
Chapter 13
Trichoderma as Biostimulant: Factors
Responsible for Plant Growth Promotion

Nibha Gupta

Abstract Trichoderma has detonated as biostimulant and mycofungicide for
improvement of economically important plants of different agriculture, forestry,
horticulture sectors, in regard to their protection against abiotic and biotic stress as
well as proper growth, development, and productivity. Trichoderma plays a vital
role by enhancing and modifying the root surface so that plants can do better nutrient
uptake and mobilize minerals fast. It can enhance the mineral content in the vicinity
of the rhizosphere through solubilization of bound forms, significantly facilitating
the plant growth by releasing growth hormones. It is evident that Trichoderma
induces systemic resistance in plants against various pathogens with the help of
various volatile and nonvolatile metabolites, siderohores, enzymes, antioxidants,
and polysaccharides. On the one hand, the fungus creates rhizosphere competence,
and on the other hand, efficiently eases the unfavorable effect of various environ-
mental stress through antioxidant production and physiological modulation in plants.
Recently, molecular and biochemical dialogs between Trichoderma and host plants
have been studied thoroughly and envisaged the significance of gene–gene interac-
tion corroborate with protein–protein interaction among them. Though the
Trichoderma and genesis of its benefits have been studied, described, and cited
comprehensively, the content of the chapter emphasizes the molecular, physiologi-
cal, biochemical, and morphological interaction of Trichoderma and enlighten the
compact and composed picture of its direct and indirect benefit to the host plants.
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13.1 Introduction

The widely accepted definition of plant biostimulant is that the “plant biostimulant is
applied to improve crop production and nutritional quality of agri food products.
They are used in agricultural management practices aimed at reducing chemical
input, increasing productivity and recovering natural equilibrium in agro ecosystem
(EBIC 2013; du Jardin 2015). ”The plant stimulants like organic and inorganic
natural substances and beneficial microbes are being used for the growth promotion
of economically important plants and proved sustainable and eco-friendly. A plant
biostimulant is any substance or microorganism applied to plants with the aim to
enhance nutrition efficiency, abiotic stress tolerance, and/or crop quality traits,
regardless of its nutrients content. Commercial products containing mixtures of
such substances and/or microorganisms are also designated as plant stimulants
(du Jardin 2015). Plant biostimulants can be categorized into two categories, i.e.,
biochemical which includes humic and fulvic acids, protein hydrolysates and other
N-containing compounds, seaweed extracts and botanicals, chitosan and other bio-
polymers, and inorganic compounds; whereas biological stimulants involve the role
of obligate symbiont mycorrhiza, endosymbionts, and plant growth-promoting
rhizobacteria (Colla et al. 2014; Deliopoulos et al. 2010; Hadwiger 2013; Halpern
et al. 2015; Katiyar et al. 2015; Khan et al. 2009; Pilon-Smits et al. 2009;
Shanmugaiah et al. 2009).

Trichoderma is free-living, green spored ascomycetes, opportunist, avirulent
plant symbiont, ubiquitous habitants of soil, water, rhizosphere, and phyllosphere
in tropical and temperate environment (Harman et al. 2004b; Howell 2003). It is
more prevalent due to its attacking nature on other fungi. Though free living, they
occasionally form endophytic associations with plant roots and may provide a range
of benefits to their hosts (Colla et al. 2014; Cummings et al. 2016; Hermosa et al.
2012; Shoresh et al. 2010). The fungus is mycoparasite, antagonize other fungi, and
utilize their nutrients. Trichoderma has gained importance as a microbial plant
biostimulant in agriculture and horticulture due to its diverse applications as poten-
tial biological disease control agents, source of enzymes and health care medicines,
and useful for bioremediation (Cristea et al. 2017; Woo et al. 2014). It is also present
as one of the components in various biopesticides, biofertilizers, growth promoters,
and biostimulants of commercial nature (Fiorentino et al. 2018; López-Bucio et al.
2015; Rao et al. 2016).

The prime factors behind plant growth promotion are categorized into three
groups: (1) metabolite production (antibiotics, HCN, siderophores),
(2) biostimulating phytohormone production (auxin, cytokinin, gibberaline),
(3) biofertilizing potential through mineral solubilization or nitrogen fixation, and
(4) bioprotection through bioactive secondary metabolites, antibiotics, siderophores
(Hermosa et al. 2012; Puyam 2016; Van Loon 2007). The plant growth promotion is
directly exhibited in terms of increased seed germination, in above- and below-
ground plant parts, chlorophyll content and yield size and/or number of flowers
and/or fruits (Mendoza-Mendoza et al. 2018). Indirectly, the modification of root
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increase in absorption area, thereby improving the nutrient uptake and transport
attributed to increase in biomass (Samolski et al. 2012). Trichoderma is endowed
with these plant growth-promoting properties and significantly facilitates plant
growth and development through numerous mechanisms including solubilization
of soil nutrients increasing the nutrient efficacy and recycling releasing plant growth
stimulatory agent and induced systemic resistance (Adams et al. 2007; Cai et al.
2013; Cornejo et al. 2009; Kapri and Tewari 2011; Li et al. 2015; Singh et al. 2015;
Vinale et al. 2006).

