
Finally, we consider optimistic players. An optimistic player u with k-local

information expects that a player at distance k has a long path that u cannot
observe. Thus, u always perform an edge swap to create an edge connecting itself
to another player at distance k if any.

Lemma 7. For optimistic players with k-local information, the diameter of any
swap equilibrium is smaller than k.

Consequently, in a sum-swap equilibrium and a max-swap equilibrium, all
optimistic players can observe the entire graph. We have the following theorem.

Theorem 15. For optimistic players with k-local information, PoASUM(n, n −
1, k) = 1 and PoAMAX(n, n − 1, k) < 3/2.

6 Conclusion

In this paper, we introduced swap games with k-local information and investi-
gated their dynamics and PoA. First, we showed that when k ≥ 4, starting from
a tree, the SUM-SG and MAX-SG by pessimistic players with k-local informa-
tion promise convergence to an equilibrium with constant PoA. In other words,
in a distributed environment, rational participants can construct a tree of small
diameter without global information.

We then introduced weakly pessimistic players to obtain a tree equilibrium
with small PoA for k ≤ 3. When k = 3, the MAX-SG achieves a constant PoA,
at the cost of best response cycles. Thus, relaxing pessimism does not promise
distributed graph construction. Finally, we introduced optimistic players and
presented the constant PoA of the SUM-SG and MAX-SG for any value of k.

There are many interesting future directions. One is a better upper bound and
a lower bound of the number of edge swaps during convergence. The dynamics
of non-pessimistic players is also an open problem.

Although games with imperfect information have been investigated in game
theory, to the best of our knowledge, there are few games where each player
knows the existence of only a part of players. We hope games in this form open
up new vistas for game theory and distributed computing.

References

1. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria
for a network creation game. ACM Trans. Econ. Comput. 2(1), 2:1–2:27 (2014)

2. Alon, N., Demaine, E.D., Hajiaghayi, M.T., Leighton, T.: Basic network creation
games. SIAM J. Discrete Math. 27, 656–668 (2013)

Network Creation Games with Local Information and Edge Swaps 365

3. Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 50–59 (2003)
4. Berenbrink, P., Czyzowicz, J., Elsässer, R., G ↪asieniec, L.: Efficient information

exchange in the random phone-call model. In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp.
127–138. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-
1 11

5. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Network creation games with
traceroute-based strategies. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS,
vol. 8576, pp. 210–223. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09620-9 17

6. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Locality-based network creation games.
ACM Trans. Parallel Comput. 3(1), 6:1–6:26 (2016)

7. Bilò, D., Lenzner, P.: On the tree conjecture for the network creation game. In:
Proceedings of STACS 2018, pp. 14:1–14:15 (2018)

8. Cord-Landwehr, A., Lenzner, P.: Network creation games: think global – act local.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9235, pp. 248–260. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48054-0 21

9. Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of
anarchy in network creation games. ACM Trans. Algorithms 8(2), 13:1–13:13
(2012)

10. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of KDD 2001, pp. 57–66 (2001)

11. Durrett, R., et al.: Graph fission in an evolving voter model. Proc. Natl. Acad. Sci.
109(10), 3682–3687 (2012)

12. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a
network creation game. In: Proceedings of PODC 2003, pp. 347–351 (2003)

13. Karp, R.M., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor
spreading. In: Proceedings of FOCS 2000, pp. 565–574 (2000)

14. Kawald, B., Lenzner, P.: On dynamics in selfish network creation. In: Proceedings
of SPAA 2013, pp. 83–92 (2013)

15. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: KDD 2003, pp. 137–146 (2003)

16. Lenzner, P.: On dynamics in basic network creation games. In: Persiano, G. (ed.)
SAGT 2011. LNCS, vol. 6982, pp. 254–265. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24829-0 23

17. Mamageishvili, A., Mihalák, M., Müller, D.: Tree nash equilibria in the network
creation game. In: Bonato, A., Mitzenmacher, M., Pra�lat, P. (eds.) WAW 2013.
LNCS, vol. 8305, pp. 118–129. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03536-9 10

18. Mihalák, M., Schlegel, J.C.: The price of anarchy in network creation games is
(mostly) constant. Theor. Comput. Syst. 53(1), 53–72 (2013)

19. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

20. Nakata, T., Imahayashi, H., Yamashita, M.: Probabilistic local majority voting
for the agreement problem on finite graphs. In: Asano, T., Imai, H., Lee, D.T.,
Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 330–338.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48686-0 33

21. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

https://doi.org/10.1007/978-3-642-14162-1_11
https://doi.org/10.1007/978-3-642-14162-1_11
https://doi.org/10.1007/978-3-319-09620-9_17
https://doi.org/10.1007/978-3-319-09620-9_17
https://doi.org/10.1007/978-3-662-48054-0_21
https://doi.org/10.1007/978-3-662-48054-0_21
https://doi.org/10.1007/978-3-642-24829-0_23
https://doi.org/10.1007/978-3-642-24829-0_23
https://doi.org/10.1007/978-3-319-03536-9_10
https://doi.org/10.1007/978-3-319-03536-9_10
https://doi.org/10.1007/3-540-48686-0_33

The Value of Information in Selfish
Routing

Simon Scherrer1(B), Adrian Perrig1, and Stefan Schmid2

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
simon.scherrer@inf.ethz.ch

2 Faculty of Computer Science, University of Vienna, Vienna, Austria

Abstract. Path selection by selfish agents has traditionally been stud-
ied by comparing social optima and equilibria in the Wardrop model, i.e.,
by investigating the Price of Anarchy in selfish routing. In this work, we
refine and extend the traditional selfish-routing model in order to answer
questions that arise in emerging path-aware Internet architectures. The
model enables us to characterize the impact of different degrees of con-
gestion information that users possess. Furthermore, it allows us to ana-
lytically quantify the impact of selfish routing, not only on users, but
also on network operators. Based on our model, we show that the cost of
selfish routing depends on the network topology, the perspective (users
versus network operators), and the information that users have. Surpris-
ingly, we show analytically and empirically that less information tends
to lower the Price of Anarchy, almost to the optimum. Our results hence
suggest that selfish routing has modest social cost even without the dis-
semination of path-load information.

Keywords: Price of Anarchy · Selfish routing · Game theory ·
Information

1 Introduction

If selfish agents are free to select communication paths in a network, their interac-
tions can produce sub-optimal traffic allocations. A long line of research relating
to selfish routing [27,28,30] has quantified many effects of distributed, uncoor-
dinated path selection by selfish individuals in networks. While seminal work on
such game-theoretic analyses dates back to Wardrop [38], especially the notion
of Price of Anarchy, coined by Koutsoupias and Papadmitriou [17], has received
much attention: the Price of Anarchy compares the worst possible outcome of
individual decision making, i.e., the worst Nash equilibrium, to the global opti-
mum, by taking the corresponding cost ratio. The Price of Anarchy in network
path selection is typically measured in terms of latency.

In this paper, we revisit these concepts to investigate two key aspects which
have been less explored in the literature so far and are highly relevant for newly
emerging path-aware network architectures (cf. Sect. 1.1):
c© Springer Nature Switzerland AG 2020
A. W. Richa and C. Scheideler (Eds.): SIROCCO 2020, LNCS 12156, pp. 366–384, 2020.
https://doi.org/10.1007/978-3-030-54921-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54921-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-54921-3_21

The Value of Information in Selfish Routing 367

– Impact of information: A fundamental design question of network archi-
tectures concerns which information about the network state should be shared
with end-hosts, beyond the latency information that can be observed by the
end-hosts directly.

– Impact on network operators: While game-theoretic analyses usually
revolve around the cost experienced by users, it is also important to under-
stand the impact of selfish routing on the network operators’ cost.

1.1 Practical Motivation

The traditional question studied in the selfish-routing literature, namely the effi-
ciency of uncoordinated path selection by selfish agents, has recently received
new relevance in the context of emerging Internet architectures relying on source-
based path selection [2,9,25,39]. In particular, the already deployed SCION
architecture [3,23] offers extensive path-selection control to users.

