
Chapter 3
Regularity and Inviscid Limits
in Hydrodynamic Models

Peter Constantin

Abstract We discuss the vanishing viscosity limit and low regularity bounds,
uniform in viscosity, for vorticity in Yudovich class in 2D. We also show that
multiscale steady solutions of Navier–Stokes equations with power law energy
spectrum, including K41, can be constructed in any domain in 3D

3.1 Introduction

The three-dimensional incompressible Navier–Stokes equations are the basic equa-
tions of mathematical fluid mechanics. The equations

∂tu + u · ∇u + ∇p − ν�u = f, (3.1.1)

with the incompressibility constraint

∇ · u = 0, (3.1.2)

describe the motion of a fluid of uniform density (taken above to be identically 1),
with velocity u = u(x, t) ∈ R

d with x ∈ R
d , t ≥ 0, in d = 2 or d = 3 dimensions.

The scalar unknown p = p(x, t) represents the hydrodynamic pressure, arising
in response to the constraint of incompressibility (3.1.2). The positive number ν

represents the kinematic viscosity, and f are body forces.
The Euler equations,

∂tu + u · ∇u + ∇p = f, (3.1.3)
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L. C. Berselli, M. Růžička (eds.), Progress in Mathematical Fluid Dynamics,
Lecture Notes in Mathematics 2272, https://doi.org/10.1007/978-3-030-54899-5_3

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54899-5_3&domain=pdf
mailto:const@math.princeton.edu
https://doi.org/10.1007/978-3-030-54899-5_3


90 P. Constantin

together with the incompressibility condition (3.1.2) are obtained by formally
setting ν = 0 in the Navier–Stokes equations. The pressure enforces the incom-
pressibility condition, and if the forces are divergence-free, the pressure must satisfy

− �p = ∇ · (u · ∇u) . (3.1.4)

The subject of these lectures is motivated by questions arising in turbulence, one of
the greatest challenges in physics. A law of turbulence states that the average rate
of dissipation of kinetic energy per unit mass does not vanish in the limit of infinite
Reynolds numbers.

− lim
Re→∞〈dE

dt
〉 = ε > 0

This law is experimentally well verified. Another important law of turbulence theory
is the K41 spectrum, or Kolmogorov–Obukhov spectrum,

E(k) = Cε
2
3 k− 5

3 ,

which states that the energy per wave number k has a universal power law behavior
for a range of scales, called the inertial range. This range extends from low wave
numbers, where the energy injection typically occurs, to a viscosity dependent cutoff
wave number, which converges to infinity in the limit of zero viscosity. This again
is very well verified experimentally. The physical literature on the subject is vast. A
lucid presentation is given in [1].

The mathematical description of these two laws requires a more precise formu-
lation. The laws are not in any way mathematical statements, and formulations
can be given so that they invalid. The more challenging task is to understand
why they are observed in nature, and how are they related to the fundamental
underlying equations. In these lectures we present negative results, results in which
the vanishing viscosity limit is conservative, and results in which non-turbulent
Navier–Stokes stationary solutions exhibit power law scaling behavior.

3.2 Inviscid Limit

If we consider the issue of the limit of energy dissipation, we certainly can find cases
in which the limit vanishes. These are cases in which the solutions of the Navier–
Stokes equations converge to solutions of Euler equations, and the latter are smooth
enough to conserve energy. This situation occurs, as it is very well known, if we are
considering spatially periodic solutions and solutions of the Euler equations which
belong to Hs(Td), s > d

2 + 1 [2, 3].
The difference between solutions vanishes in the inviscid limit, in strong norms,

at a rate proportional to the difference between coefficients, that is, linearly with
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viscosity. This rate changes if we consider less smooth solutions of Euler equations,
even in 2D. This was first investigated in [4] and [5] for vortex patches, a class
of weak solutions of Euler equations in 2D. We describe below recent results [6]
extending the earlier work.

3.2.1 Yudovich Class

We discuss here the connection between Yudovich solutions of the Euler equations
[27]

∂tω + u · ∇ω = g, (3.2.1)

with bounded forcing g ∈ L∞(0, T ; L∞(T2)), and initial data

ω(0) = ω0 ∈ L∞(T2), (3.2.2)

and the vanishing viscosity limit (limν→0) of solutions of the Navier–Stokes
equations,

∂tω
ν + uν · ∇ων = ν�ων + g, (3.2.3)

with initial data

ων(0) = ων
0 ∈ L∞(T2), (3.2.4)

and the same forcing g. We consider uniformly bounded initial data

sup
ν>0

‖ων
0‖L∞(T2) ≤ �0,∞ < ∞. (3.2.5)

The solutions of (3.2.1), (3.2.2), (3.2.3), and (3.2.4) are uniformly bounded in
L∞(T2):

sup
ν≥0

sup
0≤t≤T

‖ων(t)‖L∞(T2) ≤ �∞ = �0,∞ +
∫ T

0
‖g(t)‖L∞(T2)dt. (3.2.6)

This bound is valid in T
2 or R2 but is not available if boundaries are present or in

3D. The bound will be used repeatedly below.
The vorticity distribution function πων(t)(dy) is defined by

∫
f (y)πων(t)(dy) =

∫
f (ων(t, x))dx, (3.2.7)
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for all continuous functions (observables) f . If ων
0 → ω0 we the distributions

convergence

πων(t)(dy)
ν→0−−→ πω(t)(dy) = πω0(dy), (3.2.8)

where the time invariance of the vorticity distribution function for the Euler equa-
tions follows from Lagrangian transport ω(t) = ω0 ◦ X−1

t and volume preservation
of the homeomorphism At = X−1

t . The statement (3.2.8) is a consequence of the
strong convergence of the vorticity in L∞(0, T ; Lp(T2)) for all p ∈ [1,∞) and
for any T > 0. This fact was proved in [6], extending previous work for vortex
patch solutions with smooth boundary [4], and removing additional assumptions
on the Euler path [5]. This result has implications for equilibrium theories [28] of
decaying two-dimensional turbulence [7, 8, 29] The result of [6] is:

Theorem 3.1 Let ω be the unique Yudovich weak solution of the Euler equations
with initial data ω0 ∈ L∞(T2) and forcing g ∈ L∞(0, T ; L∞(T2)). Let ων be
the solution of the Navier–Stokes equation with the same forcing and initial data
ων

0 → ω0 strongly in L2(T2). Then, for any T > 0 and p ∈ [1,∞), the inviscid
limit ων → ω holds strongly in L∞(0, T ; Lp(T2)):

lim
ν→0

sup
0≤t≤T

‖ων(t) − ω(t)‖Lp(T2) = 0. (3.2.9)

Consequently, the distributions converge,

lim
ν→0

πων(t)(dy) = πω0(dy), (3.2.10)

for all t ∈ [0, T ].
Remark 3.1 The result is sharp, in several ways. First, there can be no infinite
time result as the Euler solution is conservative and the Navier–Stokes solution is
dissipative. Secondly, there can be no rate without additional regularity assumptions
on ω0, as is the case for the heat equation. Thirdly, there can be no strong
convergence in L∞ because ω0 may not be continuous while ων is smooth for any
t > 0. And, finally there can be no strong convergence for p > 1 in domains with
boundaries, if the boundary condition of the Navier–Stokes solutions is no slip, and
the Euler solution has non-vanishing tangential velocity at the boundary, in other
words, if there are boundary layers [9].

The method of proof of Theorem 3.1 yielded also the continuity of the Yudovich
solution map ω(t) = S(t)(ω0) in the Lp topology when restricted to fixed balls in
L∞.
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Theorem 3.2 For any ω0, ω
n
0 ∈ L∞(T2) such that ωn

0 is uniformly bounded in
L∞(T2) and ωn

0 → ω0 as n → ∞ strongly in L2(T2) we have

lim
n→∞ ‖S(t)(ωn

0 ) − S(t)(ω0)‖Lp(T2) = 0 (3.2.11)

for each time t > 0.

If additional smoothness is assumed on the data then some degree of fractional
smoothness in Lp can be propagated uniformly in viscosity [6]:

Theorem 3.3 Suppose ω0 ∈ (L∞ ∩ Bs
p,∞)(T2) for some s > 0 and some p ≥ 1.

