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Abstract Trichoderma is a genus of asexually reproducing filamentous fungi found
in various ecosystems. It is among the utmost prevalent fungal genera commercially
obtainable as a plant growth-promoting fungi (PGPF) and biocontrol agent. The
biocontrol actions of Trichoderma are centered on the stimulation of various mech-
anisms such as competition for nutrients and space, mycoparasitism, alteration of the
ecological conditions, antibiosis, and plant defensive mechanisms. Therefore, these
fungi are commercially used in biocontrol of plant pathogens substituting the
synthetic pesticides. The beneficial organism’s genes and/or its products contain
metabolites that reduce the harmful effects of plant pathogens and promote progres-
sive responses in the plant. Certain genes have significant roles in the biocontrol
process and are known as the biocontrol genes. These genes signal the secretion of
enzymes and proteins that damage the plant pathogens. Some Trichoderma genes
are also helpful in the control of different plant pathogens. In addition, Trichoderma
produces plant growth-promoting molecules that stimulate growth and development
of the plant. Within the rhizosphere, the conversation and recognition of signaling
molecules by Trichoderma and plants may alter the physiological and biochemical
characteristics of the plants as well as the biocontrol agent. A detailed realization of
the molecular mechanisms underlying biocontrol would benefit from developing
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Trichoderma strains with superior biocontrol properties. In this chapter, we summa-
rize the interactions of Trichoderma with host plants and plant pathogens at the
molecular level.

Keywords Trichoderma spp. · Biocontrol mechanisms · Antibiosis ·
Mycoparasitism · Induced systemic resistance · Secondary metabolites · Biocontrol
genes

3.1 Introduction

The population of the world will reach around 9.1 billion people in 2050 which
would need rising of total food production by some 70% (FAO 2009). The ever-
increasing use of chemical inputs cause numerous harmful outcomes, development
of resistance among pathogens, and their nontarget environmental effects (Sheikh
et al. 2013). The pesticide consumption also increases year by year as 45.39
thousand tons of pesticides were consumed in the recent years (Krishijagran
2015). The number of biotic and abiotic stress causes yield losses up to a large
extent. Biotic stress includes fungi, bacteria, viruses, nematodes, weeds, and insects
which cause yield loss up to 42% and these pose the main danger to agriculture, food
production, and supply (Agrios 2009; Kashyap et al. 2017; Sharma et al. 2017).
Pesticide resistance and environment threat due to injudicious use of synthetic
pesticides for disease control, hence, sustainable and ecofriendly approaches are
new alternatives as a biological control in agriculture. The biological control, an
eco-friendly approach, includes the use of particular microorganisms to control
target phytopathogens and action on parasites, predators or pathogenic agents in
controlling or maintaining the population density of another organism at a level
lower than that would be present in their absence (Chernin and Chet 2002).

Plant-associated microorganisms are capable to stimulate plant growth by
improving bio fertilization, bioremediation, production of phytohormones, and
reducing biotic as well as abiotic stress (Mendes et al. 2011; Kumar et al. 2014;
Babychan and Simon 2017) (Fig. 3.1). As a biocontrol agent, Trichoderma promotes
ISR in plants, improves the uptake of nutrients by plants, improves growth and
development of roots, promotes plant growth, and enhances crop productivity,
increases biotic and abiotic stress resistance and soil remediation (Contreras-Cornejo
et al. 2016; Waghunde et al. 2016; Kyriacou and Rouphael 2018). Trichoderma spp.
is possibly the most commonly used microorganism for agricultural crop develop-
ment (Rouphael et al. 2017). Root colonization by Trichoderma spp. leads to
important metabolic variations in the plant and hormonal modifications, as well as
phenolic compounds, soluble sugars, photosynthetic rate, amino acids, transpiration,
and amount of water content (Zeilinger et al. 2016).

Trichoderma spp. and their metabolites secreted within the rhizosphere influence
the growth rate and nutrition of the plant, ISR, and control the phytopathogens
(Zeilinger et al. 2016). The mechanisms of biocontrol include competition for space,
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resources, nutrients and synthesis, and production of antibiotics and extracellular
degrading enzymes such as chitinase, β-1, 3-glucanase that target and break down
cell wall of the pathogen resulting in its parasitization (Rai et al. 2016b).
Trichoderma is an extensively studied genus that presently comprises more than
200 molecularly distinct species (Atanasova et al. 2013a). It is a free-living or
saprophytic in soil, rhizosphere, and cellulosic materials; green spored ascomycete
fungus with a worldwide distribution (Mukherjee et al. 2013; Waghunde et al. 2016).
Members of the genus Trichoderma usually parasitize other fungi, saprophytically
grow on wood, bark, and other substrates found in soil, interact with animals, plants,
marine sponges and antagonistically kill other microbes (Kubicek et al. 2011;
Holzlechner et al. 2016). Currently, Trichoderma spp. are the most effective bio-
control agents used with about 60% of the recorded bio fungicides all over the world
being Trichoderma based (Verma et al. 2007) and used as formulations due to their
unique plant protecting abilities (Sharma et al. 2015; Oros and Naár 2017). In India,
only around 250 bio fungicide products are accessible for field use and have a very
meager portion compared to chemical fungicide. Numerous species of Trichoderma
such as T. atroviride, T. asperellum, T. harzianum, T. virens, T. hamatum,
T. asperelloides, and T. gamsii are established as potential biological control agents
in plant protection and many effective strains have been registered for commercial
use in agriculture (Lorito et al. 2010).

Fig. 3.1 Molecular mechanisms of Trichoderma species
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In present years, enormous reports have contributed to unraveling the molecular
basis of the plant–Trichoderma interaction and the resultant positive effects to host
plants. The genome size is usually small and with a haploid nucleus. The expected
genome sizes and the chromosome numbers of Trichoderma spp. array from 3 to
39 Mb and from 3 to 7, respectively. Genes involved in biocontrol play a key role in
regulating some signals which result in the production of certain enzymes or proteins
that inhibit pathogens, plant growth promotion and therefore they are designated
biocontrol genes (Nicolás et al. 2014). Genomic studies reveal that Trichoderma spp.
contains various valuable genes that help deliver resistance to biotic and abiotic
conditions, a range of expression patterns, allows these fungi applicable as biocon-
trol agents in plant growth promotional activities (Samolski et al. 2012). The
genetics of fungal biocontrol agents have been prepared mostly with the genus
Trichoderma (Mukherjee et al. 2012a; Reithner et al. 2014). The recent genome
sequencing projects for Trichoderma spp. have targeted seven Trichoderma spp.
such as T. atroviride, T. reesei, T. virens, T. harzianum, T. asperellum,
T. longibrachiatum, and T. citrinoviride (Srivastava et al. 2014; Baroncelli et al.
2016; Rai et al. 2016a). Interestingly, T. atroviride and T. viren genomes are 36.1
and 38.8 Mbp, respectively, which is larger than that of T. reesei with a size of
34.1 Mbp and also have more than 2000 additional anticipated genes, while T. reesei
has 500 distinctive ones compared to T. atroviride and T. virens (Table 3.1). The aim
of the present chapter focuses on the beneficial effects of Trichoderma in plant–
pathogen interactions and an in-depth understanding of the molecular mechanisms
involved.

3.2 Mycoparasitism

Mycoparasitism is a complex process involving a direct attack by fungal species on
another (Harman 2000a, b). The consecutive events involved in this process com-
prise recognition, attack, penetration, and killing of the host fungus. Host recogni-
tion by the parasite leads to coiling and appressoria formation, secretion of
hydrolytic enzymes aiding penetration of the hyphae, and killing of the host
(Holzlechner et al. 2016). This process also includes the secretion of antimicrobial
metabolites, finally the captivation and killing of the pathogen (Harman et al. 2004;
Omann et al. 2012). Mycoparasitism of plant pathogens by Trichoderma spp. has
been well investigated and extensively measured to be a main contributing feature to
the biocontrol of a range of commercially significant diseases. It is mediated by
physical penetration of the mycoparasite into the host hyphae with the aid of
specialized structures called haustoria accompanied by the secretion of several
degradative enzymes or bioactive metabolites crucial for the breakdown of host
fungal structures and finally nutrient uptake from the host (Daguerre et al. 2014).

The remote detection is partly because of the consecutive expression of several
fungi toxic pathogenesis-related proteins or hydrolytic enzymes or cell wall
degrading enzymes (CWDEs), such as chitinases, glucanases, and proteases
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(Harman et al. 2004). Approximately 30% of the dry weight of the fungal cell is
attributed to the presence of chitin, β-1, 3-glucans, and α-1, 3/1, 4-glucans. The
biosynthesis of CWDEs is implicated in mycoparasitism which is regulated mainly
at the transcriptional level and accountable genes are present as single-copy genes.
Overall 20–30 genes, proteins, and other metabolites have a direct involvement in
this communication. Morphological modifications and transformation to improve
the copy number of these genes have been employed to overproduce these enzymes
(Lu et al. 2004). The functions of different CWDEs in the course of mycoparasitism
by Trichoderma spp. using a gene for gene approach and future studies will help in a
better understanding of the process (Daguerre et al. 2014).