Today’s Internet infrastructure is based on a forwarding mechanism that
grants almost exclusive control to the network and almost no control to users
(or end-hosts). In fact, all communication from a given end-host to another
end-host takes place over the single AS-level path that BGP (Border Gateway
Protocol) converged on. In the upcoming paradigm of source-based path selec-
tion [37], network operators supply end-hosts with a pre-selected set of paths to
a destination, enabling end-hosts to select a forwarding path themselves.

Source-based path selection allows end-hosts to select paths with superior
performance to the BGP-generated path [12,16,32] or to quickly switch to an
alternative path upon link failures. However, a widely shared concern about
source-based path selection regards the loss of control by network operators,
which fear that the traffic distribution resulting from individual user decisions
might impose considerable cost on both themselves and their customers. Another
concern is that end-hosts require path-load information in order to perform
path selection effectively, necessitating complex systems for the dissemination
of network-state information. We refine and extend concepts from the selfish-
routing literature to investigate the validity of these concerns.

1.2 Our Contributions

We present a game-theoretic model (Sect. 2) which allows us to quantify not
only the Price of Anarchy experienced by end-hosts, but also to account for
the network operators. Furthermore, we use our model to explore how end-host
information about the network state affects the Price of Anarchy.

We find that different levels of information indeed lead to different Nash
equilibria and thus also to different Prices of Anarchy. Intriguingly, we find that
while more information can improve the efficiency of selfish routing in networks
with few end-hosts (Sect. 3), more information tends to induce a higher Price
of Anarchy in more general settings (Sect. 4). Indeed, near-optimal outcomes
are typically achieved if end-hosts select paths based on simple latency mea-
surements of different paths. These theoretical results suggest that source-based

368 S. Scherrer et al.

path selection cannot only achieve a good network performance in selfish con-
texts, but can be realized in a fairly light-weight manner, avoiding the need to
distribute much information about the network state. This insight is validated
with a case study on the Abilene topology (Sect. 5).

2 Model and First Insights

2.1 Model

As in previous work on selfish routing [10,30], our model is inspired by the
classic Wardrop model [38]. In this model, the network is abstracted as a graph
G = (A,L), where the edges � ∈ L between the nodes Ai ∈ A represent links.
Every link � ∈ L is described by a link-cost function c�(f�), where f� is the
amount of load on link �, i.e., a link flow. Typically, link-cost functions are seen
as describing the latency behavior of a link. To reflect queuing dynamics, link
cost functions are convex and non-decreasing. For every node pair (Ai, Aj), there
is a set of paths P (Ai, Aj) that contains all non-circular paths between Ai and
Aj . Between any node pair (Ai, Aj), there is a demand d shared by infinitely
many agents, where each agent is controlling an infinitesimal share of traffic.

However, the traditional Wardrop model is not suitable to analyze traffic
dynamics in an Internet context. We thus adapt the Wardrop model into a
more realistic model as follows. First, we introduce the concept of ASes and
end-hosts, which allows us to perform a more fine-grained analysis of traffic
in an inter-domain network. An AS Ai ∈ A is represented by a node in the
network graph G. The AS contains a set of end-hosts, which are the players
in the path-selection game. Differently than in the Wardrop model, we allow
for non-negligible, heterogeneous demand between end-host pairs in order to
accommodate the variance of demand in the Internet. For example in origin-
destination pair od = (es, et) ∈ OD (short: (s, t)), an end-host es ∈ Ai can have
a demand ds,t ≥ 0 towards another end-host et ∈ Aj . We also deviate from the
Wardrop model by considering a multi-path setting, where the demand ds,t of
one agent can be arbitrarily distributed over all paths p ∈ P (Ai, Aj). The amount
of flow from end-host es to end-host et on path p ∈ P (Ai, Aj) is denoted as a
path flow F(s,t),p, which must be non-negative, with

∑
p∈P (Ai,Aj)

F(s,t),p = ds,t.
The set Π(es, et) ⊆ Π contains all end-host paths of the form π =

[
(s, t), p

]
,

where es, et are end-hosts connected by the AS-level path p. All path flows
F(s,t),p for an origin-destination pair (es, et) are collected in a path-flow vector
Fs,t ∈ R

|Π(es,et)|. All such path-flow vectors Fs,t are collected in the global path-
flow pattern F ∈ R

|Π|. A link flow f� for link � ∈ L is the sum of the path flows
in F that refer to end-host paths π containing link �, i.e., f� =

∑
π∈Π:�∈π Fπ.

The cost Cπ of an end-host path π given a certain path-flow pattern F is
the sum of the cost of all links in the path: Cπ(F) =

∑
�∈π c�(f�). The cost to

end-hosts C∗(F) from a path-flow pattern F is the latency experienced by all
end-hosts on all the paths to all of their destinations, weighted by the amount
of traffic that goes over a given path. This term can be simplified as follows:

The Value of Information in Selfish Routing 369

C∗(F) =
∑

(s,t)∈OD

∑

π∈Π(s,t)

Fπ · Cπ(F) =
∑

π∈Π

Fπ ·
∑

�∈π

c�(f�) =
∑

�∈L

f� · c�(f�)

Existing work on selfish routing [28,30] usually defines total cost in the above
sense. However, when analyzing source-based path selection architectures, the
network-operator perspective on social cost is essential. Therefore, we also intro-
duce a social cost function relating to the perspective of network operators.

The basic idea of the network-operator cost function C# is to treat links
as investment assets. Thus, the business performance of a link � is given by a
function p#� (f�) = b#� (f�) − c#� (f�), where b#� and c#� are the benefits and costs
of a link, respectively. As we investigate effects on the aggregate of network
operators, we model the network-operator cost function as follows:

C#(F) =
∑

�∈L

−p#� (f�) =
∑

�∈L

c#� (f�) − b#� (f�) =
∑

�∈L

c�(f�)

We justify this formulation as follows. Concerning link costs c#� , a central insight
is that network-operator costs mostly stem from heavily used links. In volume-
based interconnection agreements, excessive usage of a link induces high charges,
whereas in peering agreements, excessive usage violates the agreement and
triggers expensive renegotiation. Moreover, heavy usage necessitates expensive
capacity upgrades. As the latency function c�(f�) indicates the congestion level
on link �, we approximate c#� ≈ c�. The link benefit b#� captures the link revenue,
both revenue from customer ASes and customer end-hosts. In the aggregate, the
monetary transfers between ASes (charges paid and received) sum up to zero.
Given a fixed market size, the revenue from end-hosts sums up to a constant in
the aggregate. Hence, the global benefit

∑
�∈L b#� is constant and can be dropped,

as the absolute level of the network-operator cost is irrelevant for our purposes.
This convex formulation of C# allows theoretical analysis.

2.2 Social Optima

According to Wardrop [6,38], a socially optimal traffic distribution is reached iff
the total cost cannot be reduced by moving traffic from one path to another. In
the optimum, the cost increase on an additionally loaded path at least outweighs
the cost reduction from a relieved path. Because the cost functions are convex
and non-decreasing, it suffices that this condition holds for an infinitesimal traffic
share. Adding an infinitesimal amount to the argument of a cost function imposes
a marginal cost, given by the derivative of the cost function. A socially optimal
traffic distribution is thus reached iff the marginal cost of every alternative path
is not smaller than the marginal cost of the currently used paths [6]:

370 S. Scherrer et al.

Social optimum. A path-flow pattern F represents a social optimum w.r.t.
cost function C if and only if for every origin-destination pair od ∈ OD , the
paths π1, ..., πi, πi+1, ..., π|Π(od)| ∈ Π(od) stand in the following relationship:

∂

∂Fπ1

C(F) = ... =
∂

∂Fπi

C(F) ≤ ∂

∂Fπi+1

C(F) ≤ ... ≤ ∂

∂Fπ|Π(od)|
C(F)

Fπ > 0 for π = π1, ..., πi, Fπ = 0 for π = πi+1, ..., π|Π(od)|.