Then the solutions of the Navier–Stokes equations satisfy ων(t) ∈ (L∞∩B
s(t)
p,∞)(T2)

uniformly in ν, where

s(t) = s exp(−Ct‖ω0‖L∞(T2))

for some universal constant C > 0.

The proof of Theorem 3.3 relied on the fact that the velocity is log-Lipschitz
uniformly in ν and showed that the exponential estimate with loss of [10] holds
uniformly in viscosity. The proof given in [6] used the stochastic Lagrangian
representation formula of [11]

dXt(x) = uν(Xt(x), t)dt + √
2ν dWt, X0(x) = x, (3.2.12)

yielding the representation formula

ων(t) = E
[
ω0 ◦ At

]
(3.2.13)

where back-to-labels map is defined as At = X−1
t . The noisy Lagrangian picture

allowed for adaptation of ideas of [10, 12] to the viscous case. Uniform Sobolev
regularity could be established by similar arguments; if ω0 ∈ (L∞ ∩ Ws,p)(T2)

then ων(t) ∈ (L∞ ∩ Ws(t),p)(T2) with uniformly bounded norms.
The uniform regularity of Theorem 3.3was used to deduce

Corollary 3.1 Let ω0 ∈ (L∞ ∩ Bs
2,∞)(T2) with s > 0 and let ω and ων solve

respectively (3.2.1) and (3.2.3), with the same initial data ων
0 = ω0. Then the Lp

convergence of vorticity, for any p ∈ [1,∞) and any finite time T > 0, occurs at
the rate

sup
t∈[0,T ]

‖ων(t) − ω(t)‖Lp(T2) � (νT )
s exp(−2CT ‖ω0‖∞)

p(1+s exp(−CT ‖ω0‖∞))
−
, (3.2.14)

with the universal constant C > 0 in Proposition 3.3.
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Corollary 3.1 applies in particular to the to inviscid limits of vortex patches
with non-smooth boundary. Indeed, Lemma 3.2 of [5] shows that if ω0 = χ� is
the characteristic function of a bounded domain whose boundary has box-counting
(fractal) dimension D not larger than the dimension of space d = 2, i.e. dF (∂�) :=
D < 2, then ω0 ∈ B

(2−D)/p
p,∞ (T2). Proposition 3.3 then shows that some degree of

fractional Besov regularity of the solution ων(t) is retained uniformly in viscosity
for any finite time T < ∞ and Corollary 3.1 provides a rate depending only D,T

and p at which the vanishing viscosity limit holds, removing therefore the need for
the additional assumptions on the solution imposed in [5].

The proof of Theorem 3.1, adapted from [6], is given below. It is based on
a number of properties of Yudovich class solutions, in particular the exponential
integrability of gradients and the fact that linear transport by Yudovich solutions
has a short time uniformly controlled loss of regularity: it maps bounded sets in
W 1,p, p > 2 to bounded sets in H 1, uniformly in viscosity.

We give further a proof of a uniform propagation of regularity result, Theo-
rem 3.4, a version of Theorem 3.3 which does not use the stochastic representation.

We start the proof of Theorem 3.1 with the exponential integrability of gradients
of velocities obtained via the Biot–Savart law in dimension two.

Lemma 3.1 Let ω ∈ L∞(T2) and let u be obtained from ω by the Biot–Savart law

u = K[ω] = ∇⊥(�)−1ω. (3.2.15)

There exists a non-dimensional constant γ > 0 and a constant CK with units of
area such that

∫
T2

exp {β|∇u(x)|} dx ≤ CK (3.2.16)

holds for any β > 0 such that

β‖ω‖L∞(T2) ≤ γ. (3.2.17)

Proof The bound (3.2.16) holds due to the fact that Calderon–Zygmund operators
map L∞ to BMO [13], ω ∈ L∞ �→ ∇u = ∇K[u] ∈ BMO , and from the
John–Nirenberg inequality [14] for BMO functions. We provide below a direct and
elementary argument (modulo a fact about norms of singular integral operators), for
the sake of completeness.

We recall that there exists a constant C∗ so that for all p ≥ 2,

‖∇K[v]‖Lp(T2) = ‖∇ ⊗ ∇(−�)−1v‖Lp(T2) ≤ C∗p‖v‖Lp(T2). (3.2.18)
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(See [13]). The dependence of (3.2.18) on p is the important point. Thus,

∫
T2 eβ|∇u|dx =∑∞

p=0 βp
‖∇u‖p

Lp(T2)

p!

≤ ∑∞
p=0

(
C∗β‖ω‖

Lp(T2)

)p
pp

p! ≤ |T2|∑∞
p=0

(
C∗β‖ω‖

L∞ (T2)

)p
pp

p! .

This is a convergent series provided C∗β‖ω‖L∞(T2) < 1/e. Indeed, this can be seen

using Stirling’s bound n! ≥ √
2πnn+1/2e−n which yields

∞∑
p=0

cppp

p! ≤ 1 +
∞∑

p=1

p−1/2

√
2π

(ce)p ≤ 1

1 − ce
, provided c ∈ [0, 1/e)

where c := C∗β‖ω‖L∞(T2). In (3.2.16) we may take thus

γ = (2C∗e)−1, CK = 2
∣∣∣T2
∣∣∣ . (3.2.19)

The constant γ depends on the Biot–Savart kernel and is non-dimensional, the
constant CK then is proportional to the area of the domain.

The next result establishes strong convergence of the velocity in L2(0, T ;
L2(T2)). If g = 0 and uν

0 = u0, this is a consequence of Theorem 1.4 of [15].
Below is a generalization of [15] which applies in our setting and is proved by a
different argument.

Lemma 3.2 Let ω0 ∈ L∞(T2). There exist constants U , �2 and K (see below
(3.2.23), (3.2.24), and (3.2.39)) depending on norms of the initial data and of the
forcing such that the difference v = uν − u of velocities of solutions (3.2.1) and
(3.2.3) obeys

‖v(t)‖2
L2 ≤ 3U2K

5(t−t0)�∞
γ

(‖v(t0)‖2
L2(T2)

U2 + γ
�2

2

U2�∞
ν

)1− 5(t−t0)�∞
γ

(3.2.20)

for all 0 ≤ t0 ≤ t . By iterating the above, we obtain

‖v(t)‖2
L2 ≤ 20U2K1−e−10t�∞/γ

(‖v(0)‖2
L2(T2)

U2
+ γ

�2
2

U2�∞
ν

)e
− 10t�∞

γ

(3.2.21)

provided that ‖v(0)‖2
L2(T2)

+ γ ν�2
2/�∞ ≤ 9KU2.

Remark 3.2 (Continuity of Solution Map) At zero viscosity, Lemma 3.2 establishes
Hölder continuity of the Yudovich (velocity) solution map. Specifically, denoting
S(t)(u0) the velocity with initial data u0 and ν = 0, a consequence of Lemma 3.2
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is that ‖S(t)v(u0) − S(t)(u′
0)‖L2(T2) ≤ C‖u0 − u′

0‖α(t)

L2(T2)
where α(t) := e−ct

and c, C > 0 are appropriate constants. This fact is used to prove Theorem 3.2.
It is worth further remarking that the condition on the data ‖v(0)‖2

L2(T2)
≤ 9KU2

required for the above estimate to hold is O(1) (data need not be taken very close).

Proof The proof of Lemma 3.2 proceeds in two steps.