Since many of the lytic enzymes secreted by biocontrol agents are encoded by a
single gene, it is considered to be a straightforward technique to isolate some of these
genes and then transfer them to other biocontrol agents. The CWDEs are extracel-
lular proteins with low molecular weight and high stability. Several forms or iso-
zymes of a particular enzyme may be secreted that vary in size, regulation, and
capacity to break down the cell walls of phytopathogens (Vos et al. 2015). Over
1100 Trichoderma spp. have been described containing 75 molecularly defined
mycoparasitic against different plant pathogenic fungi (Druzhinina et al. 2011).
Volatile secondary metabolites have also been implicated in mycoparasitism by
Trichoderma spp. (Stoppacher et al. 2010).

3.3 Chitinases

Chitinases are among the most significant lytic enzymes produced by Trichoderma,
which complete lysis of walls of fungal mycelia or conidia of phytopathogens. These
chitinases are hydrolases that break down one of the major constituents of the fungal
cell wall, chitin, a polymer composed of repeating units of N-acetyl-D-glucos-2-
amine, linked by β-1, 4 glycosidic bonds (Bhattacharya et al. 2007). These are
separated into β-N-Acetylhexosaminidases (GlcNAcases), endochitinases, and
exochitinases. Endochitinases degrade chitin at interior sites releasing chitotriose,
chitotetraose, and chitobiose. Exochitinases are further divided into chitobiosidases
and N-acetyl-β-glucosaminidases (Prakash et al. 2010). Chitobiose, chitotriose, and
chitotetraose are degraded into N-acetylglucosamine monomers by GlcNAcases in a
similar manner to exochitinase. Genetic alteration of plant species with
mycoparasitic genes from Trichoderma spp. signifies an advanced method of disease
resistance. There are perhaps at least 30 chitinases alone, each with different genes
and protein composition. Chitinase gene has been transmitted to several crops for
developing fungal disease resistance. More specifically, De la Cruz et al. (1992)
cloned chit33 chitinase gene from Sclerotinia sclerotiorum and cloned ech42
chitinase gene from T. harzianum (Garcia et al. 1994). A relative investigation of
chitinases exposed that Trichoderma genomes harbor around 20 and 36 different
genes encoding chitinases. The chitinolytic capability in Trichoderma is associated
with varied chitinase genes including ech42, chi33, nag1, chi18-13, where these
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diverse enzymes could confer advanced mycoparasitic action against phytopatho-
gens (Seidl et al. 2005).

Based on the previous investigations, the presence of fungal cell walls or colloidal
chitin, as well as carbon starvation, induce the genes encoding endochitinase
42 (ech42), endochitinase 33 (chit33) and N-acetyl-β-D-glucosaminidase (nag1)
(Peterbauer et al. 1996; Margolles-Clark et al. 1996). The expression of ech42,
related to light-induced spore germination was suppressed by carbon catabolites
(Lorito et al. 1996); whereas N-acetyl-β-D-glucosamine (GlcNAc) induced the tran-
scription of nag1 (exochitinase) (Peterbauer et al. 1996). Effective transformation
and expression of several endochitinase genes, for example, chit42 and chit33 from
T. harzianum have improved fungal tolerance in crops such as Brassica juncea,
potato, apple, broccoli, rice, carrot, and lemon (Kamble et al. 2016; Lorito et al.
1998; Bolar et al. 2001; Mora and Earle 2001; Liu et al. 2004; Baranski et al. 2008;
Distefano et al. 2008). Transgenic tomato plants overexpressing chi194, a wheat
chitinase gene, under the control of maize ubiquitin 1 promoter have been reported
(Girhepuje and Shinde 2011). Mishra et al. (2016) reported the transfer of a
Trichoderma endochitinase gene into a guava plant (Psidium guajava). The gene,
ech42 in T. harzianum, encoding endochitinase was studied and cloned into pAN7-1
vector. The antifungal action was established against B. cinerea and R. solani
pathogens using the wild type and disruptant strains (Woo et al. 1999). Genes
chit42 and chit33 coding chitinase in T. harizianum play a key role in the
mycoparasitic action against the phytopathogens, particularly F. oxysporum
(Mondejar et al. 2011). The co-transformation of apple with nag70 (nag1) and
ech42 resulted in a synergistic rise in biocontrol activity against Venturia inequalis
(Bolar et al. 2001). A dramatic increase in disease resistance of potato and tobacco
against A. alternata, A. solani, B. cinerea, and R. solani was observed with the
combination of T. harzianum and T. atroviride endochitinase ech42.

3.4 Glucanases

Glucanases are another class of cell wall degrading enzymes with a key role in
mycoparasitism. Glucans are glucose polysaccharides that cross link chitin or
chitosan polymers. Based on the chemical bonding among glucose subunits there
are two types of glucans. β-glucans are defined by β-(1, 3) or β-(1, 6) bonds and
afford rigidity to the cell wall. α-glucans are considered by α-(1, 3) and/or α-(1, 4)
bonds and function as a part of the matrix. The second most plentiful polymer in
fungal cell walls is β-1, 3-glucan (Latge 2007) with β-1, 6- branches, which are
broken down by β-1, 3-glucanases. In the genomes of Trichoderma spp., genes
encoding this class of enzymes are over represented when compared to other related
fungi (Kubicek et al. 2011; Geraldine et al. 2013; Vos et al. 2015). β-1, 6-glucanases
have been identified in the area of contact between Trichoderma spp. and its prey. In
T. harzianum CECT 2413, the overexpression of Bgn16.3 encoding β-1, 6-glucanase
resulted in a more effective biocontrol agent with growth-inhibitory action on

3 Beneficial Effects of Trichoderma on Plant–Pathogen Interactions:. . . 53



B. cinerea, R. solani, and Phytophthora citrophthora (Montero et al. 2007). The
Bgn16.2 showed antifungal activities individually or in combination with other
chitinases resulting in impairing the growth of B. cinerea and Gibberella fujikuroi
(De la Cruz and Llobell 1999). Strains of T. harzianum and T. virens overproducing
β-1, 6-glucanases were more effective in the biocontrol of R. solani, B. cinerea
(Ihrmark et al. 2010), and P. ultimum (Djonovic et al. 2006).

Inhibition of spore germination or the growth of phytopathogens by β-1, 3-
glucanases is in synergistic cooperation with chitinases (El-Katatny et al. 2001) as
well as antibiotics (Harman et al. 2004). Numerous β-1, 3-glucanases have been
identified, but only a few genes have been cloned; those are lam1.3 (Cohen-Kupiec
et al. 1999) from T. harzianum, bgn13.1 (Benitez et al. 1998) and glu78 (Donzelli
et al. 2001) from T. atroviride, and Tv-bgn1 and Tv-bgn2 from T. virens (Kim et al.
2002). Increased biocontrol of T. virens against R. solani, P. ultimum, and R. oryzae
was reported using co-overexpression of two β -glucanases Bgn2 and Bgn3 genes
(Djonovic et al. 2007). Overexpression of bgn13.1 in transformants has been
described as inhibitory to the growth of B. cinerea, R. solani, and P. citrophthora.
Transformant T28, with maximum bgn13.1 glucanase activity in repressing as well
as inducing situations, displayed strong suppression of pathogens. Expression and
secretion of endo-β-1, 3-glucanase, bgn13.1 in T. harzianum was noticed when
grown on fungal plant pathogen cell walls (De la Cruz et al. 1995). The Gluc78
from T. atroviride P1 revealed strong antimicrobial action against an array of fungi
and oomycetes including Pythium and Phytophthora; the activity was in synergy
with other enzymes. Tv-bgn1 and Tv-bgn2, these glucanases have been identified
and cloned (Donzelli et al. 2001). In T. atroviride gluc78 gene coding for an
antifungal glucan 1, 3-β-glucosidase was identified, cloned, and sequenced. The
pGEM-T vector was used for cloning gluc78 gene and the expression study carried
out against the phytopathogens R. solani and P. ultimum (Donzelli et al. 2001).