The fungus is also very competent, interactive, and effective when co-inoculated
with other beneficial microbes of agriculture importance (Colla et al. 2015; Kumar
et al. 2009; Rani et al. 1998a, b; Singh and Kumar 2013; Vázquez et al. 2000;
Zhuang et al. 2019). On account of plant growth promotion and development,
Trichoderma is now being a major component of commercial biofertilizer products
that contain microbial consortium beneficial for different crops for protecting seeds
and strengthening seedlings, development of good root formation and establishment,
and finally fully grown crop. Trichoderma is eco-friendly, leaves no chemical
residue, reduces chemical fungicides, crop losses, and increases yields, is compatible
with many crops and antagonistic toward many pathogenic fungi, cost-effective
production and usage. It is evident that Trichoderma extends other indirect and
multifarious benefits to different plant groups besides protection from plant patho-
gens (Sala et al. 2007; Singh et al. 2004). Trichoderma inhabits at the root and
rhizosphere helps in decomposition and absorption of native organic materials. It can
utilize wide-spectrum substrates and confer tough competition to other microbial
rhizospheric associates. It elicits systemic resistance against pathogens. Root colo-
nization by Trichoderma enhances plant root growth and nutrient and water uptake,
increasing resistance to drought and crop productivity. The factors responsible for
the intrinsic biological properties of Trichoderma that stimulate the positive effects
on plant growth and development, enhancing their growth potential and nutritional
uptake, fertilizer use efficiency, seed germination phenomenon, and stress tolerance
are being reviewed here.

13.1.1 Modification in Rhizosphere and Roots

Rhizosphere is a composite system, acts as a plant–soil interface, is enriched with
minerals, metabolites, gaseous compounds, and considered as a habitat of the
microbiome, a variety of microorganisms belonging to nonsymbiotic and free-
living, symbiotic, entophytic, parasitic, commensal group. Incidence of microbiome
of different morphotypes, their biological properties and functions certainly depend
upon the associated plant species, soil types and quality, ecological niche, and
microhabitat. Externally added chemical fertilizers, pesticides, and biofertilizers
also influence the biological role and functions of the existing microbiome either
negatively or positively (Berendsen et al. 2012; Li et al. 2015; Fiorentino et al. 2018;
Vázquez et al. 2000). It may affect the eukaryotic and prokaryotic population
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differently depending upon the host plants, habitat, and seasons under which appli-
cations are being carried out. It is known that varied crops and their metabolites are
the prime components and can strongly affect soil microbial communities and
dynamics (Larkin 2008).

Trichoderma is gaining importance due to its high activity in the edaphic,
phyllosphere, and rhizosphere environment and has been very successfully used as
mycofungicides, biofertilizers, and plant growth promoters. Their ability to colonize
and grow in association with plant roots known as “Rhizosphere competence” is also
one of the potential factors behind their role in plant growth promotion (Kaewchai
et al. 2009). They are excellent competitors in the rhizosphere, have a capacity to
modify the rhizosphere, are tolerant or resistant to soil stress or unfavorable condi-
tions. They compete for the exudates produced by seedling, thereby restricting the
growth of phytopathogens (Howell 2003). Root exudates of plants sometimes
stimulate and attract Trichoderma and other microbial rhizosphere associates
thereby helping in plant growth development and promotion under stress conditions
also (Kandasamy et al. 2010; Lombardi et al. 2018). Trichoderma also plays an
important role as decomposers, indirectly supporting root hair growth and allowing
plants to take up more water and nutrient available distantly as their roots grow
deeper into the soil.

Rhizospheric microflora are mostly influenced by root and soil composition and
they establish beneficial interaction at the biochemical, physiological, or molecular
level with co-microbiota of pathogenic nature or else affect the root architecture
(Harman 2006; Hermosa et al. 2012). The carbon sources released through root
exudates stimulate the growth and proliferation of several microbes including
Trichoderma sp. which colonizes the root system and induces beneficial effects in
plants (More et al. 2013; Fernandez et al. 2017; Vargas et al. 2009). Some
Trichoderma strains do have rhizosphere competence and show a direct effect on
plants, enhance their growth potential and nutrient uptake, fertilizer use efficiency,
percentage and rate of seed germination, and stimulation of plant defense against
biotic and abiotic stress (Shoresh et al. 2010).