Step 1: Short Time Bound The proof of the lemma starts from the equation
obeyed by the difference v,

∂t v + uν · ∇v + v · ∇u + ∇p = ν�v + ν�u

leading to the inequality

d

dt
‖v‖2

L2 + ν‖∇v‖2
L2 ≤ ν‖∇u‖2

L2 + 2
∫

|∇u||v|2dx (3.2.22)

which is a straightforward consequence of the equation, using just integration by
parts. We use the bound �∞ (3.2.6) for the vorticity of the Euler solution. We also
use a bound for the L2 norms

sup
0≤t≤T

(‖uν(t)‖L2(T2) + ‖u(t)‖L2(T2)

) ≤ U, (3.2.23)

which is easily obtained from energy balance. We use also bounds for Lp norms of
vorticity,

�p = sup
0≤t≤T

‖ω(t)‖Lp(T2). (3.2.24)

We split the integral

∫
|∇u||v|2dx =

∫
B

|∇u||v|2dx +
∫
T2\B

|∇u||v|2dx

where

B = {x | |v(x, t)| ≥ MU}

with M to be determined below. Although B depends in general on time, it has small
measure if M is large,

|B| ≤ M−2.
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The constant M has dimensions of inverse length. We bound

2
∫

B

|∇u||v|2dx ≤ 2‖∇u‖L2‖v‖2
L4 ≤ 2|B| 1

4 ‖∇u‖L4‖v(t)‖2
L4 (3.2.25)

where we used
∫
B |∇u|2dx ≤ |B| 1

2 ‖∇u‖2
L4 . We now use the fact that we are in

Yudovich class and Ladyzhenskaya inequality to deduce

‖v(t)‖2
L4 ≤ C‖v(t)‖L2 [‖ω0‖L2 + ‖g‖L1(0,T ;L2)] ≤ CU�2

and we use also

‖∇u‖L4 ≤ [C‖ω0‖L4 + ‖g‖L1(0,T ;L4)] = �4

to bound (3.2.25) by

2
∫

B

|∇u||v|2dx ≤ CU�2�4M
− 1

2 , (3.2.26)

We non-dimensionalize by dividing by U2 and we multiply by β = γ /�∞. The
quantity

y(t) =
‖v(t)‖2

L2(T2)

U2 (3.2.27)

obeys the inequality

β
dy

dt
≤ βν

�2
2

U2 + Cβ�4
�2

U
M− 1

2 + 2
∫
T2\B

β|∇u| |v|2
U2 dx. (3.2.28)

We write the term

2
∫
T2\B

β|∇u||v|2U−2dx = 2
∫
T2\B

(β|∇u|+log ε+log
1

ε
)|v|2U−2dx (3.2.29)

with ε (with units of inverse area) to be determined below. We use the inequality
(3.2.56) and Lemma 3.1 with

a = β|∇u| + log ε, b = |v|2
U2

to deduce

2
∫
T2\B

β|∇u||v|2U−2dx ≤ 2εCK + 2 log
M2

ε
y(t). (3.2.30)
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Inserting (3.2.30) in (3.2.28) we obtain

β
dy

dt
≤ F + log

(
M2

ε

)
y(t) (3.2.31)

with

F = βν
�2

2

U2 + Cβ�4
�2

U
M− 1

2 + 2εCK. (3.2.32)

Note that F and M2

ε
are non-dimensional. From (3.2.31) we obtain immediately

y(t) ≤
(

M2

ε

) t−t0
β

y(t0) + F

log
(

M2

ε

)
⎛
⎝
(

M2

ε

) t−t0
β

− 1

⎞
⎠ . (3.2.33)

We choose M such that

Cβ�4
�2

U
M− 1

2 = βν
�2

2

U2 + y(t0) (3.2.34)

and we choose ε such that

2εCK = βν
�2

2

U2
+ y(t0). (3.2.35)

These choices imply

F = 3βν
�2

2

U2
+ 2y(t0). (3.2.36)

Then we see that

 = M2

ε
= 2CK

(
Cβ�4

�2

U

)4

×
(

βν
�2

2

U2 + y(t0)

)−5

. (3.2.37)

Taking without loss of generality log  ≥ 1, we have from (3.2.33)

y(t) ≤ 3

(
y(t0) + βν

�2
2

U2

)


t−t0
β

≤ 3

(
y(t0) + βν

�2
2

U2

)1− 5(t−t0)

β ×
(

2CK

(
Cβ�4

�2
U

)4
) 5(t−t0)

β

.

(3.2.38)
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Recalling that β = γ /�∞ and denoting the non-dimensional constant

K = 2CK

(
Cβ�4

�2

U

)4

(3.2.39)

we established

‖v(t)‖2

U2 ≤ 3K
5(t−t0)�∞

γ

(‖v(t0)‖2
L2(T2)

U2 + βν
�2

2

U2

)1− 5(t−t0)�∞
γ

. (3.2.40)

Thus, we established (3.2.20).

Step 2: Long Time Bound With (3.2.20) established, we now prove (3.2.21). Let
c = 5�∞/γ , �t = 1/2c and ti = ti−1 + �t and ai = ‖v(ti )‖2

L2/U2 for i ∈ N.
Then (3.2.20) states

ai ≤ C1 (ai−1 + C2ν)1/2 , i = 1, 2, . . . (3.2.41)

with C1 = 3K
5�∞
2cγ = 3K

1
2 and C2 = β

�2
2

U2 . We set

δn = ai + C2ν

C2
1

(3.2.42)

and observe that (3.2.41) is

δn ≤ √δn−1 + ν̃ (3.2.43)

where

ν̃ = C2ν

C2
1

(3.2.44)

is a non-dimensional inverse Reynolds number. It follows then by induction that

δn ≤ (δ0)
2−n +

n−1∑
i=0

(̃ν)2−i

. (3.2.45)

Indeed, the induction step follows from

δn+1 ≤ √δn + ν̃ (3.2.46)

and the subadditivity of λ �→ √
λ. If

ν̃ ≤ 1√
5 − 1

(3.2.47)
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then the iteration (3.2.43) starting from 0 < δ0 < r where r is the positive root of
the equation x2 − x − ν̃ = 0, remains in the interval (0, r), and for any n, δn obeys
(3.2.45). We observe that

n−1∑
i=0

(̃ν)2−i = (̃ν)2−n+1
(

1 + · · · + (̃ν)2n−1
)

≤ 1

1 − ν̃
(̃ν)2−n+1

(3.2.48)

and therefore (3.2.21) follows from (3.2.45). We note that the iteration defined with
equality in (3.2.43) converges as n → ∞ to r . Fixing any t > 0 and letting n =
�t/�t� = �2ct� = �10t�∞/γ � establishes the bound.

The next useful result concerns scalars transported and amplified by a velocity
with bounded curl in two dimensions.

Lemma 3.3 Let u := u(x, t) be divergence free and ω := ∇⊥ · u ∈
L∞(0, T ; L∞(T2)) with

sup
0≤t≤T

‖ω(t)‖L∞(T2) ≤ �∞. (3.2.49)

Consider a nonnegative scalar field θ := θ(x, t) satisfying the differential inequality

∂tθ + u · ∇θ − ν�θ ≤ |∇u|θ + f, (3.2.50)

with initial data θ |t=0 = θ0 ∈ L∞(T2), and forcing f ∈ L∞(0, T ; L∞(T2)).
Let γ > 0 be the constant from Lemma 3.1. Then, for any p > 1 and the time
T (p) = γ (p−1)

2p�∞ it holds that

sup
t∈[0,T (p)]

‖θ(t)‖L2(T2) ≤ C1‖θ0‖p

L2p(T2)
+ C2 (3.2.51)

for some constants C1, C2 depending only on p, �∞ and ‖f ‖L∞(0,T ;L∞(T2)).

Proof Let p := p(t) with p(0) = p0 and time dependence of p(t) to be specified
below. Consider

1

2

d

dt

∫
T2

|θ |2p(t)dx = p′(t)
∫
T2

ln |θ ||θ |2p(t)dx + p(t)

∫
T2

|θ |2p(t)−2θ∂tθdx

≤ p′(t)
∫
T2

ln |θ ||θ |2p(t)dx − p(t)

∫
T2

|θ |2p(t)−2θu · ∇θdx

+ νp(t)

∫
T2

|θ |2p(t)−2θ�θdx + p(t)

∫
T2

|θ |2p(t)−2|∇u|θ2dx

+ p(t)

∫
T2

|θ |2p(t)−2θf dx. (3.2.52)
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We now use the following facts

∫
T2

|θ |2p−2θf dx ≤ C‖f ‖L∞(0,T ;L∞(T2))‖θ‖2p−1
2p , (3.2.53)

p

∫
T2

|θ |2p−2θu · ∇θdx = 1

2

∫
T2

u · ∇(|θ |2p)dx = 0, (3.2.54)

ν

∫
T2

|θ |2p−2θ�θdx = −ν(2p − 1)

∫
T2

|θ |2p−2|∇θ |2dx ≤ 0. (3.2.55)

In the second equality we used the fact that the velocity is divergence free.
Altogether we find thus

1
2

d
dt

‖θ(t)‖2p(t)

2p(t)dx

≤ p′(t)
∫
T2 ln |θ ||θ |2p(t)dx + p(t)

∫
T2 |θ |2p(t)|∇u|dx + p(t)‖f ‖L∞‖θ‖2p−1

2p .