T. asperellum α-1, 3-glucanase agn13.2 and T. harzianum β-1, 6-glucanase
bgn16.2 have been reported with antifungal activity against B. cinerea (Sanz et al.
2005). Three α-1, 6-glucanases have been isolated from T. harzianum 2413 strain
(Elad et al. 2000). T. longibrachiatum transformants exhibiting overexpression of
β-1, 4-endoglucanase gene egl1 showed biocontrol activity against P. ultimum in
cucumber. Among 31 T. harzianum isolates, five of them T30, T31, T32, T57, and
T78 encoded genes for N-acetyl-β-D-glucosaminidase (exc1 and exc2), chitinase
(chit42 and chit33), protease (prb1), and β-glucanase (bgn 13.1) which were cloned
and expressed. These genes are critical in the mycoparasitic activity against the
phytopathogenic fungi particularly F. oxysporum (Lopez-Mondejar et al. 2011). The
adenalyte-cyclase encoding gene in T. virens termed as tac1 gene was isolated and
cloned and its role in mycoparasitic activity against R. solani and P. ultimum has
been studied (Mukherjee et al. 2007). The qid74gene identified in T. harzianum
CECT 2413 plays a significant role in cell protection and offers adherence to
hydrophobic exteriors aiding the fungus in mycoparasitic activity against R. solani
(Rosado et al. 2007). A gene Taabc2 cloned from T. atroviride has a crucial role in
ATP binding cassette (ABC) transporter in cell membrane pump that benefits in the
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mycoparasitic activity against R. solani, B. cinerea, and P. ultimum (Ruocco et al.
2009).

The tag83 gene encoding exo-β-1, 3-glucanase enzyme was identified from
T. asperellum and the expression of this gene exhibited parasitic activity against
pathogens such as R. solani (Marcello et al. 2010). Two different types of β-1, 3 and
β-1, 6 glucanase genes such as TvBgn2 and TvBgn3 transformants were expressed
from T. virens. These genes secrete CWDEs that helps in the biocontrol activity. The
glucose repressor gene creI from T. harzianum was isolated and characterized, and
cloned using pTZ57R/T plasmid vector followed by transformation into E. coli
DH10B and its role in the expression of cellulase and xylanase were studied (Saadia
et al. 2008). Cellulase and xylanase are the major type of enzymes that involve in the
cell wall degradation of the phytopathogens.

3.5 Proteases

Fungal proteases also play an important role in cell wall degradation and cleavage of
peptide bonds in proteins (Haggag et al. 2006). Certain proteases secreted by
Trichoderma spp. may be involved in the inactivation of extracellular enzymes
produced by phytopathogenic fungi. Numerous studies substantiate the role of
extracellular proteases in improved biocontrol efficiency of T. virens,
T. harzianum, T. asperellum, T. flavus against pathogenic fungi and oomycetes
such as R. solani, F. oxysporum, B. cinerea, S. sclerotiorumor, P. ultimum. The
maximum mycoparasitic protease genes cloned so far is from Trichoderma spp.
genes. The genes encode numerous serine proteases with subtilisin-like, chymotryp-
sin- or elastase-like, and trypsin-like activity and aspartic proteases. T. virens Tvsp1
and T. atroviride Prb1 are serine proteases (Pozo et al. 2004), while T. asperellum
TaAsp and T. harzianum Sa76 are aspartic proteases (Yang et al. 2013). A novel
serine protease gene from T. harzianum named SL41 has been cloned and expressed
effectively in S. cerevisiae. The cDNA of Sl41 gene was sequenced and it was cloned
in pMD18-T vector and was inserted into E. coli DH5-α (Liu et al. 2009). Numerous
genes coding proteases and oligopeptide transporters are expressed earlier and
during contact with the prey in different Trichoderma species (Seidl et al. 2009).
A richness of genes encoding subtilisin-like serine proteases was also detected in a
study of expressed sequence tags (ESTs) accumulated through the commencement
of contact between T. atroviridis and its fungal preys Rhizoctonia solani and
S. sclerotiorum (Seidl et al. 2009). The Protease pra1 from T. harzianum isolate
has an affinity for fungal cell walls (Elad et al. 2000) and this gene displays great
potential in increasing biocontrol capacity, as serine proteases are active against
oomycetes (Howell 2003). The alkaline protease Prb1 from T. harzianum IMI
206040 strain has also been established to play a significant role in biological control
efficiency (Benitez et al. 1998) and the T. harzianum Prb1 gene transformants
exhibited upto fivefold increase in the biocontrol effectiveness in the control of
R. solani.
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3.6 Mechanisms of Signal Transduction

Downstream transduction of signals, produced at the receptor sites, is necessary for
further expression of genes in the host plants. Three significant signal transduction
pathways are recognized in Trichoderma spp. that increase the expression of genes
involved in biocontrol and mycoparasitism. Signal transduction pathways eliciting
the genes involved in mycoparasitism have been deliberated in depth and contain
heterotrimeric G-protein signaling, mitogen-activated protein kinase (MAPK) cas-
cades, and the cAMP pathways (Zeilinger and Omann 2007). Adenylate cyclase and
G-protein coupled receptors Trichoderma spp. are critical for the secretion of
extracellular CWDE, production of antifungal metabolites, and development of
infection Cyclic adenosine monophosphate (cAMP) is a significant regulator of
structures. A positive trigger in the activity of adenylate cyclase by G-protein
α-subunits Tga3 and Gna3 consequently improved mycoparasitism (Daguerre
et al. 2014). Heterotrimeric G proteins contain a, b, and ɣ subunits are involved in
transducing signals from transmembrane G protein-coupled receptors to a variability
of intracellular targets. Depending on the system, Ga or Gbɣ transduces the signal by
stimulating effectors such as adenylate cyclase or the MAPK cascade (Kaziro et al.
1991).

Cyclic adenosine monophosphate (cAMP) is a significant regulator of develop-
ment, growth, and pathogenicity in filamentous fungi (Liebmann et al. 2003). The
cAMP mediated signaling is a significant pathway in fungi in controlling the
diversity, virulence, sexual development, nutritional status, stress, transcription,
and cell cycle development (Kronstad et al. 1998). In most fungi, the adenylate
cyclase activity is under the control of subunits of heterotrimeric G-proteins. The
cAMP usually stimulates a cAMP-dependent protein kinase (PKA) that is composed
of two regulatory and two catalytic subunits (Dickman and Yarden 1999), and the
gene expression is regulated by means of phosphorylation of transcription factors.
Lin et al. (2012) investigated the association of anthraquinone secondary metabolites
emodin and pachybasin in the self regulation of coiling in T. harzianum. The
addition of both of these T. harzianum derived metabolites improved the number
of coils of the mycoparasite around hyphae of R. solani and resulted via stimulation
of cAMP production. The detailed investigation of two genes in the heterotrimeric G
protein signaling pathway such as the class I G-α subunits Tga1 of T. atroviride and
TgaA of T. virens, as well as the class III G-α subunits Tga3 of T. atroviride and
Gna3 of T. reesei, have confirmed the functions of these genes are associated with
biocontrol activity. The gene Tga1 was reported crucial in the production of anti-
fungal metabolites and regulation of coiling around the pathogenic hyphae (Rocha-
Ramírez et al. 2002; Zeilinger et al. 2005). TgaA has a host-specific connection
associated with the activity of MAP kinases while Tga3 was found to be noteworthy
for biocontrol activities.

Mitogen-activated protein kinase pathways transduce a great range of signals,
containing those connected with pathogenesis. MAPK pathways signify one of the
most prominent signal transduction systems in fungi. Numerous MAPKs convoluted
in fungal mycoparasitism have been identified in Trichoderma spp. which harbor
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MAPKKK, MAPKK, and MAPK signaling pathways, the three MAPK cascades
which might act in mycoparasitism and biocontrol activity (Reithner et al. 2007;
Kumar et al. 2010). The MAPKs in Trichoderma belong to the family of yeast and
fungal extracellular related kinases (YERK1); other MAPKs include Pmk1 from
M. grisea, Fmk1 from F. oxysporum, Bmp1 from B. cinerea or Ubc3/Kpp2 from
U. maydis. The three MAPKs genes in the Trichoderma genome encode the
so-called virulence MAPK (TmkA/Tvk1) ortholog of the pathogenicity related
MAPKs of phytopathogens, the cell integrity kinase (TmkB), and the osmoregulatory
MAPK (Hog1).

The expression levels of mycoparasitism-related genes (MGRs) in the MAP
kinase encoding gene mutant of a Trichoderma strain raised during mycoparasitism
when in direct contact with R. solani. The regulation of MGRs in T. virens is very
complex; however, they share common elements including Tvk1 like other fungi
(Mendoza-Mendoza et al. 2003). The MAPK from T. atroviride (Tmk1) on charac-
terization showed 98% similarity to T. virens TmkA/Tvk1 (Reithner et al. 2007).
Δtmk1 mutants showed a reduction in radial growth and the conidiation was light-
independent. The direct plate confrontation analyses against the pathogens R. solani
and B. cinerea as hosts revealed that T. atroviride Tmk1—similar to T. virens
TmkA—affected the host specificity as Δtmk1 mutants had the ability to parasitize
R. solani whereas they failed to attack B. cinerea. The TmkA mitogen-activated
protein kinase from T. Virens is known to cause mycoparasitic activity to R. solani
and S. rolsfii (Mukherjee et al. 2003). MAP kinase cascade connecting MPK4,
MPK3, MPK11, and MPK6 and additional genes containing Ca2+ reliant proteinase
kinases are triggered to found PTI (Bethke et al. 2012).