Trichoderma is now considered as multi-tasked endophytic fungi of the host
roots, as they are capable of residing in the root intracellular space, penetrating and
colonizing the plant roots, especially intracellular space (Harman et al. 2004a;
Harman 2011; Yedidia et al. 2001). The interaction of cysteine-rich cell wall protein
is responsible for fungal adherence which has a vital role in lateral growth, air
formation, and elongation. Such a phenomenon also imparts enhancing the root
surface, indirectly helping in nutrient uptake and translocation in the shoots, thereby
helping in enhancement in plant biomass and growth. As an example, T. harzianum
is a most effective fungus and is able to colonize roots of most of the plant species,
improve the rooting process, helpful in the establishment of plants in nursery
conditions and thereby enhances the growth of several vegetables and floriculture
crops (Chagas et al. 2017; MacKenzie and Starman 1995). Its inoculation influences
the modification of root structure and stimulates the lateral root development in
associated plants (Bjorkman et al. 1998; Cornejo et al. 2009). Trichoderma spp.
produce and modulate hormonal signals in order to facilitate the colonization of
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roots’ growth which, in turn, facilitates colonization by increasing the available
surface area. The fungus produces auxins (indol 3 acetic ac (IAA), Indol-3-acetal-
dehyde (IAAld), Indol-3-ethanol (IEt.) (Casimiro et al. 2001; Reed et al. 1998).
Manipulation of root system architecture (RSA) which involves the growth of lateral
(LR) and adventitious root and root hairs (RH) formation is one important factor to
regulate the effects of biotic and abiotic factors on plant growth and yield (Casimiro
et al. 2003; Cornejo et al. 2014; López-Bucio et al. 2003, 2005). Such type of root
growth-promoting behavior of Trichoderma has already been established under
laboratory and field experiments done on various crop plants (Bal and Altintas
2006; Naseby et al. 2000; Yadav et al. 2009).

13.1.2 Bioaccumulation of Useful Metabolites in Rhizosphere
System

Trichoderma spp. confer enhancement of growth and development of host plants
and other biological associates. The fungus acts as a protective shield against adverse
conditions like disease state, environmental conditions like high temperature, cold,
drought, metals, acidic, salt, and alkaline conditions. These stress environments are
managed by various metabolic processes and their product including enzymes,
secondary metabolites, bioleaching, and mineral solubilization (Keller et al. 2005;
Keller 2019; Manganiello et al. 2018).

Plant–microbe interaction is governed through communicating signals exerted by
biomolecules (secondary metabolites like peptides, peptaibols, pyrones,
siderophores, and volatile and nonvolatile metabolites) produced by rhizosphere
inhabitants (Vinale et al. 2008a, b; Woo et al. 2014). Trichoderma also produces a
variety of compound and metabolites which has a different function and potential
application in different agriculture, biotechnology, and health care sectors (Singh
et al. 2004). Trichoderma spp. produces over 250 metabolic products including cell
wall degrading enzymes, peptides, secondary metabolites, and other proteins
(Lombardi et al. 2018; Salwan et al. 2019; Sarrocco et al. 2009; Harman et al.
2004a; Sivasithamparam and Ghisalberti 1998; Vinale et al. 2009a, b, 2014). The
plant growth-promoting effects are attributed to the role of Trichoderma alone
and/or synergistic effect of other microbial associates and their induced metabolism
which exhibited in the form of protection against plant pathogens, mineral solubi-
lization capability, production of siderophores and secondary metabolites (Cornejo
et al. 2014; Vieira et al. 2017). Besides plant growth-promoting activity, numerous
evidence are available on the involvement of secondary metabolites in the antago-
nistic activity of Trichoderma against a considerable number of plant pathogens
(Chet 1990; Kleifeld and Chet 1992; Inbar et al. 1994; Vinale et al. 2009a, b;
Zeilinger et al. 2016).
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13.1.3 Siderophores

Iron acts as a cofactor of numerous enzymes and an essential nutrient for the growth
of plants and other microorganisms. In the aerobic environment (with oxygen and
neutral pH), iron exists mainly as Fe3+ and tends to form insoluble ferric oxide,
making it unavailable for root absorption and microbial growth (Miethke 2013).
Fungal siderophores have been involved in transporting and storage of iron, com-
peting for iron in natural soil, indirectly suppressing the plant pathogen by limiting
the metabolism of iron to plants. Trichoderma secretes siderophore, an iron-
chelating compound which binds with insoluble iron (FeIII) and converts to the
soluble form (FeII) for plant absorption and inhibits the growth of plant pathogens
by depriving them of iron sources (Howell 2003).