In this work, we refine the conventional notion of the social optimum by distin-
guishing two different perspectives on social cost: The end-host optimum F∗ sat-
isfies the above conditions with respect to the function C∗, whereas the network-
operator optimum F# satisfies the above conditions with respect to function C#.

A1 A3

A2

α : cα(fα) = 1 β : cβ(fβ) = f2
β

γ : cγ(fγ) = fγ

[
(1, 4), α

]
[
(1, 4), γβ

]
e1

e2

e3

e4

Fig. 1. Example network illustrating the source-based path selection model.

Interestingly, the end-host optimum F∗ and the network-operator opti-
mum F# can differ substantially. Assume that end-host e1 in Fig. 1 has a demand
of d1,4 = 1 towards end-host e4 and that there is no other traffic in the network.
The network-operator cost function C#(F) is 1 + F 2

γβ + Fγβ and is minimized
by F# = (1, 0)�, i.e., by sending all traffic over link α. In contrast, the end-host
cost function is Fα + F 3

γβ + F 2
γβ and is minimized by F∗ = (2/3, 1/3)�, i.e., by

sending two thirds of traffic over link α and the remaining third over path γβ.

2.3 Degrees of Information

In this paper, we consider the following two assumptions on the network infor-
mation possessed by end-hosts:

– Latency-only information (LI): End-hosts know the latency of every path
to a destination.

– Perfect information (PI): End-hosts know not only the latency of different
paths, but also how the latency of the network links depends on the current
load, i.e., the latency functions. Moreover, the end-hosts know the current
link utilization, i.e., the background traffic.

The LI assumption hence reflects a scenario where end-hosts have to rely
solely on latency measurements of paths, i.e., through RTT measurements from
their own device. The LI assumption is the standard model traditionally consid-
ered in the selfish routing literature [11,17,30].

The Value of Information in Selfish Routing 371

In this work, we extend the standard model by introducing the concept of
perfect information (PI). The PI assumption reflects a scenario where end-hosts
can always take the best traffic-allocation decision in selfish terms. More specifi-
cally, the PI assumption allows end-hosts to compute the marginal cost of a path.
In path-aware networking, supplying end-hosts with perfect information is possi-
ble, as such information is known by network operators and can be disseminated
along with path information.

O De

α: cα(fα) = fα + 1
2

β: cβ(fβ) = 2

fα − Fα = 1

fβ − Fβ = 1

Fig. 2. Example illustrating the different degrees of end-host information.

Figure 2 illustrates the difference between the LI assumption and the PI
assumption. Assume that end-host e, residing in AS A, has a demand of d = 1
to a destination in AS D. End-host e can split its traffic between two paths
α and β, both consisting of a single link with the cost functions cα (linear)
and cβ (constant). The background traffic (traffic not from end-host e) is 1 on
both paths. Assuming the traffic allocation of end-host e is (Fα, Fβ) = (0.5, 0.5),
the path-latency values are given by cα(0.5 + 1) = 2 and cβ(0.5 + 1) = 2.
Given the LI assumption, end-host e performs no traffic reallocation, as there
is no lower-cost alternative path which traffic could be shifted to. Moreover,
there is no method for predicting the path costs for a different traffic allocation.
However, such a prediction is possible with perfect information (PI): under the PI
assumption, end-host e knows the cost functions and the background traffic such
that it can optimize the objective Fα ·(Fα +1+ 1

2)+(1−Fα) ·2. As a result, end-
host e discovers the optimal traffic assignment (0.25, 0.75). Intriguingly, the more
detailed perfect information (PI) enables end-host e to detect an optimization
that it cannot directly observe when confronted with latency values only (LI).

2.4 Nash Equilibria

In general, uncoordinated actions of selfish end-hosts do not result in socially
optimal traffic allocations. Instead, the only stable states that arise in selfish path
selection are Nash equilibria, i.e., situations in which no end-host perceives an
opportunity to reduce its selfish cost by unilaterally reallocating traffic. However,
as shown in Sect. 2.3, the degree of available information (LI or PI) strongly
influences the optimization opportunities that an end-host perceives. Therefore,
different information assumptions induce different types of Nash equlibria:

LI Equilibrium. An end-host restricted to latency measurements will shift
traffic from high-cost paths to low-cost paths whenever there is a cost discrepancy

372 S. Scherrer et al.

between paths, and will stop reallocating traffic whenever there is no lower-cost
path anymore which the traffic could be shifted to. In the latter situation, an
end-host under the LI assumption cannot perceive any way of reducing its selfish
cost. A Nash equilibrium under the LI assumption (short: LI equilibrium) can
thus be defined as follows:

LI equilibrium. A path-flow pattern F represents an LI equilibrium F0 if
and only if for every origin-destination pair od ∈ OD , the paths
π1, ..., πi, πi+1, ..., π|Π(od)| ∈ Π(od) have the following relationship:

Cπ1(F) = ... = Cπi
(F) ≤ Cπi+1(F) ≤ ... ≤ Cπ|Π(od)|(F)

Fπ > 0 for π = π1, ..., πi Fπ = 0 for π = πi+1, ..., π|Π(od)|

Traditionally, selfish-routing literature [11,27,30] considers a Nash equilib-
rium in the sense of the LI equilibrium, namely an equilibrium defined by the
cost equality of all used paths to a destination. Under this classical definition,
selfish routing is an instance of a potential game [31].

PI Equilibrium. We contrast the classical equilibrium (LI equilibrium) with a
different equilibrium definition that builds on our new concept of perfect infor-
mation (PI). As explained in Sect. 2.3, the PI assumption states that end-hosts
do not only possess cost information of available paths to a destination, but are
informed about the cost functions of all links in the available paths, as well as
the background traffic on these links, i.e., the arguments to the cost functions.
An end-host can thus calculate the selfish cost of a specific traffic reallocation
and find the path-flow pattern that minimizes the end-host’s selfish cost.

The selfish cost C∗
(e)(F) of end-host e is given by the cost of all paths to all

desired destinations, weighted by the amount of flow relevant to end-host e:

C∗
(e)(F) =

∑

�∈L

f�,(e) · c�(f�)

where f�,(e) is the flow volume on link � for which e is origin or destination.
Similar to the end-host social cost function C∗ of which it is a partial term,

C∗
(e) has a minimum that is characterized by a marginal-cost equality. An equi-

librium under the PI assumption is thus given if and only if all end-hosts are
at the minimum of their respective selfish cost functions, given the traffic by all
other end-hosts:

PI equilibrium. A path-flow pattern F represents a PI equilibrium F+ if
and only if for every origin-destination pair od = (e,) ∈ OD , the paths
π1, ..., πi, πi+1, ..., πP ∈ Π(od) stand in the following relationship:

∂

∂Fπ1

C∗
(e)(F) = ... =

∂

∂Fπi

C∗
(e) ≤ ∂

∂Fπi+1

C∗
(e)(F) ≤ ... ≤ ∂

∂Fπ|Π(od)|
C∗

(e)(F)

Fπ > 0 for π = π1, ..., πi Fπ = 0 for π = πi+1, ..., π|Π(od)|

The Value of Information in Selfish Routing 373

2.5 Price of Anarchy

A natural way of analyzing the efficiency of selfish routing is to compare the social
optima and the equilibria in a network. Typically, such a comparison involves
computing the Price of Anarchy (PoA), i.e., the ratio of the equilibrium cost and
the optimal cost. By definition of the optimal cost, this ratio is always larger or
equal to 1.

In our model, the classical Price of Anarchy from the existing literature reflects
a comparison of the end-host cost C∗ of the LI equilibriumF0 and the end-host cost
C∗ of the end-host optimum F∗. With the additional versions of social optima and
equilibria established in the preceding sections, a total of four different variants of
the Price of Anarchy are possible, one for each combination of equilibrium (LI or
PI) and perspective (end-hosts or network operators) (Table 1):

Table 1. Different versions of the Price of Anarchy.