3.7 Competition

Starvation is a general cause of death of soilborne microorganisms (Benitez et al.
2004), so competition for limited nutrients is especially significant in the biocontrol
of phytopathogens. Competition is the phenomenon in which the introduced bio-
control agent, i.e., Trichoderma and the pathogen compete for the obtainability of
nutrients and space (Hjeljord et al. 2000). In most of the filamentous fungi, iron and
carbon are two vital elements, essential for viability. This process could be
connected also to the production of organic acids, such as gluconic, citric, and
fumaric acids, which reduce soil pH and allow the solubilization of phosphates,
micronutrients, and mineral cations like iron, manganese, and magnesium (Vinale
et al. 2008a). The Trichoderma spp. displays natural resistance to fungicides,
herbicides, and phenolic compounds and various toxic chemicals. Trichoderma
spp. can, therefore, grow quickly and influence pathogens with the production of
metabolic compounds that inhibit spore germination of the pathogen (fungistasis),
cause death of the pathogen (antibiosis), or alter the conditions of the rhizosphere
(Benitez et al. 2004). The disease inhibition activity of Trichoderma spp. is exerted
either directly by obstructing growth and development of soilborne pathogens
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through competition for nutrients or excretion of antibiotics in the rhizosphere
(Bakker et al. 2007; Sultana et al. 2009) or indirectly by stimulating a plant-
mediated systemic resistance (van Wees et al. 2008). In their investigation, Lehner
et al. (2013) describe the detection of around 12–14 siderophores in T. atroviride,
T. asperellum, T. gamsii, T. hamatum, T. virens, T. harzianum, T. polysporum, and
T. reesei by isotope-based screening using dimerum acid, coprogren, fusigen,
fusarinine A, and the intracellular siderophore ferricrocin being produced by all
species (Lehner et al. 2013).

3.8 Competition for Nutrients

Iron acts as a cofactor of several enzymes and an essential nutrient for the growth of
plants and other microorganisms. Iron attainment is a significant component of
microbial competition, particularly within the rhizosphere, where there is intense
microbial activity. The biocontrol agent Trichoderma spp. may show rapid growth
or utilize the available food source more efficiently in comparison to the phytopath-
ogens, thereby suppressing the pathogen growth and taking over. This process is
termed as competition for nutrients. The ability of Trichoderma spp. to scavenge
iron from the environment makes it unavailable for the competing pathogens.
Certain Trichoderma isolates produce highly efficient siderophores, iron-chelating
compounds which bind with insoluble iron (FeIII) and converted to soluble form
(FeII) for plant absorption and stop the growth of phytopathogens by depriving them
of iron sources (Benitez et al. 2004). Trichoderma spp. are known to produce
extracellular siderophores of the fusigen and coprogen family. Several Trichoderma
spp., such as T. viride, T. harzianum, and T. lignorum are well-known siderophore
producers better than the pathogenic strains of Fusarium such as F. solani and
F. oxysporum (Dutta et al. 2006).

Competition for iron has been found to be among the critical factors in the
antagonism of T. asperellum against F. oxysporum and may as well be beneficial
for plants due to the iron solubilizing activity (Segarra et al. 2010). T. virens and
T. reesei harbor an extra putative gene cluster for siderophore production
(Mukherjee et al. 2012b). T. virens and T. reesei harbor two putative gene clusters
covering an NRPS as the core member, whose orthologs (SidD and NPS6) are
known to be intricate in siderophore production (Kubicek et al. 2011). During iron
deprived situations, the synthesis of these iron scavenging siderophores are under the
impact of HapX protein that specifically binds to CCAAT binding complex (CBC)
(Thon et al. 2010). T. harzianum CECT 2413 strain encodes a high-affinity glucose
transporter (Gtt1) and interestingly the Gtt1 gene is only expressed during very low
glucose concentrations similar to the development of competence among microor-
ganisms (Benitez et al. 2004). Gtt1, a high-affinity glucose transporter of the
mycoparasitic fungus T. harzianum, has been characterized (Delgado-Jarana et al.
2003). Vargas et al. (2009) reported an intracellular invertase TvInv from T. virens
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that is involved in sucrose hydrolysis signifying the plant-derived sucrose as a vital
nutritional resource to Trichoderma.

3.9 Competition for Root Colonization

From the standpoint of microbes, surfaces of living plants and soils are often
nutrient-limited environments. Colonization of the root tissue is generally confined
to the penetration of the first or second layers of cells and to the intercellular spaces
(Brotman et al. 2008). Proteins of Trichoderma spp. involved in root colonization
can act as MAMPs (Lorito et al. 2010; Ruocco et al. 2015). For example, swollenin,
a protein encoded by TasSwo gene, induces defence responses in cucumber roots
and leaves affording local defense against plant pathogens (Brotman et al. 2008) and
endopolygalacturonases endoPGs produced by Trichoderma spp. aid in root pene-
tration and constitute a preeliciting role in ISR (Baroncelli et al. 2015). Further, root
penetration is accomplished via the secretion of cellulolytic, hemicellulolytic, and
proteolytic enzymes (Viterbo et al. 2004).

Hydrophobins and expansin-like proteins (Brotman et al. 2008; Ruocco et al.
2015) are essential for the adherence to the root surface by Trichoderma spp. and in
cell wall development, respectively. These are small secreted proteins that have a
distinctive domain of eight cysteine residues at conserved positions. Hydrophobins
were primarily separated into class I and class II hydrophobins according to their
hydropathy patterns and solubility (Linder et al. 2005). T. asperellum harbors the
TasHyd1 hydrophobin gene, which has been revealed to support in plant root
colonization, enabling the attachment of hyphal filaments to hydrophobic root
surfaces (Viterbo and Chet 2006; Guzmán-Guzmán et al. 2017). Among the three
hydrophobin genes Hyd1, Hyd2, and Hyd3 recently identified in the fungus, only
Hyd3 is implicated in root colonization by C. rosea (Dubey et al. 2014).
Hydrophobins in phytopathogenic fungi are necessary to anchor fungal cells to
host plant surfaces and they could play a similar role in biocontrol agents such as
T. asperellum and C. rosea.

Plant lytic enzymes involve actively in root colonization, similar to endopoly-
galacturonase ThPG1 from T. harzianum and expansin-like proteins capable of
recognizing cellulose swollenin TasSwo have also been revealed to be involved in
plant root colonization (Moran-Diez et al. 2009). In T. asperellum, xylanases Abf1
and Abf2 along with proteases PapA and PapB are secreted in response to cucumber
root attachment (Viterbo et al. 2004). The role of xylanases in plant root colonization
by Trichoderma is not directly confirmed but these enzymes are upregulated during
Trichoderma–plant interactions. Biochemically diverse microbe-associated molec-
ular patterns (MAMPs) have been identified in Trichoderma (Shoresh et al. 2010),
including the ceratoplatanin protein SM1/Epl1 (Frischmann et al. 2013), ethylene-
inducing xylanase (Ron and Avni 2004), and Swollenin protein from T. asperellum.
Epl1 has been defined with the ability to generate defense responses in plants (Salas-
Marina et al. 2015; Ramada et al. 2016). The SM1 is induced and expressed not just
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during plant interactions but also in the absence of a plant and further promotes the
expression of genes related to pathogenesis and hypersensitive reactions (Djonovic
et al. 2007).

3.10 Production of Antibiotics and Secondary Metabolites

Antibiosis occurs during microbial interactions and involves low molecular weight
diffusible secondary metabolites (SMs) or antibiotics produced by Trichoderma
strains that are detrimental for the growth of plant pathogen (Benitez et al. 2004;
Viterbo et al. 2007). Fungal antibiosis is associated with the production of antibiotics
and/or hydrolytic enzymes and secondary metabolites related to possible competi-
tion for nutrients in the rhizosphere and microbial antagonism (Harman et al. 2004).
Antibiotics and secondary metabolites produced by Trichoderma spp. are crucial in
their biocontrol activity (Ajitha and Lakshmedevi 2010). Secondary metabolites
including antibiotics are not directly involved in the natural growth, development,
or reproduction of the fungus. They are chemically dissimilar from natural com-
pounds and may play important roles in the defense response, competition against
other microorganisms, symbiosis, metal transport, differentiation, and stimulation or
inhibition of spore formation and germination, etc. (Reino et al. 2008).