13.1.4 Volatile Compounds

Trichoderma produces volatile organic compounds (VoC) which are of low molec-
ular mass, low boiling point, low polarity, and chemically these are hydrocarbon,
aromatic, amine thiols and terpenes and now reported to mediate the plant growth
and development in agricultural crops (Bitas et al. 2013; Hung et al. 2013; Junker
and Tholl 2013; Korpi et al. 2009; Lee et al. 2015; Lee et al. 2016; Lemfack et al.
2014; Schulz and Dickschat 2007; Vinale et al. 2008b). The production of VoC is
not only species-specific but also influenced by soil habitat, soil nutritional content,
microbial composition, biomass, and environmental conditions (Insam and Seewald
2010; Lee et al. 2015; McNeal and Herbert 2009). Meena et al. (2017) reported the
positive response of volatile compounds from T. harzianum for Alternaria alternata.
As indicated, an auxin-like effect was observed in etiolated stems treated with
harzianolide and 6-pentyl-a-pyrone, the major VOCs produced by different
Trichoderma strains (Vinale et al. 2008a). This compound is important for multiple
actions involving fungal mycelium growth inhibition, germination of spores, and
pigmentation of plant pathogenic fungi (Salwan et al. 2019).

Many Trichoderma species are known as biofungicides and biofertilizers and
helpful in crop growth enhancement. Trichoderma spp. are producers of many small
metabolites having antimicrobial and anticancer properties (Cordovez et al. 2018;
Tukhbatova et al. 2014). Nonvolatile metabolites from Trichoderma are summarized
by Meng-Fei et al. (2019). He described 329 nonvolatile compounds from 20 known
species and other unidentified species. Fungi produce a vast range of secondary
metabolites and they are known for their capacity to secrete high levels of enzyme,
antibiotics, vitamin, polysaccharide, and organic acids (Meyer 2008). Many reports
are coming up on the antimicrobial compounds isolated from Trichoderma (Li et al.
2016). Zhang et al. (2019) reviewed novel and bioactive metabolites from endo-
phytes including Trichoderma sp. They isolated two new isocoumarin and many
other compounds having antibacterial activity.
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13.1.5 Plant Growth Regulator

Fungi produce a variety of essential phytohormone and natural growth inducers like
gibberellic acid and auxin which are crucial in maintaining normal growth and
metabolic activity (Cornejo et al. 2009; Hermosa et al. 2012). Such fungi have a
critical impact on the physiological status and adaptation of host plants that they
colonize. IAA stimulates the higher production of longer roots with root hairs and
root laterals which are finally involved in nutrient uptake. It also regulates the cell
elongation and numbers which ultimately result in better growth and development.
Trichoderma spp. are also reported to synthesize and produce IAA and exhibit plant
growth promotion efficacy in many agricultural crops in field conditions (Guey et al.
2018; Kumar et al. 2017; França et al. 2017). The hormonal signal perceived by roots
resultantly grow well, indirectly enhances nutrient and water uptake and ultimately
plant growth. Trichoderma species, especially T. virens and T. atroviride, exhibited
characteristic auxin-related phenotype that promoted the root growth, enhanced
nutrient and water uptake, and finally increased biomass production (Kumar et al.
2017; Maria et al. 2017).

13.2 Alleviation of Abiotic Stress

13.2.1 Impact on Physiological Response of Plants

An alternative strategy to improve plant tolerance to stress is the use of plant growth-
promoting microbes. Trichoderma species is a multitasker and rhizospheric salient
biocomponent having beneficial effects on plant growth and enhancing resistance to
both biotic and abiotic stress. They are known to produce different kinds of enzymes,
elicit defense response, a fine metabolic regulation, thereby qualifying to combat the
environmental changes and nutrient limitations (Mastouri et al. 2010; Schuster and
Schmoll 2010; Singh et al. 2014).

The growth-promoting properties of Trichoderma inoculations on radish, pepper,
cucumber, tomato, rice, wheat, etc. were demonstrated well (Baker et al. 1984;
Chang et al. 1986; Harman 2000). It was thought to be due to increased root
development and crop yield, the proliferation of secondary roots, and seedling
biomass and foliar area. However, recent literature says it is due to the different
physiological mechanisms responsible for the enhancement in plant growth (Doni
et al. 2014). Application of Trichoderma increased photosynthetic rate, stomatal
conductance, water use efficiency, transpiration, internal CO2 content catalase and
superoxide dismutase activities, proline content in treated plants grown in stress
environment (Yasmeen and Siddiqui 2017). Mastouri et al. (2010) observed that the
treatment of seed with T. harzianum accelerates seed germination, increases seedling
vigor and ameliorates, water, osmotic, salinity, chilling and heat stress by inducing
physiological protection in plants against oxidative damage. Ripa et al. (2019)
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assessed the plant growth-promoting and abiotic stress tolerance property of wheat
endophytic fungi including Trichoderma strains which exhibited salt, heavy metal
and drought tolerance at a high level and also exhibited resistance to all tested
antibiotic.