We now use the following elementary inequality: for a, b > 0,

ab ≤ ea + b ln b − b. (3.2.56)

In fact, we use only that ab ≤ ea + b ln b. The inequality (3.2.56) is proved via
calculus and follows because the Legendre transform of the convex function b ln b−
b+1 is ea−1. Setting a = β|∇u| and b = 1

β
|θ |2p, applying (3.2.56) and Lemma 3.1

we obtain

1

2

d

dt
‖θ(t)‖2p(t)

2p(t) ≤ p′(t)
∫
T2

ln |θ ||θ |2pdx + p(t)

β

∫
T2

ln(β−1|θ |2p)|θ |2pdx

+ p(t)

∫
T2

eβ|∇u|dx + Cp(t)‖f ‖L∞‖θ‖2p−1
2p

≤
(

p′(t) + 2p(t)2

β

)∫
T2

ln |θ ||θ |2pdx + p(t)

β
ln(β−1)‖θ(t)‖2p

2p

+ p(t)CK + Cp(t)‖f ‖L∞‖θ‖2p−1
2p , (3.2.57)

where CK is the constant from Lemma 3.1 and β = γ
�∞ depends on the bound for

‖ω(t)‖L∞ . We now choose p to evolve according to

p′(t) = −2β−1p(t)2, p(0) = p0 �⇒ p(t) = βp0

β + 2p0t
. (3.2.58)
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Note that p(t) is a positive monotonically decreasing function of t . Let the time t∗
defined by t∗ = T (p0) := β(p0 − 1)/2p0 be such that p(t∗) = 1. Then p(t) ∈
[1, p0] for all t ∈ [0, t∗]. Note also from (3.2.58) that

∫ t

0
p(s)ds = log

(
p0

p(t)

)2β

= log

(
1 + 2p0t

β

) 2
β

.

Defining m(t) = 1
2‖θ(t)‖2p(t)

2p(t) and using (3.2.58) we have the differential inequality

m′(t) ≤ p(t)(C1m(t) + C2) �⇒ C1m(t) + C2 = (C1m0 + C2)

(
1 + 2p0t

β

) 2C1
β

(3.2.59)

with C1 and C2 depending on ‖f ‖L∞(0,T ;L∞(T2)), p0, CK and β. Thus

m(t) ≤ m0

(
1 + 2p0t

β

) 2C1
β + C2

C1

⎡
⎣
(

1 + 2p0t

β

) 2C1
β − 1

⎤
⎦

Note that p0/p(t) = 1 + 2p0β
−1t is increasing on [0, t∗] from 1 to p0/p(t∗) = p0.

Consequently

‖θ(t)‖2p(t) ≤ C1‖θ0‖p0
2p0

+ C2 (3.2.60)

where the constants C1 and C2 have been redefined but the dependence on
parameters is the same. As p(t) ∈ [1, p0] for all t ∈ [0, t∗] we have that
‖θ(t)‖2 ≤ ‖θ(t)‖2p(t) and we obtain

sup
t∈[0,t∗]

‖θ(t)‖2 ≤ C1‖θ0‖p0
2p0

+ C2, (3.2.61)

which completes the proof.

We prove now a short time inviscid limit result, in which the time of convergence
importantly depends only on L∞ initial vorticity bounds.

Proposition 3.1 Let ω and ων solve (3.2.1) and (3.2.3) respectively, with initial
data (3.2.2) and (3.2.4). Assume that the Navier–Stokes initial data converge
uniformly in L2(T2)

lim
ν→0

‖ων
0 − ω0‖L2(T2) = 0. (3.2.62)
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Assume also that there exists a constant �∞ such that the initial data are uniformly
bounded in L∞(T2):

sup
ν>0

‖ων
0‖L∞(T2) ≤ �∞. (3.2.63)

Then there exists a constant C∗ such that the vanishing viscosity limit holds

lim
ν→0

sup
t∈[0,T∗]

‖ων(t) − ω(t)‖L2(T2) = 0 (3.2.64)

on the time interval [0, T∗] where

T∗ = (C∗�∞)−1. (3.2.65)

Proof For the proof we introduce functions ω� and ων
� which are the unique

solutions of the following linear problems. We fix � > 0 and let

∂tω� + u · ∇ω� = ϕ� ∗ g, ω�(0) = ϕ� ∗ ω0, (3.2.66)

∂tω
ν
� + uν · ∇ων

� = ν�ων
� + ϕ� ∗ g, ων

�(0) = ϕ� ∗ ων
0 , (3.2.67)

where ϕ� is a standard mollifier at scale � and where u and uν are respectively the
unique solutions of Euler and Navier–Stokes equations. Note that the solutions to
the linear problems (3.2.66) and (3.2.67) exist globally and are unique because the
Yudovich velocity field u is log-Lipshitz. We observe that we have

‖ων(t) − ω(t)‖L2(T2)

≤ ‖ω(t) − ω�(t)‖L2(T2) + ‖ων(t) − ων
�(t)‖L2(T2) + ‖ων

� (t) − ω�(t)‖L2(T2).

(3.2.68)

Because the equations for ω�, ω
ν
� and, respectively ω,ων share the same incom-

pressible velocities, we find

‖ω(t) − ω�(t)‖L2(T2) ≤ ‖ω0 − ϕ� ∗ ω0‖L2(T2) +
∫ t

0
‖g(s) − ϕ� ∗ g(s)‖L2(T2)ds,

(3.2.69)

‖ων(t) − ων
� (t)‖L2(T2) ≤ ‖ων

0 − ϕ� ∗ ων
0‖L2(T2) +

∫ t

0
‖g(s) − ϕ� ∗ g(s)‖L2(T2)ds.

(3.2.70)

As mollification can be removed strongly in Lp, the two terms in the right hand
sides converge to zero as �, ν → 0, in any order.
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It remains to show that

lim
ν→0

sup
t∈[0,T∗]

‖ων
� (t) − ω�(t)‖L2(T2) → 0 (3.2.71)

for fixed �. We show now that the two-dimensional linearized Euler and Navier–
Stokes equations have uniformly bounded vorticity gradients for short time. This is
done in the following Lemma.

Lemma 3.4 Fix � > 0 and let ω� and ων
� solve (3.2.66) and (3.2.67) respectively.

Then there exists a constant C∗ and a constant C� < ∞ depending only on �,
the forcing norm ‖g‖L∞(0,T ;L∞(T2)), and the uniform bound on solutions given in
(3.2.6) such that for T∗ ≤ (C∗�∞)−1, we have that

sup
t∈[0,T∗]

(‖ω�(t)‖H 1 + ‖ων
� (t)‖H 1

) ≤ C�. (3.2.72)

For the proof of this lemma we provide a viscosity independent bound for
‖ων

� (t)‖H 1 . The proof for ‖ω�(t)‖H 1 is the same, setting ν = 0. We show that
|∇ων

� | obeys (3.2.50). Differentiating (3.2.67), we find

(∂t + uν · ∇)∇ων
� + ∇uν · ∇ων

� = ν�(∇ων
� ) + ∇(ϕ� ∗ g). (3.2.73)

A standard computation shows that |∇ων
� | satisfies

(∂t + uν · ∇ − ν�)|∇ων
� | ≤ |∇u||∇ων

� | + |∇(ϕ� ∗ g)| (3.2.74)

which is a particular case of the scalar inequality (3.2.50) with θ = |∇ων
� |,

initial data θ0 = |∇(ϕ� ∗ ων
0)| ∈ L∞(T2) and forcing f = |∇(ϕ� ∗ g)| ∈

L∞(0, T ; L∞(T2)), as claimed. Applying Lemma 3.3, we find that for any p > 1
(e.g. p = 2) we have

supt∈[0,T∗] ‖ων
� (t)‖H 1 = C1

1
�p

(∫
T2 |ων

0 ∗ (∇ϕ)�|2pdx
)1/2 + C2

≤ C�‖ων
0‖p

L∞(T2)
≤ C��

p∞.
(3.2.75)

The constant C� diverges with the mollification scale �, through the prefactor �−p

and through the dependence on ‖∇(ϕ� ∗ g)‖L∞ � �−1‖g‖L∞ . The important
point however is that (3.2.75) holds uniformly in viscosity, completing the proof
of Lemma 3.4. Using it, the difference enstrophy obeys

d
dt

‖ων
�

− ω�‖2
L2(T2)

= − ∫
T2(u

ν − u) · ∇ων
�
(ων

�
− ω�)dx − ν

∫
T2 |∇ων

�
|2dx

+ν
∫
T2 ∇ων

� · ∇ω�dx ≤ 4�‖uν − u‖L2(T2)‖∇ων
�‖L2(T2) + ν‖∇ων

� ‖L2(T2)‖∇ω�‖L2(T2)

� C�‖uν − u‖L∞(0,T ;L2(T2)) + νC2
�
.