Based upon analytical studies, from the genus Trichoderma about 180 secondary
metabolites (natural products) have been identified, representing various classes of
chemical compounds and with the structures of more than 100 compounds described
(Reino et al. 2008). Several molecules involved in the suppression of numerous
soilborne plant pathogens have been described (Benitez et al. 2004). The commu-
nication between Trichoderma and their plant hosts is established by complex
chemical interaction comprising volatile and diffusible secondary metabolites,
small peptides, and/or antibiotics, which affect root growth, branching, and absorp-
tive capacity (Lopez-Bucio et al. 2015). Trichoderma spp. produces several second-
ary metabolites, antibacterial and antifungal antibiotics which comprise volatile and
nonvolatile toxic metabolites such as harzianic acid, alamethicins, tricholin,
peptaibols, 6-n-pentyl-6H-pyran-2-one (6PP/6-PAP), formic aldehyde, acetalde-
hydes gliotoxin, viridian, Terpenoids, harzianopyridone, harziandione,
massoilactone, viridin, gliovirin, glisoprenins, trichodermin, heptelidic acid,
epipolythiodioxopi perazines (ETPs) (Gajera et al. 2013; Hermosa et al. 2014;
Strakowska et al. 2014).

Various genes are components of large biosynthetic gene clusters harboring those
encoding core enzymes such as polyketide synthases (PKSs), nonribosomal peptide
synthetases (NRPSs), accessory enzymes and genes for transporters and transcrip-
tion features (Bansal and Mukherjee 2016a). Genomes of some more mycotrophic
species including T. asperellum, T. parareesei, T. harzianum, T. gamsii, and the
opportunistic human pathogens T. longibrachiatum and T. citrinoviride were sub-
sequently added to the public databases (Baroncelli et al. 2016). The hydrolytic
enzymes along with antibiotics results in an advanced intensity of antagonism than
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that achieved by either mechanism singly (Monte 2001). Synergetic effects between
an endochitinase from T. harzianum and gliotoxin and that of hydrolytic enzymes
and peptaibols on conidial germination of B. cinerea have been reported (Howell
2003). A peptaibol synthetase from T. virens has recently been identified and the
corresponding gene, which has been cloned, will facilitate studies of this compound
and its contribution to biocontrol.

The genes involved in secondary metabolite biosynthesis in Trichoderma are
present as clusters that can span more than 10 kb, with a few exceptions (Lo et al.
2012). These clusters encode the enzyme complexes such as the NRPS or PKS that
comprise of various domains and modules with distinct activities (Strieker et al.
2010). The synthesis of the structural backbone of these unique secondary metabo-
lites by PKS and NRPS utilizes building blocks such as malonyl groups and amino
acids or their derivatives (Brakhage and Schroeckh 2011). The genes crucial in the
biocontrol mechanisms of Trichoderma are of great value. The vast prospective of
Trichoderma spp. to produce an array of diverse metabolites is reflected in the
genomes of the species. Secondary metabolite genes of Trichoderma are organized
just about the signature genes which encode NRPSs, PKSs, and terpene synthases,
which define the biosynthetic pathways and clusters (Osbourn 2010).

3.11 Non-ribosomal Peptide Synthases (NRPSs)

The genome of Trichoderma is a repertoire for secondary metabolite production,
including both beneficial and a few toxic compounds, which have been well
characterized and few novel (Mukherjee et al. 2012b). Polyketide synthases and
NRPSs are two major classes of secondary metabolites (Baker et al. 2012). NRPSs
are large modular enzymes involved in the synthesis of Nonribosomal peptides
(Mukherjee et al. 2012c). NRPS enzymes are composed of a series of modules
that behave like an assembly line, each incorporating one monomer into the peptide
(Strieker et al. 2010). The monomers may be peptaibols or even compounds that are
non-amino acids. The peptides may be structurally linear or cyclic, and often go
through large chemical modifications (Strieker et al. 2010). Peptaibols fit into the
antifungal armory of Trichoderma and are now reported to trigger the apoptotic
death of the host. Trichoderma spp. synthesize NRPSs, the large multifunctional
enzyme domains that assemble various compounds using a diverse precursors such
as non-proteinogenic amino acids and hydroxy or carboxyl acids (Mukherjee et al.
2011; Shi et al. 2012). Genes encoding hydrolytic enzymes like chitinases and
glucanases and those for SMs like NRPSs are concurrently expressed to destroy
the plant pathogens (Kubicek et al. 2011). Numerous NRPSs implicated in the
synthesis of peptaibols in Trichoderma spp. have been recognized (Mukherjee
et al. 2011). However, the characterization of NRPSs from additional biological
control agents is still lacking.
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3.12 Peptaibols

Peptaibols are short-chain linear polypeptides that generally exhibit strong antimi-
crobial effects against bacteria and fungi, and act in synergy with CWDEs inhibiting
the growth of fungal pathogens and rendering the plant resistant to phytopathogens
(Mukherjee et al. 2011). Peptaibols produced largely by members of Trichoderma
are peptides composed of α-aminoisobutyric acid and a C-terminal 1, 2-amino
alcohol constituting the major group which is characterized by an acylated
N-terminus and an amide-bound amino alcohol at the C-terminus (Degenkolb
et al. 2008). About 1000 various peptaibiotics that have been recognized and
categorized into numerous groups on the basis of their chemical constructions and
these include lipoaminopeptides, lipopeptaibols, peptaibols, and cyclic peptaibiotics
(Neumann et al. 2015).

Trichoderma spp. are usually considered as the richest source of peptaibols and
over 80% of the entries in the Comprehensive Peptaibiotics Database can be
assigned to this fungal genus with T. viride, T. brevicompactum, T. virens,
T. parceramosum/T. ghanense, and T. harzianum being the most extensively studied
species (Stoppacher et al. 2013; Neumann et al. 2015). The biocontrol activity of
peptaibols originates from their capacity of membrane altering properties, formation
of pores in lipid membranes, as well as induction systemic resistance in plants
against pathogens attack (Mukherjee et al. 2011). Numerous NRPSs involved in
the synthesis of peptaibols in Trichoderma spp. have been studied (Mukherjee et al.
2011). There are two peptaibol synthetases such as of 18 and 14 modules in
Trichoderma genomes and more than 700 peptaibol sequences are known, generally
of Trichoderma origin (Degenkolb et al. 2008).

The genome of ITEM 908 harbors three loci with sequences encoding the
homologs of potential peptaibol synthetases in T. virens (Mukherjee et al. 2012b).
The three genes named tex1, tex2, and tex3 have been identified as paptaibol
synthetases. Tex1 is a long chain peptide (18–25 remains) peptaibol synthetase and
it is involved in the synthesis of 18 residue peptaibols (Wiest et al. 2002). Tex1
accumulates an 18-residue peptaibol (trichovirin II) and by using Dtex1 mutants
trichovirin II type peptaibols revealed to activate induced resistance in hosts (Viterbo
et al. 2007). Peptaibols of class 11, 14, and 18mer potentially inhibit pathogens
including A. solani, P. capsici, R. solani, S. rolfsii, and S. cepivorum (Velázquez-
Robledo et al. 2011). The three Trichoderma genomes discovered the presence of
only 7, 14, and 18–20 module peptaibol synthetases (Degenkolb et al. 2012).
Recently, the short peptaibol synthetase gene tex2 has been delivered for the
association of 11 and 14 modules peptaibols by a single NRPS Tex2 of T. virens
(Mukherjee et al. 2011; Reithner et al. 2011), later confirmed in T. reesei (Etxebeste
et al. 2010). The T. virens Tex2 was revealed to synthesize a total of 88 peptaibols
belonging to 11 and 14-residue groups. The peptaibol trichokonin VI of
T. pseudokoningii SMF2 was revealed to induce an extensive apoptotic programmed
cell death in F. oxysporum (Shi et al. 2012). The tex3, homologous to tex1 has seven
complete modules arranged in a linear fashion (Mukherjee et al. 2012c) and
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homologs of all of these three genes in the genome of T. atrobrunneum ITEM908.
Exogenous treatments of Trichoderma peptaibols in tobacco plants elicited a defense
response by multiple defenses signaling pathways and resulting in increased resis-
tance to the tobacco mosaic virus (Benitez et al. 2004; Luo et al. 2010; Holzlechner
et al. 2016). The non-ribosomally synthesized peptaibols act as potential signature
molecules forming the basis of mass spectrometry-based, species-specific monitor-
ing approaches, as the peptaibiome of particular Trichoderma spp. is unique from
that of closely related species (Marik et al. 2017).