LI equilibrium PI equilibrium

End-host perspective PoA∗0 = C∗(F0)
C∗(F∗)

PoA∗+ = C∗(F+)
C∗(F∗)

Network-operator
perspective

PoA#0 = C#(F0)

C#(F#)
PoA#+ = C#(F+)

C#(F#)

2.6 Value of Information

To compare different equilibria for different information assumptions, we intro-
duce the Value of Information (VoI). For a given perspective, the Value of Infor-
mation is the difference between the Prices of Anarchy under the LI and PI
assumptions, denominated by the Price of Anarchy under the LI assumption:

VoI ∗ =
PoA∗0 − PoA∗+

PoA∗0 VoI# =
PoA#0 − PoA#+

PoA#0

A positive Value of Information reflects a situation where the equilibrium
under the PI assumption is closer to the social optimum than the equilibrium
under the LI assumption. We identify and analyze scenarios with a positive
impact of information in Sect. 3. A negative Value of Information reflects the
counter-intuitive scenario where additional information makes the equilibrium
more costly (cf. Sect. 4).

3 The Benefits of Information

In this section, we will show that information is beneficial in the artificial network
settings traditionally considered in the literature [27]. More precisely, we show
that in this setting, the PI equilibrium induces a lower Price of Anarchy than the

374 S. Scherrer et al.

LI equilibrium such that the Value of Information is positive. This is intuitive: if
end-hosts possess more information, source-based path selection is more efficient.

In the network of Fig. 3, K end-hosts e1, ..., eK reside in AS O. Each end-
host has a demand of d/K towards a destination in AS D. ASes O and D are
connected by m links α1, ..., αm with a constant cost function cαi

(fαi
) = dp and

one link β with a load-dependent cost function cβ(fβ) = fp
β , where p ≥ 1.

O D

e1

eK

α1: cα1(fα1) = dp

αm: cαm(fαm) = dp

...

β: cβ(fβ) = fp
β

...

Fig. 3. Example network with beneficial impact of end-host information.

Such networks of parallel links are of special importance in the theoretical
selfish-routing literature. In particular, Roughgarden [27] proved that the net-
work in Fig. 3 reveals the worst-case Price of Anarchy for any network with link
cost functions limited to polynomials of degree p. The intuition behind this result
is that the Price of Anarchy relates to a difference of steepness between cost func-
tions of competing links: the link β allows to reduce the cost of traffic from AS
O to AS D if used modestly, but loses its advantage over the links αi if fully
used. However, in selfish routing, end-hosts will use link β until the link is fully
used, as it is always a lower-cost alternative path if not fully used. Therefore, the
end-hosts overuse link β compared to the optimum. Intuitively, the parallel-links
network represents a network where end-hosts have a choice between paths with
different latency behavior.

Roughgarden’s result refers to the classical Price of Anarchy, i.e., the Price
of Anarchy PoA∗0 to end-hosts under the LI assumption. In this section, we
will show how this result is affected by additionally introducing the network-
operator perspective and the PI assumption. In particular, we will prove the
following theorem:

Theorem 1. In a network of parallel links, a higher degree of information (PI
assumption) is always more socially beneficial compared to a lower degree of
information (LI assumption), both from the perspective of end-hosts and network
operators:

PoA∗+ ≤ PoA∗0 PoA#+ ≤ PoA#0

3.1 Social Optima

The end-host optimum in the network of parallel links can be shown to have
social cost C∗(F∗) = dp+1[1 − p/(p + 1)(p+1)/p]. As the derivation is relatively
similar to Roughgarden [27], it has been moved to Appendix A.1 in the full
version of the paper [33].

The Value of Information in Selfish Routing 375

The network-operator optimum F# is simple to derive: Since the cost of the
links αi is independent of the flow on these links in contrast to the cost of link
β, any flow on link β increases the cost C# to network operators. The minimal
cost to network operators is thus simply C#(F#) = m · dp.

3.2 LI Equilibrium

Under the LI assumption, a network is in equilibrium if for every end-host pair,
all used paths have the same cost and all unused paths do not have a lower cost.
Applied to the simple network in Fig. 3, this condition is satisfied if and only
if f0

β = d and f0
αi

= 0 ∀fαi
, implying cβ(f0

β) = dp = cαi
(f0

αi
). The path-flow

pattern F0 with F(k,D),β = d/K and F(k,D),αi
= 0 represents the LI equilibrium.

The cost C∗ of the LI equilibrium F0 to end-hosts is simply C∗(F0) = dp+1.
The Price of Anarchy to end-hosts under the LI assumption is thus PoA∗0 =
C∗(F0)/C∗(F∗) = [1 − p/(p + 1)(p+1)/p]−1.

The cost C# of the LI equilibrium F0 to network operators is given by
C#(F0) = dp+

∑
αi

dp = (m+1) ·dp. The Price of Anarchy to network operators
under the LI assumption is thus PoA#0 = C#(F0)/C#(F#) = (m+1)/m, which
is maximal for the number m = 1 of links αi. The Price of Anarchy to network
operators in networks of parallel links is thus upper-bounded by PoA#0

m=1 = 2
whereas the Price of Anarchy to end-hosts is unbounded for arbitrary p.

3.3 PI Equilibrium

If the end-hosts e1,..., eK are equipped with perfect information, they are in
equilibrium if and only if the selfish marginal cost of every path to AS D is the
same for every end-host. Under this condition, the cost term C∗ of the PI equi-
librium F+ to end-hosts can be derived to be C∗(F+) = dp+1

(
1−(p/K)/(p/K +

1)(p+1)/p
)

(cf. Appendix A.2 [33]). The Price of Anarchy to end-hosts under the
PI assumption is

PoA∗+ =
(
1 − p/K

(p/K + 1)(p+1)/p

)
· PoA∗0 ≤ PoA∗0.

The cost C# of the PI equilibrium F+ to network operators is C#(F+) =
(m + 1/(p/K + 1)) · dp and the corresponding Price of Anarchy to network
operators is

PoA#+ =
m + 1/(p/K + 1)

m
≤ m + 1

m
= PoA#0.

376 S. Scherrer et al.

Based on the Prices of Anarchy in Table 2, Theorem 1 holds. However, the
Prices of Anarchy PoA∗+ and PoA#+ under the PI assumption are dependent
on K, which is the number of end-hosts in the network. If K is very high, as
it is in an Internet context, the Prices of Anarchy under the PI assumption
approximate the Prices of Anarchy under the LI assumption. Thus, for scenarios
of heterogeneous parallel paths to a destination, the benefit provided by perfect
information is undone in an Internet context. In fact, the effect of additional
information can even turn negative when considering more general networks, as
we will show in the next section.

Table 2. Price of Anarchy for different perspectives and different equilibrium defini-
tions in the network of parallel links (Fig. 3).

LI equilibrium PI equilibrium

End-host perspective 1

1−p/(p+1)(p+1)/p

1−(p/K)/(p/K+1)(p+1)/p

1−p/(p+1)(p+1)/p

Network-operator perspective m+1
m

m+1/(p/K+1)
m

4 The Drawbacks of Information

We will now show that in more general settings, more information for end-
hosts can deteriorate outcomes of selfish routing. Such a case is given by the
general ladder network in Fig. 4, a natural generalization of the simple topology
considered above and a traditional ISP topology [19].

A ladder network of height H contains H horizontal links h1,..., hH , which
represent the rungs of a ladder and have the cost function chi

(fhi
) = fp

hi
. Each

horizontal link hi connects an AS Ai1 to AS Ai2, which accommodate the end-
hosts ei1 and ei2, respectively. Every end-host ei1 has the same demand d towards
the corresponding end-host ei2. Neighboring rungs of a ladder are connected by
vertical links vij , i ∈ {1, ..., V = H − 1}, j ∈ {1, 2}, where the vertical link vij

connects the ASes Aij and Ai+1,j and has the linear cost function cvij
(fvij

) =
t · fvij

with t ≥ 0. We denote a ladder network with this structure and a choice
of parameters H, p, d, and t by L(H, p, d, t).