(3.2.76)
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Integrating we find

‖ων
� − ω�‖2

L2(T2)
� ‖ϕ� ∗ (ων

0 − ω0)‖2
L2(T2)

+ C�T ‖uν − u‖L∞(0,T ;L2(T2)) + νC2
�T .

(3.2.77)

To conclude the proof we must show that, at fixed � > 0, we have limν→0 ‖ων
� −

ω�‖L2(T2) = 0. Recall that by our assumption (3.2.62) we have that limν→0 ‖ων
0 −

ω0‖L2(T2) → 0. Due to assumption (3.2.62) we have that limν→0 ‖uν
0−u0‖L2(T2) →

0. Lemma 3.2 then allows us to conclude from (3.2.77) that limν→0 supt∈[0,T∗] ‖ων
� −

ω�‖L2(T2) → 0 at fixed � > 0 and the proof of Proposition 3.1 is complete.

Proof of Theorem 3.1 It suffices to prove that limν→0 supt∈[0,T ] ‖ων(t) −
ω(t)‖L2(T2) = 0. Indeed, convergence in Lp for any p ∈ [2,∞) then follows
from interpolation and boundedness in L∞:

‖ων(t) − ω(t)‖Lp(T2) ≤ 2�

p−2
p∞ ‖ων(t) − ω(t)‖

2
p

L2(T2)
. (3.2.78)

In order to establish strong L∞
t L2

x convergence for arbitrary finite times T , it is
enough to the convergence for a short time which depends only on a uniform L∞
bound on the initial vorticity. The proof of Theorem 3.1 follows by dividing the time
interval [0, T ] in subintervals

[0, T ] = [0, T∗] ∪ [T∗, 2T∗] ∪ · · ·

where T∗ is determined from the uniform bound (3.2.6), and applying Proposi-
tion 3.1 to each interval, with initial data ω(nT∗), and respectively ων(nT∗). As there
is no required rate of convergence for the initial data in Proposition 3.1, Theorem 3.1
follows.

3.2.2 Uniform Regularity

In this section we consider for simplicity the unforced case in R
2. We study

propagation of low regularity, uniform in viscosity. Let us consider the Navier–
Stokes equation in R

2

∂tω + u · ∇ω − ν�ω = 0, (3.2.79)

with initial vorticity ω0 ∈ Y where

Y = L1(R2) ∩ L∞(R2). (3.2.80)
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The velocity u is given by the Biot–Savart law, (3.2.15). The main result of this
section is the following.

Theorem 3.4 Let 1 < p < ∞. Let ω0 ∈ Y ∩ Bs
p,1(R

2). There exist constants C�

and �∞ depending only on the norm of the initial data in Y such that the solution
of the Navier–Stokes equations (3.2.79) with initial data ω0 (3.2.92) satisfies,
uniformly in ν,

‖ω(t)‖
B

s(t)
p,1 (R2)

≤ eCt�∞‖ω0‖Bs
p,1(R2) (3.2.81)

with

s(t) = s − (5 log 2C�)t (3.2.82)

for 0 ≤ t ≤ (5 log 2C�)−1s.

Remark 3.3 Note that in view of the embeddings

Bs ′
p,∞(Rn) ⊂ Bs

p,1(R
n) ⊂ Bs

p,∞(Rn)

for 0 ≤ s < s′ we can track the regularity of solutions with initial data in Bs ′
p,∞(R2),

and hence that of vortex patches with rough boundaries, of positive codimension.

We recall the fact that Biot–Savart velocities of Yudovich class vorticities are
log-Lipschitz:

Proposition 3.2 Let u = K[ω] be given by the Biot–Savart law (3.2.15) and let
ω ∈ Y. There exists a constant C such that

|u(x + h) − u(x)| ≤ C�∞|h|
[

1 + log

(
1 + L

|h|
)]

(3.2.83)

holds for x, h ∈ R
2, where L =

√
�1
�∞ and �p are the Lp(R2) norms of ω.

Proof We write

u(x +h)−u(x) =
∫
R2

(k(x −y +h)−k(x −y))ω(y)dy =
∫
R2

(k(z+h)−k(z))ω(x −z)dz,

where

k(z) = 1

2π

z⊥

|z|2 . (3.2.84)
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We split the integral in two, corresponding to |z| ≤ 2|h| and |z| ≥ 2|h|. We have

∣∣∣∣
∫

|z|≤2|h|
|k(z + h)|ω(x − z)|dz

∣∣∣∣+
∣∣∣∣
∫

|z|≤2|h|
|k(z)|ω(x − z)|dz

∣∣∣∣ ≤ C|h|‖ω‖L∞(R2)

by passing to polar coordinates centered at −h and respectively at 0, and using
|k(x)| ≤ 1

2π |x| . The second integral we bound by

∫
|z|≥2|h| |k(z + h) − k(z)| |ω(x − z)|dz

≤ C|h| ∫ 1
0 dλ

∫
|z+λh|≥|h| |z + λh|−2|ω(x − z)|dz

here we used |∇k(x)| ≤ C|x|−2. Now we split the integral again, for |z + λh| ≤
L and |z + λh| ≥ L. In the first integral we use L∞ bounds on ω and obtain a
logarithmic dependence, ‖ω‖L∞ log L

|h| and in the second integral we use L1 bounds

on ω and we obtain L−2‖ω‖L1 .

We recall some facts about the Littlewood–Paley decomposition. We start with a
smooth, nonincreasing, radial nonnegative function φ(r) satisfying

⎧⎨
⎩

φ(r) = 1, for 0 ≤ r ≤ a,

φ(r) = 0, for b ≤ r,

0 < a < b.

We define

ψ0(r) = φ
( r

2

)
− φ(r),

(�−1u)(x) = (φ(D)u)(x) = (2π)−n

∫
Rn

eix·ξφ(|ξ |)̂u(ξ)dξ, (3.2.85)

(�0u)(x) = (ψ0(D)u)(x) = (2π)−n

∫
Rn

eix·ξψ0(|ξ |)̂u(ξ)dξ, (3.2.86)

ψj(r) = ψ0(2
−j r)

and

(�ju)(x) = (ψj (D)u)(x) = (2π)−n

∫
Rn

eix·ξψj (|ξ |)̂u(ξ)dξ, (3.2.87)

where

û(ξ) = Fu(ξ) =
∫
Rn

e−ix·ξu(x)dx.
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We choose a = 1
2 , b = 5

8 . We set also

Sk(u) =
k∑

j=−1

�j(u) (3.2.88)

Proposition 3.3 If u ∈ S′(Rn), then

u =
∞∑

j=−1

�ju,

suppF(�ju) ⊂ 2j

[
1

2
,

5

4

]
,

for j ≥ 0, and in particular

�j�k � 0 ⇒ |j − k| ≤ 1, for j, k ≥ 0.

Moreover,

(�j + �j+1 + �j+2)�j+1 = �j+1,

for j ≥ 0,

�j (Sk−2(u)�k(v)) � 0 ⇒ k ∈ [j − 2, j + 2]

for j ≥ 2, k ≥ 2.