3.13 Gliotoxin and Gliovirin

Gliotoxin and gliovirin are Epipolythiodioxopiperazines (ETPs), a class of peptides
(Patron et al. 2007). The ETPs characterized by a diketopiperazine ring with a
disulfide bridge derived from a cyclic peptide, produced by Trichoderma (Błaszczyk
et al. 2014) and the genes for its biosynthesis in T. virens have been identified
(Vargas et al. 2014). Gliotoxin belongs to the nonribosomal peptides (Patron et al.
2007). Gliotoxin derives from cyclic dipeptides that arise by the condensation of two
α-amino acids and is produced biosynthetically from L-phenylalanine and L-serine
via the cyclic dipeptide. The gliotoxin is produced by Q strains of T. virens whereas
another ETP, gliovirin, is exclusively produced by the P strains of T. virens, both of
which have potential antimicrobial activity (Scharf et al. 2016). Gliotoxin has
attracted great attention for its function in the biocontrol of soilborne pathogens
(Howell 2006). The T. virens veA ortholog vel1 regulates gliotoxin biosynthesis,
biocontrol activity, and many other secondary metabolism-related genes (Mukherjee
and Kenerley 2010; Mukherjee et al. 2013). The gliotoxin genes clusters gliZ, gliJ,
gliA, and gliT identified in the T. virens Q strain genome have a powerful role in the
biocontrol of soilborne plant pathogens (Howell 2006).

3.14 Siderophores

The fungal siderophores, fusarinines, coprogens, and ferrichromes belong to the
group of hydroxamate siderophores that share the structural unit N5-acyl-N5-
hydroxyornithine (Renshaw et al. 2002; Lehner et al. 2013). Isotope assisted screen-
ing revealed an average 12-14 siderophores produced by T. asperellum,
T. atroviride, T. gamsii, T. harzianum, T. hamatum, T. virens, T. polysporum, and
T. reesei with dimerum acid, coprogren, fusarinine A, fusigen, and the intracellular
siderophore ferricrocin (Lehner et al. 2013). Genome sequencing of Trichoderma
spp. have revealed a single gene for ferricrocin synthesis, belonging to a secondary
metabolism gene cluster (Kubicek et al. 2011). In Trichoderma spp. three NRPSs
linked to siderophore biosynthesis have been known in different gene clusters
(Mukherjee et al. 2013; Zeilinger et al. 2016). The genome of ITEM 908 harbors
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homologs of the aldehyde dehydrogenase (g626), the oxidoreductase (g625), the
NRPS (g624), the ornithine monooxygenase (g623), and the transcription factor
(g622). The second gene cluster comprises NPS6, a key enzyme that is accountable
for extracellular siderophore production in T. virens (Mukherjee et al. 2013).

T. virens and T. reesei each contain two putative gene clusters having an NRPS as
the core member, whose orthologs (SidD and NPS6) having potential in siderophore
synthesis (Kubicek et al. 2011; Mukherjee et al. 2012c). T. harzianum produced the
maximum number of siderophores, while, T. reesei biosynthesized one cis-
fusarinine as the main siderophore and three others that were present only in
T. harzianum.

3.15 6-Pentyl Pyrone (6-PP)/Pyrones

A volatile compound, 6-Pentyl pyrone (6-PP) with the unique coconut aroma, was
produced by Trichoderma spp. (Vinale et al. 2008a, b). This compound fits into the
chemically diverse class of low molecular weight metabolites with a high vapor
pressure at room temperature and low water solubility grouped as volatile organic
compounds (VOCs). Pyrones are derivative from fatty acids and the biosynthesis of
6-PP has been studied in T. atroviride by using [U-14C] and [1-14C] linoleic acid.
T. atroviride exhibited an upregulation of the lipoxygenase gene thought to be
involved in 6-PP biosynthesis and in T. arundinaceum, growth in co-culture with
B. cinerea led to enhance expression levels of the “tri” biosynthetic genes
(Malmierca et al. 2015). A lipoxygenase gene specific to T. atroviride may be
involved in the biosynthetic pathway for the production of 6-PP but no useful
characterization has yet been achieved (Kubicek et al. 2011).

A transcription factor gene called Thctf1 was isolated from T. harzianum and
involves in the synthesis of 6-pentyl-2H-pyran-2-one (6-PP) and displays antifungal
activity against R. solani, B. cinerea, and S. rolfsii. The sequences were studied
using the Laser gene package and cloned using pGEM-T vector (Rubio et al. 2009).
Pyrones have been identified from numerous T. harzianum strains that are antago-
nistic to G. graminis var. tritici and F. moniliforme. The 6-PP secreted by
T. harzianum potentially degrades mycotoxins including fusaric acid (FA) and
additionally inhibits the mycelial growth of F. moniliforme (El-Hasan et al. 2008).
Various Trichoderma spp. such as T. viride, T. atroviride, T. harzianum, T. koningii
are able to produce the volatile antibiotic 6-PP which is antagonistic to B. cinerea,
R. solani and F. oxysporum (Reino et al. 2008). The PR-1 gene was induced by 6-PP
and harzianopyridone at 1 mg/l in canola cotyledons, indicating the initiation of an
SA-dependent SAR response. At the same time, a chitinase PR-3 gene related to
JA-dependent defense was induced by an equal amount of 6-PP, harzianopyridone
or azaphilone (Viterbo et al. 2010). Recent studies revealed that T. atroviride
produced 6-PP promoting plant growth and regulating the root architecture,
preventing primary root growth and inducing lateral root formation (Garnica-
Vergara et al. 2015).
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3.16 Polyketides

The polyketides are a structurally diverse group of secondary metabolites, produced
by numerous organisms, including filamentous fungi, with antibiotic activity such as
(tetracyclines, polyenes, and macrolides), the mycotoxins (aflatoxin, fusaric acid,
and fumonisin), the pigments (bikaverin and fusarubin) as well as the statins
(lovastatin and compactin) (Zeilinger et al. 2016). These groups of molecules are
that have carbon skeletons made up of polyenes, polyphenols, macrolides,
enediynes, and polyethers. Polyketides are synthesized via pathways catalyzed by
a collection of enzymes called PKSs, which are great multi-enzyme protein com-
plexes that function with a coordinated group of active sites.

Genomes of Trichoderma spp. are rich in PKS encoding genes, suggesting the
significance polyketides in the biology and activity of the fungus. There are several
PKS genes involved in biosynthetic pathways and the genomes of T. virens and
T. atroviride comprise 18 PKSs and the genome of T. reesei encodes 11 PKSs
(Baker et al. 2012). The PKS genes are found usually as clusters along with genes
coding cytochrome P450 monooxygenases, short-chain reductases or epimerases
(Schmoll et al. 2016). Phylogenomic analysis of PKS genes of T. reesei, T. virens,
and T. atroviride showed that most of the PKSs belonged to the lovastatin/citrinine
or fumonisins clades that were present as orthologues in all three species studied
(Baker et al. 2012). Two T. atroviride PKS genes were found to be expressed when
confronted R. solani, indicating its possible role in mycoparasitism (Mukherjee et al.
2012b, c). Similar gliP and other SMs associated genes, PKSs in T. virens are
regulated by the velvet complex protein Vel1 (Mukherjee and Kenerley 2010).

There are numerous fungal SMs of interest produced by NRPS–PKS hybrid
enzymes that consist of a PKS fused to a single, or in some cases truncated NRPS
module (Fisch 2013). These hybrid enzymes are encoded in the genomes of
T. atroviride, T. reesei, and T. virens (Kubicek et al. 2011). The first Trichoderma
genome to be sequenced was from T. reesei and that contained 2 NRPS-PKS hybrid-
encoding genes and the genes encoding terpenoid synthases (12 genes), NRPS
(8 genes), and PKS (11 genes) (Martinez et al. 2008). The genome of T. atroviride
harbors genes for 14 NRPSs, 18 PKSs, a single NRPS-PKS hybrid, and 14 terpenoid
synthase domains (Kubicek et al. 2011). The efficient investigation of the T. virens
showed that Tex13, a hybrid enzyme PKS/NRPS, was involved in inducing phenyl-
alanine ammonialyase, the defense-related gene in maize seedlings; further the
induction of Tex13 is more than 40-fold during interactions of T. virens with
maize roots (Mukherjee et al. 2012c).
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3.17 Terpenoids/Steroids

Terpenoids are the most versatile natural products on earth and comprise a group of
volatile and non-volatile secondary metabolites. The assembly of numerous acti-
vated forms of five carbon compounds isopentenyl/isoprene (C5H8) units depending
on the number of carbon atoms. Each class contains molecules that are linear and
cyclic; terpene cyclases generate the cyclization. Terpenoids recognized from
Trichoderma spp. include volatile terpenes, the tetracyclic diterpene harziandione,
sesquiterpenes such as the trichothecenes trichodermin and harzianum A and the
triterpene viridin (Stoppacher et al. 2010; Cardoza et al. 2011). Compounds such as
trichodermin isolated from T. polysporum, T. sporulosum, T. virens, and T. reesei,
Harzianum A from T. harzianum and mycotoxin T2 detected in cultures of
T. lignorum are examples of trichothecenes with antifungal activity. Trichothecene
is synthesized by certain fungal genera such as harzianum A and trichodermin from
T. arundinaceum and T. brevicompactum, respectively (Cardoza et al. 2011). The
terpenoid Trichodermin is an extremely fungi toxic as well as phytotoxic, trichothe-
cene type toxin produced by T. brevicompactum (Yuan et al. 2016). The production
of trichodermin in T. brevicompactum involves the tri5 gene which has a significant
role such that its overexpression increases trichodermin production as well as the
antimicrobial activity (Tijerino et al. 2011). A nonphytotoxic trichothecene,
Harzianum A is antagonistic to fungal plant pathogens and triggers the genes
responsible for plant defense. The tri gene cluster involved in harzianumA synthesis
was characterized in T. arundinaceum (Malmierca et al. 2013). The triterpene
biosynthetic pathway is catalyzed by enzymes encoded by the erg1, erg7, and
erg9 genes that are also capable of synthesis of viridin, a well-known antifungal
molecule. In T. harzianum, the overexpression of erg1 enhanced its antifungal
effects against B. cinerea and reduced the lesion size. However, the induction of
salicylate related plant defense genes and root colonization ability of T. harzianum
was reduced (Cardoza et al. 2014).