13.2.2 Nutritional Starvation

Competition for substrates is the most important factor for fungi as is competition for
light in the case of the evolution of plants (Garrette 1956). Microbiome competition
also causes nutritional starvation and ultimate defeat of weak associates (Benitez
et al. 2004). In a similar way, the microorganisms growing in the vicinity of
Trichoderma strains encounter the nutrient limitation and rhizospheric colonization.
Root exudates and rhizosphere are rich sources of nutrients such as sugar, amino
acids, iron, vitamins, organic acids, etc. Competition for carbon is an effective mode
not only in Trichoderma but also in some other fungi such as strains of Rhizoctonia
solani and F. oxysporum (Alabouvette et al. 2009; Sarrocco et al. 2009).

13.2.3 Salinity Tolerance

Salinity stress affects negatively on plant growth and causes ion toxicity, osmotic
stress, oxidative stress, and nutrient deficiency which result in poor growth, reduc-
tion in yield, and nutritional deficiency (Chinnusamy et al. 2006). One of the
phytohormone ethylenes and its direct precursor ACC is induced by salinity and
many abiotic stressed imposed during host–pathogen interaction (Boller 1991;
Gailīte et al. 2005). Indole acetic acid and ACC deaminase production by
Trichoderma sp. was found to be an important factor behind enhanced tolerance
toward salt stress when treated with wheat seedlings (Zhang et al. 2019). Besides GA
and IAA, antioxidant compounds produced by these fungi especially
T. longibraciatum are also known to alleviate the negative effects of salinity on
many agricultural crops (Aban et al. 2017; Ahmad et al. 2010a, b; Mishra et al. 2015;
Rawat et al. 2011). Application of Trichoderma in plants enhances the IAA levels
reflected in the form of root development, enhanced level of abscisic acid, L proline,
ascorbic acid and osmoprotective status, Na elimination through root exudates of
plants under salt stress (Cornejo et al. 2014; Rawat et al. 2013). Stress tolerance is
also induced due to the synthesis of phenol diacylglycerol, sterol esters, nonesterified
fatty acid, and enzymatic antioxidants like SOD superoxide dismutase, catalase,
peroxidase, ascorbate peroxidase glutathione reductase (Ahmad et al. 2015; Hashem
et al. 2014).

Antioxidative defense mechanisms also play a vital role in mitigating salt stress in
many plants. Prolonged salinity stress is responsible for oxidative stress that gener-
ates reactive oxygen species (ROS) deleterious to biological molecules (Ahmad et al.
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2010a, b). Trichoderma induces resistance in host plants against NaCl stress through
improved uptake of essential elements and modulation of osmolytes. Fu et al. (2017)
studied the alleviation of the effect of Trichoderma asperellum on active oxygen
production in maize seedling under saline-alkali stress condition. It has been
reported that Trichoderma harzianum-inoculated plants restore the pigment content,
enhances the proline content, plant growth, and development under stress
conditions.

13.2.4 Drought Stress

Plant growth and development have also been affected by drought conditions. Plant
growth-promoting microbes play a vital role in the alleviation of such stress in
plants. Such microbial inoculants impart drought tolerance by producing various
metabolites and hormones (Vurukonda et al. 2016). One of the responsible factors
behind drought tolerance of plants under Trichoderma association is increased
secondary metabolites and proline content. Under drought conditions, plant growth
and physiological parameters decline as per the observation made on experimental
tomato plants (AlwhibiMonaa et al. 2017). The Trichoderma-treated plants showed
increased root and shoot growth and chlorophyll pigment under drought stress
condition. Pectin and total protein content was also increased. An obvious increase
in phenol and flavonoid content was observed. It also maintained a high level of
growth regulators like indole acetic acid, indole butyric acid, and gibberellic acid
under drought stress.

Trichoderma inoculations delayed the drought-induced physiological and bio-
chemical changes in rice, wheat, and tomato (AlwhibiMonaa et al. 2017; Shukla
et al. 2012, 2015; Rawat et al. 2016). The fungal treatment enhanced root growth,
improved acquisition and storage of water in rice and phenolics, decreased stress-
induced metabolites, delayed the stomatal conductance, net photosynthesis, proline,
MDA and hydrogen peroxide content increase in phenolics. Trichoderma seed
priming also reduces the accumulation of toxic reactive oxygen species (ROS) and
resultantly root vigor enhances. The production of stress-related enzymes viz.,
superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), has been
reported in rice under drought condition.