Proposition 3.4 (Bernstein Inequalities)

‖�ju‖Lq(Rn) ≤ C2j ( n
p − n

q )‖�ju‖Lp(Rn), q ≥ p ≥ 1,

‖Sju‖Lq(Rn) ≤ C2j ( n
p − n

q )‖Sju‖Lp(Rn), q ≥ p ≥ 1,

and

2jm‖�ju‖Lp(Rn) ≤ C
∑

|α|=m

‖∂α�ju‖Lp(Rn) ≤ C2jm‖�ju‖Lp(Rn)

We introduce the inhomogeneous Besov space with norm

‖u‖Bs
p,q (Rn) =

∥∥∥∥
{

2sj‖�ju‖Lp(Rn)

}
j

∥∥∥∥
�q(N)
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Proposition 3.5 (Littlewood–Paley) Let 1 < p < ∞. Then (I − �)
s
2 u ∈ Lp(Rn)

if and only if �ju ∈ Lp(Rn) for all j ≥ −1 and

‖u‖Ws,p(Rn) ∼
∥∥∥∥∥∥
√∑

j≥−1

22js |�j(u)|2
∥∥∥∥∥∥

Lp(Rn)

Proposition 3.6 Embeddings:

Bs
p,r (R

n) ⊂ B
s−
(

n
p − n

q

)
q,r (Rn), q ≥ p ≥ 1,

B0
p,2(R

n) ⊂ Lp(Rn) ⊂ B0
p,p(Rn) p ≥ 2,

B0
p,p(Rn) ⊂ Lp(Rn) ⊂ B0

p,2(R
n) p ≤ 2.

Products Consider two functions, u = ∑
k≥−1 �ku and v = ∑

l≥−1 �l(v). Then
we have the Bony decomposition

�j(uv) = Ij (u, v) + Ij (v, u) + Rj(u, v) (3.2.89)

with

Ij (u, v) =
∑

k∈[j−2,j+2]
�j(Sk−2(u)�k(v)) (3.2.90)

and

Rj (u, v) =
∑

|k−l|≤1

�j(�ku�lv). (3.2.91)

Proof of Theorem 3.4 We consider the Navier–Stokes vorticity evolution is the
Bs

p,1 space, with s > 0 and 1 < p < ∞. We take initial vorticity

ω0 ∈ Y ∩ Bs
p,1(R

2) (3.2.92)

and look first at the evolution of �jω in Lp , using the Bony decomposition.

1

p

d

dt
‖�jω‖Lp ≤ Aj + Bj + Cj (3.2.93)
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for j ≥ 5 where

Aj =
∥∥∥∥∥∥

∑
k∈[j−2,j+2]

[
Sk−2(u),�j

] · ∇�kω

∥∥∥∥∥∥
Lp(R2)

, (3.2.94)

Bj =
∥∥∥∥∥∥

∑
k∈[j−2,j+2]

�j (�k(u), ·∇Sk−2ω)

∥∥∥∥∥∥
Lp(R2)

, (3.2.95)

and

Cj =
∥∥∥∥∥∥

∑
|k−l|≤1,k≥j−2

�j (�lu · ∇�kω)

∥∥∥∥∥∥
Lp(R2)

, (3.2.96)

The commutator appears in Aj because of the property �j

∑
k∈[j−2,j+2] �k = �j

and the fact that Sj−2u is divergence-free. We discarded the nonnegative term due
to the viscosity. We use the fact that Sk−2(u) are uniformly log-Lipschitz:

∣∣[Sk−2(u),�j

]
f (x)

∣∣
≤ C�∞22j

∫
R2 |�0(2j (x − y))||x − y| log

(
1 + L

|x−y|
)

|f (y)|dy

≤ j2−j
∫
R2 �̃(z)|f |(x − 2−j z)dz

where �0 is a Schwartz function, Fourier inverse of ψ0, F�0 = ψ0, and

�̃ = C�∞|x|
(

log

(
1 + L

|x|
)

+ log 2

)
|�0(x)| (3.2.97)

is rapidly decaying, and hence belongs in L1(R2). Here we used the fact that Sk−2
commute with translation and are uniformly bounded in all Lp, and hence �∞ and
L are bounded independently of k and t .

‖ [Sk−2(u),�j

]
f ‖Lp(R2) ≤ C�j2−j‖f ‖Lp(R2)

and where C� is the L1 norm of �̃ . It follows that

Aj ≤ jC�

∑
k∈[j−2,j+2]

‖�kω‖Lp(R2) (3.2.98)

The bound of Bj is more straightforward,

Bj ≤ C�∞
∑

k∈[j−2,j+2]
‖�kω‖Lp(R2) (3.2.99)
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and uses Bernstein inequalities and the boundedness of ∇K in Lp spaces, where
K is the Biot–Savart operator. The remaining term is bounded also using Bernstein
inequalities

Cj ≤ C�∞
∑

l≥j−3

‖ωl‖Lp(R2) (3.2.100)

We consider now the norm

‖ω(t)‖
B

s(t)
p,1

(3.2.101)

and arrange the decay of the exponent so that it counter balances the logarithmic
growth of the term Aj . In order to do so, we observe that (3.2.98) implies the bound

2sjAj ≤ C�

∑
k∈[j−2,j+2]

k2sk‖�kω‖Lp(R2) (3.2.102)

as long as s ≤ 1, with a slightly larger C�. Similarly, from (3.2.99) and from
(3.2.100) we obtain

2sjBj ≤ C�∞
∑

k∈[j−2,j+2]
2sk‖�kω‖Lp(R2) (3.2.103)

and

2sjCj ≤ C�∞
∑

l≥j−3

2s(j−l)2sl‖ωl‖Lp(R2). (3.2.104)

Imposing

ds

dt
= −5 log 2C� (3.2.105)

where C� is the constant in (3.2.102), we deduce

d

dt
‖ω(t)‖

B
s(t)
p,1

≤ C�∞‖ω(t)‖
B

s(t)
p,1

(3.2.106)

This concludes the proof of Theorem 3.4.
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3.3 Multiscale Solutions

We describe constructions of solutions of inviscid equations given in [16] which
were inspired by work of [17].

For the incompressible 3D Euler equations, if u is Beltrami, i.e. if the curl of the
velocity

ω = ∇ × u (3.3.1)

is parallel to the velocity, and if u ∈ L2(R3), then u must be identically zero [18,
19]. In fact, Liouville theorems which assert the vanishing of solutions which have
constant behavior at infinity are often true for systems of the sort we are discussing.
In contrast, vortex rings are examples of solutions of the 3D Euler equations with
compactly supported vorticity [20]. However, they have nonzero constant velocities
at infinity. Because of the Biot–Savart law

u(x, t) = − 1

4π

∫
R3

x − y

|x − y|3 × ω(y, t)dy, (3.3.2)

if ω is compactly supported, it is hard to imagine that u can also be compactly
supported. In view of these considerations, the following result of Gavrilov [17]
was surprising.

Theorem 3.5 (Gavrilov [17]) There exist nontrivial time independent solutions u ∈(
C∞

0 (R3)
)3

of the three-dimensional incompressible Euler equations.

The paper [16] described a construction inspired by the result of Gavrilov but
based on Grad–Shafranov equations, classical equations arising in the study of
plasmas [21, 22] augmented by a localizability condition (see (3.3.17)). This point
of view yielded a general method which was applied to several other hydrodynamic
equations, revealing a number of universal features. The 3D incompressible Euler
equations result which extends Theorem 3.5 is stated in Theorem 3.6. An application
providing multiscale steady solutions which are locally smooth, vanish at ∂�,
but globally belong only to Hölder classes Cα(�) is given in Theorem 3.7. Such

solutions can be constructed so that they belong to L2(�) ∩ C
1
3 (�) but not to any

Cα(�) with α > 1
3 , they have vanishing local dissipation u · ∇(

|u|2
2 + p) = 0, but

have arbitrary large ‖|∇u||u|2‖L∞(�). These solutions conserve energy, as they are
stationary in time, and they have the regularity of the dissipative solutions recently
constructed in connection with the Onsager conjecture (see review papers [23, 24]).
Compactly supported weak solutions which belong to Cα(�) but not to Cβ(�),
0 < α < β ≤ 1 can also be constructed.
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3.3.1 Steady Axisymmetric Euler Equations