By comparing optima and equilibria, we will prove the following theorem in
the following subsections:

Theorem 2. For any ladder network L(H, p, d, t), the Value of Information for
both end-hosts and network operators is negative, i.e., VoI ∗ < 0 and VoI# < 0.

The Value of Information in Selfish Routing 377

A11 A12

A21 A22

AV 1 AV 2

AH1 AH2

e11

e21

eV 1

eH1

e12

e22

eV 2

eH2

h1 : ch1(fh1) = fp
h1

h2 : ch2(fh2) = fp
h2

v11 : cv11(fv11) = t · fv11 v12 : cv12(fv12) = t · fv12

... ...

hV : chV (fhV) = fp
hV

hH : chH (fhH) = fp
hH

vV 1 : cvV 1(fvV 1) = t · fvV 1 vV 2 : cvV 2(fvV 2) = t · fvV 2

Fig. 4. Example network illustrating the harmful impact of end-host information
(Read: V = H − 1).

4.1 Social Optima

Both the end-host optimum F∗ and F# are equal to the direct-only path-flow
pattern F∼ that is defined as follows: For every end-host ei1, F∼

(i1,i2),hi
= d and

F∼
(i1,i2),q = 0 where q is any other path between Ai1 and Ai2 than the direct

path over link hi.
Simple intuition already confirms the optimality of this path-flow pattern.

The social cost from the horizontal links is minimized for an equitable distribu-
tion of the whole-network demand Hd onto the H horizontal links. In contrast,
the cost from vertical links vij can be minimized to 0 by simply abstaining from
using vertical links. In fact, every use of the vertical links is socially wasteful.

More formally, if fhi
= d for i ∈ {1, ...,H} and fvi1 = fvi2 = 0 for i ∈

{1, ..., V }, the marginal costs of the direct path and every indirect path can be
easily shown to equal (p + 1)dp, given end-host cost function C∗. Concerning
network-operator cost C#, the direct and indirect paths have marginal costs
p · dp−1 and p · dp−1 + 2yt ∀y ∈ N≥1, respectively. The used direct paths thus do
not have a higher marginal cost than the unused indirect paths.

4.2 LI Equilibrium

Also the LI equilibrium path-flow pattern F0 is equal to the direct-only path-
flow pattern F∼. For F∼, the cost of a direct path π is Cπ(F∼) = F p

(i1,i2),π = dp

and the cost of an indirect path π′ is fp
h′ +

∑
v∈Wπ′ fv = dp + 0 = dp, where π′

contains the remote horizontal link h′ and the vertical links v ∈ Wπ′ . Thus, the
LI equilibrium conditions of cost equality are satisfied by F∼.

As the LI equilibrium is equal to the social optimum both from the end-host
perspective and the network-operator perspective, both variants of the Price of
Anarchy under the LI assumption are optimal, i.e., PoA∗0 = PoA#0 = 1.

378 S. Scherrer et al.

4.3 PI Equilibrium

Differently than under the LI assumption, the direct-only flow distribution F∼

is not stable under the PI assumption. An end-host ei can improve its individual
cost by allocating some traffic to an indirect path πk (involving the horizontal
link hk) and interfering with another end-host ek. This reallocation decision
will increase the social cost for end-hosts and network operators. In particular,
the end-host ek that previously used the link hk exclusively will see its selfish
cost increase. In turn, the harmed end-host ek will reallocate some of its traffic
to an indirect path in order to reduce its selfish cost C(ek), leading to a process
where all end-hosts in the network interfere with each other until they reach a PI
equilibrium with a suboptimal social cost for end-hosts and network operators.

Similar to Sect. 3.3, we use the condition of marginal selfish cost equality
in order to derive the Price of Anarchy under the PI assumption for a ladder
network with H = 2. This derivation, as performed in Appendix A.3 [33], yields
the following results for the Price of Anarchy to end-hosts and network operators:

PoA∗+
H=2(p) = 1 + p/12 PoA#+

H=2(p) = 1 + p/3

Since the LI equilibrium is optimal and the PI equilibrium is generally sub-
optimal on the considered ladder networks, Theorem 2 holds. This finding is
confirmed by a case study of the Abilene network (cf. Sect. 5), which structurally
resembles a ladder topology. The case study also reveals that the negative impact
of information is especially pronounced if path diversity is high.

Interestingly, there is an upper bound of the Price of Anarchy to network
operators for a general ladder network. This bound is given by the following
theorem and proven in Appendix A.4 in the full-paper version [33]:

Theorem 3. For every ladder network L(H, p, d, t), the Price of Anarchy
PoA#+ to network operators is lower than the following upper bound PoA#+

max:

PoA#+ ≤ PoA#+
H,max = 1 +

2(H − 1)
3H

p ≤ PoA#+
max = 1 +

2
3
p

5 Case Study: Abilene Network

To verify and complement our theoretical insights, we conducted a case study
with a real network: we consider the well-known Abilene network, for which
topology and workload data is publicly available [14,15]. We accommodate the
Abilene topology into our model as follows. For the demand d between the
11 points-of-presence, which we consider ASes, we rely on the empirical traffic
matrix from the dataset. Concerning the link-cost functions c�, we model the
latency behavior of a link by a function c�(f�) = f2

� + δ�, where f2
� captures the

queueing delay and δ� is a constant quantity depending on the geographical dis-
tance between the two end-points of link �, approximating the link’s propagation
delay.

The Value of Information in Selfish Routing 379

In order to study the effect of both end-host information and multi-path rout-
ing on the Price of Anarchy, we perform the following simulation experiment.
First, we compute the social optima F∗ and F# for the Abilene network. Sec-
ond, we simulate the convergence to the Nash equilibria F0 and F+ for different
degrees of multi-path routing, represented by the maximum number of shortest
paths that end-hosts consider in their path selection. Once converged, we com-
pute the social cost of the equilibrium traffic distributions and the corresponding
Prices of Anarchy.

2 4 6 8 10
Maximum number of paths considered by any end-host

1.000

1.005

1.010

1.015

1.020

1.025

1.030

P
ri
ce

of
A
na

rc
hy

PoA#+

PoA∗+

PoA#0

PoA∗0

Fig. 5. Abilene network results.

The experiment results in Fig. 5 offer multiple interesting insights. Most
prominently, if simple shortest-path routing represents the baseline of network-
controlled path selection, source-based path selection with latency-only informa-
tion improves the performance of the network (up to a near-optimum), which
confirms findings of prior work [24]. In contrast, path selection with perfect
information deteriorates performance, especially for a higher degree of multi-
path routing. Therefore, the potential performance benefits of source-based path
selection with multi-path routing are conditional on the amount of information
possessed by end-hosts, where a higher degree of information is associated with
lower performance. However, while an increasing degree of multi-path routing
is associated with worse performance under perfect information, the resulting
inefficiency is bounded at a modest level of less than 4% for both end-hosts and
network operators. The near-optimality of latency-only information in terms of
performance and the bounded character of the Price of Anarchy under per-
fect information reflect the findings from Sect. 4 about ladder topologies, which
resemble the Abilene topology. Thus, the experiment results not only show that
source-based path selection can be a means to improve the performance of a
network but also confirm the practical relevance of our theoretical findings.

380 S. Scherrer et al.

6 Related Work

Inefficiency arising from selfish behavior in networks is well-known to exist in
transportation networks and has been thoroughly analyzed with the framework
of the Wardrop model [6,38]. The most salient expressions of this inefficiency is
given by the Braess Paradox [4].