During Trichoderma and host plant association and interaction, the proteome and
transcriptome of host plant change due to the fungal metabolite and colonization.
Thus, the fungi reprogram plant gene expression resulting in alleviation of plant
response to their environment (Bae et al. 2011). Alleviation of damage by reactive
oxygen species (ROS) water use efficiency and secretion of phytohormonal analog
are the three mechanisms employed by the fungi in enhancing plant growth under
drought stress. It has been assumed that since the interaction between the plant and
the fungus happens largely at the rhizosphere, such mechanism is probably
connected to an increase in water absorption effectiveness due to the increased
root capacity and hence increased water absorption (Mastouri et al. 2012).
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13.2.5 Heat and Cold Tolerance

Low temperature is a major environmental factor limiting plant growth and devel-
opment in high altitudes. In response to cold stress, plants regulate their physiolog-
ical, biochemical, and molecular phenomenon like cell membrane permeability,
photosynthesis, water absorption, and content and osmoregulation. Trichoderma
also moderates the low-temperature stress in plants and efficiently alleviate the
adverse effects of cold stress leading to enhancement in photosynthetic and growth
rates (Ghorbanpour et al. 2018). Reduction in lipid peroxidation rate and electrolyte
leakage and an increase in leaf water content and proline accumulation could also be
observed as an effect of Trichoderma applications. Some Trichoderma spp. are
isolated from glacial sites of the Indian Himalayan region and reported to be cold-
tolerant antifungal strains (Ghildiyal and Pandey 2008). Such types of fungal
inoculants as biological agents are useful for field applications in colder regions.
Poosapati et al. (2014) studied high temperature-tolerant T isolate with antagonistic
activity agent Sclerotium rolfsii. This strain was highly tolerant to heat showed at
52 C T. asperellum.

13.2.6 Metal Tolerance

Heavy metal contamination of soil and water has become an important environmen-
tal issue as it affects different microbiota drastically. Some filamentous fungi pave
the way through bioremediation of heavy metal contamination. One of them is
Trichoderma species which has shown tolerance to a range of toxicants and Cu,
Cd, As, Zn heavy metal in vivo (Adams et al. 2007; Ezzi and Lynch 2005; Harman
et al. 2004b; Hoseinzadeh et al. 2017; Karcprzak and Malina 2005; Maurya et al.
2019). Due to metal tolerance behavior, Trichoderma spp. became a dominant
organism in some polluted environments and may play an important role in
eco-friendly metal removal technology (Karcprzak and Malina 2005; Nongmaithem
et al. 2016). Trichoderma cell wall revealed the presence of hydroxyl group and
amide group that play a vital role in bioabsorption of heavy metals (Bishnoi et al.
2007). Such a metal tolerance trait of these fungal strains makes them effective
cleaning agents of heavy metal polluted environments (Oladipo et al. 2018). Field
application of these types of fungal strains has also exhibited a positive effect on
translocation index and bioaccumulation factors besides enhancement in biomass
and C, N. P, and solubility of heavy metal as compared to uninoculated plants
(Nongmaithem et al. 2016). Babu et al. (2014) evaluated Trichoderma virens, a
heavy metal-tolerant and plant growth-promoting fungus for remediation and
bioenergy crop production on mining soil. The fungus tolerates heavy metal and
reduces residual concentration in the soil thereby promoting phytostabilization in
contaminated soil. The mycoremediation properties of Trichoderma
longibrachiatum and its protective role for lead-induced oxidative stress in plants
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has also been studied (Devi et al. 2017). Bioremediation using efficient fungi like
Trichoderma virens, T. harzianum, T. saturnisporum, and T. gamsii can help in
eliminating heavy metal contaminants of wastewater in mining industries
(Tansengco et al. 2018).

13.3 Enhancement in Mineral Solubilization and Uptake

Phosphorus is present in the soil in huge amounts but it a major plant growth-limiting
nutrient because most of its amount is easily fixed in the soil in the form of insoluble
phosphate. Other elements like Fe, Mn, Cu, and Zn which are very important in
many physiological and metabolic processes are also not available in active forms.
As a result, their deficiency affects the production, yield, and quality of agriculture
production (Altomare et al. 1999; Lei and Zhang 2015; Lopaz et al. 2015). The
mineral solubilization ability of Trichoderma is also one of the important
biostimulating factors behind plant growth and development. Soil is a composite
system of living and nonliving plethora of biological and nonbiological components
including soluble and bound forms of different minerals (Rawat and Tewari 2005).
Mineralization of different soluble and insoluble mineral is a dynamic process and
greatly influenced by soil pH and extracellular secondary metabolites and enzymes
which regulate the solubilization of minerals and uptake by plant system. It has been
reported that Trichoderma solubilizes bound minerals through lowering the soil pH
by releasing organic acid, gluconic acid, lactic acid, citric acid, tartaric acid, succinic
acid, and fumaric acid extracellularly and allow the dissolution of phosphate as well
as macro- and micronutrient, Fe, Mg, Mn, which are necessary for plant metabolism
(Cao et al. 2008; Harman 2006). Besides, acidification of the surrounding media,
Trichoderma solubilize minerals phytate, Fe2O3, CuO and metallic Zn through
chelation by siderphores, reduce by ferric reduction, and hydrolysis by phytase
(Li et al. 2015).