The trichothecenes, sesquiterpenes are a huge group of toxic SMs produced by a
few fungal species (Woloshuk and Shim 2013). The tri gene cluster for trichothecene
biosynthesis has previously been defined in T. arundinaceum and
T. brevicompactum and is made up of orthologues of seven genes present in the
Fusarium tri cluster (Cardoza et al. 2011). Trichothecenes are sesquiterpenoid
epoxides initially formed through isomerization–cyclization of farnesyl pyrophos-
phate from the parent compound trichodiene. Trichodiene synthase, encoded by tri5
gene is the key enzyme catalyzing this reaction. The genes involved in trichothecene
biosynthesis including Tri5 are all organized in a coordinately regulated gene
cluster.

Terpenes were isolated from T. lignorum HKI 0257, a new sesquiterpenoid
named lignoren. This compound has a santalene-like structure and displays a
sensible antimicrobial activity against B. subtilis, M. smegmatis, P. aeruginosa,
S. salmonicolor, and Rhodotorula rubra (Berg et al. 2004). A recent study reported
that the T. reesei genome encodes 6 terpene synthases or cyclases, 7 in T. atroviride,
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and 11 in T. virens, of which two, three, and six are part of biosynthetic gene clusters
(Bansal and Mukherjee 2016b). Harzianic acid (HA), a nitrogen heterocyclic com-
pound produced by T. harzianum has growth-promoting effect (Vinale et al. 2009)
which acts as an antagonistic effect on fungal pathogens as reported in canola
seedlings (Vinale et al. 2009). Also, they promote nutrients uptake and growth of
plants by their ability to produce siderophores (Vinale et al. 2013).

3.18 Induced Systemic Resistance by Trichoderma

Induced systemic resistance is one of the most important mechanisms of biocontrol
effects of Trichoderma (Harman 2006; Vinale et al. 2008a). Induction of metabolic
changes in plants is brought about by several strains of T. virens, T. asperellum,
T. harzianum, and T. atroviride that result in increased resistance to a wide range of
plant pathogenic microorganisms. The colonization and induction of plant resistance
by Trichoderma with some species is related to that elicited by rhizobacteria, which
enhance the defense system but do not involve the production of pathogenesis-
related proteins (PR proteins) (Harman et al. 2004). Induced resistance conferred to
host plants by microorganisms are of two different kinds named induced systemic
resistance (ISR) and systemic acquired resistance (SAR), which differ by the bio-
chemical pathways involved (Birkenbihl et al. 2017). The SAR is triggered by
previous exposure and infections by avirulent pathogens, whereas ISR is triggered
by previous colonization of the rhizosphere by Trichoderma spp. SAR is a salicylic
acid-dependent pathway, whereas ISR is salicylic acid independent (Hermosa et al.
2013; You et al. 2016; Birkenbihl et al. 2017). These defense pathways involve the
evolution of pattern recognition receptors that specifically recognize microbe-based
signals referred to as pathogen or microbe-associated molecular patterns (PAMPs or
MAMPs) (Hermosa et al. 2012). The ability of Trichoderma spp. hyphae to release a
variety of MAMPs for molecular recognition may contribute to signal cascade by
signaling molecule within the plant such as salicylic acid (SA), jasmonic acid (JA),
and ethylene (ET) (Lorito et al. 2010).

In the interactions of Trichoderma with plants, different classes of metabolites
may act as elicitors or so-called resistance inducers (Woo and Lorito 2007). These
metabolites are usually proteins including enzymes (serine proteases, xylanases,
chitinases, phenylalanine ammonia lyase, peroxidase, polyphenol oxidase,
lipoxygenase, cellulases, and glucanases) (Shoresh et al. 2005), proteins as PR
(pathogenesis-related protein), gene products resembling proteins encoded by avir-
ulent genes, low molecular compounds released from cell walls of fungi or plants by
fungal hydrolytic enzymes and phytoalexin accumulation in host plants (Tuão Gava
and Pinto 2016). Trichoderma endochitinase can also increase defense, probably via
induction of plant defense-related proteins. Expression of T. atroviride
endochitinase Ech42 displayed enhanced resistance toward Fusarium sp. infection
(McIntyre et al. 2004). Expression of T. harzianum chitinase Chit42 in tobacco and
potato plants resulted in improved resistance to the foliar pathogens A. alternata,
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A. solani, B. cinerea, and to the soilborne pathogen R. solani (Howell 2003).
Similarly, effects were seen on the heterologous expression of Chit42 in strawberry
infected with Colletotrichum and with Chit42 and a β-1, 6 glucanase in melon and
tomato plants. T. harzianum efficiently increased the SA and JA contents in melon
thus altering the plant responses against F. oxysporum (Martínez-Medina et al.
2010). Expression of fungal chitinases in plants with CBDs, such as Chit42CBD,
which already has increased antifungal activity, may result in greater resistance
against phytopathogens (Limon et al. 2004). Eix also acts as a fungal elicitor that
regulates phytoalexin production and defense gene expression through calcineurin
B-like protein-interacting protein kinases, OsCIPK14/15, in rice (Kurusu et al.
2010). T. longibrachiatum cellulases, T. viride xylanase Xyn2/Eix, T. harzianum
endopolygalacturonase ThPG1 generates a response in Arabidopsis (Moran-Diez
et al. 2009).

The T. asperellum swollenin TasSwo stimulates defense responses in cucumber
roots and leaves and affords local protection against phytopathogens (Moran-Diez
et al. 2009). T. asperellum produces the class I hydrophobin TasHyd1, which aids in
root surface colonization, possibly by improving its attachment to the root surface
and protecting the hyphal tips from plant defense compounds (Viterbo and Chet
2006). In oil palm plants the expression of defense gene chitinase was increased in
plants treated with T. harzianum and Ganoderma boninense compared to those
treated with G. boninense alone (Naher et al. 2012). In a study on cucumber plants,
T. asperellum induced a systemic response of two defense-related genes encoding
phenylalanine and hydroperoxidase lyase and systemic accumulation of phyto-
alexins against P. syringae pv. lachrymans (Yedidia et al. 2003). T. asperellum
T203 modulated the expression of the genes Lox1 (Lipoxygenase 1), a constituent of
the JA biosynthetic pathway; PAL1, an element of the biosynthetic pathway for SA;
and Etr1 and Ctr1, both components of ET signaling (Shoresh et al. 2005).
Contreras-Cornejo et al. (2011) who recommended that JA as an important factor
in boosting plant immunity involved in defense responses elicited by Trichoderma in
Arabidopsis against B. cinerea. Similar soil application of T. viride to tomato plants
with F. oxysporum or R. solani resulted in an increase in the expression of JA-related
PDF1 and PDF2 genes (Hafez et al. 2013).