The stationary 3D axisymmetric Euler equations are solved via the Grad–Shafranov
ansatz

u = 1

r
(∂zψ)er − 1

r
(∂rψ)ez + 1

r
F (ψ)eφ (3.3.3)

where ψ = ψ(r, z) is a smooth function of r > 0, z ∈ R, and the swirl F is a smooth
function of ψ alone. It is known that smooth compactly supported velocities solving
stationary axisymmetric 3D Euler equations must vanish identically if the swirl F

vanishes [25]. Above er , ez, eφ are the orthonormal basis of cylindrical coordinates
r, z, φ with the orientation convention er × eφ = ez, er × ez = −eφ , eφ × ez = er .
Note that u is automatically divergence-free,

∇ · u = 0, (3.3.4)

and also that, by construction,

u · ∇ψ = 0. (3.3.5)

The vorticity ω = ∇ × u is given by

ω = −1

r
(∂zψ)F ′(ψ)er + 1

r
(∂rψ)F ′(ψ)ez + �∗ψ

r
eφ (3.3.6)

where F ′ = dF
dψ

and the Grad–Shafranov operator �∗ is

�∗ψ = ∂2
r ψ − 1

r
∂rψ + ∂2

z ψ. (3.3.7)

In view of (3.3.3) and (3.3.6), the vorticity can be written as

ω = −F ′(ψ)u + 1

r

(
�∗ψ + 1

2
(F 2)′

)
eφ. (3.3.8)

As it is very well known, the steady Euler equations

u · ∇u + ∇p = 0 (3.3.9)

can be written as

ω × u + ∇
( |u|2

2
+ p

)
= 0, (3.3.10)
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and therefore the axisymmetric Euler equations are solved if ψ solves the Grad–
Shafranov equation [21, 22]

− �∗ψ = ∂ψ

(
F 2

2
+ r2P

)
(3.3.11)

where the function P = P(ψ) represents the plasma pressure:

ω × u = ∇P. (3.3.12)

The analogy with the steady MHD equations u ↔ B, ω ↔ J motivates the name.
Both the swirl F and the plasma pressure P are arbitrary functions of ψ . The plasma
pressure and the hydrodynamic pressure are related via

p + |u|2
2

+ P = constant. (3.3.13)

The constant should be time independent if we are studying time independent
solutions, and it may be taken without loss of generality to be zero.

If

u · ∇p = 0, (3.3.14)

then, together with a solution u, p of (3.3.9, 3.3.4), any function

ũ = φ(p)u (3.3.15)

with φ smooth is again a solution of (3.3.9, 3.3.4) with pressure given by

∇p̃ = φ2(p)∇p. (3.3.16)

This can be used to localize solutions. In his construction Gavrilov obtained
solutions u defined in the neighborhood of a circle, obeying the Euler equations
near the circle, and having a relationship |u|2 = 3p between the velocity magnitude
and the hydrodynamic pressure.

This motivates us to consider the overdetermined system formed by the Grad–
Shafranov equation for ψ (3.3.11) coupled with the requirement

|u|2
2

= A(ψ). (3.3.17)

This requirement is the constraint of localizability of the Grad–Shafranov equation,
and it severely curtails the freedom of choice of functions F and P . This localiz-
ability is in fact the essence and the novelty of the method. Without this constraint
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many solutions (3.3.3) with ψ solving the Grad–Shafranov equation (3.3.11) exist,
including explicit ones [26]), but they cannot be localized in space.

The method we are describing consists thus in seeking functions F,P,A of ψ

such that the system

{
−�∗ψ = ∂ψ

(
1
2F 2(ψ) + r2P(ψ)

)
,

|∇ψ|2 + F 2(ψ) = 2r2A(ψ),
(3.3.18)

is solved. Then the function u given in the ansatz (3.3.3), and the pressure

p = −P(ψ) − A(ψ) (3.3.19)

together satisfy the steady 3D Euler equations (3.3.9, 3.3.4), and are localizable,
meaning that (3.3.17) is satisfied. It is important to observe that it is enough to find
smooth functions F,P,A of ψ and a smooth function ψ in an open set. This open
set need not be simply connected, but once u and p are found using this construction,
any function φ(p)u is again a solution of steady Euler equations, and it is sometimes
possible to extend this solution to the whole space.

3.3.2 Construction

The construction of solutions of (3.3.18) starts with a hodograph transformation.
We seek functions U(r,ψ) and V (r,ψ) defined in an open set in the (r, ψ) plane
and a smooth function ψ(r, z) defined in an open set of the (r, z) plane such that the
equations

∂rψ(r, z) = U(r,ψ(r, z)), (3.3.20)

∂zψ(r, z) = V (r,ψ(r, z)) (3.3.21)

are satisfied. This clearly requires the compatibility

V ∂ψU = U∂ψV + ∂rV . (3.3.22)

Once the compatibility is satisfied then the solution ψ exists locally (in simply
connected components). The system (3.3.18) becomes

{
∂rU + U∂ψU + V ∂ψV − 1

r
U = −F∂ψF − r2∂ψP

U2 + V 2 + F 2 = 2r2A.
(3.3.23)

We traded a system of two equations in two independent variables (r, z) of total
degree three, (3.3.18), for a system of three first order equations (3.3.22, 3.3.23) in
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two independent variables (r, ψ). We integrate this locally. We start by noticing that
the first equation of (3.3.23) is

∂rU − 1

r
U + 1

2
∂ψ

(
U2 + V 2 + F 2

)
= −r2∂ψP, (3.3.24)

which, in view of the second equation in (3.3.23), becomes

∂rU − U

r
= −r2∂ψ(A + P), (3.3.25)

and, using (3.3.19) we see that

∂ψp = 1

r
∂r

(
U

r

)
, (3.3.26)

which then can be used to determine p from knowledge of U . We observe that in
order to have p = p(ψ) a function of ψ alone, from (3.3.26) we have to have

U = r3M(ψ) + rN(ψ). (3.3.27)

for some functions M , N of ψ . Let us denote

Q2(r, ψ) = 2r2A(ψ) − F 2(ψ), (3.3.28)

Q3(r, ψ) = r3M(ψ) + rN(ψ), (3.3.29)

and

Q6(r, ψ) = Q2(r, ψ) − (Q3(r, ψ))2 (3.3.30)

polynomials of degree 2, 3 and 6 in r with smooth and yet unknown coefficients
depending only on ψ . We note that, in view of (3.3.27),

U = Q3, (3.3.31)

and that the second equation in (3.3.23) yields

V 2 = Q6. (3.3.32)

Multiplying (3.3.22) by V results in

∂rQ6 + Q3∂ψQ6 − 2(∂ψQ3)Q6 = 0. (3.3.33)
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Identifying coefficients in the 9th order polynomial equation (3.3.33) we observe
that only odd powers appear, the equations for powers 9 and 7 are tautological,
and the remaining three equations become a system of 3 first order ODEs with
four unknown functions which is equivalent to the compatibility relation (3.3.22).
In order to localize the sought solution u in (r, z) space we need the pressure p

to take a value at a point (r0, z0) which is strictly separated from all the values it
takes on a circle in (r, z) around that point. We seek then conditions which result
in a strict local minimum for the function ψ at the chosen point (r0, z0), and then
a similar behavior for the resulting p. Without loss of generality we may take this
local minimum value of ψ to be zero. Because U and V represent derivatives of
ψ we are lead to the requirement that the polynomials Q3 and Q6 both vanish at
the point (r0, 0) in the (r, ψ) plane, Q3(r0, 0) = 0 and Q2(r0, 0) = 0. This results
in singular, non-Lipschitz ODEs. They do have nontrivial solutions though, and the
consequence given in [16] is

Theorem 3.6 Let � > 0, τ > 0 be given. There exists ε > 0 and a function ψ ∈
C∞(B), where B = {(r, z) | |r − �|2 + |z|2 < ε2�2} satisfying ψ(�, 0) = 0, ψ > 0
in B and such that (3.3.18) holds with A, P and F 2 real analytic functions of ψ . The
Grad–Shafranov equation (3.3.11) is solved pointwise and has classical solutions in
B. The associated velocity u given by the Grad–Shafranov ansatz (3.3.3) is Hölder
continuous in B. The Euler equation (3.3.9, 3.3.4) holds weakly in B. The pressure
is given by p = 1

�τ
ψ . The vorticity is bounded, ω ∈ L∞(B) and (3.3.10) holds a.e.

in B.