The mineral solubilization properties and activity of Trichoderma are species
specific and environmentally regulated. Trichoderma produces organic acid to
solubilize insoluble tricalcium phosphate at high pH stress whereas drought stress
induces the production of alkaline phosphate enzymes. This beneficial activity of
Trichoderma was evaluated and confirmed in many crop plants like rice, groundnut,
tomato, etc. (Chagas et al. 2015; Singh et al. 2014; Shukla and Vyas 2014). Many
species of Trichoderma are endowed with dual quality as hormone producer aided
with mineral solubilizing potential makes them more useful mycopesticides for
extensive commercial use in agriculture (Vinale et al. 2008b; Resende et al. 2014).
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13.4 Enhancement in Plant Defense and Immune
Stimulation

13.4.1 Mycoparasitism Related Metabolites

Trichoderma involves mycoparasitism for antagonistic behavior toward plant path-
ogens. The mycoparasitic event involves chemotropic growth, host recognition,
coiling, and appressoria formation, secretion of hydrolytic enzymes like glucanases,
chitinases and proteases, penetrations of the hyphae and lysis of the host cell
(Harman et al. 2004a; Kumar et al. 2016). There are at least 20–30 genes, proteins,
and other metabolites that are directly involved in this interaction. The functions of
different glucanases and chitinases in the process of mycoparasitism are well studied
from Trichoderma spp. using gene-for-gene experiments. Different types of
Trichoderma produce mycoparasitin-related compounds. T. harzianum produces
anthraquinone which enhances the number of coils. Trichoderma atroviride,
T. virens, T. reesei produces ferricrocin a siderophors and key metabolite for iron
chelation. There is a report on the inhibition of glucon biosynthesis by
T. longibrachiale. Many Trichoderma species produce hydrolytic enzymes like
glucanases, chitinases, endopolygalacturonase which hydrolase fungal cell wall
(Daguerre et al. 2014).

13.4.2 Bioactive Metabolites

Trichoderma species are classified as microbial biological control agents “MBCA”
(Woo et al. 2014). Numerous Trichoderma are successful MBCA of various plant
pathogens. Initially, the biopesticidal properties of Trichoderma were considered as
prime benefits, and eventually, these MBCAs are demonstrated to be effective
biofertilizers, biostimulants, and bioenhancers of crop resistance to various biotic
and abiotic stresses (Fontenelle et al. 2011). Trichoderma species are common in soil
and root ecosystem, ubiquitous saprobes and have been tested as biological control
agents against a wide range of pathogenic fungi like Alternaria, Botrytis,
Botryosphaeria, Dematophora, Fusarium, Lasiodiploidia, Rhizoctonia, Pythium,
Phytophthora, Sclerotium, and nematodes (Abdel Fattah et al. 2007; Manganiello
et al. 2018; Singh et al. 2008). Various diseases controlled by Trichoderma spp. are
sheath blight, bakanae, leaf blight, loose smut, wilt, root rot, ring rot, dieback, crown,
black scurf, web blight of different crops like rice, wheat, chickpea, pigeon pea,
apple, guava, chilli, tomato, potato, beans, etc. (Puyam 2016). Commercial formu-
lation of T. harzianum, T. polysporus, T koningii is now available as brand names in
aboard like Binab T, Plant Shield, Antagen, Promot plus, etc. In our country, most of
the products are formulated from T. viride and T. harzianum on commercial pro-
ductions like Antagen TV, Trichostar, Gliostar, Monitor, Birdene, Biofil, Ecofit,
Trichoguard, Bicon, etc. (Puyam 2016).
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Trichoderma is accredited with many biological control credentials like antibio-
sis, antagonisms, mycoparasitism, and induction of plant defense response. Rhizo-
sphere interaction between plant and microbes involves communication between
them through biomolecules synthesized inside and active extracellularly. The inter-
active host–microbe relationship establishes and is dependent upon their mutual
molecular dialogs (Cornejo et al. 2014). Host plants have systemic acquire resistance
or induced systemic resistance which is dependent upon the production of salicyclic
acid, jasmonic acid, and ethylene (Meena et al. 2017; Yuan et al. 2019). The
synthesis and production of signaling molecule like hydrogen peroxide, nitric
oxide, and salicylic acid are activated by Trichoderma thereby inducing plant
defense and mycoparasitism (Nawrocka et al. 2019). Such types of biocontrol
activity is due to well-coordinated transcriptomic, proteomic, and metabolomic
responses of plants in the presence of Trichoderma in its rhizosphere vicinity
(Mukherjee et al. 2012). Production of phenolic compounds like hydroxyl benzoic
acid, cinnamic acid, catechins, flavonols, flavones, flavanone also induces the
systemic defense response (Nawrocka et al. 2019).