Literature on selfish routing is often concerned with the discrepancy between
optimum and Nash equilibrium: the Price of Anarchy [8,17]. The Price of Anar-
chy was initially studied for network models (see Nisan et al. [22] for an overview),
but literature now covers a wide spectrum, from health care to basketball [29].
Our work has a closer connection to more traditional research questions, such
as bounds on the Price of Anarchy for selfish routing. An early result has been
obtained by Koutsoupias and Papadimitriou [17], who formulated routing in a
network of parallel links as a multi-agent multi-machine scheduling problem.

A different model has been developed by Roughgarden and Tardos [30] who
build on the Wardrop model [38] for routing in the context of computer net-
works. The Price of Anarchy in the proposed routing game is the ratio between
the latency experienced by all users in the Wardrop equilibrium and the mini-
mum latency experienced by all users. For different classes of latency functions,
the authors derive explicit high bounds on the resulting Price of Anarchy. In a
different work, they show that the worst-case Price of Anarchy for a function
class can always be revealed by a simple network of parallel links and that the
upper bound on the Price of Anarchy depends on the growth rate of the latency
functions [27].

The relatively loose upper bounds on the Price of Anarchy of previous works
[17,30] have been qualified by subsequent research. It was found that problem
instances with high Prices of Anarchy are usually artificial. By introducing plau-
sible assumptions to make the routing model more realistic, upper bounds on
the Price of Anarchy can be reduced substantially. For instance, Friedman [11]
shows that the Price of Anarchy is lower than the mentioned worst-case derived
by Roughgarden and Tardos [30] if the Nash equilibrium cost is not sensitive
to changes in the demand of agents. By computing the Price of Anarchy for
a variety of different latency functions, topologies, and demand vectors, Qiu
et al. even show that selfish routing is nearly optimal in many cases [24].

Convergence to Nash equilibria has been studied in the context of congestion
games [26] and, in a more abstract form, in the context of potential games
[21,31]. Sandholm [31] showed that selfish player behavior in potential games
leads to convergence to the Nash equilibrium and, under some conditions, even
to convergence to the social optimum. As the question of equilibrium convergence
is traditionally studied separately from the question of equilibrium cost, we do
not address convergence issues in this paper.

The study of the effect of incomplete information also has a long tradi-
tion [13], but still poses significant challenges [29]. Existing literature in this
area primarily focuses on scenarios where players are uncertain about each oth-
ers’ payoffs, studying alternative notions of equilibria such as Bayes-Nash equi-
libria [36], which also leads to alternative definitions of the price of anarchy such

The Value of Information in Selfish Routing 381

as the Bayes-Nash Price of Anarchy [18,29] or the price of stochastic anarchy [5].
A common observation of many papers in this area is that less information can
lead to significantly worse equilibria [29]. There is also literature on the impact
on the Price of Anarchy in scenarios where interacting players only have local
information, e.g., the evolutionary price of anarchy [34].

However, much less is known today about the role of information in games
related to routing. In this context, one line of existing literature is concerned with
the recentness of latency information. Most prominently, research on the damage
done by stale information in load-balancing problems [7,20] has been applied to
routing games by Fischer and Vöcking [10]. This work investigates whether and
how rerouting decisions converge onto a Wardrop equilibrium if these rerouting
decisions are based on obsolete latency information. Other recent work about the
role of information in routing games investigates how the amount of topology
information possessed by agents affects the equilibrium cost [1].

Existing work on the subject of source-routing efficiency differs from our work
in two important aspects. First, to the best of our knowledge, all existing work on
the subject defines the social optimum as the traffic assignment that minimizes
the total cost experienced by users, which is indeed a reasonable metric. How-
ever, our work additionally investigates the total cost experienced by links, i.e.,
the network operators. Since cost considerations by network operators are a deci-
sive factor in the deployment of source-based path selection architectures, the
Price of Anarchy to network operators is an essential metric. Second, although
existing work on the topic has investigated the role played by the recentness of
congestion information or the degree of topology information, it does not investi-
gate the role played by the degree of congestion information that agents possess.
Indeed, a major contribution of our work is to highlight the effects of perfect
information, i.e., information that allows agents to perfectly minimize their self-
ish cost. Latency-only information, which agents are assumed to have in existing
work, does not enable agents to perform perfect optimization.

7 Conclusion

Motivated by emerging path-aware network architectures, we refined and
extended the Wardrop model in order to study the implications of source-based
path selection. Our analysis provides several interesting insights with practical
relevance. First, the cost of selfish routing to network operators differs from
the cost experienced by users. Since network operators are central players in
the adoption of path-aware networking, research on the effects of selfish routing
thus needs to address the network-operator perspective separately. However, we
proved upper bounds on the Price of Anarchy which suggest that selfish routing
imposes a low cost on network operators. Second, we found that basic latency
information, which can be measured by the end-hosts themselves, leads to near-
optimal traffic allocations in many cases. Selfish routing thus causes modest
ineffiency even if end-hosts have only imperfect path information and network
operators do not disseminate detailed path-load information.

382 S. Scherrer et al.

Our model and first results introduce several exciting avenues for future
research. First, we note that while we have focused on path-aware network archi-
tectures, we hope to apply our model to other practical applications where source
routing has currently received much attention, e.g., in the context of segment
routing [9] and multi-cast [35]. Furthermore, we aim to obtain a more general
understanding of the interactions between the network topology structure and
the Price of Anarchy in selfish routing. Moreover, our focus in this paper was on
rational players, and it is important to extend our model to account for other
behaviors, e.g., players combining altruistic, selfish and Byzantine behaviors.

Acknowledgement. We gratefully acknowledge support from ETH Zurich, from
SNSF for project ESCALATE (200021L 182005), and from WWTF for project
WHATIF (ICT19-045, 2020–2024). Moreover, we thank Markus Legner, Jonghoon
Kwon, and Juan A. Garćıa-Pardo for helpful discussions that supported and improved
this research. Lastly, we thank the anonymous reviewers for their constructive feedback.

References

1. Acemoglu, D., Makhdoumi, A., Malekian, A., Ozdaglar, A.: Informational braess’
paradox: the effect of information on traffic congestion. Oper. Res. 66(4), 893–917
(2018)

2. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works, vol. 5 (2001)

3. Barrera, D., Chuat, L., Perrig, A., Reischuk, R.M., Szalachowski, P.: The scion
internet architecture. Commun. ACM 60(6), 56–65 (2017)

4. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung
12(1), 258–268 (1968)

5. Chung, C., Ligett, K., Pruhs, K., Roth, A.: The price of stochastic anarchy. In:
Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 303–314.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79309-0 27

6. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general net-
work. J. Res. Natl. Bureau Stand. B 73(2), 91–118 (1969)

7. Dahlin, M.: Interpreting stale load information. IEEE Trans. Parallel Distrib. Syst.
11(10), 1033–1047 (2000)

8. Dubey, P.: Inefficiency of nash equilibria. Mathematics of Operations Research
11(1), (1986)

9. Filsfils, C., Nainar, N.K., Pignataro, C., Cardona, J.C., Francois, P.: The segment
routing architecture. In: IEEE Global Communications Conference (GLOBECOM)
(2015)

10. Fischer, S., Vöcking, B.: Adaptive routing with stale information. Theor. Comput.
Sci. 410(36), 3357–3371 (2009)

11. Friedman, E.J.: Genericity and congestion control in selfish routing. In: 43rd IEEE
Conference on Decision and Control (CDC), vol. 5 (2004)

12. Gupta, A., et al.: SDX: a software defined internet exchange. ACM SIGCOMM
Comput. Commun. Rev. 44(4), 551–562 (2015)

13. Harsanyi, J.C.: Games with incomplete information played by “Bayesian” players,
I–III part I. The basic model. Manag. Sci. 14(3), 159–182 (1967)

14. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29, 1765–1775 (2011)

https://doi.org/10.1007/978-3-540-79309-0_27

The Value of Information in Selfish Routing 383

15. Kolaczyk, E.D.: Statistical Analysis of Network Data (Datasets). Springer, Heidel-
berg (2009). http://math.bu.edu/people/kolaczyk/datasets.html