We note that F(ψ) vanishes like
√

ψ . Therefore, while the ansatz (3.3.3) gives a
bounded swirl and a Hölder continuous velocity, the vorticity is not smooth. In fact,
in view of (3.3.8) the vorticity equals

ω(r, z) = −F ′(ψ)u(r, z) + smooth. (3.3.34)

Thus, ω ∈ L∞(B), because u vanishes to first order at (�, 0), but the r derivative of
the z component of vorticity is infinite there.

Once ψ has been constructed so that it has a local minimum at (�, 0), then p has
also a local minimum there, because, by (3.3.26),

p = ψ

�τ
(3.3.35)

is monotonic in ψ .
Theorem 3.5 holds because the cutoff can be chosen so that the point (�, 0) is

omitted. By choosing a suitable cutoff function φε(p), the solution ũ = φε(p)u

is supported in the region A = {(r, z) | 1
2�2ε2 < |r − �|2 + |z|2 < ε2�2}. A

consequence of Theorem 3.6 is the following.

Theorem 3.7 Let 0 < α < 1. In any domain � ⊂ R
3 there exist steady solutions of

Euler equations belonging to Cα(�) and vanishing at ∂�, but such that they do not
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belong to Cβ(�) for β > α. There exist such solutions which are locally smooth,
meaning that for every x ∈ � there exists a neighborhood of x where the solution is

C∞. For any  > 0, there exist steady solutions u which belong to L2(�)∩C
1
3 (�),

vanish at ∂�, are locally smooth and have

sup
x∈�

|∇u(x)||u(x)|2 ≥ ,

while the local dissipation vanishes, i.e. u · ∇(
|u|2

2 + p) = 0 in the sense of
distributions. There exist steady solutions which are locally smooth and whose
Lagrangian trajectories have arbitrary linking numbers. For any 0 < α < β ≤ 1
there exist weak solutions which are compactly supported in �, belong to Cα(�)

but not to Cβ(�).

3.3.3 Steady Multiscale Navier–Stokes Solutions

Proof of Theorem 3.7 is based on a construction which has consequences for the
Navier–Stokes equations as well. We describe them here. We take a basic solution
of the Euler equations uB, pB solving

uB(x) · ∇uB(x) + ∇pB(x) = 0, ∇ · uB = 0 (3.3.36)

in the unit annulus A = {x = (r, z) | 1
2 < |r − 1|2 + |z|2 < 1} with

uB ∈ (C∞
0 (A))3, ∇pB ∈ C∞

0 (A) (3.3.37)

constructed by the method of Theorem 3.6. We take an open domain � ⊂ R
3 and

take a sequence of points xj ∈ �, rotations Rj ∈ O(3), and numbers L > 0, T > 0,
� > 0 τ > 0, with associated length scales

�j = L2−�j (3.3.38)

and time scales

τj = T 2−τj , (3.3.39)

for j = 1, 2, . . . , such that functions

uj (x) = L

T
2(τ−�)jRjuB

(
2�j

R∗
j (x − xj )

L

)
(3.3.40)
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have disjoint supports

Aj = xj + �jRj (A) ⊂ � (3.3.41)

in �. These are annuli which are rotated, dilated and translated versions of A. Note
that the supports of the corresponding pressure gradients

∇pj (x) = L

T 2
Rj(∇pB)

(
2�j

R∗
j (x − xj )

L

)
(3.3.42)

are also Aj , and thus disjoint as well, and because of the well known invariance with
respect of rotations of the Euler equations we have that

uj · ∇uj + ∇pj = 0, ∇ · uj = 0 (3.3.43)

holds in Aj . Let us consider now

u(x) =
N∑

j=1

uj (x). (3.3.44)

Note that u ∈ C∞
0 (�), and because the supports of uj are disjoint, we have

‖∂αu‖Lp(�) =
⎛
⎝ N∑

j=1

2pj [(m−1− 3
p )�+τ ]

⎞
⎠

1
p

L
1+ 3

p −m
T −1‖∂αuB‖Lp(�) (3.3.45)

for any multiindex α of length |α| = m ≥ 0. In particular, if we demand that

a = τ

�
(3.3.46)

obeys

3

2
< a <

5

2
, (3.3.47)

then we have that

L−3‖∇u‖2
L2(�)

= 1

T 2 2N(2τ−3�)C1 (3.3.48)

and

L−3‖u‖2
L2(�)

= L2

T 2 C0. (3.3.49)
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It is natural to consider the wave number scales

k = L−12�j . (3.3.50)

The energy spectrum E(k) is by definition the contribution of the kinetic energy at
scale k, per unit mass and per scale:

E(k) = L−3k−1‖uj‖2
L2(�)

(3.3.51)

so, it follows from our construction of uj that

E(k) = L3

T 2 (kL)2a−6. (3.3.52)

The range of scales is limited, the smallest length scale is L2−N�. If we define a
viscosity by

ν = L2

T
2−N(2τ−3�) (3.3.53)

then from (3.3.48) we have that

ε = νL−3‖∇u‖2
L2(�)

= L2

T 3 C1. (3.3.54)

Inserting in (3.3.52) we have thus

E(k) = C
− 2

3
1 ε

2
3 L

5
3 (kL)2a−6. (3.3.55)

The Kolmogorov–Obukhov spectrum

E(k) = CKε
2
3 k− 5

3 (3.3.56)

is the only spectrum in this family of spectra that does not depend on L. It is obtained
at the value

a = 13

6
(3.3.57)

which is admissible in view of (3.3.47). If we express the viscosity ν of (3.3.53)
in terms of the smallest length scale, (the “dissipation scale”) �d = L2−N� and in
terms of the quantity ε of (3.3.54) we obtain

ν = C
− 1

3
1 ε

1
3 L

4
3 −(2a−3)(�d)2a−3. (3.3.58)
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Denoting by kd = (�d)−1 the dissipation wave number scale, (largest wave number
scale before exponential decay), we have

kd = C
− 1

3(2a−3)

1 ε
1

3(2a−3) L
4

3(2a−3) −1
ν− 1

2a−3 . (3.3.59)

Again, the only case which does not depend on L is the Kolmogorov–Obukhov
spectrum case a = 13

6 and in that case we obtain the familiar expression

k−1
d = �d = cν

3
4 ε− 1

4 . (3.3.60)

We have proved thus, in particular

Theorem 3.8 Let � be an open set in R
3. There exist smooth stationary solutions

of the forced Navier–Stokes equations

u · ∇u + ∇p = ν�u + F, ∇ · u = 0 (3.3.61)

with u ∈ C∞
0 (�), ∇p ∈ C∞

0 (�), and such that ν‖∇u‖2
L2(�)

is bounded below
uniformly as in (3.3.54) as ν → 0. There is an inertial range of wave number scales
k ∈ [k0, kd ] and an exponent x ∈ (−3,−1), x = 2a−6 with a of (3.3.46), such that

the dissipation wave number scale kd ∼ ν− 1
x+3 (see (3.3.59)) diverges with ν → 0

and the energy spectrum E(k) obeys

E(k) ∼ kx (3.3.62)

(see (3.3.52)) in the inertial range. The force F is smooth, compactly supported, and
converges to zero as ν → 0 in Lp(�) for some p (depending on choice of parameter
x) with 1 ≤ p < 2.

The proof was given in the computation above, because of the tautology

u · ∇u + ∇p − ν�u = F (3.3.63)

with

F = −ν�u. (3.3.64)

We have

x = 2a − 6 (3.3.65)
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with a given in (3.3.46). The only computation that remains to be shown uses
(3.3.45) and (3.3.53), and yields

‖F‖Lp(�) ≤ Cp
L

1+ 3
p

T 2 2−N�(2a−3) (3.3.66)

which follows if 3
p

> 1 + a, or

‖F‖Lp(�) ≤ Cp
L

1+ 3
p

T 2 2N�(4−a− 3
p ) (3.3.67)

if 3
p

∈ [4 − a, 1 + a]. For each fixed a, we have p ∈ [1, 3
1+a

] when a ∈ ( 3
2 , 2] and

p ∈ [1, 3
4−a

] when a ∈ [2, 5
2 ).
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