Trichoderma and its direct interaction with plant pathogens involve cell wall
degrading substances including antibiotics (Benitez et al. 2004; Harman et al. 2004b;
Kredics et al. 2001). Trichoderma produces a variety of antibiotics like trichokonins,
glovinin, gliotoxin, viridian, pyrones, and reveal antibiosis against plant fungal
pathogen (Howell 2003; Harman et al. 2004a). The beneficial interaction of
Trichoderma with plants depends upon signal exchange among them and mediated
by effector proteins known as hydrophobin that alter the host structure and help in
the establishment of symbiotic relationship (Guzmán-G et al. 2017). To date
317 peptaibols are reported, and among them, 190 are synthesized by Trichoderma
(Whitmore and Wallace 2004). These are characterized by the presence of unusual
amino acid alpha aminoisobutyric acid isovalin, imino acid hydroxyproline (Chugh
and Wallace 2001; Mukherjee et al. 2011). The production of cell wall degrading
enzymes such as chitinase, cellulose protease, have a vital role in the inhibition of
fungal pathogen and induced resistance of host plant system (El-Katathy et al. 2001;
Gajera et al. 2012; Vinale et al. 2008b).

Trichoderma produces many antibiotics which have inhibitory action against
many plant pathogens like Rhizoctonia, Pythium, Gaeumannomyces, Candida,
Penicillium, Aspergillus, Cryptococus, Sclerotium, Staphylococcus, and Mycena. It
is known that antimicrobial activity is species-specific and it produces specific
metabolites against specific individual organisms. Besides antifungal properties, it
produces protein inhibitors, antibacterial, antiviral, immunosuppressor compounds
(Cornejo et al. 2014).

Trichoderma produces such types of compounds which alter the fungal growth of
plant pathogen. Steroidal compounds viridian produced by T. koningii, T. virens,
T. viride alter the spore germination of Botrytis, Colletotrichum, and Fusarium
sp. Many Trichoderma sp. produces Trichothecene (Trichodermin) inhibiting the
protein synthesis. T. harzianum produced by phenyl ethanol inhibits aflatoxin
production by Aspergillus flavus. Disruption of cell wall cellulose is made by
swollenin produced by Trichoderma (Andberg et al. 2015; Eibinger et al. 2016).
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Fungal oligosaccharides are now focused on the biological management of crop
diseases by elicitation of defense response (Boregowda et al. 2017). Crude oligo-
saccharide extracted from Trichoderma spp. enhanced the disease protection ability
in pearl millet when they followed the seed priming process. Oligomers of chitin and
glucan are fungal elicitors generated from the fungal cell wall and are measured as
primary signals responsible for the initiation of plant resistance reactions. It is well
known that several oligosaccharides of fungal cell wall components stimulate
phytoalexin secretion and lignin and callose formation in plants (Kauss et al.
1989; Lattanzio et al. 2006).

13.5 Conclusions

Trichoderma resides mostly in soil and infrequently occurred as endophyte within
host plants of agriculture, forestry, and horticulture importance. This fungus is also
known as mycofungicide and endowed with many intrinsic properties like fast
growth and development, inhibiting a broad spectrum of fungal disease, diversity
of control mechanism, rhizosphere competence, tolerant or resistant to fungicides,
stress tolerance, nutrient solubilization and mobilization and antagonism, etc. Such
intrinsic nature of growth, biochemical, physiological, and metabolic behavior
makes the fungus more beneficial for the growth and development of associated
host plants. Factors responsible for the biostimulating characteristics of Trichoderma
which includes morphological and microbial modification of host plants,
bioaccumulation of metabolites, biotic and abiotic stress tolerance, nutrient solubi-
lization, uptake and mobilization, biocontrol properties have been elaborated in
detail. It is evident that the beneficial activity of Trichoderma is species-specific,
and comprehensive search of this group of fungi from different ecological niche and
agroclimatic zones is required as many more tropical regions remain to be
unexplored in this regard.
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