16. Kotronis, V., Kloti, R., Rost, M., Georgopoulos, P., Ager, B., Schmid, S., Dim-
itropoulos, X.: Stitching inter-domain paths over IXPs. In: Proceedings of ACM
Symposium on SDN Research (SOSR) (2016)

17. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Annual Symposium
on Theoretical Aspects of Computer Science (STACS) (1999)

18. Leme, R.P., Tardos, E.: Pure and Bayes-Nash price of anarchy for generalized sec-
ond price auction. In: IEEE 51st Annual Symposium on Foundations of Computer
Science (FOCS) (2010)

19. Luizelli, M.C., Bays, L.R., Buriol, L.S., Barcellos, M.P., Gaspary, L.P.: Character-
izing the impact of network substrate topologies on virtual network embedding.
In: Proceedings of the 9th International Conference on Network and Service Man-
agement (CNSM). IEEE (2013)

20. Mitzenmacher, M.: How useful is old information? IEEE Trans. Parallel Distrib.
Syst. 11(1), 6–20 (2000)

21. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

22. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

23. Perrig, A., Szalachowski, P., Reischuk, R.M., Chuat, L.: SCION: A Secure Inter-
net Architecture. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-
67080-5. https://netsec.ethz.ch/publications/papers/SCION-book.pdf

24. Qiu, L., Yang, Y.R., Zhang, Y., Shenker, S.: On selfish routing in internet-like
environments. In: Proceedings of the ACM SIGCOMM (2003)

25. Raghavan, B., Snoeren, A.C.: A system for authenticated policy-compliant routing.
In: ACM SIGCOMM Computer Communication Review, vol. 34 (2004)

26. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. J.
Game Theory 2(1), 65–67 (1973)

27. Roughgarden, T.: The price of anarchy is independent of the network topology. J.
Comput. Syst. Sci. (JCSS) 67(2), 341–364 (2003)

28. Roughgarden, T.: Routing games. Algorithmic Game Theory 18, 459–484 (2007)
29. Roughgarden, T.: The price of anarchy in games of incomplete information. ACM

Trans. Econ. Comput. (TEAC) 3(1), 1–20 (2015)
30. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2),

236–259 (2002)
31. Sandholm, W.H.: Potential games with continuous player sets. J. Econ. Theory

97(1), 81–108 (2001)
32. Savage, S., Collins, A., Hoffman, E., Snell, J., Anderson, T.: The end-to-end effects

of internet path selection. In: ACM SIGCOMM Computer Communication Review,
vol. 29 (1999)

33. Scherrer, S., Perrig, A., Schmid, S.: The value of information in selfish routing
(2020). https://arxiv.org/abs/2005.05191

34. Schmid, L., Chatterjee, K., Schmid, S.: The evolutionary price of anarchy: locally
bounded agents in a dynamic virus game. In: Proceedings of 33rd International
Symposium on Distributed Computing (OPODIS) (2019)

35. Shahbaz, M., Suresh, L., Rexford, J., Feamster, N., Rottenstreich, O., Hira, M.:
Elmo: source-routed multicast for cloud services. arXiv preprint arXiv:1802.09815
(2018)

http://math.bu.edu/people/kolaczyk/datasets.html
https://doi.org/10.1007/978-3-319-67080-5
https://doi.org/10.1007/978-3-319-67080-5
https://netsec.ethz.ch/publications/papers/SCION-book.pdf
https://arxiv.org/abs/2005.05191
http://arxiv.org/abs/1802.09815

384 S. Scherrer et al.

36. Singh, S., Soni, V., Wellman, M.: Computing approximate Bayes-Nash equilibria in
tree-games of incomplete information. In: Proceedings of the 5th ACM conference
on Electronic Commerce (EC) (2004)

37. Trammell, B., Smith, J.P., Perrig, A.: Adding path awareness to the internet archi-
tecture. IEEE Internet Comput. 22(2), 96–102 (2018). https://doi.org/10.1109/
MIC.2018.022021673

38. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ.
Eng. 1(3), 325–362 (1952)

39. Xu, W., Rexford, J.: MIRO: multi-path Interdomain Routing. In: Proceedings of
the SIGCOMM (2006)

https://doi.org/10.1109/MIC.2018.022021673
https://doi.org/10.1109/MIC.2018.022021673

Author Index

Abouei Mehrizi, M. 331
Aggarwal, Abhinav 47
Ashok, Barath 91
Augustine, John 91

Balev, Stefan 203
Braun, Michael 63

Cai, Leran 111
Castenow, Jannik 63
Chepoi, Victor 310
Cholvi, Vicent 165
Clementi, Andrea 255

d’Amore, Francesco 255
D’Angelo, Gianlorenzo 331
Delporte-Gallet, Carole 291
Dobrev, Stefan 80, 146

Erlebach, Thomas 129

Fauconnier, Hugues 291
Fraigniaud, Pierre 275

Garncarek, Paweł 165
Ghaffari, Mohsen 3
Giachoudis, Nikos 220
Gupta, Diksha 19

Halldórsson, Magnús M. 275

Jurdziński, Tomasz 165

Kim, Yonghwan 237
Kokkou, Maria 220
Kowalski, Dariusz R. 165
Královič, Rastislav 80, 146

Labourel, Arnaud 310
Lamprou, Ioannis 203
Laredo Jiménez, Juan Luis 203

Markou, Euripides 220
Masuzawa, Toshimitsu 237
Mehekare, Aditya 91
Meyer auf der Heide, Friedhelm 63

Nakamura, Junya 237
Natale, Emanuele 255
Nolin, Alexandre 275

Pardubská, Dana 80, 146
Perrig, Adrian 366
Pigné, Yoann 203

Ragupathi, Sridhar 91
Rajsbaum, Sergio 291
Ramachandran, Srikkanth 91
Ratel, Sébastien 310

Saia, Jared 19, 47
Sanlaville, Eric 203
Sauerwald, Thomas 111
Scherrer, Simon 366
Schmid, Stefan 366
Shibata, Masahiro 237
Sourav, Suman 91
Spooner, Jakob T. 129
Sudo, Yuichi 237

Turau, Volker 183

Yamauchi, Yukiko 349
Yoshimura, Shotaro 349
Young, Maxwell 19

Zanetti, Luca 111

	Preface
	Laudatio: 2020 SIROCCO Prize for Innovation in Distributed Computing
	Organization
	Contents
	I Invited Papers
	Network Decomposition and Distributed Derandomization (Invited Paper)
	1 Introduction
	2 Warm Up: MIS and Network Decomposition
	3 Efficient Deterministic Network Decomposition
	4 Distributed Derandomization
	5 Open Problems
	5.1 Open Problems: LOCAL Model
	5.2 Open Problems: CONGEST Model

	References

	Resource Burning for Permissionless Systems (Invited Paper)
	1 Introduction
	2 Background and Preliminaries
	2.1 Game Theory, Biology and Economics
	2.2 What is Resource Burning?
	2.3 What is not Resource Burning
	2.4 Resource Burning Does Not Require Waste of the Resource
	2.5 A General Model
	2.6 Game Theoretic Analysis

	3 Blockchains and Cryptocurrencies
	3.1 GenID and DefID

	4 Distributed Hash Tables
	4.1 Why DefID is Not Enough
	4.2 The Permissionless DHT Problem

	5 Application-Layer DDoS Attacks
	5.1 The Application-Layer DDoS Problem

	6 Review Spam
	6.1 The Review Spam Problem

	7 Conclusion
	References

	I Mobile Robots
	ANTS on a Plane
	1 Introduction
	1.1 Our Results
	1.2 Novelty and Technical Challenges
	1.3 Paper Organization

	2 Related Work
	3 Technical Preliminaries
	4 GoldenFA
	5 Analysis
	6 Lower Bound for Spoke-Based Algorithms
	7 Empirical Evaluation
	7.1 Setup
	7.2 Results