Molecular confirmation exhibited that A. thaliana root colonization by
T. asperelloides T203 activates a quick rise in the expression of transcription factors
(WRKY18, WRKY40, WRKY60, and WRKY33) activating JA pathway responses
and represses SA signaling. WRKY18, WRKY40, and WRKY60 are pathogen-
induced and encode three structurally related WRKY proteins that exert a positive
role in JA-mediated defense (Brotman et al. 2013). Mathys et al. (2012) reported that
induced resistance in Arabidopsis roots treated with T. hamatum is regulated by JA
and ET related genes. Additionally, the JA inducible genes lipoxygenase (Lox1) and
phenylalanine ammonialyase (Pal1) and the ET-inducible genes ethylene receptor
(ETR1) and constitutive triple response 1 (CTR1) were found to be induced both
locally and systemically on treatment with T. asperellum T-203 spores alone. Tucci
et al. (2011) observed that Trichoderma CF treatment triggered ISR through
SA-dependent gene expression
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Several SMs and proteins involved in mycoparasitism and antibiosis have been
identified as ISR elicitors. Secondary metabolites like alamethicin and trichokinin
(20mer peptaibol), 18mer peptaibol, 6-pentyl-a-pyrone, harzianolide, and
harzianopyridone at high doses have antimicrobial effects but at low concentrations
are ISR inducers (Vinale et al. 2014). Peptaibols produced by Trichoderma may act
as elicitors of plant defense mechanisms against pathogens (Wiest et al. 2002). A
peptaibol synthetase from T. virens was purified and the achieved cloning of the
corresponding gene will facilitate an understanding of the role of this class of
compounds in plant defense response. Application of alamethicin, a long sequence
peptaibol with a 20-residue produced by T. viride, elicits JA and SA biosynthesis in
lima bean in Phaseolus lunatus (lima bean) (Maischak et al. 2010) and A. thaliana
hypersensitive reaction to pathogen attack (Rippa et al. 2010). The 18mer peptaibols
from T. virens elicit systemic induced defense responses in cucumber against the leaf
pathogen P. syringae (Viterbo et al. 2007; Luo et al. 2011).

Early defense responses triggered by SMs from T. atroviride induced intracellular
Ca2+ variations in soybean cells (Navazio et al. 2007). The defense mechanisms
plants and their developmental responses to Trichoderma share common compo-
nents. This was evident when 1 ppm of 6-pentyl-a-pyrone, harzianolide, and
harzianopyridone activated plant defense mechanisms and regulated plant growth
in pea, tomato, and canola (Vinale et al. 2008b), suggesting that plants’ Epl-1 has
been described as being able to trigger defense reactions in plants (Gomes et al.
2015; Ramada et al. 2016; Salas-Marina et al. 2015). Fernanda Blauth de Lima
(2017) reported that, when challenged by the Guignardia citricarpain citrus black,
T. harzianum T1A there was a decrease in the total amount of secreted proteins,
particularly those involved in primary metabolism while the secretion of proteins
related to fungal interaction increased. T. harzianum T1A secretes proteins related to
the control of G. citricarpa and induction of plant resistance, even in the absence of
pathogen challenge.

A PKS/NRPS hybrid enzyme involved in defense responses in maize was
identified (Mukherjee et al. 2012c). Non-enzymatic proteins such as small
cysteine-rich hydrophobin-like protein of the cerato-platanin (CP) family Sm1
secreted by T. virens and Epl1 secreted by T. atroviride trigger the activation of
plant defense mechanisms and the induction of systemic resistance in cotton and
maize (Seidl et al. 2006). In response to invasion by a pathogen, the Sm1 of T. virens
acts as an elicitor inducing the expression of CAD1-C gene encoding (+)-δ-cadinene
synthase in cotton petioles which is the primary precursor for phytoalexin production
(Djonovic et al. 2006; Yoshikuni et al. 2006). Induction of defense mechanisms in
plants is also brought about by another group of proteins that are the products of
avirulence-like (Avr) genes (Woo et al. 2006). The hydrophobin-like protein pro-
duced by T22 was identified to induce both enhanced root development and disease
resistance (Ruocco et al. 2007). Early defense reactive oxygen species (ROS) such as
H2O2 and nitric oxide also are associated in Trichoderma-mediated plant immunity
in cotton, rice, and A. thaliana (Gupta et al. 2014; Contreras-Cornejo et al. 2014).
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3.19 Stress Tolerances

The genus Trichoderma is able to inhabit and colonize diverse niches due to its
metabolic versatility and tolerance to stress conditions. Among fungal biocontrol
agents, Trichoderma spp. have gained much interest due to their high reproductive
capacity, prolific producers of secondary metabolites, survived under unfavorable
conditions, and ability to resist against plant pathogenic fungi (Contreras-Cornejo
et al. 2016). Trichoderma spp. colonize plants and produce certain compounds
(gibberellins, ethylene, auxins, plant enzymes, antioxidants) and phytoalexins and
phenols that confer abiotic stresses tolerance and enhance the branching capacity of
the root system (Brotman et al. 2013; Lopez-Bucio et al. 2015). Several recent
studies report that Trichoderma induces tolerance against abiotic stresses and
improves plant growth (Zeilinger et al. 2016; Yasmeen and Siddiqui 2017).
Trichoderma spp. can also promote growth and induce resistance to a variety of
abiotic stresses, including water deficit, temperature, salinity, and osmotic stress
(Zelicourt et al. 2016).

Trichoderma spp. are significant for regulating numerous genes involved in plant
defense against biotic and abiotic stresses and improving the plant basal metabolism
(Domínguez et al. 2016). The genes responsible for resistance to salt or other stresses
in T. harzianum, ThHog1 (Delgado-Jarana et al. 2006), Hsp70 (Montero-Barrientos
et al. 2010) and Thkel1 (Hermosa et al. 2011) have been successively characterized.
In an HSP24-carrying transgenic mutant of S. cerevisiae, the small heat shock
protein Hsp24 of T. harzianum was shown to enhance salt, heat, and drought
tolerances (Liming et al. 2008). Cloning of hsp70 gene in pGEM-T vector and its
expression in different isolates of T. harzianum enhanced fungal resistance to heat
and other stresses such as oxidative tolerances, osmotic and salt tolerance (Montero-
Barrientos et al. 2010). The sequences were analyzed using DNA star package and
aligned using CLUSTAL X algorithm. The genome of T. reesei revealed three genes
for potential small heat shock proteins; in T. atroviride there were four genes and in
T. virens five genes were present. All of them are homologs to N. crassa Hsp30
(Plesofsky-Vig and Brambl 1995). Hsp30 of N. crassa was found essential for
carbon utilization at high temperatures (Plesofsky-Vig and Brambl 1995).

Montero-Barrientos et al. (2007) studied the response of the small heat shock
protein Hsp23 of T. virens T59 to high and low temperatures and reported the
expression of Hsp23 was improved on ethanol addition. The Hsp23 gene when
transferred to the biocontrol strain T. harzianum T34 resulted in higher biomass
production in the mutant strains than in the wild type T34 strain along with improved
thermotolerance (Bonaccorsi et al. 2006). The Thkel1 gene encodes putative kelch-
repeat proteins which modulate glucosidase activity and confer salt tolerance,
enhance seed germination, and osmotic stress in Arabidopsis plants, probably due
to the glucosidase activity and abscisic acid (ABA) level modulations (Hermosa
et al. 2011). The vector used for cloning was pSIL-KEL and was transformed into
T. harzianum. The Thkel1gene expression was studied by growing the fungus under
various biotic and abiotic stress conditions (Hermosa et al. 2011).
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Rana et al. (2012) reported that genes encoding an endochitinase (chit42) and a
chitosanase (harcho) from T. harzianum, if co-transformed in wheat plants resulted
in an increased tolerance to the powdery mildew pathogen (Blumeria graminis f.sp.
tritici). Under conditions of water scarcity, T. harzianum T22 modulated the expres-
sion of genes that encoding enzymes that scavenge ROS, such as SOD, catalase, and
ascorbate peroxidase, in both root and shoots of tomato plants (Shoresh et al. 2010;
Mastouri et al. 2012). The highly conserved ribosomal protein subunits like Rpl44
and Rps3ae are also promising candidates for enhanced tolerance in crop plants
(Liang et al. 2015) and these genes are generally found downstream to those resistant
pathways likely having a direct contribution to stress tolerance. Systemic induction
of about 40 genes by T. harzianum 382 in tomato plants with functions related to
biotic or abiotic stress, as well as RNA, DNA, and protein metabolism (Shoresh et al.
2010). About 205 differentially expressed proteins were identified, in roots and
shoots of maize plants inoculated by T. harzianum T226. From T. virens glutathione
transferase gene TvGST was cloned. The expression of this gene in transgenic plants
showed tolerance to cadmium accumulation in plants thus acting as a cadmium
tolerance gene (Dixit et al. 2011).

3.20 Hyphal Growth

In T. reesei the TrCCD1 gene helps in hyphal growth, development of
conidiospores, and production of carotenoid pigment, therefore improving biocon-
trol activity (Zhong et al. 2009). Chitinase degrade chitin, the linear homopolymer of
β-1, 4-N-acetyl-D-glucosamine, which is the main cell wall constituent of plant
pathogenic fungi thus inhibiting the in vitro germination and hyphal growth (Lorito
et al. 1996). These genes find application in improving plant defense against fungal
pathogens. Bae and Knudsen (2000) reported that the to monitor hyphal growth,
activities, and existence of a T. harzianum strain, transformed strain ThzID1 with
plasmids carrying the gfp (pTEFEGFP), Gus (pNOM102), and hygB (pAN7-2)
genes. The mitotic stability of the cotransformants and their ability to colonize the
inactive sclerotia of the plant pathogen S. sclerotiorum in soil were studied.
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