	8 Conclusion and Future Work
	References

	Local Gathering of Mobile Robots in Three Dimensions
	1 Introduction
	1.1 Model and Time Notions
	1.2 Our Contribution
	1.3 Related Work

	2 Gathering in Fsync
	2.1 3D-Go-To-The-Center

	3 Continuous Gathering
	3.1 Preliminaries
	3.2 Proof of the Upper Bound
	3.3 Continuous-3D-Go-To-The-Center
	3.4 Tangential-Normal Strategies
	3.5 Move-on-Angle-Minimizer

	References

	Improved Lower Bounds for Shoreline Search
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Lower Bounds
	2.1 Three Agents
	2.2 Two Agents

	3 Conclusions
	References

	Guarding a Polygon Without Losing Touch
	1 Introduction
	2 Preliminaries
	2.1 Computational Models

	3 Centralized Sequential and Parallel Algorithms
	4 Distributed Guarding with Proximity Perception
	5 Distributed Guarding with Depth Perception
	6 Lower Bound
	7 Conclusion and Future Works
	References

	I Dynamic Graphs
	Random Walks on Randomly Evolving Graphs
	1 Introduction
	1.1 Main Results

	2 Notation and Definitions
	2.1 Random Walk and Conductance
	2.2 Dynamic Graph Models
	2.3 Mixing Time of Random Walks on Dynamic Graphs

	3 Results for the Fast-Changing Case
	3.1 Negative Result for Mixing in the Sparse and Fast-Changing Case
	3.2 Positive Result for Mixing in the Dense and Fast-Changing Case

	4 Results for the Slowly-Changing Case
	4.1 Positive Result for Mixing in the Dense and Slowly-Changing Case
	4.2 Negative Result for Mixing in the Sparse and Slowly Changing Case

	5 Conclusion
	A Mixing Times for the Graph Chain of Edge-Markovian Models
	References

	Non-strict Temporal Exploration
	1 Introduction
	2 Related Work
	3 Graph Model and Problem Definition
	4 Deciding Whether Exploration Is Possible
	5 Exploration with Pairwise Vertex-Togetherness
	6 Exploration with Bounded Temporal Diameter
	6.1 Hardness of the Decision Problem for Temporal Diameter 2
	6.2 Lower Bounds on Exploration Time
	6.3 Upper Bounds on Exploration Time
	6.4 Inapproximability Results

	7 Conclusion
	References

	Exploration of Time-Varying Connected Graphs with Silent Agents
	1 Introduction
	2 Model
	3 Minimal Number of Agents
	4 Polynomial Search Time
	References

	I Network Communication
	Optimal Packet-Oblivious Stable Routing in Multi-hop Wireless Networks
	1 Introduction
	2 Model and Problem Definition
	3 Selectors as Transmission Schedulers
	3.1 Universally Strong Selectors of Polynomial Size
	3.2 Obtaining Universally Strong Selectors of Polynomial Size in Polynomial Time

	4 A Local-Knowledge Routing Algorithm
	4.1 The USS-PLUS-LIS Algorithm
	4.2 Optimality of the USS-PLUS-LIS Algorithm

	5 A Global-Knowledge Routing Algorithm
	5.1 The COLORING-PLUS-LIS Algorithm
	5.2 Optimality of the COLORING-PLUS-LIS Algorithm
	5.3 Global-Knowledge Vs Local-Knowledge Routing Protocols

	6 Extension of the Results to Other Scheduling Policies
	7 Conclusions and Future Work
	References

	Stateless Information Dissemination Algorithms
	1 Introduction
	2 Notation
	3 State of the Art
	4 Synchronous Stateless Information Dissemination
	4.1 Reduction to Amnesiac Flooding
	4.2 Amnesiac Flooding
	4.3 The Reduction
	4.4 Approximation Algorithm

	5 Asynchronous Stateless Information Dissemination
	6 Conclusion and Future Work
	References

	I Multi-agent Systems
	Cops and Robbers on Dynamic Graphs: Offline and Online Case
	1 Introduction
	2 Preliminaries
	3 Offline Case
	4 Online Case
	5 Conclusions
	References

	Black Virus Decontamination of Synchronous Ring Networks by Initially Scattered Mobile Agents
	1 Introduction
	1.1 Related Work
	1.2 Model
	1.3 Main Contributions

	2 Agents with Common Chirality
	2.1 Impossibility Results
	2.2 An Algorithm with Ten Agents

	3 Agents Without Common Chirality
	3.1 Impossibility Results
	3.2 An Algorithm with Twelve Agents

	4 Open Problems
	References

	The Power of Global Knowledge on Self-stabilizing Population Protocols
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Leader Election and Ranking
	4 Degree Recognition and Neighbor Recognition
	5 Conclusion
	References

	Phase Transition of a Non-linear Opinion Dynamics with Noisy Interactions
	1 Introduction
	2 Preliminaries
	2.1 Oblivious Noise and Stubborn Agents

	3 Process Analysis for Biased Initial Configurations
	4 Symmetry Breaking from Balanced Configurations
	5 Simulations
	6 Conclusions
	References

	I Communication Complexity
	Distributed Testing of Distance-k Colorings
	1 Introduction
	1.1 Summary of Main Results
	1.2 Related Work

	2 Model and Definitions
	3 Preliminaries: Set Disjointness
	4 Testing Distance-k Colorings
	4.1 A General Algorithm for Any k
	4.2 A Better Running Time for k=3
	4.3 Lower Bounds for k 3

	5 Conclusion
	A Verifying Distance-k Colorings in Bounded-Degree Graphs
	A.1 A matching lower bound for the natural algorithm

	References

	Communication Complexity of Wait-Free Computability in Dynamic Networks
	1 Introduction
	2 Fundamentals
	2.1 Tasks
	2.2 Approximate Agreement Tasks
	2.3 Dynamic Graph Model
	2.4 Basic Characterization

	3 Approximate Agreement with Few Bits
	3.1 Approximate Agreement on a Single Edge
	3.2 Approximate Agreement on I
	3.3 Optimizing the Communication Complexity

	4 Full-Information Protocol Using only Beeps
	5 The Three-Process Case
	5.1 A Wait-Free Model for Three Processes
	5.2 A Triangle Approximate Agreement Task for 3 Processes
	5.3 The Impossibility for 3 Processes

	6 Conclusions
	References

	Distance Labeling Schemes for K4-Free Bridged Graphs
	1 Introduction
	2 Main Ideas of the Scheme
	3 Preliminaries
	4 Metric Triangles and Intervals
	5 Stars and Fibers
	6 Boundaries and Total Boundaries of Fibers
	7 Shortest Paths and Classification of Pairs of Vertices
	8 Distance Labeling Scheme
	8.1 Encoding
	8.2 Distance Queries
	8.3 Correctness and Complexity

	References

	I Game Theory
	Multi-winner Election Control via Social Influence
	1 Introduction
	2 Multi-winner Election Control
	3 Hardness Results
	4 Straight-Party Voting
	5 Conclusions and Future Work
	References

	Network Creation Games with Local Information and Edge Swaps
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Organization

	2 Preliminaries
	3 Convergence Properties for Pessimistic Players
	3.1 Impossibility in General Settings
	3.2 Convergence from an Initial Tree

	4 PoA for Pessimistic Players
	5 Swap Games with Non-pessimistic Players
	6 Conclusion
	References

	The Value of Information in Selfish Routing
	1 Introduction
	1.1 Practical Motivation
	1.2 Our Contributions

	2 Model and First Insights
	2.1 Model
	2.2 Social Optima
	2.3 Degrees of Information
	2.4 Nash Equilibria
	2.5 Price of Anarchy
	2.6 Value of Information

	3 The Benefits of Information
	3.1 Social Optima
	3.2 LI Equilibrium
	3.3 PI Equilibrium

	4 The Drawbacks of Information
	4.1 Social Optima
	4.2 LI Equilibrium
	4.3 PI Equilibrium

	5 Case Study: Abilene Network
	6 Related Work
	7 Conclusion
	References

	Author Index

